Bug Summary

File:tools/clang/lib/Sema/SemaOverload.cpp
Warning:line 9252, column 44
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaOverload.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn359426/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-9~svn359426/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn359426/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn359426/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn359426/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn359426/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn359426=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-05-01-032957-29988-1 -x c++ /build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp -faddrsig
1//===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides Sema routines for C++ overloading.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/Sema/Overload.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CXXInheritance.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/TypeOrdering.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/DiagnosticOptions.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Sema/Initialization.h"
26#include "clang/Sema/Lookup.h"
27#include "clang/Sema/SemaInternal.h"
28#include "clang/Sema/Template.h"
29#include "clang/Sema/TemplateDeduction.h"
30#include "llvm/ADT/DenseSet.h"
31#include "llvm/ADT/Optional.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallString.h"
35#include <algorithm>
36#include <cstdlib>
37
38using namespace clang;
39using namespace sema;
40
41static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
42 return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) {
43 return P->hasAttr<PassObjectSizeAttr>();
44 });
45}
46
47/// A convenience routine for creating a decayed reference to a function.
48static ExprResult
49CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
50 const Expr *Base, bool HadMultipleCandidates,
51 SourceLocation Loc = SourceLocation(),
52 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
53 if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
54 return ExprError();
55 // If FoundDecl is different from Fn (such as if one is a template
56 // and the other a specialization), make sure DiagnoseUseOfDecl is
57 // called on both.
58 // FIXME: This would be more comprehensively addressed by modifying
59 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
60 // being used.
61 if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
62 return ExprError();
63 if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
64 S.ResolveExceptionSpec(Loc, FPT);
65 DeclRefExpr *DRE = new (S.Context)
66 DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo);
67 if (HadMultipleCandidates)
68 DRE->setHadMultipleCandidates(true);
69
70 S.MarkDeclRefReferenced(DRE, Base);
71 return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
72 CK_FunctionToPointerDecay);
73}
74
75static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
76 bool InOverloadResolution,
77 StandardConversionSequence &SCS,
78 bool CStyle,
79 bool AllowObjCWritebackConversion);
80
81static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
82 QualType &ToType,
83 bool InOverloadResolution,
84 StandardConversionSequence &SCS,
85 bool CStyle);
86static OverloadingResult
87IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
88 UserDefinedConversionSequence& User,
89 OverloadCandidateSet& Conversions,
90 bool AllowExplicit,
91 bool AllowObjCConversionOnExplicit);
92
93
94static ImplicitConversionSequence::CompareKind
95CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
96 const StandardConversionSequence& SCS1,
97 const StandardConversionSequence& SCS2);
98
99static ImplicitConversionSequence::CompareKind
100CompareQualificationConversions(Sema &S,
101 const StandardConversionSequence& SCS1,
102 const StandardConversionSequence& SCS2);
103
104static ImplicitConversionSequence::CompareKind
105CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
106 const StandardConversionSequence& SCS1,
107 const StandardConversionSequence& SCS2);
108
109/// GetConversionRank - Retrieve the implicit conversion rank
110/// corresponding to the given implicit conversion kind.
111ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
112 static const ImplicitConversionRank
113 Rank[(int)ICK_Num_Conversion_Kinds] = {
114 ICR_Exact_Match,
115 ICR_Exact_Match,
116 ICR_Exact_Match,
117 ICR_Exact_Match,
118 ICR_Exact_Match,
119 ICR_Exact_Match,
120 ICR_Promotion,
121 ICR_Promotion,
122 ICR_Promotion,
123 ICR_Conversion,
124 ICR_Conversion,
125 ICR_Conversion,
126 ICR_Conversion,
127 ICR_Conversion,
128 ICR_Conversion,
129 ICR_Conversion,
130 ICR_Conversion,
131 ICR_Conversion,
132 ICR_Conversion,
133 ICR_OCL_Scalar_Widening,
134 ICR_Complex_Real_Conversion,
135 ICR_Conversion,
136 ICR_Conversion,
137 ICR_Writeback_Conversion,
138 ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
139 // it was omitted by the patch that added
140 // ICK_Zero_Event_Conversion
141 ICR_C_Conversion,
142 ICR_C_Conversion_Extension
143 };
144 return Rank[(int)Kind];
145}
146
147/// GetImplicitConversionName - Return the name of this kind of
148/// implicit conversion.
149static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
150 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
151 "No conversion",
152 "Lvalue-to-rvalue",
153 "Array-to-pointer",
154 "Function-to-pointer",
155 "Function pointer conversion",
156 "Qualification",
157 "Integral promotion",
158 "Floating point promotion",
159 "Complex promotion",
160 "Integral conversion",
161 "Floating conversion",
162 "Complex conversion",
163 "Floating-integral conversion",
164 "Pointer conversion",
165 "Pointer-to-member conversion",
166 "Boolean conversion",
167 "Compatible-types conversion",
168 "Derived-to-base conversion",
169 "Vector conversion",
170 "Vector splat",
171 "Complex-real conversion",
172 "Block Pointer conversion",
173 "Transparent Union Conversion",
174 "Writeback conversion",
175 "OpenCL Zero Event Conversion",
176 "C specific type conversion",
177 "Incompatible pointer conversion"
178 };
179 return Name[Kind];
180}
181
182/// StandardConversionSequence - Set the standard conversion
183/// sequence to the identity conversion.
184void StandardConversionSequence::setAsIdentityConversion() {
185 First = ICK_Identity;
186 Second = ICK_Identity;
187 Third = ICK_Identity;
188 DeprecatedStringLiteralToCharPtr = false;
189 QualificationIncludesObjCLifetime = false;
190 ReferenceBinding = false;
191 DirectBinding = false;
192 IsLvalueReference = true;
193 BindsToFunctionLvalue = false;
194 BindsToRvalue = false;
195 BindsImplicitObjectArgumentWithoutRefQualifier = false;
196 ObjCLifetimeConversionBinding = false;
197 CopyConstructor = nullptr;
198}
199
200/// getRank - Retrieve the rank of this standard conversion sequence
201/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
202/// implicit conversions.
203ImplicitConversionRank StandardConversionSequence::getRank() const {
204 ImplicitConversionRank Rank = ICR_Exact_Match;
205 if (GetConversionRank(First) > Rank)
206 Rank = GetConversionRank(First);
207 if (GetConversionRank(Second) > Rank)
208 Rank = GetConversionRank(Second);
209 if (GetConversionRank(Third) > Rank)
210 Rank = GetConversionRank(Third);
211 return Rank;
212}
213
214/// isPointerConversionToBool - Determines whether this conversion is
215/// a conversion of a pointer or pointer-to-member to bool. This is
216/// used as part of the ranking of standard conversion sequences
217/// (C++ 13.3.3.2p4).
218bool StandardConversionSequence::isPointerConversionToBool() const {
219 // Note that FromType has not necessarily been transformed by the
220 // array-to-pointer or function-to-pointer implicit conversions, so
221 // check for their presence as well as checking whether FromType is
222 // a pointer.
223 if (getToType(1)->isBooleanType() &&
224 (getFromType()->isPointerType() ||
225 getFromType()->isMemberPointerType() ||
226 getFromType()->isObjCObjectPointerType() ||
227 getFromType()->isBlockPointerType() ||
228 getFromType()->isNullPtrType() ||
229 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
230 return true;
231
232 return false;
233}
234
235/// isPointerConversionToVoidPointer - Determines whether this
236/// conversion is a conversion of a pointer to a void pointer. This is
237/// used as part of the ranking of standard conversion sequences (C++
238/// 13.3.3.2p4).
239bool
240StandardConversionSequence::
241isPointerConversionToVoidPointer(ASTContext& Context) const {
242 QualType FromType = getFromType();
243 QualType ToType = getToType(1);
244
245 // Note that FromType has not necessarily been transformed by the
246 // array-to-pointer implicit conversion, so check for its presence
247 // and redo the conversion to get a pointer.
248 if (First == ICK_Array_To_Pointer)
249 FromType = Context.getArrayDecayedType(FromType);
250
251 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
252 if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
253 return ToPtrType->getPointeeType()->isVoidType();
254
255 return false;
256}
257
258/// Skip any implicit casts which could be either part of a narrowing conversion
259/// or after one in an implicit conversion.
260static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
261 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
262 switch (ICE->getCastKind()) {
263 case CK_NoOp:
264 case CK_IntegralCast:
265 case CK_IntegralToBoolean:
266 case CK_IntegralToFloating:
267 case CK_BooleanToSignedIntegral:
268 case CK_FloatingToIntegral:
269 case CK_FloatingToBoolean:
270 case CK_FloatingCast:
271 Converted = ICE->getSubExpr();
272 continue;
273
274 default:
275 return Converted;
276 }
277 }
278
279 return Converted;
280}
281
282/// Check if this standard conversion sequence represents a narrowing
283/// conversion, according to C++11 [dcl.init.list]p7.
284///
285/// \param Ctx The AST context.
286/// \param Converted The result of applying this standard conversion sequence.
287/// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the
288/// value of the expression prior to the narrowing conversion.
289/// \param ConstantType If this is an NK_Constant_Narrowing conversion, the
290/// type of the expression prior to the narrowing conversion.
291/// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions
292/// from floating point types to integral types should be ignored.
293NarrowingKind StandardConversionSequence::getNarrowingKind(
294 ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue,
295 QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const {
296 assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++")((Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++"
) ? static_cast<void> (0) : __assert_fail ("Ctx.getLangOpts().CPlusPlus && \"narrowing check outside C++\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 296, __PRETTY_FUNCTION__))
;
297
298 // C++11 [dcl.init.list]p7:
299 // A narrowing conversion is an implicit conversion ...
300 QualType FromType = getToType(0);
301 QualType ToType = getToType(1);
302
303 // A conversion to an enumeration type is narrowing if the conversion to
304 // the underlying type is narrowing. This only arises for expressions of
305 // the form 'Enum{init}'.
306 if (auto *ET = ToType->getAs<EnumType>())
307 ToType = ET->getDecl()->getIntegerType();
308
309 switch (Second) {
310 // 'bool' is an integral type; dispatch to the right place to handle it.
311 case ICK_Boolean_Conversion:
312 if (FromType->isRealFloatingType())
313 goto FloatingIntegralConversion;
314 if (FromType->isIntegralOrUnscopedEnumerationType())
315 goto IntegralConversion;
316 // Boolean conversions can be from pointers and pointers to members
317 // [conv.bool], and those aren't considered narrowing conversions.
318 return NK_Not_Narrowing;
319
320 // -- from a floating-point type to an integer type, or
321 //
322 // -- from an integer type or unscoped enumeration type to a floating-point
323 // type, except where the source is a constant expression and the actual
324 // value after conversion will fit into the target type and will produce
325 // the original value when converted back to the original type, or
326 case ICK_Floating_Integral:
327 FloatingIntegralConversion:
328 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
329 return NK_Type_Narrowing;
330 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
331 ToType->isRealFloatingType()) {
332 if (IgnoreFloatToIntegralConversion)
333 return NK_Not_Narrowing;
334 llvm::APSInt IntConstantValue;
335 const Expr *Initializer = IgnoreNarrowingConversion(Converted);
336 assert(Initializer && "Unknown conversion expression")((Initializer && "Unknown conversion expression") ? static_cast
<void> (0) : __assert_fail ("Initializer && \"Unknown conversion expression\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 336, __PRETTY_FUNCTION__))
;
337
338 // If it's value-dependent, we can't tell whether it's narrowing.
339 if (Initializer->isValueDependent())
340 return NK_Dependent_Narrowing;
341
342 if (Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
343 // Convert the integer to the floating type.
344 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
345 Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
346 llvm::APFloat::rmNearestTiesToEven);
347 // And back.
348 llvm::APSInt ConvertedValue = IntConstantValue;
349 bool ignored;
350 Result.convertToInteger(ConvertedValue,
351 llvm::APFloat::rmTowardZero, &ignored);
352 // If the resulting value is different, this was a narrowing conversion.
353 if (IntConstantValue != ConvertedValue) {
354 ConstantValue = APValue(IntConstantValue);
355 ConstantType = Initializer->getType();
356 return NK_Constant_Narrowing;
357 }
358 } else {
359 // Variables are always narrowings.
360 return NK_Variable_Narrowing;
361 }
362 }
363 return NK_Not_Narrowing;
364
365 // -- from long double to double or float, or from double to float, except
366 // where the source is a constant expression and the actual value after
367 // conversion is within the range of values that can be represented (even
368 // if it cannot be represented exactly), or
369 case ICK_Floating_Conversion:
370 if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
371 Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
372 // FromType is larger than ToType.
373 const Expr *Initializer = IgnoreNarrowingConversion(Converted);
374
375 // If it's value-dependent, we can't tell whether it's narrowing.
376 if (Initializer->isValueDependent())
377 return NK_Dependent_Narrowing;
378
379 if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
380 // Constant!
381 assert(ConstantValue.isFloat())((ConstantValue.isFloat()) ? static_cast<void> (0) : __assert_fail
("ConstantValue.isFloat()", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 381, __PRETTY_FUNCTION__))
;
382 llvm::APFloat FloatVal = ConstantValue.getFloat();
383 // Convert the source value into the target type.
384 bool ignored;
385 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
386 Ctx.getFloatTypeSemantics(ToType),
387 llvm::APFloat::rmNearestTiesToEven, &ignored);
388 // If there was no overflow, the source value is within the range of
389 // values that can be represented.
390 if (ConvertStatus & llvm::APFloat::opOverflow) {
391 ConstantType = Initializer->getType();
392 return NK_Constant_Narrowing;
393 }
394 } else {
395 return NK_Variable_Narrowing;
396 }
397 }
398 return NK_Not_Narrowing;
399
400 // -- from an integer type or unscoped enumeration type to an integer type
401 // that cannot represent all the values of the original type, except where
402 // the source is a constant expression and the actual value after
403 // conversion will fit into the target type and will produce the original
404 // value when converted back to the original type.
405 case ICK_Integral_Conversion:
406 IntegralConversion: {
407 assert(FromType->isIntegralOrUnscopedEnumerationType())((FromType->isIntegralOrUnscopedEnumerationType()) ? static_cast
<void> (0) : __assert_fail ("FromType->isIntegralOrUnscopedEnumerationType()"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 407, __PRETTY_FUNCTION__))
;
408 assert(ToType->isIntegralOrUnscopedEnumerationType())((ToType->isIntegralOrUnscopedEnumerationType()) ? static_cast
<void> (0) : __assert_fail ("ToType->isIntegralOrUnscopedEnumerationType()"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 408, __PRETTY_FUNCTION__))
;
409 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
410 const unsigned FromWidth = Ctx.getIntWidth(FromType);
411 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
412 const unsigned ToWidth = Ctx.getIntWidth(ToType);
413
414 if (FromWidth > ToWidth ||
415 (FromWidth == ToWidth && FromSigned != ToSigned) ||
416 (FromSigned && !ToSigned)) {
417 // Not all values of FromType can be represented in ToType.
418 llvm::APSInt InitializerValue;
419 const Expr *Initializer = IgnoreNarrowingConversion(Converted);
420
421 // If it's value-dependent, we can't tell whether it's narrowing.
422 if (Initializer->isValueDependent())
423 return NK_Dependent_Narrowing;
424
425 if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
426 // Such conversions on variables are always narrowing.
427 return NK_Variable_Narrowing;
428 }
429 bool Narrowing = false;
430 if (FromWidth < ToWidth) {
431 // Negative -> unsigned is narrowing. Otherwise, more bits is never
432 // narrowing.
433 if (InitializerValue.isSigned() && InitializerValue.isNegative())
434 Narrowing = true;
435 } else {
436 // Add a bit to the InitializerValue so we don't have to worry about
437 // signed vs. unsigned comparisons.
438 InitializerValue = InitializerValue.extend(
439 InitializerValue.getBitWidth() + 1);
440 // Convert the initializer to and from the target width and signed-ness.
441 llvm::APSInt ConvertedValue = InitializerValue;
442 ConvertedValue = ConvertedValue.trunc(ToWidth);
443 ConvertedValue.setIsSigned(ToSigned);
444 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
445 ConvertedValue.setIsSigned(InitializerValue.isSigned());
446 // If the result is different, this was a narrowing conversion.
447 if (ConvertedValue != InitializerValue)
448 Narrowing = true;
449 }
450 if (Narrowing) {
451 ConstantType = Initializer->getType();
452 ConstantValue = APValue(InitializerValue);
453 return NK_Constant_Narrowing;
454 }
455 }
456 return NK_Not_Narrowing;
457 }
458
459 default:
460 // Other kinds of conversions are not narrowings.
461 return NK_Not_Narrowing;
462 }
463}
464
465/// dump - Print this standard conversion sequence to standard
466/// error. Useful for debugging overloading issues.
467LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void StandardConversionSequence::dump() const {
468 raw_ostream &OS = llvm::errs();
469 bool PrintedSomething = false;
470 if (First != ICK_Identity) {
471 OS << GetImplicitConversionName(First);
472 PrintedSomething = true;
473 }
474
475 if (Second != ICK_Identity) {
476 if (PrintedSomething) {
477 OS << " -> ";
478 }
479 OS << GetImplicitConversionName(Second);
480
481 if (CopyConstructor) {
482 OS << " (by copy constructor)";
483 } else if (DirectBinding) {
484 OS << " (direct reference binding)";
485 } else if (ReferenceBinding) {
486 OS << " (reference binding)";
487 }
488 PrintedSomething = true;
489 }
490
491 if (Third != ICK_Identity) {
492 if (PrintedSomething) {
493 OS << " -> ";
494 }
495 OS << GetImplicitConversionName(Third);
496 PrintedSomething = true;
497 }
498
499 if (!PrintedSomething) {
500 OS << "No conversions required";
501 }
502}
503
504/// dump - Print this user-defined conversion sequence to standard
505/// error. Useful for debugging overloading issues.
506void UserDefinedConversionSequence::dump() const {
507 raw_ostream &OS = llvm::errs();
508 if (Before.First || Before.Second || Before.Third) {
509 Before.dump();
510 OS << " -> ";
511 }
512 if (ConversionFunction)
513 OS << '\'' << *ConversionFunction << '\'';
514 else
515 OS << "aggregate initialization";
516 if (After.First || After.Second || After.Third) {
517 OS << " -> ";
518 After.dump();
519 }
520}
521
522/// dump - Print this implicit conversion sequence to standard
523/// error. Useful for debugging overloading issues.
524void ImplicitConversionSequence::dump() const {
525 raw_ostream &OS = llvm::errs();
526 if (isStdInitializerListElement())
527 OS << "Worst std::initializer_list element conversion: ";
528 switch (ConversionKind) {
529 case StandardConversion:
530 OS << "Standard conversion: ";
531 Standard.dump();
532 break;
533 case UserDefinedConversion:
534 OS << "User-defined conversion: ";
535 UserDefined.dump();
536 break;
537 case EllipsisConversion:
538 OS << "Ellipsis conversion";
539 break;
540 case AmbiguousConversion:
541 OS << "Ambiguous conversion";
542 break;
543 case BadConversion:
544 OS << "Bad conversion";
545 break;
546 }
547
548 OS << "\n";
549}
550
551void AmbiguousConversionSequence::construct() {
552 new (&conversions()) ConversionSet();
553}
554
555void AmbiguousConversionSequence::destruct() {
556 conversions().~ConversionSet();
557}
558
559void
560AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
561 FromTypePtr = O.FromTypePtr;
562 ToTypePtr = O.ToTypePtr;
563 new (&conversions()) ConversionSet(O.conversions());
564}
565
566namespace {
567 // Structure used by DeductionFailureInfo to store
568 // template argument information.
569 struct DFIArguments {
570 TemplateArgument FirstArg;
571 TemplateArgument SecondArg;
572 };
573 // Structure used by DeductionFailureInfo to store
574 // template parameter and template argument information.
575 struct DFIParamWithArguments : DFIArguments {
576 TemplateParameter Param;
577 };
578 // Structure used by DeductionFailureInfo to store template argument
579 // information and the index of the problematic call argument.
580 struct DFIDeducedMismatchArgs : DFIArguments {
581 TemplateArgumentList *TemplateArgs;
582 unsigned CallArgIndex;
583 };
584}
585
586/// Convert from Sema's representation of template deduction information
587/// to the form used in overload-candidate information.
588DeductionFailureInfo
589clang::MakeDeductionFailureInfo(ASTContext &Context,
590 Sema::TemplateDeductionResult TDK,
591 TemplateDeductionInfo &Info) {
592 DeductionFailureInfo Result;
593 Result.Result = static_cast<unsigned>(TDK);
594 Result.HasDiagnostic = false;
595 switch (TDK) {
596 case Sema::TDK_Invalid:
597 case Sema::TDK_InstantiationDepth:
598 case Sema::TDK_TooManyArguments:
599 case Sema::TDK_TooFewArguments:
600 case Sema::TDK_MiscellaneousDeductionFailure:
601 case Sema::TDK_CUDATargetMismatch:
602 Result.Data = nullptr;
603 break;
604
605 case Sema::TDK_Incomplete:
606 case Sema::TDK_InvalidExplicitArguments:
607 Result.Data = Info.Param.getOpaqueValue();
608 break;
609
610 case Sema::TDK_DeducedMismatch:
611 case Sema::TDK_DeducedMismatchNested: {
612 // FIXME: Should allocate from normal heap so that we can free this later.
613 auto *Saved = new (Context) DFIDeducedMismatchArgs;
614 Saved->FirstArg = Info.FirstArg;
615 Saved->SecondArg = Info.SecondArg;
616 Saved->TemplateArgs = Info.take();
617 Saved->CallArgIndex = Info.CallArgIndex;
618 Result.Data = Saved;
619 break;
620 }
621
622 case Sema::TDK_NonDeducedMismatch: {
623 // FIXME: Should allocate from normal heap so that we can free this later.
624 DFIArguments *Saved = new (Context) DFIArguments;
625 Saved->FirstArg = Info.FirstArg;
626 Saved->SecondArg = Info.SecondArg;
627 Result.Data = Saved;
628 break;
629 }
630
631 case Sema::TDK_IncompletePack:
632 // FIXME: It's slightly wasteful to allocate two TemplateArguments for this.
633 case Sema::TDK_Inconsistent:
634 case Sema::TDK_Underqualified: {
635 // FIXME: Should allocate from normal heap so that we can free this later.
636 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
637 Saved->Param = Info.Param;
638 Saved->FirstArg = Info.FirstArg;
639 Saved->SecondArg = Info.SecondArg;
640 Result.Data = Saved;
641 break;
642 }
643
644 case Sema::TDK_SubstitutionFailure:
645 Result.Data = Info.take();
646 if (Info.hasSFINAEDiagnostic()) {
647 PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
648 SourceLocation(), PartialDiagnostic::NullDiagnostic());
649 Info.takeSFINAEDiagnostic(*Diag);
650 Result.HasDiagnostic = true;
651 }
652 break;
653
654 case Sema::TDK_Success:
655 case Sema::TDK_NonDependentConversionFailure:
656 llvm_unreachable("not a deduction failure")::llvm::llvm_unreachable_internal("not a deduction failure", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 656)
;
657 }
658
659 return Result;
660}
661
662void DeductionFailureInfo::Destroy() {
663 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
664 case Sema::TDK_Success:
665 case Sema::TDK_Invalid:
666 case Sema::TDK_InstantiationDepth:
667 case Sema::TDK_Incomplete:
668 case Sema::TDK_TooManyArguments:
669 case Sema::TDK_TooFewArguments:
670 case Sema::TDK_InvalidExplicitArguments:
671 case Sema::TDK_CUDATargetMismatch:
672 case Sema::TDK_NonDependentConversionFailure:
673 break;
674
675 case Sema::TDK_IncompletePack:
676 case Sema::TDK_Inconsistent:
677 case Sema::TDK_Underqualified:
678 case Sema::TDK_DeducedMismatch:
679 case Sema::TDK_DeducedMismatchNested:
680 case Sema::TDK_NonDeducedMismatch:
681 // FIXME: Destroy the data?
682 Data = nullptr;
683 break;
684
685 case Sema::TDK_SubstitutionFailure:
686 // FIXME: Destroy the template argument list?
687 Data = nullptr;
688 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
689 Diag->~PartialDiagnosticAt();
690 HasDiagnostic = false;
691 }
692 break;
693
694 // Unhandled
695 case Sema::TDK_MiscellaneousDeductionFailure:
696 break;
697 }
698}
699
700PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
701 if (HasDiagnostic)
702 return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
703 return nullptr;
704}
705
706TemplateParameter DeductionFailureInfo::getTemplateParameter() {
707 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
708 case Sema::TDK_Success:
709 case Sema::TDK_Invalid:
710 case Sema::TDK_InstantiationDepth:
711 case Sema::TDK_TooManyArguments:
712 case Sema::TDK_TooFewArguments:
713 case Sema::TDK_SubstitutionFailure:
714 case Sema::TDK_DeducedMismatch:
715 case Sema::TDK_DeducedMismatchNested:
716 case Sema::TDK_NonDeducedMismatch:
717 case Sema::TDK_CUDATargetMismatch:
718 case Sema::TDK_NonDependentConversionFailure:
719 return TemplateParameter();
720
721 case Sema::TDK_Incomplete:
722 case Sema::TDK_InvalidExplicitArguments:
723 return TemplateParameter::getFromOpaqueValue(Data);
724
725 case Sema::TDK_IncompletePack:
726 case Sema::TDK_Inconsistent:
727 case Sema::TDK_Underqualified:
728 return static_cast<DFIParamWithArguments*>(Data)->Param;
729
730 // Unhandled
731 case Sema::TDK_MiscellaneousDeductionFailure:
732 break;
733 }
734
735 return TemplateParameter();
736}
737
738TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
739 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
740 case Sema::TDK_Success:
741 case Sema::TDK_Invalid:
742 case Sema::TDK_InstantiationDepth:
743 case Sema::TDK_TooManyArguments:
744 case Sema::TDK_TooFewArguments:
745 case Sema::TDK_Incomplete:
746 case Sema::TDK_IncompletePack:
747 case Sema::TDK_InvalidExplicitArguments:
748 case Sema::TDK_Inconsistent:
749 case Sema::TDK_Underqualified:
750 case Sema::TDK_NonDeducedMismatch:
751 case Sema::TDK_CUDATargetMismatch:
752 case Sema::TDK_NonDependentConversionFailure:
753 return nullptr;
754
755 case Sema::TDK_DeducedMismatch:
756 case Sema::TDK_DeducedMismatchNested:
757 return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
758
759 case Sema::TDK_SubstitutionFailure:
760 return static_cast<TemplateArgumentList*>(Data);
761
762 // Unhandled
763 case Sema::TDK_MiscellaneousDeductionFailure:
764 break;
765 }
766
767 return nullptr;
768}
769
770const TemplateArgument *DeductionFailureInfo::getFirstArg() {
771 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
772 case Sema::TDK_Success:
773 case Sema::TDK_Invalid:
774 case Sema::TDK_InstantiationDepth:
775 case Sema::TDK_Incomplete:
776 case Sema::TDK_TooManyArguments:
777 case Sema::TDK_TooFewArguments:
778 case Sema::TDK_InvalidExplicitArguments:
779 case Sema::TDK_SubstitutionFailure:
780 case Sema::TDK_CUDATargetMismatch:
781 case Sema::TDK_NonDependentConversionFailure:
782 return nullptr;
783
784 case Sema::TDK_IncompletePack:
785 case Sema::TDK_Inconsistent:
786 case Sema::TDK_Underqualified:
787 case Sema::TDK_DeducedMismatch:
788 case Sema::TDK_DeducedMismatchNested:
789 case Sema::TDK_NonDeducedMismatch:
790 return &static_cast<DFIArguments*>(Data)->FirstArg;
791
792 // Unhandled
793 case Sema::TDK_MiscellaneousDeductionFailure:
794 break;
795 }
796
797 return nullptr;
798}
799
800const TemplateArgument *DeductionFailureInfo::getSecondArg() {
801 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
802 case Sema::TDK_Success:
803 case Sema::TDK_Invalid:
804 case Sema::TDK_InstantiationDepth:
805 case Sema::TDK_Incomplete:
806 case Sema::TDK_IncompletePack:
807 case Sema::TDK_TooManyArguments:
808 case Sema::TDK_TooFewArguments:
809 case Sema::TDK_InvalidExplicitArguments:
810 case Sema::TDK_SubstitutionFailure:
811 case Sema::TDK_CUDATargetMismatch:
812 case Sema::TDK_NonDependentConversionFailure:
813 return nullptr;
814
815 case Sema::TDK_Inconsistent:
816 case Sema::TDK_Underqualified:
817 case Sema::TDK_DeducedMismatch:
818 case Sema::TDK_DeducedMismatchNested:
819 case Sema::TDK_NonDeducedMismatch:
820 return &static_cast<DFIArguments*>(Data)->SecondArg;
821
822 // Unhandled
823 case Sema::TDK_MiscellaneousDeductionFailure:
824 break;
825 }
826
827 return nullptr;
828}
829
830llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
831 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
832 case Sema::TDK_DeducedMismatch:
833 case Sema::TDK_DeducedMismatchNested:
834 return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
835
836 default:
837 return llvm::None;
838 }
839}
840
841void OverloadCandidateSet::destroyCandidates() {
842 for (iterator i = begin(), e = end(); i != e; ++i) {
843 for (auto &C : i->Conversions)
844 C.~ImplicitConversionSequence();
845 if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
846 i->DeductionFailure.Destroy();
847 }
848}
849
850void OverloadCandidateSet::clear(CandidateSetKind CSK) {
851 destroyCandidates();
852 SlabAllocator.Reset();
853 NumInlineBytesUsed = 0;
854 Candidates.clear();
855 Functions.clear();
856 Kind = CSK;
857}
858
859namespace {
860 class UnbridgedCastsSet {
861 struct Entry {
862 Expr **Addr;
863 Expr *Saved;
864 };
865 SmallVector<Entry, 2> Entries;
866
867 public:
868 void save(Sema &S, Expr *&E) {
869 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast))((E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)) ? static_cast
<void> (0) : __assert_fail ("E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 869, __PRETTY_FUNCTION__))
;
870 Entry entry = { &E, E };
871 Entries.push_back(entry);
872 E = S.stripARCUnbridgedCast(E);
873 }
874
875 void restore() {
876 for (SmallVectorImpl<Entry>::iterator
877 i = Entries.begin(), e = Entries.end(); i != e; ++i)
878 *i->Addr = i->Saved;
879 }
880 };
881}
882
883/// checkPlaceholderForOverload - Do any interesting placeholder-like
884/// preprocessing on the given expression.
885///
886/// \param unbridgedCasts a collection to which to add unbridged casts;
887/// without this, they will be immediately diagnosed as errors
888///
889/// Return true on unrecoverable error.
890static bool
891checkPlaceholderForOverload(Sema &S, Expr *&E,
892 UnbridgedCastsSet *unbridgedCasts = nullptr) {
893 if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) {
894 // We can't handle overloaded expressions here because overload
895 // resolution might reasonably tweak them.
896 if (placeholder->getKind() == BuiltinType::Overload) return false;
897
898 // If the context potentially accepts unbridged ARC casts, strip
899 // the unbridged cast and add it to the collection for later restoration.
900 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
901 unbridgedCasts) {
902 unbridgedCasts->save(S, E);
903 return false;
904 }
905
906 // Go ahead and check everything else.
907 ExprResult result = S.CheckPlaceholderExpr(E);
908 if (result.isInvalid())
909 return true;
910
911 E = result.get();
912 return false;
913 }
914
915 // Nothing to do.
916 return false;
917}
918
919/// checkArgPlaceholdersForOverload - Check a set of call operands for
920/// placeholders.
921static bool checkArgPlaceholdersForOverload(Sema &S,
922 MultiExprArg Args,
923 UnbridgedCastsSet &unbridged) {
924 for (unsigned i = 0, e = Args.size(); i != e; ++i)
925 if (checkPlaceholderForOverload(S, Args[i], &unbridged))
926 return true;
927
928 return false;
929}
930
931/// Determine whether the given New declaration is an overload of the
932/// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
933/// New and Old cannot be overloaded, e.g., if New has the same signature as
934/// some function in Old (C++ 1.3.10) or if the Old declarations aren't
935/// functions (or function templates) at all. When it does return Ovl_Match or
936/// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
937/// overloaded with. This decl may be a UsingShadowDecl on top of the underlying
938/// declaration.
939///
940/// Example: Given the following input:
941///
942/// void f(int, float); // #1
943/// void f(int, int); // #2
944/// int f(int, int); // #3
945///
946/// When we process #1, there is no previous declaration of "f", so IsOverload
947/// will not be used.
948///
949/// When we process #2, Old contains only the FunctionDecl for #1. By comparing
950/// the parameter types, we see that #1 and #2 are overloaded (since they have
951/// different signatures), so this routine returns Ovl_Overload; MatchedDecl is
952/// unchanged.
953///
954/// When we process #3, Old is an overload set containing #1 and #2. We compare
955/// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then
956/// #3 to #2. Since the signatures of #3 and #2 are identical (return types of
957/// functions are not part of the signature), IsOverload returns Ovl_Match and
958/// MatchedDecl will be set to point to the FunctionDecl for #2.
959///
960/// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class
961/// by a using declaration. The rules for whether to hide shadow declarations
962/// ignore some properties which otherwise figure into a function template's
963/// signature.
964Sema::OverloadKind
965Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
966 NamedDecl *&Match, bool NewIsUsingDecl) {
967 for (LookupResult::iterator I = Old.begin(), E = Old.end();
968 I != E; ++I) {
969 NamedDecl *OldD = *I;
970
971 bool OldIsUsingDecl = false;
972 if (isa<UsingShadowDecl>(OldD)) {
973 OldIsUsingDecl = true;
974
975 // We can always introduce two using declarations into the same
976 // context, even if they have identical signatures.
977 if (NewIsUsingDecl) continue;
978
979 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
980 }
981
982 // A using-declaration does not conflict with another declaration
983 // if one of them is hidden.
984 if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
985 continue;
986
987 // If either declaration was introduced by a using declaration,
988 // we'll need to use slightly different rules for matching.
989 // Essentially, these rules are the normal rules, except that
990 // function templates hide function templates with different
991 // return types or template parameter lists.
992 bool UseMemberUsingDeclRules =
993 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
994 !New->getFriendObjectKind();
995
996 if (FunctionDecl *OldF = OldD->getAsFunction()) {
997 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
998 if (UseMemberUsingDeclRules && OldIsUsingDecl) {
999 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
1000 continue;
1001 }
1002
1003 if (!isa<FunctionTemplateDecl>(OldD) &&
1004 !shouldLinkPossiblyHiddenDecl(*I, New))
1005 continue;
1006
1007 Match = *I;
1008 return Ovl_Match;
1009 }
1010
1011 // Builtins that have custom typechecking or have a reference should
1012 // not be overloadable or redeclarable.
1013 if (!getASTContext().canBuiltinBeRedeclared(OldF)) {
1014 Match = *I;
1015 return Ovl_NonFunction;
1016 }
1017 } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) {
1018 // We can overload with these, which can show up when doing
1019 // redeclaration checks for UsingDecls.
1020 assert(Old.getLookupKind() == LookupUsingDeclName)((Old.getLookupKind() == LookupUsingDeclName) ? static_cast<
void> (0) : __assert_fail ("Old.getLookupKind() == LookupUsingDeclName"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 1020, __PRETTY_FUNCTION__))
;
1021 } else if (isa<TagDecl>(OldD)) {
1022 // We can always overload with tags by hiding them.
1023 } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) {
1024 // Optimistically assume that an unresolved using decl will
1025 // overload; if it doesn't, we'll have to diagnose during
1026 // template instantiation.
1027 //
1028 // Exception: if the scope is dependent and this is not a class
1029 // member, the using declaration can only introduce an enumerator.
1030 if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) {
1031 Match = *I;
1032 return Ovl_NonFunction;
1033 }
1034 } else {
1035 // (C++ 13p1):
1036 // Only function declarations can be overloaded; object and type
1037 // declarations cannot be overloaded.
1038 Match = *I;
1039 return Ovl_NonFunction;
1040 }
1041 }
1042
1043 // C++ [temp.friend]p1:
1044 // For a friend function declaration that is not a template declaration:
1045 // -- if the name of the friend is a qualified or unqualified template-id,
1046 // [...], otherwise
1047 // -- if the name of the friend is a qualified-id and a matching
1048 // non-template function is found in the specified class or namespace,
1049 // the friend declaration refers to that function, otherwise,
1050 // -- if the name of the friend is a qualified-id and a matching function
1051 // template is found in the specified class or namespace, the friend
1052 // declaration refers to the deduced specialization of that function
1053 // template, otherwise
1054 // -- the name shall be an unqualified-id [...]
1055 // If we get here for a qualified friend declaration, we've just reached the
1056 // third bullet. If the type of the friend is dependent, skip this lookup
1057 // until instantiation.
1058 if (New->getFriendObjectKind() && New->getQualifier() &&
1059 !New->getDependentSpecializationInfo() &&
1060 !New->getType()->isDependentType()) {
1061 LookupResult TemplateSpecResult(LookupResult::Temporary, Old);
1062 TemplateSpecResult.addAllDecls(Old);
1063 if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult,
1064 /*QualifiedFriend*/true)) {
1065 New->setInvalidDecl();
1066 return Ovl_Overload;
1067 }
1068
1069 Match = TemplateSpecResult.getAsSingle<FunctionDecl>();
1070 return Ovl_Match;
1071 }
1072
1073 return Ovl_Overload;
1074}
1075
1076bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
1077 bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs) {
1078 // C++ [basic.start.main]p2: This function shall not be overloaded.
1079 if (New->isMain())
1080 return false;
1081
1082 // MSVCRT user defined entry points cannot be overloaded.
1083 if (New->isMSVCRTEntryPoint())
1084 return false;
1085
1086 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
1087 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
1088
1089 // C++ [temp.fct]p2:
1090 // A function template can be overloaded with other function templates
1091 // and with normal (non-template) functions.
1092 if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
1093 return true;
1094
1095 // Is the function New an overload of the function Old?
1096 QualType OldQType = Context.getCanonicalType(Old->getType());
1097 QualType NewQType = Context.getCanonicalType(New->getType());
1098
1099 // Compare the signatures (C++ 1.3.10) of the two functions to
1100 // determine whether they are overloads. If we find any mismatch
1101 // in the signature, they are overloads.
1102
1103 // If either of these functions is a K&R-style function (no
1104 // prototype), then we consider them to have matching signatures.
1105 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1106 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1107 return false;
1108
1109 const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
1110 const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
1111
1112 // The signature of a function includes the types of its
1113 // parameters (C++ 1.3.10), which includes the presence or absence
1114 // of the ellipsis; see C++ DR 357).
1115 if (OldQType != NewQType &&
1116 (OldType->getNumParams() != NewType->getNumParams() ||
1117 OldType->isVariadic() != NewType->isVariadic() ||
1118 !FunctionParamTypesAreEqual(OldType, NewType)))
1119 return true;
1120
1121 // C++ [temp.over.link]p4:
1122 // The signature of a function template consists of its function
1123 // signature, its return type and its template parameter list. The names
1124 // of the template parameters are significant only for establishing the
1125 // relationship between the template parameters and the rest of the
1126 // signature.
1127 //
1128 // We check the return type and template parameter lists for function
1129 // templates first; the remaining checks follow.
1130 //
1131 // However, we don't consider either of these when deciding whether
1132 // a member introduced by a shadow declaration is hidden.
1133 if (!UseMemberUsingDeclRules && NewTemplate &&
1134 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1135 OldTemplate->getTemplateParameters(),
1136 false, TPL_TemplateMatch) ||
1137 !Context.hasSameType(Old->getDeclaredReturnType(),
1138 New->getDeclaredReturnType())))
1139 return true;
1140
1141 // If the function is a class member, its signature includes the
1142 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1143 //
1144 // As part of this, also check whether one of the member functions
1145 // is static, in which case they are not overloads (C++
1146 // 13.1p2). While not part of the definition of the signature,
1147 // this check is important to determine whether these functions
1148 // can be overloaded.
1149 CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1150 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1151 if (OldMethod && NewMethod &&
1152 !OldMethod->isStatic() && !NewMethod->isStatic()) {
1153 if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1154 if (!UseMemberUsingDeclRules &&
1155 (OldMethod->getRefQualifier() == RQ_None ||
1156 NewMethod->getRefQualifier() == RQ_None)) {
1157 // C++0x [over.load]p2:
1158 // - Member function declarations with the same name and the same
1159 // parameter-type-list as well as member function template
1160 // declarations with the same name, the same parameter-type-list, and
1161 // the same template parameter lists cannot be overloaded if any of
1162 // them, but not all, have a ref-qualifier (8.3.5).
1163 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1164 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1165 Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1166 }
1167 return true;
1168 }
1169
1170 // We may not have applied the implicit const for a constexpr member
1171 // function yet (because we haven't yet resolved whether this is a static
1172 // or non-static member function). Add it now, on the assumption that this
1173 // is a redeclaration of OldMethod.
1174 auto OldQuals = OldMethod->getMethodQualifiers();
1175 auto NewQuals = NewMethod->getMethodQualifiers();
1176 if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
1177 !isa<CXXConstructorDecl>(NewMethod))
1178 NewQuals.addConst();
1179 // We do not allow overloading based off of '__restrict'.
1180 OldQuals.removeRestrict();
1181 NewQuals.removeRestrict();
1182 if (OldQuals != NewQuals)
1183 return true;
1184 }
1185
1186 // Though pass_object_size is placed on parameters and takes an argument, we
1187 // consider it to be a function-level modifier for the sake of function
1188 // identity. Either the function has one or more parameters with
1189 // pass_object_size or it doesn't.
1190 if (functionHasPassObjectSizeParams(New) !=
1191 functionHasPassObjectSizeParams(Old))
1192 return true;
1193
1194 // enable_if attributes are an order-sensitive part of the signature.
1195 for (specific_attr_iterator<EnableIfAttr>
1196 NewI = New->specific_attr_begin<EnableIfAttr>(),
1197 NewE = New->specific_attr_end<EnableIfAttr>(),
1198 OldI = Old->specific_attr_begin<EnableIfAttr>(),
1199 OldE = Old->specific_attr_end<EnableIfAttr>();
1200 NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
1201 if (NewI == NewE || OldI == OldE)
1202 return true;
1203 llvm::FoldingSetNodeID NewID, OldID;
1204 NewI->getCond()->Profile(NewID, Context, true);
1205 OldI->getCond()->Profile(OldID, Context, true);
1206 if (NewID != OldID)
1207 return true;
1208 }
1209
1210 if (getLangOpts().CUDA && ConsiderCudaAttrs) {
1211 // Don't allow overloading of destructors. (In theory we could, but it
1212 // would be a giant change to clang.)
1213 if (isa<CXXDestructorDecl>(New))
1214 return false;
1215
1216 CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
1217 OldTarget = IdentifyCUDATarget(Old);
1218 if (NewTarget == CFT_InvalidTarget)
1219 return false;
1220
1221 assert((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target.")(((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target."
) ? static_cast<void> (0) : __assert_fail ("(OldTarget != CFT_InvalidTarget) && \"Unexpected invalid target.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 1221, __PRETTY_FUNCTION__))
;
1222
1223 // Allow overloading of functions with same signature and different CUDA
1224 // target attributes.
1225 return NewTarget != OldTarget;
1226 }
1227
1228 // The signatures match; this is not an overload.
1229 return false;
1230}
1231
1232/// Tries a user-defined conversion from From to ToType.
1233///
1234/// Produces an implicit conversion sequence for when a standard conversion
1235/// is not an option. See TryImplicitConversion for more information.
1236static ImplicitConversionSequence
1237TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1238 bool SuppressUserConversions,
1239 bool AllowExplicit,
1240 bool InOverloadResolution,
1241 bool CStyle,
1242 bool AllowObjCWritebackConversion,
1243 bool AllowObjCConversionOnExplicit) {
1244 ImplicitConversionSequence ICS;
1245
1246 if (SuppressUserConversions) {
1247 // We're not in the case above, so there is no conversion that
1248 // we can perform.
1249 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1250 return ICS;
1251 }
1252
1253 // Attempt user-defined conversion.
1254 OverloadCandidateSet Conversions(From->getExprLoc(),
1255 OverloadCandidateSet::CSK_Normal);
1256 switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
1257 Conversions, AllowExplicit,
1258 AllowObjCConversionOnExplicit)) {
1259 case OR_Success:
1260 case OR_Deleted:
1261 ICS.setUserDefined();
1262 // C++ [over.ics.user]p4:
1263 // A conversion of an expression of class type to the same class
1264 // type is given Exact Match rank, and a conversion of an
1265 // expression of class type to a base class of that type is
1266 // given Conversion rank, in spite of the fact that a copy
1267 // constructor (i.e., a user-defined conversion function) is
1268 // called for those cases.
1269 if (CXXConstructorDecl *Constructor
1270 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1271 QualType FromCanon
1272 = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1273 QualType ToCanon
1274 = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1275 if (Constructor->isCopyConstructor() &&
1276 (FromCanon == ToCanon ||
1277 S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) {
1278 // Turn this into a "standard" conversion sequence, so that it
1279 // gets ranked with standard conversion sequences.
1280 DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
1281 ICS.setStandard();
1282 ICS.Standard.setAsIdentityConversion();
1283 ICS.Standard.setFromType(From->getType());
1284 ICS.Standard.setAllToTypes(ToType);
1285 ICS.Standard.CopyConstructor = Constructor;
1286 ICS.Standard.FoundCopyConstructor = Found;
1287 if (ToCanon != FromCanon)
1288 ICS.Standard.Second = ICK_Derived_To_Base;
1289 }
1290 }
1291 break;
1292
1293 case OR_Ambiguous:
1294 ICS.setAmbiguous();
1295 ICS.Ambiguous.setFromType(From->getType());
1296 ICS.Ambiguous.setToType(ToType);
1297 for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1298 Cand != Conversions.end(); ++Cand)
1299 if (Cand->Viable)
1300 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
1301 break;
1302
1303 // Fall through.
1304 case OR_No_Viable_Function:
1305 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1306 break;
1307 }
1308
1309 return ICS;
1310}
1311
1312/// TryImplicitConversion - Attempt to perform an implicit conversion
1313/// from the given expression (Expr) to the given type (ToType). This
1314/// function returns an implicit conversion sequence that can be used
1315/// to perform the initialization. Given
1316///
1317/// void f(float f);
1318/// void g(int i) { f(i); }
1319///
1320/// this routine would produce an implicit conversion sequence to
1321/// describe the initialization of f from i, which will be a standard
1322/// conversion sequence containing an lvalue-to-rvalue conversion (C++
1323/// 4.1) followed by a floating-integral conversion (C++ 4.9).
1324//
1325/// Note that this routine only determines how the conversion can be
1326/// performed; it does not actually perform the conversion. As such,
1327/// it will not produce any diagnostics if no conversion is available,
1328/// but will instead return an implicit conversion sequence of kind
1329/// "BadConversion".
1330///
1331/// If @p SuppressUserConversions, then user-defined conversions are
1332/// not permitted.
1333/// If @p AllowExplicit, then explicit user-defined conversions are
1334/// permitted.
1335///
1336/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1337/// writeback conversion, which allows __autoreleasing id* parameters to
1338/// be initialized with __strong id* or __weak id* arguments.
1339static ImplicitConversionSequence
1340TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1341 bool SuppressUserConversions,
1342 bool AllowExplicit,
1343 bool InOverloadResolution,
1344 bool CStyle,
1345 bool AllowObjCWritebackConversion,
1346 bool AllowObjCConversionOnExplicit) {
1347 ImplicitConversionSequence ICS;
1348 if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1349 ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1350 ICS.setStandard();
1351 return ICS;
1352 }
1353
1354 if (!S.getLangOpts().CPlusPlus) {
1355 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1356 return ICS;
1357 }
1358
1359 // C++ [over.ics.user]p4:
1360 // A conversion of an expression of class type to the same class
1361 // type is given Exact Match rank, and a conversion of an
1362 // expression of class type to a base class of that type is
1363 // given Conversion rank, in spite of the fact that a copy/move
1364 // constructor (i.e., a user-defined conversion function) is
1365 // called for those cases.
1366 QualType FromType = From->getType();
1367 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1368 (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1369 S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) {
1370 ICS.setStandard();
1371 ICS.Standard.setAsIdentityConversion();
1372 ICS.Standard.setFromType(FromType);
1373 ICS.Standard.setAllToTypes(ToType);
1374
1375 // We don't actually check at this point whether there is a valid
1376 // copy/move constructor, since overloading just assumes that it
1377 // exists. When we actually perform initialization, we'll find the
1378 // appropriate constructor to copy the returned object, if needed.
1379 ICS.Standard.CopyConstructor = nullptr;
1380
1381 // Determine whether this is considered a derived-to-base conversion.
1382 if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1383 ICS.Standard.Second = ICK_Derived_To_Base;
1384
1385 return ICS;
1386 }
1387
1388 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1389 AllowExplicit, InOverloadResolution, CStyle,
1390 AllowObjCWritebackConversion,
1391 AllowObjCConversionOnExplicit);
1392}
1393
1394ImplicitConversionSequence
1395Sema::TryImplicitConversion(Expr *From, QualType ToType,
1396 bool SuppressUserConversions,
1397 bool AllowExplicit,
1398 bool InOverloadResolution,
1399 bool CStyle,
1400 bool AllowObjCWritebackConversion) {
1401 return ::TryImplicitConversion(*this, From, ToType,
1402 SuppressUserConversions, AllowExplicit,
1403 InOverloadResolution, CStyle,
1404 AllowObjCWritebackConversion,
1405 /*AllowObjCConversionOnExplicit=*/false);
1406}
1407
1408/// PerformImplicitConversion - Perform an implicit conversion of the
1409/// expression From to the type ToType. Returns the
1410/// converted expression. Flavor is the kind of conversion we're
1411/// performing, used in the error message. If @p AllowExplicit,
1412/// explicit user-defined conversions are permitted.
1413ExprResult
1414Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1415 AssignmentAction Action, bool AllowExplicit) {
1416 ImplicitConversionSequence ICS;
1417 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1418}
1419
1420ExprResult
1421Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1422 AssignmentAction Action, bool AllowExplicit,
1423 ImplicitConversionSequence& ICS) {
1424 if (checkPlaceholderForOverload(*this, From))
1425 return ExprError();
1426
1427 // Objective-C ARC: Determine whether we will allow the writeback conversion.
1428 bool AllowObjCWritebackConversion
1429 = getLangOpts().ObjCAutoRefCount &&
1430 (Action == AA_Passing || Action == AA_Sending);
1431 if (getLangOpts().ObjC)
1432 CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType,
1433 From->getType(), From);
1434 ICS = ::TryImplicitConversion(*this, From, ToType,
1435 /*SuppressUserConversions=*/false,
1436 AllowExplicit,
1437 /*InOverloadResolution=*/false,
1438 /*CStyle=*/false,
1439 AllowObjCWritebackConversion,
1440 /*AllowObjCConversionOnExplicit=*/false);
1441 return PerformImplicitConversion(From, ToType, ICS, Action);
1442}
1443
1444/// Determine whether the conversion from FromType to ToType is a valid
1445/// conversion that strips "noexcept" or "noreturn" off the nested function
1446/// type.
1447bool Sema::IsFunctionConversion(QualType FromType, QualType ToType,
1448 QualType &ResultTy) {
1449 if (Context.hasSameUnqualifiedType(FromType, ToType))
1450 return false;
1451
1452 // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1453 // or F(t noexcept) -> F(t)
1454 // where F adds one of the following at most once:
1455 // - a pointer
1456 // - a member pointer
1457 // - a block pointer
1458 // Changes here need matching changes in FindCompositePointerType.
1459 CanQualType CanTo = Context.getCanonicalType(ToType);
1460 CanQualType CanFrom = Context.getCanonicalType(FromType);
1461 Type::TypeClass TyClass = CanTo->getTypeClass();
1462 if (TyClass != CanFrom->getTypeClass()) return false;
1463 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1464 if (TyClass == Type::Pointer) {
1465 CanTo = CanTo.getAs<PointerType>()->getPointeeType();
1466 CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
1467 } else if (TyClass == Type::BlockPointer) {
1468 CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
1469 CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
1470 } else if (TyClass == Type::MemberPointer) {
1471 auto ToMPT = CanTo.getAs<MemberPointerType>();
1472 auto FromMPT = CanFrom.getAs<MemberPointerType>();
1473 // A function pointer conversion cannot change the class of the function.
1474 if (ToMPT->getClass() != FromMPT->getClass())
1475 return false;
1476 CanTo = ToMPT->getPointeeType();
1477 CanFrom = FromMPT->getPointeeType();
1478 } else {
1479 return false;
1480 }
1481
1482 TyClass = CanTo->getTypeClass();
1483 if (TyClass != CanFrom->getTypeClass()) return false;
1484 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1485 return false;
1486 }
1487
1488 const auto *FromFn = cast<FunctionType>(CanFrom);
1489 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
1490
1491 const auto *ToFn = cast<FunctionType>(CanTo);
1492 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
1493
1494 bool Changed = false;
1495
1496 // Drop 'noreturn' if not present in target type.
1497 if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) {
1498 FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false));
1499 Changed = true;
1500 }
1501
1502 // Drop 'noexcept' if not present in target type.
1503 if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) {
1504 const auto *ToFPT = cast<FunctionProtoType>(ToFn);
1505 if (FromFPT->isNothrow() && !ToFPT->isNothrow()) {
1506 FromFn = cast<FunctionType>(
1507 Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0),
1508 EST_None)
1509 .getTypePtr());
1510 Changed = true;
1511 }
1512
1513 // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid
1514 // only if the ExtParameterInfo lists of the two function prototypes can be
1515 // merged and the merged list is identical to ToFPT's ExtParameterInfo list.
1516 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
1517 bool CanUseToFPT, CanUseFromFPT;
1518 if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT,
1519 CanUseFromFPT, NewParamInfos) &&
1520 CanUseToFPT && !CanUseFromFPT) {
1521 FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo();
1522 ExtInfo.ExtParameterInfos =
1523 NewParamInfos.empty() ? nullptr : NewParamInfos.data();
1524 QualType QT = Context.getFunctionType(FromFPT->getReturnType(),
1525 FromFPT->getParamTypes(), ExtInfo);
1526 FromFn = QT->getAs<FunctionType>();
1527 Changed = true;
1528 }
1529 }
1530
1531 if (!Changed)
1532 return false;
1533
1534 assert(QualType(FromFn, 0).isCanonical())((QualType(FromFn, 0).isCanonical()) ? static_cast<void>
(0) : __assert_fail ("QualType(FromFn, 0).isCanonical()", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 1534, __PRETTY_FUNCTION__))
;
1535 if (QualType(FromFn, 0) != CanTo) return false;
1536
1537 ResultTy = ToType;
1538 return true;
1539}
1540
1541/// Determine whether the conversion from FromType to ToType is a valid
1542/// vector conversion.
1543///
1544/// \param ICK Will be set to the vector conversion kind, if this is a vector
1545/// conversion.
1546static bool IsVectorConversion(Sema &S, QualType FromType,
1547 QualType ToType, ImplicitConversionKind &ICK) {
1548 // We need at least one of these types to be a vector type to have a vector
1549 // conversion.
1550 if (!ToType->isVectorType() && !FromType->isVectorType())
1551 return false;
1552
1553 // Identical types require no conversions.
1554 if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1555 return false;
1556
1557 // There are no conversions between extended vector types, only identity.
1558 if (ToType->isExtVectorType()) {
1559 // There are no conversions between extended vector types other than the
1560 // identity conversion.
1561 if (FromType->isExtVectorType())
1562 return false;
1563
1564 // Vector splat from any arithmetic type to a vector.
1565 if (FromType->isArithmeticType()) {
1566 ICK = ICK_Vector_Splat;
1567 return true;
1568 }
1569 }
1570
1571 // We can perform the conversion between vector types in the following cases:
1572 // 1)vector types are equivalent AltiVec and GCC vector types
1573 // 2)lax vector conversions are permitted and the vector types are of the
1574 // same size
1575 if (ToType->isVectorType() && FromType->isVectorType()) {
1576 if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1577 S.isLaxVectorConversion(FromType, ToType)) {
1578 ICK = ICK_Vector_Conversion;
1579 return true;
1580 }
1581 }
1582
1583 return false;
1584}
1585
1586static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1587 bool InOverloadResolution,
1588 StandardConversionSequence &SCS,
1589 bool CStyle);
1590
1591/// IsStandardConversion - Determines whether there is a standard
1592/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1593/// expression From to the type ToType. Standard conversion sequences
1594/// only consider non-class types; for conversions that involve class
1595/// types, use TryImplicitConversion. If a conversion exists, SCS will
1596/// contain the standard conversion sequence required to perform this
1597/// conversion and this routine will return true. Otherwise, this
1598/// routine will return false and the value of SCS is unspecified.
1599static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1600 bool InOverloadResolution,
1601 StandardConversionSequence &SCS,
1602 bool CStyle,
1603 bool AllowObjCWritebackConversion) {
1604 QualType FromType = From->getType();
1605
1606 // Standard conversions (C++ [conv])
1607 SCS.setAsIdentityConversion();
1608 SCS.IncompatibleObjC = false;
1609 SCS.setFromType(FromType);
1610 SCS.CopyConstructor = nullptr;
1611
1612 // There are no standard conversions for class types in C++, so
1613 // abort early. When overloading in C, however, we do permit them.
1614 if (S.getLangOpts().CPlusPlus &&
1615 (FromType->isRecordType() || ToType->isRecordType()))
1616 return false;
1617
1618 // The first conversion can be an lvalue-to-rvalue conversion,
1619 // array-to-pointer conversion, or function-to-pointer conversion
1620 // (C++ 4p1).
1621
1622 if (FromType == S.Context.OverloadTy) {
1623 DeclAccessPair AccessPair;
1624 if (FunctionDecl *Fn
1625 = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1626 AccessPair)) {
1627 // We were able to resolve the address of the overloaded function,
1628 // so we can convert to the type of that function.
1629 FromType = Fn->getType();
1630 SCS.setFromType(FromType);
1631
1632 // we can sometimes resolve &foo<int> regardless of ToType, so check
1633 // if the type matches (identity) or we are converting to bool
1634 if (!S.Context.hasSameUnqualifiedType(
1635 S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1636 QualType resultTy;
1637 // if the function type matches except for [[noreturn]], it's ok
1638 if (!S.IsFunctionConversion(FromType,
1639 S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1640 // otherwise, only a boolean conversion is standard
1641 if (!ToType->isBooleanType())
1642 return false;
1643 }
1644
1645 // Check if the "from" expression is taking the address of an overloaded
1646 // function and recompute the FromType accordingly. Take advantage of the
1647 // fact that non-static member functions *must* have such an address-of
1648 // expression.
1649 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1650 if (Method && !Method->isStatic()) {
1651 assert(isa<UnaryOperator>(From->IgnoreParens()) &&((isa<UnaryOperator>(From->IgnoreParens()) &&
"Non-unary operator on non-static member address") ? static_cast
<void> (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 1652, __PRETTY_FUNCTION__))
1652 "Non-unary operator on non-static member address")((isa<UnaryOperator>(From->IgnoreParens()) &&
"Non-unary operator on non-static member address") ? static_cast
<void> (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 1652, __PRETTY_FUNCTION__))
;
1653 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 1655, __PRETTY_FUNCTION__))
1654 == UO_AddrOf &&((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 1655, __PRETTY_FUNCTION__))
1655 "Non-address-of operator on non-static member address")((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 1655, __PRETTY_FUNCTION__))
;
1656 const Type *ClassType
1657 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1658 FromType = S.Context.getMemberPointerType(FromType, ClassType);
1659 } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1660 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 1662, __PRETTY_FUNCTION__))
1661 UO_AddrOf &&((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 1662, __PRETTY_FUNCTION__))
1662 "Non-address-of operator for overloaded function expression")((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 1662, __PRETTY_FUNCTION__))
;
1663 FromType = S.Context.getPointerType(FromType);
1664 }
1665
1666 // Check that we've computed the proper type after overload resolution.
1667 // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't
1668 // be calling it from within an NDEBUG block.
1669 assert(S.Context.hasSameType(((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 1671, __PRETTY_FUNCTION__))
1670 FromType,((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 1671, __PRETTY_FUNCTION__))
1671 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()))((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 1671, __PRETTY_FUNCTION__))
;
1672 } else {
1673 return false;
1674 }
1675 }
1676 // Lvalue-to-rvalue conversion (C++11 4.1):
1677 // A glvalue (3.10) of a non-function, non-array type T can
1678 // be converted to a prvalue.
1679 bool argIsLValue = From->isGLValue();
1680 if (argIsLValue &&
1681 !FromType->isFunctionType() && !FromType->isArrayType() &&
1682 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1683 SCS.First = ICK_Lvalue_To_Rvalue;
1684
1685 // C11 6.3.2.1p2:
1686 // ... if the lvalue has atomic type, the value has the non-atomic version
1687 // of the type of the lvalue ...
1688 if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1689 FromType = Atomic->getValueType();
1690
1691 // If T is a non-class type, the type of the rvalue is the
1692 // cv-unqualified version of T. Otherwise, the type of the rvalue
1693 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1694 // just strip the qualifiers because they don't matter.
1695 FromType = FromType.getUnqualifiedType();
1696 } else if (FromType->isArrayType()) {
1697 // Array-to-pointer conversion (C++ 4.2)
1698 SCS.First = ICK_Array_To_Pointer;
1699
1700 // An lvalue or rvalue of type "array of N T" or "array of unknown
1701 // bound of T" can be converted to an rvalue of type "pointer to
1702 // T" (C++ 4.2p1).
1703 FromType = S.Context.getArrayDecayedType(FromType);
1704
1705 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1706 // This conversion is deprecated in C++03 (D.4)
1707 SCS.DeprecatedStringLiteralToCharPtr = true;
1708
1709 // For the purpose of ranking in overload resolution
1710 // (13.3.3.1.1), this conversion is considered an
1711 // array-to-pointer conversion followed by a qualification
1712 // conversion (4.4). (C++ 4.2p2)
1713 SCS.Second = ICK_Identity;
1714 SCS.Third = ICK_Qualification;
1715 SCS.QualificationIncludesObjCLifetime = false;
1716 SCS.setAllToTypes(FromType);
1717 return true;
1718 }
1719 } else if (FromType->isFunctionType() && argIsLValue) {
1720 // Function-to-pointer conversion (C++ 4.3).
1721 SCS.First = ICK_Function_To_Pointer;
1722
1723 if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
1724 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
1725 if (!S.checkAddressOfFunctionIsAvailable(FD))
1726 return false;
1727
1728 // An lvalue of function type T can be converted to an rvalue of
1729 // type "pointer to T." The result is a pointer to the
1730 // function. (C++ 4.3p1).
1731 FromType = S.Context.getPointerType(FromType);
1732 } else {
1733 // We don't require any conversions for the first step.
1734 SCS.First = ICK_Identity;
1735 }
1736 SCS.setToType(0, FromType);
1737
1738 // The second conversion can be an integral promotion, floating
1739 // point promotion, integral conversion, floating point conversion,
1740 // floating-integral conversion, pointer conversion,
1741 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1742 // For overloading in C, this can also be a "compatible-type"
1743 // conversion.
1744 bool IncompatibleObjC = false;
1745 ImplicitConversionKind SecondICK = ICK_Identity;
1746 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1747 // The unqualified versions of the types are the same: there's no
1748 // conversion to do.
1749 SCS.Second = ICK_Identity;
1750 } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1751 // Integral promotion (C++ 4.5).
1752 SCS.Second = ICK_Integral_Promotion;
1753 FromType = ToType.getUnqualifiedType();
1754 } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1755 // Floating point promotion (C++ 4.6).
1756 SCS.Second = ICK_Floating_Promotion;
1757 FromType = ToType.getUnqualifiedType();
1758 } else if (S.IsComplexPromotion(FromType, ToType)) {
1759 // Complex promotion (Clang extension)
1760 SCS.Second = ICK_Complex_Promotion;
1761 FromType = ToType.getUnqualifiedType();
1762 } else if (ToType->isBooleanType() &&
1763 (FromType->isArithmeticType() ||
1764 FromType->isAnyPointerType() ||
1765 FromType->isBlockPointerType() ||
1766 FromType->isMemberPointerType() ||
1767 FromType->isNullPtrType())) {
1768 // Boolean conversions (C++ 4.12).
1769 SCS.Second = ICK_Boolean_Conversion;
1770 FromType = S.Context.BoolTy;
1771 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1772 ToType->isIntegralType(S.Context)) {
1773 // Integral conversions (C++ 4.7).
1774 SCS.Second = ICK_Integral_Conversion;
1775 FromType = ToType.getUnqualifiedType();
1776 } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1777 // Complex conversions (C99 6.3.1.6)
1778 SCS.Second = ICK_Complex_Conversion;
1779 FromType = ToType.getUnqualifiedType();
1780 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1781 (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1782 // Complex-real conversions (C99 6.3.1.7)
1783 SCS.Second = ICK_Complex_Real;
1784 FromType = ToType.getUnqualifiedType();
1785 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1786 // FIXME: disable conversions between long double and __float128 if
1787 // their representation is different until there is back end support
1788 // We of course allow this conversion if long double is really double.
1789 if (&S.Context.getFloatTypeSemantics(FromType) !=
1790 &S.Context.getFloatTypeSemantics(ToType)) {
1791 bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty &&
1792 ToType == S.Context.LongDoubleTy) ||
1793 (FromType == S.Context.LongDoubleTy &&
1794 ToType == S.Context.Float128Ty));
1795 if (Float128AndLongDouble &&
1796 (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
1797 &llvm::APFloat::PPCDoubleDouble()))
1798 return false;
1799 }
1800 // Floating point conversions (C++ 4.8).
1801 SCS.Second = ICK_Floating_Conversion;
1802 FromType = ToType.getUnqualifiedType();
1803 } else if ((FromType->isRealFloatingType() &&
1804 ToType->isIntegralType(S.Context)) ||
1805 (FromType->isIntegralOrUnscopedEnumerationType() &&
1806 ToType->isRealFloatingType())) {
1807 // Floating-integral conversions (C++ 4.9).
1808 SCS.Second = ICK_Floating_Integral;
1809 FromType = ToType.getUnqualifiedType();
1810 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1811 SCS.Second = ICK_Block_Pointer_Conversion;
1812 } else if (AllowObjCWritebackConversion &&
1813 S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1814 SCS.Second = ICK_Writeback_Conversion;
1815 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1816 FromType, IncompatibleObjC)) {
1817 // Pointer conversions (C++ 4.10).
