Bug Summary

File:tools/clang/lib/Sema/SemaType.cpp
Warning:line 4913, column 9
Value stored to 'ExpectNoDerefChunk' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaType.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-config-compatibility-mode=true -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn348900/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-8~svn348900/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn348900/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn348900/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn348900/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-command-line-argument -Wno-unknown-warning-option -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn348900/build-llvm/tools/clang/lib/Sema -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-12-12-042652-12204-1 -x c++ /build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp -faddrsig
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "TypeLocBuilder.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/ASTStructuralEquivalence.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/TypeLoc.h"
24#include "clang/AST/TypeLocVisitor.h"
25#include "clang/Basic/PartialDiagnostic.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/DelayedDiagnostic.h"
30#include "clang/Sema/Lookup.h"
31#include "clang/Sema/ScopeInfo.h"
32#include "clang/Sema/SemaInternal.h"
33#include "clang/Sema/Template.h"
34#include "clang/Sema/TemplateInstCallback.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/StringSwitch.h"
38#include "llvm/Support/ErrorHandling.h"
39
40using namespace clang;
41
42enum TypeDiagSelector {
43 TDS_Function,
44 TDS_Pointer,
45 TDS_ObjCObjOrBlock
46};
47
48/// isOmittedBlockReturnType - Return true if this declarator is missing a
49/// return type because this is a omitted return type on a block literal.
50static bool isOmittedBlockReturnType(const Declarator &D) {
51 if (D.getContext() != DeclaratorContext::BlockLiteralContext ||
52 D.getDeclSpec().hasTypeSpecifier())
53 return false;
54
55 if (D.getNumTypeObjects() == 0)
56 return true; // ^{ ... }
57
58 if (D.getNumTypeObjects() == 1 &&
59 D.getTypeObject(0).Kind == DeclaratorChunk::Function)
60 return true; // ^(int X, float Y) { ... }
61
62 return false;
63}
64
65/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
66/// doesn't apply to the given type.
67static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr,
68 QualType type) {
69 TypeDiagSelector WhichType;
70 bool useExpansionLoc = true;
71 switch (attr.getKind()) {
72 case ParsedAttr::AT_ObjCGC:
73 WhichType = TDS_Pointer;
74 break;
75 case ParsedAttr::AT_ObjCOwnership:
76 WhichType = TDS_ObjCObjOrBlock;
77 break;
78 default:
79 // Assume everything else was a function attribute.
80 WhichType = TDS_Function;
81 useExpansionLoc = false;
82 break;
83 }
84
85 SourceLocation loc = attr.getLoc();
86 StringRef name = attr.getName()->getName();
87
88 // The GC attributes are usually written with macros; special-case them.
89 IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
90 : nullptr;
91 if (useExpansionLoc && loc.isMacroID() && II) {
92 if (II->isStr("strong")) {
93 if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
94 } else if (II->isStr("weak")) {
95 if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
96 }
97 }
98
99 S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
100 << type;
101}
102
103// objc_gc applies to Objective-C pointers or, otherwise, to the
104// smallest available pointer type (i.e. 'void*' in 'void**').
105#define OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership \
106 case ParsedAttr::AT_ObjCGC: \
107 case ParsedAttr::AT_ObjCOwnership
108
109// Calling convention attributes.
110#define CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs
: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case
ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr
::AT_PreserveMost: case ParsedAttr::AT_PreserveAll
\
111 case ParsedAttr::AT_CDecl: \
112 case ParsedAttr::AT_FastCall: \
113 case ParsedAttr::AT_StdCall: \
114 case ParsedAttr::AT_ThisCall: \
115 case ParsedAttr::AT_RegCall: \
116 case ParsedAttr::AT_Pascal: \
117 case ParsedAttr::AT_SwiftCall: \
118 case ParsedAttr::AT_VectorCall: \
119 case ParsedAttr::AT_AArch64VectorPcs: \
120 case ParsedAttr::AT_MSABI: \
121 case ParsedAttr::AT_SysVABI: \
122 case ParsedAttr::AT_Pcs: \
123 case ParsedAttr::AT_IntelOclBicc: \
124 case ParsedAttr::AT_PreserveMost: \
125 case ParsedAttr::AT_PreserveAll
126
127// Function type attributes.
128#define FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn
: case ParsedAttr::AT_Regparm: case ParsedAttr::AT_AnyX86NoCallerSavedRegisters
: case ParsedAttr::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl
: case ParsedAttr::AT_FastCall: case ParsedAttr::AT_StdCall: case
ParsedAttr::AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr
::AT_Pascal: case ParsedAttr::AT_SwiftCall: case ParsedAttr::
AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr
::AT_MSABI: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs
: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost
: case ParsedAttr::AT_PreserveAll
\
129 case ParsedAttr::AT_NSReturnsRetained: \
130 case ParsedAttr::AT_NoReturn: \
131 case ParsedAttr::AT_Regparm: \
132 case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: \
133 case ParsedAttr::AT_AnyX86NoCfCheck: \
134 CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs
: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case
ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr
::AT_PreserveMost: case ParsedAttr::AT_PreserveAll
135
136// Microsoft-specific type qualifiers.
137#define MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr
::AT_SPtr: case ParsedAttr::AT_UPtr
\
138 case ParsedAttr::AT_Ptr32: \
139 case ParsedAttr::AT_Ptr64: \
140 case ParsedAttr::AT_SPtr: \
141 case ParsedAttr::AT_UPtr
142
143// Nullability qualifiers.
144#define NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable
: case ParsedAttr::AT_TypeNullUnspecified
\
145 case ParsedAttr::AT_TypeNonNull: \
146 case ParsedAttr::AT_TypeNullable: \
147 case ParsedAttr::AT_TypeNullUnspecified
148
149namespace {
150 /// An object which stores processing state for the entire
151 /// GetTypeForDeclarator process.
152 class TypeProcessingState {
153 Sema &sema;
154
155 /// The declarator being processed.
156 Declarator &declarator;
157
158 /// The index of the declarator chunk we're currently processing.
159 /// May be the total number of valid chunks, indicating the
160 /// DeclSpec.
161 unsigned chunkIndex;
162
163 /// Whether there are non-trivial modifications to the decl spec.
164 bool trivial;
165
166 /// Whether we saved the attributes in the decl spec.
167 bool hasSavedAttrs;
168
169 /// The original set of attributes on the DeclSpec.
170 SmallVector<ParsedAttr *, 2> savedAttrs;
171
172 /// A list of attributes to diagnose the uselessness of when the
173 /// processing is complete.
174 SmallVector<ParsedAttr *, 2> ignoredTypeAttrs;
175
176 /// Attributes corresponding to AttributedTypeLocs that we have not yet
177 /// populated.
178 // FIXME: The two-phase mechanism by which we construct Types and fill
179 // their TypeLocs makes it hard to correctly assign these. We keep the
180 // attributes in creation order as an attempt to make them line up
181 // properly.
182 using TypeAttrPair = std::pair<const AttributedType*, const Attr*>;
183 SmallVector<TypeAttrPair, 8> AttrsForTypes;
184 bool AttrsForTypesSorted = true;
185
186 /// Flag to indicate we parsed a noderef attribute. This is used for
187 /// validating that noderef was used on a pointer or array.
188 bool parsedNoDeref;
189
190 public:
191 TypeProcessingState(Sema &sema, Declarator &declarator)
192 : sema(sema), declarator(declarator),
193 chunkIndex(declarator.getNumTypeObjects()), trivial(true),
194 hasSavedAttrs(false), parsedNoDeref(false) {}
195
196 Sema &getSema() const {
197 return sema;
198 }
199
200 Declarator &getDeclarator() const {
201 return declarator;
202 }
203
204 bool isProcessingDeclSpec() const {
205 return chunkIndex == declarator.getNumTypeObjects();
206 }
207
208 unsigned getCurrentChunkIndex() const {
209 return chunkIndex;
210 }
211
212 void setCurrentChunkIndex(unsigned idx) {
213 assert(idx <= declarator.getNumTypeObjects())((idx <= declarator.getNumTypeObjects()) ? static_cast<
void> (0) : __assert_fail ("idx <= declarator.getNumTypeObjects()"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 213, __PRETTY_FUNCTION__))
;
214 chunkIndex = idx;
215 }
216
217 ParsedAttributesView &getCurrentAttributes() const {
218 if (isProcessingDeclSpec())
219 return getMutableDeclSpec().getAttributes();
220 return declarator.getTypeObject(chunkIndex).getAttrs();
221 }
222
223 /// Save the current set of attributes on the DeclSpec.
224 void saveDeclSpecAttrs() {
225 // Don't try to save them multiple times.
226 if (hasSavedAttrs) return;
227
228 DeclSpec &spec = getMutableDeclSpec();
229 for (ParsedAttr &AL : spec.getAttributes())
230 savedAttrs.push_back(&AL);
231 trivial &= savedAttrs.empty();
232 hasSavedAttrs = true;
233 }
234
235 /// Record that we had nowhere to put the given type attribute.
236 /// We will diagnose such attributes later.
237 void addIgnoredTypeAttr(ParsedAttr &attr) {
238 ignoredTypeAttrs.push_back(&attr);
239 }
240
241 /// Diagnose all the ignored type attributes, given that the
242 /// declarator worked out to the given type.
243 void diagnoseIgnoredTypeAttrs(QualType type) const {
244 for (auto *Attr : ignoredTypeAttrs)
245 diagnoseBadTypeAttribute(getSema(), *Attr, type);
246 }
247
248 /// Get an attributed type for the given attribute, and remember the Attr
249 /// object so that we can attach it to the AttributedTypeLoc.
250 QualType getAttributedType(Attr *A, QualType ModifiedType,
251 QualType EquivType) {
252 QualType T =
253 sema.Context.getAttributedType(A->getKind(), ModifiedType, EquivType);
254 AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A});
255 AttrsForTypesSorted = false;
256 return T;
257 }
258
259 /// Extract and remove the Attr* for a given attributed type.
260 const Attr *takeAttrForAttributedType(const AttributedType *AT) {
261 if (!AttrsForTypesSorted) {
262 std::stable_sort(AttrsForTypes.begin(), AttrsForTypes.end(),
263 [](const TypeAttrPair &A, const TypeAttrPair &B) {
264 return A.first < B.first;
265 });
266 AttrsForTypesSorted = true;
267 }
268
269 // FIXME: This is quadratic if we have lots of reuses of the same
270 // attributed type.
271 for (auto It = std::partition_point(
272 AttrsForTypes.begin(), AttrsForTypes.end(),
273 [=](const TypeAttrPair &A) { return A.first < AT; });
274 It != AttrsForTypes.end() && It->first == AT; ++It) {
275 if (It->second) {
276 const Attr *Result = It->second;
277 It->second = nullptr;
278 return Result;
279 }
280 }
281
282 llvm_unreachable("no Attr* for AttributedType*")::llvm::llvm_unreachable_internal("no Attr* for AttributedType*"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 282)
;
283 }
284
285 void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; }
286
287 bool didParseNoDeref() const { return parsedNoDeref; }
288
289 ~TypeProcessingState() {
290 if (trivial) return;
291
292 restoreDeclSpecAttrs();
293 }
294
295 private:
296 DeclSpec &getMutableDeclSpec() const {
297 return const_cast<DeclSpec&>(declarator.getDeclSpec());
298 }
299
300 void restoreDeclSpecAttrs() {
301 assert(hasSavedAttrs)((hasSavedAttrs) ? static_cast<void> (0) : __assert_fail
("hasSavedAttrs", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 301, __PRETTY_FUNCTION__))
;
302
303 getMutableDeclSpec().getAttributes().clearListOnly();
304 for (ParsedAttr *AL : savedAttrs)
305 getMutableDeclSpec().getAttributes().addAtEnd(AL);
306 }
307 };
308} // end anonymous namespace
309
310static void moveAttrFromListToList(ParsedAttr &attr,
311 ParsedAttributesView &fromList,
312 ParsedAttributesView &toList) {
313 fromList.remove(&attr);
314 toList.addAtEnd(&attr);
315}
316
317/// The location of a type attribute.
318enum TypeAttrLocation {
319 /// The attribute is in the decl-specifier-seq.
320 TAL_DeclSpec,
321 /// The attribute is part of a DeclaratorChunk.
322 TAL_DeclChunk,
323 /// The attribute is immediately after the declaration's name.
324 TAL_DeclName
325};
326
327static void processTypeAttrs(TypeProcessingState &state, QualType &type,
328 TypeAttrLocation TAL, ParsedAttributesView &attrs);
329
330static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
331 QualType &type);
332
333static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
334 ParsedAttr &attr, QualType &type);
335
336static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
337 QualType &type);
338
339static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
340 ParsedAttr &attr, QualType &type);
341
342static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
343 ParsedAttr &attr, QualType &type) {
344 if (attr.getKind() == ParsedAttr::AT_ObjCGC)
345 return handleObjCGCTypeAttr(state, attr, type);
346 assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership)((attr.getKind() == ParsedAttr::AT_ObjCOwnership) ? static_cast
<void> (0) : __assert_fail ("attr.getKind() == ParsedAttr::AT_ObjCOwnership"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 346, __PRETTY_FUNCTION__))
;
347 return handleObjCOwnershipTypeAttr(state, attr, type);
348}
349
350/// Given the index of a declarator chunk, check whether that chunk
351/// directly specifies the return type of a function and, if so, find
352/// an appropriate place for it.
353///
354/// \param i - a notional index which the search will start
355/// immediately inside
356///
357/// \param onlyBlockPointers Whether we should only look into block
358/// pointer types (vs. all pointer types).
359static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
360 unsigned i,
361 bool onlyBlockPointers) {
362 assert(i <= declarator.getNumTypeObjects())((i <= declarator.getNumTypeObjects()) ? static_cast<void
> (0) : __assert_fail ("i <= declarator.getNumTypeObjects()"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 362, __PRETTY_FUNCTION__))
;
363
364 DeclaratorChunk *result = nullptr;
365
366 // First, look inwards past parens for a function declarator.
367 for (; i != 0; --i) {
368 DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
369 switch (fnChunk.Kind) {
370 case DeclaratorChunk::Paren:
371 continue;
372
373 // If we find anything except a function, bail out.
374 case DeclaratorChunk::Pointer:
375 case DeclaratorChunk::BlockPointer:
376 case DeclaratorChunk::Array:
377 case DeclaratorChunk::Reference:
378 case DeclaratorChunk::MemberPointer:
379 case DeclaratorChunk::Pipe:
380 return result;
381
382 // If we do find a function declarator, scan inwards from that,
383 // looking for a (block-)pointer declarator.
384 case DeclaratorChunk::Function:
385 for (--i; i != 0; --i) {
386 DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
387 switch (ptrChunk.Kind) {
388 case DeclaratorChunk::Paren:
389 case DeclaratorChunk::Array:
390 case DeclaratorChunk::Function:
391 case DeclaratorChunk::Reference:
392 case DeclaratorChunk::Pipe:
393 continue;
394
395 case DeclaratorChunk::MemberPointer:
396 case DeclaratorChunk::Pointer:
397 if (onlyBlockPointers)
398 continue;
399
400 LLVM_FALLTHROUGH[[clang::fallthrough]];
401
402 case DeclaratorChunk::BlockPointer:
403 result = &ptrChunk;
404 goto continue_outer;
405 }
406 llvm_unreachable("bad declarator chunk kind")::llvm::llvm_unreachable_internal("bad declarator chunk kind"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 406)
;
407 }
408
409 // If we run out of declarators doing that, we're done.
410 return result;
411 }
412 llvm_unreachable("bad declarator chunk kind")::llvm::llvm_unreachable_internal("bad declarator chunk kind"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 412)
;
413
414 // Okay, reconsider from our new point.
415 continue_outer: ;
416 }
417
418 // Ran out of chunks, bail out.
419 return result;
420}
421
422/// Given that an objc_gc attribute was written somewhere on a
423/// declaration *other* than on the declarator itself (for which, use
424/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
425/// didn't apply in whatever position it was written in, try to move
426/// it to a more appropriate position.
427static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
428 ParsedAttr &attr, QualType type) {
429 Declarator &declarator = state.getDeclarator();
430
431 // Move it to the outermost normal or block pointer declarator.
432 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
433 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
434 switch (chunk.Kind) {
435 case DeclaratorChunk::Pointer:
436 case DeclaratorChunk::BlockPointer: {
437 // But don't move an ARC ownership attribute to the return type
438 // of a block.
439 DeclaratorChunk *destChunk = nullptr;
440 if (state.isProcessingDeclSpec() &&
441 attr.getKind() == ParsedAttr::AT_ObjCOwnership)
442 destChunk = maybeMovePastReturnType(declarator, i - 1,
443 /*onlyBlockPointers=*/true);
444 if (!destChunk) destChunk = &chunk;
445
446 moveAttrFromListToList(attr, state.getCurrentAttributes(),
447 destChunk->getAttrs());
448 return;
449 }
450
451 case DeclaratorChunk::Paren:
452 case DeclaratorChunk::Array:
453 continue;
454
455 // We may be starting at the return type of a block.
456 case DeclaratorChunk::Function:
457 if (state.isProcessingDeclSpec() &&
458 attr.getKind() == ParsedAttr::AT_ObjCOwnership) {
459 if (DeclaratorChunk *dest = maybeMovePastReturnType(
460 declarator, i,
461 /*onlyBlockPointers=*/true)) {
462 moveAttrFromListToList(attr, state.getCurrentAttributes(),
463 dest->getAttrs());
464 return;
465 }
466 }
467 goto error;
468
469 // Don't walk through these.
470 case DeclaratorChunk::Reference:
471 case DeclaratorChunk::MemberPointer:
472 case DeclaratorChunk::Pipe:
473 goto error;
474 }
475 }
476 error:
477
478 diagnoseBadTypeAttribute(state.getSema(), attr, type);
479}
480
481/// Distribute an objc_gc type attribute that was written on the
482/// declarator.
483static void distributeObjCPointerTypeAttrFromDeclarator(
484 TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) {
485 Declarator &declarator = state.getDeclarator();
486
487 // objc_gc goes on the innermost pointer to something that's not a
488 // pointer.
489 unsigned innermost = -1U;
490 bool considerDeclSpec = true;
491 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
492 DeclaratorChunk &chunk = declarator.getTypeObject(i);
493 switch (chunk.Kind) {
494 case DeclaratorChunk::Pointer:
495 case DeclaratorChunk::BlockPointer:
496 innermost = i;
497 continue;
498
499 case DeclaratorChunk::Reference:
500 case DeclaratorChunk::MemberPointer:
501 case DeclaratorChunk::Paren:
502 case DeclaratorChunk::Array:
503 case DeclaratorChunk::Pipe:
504 continue;
505
506 case DeclaratorChunk::Function:
507 considerDeclSpec = false;
508 goto done;
509 }
510 }
511 done:
512
513 // That might actually be the decl spec if we weren't blocked by
514 // anything in the declarator.
515 if (considerDeclSpec) {
516 if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
517 // Splice the attribute into the decl spec. Prevents the
518 // attribute from being applied multiple times and gives
519 // the source-location-filler something to work with.
520 state.saveDeclSpecAttrs();
521 moveAttrFromListToList(attr, declarator.getAttributes(),
522 declarator.getMutableDeclSpec().getAttributes());
523 return;
524 }
525 }
526
527 // Otherwise, if we found an appropriate chunk, splice the attribute
528 // into it.
529 if (innermost != -1U) {
530 moveAttrFromListToList(attr, declarator.getAttributes(),
531 declarator.getTypeObject(innermost).getAttrs());
532 return;
533 }
534
535 // Otherwise, diagnose when we're done building the type.
536 declarator.getAttributes().remove(&attr);
537 state.addIgnoredTypeAttr(attr);
538}
539
540/// A function type attribute was written somewhere in a declaration
541/// *other* than on the declarator itself or in the decl spec. Given
542/// that it didn't apply in whatever position it was written in, try
543/// to move it to a more appropriate position.
544static void distributeFunctionTypeAttr(TypeProcessingState &state,
545 ParsedAttr &attr, QualType type) {
546 Declarator &declarator = state.getDeclarator();
547
548 // Try to push the attribute from the return type of a function to
549 // the function itself.
550 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
551 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
552 switch (chunk.Kind) {
553 case DeclaratorChunk::Function:
554 moveAttrFromListToList(attr, state.getCurrentAttributes(),
555 chunk.getAttrs());
556 return;
557
558 case DeclaratorChunk::Paren:
559 case DeclaratorChunk::Pointer:
560 case DeclaratorChunk::BlockPointer:
561 case DeclaratorChunk::Array:
562 case DeclaratorChunk::Reference:
563 case DeclaratorChunk::MemberPointer:
564 case DeclaratorChunk::Pipe:
565 continue;
566 }
567 }
568
569 diagnoseBadTypeAttribute(state.getSema(), attr, type);
570}
571
572/// Try to distribute a function type attribute to the innermost
573/// function chunk or type. Returns true if the attribute was
574/// distributed, false if no location was found.
575static bool distributeFunctionTypeAttrToInnermost(
576 TypeProcessingState &state, ParsedAttr &attr,
577 ParsedAttributesView &attrList, QualType &declSpecType) {
578 Declarator &declarator = state.getDeclarator();
579
580 // Put it on the innermost function chunk, if there is one.
581 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
582 DeclaratorChunk &chunk = declarator.getTypeObject(i);
583 if (chunk.Kind != DeclaratorChunk::Function) continue;
584
585 moveAttrFromListToList(attr, attrList, chunk.getAttrs());
586 return true;
587 }
588
589 return handleFunctionTypeAttr(state, attr, declSpecType);
590}
591
592/// A function type attribute was written in the decl spec. Try to
593/// apply it somewhere.
594static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
595 ParsedAttr &attr,
596 QualType &declSpecType) {
597 state.saveDeclSpecAttrs();
598
599 // C++11 attributes before the decl specifiers actually appertain to
600 // the declarators. Move them straight there. We don't support the
601 // 'put them wherever you like' semantics we allow for GNU attributes.
602 if (attr.isCXX11Attribute()) {
603 moveAttrFromListToList(attr, state.getCurrentAttributes(),
604 state.getDeclarator().getAttributes());
605 return;
606 }
607
608 // Try to distribute to the innermost.
609 if (distributeFunctionTypeAttrToInnermost(
610 state, attr, state.getCurrentAttributes(), declSpecType))
611 return;
612
613 // If that failed, diagnose the bad attribute when the declarator is
614 // fully built.
615 state.addIgnoredTypeAttr(attr);
616}
617
618/// A function type attribute was written on the declarator. Try to
619/// apply it somewhere.
620static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
621 ParsedAttr &attr,
622 QualType &declSpecType) {
623 Declarator &declarator = state.getDeclarator();
624
625 // Try to distribute to the innermost.
626 if (distributeFunctionTypeAttrToInnermost(
627 state, attr, declarator.getAttributes(), declSpecType))
628 return;
629
630 // If that failed, diagnose the bad attribute when the declarator is
631 // fully built.
632 declarator.getAttributes().remove(&attr);
633 state.addIgnoredTypeAttr(attr);
634}
635
636/// Given that there are attributes written on the declarator
637/// itself, try to distribute any type attributes to the appropriate
638/// declarator chunk.
639///
640/// These are attributes like the following:
641/// int f ATTR;
642/// int (f ATTR)();
643/// but not necessarily this:
644/// int f() ATTR;
645static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
646 QualType &declSpecType) {
647 // Collect all the type attributes from the declarator itself.
648 assert(!state.getDeclarator().getAttributes().empty() &&((!state.getDeclarator().getAttributes().empty() && "declarator has no attrs!"
) ? static_cast<void> (0) : __assert_fail ("!state.getDeclarator().getAttributes().empty() && \"declarator has no attrs!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 649, __PRETTY_FUNCTION__))
649 "declarator has no attrs!")((!state.getDeclarator().getAttributes().empty() && "declarator has no attrs!"
) ? static_cast<void> (0) : __assert_fail ("!state.getDeclarator().getAttributes().empty() && \"declarator has no attrs!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 649, __PRETTY_FUNCTION__))
;
650 // The called functions in this loop actually remove things from the current
651 // list, so iterating over the existing list isn't possible. Instead, make a
652 // non-owning copy and iterate over that.
653 ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()};
654 for (ParsedAttr &attr : AttrsCopy) {
655 // Do not distribute C++11 attributes. They have strict rules for what
656 // they appertain to.
657 if (attr.isCXX11Attribute())
658 continue;
659
660 switch (attr.getKind()) {
661 OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership:
662 distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType);
663 break;
664
665 FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn
: case ParsedAttr::AT_Regparm: case ParsedAttr::AT_AnyX86NoCallerSavedRegisters
: case ParsedAttr::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl
: case ParsedAttr::AT_FastCall: case ParsedAttr::AT_StdCall: case
ParsedAttr::AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr
::AT_Pascal: case ParsedAttr::AT_SwiftCall: case ParsedAttr::
AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr
::AT_MSABI: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs
: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost
: case ParsedAttr::AT_PreserveAll
:
666 distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType);
667 break;
668
669 MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr
::AT_SPtr: case ParsedAttr::AT_UPtr
:
670 // Microsoft type attributes cannot go after the declarator-id.
671 continue;
672
673 NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable
: case ParsedAttr::AT_TypeNullUnspecified
:
674 // Nullability specifiers cannot go after the declarator-id.
675
676 // Objective-C __kindof does not get distributed.
677 case ParsedAttr::AT_ObjCKindOf:
678 continue;
679
680 default:
681 break;
682 }
683 }
684}
685
686/// Add a synthetic '()' to a block-literal declarator if it is
687/// required, given the return type.
688static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
689 QualType declSpecType) {
690 Declarator &declarator = state.getDeclarator();
691
692 // First, check whether the declarator would produce a function,
693 // i.e. whether the innermost semantic chunk is a function.
694 if (declarator.isFunctionDeclarator()) {
695 // If so, make that declarator a prototyped declarator.
696 declarator.getFunctionTypeInfo().hasPrototype = true;
697 return;
698 }
699
700 // If there are any type objects, the type as written won't name a
701 // function, regardless of the decl spec type. This is because a
702 // block signature declarator is always an abstract-declarator, and
703 // abstract-declarators can't just be parentheses chunks. Therefore
704 // we need to build a function chunk unless there are no type
705 // objects and the decl spec type is a function.
706 if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
707 return;
708
709 // Note that there *are* cases with invalid declarators where
710 // declarators consist solely of parentheses. In general, these
711 // occur only in failed efforts to make function declarators, so
712 // faking up the function chunk is still the right thing to do.
713
714 // Otherwise, we need to fake up a function declarator.
715 SourceLocation loc = declarator.getBeginLoc();
716
717 // ...and *prepend* it to the declarator.
718 SourceLocation NoLoc;
719 declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
720 /*HasProto=*/true,
721 /*IsAmbiguous=*/false,
722 /*LParenLoc=*/NoLoc,
723 /*ArgInfo=*/nullptr,
724 /*NumArgs=*/0,
725 /*EllipsisLoc=*/NoLoc,
726 /*RParenLoc=*/NoLoc,
727 /*TypeQuals=*/0,
728 /*RefQualifierIsLvalueRef=*/true,
729 /*RefQualifierLoc=*/NoLoc,
730 /*ConstQualifierLoc=*/NoLoc,
731 /*VolatileQualifierLoc=*/NoLoc,
732 /*RestrictQualifierLoc=*/NoLoc,
733 /*MutableLoc=*/NoLoc, EST_None,
734 /*ESpecRange=*/SourceRange(),
735 /*Exceptions=*/nullptr,
736 /*ExceptionRanges=*/nullptr,
737 /*NumExceptions=*/0,
738 /*NoexceptExpr=*/nullptr,
739 /*ExceptionSpecTokens=*/nullptr,
740 /*DeclsInPrototype=*/None,
741 loc, loc, declarator));
742
743 // For consistency, make sure the state still has us as processing
744 // the decl spec.
745 assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1)((state.getCurrentChunkIndex() == declarator.getNumTypeObjects
() - 1) ? static_cast<void> (0) : __assert_fail ("state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 745, __PRETTY_FUNCTION__))
;
746 state.setCurrentChunkIndex(declarator.getNumTypeObjects());
747}
748
749static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
750 unsigned &TypeQuals,
751 QualType TypeSoFar,
752 unsigned RemoveTQs,
753 unsigned DiagID) {
754 // If this occurs outside a template instantiation, warn the user about
755 // it; they probably didn't mean to specify a redundant qualifier.
756 typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
757 for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
758 QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()),
759 QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
760 QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
761 if (!(RemoveTQs & Qual.first))
762 continue;
763
764 if (!S.inTemplateInstantiation()) {
765 if (TypeQuals & Qual.first)
766 S.Diag(Qual.second, DiagID)
767 << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
768 << FixItHint::CreateRemoval(Qual.second);
769 }
770
771 TypeQuals &= ~Qual.first;
772 }
773}
774
775/// Return true if this is omitted block return type. Also check type
776/// attributes and type qualifiers when returning true.
777static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
778 QualType Result) {
779 if (!isOmittedBlockReturnType(declarator))
780 return false;
781
782 // Warn if we see type attributes for omitted return type on a block literal.
783 SmallVector<ParsedAttr *, 2> ToBeRemoved;
784 for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) {
785 if (AL.isInvalid() || !AL.isTypeAttr())
786 continue;
787 S.Diag(AL.getLoc(),
788 diag::warn_block_literal_attributes_on_omitted_return_type)
789 << AL.getName();
790 ToBeRemoved.push_back(&AL);
791 }
792 // Remove bad attributes from the list.
793 for (ParsedAttr *AL : ToBeRemoved)
794 declarator.getMutableDeclSpec().getAttributes().remove(AL);
795
796 // Warn if we see type qualifiers for omitted return type on a block literal.
797 const DeclSpec &DS = declarator.getDeclSpec();
798 unsigned TypeQuals = DS.getTypeQualifiers();
799 diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
800 diag::warn_block_literal_qualifiers_on_omitted_return_type);
801 declarator.getMutableDeclSpec().ClearTypeQualifiers();
802
803 return true;
804}
805
806/// Apply Objective-C type arguments to the given type.
807static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type,
808 ArrayRef<TypeSourceInfo *> typeArgs,
809 SourceRange typeArgsRange,
810 bool failOnError = false) {
811 // We can only apply type arguments to an Objective-C class type.
812 const auto *objcObjectType = type->getAs<ObjCObjectType>();
813 if (!objcObjectType || !objcObjectType->getInterface()) {
814 S.Diag(loc, diag::err_objc_type_args_non_class)
815 << type
816 << typeArgsRange;
817
818 if (failOnError)
819 return QualType();
820 return type;
821 }
822
823 // The class type must be parameterized.
824 ObjCInterfaceDecl *objcClass = objcObjectType->getInterface();
825 ObjCTypeParamList *typeParams = objcClass->getTypeParamList();
826 if (!typeParams) {
827 S.Diag(loc, diag::err_objc_type_args_non_parameterized_class)
828 << objcClass->getDeclName()
829 << FixItHint::CreateRemoval(typeArgsRange);
830
831 if (failOnError)
832 return QualType();
833
834 return type;
835 }
836
837 // The type must not already be specialized.
838 if (objcObjectType->isSpecialized()) {
839 S.Diag(loc, diag::err_objc_type_args_specialized_class)
840 << type
841 << FixItHint::CreateRemoval(typeArgsRange);
842
843 if (failOnError)
844 return QualType();
845
846 return type;
847 }
848
849 // Check the type arguments.
850 SmallVector<QualType, 4> finalTypeArgs;
851 unsigned numTypeParams = typeParams->size();
852 bool anyPackExpansions = false;
853 for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) {
854 TypeSourceInfo *typeArgInfo = typeArgs[i];
855 QualType typeArg = typeArgInfo->getType();
856
857 // Type arguments cannot have explicit qualifiers or nullability.
858 // We ignore indirect sources of these, e.g. behind typedefs or
859 // template arguments.
860 if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) {
861 bool diagnosed = false;
862 SourceRange rangeToRemove;
863 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
864 rangeToRemove = attr.getLocalSourceRange();
865 if (attr.getTypePtr()->getImmediateNullability()) {
866 typeArg = attr.getTypePtr()->getModifiedType();
867 S.Diag(attr.getBeginLoc(),
868 diag::err_objc_type_arg_explicit_nullability)
869 << typeArg << FixItHint::CreateRemoval(rangeToRemove);
870 diagnosed = true;
871 }
872 }
873
874 if (!diagnosed) {
875 S.Diag(qual.getBeginLoc(), diag::err_objc_type_arg_qualified)
876 << typeArg << typeArg.getQualifiers().getAsString()
877 << FixItHint::CreateRemoval(rangeToRemove);
878 }
879 }
880
881 // Remove qualifiers even if they're non-local.
882 typeArg = typeArg.getUnqualifiedType();
883
884 finalTypeArgs.push_back(typeArg);
885
886 if (typeArg->getAs<PackExpansionType>())
887 anyPackExpansions = true;
888
889 // Find the corresponding type parameter, if there is one.
890 ObjCTypeParamDecl *typeParam = nullptr;
891 if (!anyPackExpansions) {
892 if (i < numTypeParams) {
893 typeParam = typeParams->begin()[i];
894 } else {
895 // Too many arguments.
896 S.Diag(loc, diag::err_objc_type_args_wrong_arity)
897 << false
898 << objcClass->getDeclName()
899 << (unsigned)typeArgs.size()
900 << numTypeParams;
901 S.Diag(objcClass->getLocation(), diag::note_previous_decl)
902 << objcClass;
903
904 if (failOnError)
905 return QualType();
906
907 return type;
908 }
909 }
910
911 // Objective-C object pointer types must be substitutable for the bounds.
912 if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) {
913 // If we don't have a type parameter to match against, assume
914 // everything is fine. There was a prior pack expansion that
915 // means we won't be able to match anything.
916 if (!typeParam) {
917 assert(anyPackExpansions && "Too many arguments?")((anyPackExpansions && "Too many arguments?") ? static_cast
<void> (0) : __assert_fail ("anyPackExpansions && \"Too many arguments?\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 917, __PRETTY_FUNCTION__))
;
918 continue;
919 }
920
921 // Retrieve the bound.
922 QualType bound = typeParam->getUnderlyingType();
923 const auto *boundObjC = bound->getAs<ObjCObjectPointerType>();
924
925 // Determine whether the type argument is substitutable for the bound.
926 if (typeArgObjC->isObjCIdType()) {
927 // When the type argument is 'id', the only acceptable type
928 // parameter bound is 'id'.
929 if (boundObjC->isObjCIdType())
930 continue;
931 } else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) {
932 // Otherwise, we follow the assignability rules.
933 continue;
934 }
935
936 // Diagnose the mismatch.
937 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
938 diag::err_objc_type_arg_does_not_match_bound)
939 << typeArg << bound << typeParam->getDeclName();
940 S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
941 << typeParam->getDeclName();
942
943 if (failOnError)
944 return QualType();
945
946 return type;
947 }
948
949 // Block pointer types are permitted for unqualified 'id' bounds.
950 if (typeArg->isBlockPointerType()) {
951 // If we don't have a type parameter to match against, assume
952 // everything is fine. There was a prior pack expansion that
953 // means we won't be able to match anything.
954 if (!typeParam) {
955 assert(anyPackExpansions && "Too many arguments?")((anyPackExpansions && "Too many arguments?") ? static_cast
<void> (0) : __assert_fail ("anyPackExpansions && \"Too many arguments?\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 955, __PRETTY_FUNCTION__))
;
956 continue;
957 }
958
959 // Retrieve the bound.
960 QualType bound = typeParam->getUnderlyingType();
961 if (bound->isBlockCompatibleObjCPointerType(S.Context))
962 continue;
963
964 // Diagnose the mismatch.
965 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
966 diag::err_objc_type_arg_does_not_match_bound)
967 << typeArg << bound << typeParam->getDeclName();
968 S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
969 << typeParam->getDeclName();
970
971 if (failOnError)
972 return QualType();
973
974 return type;
975 }
976
977 // Dependent types will be checked at instantiation time.
978 if (typeArg->isDependentType()) {
979 continue;
980 }
981
982 // Diagnose non-id-compatible type arguments.
983 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
984 diag::err_objc_type_arg_not_id_compatible)
985 << typeArg << typeArgInfo->getTypeLoc().getSourceRange();
986
987 if (failOnError)
988 return QualType();
989
990 return type;
991 }
992
993 // Make sure we didn't have the wrong number of arguments.
994 if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) {
995 S.Diag(loc, diag::err_objc_type_args_wrong_arity)
996 << (typeArgs.size() < typeParams->size())
997 << objcClass->getDeclName()
998 << (unsigned)finalTypeArgs.size()
999 << (unsigned)numTypeParams;
1000 S.Diag(objcClass->getLocation(), diag::note_previous_decl)
1001 << objcClass;
1002
1003 if (failOnError)
1004 return QualType();
1005
1006 return type;
1007 }
1008
1009 // Success. Form the specialized type.