1818 SCS.Second = ICK_Pointer_Conversion;
1819 SCS.IncompatibleObjC = IncompatibleObjC;
1820 FromType = FromType.getUnqualifiedType();
1821 } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1822 InOverloadResolution, FromType)) {
1823 // Pointer to member conversions (4.11).
1824 SCS.Second = ICK_Pointer_Member;
1825 } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
1826 SCS.Second = SecondICK;
1827 FromType = ToType.getUnqualifiedType();
1828 } else if (!S.getLangOpts().CPlusPlus &&
1829 S.Context.typesAreCompatible(ToType, FromType)) {
1830 // Compatible conversions (Clang extension for C function overloading)
1831 SCS.Second = ICK_Compatible_Conversion;
1832 FromType = ToType.getUnqualifiedType();
1833 } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1834 InOverloadResolution,
1835 SCS, CStyle)) {
1836 SCS.Second = ICK_TransparentUnionConversion;
1837 FromType = ToType;
1838 } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1839 CStyle)) {
1840 // tryAtomicConversion has updated the standard conversion sequence
1841 // appropriately.
1842 return true;
1843 } else if (ToType->isEventT() &&
1844 From->isIntegerConstantExpr(S.getASTContext()) &&
1845 From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
1846 SCS.Second = ICK_Zero_Event_Conversion;
1847 FromType = ToType;
1848 } else if (ToType->isQueueT() &&
1849 From->isIntegerConstantExpr(S.getASTContext()) &&
1850 (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
1851 SCS.Second = ICK_Zero_Queue_Conversion;
1852 FromType = ToType;
1853 } else {
1854 // No second conversion required.
1855 SCS.Second = ICK_Identity;
1856 }
1857 SCS.setToType(1, FromType);
1858
1859 // The third conversion can be a function pointer conversion or a
1860 // qualification conversion (C++ [conv.fctptr], [conv.qual]).
1861 bool ObjCLifetimeConversion;
1862 if (S.IsFunctionConversion(FromType, ToType, FromType)) {
1863 // Function pointer conversions (removing 'noexcept') including removal of
1864 // 'noreturn' (Clang extension).
1865 SCS.Third = ICK_Function_Conversion;
1866 } else if (S.IsQualificationConversion(FromType, ToType, CStyle,
1867 ObjCLifetimeConversion)) {
1868 SCS.Third = ICK_Qualification;
1869 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1870 FromType = ToType;
1871 } else {
1872 // No conversion required
1873 SCS.Third = ICK_Identity;
1874 }
1875
1876 // C++ [over.best.ics]p6:
1877 // [...] Any difference in top-level cv-qualification is
1878 // subsumed by the initialization itself and does not constitute
1879 // a conversion. [...]
1880 QualType CanonFrom = S.Context.getCanonicalType(FromType);
1881 QualType CanonTo = S.Context.getCanonicalType(ToType);
1882 if (CanonFrom.getLocalUnqualifiedType()
1883 == CanonTo.getLocalUnqualifiedType() &&
1884 CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1885 FromType = ToType;
1886 CanonFrom = CanonTo;
1887 }
1888
1889 SCS.setToType(2, FromType);
1890
1891 if (CanonFrom == CanonTo)
1892 return true;
1893
1894 // If we have not converted the argument type to the parameter type,
1895 // this is a bad conversion sequence, unless we're resolving an overload in C.
1896 if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
1897 return false;
1898
1899 ExprResult ER = ExprResult{From};
1900 Sema::AssignConvertType Conv =
1901 S.CheckSingleAssignmentConstraints(ToType, ER,
1902 /*Diagnose=*/false,
1903 /*DiagnoseCFAudited=*/false,
1904 /*ConvertRHS=*/false);
1905 ImplicitConversionKind SecondConv;
1906 switch (Conv) {
1907 case Sema::Compatible:
1908 SecondConv = ICK_C_Only_Conversion;
1909 break;
1910 // For our purposes, discarding qualifiers is just as bad as using an
1911 // incompatible pointer. Note that an IncompatiblePointer conversion can drop
1912 // qualifiers, as well.
1913 case Sema::CompatiblePointerDiscardsQualifiers:
1914 case Sema::IncompatiblePointer:
1915 case Sema::IncompatiblePointerSign:
1916 SecondConv = ICK_Incompatible_Pointer_Conversion;
1917 break;
1918 default:
1919 return false;
1920 }
1921
1922 // First can only be an lvalue conversion, so we pretend that this was the
1923 // second conversion. First should already be valid from earlier in the
1924 // function.
1925 SCS.Second = SecondConv;
1926 SCS.setToType(1, ToType);
1927
1928 // Third is Identity, because Second should rank us worse than any other
1929 // conversion. This could also be ICK_Qualification, but it's simpler to just
1930 // lump everything in with the second conversion, and we don't gain anything
1931 // from making this ICK_Qualification.
1932 SCS.Third = ICK_Identity;
1933 SCS.setToType(2, ToType);
1934 return true;
1935}
1936
1937static bool
1938IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1939 QualType &ToType,
1940 bool InOverloadResolution,
1941 StandardConversionSequence &SCS,
1942 bool CStyle) {
1943
1944 const RecordType *UT = ToType->getAsUnionType();
1945 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1946 return false;
1947 // The field to initialize within the transparent union.
1948 RecordDecl *UD = UT->getDecl();
1949 // It's compatible if the expression matches any of the fields.
1950 for (const auto *it : UD->fields()) {
1951 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1952 CStyle, /*ObjCWritebackConversion=*/false)) {
1953 ToType = it->getType();
1954 return true;
1955 }
1956 }
1957 return false;
1958}
1959
1960/// IsIntegralPromotion - Determines whether the conversion from the
1961/// expression From (whose potentially-adjusted type is FromType) to
1962/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1963/// sets PromotedType to the promoted type.
1964bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1965 const BuiltinType *To = ToType->getAs<BuiltinType>();
1966 // All integers are built-in.
1967 if (!To) {
1968 return false;
1969 }
1970
1971 // An rvalue of type char, signed char, unsigned char, short int, or
1972 // unsigned short int can be converted to an rvalue of type int if
1973 // int can represent all the values of the source type; otherwise,
1974 // the source rvalue can be converted to an rvalue of type unsigned
1975 // int (C++ 4.5p1).
1976 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1977 !FromType->isEnumeralType()) {
1978 if (// We can promote any signed, promotable integer type to an int
1979 (FromType->isSignedIntegerType() ||
1980 // We can promote any unsigned integer type whose size is
1981 // less than int to an int.
1982 Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
1983 return To->getKind() == BuiltinType::Int;
1984 }
1985
1986 return To->getKind() == BuiltinType::UInt;
1987 }
1988
1989 // C++11 [conv.prom]p3:
1990 // A prvalue of an unscoped enumeration type whose underlying type is not
1991 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1992 // following types that can represent all the values of the enumeration
1993 // (i.e., the values in the range bmin to bmax as described in 7.2): int,
1994 // unsigned int, long int, unsigned long int, long long int, or unsigned
1995 // long long int. If none of the types in that list can represent all the
1996 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1997 // type can be converted to an rvalue a prvalue of the extended integer type
1998 // with lowest integer conversion rank (4.13) greater than the rank of long
1999 // long in which all the values of the enumeration can be represented. If
2000 // there are two such extended types, the signed one is chosen.
2001 // C++11 [conv.prom]p4:
2002 // A prvalue of an unscoped enumeration type whose underlying type is fixed
2003 // can be converted to a prvalue of its underlying type. Moreover, if
2004 // integral promotion can be applied to its underlying type, a prvalue of an
2005 // unscoped enumeration type whose underlying type is fixed can also be
2006 // converted to a prvalue of the promoted underlying type.
2007 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
2008 // C++0x 7.2p9: Note that this implicit enum to int conversion is not
2009 // provided for a scoped enumeration.
2010 if (FromEnumType->getDecl()->isScoped())
2011 return false;
2012
2013 // We can perform an integral promotion to the underlying type of the enum,
2014 // even if that's not the promoted type. Note that the check for promoting
2015 // the underlying type is based on the type alone, and does not consider
2016 // the bitfield-ness of the actual source expression.
2017 if (FromEnumType->getDecl()->isFixed()) {
2018 QualType Underlying = FromEnumType->getDecl()->getIntegerType();
2019 return Context.hasSameUnqualifiedType(Underlying, ToType) ||
2020 IsIntegralPromotion(nullptr, Underlying, ToType);
2021 }
2022
2023 // We have already pre-calculated the promotion type, so this is trivial.
2024 if (ToType->isIntegerType() &&
2025 isCompleteType(From->getBeginLoc(), FromType))
2026 return Context.hasSameUnqualifiedType(
2027 ToType, FromEnumType->getDecl()->getPromotionType());
2028
2029 // C++ [conv.prom]p5:
2030 // If the bit-field has an enumerated type, it is treated as any other
2031 // value of that type for promotion purposes.
2032 //
2033 // ... so do not fall through into the bit-field checks below in C++.
2034 if (getLangOpts().CPlusPlus)
2035 return false;
2036 }
2037
2038 // C++0x [conv.prom]p2:
2039 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
2040 // to an rvalue a prvalue of the first of the following types that can
2041 // represent all the values of its underlying type: int, unsigned int,
2042 // long int, unsigned long int, long long int, or unsigned long long int.
2043 // If none of the types in that list can represent all the values of its
2044 // underlying type, an rvalue a prvalue of type char16_t, char32_t,
2045 // or wchar_t can be converted to an rvalue a prvalue of its underlying
2046 // type.
2047 if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
2048 ToType->isIntegerType()) {
2049 // Determine whether the type we're converting from is signed or
2050 // unsigned.
2051 bool FromIsSigned = FromType->isSignedIntegerType();
2052 uint64_t FromSize = Context.getTypeSize(FromType);
2053
2054 // The types we'll try to promote to, in the appropriate
2055 // order. Try each of these types.
2056 QualType PromoteTypes[6] = {
2057 Context.IntTy, Context.UnsignedIntTy,
2058 Context.LongTy, Context.UnsignedLongTy ,
2059 Context.LongLongTy, Context.UnsignedLongLongTy
2060 };
2061 for (int Idx = 0; Idx < 6; ++Idx) {
2062 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
2063 if (FromSize < ToSize ||
2064 (FromSize == ToSize &&
2065 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
2066 // We found the type that we can promote to. If this is the
2067 // type we wanted, we have a promotion. Otherwise, no
2068 // promotion.
2069 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
2070 }
2071 }
2072 }
2073
2074 // An rvalue for an integral bit-field (9.6) can be converted to an
2075 // rvalue of type int if int can represent all the values of the
2076 // bit-field; otherwise, it can be converted to unsigned int if
2077 // unsigned int can represent all the values of the bit-field. If
2078 // the bit-field is larger yet, no integral promotion applies to
2079 // it. If the bit-field has an enumerated type, it is treated as any
2080 // other value of that type for promotion purposes (C++ 4.5p3).
2081 // FIXME: We should delay checking of bit-fields until we actually perform the
2082 // conversion.
2083 //
2084 // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be
2085 // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum
2086 // bit-fields and those whose underlying type is larger than int) for GCC
2087 // compatibility.
2088 if (From) {
2089 if (FieldDecl *MemberDecl = From->getSourceBitField()) {
2090 llvm::APSInt BitWidth;
2091 if (FromType->isIntegralType(Context) &&
2092 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
2093 llvm::APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
2094 ToSize = Context.getTypeSize(ToType);
2095
2096 // Are we promoting to an int from a bitfield that fits in an int?
2097 if (BitWidth < ToSize ||
2098 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
2099 return To->getKind() == BuiltinType::Int;
2100 }
2101
2102 // Are we promoting to an unsigned int from an unsigned bitfield
2103 // that fits into an unsigned int?
2104 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
2105 return To->getKind() == BuiltinType::UInt;
2106 }
2107
2108 return false;
2109 }
2110 }
2111 }
2112
2113 // An rvalue of type bool can be converted to an rvalue of type int,
2114 // with false becoming zero and true becoming one (C++ 4.5p4).
2115 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
2116 return true;
2117 }
2118
2119 return false;
2120}
2121
2122/// IsFloatingPointPromotion - Determines whether the conversion from
2123/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
2124/// returns true and sets PromotedType to the promoted type.
2125bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
2126 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
2127 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
2128 /// An rvalue of type float can be converted to an rvalue of type
2129 /// double. (C++ 4.6p1).
2130 if (FromBuiltin->getKind() == BuiltinType::Float &&
2131 ToBuiltin->getKind() == BuiltinType::Double)
2132 return true;
2133
2134 // C99 6.3.1.5p1:
2135 // When a float is promoted to double or long double, or a
2136 // double is promoted to long double [...].
2137 if (!getLangOpts().CPlusPlus &&
2138 (FromBuiltin->getKind() == BuiltinType::Float ||
2139 FromBuiltin->getKind() == BuiltinType::Double) &&
2140 (ToBuiltin->getKind() == BuiltinType::LongDouble ||
2141 ToBuiltin->getKind() == BuiltinType::Float128))
2142 return true;
2143
2144 // Half can be promoted to float.
2145 if (!getLangOpts().NativeHalfType &&
2146 FromBuiltin->getKind() == BuiltinType::Half &&
2147 ToBuiltin->getKind() == BuiltinType::Float)
2148 return true;
2149 }
2150
2151 return false;
2152}
2153
2154/// Determine if a conversion is a complex promotion.
2155///
2156/// A complex promotion is defined as a complex -> complex conversion
2157/// where the conversion between the underlying real types is a
2158/// floating-point or integral promotion.
2159bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
2160 const ComplexType *FromComplex = FromType->getAs<ComplexType>();
2161 if (!FromComplex)
2162 return false;
2163
2164 const ComplexType *ToComplex = ToType->getAs<ComplexType>();
2165 if (!ToComplex)
2166 return false;
2167
2168 return IsFloatingPointPromotion(FromComplex->getElementType(),
2169 ToComplex->getElementType()) ||
2170 IsIntegralPromotion(nullptr, FromComplex->getElementType(),
2171 ToComplex->getElementType());
2172}
2173
2174/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
2175/// the pointer type FromPtr to a pointer to type ToPointee, with the
2176/// same type qualifiers as FromPtr has on its pointee type. ToType,
2177/// if non-empty, will be a pointer to ToType that may or may not have
2178/// the right set of qualifiers on its pointee.
2179///
2180static QualType
2181BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
2182 QualType ToPointee, QualType ToType,
2183 ASTContext &Context,
2184 bool StripObjCLifetime = false) {
2185 assert((FromPtr->getTypeClass() == Type::Pointer ||(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 2187, __PRETTY_FUNCTION__))
2186 FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 2187, __PRETTY_FUNCTION__))
2187 "Invalid similarly-qualified pointer type")(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 2187, __PRETTY_FUNCTION__))
;
2188
2189 /// Conversions to 'id' subsume cv-qualifier conversions.
2190 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
2191 return ToType.getUnqualifiedType();
2192
2193 QualType CanonFromPointee
2194 = Context.getCanonicalType(FromPtr->getPointeeType());
2195 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
2196 Qualifiers Quals = CanonFromPointee.getQualifiers();
2197
2198 if (StripObjCLifetime)
2199 Quals.removeObjCLifetime();
2200
2201 // Exact qualifier match -> return the pointer type we're converting to.
2202 if (CanonToPointee.getLocalQualifiers() == Quals) {
2203 // ToType is exactly what we need. Return it.
2204 if (!ToType.isNull())
2205 return ToType.getUnqualifiedType();
2206
2207 // Build a pointer to ToPointee. It has the right qualifiers
2208 // already.
2209 if (isa<ObjCObjectPointerType>(ToType))
2210 return Context.getObjCObjectPointerType(ToPointee);
2211 return Context.getPointerType(ToPointee);
2212 }
2213
2214 // Just build a canonical type that has the right qualifiers.
2215 QualType QualifiedCanonToPointee
2216 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
2217
2218 if (isa<ObjCObjectPointerType>(ToType))
2219 return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
2220 return Context.getPointerType(QualifiedCanonToPointee);
2221}
2222
2223static bool isNullPointerConstantForConversion(Expr *Expr,
2224 bool InOverloadResolution,
2225 ASTContext &Context) {
2226 // Handle value-dependent integral null pointer constants correctly.
2227 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
2228 if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
2229 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
2230 return !InOverloadResolution;
2231
2232 return Expr->isNullPointerConstant(Context,
2233 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2234 : Expr::NPC_ValueDependentIsNull);
2235}
2236
2237/// IsPointerConversion - Determines whether the conversion of the
2238/// expression From, which has the (possibly adjusted) type FromType,
2239/// can be converted to the type ToType via a pointer conversion (C++
2240/// 4.10). If so, returns true and places the converted type (that
2241/// might differ from ToType in its cv-qualifiers at some level) into
2242/// ConvertedType.
2243///
2244/// This routine also supports conversions to and from block pointers
2245/// and conversions with Objective-C's 'id', 'id<protocols...>', and
2246/// pointers to interfaces. FIXME: Once we've determined the
2247/// appropriate overloading rules for Objective-C, we may want to
2248/// split the Objective-C checks into a different routine; however,
2249/// GCC seems to consider all of these conversions to be pointer
2250/// conversions, so for now they live here. IncompatibleObjC will be
2251/// set if the conversion is an allowed Objective-C conversion that
2252/// should result in a warning.
2253bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
2254 bool InOverloadResolution,
2255 QualType& ConvertedType,
2256 bool &IncompatibleObjC) {
2257 IncompatibleObjC = false;
2258 if (isObjCPointerConversion(FromType, ToType, ConvertedType,
2259 IncompatibleObjC))
2260 return true;
2261
2262 // Conversion from a null pointer constant to any Objective-C pointer type.
2263 if (ToType->isObjCObjectPointerType() &&
2264 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2265 ConvertedType = ToType;
2266 return true;
2267 }
2268
2269 // Blocks: Block pointers can be converted to void*.
2270 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2271 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
2272 ConvertedType = ToType;
2273 return true;
2274 }
2275 // Blocks: A null pointer constant can be converted to a block
2276 // pointer type.
2277 if (ToType->isBlockPointerType() &&
2278 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2279 ConvertedType = ToType;
2280 return true;
2281 }
2282
2283 // If the left-hand-side is nullptr_t, the right side can be a null
2284 // pointer constant.
2285 if (ToType->isNullPtrType() &&
2286 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2287 ConvertedType = ToType;
2288 return true;
2289 }
2290
2291 const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2292 if (!ToTypePtr)
2293 return false;
2294
2295 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2296 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2297 ConvertedType = ToType;
2298 return true;
2299 }
2300
2301 // Beyond this point, both types need to be pointers
2302 // , including objective-c pointers.
2303 QualType ToPointeeType = ToTypePtr->getPointeeType();
2304 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2305 !getLangOpts().ObjCAutoRefCount) {
2306 ConvertedType = BuildSimilarlyQualifiedPointerType(
2307 FromType->getAs<ObjCObjectPointerType>(),
2308 ToPointeeType,
2309 ToType, Context);
2310 return true;
2311 }
2312 const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2313 if (!FromTypePtr)
2314 return false;
2315
2316 QualType FromPointeeType = FromTypePtr->getPointeeType();
2317
2318 // If the unqualified pointee types are the same, this can't be a
2319 // pointer conversion, so don't do all of the work below.
2320 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2321 return false;
2322
2323 // An rvalue of type "pointer to cv T," where T is an object type,
2324 // can be converted to an rvalue of type "pointer to cv void" (C++
2325 // 4.10p2).
2326 if (FromPointeeType->isIncompleteOrObjectType() &&
2327 ToPointeeType->isVoidType()) {
2328 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2329 ToPointeeType,
2330 ToType, Context,
2331 /*StripObjCLifetime=*/true);
2332 return true;
2333 }
2334
2335 // MSVC allows implicit function to void* type conversion.
2336 if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
2337 ToPointeeType->isVoidType()) {
2338 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2339 ToPointeeType,
2340 ToType, Context);
2341 return true;
2342 }
2343
2344 // When we're overloading in C, we allow a special kind of pointer
2345 // conversion for compatible-but-not-identical pointee types.
2346 if (!getLangOpts().CPlusPlus &&
2347 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2348 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2349 ToPointeeType,
2350 ToType, Context);
2351 return true;
2352 }
2353
2354 // C++ [conv.ptr]p3:
2355 //
2356 // An rvalue of type "pointer to cv D," where D is a class type,
2357 // can be converted to an rvalue of type "pointer to cv B," where
2358 // B is a base class (clause 10) of D. If B is an inaccessible
2359 // (clause 11) or ambiguous (10.2) base class of D, a program that
2360 // necessitates this conversion is ill-formed. The result of the
2361 // conversion is a pointer to the base class sub-object of the
2362 // derived class object. The null pointer value is converted to
2363 // the null pointer value of the destination type.
2364 //
2365 // Note that we do not check for ambiguity or inaccessibility
2366 // here. That is handled by CheckPointerConversion.
2367 if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() &&
2368 ToPointeeType->isRecordType() &&
2369 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2370 IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) {
2371 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2372 ToPointeeType,
2373 ToType, Context);
2374 return true;
2375 }
2376
2377 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2378 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2379 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2380 ToPointeeType,
2381 ToType, Context);
2382 return true;
2383 }
2384
2385 return false;
2386}
2387
2388/// Adopt the given qualifiers for the given type.
2389static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2390 Qualifiers TQs = T.getQualifiers();
2391
2392 // Check whether qualifiers already match.
2393 if (TQs == Qs)
2394 return T;
2395
2396 if (Qs.compatiblyIncludes(TQs))
2397 return Context.getQualifiedType(T, Qs);
2398
2399 return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2400}
2401
2402/// isObjCPointerConversion - Determines whether this is an
2403/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2404/// with the same arguments and return values.
2405bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2406 QualType& ConvertedType,
2407 bool &IncompatibleObjC) {
2408 if (!getLangOpts().ObjC)
2409 return false;
2410
2411 // The set of qualifiers on the type we're converting from.
2412 Qualifiers FromQualifiers = FromType.getQualifiers();
2413
2414 // First, we handle all conversions on ObjC object pointer types.
2415 const ObjCObjectPointerType* ToObjCPtr =
2416 ToType->getAs<ObjCObjectPointerType>();
2417 const ObjCObjectPointerType *FromObjCPtr =
2418 FromType->getAs<ObjCObjectPointerType>();
2419
2420 if (ToObjCPtr && FromObjCPtr) {
2421 // If the pointee types are the same (ignoring qualifications),
2422 // then this is not a pointer conversion.
2423 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2424 FromObjCPtr->getPointeeType()))
2425 return false;
2426
2427 // Conversion between Objective-C pointers.
2428 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2429 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2430 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2431 if (getLangOpts().CPlusPlus && LHS && RHS &&
2432 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2433 FromObjCPtr->getPointeeType()))
2434 return false;
2435 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2436 ToObjCPtr->getPointeeType(),
2437 ToType, Context);
2438 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2439 return true;
2440 }
2441
2442 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2443 // Okay: this is some kind of implicit downcast of Objective-C
2444 // interfaces, which is permitted. However, we're going to
2445 // complain about it.
2446 IncompatibleObjC = true;
2447 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2448 ToObjCPtr->getPointeeType(),
2449 ToType, Context);
2450 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2451 return true;
2452 }
2453 }
2454 // Beyond this point, both types need to be C pointers or block pointers.
2455 QualType ToPointeeType;
2456 if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2457 ToPointeeType = ToCPtr->getPointeeType();
2458 else if (const BlockPointerType *ToBlockPtr =
2459 ToType->getAs<BlockPointerType>()) {
2460 // Objective C++: We're able to convert from a pointer to any object
2461 // to a block pointer type.
2462 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2463 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2464 return true;
2465 }
2466 ToPointeeType = ToBlockPtr->getPointeeType();
2467 }
2468 else if (FromType->getAs<BlockPointerType>() &&
2469 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2470 // Objective C++: We're able to convert from a block pointer type to a
2471 // pointer to any object.
2472 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2473 return true;
2474 }
2475 else
2476 return false;
2477
2478 QualType FromPointeeType;
2479 if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2480 FromPointeeType = FromCPtr->getPointeeType();
2481 else if (const BlockPointerType *FromBlockPtr =
2482 FromType->getAs<BlockPointerType>())
2483 FromPointeeType = FromBlockPtr->getPointeeType();
2484 else
2485 return false;
2486
2487 // If we have pointers to pointers, recursively check whether this
2488 // is an Objective-C conversion.
2489 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2490 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2491 IncompatibleObjC)) {
2492 // We always complain about this conversion.
2493 IncompatibleObjC = true;
2494 ConvertedType = Context.getPointerType(ConvertedType);
2495 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2496 return true;
2497 }
2498 // Allow conversion of pointee being objective-c pointer to another one;
2499 // as in I* to id.
2500 if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2501 ToPointeeType->getAs<ObjCObjectPointerType>() &&
2502 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2503 IncompatibleObjC)) {
2504
2505 ConvertedType = Context.getPointerType(ConvertedType);
2506 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2507 return true;
2508 }
2509
2510 // If we have pointers to functions or blocks, check whether the only
2511 // differences in the argument and result types are in Objective-C
2512 // pointer conversions. If so, we permit the conversion (but
2513 // complain about it).
2514 const FunctionProtoType *FromFunctionType
2515 = FromPointeeType->getAs<FunctionProtoType>();
2516 const FunctionProtoType *ToFunctionType
2517 = ToPointeeType->getAs<FunctionProtoType>();
2518 if (FromFunctionType && ToFunctionType) {
2519 // If the function types are exactly the same, this isn't an
2520 // Objective-C pointer conversion.
2521 if (Context.getCanonicalType(FromPointeeType)
2522 == Context.getCanonicalType(ToPointeeType))
2523 return false;
2524
2525 // Perform the quick checks that will tell us whether these
2526 // function types are obviously different.
2527 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2528 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2529 FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals())
2530 return false;
2531
2532 bool HasObjCConversion = false;
2533 if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2534 Context.getCanonicalType(ToFunctionType->getReturnType())) {
2535 // Okay, the types match exactly. Nothing to do.
2536 } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2537 ToFunctionType->getReturnType(),
2538 ConvertedType, IncompatibleObjC)) {
2539 // Okay, we have an Objective-C pointer conversion.
2540 HasObjCConversion = true;
2541 } else {
2542 // Function types are too different. Abort.
2543 return false;
2544 }
2545
2546 // Check argument types.
2547 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2548 ArgIdx != NumArgs; ++ArgIdx) {
2549 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2550 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2551 if (Context.getCanonicalType(FromArgType)
2552 == Context.getCanonicalType(ToArgType)) {
2553 // Okay, the types match exactly. Nothing to do.
2554 } else if (isObjCPointerConversion(FromArgType, ToArgType,
2555 ConvertedType, IncompatibleObjC)) {
2556 // Okay, we have an Objective-C pointer conversion.
2557 HasObjCConversion = true;
2558 } else {
2559 // Argument types are too different. Abort.
2560 return false;
2561 }
2562 }
2563
2564 if (HasObjCConversion) {
2565 // We had an Objective-C conversion. Allow this pointer
2566 // conversion, but complain about it.
2567 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2568 IncompatibleObjC = true;
2569 return true;
2570 }
2571 }
2572
2573 return false;
2574}
2575
2576/// Determine whether this is an Objective-C writeback conversion,
2577/// used for parameter passing when performing automatic reference counting.
2578///
2579/// \param FromType The type we're converting form.
2580///
2581/// \param ToType The type we're converting to.
2582///
2583/// \param ConvertedType The type that will be produced after applying
2584/// this conversion.
2585bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2586 QualType &ConvertedType) {
2587 if (!getLangOpts().ObjCAutoRefCount ||
2588 Context.hasSameUnqualifiedType(FromType, ToType))
2589 return false;
2590
2591 // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2592 QualType ToPointee;
2593 if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2594 ToPointee = ToPointer->getPointeeType();
2595 else
2596 return false;
2597
2598 Qualifiers ToQuals = ToPointee.getQualifiers();
2599 if (!ToPointee->isObjCLifetimeType() ||
2600 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2601 !ToQuals.withoutObjCLifetime().empty())
2602 return false;
2603
2604 // Argument must be a pointer to __strong to __weak.
2605 QualType FromPointee;
2606 if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2607 FromPointee = FromPointer->getPointeeType();
2608 else
2609 return false;
2610
2611 Qualifiers FromQuals = FromPointee.getQualifiers();
2612 if (!FromPointee->isObjCLifetimeType() ||
2613 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2614 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2615 return false;
2616
2617 // Make sure that we have compatible qualifiers.
2618 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2619 if (!ToQuals.compatiblyIncludes(FromQuals))
2620 return false;
2621
2622 // Remove qualifiers from the pointee type we're converting from; they
2623 // aren't used in the compatibility check belong, and we'll be adding back
2624 // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2625 FromPointee = FromPointee.getUnqualifiedType();
2626
2627 // The unqualified form of the pointee types must be compatible.
2628 ToPointee = ToPointee.getUnqualifiedType();
2629 bool IncompatibleObjC;
2630 if (Context.typesAreCompatible(FromPointee, ToPointee))
2631 FromPointee = ToPointee;
2632 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2633 IncompatibleObjC))
2634 return false;
2635
2636 /// Construct the type we're converting to, which is a pointer to
2637 /// __autoreleasing pointee.
2638 FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2639 ConvertedType = Context.getPointerType(FromPointee);
2640 return true;
2641}
2642
2643bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2644 QualType& ConvertedType) {
2645 QualType ToPointeeType;
2646 if (const BlockPointerType *ToBlockPtr =
2647 ToType->getAs<BlockPointerType>())
2648 ToPointeeType = ToBlockPtr->getPointeeType();
2649 else
2650 return false;
2651
2652 QualType FromPointeeType;
2653 if (const BlockPointerType *FromBlockPtr =
2654 FromType->getAs<BlockPointerType>())
2655 FromPointeeType = FromBlockPtr->getPointeeType();
2656 else
2657 return false;
2658 // We have pointer to blocks, check whether the only
2659 // differences in the argument and result types are in Objective-C
2660 // pointer conversions. If so, we permit the conversion.
2661
2662 const FunctionProtoType *FromFunctionType
2663 = FromPointeeType->getAs<FunctionProtoType>();
2664 const FunctionProtoType *ToFunctionType
2665 = ToPointeeType->getAs<FunctionProtoType>();
2666
2667 if (!FromFunctionType || !ToFunctionType)
2668 return false;
2669
2670 if (Context.hasSameType(FromPointeeType, ToPointeeType))
2671 return true;
2672
2673 // Perform the quick checks that will tell us whether these
2674 // function types are obviously different.
2675 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2676 FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2677 return false;
2678
2679 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2680 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2681 if (FromEInfo != ToEInfo)
2682 return false;
2683
2684 bool IncompatibleObjC = false;
2685 if (Context.hasSameType(FromFunctionType->getReturnType(),
2686 ToFunctionType->getReturnType())) {
2687 // Okay, the types match exactly. Nothing to do.
2688 } else {
2689 QualType RHS = FromFunctionType->getReturnType();
2690 QualType LHS = ToFunctionType->getReturnType();
2691 if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2692 !RHS.hasQualifiers() && LHS.hasQualifiers())
2693 LHS = LHS.getUnqualifiedType();
2694
2695 if (Context.hasSameType(RHS,LHS)) {
2696 // OK exact match.
2697 } else if (isObjCPointerConversion(RHS, LHS,
2698 ConvertedType, IncompatibleObjC)) {
2699 if (IncompatibleObjC)
2700 return false;
2701 // Okay, we have an Objective-C pointer conversion.
2702 }
2703 else
2704 return false;
2705 }
2706
2707 // Check argument types.
2708 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2709 ArgIdx != NumArgs; ++ArgIdx) {
2710 IncompatibleObjC = false;
2711 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2712 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2713 if (Context.hasSameType(FromArgType, ToArgType)) {
2714 // Okay, the types match exactly. Nothing to do.
2715 } else if (isObjCPointerConversion(ToArgType, FromArgType,
2716 ConvertedType, IncompatibleObjC)) {
2717 if (IncompatibleObjC)
2718 return false;
2719 // Okay, we have an Objective-C pointer conversion.
2720 } else
2721 // Argument types are too different. Abort.
2722 return false;
2723 }
2724
2725 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
2726 bool CanUseToFPT, CanUseFromFPT;
2727 if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType,
2728 CanUseToFPT, CanUseFromFPT,
2729 NewParamInfos))
2730 return false;
2731
2732 ConvertedType = ToType;
2733 return true;
2734}
2735
2736enum {
2737 ft_default,
2738 ft_different_class,
2739 ft_parameter_arity,
2740 ft_parameter_mismatch,
2741 ft_return_type,
2742 ft_qualifer_mismatch,
2743 ft_noexcept
2744};
2745
2746/// Attempts to get the FunctionProtoType from a Type. Handles
2747/// MemberFunctionPointers properly.
2748static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
2749 if (auto *FPT = FromType->getAs<FunctionProtoType>())
2750 return FPT;
2751
2752 if (auto *MPT = FromType->getAs<MemberPointerType>())
2753 return MPT->getPointeeType()->getAs<FunctionProtoType>();
2754
2755 return nullptr;
2756}
2757
2758/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2759/// function types. Catches different number of parameter, mismatch in
2760/// parameter types, and different return types.
2761void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2762 QualType FromType, QualType ToType) {
2763 // If either type is not valid, include no extra info.
2764 if (FromType.isNull() || ToType.isNull()) {
2765 PDiag << ft_default;
2766 return;
2767 }
2768
2769 // Get the function type from the pointers.
2770 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2771 const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2772 *ToMember = ToType->getAs<MemberPointerType>();
2773 if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2774 PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2775 << QualType(FromMember->getClass(), 0);
2776 return;
2777 }
2778 FromType = FromMember->getPointeeType();
2779 ToType = ToMember->getPointeeType();
2780 }
2781
2782 if (FromType->isPointerType())
2783 FromType = FromType->getPointeeType();
2784 if (ToType->isPointerType())
2785 ToType = ToType->getPointeeType();
2786
2787 // Remove references.
2788 FromType = FromType.getNonReferenceType();
2789 ToType = ToType.getNonReferenceType();
2790
2791 // Don't print extra info for non-specialized template functions.
2792 if (FromType->isInstantiationDependentType() &&
2793 !FromType->getAs<TemplateSpecializationType>()) {
2794 PDiag << ft_default;
2795 return;
2796 }
2797
2798 // No extra info for same types.
2799 if (Context.hasSameType(FromType, ToType)) {
2800 PDiag << ft_default;
2801 return;
2802 }
2803
2804 const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
2805 *ToFunction = tryGetFunctionProtoType(ToType);
2806
2807 // Both types need to be function types.
2808 if (!FromFunction || !ToFunction) {
2809 PDiag << ft_default;
2810 return;
2811 }
2812
2813 if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
2814 PDiag << ft_parameter_arity << ToFunction->getNumParams()
2815 << FromFunction->getNumParams();
2816 return;
2817 }
2818
2819 // Handle different parameter types.
2820 unsigned ArgPos;
2821 if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2822 PDiag << ft_parameter_mismatch << ArgPos + 1
2823 << ToFunction->getParamType(ArgPos)
2824 << FromFunction->getParamType(ArgPos);
2825 return;
2826 }
2827
2828 // Handle different return type.
2829 if (!Context.hasSameType(FromFunction->getReturnType(),
2830 ToFunction->getReturnType())) {
2831 PDiag << ft_return_type << ToFunction->getReturnType()
2832 << FromFunction->getReturnType();
2833 return;
2834 }
2835
2836 if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) {
2837 PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals()
2838 << FromFunction->getMethodQuals();
2839 return;
2840 }
2841
2842 // Handle exception specification differences on canonical type (in C++17
2843 // onwards).
2844 if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified())
2845 ->isNothrow() !=
2846 cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified())
2847 ->isNothrow()) {
2848 PDiag << ft_noexcept;
2849 return;
2850 }
2851
2852 // Unable to find a difference, so add no extra info.
2853 PDiag << ft_default;
2854}
2855
2856/// FunctionParamTypesAreEqual - This routine checks two function proto types
2857/// for equality of their argument types. Caller has already checked that
2858/// they have same number of arguments. If the parameters are different,
2859/// ArgPos will have the parameter index of the first different parameter.
2860bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
2861 const FunctionProtoType *NewType,
2862 unsigned *ArgPos) {
2863 for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
2864 N = NewType->param_type_begin(),
2865 E = OldType->param_type_end();
2866 O && (O != E); ++O, ++N) {
2867 if (!Context.hasSameType(O->getUnqualifiedType(),
2868 N->getUnqualifiedType())) {
2869 if (ArgPos)
2870 *ArgPos = O - OldType->param_type_begin();
2871 return false;
2872 }
2873 }
2874 return true;
2875}
2876
2877/// CheckPointerConversion - Check the pointer conversion from the
2878/// expression From to the type ToType. This routine checks for
2879/// ambiguous or inaccessible derived-to-base pointer
2880/// conversions for which IsPointerConversion has already returned
2881/// true. It returns true and produces a diagnostic if there was an
2882/// error, or returns false otherwise.
2883bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2884 CastKind &Kind,
2885 CXXCastPath& BasePath,
2886 bool IgnoreBaseAccess,
2887 bool Diagnose) {
2888 QualType FromType = From->getType();
2889 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2890
2891 Kind = CK_BitCast;
2892
2893 if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2894 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2895 Expr::NPCK_ZeroExpression) {
2896 if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
2897 DiagRuntimeBehavior(From->getExprLoc(), From,
2898 PDiag(diag::warn_impcast_bool_to_null_pointer)
2899 << ToType << From->getSourceRange());
2900 else if (!isUnevaluatedContext())
2901 Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
2902 << ToType << From->getSourceRange();
2903 }
2904 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2905 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2906 QualType FromPointeeType = FromPtrType->getPointeeType(),
2907 ToPointeeType = ToPtrType->getPointeeType();
2908
2909 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2910 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2911 // We must have a derived-to-base conversion. Check an
2912 // ambiguous or inaccessible conversion.
2913 unsigned InaccessibleID = 0;
2914 unsigned AmbigiousID = 0;
2915 if (Diagnose) {
2916 InaccessibleID = diag::err_upcast_to_inaccessible_base;
2917 AmbigiousID = diag::err_ambiguous_derived_to_base_conv;
2918 }
2919 if (CheckDerivedToBaseConversion(
2920 FromPointeeType, ToPointeeType, InaccessibleID, AmbigiousID,
2921 From->getExprLoc(), From->getSourceRange(), DeclarationName(),
2922 &BasePath, IgnoreBaseAccess))
2923 return true;
2924
2925 // The conversion was successful.
2926 Kind = CK_DerivedToBase;
2927 }
2928
2929 if (Diagnose && !IsCStyleOrFunctionalCast &&
2930 FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
2931 assert(getLangOpts().MSVCCompat &&((getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 2932, __PRETTY_FUNCTION__))
2932 "this should only be possible with MSVCCompat!")((getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 2932, __PRETTY_FUNCTION__))
;
2933 Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
2934 << From->getSourceRange();
2935 }
2936 }
2937 } else if (const ObjCObjectPointerType *ToPtrType =
2938 ToType->getAs<ObjCObjectPointerType>()) {
2939 if (const ObjCObjectPointerType *FromPtrType =
2940 FromType->getAs<ObjCObjectPointerType>()) {
2941 // Objective-C++ conversions are always okay.
2942 // FIXME: We should have a different class of conversions for the
2943 // Objective-C++ implicit conversions.
2944 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2945 return false;
2946 } else if (FromType->isBlockPointerType()) {
2947 Kind = CK_BlockPointerToObjCPointerCast;
2948 } else {
2949 Kind = CK_CPointerToObjCPointerCast;
2950 }
2951 } else if (ToType->isBlockPointerType()) {
2952 if (!FromType->isBlockPointerType())
2953 Kind = CK_AnyPointerToBlockPointerCast;
2954 }
2955
2956 // We shouldn't fall into this case unless it's valid for other
2957 // reasons.
2958 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2959 Kind = CK_NullToPointer;
2960
2961 return false;
2962}
2963
2964/// IsMemberPointerConversion - Determines whether the conversion of the
2965/// expression From, which has the (possibly adjusted) type FromType, can be
2966/// converted to the type ToType via a member pointer conversion (C++ 4.11).
2967/// If so, returns true and places the converted type (that might differ from
2968/// ToType in its cv-qualifiers at some level) into ConvertedType.
2969bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2970 QualType ToType,
2971 bool InOverloadResolution,
2972 QualType &ConvertedType) {
2973 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2974 if (!ToTypePtr)
2975 return false;
2976
2977 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2978 if (From->isNullPointerConstant(Context,
2979 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2980 : Expr::NPC_ValueDependentIsNull)) {
2981 ConvertedType = ToType;
2982 return true;
2983 }
2984
2985 // Otherwise, both types have to be member pointers.
2986 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2987 if (!FromTypePtr)
2988 return false;
2989
2990 // A pointer to member of B can be converted to a pointer to member of D,
2991 // where D is derived from B (C++ 4.11p2).
2992 QualType FromClass(FromTypePtr->getClass(), 0);
2993 QualType ToClass(ToTypePtr->getClass(), 0);
2994
2995 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2996 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) {
2997 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2998 ToClass.getTypePtr());
2999 return true;
3000 }
3001
3002 return false;
3003}
3004
3005/// CheckMemberPointerConversion - Check the member pointer conversion from the
3006/// expression From to the type ToType. This routine checks for ambiguous or
3007/// virtual or inaccessible base-to-derived member pointer conversions
3008/// for which IsMemberPointerConversion has already returned true. It returns
3009/// true and produces a diagnostic if there was an error, or returns false
3010/// otherwise.
3011bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
3012 CastKind &Kind,
3013 CXXCastPath &BasePath,
3014 bool IgnoreBaseAccess) {
3015 QualType FromType = From->getType();
3016 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
3017 if (!FromPtrType) {
3018 // This must be a null pointer to member pointer conversion
3019 assert(From->isNullPointerConstant(Context,((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 3021, __PRETTY_FUNCTION__))
3020 Expr::NPC_ValueDependentIsNull) &&((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 3021, __PRETTY_FUNCTION__))
3021 "Expr must be null pointer constant!")((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 3021, __PRETTY_FUNCTION__))
;
3022 Kind = CK_NullToMemberPointer;
3023 return false;
3024 }
3025
3026 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
3027 assert(ToPtrType && "No member pointer cast has a target type "((ToPtrType && "No member pointer cast has a target type "
"that is not a member pointer.") ? static_cast<void> (
0) : __assert_fail ("ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 3028, __PRETTY_FUNCTION__))
3028 "that is not a member pointer.")((ToPtrType && "No member pointer cast has a target type "
"that is not a member pointer.") ? static_cast<void> (
0) : __assert_fail ("ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 3028, __PRETTY_FUNCTION__))
;
3029
3030 QualType FromClass = QualType(FromPtrType->getClass(), 0);
3031 QualType ToClass = QualType(ToPtrType->getClass(), 0);
3032
3033 // FIXME: What about dependent types?
3034 assert(FromClass->isRecordType() && "Pointer into non-class.")((FromClass->isRecordType() && "Pointer into non-class."
) ? static_cast<void> (0) : __assert_fail ("FromClass->isRecordType() && \"Pointer into non-class.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 3034, __PRETTY_FUNCTION__))
;
3035 assert(ToClass->isRecordType() && "Pointer into non-class.")((ToClass->isRecordType() && "Pointer into non-class."
) ? static_cast<void> (0) : __assert_fail ("ToClass->isRecordType() && \"Pointer into non-class.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 3035, __PRETTY_FUNCTION__))
;
3036
3037 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3038 /*DetectVirtual=*/true);
3039 bool DerivationOkay =
3040 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths);
3041 assert(DerivationOkay &&((DerivationOkay && "Should not have been called if derivation isn't OK."
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 3042, __PRETTY_FUNCTION__))
3042 "Should not have been called if derivation isn't OK.")((DerivationOkay && "Should not have been called if derivation isn't OK."
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 3042, __PRETTY_FUNCTION__))
;
3043 (void)DerivationOkay;
3044
3045 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
3046 getUnqualifiedType())) {
3047 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
3048 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
3049 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
3050 return true;
3051 }
3052
3053 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
3054 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
3055 << FromClass << ToClass << QualType(VBase, 0)
3056 << From->getSourceRange();
3057 return true;
3058 }
3059
3060 if (!IgnoreBaseAccess)
3061 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
3062 Paths.front(),
3063 diag::err_downcast_from_inaccessible_base);
3064
3065 // Must be a base to derived member conversion.
3066 BuildBasePathArray(Paths, BasePath);
3067 Kind = CK_BaseToDerivedMemberPointer;
3068 return false;
3069}
3070
3071/// Determine whether the lifetime conversion between the two given
3072/// qualifiers sets is nontrivial.
3073static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
3074 Qualifiers ToQuals) {
3075 // Converting anything to const __unsafe_unretained is trivial.
3076 if (ToQuals.hasConst() &&
3077 ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
3078 return false;
3079
3080 return true;
3081}
3082
3083/// IsQualificationConversion - Determines whether the conversion from
3084/// an rvalue of type FromType to ToType is a qualification conversion
3085/// (C++ 4.4).
3086///
3087/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
3088/// when the qualification conversion involves a change in the Objective-C
3089/// object lifetime.
3090bool
3091Sema::IsQualificationConversion(QualType FromType, QualType ToType,
3092 bool CStyle, bool &ObjCLifetimeConversion) {
3093 FromType = Context.getCanonicalType(FromType);
3094 ToType = Context.getCanonicalType(ToType);
3095 ObjCLifetimeConversion = false;
3096
3097 // If FromType and ToType are the same type, this is not a
3098 // qualification conversion.
3099 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
3100 return false;
3101
3102 // (C++ 4.4p4):
3103 // A conversion can add cv-qualifiers at levels other than the first
3104 // in multi-level pointers, subject to the following rules: [...]
3105 bool PreviousToQualsIncludeConst = true;
3106 bool UnwrappedAnyPointer = false;
3107 while (Context.UnwrapSimilarTypes(FromType, ToType)) {
3108 // Within each iteration of the loop, we check the qualifiers to
3109 // determine if this still looks like a qualification
3110 // conversion. Then, if all is well, we unwrap one more level of
3111 // pointers or pointers-to-members and do it all again
3112 // until there are no more pointers or pointers-to-members left to
3113 // unwrap.
3114 UnwrappedAnyPointer = true;
3115
3116 Qualifiers FromQuals = FromType.getQualifiers();
3117 Qualifiers ToQuals = ToType.getQualifiers();
3118
3119 // Ignore __unaligned qualifier if this type is void.
3120 if (ToType.getUnqualifiedType()->isVoidType())
3121 FromQuals.removeUnaligned();
3122
3123 // Objective-C ARC:
3124 // Check Objective-C lifetime conversions.
3125 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
3126 UnwrappedAnyPointer) {
3127 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
3128 if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
3129 ObjCLifetimeConversion = true;
3130 FromQuals.removeObjCLifetime();
3131 ToQuals.removeObjCLifetime();
3132 } else {
3133 // Qualification conversions cannot cast between different
3134 // Objective-C lifetime qualifiers.
3135 return false;
3136 }
3137 }
3138
3139 // Allow addition/removal of GC attributes but not changing GC attributes.
3140 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
3141 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
3142 FromQuals.removeObjCGCAttr();
3143 ToQuals.removeObjCGCAttr();
3144 }
3145
3146 // -- for every j > 0, if const is in cv 1,j then const is in cv
3147 // 2,j, and similarly for volatile.
3148 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
3149 return false;
3150
3151 // -- if the cv 1,j and cv 2,j are different, then const is in
3152 // every cv for 0 < k < j.
3153 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
3154 && !PreviousToQualsIncludeConst)
3155 return false;
3156
3157 // Keep track of whether all prior cv-qualifiers in the "to" type
3158 // include const.
3159 PreviousToQualsIncludeConst
3160 = PreviousToQualsIncludeConst && ToQuals.hasConst();
3161 }
3162
3163 // Allows address space promotion by language rules implemented in
3164 // Type::Qualifiers::isAddressSpaceSupersetOf.
3165 Qualifiers FromQuals = FromType.getQualifiers();
3166 Qualifiers ToQuals = ToType.getQualifiers();
3167 if (!ToQuals.isAddressSpaceSupersetOf(FromQuals) &&
3168 !FromQuals.isAddressSpaceSupersetOf(ToQuals)) {
3169 return false;
3170 }
3171
3172 // We are left with FromType and ToType being the pointee types
3173 // after unwrapping the original FromType and ToType the same number
3174 // of types. If we unwrapped any pointers, and if FromType and
3175 // ToType have the same unqualified type (since we checked
3176 // qualifiers above), then this is a qualification conversion.
3177 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
3178}
3179
3180/// - Determine whether this is a conversion from a scalar type to an
3181/// atomic type.
3182///
3183/// If successful, updates \c SCS's second and third steps in the conversion
3184/// sequence to finish the conversion.
3185static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
3186 bool InOverloadResolution,
3187 StandardConversionSequence &SCS,
3188 bool CStyle) {
3189 const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
3190 if (!ToAtomic)
3191 return false;
3192
3193 StandardConversionSequence InnerSCS;
3194 if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
3195 InOverloadResolution, InnerSCS,
3196 CStyle, /*AllowObjCWritebackConversion=*/false))
3197 return false;
3198
3199 SCS.Second = InnerSCS.Second;
3200 SCS.setToType(1, InnerSCS.getToType(1));
3201 SCS.Third = InnerSCS.Third;
3202 SCS.QualificationIncludesObjCLifetime
3203 = InnerSCS.QualificationIncludesObjCLifetime;
3204 SCS.setToType(2, InnerSCS.getToType(2));
3205 return true;
3206}
3207
3208static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
3209 CXXConstructorDecl *Constructor,
3210 QualType Type) {
3211 const FunctionProtoType *CtorType =
3212 Constructor->getType()->getAs<FunctionProtoType>();
3213 if (CtorType->getNumParams() > 0) {
3214 QualType FirstArg = CtorType->getParamType(0);
3215 if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
3216 return true;
3217 }
3218 return false;
3219}
3220
3221static OverloadingResult
3222IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
3223 CXXRecordDecl *To,
3224 UserDefinedConversionSequence &User,
3225 OverloadCandidateSet &CandidateSet,
3226 bool AllowExplicit) {
3227 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3228 for (auto *D : S.LookupConstructors(To)) {
3229 auto Info = getConstructorInfo(D);
3230 if (!Info)
3231 continue;
3232
3233 bool Usable = !Info.Constructor->isInvalidDecl() &&
3234 S.isInitListConstructor(Info.Constructor) &&
3235 (AllowExplicit || !Info.Constructor->isExplicit());
3236 if (Usable) {
3237 // If the first argument is (a reference to) the target type,
3238 // suppress conversions.
3239 bool SuppressUserConversions = isFirstArgumentCompatibleWithType(
3240 S.Context, Info.Constructor, ToType);
3241 if (Info.ConstructorTmpl)
3242 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3243 /*ExplicitArgs*/ nullptr, From,
3244 CandidateSet, SuppressUserConversions);
3245 else
3246 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
3247 CandidateSet, SuppressUserConversions);
3248 }
3249 }
3250
3251 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3252
3253 OverloadCandidateSet::iterator Best;
3254 switch (auto Result =
3255 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3256 case OR_Deleted:
3257 case OR_Success: {
3258 // Record the standard conversion we used and the conversion function.
3259 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3260 QualType ThisType = Constructor->getThisType();
3261 // Initializer lists don't have conversions as such.
3262 User.Before.setAsIdentityConversion();
3263 User.HadMultipleCandidates = HadMultipleCandidates;
3264 User.ConversionFunction = Constructor;
3265 User.FoundConversionFunction = Best->FoundDecl;
3266 User.After.setAsIdentityConversion();
3267 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3268 User.After.setAllToTypes(ToType);
3269 return Result;
3270 }
3271
3272 case OR_No_Viable_Function:
3273 return OR_No_Viable_Function;
3274 case OR_Ambiguous:
3275 return OR_Ambiguous;
3276 }
3277
3278 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 3278)
;
3279}
3280
3281/// Determines whether there is a user-defined conversion sequence
3282/// (C++ [over.ics.user]) that converts expression From to the type
3283/// ToType. If such a conversion exists, User will contain the
3284/// user-defined conversion sequence that performs such a conversion
3285/// and this routine will return true. Otherwise, this routine returns
3286/// false and User is unspecified.
3287///
3288/// \param AllowExplicit true if the conversion should consider C++0x
3289/// "explicit" conversion functions as well as non-explicit conversion
3290/// functions (C++0x [class.conv.fct]p2).
3291///
3292/// \param AllowObjCConversionOnExplicit true if the conversion should
3293/// allow an extra Objective-C pointer conversion on uses of explicit
3294/// constructors. Requires \c AllowExplicit to also be set.
3295static OverloadingResult
3296IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3297 UserDefinedConversionSequence &User,
3298 OverloadCandidateSet &CandidateSet,
3299 bool AllowExplicit,
3300 bool AllowObjCConversionOnExplicit) {
3301 assert(AllowExplicit || !AllowObjCConversionOnExplicit)((AllowExplicit || !AllowObjCConversionOnExplicit) ? static_cast
<void> (0) : __assert_fail ("AllowExplicit || !AllowObjCConversionOnExplicit"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 3301, __PRETTY_FUNCTION__))
;
3302 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3303
3304 // Whether we will only visit constructors.
3305 bool ConstructorsOnly = false;
3306
3307 // If the type we are conversion to is a class type, enumerate its
3308 // constructors.
3309 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3310 // C++ [over.match.ctor]p1:
3311 // When objects of class type are direct-initialized (8.5), or
3312 // copy-initialized from an expression of the same or a
3313 // derived class type (8.5), overload resolution selects the
3314 // constructor. [...] For copy-initialization, the candidate
3315 // functions are all the converting constructors (12.3.1) of
3316 // that class. The argument list is the expression-list within
3317 // the parentheses of the initializer.
3318 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3319 (From->getType()->getAs<RecordType>() &&
3320 S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType)))
3321 ConstructorsOnly = true;
3322
3323 if (!S.isCompleteType(From->getExprLoc(), ToType)) {
3324 // We're not going to find any constructors.
3325 } else if (CXXRecordDecl *ToRecordDecl
3326 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3327
3328 Expr **Args = &From;
3329 unsigned NumArgs = 1;
3330 bool ListInitializing = false;
3331 if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3332 // But first, see if there is an init-list-constructor that will work.
3333 OverloadingResult Result = IsInitializerListConstructorConversion(
3334 S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
3335 if (Result != OR_No_Viable_Function)
3336 return Result;
3337 // Never mind.
3338 CandidateSet.clear(
3339 OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3340
3341 // If we're list-initializing, we pass the individual elements as
3342 // arguments, not the entire list.
3343 Args = InitList->getInits();
3344 NumArgs = InitList->getNumInits();
3345 ListInitializing = true;
3346 }
3347
3348 for (auto *D : S.LookupConstructors(ToRecordDecl)) {
3349 auto Info = getConstructorInfo(D);
3350 if (!Info)
3351 continue;
3352
3353 bool Usable = !Info.Constructor->isInvalidDecl();
3354 if (ListInitializing)
3355 Usable = Usable && (AllowExplicit || !Info.Constructor->isExplicit());
3356 else
3357 Usable = Usable &&
3358 Info.Constructor->isConvertingConstructor(AllowExplicit);
3359 if (Usable) {
3360 bool SuppressUserConversions = !ConstructorsOnly;
3361 if (SuppressUserConversions && ListInitializing) {
3362 SuppressUserConversions = false;
3363 if (NumArgs == 1) {
3364 // If the first argument is (a reference to) the target type,
3365 // suppress conversions.
3366 SuppressUserConversions = isFirstArgumentCompatibleWithType(
3367 S.Context, Info.Constructor, ToType);
3368 }
3369 }
3370 if (Info.ConstructorTmpl)
3371 S.AddTemplateOverloadCandidate(
3372 Info.ConstructorTmpl, Info.FoundDecl,
3373 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
3374 CandidateSet, SuppressUserConversions);
3375 else
3376 // Allow one user-defined conversion when user specifies a
3377 // From->ToType conversion via an static cast (c-style, etc).
3378 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
3379 llvm::makeArrayRef(Args, NumArgs),
3380 CandidateSet, SuppressUserConversions);
3381 }
3382 }
3383 }
3384 }
3385
3386 // Enumerate conversion functions, if we're allowed to.
3387 if (ConstructorsOnly || isa<InitListExpr>(From)) {
3388 } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) {
3389 // No conversion functions from incomplete types.
3390 } else if (const RecordType *FromRecordType =
3391 From->getType()->getAs<RecordType>()) {
3392 if (CXXRecordDecl *FromRecordDecl
3393 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3394 // Add all of the conversion functions as candidates.
3395 const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
3396 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3397 DeclAccessPair FoundDecl = I.getPair();
3398 NamedDecl *D = FoundDecl.getDecl();
3399 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3400 if (isa<UsingShadowDecl>(D))
3401 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3402
3403 CXXConversionDecl *Conv;
3404 FunctionTemplateDecl *ConvTemplate;
3405 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3406 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3407 else
3408 Conv = cast<CXXConversionDecl>(D);
3409
3410 if (AllowExplicit || !Conv->isExplicit()) {
3411 if (ConvTemplate)
3412 S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
3413 ActingContext, From, ToType,
3414 CandidateSet,
3415 AllowObjCConversionOnExplicit);
3416 else
3417 S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
3418 From, ToType, CandidateSet,
3419 AllowObjCConversionOnExplicit);
3420 }
3421 }
3422 }
3423 }
3424
3425 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3426
3427 OverloadCandidateSet::iterator Best;
3428 switch (auto Result =
3429 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3430 case OR_Success:
3431 case OR_Deleted:
3432 // Record the standard conversion we used and the conversion function.
3433 if (CXXConstructorDecl *Constructor
3434 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3435 // C++ [over.ics.user]p1:
3436 // If the user-defined conversion is specified by a
3437 // constructor (12.3.1), the initial standard conversion
3438 // sequence converts the source type to the type required by
3439 // the argument of the constructor.
3440 //
3441 QualType ThisType = Constructor->getThisType();
3442 if (isa<InitListExpr>(From)) {
3443 // Initializer lists don't have conversions as such.
3444 User.Before.setAsIdentityConversion();
3445 } else {
3446 if (Best->Conversions[0].isEllipsis())
3447 User.EllipsisConversion = true;
3448 else {
3449 User.Before = Best->Conversions[0].Standard;
3450 User.EllipsisConversion = false;
3451 }
3452 }
3453 User.HadMultipleCandidates = HadMultipleCandidates;
3454 User.ConversionFunction = Constructor;
3455 User.FoundConversionFunction = Best->FoundDecl;
3456 User.After.setAsIdentityConversion();
3457 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3458 User.After.setAllToTypes(ToType);
3459 return Result;
3460 }
3461 if (CXXConversionDecl *Conversion
3462 = dyn_cast<CXXConversionDecl>(Best->Function)) {
3463 // C++ [over.ics.user]p1:
3464 //
3465 // [...] If the user-defined conversion is specified by a
3466 // conversion function (12.3.2), the initial standard
3467 // conversion sequence converts the source type to the
3468 // implicit object parameter of the conversion function.
3469 User.Before = Best->Conversions[0].Standard;
3470 User.HadMultipleCandidates = HadMultipleCandidates;
3471 User.ConversionFunction = Conversion;
3472 User.FoundConversionFunction = Best->FoundDecl;
3473 User.EllipsisConversion = false;
3474
3475 // C++ [over.ics.user]p2:
3476 // The second standard conversion sequence converts the
3477 // result of the user-defined conversion to the target type
3478 // for the sequence. Since an implicit conversion sequence
3479 // is an initialization, the special rules for
3480 // initialization by user-defined conversion apply when
3481 // selecting the best user-defined conversion for a
3482 // user-defined conversion sequence (see 13.3.3 and
3483 // 13.3.3.1).
3484 User.After = Best->FinalConversion;
3485 return Result;
3486 }
3487 llvm_unreachable("Not a constructor or conversion function?")::llvm::llvm_unreachable_internal("Not a constructor or conversion function?"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 3487)
;
3488
3489 case OR_No_Viable_Function:
3490 return OR_No_Viable_Function;
3491
3492 case OR_Ambiguous:
3493 return OR_Ambiguous;
3494 }
3495
3496 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 3496)
;
3497}
3498
3499bool
3500Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3501 ImplicitConversionSequence ICS;
3502 OverloadCandidateSet CandidateSet(From->getExprLoc(),
3503 OverloadCandidateSet::CSK_Normal);
3504 OverloadingResult OvResult =
3505 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3506 CandidateSet, false, false);
3507 if (OvResult == OR_Ambiguous)
3508 Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition)
3509 << From->getType() << ToType << From->getSourceRange();
3510 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) {
3511 if (!RequireCompleteType(From->getBeginLoc(), ToType,
3512 diag::err_typecheck_nonviable_condition_incomplete,
3513 From->getType(), From->getSourceRange()))
3514 Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition)
3515 << false << From->getType() << From->getSourceRange() << ToType;
3516 } else
3517 return false;
3518 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
3519 return true;
3520}
3521
3522/// Compare the user-defined conversion functions or constructors
3523/// of two user-defined conversion sequences to determine whether any ordering
3524/// is possible.
3525static ImplicitConversionSequence::CompareKind
3526compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3527 FunctionDecl *Function2) {
3528 if (!S.getLangOpts().ObjC || !S.getLangOpts().CPlusPlus11)
3529 return ImplicitConversionSequence::Indistinguishable;
3530
3531 // Objective-C++:
3532 // If both conversion functions are implicitly-declared conversions from
3533 // a lambda closure type to a function pointer and a block pointer,
3534 // respectively, always prefer the conversion to a function pointer,
3535 // because the function pointer is more lightweight and is more likely
3536 // to keep code working.
3537 CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
3538 if (!Conv1)
3539 return ImplicitConversionSequence::Indistinguishable;
3540
3541 CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
3542 if (!Conv2)
3543 return ImplicitConversionSequence::Indistinguishable;
3544
3545 if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
3546 bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3547 bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3548 if (Block1 != Block2)
3549 return Block1 ? ImplicitConversionSequence::Worse
3550 : ImplicitConversionSequence::Better;
3551 }
3552
3553 return ImplicitConversionSequence::Indistinguishable;
3554}
3555
3556static bool hasDeprecatedStringLiteralToCharPtrConversion(
3557 const ImplicitConversionSequence &ICS) {
3558 return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
3559 (ICS.isUserDefined() &&
3560 ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3561}
3562
3563/// CompareImplicitConversionSequences - Compare two implicit
3564/// conversion sequences to determine whether one is better than the
3565/// other or if they are indistinguishable (C++ 13.3.3.2).
3566static ImplicitConversionSequence::CompareKind
3567CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
3568 const ImplicitConversionSequence& ICS1,
3569 const ImplicitConversionSequence& ICS2)
3570{
3571 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3572 // conversion sequences (as defined in 13.3.3.1)
3573 // -- a standard conversion sequence (13.3.3.1.1) is a better
3574 // conversion sequence than a user-defined conversion sequence or
3575 // an ellipsis conversion sequence, and
3576 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
3577 // conversion sequence than an ellipsis conversion sequence
3578 // (13.3.3.1.3).
3579 //
3580 // C++0x [over.best.ics]p10:
3581 // For the purpose of ranking implicit conversion sequences as
3582 // described in 13.3.3.2, the ambiguous conversion sequence is
3583 // treated as a user-defined sequence that is indistinguishable
3584 // from any other user-defined conversion sequence.
3585
3586 // String literal to 'char *' conversion has been deprecated in C++03. It has
3587 // been removed from C++11. We still accept this conversion, if it happens at
3588 // the best viable function. Otherwise, this conversion is considered worse
3589 // than ellipsis conversion. Consider this as an extension; this is not in the
3590 // standard. For example:
3591 //
3592 // int &f(...); // #1
3593 // void f(char*); // #2
3594 // void g() { int &r = f("foo"); }
3595 //
3596 // In C++03, we pick #2 as the best viable function.
3597 // In C++11, we pick #1 as the best viable function, because ellipsis
3598 // conversion is better than string-literal to char* conversion (since there
3599 // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3600 // convert arguments, #2 would be the best viable function in C++11.
3601 // If the best viable function has this conversion, a warning will be issued
3602 // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3603
3604 if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
3605 hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3606 hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
3607 return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3608 ? ImplicitConversionSequence::Worse
3609 : ImplicitConversionSequence::Better;
3610
3611 if (ICS1.getKindRank() < ICS2.getKindRank())
3612 return ImplicitConversionSequence::Better;
3613 if (ICS2.getKindRank() < ICS1.getKindRank())
3614 return ImplicitConversionSequence::Worse;
3615
3616 // The following checks require both conversion sequences to be of
3617 // the same kind.
3618 if (ICS1.getKind() != ICS2.getKind())
3619 return ImplicitConversionSequence::Indistinguishable;
3620
3621 ImplicitConversionSequence::CompareKind Result =
3622 ImplicitConversionSequence::Indistinguishable;
3623
3624 // Two implicit conversion sequences of the same form are
3625 // indistinguishable conversion sequences unless one of the
3626 // following rules apply: (C++ 13.3.3.2p3):
3627
3628 // List-initialization sequence L1 is a better conversion sequence than
3629 // list-initialization sequence L2 if:
3630 // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
3631 // if not that,
3632 // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
3633 // and N1 is smaller than N2.,
3634 // even if one of the other rules in this paragraph would otherwise apply.
3635 if (!ICS1.isBad()) {
3636 if (ICS1.isStdInitializerListElement() &&
3637 !ICS2.isStdInitializerListElement())
3638 return ImplicitConversionSequence::Better;
3639 if (!ICS1.isStdInitializerListElement() &&
3640 ICS2.isStdInitializerListElement())
3641 return ImplicitConversionSequence::Worse;
3642 }
3643
3644 if (ICS1.isStandard())
3645 // Standard conversion sequence S1 is a better conversion sequence than
3646 // standard conversion sequence S2 if [...]
3647 Result = CompareStandardConversionSequences(S, Loc,
3648 ICS1.Standard, ICS2.Standard);
3649 else if (ICS1.isUserDefined()) {
3650 // User-defined conversion sequence U1 is a better conversion
3651 // sequence than another user-defined conversion sequence U2 if
3652 // they contain the same user-defined conversion function or
3653 // constructor and if the second standard conversion sequence of
3654 // U1 is better than the second standard conversion sequence of
3655 // U2 (C++ 13.3.3.2p3).