1010 return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false);
1011}
1012
1013QualType Sema::BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1014 SourceLocation ProtocolLAngleLoc,
1015 ArrayRef<ObjCProtocolDecl *> Protocols,
1016 ArrayRef<SourceLocation> ProtocolLocs,
1017 SourceLocation ProtocolRAngleLoc,
1018 bool FailOnError) {
1019 QualType Result = QualType(Decl->getTypeForDecl(), 0);
1020 if (!Protocols.empty()) {
1021 bool HasError;
1022 Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1023 HasError);
1024 if (HasError) {
1025 Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers)
1026 << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1027 if (FailOnError) Result = QualType();
1028 }
1029 if (FailOnError && Result.isNull())
1030 return QualType();
1031 }
1032
1033 return Result;
1034}
1035
1036QualType Sema::BuildObjCObjectType(QualType BaseType,
1037 SourceLocation Loc,
1038 SourceLocation TypeArgsLAngleLoc,
1039 ArrayRef<TypeSourceInfo *> TypeArgs,
1040 SourceLocation TypeArgsRAngleLoc,
1041 SourceLocation ProtocolLAngleLoc,
1042 ArrayRef<ObjCProtocolDecl *> Protocols,
1043 ArrayRef<SourceLocation> ProtocolLocs,
1044 SourceLocation ProtocolRAngleLoc,
1045 bool FailOnError) {
1046 QualType Result = BaseType;
1047 if (!TypeArgs.empty()) {
1048 Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs,
1049 SourceRange(TypeArgsLAngleLoc,
1050 TypeArgsRAngleLoc),
1051 FailOnError);
1052 if (FailOnError && Result.isNull())
1053 return QualType();
1054 }
1055
1056 if (!Protocols.empty()) {
1057 bool HasError;
1058 Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1059 HasError);
1060 if (HasError) {
1061 Diag(Loc, diag::err_invalid_protocol_qualifiers)
1062 << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1063 if (FailOnError) Result = QualType();
1064 }
1065 if (FailOnError && Result.isNull())
1066 return QualType();
1067 }
1068
1069 return Result;
1070}
1071
1072TypeResult Sema::actOnObjCProtocolQualifierType(
1073 SourceLocation lAngleLoc,
1074 ArrayRef<Decl *> protocols,
1075 ArrayRef<SourceLocation> protocolLocs,
1076 SourceLocation rAngleLoc) {
1077 // Form id<protocol-list>.
1078 QualType Result = Context.getObjCObjectType(
1079 Context.ObjCBuiltinIdTy, { },
1080 llvm::makeArrayRef(
1081 (ObjCProtocolDecl * const *)protocols.data(),
1082 protocols.size()),
1083 false);
1084 Result = Context.getObjCObjectPointerType(Result);
1085
1086 TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1087 TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1088
1089 auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>();
1090 ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit
1091
1092 auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc()
1093 .castAs<ObjCObjectTypeLoc>();
1094 ObjCObjectTL.setHasBaseTypeAsWritten(false);
1095 ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation());
1096
1097 // No type arguments.
1098 ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1099 ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1100
1101 // Fill in protocol qualifiers.
1102 ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc);
1103 ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc);
1104 for (unsigned i = 0, n = protocols.size(); i != n; ++i)
1105 ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]);
1106
1107 // We're done. Return the completed type to the parser.
1108 return CreateParsedType(Result, ResultTInfo);
1109}
1110
1111TypeResult Sema::actOnObjCTypeArgsAndProtocolQualifiers(
1112 Scope *S,
1113 SourceLocation Loc,
1114 ParsedType BaseType,
1115 SourceLocation TypeArgsLAngleLoc,
1116 ArrayRef<ParsedType> TypeArgs,
1117 SourceLocation TypeArgsRAngleLoc,
1118 SourceLocation ProtocolLAngleLoc,
1119 ArrayRef<Decl *> Protocols,
1120 ArrayRef<SourceLocation> ProtocolLocs,
1121 SourceLocation ProtocolRAngleLoc) {
1122 TypeSourceInfo *BaseTypeInfo = nullptr;
1123 QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo);
1124 if (T.isNull())
1125 return true;
1126
1127 // Handle missing type-source info.
1128 if (!BaseTypeInfo)
1129 BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc);
1130
1131 // Extract type arguments.
1132 SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos;
1133 for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) {
1134 TypeSourceInfo *TypeArgInfo = nullptr;
1135 QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo);
1136 if (TypeArg.isNull()) {
1137 ActualTypeArgInfos.clear();
1138 break;
1139 }
1140
1141 assert(TypeArgInfo && "No type source info?")((TypeArgInfo && "No type source info?") ? static_cast
<void> (0) : __assert_fail ("TypeArgInfo && \"No type source info?\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1141, __PRETTY_FUNCTION__))
;
1142 ActualTypeArgInfos.push_back(TypeArgInfo);
1143 }
1144
1145 // Build the object type.
1146 QualType Result = BuildObjCObjectType(
1147 T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(),
1148 TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc,
1149 ProtocolLAngleLoc,
1150 llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(),
1151 Protocols.size()),
1152 ProtocolLocs, ProtocolRAngleLoc,
1153 /*FailOnError=*/false);
1154
1155 if (Result == T)
1156 return BaseType;
1157
1158 // Create source information for this type.
1159 TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1160 TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1161
1162 // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
1163 // object pointer type. Fill in source information for it.
1164 if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) {
1165 // The '*' is implicit.
1166 ObjCObjectPointerTL.setStarLoc(SourceLocation());
1167 ResultTL = ObjCObjectPointerTL.getPointeeLoc();
1168 }
1169
1170 if (auto OTPTL = ResultTL.getAs<ObjCTypeParamTypeLoc>()) {
1171 // Protocol qualifier information.
1172 if (OTPTL.getNumProtocols() > 0) {
1173 assert(OTPTL.getNumProtocols() == Protocols.size())((OTPTL.getNumProtocols() == Protocols.size()) ? static_cast<
void> (0) : __assert_fail ("OTPTL.getNumProtocols() == Protocols.size()"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1173, __PRETTY_FUNCTION__))
;
1174 OTPTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1175 OTPTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1176 for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1177 OTPTL.setProtocolLoc(i, ProtocolLocs[i]);
1178 }
1179
1180 // We're done. Return the completed type to the parser.
1181 return CreateParsedType(Result, ResultTInfo);
1182 }
1183
1184 auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>();
1185
1186 // Type argument information.
1187 if (ObjCObjectTL.getNumTypeArgs() > 0) {
1188 assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size())((ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size())
? static_cast<void> (0) : __assert_fail ("ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size()"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1188, __PRETTY_FUNCTION__))
;
1189 ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc);
1190 ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc);
1191 for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i)
1192 ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]);
1193 } else {
1194 ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1195 ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1196 }
1197
1198 // Protocol qualifier information.
1199 if (ObjCObjectTL.getNumProtocols() > 0) {
1200 assert(ObjCObjectTL.getNumProtocols() == Protocols.size())((ObjCObjectTL.getNumProtocols() == Protocols.size()) ? static_cast
<void> (0) : __assert_fail ("ObjCObjectTL.getNumProtocols() == Protocols.size()"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1200, __PRETTY_FUNCTION__))
;
1201 ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1202 ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1203 for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1204 ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]);
1205 } else {
1206 ObjCObjectTL.setProtocolLAngleLoc(SourceLocation());
1207 ObjCObjectTL.setProtocolRAngleLoc(SourceLocation());
1208 }
1209
1210 // Base type.
1211 ObjCObjectTL.setHasBaseTypeAsWritten(true);
1212 if (ObjCObjectTL.getType() == T)
1213 ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc());
1214 else
1215 ObjCObjectTL.getBaseLoc().initialize(Context, Loc);
1216
1217 // We're done. Return the completed type to the parser.
1218 return CreateParsedType(Result, ResultTInfo);
1219}
1220
1221static OpenCLAccessAttr::Spelling
1222getImageAccess(const ParsedAttributesView &Attrs) {
1223 for (const ParsedAttr &AL : Attrs)
1224 if (AL.getKind() == ParsedAttr::AT_OpenCLAccess)
1225 return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling());
1226 return OpenCLAccessAttr::Keyword_read_only;
1227}
1228
1229/// Convert the specified declspec to the appropriate type
1230/// object.
1231/// \param state Specifies the declarator containing the declaration specifier
1232/// to be converted, along with other associated processing state.
1233/// \returns The type described by the declaration specifiers. This function
1234/// never returns null.
1235static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
1236 // FIXME: Should move the logic from DeclSpec::Finish to here for validity
1237 // checking.
1238
1239 Sema &S = state.getSema();
1240 Declarator &declarator = state.getDeclarator();
1241 DeclSpec &DS = declarator.getMutableDeclSpec();
1242 SourceLocation DeclLoc = declarator.getIdentifierLoc();
1243 if (DeclLoc.isInvalid())
1244 DeclLoc = DS.getBeginLoc();
1245
1246 ASTContext &Context = S.Context;
1247
1248 QualType Result;
1249 switch (DS.getTypeSpecType()) {
1250 case DeclSpec::TST_void:
1251 Result = Context.VoidTy;
1252 break;
1253 case DeclSpec::TST_char:
1254 if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
1255 Result = Context.CharTy;
1256 else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
1257 Result = Context.SignedCharTy;
1258 else {
1259 assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&((DS.getTypeSpecSign() == DeclSpec::TSS_unsigned && "Unknown TSS value"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecSign() == DeclSpec::TSS_unsigned && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1260, __PRETTY_FUNCTION__))
1260 "Unknown TSS value")((DS.getTypeSpecSign() == DeclSpec::TSS_unsigned && "Unknown TSS value"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecSign() == DeclSpec::TSS_unsigned && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1260, __PRETTY_FUNCTION__))
;
1261 Result = Context.UnsignedCharTy;
1262 }
1263 break;
1264 case DeclSpec::TST_wchar:
1265 if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
1266 Result = Context.WCharTy;
1267 else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
1268 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
1269 << DS.getSpecifierName(DS.getTypeSpecType(),
1270 Context.getPrintingPolicy());
1271 Result = Context.getSignedWCharType();
1272 } else {
1273 assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&((DS.getTypeSpecSign() == DeclSpec::TSS_unsigned && "Unknown TSS value"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecSign() == DeclSpec::TSS_unsigned && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1274, __PRETTY_FUNCTION__))
1274 "Unknown TSS value")((DS.getTypeSpecSign() == DeclSpec::TSS_unsigned && "Unknown TSS value"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecSign() == DeclSpec::TSS_unsigned && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1274, __PRETTY_FUNCTION__))
;
1275 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
1276 << DS.getSpecifierName(DS.getTypeSpecType(),
1277 Context.getPrintingPolicy());
1278 Result = Context.getUnsignedWCharType();
1279 }
1280 break;
1281 case DeclSpec::TST_char8:
1282 assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&((DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == DeclSpec::TSS_unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1283, __PRETTY_FUNCTION__))
1283 "Unknown TSS value")((DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == DeclSpec::TSS_unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1283, __PRETTY_FUNCTION__))
;
1284 Result = Context.Char8Ty;
1285 break;
1286 case DeclSpec::TST_char16:
1287 assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&((DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == DeclSpec::TSS_unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1288, __PRETTY_FUNCTION__))
1288 "Unknown TSS value")((DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == DeclSpec::TSS_unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1288, __PRETTY_FUNCTION__))
;
1289 Result = Context.Char16Ty;
1290 break;
1291 case DeclSpec::TST_char32:
1292 assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&((DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == DeclSpec::TSS_unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1293, __PRETTY_FUNCTION__))
1293 "Unknown TSS value")((DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == DeclSpec::TSS_unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1293, __PRETTY_FUNCTION__))
;
1294 Result = Context.Char32Ty;
1295 break;
1296 case DeclSpec::TST_unspecified:
1297 // If this is a missing declspec in a block literal return context, then it
1298 // is inferred from the return statements inside the block.
1299 // The declspec is always missing in a lambda expr context; it is either
1300 // specified with a trailing return type or inferred.
1301 if (S.getLangOpts().CPlusPlus14 &&
1302 declarator.getContext() == DeclaratorContext::LambdaExprContext) {
1303 // In C++1y, a lambda's implicit return type is 'auto'.
1304 Result = Context.getAutoDeductType();
1305 break;
1306 } else if (declarator.getContext() ==
1307 DeclaratorContext::LambdaExprContext ||
1308 checkOmittedBlockReturnType(S, declarator,
1309 Context.DependentTy)) {
1310 Result = Context.DependentTy;
1311 break;
1312 }
1313
1314 // Unspecified typespec defaults to int in C90. However, the C90 grammar
1315 // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
1316 // type-qualifier, or storage-class-specifier. If not, emit an extwarn.
1317 // Note that the one exception to this is function definitions, which are
1318 // allowed to be completely missing a declspec. This is handled in the
1319 // parser already though by it pretending to have seen an 'int' in this
1320 // case.
1321 if (S.getLangOpts().ImplicitInt) {
1322 // In C89 mode, we only warn if there is a completely missing declspec
1323 // when one is not allowed.
1324 if (DS.isEmpty()) {
1325 S.Diag(DeclLoc, diag::ext_missing_declspec)
1326 << DS.getSourceRange()
1327 << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
1328 }
1329 } else if (!DS.hasTypeSpecifier()) {
1330 // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
1331 // "At least one type specifier shall be given in the declaration
1332 // specifiers in each declaration, and in the specifier-qualifier list in
1333 // each struct declaration and type name."
1334 if (S.getLangOpts().CPlusPlus) {
1335 S.Diag(DeclLoc, diag::err_missing_type_specifier)
1336 << DS.getSourceRange();
1337
1338 // When this occurs in C++ code, often something is very broken with the
1339 // value being declared, poison it as invalid so we don't get chains of
1340 // errors.
1341 declarator.setInvalidType(true);
1342 } else if (S.getLangOpts().OpenCLVersion >= 200 && DS.isTypeSpecPipe()){
1343 S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
1344 << DS.getSourceRange();
1345 declarator.setInvalidType(true);
1346 } else {
1347 S.Diag(DeclLoc, diag::ext_missing_type_specifier)
1348 << DS.getSourceRange();
1349 }
1350 }
1351
1352 LLVM_FALLTHROUGH[[clang::fallthrough]];
1353 case DeclSpec::TST_int: {
1354 if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
1355 switch (DS.getTypeSpecWidth()) {
1356 case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
1357 case DeclSpec::TSW_short: Result = Context.ShortTy; break;
1358 case DeclSpec::TSW_long: Result = Context.LongTy; break;
1359 case DeclSpec::TSW_longlong:
1360 Result = Context.LongLongTy;
1361
1362 // 'long long' is a C99 or C++11 feature.
1363 if (!S.getLangOpts().C99) {
1364 if (S.getLangOpts().CPlusPlus)
1365 S.Diag(DS.getTypeSpecWidthLoc(),
1366 S.getLangOpts().CPlusPlus11 ?
1367 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1368 else
1369 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1370 }
1371 break;
1372 }
1373 } else {
1374 switch (DS.getTypeSpecWidth()) {
1375 case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
1376 case DeclSpec::TSW_short: Result = Context.UnsignedShortTy; break;
1377 case DeclSpec::TSW_long: Result = Context.UnsignedLongTy; break;
1378 case DeclSpec::TSW_longlong:
1379 Result = Context.UnsignedLongLongTy;
1380
1381 // 'long long' is a C99 or C++11 feature.
1382 if (!S.getLangOpts().C99) {
1383 if (S.getLangOpts().CPlusPlus)
1384 S.Diag(DS.getTypeSpecWidthLoc(),
1385 S.getLangOpts().CPlusPlus11 ?
1386 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1387 else
1388 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1389 }
1390 break;
1391 }
1392 }
1393 break;
1394 }
1395 case DeclSpec::TST_accum: {
1396 switch (DS.getTypeSpecWidth()) {
1397 case DeclSpec::TSW_short:
1398 Result = Context.ShortAccumTy;
1399 break;
1400 case DeclSpec::TSW_unspecified:
1401 Result = Context.AccumTy;
1402 break;
1403 case DeclSpec::TSW_long:
1404 Result = Context.LongAccumTy;
1405 break;
1406 case DeclSpec::TSW_longlong:
1407 llvm_unreachable("Unable to specify long long as _Accum width")::llvm::llvm_unreachable_internal("Unable to specify long long as _Accum width"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1407)
;
1408 }
1409
1410 if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
1411 Result = Context.getCorrespondingUnsignedType(Result);
1412
1413 if (DS.isTypeSpecSat())
1414 Result = Context.getCorrespondingSaturatedType(Result);
1415
1416 break;
1417 }
1418 case DeclSpec::TST_fract: {
1419 switch (DS.getTypeSpecWidth()) {
1420 case DeclSpec::TSW_short:
1421 Result = Context.ShortFractTy;
1422 break;
1423 case DeclSpec::TSW_unspecified:
1424 Result = Context.FractTy;
1425 break;
1426 case DeclSpec::TSW_long:
1427 Result = Context.LongFractTy;
1428 break;
1429 case DeclSpec::TSW_longlong:
1430 llvm_unreachable("Unable to specify long long as _Fract width")::llvm::llvm_unreachable_internal("Unable to specify long long as _Fract width"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1430)
;
1431 }
1432
1433 if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
1434 Result = Context.getCorrespondingUnsignedType(Result);
1435
1436 if (DS.isTypeSpecSat())
1437 Result = Context.getCorrespondingSaturatedType(Result);
1438
1439 break;
1440 }
1441 case DeclSpec::TST_int128:
1442 if (!S.Context.getTargetInfo().hasInt128Type())
1443 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1444 << "__int128";
1445 if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
1446 Result = Context.UnsignedInt128Ty;
1447 else
1448 Result = Context.Int128Ty;
1449 break;
1450 case DeclSpec::TST_float16: Result = Context.Float16Ty; break;
1451 case DeclSpec::TST_half: Result = Context.HalfTy; break;
1452 case DeclSpec::TST_float: Result = Context.FloatTy; break;
1453 case DeclSpec::TST_double:
1454 if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
1455 Result = Context.LongDoubleTy;
1456 else
1457 Result = Context.DoubleTy;
1458 break;
1459 case DeclSpec::TST_float128:
1460 if (!S.Context.getTargetInfo().hasFloat128Type())
1461 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1462 << "__float128";
1463 Result = Context.Float128Ty;
1464 break;
1465 case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
1466 break;
1467 case DeclSpec::TST_decimal32: // _Decimal32
1468 case DeclSpec::TST_decimal64: // _Decimal64
1469 case DeclSpec::TST_decimal128: // _Decimal128
1470 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
1471 Result = Context.IntTy;
1472 declarator.setInvalidType(true);
1473 break;
1474 case DeclSpec::TST_class:
1475 case DeclSpec::TST_enum:
1476 case DeclSpec::TST_union:
1477 case DeclSpec::TST_struct:
1478 case DeclSpec::TST_interface: {
1479 TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl());
1480 if (!D) {
1481 // This can happen in C++ with ambiguous lookups.
1482 Result = Context.IntTy;
1483 declarator.setInvalidType(true);
1484 break;
1485 }
1486
1487 // If the type is deprecated or unavailable, diagnose it.
1488 S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
1489
1490 assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&((DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex
() == 0 && DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == 0 && \"No qualifiers on tag names!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1491, __PRETTY_FUNCTION__))
1491 DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!")((DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex
() == 0 && DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == 0 && \"No qualifiers on tag names!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1491, __PRETTY_FUNCTION__))
;
1492
1493 // TypeQuals handled by caller.
1494 Result = Context.getTypeDeclType(D);
1495
1496 // In both C and C++, make an ElaboratedType.
1497 ElaboratedTypeKeyword Keyword
1498 = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
1499 Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result,
1500 DS.isTypeSpecOwned() ? D : nullptr);
1501 break;
1502 }
1503 case DeclSpec::TST_typename: {
1504 assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&((DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex
() == 0 && DS.getTypeSpecSign() == 0 && "Can't handle qualifiers on typedef names yet!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == 0 && \"Can't handle qualifiers on typedef names yet!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1506, __PRETTY_FUNCTION__))
1505 DS.getTypeSpecSign() == 0 &&((DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex
() == 0 && DS.getTypeSpecSign() == 0 && "Can't handle qualifiers on typedef names yet!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == 0 && \"Can't handle qualifiers on typedef names yet!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1506, __PRETTY_FUNCTION__))
1506 "Can't handle qualifiers on typedef names yet!")((DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex
() == 0 && DS.getTypeSpecSign() == 0 && "Can't handle qualifiers on typedef names yet!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == 0 && \"Can't handle qualifiers on typedef names yet!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1506, __PRETTY_FUNCTION__))
;
1507 Result = S.GetTypeFromParser(DS.getRepAsType());
1508 if (Result.isNull()) {
1509 declarator.setInvalidType(true);
1510 }
1511
1512 // TypeQuals handled by caller.
1513 break;
1514 }
1515 case DeclSpec::TST_typeofType:
1516 // FIXME: Preserve type source info.
1517 Result = S.GetTypeFromParser(DS.getRepAsType());
1518 assert(!Result.isNull() && "Didn't get a type for typeof?")((!Result.isNull() && "Didn't get a type for typeof?"
) ? static_cast<void> (0) : __assert_fail ("!Result.isNull() && \"Didn't get a type for typeof?\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1518, __PRETTY_FUNCTION__))
;
1519 if (!Result->isDependentType())
1520 if (const TagType *TT = Result->getAs<TagType>())
1521 S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
1522 // TypeQuals handled by caller.
1523 Result = Context.getTypeOfType(Result);
1524 break;
1525 case DeclSpec::TST_typeofExpr: {
1526 Expr *E = DS.getRepAsExpr();
1527 assert(E && "Didn't get an expression for typeof?")((E && "Didn't get an expression for typeof?") ? static_cast
<void> (0) : __assert_fail ("E && \"Didn't get an expression for typeof?\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1527, __PRETTY_FUNCTION__))
;
1528 // TypeQuals handled by caller.
1529 Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
1530 if (Result.isNull()) {
1531 Result = Context.IntTy;
1532 declarator.setInvalidType(true);
1533 }
1534 break;
1535 }
1536 case DeclSpec::TST_decltype: {
1537 Expr *E = DS.getRepAsExpr();
1538 assert(E && "Didn't get an expression for decltype?")((E && "Didn't get an expression for decltype?") ? static_cast
<void> (0) : __assert_fail ("E && \"Didn't get an expression for decltype?\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1538, __PRETTY_FUNCTION__))
;
1539 // TypeQuals handled by caller.
1540 Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
1541 if (Result.isNull()) {
1542 Result = Context.IntTy;
1543 declarator.setInvalidType(true);
1544 }
1545 break;
1546 }
1547 case DeclSpec::TST_underlyingType:
1548 Result = S.GetTypeFromParser(DS.getRepAsType());
1549 assert(!Result.isNull() && "Didn't get a type for __underlying_type?")((!Result.isNull() && "Didn't get a type for __underlying_type?"
) ? static_cast<void> (0) : __assert_fail ("!Result.isNull() && \"Didn't get a type for __underlying_type?\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1549, __PRETTY_FUNCTION__))
;
1550 Result = S.BuildUnaryTransformType(Result,
1551 UnaryTransformType::EnumUnderlyingType,
1552 DS.getTypeSpecTypeLoc());
1553 if (Result.isNull()) {
1554 Result = Context.IntTy;
1555 declarator.setInvalidType(true);
1556 }
1557 break;
1558
1559 case DeclSpec::TST_auto:
1560 Result = Context.getAutoType(QualType(), AutoTypeKeyword::Auto, false);
1561 break;
1562
1563 case DeclSpec::TST_auto_type:
1564 Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
1565 break;
1566
1567 case DeclSpec::TST_decltype_auto:
1568 Result = Context.getAutoType(QualType(), AutoTypeKeyword::DecltypeAuto,
1569 /*IsDependent*/ false);
1570 break;
1571
1572 case DeclSpec::TST_unknown_anytype:
1573 Result = Context.UnknownAnyTy;
1574 break;
1575
1576 case DeclSpec::TST_atomic:
1577 Result = S.GetTypeFromParser(DS.getRepAsType());
1578 assert(!Result.isNull() && "Didn't get a type for _Atomic?")((!Result.isNull() && "Didn't get a type for _Atomic?"
) ? static_cast<void> (0) : __assert_fail ("!Result.isNull() && \"Didn't get a type for _Atomic?\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1578, __PRETTY_FUNCTION__))
;
1579 Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1580 if (Result.isNull()) {
1581 Result = Context.IntTy;
1582 declarator.setInvalidType(true);
1583 }
1584 break;
1585
1586#define GENERIC_IMAGE_TYPE(ImgType, Id) \
1587 case DeclSpec::TST_##ImgType##_t: \
1588 switch (getImageAccess(DS.getAttributes())) { \
1589 case OpenCLAccessAttr::Keyword_write_only: \
1590 Result = Context.Id##WOTy; \
1591 break; \
1592 case OpenCLAccessAttr::Keyword_read_write: \
1593 Result = Context.Id##RWTy; \
1594 break; \
1595 case OpenCLAccessAttr::Keyword_read_only: \
1596 Result = Context.Id##ROTy; \
1597 break; \
1598 } \
1599 break;
1600#include "clang/Basic/OpenCLImageTypes.def"
1601
1602 case DeclSpec::TST_error:
1603 Result = Context.IntTy;
1604 declarator.setInvalidType(true);
1605 break;
1606 }
1607
1608 if (S.getLangOpts().OpenCL &&
1609 S.checkOpenCLDisabledTypeDeclSpec(DS, Result))
1610 declarator.setInvalidType(true);
1611
1612 bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum ||
1613 DS.getTypeSpecType() == DeclSpec::TST_fract;
1614
1615 // Only fixed point types can be saturated
1616 if (DS.isTypeSpecSat() && !IsFixedPointType)
1617 S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec)
1618 << DS.getSpecifierName(DS.getTypeSpecType(),
1619 Context.getPrintingPolicy());
1620
1621 // Handle complex types.
1622 if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1623 if (S.getLangOpts().Freestanding)
1624 S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1625 Result = Context.getComplexType(Result);
1626 } else if (DS.isTypeAltiVecVector()) {
1627 unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1628 assert(typeSize > 0 && "type size for vector must be greater than 0 bits")((typeSize > 0 && "type size for vector must be greater than 0 bits"
) ? static_cast<void> (0) : __assert_fail ("typeSize > 0 && \"type size for vector must be greater than 0 bits\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1628, __PRETTY_FUNCTION__))
;
1629 VectorType::VectorKind VecKind = VectorType::AltiVecVector;
1630 if (DS.isTypeAltiVecPixel())
1631 VecKind = VectorType::AltiVecPixel;
1632 else if (DS.isTypeAltiVecBool())
1633 VecKind = VectorType::AltiVecBool;
1634 Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1635 }
1636
1637 // FIXME: Imaginary.
1638 if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1639 S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1640
1641 // Before we process any type attributes, synthesize a block literal
1642 // function declarator if necessary.
1643 if (declarator.getContext() == DeclaratorContext::BlockLiteralContext)
1644 maybeSynthesizeBlockSignature(state, Result);
1645
1646 // Apply any type attributes from the decl spec. This may cause the
1647 // list of type attributes to be temporarily saved while the type
1648 // attributes are pushed around.
1649 // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1650 if (!DS.isTypeSpecPipe())
1651 processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes());
1652
1653 // Apply const/volatile/restrict qualifiers to T.
1654 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1655 // Warn about CV qualifiers on function types.
1656 // C99 6.7.3p8:
1657 // If the specification of a function type includes any type qualifiers,
1658 // the behavior is undefined.
1659 // C++11 [dcl.fct]p7:
1660 // The effect of a cv-qualifier-seq in a function declarator is not the
1661 // same as adding cv-qualification on top of the function type. In the
1662 // latter case, the cv-qualifiers are ignored.
1663 if (TypeQuals && Result->isFunctionType()) {
1664 diagnoseAndRemoveTypeQualifiers(
1665 S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
1666 S.getLangOpts().CPlusPlus
1667 ? diag::warn_typecheck_function_qualifiers_ignored
1668 : diag::warn_typecheck_function_qualifiers_unspecified);
1669 // No diagnostic for 'restrict' or '_Atomic' applied to a
1670 // function type; we'll diagnose those later, in BuildQualifiedType.
1671 }
1672
1673 // C++11 [dcl.ref]p1:
1674 // Cv-qualified references are ill-formed except when the
1675 // cv-qualifiers are introduced through the use of a typedef-name
1676 // or decltype-specifier, in which case the cv-qualifiers are ignored.
1677 //
1678 // There don't appear to be any other contexts in which a cv-qualified
1679 // reference type could be formed, so the 'ill-formed' clause here appears
1680 // to never happen.
1681 if (TypeQuals && Result->isReferenceType()) {
1682 diagnoseAndRemoveTypeQualifiers(
1683 S, DS, TypeQuals, Result,
1684 DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
1685 diag::warn_typecheck_reference_qualifiers);
1686 }
1687
1688 // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1689 // than once in the same specifier-list or qualifier-list, either directly
1690 // or via one or more typedefs."
1691 if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1692 && TypeQuals & Result.getCVRQualifiers()) {
1693 if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1694 S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1695 << "const";
1696 }
1697
1698 if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1699 S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1700 << "volatile";
1701 }
1702
1703 // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1704 // produce a warning in this case.
1705 }
1706
1707 QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1708
1709 // If adding qualifiers fails, just use the unqualified type.
1710 if (Qualified.isNull())
1711 declarator.setInvalidType(true);
1712 else
1713 Result = Qualified;
1714 }
1715
1716 assert(!Result.isNull() && "This function should not return a null type")((!Result.isNull() && "This function should not return a null type"
) ? static_cast<void> (0) : __assert_fail ("!Result.isNull() && \"This function should not return a null type\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1716, __PRETTY_FUNCTION__))
;
1717 return Result;
1718}
1719
1720static std::string getPrintableNameForEntity(DeclarationName Entity) {
1721 if (Entity)
1722 return Entity.getAsString();
1723
1724 return "type name";
1725}
1726
1727QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1728 Qualifiers Qs, const DeclSpec *DS) {
1729 if (T.isNull())
1730 return QualType();
1731
1732 // Ignore any attempt to form a cv-qualified reference.
1733 if (T->isReferenceType()) {
1734 Qs.removeConst();
1735 Qs.removeVolatile();
1736 }
1737
1738 // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1739 // object or incomplete types shall not be restrict-qualified."
1740 if (Qs.hasRestrict()) {
1741 unsigned DiagID = 0;
1742 QualType ProblemTy;
1743
1744 if (T->isAnyPointerType() || T->isReferenceType() ||
1745 T->isMemberPointerType()) {
1746 QualType EltTy;
1747 if (T->isObjCObjectPointerType())
1748 EltTy = T;
1749 else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1750 EltTy = PTy->getPointeeType();
1751 else
1752 EltTy = T->getPointeeType();
1753
1754 // If we have a pointer or reference, the pointee must have an object
1755 // incomplete type.
1756 if (!EltTy->isIncompleteOrObjectType()) {
1757 DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1758 ProblemTy = EltTy;
1759 }
1760 } else if (!T->isDependentType()) {
1761 DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1762 ProblemTy = T;
1763 }
1764
1765 if (DiagID) {
1766 Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1767 Qs.removeRestrict();
1768 }
1769 }
1770
1771 return Context.getQualifiedType(T, Qs);
1772}
1773
1774QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1775 unsigned CVRAU, const DeclSpec *DS) {
1776 if (T.isNull())
1777 return QualType();
1778
1779 // Ignore any attempt to form a cv-qualified reference.
1780 if (T->isReferenceType())
1781 CVRAU &=
1782 ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic);
1783
1784 // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
1785 // TQ_unaligned;
1786 unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
1787
1788 // C11 6.7.3/5:
1789 // If the same qualifier appears more than once in the same
1790 // specifier-qualifier-list, either directly or via one or more typedefs,
1791 // the behavior is the same as if it appeared only once.
1792 //
1793 // It's not specified what happens when the _Atomic qualifier is applied to
1794 // a type specified with the _Atomic specifier, but we assume that this
1795 // should be treated as if the _Atomic qualifier appeared multiple times.
1796 if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1797 // C11 6.7.3/5:
1798 // If other qualifiers appear along with the _Atomic qualifier in a
1799 // specifier-qualifier-list, the resulting type is the so-qualified
1800 // atomic type.
1801 //
1802 // Don't need to worry about array types here, since _Atomic can't be
1803 // applied to such types.
1804 SplitQualType Split = T.getSplitUnqualifiedType();
1805 T = BuildAtomicType(QualType(Split.Ty, 0),
1806 DS ? DS->getAtomicSpecLoc() : Loc);
1807 if (T.isNull())
1808 return T;
1809 Split.Quals.addCVRQualifiers(CVR);
1810 return BuildQualifiedType(T, Loc, Split.Quals);
1811 }
1812
1813 Qualifiers Q = Qualifiers::fromCVRMask(CVR);
1814 Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned);
1815 return BuildQualifiedType(T, Loc, Q, DS);
1816}
1817
1818/// Build a paren type including \p T.
1819QualType Sema::BuildParenType(QualType T) {
1820 return Context.getParenType(T);
1821}
1822
1823/// Given that we're building a pointer or reference to the given
1824static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1825 SourceLocation loc,
1826 bool isReference) {
1827 // Bail out if retention is unrequired or already specified.
1828 if (!type->isObjCLifetimeType() ||
1829 type.getObjCLifetime() != Qualifiers::OCL_None)
1830 return type;
1831
1832 Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1833
1834 // If the object type is const-qualified, we can safely use
1835 // __unsafe_unretained. This is safe (because there are no read
1836 // barriers), and it'll be safe to coerce anything but __weak* to
1837 // the resulting type.
1838 if (type.isConstQualified()) {
1839 implicitLifetime = Qualifiers::OCL_ExplicitNone;
1840
1841 // Otherwise, check whether the static type does not require
1842 // retaining. This currently only triggers for Class (possibly
1843 // protocol-qualifed, and arrays thereof).
1844 } else if (type->isObjCARCImplicitlyUnretainedType()) {
1845 implicitLifetime = Qualifiers::OCL_ExplicitNone;
1846
1847 // If we are in an unevaluated context, like sizeof, skip adding a
1848 // qualification.
1849 } else if (S.isUnevaluatedContext()) {
1850 return type;
1851
1852 // If that failed, give an error and recover using __strong. __strong
1853 // is the option most likely to prevent spurious second-order diagnostics,
1854 // like when binding a reference to a field.
1855 } else {
1856 // These types can show up in private ivars in system headers, so
1857 // we need this to not be an error in those cases. Instead we
1858 // want to delay.
1859 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1860 S.DelayedDiagnostics.add(
1861 sema::DelayedDiagnostic::makeForbiddenType(loc,
1862 diag::err_arc_indirect_no_ownership, type, isReference));
1863 } else {
1864 S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1865 }
1866 implicitLifetime = Qualifiers::OCL_Strong;
1867 }
1868 assert(implicitLifetime && "didn't infer any lifetime!")((implicitLifetime && "didn't infer any lifetime!") ?
static_cast<void> (0) : __assert_fail ("implicitLifetime && \"didn't infer any lifetime!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1868, __PRETTY_FUNCTION__))
;
1869
1870 Qualifiers qs;
1871 qs.addObjCLifetime(implicitLifetime);
1872 return S.Context.getQualifiedType(type, qs);
1873}
1874
1875static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1876 std::string Quals =
1877 Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
1878
1879 switch (FnTy->getRefQualifier()) {
1880 case RQ_None:
1881 break;
1882
1883 case RQ_LValue:
1884 if (!Quals.empty())
1885 Quals += ' ';
1886 Quals += '&';
1887 break;
1888
1889 case RQ_RValue:
1890 if (!Quals.empty())
1891 Quals += ' ';
1892 Quals += "&&";
1893 break;
1894 }
1895
1896 return Quals;
1897}
1898
1899namespace {
1900/// Kinds of declarator that cannot contain a qualified function type.
1901///
1902/// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
1903/// a function type with a cv-qualifier or a ref-qualifier can only appear
1904/// at the topmost level of a type.
1905///
1906/// Parens and member pointers are permitted. We don't diagnose array and
1907/// function declarators, because they don't allow function types at all.
1908///
1909/// The values of this enum are used in diagnostics.
1910enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
1911} // end anonymous namespace
1912
1913/// Check whether the type T is a qualified function type, and if it is,
1914/// diagnose that it cannot be contained within the given kind of declarator.
1915static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
1916 QualifiedFunctionKind QFK) {
1917 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
1918 const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
1919 if (!FPT || (FPT->getTypeQuals() == 0 && FPT->getRefQualifier() == RQ_None))
1920 return false;
1921
1922 S.Diag(Loc, diag::err_compound_qualified_function_type)
1923 << QFK << isa<FunctionType>(T.IgnoreParens()) << T
1924 << getFunctionQualifiersAsString(FPT);
1925 return true;
1926}
1927
1928/// Build a pointer type.
1929///
1930/// \param T The type to which we'll be building a pointer.
1931///
1932/// \param Loc The location of the entity whose type involves this
1933/// pointer type or, if there is no such entity, the location of the
1934/// type that will have pointer type.
1935///
1936/// \param Entity The name of the entity that involves the pointer
1937/// type, if known.
1938///
1939/// \returns A suitable pointer type, if there are no
1940/// errors. Otherwise, returns a NULL type.
1941QualType Sema::BuildPointerType(QualType T,
1942 SourceLocation Loc, DeclarationName Entity) {
1943 if (T->isReferenceType()) {
1944 // C++ 8.3.2p4: There shall be no ... pointers to references ...
1945 Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1946 << getPrintableNameForEntity(Entity) << T;
1947 return QualType();
1948 }
1949
1950 if (T->isFunctionType() && getLangOpts().OpenCL) {
1951 Diag(Loc, diag::err_opencl_function_pointer);
1952 return QualType();
1953 }
1954
1955 if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
1956 return QualType();
1957
1958 assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType")((!T->isObjCObjectType() && "Should build ObjCObjectPointerType"
) ? static_cast<void> (0) : __assert_fail ("!T->isObjCObjectType() && \"Should build ObjCObjectPointerType\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1958, __PRETTY_FUNCTION__))
;
1959
1960 // In ARC, it is forbidden to build pointers to unqualified pointers.
1961 if (getLangOpts().ObjCAutoRefCount)
1962 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1963
1964 // Build the pointer type.
1965 return Context.getPointerType(T);
1966}
1967
1968/// Build a reference type.
1969///
1970/// \param T The type to which we'll be building a reference.
1971///
1972/// \param Loc The location of the entity whose type involves this
1973/// reference type or, if there is no such entity, the location of the
1974/// type that will have reference type.
1975///
1976/// \param Entity The name of the entity that involves the reference
1977/// type, if known.
1978///
1979/// \returns A suitable reference type, if there are no
1980/// errors. Otherwise, returns a NULL type.
1981QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1982 SourceLocation Loc,
1983 DeclarationName Entity) {
1984 assert(Context.getCanonicalType(T) != Context.OverloadTy &&((Context.getCanonicalType(T) != Context.OverloadTy &&
"Unresolved overloaded function type") ? static_cast<void
> (0) : __assert_fail ("Context.getCanonicalType(T) != Context.OverloadTy && \"Unresolved overloaded function type\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1985, __PRETTY_FUNCTION__))
1985 "Unresolved overloaded function type")((Context.getCanonicalType(T) != Context.OverloadTy &&
"Unresolved overloaded function type") ? static_cast<void
> (0) : __assert_fail ("Context.getCanonicalType(T) != Context.OverloadTy && \"Unresolved overloaded function type\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 1985, __PRETTY_FUNCTION__))
;
1986
1987 // C++0x [dcl.ref]p6:
1988 // If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1989 // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1990 // type T, an attempt to create the type "lvalue reference to cv TR" creates
1991 // the type "lvalue reference to T", while an attempt to create the type
1992 // "rvalue reference to cv TR" creates the type TR.
1993 bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1994
1995 // C++ [dcl.ref]p4: There shall be no references to references.
1996 //
1997 // According to C++ DR 106, references to references are only
1998 // diagnosed when they are written directly (e.g., "int & &"),
1999 // but not when they happen via a typedef:
2000 //
2001 // typedef int& intref;
2002 // typedef intref& intref2;
2003 //
2004 // Parser::ParseDeclaratorInternal diagnoses the case where
2005 // references are written directly; here, we handle the
2006 // collapsing of references-to-references as described in C++0x.
2007 // DR 106 and 540 introduce reference-collapsing into C++98/03.
2008
2009 // C++ [dcl.ref]p1:
2010 // A declarator that specifies the type "reference to cv void"
2011 // is ill-formed.
2012 if (T->isVoidType()) {
2013 Diag(Loc, diag::err_reference_to_void);
2014 return QualType();
2015 }
2016
2017 if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
2018 return QualType();
2019
2020 // In ARC, it is forbidden to build references to unqualified pointers.
2021 if (getLangOpts().ObjCAutoRefCount)
2022 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
2023
2024 // Handle restrict on references.
2025 if (LValueRef)
2026 return Context.getLValueReferenceType(T, SpelledAsLValue);
2027 return Context.getRValueReferenceType(T);
2028}
2029
2030/// Build a Read-only Pipe type.
2031///
2032/// \param T The type to which we'll be building a Pipe.
2033///
2034/// \param Loc We do not use it for now.
2035///
2036/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2037/// NULL type.
2038QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) {
2039 return Context.getReadPipeType(T);
2040}
2041
2042/// Build a Write-only Pipe type.
2043///
2044/// \param T The type to which we'll be building a Pipe.
2045///
2046/// \param Loc We do not use it for now.
2047///
2048/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2049/// NULL type.
2050QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) {
2051 return Context.getWritePipeType(T);
2052}
2053
2054/// Check whether the specified array size makes the array type a VLA. If so,
2055/// return true, if not, return the size of the array in SizeVal.
2056static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
2057 // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
2058 // (like gnu99, but not c99) accept any evaluatable value as an extension.
2059 class VLADiagnoser : public Sema::VerifyICEDiagnoser {
2060 public:
2061 VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
2062
2063 void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
2064 }
2065
2066 void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) override {
2067 S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
2068 }
2069 } Diagnoser;
2070
2071 return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
2072 S.LangOpts.GNUMode ||
2073 S.LangOpts.OpenCL).isInvalid();
2074}
2075
2076/// Build an array type.
2077///
2078/// \param T The type of each element in the array.
2079///
2080/// \param ASM C99 array size modifier (e.g., '*', 'static').
2081///
2082/// \param ArraySize Expression describing the size of the array.
2083///
2084/// \param Brackets The range from the opening '[' to the closing ']'.
2085///
2086/// \param Entity The name of the entity that involves the array
2087/// type, if known.
2088///
2089/// \returns A suitable array type, if there are no errors. Otherwise,
2090/// returns a NULL type.
2091QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
2092 Expr *ArraySize, unsigned Quals,
2093 SourceRange Brackets, DeclarationName Entity) {
2094
2095 SourceLocation Loc = Brackets.getBegin();
2096 if (getLangOpts().CPlusPlus) {
2097 // C++ [dcl.array]p1:
2098 // T is called the array element type; this type shall not be a reference
2099 // type, the (possibly cv-qualified) type void, a function type or an
2100 // abstract class type.
2101 //
2102 // C++ [dcl.array]p3:
2103 // When several "array of" specifications are adjacent, [...] only the
2104 // first of the constant expressions that specify the bounds of the arrays
2105 // may be omitted.
2106 //
2107 // Note: function types are handled in the common path with C.
2108 if (T->isReferenceType()) {
2109 Diag(Loc, diag::err_illegal_decl_array_of_references)
2110 << getPrintableNameForEntity(Entity) << T;
2111 return QualType();
2112 }
2113
2114 if (T->isVoidType() || T->isIncompleteArrayType()) {
2115 Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
2116 return QualType();
2117 }
2118
2119 if (RequireNonAbstractType(Brackets.getBegin(), T,
2120 diag::err_array_of_abstract_type))
2121 return QualType();
2122
2123 // Mentioning a member pointer type for an array type causes us to lock in
2124 // an inheritance model, even if it's inside an unused typedef.
2125 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
2126 if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
2127 if (!MPTy->getClass()->isDependentType())
2128 (void)isCompleteType(Loc, T);
2129
2130 } else {
2131 // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2132 // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2133 if (RequireCompleteType(Loc, T,
2134 diag::err_illegal_decl_array_incomplete_type))
2135 return QualType();
2136 }
2137
2138 if (T->isFunctionType()) {
2139 Diag(Loc, diag::err_illegal_decl_array_of_functions)
2140 << getPrintableNameForEntity(Entity) << T;
2141 return QualType();
2142 }
2143
2144 if (const RecordType *EltTy = T->getAs<RecordType>()) {
2145 // If the element type is a struct or union that contains a variadic
2146 // array, accept it as a GNU extension: C99 6.7.2.1p2.
2147 if (EltTy->getDecl()->hasFlexibleArrayMember())
2148 Diag(Loc, diag::ext_flexible_array_in_array) << T;
2149 } else if (T->isObjCObjectType()) {
2150 Diag(Loc, diag::err_objc_array_of_interfaces) << T;
2151 return QualType();
2152 }
2153
2154 // Do placeholder conversions on the array size expression.
2155 if (ArraySize && ArraySize->hasPlaceholderType()) {
2156 ExprResult Result = CheckPlaceholderExpr(ArraySize);
2157 if (Result.isInvalid()) return QualType();
2158 ArraySize = Result.get();
2159 }
2160
2161 // Do lvalue-to-rvalue conversions on the array size expression.
2162 if (ArraySize && !ArraySize->isRValue()) {
2163 ExprResult Result = DefaultLvalueConversion(ArraySize);
2164 if (Result.isInvalid())
2165 return QualType();
2166
2167 ArraySize = Result.get();
2168 }
2169
2170 // C99 6.7.5.2p1: The size expression shall have integer type.
2171 // C++11 allows contextual conversions to such types.
2172 if (!getLangOpts().CPlusPlus11 &&
2173 ArraySize && !ArraySize->isTypeDependent() &&
2174 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2175 Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2176 << ArraySize->getType() << ArraySize->getSourceRange();
2177 return QualType();
2178 }
2179
2180 llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
2181 if (!ArraySize) {
2182 if (ASM == ArrayType::Star)
2183 T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
2184 else
2185 T = Context.getIncompleteArrayType(T, ASM, Quals);
2186 } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
2187 T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
2188 } else if ((!T->isDependentType() && !T->isIncompleteType() &&
2189 !T->isConstantSizeType()) ||
2190 isArraySizeVLA(*this, ArraySize, ConstVal)) {
2191 // Even in C++11, don't allow contextual conversions in the array bound
2192 // of a VLA.
2193 if (getLangOpts().CPlusPlus11 &&
2194 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2195 Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2196 << ArraySize->getType() << ArraySize->getSourceRange();
2197 return QualType();
2198 }
2199
2200 // C99: an array with an element type that has a non-constant-size is a VLA.
2201 // C99: an array with a non-ICE size is a VLA. We accept any expression
2202 // that we can fold to a non-zero positive value as an extension.
2203 T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2204 } else {
2205 // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2206 // have a value greater than zero.
2207 if (ConstVal.isSigned() && ConstVal.isNegative()) {
2208 if (Entity)
2209 Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size)
2210 << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
2211 else
2212 Diag(ArraySize->getBeginLoc(), diag::err_typecheck_negative_array_size)
2213 << ArraySize->getSourceRange();
2214 return QualType();
2215 }
2216 if (ConstVal == 0) {
2217 // GCC accepts zero sized static arrays. We allow them when
2218 // we're not in a SFINAE context.
2219 Diag(ArraySize->getBeginLoc(), isSFINAEContext()
2220 ? diag::err_typecheck_zero_array_size
2221 : diag::ext_typecheck_zero_array_size)
2222 << ArraySize->getSourceRange();
2223
2224 if (ASM == ArrayType::Static) {
2225 Diag(ArraySize->getBeginLoc(),
2226 diag::warn_typecheck_zero_static_array_size)
2227 << ArraySize->getSourceRange();
2228 ASM = ArrayType::Normal;
2229 }
2230 } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
2231 !T->isIncompleteType() && !T->isUndeducedType()) {
2232 // Is the array too large?
2233 unsigned ActiveSizeBits
2234 = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
2235 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2236 Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
2237 << ConstVal.toString(10) << ArraySize->getSourceRange();
2238 return QualType();
2239 }
2240 }
2241
2242 T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
2243 }
2244
2245 // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2246 if (getLangOpts().OpenCL && T->isVariableArrayType()) {
2247 Diag(Loc, diag::err_opencl_vla);
2248 return QualType();
2249 }
2250
2251 if (T->isVariableArrayType() && !Context.getTargetInfo().isVLASupported()) {
2252 if (getLangOpts().CUDA) {
2253 // CUDA device code doesn't support VLAs.
2254 CUDADiagIfDeviceCode(Loc, diag::err_cuda_vla) << CurrentCUDATarget();
2255 } else if (!getLangOpts().OpenMP ||
2256 shouldDiagnoseTargetSupportFromOpenMP()) {
2257 // Some targets don't support VLAs.
2258 Diag(Loc, diag::err_vla_unsupported);
2259 return QualType();
2260 }
2261 }
2262
2263 // If this is not C99, extwarn about VLA's and C99 array size modifiers.
2264 if (!getLangOpts().C99) {
2265 if (T->isVariableArrayType()) {
2266 // Prohibit the use of VLAs during template argument deduction.
2267 if (isSFINAEContext()) {
2268 Diag(Loc, diag::err_vla_in_sfinae);
2269 return QualType();
2270 }
2271 // Just extwarn about VLAs.
2272 else
2273 Diag(Loc, diag::ext_vla);
2274 } else if (ASM != ArrayType::Normal || Quals != 0)
2275 Diag(Loc,
2276 getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
2277 : diag::ext_c99_array_usage) << ASM;
2278 }
2279
2280 if (T->isVariableArrayType()) {
2281 // Warn about VLAs for -Wvla.
2282 Diag(Loc, diag::warn_vla_used);
2283 }
2284
2285 // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2286 // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2287 // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2288 if (getLangOpts().OpenCL) {
2289 const QualType ArrType = Context.getBaseElementType(T);
2290 if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
2291 ArrType->isSamplerT() || ArrType->isImageType()) {
2292 Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
2293 return QualType();
2294 }
2295 }
2296
2297 return T;
2298}
2299
2300QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr,
2301 SourceLocation AttrLoc) {
2302 // The base type must be integer (not Boolean or enumeration) or float, and
2303 // can't already be a vector.
2304 if (!CurType->isDependentType() &&
2305 (!CurType->isBuiltinType() || CurType->isBooleanType() ||
2306 (!CurType->isIntegerType() && !CurType->isRealFloatingType()))) {
2307 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType;
2308 return QualType();
2309 }
2310
2311 if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent())
2312 return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2313 VectorType::GenericVector);
2314
2315 llvm::APSInt VecSize(32);
2316 if (!SizeExpr->isIntegerConstantExpr(VecSize, Context)) {
2317 Diag(AttrLoc, diag::err_attribute_argument_type)
2318 << "vector_size" << AANT_ArgumentIntegerConstant
2319 << SizeExpr->getSourceRange();
2320 return QualType();
2321 }
2322
2323 if (CurType->isDependentType())
2324 return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2325 VectorType::GenericVector);
2326
2327 unsigned VectorSize = static_cast<unsigned>(VecSize.getZExtValue() * 8);
2328 unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType));
2329
2330 if (VectorSize == 0) {
2331 Diag(AttrLoc, diag::err_attribute_zero_size) << SizeExpr->getSourceRange();
2332 return QualType();
2333 }
2334
2335 // vecSize is specified in bytes - convert to bits.
2336 if (VectorSize % TypeSize) {
2337 Diag(AttrLoc, diag::err_attribute_invalid_size)
2338 << SizeExpr->getSourceRange();
2339 return QualType();
2340 }
2341
2342 if (VectorType::isVectorSizeTooLarge(VectorSize / TypeSize)) {
2343 Diag(AttrLoc, diag::err_attribute_size_too_large)
2344 << SizeExpr->getSourceRange();
2345 return QualType();
2346 }
2347
2348 return Context.getVectorType(CurType, VectorSize / TypeSize,
2349 VectorType::GenericVector);
2350}
2351
2352/// Build an ext-vector type.
2353///
2354/// Run the required checks for the extended vector type.
2355QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
2356 SourceLocation AttrLoc) {
2357 // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2358 // in conjunction with complex types (pointers, arrays, functions, etc.).
2359 //
2360 // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2361 // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2362 // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2363 // of bool aren't allowed.
2364 if ((!T->isDependentType() && !T->isIntegerType() &&
2365 !T->isRealFloatingType()) ||
2366 T->isBooleanType()) {
2367 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
2368 return QualType();
2369 }
2370
2371 if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
2372 llvm::APSInt vecSize(32);
2373 if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
2374 Diag(AttrLoc, diag::err_attribute_argument_type)
2375 << "ext_vector_type" << AANT_ArgumentIntegerConstant
2376 << ArraySize->getSourceRange();
2377 return QualType();
2378 }
2379
2380 // Unlike gcc's vector_size attribute, the size is specified as the
2381 // number of elements, not the number of bytes.
2382 unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
2383
2384 if (vectorSize == 0) {
2385 Diag(AttrLoc, diag::err_attribute_zero_size)
2386 << ArraySize->getSourceRange();
2387 return QualType();
2388 }
2389
2390 if (VectorType::isVectorSizeTooLarge(vectorSize)) {
2391 Diag(AttrLoc, diag::err_attribute_size_too_large)
2392 << ArraySize->getSourceRange();
2393 return QualType();
2394 }
2395
2396 return Context.getExtVectorType(T, vectorSize);
2397 }
2398
2399 return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
2400}
2401
2402bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
2403 if (T->isArrayType() || T->isFunctionType()) {
2404 Diag(Loc, diag::err_func_returning_array_function)
2405 << T->isFunctionType() << T;
2406 return true;
2407 }
2408
2409 // Functions cannot return half FP.
2410 if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2411 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
2412 FixItHint::CreateInsertion(Loc, "*");
2413 return true;
2414 }
2415
2416 // Methods cannot return interface types. All ObjC objects are
2417 // passed by reference.
2418 if (T->isObjCObjectType()) {
2419 Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
2420 << 0 << T << FixItHint::CreateInsertion(Loc, "*");
2421 return true;
2422 }
2423
2424 return false;
2425}
2426
2427/// Check the extended parameter information. Most of the necessary
2428/// checking should occur when applying the parameter attribute; the
2429/// only other checks required are positional restrictions.
2430static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes,
2431 const FunctionProtoType::ExtProtoInfo &EPI,
2432 llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
2433 assert(EPI.ExtParameterInfos && "shouldn't get here without param infos")((EPI.ExtParameterInfos && "shouldn't get here without param infos"
) ? static_cast<void> (0) : __assert_fail ("EPI.ExtParameterInfos && \"shouldn't get here without param infos\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 2433, __PRETTY_FUNCTION__))
;
2434
2435 bool hasCheckedSwiftCall = false;
2436 auto checkForSwiftCC = [&](unsigned paramIndex) {
2437 // Only do this once.
2438 if (hasCheckedSwiftCall) return;
2439 hasCheckedSwiftCall = true;
2440 if (EPI.ExtInfo.getCC() == CC_Swift) return;
2441 S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
2442 << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI());
2443 };
2444
2445 for (size_t paramIndex = 0, numParams = paramTypes.size();
2446 paramIndex != numParams; ++paramIndex) {
2447 switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
2448 // Nothing interesting to check for orindary-ABI parameters.
2449 case ParameterABI::Ordinary:
2450 continue;
2451
2452 // swift_indirect_result parameters must be a prefix of the function
2453 // arguments.
2454 case ParameterABI::SwiftIndirectResult:
2455 checkForSwiftCC(paramIndex);
2456 if (paramIndex != 0 &&
2457 EPI.ExtParameterInfos[paramIndex - 1].getABI()
2458 != ParameterABI::SwiftIndirectResult) {
2459 S.Diag(getParamLoc(paramIndex),
2460 diag::err_swift_indirect_result_not_first);
2461 }
2462 continue;
2463
2464 case ParameterABI::SwiftContext:
2465 checkForSwiftCC(paramIndex);
2466 continue;
2467
2468 // swift_error parameters must be preceded by a swift_context parameter.
2469 case ParameterABI::SwiftErrorResult:
2470 checkForSwiftCC(paramIndex);
2471 if (paramIndex == 0 ||
2472 EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
2473 ParameterABI::SwiftContext) {
2474 S.Diag(getParamLoc(paramIndex),
2475 diag::err_swift_error_result_not_after_swift_context);
2476 }
2477 continue;
2478 }
2479 llvm_unreachable("bad ABI kind")::llvm::llvm_unreachable_internal("bad ABI kind", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 2479)
;
2480 }
2481}
2482
2483QualType Sema::BuildFunctionType(QualType T,
2484 MutableArrayRef<QualType> ParamTypes,
2485 SourceLocation Loc, DeclarationName Entity,
2486 const FunctionProtoType::ExtProtoInfo &EPI) {
2487 bool Invalid = false;
2488
2489 Invalid |= CheckFunctionReturnType(T, Loc);
2490
2491 for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
2492 // FIXME: Loc is too inprecise here, should use proper locations for args.
2493 QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
2494 if (ParamType->isVoidType()) {
2495 Diag(Loc, diag::err_param_with_void_type);
2496 Invalid = true;
2497 } else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2498 // Disallow half FP arguments.
2499 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
2500 FixItHint::CreateInsertion(Loc, "*");
2501 Invalid = true;
2502 }
2503
2504 ParamTypes[Idx] = ParamType;
2505 }
2506
2507 if (EPI.ExtParameterInfos) {
2508 checkExtParameterInfos(*this, ParamTypes, EPI,
2509 [=](unsigned i) { return Loc; });
2510 }
2511
2512 if (EPI.ExtInfo.getProducesResult()) {
2513 // This is just a warning, so we can't fail to build if we see it.
2514 checkNSReturnsRetainedReturnType(Loc, T);
2515 }
2516
2517 if (Invalid)
2518 return QualType();
2519
2520 return Context.getFunctionType(T, ParamTypes, EPI);
2521}
2522
2523/// Build a member pointer type \c T Class::*.
2524///
2525/// \param T the type to which the member pointer refers.
2526/// \param Class the class type into which the member pointer points.
2527/// \param Loc the location where this type begins
2528/// \param Entity the name of the entity that will have this member pointer type
2529///
2530/// \returns a member pointer type, if successful, or a NULL type if there was
2531/// an error.
2532QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
2533 SourceLocation Loc,
2534 DeclarationName Entity) {
2535 // Verify that we're not building a pointer to pointer to function with
2536 // exception specification.
2537 if (CheckDistantExceptionSpec(T)) {
2538 Diag(Loc, diag::err_distant_exception_spec);
2539 return QualType();
2540 }
2541
2542 // C++ 8.3.3p3: A pointer to member shall not point to ... a member
2543 // with reference type, or "cv void."
2544 if (T->isReferenceType()) {
2545 Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
2546 << getPrintableNameForEntity(Entity) << T;
2547 return QualType();
2548 }
2549
2550 if (T->isVoidType()) {
2551 Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
2552 << getPrintableNameForEntity(Entity);
2553 return QualType();
2554 }
2555
2556 if (!Class->isDependentType() && !Class->isRecordType()) {
2557 Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
2558 return QualType();
2559 }
2560
2561 // Adjust the default free function calling convention to the default method
2562 // calling convention.
2563 bool IsCtorOrDtor =
2564 (Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
2565 (Entity.getNameKind() == DeclarationName::CXXDestructorName);
2566 if (T->isFunctionType())
2567 adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc);
2568
2569 return Context.getMemberPointerType(T, Class.getTypePtr());
2570}
2571
2572/// Build a block pointer type.
2573///
2574/// \param T The type to which we'll be building a block pointer.
2575///
2576/// \param Loc The source location, used for diagnostics.
2577///
2578/// \param Entity The name of the entity that involves the block pointer
2579/// type, if known.
2580///
2581/// \returns A suitable block pointer type, if there are no
2582/// errors. Otherwise, returns a NULL type.
2583QualType Sema::BuildBlockPointerType(QualType T,
2584 SourceLocation Loc,
2585 DeclarationName Entity) {
2586 if (!T->isFunctionType()) {
2587 Diag(Loc, diag::err_nonfunction_block_type);
2588 return QualType();
2589 }
2590
2591 if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
2592 return QualType();
2593
2594 return Context.getBlockPointerType(T);
2595}
2596
2597QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
2598 QualType QT = Ty.get();
2599 if (QT.isNull()) {
2600 if (TInfo) *TInfo = nullptr;
2601 return QualType();
2602 }
2603
2604 TypeSourceInfo *DI = nullptr;
2605 if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
2606 QT = LIT->getType();
2607 DI = LIT->getTypeSourceInfo();
2608 }
2609
2610 if (TInfo) *TInfo = DI;
2611 return QT;
2612}
2613
2614static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2615 Qualifiers::ObjCLifetime ownership,
2616 unsigned chunkIndex);
2617
2618/// Given that this is the declaration of a parameter under ARC,
2619/// attempt to infer attributes and such for pointer-to-whatever
2620/// types.
2621static void inferARCWriteback(TypeProcessingState &state,
2622 QualType &declSpecType) {
2623 Sema &S = state.getSema();
2624 Declarator &declarator = state.getDeclarator();
2625
2626 // TODO: should we care about decl qualifiers?
2627
2628 // Check whether the declarator has the expected form. We walk
2629 // from the inside out in order to make the block logic work.
2630 unsigned outermostPointerIndex = 0;
2631 bool isBlockPointer = false;
2632 unsigned numPointers = 0;
2633 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
2634 unsigned chunkIndex = i;
2635 DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
2636 switch (chunk.Kind) {
2637 case DeclaratorChunk::Paren:
2638 // Ignore parens.
2639 break;
2640
2641 case DeclaratorChunk::Reference:
2642 case DeclaratorChunk::Pointer:
2643 // Count the number of pointers. Treat references
2644 // interchangeably as pointers; if they're mis-ordered, normal
2645 // type building will discover that.
2646 outermostPointerIndex = chunkIndex;
2647 numPointers++;
2648 break;
2649
2650 case DeclaratorChunk::BlockPointer:
2651 // If we have a pointer to block pointer, that's an acceptable
2652 // indirect reference; anything else is not an application of
2653 // the rules.
2654 if (numPointers != 1) return;
2655 numPointers++;
2656 outermostPointerIndex = chunkIndex;
2657 isBlockPointer = true;
2658
2659 // We don't care about pointer structure in return values here.
2660 goto done;
2661
2662 case DeclaratorChunk::Array: // suppress if written (id[])?
2663 case DeclaratorChunk::Function:
2664 case DeclaratorChunk::MemberPointer:
2665 case DeclaratorChunk::Pipe:
2666 return;
2667 }
2668 }
2669 done:
2670
2671 // If we have *one* pointer, then we want to throw the qualifier on
2672 // the declaration-specifiers, which means that it needs to be a
2673 // retainable object type.
2674 if (numPointers == 1) {
2675 // If it's not a retainable object type, the rule doesn't apply.
2676 if (!declSpecType->isObjCRetainableType()) return;
2677
2678 // If it already has lifetime, don't do anything.
2679 if (declSpecType.getObjCLifetime()) return;
2680
2681 // Otherwise, modify the type in-place.
2682 Qualifiers qs;
2683
2684 if (declSpecType->isObjCARCImplicitlyUnretainedType())
2685 qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
2686 else
2687 qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
2688 declSpecType = S.Context.getQualifiedType(declSpecType, qs);
2689
2690 // If we have *two* pointers, then we want to throw the qualifier on
2691 // the outermost pointer.
2692 } else if (numPointers == 2) {
2693 // If we don't have a block pointer, we need to check whether the
2694 // declaration-specifiers gave us something that will turn into a
2695 // retainable object pointer after we slap the first pointer on it.
2696 if (!isBlockPointer && !declSpecType->isObjCObjectType())
2697 return;
2698
2699 // Look for an explicit lifetime attribute there.
2700 DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
2701 if (chunk.Kind != DeclaratorChunk::Pointer &&
2702 chunk.Kind != DeclaratorChunk::BlockPointer)
2703 return;
2704 for (const ParsedAttr &AL : chunk.getAttrs())
2705 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership)
2706 return;
2707
2708 transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
2709 outermostPointerIndex);
2710
2711 // Any other number of pointers/references does not trigger the rule.
2712 } else return;
2713
2714 // TODO: mark whether we did this inference?
2715}
2716
2717void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
2718 SourceLocation FallbackLoc,
2719 SourceLocation ConstQualLoc,
2720 SourceLocation VolatileQualLoc,
2721 SourceLocation RestrictQualLoc,
2722 SourceLocation AtomicQualLoc,
2723 SourceLocation UnalignedQualLoc) {
2724 if (!Quals)
2725 return;
2726
2727 struct Qual {
2728 const char *Name;
2729 unsigned Mask;
2730 SourceLocation Loc;
2731 } const QualKinds[5] = {
2732 { "const", DeclSpec::TQ_const, ConstQualLoc },
2733 { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
2734 { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
2735 { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
2736 { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
2737 };
2738
2739 SmallString<32> QualStr;
2740 unsigned NumQuals = 0;
2741 SourceLocation Loc;
2742 FixItHint FixIts[5];
2743
2744 // Build a string naming the redundant qualifiers.
2745 for (auto &E : QualKinds) {
2746 if (Quals & E.Mask) {
2747 if (!QualStr.empty()) QualStr += ' ';
2748 QualStr += E.Name;
2749
2750 // If we have a location for the qualifier, offer a fixit.
2751 SourceLocation QualLoc = E.Loc;
2752 if (QualLoc.isValid()) {
2753 FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
2754 if (Loc.isInvalid() ||
2755 getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
2756 Loc = QualLoc;
2757 }
2758
2759 ++NumQuals;
2760 }
2761 }
2762
2763 Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
2764 << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
2765}
2766
2767// Diagnose pointless type qualifiers on the return type of a function.
2768static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
2769 Declarator &D,
2770 unsigned FunctionChunkIndex) {
2771 if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
2772 // FIXME: TypeSourceInfo doesn't preserve location information for
2773 // qualifiers.
2774 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2775 RetTy.getLocalCVRQualifiers(),
2776 D.getIdentifierLoc());
2777 return;
2778 }
2779
2780 for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
2781 End = D.getNumTypeObjects();
2782 OuterChunkIndex != End; ++OuterChunkIndex) {
2783 DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
2784 switch (OuterChunk.Kind) {
2785 case DeclaratorChunk::Paren:
2786 continue;
2787
2788 case DeclaratorChunk::Pointer: {
2789 DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
2790 S.diagnoseIgnoredQualifiers(
2791 diag::warn_qual_return_type,
2792 PTI.TypeQuals,
2793 SourceLocation(),
2794 SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2795 SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2796 SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2797 SourceLocation::getFromRawEncoding(PTI.AtomicQualLoc),
2798 SourceLocation::getFromRawEncoding(PTI.UnalignedQualLoc));
2799 return;
2800 }
2801
2802 case DeclaratorChunk::Function:
2803 case DeclaratorChunk::BlockPointer:
2804 case DeclaratorChunk::Reference:
2805 case DeclaratorChunk::Array:
2806 case DeclaratorChunk::MemberPointer:
2807 case DeclaratorChunk::Pipe:
2808 // FIXME: We can't currently provide an accurate source location and a
2809 // fix-it hint for these.
2810 unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
2811 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2812 RetTy.getCVRQualifiers() | AtomicQual,
2813 D.getIdentifierLoc());
2814 return;
2815 }
2816
2817 llvm_unreachable("unknown declarator chunk kind")::llvm::llvm_unreachable_internal("unknown declarator chunk kind"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 2817)
;
2818 }
2819
2820 // If the qualifiers come from a conversion function type, don't diagnose
2821 // them -- they're not necessarily redundant, since such a conversion
2822 // operator can be explicitly called as "x.operator const int()".
2823 if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
2824 return;
2825
2826 // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
2827 // which are present there.
2828 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2829 D.getDeclSpec().getTypeQualifiers(),
2830 D.getIdentifierLoc(),
2831 D.getDeclSpec().getConstSpecLoc(),
2832 D.getDeclSpec().getVolatileSpecLoc(),
2833 D.getDeclSpec().getRestrictSpecLoc(),
2834 D.getDeclSpec().getAtomicSpecLoc(),
2835 D.getDeclSpec().getUnalignedSpecLoc());
2836}
2837
2838static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
2839 TypeSourceInfo *&ReturnTypeInfo) {
2840 Sema &SemaRef = state.getSema();
2841 Declarator &D = state.getDeclarator();
2842 QualType T;
2843 ReturnTypeInfo = nullptr;
2844
2845 // The TagDecl owned by the DeclSpec.
2846 TagDecl *OwnedTagDecl = nullptr;
2847
2848 switch (D.getName().getKind()) {
2849 case UnqualifiedIdKind::IK_ImplicitSelfParam:
2850 case UnqualifiedIdKind::IK_OperatorFunctionId:
2851 case UnqualifiedIdKind::IK_Identifier:
2852 case UnqualifiedIdKind::IK_LiteralOperatorId:
2853 case UnqualifiedIdKind::IK_TemplateId:
2854 T = ConvertDeclSpecToType(state);
2855
2856 if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
2857 OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2858 // Owned declaration is embedded in declarator.
2859 OwnedTagDecl->setEmbeddedInDeclarator(true);
2860 }
2861 break;
2862
2863 case UnqualifiedIdKind::IK_ConstructorName:
2864 case UnqualifiedIdKind::IK_ConstructorTemplateId:
2865 case UnqualifiedIdKind::IK_DestructorName:
2866 // Constructors and destructors don't have return types. Use
2867 // "void" instead.
2868 T = SemaRef.Context.VoidTy;
2869 processTypeAttrs(state, T, TAL_DeclSpec,
2870 D.getMutableDeclSpec().getAttributes());
2871 break;
2872
2873 case UnqualifiedIdKind::IK_DeductionGuideName:
2874 // Deduction guides have a trailing return type and no type in their
2875 // decl-specifier sequence. Use a placeholder return type for now.
2876 T = SemaRef.Context.DependentTy;
2877 break;
2878
2879 case UnqualifiedIdKind::IK_ConversionFunctionId:
2880 // The result type of a conversion function is the type that it
2881 // converts to.
2882 T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
2883 &ReturnTypeInfo);
2884 break;
2885 }
2886
2887 if (!D.getAttributes().empty())
2888 distributeTypeAttrsFromDeclarator(state, T);
2889
2890 // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
2891 if (DeducedType *Deduced = T->getContainedDeducedType()) {
2892 AutoType *Auto = dyn_cast<AutoType>(Deduced);
2893 int Error = -1;
2894
2895 // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
2896 // class template argument deduction)?
2897 bool IsCXXAutoType =
2898 (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
2899 bool IsDeducedReturnType = false;
2900
2901 switch (D.getContext()) {
2902 case DeclaratorContext::LambdaExprContext:
2903 // Declared return type of a lambda-declarator is implicit and is always
2904 // 'auto'.
2905 break;
2906 case DeclaratorContext::ObjCParameterContext:
2907 case DeclaratorContext::ObjCResultContext:
2908 case DeclaratorContext::PrototypeContext:
2909 Error = 0;
2910 break;
2911 case DeclaratorContext::LambdaExprParameterContext:
2912 // In C++14, generic lambdas allow 'auto' in their parameters.
2913 if (!SemaRef.getLangOpts().CPlusPlus14 ||
2914 !Auto || Auto->getKeyword() != AutoTypeKeyword::Auto)
2915 Error = 16;
2916 else {
2917 // If auto is mentioned in a lambda parameter context, convert it to a
2918 // template parameter type.
2919 sema::LambdaScopeInfo *LSI = SemaRef.getCurLambda();
2920 assert(LSI && "No LambdaScopeInfo on the stack!")((LSI && "No LambdaScopeInfo on the stack!") ? static_cast
<void> (0) : __assert_fail ("LSI && \"No LambdaScopeInfo on the stack!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 2920, __PRETTY_FUNCTION__))
;
2921 const unsigned TemplateParameterDepth = LSI->AutoTemplateParameterDepth;
2922 const unsigned AutoParameterPosition = LSI->AutoTemplateParams.size();
2923 const bool IsParameterPack = D.hasEllipsis();
2924
2925 // Create the TemplateTypeParmDecl here to retrieve the corresponding
2926 // template parameter type. Template parameters are temporarily added
2927 // to the TU until the associated TemplateDecl is created.
2928 TemplateTypeParmDecl *CorrespondingTemplateParam =
2929 TemplateTypeParmDecl::Create(
2930 SemaRef.Context, SemaRef.Context.getTranslationUnitDecl(),
2931 /*KeyLoc*/ SourceLocation(), /*NameLoc*/ D.getBeginLoc(),
2932 TemplateParameterDepth, AutoParameterPosition,
2933 /*Identifier*/ nullptr, false, IsParameterPack);
2934 LSI->AutoTemplateParams.push_back(CorrespondingTemplateParam);
2935 // Replace the 'auto' in the function parameter with this invented
2936 // template type parameter.
2937 // FIXME: Retain some type sugar to indicate that this was written
2938 // as 'auto'.