3656 if (ICS1.UserDefined.ConversionFunction ==
3657 ICS2.UserDefined.ConversionFunction)
3658 Result = CompareStandardConversionSequences(S, Loc,
3659 ICS1.UserDefined.After,
3660 ICS2.UserDefined.After);
3661 else
3662 Result = compareConversionFunctions(S,
3663 ICS1.UserDefined.ConversionFunction,
3664 ICS2.UserDefined.ConversionFunction);
3665 }
3666
3667 return Result;
3668}
3669
3670// Per 13.3.3.2p3, compare the given standard conversion sequences to
3671// determine if one is a proper subset of the other.
3672static ImplicitConversionSequence::CompareKind
3673compareStandardConversionSubsets(ASTContext &Context,
3674 const StandardConversionSequence& SCS1,
3675 const StandardConversionSequence& SCS2) {
3676 ImplicitConversionSequence::CompareKind Result
3677 = ImplicitConversionSequence::Indistinguishable;
3678
3679 // the identity conversion sequence is considered to be a subsequence of
3680 // any non-identity conversion sequence
3681 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3682 return ImplicitConversionSequence::Better;
3683 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3684 return ImplicitConversionSequence::Worse;
3685
3686 if (SCS1.Second != SCS2.Second) {
3687 if (SCS1.Second == ICK_Identity)
3688 Result = ImplicitConversionSequence::Better;
3689 else if (SCS2.Second == ICK_Identity)
3690 Result = ImplicitConversionSequence::Worse;
3691 else
3692 return ImplicitConversionSequence::Indistinguishable;
3693 } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1)))
3694 return ImplicitConversionSequence::Indistinguishable;
3695
3696 if (SCS1.Third == SCS2.Third) {
3697 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3698 : ImplicitConversionSequence::Indistinguishable;
3699 }
3700
3701 if (SCS1.Third == ICK_Identity)
3702 return Result == ImplicitConversionSequence::Worse
3703 ? ImplicitConversionSequence::Indistinguishable
3704 : ImplicitConversionSequence::Better;
3705
3706 if (SCS2.Third == ICK_Identity)
3707 return Result == ImplicitConversionSequence::Better
3708 ? ImplicitConversionSequence::Indistinguishable
3709 : ImplicitConversionSequence::Worse;
3710
3711 return ImplicitConversionSequence::Indistinguishable;
3712}
3713
3714/// Determine whether one of the given reference bindings is better
3715/// than the other based on what kind of bindings they are.
3716static bool
3717isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3718 const StandardConversionSequence &SCS2) {
3719 // C++0x [over.ics.rank]p3b4:
3720 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3721 // implicit object parameter of a non-static member function declared
3722 // without a ref-qualifier, and *either* S1 binds an rvalue reference
3723 // to an rvalue and S2 binds an lvalue reference *or S1 binds an
3724 // lvalue reference to a function lvalue and S2 binds an rvalue
3725 // reference*.
3726 //
3727 // FIXME: Rvalue references. We're going rogue with the above edits,
3728 // because the semantics in the current C++0x working paper (N3225 at the
3729 // time of this writing) break the standard definition of std::forward
3730 // and std::reference_wrapper when dealing with references to functions.
3731 // Proposed wording changes submitted to CWG for consideration.
3732 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3733 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3734 return false;
3735
3736 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3737 SCS2.IsLvalueReference) ||
3738 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3739 !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
3740}
3741
3742/// CompareStandardConversionSequences - Compare two standard
3743/// conversion sequences to determine whether one is better than the
3744/// other or if they are indistinguishable (C++ 13.3.3.2p3).
3745static ImplicitConversionSequence::CompareKind
3746CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
3747 const StandardConversionSequence& SCS1,
3748 const StandardConversionSequence& SCS2)
3749{
3750 // Standard conversion sequence S1 is a better conversion sequence
3751 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3752
3753 // -- S1 is a proper subsequence of S2 (comparing the conversion
3754 // sequences in the canonical form defined by 13.3.3.1.1,
3755 // excluding any Lvalue Transformation; the identity conversion
3756 // sequence is considered to be a subsequence of any
3757 // non-identity conversion sequence) or, if not that,
3758 if (ImplicitConversionSequence::CompareKind CK
3759 = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3760 return CK;
3761
3762 // -- the rank of S1 is better than the rank of S2 (by the rules
3763 // defined below), or, if not that,
3764 ImplicitConversionRank Rank1 = SCS1.getRank();
3765 ImplicitConversionRank Rank2 = SCS2.getRank();
3766 if (Rank1 < Rank2)
3767 return ImplicitConversionSequence::Better;
3768 else if (Rank2 < Rank1)
3769 return ImplicitConversionSequence::Worse;
3770
3771 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3772 // are indistinguishable unless one of the following rules
3773 // applies:
3774
3775 // A conversion that is not a conversion of a pointer, or
3776 // pointer to member, to bool is better than another conversion
3777 // that is such a conversion.
3778 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3779 return SCS2.isPointerConversionToBool()
3780 ? ImplicitConversionSequence::Better
3781 : ImplicitConversionSequence::Worse;
3782
3783 // C++ [over.ics.rank]p4b2:
3784 //
3785 // If class B is derived directly or indirectly from class A,
3786 // conversion of B* to A* is better than conversion of B* to
3787 // void*, and conversion of A* to void* is better than conversion
3788 // of B* to void*.
3789 bool SCS1ConvertsToVoid
3790 = SCS1.isPointerConversionToVoidPointer(S.Context);
3791 bool SCS2ConvertsToVoid
3792 = SCS2.isPointerConversionToVoidPointer(S.Context);
3793 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3794 // Exactly one of the conversion sequences is a conversion to
3795 // a void pointer; it's the worse conversion.
3796 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3797 : ImplicitConversionSequence::Worse;
3798 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3799 // Neither conversion sequence converts to a void pointer; compare
3800 // their derived-to-base conversions.
3801 if (ImplicitConversionSequence::CompareKind DerivedCK
3802 = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
3803 return DerivedCK;
3804 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3805 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3806 // Both conversion sequences are conversions to void
3807 // pointers. Compare the source types to determine if there's an
3808 // inheritance relationship in their sources.
3809 QualType FromType1 = SCS1.getFromType();
3810 QualType FromType2 = SCS2.getFromType();
3811
3812 // Adjust the types we're converting from via the array-to-pointer
3813 // conversion, if we need to.
3814 if (SCS1.First == ICK_Array_To_Pointer)
3815 FromType1 = S.Context.getArrayDecayedType(FromType1);
3816 if (SCS2.First == ICK_Array_To_Pointer)
3817 FromType2 = S.Context.getArrayDecayedType(FromType2);
3818
3819 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3820 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3821
3822 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
3823 return ImplicitConversionSequence::Better;
3824 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
3825 return ImplicitConversionSequence::Worse;
3826
3827 // Objective-C++: If one interface is more specific than the
3828 // other, it is the better one.
3829 const ObjCObjectPointerType* FromObjCPtr1
3830 = FromType1->getAs<ObjCObjectPointerType>();
3831 const ObjCObjectPointerType* FromObjCPtr2
3832 = FromType2->getAs<ObjCObjectPointerType>();
3833 if (FromObjCPtr1 && FromObjCPtr2) {
3834 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
3835 FromObjCPtr2);
3836 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
3837 FromObjCPtr1);
3838 if (AssignLeft != AssignRight) {
3839 return AssignLeft? ImplicitConversionSequence::Better
3840 : ImplicitConversionSequence::Worse;
3841 }
3842 }
3843 }
3844
3845 // Compare based on qualification conversions (C++ 13.3.3.2p3,
3846 // bullet 3).
3847 if (ImplicitConversionSequence::CompareKind QualCK
3848 = CompareQualificationConversions(S, SCS1, SCS2))
3849 return QualCK;
3850
3851 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
3852 // Check for a better reference binding based on the kind of bindings.
3853 if (isBetterReferenceBindingKind(SCS1, SCS2))
3854 return ImplicitConversionSequence::Better;
3855 else if (isBetterReferenceBindingKind(SCS2, SCS1))
3856 return ImplicitConversionSequence::Worse;
3857
3858 // C++ [over.ics.rank]p3b4:
3859 // -- S1 and S2 are reference bindings (8.5.3), and the types to
3860 // which the references refer are the same type except for
3861 // top-level cv-qualifiers, and the type to which the reference
3862 // initialized by S2 refers is more cv-qualified than the type
3863 // to which the reference initialized by S1 refers.
3864 QualType T1 = SCS1.getToType(2);
3865 QualType T2 = SCS2.getToType(2);
3866 T1 = S.Context.getCanonicalType(T1);
3867 T2 = S.Context.getCanonicalType(T2);
3868 Qualifiers T1Quals, T2Quals;
3869 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3870 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3871 if (UnqualT1 == UnqualT2) {
3872 // Objective-C++ ARC: If the references refer to objects with different
3873 // lifetimes, prefer bindings that don't change lifetime.
3874 if (SCS1.ObjCLifetimeConversionBinding !=
3875 SCS2.ObjCLifetimeConversionBinding) {
3876 return SCS1.ObjCLifetimeConversionBinding
3877 ? ImplicitConversionSequence::Worse
3878 : ImplicitConversionSequence::Better;
3879 }
3880
3881 // If the type is an array type, promote the element qualifiers to the
3882 // type for comparison.
3883 if (isa<ArrayType>(T1) && T1Quals)
3884 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3885 if (isa<ArrayType>(T2) && T2Quals)
3886 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3887 if (T2.isMoreQualifiedThan(T1))
3888 return ImplicitConversionSequence::Better;
3889 else if (T1.isMoreQualifiedThan(T2))
3890 return ImplicitConversionSequence::Worse;
3891 }
3892 }
3893
3894 // In Microsoft mode, prefer an integral conversion to a
3895 // floating-to-integral conversion if the integral conversion
3896 // is between types of the same size.
3897 // For example:
3898 // void f(float);
3899 // void f(int);
3900 // int main {
3901 // long a;
3902 // f(a);
3903 // }
3904 // Here, MSVC will call f(int) instead of generating a compile error
3905 // as clang will do in standard mode.
3906 if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion &&
3907 SCS2.Second == ICK_Floating_Integral &&
3908 S.Context.getTypeSize(SCS1.getFromType()) ==
3909 S.Context.getTypeSize(SCS1.getToType(2)))
3910 return ImplicitConversionSequence::Better;
3911
3912 // Prefer a compatible vector conversion over a lax vector conversion
3913 // For example:
3914 //
3915 // typedef float __v4sf __attribute__((__vector_size__(16)));
3916 // void f(vector float);
3917 // void f(vector signed int);
3918 // int main() {
3919 // __v4sf a;
3920 // f(a);
3921 // }
3922 // Here, we'd like to choose f(vector float) and not
3923 // report an ambiguous call error
3924 if (SCS1.Second == ICK_Vector_Conversion &&
3925 SCS2.Second == ICK_Vector_Conversion) {
3926 bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
3927 SCS1.getFromType(), SCS1.getToType(2));
3928 bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
3929 SCS2.getFromType(), SCS2.getToType(2));
3930
3931 if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion)
3932 return SCS1IsCompatibleVectorConversion
3933 ? ImplicitConversionSequence::Better
3934 : ImplicitConversionSequence::Worse;
3935 }
3936
3937 return ImplicitConversionSequence::Indistinguishable;
3938}
3939
3940/// CompareQualificationConversions - Compares two standard conversion
3941/// sequences to determine whether they can be ranked based on their
3942/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
3943static ImplicitConversionSequence::CompareKind
3944CompareQualificationConversions(Sema &S,
3945 const StandardConversionSequence& SCS1,
3946 const StandardConversionSequence& SCS2) {
3947 // C++ 13.3.3.2p3:
3948 // -- S1 and S2 differ only in their qualification conversion and
3949 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
3950 // cv-qualification signature of type T1 is a proper subset of
3951 // the cv-qualification signature of type T2, and S1 is not the
3952 // deprecated string literal array-to-pointer conversion (4.2).
3953 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
3954 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
3955 return ImplicitConversionSequence::Indistinguishable;
3956
3957 // FIXME: the example in the standard doesn't use a qualification
3958 // conversion (!)
3959 QualType T1 = SCS1.getToType(2);
3960 QualType T2 = SCS2.getToType(2);
3961 T1 = S.Context.getCanonicalType(T1);
3962 T2 = S.Context.getCanonicalType(T2);
3963 Qualifiers T1Quals, T2Quals;
3964 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3965 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3966
3967 // If the types are the same, we won't learn anything by unwrapped
3968 // them.
3969 if (UnqualT1 == UnqualT2)
3970 return ImplicitConversionSequence::Indistinguishable;
3971
3972 // If the type is an array type, promote the element qualifiers to the type
3973 // for comparison.
3974 if (isa<ArrayType>(T1) && T1Quals)
3975 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3976 if (isa<ArrayType>(T2) && T2Quals)
3977 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3978
3979 ImplicitConversionSequence::CompareKind Result
3980 = ImplicitConversionSequence::Indistinguishable;
3981
3982 // Objective-C++ ARC:
3983 // Prefer qualification conversions not involving a change in lifetime
3984 // to qualification conversions that do not change lifetime.
3985 if (SCS1.QualificationIncludesObjCLifetime !=
3986 SCS2.QualificationIncludesObjCLifetime) {
3987 Result = SCS1.QualificationIncludesObjCLifetime
3988 ? ImplicitConversionSequence::Worse
3989 : ImplicitConversionSequence::Better;
3990 }
3991
3992 while (S.Context.UnwrapSimilarTypes(T1, T2)) {
3993 // Within each iteration of the loop, we check the qualifiers to
3994 // determine if this still looks like a qualification
3995 // conversion. Then, if all is well, we unwrap one more level of
3996 // pointers or pointers-to-members and do it all again
3997 // until there are no more pointers or pointers-to-members left
3998 // to unwrap. This essentially mimics what
3999 // IsQualificationConversion does, but here we're checking for a
4000 // strict subset of qualifiers.
4001 if (T1.getQualifiers().withoutObjCLifetime() ==
4002 T2.getQualifiers().withoutObjCLifetime())
4003 // The qualifiers are the same, so this doesn't tell us anything
4004 // about how the sequences rank.
4005 // ObjC ownership quals are omitted above as they interfere with
4006 // the ARC overload rule.
4007 ;
4008 else if (T2.isMoreQualifiedThan(T1)) {
4009 // T1 has fewer qualifiers, so it could be the better sequence.
4010 if (Result == ImplicitConversionSequence::Worse)
4011 // Neither has qualifiers that are a subset of the other's
4012 // qualifiers.
4013 return ImplicitConversionSequence::Indistinguishable;
4014
4015 Result = ImplicitConversionSequence::Better;
4016 } else if (T1.isMoreQualifiedThan(T2)) {
4017 // T2 has fewer qualifiers, so it could be the better sequence.
4018 if (Result == ImplicitConversionSequence::Better)
4019 // Neither has qualifiers that are a subset of the other's
4020 // qualifiers.
4021 return ImplicitConversionSequence::Indistinguishable;
4022
4023 Result = ImplicitConversionSequence::Worse;
4024 } else {
4025 // Qualifiers are disjoint.
4026 return ImplicitConversionSequence::Indistinguishable;
4027 }
4028
4029 // If the types after this point are equivalent, we're done.
4030 if (S.Context.hasSameUnqualifiedType(T1, T2))
4031 break;
4032 }
4033
4034 // Check that the winning standard conversion sequence isn't using
4035 // the deprecated string literal array to pointer conversion.
4036 switch (Result) {
4037 case ImplicitConversionSequence::Better:
4038 if (SCS1.DeprecatedStringLiteralToCharPtr)
4039 Result = ImplicitConversionSequence::Indistinguishable;
4040 break;
4041
4042 case ImplicitConversionSequence::Indistinguishable:
4043 break;
4044
4045 case ImplicitConversionSequence::Worse:
4046 if (SCS2.DeprecatedStringLiteralToCharPtr)
4047 Result = ImplicitConversionSequence::Indistinguishable;
4048 break;
4049 }
4050
4051 return Result;
4052}
4053
4054/// CompareDerivedToBaseConversions - Compares two standard conversion
4055/// sequences to determine whether they can be ranked based on their
4056/// various kinds of derived-to-base conversions (C++
4057/// [over.ics.rank]p4b3). As part of these checks, we also look at
4058/// conversions between Objective-C interface types.
4059static ImplicitConversionSequence::CompareKind
4060CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
4061 const StandardConversionSequence& SCS1,
4062 const StandardConversionSequence& SCS2) {
4063 QualType FromType1 = SCS1.getFromType();
4064 QualType ToType1 = SCS1.getToType(1);
4065 QualType FromType2 = SCS2.getFromType();
4066 QualType ToType2 = SCS2.getToType(1);
4067
4068 // Adjust the types we're converting from via the array-to-pointer
4069 // conversion, if we need to.
4070 if (SCS1.First == ICK_Array_To_Pointer)
4071 FromType1 = S.Context.getArrayDecayedType(FromType1);
4072 if (SCS2.First == ICK_Array_To_Pointer)
4073 FromType2 = S.Context.getArrayDecayedType(FromType2);
4074
4075 // Canonicalize all of the types.
4076 FromType1 = S.Context.getCanonicalType(FromType1);
4077 ToType1 = S.Context.getCanonicalType(ToType1);
4078 FromType2 = S.Context.getCanonicalType(FromType2);
4079 ToType2 = S.Context.getCanonicalType(ToType2);
4080
4081 // C++ [over.ics.rank]p4b3:
4082 //
4083 // If class B is derived directly or indirectly from class A and
4084 // class C is derived directly or indirectly from B,
4085 //
4086 // Compare based on pointer conversions.
4087 if (SCS1.Second == ICK_Pointer_Conversion &&
4088 SCS2.Second == ICK_Pointer_Conversion &&
4089 /*FIXME: Remove if Objective-C id conversions get their own rank*/
4090 FromType1->isPointerType() && FromType2->isPointerType() &&
4091 ToType1->isPointerType() && ToType2->isPointerType()) {
4092 QualType FromPointee1
4093 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
4094 QualType ToPointee1
4095 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
4096 QualType FromPointee2
4097 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
4098 QualType ToPointee2
4099 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
4100
4101 // -- conversion of C* to B* is better than conversion of C* to A*,
4102 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4103 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4104 return ImplicitConversionSequence::Better;
4105 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4106 return ImplicitConversionSequence::Worse;
4107 }
4108
4109 // -- conversion of B* to A* is better than conversion of C* to A*,
4110 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
4111 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4112 return ImplicitConversionSequence::Better;
4113 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4114 return ImplicitConversionSequence::Worse;
4115 }
4116 } else if (SCS1.Second == ICK_Pointer_Conversion &&
4117 SCS2.Second == ICK_Pointer_Conversion) {
4118 const ObjCObjectPointerType *FromPtr1
4119 = FromType1->getAs<ObjCObjectPointerType>();
4120 const ObjCObjectPointerType *FromPtr2
4121 = FromType2->getAs<ObjCObjectPointerType>();
4122 const ObjCObjectPointerType *ToPtr1
4123 = ToType1->getAs<ObjCObjectPointerType>();
4124 const ObjCObjectPointerType *ToPtr2
4125 = ToType2->getAs<ObjCObjectPointerType>();
4126
4127 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
4128 // Apply the same conversion ranking rules for Objective-C pointer types
4129 // that we do for C++ pointers to class types. However, we employ the
4130 // Objective-C pseudo-subtyping relationship used for assignment of
4131 // Objective-C pointer types.
4132 bool FromAssignLeft
4133 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
4134 bool FromAssignRight
4135 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
4136 bool ToAssignLeft
4137 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
4138 bool ToAssignRight
4139 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
4140
4141 // A conversion to an a non-id object pointer type or qualified 'id'
4142 // type is better than a conversion to 'id'.
4143 if (ToPtr1->isObjCIdType() &&
4144 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
4145 return ImplicitConversionSequence::Worse;
4146 if (ToPtr2->isObjCIdType() &&
4147 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
4148 return ImplicitConversionSequence::Better;
4149
4150 // A conversion to a non-id object pointer type is better than a
4151 // conversion to a qualified 'id' type
4152 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
4153 return ImplicitConversionSequence::Worse;
4154 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
4155 return ImplicitConversionSequence::Better;
4156
4157 // A conversion to an a non-Class object pointer type or qualified 'Class'
4158 // type is better than a conversion to 'Class'.
4159 if (ToPtr1->isObjCClassType() &&
4160 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
4161 return ImplicitConversionSequence::Worse;
4162 if (ToPtr2->isObjCClassType() &&
4163 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
4164 return ImplicitConversionSequence::Better;
4165
4166 // A conversion to a non-Class object pointer type is better than a
4167 // conversion to a qualified 'Class' type.
4168 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
4169 return ImplicitConversionSequence::Worse;
4170 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
4171 return ImplicitConversionSequence::Better;
4172
4173 // -- "conversion of C* to B* is better than conversion of C* to A*,"
4174 if (S.Context.hasSameType(FromType1, FromType2) &&
4175 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
4176 (ToAssignLeft != ToAssignRight)) {
4177 if (FromPtr1->isSpecialized()) {
4178 // "conversion of B<A> * to B * is better than conversion of B * to
4179 // C *.
4180 bool IsFirstSame =
4181 FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl();
4182 bool IsSecondSame =
4183 FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl();
4184 if (IsFirstSame) {
4185 if (!IsSecondSame)
4186 return ImplicitConversionSequence::Better;
4187 } else if (IsSecondSame)
4188 return ImplicitConversionSequence::Worse;
4189 }
4190 return ToAssignLeft? ImplicitConversionSequence::Worse
4191 : ImplicitConversionSequence::Better;
4192 }
4193
4194 // -- "conversion of B* to A* is better than conversion of C* to A*,"
4195 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
4196 (FromAssignLeft != FromAssignRight))
4197 return FromAssignLeft? ImplicitConversionSequence::Better
4198 : ImplicitConversionSequence::Worse;
4199 }
4200 }
4201
4202 // Ranking of member-pointer types.
4203 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
4204 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
4205 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
4206 const MemberPointerType * FromMemPointer1 =
4207 FromType1->getAs<MemberPointerType>();
4208 const MemberPointerType * ToMemPointer1 =
4209 ToType1->getAs<MemberPointerType>();
4210 const MemberPointerType * FromMemPointer2 =
4211 FromType2->getAs<MemberPointerType>();
4212 const MemberPointerType * ToMemPointer2 =
4213 ToType2->getAs<MemberPointerType>();
4214 const Type *FromPointeeType1 = FromMemPointer1->getClass();
4215 const Type *ToPointeeType1 = ToMemPointer1->getClass();
4216 const Type *FromPointeeType2 = FromMemPointer2->getClass();
4217 const Type *ToPointeeType2 = ToMemPointer2->getClass();
4218 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
4219 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
4220 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
4221 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
4222 // conversion of A::* to B::* is better than conversion of A::* to C::*,
4223 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4224 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4225 return ImplicitConversionSequence::Worse;
4226 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4227 return ImplicitConversionSequence::Better;
4228 }
4229 // conversion of B::* to C::* is better than conversion of A::* to C::*
4230 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
4231 if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4232 return ImplicitConversionSequence::Better;
4233 else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4234 return ImplicitConversionSequence::Worse;
4235 }
4236 }
4237
4238 if (SCS1.Second == ICK_Derived_To_Base) {
4239 // -- conversion of C to B is better than conversion of C to A,
4240 // -- binding of an expression of type C to a reference of type
4241 // B& is better than binding an expression of type C to a
4242 // reference of type A&,
4243 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4244 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4245 if (S.IsDerivedFrom(Loc, ToType1, ToType2))
4246 return ImplicitConversionSequence::Better;
4247 else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
4248 return ImplicitConversionSequence::Worse;
4249 }
4250
4251 // -- conversion of B to A is better than conversion of C to A.
4252 // -- binding of an expression of type B to a reference of type
4253 // A& is better than binding an expression of type C to a
4254 // reference of type A&,
4255 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4256 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4257 if (S.IsDerivedFrom(Loc, FromType2, FromType1))
4258 return ImplicitConversionSequence::Better;
4259 else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
4260 return ImplicitConversionSequence::Worse;
4261 }
4262 }
4263
4264 return ImplicitConversionSequence::Indistinguishable;
4265}
4266
4267/// Determine whether the given type is valid, e.g., it is not an invalid
4268/// C++ class.
4269static bool isTypeValid(QualType T) {
4270 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
4271 return !Record->isInvalidDecl();
4272
4273 return true;
4274}
4275
4276/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4277/// determine whether they are reference-related,
4278/// reference-compatible, reference-compatible with added
4279/// qualification, or incompatible, for use in C++ initialization by
4280/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4281/// type, and the first type (T1) is the pointee type of the reference
4282/// type being initialized.
4283Sema::ReferenceCompareResult
4284Sema::CompareReferenceRelationship(SourceLocation Loc,
4285 QualType OrigT1, QualType OrigT2,
4286 bool &DerivedToBase,
4287 bool &ObjCConversion,
4288 bool &ObjCLifetimeConversion) {
4289 assert(!OrigT1->isReferenceType() &&((!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 4290, __PRETTY_FUNCTION__))
4290 "T1 must be the pointee type of the reference type")((!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 4290, __PRETTY_FUNCTION__))
;
4291 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type")((!OrigT2->isReferenceType() && "T2 cannot be a reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT2->isReferenceType() && \"T2 cannot be a reference type\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 4291, __PRETTY_FUNCTION__))
;
4292
4293 QualType T1 = Context.getCanonicalType(OrigT1);
4294 QualType T2 = Context.getCanonicalType(OrigT2);
4295 Qualifiers T1Quals, T2Quals;
4296 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4297 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4298
4299 // C++ [dcl.init.ref]p4:
4300 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4301 // reference-related to "cv2 T2" if T1 is the same type as T2, or
4302 // T1 is a base class of T2.
4303 DerivedToBase = false;
4304 ObjCConversion = false;
4305 ObjCLifetimeConversion = false;
4306 QualType ConvertedT2;
4307 if (UnqualT1 == UnqualT2) {
4308 // Nothing to do.
4309 } else if (isCompleteType(Loc, OrigT2) &&
4310 isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
4311 IsDerivedFrom(Loc, UnqualT2, UnqualT1))
4312 DerivedToBase = true;
4313 else if (UnqualT1->isObjCObjectOrInterfaceType() &&
4314 UnqualT2->isObjCObjectOrInterfaceType() &&
4315 Context.canBindObjCObjectType(UnqualT1, UnqualT2))
4316 ObjCConversion = true;
4317 else if (UnqualT2->isFunctionType() &&
4318 IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2))
4319 // C++1z [dcl.init.ref]p4:
4320 // cv1 T1" is reference-compatible with "cv2 T2" if [...] T2 is "noexcept
4321 // function" and T1 is "function"
4322 //
4323 // We extend this to also apply to 'noreturn', so allow any function
4324 // conversion between function types.
4325 return Ref_Compatible;
4326 else
4327 return Ref_Incompatible;
4328
4329 // At this point, we know that T1 and T2 are reference-related (at
4330 // least).
4331
4332 // If the type is an array type, promote the element qualifiers to the type
4333 // for comparison.
4334 if (isa<ArrayType>(T1) && T1Quals)
4335 T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4336 if (isa<ArrayType>(T2) && T2Quals)
4337 T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4338
4339 // C++ [dcl.init.ref]p4:
4340 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4341 // reference-related to T2 and cv1 is the same cv-qualification
4342 // as, or greater cv-qualification than, cv2. For purposes of
4343 // overload resolution, cases for which cv1 is greater
4344 // cv-qualification than cv2 are identified as
4345 // reference-compatible with added qualification (see 13.3.3.2).
4346 //
4347 // Note that we also require equivalence of Objective-C GC and address-space
4348 // qualifiers when performing these computations, so that e.g., an int in
4349 // address space 1 is not reference-compatible with an int in address
4350 // space 2.
4351 if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
4352 T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
4353 if (isNonTrivialObjCLifetimeConversion(T2Quals, T1Quals))
4354 ObjCLifetimeConversion = true;
4355
4356 T1Quals.removeObjCLifetime();
4357 T2Quals.removeObjCLifetime();
4358 }
4359
4360 // MS compiler ignores __unaligned qualifier for references; do the same.
4361 T1Quals.removeUnaligned();
4362 T2Quals.removeUnaligned();
4363
4364 if (T1Quals.compatiblyIncludes(T2Quals))
4365 return Ref_Compatible;
4366 else
4367 return Ref_Related;
4368}
4369
4370/// Look for a user-defined conversion to a value reference-compatible
4371/// with DeclType. Return true if something definite is found.
4372static bool
4373FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4374 QualType DeclType, SourceLocation DeclLoc,
4375 Expr *Init, QualType T2, bool AllowRvalues,
4376 bool AllowExplicit) {
4377 assert(T2->isRecordType() && "Can only find conversions of record types.")((T2->isRecordType() && "Can only find conversions of record types."
) ? static_cast<void> (0) : __assert_fail ("T2->isRecordType() && \"Can only find conversions of record types.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 4377, __PRETTY_FUNCTION__))
;
4378 CXXRecordDecl *T2RecordDecl
4379 = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4380
4381 OverloadCandidateSet CandidateSet(
4382 DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4383 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4384 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4385 NamedDecl *D = *I;
4386 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4387 if (isa<UsingShadowDecl>(D))
4388 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4389
4390 FunctionTemplateDecl *ConvTemplate
4391 = dyn_cast<FunctionTemplateDecl>(D);
4392 CXXConversionDecl *Conv;
4393 if (ConvTemplate)
4394 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4395 else
4396 Conv = cast<CXXConversionDecl>(D);
4397
4398 // If this is an explicit conversion, and we're not allowed to consider
4399 // explicit conversions, skip it.
4400 if (!AllowExplicit && Conv->isExplicit())
4401 continue;
4402
4403 if (AllowRvalues) {
4404 bool DerivedToBase = false;
4405 bool ObjCConversion = false;
4406 bool ObjCLifetimeConversion = false;
4407
4408 // If we are initializing an rvalue reference, don't permit conversion
4409 // functions that return lvalues.
4410 if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4411 const ReferenceType *RefType
4412 = Conv->getConversionType()->getAs<LValueReferenceType>();
4413 if (RefType && !RefType->getPointeeType()->isFunctionType())
4414 continue;
4415 }
4416
4417 if (!ConvTemplate &&
4418 S.CompareReferenceRelationship(
4419 DeclLoc,
4420 Conv->getConversionType().getNonReferenceType()
4421 .getUnqualifiedType(),
4422 DeclType.getNonReferenceType().getUnqualifiedType(),
4423 DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
4424 Sema::Ref_Incompatible)
4425 continue;
4426 } else {
4427 // If the conversion function doesn't return a reference type,
4428 // it can't be considered for this conversion. An rvalue reference
4429 // is only acceptable if its referencee is a function type.
4430
4431 const ReferenceType *RefType =
4432 Conv->getConversionType()->getAs<ReferenceType>();
4433 if (!RefType ||
4434 (!RefType->isLValueReferenceType() &&
4435 !RefType->getPointeeType()->isFunctionType()))
4436 continue;
4437 }
4438
4439 if (ConvTemplate)
4440 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
4441 Init, DeclType, CandidateSet,
4442 /*AllowObjCConversionOnExplicit=*/false);
4443 else
4444 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
4445 DeclType, CandidateSet,
4446 /*AllowObjCConversionOnExplicit=*/false);
4447 }
4448
4449 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4450
4451 OverloadCandidateSet::iterator Best;
4452 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4453 case OR_Success:
4454 // C++ [over.ics.ref]p1:
4455 //
4456 // [...] If the parameter binds directly to the result of
4457 // applying a conversion function to the argument
4458 // expression, the implicit conversion sequence is a
4459 // user-defined conversion sequence (13.3.3.1.2), with the
4460 // second standard conversion sequence either an identity
4461 // conversion or, if the conversion function returns an
4462 // entity of a type that is a derived class of the parameter
4463 // type, a derived-to-base Conversion.
4464 if (!Best->FinalConversion.DirectBinding)
4465 return false;
4466
4467 ICS.setUserDefined();
4468 ICS.UserDefined.Before = Best->Conversions[0].Standard;
4469 ICS.UserDefined.After = Best->FinalConversion;
4470 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4471 ICS.UserDefined.ConversionFunction = Best->Function;
4472 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4473 ICS.UserDefined.EllipsisConversion = false;
4474 assert(ICS.UserDefined.After.ReferenceBinding &&((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 4476, __PRETTY_FUNCTION__))
4475 ICS.UserDefined.After.DirectBinding &&((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 4476, __PRETTY_FUNCTION__))
4476 "Expected a direct reference binding!")((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 4476, __PRETTY_FUNCTION__))
;
4477 return true;
4478
4479 case OR_Ambiguous:
4480 ICS.setAmbiguous();
4481 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4482 Cand != CandidateSet.end(); ++Cand)
4483 if (Cand->Viable)
4484 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
4485 return true;
4486
4487 case OR_No_Viable_Function:
4488 case OR_Deleted:
4489 // There was no suitable conversion, or we found a deleted
4490 // conversion; continue with other checks.
4491 return false;
4492 }
4493
4494 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 4494)
;
4495}
4496
4497/// Compute an implicit conversion sequence for reference
4498/// initialization.
4499static ImplicitConversionSequence
4500TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4501 SourceLocation DeclLoc,
4502 bool SuppressUserConversions,
4503 bool AllowExplicit) {
4504 assert(DeclType->isReferenceType() && "Reference init needs a reference")((DeclType->isReferenceType() && "Reference init needs a reference"
) ? static_cast<void> (0) : __assert_fail ("DeclType->isReferenceType() && \"Reference init needs a reference\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 4504, __PRETTY_FUNCTION__))
;
4505
4506 // Most paths end in a failed conversion.
4507 ImplicitConversionSequence ICS;
4508 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4509
4510 QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4511 QualType T2 = Init->getType();
4512
4513 // If the initializer is the address of an overloaded function, try
4514 // to resolve the overloaded function. If all goes well, T2 is the
4515 // type of the resulting function.
4516 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4517 DeclAccessPair Found;
4518 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4519 false, Found))
4520 T2 = Fn->getType();
4521 }
4522
4523 // Compute some basic properties of the types and the initializer.
4524 bool isRValRef = DeclType->isRValueReferenceType();
4525 bool DerivedToBase = false;
4526 bool ObjCConversion = false;
4527 bool ObjCLifetimeConversion = false;
4528 Expr::Classification InitCategory = Init->Classify(S.Context);
4529 Sema::ReferenceCompareResult RefRelationship
4530 = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
4531 ObjCConversion, ObjCLifetimeConversion);
4532
4533
4534 // C++0x [dcl.init.ref]p5:
4535 // A reference to type "cv1 T1" is initialized by an expression
4536 // of type "cv2 T2" as follows:
4537
4538 // -- If reference is an lvalue reference and the initializer expression
4539 if (!isRValRef) {
4540 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4541 // reference-compatible with "cv2 T2," or
4542 //
4543 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4544 if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) {
4545 // C++ [over.ics.ref]p1:
4546 // When a parameter of reference type binds directly (8.5.3)
4547 // to an argument expression, the implicit conversion sequence
4548 // is the identity conversion, unless the argument expression
4549 // has a type that is a derived class of the parameter type,
4550 // in which case the implicit conversion sequence is a
4551 // derived-to-base Conversion (13.3.3.1).
4552 ICS.setStandard();
4553 ICS.Standard.First = ICK_Identity;
4554 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4555 : ObjCConversion? ICK_Compatible_Conversion
4556 : ICK_Identity;
4557 ICS.Standard.Third = ICK_Identity;
4558 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4559 ICS.Standard.setToType(0, T2);
4560 ICS.Standard.setToType(1, T1);
4561 ICS.Standard.setToType(2, T1);
4562 ICS.Standard.ReferenceBinding = true;
4563 ICS.Standard.DirectBinding = true;
4564 ICS.Standard.IsLvalueReference = !isRValRef;
4565 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4566 ICS.Standard.BindsToRvalue = false;
4567 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4568 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4569 ICS.Standard.CopyConstructor = nullptr;
4570 ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4571
4572 // Nothing more to do: the inaccessibility/ambiguity check for
4573 // derived-to-base conversions is suppressed when we're
4574 // computing the implicit conversion sequence (C++
4575 // [over.best.ics]p2).
4576 return ICS;
4577 }
4578
4579 // -- has a class type (i.e., T2 is a class type), where T1 is
4580 // not reference-related to T2, and can be implicitly
4581 // converted to an lvalue of type "cv3 T3," where "cv1 T1"
4582 // is reference-compatible with "cv3 T3" 92) (this
4583 // conversion is selected by enumerating the applicable
4584 // conversion functions (13.3.1.6) and choosing the best
4585 // one through overload resolution (13.3)),
4586 if (!SuppressUserConversions && T2->isRecordType() &&
4587 S.isCompleteType(DeclLoc, T2) &&
4588 RefRelationship == Sema::Ref_Incompatible) {
4589 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4590 Init, T2, /*AllowRvalues=*/false,
4591 AllowExplicit))
4592 return ICS;
4593 }
4594 }
4595
4596 // -- Otherwise, the reference shall be an lvalue reference to a
4597 // non-volatile const type (i.e., cv1 shall be const), or the reference
4598 // shall be an rvalue reference.
4599 if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
4600 return ICS;
4601
4602 // -- If the initializer expression
4603 //
4604 // -- is an xvalue, class prvalue, array prvalue or function
4605 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4606 if (RefRelationship == Sema::Ref_Compatible &&
4607 (InitCategory.isXValue() ||
4608 (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
4609 (InitCategory.isLValue() && T2->isFunctionType()))) {
4610 ICS.setStandard();
4611 ICS.Standard.First = ICK_Identity;
4612 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4613 : ObjCConversion? ICK_Compatible_Conversion
4614 : ICK_Identity;
4615 ICS.Standard.Third = ICK_Identity;
4616 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4617 ICS.Standard.setToType(0, T2);
4618 ICS.Standard.setToType(1, T1);
4619 ICS.Standard.setToType(2, T1);
4620 ICS.Standard.ReferenceBinding = true;
4621 // In C++0x, this is always a direct binding. In C++98/03, it's a direct
4622 // binding unless we're binding to a class prvalue.
4623 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4624 // allow the use of rvalue references in C++98/03 for the benefit of
4625 // standard library implementors; therefore, we need the xvalue check here.
4626 ICS.Standard.DirectBinding =
4627 S.getLangOpts().CPlusPlus11 ||
4628 !(InitCategory.isPRValue() || T2->isRecordType());
4629 ICS.Standard.IsLvalueReference = !isRValRef;
4630 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4631 ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4632 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4633 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4634 ICS.Standard.CopyConstructor = nullptr;
4635 ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4636 return ICS;
4637 }
4638
4639 // -- has a class type (i.e., T2 is a class type), where T1 is not
4640 // reference-related to T2, and can be implicitly converted to
4641 // an xvalue, class prvalue, or function lvalue of type
4642 // "cv3 T3", where "cv1 T1" is reference-compatible with
4643 // "cv3 T3",
4644 //
4645 // then the reference is bound to the value of the initializer
4646 // expression in the first case and to the result of the conversion
4647 // in the second case (or, in either case, to an appropriate base
4648 // class subobject).
4649 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4650 T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
4651 FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4652 Init, T2, /*AllowRvalues=*/true,
4653 AllowExplicit)) {
4654 // In the second case, if the reference is an rvalue reference
4655 // and the second standard conversion sequence of the
4656 // user-defined conversion sequence includes an lvalue-to-rvalue
4657 // conversion, the program is ill-formed.
4658 if (ICS.isUserDefined() && isRValRef &&
4659 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4660 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4661
4662 return ICS;
4663 }
4664
4665 // A temporary of function type cannot be created; don't even try.
4666 if (T1->isFunctionType())
4667 return ICS;
4668
4669 // -- Otherwise, a temporary of type "cv1 T1" is created and
4670 // initialized from the initializer expression using the
4671 // rules for a non-reference copy initialization (8.5). The
4672 // reference is then bound to the temporary. If T1 is
4673 // reference-related to T2, cv1 must be the same
4674 // cv-qualification as, or greater cv-qualification than,
4675 // cv2; otherwise, the program is ill-formed.
4676 if (RefRelationship == Sema::Ref_Related) {
4677 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4678 // we would be reference-compatible or reference-compatible with
4679 // added qualification. But that wasn't the case, so the reference
4680 // initialization fails.
4681 //
4682 // Note that we only want to check address spaces and cvr-qualifiers here.
4683 // ObjC GC, lifetime and unaligned qualifiers aren't important.
4684 Qualifiers T1Quals = T1.getQualifiers();
4685 Qualifiers T2Quals = T2.getQualifiers();
4686 T1Quals.removeObjCGCAttr();
4687 T1Quals.removeObjCLifetime();
4688 T2Quals.removeObjCGCAttr();
4689 T2Quals.removeObjCLifetime();
4690 // MS compiler ignores __unaligned qualifier for references; do the same.
4691 T1Quals.removeUnaligned();
4692 T2Quals.removeUnaligned();
4693 if (!T1Quals.compatiblyIncludes(T2Quals))
4694 return ICS;
4695 }
4696
4697 // If at least one of the types is a class type, the types are not
4698 // related, and we aren't allowed any user conversions, the
4699 // reference binding fails. This case is important for breaking
4700 // recursion, since TryImplicitConversion below will attempt to
4701 // create a temporary through the use of a copy constructor.
4702 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4703 (T1->isRecordType() || T2->isRecordType()))
4704 return ICS;
4705
4706 // If T1 is reference-related to T2 and the reference is an rvalue
4707 // reference, the initializer expression shall not be an lvalue.
4708 if (RefRelationship >= Sema::Ref_Related &&
4709 isRValRef && Init->Classify(S.Context).isLValue())
4710 return ICS;
4711
4712 // C++ [over.ics.ref]p2:
4713 // When a parameter of reference type is not bound directly to
4714 // an argument expression, the conversion sequence is the one
4715 // required to convert the argument expression to the
4716 // underlying type of the reference according to
4717 // 13.3.3.1. Conceptually, this conversion sequence corresponds
4718 // to copy-initializing a temporary of the underlying type with
4719 // the argument expression. Any difference in top-level
4720 // cv-qualification is subsumed by the initialization itself
4721 // and does not constitute a conversion.
4722 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4723 /*AllowExplicit=*/false,
4724 /*InOverloadResolution=*/false,
4725 /*CStyle=*/false,
4726 /*AllowObjCWritebackConversion=*/false,
4727 /*AllowObjCConversionOnExplicit=*/false);
4728
4729 // Of course, that's still a reference binding.
4730 if (ICS.isStandard()) {
4731 ICS.Standard.ReferenceBinding = true;
4732 ICS.Standard.IsLvalueReference = !isRValRef;
4733 ICS.Standard.BindsToFunctionLvalue = false;
4734 ICS.Standard.BindsToRvalue = true;
4735 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4736 ICS.Standard.ObjCLifetimeConversionBinding = false;
4737 } else if (ICS.isUserDefined()) {
4738 const ReferenceType *LValRefType =
4739 ICS.UserDefined.ConversionFunction->getReturnType()
4740 ->getAs<LValueReferenceType>();
4741
4742 // C++ [over.ics.ref]p3:
4743 // Except for an implicit object parameter, for which see 13.3.1, a
4744 // standard conversion sequence cannot be formed if it requires [...]
4745 // binding an rvalue reference to an lvalue other than a function
4746 // lvalue.
4747 // Note that the function case is not possible here.
4748 if (DeclType->isRValueReferenceType() && LValRefType) {
4749 // FIXME: This is the wrong BadConversionSequence. The problem is binding
4750 // an rvalue reference to a (non-function) lvalue, not binding an lvalue
4751 // reference to an rvalue!
4752 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
4753 return ICS;
4754 }
4755
4756 ICS.UserDefined.After.ReferenceBinding = true;
4757 ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4758 ICS.UserDefined.After.BindsToFunctionLvalue = false;
4759 ICS.UserDefined.After.BindsToRvalue = !LValRefType;
4760 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4761 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4762 }
4763
4764 return ICS;
4765}
4766
4767static ImplicitConversionSequence
4768TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4769 bool SuppressUserConversions,
4770 bool InOverloadResolution,
4771 bool AllowObjCWritebackConversion,
4772 bool AllowExplicit = false);
4773
4774/// TryListConversion - Try to copy-initialize a value of type ToType from the
4775/// initializer list From.
4776static ImplicitConversionSequence
4777TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4778 bool SuppressUserConversions,
4779 bool InOverloadResolution,
4780 bool AllowObjCWritebackConversion) {
4781 // C++11 [over.ics.list]p1:
4782 // When an argument is an initializer list, it is not an expression and
4783 // special rules apply for converting it to a parameter type.
4784
4785 ImplicitConversionSequence Result;
4786 Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4787
4788 // We need a complete type for what follows. Incomplete types can never be
4789 // initialized from init lists.
4790 if (!S.isCompleteType(From->getBeginLoc(), ToType))
4791 return Result;
4792
4793 // Per DR1467:
4794 // If the parameter type is a class X and the initializer list has a single
4795 // element of type cv U, where U is X or a class derived from X, the
4796 // implicit conversion sequence is the one required to convert the element
4797 // to the parameter type.
4798 //
4799 // Otherwise, if the parameter type is a character array [... ]
4800 // and the initializer list has a single element that is an
4801 // appropriately-typed string literal (8.5.2 [dcl.init.string]), the
4802 // implicit conversion sequence is the identity conversion.
4803 if (From->getNumInits() == 1) {
4804 if (ToType->isRecordType()) {
4805 QualType InitType = From->getInit(0)->getType();
4806 if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
4807 S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType))
4808 return TryCopyInitialization(S, From->getInit(0), ToType,
4809 SuppressUserConversions,
4810 InOverloadResolution,
4811 AllowObjCWritebackConversion);
4812 }
4813 // FIXME: Check the other conditions here: array of character type,
4814 // initializer is a string literal.
4815 if (ToType->isArrayType()) {
4816 InitializedEntity Entity =
4817 InitializedEntity::InitializeParameter(S.Context, ToType,
4818 /*Consumed=*/false);
4819 if (S.CanPerformCopyInitialization(Entity, From)) {
4820 Result.setStandard();
4821 Result.Standard.setAsIdentityConversion();
4822 Result.Standard.setFromType(ToType);
4823 Result.Standard.setAllToTypes(ToType);
4824 return Result;
4825 }
4826 }
4827 }
4828
4829 // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
4830 // C++11 [over.ics.list]p2:
4831 // If the parameter type is std::initializer_list<X> or "array of X" and
4832 // all the elements can be implicitly converted to X, the implicit
4833 // conversion sequence is the worst conversion necessary to convert an
4834 // element of the list to X.
4835 //
4836 // C++14 [over.ics.list]p3:
4837 // Otherwise, if the parameter type is "array of N X", if the initializer
4838 // list has exactly N elements or if it has fewer than N elements and X is
4839 // default-constructible, and if all the elements of the initializer list
4840 // can be implicitly converted to X, the implicit conversion sequence is
4841 // the worst conversion necessary to convert an element of the list to X.
4842 //
4843 // FIXME: We're missing a lot of these checks.
4844 bool toStdInitializerList = false;
4845 QualType X;
4846 if (ToType->isArrayType())
4847 X = S.Context.getAsArrayType(ToType)->getElementType();
4848 else
4849 toStdInitializerList = S.isStdInitializerList(ToType, &X);
4850 if (!X.isNull()) {
4851 for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
4852 Expr *Init = From->getInit(i);
4853 ImplicitConversionSequence ICS =
4854 TryCopyInitialization(S, Init, X, SuppressUserConversions,
4855 InOverloadResolution,
4856 AllowObjCWritebackConversion);
4857 // If a single element isn't convertible, fail.
4858 if (ICS.isBad()) {
4859 Result = ICS;
4860 break;
4861 }
4862 // Otherwise, look for the worst conversion.
4863 if (Result.isBad() || CompareImplicitConversionSequences(
4864 S, From->getBeginLoc(), ICS, Result) ==
4865 ImplicitConversionSequence::Worse)
4866 Result = ICS;
4867 }
4868
4869 // For an empty list, we won't have computed any conversion sequence.
4870 // Introduce the identity conversion sequence.
4871 if (From->getNumInits() == 0) {
4872 Result.setStandard();
4873 Result.Standard.setAsIdentityConversion();
4874 Result.Standard.setFromType(ToType);
4875 Result.Standard.setAllToTypes(ToType);
4876 }
4877
4878 Result.setStdInitializerListElement(toStdInitializerList);
4879 return Result;
4880 }
4881
4882 // C++14 [over.ics.list]p4:
4883 // C++11 [over.ics.list]p3:
4884 // Otherwise, if the parameter is a non-aggregate class X and overload
4885 // resolution chooses a single best constructor [...] the implicit
4886 // conversion sequence is a user-defined conversion sequence. If multiple
4887 // constructors are viable but none is better than the others, the
4888 // implicit conversion sequence is a user-defined conversion sequence.
4889 if (ToType->isRecordType() && !ToType->isAggregateType()) {
4890 // This function can deal with initializer lists.
4891 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
4892 /*AllowExplicit=*/false,
4893 InOverloadResolution, /*CStyle=*/false,
4894 AllowObjCWritebackConversion,
4895 /*AllowObjCConversionOnExplicit=*/false);
4896 }
4897
4898 // C++14 [over.ics.list]p5:
4899 // C++11 [over.ics.list]p4:
4900 // Otherwise, if the parameter has an aggregate type which can be
4901 // initialized from the initializer list [...] the implicit conversion
4902 // sequence is a user-defined conversion sequence.
4903 if (ToType->isAggregateType()) {
4904 // Type is an aggregate, argument is an init list. At this point it comes
4905 // down to checking whether the initialization works.
4906 // FIXME: Find out whether this parameter is consumed or not.
4907 // FIXME: Expose SemaInit's aggregate initialization code so that we don't
4908 // need to call into the initialization code here; overload resolution
4909 // should not be doing that.
4910 InitializedEntity Entity =
4911 InitializedEntity::InitializeParameter(S.Context, ToType,
4912 /*Consumed=*/false);
4913 if (S.CanPerformCopyInitialization(Entity, From)) {
4914 Result.setUserDefined();
4915 Result.UserDefined.Before.setAsIdentityConversion();
4916 // Initializer lists don't have a type.
4917 Result.UserDefined.Before.setFromType(QualType());
4918 Result.UserDefined.Before.setAllToTypes(QualType());
4919
4920 Result.UserDefined.After.setAsIdentityConversion();
4921 Result.UserDefined.After.setFromType(ToType);
4922 Result.UserDefined.After.setAllToTypes(ToType);
4923 Result.UserDefined.ConversionFunction = nullptr;
4924 }
4925 return Result;
4926 }
4927
4928 // C++14 [over.ics.list]p6:
4929 // C++11 [over.ics.list]p5:
4930 // Otherwise, if the parameter is a reference, see 13.3.3.1.4.
4931 if (ToType->isReferenceType()) {
4932 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
4933 // mention initializer lists in any way. So we go by what list-
4934 // initialization would do and try to extrapolate from that.
4935
4936 QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
4937
4938 // If the initializer list has a single element that is reference-related
4939 // to the parameter type, we initialize the reference from that.
4940 if (From->getNumInits() == 1) {
4941 Expr *Init = From->getInit(0);
4942
4943 QualType T2 = Init->getType();
4944
4945 // If the initializer is the address of an overloaded function, try
4946 // to resolve the overloaded function. If all goes well, T2 is the
4947 // type of the resulting function.
4948 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4949 DeclAccessPair Found;
4950 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
4951 Init, ToType, false, Found))
4952 T2 = Fn->getType();
4953 }
4954
4955 // Compute some basic properties of the types and the initializer.
4956 bool dummy1 = false;
4957 bool dummy2 = false;
4958 bool dummy3 = false;
4959 Sema::ReferenceCompareResult RefRelationship =
4960 S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2, dummy1,
4961 dummy2, dummy3);
4962
4963 if (RefRelationship >= Sema::Ref_Related) {
4964 return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(),
4965 SuppressUserConversions,
4966 /*AllowExplicit=*/false);
4967 }
4968 }
4969
4970 // Otherwise, we bind the reference to a temporary created from the
4971 // initializer list.
4972 Result = TryListConversion(S, From, T1, SuppressUserConversions,
4973 InOverloadResolution,
4974 AllowObjCWritebackConversion);
4975 if (Result.isFailure())
4976 return Result;
4977 assert(!Result.isEllipsis() &&((!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion."
) ? static_cast<void> (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 4978, __PRETTY_FUNCTION__))
4978 "Sub-initialization cannot result in ellipsis conversion.")((!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion."
) ? static_cast<void> (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 4978, __PRETTY_FUNCTION__))
;
4979
4980 // Can we even bind to a temporary?
4981 if (ToType->isRValueReferenceType() ||
4982 (T1.isConstQualified() && !T1.isVolatileQualified())) {
4983 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
4984 Result.UserDefined.After;
4985 SCS.ReferenceBinding = true;
4986 SCS.IsLvalueReference = ToType->isLValueReferenceType();
4987 SCS.BindsToRvalue = true;
4988 SCS.BindsToFunctionLvalue = false;
4989 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4990 SCS.ObjCLifetimeConversionBinding = false;
4991 } else
4992 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
4993 From, ToType);
4994 return Result;
4995 }
4996
4997 // C++14 [over.ics.list]p7:
4998 // C++11 [over.ics.list]p6:
4999 // Otherwise, if the parameter type is not a class:
5000 if (!ToType->isRecordType()) {
5001 // - if the initializer list has one element that is not itself an
5002 // initializer list, the implicit conversion sequence is the one
5003 // required to convert the element to the parameter type.
5004 unsigned NumInits = From->getNumInits();
5005 if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
5006 Result = TryCopyInitialization(S, From->getInit(0), ToType,
5007 SuppressUserConversions,
5008 InOverloadResolution,
5009 AllowObjCWritebackConversion);
5010 // - if the initializer list has no elements, the implicit conversion
5011 // sequence is the identity conversion.
5012 else if (NumInits == 0) {
5013 Result.setStandard();
5014 Result.Standard.setAsIdentityConversion();
5015 Result.Standard.setFromType(ToType);
5016 Result.Standard.setAllToTypes(ToType);
5017 }
5018 return Result;
5019 }
5020
5021 // C++14 [over.ics.list]p8:
5022 // C++11 [over.ics.list]p7:
5023 // In all cases other than those enumerated above, no conversion is possible
5024 return Result;
5025}
5026
5027/// TryCopyInitialization - Try to copy-initialize a value of type
5028/// ToType from the expression From. Return the implicit conversion
5029/// sequence required to pass this argument, which may be a bad
5030/// conversion sequence (meaning that the argument cannot be passed to
5031/// a parameter of this type). If @p SuppressUserConversions, then we
5032/// do not permit any user-defined conversion sequences.
5033static ImplicitConversionSequence
5034TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
5035 bool SuppressUserConversions,
5036 bool InOverloadResolution,
5037 bool AllowObjCWritebackConversion,
5038 bool AllowExplicit) {
5039 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
5040 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
5041 InOverloadResolution,AllowObjCWritebackConversion);
5042
5043 if (ToType->isReferenceType())
5044 return TryReferenceInit(S, From, ToType,
5045 /*FIXME:*/ From->getBeginLoc(),
5046 SuppressUserConversions, AllowExplicit);
5047
5048 return TryImplicitConversion(S, From, ToType,
5049 SuppressUserConversions,
5050 /*AllowExplicit=*/false,
5051 InOverloadResolution,
5052 /*CStyle=*/false,
5053 AllowObjCWritebackConversion,
5054 /*AllowObjCConversionOnExplicit=*/false);
5055}
5056
5057static bool TryCopyInitialization(const CanQualType FromQTy,
5058 const CanQualType ToQTy,
5059 Sema &S,
5060 SourceLocation Loc,
5061 ExprValueKind FromVK) {
5062 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
5063 ImplicitConversionSequence ICS =
5064 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
5065
5066 return !ICS.isBad();
5067}
5068
5069/// TryObjectArgumentInitialization - Try to initialize the object
5070/// parameter of the given member function (@c Method) from the
5071/// expression @p From.
5072static ImplicitConversionSequence
5073TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
5074 Expr::Classification FromClassification,
5075 CXXMethodDecl *Method,
5076 CXXRecordDecl *ActingContext) {
5077 QualType ClassType = S.Context.getTypeDeclType(ActingContext);
5078 // [class.dtor]p2: A destructor can be invoked for a const, volatile or
5079 // const volatile object.
5080 Qualifiers Quals;
5081 if (isa<CXXDestructorDecl>(Method)) {
5082 Quals.addConst();
5083 Quals.addVolatile();
5084 } else {
5085 Quals = Method->getMethodQualifiers();
5086 }
5087
5088 QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals);
5089
5090 // Set up the conversion sequence as a "bad" conversion, to allow us
5091 // to exit early.
5092 ImplicitConversionSequence ICS;
5093
5094 // We need to have an object of class type.
5095 if (const PointerType *PT = FromType->getAs<PointerType>()) {
5096 FromType = PT->getPointeeType();
5097
5098 // When we had a pointer, it's implicitly dereferenced, so we
5099 // better have an lvalue.
5100 assert(FromClassification.isLValue())((FromClassification.isLValue()) ? static_cast<void> (0
) : __assert_fail ("FromClassification.isLValue()", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 5100, __PRETTY_FUNCTION__))
;
5101 }
5102
5103 assert(FromType->isRecordType())((FromType->isRecordType()) ? static_cast<void> (0) :
__assert_fail ("FromType->isRecordType()", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 5103, __PRETTY_FUNCTION__))
;
5104
5105 // C++0x [over.match.funcs]p4:
5106 // For non-static member functions, the type of the implicit object
5107 // parameter is
5108 //
5109 // - "lvalue reference to cv X" for functions declared without a
5110 // ref-qualifier or with the & ref-qualifier
5111 // - "rvalue reference to cv X" for functions declared with the &&
5112 // ref-qualifier
5113 //
5114 // where X is the class of which the function is a member and cv is the
5115 // cv-qualification on the member function declaration.
5116 //
5117 // However, when finding an implicit conversion sequence for the argument, we
5118 // are not allowed to perform user-defined conversions
5119 // (C++ [over.match.funcs]p5). We perform a simplified version of
5120 // reference binding here, that allows class rvalues to bind to
5121 // non-constant references.
5122
5123 // First check the qualifiers.
5124 QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
5125 if (ImplicitParamType.getCVRQualifiers()
5126 != FromTypeCanon.getLocalCVRQualifiers() &&
5127 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
5128 ICS.setBad(BadConversionSequence::bad_qualifiers,
5129 FromType, ImplicitParamType);
5130 return ICS;
5131 }
5132
5133 if (FromTypeCanon.getQualifiers().hasAddressSpace()) {
5134 Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers();
5135 Qualifiers QualsFromType = FromTypeCanon.getQualifiers();
5136 if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) {
5137 ICS.setBad(BadConversionSequence::bad_qualifiers,
5138 FromType, ImplicitParamType);
5139 return ICS;
5140 }
5141 }
5142
5143 // Check that we have either the same type or a derived type. It
5144 // affects the conversion rank.
5145 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
5146 ImplicitConversionKind SecondKind;
5147 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
5148 SecondKind = ICK_Identity;
5149 } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
5150 SecondKind = ICK_Derived_To_Base;
5151 else {
5152 ICS.setBad(BadConversionSequence::unrelated_class,
5153 FromType, ImplicitParamType);
5154 return ICS;
5155 }
5156
5157 // Check the ref-qualifier.
5158 switch (Method->getRefQualifier()) {
5159 case RQ_None:
5160 // Do nothing; we don't care about lvalueness or rvalueness.
5161 break;
5162
5163 case RQ_LValue:
5164 if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) {
5165 // non-const lvalue reference cannot bind to an rvalue
5166 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
5167 ImplicitParamType);
5168 return ICS;
5169 }
5170 break;
5171
5172 case RQ_RValue:
5173 if (!FromClassification.isRValue()) {
5174 // rvalue reference cannot bind to an lvalue
5175 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
5176 ImplicitParamType);
5177 return ICS;
5178 }
5179 break;
5180 }
5181
5182 // Success. Mark this as a reference binding.
5183 ICS.setStandard();
5184 ICS.Standard.setAsIdentityConversion();
5185 ICS.Standard.Second = SecondKind;
5186 ICS.Standard.setFromType(FromType);
5187 ICS.Standard.setAllToTypes(ImplicitParamType);
5188 ICS.Standard.ReferenceBinding = true;
5189 ICS.Standard.DirectBinding = true;
5190 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
5191 ICS.Standard.BindsToFunctionLvalue = false;
5192 ICS.Standard.BindsToRvalue = FromClassification.isRValue();
5193 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
5194 = (Method->getRefQualifier() == RQ_None);
5195 return ICS;
5196}
5197
5198/// PerformObjectArgumentInitialization - Perform initialization of
5199/// the implicit object parameter for the given Method with the given
5200/// expression.
5201ExprResult
5202Sema::PerformObjectArgumentInitialization(Expr *From,
5203 NestedNameSpecifier *Qualifier,
5204 NamedDecl *FoundDecl,
5205 CXXMethodDecl *Method) {
5206 QualType FromRecordType, DestType;
5207 QualType ImplicitParamRecordType =
5208 Method->getThisType()->getAs<PointerType>()->getPointeeType();
5209
5210 Expr::Classification FromClassification;
5211 if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
5212 FromRecordType = PT->getPointeeType();
5213 DestType = Method->getThisType();
5214 FromClassification = Expr::Classification::makeSimpleLValue();
5215 } else {
5216 FromRecordType = From->getType();
5217 DestType = ImplicitParamRecordType;
5218 FromClassification = From->Classify(Context);
5219
5220 // When performing member access on an rvalue, materialize a temporary.
5221 if (From->isRValue()) {
5222 From = CreateMaterializeTemporaryExpr(FromRecordType, From,
5223 Method->getRefQualifier() !=
5224 RefQualifierKind::RQ_RValue);
5225 }
5226 }
5227
5228 // Note that we always use the true parent context when performing
5229 // the actual argument initialization.
5230 ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
5231 *this, From->getBeginLoc(), From->getType(), FromClassification, Method,
5232 Method->getParent());
5233 if (ICS.isBad()) {
5234 switch (ICS.Bad.Kind) {
5235 case BadConversionSequence::bad_qualifiers: {
5236 Qualifiers FromQs = FromRecordType.getQualifiers();
5237 Qualifiers ToQs = DestType.getQualifiers();
5238 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5239 if (CVR) {
5240 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr)
5241 << Method->getDeclName() << FromRecordType << (CVR - 1)
5242 << From->getSourceRange();
5243 Diag(Method->getLocation(), diag::note_previous_decl)
5244 << Method->getDeclName();
5245 return ExprError();
5246 }
5247 break;
5248 }
5249
5250 case BadConversionSequence::lvalue_ref_to_rvalue:
5251 case BadConversionSequence::rvalue_ref_to_lvalue: {
5252 bool IsRValueQualified =
5253 Method->getRefQualifier() == RefQualifierKind::RQ_RValue;
5254 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref)
5255 << Method->getDeclName() << FromClassification.isRValue()
5256 << IsRValueQualified;
5257 Diag(Method->getLocation(), diag::note_previous_decl)
5258 << Method->getDeclName();
5259 return ExprError();
5260 }
5261
5262 case BadConversionSequence::no_conversion:
5263 case BadConversionSequence::unrelated_class:
5264 break;
5265 }
5266
5267 return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type)
5268 << ImplicitParamRecordType << FromRecordType
5269 << From->getSourceRange();
5270 }
5271
5272 if (ICS.Standard.Second == ICK_Derived_To_Base) {
5273 ExprResult FromRes =
5274 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
5275 if (FromRes.isInvalid())
5276 return ExprError();
5277 From = FromRes.get();
5278 }
5279
5280 if (!Context.hasSameType(From->getType(), DestType)) {
5281 if (From->getType().getAddressSpace() != DestType.getAddressSpace())
5282 From = ImpCastExprToType(From, DestType, CK_AddressSpaceConversion,
5283 From->getValueKind()).get();
5284 else
5285 From = ImpCastExprToType(From, DestType, CK_NoOp,
5286 From->getValueKind()).get();
5287 }
5288 return From;
5289}
5290
5291/// TryContextuallyConvertToBool - Attempt to contextually convert the
5292/// expression From to bool (C++0x [conv]p3).
5293static ImplicitConversionSequence
5294TryContextuallyConvertToBool(Sema &S, Expr *From) {
5295 return TryImplicitConversion(S, From, S.Context.BoolTy,
5296 /*SuppressUserConversions=*/false,
5297 /*AllowExplicit=*/true,
5298 /*InOverloadResolution=*/false,
5299 /*CStyle=*/false,
5300 /*AllowObjCWritebackConversion=*/false,
5301 /*AllowObjCConversionOnExplicit=*/false);
5302}
5303
5304/// PerformContextuallyConvertToBool - Perform a contextual conversion
5305/// of the expression From to bool (C++0x [conv]p3).
5306ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
5307 if (checkPlaceholderForOverload(*this, From))
5308 return ExprError();
5309
5310 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
5311 if (!ICS.isBad())
5312 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
5313
5314 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
5315 return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition)
5316 << From->getType() << From->getSourceRange();
5317 return ExprError();
5318}
5319
5320/// Check that the specified conversion is permitted in a converted constant
5321/// expression, according to C++11 [expr.const]p3. Return true if the conversion
5322/// is acceptable.
5323static bool CheckConvertedConstantConversions(Sema &S,
5324 StandardConversionSequence &SCS) {
5325 // Since we know that the target type is an integral or unscoped enumeration
5326 // type, most conversion kinds are impossible. All possible First and Third
5327 // conversions are fine.
5328 switch (SCS.Second) {
5329 case ICK_Identity:
5330 case ICK_Function_Conversion:
5331 case ICK_Integral_Promotion:
5332 case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
5333 case ICK_Zero_Queue_Conversion:
5334 return true;
5335
5336 case ICK_Boolean_Conversion:
5337 // Conversion from an integral or unscoped enumeration type to bool is
5338 // classified as ICK_Boolean_Conversion, but it's also arguably an integral
5339 // conversion, so we allow it in a converted constant expression.
5340 //
5341 // FIXME: Per core issue 1407, we should not allow this, but that breaks
5342 // a lot of popular code. We should at least add a warning for this
5343 // (non-conforming) extension.