2939 T = SemaRef.ReplaceAutoType(
2940 T, QualType(CorrespondingTemplateParam->getTypeForDecl(), 0));
2941 }
2942 break;
2943 case DeclaratorContext::MemberContext: {
2944 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
2945 D.isFunctionDeclarator())
2946 break;
2947 bool Cxx = SemaRef.getLangOpts().CPlusPlus;
2948 switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
2949 case TTK_Enum: llvm_unreachable("unhandled tag kind")::llvm::llvm_unreachable_internal("unhandled tag kind", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 2949)
;
2950 case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break;
2951 case TTK_Union: Error = Cxx ? 3 : 4; /* Union member */ break;
2952 case TTK_Class: Error = 5; /* Class member */ break;
2953 case TTK_Interface: Error = 6; /* Interface member */ break;
2954 }
2955 if (D.getDeclSpec().isFriendSpecified())
2956 Error = 20; // Friend type
2957 break;
2958 }
2959 case DeclaratorContext::CXXCatchContext:
2960 case DeclaratorContext::ObjCCatchContext:
2961 Error = 7; // Exception declaration
2962 break;
2963 case DeclaratorContext::TemplateParamContext:
2964 if (isa<DeducedTemplateSpecializationType>(Deduced))
2965 Error = 19; // Template parameter
2966 else if (!SemaRef.getLangOpts().CPlusPlus17)
2967 Error = 8; // Template parameter (until C++17)
2968 break;
2969 case DeclaratorContext::BlockLiteralContext:
2970 Error = 9; // Block literal
2971 break;
2972 case DeclaratorContext::TemplateArgContext:
2973 // Within a template argument list, a deduced template specialization
2974 // type will be reinterpreted as a template template argument.
2975 if (isa<DeducedTemplateSpecializationType>(Deduced) &&
2976 !D.getNumTypeObjects() &&
2977 D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier)
2978 break;
2979 LLVM_FALLTHROUGH[[clang::fallthrough]];
2980 case DeclaratorContext::TemplateTypeArgContext:
2981 Error = 10; // Template type argument
2982 break;
2983 case DeclaratorContext::AliasDeclContext:
2984 case DeclaratorContext::AliasTemplateContext:
2985 Error = 12; // Type alias
2986 break;
2987 case DeclaratorContext::TrailingReturnContext:
2988 case DeclaratorContext::TrailingReturnVarContext:
2989 if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
2990 Error = 13; // Function return type
2991 IsDeducedReturnType = true;
2992 break;
2993 case DeclaratorContext::ConversionIdContext:
2994 if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
2995 Error = 14; // conversion-type-id
2996 IsDeducedReturnType = true;
2997 break;
2998 case DeclaratorContext::FunctionalCastContext:
2999 if (isa<DeducedTemplateSpecializationType>(Deduced))
3000 break;
3001 LLVM_FALLTHROUGH[[clang::fallthrough]];
3002 case DeclaratorContext::TypeNameContext:
3003 Error = 15; // Generic
3004 break;
3005 case DeclaratorContext::FileContext:
3006 case DeclaratorContext::BlockContext:
3007 case DeclaratorContext::ForContext:
3008 case DeclaratorContext::InitStmtContext:
3009 case DeclaratorContext::ConditionContext:
3010 // FIXME: P0091R3 (erroneously) does not permit class template argument
3011 // deduction in conditions, for-init-statements, and other declarations
3012 // that are not simple-declarations.
3013 break;
3014 case DeclaratorContext::CXXNewContext:
3015 // FIXME: P0091R3 does not permit class template argument deduction here,
3016 // but we follow GCC and allow it anyway.
3017 if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced))
3018 Error = 17; // 'new' type
3019 break;
3020 case DeclaratorContext::KNRTypeListContext:
3021 Error = 18; // K&R function parameter
3022 break;
3023 }
3024
3025 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3026 Error = 11;
3027
3028 // In Objective-C it is an error to use 'auto' on a function declarator
3029 // (and everywhere for '__auto_type').
3030 if (D.isFunctionDeclarator() &&
3031 (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
3032 Error = 13;
3033
3034 bool HaveTrailing = false;
3035
3036 // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
3037 // contains a trailing return type. That is only legal at the outermost
3038 // level. Check all declarator chunks (outermost first) anyway, to give
3039 // better diagnostics.
3040 // We don't support '__auto_type' with trailing return types.
3041 // FIXME: Should we only do this for 'auto' and not 'decltype(auto)'?
3042 if (SemaRef.getLangOpts().CPlusPlus11 && IsCXXAutoType &&
3043 D.hasTrailingReturnType()) {
3044 HaveTrailing = true;
3045 Error = -1;
3046 }
3047
3048 SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
3049 if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3050 AutoRange = D.getName().getSourceRange();
3051
3052 if (Error != -1) {
3053 unsigned Kind;
3054 if (Auto) {
3055 switch (Auto->getKeyword()) {
3056 case AutoTypeKeyword::Auto: Kind = 0; break;
3057 case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
3058 case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
3059 }
3060 } else {
3061 assert(isa<DeducedTemplateSpecializationType>(Deduced) &&((isa<DeducedTemplateSpecializationType>(Deduced) &&
"unknown auto type") ? static_cast<void> (0) : __assert_fail
("isa<DeducedTemplateSpecializationType>(Deduced) && \"unknown auto type\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 3062, __PRETTY_FUNCTION__))
3062 "unknown auto type")((isa<DeducedTemplateSpecializationType>(Deduced) &&
"unknown auto type") ? static_cast<void> (0) : __assert_fail
("isa<DeducedTemplateSpecializationType>(Deduced) && \"unknown auto type\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 3062, __PRETTY_FUNCTION__))
;
3063 Kind = 3;
3064 }
3065
3066 auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced);
3067 TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
3068
3069 SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
3070 << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
3071 << QualType(Deduced, 0) << AutoRange;
3072 if (auto *TD = TN.getAsTemplateDecl())
3073 SemaRef.Diag(TD->getLocation(), diag::note_template_decl_here);
3074
3075 T = SemaRef.Context.IntTy;
3076 D.setInvalidType(true);
3077 } else if (!HaveTrailing &&
3078 D.getContext() != DeclaratorContext::LambdaExprContext) {
3079 // If there was a trailing return type, we already got
3080 // warn_cxx98_compat_trailing_return_type in the parser.
3081 SemaRef.Diag(AutoRange.getBegin(),
3082 D.getContext() ==
3083 DeclaratorContext::LambdaExprParameterContext
3084 ? diag::warn_cxx11_compat_generic_lambda
3085 : IsDeducedReturnType
3086 ? diag::warn_cxx11_compat_deduced_return_type
3087 : diag::warn_cxx98_compat_auto_type_specifier)
3088 << AutoRange;
3089 }
3090 }
3091
3092 if (SemaRef.getLangOpts().CPlusPlus &&
3093 OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
3094 // Check the contexts where C++ forbids the declaration of a new class
3095 // or enumeration in a type-specifier-seq.
3096 unsigned DiagID = 0;
3097 switch (D.getContext()) {
3098 case DeclaratorContext::TrailingReturnContext:
3099 case DeclaratorContext::TrailingReturnVarContext:
3100 // Class and enumeration definitions are syntactically not allowed in
3101 // trailing return types.
3102 llvm_unreachable("parser should not have allowed this")::llvm::llvm_unreachable_internal("parser should not have allowed this"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 3102)
;
3103 break;
3104 case DeclaratorContext::FileContext:
3105 case DeclaratorContext::MemberContext:
3106 case DeclaratorContext::BlockContext:
3107 case DeclaratorContext::ForContext:
3108 case DeclaratorContext::InitStmtContext:
3109 case DeclaratorContext::BlockLiteralContext:
3110 case DeclaratorContext::LambdaExprContext:
3111 // C++11 [dcl.type]p3:
3112 // A type-specifier-seq shall not define a class or enumeration unless
3113 // it appears in the type-id of an alias-declaration (7.1.3) that is not
3114 // the declaration of a template-declaration.
3115 case DeclaratorContext::AliasDeclContext:
3116 break;
3117 case DeclaratorContext::AliasTemplateContext:
3118 DiagID = diag::err_type_defined_in_alias_template;
3119 break;
3120 case DeclaratorContext::TypeNameContext:
3121 case DeclaratorContext::FunctionalCastContext:
3122 case DeclaratorContext::ConversionIdContext:
3123 case DeclaratorContext::TemplateParamContext:
3124 case DeclaratorContext::CXXNewContext:
3125 case DeclaratorContext::CXXCatchContext:
3126 case DeclaratorContext::ObjCCatchContext:
3127 case DeclaratorContext::TemplateArgContext:
3128 case DeclaratorContext::TemplateTypeArgContext:
3129 DiagID = diag::err_type_defined_in_type_specifier;
3130 break;
3131 case DeclaratorContext::PrototypeContext:
3132 case DeclaratorContext::LambdaExprParameterContext:
3133 case DeclaratorContext::ObjCParameterContext:
3134 case DeclaratorContext::ObjCResultContext:
3135 case DeclaratorContext::KNRTypeListContext:
3136 // C++ [dcl.fct]p6:
3137 // Types shall not be defined in return or parameter types.
3138 DiagID = diag::err_type_defined_in_param_type;
3139 break;
3140 case DeclaratorContext::ConditionContext:
3141 // C++ 6.4p2:
3142 // The type-specifier-seq shall not contain typedef and shall not declare
3143 // a new class or enumeration.
3144 DiagID = diag::err_type_defined_in_condition;
3145 break;
3146 }
3147
3148 if (DiagID != 0) {
3149 SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
3150 << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
3151 D.setInvalidType(true);
3152 }
3153 }
3154
3155 assert(!T.isNull() && "This function should not return a null type")((!T.isNull() && "This function should not return a null type"
) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"This function should not return a null type\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 3155, __PRETTY_FUNCTION__))
;
3156 return T;
3157}
3158
3159/// Produce an appropriate diagnostic for an ambiguity between a function
3160/// declarator and a C++ direct-initializer.
3161static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
3162 DeclaratorChunk &DeclType, QualType RT) {
3163 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
3164 assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity")((FTI.isAmbiguous && "no direct-initializer / function ambiguity"
) ? static_cast<void> (0) : __assert_fail ("FTI.isAmbiguous && \"no direct-initializer / function ambiguity\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 3164, __PRETTY_FUNCTION__))
;
3165
3166 // If the return type is void there is no ambiguity.
3167 if (RT->isVoidType())
3168 return;
3169
3170 // An initializer for a non-class type can have at most one argument.
3171 if (!RT->isRecordType() && FTI.NumParams > 1)
3172 return;
3173
3174 // An initializer for a reference must have exactly one argument.
3175 if (RT->isReferenceType() && FTI.NumParams != 1)
3176 return;
3177
3178 // Only warn if this declarator is declaring a function at block scope, and
3179 // doesn't have a storage class (such as 'extern') specified.
3180 if (!D.isFunctionDeclarator() ||
3181 D.getFunctionDefinitionKind() != FDK_Declaration ||
3182 !S.CurContext->isFunctionOrMethod() ||
3183 D.getDeclSpec().getStorageClassSpec()
3184 != DeclSpec::SCS_unspecified)
3185 return;
3186
3187 // Inside a condition, a direct initializer is not permitted. We allow one to
3188 // be parsed in order to give better diagnostics in condition parsing.
3189 if (D.getContext() == DeclaratorContext::ConditionContext)
3190 return;
3191
3192 SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
3193
3194 S.Diag(DeclType.Loc,
3195 FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
3196 : diag::warn_empty_parens_are_function_decl)
3197 << ParenRange;
3198
3199 // If the declaration looks like:
3200 // T var1,
3201 // f();
3202 // and name lookup finds a function named 'f', then the ',' was
3203 // probably intended to be a ';'.
3204 if (!D.isFirstDeclarator() && D.getIdentifier()) {
3205 FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
3206 FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
3207 if (Comma.getFileID() != Name.getFileID() ||
3208 Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
3209 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3210 Sema::LookupOrdinaryName);
3211 if (S.LookupName(Result, S.getCurScope()))
3212 S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
3213 << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
3214 << D.getIdentifier();
3215 Result.suppressDiagnostics();
3216 }
3217 }
3218
3219 if (FTI.NumParams > 0) {
3220 // For a declaration with parameters, eg. "T var(T());", suggest adding
3221 // parens around the first parameter to turn the declaration into a
3222 // variable declaration.
3223 SourceRange Range = FTI.Params[0].Param->getSourceRange();
3224 SourceLocation B = Range.getBegin();
3225 SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
3226 // FIXME: Maybe we should suggest adding braces instead of parens
3227 // in C++11 for classes that don't have an initializer_list constructor.
3228 S.Diag(B, diag::note_additional_parens_for_variable_declaration)
3229 << FixItHint::CreateInsertion(B, "(")
3230 << FixItHint::CreateInsertion(E, ")");
3231 } else {
3232 // For a declaration without parameters, eg. "T var();", suggest replacing
3233 // the parens with an initializer to turn the declaration into a variable
3234 // declaration.
3235 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
3236
3237 // Empty parens mean value-initialization, and no parens mean
3238 // default initialization. These are equivalent if the default
3239 // constructor is user-provided or if zero-initialization is a
3240 // no-op.
3241 if (RD && RD->hasDefinition() &&
3242 (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
3243 S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
3244 << FixItHint::CreateRemoval(ParenRange);
3245 else {
3246 std::string Init =
3247 S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
3248 if (Init.empty() && S.LangOpts.CPlusPlus11)
3249 Init = "{}";
3250 if (!Init.empty())
3251 S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
3252 << FixItHint::CreateReplacement(ParenRange, Init);
3253 }
3254 }
3255}
3256
3257/// Produce an appropriate diagnostic for a declarator with top-level
3258/// parentheses.
3259static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) {
3260 DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1);
3261 assert(Paren.Kind == DeclaratorChunk::Paren &&((Paren.Kind == DeclaratorChunk::Paren && "do not have redundant top-level parentheses"
) ? static_cast<void> (0) : __assert_fail ("Paren.Kind == DeclaratorChunk::Paren && \"do not have redundant top-level parentheses\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 3262, __PRETTY_FUNCTION__))
3262 "do not have redundant top-level parentheses")((Paren.Kind == DeclaratorChunk::Paren && "do not have redundant top-level parentheses"
) ? static_cast<void> (0) : __assert_fail ("Paren.Kind == DeclaratorChunk::Paren && \"do not have redundant top-level parentheses\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 3262, __PRETTY_FUNCTION__))
;
3263
3264 // This is a syntactic check; we're not interested in cases that arise
3265 // during template instantiation.
3266 if (S.inTemplateInstantiation())
3267 return;
3268
3269 // Check whether this could be intended to be a construction of a temporary
3270 // object in C++ via a function-style cast.
3271 bool CouldBeTemporaryObject =
3272 S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
3273 !D.isInvalidType() && D.getIdentifier() &&
3274 D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier &&
3275 (T->isRecordType() || T->isDependentType()) &&
3276 D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator();
3277
3278 bool StartsWithDeclaratorId = true;
3279 for (auto &C : D.type_objects()) {
3280 switch (C.Kind) {
3281 case DeclaratorChunk::Paren:
3282 if (&C == &Paren)
3283 continue;
3284 LLVM_FALLTHROUGH[[clang::fallthrough]];
3285 case DeclaratorChunk::Pointer:
3286 StartsWithDeclaratorId = false;
3287 continue;
3288
3289 case DeclaratorChunk::Array:
3290 if (!C.Arr.NumElts)
3291 CouldBeTemporaryObject = false;
3292 continue;
3293
3294 case DeclaratorChunk::Reference:
3295 // FIXME: Suppress the warning here if there is no initializer; we're
3296 // going to give an error anyway.
3297 // We assume that something like 'T (&x) = y;' is highly likely to not
3298 // be intended to be a temporary object.
3299 CouldBeTemporaryObject = false;
3300 StartsWithDeclaratorId = false;
3301 continue;
3302
3303 case DeclaratorChunk::Function:
3304 // In a new-type-id, function chunks require parentheses.
3305 if (D.getContext() == DeclaratorContext::CXXNewContext)
3306 return;
3307 // FIXME: "A(f())" deserves a vexing-parse warning, not just a
3308 // redundant-parens warning, but we don't know whether the function
3309 // chunk was syntactically valid as an expression here.
3310 CouldBeTemporaryObject = false;
3311 continue;
3312
3313 case DeclaratorChunk::BlockPointer:
3314 case DeclaratorChunk::MemberPointer:
3315 case DeclaratorChunk::Pipe:
3316 // These cannot appear in expressions.
3317 CouldBeTemporaryObject = false;
3318 StartsWithDeclaratorId = false;
3319 continue;
3320 }
3321 }
3322
3323 // FIXME: If there is an initializer, assume that this is not intended to be
3324 // a construction of a temporary object.
3325
3326 // Check whether the name has already been declared; if not, this is not a
3327 // function-style cast.
3328 if (CouldBeTemporaryObject) {
3329 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3330 Sema::LookupOrdinaryName);
3331 if (!S.LookupName(Result, S.getCurScope()))
3332 CouldBeTemporaryObject = false;
3333 Result.suppressDiagnostics();
3334 }
3335
3336 SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
3337
3338 if (!CouldBeTemporaryObject) {
3339 // If we have A (::B), the parentheses affect the meaning of the program.
3340 // Suppress the warning in that case. Don't bother looking at the DeclSpec
3341 // here: even (e.g.) "int ::x" is visually ambiguous even though it's
3342 // formally unambiguous.
3343 if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
3344 for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
3345 NNS = NNS->getPrefix()) {
3346 if (NNS->getKind() == NestedNameSpecifier::Global)
3347 return;
3348 }
3349 }
3350
3351 S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
3352 << ParenRange << FixItHint::CreateRemoval(Paren.Loc)
3353 << FixItHint::CreateRemoval(Paren.EndLoc);
3354 return;
3355 }
3356
3357 S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
3358 << ParenRange << D.getIdentifier();
3359 auto *RD = T->getAsCXXRecordDecl();
3360 if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
3361 S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
3362 << FixItHint::CreateInsertion(Paren.Loc, " varname") << T
3363 << D.getIdentifier();
3364 // FIXME: A cast to void is probably a better suggestion in cases where it's
3365 // valid (when there is no initializer and we're not in a condition).
3366 S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses)
3367 << FixItHint::CreateInsertion(D.getBeginLoc(), "(")
3368 << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")");
3369 S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
3370 << FixItHint::CreateRemoval(Paren.Loc)
3371 << FixItHint::CreateRemoval(Paren.EndLoc);
3372}
3373
3374/// Helper for figuring out the default CC for a function declarator type. If
3375/// this is the outermost chunk, then we can determine the CC from the
3376/// declarator context. If not, then this could be either a member function
3377/// type or normal function type.
3378static CallingConv getCCForDeclaratorChunk(
3379 Sema &S, Declarator &D, const ParsedAttributesView &AttrList,
3380 const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) {
3381 assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function)((D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function
) ? static_cast<void> (0) : __assert_fail ("D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 3381, __PRETTY_FUNCTION__))
;
3382
3383 // Check for an explicit CC attribute.
3384 for (const ParsedAttr &AL : AttrList) {
3385 switch (AL.getKind()) {
3386 CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs
: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case
ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr
::AT_PreserveMost: case ParsedAttr::AT_PreserveAll
: {
3387 // Ignore attributes that don't validate or can't apply to the
3388 // function type. We'll diagnose the failure to apply them in
3389 // handleFunctionTypeAttr.
3390 CallingConv CC;
3391 if (!S.CheckCallingConvAttr(AL, CC) &&
3392 (!FTI.isVariadic || supportsVariadicCall(CC))) {
3393 return CC;
3394 }
3395 break;
3396 }
3397
3398 default:
3399 break;
3400 }
3401 }
3402
3403 bool IsCXXInstanceMethod = false;
3404
3405 if (S.getLangOpts().CPlusPlus) {
3406 // Look inwards through parentheses to see if this chunk will form a
3407 // member pointer type or if we're the declarator. Any type attributes
3408 // between here and there will override the CC we choose here.
3409 unsigned I = ChunkIndex;
3410 bool FoundNonParen = false;
3411 while (I && !FoundNonParen) {
3412 --I;
3413 if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
3414 FoundNonParen = true;
3415 }
3416
3417 if (FoundNonParen) {
3418 // If we're not the declarator, we're a regular function type unless we're
3419 // in a member pointer.
3420 IsCXXInstanceMethod =
3421 D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
3422 } else if (D.getContext() == DeclaratorContext::LambdaExprContext) {
3423 // This can only be a call operator for a lambda, which is an instance
3424 // method.
3425 IsCXXInstanceMethod = true;
3426 } else {
3427 // We're the innermost decl chunk, so must be a function declarator.
3428 assert(D.isFunctionDeclarator())((D.isFunctionDeclarator()) ? static_cast<void> (0) : __assert_fail
("D.isFunctionDeclarator()", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 3428, __PRETTY_FUNCTION__))
;
3429
3430 // If we're inside a record, we're declaring a method, but it could be
3431 // explicitly or implicitly static.
3432 IsCXXInstanceMethod =
3433 D.isFirstDeclarationOfMember() &&
3434 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
3435 !D.isStaticMember();
3436 }
3437 }
3438
3439 CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
3440 IsCXXInstanceMethod);
3441
3442 // Attribute AT_OpenCLKernel affects the calling convention for SPIR
3443 // and AMDGPU targets, hence it cannot be treated as a calling
3444 // convention attribute. This is the simplest place to infer
3445 // calling convention for OpenCL kernels.
3446 if (S.getLangOpts().OpenCL) {
3447 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3448 if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) {
3449 CC = CC_OpenCLKernel;
3450 break;
3451 }
3452 }
3453 }
3454
3455 return CC;
3456}
3457
3458namespace {
3459 /// A simple notion of pointer kinds, which matches up with the various
3460 /// pointer declarators.
3461 enum class SimplePointerKind {
3462 Pointer,
3463 BlockPointer,
3464 MemberPointer,
3465 Array,
3466 };
3467} // end anonymous namespace
3468
3469IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
3470 switch (nullability) {
3471 case NullabilityKind::NonNull:
3472 if (!Ident__Nonnull)
3473 Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
3474 return Ident__Nonnull;
3475
3476 case NullabilityKind::Nullable:
3477 if (!Ident__Nullable)
3478 Ident__Nullable = PP.getIdentifierInfo("_Nullable");
3479 return Ident__Nullable;
3480
3481 case NullabilityKind::Unspecified:
3482 if (!Ident__Null_unspecified)
3483 Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
3484 return Ident__Null_unspecified;
3485 }
3486 llvm_unreachable("Unknown nullability kind.")::llvm::llvm_unreachable_internal("Unknown nullability kind."
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 3486)
;
3487}
3488
3489/// Retrieve the identifier "NSError".
3490IdentifierInfo *Sema::getNSErrorIdent() {
3491 if (!Ident_NSError)
3492 Ident_NSError = PP.getIdentifierInfo("NSError");
3493
3494 return Ident_NSError;
3495}
3496
3497/// Check whether there is a nullability attribute of any kind in the given
3498/// attribute list.
3499static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
3500 for (const ParsedAttr &AL : attrs) {
3501 if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
3502 AL.getKind() == ParsedAttr::AT_TypeNullable ||
3503 AL.getKind() == ParsedAttr::AT_TypeNullUnspecified)
3504 return true;
3505 }
3506
3507 return false;
3508}
3509
3510namespace {
3511 /// Describes the kind of a pointer a declarator describes.
3512 enum class PointerDeclaratorKind {
3513 // Not a pointer.
3514 NonPointer,
3515 // Single-level pointer.
3516 SingleLevelPointer,
3517 // Multi-level pointer (of any pointer kind).
3518 MultiLevelPointer,
3519 // CFFooRef*
3520 MaybePointerToCFRef,
3521 // CFErrorRef*
3522 CFErrorRefPointer,
3523 // NSError**
3524 NSErrorPointerPointer,
3525 };
3526
3527 /// Describes a declarator chunk wrapping a pointer that marks inference as
3528 /// unexpected.
3529 // These values must be kept in sync with diagnostics.
3530 enum class PointerWrappingDeclaratorKind {
3531 /// Pointer is top-level.
3532 None = -1,
3533 /// Pointer is an array element.
3534 Array = 0,
3535 /// Pointer is the referent type of a C++ reference.
3536 Reference = 1
3537 };
3538} // end anonymous namespace
3539
3540/// Classify the given declarator, whose type-specified is \c type, based on
3541/// what kind of pointer it refers to.
3542///
3543/// This is used to determine the default nullability.
3544static PointerDeclaratorKind
3545classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator,
3546 PointerWrappingDeclaratorKind &wrappingKind) {
3547 unsigned numNormalPointers = 0;
3548
3549 // For any dependent type, we consider it a non-pointer.
3550 if (type->isDependentType())
3551 return PointerDeclaratorKind::NonPointer;
3552
3553 // Look through the declarator chunks to identify pointers.
3554 for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
3555 DeclaratorChunk &chunk = declarator.getTypeObject(i);
3556 switch (chunk.Kind) {
3557 case DeclaratorChunk::Array:
3558 if (numNormalPointers == 0)
3559 wrappingKind = PointerWrappingDeclaratorKind::Array;
3560 break;
3561
3562 case DeclaratorChunk::Function:
3563 case DeclaratorChunk::Pipe:
3564 break;
3565
3566 case DeclaratorChunk::BlockPointer:
3567 case DeclaratorChunk::MemberPointer:
3568 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3569 : PointerDeclaratorKind::SingleLevelPointer;
3570
3571 case DeclaratorChunk::Paren:
3572 break;
3573
3574 case DeclaratorChunk::Reference:
3575 if (numNormalPointers == 0)
3576 wrappingKind = PointerWrappingDeclaratorKind::Reference;
3577 break;
3578
3579 case DeclaratorChunk::Pointer:
3580 ++numNormalPointers;
3581 if (numNormalPointers > 2)
3582 return PointerDeclaratorKind::MultiLevelPointer;
3583 break;
3584 }
3585 }
3586
3587 // Then, dig into the type specifier itself.
3588 unsigned numTypeSpecifierPointers = 0;
3589 do {
3590 // Decompose normal pointers.
3591 if (auto ptrType = type->getAs<PointerType>()) {
3592 ++numNormalPointers;
3593
3594 if (numNormalPointers > 2)
3595 return PointerDeclaratorKind::MultiLevelPointer;
3596
3597 type = ptrType->getPointeeType();
3598 ++numTypeSpecifierPointers;
3599 continue;
3600 }
3601
3602 // Decompose block pointers.
3603 if (type->getAs<BlockPointerType>()) {
3604 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3605 : PointerDeclaratorKind::SingleLevelPointer;
3606 }
3607
3608 // Decompose member pointers.
3609 if (type->getAs<MemberPointerType>()) {
3610 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3611 : PointerDeclaratorKind::SingleLevelPointer;
3612 }
3613
3614 // Look at Objective-C object pointers.
3615 if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
3616 ++numNormalPointers;
3617 ++numTypeSpecifierPointers;
3618
3619 // If this is NSError**, report that.
3620 if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
3621 if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() &&
3622 numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
3623 return PointerDeclaratorKind::NSErrorPointerPointer;
3624 }
3625 }
3626
3627 break;
3628 }
3629
3630 // Look at Objective-C class types.
3631 if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
3632 if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) {
3633 if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
3634 return PointerDeclaratorKind::NSErrorPointerPointer;
3635 }
3636
3637 break;
3638 }
3639
3640 // If at this point we haven't seen a pointer, we won't see one.
3641 if (numNormalPointers == 0)
3642 return PointerDeclaratorKind::NonPointer;
3643
3644 if (auto recordType = type->getAs<RecordType>()) {
3645 RecordDecl *recordDecl = recordType->getDecl();
3646
3647 bool isCFError = false;
3648 if (S.CFError) {
3649 // If we already know about CFError, test it directly.
3650 isCFError = (S.CFError == recordDecl);
3651 } else {
3652 // Check whether this is CFError, which we identify based on its bridge
3653 // to NSError. CFErrorRef used to be declared with "objc_bridge" but is
3654 // now declared with "objc_bridge_mutable", so look for either one of
3655 // the two attributes.
3656 if (recordDecl->getTagKind() == TTK_Struct && numNormalPointers > 0) {
3657 IdentifierInfo *bridgedType = nullptr;
3658 if (auto bridgeAttr = recordDecl->getAttr<ObjCBridgeAttr>())
3659 bridgedType = bridgeAttr->getBridgedType();
3660 else if (auto bridgeAttr =
3661 recordDecl->getAttr<ObjCBridgeMutableAttr>())
3662 bridgedType = bridgeAttr->getBridgedType();
3663
3664 if (bridgedType == S.getNSErrorIdent()) {
3665 S.CFError = recordDecl;
3666 isCFError = true;
3667 }
3668 }
3669 }
3670
3671 // If this is CFErrorRef*, report it as such.
3672 if (isCFError && numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
3673 return PointerDeclaratorKind::CFErrorRefPointer;
3674 }
3675 break;
3676 }
3677
3678 break;
3679 } while (true);
3680
3681 switch (numNormalPointers) {
3682 case 0:
3683 return PointerDeclaratorKind::NonPointer;
3684
3685 case 1:
3686 return PointerDeclaratorKind::SingleLevelPointer;
3687
3688 case 2:
3689 return PointerDeclaratorKind::MaybePointerToCFRef;
3690
3691 default:
3692 return PointerDeclaratorKind::MultiLevelPointer;
3693 }
3694}
3695
3696static FileID getNullabilityCompletenessCheckFileID(Sema &S,
3697 SourceLocation loc) {
3698 // If we're anywhere in a function, method, or closure context, don't perform
3699 // completeness checks.
3700 for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
3701 if (ctx->isFunctionOrMethod())
3702 return FileID();
3703
3704 if (ctx->isFileContext())
3705 break;
3706 }
3707
3708 // We only care about the expansion location.
3709 loc = S.SourceMgr.getExpansionLoc(loc);
3710 FileID file = S.SourceMgr.getFileID(loc);
3711 if (file.isInvalid())
3712 return FileID();
3713
3714 // Retrieve file information.
3715 bool invalid = false;
3716 const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
3717 if (invalid || !sloc.isFile())
3718 return FileID();
3719
3720 // We don't want to perform completeness checks on the main file or in
3721 // system headers.
3722 const SrcMgr::FileInfo &fileInfo = sloc.getFile();
3723 if (fileInfo.getIncludeLoc().isInvalid())
3724 return FileID();
3725 if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
3726 S.Diags.getSuppressSystemWarnings()) {
3727 return FileID();
3728 }
3729
3730 return file;
3731}
3732
3733/// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
3734/// taking into account whitespace before and after.
3735static void fixItNullability(Sema &S, DiagnosticBuilder &Diag,
3736 SourceLocation PointerLoc,
3737 NullabilityKind Nullability) {
3738 assert(PointerLoc.isValid())((PointerLoc.isValid()) ? static_cast<void> (0) : __assert_fail
("PointerLoc.isValid()", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 3738, __PRETTY_FUNCTION__))
;
3739 if (PointerLoc.isMacroID())
3740 return;
3741
3742 SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
3743 if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
3744 return;
3745
3746 const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
3747 if (!NextChar)
3748 return;
3749
3750 SmallString<32> InsertionTextBuf{" "};
3751 InsertionTextBuf += getNullabilitySpelling(Nullability);
3752 InsertionTextBuf += " ";
3753 StringRef InsertionText = InsertionTextBuf.str();
3754
3755 if (isWhitespace(*NextChar)) {
3756 InsertionText = InsertionText.drop_back();
3757 } else if (NextChar[-1] == '[') {
3758 if (NextChar[0] == ']')
3759 InsertionText = InsertionText.drop_back().drop_front();
3760 else
3761 InsertionText = InsertionText.drop_front();
3762 } else if (!isIdentifierBody(NextChar[0], /*allow dollar*/true) &&
3763 !isIdentifierBody(NextChar[-1], /*allow dollar*/true)) {
3764 InsertionText = InsertionText.drop_back().drop_front();
3765 }
3766
3767 Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
3768}
3769
3770static void emitNullabilityConsistencyWarning(Sema &S,
3771 SimplePointerKind PointerKind,
3772 SourceLocation PointerLoc,
3773 SourceLocation PointerEndLoc) {
3774 assert(PointerLoc.isValid())((PointerLoc.isValid()) ? static_cast<void> (0) : __assert_fail
("PointerLoc.isValid()", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 3774, __PRETTY_FUNCTION__))
;
3775
3776 if (PointerKind == SimplePointerKind::Array) {
3777 S.Diag(PointerLoc, diag::warn_nullability_missing_array);
3778 } else {
3779 S.Diag(PointerLoc, diag::warn_nullability_missing)
3780 << static_cast<unsigned>(PointerKind);
3781 }
3782
3783 auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
3784 if (FixItLoc.isMacroID())
3785 return;
3786
3787 auto addFixIt = [&](NullabilityKind Nullability) {
3788 auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
3789 Diag << static_cast<unsigned>(Nullability);
3790 Diag << static_cast<unsigned>(PointerKind);
3791 fixItNullability(S, Diag, FixItLoc, Nullability);
3792 };
3793 addFixIt(NullabilityKind::Nullable);
3794 addFixIt(NullabilityKind::NonNull);
3795}
3796
3797/// Complains about missing nullability if the file containing \p pointerLoc
3798/// has other uses of nullability (either the keywords or the \c assume_nonnull
3799/// pragma).
3800///
3801/// If the file has \e not seen other uses of nullability, this particular
3802/// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
3803static void
3804checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind,
3805 SourceLocation pointerLoc,
3806 SourceLocation pointerEndLoc = SourceLocation()) {
3807 // Determine which file we're performing consistency checking for.
3808 FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
3809 if (file.isInvalid())
3810 return;
3811
3812 // If we haven't seen any type nullability in this file, we won't warn now
3813 // about anything.
3814 FileNullability &fileNullability = S.NullabilityMap[file];
3815 if (!fileNullability.SawTypeNullability) {
3816 // If this is the first pointer declarator in the file, and the appropriate
3817 // warning is on, record it in case we need to diagnose it retroactively.
3818 diag::kind diagKind;
3819 if (pointerKind == SimplePointerKind::Array)
3820 diagKind = diag::warn_nullability_missing_array;
3821 else
3822 diagKind = diag::warn_nullability_missing;
3823
3824 if (fileNullability.PointerLoc.isInvalid() &&
3825 !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
3826 fileNullability.PointerLoc = pointerLoc;
3827 fileNullability.PointerEndLoc = pointerEndLoc;
3828 fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
3829 }
3830
3831 return;
3832 }
3833
3834 // Complain about missing nullability.
3835 emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc);
3836}
3837
3838/// Marks that a nullability feature has been used in the file containing
3839/// \p loc.
3840///
3841/// If this file already had pointer types in it that were missing nullability,
3842/// the first such instance is retroactively diagnosed.
3843///
3844/// \sa checkNullabilityConsistency
3845static void recordNullabilitySeen(Sema &S, SourceLocation loc) {
3846 FileID file = getNullabilityCompletenessCheckFileID(S, loc);
3847 if (file.isInvalid())
3848 return;
3849
3850 FileNullability &fileNullability = S.NullabilityMap[file];
3851 if (fileNullability.SawTypeNullability)
3852 return;
3853 fileNullability.SawTypeNullability = true;
3854
3855 // If we haven't seen any type nullability before, now we have. Retroactively
3856 // diagnose the first unannotated pointer, if there was one.
3857 if (fileNullability.PointerLoc.isInvalid())
3858 return;
3859
3860 auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
3861 emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc,
3862 fileNullability.PointerEndLoc);
3863}
3864
3865/// Returns true if any of the declarator chunks before \p endIndex include a
3866/// level of indirection: array, pointer, reference, or pointer-to-member.
3867///
3868/// Because declarator chunks are stored in outer-to-inner order, testing
3869/// every chunk before \p endIndex is testing all chunks that embed the current
3870/// chunk as part of their type.
3871///
3872/// It is legal to pass the result of Declarator::getNumTypeObjects() as the
3873/// end index, in which case all chunks are tested.
3874static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
3875 unsigned i = endIndex;
3876 while (i != 0) {
3877 // Walk outwards along the declarator chunks.
3878 --i;
3879 const DeclaratorChunk &DC = D.getTypeObject(i);
3880 switch (DC.Kind) {
3881 case DeclaratorChunk::Paren:
3882 break;
3883 case DeclaratorChunk::Array:
3884 case DeclaratorChunk::Pointer:
3885 case DeclaratorChunk::Reference:
3886 case DeclaratorChunk::MemberPointer:
3887 return true;
3888 case DeclaratorChunk::Function:
3889 case DeclaratorChunk::BlockPointer:
3890 case DeclaratorChunk::Pipe:
3891 // These are invalid anyway, so just ignore.
3892 break;
3893 }
3894 }
3895 return false;
3896}
3897
3898static bool IsNoDerefableChunk(DeclaratorChunk Chunk) {
3899 return (Chunk.Kind == DeclaratorChunk::Pointer ||
3900 Chunk.Kind == DeclaratorChunk::Array);
3901}
3902
3903template<typename AttrT>
3904static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &Attr) {
3905 Attr.setUsedAsTypeAttr();
3906 return ::new (Ctx)
3907 AttrT(Attr.getRange(), Ctx, Attr.getAttributeSpellingListIndex());
3908}
3909
3910static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr,
3911 NullabilityKind NK) {
3912 switch (NK) {
3913 case NullabilityKind::NonNull:
3914 return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr);
3915
3916 case NullabilityKind::Nullable:
3917 return createSimpleAttr<TypeNullableAttr>(Ctx, Attr);
3918
3919 case NullabilityKind::Unspecified:
3920 return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr);
3921 }
3922 llvm_unreachable("unknown NullabilityKind")::llvm::llvm_unreachable_internal("unknown NullabilityKind", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 3922)
;
3923}
3924
3925static TypeSourceInfo *
3926GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
3927 QualType T, TypeSourceInfo *ReturnTypeInfo);
3928
3929static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
3930 QualType declSpecType,
3931 TypeSourceInfo *TInfo) {
3932 // The TypeSourceInfo that this function returns will not be a null type.