5344 return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
5345 SCS.getToType(2)->isBooleanType();
5346
5347 case ICK_Pointer_Conversion:
5348 case ICK_Pointer_Member:
5349 // C++1z: null pointer conversions and null member pointer conversions are
5350 // only permitted if the source type is std::nullptr_t.
5351 return SCS.getFromType()->isNullPtrType();
5352
5353 case ICK_Floating_Promotion:
5354 case ICK_Complex_Promotion:
5355 case ICK_Floating_Conversion:
5356 case ICK_Complex_Conversion:
5357 case ICK_Floating_Integral:
5358 case ICK_Compatible_Conversion:
5359 case ICK_Derived_To_Base:
5360 case ICK_Vector_Conversion:
5361 case ICK_Vector_Splat:
5362 case ICK_Complex_Real:
5363 case ICK_Block_Pointer_Conversion:
5364 case ICK_TransparentUnionConversion:
5365 case ICK_Writeback_Conversion:
5366 case ICK_Zero_Event_Conversion:
5367 case ICK_C_Only_Conversion:
5368 case ICK_Incompatible_Pointer_Conversion:
5369 return false;
5370
5371 case ICK_Lvalue_To_Rvalue:
5372 case ICK_Array_To_Pointer:
5373 case ICK_Function_To_Pointer:
5374 llvm_unreachable("found a first conversion kind in Second")::llvm::llvm_unreachable_internal("found a first conversion kind in Second"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 5374)
;
5375
5376 case ICK_Qualification:
5377 llvm_unreachable("found a third conversion kind in Second")::llvm::llvm_unreachable_internal("found a third conversion kind in Second"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 5377)
;
5378
5379 case ICK_Num_Conversion_Kinds:
5380 break;
5381 }
5382
5383 llvm_unreachable("unknown conversion kind")::llvm::llvm_unreachable_internal("unknown conversion kind", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 5383)
;
5384}
5385
5386/// CheckConvertedConstantExpression - Check that the expression From is a
5387/// converted constant expression of type T, perform the conversion and produce
5388/// the converted expression, per C++11 [expr.const]p3.
5389static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
5390 QualType T, APValue &Value,
5391 Sema::CCEKind CCE,
5392 bool RequireInt) {
5393 assert(S.getLangOpts().CPlusPlus11 &&((S.getLangOpts().CPlusPlus11 && "converted constant expression outside C++11"
) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 5394, __PRETTY_FUNCTION__))
5394 "converted constant expression outside C++11")((S.getLangOpts().CPlusPlus11 && "converted constant expression outside C++11"
) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 5394, __PRETTY_FUNCTION__))
;
5395
5396 if (checkPlaceholderForOverload(S, From))
5397 return ExprError();
5398
5399 // C++1z [expr.const]p3:
5400 // A converted constant expression of type T is an expression,
5401 // implicitly converted to type T, where the converted
5402 // expression is a constant expression and the implicit conversion
5403 // sequence contains only [... list of conversions ...].
5404 // C++1z [stmt.if]p2:
5405 // If the if statement is of the form if constexpr, the value of the
5406 // condition shall be a contextually converted constant expression of type
5407 // bool.
5408 ImplicitConversionSequence ICS =
5409 CCE == Sema::CCEK_ConstexprIf
5410 ? TryContextuallyConvertToBool(S, From)
5411 : TryCopyInitialization(S, From, T,
5412 /*SuppressUserConversions=*/false,
5413 /*InOverloadResolution=*/false,
5414 /*AllowObjcWritebackConversion=*/false,
5415 /*AllowExplicit=*/false);
5416 StandardConversionSequence *SCS = nullptr;
5417 switch (ICS.getKind()) {
5418 case ImplicitConversionSequence::StandardConversion:
5419 SCS = &ICS.Standard;
5420 break;
5421 case ImplicitConversionSequence::UserDefinedConversion:
5422 // We are converting to a non-class type, so the Before sequence
5423 // must be trivial.
5424 SCS = &ICS.UserDefined.After;
5425 break;
5426 case ImplicitConversionSequence::AmbiguousConversion:
5427 case ImplicitConversionSequence::BadConversion:
5428 if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
5429 return S.Diag(From->getBeginLoc(),
5430 diag::err_typecheck_converted_constant_expression)
5431 << From->getType() << From->getSourceRange() << T;
5432 return ExprError();
5433
5434 case ImplicitConversionSequence::EllipsisConversion:
5435 llvm_unreachable("ellipsis conversion in converted constant expression")::llvm::llvm_unreachable_internal("ellipsis conversion in converted constant expression"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 5435)
;
5436 }
5437
5438 // Check that we would only use permitted conversions.
5439 if (!CheckConvertedConstantConversions(S, *SCS)) {
5440 return S.Diag(From->getBeginLoc(),
5441 diag::err_typecheck_converted_constant_expression_disallowed)
5442 << From->getType() << From->getSourceRange() << T;
5443 }
5444 // [...] and where the reference binding (if any) binds directly.
5445 if (SCS->ReferenceBinding && !SCS->DirectBinding) {
5446 return S.Diag(From->getBeginLoc(),
5447 diag::err_typecheck_converted_constant_expression_indirect)
5448 << From->getType() << From->getSourceRange() << T;
5449 }
5450
5451 ExprResult Result =
5452 S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
5453 if (Result.isInvalid())
5454 return Result;
5455
5456 // Check for a narrowing implicit conversion.
5457 APValue PreNarrowingValue;
5458 QualType PreNarrowingType;
5459 switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
5460 PreNarrowingType)) {
5461 case NK_Dependent_Narrowing:
5462 // Implicit conversion to a narrower type, but the expression is
5463 // value-dependent so we can't tell whether it's actually narrowing.
5464 case NK_Variable_Narrowing:
5465 // Implicit conversion to a narrower type, and the value is not a constant
5466 // expression. We'll diagnose this in a moment.
5467 case NK_Not_Narrowing:
5468 break;
5469
5470 case NK_Constant_Narrowing:
5471 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5472 << CCE << /*Constant*/ 1
5473 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
5474 break;
5475
5476 case NK_Type_Narrowing:
5477 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5478 << CCE << /*Constant*/ 0 << From->getType() << T;
5479 break;
5480 }
5481
5482 if (Result.get()->isValueDependent()) {
5483 Value = APValue();
5484 return Result;
5485 }
5486
5487 // Check the expression is a constant expression.
5488 SmallVector<PartialDiagnosticAt, 8> Notes;
5489 Expr::EvalResult Eval;
5490 Eval.Diag = &Notes;
5491 Expr::ConstExprUsage Usage = CCE == Sema::CCEK_TemplateArg
5492 ? Expr::EvaluateForMangling
5493 : Expr::EvaluateForCodeGen;
5494
5495 if (!Result.get()->EvaluateAsConstantExpr(Eval, Usage, S.Context) ||
5496 (RequireInt && !Eval.Val.isInt())) {
5497 // The expression can't be folded, so we can't keep it at this position in
5498 // the AST.
5499 Result = ExprError();
5500 } else {
5501 Value = Eval.Val;
5502
5503 if (Notes.empty()) {
5504 // It's a constant expression.
5505 return ConstantExpr::Create(S.Context, Result.get());
5506 }
5507 }
5508
5509 // It's not a constant expression. Produce an appropriate diagnostic.
5510 if (Notes.size() == 1 &&
5511 Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
5512 S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5513 else {
5514 S.Diag(From->getBeginLoc(), diag::err_expr_not_cce)
5515 << CCE << From->getSourceRange();
5516 for (unsigned I = 0; I < Notes.size(); ++I)
5517 S.Diag(Notes[I].first, Notes[I].second);
5518 }
5519 return ExprError();
5520}
5521
5522ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5523 APValue &Value, CCEKind CCE) {
5524 return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false);
5525}
5526
5527ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5528 llvm::APSInt &Value,
5529 CCEKind CCE) {
5530 assert(T->isIntegralOrEnumerationType() && "unexpected converted const type")((T->isIntegralOrEnumerationType() && "unexpected converted const type"
) ? static_cast<void> (0) : __assert_fail ("T->isIntegralOrEnumerationType() && \"unexpected converted const type\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 5530, __PRETTY_FUNCTION__))
;
5531
5532 APValue V;
5533 auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true);
5534 if (!R.isInvalid() && !R.get()->isValueDependent())
5535 Value = V.getInt();
5536 return R;
5537}
5538
5539
5540/// dropPointerConversions - If the given standard conversion sequence
5541/// involves any pointer conversions, remove them. This may change
5542/// the result type of the conversion sequence.
5543static void dropPointerConversion(StandardConversionSequence &SCS) {
5544 if (SCS.Second == ICK_Pointer_Conversion) {
5545 SCS.Second = ICK_Identity;
5546 SCS.Third = ICK_Identity;
5547 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5548 }
5549}
5550
5551/// TryContextuallyConvertToObjCPointer - Attempt to contextually
5552/// convert the expression From to an Objective-C pointer type.
5553static ImplicitConversionSequence
5554TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5555 // Do an implicit conversion to 'id'.
5556 QualType Ty = S.Context.getObjCIdType();
5557 ImplicitConversionSequence ICS
5558 = TryImplicitConversion(S, From, Ty,
5559 // FIXME: Are these flags correct?
5560 /*SuppressUserConversions=*/false,
5561 /*AllowExplicit=*/true,
5562 /*InOverloadResolution=*/false,
5563 /*CStyle=*/false,
5564 /*AllowObjCWritebackConversion=*/false,
5565 /*AllowObjCConversionOnExplicit=*/true);
5566
5567 // Strip off any final conversions to 'id'.
5568 switch (ICS.getKind()) {
5569 case ImplicitConversionSequence::BadConversion:
5570 case ImplicitConversionSequence::AmbiguousConversion:
5571 case ImplicitConversionSequence::EllipsisConversion:
5572 break;
5573
5574 case ImplicitConversionSequence::UserDefinedConversion:
5575 dropPointerConversion(ICS.UserDefined.After);
5576 break;
5577
5578 case ImplicitConversionSequence::StandardConversion:
5579 dropPointerConversion(ICS.Standard);
5580 break;
5581 }
5582
5583 return ICS;
5584}
5585
5586/// PerformContextuallyConvertToObjCPointer - Perform a contextual
5587/// conversion of the expression From to an Objective-C pointer type.
5588/// Returns a valid but null ExprResult if no conversion sequence exists.
5589ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5590 if (checkPlaceholderForOverload(*this, From))
5591 return ExprError();
5592
5593 QualType Ty = Context.getObjCIdType();
5594 ImplicitConversionSequence ICS =
5595 TryContextuallyConvertToObjCPointer(*this, From);
5596 if (!ICS.isBad())
5597 return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5598 return ExprResult();
5599}
5600
5601/// Determine whether the provided type is an integral type, or an enumeration
5602/// type of a permitted flavor.
5603bool Sema::ICEConvertDiagnoser::match(QualType T) {
5604 return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5605 : T->isIntegralOrUnscopedEnumerationType();
5606}
5607
5608static ExprResult
5609diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5610 Sema::ContextualImplicitConverter &Converter,
5611 QualType T, UnresolvedSetImpl &ViableConversions) {
5612
5613 if (Converter.Suppress)
5614 return ExprError();
5615
5616 Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
5617 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5618 CXXConversionDecl *Conv =
5619 cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5620 QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5621 Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
5622 }
5623 return From;
5624}
5625
5626static bool
5627diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5628 Sema::ContextualImplicitConverter &Converter,
5629 QualType T, bool HadMultipleCandidates,
5630 UnresolvedSetImpl &ExplicitConversions) {
5631 if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
5632 DeclAccessPair Found = ExplicitConversions[0];
5633 CXXConversionDecl *Conversion =
5634 cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5635
5636 // The user probably meant to invoke the given explicit
5637 // conversion; use it.
5638 QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
5639 std::string TypeStr;
5640 ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
5641
5642 Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
5643 << FixItHint::CreateInsertion(From->getBeginLoc(),
5644 "static_cast<" + TypeStr + ">(")
5645 << FixItHint::CreateInsertion(
5646 SemaRef.getLocForEndOfToken(From->getEndLoc()), ")");
5647 Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
5648
5649 // If we aren't in a SFINAE context, build a call to the
5650 // explicit conversion function.
5651 if (SemaRef.isSFINAEContext())
5652 return true;
5653
5654 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5655 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5656 HadMultipleCandidates);
5657 if (Result.isInvalid())
5658 return true;
5659 // Record usage of conversion in an implicit cast.
5660 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5661 CK_UserDefinedConversion, Result.get(),
5662 nullptr, Result.get()->getValueKind());
5663 }
5664 return false;
5665}
5666
5667static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5668 Sema::ContextualImplicitConverter &Converter,
5669 QualType T, bool HadMultipleCandidates,
5670 DeclAccessPair &Found) {
5671 CXXConversionDecl *Conversion =
5672 cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5673 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5674
5675 QualType ToType = Conversion->getConversionType().getNonReferenceType();
5676 if (!Converter.SuppressConversion) {
5677 if (SemaRef.isSFINAEContext())
5678 return true;
5679
5680 Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
5681 << From->getSourceRange();
5682 }
5683
5684 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5685 HadMultipleCandidates);
5686 if (Result.isInvalid())
5687 return true;
5688 // Record usage of conversion in an implicit cast.
5689 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5690 CK_UserDefinedConversion, Result.get(),
5691 nullptr, Result.get()->getValueKind());
5692 return false;
5693}
5694
5695static ExprResult finishContextualImplicitConversion(
5696 Sema &SemaRef, SourceLocation Loc, Expr *From,
5697 Sema::ContextualImplicitConverter &Converter) {
5698 if (!Converter.match(From->getType()) && !Converter.Suppress)
5699 Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
5700 << From->getSourceRange();
5701
5702 return SemaRef.DefaultLvalueConversion(From);
5703}
5704
5705static void
5706collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
5707 UnresolvedSetImpl &ViableConversions,
5708 OverloadCandidateSet &CandidateSet) {
5709 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5710 DeclAccessPair FoundDecl = ViableConversions[I];
5711 NamedDecl *D = FoundDecl.getDecl();
5712 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5713 if (isa<UsingShadowDecl>(D))
5714 D = cast<UsingShadowDecl>(D)->getTargetDecl();
5715
5716 CXXConversionDecl *Conv;
5717 FunctionTemplateDecl *ConvTemplate;
5718 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
5719 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5720 else
5721 Conv = cast<CXXConversionDecl>(D);
5722
5723 if (ConvTemplate)
5724 SemaRef.AddTemplateConversionCandidate(
5725 ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
5726 /*AllowObjCConversionOnExplicit=*/false);
5727 else
5728 SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
5729 ToType, CandidateSet,
5730 /*AllowObjCConversionOnExplicit=*/false);
5731 }
5732}
5733
5734/// Attempt to convert the given expression to a type which is accepted
5735/// by the given converter.
5736///
5737/// This routine will attempt to convert an expression of class type to a
5738/// type accepted by the specified converter. In C++11 and before, the class
5739/// must have a single non-explicit conversion function converting to a matching
5740/// type. In C++1y, there can be multiple such conversion functions, but only
5741/// one target type.
5742///
5743/// \param Loc The source location of the construct that requires the
5744/// conversion.
5745///
5746/// \param From The expression we're converting from.
5747///
5748/// \param Converter Used to control and diagnose the conversion process.
5749///
5750/// \returns The expression, converted to an integral or enumeration type if
5751/// successful.
5752ExprResult Sema::PerformContextualImplicitConversion(
5753 SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
5754 // We can't perform any more checking for type-dependent expressions.
5755 if (From->isTypeDependent())
5756 return From;
5757
5758 // Process placeholders immediately.
5759 if (From->hasPlaceholderType()) {
5760 ExprResult result = CheckPlaceholderExpr(From);
5761 if (result.isInvalid())
5762 return result;
5763 From = result.get();
5764 }
5765
5766 // If the expression already has a matching type, we're golden.
5767 QualType T = From->getType();
5768 if (Converter.match(T))
5769 return DefaultLvalueConversion(From);
5770
5771 // FIXME: Check for missing '()' if T is a function type?
5772
5773 // We can only perform contextual implicit conversions on objects of class
5774 // type.
5775 const RecordType *RecordTy = T->getAs<RecordType>();
5776 if (!RecordTy || !getLangOpts().CPlusPlus) {
5777 if (!Converter.Suppress)
5778 Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
5779 return From;
5780 }
5781
5782 // We must have a complete class type.
5783 struct TypeDiagnoserPartialDiag : TypeDiagnoser {
5784 ContextualImplicitConverter &Converter;
5785 Expr *From;
5786
5787 TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
5788 : Converter(Converter), From(From) {}
5789
5790 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
5791 Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
5792 }
5793 } IncompleteDiagnoser(Converter, From);
5794
5795 if (Converter.Suppress ? !isCompleteType(Loc, T)
5796 : RequireCompleteType(Loc, T, IncompleteDiagnoser))
5797 return From;
5798
5799 // Look for a conversion to an integral or enumeration type.
5800 UnresolvedSet<4>
5801 ViableConversions; // These are *potentially* viable in C++1y.
5802 UnresolvedSet<4> ExplicitConversions;
5803 const auto &Conversions =
5804 cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
5805
5806 bool HadMultipleCandidates =
5807 (std::distance(Conversions.begin(), Conversions.end()) > 1);
5808
5809 // To check that there is only one target type, in C++1y:
5810 QualType ToType;
5811 bool HasUniqueTargetType = true;
5812
5813 // Collect explicit or viable (potentially in C++1y) conversions.
5814 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5815 NamedDecl *D = (*I)->getUnderlyingDecl();
5816 CXXConversionDecl *Conversion;
5817 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5818 if (ConvTemplate) {
5819 if (getLangOpts().CPlusPlus14)
5820 Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5821 else
5822 continue; // C++11 does not consider conversion operator templates(?).
5823 } else
5824 Conversion = cast<CXXConversionDecl>(D);
5825
5826 assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&(((!ConvTemplate || getLangOpts().CPlusPlus14) && "Conversion operator templates are considered potentially "
"viable in C++1y") ? static_cast<void> (0) : __assert_fail
("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 5828, __PRETTY_FUNCTION__))
5827 "Conversion operator templates are considered potentially "(((!ConvTemplate || getLangOpts().CPlusPlus14) && "Conversion operator templates are considered potentially "
"viable in C++1y") ? static_cast<void> (0) : __assert_fail
("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 5828, __PRETTY_FUNCTION__))
5828 "viable in C++1y")(((!ConvTemplate || getLangOpts().CPlusPlus14) && "Conversion operator templates are considered potentially "
"viable in C++1y") ? static_cast<void> (0) : __assert_fail
("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 5828, __PRETTY_FUNCTION__))
;
5829
5830 QualType CurToType = Conversion->getConversionType().getNonReferenceType();
5831 if (Converter.match(CurToType) || ConvTemplate) {
5832
5833 if (Conversion->isExplicit()) {
5834 // FIXME: For C++1y, do we need this restriction?
5835 // cf. diagnoseNoViableConversion()
5836 if (!ConvTemplate)
5837 ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
5838 } else {
5839 if (!ConvTemplate && getLangOpts().CPlusPlus14) {
5840 if (ToType.isNull())
5841 ToType = CurToType.getUnqualifiedType();
5842 else if (HasUniqueTargetType &&
5843 (CurToType.getUnqualifiedType() != ToType))
5844 HasUniqueTargetType = false;
5845 }
5846 ViableConversions.addDecl(I.getDecl(), I.getAccess());
5847 }
5848 }
5849 }
5850
5851 if (getLangOpts().CPlusPlus14) {
5852 // C++1y [conv]p6:
5853 // ... An expression e of class type E appearing in such a context
5854 // is said to be contextually implicitly converted to a specified
5855 // type T and is well-formed if and only if e can be implicitly
5856 // converted to a type T that is determined as follows: E is searched
5857 // for conversion functions whose return type is cv T or reference to
5858 // cv T such that T is allowed by the context. There shall be
5859 // exactly one such T.
5860
5861 // If no unique T is found:
5862 if (ToType.isNull()) {
5863 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5864 HadMultipleCandidates,
5865 ExplicitConversions))
5866 return ExprError();
5867 return finishContextualImplicitConversion(*this, Loc, From, Converter);
5868 }
5869
5870 // If more than one unique Ts are found:
5871 if (!HasUniqueTargetType)
5872 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5873 ViableConversions);
5874
5875 // If one unique T is found:
5876 // First, build a candidate set from the previously recorded
5877 // potentially viable conversions.
5878 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5879 collectViableConversionCandidates(*this, From, ToType, ViableConversions,
5880 CandidateSet);
5881
5882 // Then, perform overload resolution over the candidate set.
5883 OverloadCandidateSet::iterator Best;
5884 switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
5885 case OR_Success: {
5886 // Apply this conversion.
5887 DeclAccessPair Found =
5888 DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
5889 if (recordConversion(*this, Loc, From, Converter, T,
5890 HadMultipleCandidates, Found))
5891 return ExprError();
5892 break;
5893 }
5894 case OR_Ambiguous:
5895 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5896 ViableConversions);
5897 case OR_No_Viable_Function:
5898 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5899 HadMultipleCandidates,
5900 ExplicitConversions))
5901 return ExprError();
5902 LLVM_FALLTHROUGH[[clang::fallthrough]];
5903 case OR_Deleted:
5904 // We'll complain below about a non-integral condition type.
5905 break;
5906 }
5907 } else {
5908 switch (ViableConversions.size()) {
5909 case 0: {
5910 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5911 HadMultipleCandidates,
5912 ExplicitConversions))
5913 return ExprError();
5914
5915 // We'll complain below about a non-integral condition type.
5916 break;
5917 }
5918 case 1: {
5919 // Apply this conversion.
5920 DeclAccessPair Found = ViableConversions[0];
5921 if (recordConversion(*this, Loc, From, Converter, T,
5922 HadMultipleCandidates, Found))
5923 return ExprError();
5924 break;
5925 }
5926 default:
5927 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5928 ViableConversions);
5929 }
5930 }
5931
5932 return finishContextualImplicitConversion(*this, Loc, From, Converter);
5933}
5934
5935/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
5936/// an acceptable non-member overloaded operator for a call whose
5937/// arguments have types T1 (and, if non-empty, T2). This routine
5938/// implements the check in C++ [over.match.oper]p3b2 concerning
5939/// enumeration types.
5940static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
5941 FunctionDecl *Fn,
5942 ArrayRef<Expr *> Args) {
5943 QualType T1 = Args[0]->getType();
5944 QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
5945
5946 if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
5947 return true;
5948
5949 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
5950 return true;
5951
5952 const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
5953 if (Proto->getNumParams() < 1)
5954 return false;
5955
5956 if (T1->isEnumeralType()) {
5957 QualType ArgType = Proto->getParamType(0).getNonReferenceType();
5958 if (Context.hasSameUnqualifiedType(T1, ArgType))
5959 return true;
5960 }
5961
5962 if (Proto->getNumParams() < 2)
5963 return false;
5964
5965 if (!T2.isNull() && T2->isEnumeralType()) {
5966 QualType ArgType = Proto->getParamType(1).getNonReferenceType();
5967 if (Context.hasSameUnqualifiedType(T2, ArgType))
5968 return true;
5969 }
5970
5971 return false;
5972}
5973
5974/// AddOverloadCandidate - Adds the given function to the set of
5975/// candidate functions, using the given function call arguments. If
5976/// @p SuppressUserConversions, then don't allow user-defined
5977/// conversions via constructors or conversion operators.
5978///
5979/// \param PartialOverloading true if we are performing "partial" overloading
5980/// based on an incomplete set of function arguments. This feature is used by
5981/// code completion.
5982void Sema::AddOverloadCandidate(FunctionDecl *Function,
5983 DeclAccessPair FoundDecl, ArrayRef<Expr *> Args,
5984 OverloadCandidateSet &CandidateSet,
5985 bool SuppressUserConversions,
5986 bool PartialOverloading, bool AllowExplicit,
5987 ADLCallKind IsADLCandidate,
5988 ConversionSequenceList EarlyConversions) {
5989 const FunctionProtoType *Proto
5990 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
5991 assert(Proto && "Functions without a prototype cannot be overloaded")((Proto && "Functions without a prototype cannot be overloaded"
) ? static_cast<void> (0) : __assert_fail ("Proto && \"Functions without a prototype cannot be overloaded\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 5991, __PRETTY_FUNCTION__))
;
5992 assert(!Function->getDescribedFunctionTemplate() &&((!Function->getDescribedFunctionTemplate() && "Use AddTemplateOverloadCandidate for function templates"
) ? static_cast<void> (0) : __assert_fail ("!Function->getDescribedFunctionTemplate() && \"Use AddTemplateOverloadCandidate for function templates\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 5993, __PRETTY_FUNCTION__))
5993 "Use AddTemplateOverloadCandidate for function templates")((!Function->getDescribedFunctionTemplate() && "Use AddTemplateOverloadCandidate for function templates"
) ? static_cast<void> (0) : __assert_fail ("!Function->getDescribedFunctionTemplate() && \"Use AddTemplateOverloadCandidate for function templates\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 5993, __PRETTY_FUNCTION__))
;
5994
5995 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
5996 if (!isa<CXXConstructorDecl>(Method)) {
5997 // If we get here, it's because we're calling a member function
5998 // that is named without a member access expression (e.g.,
5999 // "this->f") that was either written explicitly or created
6000 // implicitly. This can happen with a qualified call to a member
6001 // function, e.g., X::f(). We use an empty type for the implied
6002 // object argument (C++ [over.call.func]p3), and the acting context
6003 // is irrelevant.
6004 AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(),
6005 Expr::Classification::makeSimpleLValue(), Args,
6006 CandidateSet, SuppressUserConversions,
6007 PartialOverloading, EarlyConversions);
6008 return;
6009 }
6010 // We treat a constructor like a non-member function, since its object
6011 // argument doesn't participate in overload resolution.
6012 }
6013
6014 if (!CandidateSet.isNewCandidate(Function))
6015 return;
6016
6017 // C++ [over.match.oper]p3:
6018 // if no operand has a class type, only those non-member functions in the
6019 // lookup set that have a first parameter of type T1 or "reference to
6020 // (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
6021 // is a right operand) a second parameter of type T2 or "reference to
6022 // (possibly cv-qualified) T2", when T2 is an enumeration type, are
6023 // candidate functions.
6024 if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
6025 !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
6026 return;
6027
6028 // C++11 [class.copy]p11: [DR1402]
6029 // A defaulted move constructor that is defined as deleted is ignored by
6030 // overload resolution.
6031 CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
6032 if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
6033 Constructor->isMoveConstructor())
6034 return;
6035
6036 // Overload resolution is always an unevaluated context.
6037 EnterExpressionEvaluationContext Unevaluated(
6038 *this, Sema::ExpressionEvaluationContext::Unevaluated);
6039
6040 // Add this candidate
6041 OverloadCandidate &Candidate =
6042 CandidateSet.addCandidate(Args.size(), EarlyConversions);
6043 Candidate.FoundDecl = FoundDecl;
6044 Candidate.Function = Function;
6045 Candidate.Viable = true;
6046 Candidate.IsSurrogate = false;
6047 Candidate.IsADLCandidate = IsADLCandidate;
6048 Candidate.IgnoreObjectArgument = false;
6049 Candidate.ExplicitCallArguments = Args.size();
6050
6051 if (Function->isMultiVersion() && Function->hasAttr<TargetAttr>() &&
6052 !Function->getAttr<TargetAttr>()->isDefaultVersion()) {
6053 Candidate.Viable = false;
6054 Candidate.FailureKind = ovl_non_default_multiversion_function;
6055 return;
6056 }
6057
6058 if (Constructor) {
6059 // C++ [class.copy]p3:
6060 // A member function template is never instantiated to perform the copy
6061 // of a class object to an object of its class type.
6062 QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
6063 if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() &&
6064 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
6065 IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(),
6066 ClassType))) {
6067 Candidate.Viable = false;
6068 Candidate.FailureKind = ovl_fail_illegal_constructor;
6069 return;
6070 }
6071
6072 // C++ [over.match.funcs]p8: (proposed DR resolution)
6073 // A constructor inherited from class type C that has a first parameter
6074 // of type "reference to P" (including such a constructor instantiated
6075 // from a template) is excluded from the set of candidate functions when
6076 // constructing an object of type cv D if the argument list has exactly
6077 // one argument and D is reference-related to P and P is reference-related
6078 // to C.
6079 auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl());
6080 if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 &&
6081 Constructor->getParamDecl(0)->getType()->isReferenceType()) {
6082 QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType();
6083 QualType C = Context.getRecordType(Constructor->getParent());
6084 QualType D = Context.getRecordType(Shadow->getParent());
6085 SourceLocation Loc = Args.front()->getExprLoc();
6086 if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) &&
6087 (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) {
6088 Candidate.Viable = false;
6089 Candidate.FailureKind = ovl_fail_inhctor_slice;
6090 return;
6091 }
6092 }
6093 }
6094
6095 unsigned NumParams = Proto->getNumParams();
6096
6097 // (C++ 13.3.2p2): A candidate function having fewer than m
6098 // parameters is viable only if it has an ellipsis in its parameter
6099 // list (8.3.5).
6100 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6101 !Proto->isVariadic()) {
6102 Candidate.Viable = false;
6103 Candidate.FailureKind = ovl_fail_too_many_arguments;
6104 return;
6105 }
6106
6107 // (C++ 13.3.2p2): A candidate function having more than m parameters
6108 // is viable only if the (m+1)st parameter has a default argument
6109 // (8.3.6). For the purposes of overload resolution, the
6110 // parameter list is truncated on the right, so that there are
6111 // exactly m parameters.
6112 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
6113 if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6114 // Not enough arguments.
6115 Candidate.Viable = false;
6116 Candidate.FailureKind = ovl_fail_too_few_arguments;
6117 return;
6118 }
6119
6120 // (CUDA B.1): Check for invalid calls between targets.
6121 if (getLangOpts().CUDA)
6122 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6123 // Skip the check for callers that are implicit members, because in this
6124 // case we may not yet know what the member's target is; the target is
6125 // inferred for the member automatically, based on the bases and fields of
6126 // the class.
6127 if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) {
6128 Candidate.Viable = false;
6129 Candidate.FailureKind = ovl_fail_bad_target;
6130 return;
6131 }
6132
6133 // Determine the implicit conversion sequences for each of the
6134 // arguments.
6135 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6136 if (Candidate.Conversions[ArgIdx].isInitialized()) {
6137 // We already formed a conversion sequence for this parameter during
6138 // template argument deduction.
6139 } else if (ArgIdx < NumParams) {
6140 // (C++ 13.3.2p3): for F to be a viable function, there shall
6141 // exist for each argument an implicit conversion sequence
6142 // (13.3.3.1) that converts that argument to the corresponding
6143 // parameter of F.
6144 QualType ParamType = Proto->getParamType(ArgIdx);
6145 Candidate.Conversions[ArgIdx]
6146 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6147 SuppressUserConversions,
6148 /*InOverloadResolution=*/true,
6149 /*AllowObjCWritebackConversion=*/
6150 getLangOpts().ObjCAutoRefCount,
6151 AllowExplicit);
6152 if (Candidate.Conversions[ArgIdx].isBad()) {
6153 Candidate.Viable = false;
6154 Candidate.FailureKind = ovl_fail_bad_conversion;
6155 return;
6156 }
6157 } else {
6158 // (C++ 13.3.2p2): For the purposes of overload resolution, any
6159 // argument for which there is no corresponding parameter is
6160 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
6161 Candidate.Conversions[ArgIdx].setEllipsis();
6162 }
6163 }
6164
6165 if (EnableIfAttr *FailedAttr = CheckEnableIf(Function, Args)) {
6166 Candidate.Viable = false;
6167 Candidate.FailureKind = ovl_fail_enable_if;
6168 Candidate.DeductionFailure.Data = FailedAttr;
6169 return;
6170 }
6171
6172 if (LangOpts.OpenCL && isOpenCLDisabledDecl(Function)) {
6173 Candidate.Viable = false;
6174 Candidate.FailureKind = ovl_fail_ext_disabled;
6175 return;
6176 }
6177}
6178
6179ObjCMethodDecl *
6180Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance,
6181 SmallVectorImpl<ObjCMethodDecl *> &Methods) {
6182 if (Methods.size() <= 1)
6183 return nullptr;
6184
6185 for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6186 bool Match = true;
6187 ObjCMethodDecl *Method = Methods[b];
6188 unsigned NumNamedArgs = Sel.getNumArgs();
6189 // Method might have more arguments than selector indicates. This is due
6190 // to addition of c-style arguments in method.
6191 if (Method->param_size() > NumNamedArgs)
6192 NumNamedArgs = Method->param_size();
6193 if (Args.size() < NumNamedArgs)
6194 continue;
6195
6196 for (unsigned i = 0; i < NumNamedArgs; i++) {
6197 // We can't do any type-checking on a type-dependent argument.
6198 if (Args[i]->isTypeDependent()) {
6199 Match = false;
6200 break;
6201 }
6202
6203 ParmVarDecl *param = Method->parameters()[i];
6204 Expr *argExpr = Args[i];
6205 assert(argExpr && "SelectBestMethod(): missing expression")((argExpr && "SelectBestMethod(): missing expression"
) ? static_cast<void> (0) : __assert_fail ("argExpr && \"SelectBestMethod(): missing expression\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 6205, __PRETTY_FUNCTION__))
;
6206
6207 // Strip the unbridged-cast placeholder expression off unless it's
6208 // a consumed argument.
6209 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
6210 !param->hasAttr<CFConsumedAttr>())
6211 argExpr = stripARCUnbridgedCast(argExpr);
6212
6213 // If the parameter is __unknown_anytype, move on to the next method.
6214 if (param->getType() == Context.UnknownAnyTy) {
6215 Match = false;
6216 break;
6217 }
6218
6219 ImplicitConversionSequence ConversionState
6220 = TryCopyInitialization(*this, argExpr, param->getType(),
6221 /*SuppressUserConversions*/false,
6222 /*InOverloadResolution=*/true,
6223 /*AllowObjCWritebackConversion=*/
6224 getLangOpts().ObjCAutoRefCount,
6225 /*AllowExplicit*/false);
6226 // This function looks for a reasonably-exact match, so we consider
6227 // incompatible pointer conversions to be a failure here.
6228 if (ConversionState.isBad() ||
6229 (ConversionState.isStandard() &&
6230 ConversionState.Standard.Second ==
6231 ICK_Incompatible_Pointer_Conversion)) {
6232 Match = false;
6233 break;
6234 }
6235 }
6236 // Promote additional arguments to variadic methods.
6237 if (Match && Method->isVariadic()) {
6238 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
6239 if (Args[i]->isTypeDependent()) {
6240 Match = false;
6241 break;
6242 }
6243 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
6244 nullptr);
6245 if (Arg.isInvalid()) {
6246 Match = false;
6247 break;
6248 }
6249 }
6250 } else {
6251 // Check for extra arguments to non-variadic methods.
6252 if (Args.size() != NumNamedArgs)
6253 Match = false;
6254 else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
6255 // Special case when selectors have no argument. In this case, select
6256 // one with the most general result type of 'id'.
6257 for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6258 QualType ReturnT = Methods[b]->getReturnType();
6259 if (ReturnT->isObjCIdType())
6260 return Methods[b];
6261 }
6262 }
6263 }
6264
6265 if (Match)
6266 return Method;
6267 }
6268 return nullptr;
6269}
6270
6271static bool
6272convertArgsForAvailabilityChecks(Sema &S, FunctionDecl *Function, Expr *ThisArg,
6273 ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap,
6274 bool MissingImplicitThis, Expr *&ConvertedThis,
6275 SmallVectorImpl<Expr *> &ConvertedArgs) {
6276 if (ThisArg) {
6277 CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
6278 assert(!isa<CXXConstructorDecl>(Method) &&((!isa<CXXConstructorDecl>(Method) && "Shouldn't have `this` for ctors!"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Method) && \"Shouldn't have `this` for ctors!\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 6279, __PRETTY_FUNCTION__))
6279 "Shouldn't have `this` for ctors!")((!isa<CXXConstructorDecl>(Method) && "Shouldn't have `this` for ctors!"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Method) && \"Shouldn't have `this` for ctors!\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 6279, __PRETTY_FUNCTION__))
;
6280 assert(!Method->isStatic() && "Shouldn't have `this` for static methods!")((!Method->isStatic() && "Shouldn't have `this` for static methods!"
) ? static_cast<void> (0) : __assert_fail ("!Method->isStatic() && \"Shouldn't have `this` for static methods!\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 6280, __PRETTY_FUNCTION__))
;
6281 ExprResult R = S.PerformObjectArgumentInitialization(
6282 ThisArg, /*Qualifier=*/nullptr, Method, Method);
6283 if (R.isInvalid())
6284 return false;
6285 ConvertedThis = R.get();
6286 } else {
6287 if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) {
6288 (void)MD;
6289 assert((MissingImplicitThis || MD->isStatic() ||(((MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl
>(MD)) && "Expected `this` for non-ctor instance methods"
) ? static_cast<void> (0) : __assert_fail ("(MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl>(MD)) && \"Expected `this` for non-ctor instance methods\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 6291, __PRETTY_FUNCTION__))
6290 isa<CXXConstructorDecl>(MD)) &&(((MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl
>(MD)) && "Expected `this` for non-ctor instance methods"
) ? static_cast<void> (0) : __assert_fail ("(MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl>(MD)) && \"Expected `this` for non-ctor instance methods\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 6291, __PRETTY_FUNCTION__))
6291 "Expected `this` for non-ctor instance methods")(((MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl
>(MD)) && "Expected `this` for non-ctor instance methods"
) ? static_cast<void> (0) : __assert_fail ("(MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl>(MD)) && \"Expected `this` for non-ctor instance methods\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 6291, __PRETTY_FUNCTION__))
;
6292 }
6293 ConvertedThis = nullptr;
6294 }
6295
6296 // Ignore any variadic arguments. Converting them is pointless, since the
6297 // user can't refer to them in the function condition.
6298 unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size());
6299
6300 // Convert the arguments.
6301 for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) {
6302 ExprResult R;
6303 R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
6304 S.Context, Function->getParamDecl(I)),
6305 SourceLocation(), Args[I]);
6306
6307 if (R.isInvalid())
6308 return false;
6309
6310 ConvertedArgs.push_back(R.get());
6311 }
6312
6313 if (Trap.hasErrorOccurred())
6314 return false;
6315
6316 // Push default arguments if needed.
6317 if (!Function->isVariadic() && Args.size() < Function->getNumParams()) {
6318 for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) {
6319 ParmVarDecl *P = Function->getParamDecl(i);
6320 Expr *DefArg = P->hasUninstantiatedDefaultArg()
6321 ? P->getUninstantiatedDefaultArg()
6322 : P->getDefaultArg();
6323 // This can only happen in code completion, i.e. when PartialOverloading
6324 // is true.
6325 if (!DefArg)
6326 return false;
6327 ExprResult R =
6328 S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
6329 S.Context, Function->getParamDecl(i)),
6330 SourceLocation(), DefArg);
6331 if (R.isInvalid())
6332 return false;
6333 ConvertedArgs.push_back(R.get());
6334 }
6335
6336 if (Trap.hasErrorOccurred())
6337 return false;
6338 }
6339 return true;
6340}
6341
6342EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
6343 bool MissingImplicitThis) {
6344 auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>();
6345 if (EnableIfAttrs.begin() == EnableIfAttrs.end())
6346 return nullptr;
6347
6348 SFINAETrap Trap(*this);
6349 SmallVector<Expr *, 16> ConvertedArgs;
6350 // FIXME: We should look into making enable_if late-parsed.
6351 Expr *DiscardedThis;
6352 if (!convertArgsForAvailabilityChecks(
6353 *this, Function, /*ThisArg=*/nullptr, Args, Trap,
6354 /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs))
6355 return *EnableIfAttrs.begin();
6356
6357 for (auto *EIA : EnableIfAttrs) {
6358 APValue Result;
6359 // FIXME: This doesn't consider value-dependent cases, because doing so is
6360 // very difficult. Ideally, we should handle them more gracefully.
6361 if (!EIA->getCond()->EvaluateWithSubstitution(
6362 Result, Context, Function, llvm::makeArrayRef(ConvertedArgs)))
6363 return EIA;
6364
6365 if (!Result.isInt() || !Result.getInt().getBoolValue())
6366 return EIA;
6367 }
6368 return nullptr;
6369}
6370
6371template <typename CheckFn>
6372static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND,
6373 bool ArgDependent, SourceLocation Loc,
6374 CheckFn &&IsSuccessful) {
6375 SmallVector<const DiagnoseIfAttr *, 8> Attrs;
6376 for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) {
6377 if (ArgDependent == DIA->getArgDependent())
6378 Attrs.push_back(DIA);
6379 }
6380
6381 // Common case: No diagnose_if attributes, so we can quit early.
6382 if (Attrs.empty())
6383 return false;
6384
6385 auto WarningBegin = std::stable_partition(
6386 Attrs.begin(), Attrs.end(),
6387 [](const DiagnoseIfAttr *DIA) { return DIA->isError(); });
6388
6389 // Note that diagnose_if attributes are late-parsed, so they appear in the
6390 // correct order (unlike enable_if attributes).
6391 auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin),
6392 IsSuccessful);
6393 if (ErrAttr != WarningBegin) {
6394 const DiagnoseIfAttr *DIA = *ErrAttr;
6395 S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage();
6396 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6397 << DIA->getParent() << DIA->getCond()->getSourceRange();
6398 return true;
6399 }
6400
6401 for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end()))
6402 if (IsSuccessful(DIA)) {
6403 S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage();
6404 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6405 << DIA->getParent() << DIA->getCond()->getSourceRange();
6406 }
6407
6408 return false;
6409}
6410
6411bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
6412 const Expr *ThisArg,
6413 ArrayRef<const Expr *> Args,
6414 SourceLocation Loc) {
6415 return diagnoseDiagnoseIfAttrsWith(
6416 *this, Function, /*ArgDependent=*/true, Loc,
6417 [&](const DiagnoseIfAttr *DIA) {
6418 APValue Result;
6419 // It's sane to use the same Args for any redecl of this function, since
6420 // EvaluateWithSubstitution only cares about the position of each
6421 // argument in the arg list, not the ParmVarDecl* it maps to.
6422 if (!DIA->getCond()->EvaluateWithSubstitution(
6423 Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg))
6424 return false;
6425 return Result.isInt() && Result.getInt().getBoolValue();
6426 });
6427}
6428
6429bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
6430 SourceLocation Loc) {
6431 return diagnoseDiagnoseIfAttrsWith(
6432 *this, ND, /*ArgDependent=*/false, Loc,
6433 [&](const DiagnoseIfAttr *DIA) {
6434 bool Result;
6435 return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) &&
6436 Result;
6437 });
6438}
6439
6440/// Add all of the function declarations in the given function set to
6441/// the overload candidate set.
6442void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
6443 ArrayRef<Expr *> Args,
6444 OverloadCandidateSet &CandidateSet,
6445 TemplateArgumentListInfo *ExplicitTemplateArgs,
6446 bool SuppressUserConversions,
6447 bool PartialOverloading,
6448 bool FirstArgumentIsBase) {
6449 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
6450 NamedDecl *D = F.getDecl()->getUnderlyingDecl();
6451 ArrayRef<Expr *> FunctionArgs = Args;
6452
6453 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
6454 FunctionDecl *FD =
6455 FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
6456
6457 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) {
6458 QualType ObjectType;
6459 Expr::Classification ObjectClassification;
6460 if (Args.size() > 0) {
6461 if (Expr *E = Args[0]) {
6462 // Use the explicit base to restrict the lookup:
6463 ObjectType = E->getType();
6464 // Pointers in the object arguments are implicitly dereferenced, so we
6465 // always classify them as l-values.
6466 if (!ObjectType.isNull() && ObjectType->isPointerType())
6467 ObjectClassification = Expr::Classification::makeSimpleLValue();
6468 else
6469 ObjectClassification = E->Classify(Context);
6470 } // .. else there is an implicit base.
6471 FunctionArgs = Args.slice(1);
6472 }
6473 if (FunTmpl) {
6474 AddMethodTemplateCandidate(
6475 FunTmpl, F.getPair(),
6476 cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
6477 ExplicitTemplateArgs, ObjectType, ObjectClassification,
6478 FunctionArgs, CandidateSet, SuppressUserConversions,
6479 PartialOverloading);
6480 } else {
6481 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
6482 cast<CXXMethodDecl>(FD)->getParent(), ObjectType,
6483 ObjectClassification, FunctionArgs, CandidateSet,
6484 SuppressUserConversions, PartialOverloading);
6485 }
6486 } else {
6487 // This branch handles both standalone functions and static methods.
6488
6489 // Slice the first argument (which is the base) when we access
6490 // static method as non-static.
6491 if (Args.size() > 0 &&
6492 (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) &&
6493 !isa<CXXConstructorDecl>(FD)))) {
6494 assert(cast<CXXMethodDecl>(FD)->isStatic())((cast<CXXMethodDecl>(FD)->isStatic()) ? static_cast
<void> (0) : __assert_fail ("cast<CXXMethodDecl>(FD)->isStatic()"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 6494, __PRETTY_FUNCTION__))
;
6495 FunctionArgs = Args.slice(1);
6496 }
6497 if (FunTmpl) {
6498 AddTemplateOverloadCandidate(
6499 FunTmpl, F.getPair(), ExplicitTemplateArgs, FunctionArgs,
6500 CandidateSet, SuppressUserConversions, PartialOverloading);
6501 } else {
6502 AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet,
6503 SuppressUserConversions, PartialOverloading);
6504 }
6505 }
6506 }
6507}
6508
6509/// AddMethodCandidate - Adds a named decl (which is some kind of
6510/// method) as a method candidate to the given overload set.
6511void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
6512 QualType ObjectType,
6513 Expr::Classification ObjectClassification,
6514 ArrayRef<Expr *> Args,
6515 OverloadCandidateSet& CandidateSet,
6516 bool SuppressUserConversions) {
6517 NamedDecl *Decl = FoundDecl.getDecl();
6518 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
6519
6520 if (isa<UsingShadowDecl>(Decl))
6521 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
6522
6523 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
6524 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&((isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
"Expected a member function template") ? static_cast<void
> (0) : __assert_fail ("isa<CXXMethodDecl>(TD->getTemplatedDecl()) && \"Expected a member function template\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 6525, __PRETTY_FUNCTION__))
6525 "Expected a member function template")((isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
"Expected a member function template") ? static_cast<void
> (0) : __assert_fail ("isa<CXXMethodDecl>(TD->getTemplatedDecl()) && \"Expected a member function template\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 6525, __PRETTY_FUNCTION__))
;
6526 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
6527 /*ExplicitArgs*/ nullptr, ObjectType,
6528 ObjectClassification, Args, CandidateSet,
6529 SuppressUserConversions);
6530 } else {
6531 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
6532 ObjectType, ObjectClassification, Args, CandidateSet,
6533 SuppressUserConversions);
6534 }
6535}
6536
6537/// AddMethodCandidate - Adds the given C++ member function to the set
6538/// of candidate functions, using the given function call arguments
6539/// and the object argument (@c Object). For example, in a call
6540/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
6541/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
6542/// allow user-defined conversions via constructors or conversion
6543/// operators.
6544void
6545Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
6546 CXXRecordDecl *ActingContext, QualType ObjectType,
6547 Expr::Classification ObjectClassification,
6548 ArrayRef<Expr *> Args,
6549 OverloadCandidateSet &CandidateSet,
6550 bool SuppressUserConversions,
6551 bool PartialOverloading,
6552 ConversionSequenceList EarlyConversions) {
6553 const FunctionProtoType *Proto
6554 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
6555 assert(Proto && "Methods without a prototype cannot be overloaded")((Proto && "Methods without a prototype cannot be overloaded"
) ? static_cast<void> (0) : __assert_fail ("Proto && \"Methods without a prototype cannot be overloaded\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 6555, __PRETTY_FUNCTION__))
;
6556 assert(!isa<CXXConstructorDecl>(Method) &&((!isa<CXXConstructorDecl>(Method) && "Use AddOverloadCandidate for constructors"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Method) && \"Use AddOverloadCandidate for constructors\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 6557, __PRETTY_FUNCTION__))
6557 "Use AddOverloadCandidate for constructors")((!isa<CXXConstructorDecl>(Method) && "Use AddOverloadCandidate for constructors"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Method) && \"Use AddOverloadCandidate for constructors\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 6557, __PRETTY_FUNCTION__))
;
6558
6559 if (!CandidateSet.isNewCandidate(Method))
6560 return;
6561
6562 // C++11 [class.copy]p23: [DR1402]
6563 // A defaulted move assignment operator that is defined as deleted is
6564 // ignored by overload resolution.
6565 if (Method->isDefaulted() && Method->isDeleted() &&
6566 Method->isMoveAssignmentOperator())
6567 return;
6568
6569 // Overload resolution is always an unevaluated context.
6570 EnterExpressionEvaluationContext Unevaluated(
6571 *this, Sema::ExpressionEvaluationContext::Unevaluated);
6572
6573 // Add this candidate
6574 OverloadCandidate &Candidate =
6575 CandidateSet.addCandidate(Args.size() + 1, EarlyConversions);
6576 Candidate.FoundDecl = FoundDecl;
6577 Candidate.Function = Method;
6578 Candidate.IsSurrogate = false;
6579 Candidate.IgnoreObjectArgument = false;
6580 Candidate.ExplicitCallArguments = Args.size();
6581
6582 unsigned NumParams = Proto->getNumParams();
6583
6584 // (C++ 13.3.2p2): A candidate function having fewer than m
6585 // parameters is viable only if it has an ellipsis in its parameter
6586 // list (8.3.5).
6587 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6588 !Proto->isVariadic()) {
6589 Candidate.Viable = false;
6590 Candidate.FailureKind = ovl_fail_too_many_arguments;
6591 return;
6592 }
6593
6594 // (C++ 13.3.2p2): A candidate function having more than m parameters
6595 // is viable only if the (m+1)st parameter has a default argument
6596 // (8.3.6). For the purposes of overload resolution, the
6597 // parameter list is truncated on the right, so that there are
6598 // exactly m parameters.
6599 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
6600 if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6601 // Not enough arguments.
6602 Candidate.Viable = false;
6603 Candidate.FailureKind = ovl_fail_too_few_arguments;
6604 return;
6605 }
6606
6607 Candidate.Viable = true;
6608
6609 if (Method->isStatic() || ObjectType.isNull())
6610 // The implicit object argument is ignored.
6611 Candidate.IgnoreObjectArgument = true;
6612 else {
6613 // Determine the implicit conversion sequence for the object
6614 // parameter.
6615 Candidate.Conversions[0] = TryObjectArgumentInitialization(
6616 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
6617 Method, ActingContext);
6618 if (Candidate.Conversions[0].isBad()) {
6619 Candidate.Viable = false;
6620 Candidate.FailureKind = ovl_fail_bad_conversion;
6621 return;
6622 }
6623 }
6624
6625 // (CUDA B.1): Check for invalid calls between targets.
6626 if (getLangOpts().CUDA)
6627 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6628 if (!IsAllowedCUDACall(Caller, Method)) {
6629 Candidate.Viable = false;
6630 Candidate.FailureKind = ovl_fail_bad_target;
6631 return;
6632 }
6633
6634 // Determine the implicit conversion sequences for each of the
6635 // arguments.
6636 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6637 if (Candidate.Conversions[ArgIdx + 1].isInitialized()) {
6638 // We already formed a conversion sequence for this parameter during
6639 // template argument deduction.
6640 } else if (ArgIdx < NumParams) {
6641 // (C++ 13.3.2p3): for F to be a viable function, there shall
6642 // exist for each argument an implicit conversion sequence
6643 // (13.3.3.1) that converts that argument to the corresponding
6644 // parameter of F.
6645 QualType ParamType = Proto->getParamType(ArgIdx);
6646 Candidate.Conversions[ArgIdx + 1]
6647 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6648 SuppressUserConversions,
6649 /*InOverloadResolution=*/true,
6650 /*AllowObjCWritebackConversion=*/
6651 getLangOpts().ObjCAutoRefCount);
6652 if (Candidate.Conversions[ArgIdx + 1].isBad()) {
6653 Candidate.Viable = false;
6654 Candidate.FailureKind = ovl_fail_bad_conversion;
6655 return;
6656 }
6657 } else {
6658 // (C++ 13.3.2p2): For the purposes of overload resolution, any
6659 // argument for which there is no corresponding parameter is
6660 // considered to "match the ellipsis" (C+ 13.3.3.1.3).
6661 Candidate.Conversions[ArgIdx + 1].setEllipsis();
6662 }
6663 }
6664
6665 if (EnableIfAttr *FailedAttr = CheckEnableIf(Method, Args, true)) {
6666 Candidate.Viable = false;
6667 Candidate.FailureKind = ovl_fail_enable_if;
6668 Candidate.DeductionFailure.Data = FailedAttr;
6669 return;
6670 }
6671
6672 if (Method->isMultiVersion() && Method->hasAttr<TargetAttr>() &&
6673 !Method->getAttr<TargetAttr>()->isDefaultVersion()) {
6674 Candidate.Viable = false;
6675 Candidate.FailureKind = ovl_non_default_multiversion_function;
6676 }
6677}
6678
6679/// Add a C++ member function template as a candidate to the candidate
6680/// set, using template argument deduction to produce an appropriate member
6681/// function template specialization.
6682void
6683Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
6684 DeclAccessPair FoundDecl,
6685 CXXRecordDecl *ActingContext,
6686 TemplateArgumentListInfo *ExplicitTemplateArgs,
6687 QualType ObjectType,
6688 Expr::Classification ObjectClassification,
6689 ArrayRef<Expr *> Args,
6690 OverloadCandidateSet& CandidateSet,
6691 bool SuppressUserConversions,
6692 bool PartialOverloading) {
6693 if (!CandidateSet.isNewCandidate(MethodTmpl))
6694 return;
6695
6696 // C++ [over.match.funcs]p7:
6697 // In each case where a candidate is a function template, candidate
6698 // function template specializations are generated using template argument
6699 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
6700 // candidate functions in the usual way.113) A given name can refer to one
6701 // or more function templates and also to a set of overloaded non-template
6702 // functions. In such a case, the candidate functions generated from each
6703 // function template are combined with the set of non-template candidate
6704 // functions.
6705 TemplateDeductionInfo Info(CandidateSet.getLocation());
6706 FunctionDecl *Specialization = nullptr;
6707 ConversionSequenceList Conversions;
6708 if (TemplateDeductionResult Result = DeduceTemplateArguments(
6709 MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info,
6710 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
6711 return CheckNonDependentConversions(
6712 MethodTmpl, ParamTypes, Args, CandidateSet, Conversions,
6713 SuppressUserConversions, ActingContext, ObjectType,
6714 ObjectClassification);
6715 })) {
6716 OverloadCandidate &Candidate =
6717 CandidateSet.addCandidate(Conversions.size(), Conversions);
6718 Candidate.FoundDecl = FoundDecl;
6719 Candidate.Function = MethodTmpl->getTemplatedDecl();
6720 Candidate.Viable = false;
6721 Candidate.IsSurrogate = false;
6722 Candidate.IgnoreObjectArgument =
6723 cast<CXXMethodDecl>(Candidate.Function)->isStatic() ||
6724 ObjectType.isNull();
6725 Candidate.ExplicitCallArguments = Args.size();
6726 if (Result == TDK_NonDependentConversionFailure)
6727 Candidate.FailureKind = ovl_fail_bad_conversion;
6728 else {
6729 Candidate.FailureKind = ovl_fail_bad_deduction;
6730 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6731 Info);
6732 }
6733 return;
6734 }
6735
6736 // Add the function template specialization produced by template argument
6737 // deduction as a candidate.
6738 assert(Specialization && "Missing member function template specialization?")((Specialization && "Missing member function template specialization?"
) ? static_cast<void> (0) : __assert_fail ("Specialization && \"Missing member function template specialization?\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 6738, __PRETTY_FUNCTION__))
;
6739 assert(isa<CXXMethodDecl>(Specialization) &&((isa<CXXMethodDecl>(Specialization) && "Specialization is not a member function?"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXMethodDecl>(Specialization) && \"Specialization is not a member function?\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 6740, __PRETTY_FUNCTION__))
6740 "Specialization is not a member function?")((isa<CXXMethodDecl>(Specialization) && "Specialization is not a member function?"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXMethodDecl>(Specialization) && \"Specialization is not a member function?\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 6740, __PRETTY_FUNCTION__))
;
6741 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
6742 ActingContext, ObjectType, ObjectClassification, Args,
6743 CandidateSet, SuppressUserConversions, PartialOverloading,
6744 Conversions);
6745}
6746
6747/// Add a C++ function template specialization as a candidate
6748/// in the candidate set, using template argument deduction to produce
6749/// an appropriate function template specialization.
6750void Sema::AddTemplateOverloadCandidate(
6751 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
6752 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
6753 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
6754 bool PartialOverloading, ADLCallKind IsADLCandidate) {
6755 if (!CandidateSet.isNewCandidate(FunctionTemplate))
6756 return;
6757
6758 // C++ [over.match.funcs]p7:
6759 // In each case where a candidate is a function template, candidate
6760 // function template specializations are generated using template argument
6761 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
6762 // candidate functions in the usual way.113) A given name can refer to one
6763 // or more function templates and also to a set of overloaded non-template
6764 // functions. In such a case, the candidate functions generated from each
6765 // function template are combined with the set of non-template candidate
6766 // functions.
6767 TemplateDeductionInfo Info(CandidateSet.getLocation());
6768 FunctionDecl *Specialization = nullptr;
6769 ConversionSequenceList Conversions;
6770 if (TemplateDeductionResult Result = DeduceTemplateArguments(
6771 FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info,
6772 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
6773 return CheckNonDependentConversions(FunctionTemplate, ParamTypes,
6774 Args, CandidateSet, Conversions,
6775 SuppressUserConversions);
6776 })) {
6777 OverloadCandidate &Candidate =
6778 CandidateSet.addCandidate(Conversions.size(), Conversions);
6779 Candidate.FoundDecl = FoundDecl;
6780 Candidate.Function = FunctionTemplate->getTemplatedDecl();
6781 Candidate.Viable = false;
6782 Candidate.IsSurrogate = false;
6783 Candidate.IsADLCandidate = IsADLCandidate;
6784 // Ignore the object argument if there is one, since we don't have an object
6785 // type.
6786 Candidate.IgnoreObjectArgument =
6787 isa<CXXMethodDecl>(Candidate.Function) &&
6788 !isa<CXXConstructorDecl>(Candidate.Function);
6789 Candidate.ExplicitCallArguments = Args.size();
6790 if (Result == TDK_NonDependentConversionFailure)
6791 Candidate.FailureKind = ovl_fail_bad_conversion;
6792 else {
6793 Candidate.FailureKind = ovl_fail_bad_deduction;
6794 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6795 Info);
6796 }
6797 return;
6798 }
6799
6800 // Add the function template specialization produced by template argument
6801 // deduction as a candidate.
6802 assert(Specialization && "Missing function template specialization?")((Specialization && "Missing function template specialization?"
) ? static_cast<void> (0) : __assert_fail ("Specialization && \"Missing function template specialization?\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 6802, __PRETTY_FUNCTION__))
;
6803 AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
6804 SuppressUserConversions, PartialOverloading,
6805 /*AllowExplicit*/ false, IsADLCandidate, Conversions);
6806}
6807
6808/// Check that implicit conversion sequences can be formed for each argument
6809/// whose corresponding parameter has a non-dependent type, per DR1391's
6810/// [temp.deduct.call]p10.
6811bool Sema::CheckNonDependentConversions(
6812 FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
6813 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
6814 ConversionSequenceList &Conversions, bool SuppressUserConversions,
6815 CXXRecordDecl *ActingContext, QualType ObjectType,
6816 Expr::Classification ObjectClassification) {
6817 // FIXME: The cases in which we allow explicit conversions for constructor
6818 // arguments never consider calling a constructor template. It's not clear
6819 // that is correct.
6820 const bool AllowExplicit = false;
6821
6822 auto *FD = FunctionTemplate->getTemplatedDecl();
6823 auto *Method = dyn_cast<CXXMethodDecl>(FD);
6824 bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method);
6825 unsigned ThisConversions = HasThisConversion ? 1 : 0;
6826
6827 Conversions =
6828 CandidateSet.allocateConversionSequences(ThisConversions + Args.size());
6829
6830 // Overload resolution is always an unevaluated context.
6831 EnterExpressionEvaluationContext Unevaluated(
6832 *this, Sema::ExpressionEvaluationContext::Unevaluated);
6833
6834 // For a method call, check the 'this' conversion here too. DR1391 doesn't
6835 // require that, but this check should never result in a hard error, and
6836 // overload resolution is permitted to sidestep instantiations.
6837 if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() &&
6838 !ObjectType.isNull()) {
6839 Conversions[0] = TryObjectArgumentInitialization(
6840 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
6841 Method, ActingContext);
6842 if (Conversions[0].isBad())
6843 return true;
6844 }
6845
6846 for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N;
6847 ++I) {
6848 QualType ParamType = ParamTypes[I];
6849 if (!ParamType->isDependentType()) {
6850 Conversions[ThisConversions + I]
6851 = TryCopyInitialization(*this, Args[I], ParamType,
6852 SuppressUserConversions,
6853 /*InOverloadResolution=*/true,
6854 /*AllowObjCWritebackConversion=*/
6855 getLangOpts().ObjCAutoRefCount,
6856 AllowExplicit);
6857 if (Conversions[ThisConversions + I].isBad())
6858 return true;
6859 }
6860 }
6861
6862 return false;
6863}
6864
6865/// Determine whether this is an allowable conversion from the result
6866/// of an explicit conversion operator to the expected type, per C++
6867/// [over.match.conv]p1 and [over.match.ref]p1.
6868///
6869/// \param ConvType The return type of the conversion function.
6870///
6871/// \param ToType The type we are converting to.
6872///
6873/// \param AllowObjCPointerConversion Allow a conversion from one
6874/// Objective-C pointer to another.
6875///
6876/// \returns true if the conversion is allowable, false otherwise.
6877static bool isAllowableExplicitConversion(Sema &S,
6878 QualType ConvType, QualType ToType,
6879 bool AllowObjCPointerConversion) {
6880 QualType ToNonRefType = ToType.getNonReferenceType();
6881
6882 // Easy case: the types are the same.
6883 if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
6884 return true;
6885
6886 // Allow qualification conversions.
6887 bool ObjCLifetimeConversion;
6888 if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
6889 ObjCLifetimeConversion))
6890 return true;
6891
6892 // If we're not allowed to consider Objective-C pointer conversions,
6893 // we're done.
6894 if (!AllowObjCPointerConversion)
6895 return false;
6896
6897 // Is this an Objective-C pointer conversion?
6898 bool IncompatibleObjC = false;
6899 QualType ConvertedType;
6900 return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
6901 IncompatibleObjC);
6902}
6903
6904/// AddConversionCandidate - Add a C++ conversion function as a
6905/// candidate in the candidate set (C++ [over.match.conv],
6906/// C++ [over.match.copy]). From is the expression we're converting from,
6907/// and ToType is the type that we're eventually trying to convert to
6908/// (which may or may not be the same type as the type that the
6909/// conversion function produces).
6910void
6911Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
6912 DeclAccessPair FoundDecl,
6913 CXXRecordDecl *ActingContext,
6914 Expr *From, QualType ToType,
6915 OverloadCandidateSet& CandidateSet,
6916 bool AllowObjCConversionOnExplicit,
6917 bool AllowResultConversion) {
6918 assert(!Conversion->getDescribedFunctionTemplate() &&((!Conversion->getDescribedFunctionTemplate() && "Conversion function templates use AddTemplateConversionCandidate"
) ? static_cast<void> (0) : __assert_fail ("!Conversion->getDescribedFunctionTemplate() && \"Conversion function templates use AddTemplateConversionCandidate\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 6919, __PRETTY_FUNCTION__))
6919 "Conversion function templates use AddTemplateConversionCandidate")((!Conversion->getDescribedFunctionTemplate() && "Conversion function templates use AddTemplateConversionCandidate"
) ? static_cast<void> (0) : __assert_fail ("!Conversion->getDescribedFunctionTemplate() && \"Conversion function templates use AddTemplateConversionCandidate\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 6919, __PRETTY_FUNCTION__))
;
6920 QualType ConvType = Conversion->getConversionType().getNonReferenceType();
6921 if (!CandidateSet.isNewCandidate(Conversion))
6922 return;
6923
6924 // If the conversion function has an undeduced return type, trigger its
6925 // deduction now.
6926 if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
6927 if (DeduceReturnType(Conversion, From->getExprLoc()))
6928 return;
6929 ConvType = Conversion->getConversionType().getNonReferenceType();
6930 }
6931
6932 // If we don't allow any conversion of the result type, ignore conversion
6933 // functions that don't convert to exactly (possibly cv-qualified) T.
6934 if (!AllowResultConversion &&
6935 !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType))
6936 return;
6937
6938 // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
6939 // operator is only a candidate if its return type is the target type or
6940 // can be converted to the target type with a qualification conversion.
6941 if (Conversion->isExplicit() &&
6942 !isAllowableExplicitConversion(*this, ConvType, ToType,
6943 AllowObjCConversionOnExplicit))
6944 return;
6945
6946 // Overload resolution is always an unevaluated context.
6947 EnterExpressionEvaluationContext Unevaluated(
6948 *this, Sema::ExpressionEvaluationContext::Unevaluated);
6949
6950 // Add this candidate
6951 OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
6952 Candidate.FoundDecl = FoundDecl;
6953 Candidate.Function = Conversion;
6954 Candidate.IsSurrogate = false;
6955 Candidate.IgnoreObjectArgument = false;
6956 Candidate.FinalConversion.setAsIdentityConversion();
6957 Candidate.FinalConversion.setFromType(ConvType);
6958 Candidate.FinalConversion.setAllToTypes(ToType);
6959 Candidate.Viable = true;
6960 Candidate.ExplicitCallArguments = 1;
6961
6962 // C++ [over.match.funcs]p4:
6963 // For conversion functions, the function is considered to be a member of
6964 // the class of the implicit implied object argument for the purpose of
6965 // defining the type of the implicit object parameter.
6966 //
6967 // Determine the implicit conversion sequence for the implicit
6968 // object parameter.
6969 QualType ImplicitParamType = From->getType();
6970 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
6971 ImplicitParamType = FromPtrType->getPointeeType();
6972 CXXRecordDecl *ConversionContext
6973 = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
6974
6975 Candidate.Conversions[0] = TryObjectArgumentInitialization(
6976 *this, CandidateSet.getLocation(), From->getType(),
6977 From->Classify(Context), Conversion, ConversionContext);
6978
6979 if (Candidate.Conversions[0].isBad()) {
6980 Candidate.Viable = false;
6981 Candidate.FailureKind = ovl_fail_bad_conversion;
6982 return;
6983 }
6984
6985 // We won't go through a user-defined type conversion function to convert a
6986 // derived to base as such conversions are given Conversion Rank. They only
6987 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
6988 QualType FromCanon
6989 = Context.getCanonicalType(From->getType().getUnqualifiedType());
6990 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
6991 if (FromCanon == ToCanon ||
6992 IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) {
6993 Candidate.Viable = false;
6994 Candidate.FailureKind = ovl_fail_trivial_conversion;
6995 return;
6996 }
6997
6998 // To determine what the conversion from the result of calling the
6999 // conversion function to the type we're eventually trying to
7000 // convert to (ToType), we need to synthesize a call to the
7001 // conversion function and attempt copy initialization from it. This
7002 // makes sure that we get the right semantics with respect to
7003 // lvalues/rvalues and the type. Fortunately, we can allocate this
7004 // call on the stack and we don't need its arguments to be
7005 // well-formed.
7006 DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(),
7007 VK_LValue, From->getBeginLoc());
7008 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
7009 Context.getPointerType(Conversion->getType()),
7010 CK_FunctionToPointerDecay,
7011 &ConversionRef, VK_RValue);
7012
7013 QualType ConversionType = Conversion->getConversionType();
7014 if (!isCompleteType(From->getBeginLoc(), ConversionType)) {
7015 Candidate.Viable = false;
7016 Candidate.FailureKind = ovl_fail_bad_final_conversion;
7017 return;
7018 }
7019
7020 ExprValueKind VK = Expr::getValueKindForType(ConversionType);
7021
7022 // Note that it is safe to allocate CallExpr on the stack here because
7023 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
7024 // allocator).
7025 QualType CallResultType = ConversionType.getNonLValueExprType(Context);
7026
7027 llvm::AlignedCharArray<alignof(CallExpr), sizeof(CallExpr) + sizeof(Stmt *)>
7028 Buffer;
7029 CallExpr *TheTemporaryCall = CallExpr::CreateTemporary(
7030 Buffer.buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc());
7031
7032 ImplicitConversionSequence ICS =
7033 TryCopyInitialization(*this, TheTemporaryCall, ToType,
7034 /*SuppressUserConversions=*/true,
7035 /*InOverloadResolution=*/false,
7036 /*AllowObjCWritebackConversion=*/false);
7037
7038 switch (ICS.getKind()) {
7039 case ImplicitConversionSequence::StandardConversion:
7040 Candidate.FinalConversion = ICS.Standard;
7041
7042 // C++ [over.ics.user]p3:
7043 // If the user-defined conversion is specified by a specialization of a
7044 // conversion function template, the second standard conversion sequence
7045 // shall have exact match rank.
7046 if (Conversion->getPrimaryTemplate() &&
7047 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
7048 Candidate.Viable = false;
7049 Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
7050 return;
7051 }
7052
7053 // C++0x [dcl.init.ref]p5:
7054 // In the second case, if the reference is an rvalue reference and
7055 // the second standard conversion sequence of the user-defined
7056 // conversion sequence includes an lvalue-to-rvalue conversion, the
7057 // program is ill-formed.
7058 if (ToType->isRValueReferenceType() &&
7059 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
7060 Candidate.Viable = false;
7061 Candidate.FailureKind = ovl_fail_bad_final_conversion;
7062 return;
7063 }
7064 break;
7065
7066 case ImplicitConversionSequence::BadConversion:
7067 Candidate.Viable = false;
7068 Candidate.FailureKind = ovl_fail_bad_final_conversion;
7069 return;
7070
7071 default:
7072 llvm_unreachable(::llvm::llvm_unreachable_internal("Can only end up with a standard conversion sequence or failure"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 7073)
7073 "Can only end up with a standard conversion sequence or failure")::llvm::llvm_unreachable_internal("Can only end up with a standard conversion sequence or failure"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 7073)
;
7074 }
7075
7076 if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
7077 Candidate.Viable = false;
7078 Candidate.FailureKind = ovl_fail_enable_if;
7079 Candidate.DeductionFailure.Data = FailedAttr;
7080 return;
7081 }
7082
7083 if (Conversion->isMultiVersion() && Conversion->hasAttr<TargetAttr>() &&
7084 !Conversion->getAttr<TargetAttr>()->isDefaultVersion()) {
7085 Candidate.Viable = false;
7086 Candidate.FailureKind = ovl_non_default_multiversion_function;
7087 }
7088}
7089
7090/// Adds a conversion function template specialization
7091/// candidate to the overload set, using template argument deduction
7092/// to deduce the template arguments of the conversion function
7093/// template from the type that we are converting to (C++
7094/// [temp.deduct.conv]).
7095void
7096Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
7097 DeclAccessPair FoundDecl,
7098 CXXRecordDecl *ActingDC,
7099 Expr *From, QualType ToType,
7100 OverloadCandidateSet &CandidateSet,
7101 bool AllowObjCConversionOnExplicit,
7102 bool AllowResultConversion) {
7103 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&((isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl
()) && "Only conversion function templates permitted here"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && \"Only conversion function templates permitted here\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 7104, __PRETTY_FUNCTION__))
7104 "Only conversion function templates permitted here")((isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl
()) && "Only conversion function templates permitted here"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && \"Only conversion function templates permitted here\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 7104, __PRETTY_FUNCTION__))
;
7105
7106 if (!CandidateSet.isNewCandidate(FunctionTemplate))
7107 return;
7108
7109 TemplateDeductionInfo Info(CandidateSet.getLocation());
7110 CXXConversionDecl *Specialization = nullptr;
7111 if (TemplateDeductionResult Result
7112 = DeduceTemplateArguments(FunctionTemplate, ToType,
7113 Specialization, Info)) {
7114 OverloadCandidate &Candidate = CandidateSet.addCandidate();
7115 Candidate.FoundDecl = FoundDecl;
7116 Candidate.Function = FunctionTemplate->getTemplatedDecl();
7117 Candidate.Viable = false;
7118 Candidate.FailureKind = ovl_fail_bad_deduction;
7119 Candidate.IsSurrogate = false;
7120 Candidate.IgnoreObjectArgument = false;
7121 Candidate.ExplicitCallArguments = 1;
7122 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7123 Info);
7124 return;
7125 }
7126
7127 // Add the conversion function template specialization produced by
7128 // template argument deduction as a candidate.
7129 assert(Specialization && "Missing function template specialization?")((Specialization && "Missing function template specialization?"
) ? static_cast<void> (0) : __assert_fail ("Specialization && \"Missing function template specialization?\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 7129, __PRETTY_FUNCTION__))
;
7130 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
7131 CandidateSet, AllowObjCConversionOnExplicit,
7132 AllowResultConversion);
7133}
7134
7135/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
7136/// converts the given @c Object to a function pointer via the
7137/// conversion function @c Conversion, and then attempts to call it
7138/// with the given arguments (C++ [over.call.object]p2-4). Proto is
7139/// the type of function that we'll eventually be calling.
7140void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
7141 DeclAccessPair FoundDecl,
7142 CXXRecordDecl *ActingContext,
7143 const FunctionProtoType *Proto,
7144 Expr *Object,
7145 ArrayRef<Expr *> Args,
7146 OverloadCandidateSet& CandidateSet) {
7147 if (!CandidateSet.isNewCandidate(Conversion))
7148 return;
7149
7150 // Overload resolution is always an unevaluated context.
7151 EnterExpressionEvaluationContext Unevaluated(
7152 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7153
7154 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
7155 Candidate.FoundDecl = FoundDecl;
7156 Candidate.Function = nullptr;
7157 Candidate.Surrogate = Conversion;
7158 Candidate.Viable = true;
7159 Candidate.IsSurrogate = true;
7160 Candidate.IgnoreObjectArgument = false;
7161 Candidate.ExplicitCallArguments = Args.size();
7162
7163 // Determine the implicit conversion sequence for the implicit
7164 // object parameter.
7165 ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization(
7166 *this, CandidateSet.getLocation(), Object->getType(),
7167 Object->Classify(Context), Conversion, ActingContext);
7168 if (ObjectInit.isBad()) {
7169 Candidate.Viable = false;
7170 Candidate.FailureKind = ovl_fail_bad_conversion;
7171 Candidate.Conversions[0] = ObjectInit;
7172 return;
7173 }
7174
7175 // The first conversion is actually a user-defined conversion whose
7176 // first conversion is ObjectInit's standard conversion (which is
7177 // effectively a reference binding). Record it as such.
7178 Candidate.Conversions[0].setUserDefined();
7179 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
7180 Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
7181 Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
7182 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
7183 Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
7184 Candidate.Conversions[0].UserDefined.After
7185 = Candidate.Conversions[0].UserDefined.Before;
7186 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
7187
7188 // Find the
7189 unsigned NumParams = Proto->getNumParams();
7190
7191 // (C++ 13.3.2p2): A candidate function having fewer than m
7192 // parameters is viable only if it has an ellipsis in its parameter
7193 // list (8.3.5).
7194 if (Args.size() > NumParams && !Proto->isVariadic()) {
7195 Candidate.Viable = false;
7196 Candidate.FailureKind = ovl_fail_too_many_arguments;
7197 return;
7198 }
7199
7200 // Function types don't have any default arguments, so just check if
7201 // we have enough arguments.
7202 if (Args.size() < NumParams) {
7203 // Not enough arguments.
7204 Candidate.Viable = false;
7205 Candidate.FailureKind = ovl_fail_too_few_arguments;
7206 return;
7207 }
7208
7209 // Determine the implicit conversion sequences for each of the
7210 // arguments.
7211 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7212 if (ArgIdx < NumParams) {
7213 // (C++ 13.3.2p3): for F to be a viable function, there shall
7214 // exist for each argument an implicit conversion sequence
7215 // (13.3.3.1) that converts that argument to the corresponding
7216 // parameter of F.
7217 QualType ParamType = Proto->getParamType(ArgIdx);
7218 Candidate.Conversions[ArgIdx + 1]
7219 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
7220 /*SuppressUserConversions=*/false,
7221 /*InOverloadResolution=*/false,
7222 /*AllowObjCWritebackConversion=*/
7223 getLangOpts().ObjCAutoRefCount);
7224 if (Candidate.Conversions[ArgIdx + 1].isBad()) {
7225 Candidate.Viable = false;
7226 Candidate.FailureKind = ovl_fail_bad_conversion;
7227 return;
7228 }
7229 } else {
7230 // (C++ 13.3.2p2): For the purposes of overload resolution, any
7231 // argument for which there is no corresponding parameter is
7232 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
7233 Candidate.Conversions[ArgIdx + 1].setEllipsis();
7234 }
7235 }
7236
7237 if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
7238 Candidate.Viable = false;
7239 Candidate.FailureKind = ovl_fail_enable_if;
7240 Candidate.DeductionFailure.Data = FailedAttr;
7241 return;
7242 }
7243}
7244
7245/// Add overload candidates for overloaded operators that are
7246/// member functions.
7247///
7248/// Add the overloaded operator candidates that are member functions
7249/// for the operator Op that was used in an operator expression such
7250/// as "x Op y". , Args/NumArgs provides the operator arguments, and
7251/// CandidateSet will store the added overload candidates. (C++
7252/// [over.match.oper]).
7253void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
7254 SourceLocation OpLoc,
7255 ArrayRef<Expr *> Args,
7256 OverloadCandidateSet& CandidateSet,
7257 SourceRange OpRange) {
7258 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
7259
7260 // C++ [over.match.oper]p3:
7261 // For a unary operator @ with an operand of a type whose
7262 // cv-unqualified version is T1, and for a binary operator @ with
7263 // a left operand of a type whose cv-unqualified version is T1 and
7264 // a right operand of a type whose cv-unqualified version is T2,
7265 // three sets of candidate functions, designated member
7266 // candidates, non-member candidates and built-in candidates, are
7267 // constructed as follows:
7268 QualType T1 = Args[0]->getType();
7269
7270 // -- If T1 is a complete class type or a class currently being
7271 // defined, the set of member candidates is the result of the
7272 // qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
7273 // the set of member candidates is empty.
7274 if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
7275 // Complete the type if it can be completed.
7276 if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined())
7277 return;
7278 // If the type is neither complete nor being defined, bail out now.
7279 if (!T1Rec->getDecl()->getDefinition())
7280 return;
7281
7282 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
7283 LookupQualifiedName(Operators, T1Rec->getDecl());
7284 Operators.suppressDiagnostics();
7285
7286 for (LookupResult::iterator Oper = Operators.begin(),
7287 OperEnd = Operators.end();
7288 Oper != OperEnd;
7289 ++Oper)
7290 AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
7291 Args[0]->Classify(Context), Args.slice(1),
7292 CandidateSet, /*SuppressUserConversions=*/false);
7293 }
7294}
7295
7296/// AddBuiltinCandidate - Add a candidate for a built-in
7297/// operator. ResultTy and ParamTys are the result and parameter types
7298/// of the built-in candidate, respectively. Args and NumArgs are the
7299/// arguments being passed to the candidate. IsAssignmentOperator
7300/// should be true when this built-in candidate is an assignment
7301/// operator. NumContextualBoolArguments is the number of arguments
7302/// (at the beginning of the argument list) that will be contextually
7303/// converted to bool.
7304void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
7305 OverloadCandidateSet& CandidateSet,
7306 bool IsAssignmentOperator,
7307 unsigned NumContextualBoolArguments) {
7308 // Overload resolution is always an unevaluated context.
7309 EnterExpressionEvaluationContext Unevaluated(
7310 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7311
7312 // Add this candidate
7313 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
7314 Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
7315 Candidate.Function = nullptr;
7316 Candidate.IsSurrogate = false;
7317 Candidate.IgnoreObjectArgument = false;
7318 std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes);
7319
7320 // Determine the implicit conversion sequences for each of the
7321 // arguments.
7322 Candidate.Viable = true;
7323 Candidate.ExplicitCallArguments = Args.size();
7324 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7325 // C++ [over.match.oper]p4:
7326 // For the built-in assignment operators, conversions of the
7327 // left operand are restricted as follows:
7328 // -- no temporaries are introduced to hold the left operand, and
7329 // -- no user-defined conversions are applied to the left
7330 // operand to achieve a type match with the left-most
7331 // parameter of a built-in candidate.
7332 //
7333 // We block these conversions by turning off user-defined
7334 // conversions, since that is the only way that initialization of
7335 // a reference to a non-class type can occur from something that
7336 // is not of the same type.
7337 if (ArgIdx < NumContextualBoolArguments) {
7338 assert(ParamTys[ArgIdx] == Context.BoolTy &&((ParamTys[ArgIdx] == Context.BoolTy && "Contextual conversion to bool requires bool type"
) ? static_cast<void> (0) : __assert_fail ("ParamTys[ArgIdx] == Context.BoolTy && \"Contextual conversion to bool requires bool type\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 7339, __PRETTY_FUNCTION__))
7339 "Contextual conversion to bool requires bool type")((ParamTys[ArgIdx] == Context.BoolTy && "Contextual conversion to bool requires bool type"
) ? static_cast<void> (0) : __assert_fail ("ParamTys[ArgIdx] == Context.BoolTy && \"Contextual conversion to bool requires bool type\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 7339, __PRETTY_FUNCTION__))
;
7340 Candidate.Conversions[ArgIdx]
7341 = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
7342 } else {
7343 Candidate.Conversions[ArgIdx]
7344 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
7345 ArgIdx == 0 && IsAssignmentOperator,
7346 /*InOverloadResolution=*/false,
7347 /*AllowObjCWritebackConversion=*/
7348 getLangOpts().ObjCAutoRefCount);
7349 }
7350 if (Candidate.Conversions[ArgIdx].isBad()) {
7351 Candidate.Viable = false;
7352 Candidate.FailureKind = ovl_fail_bad_conversion;
7353 break;
7354 }
7355 }
7356}
7357
7358namespace {
7359
7360/// BuiltinCandidateTypeSet - A set of types that will be used for the
7361/// candidate operator functions for built-in operators (C++
7362/// [over.built]). The types are separated into pointer types and
7363/// enumeration types.
7364class BuiltinCandidateTypeSet {
7365 /// TypeSet - A set of types.
7366 typedef llvm::SetVector<QualType, SmallVector<QualType, 8>,
7367 llvm::SmallPtrSet<QualType, 8>> TypeSet;
7368
7369 /// PointerTypes - The set of pointer types that will be used in the
7370 /// built-in candidates.
7371 TypeSet PointerTypes;
7372
7373 /// MemberPointerTypes - The set of member pointer types that will be
7374 /// used in the built-in candidates.
7375 TypeSet MemberPointerTypes;
7376
7377 /// EnumerationTypes - The set of enumeration types that will be
7378 /// used in the built-in candidates.
7379 TypeSet EnumerationTypes;
7380
7381 /// The set of vector types that will be used in the built-in
7382 /// candidates.
7383 TypeSet VectorTypes;
7384
7385 /// A flag indicating non-record types are viable candidates
7386 bool HasNonRecordTypes;
7387
7388 /// A flag indicating whether either arithmetic or enumeration types
7389 /// were present in the candidate set.
7390 bool HasArithmeticOrEnumeralTypes;
7391
7392 /// A flag indicating whether the nullptr type was present in the
7393 /// candidate set.
7394 bool HasNullPtrType;
7395
7396 /// Sema - The semantic analysis instance where we are building the
7397 /// candidate type set.
7398 Sema &SemaRef;
7399
7400 /// Context - The AST context in which we will build the type sets.
7401 ASTContext &Context;
7402
7403 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7404 const Qualifiers &VisibleQuals);
7405 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
7406
7407public:
7408 /// iterator - Iterates through the types that are part of the set.
7409 typedef TypeSet::iterator iterator;
7410
7411 BuiltinCandidateTypeSet(Sema &SemaRef)
7412 : HasNonRecordTypes(false),
7413 HasArithmeticOrEnumeralTypes(false),
7414 HasNullPtrType(false),
7415 SemaRef(SemaRef),
7416 Context(SemaRef.Context) { }
7417
7418 void AddTypesConvertedFrom(QualType Ty,
7419 SourceLocation Loc,
7420 bool AllowUserConversions,
7421 bool AllowExplicitConversions,
7422 const Qualifiers &VisibleTypeConversionsQuals);
7423
7424 /// pointer_begin - First pointer type found;
7425 iterator pointer_begin() { return PointerTypes.begin(); }
7426
7427 /// pointer_end - Past the last pointer type found;
7428 iterator pointer_end() { return PointerTypes.end(); }
7429
7430 /// member_pointer_begin - First member pointer type found;
7431 iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
7432
7433 /// member_pointer_end - Past the last member pointer type found;
7434 iterator member_pointer_end() { return MemberPointerTypes.end(); }
7435
7436 /// enumeration_begin - First enumeration type found;
7437 iterator enumeration_begin() { return EnumerationTypes.begin(); }
7438
7439 /// enumeration_end - Past the last enumeration type found;
7440 iterator enumeration_end() { return EnumerationTypes.end(); }
7441
7442 iterator vector_begin() { return VectorTypes.begin(); }
7443 iterator vector_end() { return VectorTypes.end(); }
7444
7445 bool hasNonRecordTypes() { return HasNonRecordTypes; }
7446 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
7447 bool hasNullPtrType() const { return HasNullPtrType; }
7448};
7449
7450} // end anonymous namespace
7451
7452/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
7453/// the set of pointer types along with any more-qualified variants of
7454/// that type. For example, if @p Ty is "int const *", this routine
7455/// will add "int const *", "int const volatile *", "int const
7456/// restrict *", and "int const volatile restrict *" to the set of
7457/// pointer types. Returns true if the add of @p Ty itself succeeded,
7458/// false otherwise.
7459///
7460/// FIXME: what to do about extended qualifiers?
7461bool
7462BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7463 const Qualifiers &VisibleQuals) {
7464
7465 // Insert this type.
7466 if (!PointerTypes.insert(Ty))
7467 return false;
7468
7469 QualType PointeeTy;
7470 const PointerType *PointerTy = Ty->getAs<PointerType>();
7471 bool buildObjCPtr = false;
7472 if (!PointerTy) {
7473 const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
7474 PointeeTy = PTy->getPointeeType();
7475 buildObjCPtr = true;
7476 } else {
7477 PointeeTy = PointerTy->getPointeeType();
7478 }
7479
7480 // Don't add qualified variants of arrays. For one, they're not allowed
7481 // (the qualifier would sink to the element type), and for another, the
7482 // only overload situation where it matters is subscript or pointer +- int,
7483 // and those shouldn't have qualifier variants anyway.
7484 if (PointeeTy->isArrayType())
7485 return true;
7486
7487 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7488 bool hasVolatile = VisibleQuals.hasVolatile();
7489 bool hasRestrict = VisibleQuals.hasRestrict();
7490
7491 // Iterate through all strict supersets of BaseCVR.
7492 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7493 if ((CVR | BaseCVR) != CVR) continue;
7494 // Skip over volatile if no volatile found anywhere in the types.
7495 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
7496
7497 // Skip over restrict if no restrict found anywhere in the types, or if
7498 // the type cannot be restrict-qualified.
7499 if ((CVR & Qualifiers::Restrict) &&
7500 (!hasRestrict ||
7501 (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
7502 continue;
7503
7504 // Build qualified pointee type.
7505 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7506
7507 // Build qualified pointer type.
7508 QualType QPointerTy;
7509 if (!buildObjCPtr)
7510 QPointerTy = Context.getPointerType(QPointeeTy);
7511 else
7512 QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
7513
7514 // Insert qualified pointer type.
7515 PointerTypes.insert(QPointerTy);
7516 }
7517
7518 return true;
7519}
7520
7521/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
7522/// to the set of pointer types along with any more-qualified variants of
7523/// that type. For example, if @p Ty is "int const *", this routine
7524/// will add "int const *", "int const volatile *", "int const
7525/// restrict *", and "int const volatile restrict *" to the set of
7526/// pointer types. Returns true if the add of @p Ty itself succeeded,
7527/// false otherwise.
7528///
7529/// FIXME: what to do about extended qualifiers?
7530bool
7531BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
7532 QualType Ty) {
7533 // Insert this type.
7534 if (!MemberPointerTypes.insert(Ty))
7535 return false;
7536
7537 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
7538 assert(PointerTy && "type was not a member pointer type!")((PointerTy && "type was not a member pointer type!")
? static_cast<void> (0) : __assert_fail ("PointerTy && \"type was not a member pointer type!\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 7538, __PRETTY_FUNCTION__))
;
7539
7540 QualType PointeeTy = PointerTy->getPointeeType();
7541 // Don't add qualified variants of arrays. For one, they're not allowed
7542 // (the qualifier would sink to the element type), and for another, the
7543 // only overload situation where it matters is subscript or pointer +- int,
7544 // and those shouldn't have qualifier variants anyway.
7545 if (PointeeTy->isArrayType())
7546 return true;
7547 const Type *ClassTy = PointerTy->getClass();
7548
7549 // Iterate through all strict supersets of the pointee type's CVR
7550 // qualifiers.
7551 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7552 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7553 if ((CVR | BaseCVR) != CVR) continue;
7554
7555 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7556 MemberPointerTypes.insert(
7557 Context.getMemberPointerType(QPointeeTy, ClassTy));
7558 }
7559
7560 return true;
7561}
7562
7563/// AddTypesConvertedFrom - Add each of the types to which the type @p
7564/// Ty can be implicit converted to the given set of @p Types. We're
7565/// primarily interested in pointer types and enumeration types. We also
7566/// take member pointer types, for the conditional operator.
7567/// AllowUserConversions is true if we should look at the conversion
7568/// functions of a class type, and AllowExplicitConversions if we
7569/// should also include the explicit conversion functions of a class
7570/// type.
7571void
7572BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
7573 SourceLocation Loc,
7574 bool AllowUserConversions,
7575 bool AllowExplicitConversions,
7576 const Qualifiers &VisibleQuals) {
7577 // Only deal with canonical types.
7578 Ty = Context.getCanonicalType(Ty);
7579
7580 // Look through reference types; they aren't part of the type of an
7581 // expression for the purposes of conversions.
7582 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
7583 Ty = RefTy->getPointeeType();
7584
7585 // If we're dealing with an array type, decay to the pointer.
7586 if (Ty->isArrayType())
7587 Ty = SemaRef.Context.getArrayDecayedType(Ty);
7588
7589 // Otherwise, we don't care about qualifiers on the type.
7590 Ty = Ty.getLocalUnqualifiedType();
7591
7592 // Flag if we ever add a non-record type.
7593 const RecordType *TyRec = Ty->getAs<RecordType>();
7594 HasNonRecordTypes = HasNonRecordTypes || !TyRec;
7595
7596 // Flag if we encounter an arithmetic type.
7597 HasArithmeticOrEnumeralTypes =
7598 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
7599
7600 if (Ty->isObjCIdType() || Ty->isObjCClassType())
7601 PointerTypes.insert(Ty);
7602 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
7603 // Insert our type, and its more-qualified variants, into the set
7604 // of types.
7605 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
7606 return;
7607 } else if (Ty->isMemberPointerType()) {
7608 // Member pointers are far easier, since the pointee can't be converted.
7609 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
7610 return;
7611 } else if (Ty->isEnumeralType()) {
7612 HasArithmeticOrEnumeralTypes = true;
7613 EnumerationTypes.insert(Ty);
7614 } else if (Ty->isVectorType()) {
7615 // We treat vector types as arithmetic types in many contexts as an
7616 // extension.
7617 HasArithmeticOrEnumeralTypes = true;
7618 VectorTypes.insert(Ty);
7619 } else if (Ty->isNullPtrType()) {
7620 HasNullPtrType = true;
7621 } else if (AllowUserConversions && TyRec) {
7622 // No conversion functions in incomplete types.
7623 if (!SemaRef.isCompleteType(Loc, Ty))
7624 return;
7625
7626 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
7627 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
7628 if (isa<UsingShadowDecl>(D))
7629 D = cast<UsingShadowDecl>(D)->getTargetDecl();
7630
7631 // Skip conversion function templates; they don't tell us anything
7632 // about which builtin types we can convert to.
7633 if (isa<FunctionTemplateDecl>(D))
7634 continue;
7635
7636 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
7637 if (AllowExplicitConversions || !Conv->isExplicit()) {
7638 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
7639 VisibleQuals);
7640 }
7641 }
7642 }
7643}
7644/// Helper function for adjusting address spaces for the pointer or reference
7645/// operands of builtin operators depending on the argument.
7646static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T,
7647 Expr *Arg) {
7648 return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace());
7649}
7650
7651/// Helper function for AddBuiltinOperatorCandidates() that adds
7652/// the volatile- and non-volatile-qualified assignment operators for the
7653/// given type to the candidate set.
7654static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
7655 QualType T,
7656 ArrayRef<Expr *> Args,
7657 OverloadCandidateSet &CandidateSet) {
7658 QualType ParamTypes[2];
7659
7660 // T& operator=(T&, T)
7661 ParamTypes[0] = S.Context.getLValueReferenceType(
7662 AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0]));
7663 ParamTypes[1] = T;
7664 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
7665 /*IsAssignmentOperator=*/true);
7666
7667 if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
7668 // volatile T& operator=(volatile T&, T)
7669 ParamTypes[0] = S.Context.getLValueReferenceType(
7670 AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T),
7671 Args[0]));
7672 ParamTypes[1] = T;
7673 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
7674 /*IsAssignmentOperator=*/true);
7675 }
7676}
7677
7678/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
7679/// if any, found in visible type conversion functions found in ArgExpr's type.
7680static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
7681 Qualifiers VRQuals;
7682 const RecordType *TyRec;
7683 if (const MemberPointerType *RHSMPType =
7684 ArgExpr->getType()->getAs<MemberPointerType>())
7685 TyRec = RHSMPType->getClass()->getAs<RecordType>();
7686 else
7687 TyRec = ArgExpr->getType()->getAs<RecordType>();
7688 if (!TyRec) {
7689 // Just to be safe, assume the worst case.
7690 VRQuals.addVolatile();
7691 VRQuals.addRestrict();
7692 return VRQuals;
7693 }
7694
7695 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
7696 if (!ClassDecl->hasDefinition())
7697 return VRQuals;
7698
7699 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
7700 if (isa<UsingShadowDecl>(D))
7701 D = cast<UsingShadowDecl>(D)->getTargetDecl();
7702 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
7703 QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
7704 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
7705 CanTy = ResTypeRef->getPointeeType();
7706 // Need to go down the pointer/mempointer chain and add qualifiers
7707 // as see them.
7708 bool done = false;
7709 while (!done) {
7710 if (CanTy.isRestrictQualified())
7711 VRQuals.addRestrict();
7712 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
7713 CanTy = ResTypePtr->getPointeeType();
7714 else if (const MemberPointerType *ResTypeMPtr =
7715 CanTy->getAs<MemberPointerType>())
7716 CanTy = ResTypeMPtr->getPointeeType();
7717 else
7718 done = true;
7719 if (CanTy.isVolatileQualified())
7720 VRQuals.addVolatile();
7721 if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
7722 return VRQuals;
7723 }
7724 }
7725 }
7726 return VRQuals;
7727}
7728
7729namespace {
7730
7731/// Helper class to manage the addition of builtin operator overload
7732/// candidates. It provides shared state and utility methods used throughout
7733/// the process, as well as a helper method to add each group of builtin
7734/// operator overloads from the standard to a candidate set.
7735class BuiltinOperatorOverloadBuilder {
7736 // Common instance state available to all overload candidate addition methods.
7737 Sema &S;
7738 ArrayRef<Expr *> Args;
7739 Qualifiers VisibleTypeConversionsQuals;
7740 bool HasArithmeticOrEnumeralCandidateType;
7741 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
7742 OverloadCandidateSet &CandidateSet;
7743
7744 static constexpr int ArithmeticTypesCap = 24;
7745 SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes;
7746
7747 // Define some indices used to iterate over the arithemetic types in
7748 // ArithmeticTypes. The "promoted arithmetic types" are the arithmetic
7749 // types are that preserved by promotion (C++ [over.built]p2).
7750 unsigned FirstIntegralType,
7751 LastIntegralType;
7752 unsigned FirstPromotedIntegralType,
7753 LastPromotedIntegralType;
7754 unsigned FirstPromotedArithmeticType,
7755 LastPromotedArithmeticType;
7756 unsigned NumArithmeticTypes;
7757
7758 void InitArithmeticTypes() {
7759 // Start of promoted types.
7760 FirstPromotedArithmeticType = 0;
7761 ArithmeticTypes.push_back(S.Context.FloatTy);
7762 ArithmeticTypes.push_back(S.Context.DoubleTy);
7763 ArithmeticTypes.push_back(S.Context.LongDoubleTy);
7764 if (S.Context.getTargetInfo().hasFloat128Type())
7765 ArithmeticTypes.push_back(S.Context.Float128Ty);
7766
7767 // Start of integral types.
7768 FirstIntegralType = ArithmeticTypes.size();
7769 FirstPromotedIntegralType = ArithmeticTypes.size();
7770 ArithmeticTypes.push_back(S.Context.IntTy);
7771 ArithmeticTypes.push_back(S.Context.LongTy);
7772 ArithmeticTypes.push_back(S.Context.LongLongTy);
7773 if (S.Context.getTargetInfo().hasInt128Type())
7774 ArithmeticTypes.push_back(S.Context.Int128Ty);
7775 ArithmeticTypes.push_back(S.Context.UnsignedIntTy);
7776 ArithmeticTypes.push_back(S.Context.UnsignedLongTy);
7777 ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy);
7778 if (S.Context.getTargetInfo().hasInt128Type())
7779 ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty);
7780 LastPromotedIntegralType = ArithmeticTypes.size();
7781 LastPromotedArithmeticType = ArithmeticTypes.size();
7782 // End of promoted types.
7783
7784 ArithmeticTypes.push_back(S.Context.BoolTy);
7785 ArithmeticTypes.push_back(S.Context.CharTy);
7786 ArithmeticTypes.push_back(S.Context.WCharTy);
7787 if (S.Context.getLangOpts().Char8)
7788 ArithmeticTypes.push_back(S.Context.Char8Ty);
7789 ArithmeticTypes.push_back(S.Context.Char16Ty);
7790 ArithmeticTypes.push_back(S.Context.Char32Ty);
7791 ArithmeticTypes.push_back(S.Context.SignedCharTy);
7792 ArithmeticTypes.push_back(S.Context.ShortTy);
7793 ArithmeticTypes.push_back(S.Context.UnsignedCharTy);
7794 ArithmeticTypes.push_back(S.Context.UnsignedShortTy);
7795 LastIntegralType = ArithmeticTypes.size();
7796 NumArithmeticTypes = ArithmeticTypes.size();
7797 // End of integral types.
7798 // FIXME: What about complex? What about half?
7799
7800 assert(ArithmeticTypes.size() <= ArithmeticTypesCap &&((ArithmeticTypes.size() <= ArithmeticTypesCap && "Enough inline storage for all arithmetic types."
) ? static_cast<void> (0) : __assert_fail ("ArithmeticTypes.size() <= ArithmeticTypesCap && \"Enough inline storage for all arithmetic types.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 7801, __PRETTY_FUNCTION__))
7801 "Enough inline storage for all arithmetic types.")((ArithmeticTypes.size() <= ArithmeticTypesCap && "Enough inline storage for all arithmetic types."
) ? static_cast<void> (0) : __assert_fail ("ArithmeticTypes.size() <= ArithmeticTypesCap && \"Enough inline storage for all arithmetic types.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 7801, __PRETTY_FUNCTION__))
;
7802 }
7803
7804 /// Helper method to factor out the common pattern of adding overloads
7805 /// for '++' and '--' builtin operators.
7806 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
7807 bool HasVolatile,
7808 bool HasRestrict) {
7809 QualType ParamTypes[2] = {
7810 S.Context.getLValueReferenceType(CandidateTy),
7811 S.Context.IntTy
7812 };
7813
7814 // Non-volatile version.
7815 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7816
7817 // Use a heuristic to reduce number of builtin candidates in the set:
7818 // add volatile version only if there are conversions to a volatile type.
7819 if (HasVolatile) {
7820 ParamTypes[0] =
7821 S.Context.getLValueReferenceType(
7822 S.Context.getVolatileType(CandidateTy));
7823 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7824 }
7825
7826 // Add restrict version only if there are conversions to a restrict type
7827 // and our candidate type is a non-restrict-qualified pointer.
7828 if (HasRestrict && CandidateTy->isAnyPointerType() &&
7829 !CandidateTy.isRestrictQualified()) {
7830 ParamTypes[0]
7831 = S.Context.getLValueReferenceType(
7832 S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
7833 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7834
7835 if (HasVolatile) {
7836 ParamTypes[0]
7837 = S.Context.getLValueReferenceType(
7838 S.Context.getCVRQualifiedType(CandidateTy,
7839 (Qualifiers::Volatile |
7840 Qualifiers::Restrict)));
7841 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7842 }
7843 }
7844
7845 }
7846
7847public:
7848 BuiltinOperatorOverloadBuilder(
7849 Sema &S, ArrayRef<Expr *> Args,
7850 Qualifiers VisibleTypeConversionsQuals,
7851 bool HasArithmeticOrEnumeralCandidateType,
7852 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
7853 OverloadCandidateSet &CandidateSet)
7854 : S(S), Args(Args),
7855 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
7856 HasArithmeticOrEnumeralCandidateType(
7857 HasArithmeticOrEnumeralCandidateType),
7858 CandidateTypes(CandidateTypes),
7859 CandidateSet(CandidateSet) {
7860
7861 InitArithmeticTypes();
7862 }
7863
7864 // Increment is deprecated for bool since C++17.
7865 //
7866 // C++ [over.built]p3:
7867 //
7868 // For every pair (T, VQ), where T is an arithmetic type other
7869 // than bool, and VQ is either volatile or empty, there exist
7870 // candidate operator functions of the form
7871 //
7872 // VQ T& operator++(VQ T&);
7873 // T operator++(VQ T&, int);
7874 //
7875 // C++ [over.built]p4:
7876 //
7877 // For every pair (T, VQ), where T is an arithmetic type other
7878 // than bool, and VQ is either volatile or empty, there exist
7879 // candidate operator functions of the form
7880 //
7881 // VQ T& operator--(VQ T&);
7882 // T operator--(VQ T&, int);
7883 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
7884 if (!HasArithmeticOrEnumeralCandidateType)
7885 return;
7886
7887 for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) {
7888 const auto TypeOfT = ArithmeticTypes[Arith];
7889 if (TypeOfT == S.Context.BoolTy) {
7890 if (Op == OO_MinusMinus)
7891 continue;
7892 if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17)
7893 continue;
7894 }
7895 addPlusPlusMinusMinusStyleOverloads(
7896 TypeOfT,
7897 VisibleTypeConversionsQuals.hasVolatile(),
7898 VisibleTypeConversionsQuals.hasRestrict());
7899 }
7900 }
7901
7902 // C++ [over.built]p5:
7903 //
7904 // For every pair (T, VQ), where T is a cv-qualified or
7905 // cv-unqualified object type, and VQ is either volatile or
7906 // empty, there exist candidate operator functions of the form
7907 //
7908 // T*VQ& operator++(T*VQ&);
7909 // T*VQ& operator--(T*VQ&);
7910 // T* operator++(T*VQ&, int);
7911 // T* operator--(T*VQ&, int);
7912 void addPlusPlusMinusMinusPointerOverloads() {
7913 for (BuiltinCandidateTypeSet::iterator
7914 Ptr = CandidateTypes[0].pointer_begin(),
7915 PtrEnd = CandidateTypes[0].pointer_end();
7916 Ptr != PtrEnd; ++Ptr) {
7917 // Skip pointer types that aren't pointers to object types.
7918 if (!(*Ptr)->getPointeeType()->isObjectType())
7919 continue;
7920
7921 addPlusPlusMinusMinusStyleOverloads(*Ptr,
7922 (!(*Ptr).isVolatileQualified() &&
7923 VisibleTypeConversionsQuals.hasVolatile()),
7924 (!(*Ptr).isRestrictQualified() &&
7925 VisibleTypeConversionsQuals.hasRestrict()));
7926 }
7927 }
7928
7929 // C++ [over.built]p6:
7930 // For every cv-qualified or cv-unqualified object type T, there
7931 // exist candidate operator functions of the form
7932 //
7933 // T& operator*(T*);
7934 //
7935 // C++ [over.built]p7:
7936 // For every function type T that does not have cv-qualifiers or a
7937 // ref-qualifier, there exist candidate operator functions of the form
7938 // T& operator*(T*);
7939 void addUnaryStarPointerOverloads() {
7940 for (BuiltinCandidateTypeSet::iterator
7941 Ptr = CandidateTypes[0].pointer_begin(),
7942 PtrEnd = CandidateTypes[0].pointer_end();
7943 Ptr != PtrEnd; ++Ptr) {
7944 QualType ParamTy = *Ptr;
7945 QualType PointeeTy = ParamTy->getPointeeType();
7946 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
7947 continue;
7948
7949 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
7950 if (Proto->getMethodQuals() || Proto->getRefQualifier())
7951 continue;
7952
7953 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
7954 }
7955 }
7956
7957 // C++ [over.built]p9:
7958 // For every promoted arithmetic type T, there exist candidate
7959 // operator functions of the form
7960 //
7961 // T operator+(T);
7962 // T operator-(T);
7963 void addUnaryPlusOrMinusArithmeticOverloads() {
7964 if (!HasArithmeticOrEnumeralCandidateType)
7965 return;
7966
7967 for (unsigned Arith = FirstPromotedArithmeticType;
7968 Arith < LastPromotedArithmeticType; ++Arith) {
7969 QualType ArithTy = ArithmeticTypes[Arith];
7970 S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet);
7971 }
7972
7973 // Extension: We also add these operators for vector types.
7974 for (BuiltinCandidateTypeSet::iterator
7975 Vec = CandidateTypes[0].vector_begin(),
7976 VecEnd = CandidateTypes[0].vector_end();
7977 Vec != VecEnd; ++Vec) {
7978 QualType VecTy = *Vec;
7979 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
7980 }
7981 }
7982
7983 // C++ [over.built]p8:
7984 // For every type T, there exist candidate operator functions of
7985 // the form
7986 //
7987 // T* operator+(T*);
7988 void addUnaryPlusPointerOverloads() {
7989 for (BuiltinCandidateTypeSet::iterator
7990 Ptr = CandidateTypes[0].pointer_begin(),
7991 PtrEnd = CandidateTypes[0].pointer_end();
7992 Ptr != PtrEnd; ++Ptr) {
7993 QualType ParamTy = *Ptr;
7994 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
7995 }
7996 }
7997
7998 // C++ [over.built]p10:
7999 // For every promoted integral type T, there exist candidate
8000 // operator functions of the form
8001 //
8002 // T operator~(T);
8003 void addUnaryTildePromotedIntegralOverloads() {
8004 if (!HasArithmeticOrEnumeralCandidateType)
8005 return;
8006
8007 for (unsigned Int = FirstPromotedIntegralType;
8008 Int < LastPromotedIntegralType; ++Int) {
8009 QualType IntTy = ArithmeticTypes[Int];
8010 S.AddBuiltinCandidate(&IntTy, Args, CandidateSet);
8011 }
8012
8013 // Extension: We also add this operator for vector types.
8014 for (BuiltinCandidateTypeSet::iterator
8015 Vec = CandidateTypes[0].vector_begin(),
8016 VecEnd = CandidateTypes[0].vector_end();
8017 Vec != VecEnd; ++Vec) {
8018 QualType VecTy = *Vec;
8019 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8020 }
8021 }
8022
8023 // C++ [over.match.oper]p16:
8024 // For every pointer to member type T or type std::nullptr_t, there
8025 // exist candidate operator functions of the form
8026 //
8027 // bool operator==(T,T);
8028 // bool operator!=(T,T);
8029 void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() {
8030 /// Set of (canonical) types that we've already handled.
8031 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8032
8033 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8034 for (BuiltinCandidateTypeSet::iterator
8035 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8036 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8037 MemPtr != MemPtrEnd;
8038 ++MemPtr) {
8039 // Don't add the same builtin candidate twice.
8040 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8041 continue;
8042
8043 QualType ParamTypes[2] = { *MemPtr, *MemPtr };
8044 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8045 }
8046
8047 if (CandidateTypes[ArgIdx].hasNullPtrType()) {
8048 CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
8049 if (AddedTypes.insert(NullPtrTy).second) {
8050 QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
8051 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8052 }
8053 }
8054 }
8055 }
8056
8057 // C++ [over.built]p15:
8058 //
8059 // For every T, where T is an enumeration type or a pointer type,
8060 // there exist candidate operator functions of the form
8061 //
8062 // bool operator<(T, T);
8063 // bool operator>(T, T);
8064 // bool operator<=(T, T);
8065 // bool operator>=(T, T);
8066 // bool operator==(T, T);
8067 // bool operator!=(T, T);
8068 // R operator<=>(T, T)
8069 void addGenericBinaryPointerOrEnumeralOverloads() {
8070 // C++ [over.match.oper]p3:
8071 // [...]the built-in candidates include all of the candidate operator
8072 // functions defined in 13.6 that, compared to the given operator, [...]
8073 // do not have the same parameter-type-list as any non-template non-member
8074 // candidate.
8075 //
8076 // Note that in practice, this only affects enumeration types because there
8077 // aren't any built-in candidates of record type, and a user-defined operator
8078 // must have an operand of record or enumeration type. Also, the only other
8079 // overloaded operator with enumeration arguments, operator=,
8080 // cannot be overloaded for enumeration types, so this is the only place
8081 // where we must suppress candidates like this.
8082 llvm::DenseSet<std::pair<CanQualType, CanQualType> >
8083 UserDefinedBinaryOperators;
8084
8085 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8086 if (CandidateTypes[ArgIdx].enumeration_begin() !=
8087 CandidateTypes[ArgIdx].enumeration_end()) {
8088 for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
8089 CEnd = CandidateSet.end();
8090 C != CEnd; ++C) {
8091 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
8092 continue;
8093
8094 if (C->Function->isFunctionTemplateSpecialization())
8095 continue;
8096
8097 QualType FirstParamType =
8098 C->Function->getParamDecl(0)->getType().getUnqualifiedType();
8099 QualType SecondParamType =
8100 C->Function->getParamDecl(1)->getType().getUnqualifiedType();
8101
8102 // Skip if either parameter isn't of enumeral type.
8103 if (!FirstParamType->isEnumeralType() ||
8104 !SecondParamType->isEnumeralType())
8105 continue;
8106
8107 // Add this operator to the set of known user-defined operators.
8108 UserDefinedBinaryOperators.insert(
8109 std::make_pair(S.Context.getCanonicalType(FirstParamType),
8110 S.Context.getCanonicalType(SecondParamType)));
8111 }
8112 }
8113 }
8114
8115 /// Set of (canonical) types that we've already handled.
8116 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8117
8118 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8119 for (BuiltinCandidateTypeSet::iterator
8120 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
8121 PtrEnd = CandidateTypes[ArgIdx].pointer_end();
8122 Ptr != PtrEnd; ++Ptr) {
8123 // Don't add the same builtin candidate twice.
8124 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8125 continue;
8126
8127 QualType ParamTypes[2] = { *Ptr, *Ptr };
8128 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8129 }
8130 for (BuiltinCandidateTypeSet::iterator
8131 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8132 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8133 Enum != EnumEnd; ++Enum) {
8134 CanQualType CanonType = S.Context.getCanonicalType(*Enum);
8135
8136 // Don't add the same builtin candidate twice, or if a user defined
8137 // candidate exists.
8138 if (!AddedTypes.insert(CanonType).second ||
8139 UserDefinedBinaryOperators.count(std::make_pair(CanonType,
8140 CanonType)))
8141 continue;
8142 QualType ParamTypes[2] = { *Enum, *Enum };
8143 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8144 }
8145 }
8146 }
8147
8148 // C++ [over.built]p13:
8149 //
8150 // For every cv-qualified or cv-unqualified object type T
8151 // there exist candidate operator functions of the form
8152 //
8153 // T* operator+(T*, ptrdiff_t);
8154 // T& operator[](T*, ptrdiff_t); [BELOW]
8155 // T* operator-(T*, ptrdiff_t);
8156 // T* operator+(ptrdiff_t, T*);
8157 // T& operator[](ptrdiff_t, T*); [BELOW]
8158 //
8159 // C++ [over.built]p14:
8160 //
8161 // For every T, where T is a pointer to object type, there
8162 // exist candidate operator functions of the form
8163 //
8164 // ptrdiff_t operator-(T, T);
8165 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
8166 /// Set of (canonical) types that we've already handled.
8167 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8168
8169 for (int Arg = 0; Arg < 2; ++Arg) {
8170 QualType AsymmetricParamTypes[2] = {
8171 S.Context.getPointerDiffType(),
8172 S.Context.getPointerDiffType(),
8173 };
8174 for (BuiltinCandidateTypeSet::iterator
8175 Ptr = CandidateTypes[Arg].pointer_begin(),
8176 PtrEnd = CandidateTypes[Arg].pointer_end();
8177 Ptr != PtrEnd; ++Ptr) {
8178 QualType PointeeTy = (*Ptr)->getPointeeType();
8179 if (!PointeeTy->isObjectType())
8180 continue;
8181
8182 AsymmetricParamTypes[Arg] = *Ptr;
8183 if (Arg == 0 || Op == OO_Plus) {
8184 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
8185 // T* operator+(ptrdiff_t, T*);
8186 S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet);
8187 }
8188 if (Op == OO_Minus) {
8189 // ptrdiff_t operator-(T, T);
8190 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8191 continue;
8192
8193 QualType ParamTypes[2] = { *Ptr, *Ptr };
8194 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8195 }
8196 }
8197 }
8198 }
8199
8200 // C++ [over.built]p12:
8201 //
8202 // For every pair of promoted arithmetic types L and R, there
8203 // exist candidate operator functions of the form
8204 //
8205 // LR operator*(L, R);
8206 // LR operator/(L, R);
8207 // LR operator+(L, R);
8208 // LR operator-(L, R);
8209 // bool operator<(L, R);
8210 // bool operator>(L, R);
8211 // bool operator<=(L, R);
8212 // bool operator>=(L, R);
8213 // bool operator==(L, R);
8214 // bool operator!=(L, R);
8215 //
8216 // where LR is the result of the usual arithmetic conversions
8217 // between types L and R.
8218 //
8219 // C++ [over.built]p24:
8220 //
8221 // For every pair of promoted arithmetic types L and R, there exist
8222 // candidate operator functions of the form
8223 //
8224 // LR operator?(bool, L, R);
8225 //
8226 // where LR is the result of the usual arithmetic conversions
8227 // between types L and R.
8228 // Our candidates ignore the first parameter.
8229 void addGenericBinaryArithmeticOverloads() {
8230 if (!HasArithmeticOrEnumeralCandidateType)
8231 return;
8232
8233 for (unsigned Left = FirstPromotedArithmeticType;
8234 Left < LastPromotedArithmeticType; ++Left) {
8235 for (unsigned Right = FirstPromotedArithmeticType;
8236 Right < LastPromotedArithmeticType; ++Right) {
8237 QualType LandR[2] = { ArithmeticTypes[Left],
8238 ArithmeticTypes[Right] };
8239 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8240 }
8241 }
8242
8243 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
8244 // conditional operator for vector types.
8245 for (BuiltinCandidateTypeSet::iterator
8246 Vec1 = CandidateTypes[0].vector_begin(),
8247 Vec1End = CandidateTypes[0].vector_end();
8248 Vec1 != Vec1End; ++Vec1) {
8249 for (BuiltinCandidateTypeSet::iterator
8250 Vec2 = CandidateTypes[1].vector_begin(),
8251 Vec2End = CandidateTypes[1].vector_end();
8252 Vec2 != Vec2End; ++Vec2) {
8253 QualType LandR[2] = { *Vec1, *Vec2 };
8254 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8255 }
8256 }
8257 }
8258
8259 // C++2a [over.built]p14:
8260 //
8261 // For every integral type T there exists a candidate operator function
8262 // of the form
8263 //
8264 // std::strong_ordering operator<=>(T, T)
8265 //
8266 // C++2a [over.built]p15:
8267 //
8268 // For every pair of floating-point types L and R, there exists a candidate
8269 // operator function of the form
8270 //
8271 // std::partial_ordering operator<=>(L, R);
8272 //
8273 // FIXME: The current specification for integral types doesn't play nice with
8274 // the direction of p0946r0, which allows mixed integral and unscoped-enum
8275 // comparisons. Under the current spec this can lead to ambiguity during
8276 // overload resolution. For example:
8277 //
8278 // enum A : int {a};
8279 // auto x = (a <=> (long)42);
8280 //
8281 // error: call is ambiguous for arguments 'A' and 'long'.
8282 // note: candidate operator<=>(int, int)
8283 // note: candidate operator<=>(long, long)
8284 //
8285 // To avoid this error, this function deviates from the specification and adds
8286 // the mixed overloads `operator<=>(L, R)` where L and R are promoted
8287 // arithmetic types (the same as the generic relational overloads).
8288 //
8289 // For now this function acts as a placeholder.
8290 void addThreeWayArithmeticOverloads() {
8291 addGenericBinaryArithmeticOverloads();
8292 }
8293
8294 // C++ [over.built]p17:
8295 //
8296 // For every pair of promoted integral types L and R, there
8297 // exist candidate operator functions of the form
8298 //
8299 // LR operator%(L, R);
8300 // LR operator&(L, R);
8301 // LR operator^(L, R);
8302 // LR operator|(L, R);
8303 // L operator<<(L, R);
8304 // L operator>>(L, R);
8305 //
8306 // where LR is the result of the usual arithmetic conversions
8307 // between types L and R.
8308 void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
8309 if (!HasArithmeticOrEnumeralCandidateType)
8310 return;
8311
8312 for (unsigned Left = FirstPromotedIntegralType;
8313 Left < LastPromotedIntegralType; ++Left) {
8314 for (unsigned Right = FirstPromotedIntegralType;
8315 Right < LastPromotedIntegralType; ++Right) {
8316 QualType LandR[2] = { ArithmeticTypes[Left],
8317 ArithmeticTypes[Right] };
8318 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8319 }
8320 }
8321 }
8322
8323 // C++ [over.built]p20:
8324 //
8325 // For every pair (T, VQ), where T is an enumeration or
8326 // pointer to member type and VQ is either volatile or
8327 // empty, there exist candidate operator functions of the form
8328 //
8329 // VQ T& operator=(VQ T&, T);
8330 void addAssignmentMemberPointerOrEnumeralOverloads() {
8331 /// Set of (canonical) types that we've already handled.
8332 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8333
8334 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8335 for (BuiltinCandidateTypeSet::iterator
8336 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8337 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8338 Enum != EnumEnd; ++Enum) {
8339 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
8340 continue;
8341
8342 AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet);
8343 }
8344
8345 for (BuiltinCandidateTypeSet::iterator
8346 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8347 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8348 MemPtr != MemPtrEnd; ++MemPtr) {
8349 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8350 continue;
8351
8352 AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet);
8353 }
8354 }
8355 }
8356
8357 // C++ [over.built]p19:
8358 //
8359 // For every pair (T, VQ), where T is any type and VQ is either
8360 // volatile or empty, there exist candidate operator functions
8361 // of the form
8362 //
8363 // T*VQ& operator=(T*VQ&, T*);
8364 //
8365 // C++ [over.built]p21:
8366 //
8367 // For every pair (T, VQ), where T is a cv-qualified or
8368 // cv-unqualified object type and VQ is either volatile or
8369 // empty, there exist candidate operator functions of the form
8370 //
8371 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
8372 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
8373 void addAssignmentPointerOverloads(bool isEqualOp) {
8374 /// Set of (canonical) types that we've already handled.
8375 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8376
8377 for (BuiltinCandidateTypeSet::iterator
8378 Ptr = CandidateTypes[0].pointer_begin(),
8379 PtrEnd = CandidateTypes[0].pointer_end();
8380 Ptr != PtrEnd; ++Ptr) {
8381 // If this is operator=, keep track of the builtin candidates we added.
8382 if (isEqualOp)
8383 AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
8384 else if (!(*Ptr)->getPointeeType()->isObjectType())
8385 continue;
8386
8387 // non-volatile version
8388 QualType ParamTypes[2] = {
8389 S.Context.getLValueReferenceType(*Ptr),
8390 isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
8391 };
8392 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8393 /*IsAssigmentOperator=*/ isEqualOp);
8394
8395 bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
8396 VisibleTypeConversionsQuals.hasVolatile();
8397 if (NeedVolatile) {
8398 // volatile version
8399 ParamTypes[0] =
8400 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
8401 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8402 /*IsAssigmentOperator=*/isEqualOp);
8403 }
8404
8405 if (!(*Ptr).isRestrictQualified() &&
8406 VisibleTypeConversionsQuals.hasRestrict()) {
8407 // restrict version
8408 ParamTypes[0]
8409 = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
8410 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8411 /*IsAssigmentOperator=*/isEqualOp);
8412
8413 if (NeedVolatile) {
8414 // volatile restrict version
8415 ParamTypes[0]
8416 = S.Context.getLValueReferenceType(
8417 S.Context.getCVRQualifiedType(*Ptr,
8418 (Qualifiers::Volatile |
8419 Qualifiers::Restrict)));
8420 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8421 /*IsAssigmentOperator=*/isEqualOp);
8422 }
8423 }
8424 }
8425
8426 if (isEqualOp) {
8427 for (BuiltinCandidateTypeSet::iterator
8428 Ptr = CandidateTypes[1].pointer_begin(),
8429 PtrEnd = CandidateTypes[1].pointer_end();
8430 Ptr != PtrEnd; ++Ptr) {
8431 // Make sure we don't add the same candidate twice.
8432 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8433 continue;
8434
8435 QualType ParamTypes[2] = {
8436 S.Context.getLValueReferenceType(*Ptr),
8437 *Ptr,
8438 };
8439
8440 // non-volatile version
8441 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8442 /*IsAssigmentOperator=*/true);
8443
8444 bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
8445 VisibleTypeConversionsQuals.hasVolatile();
8446 if (NeedVolatile) {
8447 // volatile version
8448 ParamTypes[0] =
8449 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
8450 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8451 /*IsAssigmentOperator=*/true);
8452 }
8453
8454 if (!(*Ptr).isRestrictQualified() &&
8455 VisibleTypeConversionsQuals.hasRestrict()) {
8456 // restrict version
8457 ParamTypes[0]
8458 = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
8459 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8460 /*IsAssigmentOperator=*/true);
8461
8462 if (NeedVolatile) {
8463 // volatile restrict version
8464 ParamTypes[0]
8465 = S.Context.getLValueReferenceType(
8466 S.Context.getCVRQualifiedType(*Ptr,
8467 (Qualifiers::Volatile |
8468 Qualifiers::Restrict)));
8469 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8470 /*IsAssigmentOperator=*/true);
8471 }
8472 }
8473 }
8474 }
8475 }
8476
8477 // C++ [over.built]p18:
8478 //
8479 // For every triple (L, VQ, R), where L is an arithmetic type,
8480 // VQ is either volatile or empty, and R is a promoted
8481 // arithmetic type, there exist candidate operator functions of
8482 // the form
8483 //
8484 // VQ L& operator=(VQ L&, R);
8485 // VQ L& operator*=(VQ L&, R);
8486 // VQ L& operator/=(VQ L&, R);
8487 // VQ L& operator+=(VQ L&, R);
8488 // VQ L& operator-=(VQ L&, R);
8489 void addAssignmentArithmeticOverloads(bool isEqualOp) {
8490 if (!HasArithmeticOrEnumeralCandidateType)
8491 return;
8492
8493 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
8494 for (unsigned Right = FirstPromotedArithmeticType;
8495 Right < LastPromotedArithmeticType; ++Right) {
8496 QualType ParamTypes[2];
8497 ParamTypes[1] = ArithmeticTypes[Right];
8498 auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
8499 S, ArithmeticTypes[Left], Args[0]);
8500 // Add this built-in operator as a candidate (VQ is empty).
8501 ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
8502 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8503 /*IsAssigmentOperator=*/isEqualOp);
8504
8505 // Add this built-in operator as a candidate (VQ is 'volatile').
8506 if (VisibleTypeConversionsQuals.hasVolatile()) {
8507 ParamTypes[0] = S.Context.getVolatileType(LeftBaseTy);
8508 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8509 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8510 /*IsAssigmentOperator=*/isEqualOp);
8511 }
8512 }
8513 }
8514
8515 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
8516 for (BuiltinCandidateTypeSet::iterator
8517 Vec1 = CandidateTypes[0].vector_begin(),
8518 Vec1End = CandidateTypes[0].vector_end();
8519 Vec1 != Vec1End; ++Vec1) {
8520 for (BuiltinCandidateTypeSet::iterator
8521 Vec2 = CandidateTypes[1].vector_begin(),
8522 Vec2End = CandidateTypes[1].vector_end();
8523 Vec2 != Vec2End; ++Vec2) {
8524 QualType ParamTypes[2];
8525 ParamTypes[1] = *Vec2;
8526 // Add this built-in operator as a candidate (VQ is empty).
8527 ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
8528 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8529 /*IsAssigmentOperator=*/isEqualOp);
8530
8531 // Add this built-in operator as a candidate (VQ is 'volatile').
8532 if (VisibleTypeConversionsQuals.hasVolatile()) {
8533 ParamTypes[0] = S.Context.getVolatileType(*Vec1);
8534 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8535 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8536 /*IsAssigmentOperator=*/isEqualOp);
8537 }
8538 }
8539 }
8540 }
8541
8542 // C++ [over.built]p22:
8543 //
8544 // For every triple (L, VQ, R), where L is an integral type, VQ
8545 // is either volatile or empty, and R is a promoted integral
8546 // type, there exist candidate operator functions of the form
8547 //
8548 // VQ L& operator%=(VQ L&, R);
8549 // VQ L& operator<<=(VQ L&, R);
8550 // VQ L& operator>>=(VQ L&, R);
8551 // VQ L& operator&=(VQ L&, R);
8552 // VQ L& operator^=(VQ L&, R);
8553 // VQ L& operator|=(VQ L&, R);
8554 void addAssignmentIntegralOverloads() {
8555 if (!HasArithmeticOrEnumeralCandidateType)
8556 return;
8557
8558 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
8559 for (unsigned Right = FirstPromotedIntegralType;
8560 Right < LastPromotedIntegralType; ++Right) {
8561 QualType ParamTypes[2];
8562 ParamTypes[1] = ArithmeticTypes[Right];
8563 auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
8564 S, ArithmeticTypes[Left], Args[0]);
8565 // Add this built-in operator as a candidate (VQ is empty).
8566 ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
8567 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8568 if (VisibleTypeConversionsQuals.hasVolatile()) {
8569 // Add this built-in operator as a candidate (VQ is 'volatile').
8570 ParamTypes[0] = LeftBaseTy;
8571 ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
8572 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8573 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8574 }
8575 }
8576 }
8577 }
8578
8579 // C++ [over.operator]p23:
8580 //
8581 // There also exist candidate operator functions of the form
8582 //
8583 // bool operator!(bool);
8584 // bool operator&&(bool, bool);
8585 // bool operator||(bool, bool);
8586 void addExclaimOverload() {
8587 QualType ParamTy = S.Context.BoolTy;
8588 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet,
8589 /*IsAssignmentOperator=*/false,
8590 /*NumContextualBoolArguments=*/1);
8591 }
8592 void addAmpAmpOrPipePipeOverload() {
8593 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
8594 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8595 /*IsAssignmentOperator=*/false,
8596 /*NumContextualBoolArguments=*/2);
8597 }
8598
8599 // C++ [over.built]p13:
8600 //
8601 // For every cv-qualified or cv-unqualified object type T there
8602 // exist candidate operator functions of the form
8603 //
8604 // T* operator+(T*, ptrdiff_t); [ABOVE]
8605 // T& operator[](T*, ptrdiff_t);
8606 // T* operator-(T*, ptrdiff_t); [ABOVE]
8607 // T* operator+(ptrdiff_t, T*); [ABOVE]
8608 // T& operator[](ptrdiff_t, T*);
8609 void addSubscriptOverloads() {
8610 for (BuiltinCandidateTypeSet::iterator
8611 Ptr = CandidateTypes[0].pointer_begin(),
8612 PtrEnd = CandidateTypes[0].pointer_end();
8613 Ptr != PtrEnd; ++Ptr) {
8614 QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
8615 QualType PointeeType = (*Ptr)->getPointeeType();
8616 if (!PointeeType->isObjectType())
8617 continue;
8618
8619 // T& operator[](T*, ptrdiff_t)
8620 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8621 }
8622
8623 for (BuiltinCandidateTypeSet::iterator
8624 Ptr = CandidateTypes[1].pointer_begin(),
8625 PtrEnd = CandidateTypes[1].pointer_end();
8626 Ptr != PtrEnd; ++Ptr) {
8627 QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
8628 QualType PointeeType = (*Ptr)->getPointeeType();
8629 if (!PointeeType->isObjectType())
8630 continue;
8631
8632 // T& operator[](ptrdiff_t, T*)
8633 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8634 }
8635 }
8636
8637 // C++ [over.built]p11:
8638 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
8639 // C1 is the same type as C2 or is a derived class of C2, T is an object
8640 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
8641 // there exist candidate operator functions of the form
8642 //
8643 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
8644 //
8645 // where CV12 is the union of CV1 and CV2.
8646 void addArrowStarOverloads() {
8647 for (BuiltinCandidateTypeSet::iterator
8648 Ptr = CandidateTypes[0].pointer_begin(),
8649 PtrEnd = CandidateTypes[0].pointer_end();
8650 Ptr != PtrEnd; ++Ptr) {
8651 QualType C1Ty = (*Ptr);
8652 QualType C1;
8653 QualifierCollector Q1;
8654 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
8655 if (!isa<RecordType>(C1))
8656 continue;
8657 // heuristic to reduce number of builtin candidates in the set.
8658 // Add volatile/restrict version only if there are conversions to a
8659 // volatile/restrict type.
8660 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
8661 continue;
8662 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
8663 continue;
8664 for (BuiltinCandidateTypeSet::iterator
8665 MemPtr = CandidateTypes[1].member_pointer_begin(),
8666 MemPtrEnd = CandidateTypes[1].member_pointer_end();
8667 MemPtr != MemPtrEnd; ++MemPtr) {
8668 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
8669 QualType C2 = QualType(mptr->getClass(), 0);
8670 C2 = C2.getUnqualifiedType();
8671 if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2))
8672 break;
8673 QualType ParamTypes[2] = { *Ptr, *MemPtr };
8674 // build CV12 T&
8675 QualType T = mptr->getPointeeType();
8676 if (!VisibleTypeConversionsQuals.hasVolatile() &&
8677 T.isVolatileQualified())
8678 continue;
8679 if (!VisibleTypeConversionsQuals.hasRestrict() &&
8680 T.isRestrictQualified())
8681 continue;
8682 T = Q1.apply(S.Context, T);
8683 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8684 }
8685 }
8686 }
8687
8688 // Note that we don't consider the first argument, since it has been
8689 // contextually converted to bool long ago. The candidates below are
8690 // therefore added as binary.
8691 //
8692 // C++ [over.built]p25:
8693 // For every type T, where T is a pointer, pointer-to-member, or scoped
8694 // enumeration type, there exist candidate operator functions of the form
8695 //
8696 // T operator?(bool, T, T);
8697 //
8698 void addConditionalOperatorOverloads() {
8699 /// Set of (canonical) types that we've already handled.
8700 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8701
8702 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8703 for (BuiltinCandidateTypeSet::iterator
8704 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
8705 PtrEnd = CandidateTypes[ArgIdx].pointer_end();
8706 Ptr != PtrEnd; ++Ptr) {
8707 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8708 continue;
8709
8710 QualType ParamTypes[2] = { *Ptr, *Ptr };
8711 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8712 }
8713
8714 for (BuiltinCandidateTypeSet::iterator
8715 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8716 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8717 MemPtr != MemPtrEnd; ++MemPtr) {
8718 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8719 continue;
8720
8721 QualType ParamTypes[2] = { *MemPtr, *MemPtr };
8722 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8723 }
8724
8725 if (S.getLangOpts().CPlusPlus11) {
8726 for (BuiltinCandidateTypeSet::iterator
8727 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8728 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8729 Enum != EnumEnd; ++Enum) {
8730 if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
8731 continue;
8732
8733 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
8734 continue;
8735
8736 QualType ParamTypes[2] = { *Enum, *Enum };
8737 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8738 }
8739 }
8740 }
8741 }
8742};
8743
8744} // end anonymous namespace
8745
8746/// AddBuiltinOperatorCandidates - Add the appropriate built-in
8747/// operator overloads to the candidate set (C++ [over.built]), based
8748/// on the operator @p Op and the arguments given. For example, if the
8749/// operator is a binary '+', this routine might add "int
8750/// operator+(int, int)" to cover integer addition.