3933 // If there is an error, this function will fill in a dummy type as fallback.
3934 QualType T = declSpecType;
3935 Declarator &D = state.getDeclarator();
3936 Sema &S = state.getSema();
3937 ASTContext &Context = S.Context;
3938 const LangOptions &LangOpts = S.getLangOpts();
3939
3940 // The name we're declaring, if any.
3941 DeclarationName Name;
3942 if (D.getIdentifier())
3943 Name = D.getIdentifier();
3944
3945 // Does this declaration declare a typedef-name?
3946 bool IsTypedefName =
3947 D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
3948 D.getContext() == DeclaratorContext::AliasDeclContext ||
3949 D.getContext() == DeclaratorContext::AliasTemplateContext;
3950
3951 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
3952 bool IsQualifiedFunction = T->isFunctionProtoType() &&
3953 (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
3954 T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
3955
3956 // If T is 'decltype(auto)', the only declarators we can have are parens
3957 // and at most one function declarator if this is a function declaration.
3958 // If T is a deduced class template specialization type, we can have no
3959 // declarator chunks at all.
3960 if (auto *DT = T->getAs<DeducedType>()) {
3961 const AutoType *AT = T->getAs<AutoType>();
3962 bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT);
3963 if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
3964 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3965 unsigned Index = E - I - 1;
3966 DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
3967 unsigned DiagId = IsClassTemplateDeduction
3968 ? diag::err_deduced_class_template_compound_type
3969 : diag::err_decltype_auto_compound_type;
3970 unsigned DiagKind = 0;
3971 switch (DeclChunk.Kind) {
3972 case DeclaratorChunk::Paren:
3973 // FIXME: Rejecting this is a little silly.
3974 if (IsClassTemplateDeduction) {
3975 DiagKind = 4;
3976 break;
3977 }
3978 continue;
3979 case DeclaratorChunk::Function: {
3980 if (IsClassTemplateDeduction) {
3981 DiagKind = 3;
3982 break;
3983 }
3984 unsigned FnIndex;
3985 if (D.isFunctionDeclarationContext() &&
3986 D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
3987 continue;
3988 DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
3989 break;
3990 }
3991 case DeclaratorChunk::Pointer:
3992 case DeclaratorChunk::BlockPointer:
3993 case DeclaratorChunk::MemberPointer:
3994 DiagKind = 0;
3995 break;
3996 case DeclaratorChunk::Reference:
3997 DiagKind = 1;
3998 break;
3999 case DeclaratorChunk::Array:
4000 DiagKind = 2;
4001 break;
4002 case DeclaratorChunk::Pipe:
4003 break;
4004 }
4005
4006 S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
4007 D.setInvalidType(true);
4008 break;
4009 }
4010 }
4011 }
4012
4013 // Determine whether we should infer _Nonnull on pointer types.
4014 Optional<NullabilityKind> inferNullability;
4015 bool inferNullabilityCS = false;
4016 bool inferNullabilityInnerOnly = false;
4017 bool inferNullabilityInnerOnlyComplete = false;
4018
4019 // Are we in an assume-nonnull region?
4020 bool inAssumeNonNullRegion = false;
4021 SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
4022 if (assumeNonNullLoc.isValid()) {
4023 inAssumeNonNullRegion = true;
4024 recordNullabilitySeen(S, assumeNonNullLoc);
4025 }
4026
4027 // Whether to complain about missing nullability specifiers or not.
4028 enum {
4029 /// Never complain.
4030 CAMN_No,
4031 /// Complain on the inner pointers (but not the outermost
4032 /// pointer).
4033 CAMN_InnerPointers,
4034 /// Complain about any pointers that don't have nullability
4035 /// specified or inferred.
4036 CAMN_Yes
4037 } complainAboutMissingNullability = CAMN_No;
4038 unsigned NumPointersRemaining = 0;
4039 auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
4040
4041 if (IsTypedefName) {
4042 // For typedefs, we do not infer any nullability (the default),
4043 // and we only complain about missing nullability specifiers on
4044 // inner pointers.
4045 complainAboutMissingNullability = CAMN_InnerPointers;
4046
4047 if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4048 !T->getNullability(S.Context)) {
4049 // Note that we allow but don't require nullability on dependent types.
4050 ++NumPointersRemaining;
4051 }
4052
4053 for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
4054 DeclaratorChunk &chunk = D.getTypeObject(i);
4055 switch (chunk.Kind) {
4056 case DeclaratorChunk::Array:
4057 case DeclaratorChunk::Function:
4058 case DeclaratorChunk::Pipe:
4059 break;
4060
4061 case DeclaratorChunk::BlockPointer:
4062 case DeclaratorChunk::MemberPointer:
4063 ++NumPointersRemaining;
4064 break;
4065
4066 case DeclaratorChunk::Paren:
4067 case DeclaratorChunk::Reference:
4068 continue;
4069
4070 case DeclaratorChunk::Pointer:
4071 ++NumPointersRemaining;
4072 continue;
4073 }
4074 }
4075 } else {
4076 bool isFunctionOrMethod = false;
4077 switch (auto context = state.getDeclarator().getContext()) {
4078 case DeclaratorContext::ObjCParameterContext:
4079 case DeclaratorContext::ObjCResultContext:
4080 case DeclaratorContext::PrototypeContext:
4081 case DeclaratorContext::TrailingReturnContext:
4082 case DeclaratorContext::TrailingReturnVarContext:
4083 isFunctionOrMethod = true;
4084 LLVM_FALLTHROUGH[[clang::fallthrough]];
4085
4086 case DeclaratorContext::MemberContext:
4087 if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
4088 complainAboutMissingNullability = CAMN_No;
4089 break;
4090 }
4091
4092 // Weak properties are inferred to be nullable.
4093 if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) {
4094 inferNullability = NullabilityKind::Nullable;
4095 break;
4096 }
4097
4098 LLVM_FALLTHROUGH[[clang::fallthrough]];
4099
4100 case DeclaratorContext::FileContext:
4101 case DeclaratorContext::KNRTypeListContext: {
4102 complainAboutMissingNullability = CAMN_Yes;
4103
4104 // Nullability inference depends on the type and declarator.
4105 auto wrappingKind = PointerWrappingDeclaratorKind::None;
4106 switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
4107 case PointerDeclaratorKind::NonPointer:
4108 case PointerDeclaratorKind::MultiLevelPointer:
4109 // Cannot infer nullability.
4110 break;
4111
4112 case PointerDeclaratorKind::SingleLevelPointer:
4113 // Infer _Nonnull if we are in an assumes-nonnull region.
4114 if (inAssumeNonNullRegion) {
4115 complainAboutInferringWithinChunk = wrappingKind;
4116 inferNullability = NullabilityKind::NonNull;
4117 inferNullabilityCS =
4118 (context == DeclaratorContext::ObjCParameterContext ||
4119 context == DeclaratorContext::ObjCResultContext);
4120 }
4121 break;
4122
4123 case PointerDeclaratorKind::CFErrorRefPointer:
4124 case PointerDeclaratorKind::NSErrorPointerPointer:
4125 // Within a function or method signature, infer _Nullable at both
4126 // levels.
4127 if (isFunctionOrMethod && inAssumeNonNullRegion)
4128 inferNullability = NullabilityKind::Nullable;
4129 break;
4130
4131 case PointerDeclaratorKind::MaybePointerToCFRef:
4132 if (isFunctionOrMethod) {
4133 // On pointer-to-pointer parameters marked cf_returns_retained or
4134 // cf_returns_not_retained, if the outer pointer is explicit then
4135 // infer the inner pointer as _Nullable.
4136 auto hasCFReturnsAttr =
4137 [](const ParsedAttributesView &AttrList) -> bool {
4138 return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) ||
4139 AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained);
4140 };
4141 if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
4142 if (hasCFReturnsAttr(D.getAttributes()) ||
4143 hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
4144 hasCFReturnsAttr(D.getDeclSpec().getAttributes())) {
4145 inferNullability = NullabilityKind::Nullable;
4146 inferNullabilityInnerOnly = true;
4147 }
4148 }
4149 }
4150 break;
4151 }
4152 break;
4153 }
4154
4155 case DeclaratorContext::ConversionIdContext:
4156 complainAboutMissingNullability = CAMN_Yes;
4157 break;
4158
4159 case DeclaratorContext::AliasDeclContext:
4160 case DeclaratorContext::AliasTemplateContext:
4161 case DeclaratorContext::BlockContext:
4162 case DeclaratorContext::BlockLiteralContext:
4163 case DeclaratorContext::ConditionContext:
4164 case DeclaratorContext::CXXCatchContext:
4165 case DeclaratorContext::CXXNewContext:
4166 case DeclaratorContext::ForContext:
4167 case DeclaratorContext::InitStmtContext:
4168 case DeclaratorContext::LambdaExprContext:
4169 case DeclaratorContext::LambdaExprParameterContext:
4170 case DeclaratorContext::ObjCCatchContext:
4171 case DeclaratorContext::TemplateParamContext:
4172 case DeclaratorContext::TemplateArgContext:
4173 case DeclaratorContext::TemplateTypeArgContext:
4174 case DeclaratorContext::TypeNameContext:
4175 case DeclaratorContext::FunctionalCastContext:
4176 // Don't infer in these contexts.
4177 break;
4178 }
4179 }
4180
4181 // Local function that returns true if its argument looks like a va_list.
4182 auto isVaList = [&S](QualType T) -> bool {
4183 auto *typedefTy = T->getAs<TypedefType>();
4184 if (!typedefTy)
4185 return false;
4186 TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
4187 do {
4188 if (typedefTy->getDecl() == vaListTypedef)
4189 return true;
4190 if (auto *name = typedefTy->getDecl()->getIdentifier())
4191 if (name->isStr("va_list"))
4192 return true;
4193 typedefTy = typedefTy->desugar()->getAs<TypedefType>();
4194 } while (typedefTy);
4195 return false;
4196 };
4197
4198 // Local function that checks the nullability for a given pointer declarator.
4199 // Returns true if _Nonnull was inferred.
4200 auto inferPointerNullability =
4201 [&](SimplePointerKind pointerKind, SourceLocation pointerLoc,
4202 SourceLocation pointerEndLoc,
4203 ParsedAttributesView &attrs) -> ParsedAttr * {
4204 // We've seen a pointer.
4205 if (NumPointersRemaining > 0)
4206 --NumPointersRemaining;
4207
4208 // If a nullability attribute is present, there's nothing to do.
4209 if (hasNullabilityAttr(attrs))
4210 return nullptr;
4211
4212 // If we're supposed to infer nullability, do so now.
4213 if (inferNullability && !inferNullabilityInnerOnlyComplete) {
4214 ParsedAttr::Syntax syntax = inferNullabilityCS
4215 ? ParsedAttr::AS_ContextSensitiveKeyword
4216 : ParsedAttr::AS_Keyword;
4217 ParsedAttr *nullabilityAttr =
4218 state.getDeclarator().getAttributePool().create(
4219 S.getNullabilityKeyword(*inferNullability),
4220 SourceRange(pointerLoc), nullptr, SourceLocation(), nullptr, 0,
4221 syntax);
4222
4223 attrs.addAtEnd(nullabilityAttr);
4224
4225 if (inferNullabilityCS) {
4226 state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
4227 ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
4228 }
4229
4230 if (pointerLoc.isValid() &&
4231 complainAboutInferringWithinChunk !=
4232 PointerWrappingDeclaratorKind::None) {
4233 auto Diag =
4234 S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
4235 Diag << static_cast<int>(complainAboutInferringWithinChunk);
4236 fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull);
4237 }
4238
4239 if (inferNullabilityInnerOnly)
4240 inferNullabilityInnerOnlyComplete = true;
4241 return nullabilityAttr;
4242 }
4243
4244 // If we're supposed to complain about missing nullability, do so
4245 // now if it's truly missing.
4246 switch (complainAboutMissingNullability) {
4247 case CAMN_No:
4248 break;
4249
4250 case CAMN_InnerPointers:
4251 if (NumPointersRemaining == 0)
4252 break;
4253 LLVM_FALLTHROUGH[[clang::fallthrough]];
4254
4255 case CAMN_Yes:
4256 checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
4257 }
4258 return nullptr;
4259 };
4260
4261 // If the type itself could have nullability but does not, infer pointer
4262 // nullability and perform consistency checking.
4263 if (S.CodeSynthesisContexts.empty()) {
4264 if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4265 !T->getNullability(S.Context)) {
4266 if (isVaList(T)) {
4267 // Record that we've seen a pointer, but do nothing else.
4268 if (NumPointersRemaining > 0)
4269 --NumPointersRemaining;
4270 } else {
4271 SimplePointerKind pointerKind = SimplePointerKind::Pointer;
4272 if (T->isBlockPointerType())
4273 pointerKind = SimplePointerKind::BlockPointer;
4274 else if (T->isMemberPointerType())
4275 pointerKind = SimplePointerKind::MemberPointer;
4276
4277 if (auto *attr = inferPointerNullability(
4278 pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
4279 D.getDeclSpec().getEndLoc(),
4280 D.getMutableDeclSpec().getAttributes())) {
4281 T = state.getAttributedType(
4282 createNullabilityAttr(Context, *attr, *inferNullability), T, T);
4283 }
4284 }
4285 }
4286
4287 if (complainAboutMissingNullability == CAMN_Yes &&
4288 T->isArrayType() && !T->getNullability(S.Context) && !isVaList(T) &&
4289 D.isPrototypeContext() &&
4290 !hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) {
4291 checkNullabilityConsistency(S, SimplePointerKind::Array,
4292 D.getDeclSpec().getTypeSpecTypeLoc());
4293 }
4294 }
4295
4296 bool ExpectNoDerefChunk =
4297 state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref);
4298
4299 // Walk the DeclTypeInfo, building the recursive type as we go.
4300 // DeclTypeInfos are ordered from the identifier out, which is
4301 // opposite of what we want :).
4302 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4303 unsigned chunkIndex = e - i - 1;
4304 state.setCurrentChunkIndex(chunkIndex);
4305 DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
4306 IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
4307 switch (DeclType.Kind) {
4308 case DeclaratorChunk::Paren:
4309 if (i == 0)
4310 warnAboutRedundantParens(S, D, T);
4311 T = S.BuildParenType(T);
4312 break;
4313 case DeclaratorChunk::BlockPointer:
4314 // If blocks are disabled, emit an error.
4315 if (!LangOpts.Blocks)
4316 S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
4317
4318 // Handle pointer nullability.
4319 inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
4320 DeclType.EndLoc, DeclType.getAttrs());
4321
4322 T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
4323 if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
4324 // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
4325 // qualified with const.
4326 if (LangOpts.OpenCL)
4327 DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
4328 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
4329 }
4330 break;
4331 case DeclaratorChunk::Pointer:
4332 // Verify that we're not building a pointer to pointer to function with
4333 // exception specification.
4334 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4335 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4336 D.setInvalidType(true);
4337 // Build the type anyway.
4338 }
4339
4340 // Handle pointer nullability
4341 inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
4342 DeclType.EndLoc, DeclType.getAttrs());
4343
4344 if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) {
4345 T = Context.getObjCObjectPointerType(T);
4346 if (DeclType.Ptr.TypeQuals)
4347 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4348 break;
4349 }
4350
4351 // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
4352 // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
4353 // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
4354 if (LangOpts.OpenCL) {
4355 if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
4356 T->isBlockPointerType()) {
4357 S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
4358 D.setInvalidType(true);
4359 }
4360 }
4361
4362 T = S.BuildPointerType(T, DeclType.Loc, Name);
4363 if (DeclType.Ptr.TypeQuals)
4364 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4365 break;
4366 case DeclaratorChunk::Reference: {
4367 // Verify that we're not building a reference to pointer to function with
4368 // exception specification.
4369 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4370 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4371 D.setInvalidType(true);
4372 // Build the type anyway.
4373 }
4374 T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
4375
4376 if (DeclType.Ref.HasRestrict)
4377 T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
4378 break;
4379 }
4380 case DeclaratorChunk::Array: {
4381 // Verify that we're not building an array of pointers to function with
4382 // exception specification.
4383 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4384 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4385 D.setInvalidType(true);
4386 // Build the type anyway.
4387 }
4388 DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
4389 Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
4390 ArrayType::ArraySizeModifier ASM;
4391 if (ATI.isStar)
4392 ASM = ArrayType::Star;
4393 else if (ATI.hasStatic)
4394 ASM = ArrayType::Static;
4395 else
4396 ASM = ArrayType::Normal;
4397 if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
4398 // FIXME: This check isn't quite right: it allows star in prototypes
4399 // for function definitions, and disallows some edge cases detailed
4400 // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
4401 S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
4402 ASM = ArrayType::Normal;
4403 D.setInvalidType(true);
4404 }
4405
4406 // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
4407 // shall appear only in a declaration of a function parameter with an
4408 // array type, ...
4409 if (ASM == ArrayType::Static || ATI.TypeQuals) {
4410 if (!(D.isPrototypeContext() ||
4411 D.getContext() == DeclaratorContext::KNRTypeListContext)) {
4412 S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
4413 (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4414 // Remove the 'static' and the type qualifiers.
4415 if (ASM == ArrayType::Static)
4416 ASM = ArrayType::Normal;
4417 ATI.TypeQuals = 0;
4418 D.setInvalidType(true);
4419 }
4420
4421 // C99 6.7.5.2p1: ... and then only in the outermost array type
4422 // derivation.
4423 if (hasOuterPointerLikeChunk(D, chunkIndex)) {
4424 S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
4425 (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4426 if (ASM == ArrayType::Static)
4427 ASM = ArrayType::Normal;
4428 ATI.TypeQuals = 0;
4429 D.setInvalidType(true);
4430 }
4431 }
4432 const AutoType *AT = T->getContainedAutoType();
4433 // Allow arrays of auto if we are a generic lambda parameter.
4434 // i.e. [](auto (&array)[5]) { return array[0]; }; OK
4435 if (AT &&
4436 D.getContext() != DeclaratorContext::LambdaExprParameterContext) {
4437 // We've already diagnosed this for decltype(auto).
4438 if (!AT->isDecltypeAuto())
4439 S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
4440 << getPrintableNameForEntity(Name) << T;
4441 T = QualType();
4442 break;
4443 }
4444
4445 // Array parameters can be marked nullable as well, although it's not
4446 // necessary if they're marked 'static'.
4447 if (complainAboutMissingNullability == CAMN_Yes &&
4448 !hasNullabilityAttr(DeclType.getAttrs()) &&
4449 ASM != ArrayType::Static &&
4450 D.isPrototypeContext() &&
4451 !hasOuterPointerLikeChunk(D, chunkIndex)) {
4452 checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
4453 }
4454
4455 T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
4456 SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
4457 break;
4458 }
4459 case DeclaratorChunk::Function: {
4460 // If the function declarator has a prototype (i.e. it is not () and
4461 // does not have a K&R-style identifier list), then the arguments are part
4462 // of the type, otherwise the argument list is ().
4463 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
4464 IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
4465
4466 // Check for auto functions and trailing return type and adjust the
4467 // return type accordingly.
4468 if (!D.isInvalidType()) {
4469 // trailing-return-type is only required if we're declaring a function,
4470 // and not, for instance, a pointer to a function.
4471 if (D.getDeclSpec().hasAutoTypeSpec() &&
4472 !FTI.hasTrailingReturnType() && chunkIndex == 0) {
4473 if (!S.getLangOpts().CPlusPlus14) {
4474 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4475 D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
4476 ? diag::err_auto_missing_trailing_return
4477 : diag::err_deduced_return_type);
4478 T = Context.IntTy;
4479 D.setInvalidType(true);
4480 } else {
4481 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4482 diag::warn_cxx11_compat_deduced_return_type);
4483 }
4484 } else if (FTI.hasTrailingReturnType()) {
4485 // T must be exactly 'auto' at this point. See CWG issue 681.
4486 if (isa<ParenType>(T)) {
4487 S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens)
4488 << T << D.getSourceRange();
4489 D.setInvalidType(true);
4490 } else if (D.getName().getKind() ==
4491 UnqualifiedIdKind::IK_DeductionGuideName) {
4492 if (T != Context.DependentTy) {
4493 S.Diag(D.getDeclSpec().getBeginLoc(),
4494 diag::err_deduction_guide_with_complex_decl)
4495 << D.getSourceRange();
4496 D.setInvalidType(true);
4497 }
4498 } else if (D.getContext() != DeclaratorContext::LambdaExprContext &&
4499 (T.hasQualifiers() || !isa<AutoType>(T) ||
4500 cast<AutoType>(T)->getKeyword() !=
4501 AutoTypeKeyword::Auto)) {
4502 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4503 diag::err_trailing_return_without_auto)
4504 << T << D.getDeclSpec().getSourceRange();
4505 D.setInvalidType(true);
4506 }
4507 T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
4508 if (T.isNull()) {
4509 // An error occurred parsing the trailing return type.
4510 T = Context.IntTy;
4511 D.setInvalidType(true);
4512 }
4513 } else {
4514 // This function type is not the type of the entity being declared,
4515 // so checking the 'auto' is not the responsibility of this chunk.
4516 }
4517 }
4518
4519 // C99 6.7.5.3p1: The return type may not be a function or array type.
4520 // For conversion functions, we'll diagnose this particular error later.
4521 if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
4522 (D.getName().getKind() !=
4523 UnqualifiedIdKind::IK_ConversionFunctionId)) {
4524 unsigned diagID = diag::err_func_returning_array_function;
4525 // Last processing chunk in block context means this function chunk
4526 // represents the block.
4527 if (chunkIndex == 0 &&
4528 D.getContext() == DeclaratorContext::BlockLiteralContext)
4529 diagID = diag::err_block_returning_array_function;
4530 S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
4531 T = Context.IntTy;
4532 D.setInvalidType(true);
4533 }
4534
4535 // Do not allow returning half FP value.
4536 // FIXME: This really should be in BuildFunctionType.
4537 if (T->isHalfType()) {
4538 if (S.getLangOpts().OpenCL) {
4539 if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
4540 S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4541 << T << 0 /*pointer hint*/;
4542 D.setInvalidType(true);
4543 }
4544 } else if (!S.getLangOpts().HalfArgsAndReturns) {
4545 S.Diag(D.getIdentifierLoc(),
4546 diag::err_parameters_retval_cannot_have_fp16_type) << 1;
4547 D.setInvalidType(true);
4548 }
4549 }
4550
4551 if (LangOpts.OpenCL) {
4552 // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
4553 // function.
4554 if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
4555 T->isPipeType()) {
4556 S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4557 << T << 1 /*hint off*/;
4558 D.setInvalidType(true);
4559 }
4560 // OpenCL doesn't support variadic functions and blocks
4561 // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
4562 // We also allow here any toolchain reserved identifiers.
4563 if (FTI.isVariadic &&
4564 !(D.getIdentifier() &&
4565 ((D.getIdentifier()->getName() == "printf" &&
4566 LangOpts.OpenCLVersion >= 120) ||
4567 D.getIdentifier()->getName().startswith("__")))) {
4568 S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
4569 D.setInvalidType(true);
4570 }
4571 }
4572
4573 // Methods cannot return interface types. All ObjC objects are
4574 // passed by reference.
4575 if (T->isObjCObjectType()) {
4576 SourceLocation DiagLoc, FixitLoc;
4577 if (TInfo) {
4578 DiagLoc = TInfo->getTypeLoc().getBeginLoc();
4579 FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc());
4580 } else {
4581 DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
4582 FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc());
4583 }
4584 S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
4585 << 0 << T
4586 << FixItHint::CreateInsertion(FixitLoc, "*");
4587
4588 T = Context.getObjCObjectPointerType(T);
4589 if (TInfo) {
4590 TypeLocBuilder TLB;
4591 TLB.pushFullCopy(TInfo->getTypeLoc());
4592 ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
4593 TLoc.setStarLoc(FixitLoc);
4594 TInfo = TLB.getTypeSourceInfo(Context, T);
4595 }
4596
4597 D.setInvalidType(true);
4598 }
4599
4600 // cv-qualifiers on return types are pointless except when the type is a
4601 // class type in C++.
4602 if ((T.getCVRQualifiers() || T->isAtomicType()) &&
4603 !(S.getLangOpts().CPlusPlus &&
4604 (T->isDependentType() || T->isRecordType()))) {
4605 if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
4606 D.getFunctionDefinitionKind() == FDK_Definition) {
4607 // [6.9.1/3] qualified void return is invalid on a C
4608 // function definition. Apparently ok on declarations and
4609 // in C++ though (!)
4610 S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
4611 } else
4612 diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
4613 }
4614
4615 // Objective-C ARC ownership qualifiers are ignored on the function
4616 // return type (by type canonicalization). Complain if this attribute
4617 // was written here.
4618 if (T.getQualifiers().hasObjCLifetime()) {
4619 SourceLocation AttrLoc;
4620 if (chunkIndex + 1 < D.getNumTypeObjects()) {
4621 DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
4622 for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) {
4623 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
4624 AttrLoc = AL.getLoc();
4625 break;
4626 }
4627 }
4628 }
4629 if (AttrLoc.isInvalid()) {
4630 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
4631 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
4632 AttrLoc = AL.getLoc();
4633 break;
4634 }
4635 }
4636 }
4637
4638 if (AttrLoc.isValid()) {
4639 // The ownership attributes are almost always written via
4640 // the predefined
4641 // __strong/__weak/__autoreleasing/__unsafe_unretained.
4642 if (AttrLoc.isMacroID())
4643 AttrLoc =
4644 S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin();
4645
4646 S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
4647 << T.getQualifiers().getObjCLifetime();
4648 }
4649 }
4650
4651 if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
4652 // C++ [dcl.fct]p6:
4653 // Types shall not be defined in return or parameter types.
4654 TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
4655 S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
4656 << Context.getTypeDeclType(Tag);
4657 }
4658
4659 // Exception specs are not allowed in typedefs. Complain, but add it
4660 // anyway.
4661 if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
4662 S.Diag(FTI.getExceptionSpecLocBeg(),
4663 diag::err_exception_spec_in_typedef)
4664 << (D.getContext() == DeclaratorContext::AliasDeclContext ||
4665 D.getContext() == DeclaratorContext::AliasTemplateContext);
4666
4667 // If we see "T var();" or "T var(T());" at block scope, it is probably
4668 // an attempt to initialize a variable, not a function declaration.
4669 if (FTI.isAmbiguous)
4670 warnAboutAmbiguousFunction(S, D, DeclType, T);
4671
4672 FunctionType::ExtInfo EI(
4673 getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex));
4674
4675 if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus
4676 && !LangOpts.OpenCL) {
4677 // Simple void foo(), where the incoming T is the result type.
4678 T = Context.getFunctionNoProtoType(T, EI);
4679 } else {
4680 // We allow a zero-parameter variadic function in C if the
4681 // function is marked with the "overloadable" attribute. Scan
4682 // for this attribute now.
4683 if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus)
4684 if (!D.getAttributes().hasAttribute(ParsedAttr::AT_Overloadable))
4685 S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
4686
4687 if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
4688 // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
4689 // definition.
4690 S.Diag(FTI.Params[0].IdentLoc,
4691 diag::err_ident_list_in_fn_declaration);
4692 D.setInvalidType(true);
4693 // Recover by creating a K&R-style function type.
4694 T = Context.getFunctionNoProtoType(T, EI);
4695 break;
4696 }
4697
4698 FunctionProtoType::ExtProtoInfo EPI;
4699 EPI.ExtInfo = EI;
4700 EPI.Variadic = FTI.isVariadic;
4701 EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
4702 EPI.TypeQuals = FTI.TypeQuals;
4703 EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
4704 : FTI.RefQualifierIsLValueRef? RQ_LValue
4705 : RQ_RValue;
4706
4707 // Otherwise, we have a function with a parameter list that is
4708 // potentially variadic.
4709 SmallVector<QualType, 16> ParamTys;
4710 ParamTys.reserve(FTI.NumParams);
4711
4712 SmallVector<FunctionProtoType::ExtParameterInfo, 16>
4713 ExtParameterInfos(FTI.NumParams);
4714 bool HasAnyInterestingExtParameterInfos = false;
4715
4716 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
4717 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
4718 QualType ParamTy = Param->getType();
4719 assert(!ParamTy.isNull() && "Couldn't parse type?")((!ParamTy.isNull() && "Couldn't parse type?") ? static_cast
<void> (0) : __assert_fail ("!ParamTy.isNull() && \"Couldn't parse type?\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 4719, __PRETTY_FUNCTION__))
;
4720
4721 // Look for 'void'. void is allowed only as a single parameter to a
4722 // function with no other parameters (C99 6.7.5.3p10). We record
4723 // int(void) as a FunctionProtoType with an empty parameter list.
4724 if (ParamTy->isVoidType()) {
4725 // If this is something like 'float(int, void)', reject it. 'void'
4726 // is an incomplete type (C99 6.2.5p19) and function decls cannot
4727 // have parameters of incomplete type.
4728 if (FTI.NumParams != 1 || FTI.isVariadic) {
4729 S.Diag(DeclType.Loc, diag::err_void_only_param);
4730 ParamTy = Context.IntTy;
4731 Param->setType(ParamTy);
4732 } else if (FTI.Params[i].Ident) {
4733 // Reject, but continue to parse 'int(void abc)'.
4734 S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
4735 ParamTy = Context.IntTy;
4736 Param->setType(ParamTy);
4737 } else {
4738 // Reject, but continue to parse 'float(const void)'.
4739 if (ParamTy.hasQualifiers())
4740 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
4741
4742 // Do not add 'void' to the list.
4743 break;
4744 }
4745 } else if (ParamTy->isHalfType()) {
4746 // Disallow half FP parameters.
4747 // FIXME: This really should be in BuildFunctionType.
4748 if (S.getLangOpts().OpenCL) {
4749 if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
4750 S.Diag(Param->getLocation(),
4751 diag::err_opencl_half_param) << ParamTy;
4752 D.setInvalidType();
4753 Param->setInvalidDecl();
4754 }
4755 } else if (!S.getLangOpts().HalfArgsAndReturns) {
4756 S.Diag(Param->getLocation(),
4757 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
4758 D.setInvalidType();
4759 }
4760 } else if (!FTI.hasPrototype) {
4761 if (ParamTy->isPromotableIntegerType()) {
4762 ParamTy = Context.getPromotedIntegerType(ParamTy);
4763 Param->setKNRPromoted(true);
4764 } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
4765 if (BTy->getKind() == BuiltinType::Float) {
4766 ParamTy = Context.DoubleTy;
4767 Param->setKNRPromoted(true);
4768 }
4769 }
4770 }
4771
4772 if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
4773 ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
4774 HasAnyInterestingExtParameterInfos = true;
4775 }
4776
4777 if (auto attr = Param->getAttr<ParameterABIAttr>()) {
4778 ExtParameterInfos[i] =
4779 ExtParameterInfos[i].withABI(attr->getABI());
4780 HasAnyInterestingExtParameterInfos = true;
4781 }
4782
4783 if (Param->hasAttr<PassObjectSizeAttr>()) {
4784 ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
4785 HasAnyInterestingExtParameterInfos = true;
4786 }
4787
4788 if (Param->hasAttr<NoEscapeAttr>()) {
4789 ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true);
4790 HasAnyInterestingExtParameterInfos = true;
4791 }
4792
4793 ParamTys.push_back(ParamTy);
4794 }
4795
4796 if (HasAnyInterestingExtParameterInfos) {
4797 EPI.ExtParameterInfos = ExtParameterInfos.data();
4798 checkExtParameterInfos(S, ParamTys, EPI,
4799 [&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
4800 }
4801
4802 SmallVector<QualType, 4> Exceptions;
4803 SmallVector<ParsedType, 2> DynamicExceptions;
4804 SmallVector<SourceRange, 2> DynamicExceptionRanges;
4805 Expr *NoexceptExpr = nullptr;
4806
4807 if (FTI.getExceptionSpecType() == EST_Dynamic) {
4808 // FIXME: It's rather inefficient to have to split into two vectors
4809 // here.
4810 unsigned N = FTI.getNumExceptions();
4811 DynamicExceptions.reserve(N);
4812 DynamicExceptionRanges.reserve(N);
4813 for (unsigned I = 0; I != N; ++I) {
4814 DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
4815 DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
4816 }
4817 } else if (isComputedNoexcept(FTI.getExceptionSpecType())) {
4818 NoexceptExpr = FTI.NoexceptExpr;
4819 }
4820
4821 S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
4822 FTI.getExceptionSpecType(),
4823 DynamicExceptions,
4824 DynamicExceptionRanges,
4825 NoexceptExpr,
4826 Exceptions,
4827 EPI.ExceptionSpec);
4828
4829 T = Context.getFunctionType(T, ParamTys, EPI);
4830 }
4831 break;
4832 }
4833 case DeclaratorChunk::MemberPointer: {
4834 // The scope spec must refer to a class, or be dependent.
4835 CXXScopeSpec &SS = DeclType.Mem.Scope();
4836 QualType ClsType;
4837
4838 // Handle pointer nullability.
4839 inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
4840 DeclType.EndLoc, DeclType.getAttrs());
4841
4842 if (SS.isInvalid()) {
4843 // Avoid emitting extra errors if we already errored on the scope.
4844 D.setInvalidType(true);
4845 } else if (S.isDependentScopeSpecifier(SS) ||
4846 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
4847 NestedNameSpecifier *NNS = SS.getScopeRep();
4848 NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
4849 switch (NNS->getKind()) {
4850 case NestedNameSpecifier::Identifier:
4851 ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
4852 NNS->getAsIdentifier());
4853 break;
4854
4855 case NestedNameSpecifier::Namespace:
4856 case NestedNameSpecifier::NamespaceAlias:
4857 case NestedNameSpecifier::Global:
4858 case NestedNameSpecifier::Super:
4859 llvm_unreachable("Nested-name-specifier must name a type")::llvm::llvm_unreachable_internal("Nested-name-specifier must name a type"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 4859)
;
4860
4861 case NestedNameSpecifier::TypeSpec:
4862 case NestedNameSpecifier::TypeSpecWithTemplate:
4863 ClsType = QualType(NNS->getAsType(), 0);
4864 // Note: if the NNS has a prefix and ClsType is a nondependent
4865 // TemplateSpecializationType, then the NNS prefix is NOT included
4866 // in ClsType; hence we wrap ClsType into an ElaboratedType.
4867 // NOTE: in particular, no wrap occurs if ClsType already is an
4868 // Elaborated, DependentName, or DependentTemplateSpecialization.
4869 if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
4870 ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
4871 break;
4872 }
4873 } else {
4874 S.Diag(DeclType.Mem.Scope().getBeginLoc(),
4875 diag::err_illegal_decl_mempointer_in_nonclass)
4876 << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
4877 << DeclType.Mem.Scope().getRange();
4878 D.setInvalidType(true);
4879 }
4880
4881 if (!ClsType.isNull())
4882 T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
4883 D.getIdentifier());
4884 if (T.isNull()) {
4885 T = Context.IntTy;
4886 D.setInvalidType(true);
4887 } else if (DeclType.Mem.TypeQuals) {
4888 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
4889 }
4890 break;
4891 }
4892
4893 case DeclaratorChunk::Pipe: {
4894 T = S.BuildReadPipeType(T, DeclType.Loc);
4895 processTypeAttrs(state, T, TAL_DeclSpec,
4896 D.getMutableDeclSpec().getAttributes());
4897 break;
4898 }
4899 }
4900
4901 if (T.isNull()) {
4902 D.setInvalidType(true);
4903 T = Context.IntTy;
4904 }
4905
4906 // See if there are any attributes on this declarator chunk.
4907 processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs());
4908
4909 if (DeclType.Kind != DeclaratorChunk::Paren) {
4910 if (ExpectNoDerefChunk) {
4911 if (!IsNoDerefableChunk(DeclType))
4912 S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array);
4913 ExpectNoDerefChunk = false;
Value stored to 'ExpectNoDerefChunk' is never read
4914 }
4915
4916 ExpectNoDerefChunk = state.didParseNoDeref();
4917 }
4918 }
4919
4920 if (ExpectNoDerefChunk)
4921 S.Diag(state.getDeclarator().getBeginLoc(),
4922 diag::warn_noderef_on_non_pointer_or_array);
4923
4924 // GNU warning -Wstrict-prototypes
4925 // Warn if a function declaration is without a prototype.
4926 // This warning is issued for all kinds of unprototyped function
4927 // declarations (i.e. function type typedef, function pointer etc.)
4928 // C99 6.7.5.3p14:
4929 // The empty list in a function declarator that is not part of a definition
4930 // of that function specifies that no information about the number or types
4931 // of the parameters is supplied.