8751void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
8752 SourceLocation OpLoc,
8753 ArrayRef<Expr *> Args,
8754 OverloadCandidateSet &CandidateSet) {
8755 // Find all of the types that the arguments can convert to, but only
8756 // if the operator we're looking at has built-in operator candidates
8757 // that make use of these types. Also record whether we encounter non-record
8758 // candidate types or either arithmetic or enumeral candidate types.
8759 Qualifiers VisibleTypeConversionsQuals;
8760 VisibleTypeConversionsQuals.addConst();
8761 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
8762 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
8763
8764 bool HasNonRecordCandidateType = false;
8765 bool HasArithmeticOrEnumeralCandidateType = false;
8766 SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
8767 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8768 CandidateTypes.emplace_back(*this);
8769 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
8770 OpLoc,
8771 true,
8772 (Op == OO_Exclaim ||
8773 Op == OO_AmpAmp ||
8774 Op == OO_PipePipe),
8775 VisibleTypeConversionsQuals);
8776 HasNonRecordCandidateType = HasNonRecordCandidateType ||
8777 CandidateTypes[ArgIdx].hasNonRecordTypes();
8778 HasArithmeticOrEnumeralCandidateType =
8779 HasArithmeticOrEnumeralCandidateType ||
8780 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
8781 }
8782
8783 // Exit early when no non-record types have been added to the candidate set
8784 // for any of the arguments to the operator.
8785 //
8786 // We can't exit early for !, ||, or &&, since there we have always have
8787 // 'bool' overloads.
8788 if (!HasNonRecordCandidateType &&
8789 !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
8790 return;
8791
8792 // Setup an object to manage the common state for building overloads.
8793 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
8794 VisibleTypeConversionsQuals,
8795 HasArithmeticOrEnumeralCandidateType,
8796 CandidateTypes, CandidateSet);
8797
8798 // Dispatch over the operation to add in only those overloads which apply.
8799 switch (Op) {
8800 case OO_None:
8801 case NUM_OVERLOADED_OPERATORS:
8802 llvm_unreachable("Expected an overloaded operator")::llvm::llvm_unreachable_internal("Expected an overloaded operator"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 8802)
;
8803
8804 case OO_New:
8805 case OO_Delete:
8806 case OO_Array_New:
8807 case OO_Array_Delete:
8808 case OO_Call:
8809 llvm_unreachable(::llvm::llvm_unreachable_internal("Special operators don't use AddBuiltinOperatorCandidates"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 8810)
8810 "Special operators don't use AddBuiltinOperatorCandidates")::llvm::llvm_unreachable_internal("Special operators don't use AddBuiltinOperatorCandidates"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 8810)
;
8811
8812 case OO_Comma:
8813 case OO_Arrow:
8814 case OO_Coawait:
8815 // C++ [over.match.oper]p3:
8816 // -- For the operator ',', the unary operator '&', the
8817 // operator '->', or the operator 'co_await', the
8818 // built-in candidates set is empty.
8819 break;
8820
8821 case OO_Plus: // '+' is either unary or binary
8822 if (Args.size() == 1)
8823 OpBuilder.addUnaryPlusPointerOverloads();
8824 LLVM_FALLTHROUGH[[clang::fallthrough]];
8825
8826 case OO_Minus: // '-' is either unary or binary
8827 if (Args.size() == 1) {
8828 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
8829 } else {
8830 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
8831 OpBuilder.addGenericBinaryArithmeticOverloads();
8832 }
8833 break;
8834
8835 case OO_Star: // '*' is either unary or binary
8836 if (Args.size() == 1)
8837 OpBuilder.addUnaryStarPointerOverloads();
8838 else
8839 OpBuilder.addGenericBinaryArithmeticOverloads();
8840 break;
8841
8842 case OO_Slash:
8843 OpBuilder.addGenericBinaryArithmeticOverloads();
8844 break;
8845
8846 case OO_PlusPlus:
8847 case OO_MinusMinus:
8848 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
8849 OpBuilder.addPlusPlusMinusMinusPointerOverloads();
8850 break;
8851
8852 case OO_EqualEqual:
8853 case OO_ExclaimEqual:
8854 OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads();
8855 LLVM_FALLTHROUGH[[clang::fallthrough]];
8856
8857 case OO_Less:
8858 case OO_Greater:
8859 case OO_LessEqual:
8860 case OO_GreaterEqual:
8861 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads();
8862 OpBuilder.addGenericBinaryArithmeticOverloads();
8863 break;
8864
8865 case OO_Spaceship:
8866 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads();
8867 OpBuilder.addThreeWayArithmeticOverloads();
8868 break;
8869
8870 case OO_Percent:
8871 case OO_Caret:
8872 case OO_Pipe:
8873 case OO_LessLess:
8874 case OO_GreaterGreater:
8875 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
8876 break;
8877
8878 case OO_Amp: // '&' is either unary or binary
8879 if (Args.size() == 1)
8880 // C++ [over.match.oper]p3:
8881 // -- For the operator ',', the unary operator '&', or the
8882 // operator '->', the built-in candidates set is empty.
8883 break;
8884
8885 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
8886 break;
8887
8888 case OO_Tilde:
8889 OpBuilder.addUnaryTildePromotedIntegralOverloads();
8890 break;
8891
8892 case OO_Equal:
8893 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
8894 LLVM_FALLTHROUGH[[clang::fallthrough]];
8895
8896 case OO_PlusEqual:
8897 case OO_MinusEqual:
8898 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
8899 LLVM_FALLTHROUGH[[clang::fallthrough]];
8900
8901 case OO_StarEqual:
8902 case OO_SlashEqual:
8903 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
8904 break;
8905
8906 case OO_PercentEqual:
8907 case OO_LessLessEqual:
8908 case OO_GreaterGreaterEqual:
8909 case OO_AmpEqual:
8910 case OO_CaretEqual:
8911 case OO_PipeEqual:
8912 OpBuilder.addAssignmentIntegralOverloads();
8913 break;
8914
8915 case OO_Exclaim:
8916 OpBuilder.addExclaimOverload();
8917 break;
8918
8919 case OO_AmpAmp:
8920 case OO_PipePipe:
8921 OpBuilder.addAmpAmpOrPipePipeOverload();
8922 break;
8923
8924 case OO_Subscript:
8925 OpBuilder.addSubscriptOverloads();
8926 break;
8927
8928 case OO_ArrowStar:
8929 OpBuilder.addArrowStarOverloads();
8930 break;
8931
8932 case OO_Conditional:
8933 OpBuilder.addConditionalOperatorOverloads();
8934 OpBuilder.addGenericBinaryArithmeticOverloads();
8935 break;
8936 }
8937}
8938
8939/// Add function candidates found via argument-dependent lookup
8940/// to the set of overloading candidates.
8941///
8942/// This routine performs argument-dependent name lookup based on the
8943/// given function name (which may also be an operator name) and adds
8944/// all of the overload candidates found by ADL to the overload
8945/// candidate set (C++ [basic.lookup.argdep]).
8946void
8947Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
8948 SourceLocation Loc,
8949 ArrayRef<Expr *> Args,
8950 TemplateArgumentListInfo *ExplicitTemplateArgs,
8951 OverloadCandidateSet& CandidateSet,
8952 bool PartialOverloading) {
8953 ADLResult Fns;
8954
8955 // FIXME: This approach for uniquing ADL results (and removing
8956 // redundant candidates from the set) relies on pointer-equality,
8957 // which means we need to key off the canonical decl. However,
8958 // always going back to the canonical decl might not get us the
8959 // right set of default arguments. What default arguments are
8960 // we supposed to consider on ADL candidates, anyway?
8961
8962 // FIXME: Pass in the explicit template arguments?
8963 ArgumentDependentLookup(Name, Loc, Args, Fns);
8964
8965 // Erase all of the candidates we already knew about.
8966 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
8967 CandEnd = CandidateSet.end();
8968 Cand != CandEnd; ++Cand)
8969 if (Cand->Function) {
8970 Fns.erase(Cand->Function);
8971 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
8972 Fns.erase(FunTmpl);
8973 }
8974
8975 // For each of the ADL candidates we found, add it to the overload
8976 // set.
8977 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
8978 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
8979
8980 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
8981 if (ExplicitTemplateArgs)
8982 continue;
8983
8984 AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet,
8985 /*SupressUserConversions=*/false, PartialOverloading,
8986 /*AllowExplicit=*/false, ADLCallKind::UsesADL);
8987 } else {
8988 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I), FoundDecl,
8989 ExplicitTemplateArgs, Args, CandidateSet,
8990 /*SupressUserConversions=*/false,
8991 PartialOverloading, ADLCallKind::UsesADL);
8992 }
8993 }
8994}
8995
8996namespace {
8997enum class Comparison { Equal, Better, Worse };
8998}
8999
9000/// Compares the enable_if attributes of two FunctionDecls, for the purposes of
9001/// overload resolution.
9002///
9003/// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff
9004/// Cand1's first N enable_if attributes have precisely the same conditions as
9005/// Cand2's first N enable_if attributes (where N = the number of enable_if
9006/// attributes on Cand2), and Cand1 has more than N enable_if attributes.
9007///
9008/// Note that you can have a pair of candidates such that Cand1's enable_if
9009/// attributes are worse than Cand2's, and Cand2's enable_if attributes are
9010/// worse than Cand1's.
9011static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1,
9012 const FunctionDecl *Cand2) {
9013 // Common case: One (or both) decls don't have enable_if attrs.
9014 bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>();
9015 bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>();
9016 if (!Cand1Attr || !Cand2Attr) {
9017 if (Cand1Attr == Cand2Attr)
9018 return Comparison::Equal;
9019 return Cand1Attr ? Comparison::Better : Comparison::Worse;
9020 }
9021
9022 auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>();
9023 auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>();
9024
9025 llvm::FoldingSetNodeID Cand1ID, Cand2ID;
9026 for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) {
9027 Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
9028 Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);
9029
9030 // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1
9031 // has fewer enable_if attributes than Cand2, and vice versa.
9032 if (!Cand1A)
9033 return Comparison::Worse;
9034 if (!Cand2A)
9035 return Comparison::Better;
9036
9037 Cand1ID.clear();
9038 Cand2ID.clear();
9039
9040 (*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true);
9041 (*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true);
9042 if (Cand1ID != Cand2ID)
9043 return Comparison::Worse;
9044 }
9045
9046 return Comparison::Equal;
9047}
9048
9049static bool isBetterMultiversionCandidate(const OverloadCandidate &Cand1,
9050 const OverloadCandidate &Cand2) {
9051 if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function ||
9052 !Cand2.Function->isMultiVersion())
9053 return false;
9054
9055 // If Cand1 is invalid, it cannot be a better match, if Cand2 is invalid, this
9056 // is obviously better.
9057 if (Cand1.Function->isInvalidDecl()) return false;
9058 if (Cand2.Function->isInvalidDecl()) return true;
9059
9060 // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer
9061 // cpu_dispatch, else arbitrarily based on the identifiers.
9062 bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>();
9063 bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>();
9064 const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>();
9065 const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>();
9066
9067 if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec)
9068 return false;
9069
9070 if (Cand1CPUDisp && !Cand2CPUDisp)
9071 return true;
9072 if (Cand2CPUDisp && !Cand1CPUDisp)
9073 return false;
9074
9075 if (Cand1CPUSpec && Cand2CPUSpec) {
9076 if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size())
9077 return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size();
9078
9079 std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator>
9080 FirstDiff = std::mismatch(
9081 Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(),
9082 Cand2CPUSpec->cpus_begin(),
9083 [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) {
9084 return LHS->getName() == RHS->getName();
9085 });
9086
9087 assert(FirstDiff.first != Cand1CPUSpec->cpus_end() &&((FirstDiff.first != Cand1CPUSpec->cpus_end() && "Two different cpu-specific versions should not have the same "
"identifier list, otherwise they'd be the same decl!") ? static_cast
<void> (0) : __assert_fail ("FirstDiff.first != Cand1CPUSpec->cpus_end() && \"Two different cpu-specific versions should not have the same \" \"identifier list, otherwise they'd be the same decl!\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 9089, __PRETTY_FUNCTION__))
9088 "Two different cpu-specific versions should not have the same "((FirstDiff.first != Cand1CPUSpec->cpus_end() && "Two different cpu-specific versions should not have the same "
"identifier list, otherwise they'd be the same decl!") ? static_cast
<void> (0) : __assert_fail ("FirstDiff.first != Cand1CPUSpec->cpus_end() && \"Two different cpu-specific versions should not have the same \" \"identifier list, otherwise they'd be the same decl!\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 9089, __PRETTY_FUNCTION__))
9089 "identifier list, otherwise they'd be the same decl!")((FirstDiff.first != Cand1CPUSpec->cpus_end() && "Two different cpu-specific versions should not have the same "
"identifier list, otherwise they'd be the same decl!") ? static_cast
<void> (0) : __assert_fail ("FirstDiff.first != Cand1CPUSpec->cpus_end() && \"Two different cpu-specific versions should not have the same \" \"identifier list, otherwise they'd be the same decl!\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 9089, __PRETTY_FUNCTION__))
;
9090 return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName();
9091 }
9092 llvm_unreachable("No way to get here unless both had cpu_dispatch")::llvm::llvm_unreachable_internal("No way to get here unless both had cpu_dispatch"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 9092)
;
9093}
9094
9095/// isBetterOverloadCandidate - Determines whether the first overload
9096/// candidate is a better candidate than the second (C++ 13.3.3p1).
9097bool clang::isBetterOverloadCandidate(
9098 Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2,
9099 SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) {
9100 // Define viable functions to be better candidates than non-viable
9101 // functions.
9102 if (!Cand2.Viable)
8
Taking false branch
9103 return Cand1.Viable;
9104 else if (!Cand1.Viable)
9
Taking false branch
9105 return false;
9106
9107 // C++ [over.match.best]p1:
9108 //
9109 // -- if F is a static member function, ICS1(F) is defined such
9110 // that ICS1(F) is neither better nor worse than ICS1(G) for
9111 // any function G, and, symmetrically, ICS1(G) is neither
9112 // better nor worse than ICS1(F).
9113 unsigned StartArg = 0;
9114 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
10
Assuming the condition is false
11
Assuming the condition is false
12
Taking false branch
9115 StartArg = 1;
9116
9117 auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) {
9118 // We don't allow incompatible pointer conversions in C++.
9119 if (!S.getLangOpts().CPlusPlus)
9120 return ICS.isStandard() &&
9121 ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion;
9122
9123 // The only ill-formed conversion we allow in C++ is the string literal to
9124 // char* conversion, which is only considered ill-formed after C++11.
9125 return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
9126 hasDeprecatedStringLiteralToCharPtrConversion(ICS);
9127 };
9128
9129 // Define functions that don't require ill-formed conversions for a given
9130 // argument to be better candidates than functions that do.
9131 unsigned NumArgs = Cand1.Conversions.size();
9132 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch")((Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"
) ? static_cast<void> (0) : __assert_fail ("Cand2.Conversions.size() == NumArgs && \"Overload candidate mismatch\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 9132, __PRETTY_FUNCTION__))
;
13
Assuming the condition is true
14
'?' condition is true
9133 bool HasBetterConversion = false;
9134 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
15
Assuming 'ArgIdx' is >= 'NumArgs'
16
Loop condition is false. Execution continues on line 9144
9135 bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]);
9136 bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]);
9137 if (Cand1Bad != Cand2Bad) {
9138 if (Cand1Bad)
9139 return false;
9140 HasBetterConversion = true;
9141 }
9142 }
9143
9144 if (HasBetterConversion)
17
Taking false branch
9145 return true;
9146
9147 // C++ [over.match.best]p1:
9148 // A viable function F1 is defined to be a better function than another
9149 // viable function F2 if for all arguments i, ICSi(F1) is not a worse
9150 // conversion sequence than ICSi(F2), and then...
9151 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
18
Loop condition is false. Execution continues on line 9172
9152 switch (CompareImplicitConversionSequences(S, Loc,
9153 Cand1.Conversions[ArgIdx],
9154 Cand2.Conversions[ArgIdx])) {
9155 case ImplicitConversionSequence::Better:
9156 // Cand1 has a better conversion sequence.
9157 HasBetterConversion = true;
9158 break;
9159
9160 case ImplicitConversionSequence::Worse:
9161 // Cand1 can't be better than Cand2.
9162 return false;
9163
9164 case ImplicitConversionSequence::Indistinguishable:
9165 // Do nothing.
9166 break;
9167 }
9168 }
9169
9170 // -- for some argument j, ICSj(F1) is a better conversion sequence than
9171 // ICSj(F2), or, if not that,
9172 if (HasBetterConversion)
19
Taking false branch
9173 return true;
9174
9175 // -- the context is an initialization by user-defined conversion
9176 // (see 8.5, 13.3.1.5) and the standard conversion sequence
9177 // from the return type of F1 to the destination type (i.e.,
9178 // the type of the entity being initialized) is a better
9179 // conversion sequence than the standard conversion sequence
9180 // from the return type of F2 to the destination type.
9181 if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion &&
20
Assuming 'Kind' is not equal to CSK_InitByUserDefinedConversion
9182 Cand1.Function && Cand2.Function &&
9183 isa<CXXConversionDecl>(Cand1.Function) &&
9184 isa<CXXConversionDecl>(Cand2.Function)) {
9185 // First check whether we prefer one of the conversion functions over the
9186 // other. This only distinguishes the results in non-standard, extension
9187 // cases such as the conversion from a lambda closure type to a function
9188 // pointer or block.
9189 ImplicitConversionSequence::CompareKind Result =
9190 compareConversionFunctions(S, Cand1.Function, Cand2.Function);
9191 if (Result == ImplicitConversionSequence::Indistinguishable)
9192 Result = CompareStandardConversionSequences(S, Loc,
9193 Cand1.FinalConversion,
9194 Cand2.FinalConversion);
9195
9196 if (Result != ImplicitConversionSequence::Indistinguishable)
9197 return Result == ImplicitConversionSequence::Better;
9198
9199 // FIXME: Compare kind of reference binding if conversion functions
9200 // convert to a reference type used in direct reference binding, per
9201 // C++14 [over.match.best]p1 section 2 bullet 3.
9202 }
9203
9204 // FIXME: Work around a defect in the C++17 guaranteed copy elision wording,
9205 // as combined with the resolution to CWG issue 243.
9206 //
9207 // When the context is initialization by constructor ([over.match.ctor] or
9208 // either phase of [over.match.list]), a constructor is preferred over
9209 // a conversion function.
9210 if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 &&
21
Assuming 'Kind' is not equal to CSK_InitByConstructor
9211 Cand1.Function && Cand2.Function &&
9212 isa<CXXConstructorDecl>(Cand1.Function) !=
9213 isa<CXXConstructorDecl>(Cand2.Function))
9214 return isa<CXXConstructorDecl>(Cand1.Function);
9215
9216 // -- F1 is a non-template function and F2 is a function template
9217 // specialization, or, if not that,
9218 bool Cand1IsSpecialization = Cand1.Function &&
22
Assuming the condition is true
9219 Cand1.Function->getPrimaryTemplate();
9220 bool Cand2IsSpecialization = Cand2.Function &&
23
Assuming pointer value is null
9221 Cand2.Function->getPrimaryTemplate();
9222 if (Cand1IsSpecialization != Cand2IsSpecialization)
24
Assuming 'Cand1IsSpecialization' is equal to 'Cand2IsSpecialization'
25
Taking false branch
9223 return Cand2IsSpecialization;
9224
9225 // -- F1 and F2 are function template specializations, and the function
9226 // template for F1 is more specialized than the template for F2
9227 // according to the partial ordering rules described in 14.5.5.2, or,
9228 // if not that,
9229 if (Cand1IsSpecialization && Cand2IsSpecialization) {
9230 if (FunctionTemplateDecl *BetterTemplate
9231 = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
9232 Cand2.Function->getPrimaryTemplate(),
9233 Loc,
9234 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
9235 : TPOC_Call,
9236 Cand1.ExplicitCallArguments,
9237 Cand2.ExplicitCallArguments))
9238 return BetterTemplate == Cand1.Function->getPrimaryTemplate();
9239 }
9240
9241 // FIXME: Work around a defect in the C++17 inheriting constructor wording.
9242 // A derived-class constructor beats an (inherited) base class constructor.
9243 bool Cand1IsInherited =
9244 dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl());
9245 bool Cand2IsInherited =
9246 dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl());
9247 if (Cand1IsInherited != Cand2IsInherited)
26
Assuming 'Cand1IsInherited' is equal to 'Cand2IsInherited'
27
Taking false branch
9248 return Cand2IsInherited;
9249 else if (Cand1IsInherited) {
28
Taking true branch
9250 assert(Cand2IsInherited)((Cand2IsInherited) ? static_cast<void> (0) : __assert_fail
("Cand2IsInherited", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 9250, __PRETTY_FUNCTION__))
;
29
'?' condition is true
9251 auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext());
9252 auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext());
30
Called C++ object pointer is null
9253 if (Cand1Class->isDerivedFrom(Cand2Class))
9254 return true;
9255 if (Cand2Class->isDerivedFrom(Cand1Class))
9256 return false;
9257 // Inherited from sibling base classes: still ambiguous.
9258 }
9259
9260 // Check C++17 tie-breakers for deduction guides.
9261 {
9262 auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function);
9263 auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function);
9264 if (Guide1 && Guide2) {
9265 // -- F1 is generated from a deduction-guide and F2 is not
9266 if (Guide1->isImplicit() != Guide2->isImplicit())
9267 return Guide2->isImplicit();
9268
9269 // -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not
9270 if (Guide1->isCopyDeductionCandidate())
9271 return true;
9272 }
9273 }
9274
9275 // Check for enable_if value-based overload resolution.
9276 if (Cand1.Function && Cand2.Function) {
9277 Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function);
9278 if (Cmp != Comparison::Equal)
9279 return Cmp == Comparison::Better;
9280 }
9281
9282 if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) {
9283 FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
9284 return S.IdentifyCUDAPreference(Caller, Cand1.Function) >
9285 S.IdentifyCUDAPreference(Caller, Cand2.Function);
9286 }
9287
9288 bool HasPS1 = Cand1.Function != nullptr &&
9289 functionHasPassObjectSizeParams(Cand1.Function);
9290 bool HasPS2 = Cand2.Function != nullptr &&
9291 functionHasPassObjectSizeParams(Cand2.Function);
9292 if (HasPS1 != HasPS2 && HasPS1)
9293 return true;
9294
9295 return isBetterMultiversionCandidate(Cand1, Cand2);
9296}
9297
9298/// Determine whether two declarations are "equivalent" for the purposes of
9299/// name lookup and overload resolution. This applies when the same internal/no
9300/// linkage entity is defined by two modules (probably by textually including
9301/// the same header). In such a case, we don't consider the declarations to
9302/// declare the same entity, but we also don't want lookups with both
9303/// declarations visible to be ambiguous in some cases (this happens when using
9304/// a modularized libstdc++).
9305bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
9306 const NamedDecl *B) {
9307 auto *VA = dyn_cast_or_null<ValueDecl>(A);
9308 auto *VB = dyn_cast_or_null<ValueDecl>(B);
9309 if (!VA || !VB)
9310 return false;
9311
9312 // The declarations must be declaring the same name as an internal linkage
9313 // entity in different modules.
9314 if (!VA->getDeclContext()->getRedeclContext()->Equals(
9315 VB->getDeclContext()->getRedeclContext()) ||
9316 getOwningModule(const_cast<ValueDecl *>(VA)) ==
9317 getOwningModule(const_cast<ValueDecl *>(VB)) ||
9318 VA->isExternallyVisible() || VB->isExternallyVisible())
9319 return false;
9320
9321 // Check that the declarations appear to be equivalent.
9322 //
9323 // FIXME: Checking the type isn't really enough to resolve the ambiguity.
9324 // For constants and functions, we should check the initializer or body is
9325 // the same. For non-constant variables, we shouldn't allow it at all.
9326 if (Context.hasSameType(VA->getType(), VB->getType()))
9327 return true;
9328
9329 // Enum constants within unnamed enumerations will have different types, but
9330 // may still be similar enough to be interchangeable for our purposes.
9331 if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) {
9332 if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) {
9333 // Only handle anonymous enums. If the enumerations were named and
9334 // equivalent, they would have been merged to the same type.
9335 auto *EnumA = cast<EnumDecl>(EA->getDeclContext());
9336 auto *EnumB = cast<EnumDecl>(EB->getDeclContext());
9337 if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() ||
9338 !Context.hasSameType(EnumA->getIntegerType(),
9339 EnumB->getIntegerType()))
9340 return false;
9341 // Allow this only if the value is the same for both enumerators.
9342 return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal());
9343 }
9344 }
9345
9346 // Nothing else is sufficiently similar.
9347 return false;
9348}
9349
9350void Sema::diagnoseEquivalentInternalLinkageDeclarations(
9351 SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) {
9352 Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D;
9353
9354 Module *M = getOwningModule(const_cast<NamedDecl*>(D));
9355 Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl)
9356 << !M << (M ? M->getFullModuleName() : "");
9357
9358 for (auto *E : Equiv) {
9359 Module *M = getOwningModule(const_cast<NamedDecl*>(E));
9360 Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl)
9361 << !M << (M ? M->getFullModuleName() : "");
9362 }
9363}
9364
9365/// Computes the best viable function (C++ 13.3.3)
9366/// within an overload candidate set.
9367///
9368/// \param Loc The location of the function name (or operator symbol) for
9369/// which overload resolution occurs.
9370///
9371/// \param Best If overload resolution was successful or found a deleted
9372/// function, \p Best points to the candidate function found.
9373///
9374/// \returns The result of overload resolution.
9375OverloadingResult
9376OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
9377 iterator &Best) {
9378 llvm::SmallVector<OverloadCandidate *, 16> Candidates;
9379 std::transform(begin(), end(), std::back_inserter(Candidates),
9380 [](OverloadCandidate &Cand) { return &Cand; });
9381
9382 // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but
9383 // are accepted by both clang and NVCC. However, during a particular
9384 // compilation mode only one call variant is viable. We need to
9385 // exclude non-viable overload candidates from consideration based
9386 // only on their host/device attributes. Specifically, if one
9387 // candidate call is WrongSide and the other is SameSide, we ignore
9388 // the WrongSide candidate.
9389 if (S.getLangOpts().CUDA) {
9390 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
9391 bool ContainsSameSideCandidate =
9392 llvm::any_of(Candidates, [&](OverloadCandidate *Cand) {
9393 return Cand->Function &&
9394 S.IdentifyCUDAPreference(Caller, Cand->Function) ==
9395 Sema::CFP_SameSide;
9396 });
9397 if (ContainsSameSideCandidate) {
9398 auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) {
9399 return Cand->Function &&
9400 S.IdentifyCUDAPreference(Caller, Cand->Function) ==
9401 Sema::CFP_WrongSide;
9402 };
9403 llvm::erase_if(Candidates, IsWrongSideCandidate);
9404 }
9405 }
9406
9407 // Find the best viable function.
9408 Best = end();
9409 for (auto *Cand : Candidates)
9410 if (Cand->Viable)
9411 if (Best == end() ||
9412 isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind))
9413 Best = Cand;
9414
9415 // If we didn't find any viable functions, abort.
9416 if (Best == end())
9417 return OR_No_Viable_Function;
9418
9419 llvm::SmallVector<const NamedDecl *, 4> EquivalentCands;
9420
9421 // Make sure that this function is better than every other viable
9422 // function. If not, we have an ambiguity.
9423 for (auto *Cand : Candidates) {
9424 if (Cand->Viable && Cand != Best &&
9425 !isBetterOverloadCandidate(S, *Best, *Cand, Loc, Kind)) {
9426 if (S.isEquivalentInternalLinkageDeclaration(Best->Function,
9427 Cand->Function)) {
9428 EquivalentCands.push_back(Cand->Function);
9429 continue;
9430 }
9431
9432 Best = end();
9433 return OR_Ambiguous;
9434 }
9435 }
9436
9437 // Best is the best viable function.
9438 if (Best->Function && Best->Function->isDeleted())
9439 return OR_Deleted;
9440
9441 if (!EquivalentCands.empty())
9442 S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function,
9443 EquivalentCands);
9444
9445 return OR_Success;
9446}
9447
9448namespace {
9449
9450enum OverloadCandidateKind {
9451 oc_function,
9452 oc_method,
9453 oc_constructor,
9454 oc_implicit_default_constructor,
9455 oc_implicit_copy_constructor,
9456 oc_implicit_move_constructor,
9457 oc_implicit_copy_assignment,
9458 oc_implicit_move_assignment,
9459 oc_inherited_constructor
9460};
9461
9462enum OverloadCandidateSelect {
9463 ocs_non_template,
9464 ocs_template,
9465 ocs_described_template,
9466};
9467
9468static std::pair<OverloadCandidateKind, OverloadCandidateSelect>
9469ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn,
9470 std::string &Description) {
9471
9472 bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl();
9473 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
9474 isTemplate = true;
9475 Description = S.getTemplateArgumentBindingsText(
9476 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
9477 }
9478
9479 OverloadCandidateSelect Select = [&]() {
9480 if (!Description.empty())
9481 return ocs_described_template;
9482 return isTemplate ? ocs_template : ocs_non_template;
9483 }();
9484
9485 OverloadCandidateKind Kind = [&]() {
9486 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
9487 if (!Ctor->isImplicit()) {
9488 if (isa<ConstructorUsingShadowDecl>(Found))
9489 return oc_inherited_constructor;
9490 else
9491 return oc_constructor;
9492 }
9493
9494 if (Ctor->isDefaultConstructor())
9495 return oc_implicit_default_constructor;
9496
9497 if (Ctor->isMoveConstructor())
9498 return oc_implicit_move_constructor;
9499
9500 assert(Ctor->isCopyConstructor() &&((Ctor->isCopyConstructor() && "unexpected sort of implicit constructor"
) ? static_cast<void> (0) : __assert_fail ("Ctor->isCopyConstructor() && \"unexpected sort of implicit constructor\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 9501, __PRETTY_FUNCTION__))
9501 "unexpected sort of implicit constructor")((Ctor->isCopyConstructor() && "unexpected sort of implicit constructor"
) ? static_cast<void> (0) : __assert_fail ("Ctor->isCopyConstructor() && \"unexpected sort of implicit constructor\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 9501, __PRETTY_FUNCTION__))
;
9502 return oc_implicit_copy_constructor;
9503 }
9504
9505 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
9506 // This actually gets spelled 'candidate function' for now, but
9507 // it doesn't hurt to split it out.
9508 if (!Meth->isImplicit())
9509 return oc_method;
9510
9511 if (Meth->isMoveAssignmentOperator())
9512 return oc_implicit_move_assignment;
9513
9514 if (Meth->isCopyAssignmentOperator())
9515 return oc_implicit_copy_assignment;
9516
9517 assert(isa<CXXConversionDecl>(Meth) && "expected conversion")((isa<CXXConversionDecl>(Meth) && "expected conversion"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConversionDecl>(Meth) && \"expected conversion\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 9517, __PRETTY_FUNCTION__))
;
9518 return oc_method;
9519 }
9520
9521 return oc_function;
9522 }();
9523
9524 return std::make_pair(Kind, Select);
9525}
9526
9527void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) {
9528 // FIXME: It'd be nice to only emit a note once per using-decl per overload
9529 // set.
9530 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl))
9531 S.Diag(FoundDecl->getLocation(),
9532 diag::note_ovl_candidate_inherited_constructor)
9533 << Shadow->getNominatedBaseClass();
9534}
9535
9536} // end anonymous namespace
9537
9538static bool isFunctionAlwaysEnabled(const ASTContext &Ctx,
9539 const FunctionDecl *FD) {
9540 for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) {
9541 bool AlwaysTrue;
9542 if (!EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx))
9543 return false;
9544 if (!AlwaysTrue)
9545 return false;
9546 }
9547 return true;
9548}
9549
9550/// Returns true if we can take the address of the function.
9551///
9552/// \param Complain - If true, we'll emit a diagnostic
9553/// \param InOverloadResolution - For the purposes of emitting a diagnostic, are
9554/// we in overload resolution?
9555/// \param Loc - The location of the statement we're complaining about. Ignored
9556/// if we're not complaining, or if we're in overload resolution.
9557static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD,
9558 bool Complain,
9559 bool InOverloadResolution,
9560 SourceLocation Loc) {
9561 if (!isFunctionAlwaysEnabled(S.Context, FD)) {
9562 if (Complain) {
9563 if (InOverloadResolution)
9564 S.Diag(FD->getBeginLoc(),
9565 diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr);
9566 else
9567 S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD;
9568 }
9569 return false;
9570 }
9571
9572 auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) {
9573 return P->hasAttr<PassObjectSizeAttr>();
9574 });
9575 if (I == FD->param_end())
9576 return true;
9577
9578 if (Complain) {
9579 // Add one to ParamNo because it's user-facing
9580 unsigned ParamNo = std::distance(FD->param_begin(), I) + 1;
9581 if (InOverloadResolution)
9582 S.Diag(FD->getLocation(),
9583 diag::note_ovl_candidate_has_pass_object_size_params)
9584 << ParamNo;
9585 else
9586 S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params)
9587 << FD << ParamNo;
9588 }
9589 return false;
9590}
9591
9592static bool checkAddressOfCandidateIsAvailable(Sema &S,
9593 const FunctionDecl *FD) {
9594 return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true,
9595 /*InOverloadResolution=*/true,
9596 /*Loc=*/SourceLocation());
9597}
9598
9599bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
9600 bool Complain,
9601 SourceLocation Loc) {
9602 return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain,
9603 /*InOverloadResolution=*/false,
9604 Loc);
9605}
9606
9607// Notes the location of an overload candidate.
9608void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn,
9609 QualType DestType, bool TakingAddress) {
9610 if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn))
9611 return;
9612 if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() &&
9613 !Fn->getAttr<TargetAttr>()->isDefaultVersion())
9614 return;
9615
9616 std::string FnDesc;
9617 std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair =
9618 ClassifyOverloadCandidate(*this, Found, Fn, FnDesc);
9619 PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
9620 << (unsigned)KSPair.first << (unsigned)KSPair.second
9621 << Fn << FnDesc;
9622
9623 HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
9624 Diag(Fn->getLocation(), PD);
9625 MaybeEmitInheritedConstructorNote(*this, Found);
9626}
9627
9628// Notes the location of all overload candidates designated through
9629// OverloadedExpr
9630void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType,
9631 bool TakingAddress) {
9632 assert(OverloadedExpr->getType() == Context.OverloadTy)((OverloadedExpr->getType() == Context.OverloadTy) ? static_cast
<void> (0) : __assert_fail ("OverloadedExpr->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 9632, __PRETTY_FUNCTION__))
;
9633
9634 OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
9635 OverloadExpr *OvlExpr = Ovl.Expression;
9636
9637 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
9638 IEnd = OvlExpr->decls_end();
9639 I != IEnd; ++I) {
9640 if (FunctionTemplateDecl *FunTmpl =
9641 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
9642 NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), DestType,
9643 TakingAddress);
9644 } else if (FunctionDecl *Fun
9645 = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
9646 NoteOverloadCandidate(*I, Fun, DestType, TakingAddress);
9647 }
9648 }
9649}
9650
9651/// Diagnoses an ambiguous conversion. The partial diagnostic is the
9652/// "lead" diagnostic; it will be given two arguments, the source and
9653/// target types of the conversion.
9654void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
9655 Sema &S,
9656 SourceLocation CaretLoc,
9657 const PartialDiagnostic &PDiag) const {
9658 S.Diag(CaretLoc, PDiag)
9659 << Ambiguous.getFromType() << Ambiguous.getToType();
9660 // FIXME: The note limiting machinery is borrowed from
9661 // OverloadCandidateSet::NoteCandidates; there's an opportunity for
9662 // refactoring here.
9663 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
9664 unsigned CandsShown = 0;
9665 AmbiguousConversionSequence::const_iterator I, E;
9666 for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
9667 if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
9668 break;
9669 ++CandsShown;
9670 S.NoteOverloadCandidate(I->first, I->second);
9671 }
9672 if (I != E)
9673 S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
9674}
9675
9676static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
9677 unsigned I, bool TakingCandidateAddress) {
9678 const ImplicitConversionSequence &Conv = Cand->Conversions[I];
9679 assert(Conv.isBad())((Conv.isBad()) ? static_cast<void> (0) : __assert_fail
("Conv.isBad()", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 9679, __PRETTY_FUNCTION__))
;
9680 assert(Cand->Function && "for now, candidate must be a function")((Cand->Function && "for now, candidate must be a function"
) ? static_cast<void> (0) : __assert_fail ("Cand->Function && \"for now, candidate must be a function\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 9680, __PRETTY_FUNCTION__))
;
9681 FunctionDecl *Fn = Cand->Function;
9682
9683 // There's a conversion slot for the object argument if this is a
9684 // non-constructor method. Note that 'I' corresponds the
9685 // conversion-slot index.
9686 bool isObjectArgument = false;
9687 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
9688 if (I == 0)
9689 isObjectArgument = true;
9690 else
9691 I--;
9692 }
9693
9694 std::string FnDesc;
9695 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
9696 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, FnDesc);
9697
9698 Expr *FromExpr = Conv.Bad.FromExpr;
9699 QualType FromTy = Conv.Bad.getFromType();
9700 QualType ToTy = Conv.Bad.getToType();
9701
9702 if (FromTy == S.Context.OverloadTy) {
9703 assert(FromExpr && "overload set argument came from implicit argument?")((FromExpr && "overload set argument came from implicit argument?"
) ? static_cast<void> (0) : __assert_fail ("FromExpr && \"overload set argument came from implicit argument?\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 9703, __PRETTY_FUNCTION__))
;
9704 Expr *E = FromExpr->IgnoreParens();
9705 if (isa<UnaryOperator>(E))
9706 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
9707 DeclarationName Name = cast<OverloadExpr>(E)->getName();
9708
9709 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
9710 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9711 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << ToTy
9712 << Name << I + 1;
9713 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9714 return;
9715 }
9716
9717 // Do some hand-waving analysis to see if the non-viability is due
9718 // to a qualifier mismatch.
9719 CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
9720 CanQualType CToTy = S.Context.getCanonicalType(ToTy);
9721 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
9722 CToTy = RT->getPointeeType();
9723 else {
9724 // TODO: detect and diagnose the full richness of const mismatches.
9725 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
9726 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) {
9727 CFromTy = FromPT->getPointeeType();
9728 CToTy = ToPT->getPointeeType();
9729 }
9730 }
9731
9732 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
9733 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
9734 Qualifiers FromQs = CFromTy.getQualifiers();
9735 Qualifiers ToQs = CToTy.getQualifiers();
9736
9737 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
9738 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
9739 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9740 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9741 << ToTy << (unsigned)isObjectArgument << I + 1;
9742 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9743 return;
9744 }
9745
9746 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
9747 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
9748 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9749 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9750 << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
9751 << (unsigned)isObjectArgument << I + 1;
9752 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9753 return;
9754 }
9755
9756 if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
9757 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
9758 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9759 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9760 << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
9761 << (unsigned)isObjectArgument << I + 1;
9762 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9763 return;
9764 }
9765
9766 if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) {
9767 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned)
9768 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9769 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9770 << FromQs.hasUnaligned() << I + 1;
9771 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9772 return;
9773 }
9774
9775 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
9776 assert(CVR && "unexpected qualifiers mismatch")((CVR && "unexpected qualifiers mismatch") ? static_cast
<void> (0) : __assert_fail ("CVR && \"unexpected qualifiers mismatch\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 9776, __PRETTY_FUNCTION__))
;
9777
9778 if (isObjectArgument) {
9779 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
9780 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9781 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9782 << (CVR - 1);
9783 } else {
9784 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
9785 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9786 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9787 << (CVR - 1) << I + 1;
9788 }
9789 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9790 return;
9791 }
9792
9793 // Special diagnostic for failure to convert an initializer list, since
9794 // telling the user that it has type void is not useful.
9795 if (FromExpr && isa<InitListExpr>(FromExpr)) {
9796 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
9797 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9798 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9799 << ToTy << (unsigned)isObjectArgument << I + 1;
9800 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9801 return;
9802 }
9803
9804 // Diagnose references or pointers to incomplete types differently,
9805 // since it's far from impossible that the incompleteness triggered
9806 // the failure.
9807 QualType TempFromTy = FromTy.getNonReferenceType();
9808 if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
9809 TempFromTy = PTy->getPointeeType();
9810 if (TempFromTy->isIncompleteType()) {
9811 // Emit the generic diagnostic and, optionally, add the hints to it.
9812 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
9813 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9814 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9815 << ToTy << (unsigned)isObjectArgument << I + 1
9816 << (unsigned)(Cand->Fix.Kind);
9817
9818 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9819 return;
9820 }
9821
9822 // Diagnose base -> derived pointer conversions.
9823 unsigned BaseToDerivedConversion = 0;
9824 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
9825 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
9826 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
9827 FromPtrTy->getPointeeType()) &&
9828 !FromPtrTy->getPointeeType()->isIncompleteType() &&
9829 !ToPtrTy->getPointeeType()->isIncompleteType() &&
9830 S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(),
9831 FromPtrTy->getPointeeType()))
9832 BaseToDerivedConversion = 1;
9833 }
9834 } else if (const ObjCObjectPointerType *FromPtrTy
9835 = FromTy->getAs<ObjCObjectPointerType>()) {
9836 if (const ObjCObjectPointerType *ToPtrTy
9837 = ToTy->getAs<ObjCObjectPointerType>())
9838 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
9839 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
9840 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
9841 FromPtrTy->getPointeeType()) &&
9842 FromIface->isSuperClassOf(ToIface))
9843 BaseToDerivedConversion = 2;
9844 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
9845 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
9846 !FromTy->isIncompleteType() &&
9847 !ToRefTy->getPointeeType()->isIncompleteType() &&
9848 S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) {
9849 BaseToDerivedConversion = 3;
9850 } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
9851 ToTy.getNonReferenceType().getCanonicalType() ==
9852 FromTy.getNonReferenceType().getCanonicalType()) {
9853 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
9854 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9855 << (unsigned)isObjectArgument << I + 1
9856 << (FromExpr ? FromExpr->getSourceRange() : SourceRange());
9857 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9858 return;
9859 }
9860 }
9861
9862 if (BaseToDerivedConversion) {
9863 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv)
9864 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9865 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9866 << (BaseToDerivedConversion - 1) << FromTy << ToTy << I + 1;
9867 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9868 return;
9869 }
9870
9871 if (isa<ObjCObjectPointerType>(CFromTy) &&
9872 isa<PointerType>(CToTy)) {
9873 Qualifiers FromQs = CFromTy.getQualifiers();
9874 Qualifiers ToQs = CToTy.getQualifiers();
9875 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
9876 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
9877 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
9878 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9879 << FromTy << ToTy << (unsigned)isObjectArgument << I + 1;
9880 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9881 return;
9882 }
9883 }
9884
9885 if (TakingCandidateAddress &&
9886 !checkAddressOfCandidateIsAvailable(S, Cand->Function))
9887 return;
9888
9889 // Emit the generic diagnostic and, optionally, add the hints to it.
9890 PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
9891 FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9892 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9893 << ToTy << (unsigned)isObjectArgument << I + 1
9894 << (unsigned)(Cand->Fix.Kind);
9895
9896 // If we can fix the conversion, suggest the FixIts.
9897 for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
9898 HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
9899 FDiag << *HI;
9900 S.Diag(Fn->getLocation(), FDiag);
9901
9902 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9903}
9904
9905/// Additional arity mismatch diagnosis specific to a function overload
9906/// candidates. This is not covered by the more general DiagnoseArityMismatch()
9907/// over a candidate in any candidate set.
9908static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
9909 unsigned NumArgs) {
9910 FunctionDecl *Fn = Cand->Function;
9911 unsigned MinParams = Fn->getMinRequiredArguments();
9912
9913 // With invalid overloaded operators, it's possible that we think we
9914 // have an arity mismatch when in fact it looks like we have the
9915 // right number of arguments, because only overloaded operators have
9916 // the weird behavior of overloading member and non-member functions.
9917 // Just don't report anything.
9918 if (Fn->isInvalidDecl() &&
9919 Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
9920 return true;
9921
9922 if (NumArgs < MinParams) {
9923 assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||(((Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooFewArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 9925, __PRETTY_FUNCTION__))
9924 (Cand->FailureKind == ovl_fail_bad_deduction &&(((Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooFewArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 9925, __PRETTY_FUNCTION__))
9925 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments))(((Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooFewArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 9925, __PRETTY_FUNCTION__))
;
9926 } else {
9927 assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||(((Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooManyArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 9929, __PRETTY_FUNCTION__))
9928 (Cand->FailureKind == ovl_fail_bad_deduction &&(((Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooManyArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 9929, __PRETTY_FUNCTION__))
9929 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments))(((Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooManyArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 9929, __PRETTY_FUNCTION__))
;
9930 }
9931
9932 return false;
9933}
9934
9935/// General arity mismatch diagnosis over a candidate in a candidate set.
9936static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D,
9937 unsigned NumFormalArgs) {
9938 assert(isa<FunctionDecl>(D) &&((isa<FunctionDecl>(D) && "The templated declaration should at least be a function"
" when diagnosing bad template argument deduction due to too many"
" or too few arguments") ? static_cast<void> (0) : __assert_fail
("isa<FunctionDecl>(D) && \"The templated declaration should at least be a function\" \" when diagnosing bad template argument deduction due to too many\" \" or too few arguments\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 9941, __PRETTY_FUNCTION__))
9939 "The templated declaration should at least be a function"((isa<FunctionDecl>(D) && "The templated declaration should at least be a function"
" when diagnosing bad template argument deduction due to too many"
" or too few arguments") ? static_cast<void> (0) : __assert_fail
("isa<FunctionDecl>(D) && \"The templated declaration should at least be a function\" \" when diagnosing bad template argument deduction due to too many\" \" or too few arguments\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 9941, __PRETTY_FUNCTION__))
9940 " when diagnosing bad template argument deduction due to too many"((isa<FunctionDecl>(D) && "The templated declaration should at least be a function"
" when diagnosing bad template argument deduction due to too many"
" or too few arguments") ? static_cast<void> (0) : __assert_fail
("isa<FunctionDecl>(D) && \"The templated declaration should at least be a function\" \" when diagnosing bad template argument deduction due to too many\" \" or too few arguments\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 9941, __PRETTY_FUNCTION__))
9941 " or too few arguments")((isa<FunctionDecl>(D) && "The templated declaration should at least be a function"
" when diagnosing bad template argument deduction due to too many"
" or too few arguments") ? static_cast<void> (0) : __assert_fail
("isa<FunctionDecl>(D) && \"The templated declaration should at least be a function\" \" when diagnosing bad template argument deduction due to too many\" \" or too few arguments\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 9941, __PRETTY_FUNCTION__))
;
9942
9943 FunctionDecl *Fn = cast<FunctionDecl>(D);
9944
9945 // TODO: treat calls to a missing default constructor as a special case
9946 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
9947 unsigned MinParams = Fn->getMinRequiredArguments();
9948
9949 // at least / at most / exactly
9950 unsigned mode, modeCount;
9951 if (NumFormalArgs < MinParams) {
9952 if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
9953 FnTy->isTemplateVariadic())
9954 mode = 0; // "at least"
9955 else
9956 mode = 2; // "exactly"
9957 modeCount = MinParams;
9958 } else {
9959 if (MinParams != FnTy->getNumParams())
9960 mode = 1; // "at most"
9961 else
9962 mode = 2; // "exactly"
9963 modeCount = FnTy->getNumParams();
9964 }
9965
9966 std::string Description;
9967 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
9968 ClassifyOverloadCandidate(S, Found, Fn, Description);
9969
9970 if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
9971 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
9972 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
9973 << Description << mode << Fn->getParamDecl(0) << NumFormalArgs;
9974 else
9975 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
9976 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
9977 << Description << mode << modeCount << NumFormalArgs;
9978
9979 MaybeEmitInheritedConstructorNote(S, Found);
9980}
9981
9982/// Arity mismatch diagnosis specific to a function overload candidate.
9983static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
9984 unsigned NumFormalArgs) {
9985 if (!CheckArityMismatch(S, Cand, NumFormalArgs))
9986 DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs);
9987}
9988
9989static TemplateDecl *getDescribedTemplate(Decl *Templated) {
9990 if (TemplateDecl *TD = Templated->getDescribedTemplate())
9991 return TD;
9992 llvm_unreachable("Unsupported: Getting the described template declaration"::llvm::llvm_unreachable_internal("Unsupported: Getting the described template declaration"
" for bad deduction diagnosis", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 9993)
9993 " for bad deduction diagnosis")::llvm::llvm_unreachable_internal("Unsupported: Getting the described template declaration"
" for bad deduction diagnosis", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 9993)
;
9994}
9995
9996/// Diagnose a failed template-argument deduction.
9997static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated,
9998 DeductionFailureInfo &DeductionFailure,
9999 unsigned NumArgs,
10000 bool TakingCandidateAddress) {
10001 TemplateParameter Param = DeductionFailure.getTemplateParameter();
10002 NamedDecl *ParamD;
10003 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
10004 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
10005 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
10006 switch (DeductionFailure.Result) {
10007 case Sema::TDK_Success:
10008 llvm_unreachable("TDK_success while diagnosing bad deduction")::llvm::llvm_unreachable_internal("TDK_success while diagnosing bad deduction"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 10008)
;
10009
10010 case Sema::TDK_Incomplete: {
10011 assert(ParamD && "no parameter found for incomplete deduction result")((ParamD && "no parameter found for incomplete deduction result"
) ? static_cast<void> (0) : __assert_fail ("ParamD && \"no parameter found for incomplete deduction result\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 10011, __PRETTY_FUNCTION__))
;
10012 S.Diag(Templated->getLocation(),
10013 diag::note_ovl_candidate_incomplete_deduction)
10014 << ParamD->getDeclName();
10015 MaybeEmitInheritedConstructorNote(S, Found);
10016 return;
10017 }
10018
10019 case Sema::TDK_IncompletePack: {
10020 assert(ParamD && "no parameter found for incomplete deduction result")((ParamD && "no parameter found for incomplete deduction result"
) ? static_cast<void> (0) : __assert_fail ("ParamD && \"no parameter found for incomplete deduction result\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 10020, __PRETTY_FUNCTION__))
;
10021 S.Diag(Templated->getLocation(),
10022 diag::note_ovl_candidate_incomplete_deduction_pack)
10023 << ParamD->getDeclName()
10024 << (DeductionFailure.getFirstArg()->pack_size() + 1)
10025 << *DeductionFailure.getFirstArg();
10026 MaybeEmitInheritedConstructorNote(S, Found);
10027 return;
10028 }
10029
10030 case Sema::TDK_Underqualified: {
10031 assert(ParamD && "no parameter found for bad qualifiers deduction result")((ParamD && "no parameter found for bad qualifiers deduction result"
) ? static_cast<void> (0) : __assert_fail ("ParamD && \"no parameter found for bad qualifiers deduction result\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 10031, __PRETTY_FUNCTION__))
;
10032 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
10033
10034 QualType Param = DeductionFailure.getFirstArg()->getAsType();
10035
10036 // Param will have been canonicalized, but it should just be a
10037 // qualified version of ParamD, so move the qualifiers to that.
10038 QualifierCollector Qs;
10039 Qs.strip(Param);
10040 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
10041 assert(S.Context.hasSameType(Param, NonCanonParam))((S.Context.hasSameType(Param, NonCanonParam)) ? static_cast<
void> (0) : __assert_fail ("S.Context.hasSameType(Param, NonCanonParam)"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 10041, __PRETTY_FUNCTION__))
;
10042
10043 // Arg has also been canonicalized, but there's nothing we can do
10044 // about that. It also doesn't matter as much, because it won't
10045 // have any template parameters in it (because deduction isn't
10046 // done on dependent types).
10047 QualType Arg = DeductionFailure.getSecondArg()->getAsType();
10048
10049 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
10050 << ParamD->getDeclName() << Arg << NonCanonParam;
10051 MaybeEmitInheritedConstructorNote(S, Found);
10052 return;
10053 }
10054
10055 case Sema::TDK_Inconsistent: {
10056 assert(ParamD && "no parameter found for inconsistent deduction result")((ParamD && "no parameter found for inconsistent deduction result"
) ? static_cast<void> (0) : __assert_fail ("ParamD && \"no parameter found for inconsistent deduction result\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 10056, __PRETTY_FUNCTION__))
;
10057 int which = 0;
10058 if (isa<TemplateTypeParmDecl>(ParamD))
10059 which = 0;
10060 else if (isa<NonTypeTemplateParmDecl>(ParamD)) {
10061 // Deduction might have failed because we deduced arguments of two
10062 // different types for a non-type template parameter.
10063 // FIXME: Use a different TDK value for this.
10064 QualType T1 =
10065 DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType();
10066 QualType T2 =
10067 DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType();
10068 if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) {
10069 S.Diag(Templated->getLocation(),
10070 diag::note_ovl_candidate_inconsistent_deduction_types)
10071 << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1
10072 << *DeductionFailure.getSecondArg() << T2;
10073 MaybeEmitInheritedConstructorNote(S, Found);
10074 return;
10075 }
10076
10077 which = 1;
10078 } else {
10079 which = 2;
10080 }
10081
10082 S.Diag(Templated->getLocation(),
10083 diag::note_ovl_candidate_inconsistent_deduction)
10084 << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
10085 << *DeductionFailure.getSecondArg();
10086 MaybeEmitInheritedConstructorNote(S, Found);
10087 return;
10088 }
10089
10090 case Sema::TDK_InvalidExplicitArguments:
10091 assert(ParamD && "no parameter found for invalid explicit arguments")((ParamD && "no parameter found for invalid explicit arguments"
) ? static_cast<void> (0) : __assert_fail ("ParamD && \"no parameter found for invalid explicit arguments\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 10091, __PRETTY_FUNCTION__))
;
10092 if (ParamD->getDeclName())
10093 S.Diag(Templated->getLocation(),
10094 diag::note_ovl_candidate_explicit_arg_mismatch_named)
10095 << ParamD->getDeclName();
10096 else {
10097 int index = 0;
10098 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
10099 index = TTP->getIndex();
10100 else if (NonTypeTemplateParmDecl *NTTP
10101 = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
10102 index = NTTP->getIndex();
10103 else
10104 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
10105 S.Diag(Templated->getLocation(),
10106 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
10107 << (index + 1);
10108 }
10109 MaybeEmitInheritedConstructorNote(S, Found);
10110 return;
10111
10112 case Sema::TDK_TooManyArguments:
10113 case Sema::TDK_TooFewArguments:
10114 DiagnoseArityMismatch(S, Found, Templated, NumArgs);
10115 return;
10116
10117 case Sema::TDK_InstantiationDepth:
10118 S.Diag(Templated->getLocation(),
10119 diag::note_ovl_candidate_instantiation_depth);
10120 MaybeEmitInheritedConstructorNote(S, Found);
10121 return;
10122
10123 case Sema::TDK_SubstitutionFailure: {
10124 // Format the template argument list into the argument string.
10125 SmallString<128> TemplateArgString;
10126 if (TemplateArgumentList *Args =
10127 DeductionFailure.getTemplateArgumentList()) {
10128 TemplateArgString = " ";
10129 TemplateArgString += S.getTemplateArgumentBindingsText(
10130 getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10131 }
10132
10133 // If this candidate was disabled by enable_if, say so.
10134 PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
10135 if (PDiag && PDiag->second.getDiagID() ==
10136 diag::err_typename_nested_not_found_enable_if) {
10137 // FIXME: Use the source range of the condition, and the fully-qualified
10138 // name of the enable_if template. These are both present in PDiag.
10139 S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
10140 << "'enable_if'" << TemplateArgString;
10141 return;
10142 }
10143
10144 // We found a specific requirement that disabled the enable_if.
10145 if (PDiag && PDiag->second.getDiagID() ==
10146 diag::err_typename_nested_not_found_requirement) {
10147 S.Diag(Templated->getLocation(),
10148 diag::note_ovl_candidate_disabled_by_requirement)
10149 << PDiag->second.getStringArg(0) << TemplateArgString;
10150 return;
10151 }
10152
10153 // Format the SFINAE diagnostic into the argument string.
10154 // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
10155 // formatted message in another diagnostic.
10156 SmallString<128> SFINAEArgString;
10157 SourceRange R;
10158 if (PDiag) {
10159 SFINAEArgString = ": ";
10160 R = SourceRange(PDiag->first, PDiag->first);
10161 PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
10162 }
10163
10164 S.Diag(Templated->getLocation(),
10165 diag::note_ovl_candidate_substitution_failure)
10166 << TemplateArgString << SFINAEArgString << R;
10167 MaybeEmitInheritedConstructorNote(S, Found);
10168 return;
10169 }
10170
10171 case Sema::TDK_DeducedMismatch:
10172 case Sema::TDK_DeducedMismatchNested: {
10173 // Format the template argument list into the argument string.
10174 SmallString<128> TemplateArgString;
10175 if (TemplateArgumentList *Args =
10176 DeductionFailure.getTemplateArgumentList()) {
10177 TemplateArgString = " ";
10178 TemplateArgString += S.getTemplateArgumentBindingsText(
10179 getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10180 }
10181
10182 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch)
10183 << (*DeductionFailure.getCallArgIndex() + 1)
10184 << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg()
10185 << TemplateArgString
10186 << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested);
10187 break;
10188 }
10189
10190 case Sema::TDK_NonDeducedMismatch: {
10191 // FIXME: Provide a source location to indicate what we couldn't match.
10192 TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
10193 TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
10194 if (FirstTA.getKind() == TemplateArgument::Template &&
10195 SecondTA.getKind() == TemplateArgument::Template) {
10196 TemplateName FirstTN = FirstTA.getAsTemplate();
10197 TemplateName SecondTN = SecondTA.getAsTemplate();
10198 if (FirstTN.getKind() == TemplateName::Template &&
10199 SecondTN.getKind() == TemplateName::Template) {
10200 if (FirstTN.getAsTemplateDecl()->getName() ==
10201 SecondTN.getAsTemplateDecl()->getName()) {
10202 // FIXME: This fixes a bad diagnostic where both templates are named
10203 // the same. This particular case is a bit difficult since:
10204 // 1) It is passed as a string to the diagnostic printer.
10205 // 2) The diagnostic printer only attempts to find a better
10206 // name for types, not decls.
10207 // Ideally, this should folded into the diagnostic printer.
10208 S.Diag(Templated->getLocation(),
10209 diag::note_ovl_candidate_non_deduced_mismatch_qualified)
10210 << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
10211 return;
10212 }
10213 }
10214 }
10215
10216 if (TakingCandidateAddress && isa<FunctionDecl>(Templated) &&
10217 !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated)))
10218 return;
10219
10220 // FIXME: For generic lambda parameters, check if the function is a lambda
10221 // call operator, and if so, emit a prettier and more informative
10222 // diagnostic that mentions 'auto' and lambda in addition to
10223 // (or instead of?) the canonical template type parameters.
10224 S.Diag(Templated->getLocation(),
10225 diag::note_ovl_candidate_non_deduced_mismatch)
10226 << FirstTA << SecondTA;
10227 return;
10228 }
10229 // TODO: diagnose these individually, then kill off
10230 // note_ovl_candidate_bad_deduction, which is uselessly vague.
10231 case Sema::TDK_MiscellaneousDeductionFailure:
10232 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
10233 MaybeEmitInheritedConstructorNote(S, Found);
10234 return;
10235 case Sema::TDK_CUDATargetMismatch:
10236 S.Diag(Templated->getLocation(),
10237 diag::note_cuda_ovl_candidate_target_mismatch);
10238 return;
10239 }
10240}
10241
10242/// Diagnose a failed template-argument deduction, for function calls.
10243static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
10244 unsigned NumArgs,
10245 bool TakingCandidateAddress) {
10246 unsigned TDK = Cand->DeductionFailure.Result;
10247 if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
10248 if (CheckArityMismatch(S, Cand, NumArgs))
10249 return;
10250 }
10251 DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern
10252 Cand->DeductionFailure, NumArgs, TakingCandidateAddress);
10253}
10254
10255/// CUDA: diagnose an invalid call across targets.
10256static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
10257 FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
10258 FunctionDecl *Callee = Cand->Function;
10259
10260 Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
10261 CalleeTarget = S.IdentifyCUDATarget(Callee);
10262
10263 std::string FnDesc;
10264 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10265 ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee, FnDesc);
10266
10267 S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
10268 << (unsigned)FnKindPair.first << (unsigned)ocs_non_template
10269 << FnDesc /* Ignored */
10270 << CalleeTarget << CallerTarget;
10271
10272 // This could be an implicit constructor for which we could not infer the
10273 // target due to a collsion. Diagnose that case.
10274 CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
10275 if (Meth != nullptr && Meth->isImplicit()) {
10276 CXXRecordDecl *ParentClass = Meth->getParent();
10277 Sema::CXXSpecialMember CSM;
10278
10279 switch (FnKindPair.first) {
10280 default:
10281 return;
10282 case oc_implicit_default_constructor:
10283 CSM = Sema::CXXDefaultConstructor;
10284 break;
10285 case oc_implicit_copy_constructor:
10286 CSM = Sema::CXXCopyConstructor;
10287 break;
10288 case oc_implicit_move_constructor:
10289 CSM = Sema::CXXMoveConstructor;
10290 break;
10291 case oc_implicit_copy_assignment:
10292 CSM = Sema::CXXCopyAssignment;
10293 break;
10294 case oc_implicit_move_assignment:
10295 CSM = Sema::CXXMoveAssignment;
10296 break;
10297 };
10298
10299 bool ConstRHS = false;
10300 if (Meth->getNumParams()) {
10301 if (const ReferenceType *RT =
10302 Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
10303 ConstRHS = RT->getPointeeType().isConstQualified();
10304 }
10305 }
10306
10307 S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
10308 /* ConstRHS */ ConstRHS,
10309 /* Diagnose */ true);
10310 }
10311}
10312
10313static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
10314 FunctionDecl *Callee = Cand->Function;
10315 EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
10316
10317 S.Diag(Callee->getLocation(),
10318 diag::note_ovl_candidate_disabled_by_function_cond_attr)
10319 << Attr->getCond()->getSourceRange() << Attr->getMessage();
10320}
10321
10322static void DiagnoseOpenCLExtensionDisabled(Sema &S, OverloadCandidate *Cand) {
10323 FunctionDecl *Callee = Cand->Function;
10324
10325 S.Diag(Callee->getLocation(),
10326 diag::note_ovl_candidate_disabled_by_extension)
10327 << S.getOpenCLExtensionsFromDeclExtMap(Callee);
10328}
10329
10330/// Generates a 'note' diagnostic for an overload candidate. We've
10331/// already generated a primary error at the call site.
10332///
10333/// It really does need to be a single diagnostic with its caret
10334/// pointed at the candidate declaration. Yes, this creates some
10335/// major challenges of technical writing. Yes, this makes pointing
10336/// out problems with specific arguments quite awkward. It's still
10337/// better than generating twenty screens of text for every failed
10338/// overload.
10339///
10340/// It would be great to be able to express per-candidate problems
10341/// more richly for those diagnostic clients that cared, but we'd
10342/// still have to be just as careful with the default diagnostics.
10343static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
10344 unsigned NumArgs,
10345 bool TakingCandidateAddress) {
10346 FunctionDecl *Fn = Cand->Function;
10347
10348 // Note deleted candidates, but only if they're viable.
10349 if (Cand->Viable) {
10350 if (Fn->isDeleted()) {
10351 std::string FnDesc;
10352 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10353 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, FnDesc);
10354
10355 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
10356 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10357 << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
10358 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10359 return;
10360 }
10361
10362 // We don't really have anything else to say about viable candidates.
10363 S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
10364 return;
10365 }
10366
10367 switch (Cand->FailureKind) {
10368 case ovl_fail_too_many_arguments:
10369 case ovl_fail_too_few_arguments:
10370 return DiagnoseArityMismatch(S, Cand, NumArgs);
10371
10372 case ovl_fail_bad_deduction:
10373 return DiagnoseBadDeduction(S, Cand, NumArgs,
10374 TakingCandidateAddress);
10375
10376 case ovl_fail_illegal_constructor: {
10377 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
10378 << (Fn->getPrimaryTemplate() ? 1 : 0);
10379 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10380 return;
10381 }
10382
10383 case ovl_fail_trivial_conversion:
10384 case ovl_fail_bad_final_conversion:
10385 case ovl_fail_final_conversion_not_exact:
10386 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
10387
10388 case ovl_fail_bad_conversion: {
10389 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
10390 for (unsigned N = Cand->Conversions.size(); I != N; ++I)
10391 if (Cand->Conversions[I].isBad())
10392 return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress);
10393
10394 // FIXME: this currently happens when we're called from SemaInit
10395 // when user-conversion overload fails. Figure out how to handle
10396 // those conditions and diagnose them well.
10397 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
10398 }
10399
10400 case ovl_fail_bad_target:
10401 return DiagnoseBadTarget(S, Cand);
10402
10403 case ovl_fail_enable_if:
10404 return DiagnoseFailedEnableIfAttr(S, Cand);
10405
10406 case ovl_fail_ext_disabled:
10407 return DiagnoseOpenCLExtensionDisabled(S, Cand);
10408
10409 case ovl_fail_inhctor_slice:
10410 // It's generally not interesting to note copy/move constructors here.
10411 if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor())
10412 return;
10413 S.Diag(Fn->getLocation(),
10414 diag::note_ovl_candidate_inherited_constructor_slice)
10415 << (Fn->getPrimaryTemplate() ? 1 : 0)
10416 << Fn->getParamDecl(0)->getType()->isRValueReferenceType();
10417 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10418 return;
10419
10420 case ovl_fail_addr_not_available: {
10421 bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function);
10422 (void)Available;
10423 assert(!Available)((!Available) ? static_cast<void> (0) : __assert_fail (
"!Available", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 10423, __PRETTY_FUNCTION__))
;
10424 break;
10425 }
10426 case ovl_non_default_multiversion_function:
10427 // Do nothing, these should simply be ignored.