4932 if (!LangOpts.CPlusPlus && D.getFunctionDefinitionKind() == FDK_Declaration) {
4933 bool IsBlock = false;
4934 for (const DeclaratorChunk &DeclType : D.type_objects()) {
4935 switch (DeclType.Kind) {
4936 case DeclaratorChunk::BlockPointer:
4937 IsBlock = true;
4938 break;
4939 case DeclaratorChunk::Function: {
4940 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
4941 if (FTI.NumParams == 0 && !FTI.isVariadic)
4942 S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
4943 << IsBlock
4944 << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
4945 IsBlock = false;
4946 break;
4947 }
4948 default:
4949 break;
4950 }
4951 }
4952 }
4953
4954 assert(!T.isNull() && "T must not be null after this point")((!T.isNull() && "T must not be null after this point"
) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"T must not be null after this point\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 4954, __PRETTY_FUNCTION__))
;
4955
4956 if (LangOpts.CPlusPlus && T->isFunctionType()) {
4957 const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
4958 assert(FnTy && "Why oh why is there not a FunctionProtoType here?")((FnTy && "Why oh why is there not a FunctionProtoType here?"
) ? static_cast<void> (0) : __assert_fail ("FnTy && \"Why oh why is there not a FunctionProtoType here?\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 4958, __PRETTY_FUNCTION__))
;
4959
4960 // C++ 8.3.5p4:
4961 // A cv-qualifier-seq shall only be part of the function type
4962 // for a nonstatic member function, the function type to which a pointer
4963 // to member refers, or the top-level function type of a function typedef
4964 // declaration.
4965 //
4966 // Core issue 547 also allows cv-qualifiers on function types that are
4967 // top-level template type arguments.
4968 enum { NonMember, Member, DeductionGuide } Kind = NonMember;
4969 if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
4970 Kind = DeductionGuide;
4971 else if (!D.getCXXScopeSpec().isSet()) {
4972 if ((D.getContext() == DeclaratorContext::MemberContext ||
4973 D.getContext() == DeclaratorContext::LambdaExprContext) &&
4974 !D.getDeclSpec().isFriendSpecified())
4975 Kind = Member;
4976 } else {
4977 DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
4978 if (!DC || DC->isRecord())
4979 Kind = Member;
4980 }
4981
4982 // C++11 [dcl.fct]p6 (w/DR1417):
4983 // An attempt to specify a function type with a cv-qualifier-seq or a
4984 // ref-qualifier (including by typedef-name) is ill-formed unless it is:
4985 // - the function type for a non-static member function,
4986 // - the function type to which a pointer to member refers,
4987 // - the top-level function type of a function typedef declaration or
4988 // alias-declaration,
4989 // - the type-id in the default argument of a type-parameter, or
4990 // - the type-id of a template-argument for a type-parameter
4991 //
4992 // FIXME: Checking this here is insufficient. We accept-invalid on:
4993 //
4994 // template<typename T> struct S { void f(T); };
4995 // S<int() const> s;
4996 //
4997 // ... for instance.
4998 if (IsQualifiedFunction &&
4999 !(Kind == Member &&
5000 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
5001 !IsTypedefName &&
5002 D.getContext() != DeclaratorContext::TemplateArgContext &&
5003 D.getContext() != DeclaratorContext::TemplateTypeArgContext) {
5004 SourceLocation Loc = D.getBeginLoc();
5005 SourceRange RemovalRange;
5006 unsigned I;
5007 if (D.isFunctionDeclarator(I)) {
5008 SmallVector<SourceLocation, 4> RemovalLocs;
5009 const DeclaratorChunk &Chunk = D.getTypeObject(I);
5010 assert(Chunk.Kind == DeclaratorChunk::Function)((Chunk.Kind == DeclaratorChunk::Function) ? static_cast<void
> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Function"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5010, __PRETTY_FUNCTION__))
;
5011 if (Chunk.Fun.hasRefQualifier())
5012 RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
5013 if (Chunk.Fun.TypeQuals & Qualifiers::Const)
5014 RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
5015 if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
5016 RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
5017 if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
5018 RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
5019 if (!RemovalLocs.empty()) {
5020 llvm::sort(RemovalLocs,
5021 BeforeThanCompare<SourceLocation>(S.getSourceManager()));
5022 RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
5023 Loc = RemovalLocs.front();
5024 }
5025 }
5026
5027 S.Diag(Loc, diag::err_invalid_qualified_function_type)
5028 << Kind << D.isFunctionDeclarator() << T
5029 << getFunctionQualifiersAsString(FnTy)
5030 << FixItHint::CreateRemoval(RemovalRange);
5031
5032 // Strip the cv-qualifiers and ref-qualifiers from the type.
5033 FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
5034 EPI.TypeQuals = 0;
5035 EPI.RefQualifier = RQ_None;
5036
5037 T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
5038 EPI);
5039 // Rebuild any parens around the identifier in the function type.
5040 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5041 if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
5042 break;
5043 T = S.BuildParenType(T);
5044 }
5045 }
5046 }
5047
5048 // Apply any undistributed attributes from the declarator.
5049 processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
5050
5051 // Diagnose any ignored type attributes.
5052 state.diagnoseIgnoredTypeAttrs(T);
5053
5054 // C++0x [dcl.constexpr]p9:
5055 // A constexpr specifier used in an object declaration declares the object
5056 // as const.
5057 if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
5058 T.addConst();
5059 }
5060
5061 // If there was an ellipsis in the declarator, the declaration declares a
5062 // parameter pack whose type may be a pack expansion type.
5063 if (D.hasEllipsis()) {
5064 // C++0x [dcl.fct]p13:
5065 // A declarator-id or abstract-declarator containing an ellipsis shall
5066 // only be used in a parameter-declaration. Such a parameter-declaration
5067 // is a parameter pack (14.5.3). [...]
5068 switch (D.getContext()) {
5069 case DeclaratorContext::PrototypeContext:
5070 case DeclaratorContext::LambdaExprParameterContext:
5071 // C++0x [dcl.fct]p13:
5072 // [...] When it is part of a parameter-declaration-clause, the
5073 // parameter pack is a function parameter pack (14.5.3). The type T
5074 // of the declarator-id of the function parameter pack shall contain
5075 // a template parameter pack; each template parameter pack in T is
5076 // expanded by the function parameter pack.
5077 //
5078 // We represent function parameter packs as function parameters whose
5079 // type is a pack expansion.
5080 if (!T->containsUnexpandedParameterPack()) {
5081 S.Diag(D.getEllipsisLoc(),
5082 diag::err_function_parameter_pack_without_parameter_packs)
5083 << T << D.getSourceRange();
5084 D.setEllipsisLoc(SourceLocation());
5085 } else {
5086 T = Context.getPackExpansionType(T, None);
5087 }
5088 break;
5089 case DeclaratorContext::TemplateParamContext:
5090 // C++0x [temp.param]p15:
5091 // If a template-parameter is a [...] is a parameter-declaration that
5092 // declares a parameter pack (8.3.5), then the template-parameter is a
5093 // template parameter pack (14.5.3).
5094 //
5095 // Note: core issue 778 clarifies that, if there are any unexpanded
5096 // parameter packs in the type of the non-type template parameter, then
5097 // it expands those parameter packs.
5098 if (T->containsUnexpandedParameterPack())
5099 T = Context.getPackExpansionType(T, None);
5100 else
5101 S.Diag(D.getEllipsisLoc(),
5102 LangOpts.CPlusPlus11
5103 ? diag::warn_cxx98_compat_variadic_templates
5104 : diag::ext_variadic_templates);
5105 break;
5106
5107 case DeclaratorContext::FileContext:
5108 case DeclaratorContext::KNRTypeListContext:
5109 case DeclaratorContext::ObjCParameterContext: // FIXME: special diagnostic
5110 // here?
5111 case DeclaratorContext::ObjCResultContext: // FIXME: special diagnostic
5112 // here?
5113 case DeclaratorContext::TypeNameContext:
5114 case DeclaratorContext::FunctionalCastContext:
5115 case DeclaratorContext::CXXNewContext:
5116 case DeclaratorContext::AliasDeclContext:
5117 case DeclaratorContext::AliasTemplateContext:
5118 case DeclaratorContext::MemberContext:
5119 case DeclaratorContext::BlockContext:
5120 case DeclaratorContext::ForContext:
5121 case DeclaratorContext::InitStmtContext:
5122 case DeclaratorContext::ConditionContext:
5123 case DeclaratorContext::CXXCatchContext:
5124 case DeclaratorContext::ObjCCatchContext:
5125 case DeclaratorContext::BlockLiteralContext:
5126 case DeclaratorContext::LambdaExprContext:
5127 case DeclaratorContext::ConversionIdContext:
5128 case DeclaratorContext::TrailingReturnContext:
5129 case DeclaratorContext::TrailingReturnVarContext:
5130 case DeclaratorContext::TemplateArgContext:
5131 case DeclaratorContext::TemplateTypeArgContext:
5132 // FIXME: We may want to allow parameter packs in block-literal contexts
5133 // in the future.
5134 S.Diag(D.getEllipsisLoc(),
5135 diag::err_ellipsis_in_declarator_not_parameter);
5136 D.setEllipsisLoc(SourceLocation());
5137 break;
5138 }
5139 }
5140
5141 assert(!T.isNull() && "T must not be null at the end of this function")((!T.isNull() && "T must not be null at the end of this function"
) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"T must not be null at the end of this function\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5141, __PRETTY_FUNCTION__))
;
5142 if (D.isInvalidType())
5143 return Context.getTrivialTypeSourceInfo(T);
5144
5145 return GetTypeSourceInfoForDeclarator(state, T, TInfo);
5146}
5147
5148/// GetTypeForDeclarator - Convert the type for the specified
5149/// declarator to Type instances.
5150///
5151/// The result of this call will never be null, but the associated
5152/// type may be a null type if there's an unrecoverable error.
5153TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
5154 // Determine the type of the declarator. Not all forms of declarator
5155 // have a type.
5156
5157 TypeProcessingState state(*this, D);
5158
5159 TypeSourceInfo *ReturnTypeInfo = nullptr;
5160 QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5161 if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
5162 inferARCWriteback(state, T);
5163
5164 return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
5165}
5166
5167static void transferARCOwnershipToDeclSpec(Sema &S,
5168 QualType &declSpecTy,
5169 Qualifiers::ObjCLifetime ownership) {
5170 if (declSpecTy->isObjCRetainableType() &&
5171 declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
5172 Qualifiers qs;
5173 qs.addObjCLifetime(ownership);
5174 declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
5175 }
5176}
5177
5178static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
5179 Qualifiers::ObjCLifetime ownership,
5180 unsigned chunkIndex) {
5181 Sema &S = state.getSema();
5182 Declarator &D = state.getDeclarator();
5183
5184 // Look for an explicit lifetime attribute.
5185 DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
5186 if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership))
5187 return;
5188
5189 const char *attrStr = nullptr;
5190 switch (ownership) {
5191 case Qualifiers::OCL_None: llvm_unreachable("no ownership!")::llvm::llvm_unreachable_internal("no ownership!", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5191)
;
5192 case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
5193 case Qualifiers::OCL_Strong: attrStr = "strong"; break;
5194 case Qualifiers::OCL_Weak: attrStr = "weak"; break;
5195 case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
5196 }
5197
5198 IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
5199 Arg->Ident = &S.Context.Idents.get(attrStr);
5200 Arg->Loc = SourceLocation();
5201
5202 ArgsUnion Args(Arg);
5203
5204 // If there wasn't one, add one (with an invalid source location
5205 // so that we don't make an AttributedType for it).
5206 ParsedAttr *attr = D.getAttributePool().create(
5207 &S.Context.Idents.get("objc_ownership"), SourceLocation(),
5208 /*scope*/ nullptr, SourceLocation(),
5209 /*args*/ &Args, 1, ParsedAttr::AS_GNU);
5210 chunk.getAttrs().addAtEnd(attr);
5211 // TODO: mark whether we did this inference?
5212}
5213
5214/// Used for transferring ownership in casts resulting in l-values.
5215static void transferARCOwnership(TypeProcessingState &state,
5216 QualType &declSpecTy,
5217 Qualifiers::ObjCLifetime ownership) {
5218 Sema &S = state.getSema();
5219 Declarator &D = state.getDeclarator();
5220
5221 int inner = -1;
5222 bool hasIndirection = false;
5223 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5224 DeclaratorChunk &chunk = D.getTypeObject(i);
5225 switch (chunk.Kind) {
5226 case DeclaratorChunk::Paren:
5227 // Ignore parens.
5228 break;
5229
5230 case DeclaratorChunk::Array:
5231 case DeclaratorChunk::Reference:
5232 case DeclaratorChunk::Pointer:
5233 if (inner != -1)
5234 hasIndirection = true;
5235 inner = i;
5236 break;
5237
5238 case DeclaratorChunk::BlockPointer:
5239 if (inner != -1)
5240 transferARCOwnershipToDeclaratorChunk(state, ownership, i);
5241 return;
5242
5243 case DeclaratorChunk::Function:
5244 case DeclaratorChunk::MemberPointer:
5245 case DeclaratorChunk::Pipe:
5246 return;
5247 }
5248 }
5249
5250 if (inner == -1)
5251 return;
5252
5253 DeclaratorChunk &chunk = D.getTypeObject(inner);
5254 if (chunk.Kind == DeclaratorChunk::Pointer) {
5255 if (declSpecTy->isObjCRetainableType())
5256 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5257 if (declSpecTy->isObjCObjectType() && hasIndirection)
5258 return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
5259 } else {
5260 assert(chunk.Kind == DeclaratorChunk::Array ||((chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk
::Reference) ? static_cast<void> (0) : __assert_fail ("chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk::Reference"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5261, __PRETTY_FUNCTION__))
5261 chunk.Kind == DeclaratorChunk::Reference)((chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk
::Reference) ? static_cast<void> (0) : __assert_fail ("chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk::Reference"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5261, __PRETTY_FUNCTION__))
;
5262 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5263 }
5264}
5265
5266TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
5267 TypeProcessingState state(*this, D);
5268
5269 TypeSourceInfo *ReturnTypeInfo = nullptr;
5270 QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5271
5272 if (getLangOpts().ObjC) {
5273 Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
5274 if (ownership != Qualifiers::OCL_None)
5275 transferARCOwnership(state, declSpecTy, ownership);
5276 }
5277
5278 return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
5279}
5280
5281static void fillAttributedTypeLoc(AttributedTypeLoc TL,
5282 TypeProcessingState &State) {
5283 TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr()));
5284}
5285
5286namespace {
5287 class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
5288 ASTContext &Context;
5289 TypeProcessingState &State;
5290 const DeclSpec &DS;
5291
5292 public:
5293 TypeSpecLocFiller(ASTContext &Context, TypeProcessingState &State,
5294 const DeclSpec &DS)
5295 : Context(Context), State(State), DS(DS) {}
5296
5297 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5298 Visit(TL.getModifiedLoc());
5299 fillAttributedTypeLoc(TL, State);
5300 }
5301 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5302 Visit(TL.getUnqualifiedLoc());
5303 }
5304 void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
5305 TL.setNameLoc(DS.getTypeSpecTypeLoc());
5306 }
5307 void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
5308 TL.setNameLoc(DS.getTypeSpecTypeLoc());
5309 // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
5310 // addition field. What we have is good enough for dispay of location
5311 // of 'fixit' on interface name.
5312 TL.setNameEndLoc(DS.getEndLoc());
5313 }
5314 void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
5315 TypeSourceInfo *RepTInfo = nullptr;
5316 Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5317 TL.copy(RepTInfo->getTypeLoc());
5318 }
5319 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5320 TypeSourceInfo *RepTInfo = nullptr;
5321 Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5322 TL.copy(RepTInfo->getTypeLoc());
5323 }
5324 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
5325 TypeSourceInfo *TInfo = nullptr;
5326 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5327
5328 // If we got no declarator info from previous Sema routines,
5329 // just fill with the typespec loc.
5330 if (!TInfo) {
5331 TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
5332 return;
5333 }
5334
5335 TypeLoc OldTL = TInfo->getTypeLoc();
5336 if (TInfo->getType()->getAs<ElaboratedType>()) {
5337 ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
5338 TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
5339 .castAs<TemplateSpecializationTypeLoc>();
5340 TL.copy(NamedTL);
5341 } else {
5342 TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
5343 assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc())((TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc
>().getRAngleLoc()) ? static_cast<void> (0) : __assert_fail
("TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc()"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5343, __PRETTY_FUNCTION__))
;
5344 }
5345
5346 }
5347 void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
5348 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr)((DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) ? static_cast
<void> (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_typeofExpr"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5348, __PRETTY_FUNCTION__))
;
5349 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5350 TL.setParensRange(DS.getTypeofParensRange());
5351 }
5352 void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
5353 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType)((DS.getTypeSpecType() == DeclSpec::TST_typeofType) ? static_cast
<void> (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_typeofType"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5353, __PRETTY_FUNCTION__))
;
5354 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5355 TL.setParensRange(DS.getTypeofParensRange());
5356 assert(DS.getRepAsType())((DS.getRepAsType()) ? static_cast<void> (0) : __assert_fail
("DS.getRepAsType()", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5356, __PRETTY_FUNCTION__))
;
5357 TypeSourceInfo *TInfo = nullptr;
5358 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5359 TL.setUnderlyingTInfo(TInfo);
5360 }
5361 void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
5362 // FIXME: This holds only because we only have one unary transform.
5363 assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType)((DS.getTypeSpecType() == DeclSpec::TST_underlyingType) ? static_cast
<void> (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_underlyingType"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5363, __PRETTY_FUNCTION__))
;
5364 TL.setKWLoc(DS.getTypeSpecTypeLoc());
5365 TL.setParensRange(DS.getTypeofParensRange());
5366 assert(DS.getRepAsType())((DS.getRepAsType()) ? static_cast<void> (0) : __assert_fail
("DS.getRepAsType()", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5366, __PRETTY_FUNCTION__))
;
5367 TypeSourceInfo *TInfo = nullptr;
5368 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5369 TL.setUnderlyingTInfo(TInfo);
5370 }
5371 void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
5372 // By default, use the source location of the type specifier.
5373 TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
5374 if (TL.needsExtraLocalData()) {
5375 // Set info for the written builtin specifiers.
5376 TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
5377 // Try to have a meaningful source location.
5378 if (TL.getWrittenSignSpec() != TSS_unspecified)
5379 TL.expandBuiltinRange(DS.getTypeSpecSignLoc());
5380 if (TL.getWrittenWidthSpec() != TSW_unspecified)
5381 TL.expandBuiltinRange(DS.getTypeSpecWidthRange());
5382 }
5383 }
5384 void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
5385 ElaboratedTypeKeyword Keyword
5386 = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
5387 if (DS.getTypeSpecType() == TST_typename) {
5388 TypeSourceInfo *TInfo = nullptr;
5389 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5390 if (TInfo) {
5391 TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
5392 return;
5393 }
5394 }
5395 TL.setElaboratedKeywordLoc(Keyword != ETK_None
5396 ? DS.getTypeSpecTypeLoc()
5397 : SourceLocation());
5398 const CXXScopeSpec& SS = DS.getTypeSpecScope();
5399 TL.setQualifierLoc(SS.getWithLocInContext(Context));
5400 Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
5401 }
5402 void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
5403 assert(DS.getTypeSpecType() == TST_typename)((DS.getTypeSpecType() == TST_typename) ? static_cast<void
> (0) : __assert_fail ("DS.getTypeSpecType() == TST_typename"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5403, __PRETTY_FUNCTION__))
;
5404 TypeSourceInfo *TInfo = nullptr;
5405 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5406 assert(TInfo)((TInfo) ? static_cast<void> (0) : __assert_fail ("TInfo"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5406, __PRETTY_FUNCTION__))
;
5407 TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
5408 }
5409 void VisitDependentTemplateSpecializationTypeLoc(
5410 DependentTemplateSpecializationTypeLoc TL) {
5411 assert(DS.getTypeSpecType() == TST_typename)((DS.getTypeSpecType() == TST_typename) ? static_cast<void
> (0) : __assert_fail ("DS.getTypeSpecType() == TST_typename"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5411, __PRETTY_FUNCTION__))
;
5412 TypeSourceInfo *TInfo = nullptr;
5413 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5414 assert(TInfo)((TInfo) ? static_cast<void> (0) : __assert_fail ("TInfo"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5414, __PRETTY_FUNCTION__))
;
5415 TL.copy(
5416 TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
5417 }
5418 void VisitTagTypeLoc(TagTypeLoc TL) {
5419 TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
5420 }
5421 void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
5422 // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
5423 // or an _Atomic qualifier.
5424 if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
5425 TL.setKWLoc(DS.getTypeSpecTypeLoc());
5426 TL.setParensRange(DS.getTypeofParensRange());
5427
5428 TypeSourceInfo *TInfo = nullptr;
5429 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5430 assert(TInfo)((TInfo) ? static_cast<void> (0) : __assert_fail ("TInfo"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5430, __PRETTY_FUNCTION__))
;
5431 TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
5432 } else {
5433 TL.setKWLoc(DS.getAtomicSpecLoc());
5434 // No parens, to indicate this was spelled as an _Atomic qualifier.
5435 TL.setParensRange(SourceRange());
5436 Visit(TL.getValueLoc());
5437 }
5438 }
5439
5440 void VisitPipeTypeLoc(PipeTypeLoc TL) {
5441 TL.setKWLoc(DS.getTypeSpecTypeLoc());
5442
5443 TypeSourceInfo *TInfo = nullptr;
5444 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5445 TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
5446 }
5447
5448 void VisitTypeLoc(TypeLoc TL) {
5449 // FIXME: add other typespec types and change this to an assert.
5450 TL.initialize(Context, DS.getTypeSpecTypeLoc());
5451 }
5452 };
5453
5454 class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
5455 ASTContext &Context;
5456 TypeProcessingState &State;
5457 const DeclaratorChunk &Chunk;
5458
5459 public:
5460 DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State,
5461 const DeclaratorChunk &Chunk)
5462 : Context(Context), State(State), Chunk(Chunk) {}
5463
5464 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5465 llvm_unreachable("qualified type locs not expected here!")::llvm::llvm_unreachable_internal("qualified type locs not expected here!"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5465)
;
5466 }
5467 void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
5468 llvm_unreachable("decayed type locs not expected here!")::llvm::llvm_unreachable_internal("decayed type locs not expected here!"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5468)
;
5469 }
5470
5471 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5472 fillAttributedTypeLoc(TL, State);
5473 }
5474 void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
5475 // nothing
5476 }
5477 void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
5478 assert(Chunk.Kind == DeclaratorChunk::BlockPointer)((Chunk.Kind == DeclaratorChunk::BlockPointer) ? static_cast<
void> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::BlockPointer"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5478, __PRETTY_FUNCTION__))
;
5479 TL.setCaretLoc(Chunk.Loc);
5480 }
5481 void VisitPointerTypeLoc(PointerTypeLoc TL) {
5482 assert(Chunk.Kind == DeclaratorChunk::Pointer)((Chunk.Kind == DeclaratorChunk::Pointer) ? static_cast<void
> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Pointer"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5482, __PRETTY_FUNCTION__))
;
5483 TL.setStarLoc(Chunk.Loc);
5484 }
5485 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5486 assert(Chunk.Kind == DeclaratorChunk::Pointer)((Chunk.Kind == DeclaratorChunk::Pointer) ? static_cast<void
> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Pointer"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5486, __PRETTY_FUNCTION__))
;
5487 TL.setStarLoc(Chunk.Loc);
5488 }
5489 void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
5490 assert(Chunk.Kind == DeclaratorChunk::MemberPointer)((Chunk.Kind == DeclaratorChunk::MemberPointer) ? static_cast
<void> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::MemberPointer"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5490, __PRETTY_FUNCTION__))
;
5491 const CXXScopeSpec& SS = Chunk.Mem.Scope();
5492 NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
5493
5494 const Type* ClsTy = TL.getClass();
5495 QualType ClsQT = QualType(ClsTy, 0);
5496 TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
5497 // Now copy source location info into the type loc component.
5498 TypeLoc ClsTL = ClsTInfo->getTypeLoc();
5499 switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
5500 case NestedNameSpecifier::Identifier:
5501 assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc")((isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc"
) ? static_cast<void> (0) : __assert_fail ("isa<DependentNameType>(ClsTy) && \"Unexpected TypeLoc\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5501, __PRETTY_FUNCTION__))
;
5502 {
5503 DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
5504 DNTLoc.setElaboratedKeywordLoc(SourceLocation());
5505 DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
5506 DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
5507 }
5508 break;
5509
5510 case NestedNameSpecifier::TypeSpec:
5511 case NestedNameSpecifier::TypeSpecWithTemplate:
5512 if (isa<ElaboratedType>(ClsTy)) {
5513 ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
5514 ETLoc.setElaboratedKeywordLoc(SourceLocation());
5515 ETLoc.setQualifierLoc(NNSLoc.getPrefix());
5516 TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
5517 NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
5518 } else {
5519 ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
5520 }
5521 break;
5522
5523 case NestedNameSpecifier::Namespace:
5524 case NestedNameSpecifier::NamespaceAlias:
5525 case NestedNameSpecifier::Global:
5526 case NestedNameSpecifier::Super:
5527 llvm_unreachable("Nested-name-specifier must name a type")::llvm::llvm_unreachable_internal("Nested-name-specifier must name a type"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5527)
;
5528 }
5529
5530 // Finally fill in MemberPointerLocInfo fields.
5531 TL.setStarLoc(Chunk.Loc);
5532 TL.setClassTInfo(ClsTInfo);
5533 }
5534 void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
5535 assert(Chunk.Kind == DeclaratorChunk::Reference)((Chunk.Kind == DeclaratorChunk::Reference) ? static_cast<
void> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Reference"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5535, __PRETTY_FUNCTION__))
;
5536 // 'Amp' is misleading: this might have been originally
5537 /// spelled with AmpAmp.
5538 TL.setAmpLoc(Chunk.Loc);
5539 }
5540 void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
5541 assert(Chunk.Kind == DeclaratorChunk::Reference)((Chunk.Kind == DeclaratorChunk::Reference) ? static_cast<
void> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Reference"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5541, __PRETTY_FUNCTION__))
;
5542 assert(!Chunk.Ref.LValueRef)((!Chunk.Ref.LValueRef) ? static_cast<void> (0) : __assert_fail
("!Chunk.Ref.LValueRef", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5542, __PRETTY_FUNCTION__))
;
5543 TL.setAmpAmpLoc(Chunk.Loc);
5544 }
5545 void VisitArrayTypeLoc(ArrayTypeLoc TL) {
5546 assert(Chunk.Kind == DeclaratorChunk::Array)((Chunk.Kind == DeclaratorChunk::Array) ? static_cast<void
> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Array"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5546, __PRETTY_FUNCTION__))
;
5547 TL.setLBracketLoc(Chunk.Loc);
5548 TL.setRBracketLoc(Chunk.EndLoc);
5549 TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
5550 }
5551 void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
5552 assert(Chunk.Kind == DeclaratorChunk::Function)((Chunk.Kind == DeclaratorChunk::Function) ? static_cast<void
> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Function"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5552, __PRETTY_FUNCTION__))
;
5553 TL.setLocalRangeBegin(Chunk.Loc);
5554 TL.setLocalRangeEnd(Chunk.EndLoc);
5555
5556 const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
5557 TL.setLParenLoc(FTI.getLParenLoc());
5558 TL.setRParenLoc(FTI.getRParenLoc());
5559 for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
5560 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
5561 TL.setParam(tpi++, Param);
5562 }
5563 TL.setExceptionSpecRange(FTI.getExceptionSpecRange());
5564 }
5565 void VisitParenTypeLoc(ParenTypeLoc TL) {
5566 assert(Chunk.Kind == DeclaratorChunk::Paren)((Chunk.Kind == DeclaratorChunk::Paren) ? static_cast<void
> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Paren"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5566, __PRETTY_FUNCTION__))
;
5567 TL.setLParenLoc(Chunk.Loc);
5568 TL.setRParenLoc(Chunk.EndLoc);
5569 }
5570 void VisitPipeTypeLoc(PipeTypeLoc TL) {
5571 assert(Chunk.Kind == DeclaratorChunk::Pipe)((Chunk.Kind == DeclaratorChunk::Pipe) ? static_cast<void>
(0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Pipe", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5571, __PRETTY_FUNCTION__))
;
5572 TL.setKWLoc(Chunk.Loc);
5573 }
5574
5575 void VisitTypeLoc(TypeLoc TL) {
5576 llvm_unreachable("unsupported TypeLoc kind in declarator!")::llvm::llvm_unreachable_internal("unsupported TypeLoc kind in declarator!"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5576)
;
5577 }
5578 };
5579} // end anonymous namespace
5580
5581static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
5582 SourceLocation Loc;
5583 switch (Chunk.Kind) {
5584 case DeclaratorChunk::Function:
5585 case DeclaratorChunk::Array:
5586 case DeclaratorChunk::Paren:
5587 case DeclaratorChunk::Pipe:
5588 llvm_unreachable("cannot be _Atomic qualified")::llvm::llvm_unreachable_internal("cannot be _Atomic qualified"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5588)
;
5589
5590 case DeclaratorChunk::Pointer:
5591 Loc = SourceLocation::getFromRawEncoding(Chunk.Ptr.AtomicQualLoc);
5592 break;
5593
5594 case DeclaratorChunk::BlockPointer:
5595 case DeclaratorChunk::Reference:
5596 case DeclaratorChunk::MemberPointer:
5597 // FIXME: Provide a source location for the _Atomic keyword.
5598 break;
5599 }
5600
5601 ATL.setKWLoc(Loc);
5602 ATL.setParensRange(SourceRange());
5603}
5604
5605static void
5606fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL,
5607 const ParsedAttributesView &Attrs) {
5608 for (const ParsedAttr &AL : Attrs) {
5609 if (AL.getKind() == ParsedAttr::AT_AddressSpace) {
5610 DASTL.setAttrNameLoc(AL.getLoc());
5611 DASTL.setAttrExprOperand(AL.getArgAsExpr(0));
5612 DASTL.setAttrOperandParensRange(SourceRange());
5613 return;
5614 }
5615 }
5616
5617 llvm_unreachable(::llvm::llvm_unreachable_internal("no address_space attribute found at the expected location!"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5618)
5618 "no address_space attribute found at the expected location!")::llvm::llvm_unreachable_internal("no address_space attribute found at the expected location!"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5618)
;
5619}
5620
5621/// Create and instantiate a TypeSourceInfo with type source information.
5622///
5623/// \param T QualType referring to the type as written in source code.
5624///
5625/// \param ReturnTypeInfo For declarators whose return type does not show
5626/// up in the normal place in the declaration specifiers (such as a C++
5627/// conversion function), this pointer will refer to a type source information
5628/// for that return type.
5629static TypeSourceInfo *
5630GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
5631 QualType T, TypeSourceInfo *ReturnTypeInfo) {
5632 Sema &S = State.getSema();
5633 Declarator &D = State.getDeclarator();
5634
5635 TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T);
5636 UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
5637
5638 // Handle parameter packs whose type is a pack expansion.
5639 if (isa<PackExpansionType>(T)) {
5640 CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
5641 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
5642 }
5643
5644 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5645 // An AtomicTypeLoc might be produced by an atomic qualifier in this
5646 // declarator chunk.
5647 if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
5648 fillAtomicQualLoc(ATL, D.getTypeObject(i));
5649 CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
5650 }
5651
5652 while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
5653 fillAttributedTypeLoc(TL, State);
5654 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
5655 }
5656
5657 while (DependentAddressSpaceTypeLoc TL =
5658 CurrTL.getAs<DependentAddressSpaceTypeLoc>()) {
5659 fillDependentAddressSpaceTypeLoc(TL, D.getTypeObject(i).getAttrs());
5660 CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc();
5661 }
5662
5663 // FIXME: Ordering here?
5664 while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>())
5665 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
5666
5667 DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(CurrTL);
5668 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
5669 }
5670
5671 // If we have different source information for the return type, use
5672 // that. This really only applies to C++ conversion functions.
5673 if (ReturnTypeInfo) {
5674 TypeLoc TL = ReturnTypeInfo->getTypeLoc();
5675 assert(TL.getFullDataSize() == CurrTL.getFullDataSize())((TL.getFullDataSize() == CurrTL.getFullDataSize()) ? static_cast
<void> (0) : __assert_fail ("TL.getFullDataSize() == CurrTL.getFullDataSize()"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5675, __PRETTY_FUNCTION__))
;
5676 memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
5677 } else {
5678 TypeSpecLocFiller(S.Context, State, D.getDeclSpec()).Visit(CurrTL);
5679 }
5680
5681 return TInfo;
5682}
5683
5684/// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
5685ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
5686 // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
5687 // and Sema during declaration parsing. Try deallocating/caching them when
5688 // it's appropriate, instead of allocating them and keeping them around.
5689 LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
5690 TypeAlignment);
5691 new (LocT) LocInfoType(T, TInfo);
5692 assert(LocT->getTypeClass() != T->getTypeClass() &&((LocT->getTypeClass() != T->getTypeClass() && "LocInfoType's TypeClass conflicts with an existing Type class"
) ? static_cast<void> (0) : __assert_fail ("LocT->getTypeClass() != T->getTypeClass() && \"LocInfoType's TypeClass conflicts with an existing Type class\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5693, __PRETTY_FUNCTION__))
5693 "LocInfoType's TypeClass conflicts with an existing Type class")((LocT->getTypeClass() != T->getTypeClass() && "LocInfoType's TypeClass conflicts with an existing Type class"
) ? static_cast<void> (0) : __assert_fail ("LocT->getTypeClass() != T->getTypeClass() && \"LocInfoType's TypeClass conflicts with an existing Type class\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5693, __PRETTY_FUNCTION__))
;
5694 return ParsedType::make(QualType(LocT, 0));
5695}
5696
5697void LocInfoType::getAsStringInternal(std::string &Str,
5698 const PrintingPolicy &Policy) const {
5699 llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"::llvm::llvm_unreachable_internal("LocInfoType leaked into the type system; an opaque TypeTy*"
" was used directly instead of getting the QualType through"
" GetTypeFromParser", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5701)
5700 " was used directly instead of getting the QualType through"::llvm::llvm_unreachable_internal("LocInfoType leaked into the type system; an opaque TypeTy*"
" was used directly instead of getting the QualType through"
" GetTypeFromParser", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5701)
5701 " GetTypeFromParser")::llvm::llvm_unreachable_internal("LocInfoType leaked into the type system; an opaque TypeTy*"
" was used directly instead of getting the QualType through"
" GetTypeFromParser", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5701)
;
5702}
5703
5704TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
5705 // C99 6.7.6: Type names have no identifier. This is already validated by
5706 // the parser.
5707 assert(D.getIdentifier() == nullptr &&((D.getIdentifier() == nullptr && "Type name should have no identifier!"
) ? static_cast<void> (0) : __assert_fail ("D.getIdentifier() == nullptr && \"Type name should have no identifier!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5708, __PRETTY_FUNCTION__))
5708 "Type name should have no identifier!")((D.getIdentifier() == nullptr && "Type name should have no identifier!"
) ? static_cast<void> (0) : __assert_fail ("D.getIdentifier() == nullptr && \"Type name should have no identifier!\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5708, __PRETTY_FUNCTION__))
;
5709
5710 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5711 QualType T = TInfo->getType();
5712 if (D.isInvalidType())
5713 return true;
5714
5715 // Make sure there are no unused decl attributes on the declarator.
5716 // We don't want to do this for ObjC parameters because we're going
5717 // to apply them to the actual parameter declaration.
5718 // Likewise, we don't want to do this for alias declarations, because
5719 // we are actually going to build a declaration from this eventually.
5720 if (D.getContext() != DeclaratorContext::ObjCParameterContext &&
5721 D.getContext() != DeclaratorContext::AliasDeclContext &&
5722 D.getContext() != DeclaratorContext::AliasTemplateContext)
5723 checkUnusedDeclAttributes(D);
5724
5725 if (getLangOpts().CPlusPlus) {
5726 // Check that there are no default arguments (C++ only).
5727 CheckExtraCXXDefaultArguments(D);
5728 }
5729
5730 return CreateParsedType(T, TInfo);
5731}
5732
5733ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
5734 QualType T = Context.getObjCInstanceType();
5735 TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
5736 return CreateParsedType(T, TInfo);
5737}
5738
5739//===----------------------------------------------------------------------===//
5740// Type Attribute Processing
5741//===----------------------------------------------------------------------===//
5742
5743/// BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression
5744/// is uninstantiated. If instantiated it will apply the appropriate address space
5745/// to the type. This function allows dependent template variables to be used in
5746/// conjunction with the address_space attribute
5747QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
5748 SourceLocation AttrLoc) {
5749 if (!AddrSpace->isValueDependent()) {
5750
5751 llvm::APSInt addrSpace(32);
5752 if (!AddrSpace->isIntegerConstantExpr(addrSpace, Context)) {
5753 Diag(AttrLoc, diag::err_attribute_argument_type)
5754 << "'address_space'" << AANT_ArgumentIntegerConstant
5755 << AddrSpace->getSourceRange();
5756 return QualType();
5757 }
5758
5759 // Bounds checking.