10428 break;
10429 }
10430}
10431
10432static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
10433 // Desugar the type of the surrogate down to a function type,
10434 // retaining as many typedefs as possible while still showing
10435 // the function type (and, therefore, its parameter types).
10436 QualType FnType = Cand->Surrogate->getConversionType();
10437 bool isLValueReference = false;
10438 bool isRValueReference = false;
10439 bool isPointer = false;
10440 if (const LValueReferenceType *FnTypeRef =
10441 FnType->getAs<LValueReferenceType>()) {
10442 FnType = FnTypeRef->getPointeeType();
10443 isLValueReference = true;
10444 } else if (const RValueReferenceType *FnTypeRef =
10445 FnType->getAs<RValueReferenceType>()) {
10446 FnType = FnTypeRef->getPointeeType();
10447 isRValueReference = true;
10448 }
10449 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
10450 FnType = FnTypePtr->getPointeeType();
10451 isPointer = true;
10452 }
10453 // Desugar down to a function type.
10454 FnType = QualType(FnType->getAs<FunctionType>(), 0);
10455 // Reconstruct the pointer/reference as appropriate.
10456 if (isPointer) FnType = S.Context.getPointerType(FnType);
10457 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
10458 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
10459
10460 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
10461 << FnType;
10462}
10463
10464static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
10465 SourceLocation OpLoc,
10466 OverloadCandidate *Cand) {
10467 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary")((Cand->Conversions.size() <= 2 && "builtin operator is not binary"
) ? static_cast<void> (0) : __assert_fail ("Cand->Conversions.size() <= 2 && \"builtin operator is not binary\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 10467, __PRETTY_FUNCTION__))
;
10468 std::string TypeStr("operator");
10469 TypeStr += Opc;
10470 TypeStr += "(";
10471 TypeStr += Cand->BuiltinParamTypes[0].getAsString();
10472 if (Cand->Conversions.size() == 1) {
10473 TypeStr += ")";
10474 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
10475 } else {
10476 TypeStr += ", ";
10477 TypeStr += Cand->BuiltinParamTypes[1].getAsString();
10478 TypeStr += ")";
10479 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
10480 }
10481}
10482
10483static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
10484 OverloadCandidate *Cand) {
10485 for (const ImplicitConversionSequence &ICS : Cand->Conversions) {
10486 if (ICS.isBad()) break; // all meaningless after first invalid
10487 if (!ICS.isAmbiguous()) continue;
10488
10489 ICS.DiagnoseAmbiguousConversion(
10490 S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion));
10491 }
10492}
10493
10494static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
10495 if (Cand->Function)
10496 return Cand->Function->getLocation();
10497 if (Cand->IsSurrogate)
10498 return Cand->Surrogate->getLocation();
10499 return SourceLocation();
10500}
10501
10502static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
10503 switch ((Sema::TemplateDeductionResult)DFI.Result) {
10504 case Sema::TDK_Success:
10505 case Sema::TDK_NonDependentConversionFailure:
10506 llvm_unreachable("non-deduction failure while diagnosing bad deduction")::llvm::llvm_unreachable_internal("non-deduction failure while diagnosing bad deduction"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 10506)
;
10507
10508 case Sema::TDK_Invalid:
10509 case Sema::TDK_Incomplete:
10510 case Sema::TDK_IncompletePack:
10511 return 1;
10512
10513 case Sema::TDK_Underqualified:
10514 case Sema::TDK_Inconsistent:
10515 return 2;
10516
10517 case Sema::TDK_SubstitutionFailure:
10518 case Sema::TDK_DeducedMismatch:
10519 case Sema::TDK_DeducedMismatchNested:
10520 case Sema::TDK_NonDeducedMismatch:
10521 case Sema::TDK_MiscellaneousDeductionFailure:
10522 case Sema::TDK_CUDATargetMismatch:
10523 return 3;
10524
10525 case Sema::TDK_InstantiationDepth:
10526 return 4;
10527
10528 case Sema::TDK_InvalidExplicitArguments:
10529 return 5;
10530
10531 case Sema::TDK_TooManyArguments:
10532 case Sema::TDK_TooFewArguments:
10533 return 6;
10534 }
10535 llvm_unreachable("Unhandled deduction result")::llvm::llvm_unreachable_internal("Unhandled deduction result"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 10535)
;
10536}
10537
10538namespace {
10539struct CompareOverloadCandidatesForDisplay {
10540 Sema &S;
10541 SourceLocation Loc;
10542 size_t NumArgs;
10543 OverloadCandidateSet::CandidateSetKind CSK;
10544
10545 CompareOverloadCandidatesForDisplay(
10546 Sema &S, SourceLocation Loc, size_t NArgs,
10547 OverloadCandidateSet::CandidateSetKind CSK)
10548 : S(S), NumArgs(NArgs), CSK(CSK) {}
10549
10550 bool operator()(const OverloadCandidate *L,
10551 const OverloadCandidate *R) {
10552 // Fast-path this check.
10553 if (L == R) return false;
1
Assuming 'L' is not equal to 'R'
2
Taking false branch
10554
10555 // Order first by viability.
10556 if (L->Viable) {
3
Assuming the condition is true
4
Taking true branch
10557 if (!R->Viable) return true;
5
Assuming the condition is false
6
Taking false branch
10558
10559 // TODO: introduce a tri-valued comparison for overload
10560 // candidates. Would be more worthwhile if we had a sort
10561 // that could exploit it.
10562 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK))
7
Calling 'isBetterOverloadCandidate'
10563 return true;
10564 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK))
10565 return false;
10566 } else if (R->Viable)
10567 return false;
10568
10569 assert(L->Viable == R->Viable)((L->Viable == R->Viable) ? static_cast<void> (0)
: __assert_fail ("L->Viable == R->Viable", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 10569, __PRETTY_FUNCTION__))
;
10570
10571 // Criteria by which we can sort non-viable candidates:
10572 if (!L->Viable) {
10573 // 1. Arity mismatches come after other candidates.
10574 if (L->FailureKind == ovl_fail_too_many_arguments ||
10575 L->FailureKind == ovl_fail_too_few_arguments) {
10576 if (R->FailureKind == ovl_fail_too_many_arguments ||
10577 R->FailureKind == ovl_fail_too_few_arguments) {
10578 int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
10579 int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
10580 if (LDist == RDist) {
10581 if (L->FailureKind == R->FailureKind)
10582 // Sort non-surrogates before surrogates.
10583 return !L->IsSurrogate && R->IsSurrogate;
10584 // Sort candidates requiring fewer parameters than there were
10585 // arguments given after candidates requiring more parameters
10586 // than there were arguments given.
10587 return L->FailureKind == ovl_fail_too_many_arguments;
10588 }
10589 return LDist < RDist;
10590 }
10591 return false;
10592 }
10593 if (R->FailureKind == ovl_fail_too_many_arguments ||
10594 R->FailureKind == ovl_fail_too_few_arguments)
10595 return true;
10596
10597 // 2. Bad conversions come first and are ordered by the number
10598 // of bad conversions and quality of good conversions.
10599 if (L->FailureKind == ovl_fail_bad_conversion) {
10600 if (R->FailureKind != ovl_fail_bad_conversion)
10601 return true;
10602
10603 // The conversion that can be fixed with a smaller number of changes,
10604 // comes first.
10605 unsigned numLFixes = L->Fix.NumConversionsFixed;
10606 unsigned numRFixes = R->Fix.NumConversionsFixed;
10607 numLFixes = (numLFixes == 0) ? UINT_MAX(2147483647 *2U +1U) : numLFixes;
10608 numRFixes = (numRFixes == 0) ? UINT_MAX(2147483647 *2U +1U) : numRFixes;
10609 if (numLFixes != numRFixes) {
10610 return numLFixes < numRFixes;
10611 }
10612
10613 // If there's any ordering between the defined conversions...
10614 // FIXME: this might not be transitive.
10615 assert(L->Conversions.size() == R->Conversions.size())((L->Conversions.size() == R->Conversions.size()) ? static_cast
<void> (0) : __assert_fail ("L->Conversions.size() == R->Conversions.size()"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 10615, __PRETTY_FUNCTION__))
;
10616
10617 int leftBetter = 0;
10618 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
10619 for (unsigned E = L->Conversions.size(); I != E; ++I) {
10620 switch (CompareImplicitConversionSequences(S, Loc,
10621 L->Conversions[I],
10622 R->Conversions[I])) {
10623 case ImplicitConversionSequence::Better:
10624 leftBetter++;
10625 break;
10626
10627 case ImplicitConversionSequence::Worse:
10628 leftBetter--;
10629 break;
10630
10631 case ImplicitConversionSequence::Indistinguishable:
10632 break;
10633 }
10634 }
10635 if (leftBetter > 0) return true;
10636 if (leftBetter < 0) return false;
10637
10638 } else if (R->FailureKind == ovl_fail_bad_conversion)
10639 return false;
10640
10641 if (L->FailureKind == ovl_fail_bad_deduction) {
10642 if (R->FailureKind != ovl_fail_bad_deduction)
10643 return true;
10644
10645 if (L->DeductionFailure.Result != R->DeductionFailure.Result)
10646 return RankDeductionFailure(L->DeductionFailure)
10647 < RankDeductionFailure(R->DeductionFailure);
10648 } else if (R->FailureKind == ovl_fail_bad_deduction)
10649 return false;
10650
10651 // TODO: others?
10652 }
10653
10654 // Sort everything else by location.
10655 SourceLocation LLoc = GetLocationForCandidate(L);
10656 SourceLocation RLoc = GetLocationForCandidate(R);
10657
10658 // Put candidates without locations (e.g. builtins) at the end.
10659 if (LLoc.isInvalid()) return false;
10660 if (RLoc.isInvalid()) return true;
10661
10662 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
10663 }
10664};
10665}
10666
10667/// CompleteNonViableCandidate - Normally, overload resolution only
10668/// computes up to the first bad conversion. Produces the FixIt set if
10669/// possible.
10670static void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
10671 ArrayRef<Expr *> Args) {
10672 assert(!Cand->Viable)((!Cand->Viable) ? static_cast<void> (0) : __assert_fail
("!Cand->Viable", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 10672, __PRETTY_FUNCTION__))
;
10673
10674 // Don't do anything on failures other than bad conversion.
10675 if (Cand->FailureKind != ovl_fail_bad_conversion) return;
10676
10677 // We only want the FixIts if all the arguments can be corrected.
10678 bool Unfixable = false;
10679 // Use a implicit copy initialization to check conversion fixes.
10680 Cand->Fix.setConversionChecker(TryCopyInitialization);
10681
10682 // Attempt to fix the bad conversion.
10683 unsigned ConvCount = Cand->Conversions.size();
10684 for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/;
10685 ++ConvIdx) {
10686 assert(ConvIdx != ConvCount && "no bad conversion in candidate")((ConvIdx != ConvCount && "no bad conversion in candidate"
) ? static_cast<void> (0) : __assert_fail ("ConvIdx != ConvCount && \"no bad conversion in candidate\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 10686, __PRETTY_FUNCTION__))
;
10687 if (Cand->Conversions[ConvIdx].isInitialized() &&
10688 Cand->Conversions[ConvIdx].isBad()) {
10689 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
10690 break;
10691 }
10692 }
10693
10694 // FIXME: this should probably be preserved from the overload
10695 // operation somehow.
10696 bool SuppressUserConversions = false;
10697
10698 unsigned ConvIdx = 0;
10699 ArrayRef<QualType> ParamTypes;
10700
10701 if (Cand->IsSurrogate) {
10702 QualType ConvType
10703 = Cand->Surrogate->getConversionType().getNonReferenceType();
10704 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
10705 ConvType = ConvPtrType->getPointeeType();
10706 ParamTypes = ConvType->getAs<FunctionProtoType>()->getParamTypes();
10707 // Conversion 0 is 'this', which doesn't have a corresponding argument.
10708 ConvIdx = 1;
10709 } else if (Cand->Function) {
10710 ParamTypes =
10711 Cand->Function->getType()->getAs<FunctionProtoType>()->getParamTypes();
10712 if (isa<CXXMethodDecl>(Cand->Function) &&
10713 !isa<CXXConstructorDecl>(Cand->Function)) {
10714 // Conversion 0 is 'this', which doesn't have a corresponding argument.
10715 ConvIdx = 1;
10716 }
10717 } else {
10718 // Builtin operator.
10719 assert(ConvCount <= 3)((ConvCount <= 3) ? static_cast<void> (0) : __assert_fail
("ConvCount <= 3", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 10719, __PRETTY_FUNCTION__))
;
10720 ParamTypes = Cand->BuiltinParamTypes;
10721 }
10722
10723 // Fill in the rest of the conversions.
10724 for (unsigned ArgIdx = 0; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
10725 if (Cand->Conversions[ConvIdx].isInitialized()) {
10726 // We've already checked this conversion.
10727 } else if (ArgIdx < ParamTypes.size()) {
10728 if (ParamTypes[ArgIdx]->isDependentType())
10729 Cand->Conversions[ConvIdx].setAsIdentityConversion(
10730 Args[ArgIdx]->getType());
10731 else {
10732 Cand->Conversions[ConvIdx] =
10733 TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ArgIdx],
10734 SuppressUserConversions,
10735 /*InOverloadResolution=*/true,
10736 /*AllowObjCWritebackConversion=*/
10737 S.getLangOpts().ObjCAutoRefCount);
10738 // Store the FixIt in the candidate if it exists.
10739 if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
10740 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
10741 }
10742 } else
10743 Cand->Conversions[ConvIdx].setEllipsis();
10744 }
10745}
10746
10747/// When overload resolution fails, prints diagnostic messages containing the
10748/// candidates in the candidate set.
10749void OverloadCandidateSet::NoteCandidates(
10750 Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
10751 StringRef Opc, SourceLocation OpLoc,
10752 llvm::function_ref<bool(OverloadCandidate &)> Filter) {
10753 // Sort the candidates by viability and position. Sorting directly would
10754 // be prohibitive, so we make a set of pointers and sort those.
10755 SmallVector<OverloadCandidate*, 32> Cands;
10756 if (OCD == OCD_AllCandidates) Cands.reserve(size());
10757 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
10758 if (!Filter(*Cand))
10759 continue;
10760 if (Cand->Viable)
10761 Cands.push_back(Cand);
10762 else if (OCD == OCD_AllCandidates) {
10763 CompleteNonViableCandidate(S, Cand, Args);
10764 if (Cand->Function || Cand->IsSurrogate)
10765 Cands.push_back(Cand);
10766 // Otherwise, this a non-viable builtin candidate. We do not, in general,
10767 // want to list every possible builtin candidate.
10768 }
10769 }
10770
10771 llvm::stable_sort(
10772 Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind));
10773
10774 bool ReportedAmbiguousConversions = false;
10775
10776 SmallVectorImpl<OverloadCandidate*>::iterator I, E;
10777 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
10778 unsigned CandsShown = 0;
10779 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
10780 OverloadCandidate *Cand = *I;
10781
10782 // Set an arbitrary limit on the number of candidate functions we'll spam
10783 // the user with. FIXME: This limit should depend on details of the
10784 // candidate list.
10785 if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
10786 break;
10787 }
10788 ++CandsShown;
10789
10790 if (Cand->Function)
10791 NoteFunctionCandidate(S, Cand, Args.size(),
10792 /*TakingCandidateAddress=*/false);
10793 else if (Cand->IsSurrogate)
10794 NoteSurrogateCandidate(S, Cand);
10795 else {
10796 assert(Cand->Viable &&((Cand->Viable && "Non-viable built-in candidates are not added to Cands."
) ? static_cast<void> (0) : __assert_fail ("Cand->Viable && \"Non-viable built-in candidates are not added to Cands.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 10797, __PRETTY_FUNCTION__))
10797 "Non-viable built-in candidates are not added to Cands.")((Cand->Viable && "Non-viable built-in candidates are not added to Cands."
) ? static_cast<void> (0) : __assert_fail ("Cand->Viable && \"Non-viable built-in candidates are not added to Cands.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 10797, __PRETTY_FUNCTION__))
;
10798 // Generally we only see ambiguities including viable builtin
10799 // operators if overload resolution got screwed up by an
10800 // ambiguous user-defined conversion.
10801 //
10802 // FIXME: It's quite possible for different conversions to see
10803 // different ambiguities, though.
10804 if (!ReportedAmbiguousConversions) {
10805 NoteAmbiguousUserConversions(S, OpLoc, Cand);
10806 ReportedAmbiguousConversions = true;
10807 }
10808
10809 // If this is a viable builtin, print it.
10810 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
10811 }
10812 }
10813
10814 if (I != E)
10815 S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
10816}
10817
10818static SourceLocation
10819GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
10820 return Cand->Specialization ? Cand->Specialization->getLocation()
10821 : SourceLocation();
10822}
10823
10824namespace {
10825struct CompareTemplateSpecCandidatesForDisplay {
10826 Sema &S;
10827 CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
10828
10829 bool operator()(const TemplateSpecCandidate *L,
10830 const TemplateSpecCandidate *R) {
10831 // Fast-path this check.
10832 if (L == R)
10833 return false;
10834
10835 // Assuming that both candidates are not matches...
10836
10837 // Sort by the ranking of deduction failures.
10838 if (L->DeductionFailure.Result != R->DeductionFailure.Result)
10839 return RankDeductionFailure(L->DeductionFailure) <
10840 RankDeductionFailure(R->DeductionFailure);
10841
10842 // Sort everything else by location.
10843 SourceLocation LLoc = GetLocationForCandidate(L);
10844 SourceLocation RLoc = GetLocationForCandidate(R);
10845
10846 // Put candidates without locations (e.g. builtins) at the end.
10847 if (LLoc.isInvalid())
10848 return false;
10849 if (RLoc.isInvalid())
10850 return true;
10851
10852 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
10853 }
10854};
10855}
10856
10857/// Diagnose a template argument deduction failure.
10858/// We are treating these failures as overload failures due to bad
10859/// deductions.
10860void TemplateSpecCandidate::NoteDeductionFailure(Sema &S,
10861 bool ForTakingAddress) {
10862 DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern
10863 DeductionFailure, /*NumArgs=*/0, ForTakingAddress);
10864}
10865
10866void TemplateSpecCandidateSet::destroyCandidates() {
10867 for (iterator i = begin(), e = end(); i != e; ++i) {
10868 i->DeductionFailure.Destroy();
10869 }
10870}
10871
10872void TemplateSpecCandidateSet::clear() {
10873 destroyCandidates();
10874 Candidates.clear();
10875}
10876
10877/// NoteCandidates - When no template specialization match is found, prints
10878/// diagnostic messages containing the non-matching specializations that form
10879/// the candidate set.
10880/// This is analoguous to OverloadCandidateSet::NoteCandidates() with
10881/// OCD == OCD_AllCandidates and Cand->Viable == false.
10882void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
10883 // Sort the candidates by position (assuming no candidate is a match).
10884 // Sorting directly would be prohibitive, so we make a set of pointers
10885 // and sort those.
10886 SmallVector<TemplateSpecCandidate *, 32> Cands;
10887 Cands.reserve(size());
10888 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
10889 if (Cand->Specialization)
10890 Cands.push_back(Cand);
10891 // Otherwise, this is a non-matching builtin candidate. We do not,
10892 // in general, want to list every possible builtin candidate.
10893 }
10894
10895 llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S));
10896
10897 // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
10898 // for generalization purposes (?).
10899 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
10900
10901 SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
10902 unsigned CandsShown = 0;
10903 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
10904 TemplateSpecCandidate *Cand = *I;
10905
10906 // Set an arbitrary limit on the number of candidates we'll spam
10907 // the user with. FIXME: This limit should depend on details of the
10908 // candidate list.
10909 if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
10910 break;
10911 ++CandsShown;
10912
10913 assert(Cand->Specialization &&((Cand->Specialization && "Non-matching built-in candidates are not added to Cands."
) ? static_cast<void> (0) : __assert_fail ("Cand->Specialization && \"Non-matching built-in candidates are not added to Cands.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 10914, __PRETTY_FUNCTION__))
10914 "Non-matching built-in candidates are not added to Cands.")((Cand->Specialization && "Non-matching built-in candidates are not added to Cands."
) ? static_cast<void> (0) : __assert_fail ("Cand->Specialization && \"Non-matching built-in candidates are not added to Cands.\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 10914, __PRETTY_FUNCTION__))
;
10915 Cand->NoteDeductionFailure(S, ForTakingAddress);
10916 }
10917
10918 if (I != E)
10919 S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
10920}
10921
10922// [PossiblyAFunctionType] --> [Return]
10923// NonFunctionType --> NonFunctionType
10924// R (A) --> R(A)
10925// R (*)(A) --> R (A)
10926// R (&)(A) --> R (A)
10927// R (S::*)(A) --> R (A)
10928QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
10929 QualType Ret = PossiblyAFunctionType;
10930 if (const PointerType *ToTypePtr =
10931 PossiblyAFunctionType->getAs<PointerType>())
10932 Ret = ToTypePtr->getPointeeType();
10933 else if (const ReferenceType *ToTypeRef =
10934 PossiblyAFunctionType->getAs<ReferenceType>())
10935 Ret = ToTypeRef->getPointeeType();
10936 else if (const MemberPointerType *MemTypePtr =
10937 PossiblyAFunctionType->getAs<MemberPointerType>())
10938 Ret = MemTypePtr->getPointeeType();
10939 Ret =
10940 Context.getCanonicalType(Ret).getUnqualifiedType();
10941 return Ret;
10942}
10943
10944static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc,
10945 bool Complain = true) {
10946 if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
10947 S.DeduceReturnType(FD, Loc, Complain))
10948 return true;
10949
10950 auto *FPT = FD->getType()->castAs<FunctionProtoType>();
10951 if (S.getLangOpts().CPlusPlus17 &&
10952 isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
10953 !S.ResolveExceptionSpec(Loc, FPT))
10954 return true;
10955
10956 return false;
10957}
10958
10959namespace {
10960// A helper class to help with address of function resolution
10961// - allows us to avoid passing around all those ugly parameters
10962class AddressOfFunctionResolver {
10963 Sema& S;
10964 Expr* SourceExpr;
10965 const QualType& TargetType;
10966 QualType TargetFunctionType; // Extracted function type from target type
10967
10968 bool Complain;
10969 //DeclAccessPair& ResultFunctionAccessPair;
10970 ASTContext& Context;
10971
10972 bool TargetTypeIsNonStaticMemberFunction;
10973 bool FoundNonTemplateFunction;
10974 bool StaticMemberFunctionFromBoundPointer;
10975 bool HasComplained;
10976
10977 OverloadExpr::FindResult OvlExprInfo;
10978 OverloadExpr *OvlExpr;
10979 TemplateArgumentListInfo OvlExplicitTemplateArgs;
10980 SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
10981 TemplateSpecCandidateSet FailedCandidates;
10982
10983public:
10984 AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
10985 const QualType &TargetType, bool Complain)
10986 : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
10987 Complain(Complain), Context(S.getASTContext()),
10988 TargetTypeIsNonStaticMemberFunction(
10989 !!TargetType->getAs<MemberPointerType>()),
10990 FoundNonTemplateFunction(false),
10991 StaticMemberFunctionFromBoundPointer(false),
10992 HasComplained(false),
10993 OvlExprInfo(OverloadExpr::find(SourceExpr)),
10994 OvlExpr(OvlExprInfo.Expression),
10995 FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) {
10996 ExtractUnqualifiedFunctionTypeFromTargetType();
10997
10998 if (TargetFunctionType->isFunctionType()) {
10999 if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
11000 if (!UME->isImplicitAccess() &&
11001 !S.ResolveSingleFunctionTemplateSpecialization(UME))
11002 StaticMemberFunctionFromBoundPointer = true;
11003 } else if (OvlExpr->hasExplicitTemplateArgs()) {
11004 DeclAccessPair dap;
11005 if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
11006 OvlExpr, false, &dap)) {
11007 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
11008 if (!Method->isStatic()) {
11009 // If the target type is a non-function type and the function found
11010 // is a non-static member function, pretend as if that was the
11011 // target, it's the only possible type to end up with.
11012 TargetTypeIsNonStaticMemberFunction = true;
11013
11014 // And skip adding the function if its not in the proper form.
11015 // We'll diagnose this due to an empty set of functions.
11016 if (!OvlExprInfo.HasFormOfMemberPointer)
11017 return;
11018 }
11019
11020 Matches.push_back(std::make_pair(dap, Fn));
11021 }
11022 return;
11023 }
11024
11025 if (OvlExpr->hasExplicitTemplateArgs())
11026 OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs);
11027
11028 if (FindAllFunctionsThatMatchTargetTypeExactly()) {
11029 // C++ [over.over]p4:
11030 // If more than one function is selected, [...]
11031 if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) {
11032 if (FoundNonTemplateFunction)
11033 EliminateAllTemplateMatches();
11034 else
11035 EliminateAllExceptMostSpecializedTemplate();
11036 }
11037 }
11038
11039 if (S.getLangOpts().CUDA && Matches.size() > 1)
11040 EliminateSuboptimalCudaMatches();
11041 }
11042
11043 bool hasComplained() const { return HasComplained; }
11044
11045private:
11046 bool candidateHasExactlyCorrectType(const FunctionDecl *FD) {
11047 QualType Discard;
11048 return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) ||
11049 S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard);
11050 }
11051
11052 /// \return true if A is considered a better overload candidate for the
11053 /// desired type than B.
11054 bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) {
11055 // If A doesn't have exactly the correct type, we don't want to classify it
11056 // as "better" than anything else. This way, the user is required to
11057 // disambiguate for us if there are multiple candidates and no exact match.
11058 return candidateHasExactlyCorrectType(A) &&
11059 (!candidateHasExactlyCorrectType(B) ||
11060 compareEnableIfAttrs(S, A, B) == Comparison::Better);
11061 }
11062
11063 /// \return true if we were able to eliminate all but one overload candidate,
11064 /// false otherwise.
11065 bool eliminiateSuboptimalOverloadCandidates() {
11066 // Same algorithm as overload resolution -- one pass to pick the "best",
11067 // another pass to be sure that nothing is better than the best.
11068 auto Best = Matches.begin();
11069 for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I)
11070 if (isBetterCandidate(I->second, Best->second))
11071 Best = I;
11072
11073 const FunctionDecl *BestFn = Best->second;
11074 auto IsBestOrInferiorToBest = [this, BestFn](
11075 const std::pair<DeclAccessPair, FunctionDecl *> &Pair) {
11076 return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second);
11077 };
11078
11079 // Note: We explicitly leave Matches unmodified if there isn't a clear best
11080 // option, so we can potentially give the user a better error
11081 if (!llvm::all_of(Matches, IsBestOrInferiorToBest))
11082 return false;
11083 Matches[0] = *Best;
11084 Matches.resize(1);
11085 return true;
11086 }
11087
11088 bool isTargetTypeAFunction() const {
11089 return TargetFunctionType->isFunctionType();
11090 }
11091
11092 // [ToType] [Return]
11093
11094 // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
11095 // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
11096 // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
11097 void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
11098 TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
11099 }
11100
11101 // return true if any matching specializations were found
11102 bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
11103 const DeclAccessPair& CurAccessFunPair) {
11104 if (CXXMethodDecl *Method
11105 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
11106 // Skip non-static function templates when converting to pointer, and
11107 // static when converting to member pointer.
11108 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
11109 return false;
11110 }
11111 else if (TargetTypeIsNonStaticMemberFunction)
11112 return false;
11113
11114 // C++ [over.over]p2:
11115 // If the name is a function template, template argument deduction is
11116 // done (14.8.2.2), and if the argument deduction succeeds, the
11117 // resulting template argument list is used to generate a single
11118 // function template specialization, which is added to the set of
11119 // overloaded functions considered.
11120 FunctionDecl *Specialization = nullptr;
11121 TemplateDeductionInfo Info(FailedCandidates.getLocation());
11122 if (Sema::TemplateDeductionResult Result
11123 = S.DeduceTemplateArguments(FunctionTemplate,
11124 &OvlExplicitTemplateArgs,
11125 TargetFunctionType, Specialization,
11126 Info, /*IsAddressOfFunction*/true)) {
11127 // Make a note of the failed deduction for diagnostics.
11128 FailedCandidates.addCandidate()
11129 .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(),
11130 MakeDeductionFailureInfo(Context, Result, Info));
11131 return false;
11132 }
11133
11134 // Template argument deduction ensures that we have an exact match or
11135 // compatible pointer-to-function arguments that would be adjusted by ICS.
11136 // This function template specicalization works.
11137 assert(S.isSameOrCompatibleFunctionType(((S.isSameOrCompatibleFunctionType( Context.getCanonicalType(
Specialization->getType()), Context.getCanonicalType(TargetFunctionType
))) ? static_cast<void> (0) : __assert_fail ("S.isSameOrCompatibleFunctionType( Context.getCanonicalType(Specialization->getType()), Context.getCanonicalType(TargetFunctionType))"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 11139, __PRETTY_FUNCTION__))
11138 Context.getCanonicalType(Specialization->getType()),((S.isSameOrCompatibleFunctionType( Context.getCanonicalType(
Specialization->getType()), Context.getCanonicalType(TargetFunctionType
))) ? static_cast<void> (0) : __assert_fail ("S.isSameOrCompatibleFunctionType( Context.getCanonicalType(Specialization->getType()), Context.getCanonicalType(TargetFunctionType))"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 11139, __PRETTY_FUNCTION__))
11139 Context.getCanonicalType(TargetFunctionType)))((S.isSameOrCompatibleFunctionType( Context.getCanonicalType(
Specialization->getType()), Context.getCanonicalType(TargetFunctionType
))) ? static_cast<void> (0) : __assert_fail ("S.isSameOrCompatibleFunctionType( Context.getCanonicalType(Specialization->getType()), Context.getCanonicalType(TargetFunctionType))"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 11139, __PRETTY_FUNCTION__))
;
11140
11141 if (!S.checkAddressOfFunctionIsAvailable(Specialization))
11142 return false;
11143
11144 Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
11145 return true;
11146 }
11147
11148 bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
11149 const DeclAccessPair& CurAccessFunPair) {
11150 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
11151 // Skip non-static functions when converting to pointer, and static
11152 // when converting to member pointer.
11153 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
11154 return false;
11155 }
11156 else if (TargetTypeIsNonStaticMemberFunction)
11157 return false;
11158
11159 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
11160 if (S.getLangOpts().CUDA)
11161 if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
11162 if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl))
11163 return false;
11164 if (FunDecl->isMultiVersion()) {
11165 const auto *TA = FunDecl->getAttr<TargetAttr>();
11166 if (TA && !TA->isDefaultVersion())
11167 return false;
11168 }
11169
11170 // If any candidate has a placeholder return type, trigger its deduction
11171 // now.
11172 if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(),
11173 Complain)) {
11174 HasComplained |= Complain;
11175 return false;
11176 }
11177
11178 if (!S.checkAddressOfFunctionIsAvailable(FunDecl))
11179 return false;
11180
11181 // If we're in C, we need to support types that aren't exactly identical.
11182 if (!S.getLangOpts().CPlusPlus ||
11183 candidateHasExactlyCorrectType(FunDecl)) {
11184 Matches.push_back(std::make_pair(
11185 CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
11186 FoundNonTemplateFunction = true;
11187 return true;
11188 }
11189 }
11190
11191 return false;
11192 }
11193
11194 bool FindAllFunctionsThatMatchTargetTypeExactly() {
11195 bool Ret = false;
11196
11197 // If the overload expression doesn't have the form of a pointer to
11198 // member, don't try to convert it to a pointer-to-member type.
11199 if (IsInvalidFormOfPointerToMemberFunction())
11200 return false;
11201
11202 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
11203 E = OvlExpr->decls_end();
11204 I != E; ++I) {
11205 // Look through any using declarations to find the underlying function.
11206 NamedDecl *Fn = (*I)->getUnderlyingDecl();
11207
11208 // C++ [over.over]p3:
11209 // Non-member functions and static member functions match
11210 // targets of type "pointer-to-function" or "reference-to-function."
11211 // Nonstatic member functions match targets of
11212 // type "pointer-to-member-function."
11213 // Note that according to DR 247, the containing class does not matter.
11214 if (FunctionTemplateDecl *FunctionTemplate
11215 = dyn_cast<FunctionTemplateDecl>(Fn)) {
11216 if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
11217 Ret = true;
11218 }
11219 // If we have explicit template arguments supplied, skip non-templates.
11220 else if (!OvlExpr->hasExplicitTemplateArgs() &&
11221 AddMatchingNonTemplateFunction(Fn, I.getPair()))
11222 Ret = true;
11223 }
11224 assert(Ret || Matches.empty())((Ret || Matches.empty()) ? static_cast<void> (0) : __assert_fail
("Ret || Matches.empty()", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 11224, __PRETTY_FUNCTION__))
;
11225 return Ret;
11226 }
11227
11228 void EliminateAllExceptMostSpecializedTemplate() {
11229 // [...] and any given function template specialization F1 is
11230 // eliminated if the set contains a second function template
11231 // specialization whose function template is more specialized
11232 // than the function template of F1 according to the partial
11233 // ordering rules of 14.5.5.2.
11234
11235 // The algorithm specified above is quadratic. We instead use a
11236 // two-pass algorithm (similar to the one used to identify the
11237 // best viable function in an overload set) that identifies the
11238 // best function template (if it exists).
11239
11240 UnresolvedSet<4> MatchesCopy; // TODO: avoid!
11241 for (unsigned I = 0, E = Matches.size(); I != E; ++I)
11242 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
11243
11244 // TODO: It looks like FailedCandidates does not serve much purpose
11245 // here, since the no_viable diagnostic has index 0.
11246 UnresolvedSetIterator Result = S.getMostSpecialized(
11247 MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
11248 SourceExpr->getBeginLoc(), S.PDiag(),
11249 S.PDiag(diag::err_addr_ovl_ambiguous)
11250 << Matches[0].second->getDeclName(),
11251 S.PDiag(diag::note_ovl_candidate)
11252 << (unsigned)oc_function << (unsigned)ocs_described_template,
11253 Complain, TargetFunctionType);
11254
11255 if (Result != MatchesCopy.end()) {
11256 // Make it the first and only element
11257 Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
11258 Matches[0].second = cast<FunctionDecl>(*Result);
11259 Matches.resize(1);
11260 } else
11261 HasComplained |= Complain;
11262 }
11263
11264 void EliminateAllTemplateMatches() {
11265 // [...] any function template specializations in the set are
11266 // eliminated if the set also contains a non-template function, [...]
11267 for (unsigned I = 0, N = Matches.size(); I != N; ) {
11268 if (Matches[I].second->getPrimaryTemplate() == nullptr)
11269 ++I;
11270 else {
11271 Matches[I] = Matches[--N];
11272 Matches.resize(N);
11273 }
11274 }
11275 }
11276
11277 void EliminateSuboptimalCudaMatches() {
11278 S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches);
11279 }
11280
11281public:
11282 void ComplainNoMatchesFound() const {
11283 assert(Matches.empty())((Matches.empty()) ? static_cast<void> (0) : __assert_fail
("Matches.empty()", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 11283, __PRETTY_FUNCTION__))
;
11284 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable)
11285 << OvlExpr->getName() << TargetFunctionType
11286 << OvlExpr->getSourceRange();
11287 if (FailedCandidates.empty())
11288 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
11289 /*TakingAddress=*/true);
11290 else {
11291 // We have some deduction failure messages. Use them to diagnose
11292 // the function templates, and diagnose the non-template candidates
11293 // normally.
11294 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
11295 IEnd = OvlExpr->decls_end();
11296 I != IEnd; ++I)
11297 if (FunctionDecl *Fun =
11298 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
11299 if (!functionHasPassObjectSizeParams(Fun))
11300 S.NoteOverloadCandidate(*I, Fun, TargetFunctionType,
11301 /*TakingAddress=*/true);
11302 FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc());
11303 }
11304 }
11305
11306 bool IsInvalidFormOfPointerToMemberFunction() const {
11307 return TargetTypeIsNonStaticMemberFunction &&
11308 !OvlExprInfo.HasFormOfMemberPointer;
11309 }
11310
11311 void ComplainIsInvalidFormOfPointerToMemberFunction() const {
11312 // TODO: Should we condition this on whether any functions might
11313 // have matched, or is it more appropriate to do that in callers?
11314 // TODO: a fixit wouldn't hurt.
11315 S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
11316 << TargetType << OvlExpr->getSourceRange();
11317 }
11318
11319 bool IsStaticMemberFunctionFromBoundPointer() const {
11320 return StaticMemberFunctionFromBoundPointer;
11321 }
11322
11323 void ComplainIsStaticMemberFunctionFromBoundPointer() const {
11324 S.Diag(OvlExpr->getBeginLoc(),
11325 diag::err_invalid_form_pointer_member_function)
11326 << OvlExpr->getSourceRange();
11327 }
11328
11329 void ComplainOfInvalidConversion() const {
11330 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref)
11331 << OvlExpr->getName() << TargetType;
11332 }
11333
11334 void ComplainMultipleMatchesFound() const {
11335 assert(Matches.size() > 1)((Matches.size() > 1) ? static_cast<void> (0) : __assert_fail
("Matches.size() > 1", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 11335, __PRETTY_FUNCTION__))
;
11336 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous)
11337 << OvlExpr->getName() << OvlExpr->getSourceRange();
11338 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
11339 /*TakingAddress=*/true);
11340 }
11341
11342 bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
11343
11344 int getNumMatches() const { return Matches.size(); }
11345
11346 FunctionDecl* getMatchingFunctionDecl() const {
11347 if (Matches.size() != 1) return nullptr;
11348 return Matches[0].second;
11349 }
11350
11351 const DeclAccessPair* getMatchingFunctionAccessPair() const {
11352 if (Matches.size() != 1) return nullptr;
11353 return &Matches[0].first;
11354 }
11355};
11356}
11357
11358/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
11359/// an overloaded function (C++ [over.over]), where @p From is an
11360/// expression with overloaded function type and @p ToType is the type
11361/// we're trying to resolve to. For example:
11362///
11363/// @code
11364/// int f(double);
11365/// int f(int);
11366///
11367/// int (*pfd)(double) = f; // selects f(double)
11368/// @endcode
11369///
11370/// This routine returns the resulting FunctionDecl if it could be
11371/// resolved, and NULL otherwise. When @p Complain is true, this
11372/// routine will emit diagnostics if there is an error.
11373FunctionDecl *
11374Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
11375 QualType TargetType,
11376 bool Complain,
11377 DeclAccessPair &FoundResult,
11378 bool *pHadMultipleCandidates) {
11379 assert(AddressOfExpr->getType() == Context.OverloadTy)((AddressOfExpr->getType() == Context.OverloadTy) ? static_cast
<void> (0) : __assert_fail ("AddressOfExpr->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 11379, __PRETTY_FUNCTION__))
;
11380
11381 AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
11382 Complain);
11383 int NumMatches = Resolver.getNumMatches();
11384 FunctionDecl *Fn = nullptr;
11385 bool ShouldComplain = Complain && !Resolver.hasComplained();
11386 if (NumMatches == 0 && ShouldComplain) {
11387 if (Resolver.IsInvalidFormOfPointerToMemberFunction())
11388 Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
11389 else
11390 Resolver.ComplainNoMatchesFound();
11391 }
11392 else if (NumMatches > 1 && ShouldComplain)
11393 Resolver.ComplainMultipleMatchesFound();
11394 else if (NumMatches == 1) {
11395 Fn = Resolver.getMatchingFunctionDecl();
11396 assert(Fn)((Fn) ? static_cast<void> (0) : __assert_fail ("Fn", "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 11396, __PRETTY_FUNCTION__))
;
11397 if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
11398 ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT);
11399 FoundResult = *Resolver.getMatchingFunctionAccessPair();
11400 if (Complain) {
11401 if (Resolver.IsStaticMemberFunctionFromBoundPointer())
11402 Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
11403 else
11404 CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
11405 }
11406 }
11407
11408 if (pHadMultipleCandidates)
11409 *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
11410 return Fn;
11411}
11412
11413/// Given an expression that refers to an overloaded function, try to
11414/// resolve that function to a single function that can have its address taken.
11415/// This will modify `Pair` iff it returns non-null.
11416///
11417/// This routine can only realistically succeed if all but one candidates in the
11418/// overload set for SrcExpr cannot have their addresses taken.
11419FunctionDecl *
11420Sema::resolveAddressOfOnlyViableOverloadCandidate(Expr *E,
11421 DeclAccessPair &Pair) {
11422 OverloadExpr::FindResult R = OverloadExpr::find(E);
11423 OverloadExpr *Ovl = R.Expression;
11424 FunctionDecl *Result = nullptr;
11425 DeclAccessPair DAP;
11426 // Don't use the AddressOfResolver because we're specifically looking for
11427 // cases where we have one overload candidate that lacks
11428 // enable_if/pass_object_size/...
11429 for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) {
11430 auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl());
11431 if (!FD)
11432 return nullptr;
11433
11434 if (!checkAddressOfFunctionIsAvailable(FD))
11435 continue;
11436
11437 // We have more than one result; quit.
11438 if (Result)
11439 return nullptr;
11440 DAP = I.getPair();
11441 Result = FD;
11442 }
11443
11444 if (Result)
11445 Pair = DAP;
11446 return Result;
11447}
11448
11449/// Given an overloaded function, tries to turn it into a non-overloaded
11450/// function reference using resolveAddressOfOnlyViableOverloadCandidate. This
11451/// will perform access checks, diagnose the use of the resultant decl, and, if
11452/// requested, potentially perform a function-to-pointer decay.
11453///
11454/// Returns false if resolveAddressOfOnlyViableOverloadCandidate fails.
11455/// Otherwise, returns true. This may emit diagnostics and return true.
11456bool Sema::resolveAndFixAddressOfOnlyViableOverloadCandidate(
11457 ExprResult &SrcExpr, bool DoFunctionPointerConverion) {
11458 Expr *E = SrcExpr.get();
11459 assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload")((E->getType() == Context.OverloadTy && "SrcExpr must be an overload"
) ? static_cast<void> (0) : __assert_fail ("E->getType() == Context.OverloadTy && \"SrcExpr must be an overload\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 11459, __PRETTY_FUNCTION__))
;
11460
11461 DeclAccessPair DAP;
11462 FunctionDecl *Found = resolveAddressOfOnlyViableOverloadCandidate(E, DAP);
11463 if (!Found || Found->isCPUDispatchMultiVersion() ||
11464 Found->isCPUSpecificMultiVersion())
11465 return false;
11466
11467 // Emitting multiple diagnostics for a function that is both inaccessible and
11468 // unavailable is consistent with our behavior elsewhere. So, always check
11469 // for both.
11470 DiagnoseUseOfDecl(Found, E->getExprLoc());
11471 CheckAddressOfMemberAccess(E, DAP);
11472 Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found);
11473 if (DoFunctionPointerConverion && Fixed->getType()->isFunctionType())
11474 SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false);
11475 else
11476 SrcExpr = Fixed;
11477 return true;
11478}
11479
11480/// Given an expression that refers to an overloaded function, try to
11481/// resolve that overloaded function expression down to a single function.
11482///
11483/// This routine can only resolve template-ids that refer to a single function
11484/// template, where that template-id refers to a single template whose template
11485/// arguments are either provided by the template-id or have defaults,
11486/// as described in C++0x [temp.arg.explicit]p3.
11487///
11488/// If no template-ids are found, no diagnostics are emitted and NULL is
11489/// returned.
11490FunctionDecl *
11491Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
11492 bool Complain,
11493 DeclAccessPair *FoundResult) {
11494 // C++ [over.over]p1:
11495 // [...] [Note: any redundant set of parentheses surrounding the
11496 // overloaded function name is ignored (5.1). ]
11497 // C++ [over.over]p1:
11498 // [...] The overloaded function name can be preceded by the &
11499 // operator.
11500
11501 // If we didn't actually find any template-ids, we're done.
11502 if (!ovl->hasExplicitTemplateArgs())
11503 return nullptr;
11504
11505 TemplateArgumentListInfo ExplicitTemplateArgs;
11506 ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
11507 TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
11508
11509 // Look through all of the overloaded functions, searching for one
11510 // whose type matches exactly.
11511 FunctionDecl *Matched = nullptr;
11512 for (UnresolvedSetIterator I = ovl->decls_begin(),
11513 E = ovl->decls_end(); I != E; ++I) {
11514 // C++0x [temp.arg.explicit]p3:
11515 // [...] In contexts where deduction is done and fails, or in contexts
11516 // where deduction is not done, if a template argument list is
11517 // specified and it, along with any default template arguments,
11518 // identifies a single function template specialization, then the
11519 // template-id is an lvalue for the function template specialization.
11520 FunctionTemplateDecl *FunctionTemplate
11521 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
11522
11523 // C++ [over.over]p2:
11524 // If the name is a function template, template argument deduction is
11525 // done (14.8.2.2), and if the argument deduction succeeds, the
11526 // resulting template argument list is used to generate a single
11527 // function template specialization, which is added to the set of
11528 // overloaded functions considered.
11529 FunctionDecl *Specialization = nullptr;
11530 TemplateDeductionInfo Info(FailedCandidates.getLocation());
11531 if (TemplateDeductionResult Result
11532 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
11533 Specialization, Info,
11534 /*IsAddressOfFunction*/true)) {
11535 // Make a note of the failed deduction for diagnostics.
11536 // TODO: Actually use the failed-deduction info?
11537 FailedCandidates.addCandidate()
11538 .set(I.getPair(), FunctionTemplate->getTemplatedDecl(),
11539 MakeDeductionFailureInfo(Context, Result, Info));
11540 continue;
11541 }
11542
11543 assert(Specialization && "no specialization and no error?")((Specialization && "no specialization and no error?"
) ? static_cast<void> (0) : __assert_fail ("Specialization && \"no specialization and no error?\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 11543, __PRETTY_FUNCTION__))
;
11544
11545 // Multiple matches; we can't resolve to a single declaration.
11546 if (Matched) {
11547 if (Complain) {
11548 Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
11549 << ovl->getName();
11550 NoteAllOverloadCandidates(ovl);
11551 }
11552 return nullptr;
11553 }
11554
11555 Matched = Specialization;
11556 if (FoundResult) *FoundResult = I.getPair();
11557 }
11558
11559 if (Matched &&
11560 completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain))
11561 return nullptr;
11562
11563 return Matched;
11564}
11565
11566// Resolve and fix an overloaded expression that can be resolved
11567// because it identifies a single function template specialization.
11568//
11569// Last three arguments should only be supplied if Complain = true
11570//
11571// Return true if it was logically possible to so resolve the
11572// expression, regardless of whether or not it succeeded. Always
11573// returns true if 'complain' is set.
11574bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
11575 ExprResult &SrcExpr, bool doFunctionPointerConverion,
11576 bool complain, SourceRange OpRangeForComplaining,
11577 QualType DestTypeForComplaining,
11578 unsigned DiagIDForComplaining) {
11579 assert(SrcExpr.get()->getType() == Context.OverloadTy)((SrcExpr.get()->getType() == Context.OverloadTy) ? static_cast
<void> (0) : __assert_fail ("SrcExpr.get()->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 11579, __PRETTY_FUNCTION__))
;
11580
11581 OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
11582
11583 DeclAccessPair found;
11584 ExprResult SingleFunctionExpression;
11585 if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
11586 ovl.Expression, /*complain*/ false, &found)) {
11587 if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) {
11588 SrcExpr = ExprError();
11589 return true;
11590 }
11591
11592 // It is only correct to resolve to an instance method if we're
11593 // resolving a form that's permitted to be a pointer to member.
11594 // Otherwise we'll end up making a bound member expression, which
11595 // is illegal in all the contexts we resolve like this.
11596 if (!ovl.HasFormOfMemberPointer &&
11597 isa<CXXMethodDecl>(fn) &&
11598 cast<CXXMethodDecl>(fn)->isInstance()) {
11599 if (!complain) return false;
11600
11601 Diag(ovl.Expression->getExprLoc(),
11602 diag::err_bound_member_function)
11603 << 0 << ovl.Expression->getSourceRange();
11604
11605 // TODO: I believe we only end up here if there's a mix of
11606 // static and non-static candidates (otherwise the expression
11607 // would have 'bound member' type, not 'overload' type).
11608 // Ideally we would note which candidate was chosen and why
11609 // the static candidates were rejected.
11610 SrcExpr = ExprError();
11611 return true;
11612 }
11613
11614 // Fix the expression to refer to 'fn'.
11615 SingleFunctionExpression =
11616 FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
11617
11618 // If desired, do function-to-pointer decay.
11619 if (doFunctionPointerConverion) {
11620 SingleFunctionExpression =
11621 DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
11622 if (SingleFunctionExpression.isInvalid()) {
11623 SrcExpr = ExprError();
11624 return true;
11625 }
11626 }
11627 }
11628
11629 if (!SingleFunctionExpression.isUsable()) {
11630 if (complain) {
11631 Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
11632 << ovl.Expression->getName()
11633 << DestTypeForComplaining
11634 << OpRangeForComplaining
11635 << ovl.Expression->getQualifierLoc().getSourceRange();
11636 NoteAllOverloadCandidates(SrcExpr.get());
11637
11638 SrcExpr = ExprError();
11639 return true;
11640 }
11641
11642 return false;
11643 }
11644
11645 SrcExpr = SingleFunctionExpression;
11646 return true;
11647}
11648
11649/// Add a single candidate to the overload set.
11650static void AddOverloadedCallCandidate(Sema &S,
11651 DeclAccessPair FoundDecl,
11652 TemplateArgumentListInfo *ExplicitTemplateArgs,
11653 ArrayRef<Expr *> Args,
11654 OverloadCandidateSet &CandidateSet,
11655 bool PartialOverloading,
11656 bool KnownValid) {
11657 NamedDecl *Callee = FoundDecl.getDecl();
11658 if (isa<UsingShadowDecl>(Callee))
11659 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
11660
11661 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
11662 if (ExplicitTemplateArgs) {
11663 assert(!KnownValid && "Explicit template arguments?")((!KnownValid && "Explicit template arguments?") ? static_cast
<void> (0) : __assert_fail ("!KnownValid && \"Explicit template arguments?\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 11663, __PRETTY_FUNCTION__))
;
11664 return;
11665 }
11666 // Prevent ill-formed function decls to be added as overload candidates.
11667 if (!dyn_cast<FunctionProtoType>(Func->getType()->getAs<FunctionType>()))
11668 return;
11669
11670 S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
11671 /*SuppressUsedConversions=*/false,
11672 PartialOverloading);
11673 return;
11674 }
11675
11676 if (FunctionTemplateDecl *FuncTemplate
11677 = dyn_cast<FunctionTemplateDecl>(Callee)) {
11678 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
11679 ExplicitTemplateArgs, Args, CandidateSet,
11680 /*SuppressUsedConversions=*/false,
11681 PartialOverloading);
11682 return;
11683 }
11684
11685 assert(!KnownValid && "unhandled case in overloaded call candidate")((!KnownValid && "unhandled case in overloaded call candidate"
) ? static_cast<void> (0) : __assert_fail ("!KnownValid && \"unhandled case in overloaded call candidate\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 11685, __PRETTY_FUNCTION__))
;
11686}
11687
11688/// Add the overload candidates named by callee and/or found by argument
11689/// dependent lookup to the given overload set.
11690void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
11691 ArrayRef<Expr *> Args,
11692 OverloadCandidateSet &CandidateSet,
11693 bool PartialOverloading) {
11694
11695#ifndef NDEBUG
11696 // Verify that ArgumentDependentLookup is consistent with the rules
11697 // in C++0x [basic.lookup.argdep]p3:
11698 //
11699 // Let X be the lookup set produced by unqualified lookup (3.4.1)
11700 // and let Y be the lookup set produced by argument dependent
11701 // lookup (defined as follows). If X contains
11702 //
11703 // -- a declaration of a class member, or
11704 //
11705 // -- a block-scope function declaration that is not a
11706 // using-declaration, or
11707 //
11708 // -- a declaration that is neither a function or a function
11709 // template
11710 //
11711 // then Y is empty.
11712
11713 if (ULE->requiresADL()) {
11714 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
11715 E = ULE->decls_end(); I != E; ++I) {
11716 assert(!(*I)->getDeclContext()->isRecord())((!(*I)->getDeclContext()->isRecord()) ? static_cast<
void> (0) : __assert_fail ("!(*I)->getDeclContext()->isRecord()"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 11716, __PRETTY_FUNCTION__))
;
11717 assert(isa<UsingShadowDecl>(*I) ||((isa<UsingShadowDecl>(*I) || !(*I)->getDeclContext(
)->isFunctionOrMethod()) ? static_cast<void> (0) : __assert_fail
("isa<UsingShadowDecl>(*I) || !(*I)->getDeclContext()->isFunctionOrMethod()"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 11718, __PRETTY_FUNCTION__))
11718 !(*I)->getDeclContext()->isFunctionOrMethod())((isa<UsingShadowDecl>(*I) || !(*I)->getDeclContext(
)->isFunctionOrMethod()) ? static_cast<void> (0) : __assert_fail
("isa<UsingShadowDecl>(*I) || !(*I)->getDeclContext()->isFunctionOrMethod()"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 11718, __PRETTY_FUNCTION__))
;
11719 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate())(((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate
()) ? static_cast<void> (0) : __assert_fail ("(*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 11719, __PRETTY_FUNCTION__))
;
11720 }
11721 }
11722#endif
11723
11724 // It would be nice to avoid this copy.
11725 TemplateArgumentListInfo TABuffer;
11726 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
11727 if (ULE->hasExplicitTemplateArgs()) {
11728 ULE->copyTemplateArgumentsInto(TABuffer);
11729 ExplicitTemplateArgs = &TABuffer;
11730 }
11731
11732 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
11733 E = ULE->decls_end(); I != E; ++I)
11734 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
11735 CandidateSet, PartialOverloading,
11736 /*KnownValid*/ true);
11737
11738 if (ULE->requiresADL())
11739 AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
11740 Args, ExplicitTemplateArgs,
11741 CandidateSet, PartialOverloading);
11742}
11743
11744/// Determine whether a declaration with the specified name could be moved into
11745/// a different namespace.
11746static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
11747 switch (Name.getCXXOverloadedOperator()) {
11748 case OO_New: case OO_Array_New:
11749 case OO_Delete: case OO_Array_Delete:
11750 return false;
11751
11752 default:
11753 return true;
11754 }
11755}
11756
11757/// Attempt to recover from an ill-formed use of a non-dependent name in a
11758/// template, where the non-dependent name was declared after the template
11759/// was defined. This is common in code written for a compilers which do not
11760/// correctly implement two-stage name lookup.
11761///
11762/// Returns true if a viable candidate was found and a diagnostic was issued.
11763static bool
11764DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
11765 const CXXScopeSpec &SS, LookupResult &R,
11766 OverloadCandidateSet::CandidateSetKind CSK,
11767 TemplateArgumentListInfo *ExplicitTemplateArgs,
11768 ArrayRef<Expr *> Args,
11769 bool *DoDiagnoseEmptyLookup = nullptr) {
11770 if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty())
11771 return false;
11772
11773 for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
11774 if (DC->isTransparentContext())
11775 continue;
11776
11777 SemaRef.LookupQualifiedName(R, DC);
11778
11779 if (!R.empty()) {
11780 R.suppressDiagnostics();
11781
11782 if (isa<CXXRecordDecl>(DC)) {
11783 // Don't diagnose names we find in classes; we get much better
11784 // diagnostics for these from DiagnoseEmptyLookup.
11785 R.clear();
11786 if (DoDiagnoseEmptyLookup)
11787 *DoDiagnoseEmptyLookup = true;
11788 return false;
11789 }
11790
11791 OverloadCandidateSet Candidates(FnLoc, CSK);
11792 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
11793 AddOverloadedCallCandidate(SemaRef, I.getPair(),
11794 ExplicitTemplateArgs, Args,
11795 Candidates, false, /*KnownValid*/ false);
11796
11797 OverloadCandidateSet::iterator Best;
11798 if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
11799 // No viable functions. Don't bother the user with notes for functions
11800 // which don't work and shouldn't be found anyway.
11801 R.clear();
11802 return false;
11803 }
11804
11805 // Find the namespaces where ADL would have looked, and suggest
11806 // declaring the function there instead.
11807 Sema::AssociatedNamespaceSet AssociatedNamespaces;
11808 Sema::AssociatedClassSet AssociatedClasses;
11809 SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
11810 AssociatedNamespaces,
11811 AssociatedClasses);
11812 Sema::AssociatedNamespaceSet SuggestedNamespaces;
11813 if (canBeDeclaredInNamespace(R.getLookupName())) {
11814 DeclContext *Std = SemaRef.getStdNamespace();
11815 for (Sema::AssociatedNamespaceSet::iterator
11816 it = AssociatedNamespaces.begin(),
11817 end = AssociatedNamespaces.end(); it != end; ++it) {
11818 // Never suggest declaring a function within namespace 'std'.
11819 if (Std && Std->Encloses(*it))
11820 continue;
11821
11822 // Never suggest declaring a function within a namespace with a
11823 // reserved name, like __gnu_cxx.
11824 NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
11825 if (NS &&
11826 NS->getQualifiedNameAsString().find("__") != std::string::npos)
11827 continue;
11828
11829 SuggestedNamespaces.insert(*it);
11830 }
11831 }
11832
11833 SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
11834 << R.getLookupName();
11835 if (SuggestedNamespaces.empty()) {
11836 SemaRef.Diag(Best->Function->getLocation(),
11837 diag::note_not_found_by_two_phase_lookup)
11838 << R.getLookupName() << 0;
11839 } else if (SuggestedNamespaces.size() == 1) {
11840 SemaRef.Diag(Best->Function->getLocation(),
11841 diag::note_not_found_by_two_phase_lookup)
11842 << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
11843 } else {
11844 // FIXME: It would be useful to list the associated namespaces here,
11845 // but the diagnostics infrastructure doesn't provide a way to produce
11846 // a localized representation of a list of items.
11847 SemaRef.Diag(Best->Function->getLocation(),
11848 diag::note_not_found_by_two_phase_lookup)
11849 << R.getLookupName() << 2;
11850 }
11851
11852 // Try to recover by calling this function.
11853 return true;
11854 }
11855
11856 R.clear();
11857 }
11858
11859 return false;
11860}
11861
11862/// Attempt to recover from ill-formed use of a non-dependent operator in a
11863/// template, where the non-dependent operator was declared after the template
11864/// was defined.
11865///
11866/// Returns true if a viable candidate was found and a diagnostic was issued.
11867static bool
11868DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
11869 SourceLocation OpLoc,
11870 ArrayRef<Expr *> Args) {
11871 DeclarationName OpName =
11872 SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
11873 LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
11874 return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
11875 OverloadCandidateSet::CSK_Operator,
11876 /*ExplicitTemplateArgs=*/nullptr, Args);
11877}
11878
11879namespace {
11880class BuildRecoveryCallExprRAII {
11881 Sema &SemaRef;
11882public:
11883 BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
11884 assert(SemaRef.IsBuildingRecoveryCallExpr == false)((SemaRef.IsBuildingRecoveryCallExpr == false) ? static_cast<
void> (0) : __assert_fail ("SemaRef.IsBuildingRecoveryCallExpr == false"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 11884, __PRETTY_FUNCTION__))
;
11885 SemaRef.IsBuildingRecoveryCallExpr = true;
11886 }
11887
11888 ~BuildRecoveryCallExprRAII() {
11889 SemaRef.IsBuildingRecoveryCallExpr = false;
11890 }
11891};
11892
11893}
11894
11895/// Attempts to recover from a call where no functions were found.
11896///
11897/// Returns true if new candidates were found.
11898static ExprResult
11899BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
11900 UnresolvedLookupExpr *ULE,
11901 SourceLocation LParenLoc,
11902 MutableArrayRef<Expr *> Args,
11903 SourceLocation RParenLoc,
11904 bool EmptyLookup, bool AllowTypoCorrection) {
11905 // Do not try to recover if it is already building a recovery call.
11906 // This stops infinite loops for template instantiations like
11907 //
11908 // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
11909 // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
11910 //
11911 if (SemaRef.IsBuildingRecoveryCallExpr)
11912 return ExprError();
11913 BuildRecoveryCallExprRAII RCE(SemaRef);
11914
11915 CXXScopeSpec SS;
11916 SS.Adopt(ULE->getQualifierLoc());
11917 SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
11918
11919 TemplateArgumentListInfo TABuffer;
11920 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
11921 if (ULE->hasExplicitTemplateArgs()) {
11922 ULE->copyTemplateArgumentsInto(TABuffer);
11923 ExplicitTemplateArgs = &TABuffer;
11924 }
11925
11926 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
11927 Sema::LookupOrdinaryName);
11928 bool DoDiagnoseEmptyLookup = EmptyLookup;
11929 if (!DiagnoseTwoPhaseLookup(
11930 SemaRef, Fn->getExprLoc(), SS, R, OverloadCandidateSet::CSK_Normal,
11931 ExplicitTemplateArgs, Args, &DoDiagnoseEmptyLookup)) {
11932 NoTypoCorrectionCCC NoTypoValidator{};
11933 FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(),
11934 ExplicitTemplateArgs != nullptr,
11935 dyn_cast<MemberExpr>(Fn));
11936 CorrectionCandidateCallback &Validator =
11937 AllowTypoCorrection
11938 ? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator)
11939 : static_cast<CorrectionCandidateCallback &>(NoTypoValidator);
11940 if (!DoDiagnoseEmptyLookup ||
11941 SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs,
11942 Args))
11943 return ExprError();
11944 }
11945
11946 assert(!R.empty() && "lookup results empty despite recovery")((!R.empty() && "lookup results empty despite recovery"
) ? static_cast<void> (0) : __assert_fail ("!R.empty() && \"lookup results empty despite recovery\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 11946, __PRETTY_FUNCTION__))
;
11947
11948 // If recovery created an ambiguity, just bail out.
11949 if (R.isAmbiguous()) {
11950 R.suppressDiagnostics();
11951 return ExprError();
11952 }
11953
11954 // Build an implicit member call if appropriate. Just drop the
11955 // casts and such from the call, we don't really care.
11956 ExprResult NewFn = ExprError();
11957 if ((*R.begin())->isCXXClassMember())
11958 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
11959 ExplicitTemplateArgs, S);
11960 else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
11961 NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
11962 ExplicitTemplateArgs);
11963 else
11964 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
11965
11966 if (NewFn.isInvalid())
11967 return ExprError();
11968
11969 // This shouldn't cause an infinite loop because we're giving it
11970 // an expression with viable lookup results, which should never
11971 // end up here.
11972 return SemaRef.ActOnCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
11973 MultiExprArg(Args.data(), Args.size()),
11974 RParenLoc);
11975}
11976
11977/// Constructs and populates an OverloadedCandidateSet from
11978/// the given function.
11979/// \returns true when an the ExprResult output parameter has been set.
11980bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
11981 UnresolvedLookupExpr *ULE,
11982 MultiExprArg Args,
11983 SourceLocation RParenLoc,
11984 OverloadCandidateSet *CandidateSet,
11985 ExprResult *Result) {
11986#ifndef NDEBUG
11987 if (ULE->requiresADL()) {
11988 // To do ADL, we must have found an unqualified name.
11989 assert(!ULE->getQualifier() && "qualified name with ADL")((!ULE->getQualifier() && "qualified name with ADL"
) ? static_cast<void> (0) : __assert_fail ("!ULE->getQualifier() && \"qualified name with ADL\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 11989, __PRETTY_FUNCTION__))
;
11990
11991 // We don't perform ADL for implicit declarations of builtins.
11992 // Verify that this was correctly set up.
11993 FunctionDecl *F;
11994 if (ULE->decls_begin() + 1 == ULE->decls_end() &&
11995 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
11996 F->getBuiltinID() && F->isImplicit())
11997 llvm_unreachable("performing ADL for builtin")::llvm::llvm_unreachable_internal("performing ADL for builtin"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 11997)
;
11998
11999 // We don't perform ADL in C.
12000 assert(getLangOpts().CPlusPlus && "ADL enabled in C")((getLangOpts().CPlusPlus && "ADL enabled in C") ? static_cast
<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"ADL enabled in C\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 12000, __PRETTY_FUNCTION__))
;
12001 }
12002#endif
12003
12004 UnbridgedCastsSet UnbridgedCasts;
12005 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
12006 *Result = ExprError();
12007 return true;
12008 }
12009
12010 // Add the functions denoted by the callee to the set of candidate
12011 // functions, including those from argument-dependent lookup.
12012 AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
12013
12014 if (getLangOpts().MSVCCompat &&
12015 CurContext->isDependentContext() && !isSFINAEContext() &&
12016 (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
12017
12018 OverloadCandidateSet::iterator Best;
12019 if (CandidateSet->empty() ||
12020 CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) ==
12021 OR_No_Viable_Function) {
12022 // In Microsoft mode, if we are inside a template class member function
12023 // then create a type dependent CallExpr. The goal is to postpone name
12024 // lookup to instantiation time to be able to search into type dependent
12025 // base classes.
12026 CallExpr *CE = CallExpr::Create(Context, Fn, Args, Context.DependentTy,
12027 VK_RValue, RParenLoc);
12028 CE->setTypeDependent(true);
12029 CE->setValueDependent(true);
12030 CE->setInstantiationDependent(true);
12031 *Result = CE;
12032 return true;
12033 }
12034 }
12035
12036 if (CandidateSet->empty())
12037 return false;
12038
12039 UnbridgedCasts.restore();
12040 return false;
12041}
12042
12043/// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
12044/// the completed call expression. If overload resolution fails, emits
12045/// diagnostics and returns ExprError()
12046static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
12047 UnresolvedLookupExpr *ULE,
12048 SourceLocation LParenLoc,
12049 MultiExprArg Args,
12050 SourceLocation RParenLoc,
12051 Expr *ExecConfig,
12052 OverloadCandidateSet *CandidateSet,
12053 OverloadCandidateSet::iterator *Best,
12054 OverloadingResult OverloadResult,
12055 bool AllowTypoCorrection) {
12056 if (CandidateSet->empty())
12057 return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args,
12058 RParenLoc, /*EmptyLookup=*/true,
12059 AllowTypoCorrection);
12060
12061 switch (OverloadResult) {
12062 case OR_Success: {
12063 FunctionDecl *FDecl = (*Best)->Function;
12064 SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
12065 if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
12066 return ExprError();
12067 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
12068 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
12069 ExecConfig, /*IsExecConfig=*/false,
12070 (*Best)->IsADLCandidate);
12071 }
12072
12073 case OR_No_Viable_Function: {
12074 // Try to recover by looking for viable functions which the user might
12075 // have meant to call.
12076 ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
12077 Args, RParenLoc,
12078 /*EmptyLookup=*/false,
12079 AllowTypoCorrection);
12080 if (!Recovery.isInvalid())
12081 return Recovery;
12082
12083 // If the user passes in a function that we can't take the address of, we
12084 // generally end up emitting really bad error messages. Here, we attempt to
12085 // emit better ones.
12086 for (const Expr *Arg : Args) {
12087 if (!Arg->getType()->isFunctionType())
12088 continue;
12089 if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) {
12090 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
12091 if (FD &&
12092 !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
12093 Arg->getExprLoc()))
12094 return ExprError();
12095 }
12096 }
12097
12098 SemaRef.Diag(Fn->getBeginLoc(), diag::err_ovl_no_viable_function_in_call)
12099 << ULE->getName() << Fn->getSourceRange();
12100 CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
12101 break;
12102 }
12103
12104 case OR_Ambiguous:
12105 SemaRef.Diag(Fn->getBeginLoc(), diag::err_ovl_ambiguous_call)
12106 << ULE->getName() << Fn->getSourceRange();
12107 CandidateSet->NoteCandidates(SemaRef, OCD_ViableCandidates, Args);
12108 break;
12109
12110 case OR_Deleted: {
12111 SemaRef.Diag(Fn->getBeginLoc(), diag::err_ovl_deleted_call)
12112 << ULE->getName() << Fn->getSourceRange();
12113 CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
12114
12115 // We emitted an error for the unavailable/deleted function call but keep
12116 // the call in the AST.
12117 FunctionDecl *FDecl = (*Best)->Function;
12118 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
12119 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
12120 ExecConfig, /*IsExecConfig=*/false,
12121 (*Best)->IsADLCandidate);
12122 }
12123 }
12124
12125 // Overload resolution failed.
12126 return ExprError();
12127}
12128
12129static void markUnaddressableCandidatesUnviable(Sema &S,
12130 OverloadCandidateSet &CS) {
12131 for (auto I = CS.begin(), E = CS.end(); I != E; ++I) {
12132 if (I->Viable &&
12133 !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) {
12134 I->Viable = false;
12135 I->FailureKind = ovl_fail_addr_not_available;
12136 }
12137 }
12138}
12139
12140/// BuildOverloadedCallExpr - Given the call expression that calls Fn
12141/// (which eventually refers to the declaration Func) and the call
12142/// arguments Args/NumArgs, attempt to resolve the function call down
12143/// to a specific function. If overload resolution succeeds, returns
12144/// the call expression produced by overload resolution.
12145/// Otherwise, emits diagnostics and returns ExprError.
12146ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
12147 UnresolvedLookupExpr *ULE,
12148 SourceLocation LParenLoc,
12149 MultiExprArg Args,
12150 SourceLocation RParenLoc,
12151 Expr *ExecConfig,
12152 bool AllowTypoCorrection,
12153 bool CalleesAddressIsTaken) {
12154 OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
12155 OverloadCandidateSet::CSK_Normal);
12156 ExprResult result;
12157
12158 if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
12159 &result))
12160 return result;
12161
12162 // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that
12163 // functions that aren't addressible are considered unviable.
12164 if (CalleesAddressIsTaken)
12165 markUnaddressableCandidatesUnviable(*this, CandidateSet);
12166
12167 OverloadCandidateSet::iterator Best;
12168 OverloadingResult OverloadResult =
12169 CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best);
12170
12171 return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args,
12172 RParenLoc, ExecConfig, &CandidateSet,
12173 &Best, OverloadResult,
12174 AllowTypoCorrection);
12175}
12176
12177static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
12178 return Functions.size() > 1 ||
12179 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
12180}
12181
12182/// Create a unary operation that may resolve to an overloaded
12183/// operator.
12184///
12185/// \param OpLoc The location of the operator itself (e.g., '*').
12186///
12187/// \param Opc The UnaryOperatorKind that describes this operator.
12188///
12189/// \param Fns The set of non-member functions that will be
12190/// considered by overload resolution. The caller needs to build this
12191/// set based on the context using, e.g.,
12192/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
12193/// set should not contain any member functions; those will be added
12194/// by CreateOverloadedUnaryOp().
12195///
12196/// \param Input The input argument.
12197ExprResult
12198Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
12199 const UnresolvedSetImpl &Fns,
12200 Expr *Input, bool PerformADL) {
12201 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
12202 assert(Op != OO_None && "Invalid opcode for overloaded unary operator")((Op != OO_None && "Invalid opcode for overloaded unary operator"
) ? static_cast<void> (0) : __assert_fail ("Op != OO_None && \"Invalid opcode for overloaded unary operator\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 12202, __PRETTY_FUNCTION__))
;
12203 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
12204 // TODO: provide better source location info.
12205 DeclarationNameInfo OpNameInfo(OpName, OpLoc);
12206
12207 if (checkPlaceholderForOverload(*this, Input))
12208 return ExprError();
12209
12210 Expr *Args[2] = { Input, nullptr };
12211 unsigned NumArgs = 1;
12212
12213 // For post-increment and post-decrement, add the implicit '0' as
12214 // the second argument, so that we know this is a post-increment or
12215 // post-decrement.
12216 if (Opc == UO_PostInc || Opc == UO_PostDec) {
12217 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
12218 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
12219 SourceLocation());
12220 NumArgs = 2;
12221 }
12222
12223 ArrayRef<Expr *> ArgsArray(Args, NumArgs);
12224
12225 if (Input->isTypeDependent()) {
12226 if (Fns.empty())
12227 return new (Context) UnaryOperator(Input, Opc, Context.DependentTy,
12228 VK_RValue, OK_Ordinary, OpLoc, false);
12229
12230 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
12231 UnresolvedLookupExpr *Fn = UnresolvedLookupExpr::Create(
12232 Context, NamingClass, NestedNameSpecifierLoc(), OpNameInfo,
12233 /*ADL*/ true, IsOverloaded(Fns), Fns.begin(), Fns.end());
12234 return CXXOperatorCallExpr::Create(Context, Op, Fn, ArgsArray,
12235 Context.DependentTy, VK_RValue, OpLoc,
12236 FPOptions());
12237 }
12238
12239 // Build an empty overload set.
12240 OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
12241
12242 // Add the candidates from the given function set.
12243 AddFunctionCandidates(Fns, ArgsArray, CandidateSet);
12244
12245 // Add operator candidates that are member functions.
12246 AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
12247
12248 // Add candidates from ADL.
12249 if (PerformADL) {
12250 AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
12251 /*ExplicitTemplateArgs*/nullptr,
12252 CandidateSet);
12253 }
12254
12255 // Add builtin operator candidates.
12256 AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
12257
12258 bool HadMultipleCandidates = (CandidateSet.size() > 1);
12259
12260 // Perform overload resolution.
12261 OverloadCandidateSet::iterator Best;
12262 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
12263 case OR_Success: {
12264 // We found a built-in operator or an overloaded operator.
12265 FunctionDecl *FnDecl = Best->Function;
12266
12267 if (FnDecl) {
12268 Expr *Base = nullptr;
12269 // We matched an overloaded operator. Build a call to that
12270 // operator.
12271
12272 // Convert the arguments.
12273 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
12274 CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
12275
12276 ExprResult InputRes =
12277 PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
12278 Best->FoundDecl, Method);
12279 if (InputRes.isInvalid())
12280 return ExprError();
12281 Base = Input = InputRes.get();
12282 } else {
12283 // Convert the arguments.
12284 ExprResult InputInit
12285 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
12286 Context,
12287 FnDecl->getParamDecl(0)),
12288 SourceLocation(),
12289 Input);
12290 if (InputInit.isInvalid())
12291 return ExprError();
12292 Input = InputInit.get();
12293 }
12294
12295 // Build the actual expression node.
12296 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
12297 Base, HadMultipleCandidates,
12298 OpLoc);
12299 if (FnExpr.isInvalid())
12300 return ExprError();
12301
12302 // Determine the result type.
12303 QualType ResultTy = FnDecl->getReturnType();
12304 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12305 ResultTy = ResultTy.getNonLValueExprType(Context);
12306
12307 Args[0] = Input;
12308 CallExpr *TheCall = CXXOperatorCallExpr::Create(
12309 Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc,
12310 FPOptions(), Best->IsADLCandidate);
12311
12312 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
12313 return ExprError();
12314
12315 if (CheckFunctionCall(FnDecl, TheCall,
12316 FnDecl->getType()->castAs<FunctionProtoType>()))
12317 return ExprError();
12318
12319 return MaybeBindToTemporary(TheCall);
12320 } else {
12321 // We matched a built-in operator. Convert the arguments, then
12322 // break out so that we will build the appropriate built-in
12323 // operator node.
12324 ExprResult InputRes = PerformImplicitConversion(
12325 Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing,
12326 CCK_ForBuiltinOverloadedOp);
12327 if (InputRes.isInvalid())
12328 return ExprError();
12329 Input = InputRes.get();
12330 break;
12331 }
12332 }
12333
12334 case OR_No_Viable_Function:
12335 // This is an erroneous use of an operator which can be overloaded by
12336 // a non-member function. Check for non-member operators which were
12337 // defined too late to be candidates.
12338 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
12339 // FIXME: Recover by calling the found function.
12340 return ExprError();
12341
12342 // No viable function; fall through to handling this as a
12343 // built-in operator, which will produce an error message for us.
12344 break;
12345
12346 case OR_Ambiguous:
12347 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary)
12348 << UnaryOperator::getOpcodeStr(Opc)
12349 << Input->getType()
12350 << Input->getSourceRange();
12351 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, ArgsArray,
12352 UnaryOperator::getOpcodeStr(Opc), OpLoc);
12353 return ExprError();
12354
12355 case OR_Deleted:
12356 Diag(OpLoc, diag::err_ovl_deleted_oper)
12357 << UnaryOperator::getOpcodeStr(Opc) << Input->getSourceRange();
12358 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, ArgsArray,
12359 UnaryOperator::getOpcodeStr(Opc), OpLoc);
12360 return ExprError();
12361 }
12362
12363 // Either we found no viable overloaded operator or we matched a
12364 // built-in operator. In either case, fall through to trying to
12365 // build a built-in operation.
12366 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
12367}
12368
12369/// Create a binary operation that may resolve to an overloaded
12370/// operator.
12371///
12372/// \param OpLoc The location of the operator itself (e.g., '+').
12373///
12374/// \param Opc The BinaryOperatorKind that describes this operator.
12375///
12376/// \param Fns The set of non-member functions that will be
12377/// considered by overload resolution. The caller needs to build this
12378/// set based on the context using, e.g.,
12379/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
12380/// set should not contain any member functions; those will be added
12381/// by CreateOverloadedBinOp().
12382///
12383/// \param LHS Left-hand argument.
12384/// \param RHS Right-hand argument.
12385ExprResult
12386Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
12387 BinaryOperatorKind Opc,
12388 const UnresolvedSetImpl &Fns,
12389 Expr *LHS, Expr *RHS, bool PerformADL) {
12390 Expr *Args[2] = { LHS, RHS };
12391 LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
12392
12393 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
12394 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
12395
12396 // If either side is type-dependent, create an appropriate dependent
12397 // expression.
12398 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
12399 if (Fns.empty()) {
12400 // If there are no functions to store, just build a dependent
12401 // BinaryOperator or CompoundAssignment.
12402 if (Opc <= BO_Assign || Opc > BO_OrAssign)
12403 return new (Context) BinaryOperator(
12404 Args[0], Args[1], Opc, Context.DependentTy, VK_RValue, OK_Ordinary,
12405 OpLoc, FPFeatures);
12406
12407 return new (Context) CompoundAssignOperator(
12408 Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, OK_Ordinary,
12409 Context.DependentTy, Context.DependentTy, OpLoc,
12410 FPFeatures);
12411 }
12412
12413 // FIXME: save results of ADL from here?
12414 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
12415 // TODO: provide better source location info in DNLoc component.
12416 DeclarationNameInfo OpNameInfo(OpName, OpLoc);
12417 UnresolvedLookupExpr *Fn = UnresolvedLookupExpr::Create(
12418 Context, NamingClass, NestedNameSpecifierLoc(), OpNameInfo,
12419 /*ADL*/ PerformADL, IsOverloaded(Fns), Fns.begin(), Fns.end());
12420 return CXXOperatorCallExpr::Create(Context, Op, Fn, Args,
12421 Context.DependentTy, VK_RValue, OpLoc,
12422 FPFeatures);
12423 }
12424
12425 // Always do placeholder-like conversions on the RHS.
12426 if (checkPlaceholderForOverload(*this, Args[1]))
12427 return ExprError();
12428
12429 // Do placeholder-like conversion on the LHS; note that we should
12430 // not get here with a PseudoObject LHS.
12431 assert(Args[0]->getObjectKind() != OK_ObjCProperty)((Args[0]->getObjectKind() != OK_ObjCProperty) ? static_cast
<void> (0) : __assert_fail ("Args[0]->getObjectKind() != OK_ObjCProperty"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 12431, __PRETTY_FUNCTION__))
;
12432 if (checkPlaceholderForOverload(*this, Args[0]))
12433 return ExprError();
12434
12435 // If this is the assignment operator, we only perform overload resolution
12436 // if the left-hand side is a class or enumeration type. This is actually
12437 // a hack. The standard requires that we do overload resolution between the
12438 // various built-in candidates, but as DR507 points out, this can lead to
12439 // problems. So we do it this way, which pretty much follows what GCC does.
12440 // Note that we go the traditional code path for compound assignment forms.
12441 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
12442 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12443
12444 // If this is the .* operator, which is not overloadable, just
12445 // create a built-in binary operator.
12446 if (Opc == BO_PtrMemD)
12447 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12448
12449 // Build an empty overload set.
12450 OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
12451
12452 // Add the candidates from the given function set.
12453 AddFunctionCandidates(Fns, Args, CandidateSet);
12454
12455 // Add operator candidates that are member functions.
12456 AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
12457
12458 // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
12459 // performed for an assignment operator (nor for operator[] nor operator->,
12460 // which don't get here).
12461 if (Opc != BO_Assign && PerformADL)
12462 AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
12463 /*ExplicitTemplateArgs*/ nullptr,
12464 CandidateSet);
12465
12466 // Add builtin operator candidates.
12467 AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
12468
12469 bool HadMultipleCandidates = (CandidateSet.size() > 1);
12470
12471 // Perform overload resolution.
12472 OverloadCandidateSet::iterator Best;
12473 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
12474 case OR_Success: {
12475 // We found a built-in operator or an overloaded operator.
12476 FunctionDecl *FnDecl = Best->Function;
12477
12478 if (FnDecl) {
12479 Expr *Base = nullptr;
12480 // We matched an overloaded operator. Build a call to that
12481 // operator.
12482
12483 // Convert the arguments.
12484 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
12485 // Best->Access is only meaningful for class members.
12486 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
12487
12488 ExprResult Arg1 =
12489 PerformCopyInitialization(
12490 InitializedEntity::InitializeParameter(Context,
12491 FnDecl->getParamDecl(0)),
12492 SourceLocation(), Args[1]);
12493 if (Arg1.isInvalid())
12494 return ExprError();
12495
12496 ExprResult Arg0 =
12497 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
12498 Best->FoundDecl, Method);
12499 if (Arg0.isInvalid())
12500 return ExprError();
12501 Base = Args[0] = Arg0.getAs<Expr>();
12502 Args[1] = RHS = Arg1.getAs<Expr>();
12503 } else {
12504 // Convert the arguments.
12505 ExprResult Arg0 = PerformCopyInitialization(
12506 InitializedEntity::InitializeParameter(Context,
12507 FnDecl->getParamDecl(0)),
12508 SourceLocation(), Args[0]);
12509 if (Arg0.isInvalid())
12510 return ExprError();
12511
12512 ExprResult Arg1 =
12513 PerformCopyInitialization(
12514 InitializedEntity::InitializeParameter(Context,
12515 FnDecl->getParamDecl(1)),
12516 SourceLocation(), Args[1]);
12517 if (Arg1.isInvalid())
12518 return ExprError();
12519 Args[0] = LHS = Arg0.getAs<Expr>();
12520 Args[1] = RHS = Arg1.getAs<Expr>();
12521 }
12522
12523 // Build the actual expression node.
12524 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
12525 Best->FoundDecl, Base,
12526 HadMultipleCandidates, OpLoc);
12527 if (FnExpr.isInvalid())
12528 return ExprError();
12529
12530 // Determine the result type.
12531 QualType ResultTy = FnDecl->getReturnType();
12532 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12533 ResultTy = ResultTy.getNonLValueExprType(Context);
12534
12535 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
12536 Context, Op, FnExpr.get(), Args, ResultTy, VK, OpLoc, FPFeatures,
12537 Best->IsADLCandidate);
12538
12539 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
12540 FnDecl))
12541 return ExprError();
12542
12543 ArrayRef<const Expr *> ArgsArray(Args, 2);
12544 const Expr *ImplicitThis = nullptr;
12545 // Cut off the implicit 'this'.
12546 if (isa<CXXMethodDecl>(FnDecl)) {
12547 ImplicitThis = ArgsArray[0];
12548 ArgsArray = ArgsArray.slice(1);
12549 }
12550
12551 // Check for a self move.
12552 if (Op == OO_Equal)
12553 DiagnoseSelfMove(Args[0], Args[1], OpLoc);
12554
12555 checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray,
12556 isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(),
12557 VariadicDoesNotApply);
12558
12559 return MaybeBindToTemporary(TheCall);
12560 } else {
12561 // We matched a built-in operator. Convert the arguments, then
12562 // break out so that we will build the appropriate built-in
12563 // operator node.
12564 ExprResult ArgsRes0 = PerformImplicitConversion(
12565 Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
12566 AA_Passing, CCK_ForBuiltinOverloadedOp);
12567 if (ArgsRes0.isInvalid())
12568 return ExprError();
12569 Args[0] = ArgsRes0.get();
12570
12571 ExprResult ArgsRes1 = PerformImplicitConversion(
12572 Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
12573 AA_Passing, CCK_ForBuiltinOverloadedOp);
12574 if (ArgsRes1.isInvalid())
12575 return ExprError();
12576 Args[1] = ArgsRes1.get();
12577 break;
12578 }
12579 }
12580
12581 case OR_No_Viable_Function: {
12582 // C++ [over.match.oper]p9:
12583 // If the operator is the operator , [...] and there are no
12584 // viable functions, then the operator is assumed to be the
12585 // built-in operator and interpreted according to clause 5.
12586 if (Opc == BO_Comma)
12587 break;
12588
12589 // For class as left operand for assignment or compound assignment
12590 // operator do not fall through to handling in built-in, but report that
12591 // no overloaded assignment operator found
12592 ExprResult Result = ExprError();
12593 if (Args[0]->getType()->isRecordType() &&
12594 Opc >= BO_Assign && Opc <= BO_OrAssign) {
12595 Diag(OpLoc, diag::err_ovl_no_viable_oper)
12596 << BinaryOperator::getOpcodeStr(Opc)
12597 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12598 if (Args[0]->getType()->isIncompleteType()) {
12599 Diag(OpLoc, diag::note_assign_lhs_incomplete)
12600 << Args[0]->getType()
12601 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12602 }
12603 } else {
12604 // This is an erroneous use of an operator which can be overloaded by
12605 // a non-member function. Check for non-member operators which were
12606 // defined too late to be candidates.
12607 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
12608 // FIXME: Recover by calling the found function.
12609 return ExprError();
12610
12611 // No viable function; try to create a built-in operation, which will
12612 // produce an error. Then, show the non-viable candidates.
12613 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12614 }
12615 assert(Result.isInvalid() &&((Result.isInvalid() && "C++ binary operator overloading is missing candidates!"
) ? static_cast<void> (0) : __assert_fail ("Result.isInvalid() && \"C++ binary operator overloading is missing candidates!\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 12616, __PRETTY_FUNCTION__))
12616 "C++ binary operator overloading is missing candidates!")((Result.isInvalid() && "C++ binary operator overloading is missing candidates!"
) ? static_cast<void> (0) : __assert_fail ("Result.isInvalid() && \"C++ binary operator overloading is missing candidates!\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 12616, __PRETTY_FUNCTION__))
;
12617 if (Result.isInvalid())
12618 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
12619 BinaryOperator::getOpcodeStr(Opc), OpLoc);
12620 return Result;
12621 }
12622
12623 case OR_Ambiguous:
12624 Diag(OpLoc, diag::err_ovl_ambiguous_oper_binary)
12625 << BinaryOperator::getOpcodeStr(Opc)
12626 << Args[0]->getType() << Args[1]->getType()
12627 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12628 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
12629 BinaryOperator::getOpcodeStr(Opc), OpLoc);
12630 return ExprError();
12631
12632 case OR_Deleted:
12633 if (isImplicitlyDeleted(Best->Function)) {
12634 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
12635 Diag(OpLoc, diag::err_ovl_deleted_special_oper)
12636 << Context.getRecordType(Method->getParent())
12637 << getSpecialMember(Method);
12638
12639 // The user probably meant to call this special member. Just
12640 // explain why it's deleted.
12641 NoteDeletedFunction(Method);
12642 return ExprError();
12643 } else {
12644 Diag(OpLoc, diag::err_ovl_deleted_oper)
12645 << BinaryOperator::getOpcodeStr(Opc) << Args[0]->getSourceRange()
12646 << Args[1]->getSourceRange();
12647 }
12648 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
12649 BinaryOperator::getOpcodeStr(Opc), OpLoc);
12650 return ExprError();
12651 }
12652
12653 // We matched a built-in operator; build it.
12654 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12655}
12656
12657ExprResult
12658Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
12659 SourceLocation RLoc,
12660 Expr *Base, Expr *Idx) {
12661 Expr *Args[2] = { Base, Idx };
12662 DeclarationName OpName =
12663 Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
12664
12665 // If either side is type-dependent, create an appropriate dependent
12666 // expression.
12667 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
12668
12669 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
12670 // CHECKME: no 'operator' keyword?
12671 DeclarationNameInfo OpNameInfo(OpName, LLoc);
12672 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
12673 UnresolvedLookupExpr *Fn
12674 = UnresolvedLookupExpr::Create(Context, NamingClass,
12675 NestedNameSpecifierLoc(), OpNameInfo,
12676 /*ADL*/ true, /*Overloaded*/ false,
12677 UnresolvedSetIterator(),
12678 UnresolvedSetIterator());
12679 // Can't add any actual overloads yet
12680
12681 return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn, Args,
12682 Context.DependentTy, VK_RValue, RLoc,
12683 FPOptions());
12684 }
12685
12686 // Handle placeholders on both operands.
12687 if (checkPlaceholderForOverload(*this, Args[0]))
12688 return ExprError();
12689 if (checkPlaceholderForOverload(*this, Args[1]))
12690 return ExprError();
12691
12692 // Build an empty overload set.
12693 OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
12694
12695 // Subscript can only be overloaded as a member function.
12696
12697 // Add operator candidates that are member functions.
12698 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
12699
12700 // Add builtin operator candidates.
12701 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
12702
12703 bool HadMultipleCandidates = (CandidateSet.size() > 1);
12704
12705 // Perform overload resolution.
12706 OverloadCandidateSet::iterator Best;
12707 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
12708 case OR_Success: {
12709 // We found a built-in operator or an overloaded operator.
12710 FunctionDecl *FnDecl = Best->Function;
12711
12712 if (FnDecl) {
12713 // We matched an overloaded operator. Build a call to that
12714 // operator.
12715
12716 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
12717
12718 // Convert the arguments.
12719 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
12720 ExprResult Arg0 =
12721 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
12722 Best->FoundDecl, Method);
12723 if (Arg0.isInvalid())
12724 return ExprError();
12725 Args[0] = Arg0.get();
12726
12727 // Convert the arguments.
12728 ExprResult InputInit
12729 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
12730 Context,
12731 FnDecl->getParamDecl(0)),
12732 SourceLocation(),
12733 Args[1]);
12734 if (InputInit.isInvalid())
12735 return ExprError();
12736
12737 Args[1] = InputInit.getAs<Expr>();
12738
12739 // Build the actual expression node.
12740 DeclarationNameInfo OpLocInfo(OpName, LLoc);
12741 OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
12742 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
12743 Best->FoundDecl,
12744 Base,
12745 HadMultipleCandidates,
12746 OpLocInfo.getLoc(),
12747 OpLocInfo.getInfo());
12748 if (FnExpr.isInvalid())
12749 return ExprError();
12750
12751 // Determine the result type
12752 QualType ResultTy = FnDecl->getReturnType();
12753 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12754 ResultTy = ResultTy.getNonLValueExprType(Context);
12755
12756 CXXOperatorCallExpr *TheCall =
12757 CXXOperatorCallExpr::Create(Context, OO_Subscript, FnExpr.get(),
12758 Args, ResultTy, VK, RLoc, FPOptions());
12759
12760 if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
12761 return ExprError();
12762
12763 if (CheckFunctionCall(Method, TheCall,
12764 Method->getType()->castAs<FunctionProtoType>()))
12765 return ExprError();
12766
12767 return MaybeBindToTemporary(TheCall);
12768 } else {
12769 // We matched a built-in operator. Convert the arguments, then
12770 // break out so that we will build the appropriate built-in
12771 // operator node.
12772 ExprResult ArgsRes0 = PerformImplicitConversion(
12773 Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
12774 AA_Passing, CCK_ForBuiltinOverloadedOp);
12775 if (ArgsRes0.isInvalid())
12776 return ExprError();
12777 Args[0] = ArgsRes0.get();
12778
12779 ExprResult ArgsRes1 = PerformImplicitConversion(
12780 Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
12781 AA_Passing, CCK_ForBuiltinOverloadedOp);
12782 if (ArgsRes1.isInvalid())
12783 return ExprError();
12784 Args[1] = ArgsRes1.get();
12785
12786 break;
12787 }
12788 }
12789
12790 case OR_No_Viable_Function: {
12791 if (CandidateSet.empty())
12792 Diag(LLoc, diag::err_ovl_no_oper)
12793 << Args[0]->getType() << /*subscript*/ 0
12794 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12795 else
12796 Diag(LLoc, diag::err_ovl_no_viable_subscript)
12797 << Args[0]->getType()
12798 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12799 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
12800 "[]", LLoc);
12801 return ExprError();
12802 }
12803
12804 case OR_Ambiguous:
12805 Diag(LLoc, diag::err_ovl_ambiguous_oper_binary)
12806 << "[]"
12807 << Args[0]->getType() << Args[1]->getType()
12808 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12809 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
12810 "[]", LLoc);
12811 return ExprError();
12812
12813 case OR_Deleted:
12814 Diag(LLoc, diag::err_ovl_deleted_oper)
12815 << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12816 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, "[]", LLoc);
12817 return ExprError();
12818 }
12819
12820 // We matched a built-in operator; build it.
12821 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
12822}
12823
12824/// BuildCallToMemberFunction - Build a call to a member
12825/// function. MemExpr is the expression that refers to the member
12826/// function (and includes the object parameter), Args/NumArgs are the
12827/// arguments to the function call (not including the object
12828/// parameter). The caller needs to validate that the member
12829/// expression refers to a non-static member function or an overloaded
12830/// member function.
12831ExprResult
12832Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
12833 SourceLocation LParenLoc,
12834 MultiExprArg Args,
12835 SourceLocation RParenLoc) {
12836 assert(MemExprE->getType() == Context.BoundMemberTy ||((MemExprE->getType() == Context.BoundMemberTy || MemExprE
->getType() == Context.OverloadTy) ? static_cast<void>
(0) : __assert_fail ("MemExprE->getType() == Context.BoundMemberTy || MemExprE->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 12837, __PRETTY_FUNCTION__))
12837 MemExprE->getType() == Context.OverloadTy)((MemExprE->getType() == Context.BoundMemberTy || MemExprE
->getType() == Context.OverloadTy) ? static_cast<void>
(0) : __assert_fail ("MemExprE->getType() == Context.BoundMemberTy || MemExprE->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 12837, __PRETTY_FUNCTION__))
;
12838
12839 // Dig out the member expression. This holds both the object
12840 // argument and the member function we're referring to.
12841 Expr *NakedMemExpr = MemExprE->IgnoreParens();
12842
12843 // Determine whether this is a call to a pointer-to-member function.
12844 if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
12845 assert(op->getType() == Context.BoundMemberTy)((op->getType() == Context.BoundMemberTy) ? static_cast<
void> (0) : __assert_fail ("op->getType() == Context.BoundMemberTy"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 12845, __PRETTY_FUNCTION__))
;
12846 assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI)((op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI
) ? static_cast<void> (0) : __assert_fail ("op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 12846, __PRETTY_FUNCTION__))
;
12847
12848 QualType fnType =
12849 op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
12850
12851 const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
12852 QualType resultType = proto->getCallResultType(Context);
12853 ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
12854
12855 // Check that the object type isn't more qualified than the
12856 // member function we're calling.
12857 Qualifiers funcQuals = proto->getMethodQuals();
12858
12859 QualType objectType = op->getLHS()->getType();
12860 if (op->getOpcode() == BO_PtrMemI)
12861 objectType = objectType->castAs<PointerType>()->getPointeeType();
12862 Qualifiers objectQuals = objectType.getQualifiers();
12863
12864 Qualifiers difference = objectQuals - funcQuals;
12865 difference.removeObjCGCAttr();
12866 difference.removeAddressSpace();
12867 if (difference) {
12868 std::string qualsString = difference.getAsString();
12869 Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
12870 << fnType.getUnqualifiedType()
12871 << qualsString
12872 << (qualsString.find(' ') == std::string::npos ? 1 : 2);
12873 }
12874
12875 CXXMemberCallExpr *call =
12876 CXXMemberCallExpr::Create(Context, MemExprE, Args, resultType,
12877 valueKind, RParenLoc, proto->getNumParams());
12878
12879 if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(),
12880 call, nullptr))
12881 return ExprError();
12882
12883 if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
12884 return ExprError();
12885
12886 if (CheckOtherCall(call, proto))
12887 return ExprError();
12888
12889 return MaybeBindToTemporary(call);
12890 }
12891
12892 if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
12893 return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_RValue,
12894 RParenLoc);
12895
12896 UnbridgedCastsSet UnbridgedCasts;
12897 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
12898 return ExprError();
12899
12900 MemberExpr *MemExpr;
12901 CXXMethodDecl *Method = nullptr;
12902 DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
12903 NestedNameSpecifier *Qualifier = nullptr;
12904 if (isa<MemberExpr>(NakedMemExpr)) {
12905 MemExpr = cast<MemberExpr>(NakedMemExpr);
12906 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
12907 FoundDecl = MemExpr->getFoundDecl();
12908 Qualifier = MemExpr->getQualifier();
12909 UnbridgedCasts.restore();
12910 } else {
12911 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
12912 Qualifier = UnresExpr->getQualifier();
12913
12914 QualType ObjectType = UnresExpr->getBaseType();
12915 Expr::Classification ObjectClassification
12916 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
12917 : UnresExpr->getBase()->Classify(Context);
12918
12919 // Add overload candidates
12920 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
12921 OverloadCandidateSet::CSK_Normal);
12922
12923 // FIXME: avoid copy.
12924 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
12925 if (UnresExpr->hasExplicitTemplateArgs()) {
12926 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
12927 TemplateArgs = &TemplateArgsBuffer;
12928 }
12929
12930 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
12931 E = UnresExpr->decls_end(); I != E; ++I) {
12932
12933 NamedDecl *Func = *I;
12934 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
12935 if (isa<UsingShadowDecl>(Func))
12936 Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
12937
12938
12939 // Microsoft supports direct constructor calls.
12940 if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
12941 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
12942 Args, CandidateSet);
12943 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
12944 // If explicit template arguments were provided, we can't call a
12945 // non-template member function.
12946 if (TemplateArgs)
12947 continue;
12948
12949 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
12950 ObjectClassification, Args, CandidateSet,
12951 /*SuppressUserConversions=*/false);
12952 } else {
12953 AddMethodTemplateCandidate(
12954 cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC,
12955 TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet,
12956 /*SuppressUsedConversions=*/false);
12957 }
12958 }
12959
12960 DeclarationName DeclName = UnresExpr->getMemberName();
12961
12962 UnbridgedCasts.restore();
12963
12964 OverloadCandidateSet::iterator Best;
12965 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(),
12966 Best)) {
12967 case OR_Success:
12968 Method = cast<CXXMethodDecl>(Best->Function);
12969 FoundDecl = Best->FoundDecl;
12970 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
12971 if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
12972 return ExprError();
12973 // If FoundDecl is different from Method (such as if one is a template
12974 // and the other a specialization), make sure DiagnoseUseOfDecl is
12975 // called on both.
12976 // FIXME: This would be more comprehensively addressed by modifying
12977 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
12978 // being used.
12979 if (Method != FoundDecl.getDecl() &&
12980 DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
12981 return ExprError();
12982 break;
12983
12984 case OR_No_Viable_Function:
12985 Diag(UnresExpr->getMemberLoc(),
12986 diag::err_ovl_no_viable_member_function_in_call)
12987 << DeclName << MemExprE->getSourceRange();
12988 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
12989 // FIXME: Leaking incoming expressions!
12990 return ExprError();
12991
12992 case OR_Ambiguous:
12993 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
12994 << DeclName << MemExprE->getSourceRange();
12995 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
12996 // FIXME: Leaking incoming expressions!
12997 return ExprError();
12998
12999 case OR_Deleted:
13000 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
13001 << DeclName << MemExprE->getSourceRange();
13002 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
13003 // FIXME: Leaking incoming expressions!
13004 return ExprError();
13005 }
13006
13007 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
13008
13009 // If overload resolution picked a static member, build a
13010 // non-member call based on that function.
13011 if (Method->isStatic()) {
13012 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
13013 RParenLoc);
13014 }
13015
13016 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
13017 }
13018
13019 QualType ResultType = Method->getReturnType();
13020 ExprValueKind VK = Expr::getValueKindForType(ResultType);
13021 ResultType = ResultType.getNonLValueExprType(Context);
13022
13023 assert(Method && "Member call to something that isn't a method?")((Method && "Member call to something that isn't a method?"
) ? static_cast<void> (0) : __assert_fail ("Method && \"Member call to something that isn't a method?\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 13023, __PRETTY_FUNCTION__))
;
13024 const auto *Proto = Method->getType()->getAs<FunctionProtoType>();
13025 CXXMemberCallExpr *TheCall =
13026 CXXMemberCallExpr::Create(Context, MemExprE, Args, ResultType, VK,
13027 RParenLoc, Proto->getNumParams());
13028
13029 // Check for a valid return type.
13030 if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
13031 TheCall, Method))
13032 return ExprError();
13033
13034 // Convert the object argument (for a non-static member function call).
13035 // We only need to do this if there was actually an overload; otherwise
13036 // it was done at lookup.
13037 if (!Method->isStatic()) {
13038 ExprResult ObjectArg =
13039 PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
13040 FoundDecl, Method);
13041 if (ObjectArg.isInvalid())
13042 return ExprError();
13043 MemExpr->setBase(ObjectArg.get());
13044 }
13045
13046 // Convert the rest of the arguments
13047 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
13048 RParenLoc))
13049 return ExprError();
13050
13051 DiagnoseSentinelCalls(Method, LParenLoc, Args);
13052
13053 if (CheckFunctionCall(Method, TheCall, Proto))
13054 return ExprError();
13055
13056 // In the case the method to call was not selected by the overloading
13057 // resolution process, we still need to handle the enable_if attribute. Do
13058 // that here, so it will not hide previous -- and more relevant -- errors.
13059 if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) {
13060 if (const EnableIfAttr *Attr = CheckEnableIf(Method, Args, true)) {
13061 Diag(MemE->getMemberLoc(),
13062 diag::err_ovl_no_viable_member_function_in_call)
13063 << Method << Method->getSourceRange();
13064 Diag(Method->getLocation(),
13065 diag::note_ovl_candidate_disabled_by_function_cond_attr)
13066 << Attr->getCond()->getSourceRange() << Attr->getMessage();
13067 return ExprError();
13068 }
13069 }
13070
13071 if ((isa<CXXConstructorDecl>(CurContext) ||
13072 isa<CXXDestructorDecl>(CurContext)) &&
13073 TheCall->getMethodDecl()->isPure()) {
13074 const CXXMethodDecl *MD = TheCall->getMethodDecl();
13075
13076 if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) &&
13077 MemExpr->performsVirtualDispatch(getLangOpts())) {
13078 Diag(MemExpr->getBeginLoc(),
13079 diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
13080 << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
13081 << MD->getParent()->getDeclName();
13082
13083 Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName();
13084 if (getLangOpts().AppleKext)
13085 Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext)
13086 << MD->getParent()->getDeclName() << MD->getDeclName();
13087 }
13088 }
13089
13090 if (CXXDestructorDecl *DD =
13091 dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) {
13092 // a->A::f() doesn't go through the vtable, except in AppleKext mode.
13093 bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext;
13094 CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false,
13095 CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true,
13096 MemExpr->getMemberLoc());
13097 }
13098
13099 return MaybeBindToTemporary(TheCall);
13100}
13101
13102/// BuildCallToObjectOfClassType - Build a call to an object of class
13103/// type (C++ [over.call.object]), which can end up invoking an
13104/// overloaded function call operator (@c operator()) or performing a
13105/// user-defined conversion on the object argument.
13106ExprResult
13107Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
13108 SourceLocation LParenLoc,
13109 MultiExprArg Args,
13110 SourceLocation RParenLoc) {
13111 if (checkPlaceholderForOverload(*this, Obj))
13112 return ExprError();
13113 ExprResult Object = Obj;
13114
13115 UnbridgedCastsSet UnbridgedCasts;
13116 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
13117 return ExprError();
13118
13119 assert(Object.get()->getType()->isRecordType() &&((Object.get()->getType()->isRecordType() && "Requires object type argument"
) ? static_cast<void> (0) : __assert_fail ("Object.get()->getType()->isRecordType() && \"Requires object type argument\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 13120, __PRETTY_FUNCTION__))
13120 "Requires object type argument")((Object.get()->getType()->isRecordType() && "Requires object type argument"
) ? static_cast<void> (0) : __assert_fail ("Object.get()->getType()->isRecordType() && \"Requires object type argument\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 13120, __PRETTY_FUNCTION__))
;
13121 const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
13122
13123 // C++ [over.call.object]p1:
13124 // If the primary-expression E in the function call syntax
13125 // evaluates to a class object of type "cv T", then the set of
13126 // candidate functions includes at least the function call
13127 // operators of T. The function call operators of T are obtained by
13128 // ordinary lookup of the name operator() in the context of
13129 // (E).operator().
13130 OverloadCandidateSet CandidateSet(LParenLoc,
13131 OverloadCandidateSet::CSK_Operator);
13132 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
13133
13134 if (RequireCompleteType(LParenLoc, Object.get()->getType(),
13135 diag::err_incomplete_object_call, Object.get()))
13136 return true;
13137
13138 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
13139 LookupQualifiedName(R, Record->getDecl());
13140 R.suppressDiagnostics();
13141
13142 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
13143 Oper != OperEnd; ++Oper) {
13144 AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
13145 Object.get()->Classify(Context), Args, CandidateSet,
13146 /*SuppressUserConversions=*/false);
13147 }
13148
13149 // C++ [over.call.object]p2:
13150 // In addition, for each (non-explicit in C++0x) conversion function
13151 // declared in T of the form
13152 //
13153 // operator conversion-type-id () cv-qualifier;
13154 //
13155 // where cv-qualifier is the same cv-qualification as, or a
13156 // greater cv-qualification than, cv, and where conversion-type-id
13157 // denotes the type "pointer to function of (P1,...,Pn) returning
13158 // R", or the type "reference to pointer to function of
13159 // (P1,...,Pn) returning R", or the type "reference to function
13160 // of (P1,...,Pn) returning R", a surrogate call function [...]
13161 // is also considered as a candidate function. Similarly,
13162 // surrogate call functions are added to the set of candidate
13163 // functions for each conversion function declared in an
13164 // accessible base class provided the function is not hidden
13165 // within T by another intervening declaration.
13166 const auto &Conversions =
13167 cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
13168 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
13169 NamedDecl *D = *I;
13170 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
13171 if (isa<UsingShadowDecl>(D))
13172 D = cast<UsingShadowDecl>(D)->getTargetDecl();
13173
13174 // Skip over templated conversion functions; they aren't
13175 // surrogates.
13176 if (isa<FunctionTemplateDecl>(D))
13177 continue;
13178
13179 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
13180 if (!Conv->isExplicit()) {
13181 // Strip the reference type (if any) and then the pointer type (if
13182 // any) to get down to what might be a function type.
13183 QualType ConvType = Conv->getConversionType().getNonReferenceType();
13184 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
13185 ConvType = ConvPtrType->getPointeeType();
13186
13187 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
13188 {
13189 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
13190 Object.get(), Args, CandidateSet);
13191 }
13192 }
13193 }
13194
13195 bool HadMultipleCandidates = (CandidateSet.size() > 1);
13196
13197 // Perform overload resolution.
13198 OverloadCandidateSet::iterator Best;
13199 switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(),
13200 Best)) {
13201 case OR_Success:
13202 // Overload resolution succeeded; we'll build the appropriate call
13203 // below.
13204 break;
13205
13206 case OR_No_Viable_Function:
13207 if (CandidateSet.empty())
13208 Diag(Object.get()->getBeginLoc(), diag::err_ovl_no_oper)
13209 << Object.get()->getType() << /*call*/ 1
13210 << Object.get()->getSourceRange();
13211 else
13212 Diag(Object.get()->getBeginLoc(), diag::err_ovl_no_viable_object_call)
13213 << Object.get()->getType() << Object.get()->getSourceRange();
13214 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
13215 break;
13216
13217 case OR_Ambiguous:
13218 Diag(Object.get()->getBeginLoc(), diag::err_ovl_ambiguous_object_call)
13219 << Object.get()->getType() << Object.get()->getSourceRange();
13220 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
13221 break;
13222
13223 case OR_Deleted:
13224 Diag(Object.get()->getBeginLoc(), diag::err_ovl_deleted_object_call)
13225 << Object.get()->getType() << Object.get()->getSourceRange();
13226 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
13227 break;
13228 }
13229
13230 if (Best == CandidateSet.end())
13231 return true;
13232
13233 UnbridgedCasts.restore();
13234
13235 if (Best->Function == nullptr) {
13236 // Since there is no function declaration, this is one of the
13237 // surrogate candidates. Dig out the conversion function.
13238 CXXConversionDecl *Conv
13239 = cast<CXXConversionDecl>(
13240 Best->Conversions[0].UserDefined.ConversionFunction);
13241
13242 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
13243 Best->FoundDecl);
13244 if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
13245 return ExprError();
13246 assert(Conv == Best->FoundDecl.getDecl() &&((Conv == Best->FoundDecl.getDecl() && "Found Decl & conversion-to-functionptr should be same, right?!"
) ? static_cast<void> (0) : __assert_fail ("Conv == Best->FoundDecl.getDecl() && \"Found Decl & conversion-to-functionptr should be same, right?!\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 13247, __PRETTY_FUNCTION__))
13247 "Found Decl & conversion-to-functionptr should be same, right?!")((Conv == Best->FoundDecl.getDecl() && "Found Decl & conversion-to-functionptr should be same, right?!"
) ? static_cast<void> (0) : __assert_fail ("Conv == Best->FoundDecl.getDecl() && \"Found Decl & conversion-to-functionptr should be same, right?!\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 13247, __PRETTY_FUNCTION__))
;
13248 // We selected one of the surrogate functions that converts the
13249 // object parameter to a function pointer. Perform the conversion
13250 // on the object argument, then let ActOnCallExpr finish the job.
13251
13252 // Create an implicit member expr to refer to the conversion operator.
13253 // and then call it.
13254 ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
13255 Conv, HadMultipleCandidates);
13256 if (Call.isInvalid())
13257 return ExprError();
13258 // Record usage of conversion in an implicit cast.
13259 Call = ImplicitCastExpr::Create(Context, Call.get()->getType(),
13260 CK_UserDefinedConversion, Call.get(),
13261 nullptr, VK_RValue);
13262
13263 return ActOnCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
13264 }
13265
13266 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
13267
13268 // We found an overloaded operator(). Build a CXXOperatorCallExpr
13269 // that calls this method, using Object for the implicit object
13270 // parameter and passing along the remaining arguments.
13271 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
13272
13273 // An error diagnostic has already been printed when parsing the declaration.
13274 if (Method->isInvalidDecl())
13275 return ExprError();
13276
13277 const FunctionProtoType *Proto =
13278 Method->getType()->getAs<FunctionProtoType>();
13279
13280 unsigned NumParams = Proto->getNumParams();
13281
13282 DeclarationNameInfo OpLocInfo(
13283 Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
13284 OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
13285 ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
13286 Obj, HadMultipleCandidates,
13287 OpLocInfo.getLoc(),
13288 OpLocInfo.getInfo());
13289 if (NewFn.isInvalid())
13290 return true;
13291
13292 // The number of argument slots to allocate in the call. If we have default
13293 // arguments we need to allocate space for them as well. We additionally
13294 // need one more slot for the object parameter.
13295 unsigned NumArgsSlots = 1 + std::max<unsigned>(Args.size(), NumParams);
13296
13297 // Build the full argument list for the method call (the implicit object
13298 // parameter is placed at the beginning of the list).
13299 SmallVector<Expr *, 8> MethodArgs(NumArgsSlots);
13300
13301 bool IsError = false;
13302
13303 // Initialize the implicit object parameter.
13304 ExprResult ObjRes =
13305 PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
13306 Best->FoundDecl, Method);
13307 if (ObjRes.isInvalid())
13308 IsError = true;
13309 else
13310 Object = ObjRes;
13311 MethodArgs[0] = Object.get();
13312
13313 // Check the argument types.
13314 for (unsigned i = 0; i != NumParams; i++) {
13315 Expr *Arg;
13316 if (i < Args.size()) {
13317 Arg = Args[i];
13318
13319 // Pass the argument.
13320
13321 ExprResult InputInit
13322 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
13323 Context,
13324 Method->getParamDecl(i)),
13325 SourceLocation(), Arg);
13326
13327 IsError |= InputInit.isInvalid();
13328 Arg = InputInit.getAs<Expr>();
13329 } else {
13330 ExprResult DefArg
13331 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
13332 if (DefArg.isInvalid()) {
13333 IsError = true;
13334 break;
13335 }
13336
13337 Arg = DefArg.getAs<Expr>();
13338 }
13339
13340 MethodArgs[i + 1] = Arg;
13341 }
13342
13343 // If this is a variadic call, handle args passed through "...".
13344 if (Proto->isVariadic()) {
13345 // Promote the arguments (C99 6.5.2.2p7).
13346 for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
13347 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
13348 nullptr);
13349 IsError |= Arg.isInvalid();
13350 MethodArgs[i + 1] = Arg.get();
13351 }
13352 }
13353
13354 if (IsError)
13355 return true;
13356
13357 DiagnoseSentinelCalls(Method, LParenLoc, Args);
13358
13359 // Once we've built TheCall, all of the expressions are properly owned.
13360 QualType ResultTy = Method->getReturnType();
13361 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13362 ResultTy = ResultTy.getNonLValueExprType(Context);
13363
13364 CXXOperatorCallExpr *TheCall =
13365 CXXOperatorCallExpr::Create(Context, OO_Call, NewFn.get(), MethodArgs,
13366 ResultTy, VK, RParenLoc, FPOptions());
13367
13368 if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
13369 return true;
13370
13371 if (CheckFunctionCall(Method, TheCall, Proto))
13372 return true;
13373
13374 return MaybeBindToTemporary(TheCall);
13375}
13376
13377/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
13378/// (if one exists), where @c Base is an expression of class type and
13379/// @c Member is the name of the member we're trying to find.
13380ExprResult
13381Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
13382 bool *NoArrowOperatorFound) {
13383 assert(Base->getType()->isRecordType() &&((Base->getType()->isRecordType() && "left-hand side must have class type"
) ? static_cast<void> (0) : __assert_fail ("Base->getType()->isRecordType() && \"left-hand side must have class type\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 13384, __PRETTY_FUNCTION__))
13384 "left-hand side must have class type")((Base->getType()->isRecordType() && "left-hand side must have class type"
) ? static_cast<void> (0) : __assert_fail ("Base->getType()->isRecordType() && \"left-hand side must have class type\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 13384, __PRETTY_FUNCTION__))
;
13385
13386 if (checkPlaceholderForOverload(*this, Base))
13387 return ExprError();
13388
13389 SourceLocation Loc = Base->getExprLoc();
13390
13391 // C++ [over.ref]p1:
13392 //
13393 // [...] An expression x->m is interpreted as (x.operator->())->m
13394 // for a class object x of type T if T::operator->() exists and if
13395 // the operator is selected as the best match function by the
13396 // overload resolution mechanism (13.3).
13397 DeclarationName OpName =
13398 Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
13399 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
13400 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
13401
13402 if (RequireCompleteType(Loc, Base->getType(),
13403 diag::err_typecheck_incomplete_tag, Base))
13404 return ExprError();
13405
13406 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
13407 LookupQualifiedName(R, BaseRecord->getDecl());
13408 R.suppressDiagnostics();
13409
13410 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
13411 Oper != OperEnd; ++Oper) {
13412 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
13413 None, CandidateSet, /*SuppressUserConversions=*/false);
13414 }
13415
13416 bool HadMultipleCandidates = (CandidateSet.size() > 1);
13417
13418 // Perform overload resolution.
13419 OverloadCandidateSet::iterator Best;
13420 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
13421 case OR_Success:
13422 // Overload resolution succeeded; we'll build the call below.
13423 break;
13424
13425 case OR_No_Viable_Function:
13426 if (CandidateSet.empty()) {
13427 QualType BaseType = Base->getType();
13428 if (NoArrowOperatorFound) {
13429 // Report this specific error to the caller instead of emitting a
13430 // diagnostic, as requested.
13431 *NoArrowOperatorFound = true;
13432 return ExprError();
13433 }
13434 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
13435 << BaseType << Base->getSourceRange();
13436 if (BaseType->isRecordType() && !BaseType->isPointerType()) {
13437 Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
13438 << FixItHint::CreateReplacement(OpLoc, ".");
13439 }
13440 } else
13441 Diag(OpLoc, diag::err_ovl_no_viable_oper)
13442 << "operator->" << Base->getSourceRange();
13443 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
13444 return ExprError();
13445
13446 case OR_Ambiguous:
13447 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary)
13448 << "->" << Base->getType() << Base->getSourceRange();
13449 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
13450 return ExprError();
13451
13452 case OR_Deleted:
13453 Diag(OpLoc, diag::err_ovl_deleted_oper) << "->" << Base->getSourceRange();
13454 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
13455 return ExprError();
13456 }
13457
13458 CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
13459
13460 // Convert the object parameter.
13461 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
13462 ExprResult BaseResult =
13463 PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
13464 Best->FoundDecl, Method);
13465 if (BaseResult.isInvalid())
13466 return ExprError();
13467 Base = BaseResult.get();
13468
13469 // Build the operator call.
13470 ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
13471 Base, HadMultipleCandidates, OpLoc);
13472 if (FnExpr.isInvalid())
13473 return ExprError();
13474
13475 QualType ResultTy = Method->getReturnType();
13476 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13477 ResultTy = ResultTy.getNonLValueExprType(Context);
13478 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
13479 Context, OO_Arrow, FnExpr.get(), Base, ResultTy, VK, OpLoc, FPOptions());
13480
13481 if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
13482 return ExprError();
13483
13484 if (CheckFunctionCall(Method, TheCall,
13485 Method->getType()->castAs<FunctionProtoType>()))
13486 return ExprError();
13487
13488 return MaybeBindToTemporary(TheCall);
13489}
13490
13491/// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
13492/// a literal operator described by the provided lookup results.
13493ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
13494 DeclarationNameInfo &SuffixInfo,
13495 ArrayRef<Expr*> Args,
13496 SourceLocation LitEndLoc,
13497 TemplateArgumentListInfo *TemplateArgs) {
13498 SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
13499
13500 OverloadCandidateSet CandidateSet(UDSuffixLoc,
13501 OverloadCandidateSet::CSK_Normal);
13502 AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, TemplateArgs,
13503 /*SuppressUserConversions=*/true);
13504
13505 bool HadMultipleCandidates = (CandidateSet.size() > 1);
13506
13507 // Perform overload resolution. This will usually be trivial, but might need
13508 // to perform substitutions for a literal operator template.
13509 OverloadCandidateSet::iterator Best;
13510 switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
13511 case OR_Success:
13512 case OR_Deleted:
13513 break;
13514
13515 case OR_No_Viable_Function:
13516 Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call)
13517 << R.getLookupName();
13518 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
13519 return ExprError();
13520
13521 case OR_Ambiguous:
13522 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
13523 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
13524 return ExprError();
13525 }
13526
13527 FunctionDecl *FD = Best->Function;
13528 ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
13529 nullptr, HadMultipleCandidates,
13530 SuffixInfo.getLoc(),
13531 SuffixInfo.getInfo());
13532 if (Fn.isInvalid())
13533 return true;
13534
13535 // Check the argument types. This should almost always be a no-op, except
13536 // that array-to-pointer decay is applied to string literals.
13537 Expr *ConvArgs[2];
13538 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
13539 ExprResult InputInit = PerformCopyInitialization(
13540 InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
13541 SourceLocation(), Args[ArgIdx]);
13542 if (InputInit.isInvalid())
13543 return true;
13544 ConvArgs[ArgIdx] = InputInit.get();
13545 }
13546
13547 QualType ResultTy = FD->getReturnType();
13548 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13549 ResultTy = ResultTy.getNonLValueExprType(Context);
13550
13551 UserDefinedLiteral *UDL = UserDefinedLiteral::Create(
13552 Context, Fn.get(), llvm::makeArrayRef(ConvArgs, Args.size()), ResultTy,
13553 VK, LitEndLoc, UDSuffixLoc);
13554
13555 if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
13556 return ExprError();
13557
13558 if (CheckFunctionCall(FD, UDL, nullptr))
13559 return ExprError();
13560
13561 return MaybeBindToTemporary(UDL);
13562}
13563
13564/// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
13565/// given LookupResult is non-empty, it is assumed to describe a member which
13566/// will be invoked. Otherwise, the function will be found via argument
13567/// dependent lookup.
13568/// CallExpr is set to a valid expression and FRS_Success returned on success,
13569/// otherwise CallExpr is set to ExprError() and some non-success value
13570/// is returned.
13571Sema::ForRangeStatus
13572Sema::BuildForRangeBeginEndCall(SourceLocation Loc,
13573 SourceLocation RangeLoc,
13574 const DeclarationNameInfo &NameInfo,
13575 LookupResult &MemberLookup,
13576 OverloadCandidateSet *CandidateSet,
13577 Expr *Range, ExprResult *CallExpr) {
13578 Scope *S = nullptr;
13579
13580 CandidateSet->clear(OverloadCandidateSet::CSK_Normal);
13581 if (!MemberLookup.empty()) {
13582 ExprResult MemberRef =
13583 BuildMemberReferenceExpr(Range, Range->getType(), Loc,
13584 /*IsPtr=*/false, CXXScopeSpec(),
13585 /*TemplateKWLoc=*/SourceLocation(),
13586 /*FirstQualifierInScope=*/nullptr,
13587 MemberLookup,
13588 /*TemplateArgs=*/nullptr, S);
13589 if (MemberRef.isInvalid()) {
13590 *CallExpr = ExprError();
13591 return FRS_DiagnosticIssued;
13592 }
13593 *CallExpr = ActOnCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
13594 if (CallExpr->isInvalid()) {
13595 *CallExpr = ExprError();
13596 return FRS_DiagnosticIssued;
13597 }
13598 } else {
13599 UnresolvedSet<0> FoundNames;
13600 UnresolvedLookupExpr *Fn =
13601 UnresolvedLookupExpr::Create(Context, /*NamingClass=*/nullptr,
13602 NestedNameSpecifierLoc(), NameInfo,
13603 /*NeedsADL=*/true, /*Overloaded=*/false,
13604 FoundNames.begin(), FoundNames.end());
13605
13606 bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
13607 CandidateSet, CallExpr);
13608 if (CandidateSet->empty() || CandidateSetError) {
13609 *CallExpr = ExprError();
13610 return FRS_NoViableFunction;
13611 }
13612 OverloadCandidateSet::iterator Best;
13613 OverloadingResult OverloadResult =
13614 CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best);
13615
13616 if (OverloadResult == OR_No_Viable_Function) {
13617 *CallExpr = ExprError();
13618 return FRS_NoViableFunction;
13619 }
13620 *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
13621 Loc, nullptr, CandidateSet, &Best,
13622 OverloadResult,
13623 /*AllowTypoCorrection=*/false);
13624 if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
13625 *CallExpr = ExprError();
13626 return FRS_DiagnosticIssued;
13627 }
13628 }
13629 return FRS_Success;
13630}
13631
13632
13633/// FixOverloadedFunctionReference - E is an expression that refers to
13634/// a C++ overloaded function (possibly with some parentheses and
13635/// perhaps a '&' around it). We have resolved the overloaded function
13636/// to the function declaration Fn, so patch up the expression E to
13637/// refer (possibly indirectly) to Fn. Returns the new expr.
13638Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
13639 FunctionDecl *Fn) {
13640 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
13641 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
13642 Found, Fn);
13643 if (SubExpr == PE->getSubExpr())
13644 return PE;
13645
13646 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
13647 }
13648
13649 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
13650 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
13651 Found, Fn);
13652 assert(Context.hasSameType(ICE->getSubExpr()->getType(),((Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr
->getType()) && "Implicit cast type cannot be determined from overload"
) ? static_cast<void> (0) : __assert_fail ("Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr->getType()) && \"Implicit cast type cannot be determined from overload\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 13654, __PRETTY_FUNCTION__))
13653 SubExpr->getType()) &&((Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr
->getType()) && "Implicit cast type cannot be determined from overload"
) ? static_cast<void> (0) : __assert_fail ("Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr->getType()) && \"Implicit cast type cannot be determined from overload\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 13654, __PRETTY_FUNCTION__))
13654 "Implicit cast type cannot be determined from overload")((Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr
->getType()) && "Implicit cast type cannot be determined from overload"
) ? static_cast<void> (0) : __assert_fail ("Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr->getType()) && \"Implicit cast type cannot be determined from overload\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 13654, __PRETTY_FUNCTION__))
;
13655 assert(ICE->path_empty() && "fixing up hierarchy conversion?")((ICE->path_empty() && "fixing up hierarchy conversion?"
) ? static_cast<void> (0) : __assert_fail ("ICE->path_empty() && \"fixing up hierarchy conversion?\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 13655, __PRETTY_FUNCTION__))
;
13656 if (SubExpr == ICE->getSubExpr())
13657 return ICE;
13658
13659 return ImplicitCastExpr::Create(Context, ICE->getType(),
13660 ICE->getCastKind(),
13661 SubExpr, nullptr,
13662 ICE->getValueKind());
13663 }
13664
13665 if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
13666 if (!GSE->isResultDependent()) {
13667 Expr *SubExpr =
13668 FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn);
13669 if (SubExpr == GSE->getResultExpr())
13670 return GSE;
13671
13672 // Replace the resulting type information before rebuilding the generic
13673 // selection expression.
13674 ArrayRef<Expr *> A = GSE->getAssocExprs();
13675 SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end());
13676 unsigned ResultIdx = GSE->getResultIndex();
13677 AssocExprs[ResultIdx] = SubExpr;
13678
13679 return GenericSelectionExpr::Create(
13680 Context, GSE->getGenericLoc(), GSE->getControllingExpr(),
13681 GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(),
13682 GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(),
13683 ResultIdx);
13684 }
13685 // Rather than fall through to the unreachable, return the original generic
13686 // selection expression.
13687 return GSE;
13688 }
13689
13690 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
13691 assert(UnOp->getOpcode() == UO_AddrOf &&((UnOp->getOpcode() == UO_AddrOf && "Can only take the address of an overloaded function"
) ? static_cast<void> (0) : __assert_fail ("UnOp->getOpcode() == UO_AddrOf && \"Can only take the address of an overloaded function\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 13692, __PRETTY_FUNCTION__))
13692 "Can only take the address of an overloaded function")((UnOp->getOpcode() == UO_AddrOf && "Can only take the address of an overloaded function"
) ? static_cast<void> (0) : __assert_fail ("UnOp->getOpcode() == UO_AddrOf && \"Can only take the address of an overloaded function\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 13692, __PRETTY_FUNCTION__))
;
13693 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
13694 if (Method->isStatic()) {
13695 // Do nothing: static member functions aren't any different
13696 // from non-member functions.
13697 } else {
13698 // Fix the subexpression, which really has to be an
13699 // UnresolvedLookupExpr holding an overloaded member function
13700 // or template.
13701 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
13702 Found, Fn);
13703 if (SubExpr == UnOp->getSubExpr())
13704 return UnOp;
13705
13706 assert(isa<DeclRefExpr>(SubExpr)((isa<DeclRefExpr>(SubExpr) && "fixed to something other than a decl ref"
) ? static_cast<void> (0) : __assert_fail ("isa<DeclRefExpr>(SubExpr) && \"fixed to something other than a decl ref\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 13707, __PRETTY_FUNCTION__))
13707 && "fixed to something other than a decl ref")((isa<DeclRefExpr>(SubExpr) && "fixed to something other than a decl ref"
) ? static_cast<void> (0) : __assert_fail ("isa<DeclRefExpr>(SubExpr) && \"fixed to something other than a decl ref\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 13707, __PRETTY_FUNCTION__))
;
13708 assert(cast<DeclRefExpr>(SubExpr)->getQualifier()((cast<DeclRefExpr>(SubExpr)->getQualifier() &&
"fixed to a member ref with no nested name qualifier") ? static_cast
<void> (0) : __assert_fail ("cast<DeclRefExpr>(SubExpr)->getQualifier() && \"fixed to a member ref with no nested name qualifier\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 13709, __PRETTY_FUNCTION__))
13709 && "fixed to a member ref with no nested name qualifier")((cast<DeclRefExpr>(SubExpr)->getQualifier() &&
"fixed to a member ref with no nested name qualifier") ? static_cast
<void> (0) : __assert_fail ("cast<DeclRefExpr>(SubExpr)->getQualifier() && \"fixed to a member ref with no nested name qualifier\""
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 13709, __PRETTY_FUNCTION__))
;
13710
13711 // We have taken the address of a pointer to member
13712 // function. Perform the computation here so that we get the
13713 // appropriate pointer to member type.
13714 QualType ClassType
13715 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
13716 QualType MemPtrType
13717 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
13718 // Under the MS ABI, lock down the inheritance model now.
13719 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
13720 (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType);
13721
13722 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
13723 VK_RValue, OK_Ordinary,
13724 UnOp->getOperatorLoc(), false);
13725 }
13726 }
13727 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
13728 Found, Fn);
13729 if (SubExpr == UnOp->getSubExpr())
13730 return UnOp;
13731
13732 return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
13733 Context.getPointerType(SubExpr->getType()),
13734 VK_RValue, OK_Ordinary,
13735 UnOp->getOperatorLoc(), false);
13736 }
13737
13738 // C++ [except.spec]p17:
13739 // An exception-specification is considered to be needed when:
13740 // - in an expression the function is the unique lookup result or the
13741 // selected member of a set of overloaded functions
13742 if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
13743 ResolveExceptionSpec(E->getExprLoc(), FPT);
13744
13745 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
13746 // FIXME: avoid copy.
13747 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
13748 if (ULE->hasExplicitTemplateArgs()) {
13749 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
13750 TemplateArgs = &TemplateArgsBuffer;
13751 }
13752
13753 DeclRefExpr *DRE = DeclRefExpr::Create(Context,
13754 ULE->getQualifierLoc(),
13755 ULE->getTemplateKeywordLoc(),
13756 Fn,
13757 /*enclosing*/ false, // FIXME?
13758 ULE->getNameLoc(),
13759 Fn->getType(),
13760 VK_LValue,
13761 Found.getDecl(),
13762 TemplateArgs);
13763 MarkDeclRefReferenced(DRE);
13764 DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
13765 return DRE;
13766 }
13767
13768 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
13769 // FIXME: avoid copy.
13770 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
13771 if (MemExpr->hasExplicitTemplateArgs()) {
13772 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
13773 TemplateArgs = &TemplateArgsBuffer;
13774 }
13775
13776 Expr *Base;
13777
13778 // If we're filling in a static method where we used to have an
13779 // implicit member access, rewrite to a simple decl ref.
13780 if (MemExpr->isImplicitAccess()) {
13781 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
13782 DeclRefExpr *DRE = DeclRefExpr::Create(Context,
13783 MemExpr->getQualifierLoc(),
13784 MemExpr->getTemplateKeywordLoc(),
13785 Fn,
13786 /*enclosing*/ false,
13787 MemExpr->getMemberLoc(),
13788 Fn->getType(),
13789 VK_LValue,
13790 Found.getDecl(),
13791 TemplateArgs);
13792 MarkDeclRefReferenced(DRE);
13793 DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
13794 return DRE;
13795 } else {
13796 SourceLocation Loc = MemExpr->getMemberLoc();
13797 if (MemExpr->getQualifier())
13798 Loc = MemExpr->getQualifierLoc().getBeginLoc();
13799 CheckCXXThisCapture(Loc);
13800 Base = new (Context) CXXThisExpr(Loc,
13801 MemExpr->getBaseType(),
13802 /*isImplicit=*/true);
13803 }
13804 } else
13805 Base = MemExpr->getBase();
13806
13807 ExprValueKind valueKind;
13808 QualType type;
13809 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
13810 valueKind = VK_LValue;
13811 type = Fn->getType();
13812 } else {
13813 valueKind = VK_RValue;
13814 type = Context.BoundMemberTy;
13815 }
13816
13817 MemberExpr *ME = MemberExpr::Create(
13818 Context, Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(),
13819 MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found,
13820 MemExpr->getMemberNameInfo(), TemplateArgs, type, valueKind,
13821 OK_Ordinary);
13822 ME->setHadMultipleCandidates(true);
13823 MarkMemberReferenced(ME);
13824 return ME;
13825 }
13826
13827 llvm_unreachable("Invalid reference to overloaded function")::llvm::llvm_unreachable_internal("Invalid reference to overloaded function"
, "/build/llvm-toolchain-snapshot-9~svn359426/tools/clang/lib/Sema/SemaOverload.cpp"
, 13827)
;
13828}
13829
13830ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
13831 DeclAccessPair Found,
13832 FunctionDecl *Fn) {
13833 return FixOverloadedFunctionReference(E.get(), Found, Fn);
13834}