5760 if (addrSpace.isSigned()) {
5761 if (addrSpace.isNegative()) {
5762 Diag(AttrLoc, diag::err_attribute_address_space_negative)
5763 << AddrSpace->getSourceRange();
5764 return QualType();
5765 }
5766 addrSpace.setIsSigned(false);
5767 }
5768
5769 llvm::APSInt max(addrSpace.getBitWidth());
5770 max =
5771 Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace;
5772 if (addrSpace > max) {
5773 Diag(AttrLoc, diag::err_attribute_address_space_too_high)
5774 << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange();
5775 return QualType();
5776 }
5777
5778 LangAS ASIdx =
5779 getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue()));
5780
5781 // If this type is already address space qualified with a different
5782 // address space, reject it.
5783 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
5784 // by qualifiers for two or more different address spaces."
5785 if (T.getAddressSpace() != LangAS::Default) {
5786 if (T.getAddressSpace() != ASIdx) {
5787 Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
5788 return QualType();
5789 } else
5790 // Emit a warning if they are identical; it's likely unintended.
5791 Diag(AttrLoc,
5792 diag::warn_attribute_address_multiple_identical_qualifiers);
5793 }
5794
5795 return Context.getAddrSpaceQualType(T, ASIdx);
5796 }
5797
5798 // A check with similar intentions as checking if a type already has an
5799 // address space except for on a dependent types, basically if the
5800 // current type is already a DependentAddressSpaceType then its already
5801 // lined up to have another address space on it and we can't have
5802 // multiple address spaces on the one pointer indirection
5803 if (T->getAs<DependentAddressSpaceType>()) {
5804 Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
5805 return QualType();
5806 }
5807
5808 return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc);
5809}
5810
5811/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
5812/// specified type. The attribute contains 1 argument, the id of the address
5813/// space for the type.
5814static void HandleAddressSpaceTypeAttribute(QualType &Type,
5815 const ParsedAttr &Attr,
5816 TypeProcessingState &State) {
5817 Sema &S = State.getSema();
5818
5819 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
5820 // qualified by an address-space qualifier."
5821 if (Type->isFunctionType()) {
5822 S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
5823 Attr.setInvalid();
5824 return;
5825 }
5826
5827 LangAS ASIdx;
5828 if (Attr.getKind() == ParsedAttr::AT_AddressSpace) {
5829
5830 // Check the attribute arguments.
5831 if (Attr.getNumArgs() != 1) {
5832 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
5833 << 1;
5834 Attr.setInvalid();
5835 return;
5836 }
5837
5838 Expr *ASArgExpr;
5839 if (Attr.isArgIdent(0)) {
5840 // Special case where the argument is a template id.
5841 CXXScopeSpec SS;
5842 SourceLocation TemplateKWLoc;
5843 UnqualifiedId id;
5844 id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
5845
5846 ExprResult AddrSpace = S.ActOnIdExpression(
5847 S.getCurScope(), SS, TemplateKWLoc, id, false, false);
5848 if (AddrSpace.isInvalid())
5849 return;
5850
5851 ASArgExpr = static_cast<Expr *>(AddrSpace.get());
5852 } else {
5853 ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
5854 }
5855
5856 // Create the DependentAddressSpaceType or append an address space onto
5857 // the type.
5858 QualType T = S.BuildAddressSpaceAttr(Type, ASArgExpr, Attr.getLoc());
5859
5860 if (!T.isNull()) {
5861 ASTContext &Ctx = S.Context;
5862 auto *ASAttr = ::new (Ctx) AddressSpaceAttr(
5863 Attr.getRange(), Ctx, Attr.getAttributeSpellingListIndex(),
5864 static_cast<unsigned>(T.getQualifiers().getAddressSpace()));
5865 Type = State.getAttributedType(ASAttr, T, T);
5866 } else {
5867 Attr.setInvalid();
5868 }
5869 } else {
5870 // The keyword-based type attributes imply which address space to use.
5871 switch (Attr.getKind()) {
5872 case ParsedAttr::AT_OpenCLGlobalAddressSpace:
5873 ASIdx = LangAS::opencl_global; break;
5874 case ParsedAttr::AT_OpenCLLocalAddressSpace:
5875 ASIdx = LangAS::opencl_local; break;
5876 case ParsedAttr::AT_OpenCLConstantAddressSpace:
5877 ASIdx = LangAS::opencl_constant; break;
5878 case ParsedAttr::AT_OpenCLGenericAddressSpace:
5879 ASIdx = LangAS::opencl_generic; break;
5880 case ParsedAttr::AT_OpenCLPrivateAddressSpace:
5881 ASIdx = LangAS::opencl_private; break;
5882 default:
5883 llvm_unreachable("Invalid address space")::llvm::llvm_unreachable_internal("Invalid address space", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5883)
;
5884 }
5885
5886 // If this type is already address space qualified with a different
5887 // address space, reject it.
5888 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
5889 // qualifiers for two or more different address spaces."
5890 if (Type.getAddressSpace() != LangAS::Default) {
5891 if (Type.getAddressSpace() != ASIdx) {
5892 S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
5893 Attr.setInvalid();
5894 return;
5895 } else
5896 // Emit a warning if they are identical; it's likely unintended.
5897 S.Diag(Attr.getLoc(),
5898 diag::warn_attribute_address_multiple_identical_qualifiers);
5899 }
5900
5901 Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
5902 }
5903}
5904
5905/// Does this type have a "direct" ownership qualifier? That is,
5906/// is it written like "__strong id", as opposed to something like
5907/// "typeof(foo)", where that happens to be strong?
5908static bool hasDirectOwnershipQualifier(QualType type) {
5909 // Fast path: no qualifier at all.
5910 assert(type.getQualifiers().hasObjCLifetime())((type.getQualifiers().hasObjCLifetime()) ? static_cast<void
> (0) : __assert_fail ("type.getQualifiers().hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 5910, __PRETTY_FUNCTION__))
;
5911
5912 while (true) {
5913 // __strong id
5914 if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
5915 if (attr->getAttrKind() == attr::ObjCOwnership)
5916 return true;
5917
5918 type = attr->getModifiedType();
5919
5920 // X *__strong (...)
5921 } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
5922 type = paren->getInnerType();
5923
5924 // That's it for things we want to complain about. In particular,
5925 // we do not want to look through typedefs, typeof(expr),
5926 // typeof(type), or any other way that the type is somehow
5927 // abstracted.
5928 } else {
5929
5930 return false;
5931 }
5932 }
5933}
5934
5935/// handleObjCOwnershipTypeAttr - Process an objc_ownership
5936/// attribute on the specified type.
5937///
5938/// Returns 'true' if the attribute was handled.
5939static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
5940 ParsedAttr &attr, QualType &type) {
5941 bool NonObjCPointer = false;
5942
5943 if (!type->isDependentType() && !type->isUndeducedType()) {
5944 if (const PointerType *ptr = type->getAs<PointerType>()) {
5945 QualType pointee = ptr->getPointeeType();
5946 if (pointee->isObjCRetainableType() || pointee->isPointerType())
5947 return false;
5948 // It is important not to lose the source info that there was an attribute
5949 // applied to non-objc pointer. We will create an attributed type but
5950 // its type will be the same as the original type.
5951 NonObjCPointer = true;
5952 } else if (!type->isObjCRetainableType()) {
5953 return false;
5954 }
5955
5956 // Don't accept an ownership attribute in the declspec if it would
5957 // just be the return type of a block pointer.
5958 if (state.isProcessingDeclSpec()) {
5959 Declarator &D = state.getDeclarator();
5960 if (maybeMovePastReturnType(D, D.getNumTypeObjects(),
5961 /*onlyBlockPointers=*/true))
5962 return false;
5963 }
5964 }
5965
5966 Sema &S = state.getSema();
5967 SourceLocation AttrLoc = attr.getLoc();
5968 if (AttrLoc.isMacroID())
5969 AttrLoc =
5970 S.getSourceManager().getImmediateExpansionRange(AttrLoc).getBegin();
5971
5972 if (!attr.isArgIdent(0)) {
5973 S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr
5974 << AANT_ArgumentString;
5975 attr.setInvalid();
5976 return true;
5977 }
5978
5979 IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
5980 Qualifiers::ObjCLifetime lifetime;
5981 if (II->isStr("none"))
5982 lifetime = Qualifiers::OCL_ExplicitNone;
5983 else if (II->isStr("strong"))
5984 lifetime = Qualifiers::OCL_Strong;
5985 else if (II->isStr("weak"))
5986 lifetime = Qualifiers::OCL_Weak;
5987 else if (II->isStr("autoreleasing"))
5988 lifetime = Qualifiers::OCL_Autoreleasing;
5989 else {
5990 S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
5991 << attr.getName() << II;
5992 attr.setInvalid();
5993 return true;
5994 }
5995
5996 // Just ignore lifetime attributes other than __weak and __unsafe_unretained
5997 // outside of ARC mode.
5998 if (!S.getLangOpts().ObjCAutoRefCount &&
5999 lifetime != Qualifiers::OCL_Weak &&
6000 lifetime != Qualifiers::OCL_ExplicitNone) {
6001 return true;
6002 }
6003
6004 SplitQualType underlyingType = type.split();
6005
6006 // Check for redundant/conflicting ownership qualifiers.
6007 if (Qualifiers::ObjCLifetime previousLifetime
6008 = type.getQualifiers().getObjCLifetime()) {
6009 // If it's written directly, that's an error.
6010 if (hasDirectOwnershipQualifier(type)) {
6011 S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
6012 << type;
6013 return true;
6014 }
6015
6016 // Otherwise, if the qualifiers actually conflict, pull sugar off
6017 // and remove the ObjCLifetime qualifiers.
6018 if (previousLifetime != lifetime) {
6019 // It's possible to have multiple local ObjCLifetime qualifiers. We
6020 // can't stop after we reach a type that is directly qualified.
6021 const Type *prevTy = nullptr;
6022 while (!prevTy || prevTy != underlyingType.Ty) {
6023 prevTy = underlyingType.Ty;
6024 underlyingType = underlyingType.getSingleStepDesugaredType();
6025 }
6026 underlyingType.Quals.removeObjCLifetime();
6027 }
6028 }
6029
6030 underlyingType.Quals.addObjCLifetime(lifetime);
6031
6032 if (NonObjCPointer) {
6033 StringRef name = attr.getName()->getName();
6034 switch (lifetime) {
6035 case Qualifiers::OCL_None:
6036 case Qualifiers::OCL_ExplicitNone:
6037 break;
6038 case Qualifiers::OCL_Strong: name = "__strong"; break;
6039 case Qualifiers::OCL_Weak: name = "__weak"; break;
6040 case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
6041 }
6042 S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
6043 << TDS_ObjCObjOrBlock << type;
6044 }
6045
6046 // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
6047 // because having both 'T' and '__unsafe_unretained T' exist in the type
6048 // system causes unfortunate widespread consistency problems. (For example,
6049 // they're not considered compatible types, and we mangle them identicially
6050 // as template arguments.) These problems are all individually fixable,
6051 // but it's easier to just not add the qualifier and instead sniff it out
6052 // in specific places using isObjCInertUnsafeUnretainedType().
6053 //
6054 // Doing this does means we miss some trivial consistency checks that
6055 // would've triggered in ARC, but that's better than trying to solve all
6056 // the coexistence problems with __unsafe_unretained.
6057 if (!S.getLangOpts().ObjCAutoRefCount &&
6058 lifetime == Qualifiers::OCL_ExplicitNone) {
6059 type = state.getAttributedType(
6060 createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr),
6061 type, type);
6062 return true;
6063 }
6064
6065 QualType origType = type;
6066 if (!NonObjCPointer)
6067 type = S.Context.getQualifiedType(underlyingType);
6068
6069 // If we have a valid source location for the attribute, use an
6070 // AttributedType instead.
6071 if (AttrLoc.isValid()) {
6072 type = state.getAttributedType(::new (S.Context) ObjCOwnershipAttr(
6073 attr.getRange(), S.Context, II,
6074 attr.getAttributeSpellingListIndex()),
6075 origType, type);
6076 }
6077
6078 auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
6079 unsigned diagnostic, QualType type) {
6080 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
6081 S.DelayedDiagnostics.add(
6082 sema::DelayedDiagnostic::makeForbiddenType(
6083 S.getSourceManager().getExpansionLoc(loc),
6084 diagnostic, type, /*ignored*/ 0));
6085 } else {
6086 S.Diag(loc, diagnostic);
6087 }
6088 };
6089
6090 // Sometimes, __weak isn't allowed.
6091 if (lifetime == Qualifiers::OCL_Weak &&
6092 !S.getLangOpts().ObjCWeak && !NonObjCPointer) {
6093
6094 // Use a specialized diagnostic if the runtime just doesn't support them.
6095 unsigned diagnostic =
6096 (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
6097 : diag::err_arc_weak_no_runtime);
6098
6099 // In any case, delay the diagnostic until we know what we're parsing.
6100 diagnoseOrDelay(S, AttrLoc, diagnostic, type);
6101
6102 attr.setInvalid();
6103 return true;
6104 }
6105
6106 // Forbid __weak for class objects marked as
6107 // objc_arc_weak_reference_unavailable
6108 if (lifetime == Qualifiers::OCL_Weak) {
6109 if (const ObjCObjectPointerType *ObjT =
6110 type->getAs<ObjCObjectPointerType>()) {
6111 if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
6112 if (Class->isArcWeakrefUnavailable()) {
6113 S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
6114 S.Diag(ObjT->getInterfaceDecl()->getLocation(),
6115 diag::note_class_declared);
6116 }
6117 }
6118 }
6119 }
6120
6121 return true;
6122}
6123
6124/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
6125/// attribute on the specified type. Returns true to indicate that
6126/// the attribute was handled, false to indicate that the type does
6127/// not permit the attribute.
6128static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
6129 QualType &type) {
6130 Sema &S = state.getSema();
6131
6132 // Delay if this isn't some kind of pointer.
6133 if (!type->isPointerType() &&
6134 !type->isObjCObjectPointerType() &&
6135 !type->isBlockPointerType())
6136 return false;
6137
6138 if (type.getObjCGCAttr() != Qualifiers::GCNone) {
6139 S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
6140 attr.setInvalid();
6141 return true;
6142 }
6143
6144 // Check the attribute arguments.
6145 if (!attr.isArgIdent(0)) {
6146 S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
6147 << attr << AANT_ArgumentString;
6148 attr.setInvalid();
6149 return true;
6150 }
6151 Qualifiers::GC GCAttr;
6152 if (attr.getNumArgs() > 1) {
6153 S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr
6154 << 1;
6155 attr.setInvalid();
6156 return true;
6157 }
6158
6159 IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6160 if (II->isStr("weak"))
6161 GCAttr = Qualifiers::Weak;
6162 else if (II->isStr("strong"))
6163 GCAttr = Qualifiers::Strong;
6164 else {
6165 S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
6166 << attr.getName() << II;
6167 attr.setInvalid();
6168 return true;
6169 }
6170
6171 QualType origType = type;
6172 type = S.Context.getObjCGCQualType(origType, GCAttr);
6173
6174 // Make an attributed type to preserve the source information.
6175 if (attr.getLoc().isValid())
6176 type = state.getAttributedType(
6177 ::new (S.Context) ObjCGCAttr(attr.getRange(), S.Context, II,
6178 attr.getAttributeSpellingListIndex()),
6179 origType, type);
6180
6181 return true;
6182}
6183
6184namespace {
6185 /// A helper class to unwrap a type down to a function for the
6186 /// purposes of applying attributes there.
6187 ///
6188 /// Use:
6189 /// FunctionTypeUnwrapper unwrapped(SemaRef, T);
6190 /// if (unwrapped.isFunctionType()) {
6191 /// const FunctionType *fn = unwrapped.get();
6192 /// // change fn somehow
6193 /// T = unwrapped.wrap(fn);
6194 /// }
6195 struct FunctionTypeUnwrapper {
6196 enum WrapKind {
6197 Desugar,
6198 Attributed,
6199 Parens,
6200 Pointer,
6201 BlockPointer,
6202 Reference,
6203 MemberPointer
6204 };
6205
6206 QualType Original;
6207 const FunctionType *Fn;
6208 SmallVector<unsigned char /*WrapKind*/, 8> Stack;
6209
6210 FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
6211 while (true) {
6212 const Type *Ty = T.getTypePtr();
6213 if (isa<FunctionType>(Ty)) {
6214 Fn = cast<FunctionType>(Ty);
6215 return;
6216 } else if (isa<ParenType>(Ty)) {
6217 T = cast<ParenType>(Ty)->getInnerType();
6218 Stack.push_back(Parens);
6219 } else if (isa<PointerType>(Ty)) {
6220 T = cast<PointerType>(Ty)->getPointeeType();
6221 Stack.push_back(Pointer);
6222 } else if (isa<BlockPointerType>(Ty)) {
6223 T = cast<BlockPointerType>(Ty)->getPointeeType();
6224 Stack.push_back(BlockPointer);
6225 } else if (isa<MemberPointerType>(Ty)) {
6226 T = cast<MemberPointerType>(Ty)->getPointeeType();
6227 Stack.push_back(MemberPointer);
6228 } else if (isa<ReferenceType>(Ty)) {
6229 T = cast<ReferenceType>(Ty)->getPointeeType();
6230 Stack.push_back(Reference);
6231 } else if (isa<AttributedType>(Ty)) {
6232 T = cast<AttributedType>(Ty)->getEquivalentType();
6233 Stack.push_back(Attributed);
6234 } else {
6235 const Type *DTy = Ty->getUnqualifiedDesugaredType();
6236 if (Ty == DTy) {
6237 Fn = nullptr;
6238 return;
6239 }
6240
6241 T = QualType(DTy, 0);
6242 Stack.push_back(Desugar);
6243 }
6244 }
6245 }
6246
6247 bool isFunctionType() const { return (Fn != nullptr); }
6248 const FunctionType *get() const { return Fn; }
6249
6250 QualType wrap(Sema &S, const FunctionType *New) {
6251 // If T wasn't modified from the unwrapped type, do nothing.
6252 if (New == get()) return Original;
6253
6254 Fn = New;
6255 return wrap(S.Context, Original, 0);
6256 }
6257
6258 private:
6259 QualType wrap(ASTContext &C, QualType Old, unsigned I) {
6260 if (I == Stack.size())
6261 return C.getQualifiedType(Fn, Old.getQualifiers());
6262
6263 // Build up the inner type, applying the qualifiers from the old
6264 // type to the new type.
6265 SplitQualType SplitOld = Old.split();
6266
6267 // As a special case, tail-recurse if there are no qualifiers.
6268 if (SplitOld.Quals.empty())
6269 return wrap(C, SplitOld.Ty, I);
6270 return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
6271 }
6272
6273 QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
6274 if (I == Stack.size()) return QualType(Fn, 0);
6275
6276 switch (static_cast<WrapKind>(Stack[I++])) {
6277 case Desugar:
6278 // This is the point at which we potentially lose source
6279 // information.
6280 return wrap(C, Old->getUnqualifiedDesugaredType(), I);
6281
6282 case Attributed:
6283 return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I);
6284
6285 case Parens: {
6286 QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
6287 return C.getParenType(New);
6288 }
6289
6290 case Pointer: {
6291 QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
6292 return C.getPointerType(New);
6293 }
6294
6295 case BlockPointer: {
6296 QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
6297 return C.getBlockPointerType(New);
6298 }
6299
6300 case MemberPointer: {
6301 const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
6302 QualType New = wrap(C, OldMPT->getPointeeType(), I);
6303 return C.getMemberPointerType(New, OldMPT->getClass());
6304 }
6305
6306 case Reference: {
6307 const ReferenceType *OldRef = cast<ReferenceType>(Old);
6308 QualType New = wrap(C, OldRef->getPointeeType(), I);
6309 if (isa<LValueReferenceType>(OldRef))
6310 return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
6311 else
6312 return C.getRValueReferenceType(New);
6313 }
6314 }
6315
6316 llvm_unreachable("unknown wrapping kind")::llvm::llvm_unreachable_internal("unknown wrapping kind", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 6316)
;
6317 }
6318 };
6319} // end anonymous namespace
6320
6321static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
6322 ParsedAttr &PAttr, QualType &Type) {
6323 Sema &S = State.getSema();
6324
6325 Attr *A;
6326 switch (PAttr.getKind()) {
6327 default: llvm_unreachable("Unknown attribute kind")::llvm::llvm_unreachable_internal("Unknown attribute kind", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 6327)
;
6328 case ParsedAttr::AT_Ptr32:
6329 A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr);
6330 break;
6331 case ParsedAttr::AT_Ptr64:
6332 A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr);
6333 break;
6334 case ParsedAttr::AT_SPtr:
6335 A = createSimpleAttr<SPtrAttr>(S.Context, PAttr);
6336 break;
6337 case ParsedAttr::AT_UPtr:
6338 A = createSimpleAttr<UPtrAttr>(S.Context, PAttr);
6339 break;
6340 }
6341
6342 attr::Kind NewAttrKind = A->getKind();
6343 QualType Desugared = Type;
6344 const AttributedType *AT = dyn_cast<AttributedType>(Type);
6345 while (AT) {
6346 attr::Kind CurAttrKind = AT->getAttrKind();
6347
6348 // You cannot specify duplicate type attributes, so if the attribute has
6349 // already been applied, flag it.
6350 if (NewAttrKind == CurAttrKind) {
6351 S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact)
6352 << PAttr.getName();
6353 return true;
6354 }
6355
6356 // You cannot have both __sptr and __uptr on the same type, nor can you
6357 // have __ptr32 and __ptr64.
6358 if ((CurAttrKind == attr::Ptr32 && NewAttrKind == attr::Ptr64) ||
6359 (CurAttrKind == attr::Ptr64 && NewAttrKind == attr::Ptr32)) {
6360 S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
6361 << "'__ptr32'" << "'__ptr64'";
6362 return true;
6363 } else if ((CurAttrKind == attr::SPtr && NewAttrKind == attr::UPtr) ||
6364 (CurAttrKind == attr::UPtr && NewAttrKind == attr::SPtr)) {
6365 S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
6366 << "'__sptr'" << "'__uptr'";
6367 return true;
6368 }
6369
6370 Desugared = AT->getEquivalentType();
6371 AT = dyn_cast<AttributedType>(Desugared);
6372 }
6373
6374 // Pointer type qualifiers can only operate on pointer types, but not
6375 // pointer-to-member types.
6376 //
6377 // FIXME: Should we really be disallowing this attribute if there is any
6378 // type sugar between it and the pointer (other than attributes)? Eg, this
6379 // disallows the attribute on a parenthesized pointer.
6380 // And if so, should we really allow *any* type attribute?
6381 if (!isa<PointerType>(Desugared)) {
6382 if (Type->isMemberPointerType())
6383 S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr;
6384 else
6385 S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0;
6386 return true;
6387 }
6388
6389 Type = State.getAttributedType(A, Type, Type);
6390 return false;
6391}
6392
6393/// Map a nullability attribute kind to a nullability kind.
6394static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) {
6395 switch (kind) {
6396 case ParsedAttr::AT_TypeNonNull:
6397 return NullabilityKind::NonNull;
6398
6399 case ParsedAttr::AT_TypeNullable:
6400 return NullabilityKind::Nullable;
6401
6402 case ParsedAttr::AT_TypeNullUnspecified:
6403 return NullabilityKind::Unspecified;
6404
6405 default:
6406 llvm_unreachable("not a nullability attribute kind")::llvm::llvm_unreachable_internal("not a nullability attribute kind"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 6406)
;
6407 }
6408}
6409
6410/// Applies a nullability type specifier to the given type, if possible.
6411///
6412/// \param state The type processing state.
6413///
6414/// \param type The type to which the nullability specifier will be
6415/// added. On success, this type will be updated appropriately.
6416///
6417/// \param attr The attribute as written on the type.
6418///
6419/// \param allowOnArrayType Whether to accept nullability specifiers on an
6420/// array type (e.g., because it will decay to a pointer).
6421///
6422/// \returns true if a problem has been diagnosed, false on success.
6423static bool checkNullabilityTypeSpecifier(TypeProcessingState &state,
6424 QualType &type,
6425 ParsedAttr &attr,
6426 bool allowOnArrayType) {
6427 Sema &S = state.getSema();
6428
6429 NullabilityKind nullability = mapNullabilityAttrKind(attr.getKind());
6430 SourceLocation nullabilityLoc = attr.getLoc();
6431 bool isContextSensitive = attr.isContextSensitiveKeywordAttribute();
6432
6433 recordNullabilitySeen(S, nullabilityLoc);
6434
6435 // Check for existing nullability attributes on the type.
6436 QualType desugared = type;
6437 while (auto attributed = dyn_cast<AttributedType>(desugared.getTypePtr())) {
6438 // Check whether there is already a null
6439 if (auto existingNullability = attributed->getImmediateNullability()) {
6440 // Duplicated nullability.
6441 if (nullability == *existingNullability) {
6442 S.Diag(nullabilityLoc, diag::warn_nullability_duplicate)
6443 << DiagNullabilityKind(nullability, isContextSensitive)
6444 << FixItHint::CreateRemoval(nullabilityLoc);
6445
6446 break;
6447 }
6448
6449 // Conflicting nullability.
6450 S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
6451 << DiagNullabilityKind(nullability, isContextSensitive)
6452 << DiagNullabilityKind(*existingNullability, false);
6453 return true;
6454 }
6455
6456 desugared = attributed->getModifiedType();
6457 }
6458
6459 // If there is already a different nullability specifier, complain.
6460 // This (unlike the code above) looks through typedefs that might
6461 // have nullability specifiers on them, which means we cannot
6462 // provide a useful Fix-It.
6463 if (auto existingNullability = desugared->getNullability(S.Context)) {
6464 if (nullability != *existingNullability) {
6465 S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
6466 << DiagNullabilityKind(nullability, isContextSensitive)
6467 << DiagNullabilityKind(*existingNullability, false);
6468
6469 // Try to find the typedef with the existing nullability specifier.
6470 if (auto typedefType = desugared->getAs<TypedefType>()) {
6471 TypedefNameDecl *typedefDecl = typedefType->getDecl();
6472 QualType underlyingType = typedefDecl->getUnderlyingType();
6473 if (auto typedefNullability
6474 = AttributedType::stripOuterNullability(underlyingType)) {
6475 if (*typedefNullability == *existingNullability) {
6476 S.Diag(typedefDecl->getLocation(), diag::note_nullability_here)
6477 << DiagNullabilityKind(*existingNullability, false);
6478 }
6479 }
6480 }
6481
6482 return true;
6483 }
6484 }
6485
6486 // If this definitely isn't a pointer type, reject the specifier.
6487 if (!desugared->canHaveNullability() &&
6488 !(allowOnArrayType && desugared->isArrayType())) {
6489 S.Diag(nullabilityLoc, diag::err_nullability_nonpointer)
6490 << DiagNullabilityKind(nullability, isContextSensitive) << type;
6491 return true;
6492 }
6493
6494 // For the context-sensitive keywords/Objective-C property
6495 // attributes, require that the type be a single-level pointer.
6496 if (isContextSensitive) {
6497 // Make sure that the pointee isn't itself a pointer type.
6498 const Type *pointeeType;
6499 if (desugared->isArrayType())
6500 pointeeType = desugared->getArrayElementTypeNoTypeQual();
6501 else
6502 pointeeType = desugared->getPointeeType().getTypePtr();
6503
6504 if (pointeeType->isAnyPointerType() ||
6505 pointeeType->isObjCObjectPointerType() ||
6506 pointeeType->isMemberPointerType()) {
6507 S.Diag(nullabilityLoc, diag::err_nullability_cs_multilevel)
6508 << DiagNullabilityKind(nullability, true)
6509 << type;
6510 S.Diag(nullabilityLoc, diag::note_nullability_type_specifier)
6511 << DiagNullabilityKind(nullability, false)
6512 << type
6513 << FixItHint::CreateReplacement(nullabilityLoc,
6514 getNullabilitySpelling(nullability));
6515 return true;
6516 }
6517 }
6518
6519 // Form the attributed type.
6520 type = state.getAttributedType(
6521 createNullabilityAttr(S.Context, attr, nullability), type, type);
6522 return false;
6523}
6524
6525/// Check the application of the Objective-C '__kindof' qualifier to
6526/// the given type.
6527static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type,
6528 ParsedAttr &attr) {
6529 Sema &S = state.getSema();
6530
6531 if (isa<ObjCTypeParamType>(type)) {
6532 // Build the attributed type to record where __kindof occurred.
6533 type = state.getAttributedType(
6534 createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type);
6535 return false;
6536 }
6537
6538 // Find out if it's an Objective-C object or object pointer type;
6539 const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
6540 const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
6541 : type->getAs<ObjCObjectType>();
6542
6543 // If not, we can't apply __kindof.
6544 if (!objType) {
6545 // FIXME: Handle dependent types that aren't yet object types.
6546 S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject)
6547 << type;
6548 return true;
6549 }
6550
6551 // Rebuild the "equivalent" type, which pushes __kindof down into
6552 // the object type.
6553 // There is no need to apply kindof on an unqualified id type.
6554 QualType equivType = S.Context.getObjCObjectType(
6555 objType->getBaseType(), objType->getTypeArgsAsWritten(),
6556 objType->getProtocols(),
6557 /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
6558
6559 // If we started with an object pointer type, rebuild it.
6560 if (ptrType) {
6561 equivType = S.Context.getObjCObjectPointerType(equivType);
6562 if (auto nullability = type->getNullability(S.Context)) {
6563 // We create a nullability attribute from the __kindof attribute.
6564 // Make sure that will make sense.
6565 assert(attr.getAttributeSpellingListIndex() == 0 &&((attr.getAttributeSpellingListIndex() == 0 && "multiple spellings for __kindof?"
) ? static_cast<void> (0) : __assert_fail ("attr.getAttributeSpellingListIndex() == 0 && \"multiple spellings for __kindof?\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 6566, __PRETTY_FUNCTION__))
6566 "multiple spellings for __kindof?")((attr.getAttributeSpellingListIndex() == 0 && "multiple spellings for __kindof?"
) ? static_cast<void> (0) : __assert_fail ("attr.getAttributeSpellingListIndex() == 0 && \"multiple spellings for __kindof?\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 6566, __PRETTY_FUNCTION__))
;
6567 Attr *A = createNullabilityAttr(S.Context, attr, *nullability);
6568 A->setImplicit(true);
6569 equivType = state.getAttributedType(A, equivType, equivType);
6570 }
6571 }
6572
6573 // Build the attributed type to record where __kindof occurred.
6574 type = state.getAttributedType(
6575 createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType);
6576 return false;
6577}
6578
6579/// Distribute a nullability type attribute that cannot be applied to
6580/// the type specifier to a pointer, block pointer, or member pointer
6581/// declarator, complaining if necessary.
6582///
6583/// \returns true if the nullability annotation was distributed, false
6584/// otherwise.
6585static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
6586 QualType type, ParsedAttr &attr) {
6587 Declarator &declarator = state.getDeclarator();
6588
6589 /// Attempt to move the attribute to the specified chunk.
6590 auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
6591 // If there is already a nullability attribute there, don't add
6592 // one.
6593 if (hasNullabilityAttr(chunk.getAttrs()))
6594 return false;
6595
6596 // Complain about the nullability qualifier being in the wrong
6597 // place.
6598 enum {
6599 PK_Pointer,
6600 PK_BlockPointer,
6601 PK_MemberPointer,
6602 PK_FunctionPointer,
6603 PK_MemberFunctionPointer,
6604 } pointerKind
6605 = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
6606 : PK_Pointer)
6607 : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
6608 : inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
6609
6610 auto diag = state.getSema().Diag(attr.getLoc(),
6611 diag::warn_nullability_declspec)
6612 << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
6613 attr.isContextSensitiveKeywordAttribute())
6614 << type
6615 << static_cast<unsigned>(pointerKind);
6616
6617 // FIXME: MemberPointer chunks don't carry the location of the *.
6618 if (chunk.Kind != DeclaratorChunk::MemberPointer) {
6619 diag << FixItHint::CreateRemoval(attr.getLoc())
6620 << FixItHint::CreateInsertion(
6621 state.getSema().getPreprocessor()
6622 .getLocForEndOfToken(chunk.Loc),
6623 " " + attr.getName()->getName().str() + " ");
6624 }
6625
6626 moveAttrFromListToList(attr, state.getCurrentAttributes(),
6627 chunk.getAttrs());
6628 return true;
6629 };
6630
6631 // Move it to the outermost pointer, member pointer, or block
6632 // pointer declarator.
6633 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
6634 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
6635 switch (chunk.Kind) {
6636 case DeclaratorChunk::Pointer:
6637 case DeclaratorChunk::BlockPointer:
6638 case DeclaratorChunk::MemberPointer:
6639 return moveToChunk(chunk, false);
6640
6641 case DeclaratorChunk::Paren:
6642 case DeclaratorChunk::Array:
6643 continue;
6644
6645 case DeclaratorChunk::Function:
6646 // Try to move past the return type to a function/block/member
6647 // function pointer.
6648 if (DeclaratorChunk *dest = maybeMovePastReturnType(
6649 declarator, i,
6650 /*onlyBlockPointers=*/false)) {
6651 return moveToChunk(*dest, true);
6652 }
6653
6654 return false;
6655
6656 // Don't walk through these.
6657 case DeclaratorChunk::Reference:
6658 case DeclaratorChunk::Pipe:
6659 return false;
6660 }
6661 }
6662
6663 return false;
6664}
6665
6666static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) {
6667 assert(!Attr.isInvalid())((!Attr.isInvalid()) ? static_cast<void> (0) : __assert_fail
("!Attr.isInvalid()", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 6667, __PRETTY_FUNCTION__))
;
6668 switch (Attr.getKind()) {
6669 default:
6670 llvm_unreachable("not a calling convention attribute")::llvm::llvm_unreachable_internal("not a calling convention attribute"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 6670)
;
6671 case ParsedAttr::AT_CDecl:
6672 return createSimpleAttr<CDeclAttr>(Ctx, Attr);
6673 case ParsedAttr::AT_FastCall:
6674 return createSimpleAttr<FastCallAttr>(Ctx, Attr);
6675 case ParsedAttr::AT_StdCall:
6676 return createSimpleAttr<StdCallAttr>(Ctx, Attr);
6677 case ParsedAttr::AT_ThisCall:
6678 return createSimpleAttr<ThisCallAttr>(Ctx, Attr);
6679 case ParsedAttr::AT_RegCall:
6680 return createSimpleAttr<RegCallAttr>(Ctx, Attr);
6681 case ParsedAttr::AT_Pascal:
6682 return createSimpleAttr<PascalAttr>(Ctx, Attr);
6683 case ParsedAttr::AT_SwiftCall:
6684 return createSimpleAttr<SwiftCallAttr>(Ctx, Attr);
6685 case ParsedAttr::AT_VectorCall:
6686 return createSimpleAttr<VectorCallAttr>(Ctx, Attr);
6687 case ParsedAttr::AT_AArch64VectorPcs:
6688 return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr);
6689 case ParsedAttr::AT_Pcs: {
6690 // The attribute may have had a fixit applied where we treated an
6691 // identifier as a string literal. The contents of the string are valid,
6692 // but the form may not be.
6693 StringRef Str;
6694 if (Attr.isArgExpr(0))
6695 Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
6696 else
6697 Str = Attr.getArgAsIdent(0)->Ident->getName();
6698 PcsAttr::PCSType Type;
6699 if (!PcsAttr::ConvertStrToPCSType(Str, Type))
6700 llvm_unreachable("already validated the attribute")::llvm::llvm_unreachable_internal("already validated the attribute"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 6700)
;
6701 return ::new (Ctx) PcsAttr(Attr.getRange(), Ctx, Type,
6702 Attr.getAttributeSpellingListIndex());
6703 }
6704 case ParsedAttr::AT_IntelOclBicc:
6705 return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr);
6706 case ParsedAttr::AT_MSABI:
6707 return createSimpleAttr<MSABIAttr>(Ctx, Attr);
6708 case ParsedAttr::AT_SysVABI:
6709 return createSimpleAttr<SysVABIAttr>(Ctx, Attr);
6710 case ParsedAttr::AT_PreserveMost:
6711 return createSimpleAttr<PreserveMostAttr>(Ctx, Attr);
6712 case ParsedAttr::AT_PreserveAll:
6713 return createSimpleAttr<PreserveAllAttr>(Ctx, Attr);
6714 }
6715 llvm_unreachable("unexpected attribute kind!")::llvm::llvm_unreachable_internal("unexpected attribute kind!"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 6715)
;
6716}
6717
6718/// Process an individual function attribute. Returns true to
6719/// indicate that the attribute was handled, false if it wasn't.
6720static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
6721 QualType &type) {
6722 Sema &S = state.getSema();
6723
6724 FunctionTypeUnwrapper unwrapped(S, type);
6725
6726 if (attr.getKind() == ParsedAttr::AT_NoReturn) {
6727 if (S.CheckAttrNoArgs(attr))
6728 return true;
6729
6730 // Delay if this is not a function type.
6731 if (!unwrapped.isFunctionType())
6732 return false;
6733
6734 // Otherwise we can process right away.
6735 FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
6736 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6737 return true;
6738 }
6739
6740 // ns_returns_retained is not always a type attribute, but if we got
6741 // here, we're treating it as one right now.
6742 if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) {
6743 if (attr.getNumArgs()) return true;
6744
6745 // Delay if this is not a function type.
6746 if (!unwrapped.isFunctionType())
6747 return false;
6748
6749 // Check whether the return type is reasonable.
6750 if (S.checkNSReturnsRetainedReturnType(attr.getLoc(),
6751 unwrapped.get()->getReturnType()))
6752 return true;
6753
6754 // Only actually change the underlying type in ARC builds.
6755 QualType origType = type;
6756 if (state.getSema().getLangOpts().ObjCAutoRefCount) {
6757 FunctionType::ExtInfo EI
6758 = unwrapped.get()->getExtInfo().withProducesResult(true);
6759 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6760 }
6761 type = state.getAttributedType(
6762 createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr),
6763 origType, type);
6764 return true;
6765 }
6766
6767 if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) {
6768 if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
6769 return true;
6770
6771 // Delay if this is not a function type.
6772 if (!unwrapped.isFunctionType())
6773 return false;
6774
6775 FunctionType::ExtInfo EI =
6776 unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true);
6777 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6778 return true;
6779 }
6780
6781 if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) {
6782 if (!S.getLangOpts().CFProtectionBranch) {
6783 S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored);
6784 attr.setInvalid();
6785 return true;
6786 }
6787
6788 if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
6789 return true;
6790
6791 // If this is not a function type, warning will be asserted by subject
6792 // check.
6793 if (!unwrapped.isFunctionType())
6794 return true;
6795
6796 FunctionType::ExtInfo EI =
6797 unwrapped.get()->getExtInfo().withNoCfCheck(true);
6798 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6799 return true;
6800 }
6801
6802 if (attr.getKind() == ParsedAttr::AT_Regparm) {
6803 unsigned value;
6804 if (S.CheckRegparmAttr(attr, value))
6805 return true;
6806
6807 // Delay if this is not a function type.
6808 if (!unwrapped.isFunctionType())
6809 return false;
6810
6811 // Diagnose regparm with fastcall.
6812 const FunctionType *fn = unwrapped.get();
6813 CallingConv CC = fn->getCallConv();
6814 if (CC == CC_X86FastCall) {
6815 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
6816 << FunctionType::getNameForCallConv(CC)
6817 << "regparm";
6818 attr.setInvalid();
6819 return true;
6820 }
6821
6822 FunctionType::ExtInfo EI =
6823 unwrapped.get()->getExtInfo().withRegParm(value);
6824 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6825 return true;
6826 }
6827
6828 // Delay if the type didn't work out to a function.
6829 if (!unwrapped.isFunctionType()) return false;
6830
6831 // Otherwise, a calling convention.
6832 CallingConv CC;
6833 if (S.CheckCallingConvAttr(attr, CC))
6834 return true;
6835
6836 const FunctionType *fn = unwrapped.get();
6837 CallingConv CCOld = fn->getCallConv();
6838 Attr *CCAttr = getCCTypeAttr(S.Context, attr);
6839
6840 if (CCOld != CC) {
6841 // Error out on when there's already an attribute on the type
6842 // and the CCs don't match.
6843 if (S.getCallingConvAttributedType(type)) {
6844 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
6845 << FunctionType::getNameForCallConv(CC)
6846 << FunctionType::getNameForCallConv(CCOld);
6847 attr.setInvalid();
6848 return true;
6849 }
6850 }
6851
6852 // Diagnose use of variadic functions with calling conventions that
6853 // don't support them (e.g. because they're callee-cleanup).
6854 // We delay warning about this on unprototyped function declarations
6855 // until after redeclaration checking, just in case we pick up a
6856 // prototype that way. And apparently we also "delay" warning about
6857 // unprototyped function types in general, despite not necessarily having
6858 // much ability to diagnose it later.
6859 if (!supportsVariadicCall(CC)) {
6860 const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
6861 if (FnP && FnP->isVariadic()) {
6862 unsigned DiagID = diag::err_cconv_varargs;
6863
6864 // stdcall and fastcall are ignored with a warning for GCC and MS
6865 // compatibility.
6866 bool IsInvalid = true;
6867 if (CC == CC_X86StdCall || CC == CC_X86FastCall) {
6868 DiagID = diag::warn_cconv_varargs;
6869 IsInvalid = false;
6870 }
6871
6872 S.Diag(attr.getLoc(), DiagID) << FunctionType::getNameForCallConv(CC);
6873 if (IsInvalid) attr.setInvalid();
6874 return true;
6875 }
6876 }
6877
6878 // Also diagnose fastcall with regparm.
6879 if (CC == CC_X86FastCall && fn->getHasRegParm()) {
6880 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
6881 << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall);
6882 attr.setInvalid();
6883 return true;
6884 }
6885
6886 // Modify the CC from the wrapped function type, wrap it all back, and then
6887 // wrap the whole thing in an AttributedType as written. The modified type
6888 // might have a different CC if we ignored the attribute.
6889 QualType Equivalent;
6890 if (CCOld == CC) {
6891 Equivalent = type;
6892 } else {
6893 auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
6894 Equivalent =
6895 unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6896 }
6897 type = state.getAttributedType(CCAttr, type, Equivalent);
6898 return true;
6899}
6900
6901bool Sema::hasExplicitCallingConv(QualType &T) {
6902 QualType R = T.IgnoreParens();
6903 while (const AttributedType *AT = dyn_cast<AttributedType>(R)) {
6904 if (AT->isCallingConv())
6905 return true;
6906 R = AT->getModifiedType().IgnoreParens();
6907 }
6908 return false;
6909}
6910
6911void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
6912 SourceLocation Loc) {
6913 FunctionTypeUnwrapper Unwrapped(*this, T);
6914 const FunctionType *FT = Unwrapped.get();
6915 bool IsVariadic = (isa<FunctionProtoType>(FT) &&
6916 cast<FunctionProtoType>(FT)->isVariadic());
6917 CallingConv CurCC = FT->getCallConv();
6918 CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
6919
6920 if (CurCC == ToCC)
6921 return;
6922
6923 // MS compiler ignores explicit calling convention attributes on structors. We
6924 // should do the same.
6925 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
6926 // Issue a warning on ignored calling convention -- except of __stdcall.
6927 // Again, this is what MS compiler does.
6928 if (CurCC != CC_X86StdCall)
6929 Diag(Loc, diag::warn_cconv_structors)
6930 << FunctionType::getNameForCallConv(CurCC);
6931 // Default adjustment.
6932 } else {
6933 // Only adjust types with the default convention. For example, on Windows
6934 // we should adjust a __cdecl type to __thiscall for instance methods, and a
6935 // __thiscall type to __cdecl for static methods.
6936 CallingConv DefaultCC =
6937 Context.getDefaultCallingConvention(IsVariadic, IsStatic);
6938
6939 if (CurCC != DefaultCC || DefaultCC == ToCC)
6940 return;
6941
6942 if (hasExplicitCallingConv(T))
6943 return;
6944 }
6945
6946 FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
6947 QualType Wrapped = Unwrapped.wrap(*this, FT);
6948 T = Context.getAdjustedType(T, Wrapped);
6949}
6950
6951/// HandleVectorSizeAttribute - this attribute is only applicable to integral
6952/// and float scalars, although arrays, pointers, and function return values are
6953/// allowed in conjunction with this construct. Aggregates with this attribute
6954/// are invalid, even if they are of the same size as a corresponding scalar.
6955/// The raw attribute should contain precisely 1 argument, the vector size for
6956/// the variable, measured in bytes. If curType and rawAttr are well formed,
6957/// this routine will return a new vector type.
6958static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr,
6959 Sema &S) {
6960 // Check the attribute arguments.
6961 if (Attr.getNumArgs() != 1) {
6962 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
6963 << 1;
6964 Attr.setInvalid();
6965 return;
6966 }
6967
6968 Expr *SizeExpr;
6969 // Special case where the argument is a template id.
6970 if (Attr.isArgIdent(0)) {
6971 CXXScopeSpec SS;
6972 SourceLocation TemplateKWLoc;
6973 UnqualifiedId Id;
6974 Id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
6975
6976 ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
6977 Id, false, false);
6978
6979 if (Size.isInvalid())
6980 return;
6981 SizeExpr = Size.get();
6982 } else {
6983 SizeExpr = Attr.getArgAsExpr(0);
6984 }
6985
6986 QualType T = S.BuildVectorType(CurType, SizeExpr, Attr.getLoc());
6987 if (!T.isNull())
6988 CurType = T;
6989 else
6990 Attr.setInvalid();
6991}
6992
6993/// Process the OpenCL-like ext_vector_type attribute when it occurs on
6994/// a type.
6995static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
6996 Sema &S) {
6997 // check the attribute arguments.
6998 if (Attr.getNumArgs() != 1) {
6999 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7000 << 1;
7001 return;
7002 }
7003
7004 Expr *sizeExpr;
7005
7006 // Special case where the argument is a template id.
7007 if (Attr.isArgIdent(0)) {
7008 CXXScopeSpec SS;
7009 SourceLocation TemplateKWLoc;
7010 UnqualifiedId id;
7011 id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
7012
7013 ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
7014 id, false, false);
7015 if (Size.isInvalid())
7016 return;
7017
7018 sizeExpr = Size.get();
7019 } else {
7020 sizeExpr = Attr.getArgAsExpr(0);
7021 }
7022
7023 // Create the vector type.
7024 QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
7025 if (!T.isNull())
7026 CurType = T;
7027}
7028
7029static bool isPermittedNeonBaseType(QualType &Ty,
7030 VectorType::VectorKind VecKind, Sema &S) {
7031 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
7032 if (!BTy)
7033 return false;
7034
7035 llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
7036
7037 // Signed poly is mathematically wrong, but has been baked into some ABIs by
7038 // now.
7039 bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
7040 Triple.getArch() == llvm::Triple::aarch64_be;
7041 if (VecKind == VectorType::NeonPolyVector) {
7042 if (IsPolyUnsigned) {
7043 // AArch64 polynomial vectors are unsigned and support poly64.
7044 return BTy->getKind() == BuiltinType::UChar ||
7045 BTy->getKind() == BuiltinType::UShort ||
7046 BTy->getKind() == BuiltinType::ULong ||
7047 BTy->getKind() == BuiltinType::ULongLong;
7048 } else {
7049 // AArch32 polynomial vector are signed.
7050 return BTy->getKind() == BuiltinType::SChar ||
7051 BTy->getKind() == BuiltinType::Short;
7052 }
7053 }
7054
7055 // Non-polynomial vector types: the usual suspects are allowed, as well as
7056 // float64_t on AArch64.
7057 bool Is64Bit = Triple.getArch() == llvm::Triple::aarch64 ||
7058 Triple.getArch() == llvm::Triple::aarch64_be;
7059
7060 if (Is64Bit && BTy->getKind() == BuiltinType::Double)
7061 return true;
7062
7063 return BTy->getKind() == BuiltinType::SChar ||
7064 BTy->getKind() == BuiltinType::UChar ||
7065 BTy->getKind() == BuiltinType::Short ||
7066 BTy->getKind() == BuiltinType::UShort ||
7067 BTy->getKind() == BuiltinType::Int ||
7068 BTy->getKind() == BuiltinType::UInt ||
7069 BTy->getKind() == BuiltinType::Long ||
7070 BTy->getKind() == BuiltinType::ULong ||
7071 BTy->getKind() == BuiltinType::LongLong ||
7072 BTy->getKind() == BuiltinType::ULongLong ||
7073 BTy->getKind() == BuiltinType::Float ||
7074 BTy->getKind() == BuiltinType::Half;
7075}
7076
7077/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
7078/// "neon_polyvector_type" attributes are used to create vector types that
7079/// are mangled according to ARM's ABI. Otherwise, these types are identical
7080/// to those created with the "vector_size" attribute. Unlike "vector_size"
7081/// the argument to these Neon attributes is the number of vector elements,
7082/// not the vector size in bytes. The vector width and element type must
7083/// match one of the standard Neon vector types.
7084static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
7085 Sema &S, VectorType::VectorKind VecKind) {
7086 // Target must have NEON
7087 if (!S.Context.getTargetInfo().hasFeature("neon")) {
7088 S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr;
7089 Attr.setInvalid();
7090 return;
7091 }
7092 // Check the attribute arguments.
7093 if (Attr.getNumArgs() != 1) {
7094 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7095 << 1;
7096 Attr.setInvalid();
7097 return;
7098 }
7099 // The number of elements must be an ICE.
7100 Expr *numEltsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
7101 llvm::APSInt numEltsInt(32);
7102 if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
7103 !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
7104 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
7105 << Attr << AANT_ArgumentIntegerConstant
7106 << numEltsExpr->getSourceRange();
7107 Attr.setInvalid();
7108 return;
7109 }
7110 // Only certain element types are supported for Neon vectors.
7111 if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
7112 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
7113 Attr.setInvalid();
7114 return;
7115 }
7116
7117 // The total size of the vector must be 64 or 128 bits.
7118 unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
7119 unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
7120 unsigned vecSize = typeSize * numElts;
7121 if (vecSize != 64 && vecSize != 128) {
7122 S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
7123 Attr.setInvalid();
7124 return;
7125 }
7126
7127 CurType = S.Context.getVectorType(CurType, numElts, VecKind);
7128}
7129
7130/// Handle OpenCL Access Qualifier Attribute.
7131static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr,
7132 Sema &S) {
7133 // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
7134 if (!(CurType->isImageType() || CurType->isPipeType())) {
7135 S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier);
7136 Attr.setInvalid();
7137 return;
7138 }
7139
7140 if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) {
7141 QualType BaseTy = TypedefTy->desugar();
7142
7143 std::string PrevAccessQual;
7144 if (BaseTy->isPipeType()) {
7145 if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) {
7146 OpenCLAccessAttr *Attr =
7147 TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>();
7148 PrevAccessQual = Attr->getSpelling();
7149 } else {
7150 PrevAccessQual = "read_only";
7151 }
7152 } else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) {
7153
7154 switch (ImgType->getKind()) {
7155 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
7156 case BuiltinType::Id: \
7157 PrevAccessQual = #Access; \
7158 break;
7159 #include "clang/Basic/OpenCLImageTypes.def"
7160 default:
7161 llvm_unreachable("Unable to find corresponding image type.")::llvm::llvm_unreachable_internal("Unable to find corresponding image type."
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 7161)
;
7162 }
7163 } else {
7164 llvm_unreachable("unexpected type")::llvm::llvm_unreachable_internal("unexpected type", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 7164)
;
7165 }
7166 StringRef AttrName = Attr.getName()->getName();
7167 if (PrevAccessQual == AttrName.ltrim("_")) {
7168 // Duplicated qualifiers
7169 S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec)
7170 << AttrName << Attr.getRange();
7171 } else {
7172 // Contradicting qualifiers
7173 S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers);
7174 }
7175
7176 S.Diag(TypedefTy->getDecl()->getBeginLoc(),
7177 diag::note_opencl_typedef_access_qualifier) << PrevAccessQual;
7178 } else if (CurType->isPipeType()) {
7179 if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) {
7180 QualType ElemType = CurType->getAs<PipeType>()->getElementType();
7181 CurType = S.Context.getWritePipeType(ElemType);
7182 }
7183 }
7184}
7185
7186static void deduceOpenCLImplicitAddrSpace(TypeProcessingState &State,
7187 QualType &T, TypeAttrLocation TAL) {
7188 Declarator &D = State.getDeclarator();
7189
7190 // Handle the cases where address space should not be deduced.
7191 //
7192 // The pointee type of a pointer type is always deduced since a pointer always
7193 // points to some memory location which should has an address space.
7194 //
7195 // There are situations that at the point of certain declarations, the address
7196 // space may be unknown and better to be left as default. For example, when
7197 // defining a typedef or struct type, they are not associated with any
7198 // specific address space. Later on, they may be used with any address space
7199 // to declare a variable.
7200 //
7201 // The return value of a function is r-value, therefore should not have
7202 // address space.
7203 //
7204 // The void type does not occupy memory, therefore should not have address
7205 // space, except when it is used as a pointee type.
7206 //
7207 // Since LLVM assumes function type is in default address space, it should not
7208 // have address space.
7209 auto ChunkIndex = State.getCurrentChunkIndex();
7210 bool IsPointee =
7211 ChunkIndex > 0 &&
7212 (D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::Pointer ||
7213 D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::BlockPointer ||
7214 D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::Reference);
7215 bool IsFuncReturnType =
7216 ChunkIndex > 0 &&
7217 D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::Function;
7218 bool IsFuncType =
7219 ChunkIndex < D.getNumTypeObjects() &&
7220 D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function;
7221 if ( // Do not deduce addr space for function return type and function type,
7222 // otherwise it will fail some sema check.
7223 IsFuncReturnType || IsFuncType ||
7224 // Do not deduce addr space for member types of struct, except the pointee
7225 // type of a pointer member type.
7226 (D.getContext() == DeclaratorContext::MemberContext && !IsPointee) ||
7227 // Do not deduce addr space for types used to define a typedef and the
7228 // typedef itself, except the pointee type of a pointer type which is used
7229 // to define the typedef.
7230 (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef &&
7231 !IsPointee) ||
7232 // Do not deduce addr space of the void type, e.g. in f(void), otherwise
7233 // it will fail some sema check.
7234 (T->isVoidType() && !IsPointee) ||
7235 // Do not deduce address spaces for dependent types because they might end
7236 // up instantiating to a type with an explicit address space qualifier.
7237 T->isDependentType())
7238 return;
7239
7240 LangAS ImpAddr = LangAS::Default;
7241 // Put OpenCL automatic variable in private address space.
7242 // OpenCL v1.2 s6.5:
7243 // The default address space name for arguments to a function in a
7244 // program, or local variables of a function is __private. All function
7245 // arguments shall be in the __private address space.
7246 if (State.getSema().getLangOpts().OpenCLVersion <= 120 &&
7247 !State.getSema().getLangOpts().OpenCLCPlusPlus) {
7248 ImpAddr = LangAS::opencl_private;
7249 } else {
7250 // If address space is not set, OpenCL 2.0 defines non private default
7251 // address spaces for some cases:
7252 // OpenCL 2.0, section 6.5:
7253 // The address space for a variable at program scope or a static variable
7254 // inside a function can either be __global or __constant, but defaults to
7255 // __global if not specified.
7256 // (...)
7257 // Pointers that are declared without pointing to a named address space
7258 // point to the generic address space.
7259 if (IsPointee) {
7260 ImpAddr = LangAS::opencl_generic;
7261 } else {
7262 if (D.getContext() == DeclaratorContext::TemplateArgContext) {
7263 // Do not deduce address space for non-pointee type in template arg.
7264 } else if (D.getContext() == DeclaratorContext::FileContext) {
7265 ImpAddr = LangAS::opencl_global;
7266 } else {
7267 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
7268 D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern) {
7269 ImpAddr = LangAS::opencl_global;
7270 } else {
7271 ImpAddr = LangAS::opencl_private;
7272 }
7273 }
7274 }
7275 }
7276 T = State.getSema().Context.getAddrSpaceQualType(T, ImpAddr);
7277}
7278
7279static void HandleLifetimeBoundAttr(TypeProcessingState &State,
7280 QualType &CurType,
7281 ParsedAttr &Attr) {
7282 if (State.getDeclarator().isDeclarationOfFunction()) {
7283 CurType = State.getAttributedType(
7284 createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr),
7285 CurType, CurType);
7286 } else {
7287 Attr.diagnoseAppertainsTo(State.getSema(), nullptr);
7288 }
7289}
7290
7291
7292static void processTypeAttrs(TypeProcessingState &state, QualType &type,
7293 TypeAttrLocation TAL,
7294 ParsedAttributesView &attrs) {
7295 // Scan through and apply attributes to this type where it makes sense. Some
7296 // attributes (such as __address_space__, __vector_size__, etc) apply to the
7297 // type, but others can be present in the type specifiers even though they
7298 // apply to the decl. Here we apply type attributes and ignore the rest.
7299
7300 // This loop modifies the list pretty frequently, but we still need to make
7301 // sure we visit every element once. Copy the attributes list, and iterate
7302 // over that.
7303 ParsedAttributesView AttrsCopy{attrs};
7304
7305 state.setParsedNoDeref(false);
7306
7307 for (ParsedAttr &attr : AttrsCopy) {
7308
7309 // Skip attributes that were marked to be invalid.
7310 if (attr.isInvalid())
7311 continue;
7312
7313 if (attr.isCXX11Attribute()) {
7314 // [[gnu::...]] attributes are treated as declaration attributes, so may
7315 // not appertain to a DeclaratorChunk. If we handle them as type
7316 // attributes, accept them in that position and diagnose the GCC
7317 // incompatibility.
7318 if (attr.isGNUScope()) {
7319 bool IsTypeAttr = attr.isTypeAttr();
7320 if (TAL == TAL_DeclChunk) {
7321 state.getSema().Diag(attr.getLoc(),
7322 IsTypeAttr
7323 ? diag::warn_gcc_ignores_type_attr
7324 : diag::warn_cxx11_gnu_attribute_on_type)
7325 << attr.getName();
7326 if (!IsTypeAttr)
7327 continue;
7328 }
7329 } else if (TAL != TAL_DeclChunk) {
7330 // Otherwise, only consider type processing for a C++11 attribute if
7331 // it's actually been applied to a type.
7332 continue;
7333 }
7334 }
7335
7336 // If this is an attribute we can handle, do so now,
7337 // otherwise, add it to the FnAttrs list for rechaining.
7338 switch (attr.getKind()) {
7339 default:
7340 // A C++11 attribute on a declarator chunk must appertain to a type.
7341 if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
7342 state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
7343 << attr;
7344 attr.setUsedAsTypeAttr();
7345 }
7346 break;
7347
7348 case ParsedAttr::UnknownAttribute:
7349 if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
7350 state.getSema().Diag(attr.getLoc(),
7351 diag::warn_unknown_attribute_ignored)
7352 << attr.getName();
7353 break;
7354
7355 case ParsedAttr::IgnoredAttribute:
7356 break;
7357
7358 case ParsedAttr::AT_MayAlias:
7359 // FIXME: This attribute needs to actually be handled, but if we ignore
7360 // it it breaks large amounts of Linux software.
7361 attr.setUsedAsTypeAttr();
7362 break;
7363 case ParsedAttr::AT_OpenCLPrivateAddressSpace:
7364 case ParsedAttr::AT_OpenCLGlobalAddressSpace:
7365 case ParsedAttr::AT_OpenCLLocalAddressSpace:
7366 case ParsedAttr::AT_OpenCLConstantAddressSpace:
7367 case ParsedAttr::AT_OpenCLGenericAddressSpace:
7368 case ParsedAttr::AT_AddressSpace:
7369 HandleAddressSpaceTypeAttribute(type, attr, state);
7370 attr.setUsedAsTypeAttr();
7371 break;
7372 OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership:
7373 if (!handleObjCPointerTypeAttr(state, attr, type))
7374 distributeObjCPointerTypeAttr(state, attr, type);
7375 attr.setUsedAsTypeAttr();
7376 break;
7377 case ParsedAttr::AT_VectorSize:
7378 HandleVectorSizeAttr(type, attr, state.getSema());
7379 attr.setUsedAsTypeAttr();
7380 break;
7381 case ParsedAttr::AT_ExtVectorType:
7382 HandleExtVectorTypeAttr(type, attr, state.getSema());
7383 attr.setUsedAsTypeAttr();
7384 break;
7385 case ParsedAttr::AT_NeonVectorType:
7386 HandleNeonVectorTypeAttr(type, attr, state.getSema(),
7387 VectorType::NeonVector);
7388 attr.setUsedAsTypeAttr();
7389 break;
7390 case ParsedAttr::AT_NeonPolyVectorType:
7391 HandleNeonVectorTypeAttr(type, attr, state.getSema(),
7392 VectorType::NeonPolyVector);
7393 attr.setUsedAsTypeAttr();
7394 break;
7395 case ParsedAttr::AT_OpenCLAccess:
7396 HandleOpenCLAccessAttr(type, attr, state.getSema());
7397 attr.setUsedAsTypeAttr();
7398 break;
7399 case ParsedAttr::AT_LifetimeBound:
7400 if (TAL == TAL_DeclChunk)
7401 HandleLifetimeBoundAttr(state, type, attr);
7402 break;
7403
7404 case ParsedAttr::AT_NoDeref: {
7405 ASTContext &Ctx = state.getSema().Context;
7406 type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr),
7407 type, type);
7408 attr.setUsedAsTypeAttr();
7409 state.setParsedNoDeref(true);
7410 break;
7411 }
7412
7413 MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr
::AT_SPtr: case ParsedAttr::AT_UPtr
:
7414 if (!handleMSPointerTypeQualifierAttr(state, attr, type))
7415 attr.setUsedAsTypeAttr();
7416 break;
7417
7418
7419 NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable
: case ParsedAttr::AT_TypeNullUnspecified
:
7420 // Either add nullability here or try to distribute it. We
7421 // don't want to distribute the nullability specifier past any
7422 // dependent type, because that complicates the user model.
7423 if (type->canHaveNullability() || type->isDependentType() ||
7424 type->isArrayType() ||
7425 !distributeNullabilityTypeAttr(state, type, attr)) {
7426 unsigned endIndex;
7427 if (TAL == TAL_DeclChunk)
7428 endIndex = state.getCurrentChunkIndex();
7429 else
7430 endIndex = state.getDeclarator().getNumTypeObjects();
7431 bool allowOnArrayType =
7432 state.getDeclarator().isPrototypeContext() &&
7433 !hasOuterPointerLikeChunk(state.getDeclarator(), endIndex);
7434 if (checkNullabilityTypeSpecifier(
7435 state,
7436 type,
7437 attr,
7438 allowOnArrayType)) {
7439 attr.setInvalid();
7440 }
7441
7442 attr.setUsedAsTypeAttr();
7443 }
7444 break;
7445
7446 case ParsedAttr::AT_ObjCKindOf:
7447 // '__kindof' must be part of the decl-specifiers.
7448 switch (TAL) {
7449 case TAL_DeclSpec:
7450 break;
7451
7452 case TAL_DeclChunk:
7453 case TAL_DeclName:
7454 state.getSema().Diag(attr.getLoc(),
7455 diag::err_objc_kindof_wrong_position)
7456 << FixItHint::CreateRemoval(attr.getLoc())
7457 << FixItHint::CreateInsertion(
7458 state.getDeclarator().getDeclSpec().getBeginLoc(),
7459 "__kindof ");
7460 break;
7461 }
7462
7463 // Apply it regardless.
7464 if (checkObjCKindOfType(state, type, attr))
7465 attr.setInvalid();
7466 break;
7467
7468 FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn
: case ParsedAttr::AT_Regparm: case ParsedAttr::AT_AnyX86NoCallerSavedRegisters
: case ParsedAttr::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl
: case ParsedAttr::AT_FastCall: case ParsedAttr::AT_StdCall: case
ParsedAttr::AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr
::AT_Pascal: case ParsedAttr::AT_SwiftCall: case ParsedAttr::
AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr
::AT_MSABI: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs
: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost
: case ParsedAttr::AT_PreserveAll
:
7469 attr.setUsedAsTypeAttr();
7470
7471 // Never process function type attributes as part of the
7472 // declaration-specifiers.
7473 if (TAL == TAL_DeclSpec)
7474 distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
7475
7476 // Otherwise, handle the possible delays.
7477 else if (!handleFunctionTypeAttr(state, attr, type))
7478 distributeFunctionTypeAttr(state, attr, type);
7479 break;
7480 }
7481 }
7482
7483 if (!state.getSema().getLangOpts().OpenCL ||
7484 type.getAddressSpace() != LangAS::Default)
7485 return;
7486
7487 deduceOpenCLImplicitAddrSpace(state, type, TAL);
7488}
7489
7490void Sema::completeExprArrayBound(Expr *E) {
7491 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
7492 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
7493 if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
7494 auto *Def = Var->getDefinition();
7495 if (!Def) {
7496 SourceLocation PointOfInstantiation = E->getExprLoc();
7497 InstantiateVariableDefinition(PointOfInstantiation, Var);
7498 Def = Var->getDefinition();
7499
7500 // If we don't already have a point of instantiation, and we managed
7501 // to instantiate a definition, this is the point of instantiation.
7502 // Otherwise, we don't request an end-of-TU instantiation, so this is
7503 // not a point of instantiation.
7504 // FIXME: Is this really the right behavior?
7505 if (Var->getPointOfInstantiation().isInvalid() && Def) {
7506 assert(Var->getTemplateSpecializationKind() ==((Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation
&& "explicit instantiation with no point of instantiation"
) ? static_cast<void> (0) : __assert_fail ("Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation && \"explicit instantiation with no point of instantiation\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 7508, __PRETTY_FUNCTION__))
7507 TSK_ImplicitInstantiation &&((Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation
&& "explicit instantiation with no point of instantiation"
) ? static_cast<void> (0) : __assert_fail ("Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation && \"explicit instantiation with no point of instantiation\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 7508, __PRETTY_FUNCTION__))
7508 "explicit instantiation with no point of instantiation")((Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation
&& "explicit instantiation with no point of instantiation"
) ? static_cast<void> (0) : __assert_fail ("Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation && \"explicit instantiation with no point of instantiation\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 7508, __PRETTY_FUNCTION__))
;
7509 Var->setTemplateSpecializationKind(
7510 Var->getTemplateSpecializationKind(), PointOfInstantiation);
7511 }
7512 }
7513
7514 // Update the type to the definition's type both here and within the
7515 // expression.
7516 if (Def) {
7517 DRE->setDecl(Def);
7518 QualType T = Def->getType();
7519 DRE->setType(T);
7520 // FIXME: Update the type on all intervening expressions.
7521 E->setType(T);
7522 }
7523
7524 // We still go on to try to complete the type independently, as it
7525 // may also require instantiations or diagnostics if it remains
7526 // incomplete.
7527 }
7528 }
7529 }
7530}
7531
7532/// Ensure that the type of the given expression is complete.
7533///
7534/// This routine checks whether the expression \p E has a complete type. If the
7535/// expression refers to an instantiable construct, that instantiation is
7536/// performed as needed to complete its type. Furthermore
7537/// Sema::RequireCompleteType is called for the expression's type (or in the
7538/// case of a reference type, the referred-to type).
7539///
7540/// \param E The expression whose type is required to be complete.
7541/// \param Diagnoser The object that will emit a diagnostic if the type is
7542/// incomplete.
7543///
7544/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
7545/// otherwise.
7546bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser) {
7547 QualType T = E->getType();
7548
7549 // Incomplete array types may be completed by the initializer attached to
7550 // their definitions. For static data members of class templates and for
7551 // variable templates, we need to instantiate the definition to get this
7552 // initializer and complete the type.
7553 if (T->isIncompleteArrayType()) {
7554 completeExprArrayBound(E);
7555 T = E->getType();
7556 }
7557
7558 // FIXME: Are there other cases which require instantiating something other
7559 // than the type to complete the type of an expression?
7560
7561 return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
7562}
7563
7564bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
7565 BoundTypeDiagnoser<> Diagnoser(DiagID);
7566 return RequireCompleteExprType(E, Diagnoser);
7567}
7568
7569/// Ensure that the type T is a complete type.
7570///
7571/// This routine checks whether the type @p T is complete in any
7572/// context where a complete type is required. If @p T is a complete
7573/// type, returns false. If @p T is a class template specialization,
7574/// this routine then attempts to perform class template
7575/// instantiation. If instantiation fails, or if @p T is incomplete
7576/// and cannot be completed, issues the diagnostic @p diag (giving it
7577/// the type @p T) and returns true.
7578///
7579/// @param Loc The location in the source that the incomplete type
7580/// diagnostic should refer to.
7581///
7582/// @param T The type that this routine is examining for completeness.
7583///
7584/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
7585/// @c false otherwise.
7586bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
7587 TypeDiagnoser &Diagnoser) {
7588 if (RequireCompleteTypeImpl(Loc, T, &Diagnoser))
7589 return true;
7590 if (const TagType *Tag = T->getAs<TagType>()) {
7591 if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
7592 Tag->getDecl()->setCompleteDefinitionRequired();
7593 Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
7594 }
7595 }
7596 return false;
7597}
7598
7599bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) {
7600 llvm::DenseSet<std::pair<Decl *, Decl *>> NonEquivalentDecls;
7601 if (!Suggested)
7602 return false;
7603
7604 // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
7605 // and isolate from other C++ specific checks.
7606 StructuralEquivalenceContext Ctx(
7607 D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls,
7608 StructuralEquivalenceKind::Default,
7609 false /*StrictTypeSpelling*/, true /*Complain*/,
7610 true /*ErrorOnTagTypeMismatch*/);
7611 return Ctx.IsEquivalent(D, Suggested);
7612}
7613
7614/// Determine whether there is any declaration of \p D that was ever a
7615/// definition (perhaps before module merging) and is currently visible.
7616/// \param D The definition of the entity.
7617/// \param Suggested Filled in with the declaration that should be made visible
7618/// in order to provide a definition of this entity.
7619/// \param OnlyNeedComplete If \c true, we only need the type to be complete,
7620/// not defined. This only matters for enums with a fixed underlying
7621/// type, since in all other cases, a type is complete if and only if it
7622/// is defined.
7623bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
7624 bool OnlyNeedComplete) {
7625 // Easy case: if we don't have modules, all declarations are visible.
7626 if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
7627 return true;
7628
7629 // If this definition was instantiated from a template, map back to the
7630 // pattern from which it was instantiated.
7631 if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
7632 // We're in the middle of defining it; this definition should be treated
7633 // as visible.
7634 return true;
7635 } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
7636 if (auto *Pattern = RD->getTemplateInstantiationPattern())
7637 RD = Pattern;
7638 D = RD->getDefinition();
7639 } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
7640 if (auto *Pattern = ED->getTemplateInstantiationPattern())
7641 ED = Pattern;
7642 if (OnlyNeedComplete && ED->isFixed()) {
7643 // If the enum has a fixed underlying type, and we're only looking for a
7644 // complete type (not a definition), any visible declaration of it will
7645 // do.
7646 *Suggested = nullptr;
7647 for (auto *Redecl : ED->redecls()) {
7648 if (isVisible(Redecl))
7649 return true;
7650 if (Redecl->isThisDeclarationADefinition() ||
7651 (Redecl->isCanonicalDecl() && !*Suggested))
7652 *Suggested = Redecl;
7653 }
7654 return false;
7655 }
7656 D = ED->getDefinition();
7657 } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
7658 if (auto *Pattern = FD->getTemplateInstantiationPattern())
7659 FD = Pattern;
7660 D = FD->getDefinition();
7661 } else if (auto *VD = dyn_cast<VarDecl>(D)) {
7662 if (auto *Pattern = VD->getTemplateInstantiationPattern())
7663 VD = Pattern;
7664 D = VD->getDefinition();
7665 }
7666 assert(D && "missing definition for pattern of instantiated definition")((D && "missing definition for pattern of instantiated definition"
) ? static_cast<void> (0) : __assert_fail ("D && \"missing definition for pattern of instantiated definition\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 7666, __PRETTY_FUNCTION__))
;
7667
7668 *Suggested = D;
7669
7670 auto DefinitionIsVisible = [&] {
7671 // The (primary) definition might be in a visible module.
7672 if (isVisible(D))
7673 return true;
7674
7675 // A visible module might have a merged definition instead.
7676 if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D)
7677 : hasVisibleMergedDefinition(D)) {
7678 if (CodeSynthesisContexts.empty() &&
7679 !getLangOpts().ModulesLocalVisibility) {
7680 // Cache the fact that this definition is implicitly visible because
7681 // there is a visible merged definition.
7682 D->setVisibleDespiteOwningModule();
7683 }
7684 return true;
7685 }
7686
7687 return false;
7688 };
7689
7690 if (DefinitionIsVisible())
7691 return true;
7692
7693 // The external source may have additional definitions of this entity that are
7694 // visible, so complete the redeclaration chain now and ask again.
7695 if (auto *Source = Context.getExternalSource()) {
7696 Source->CompleteRedeclChain(D);
7697 return DefinitionIsVisible();
7698 }
7699
7700 return false;
7701}
7702
7703/// Locks in the inheritance model for the given class and all of its bases.
7704static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
7705 RD = RD->getMostRecentNonInjectedDecl();
7706 if (!RD->hasAttr<MSInheritanceAttr>()) {
7707 MSInheritanceAttr::Spelling IM;
7708
7709 switch (S.MSPointerToMemberRepresentationMethod) {
7710 case LangOptions::PPTMK_BestCase:
7711 IM = RD->calculateInheritanceModel();
7712 break;
7713 case LangOptions::PPTMK_FullGeneralitySingleInheritance:
7714 IM = MSInheritanceAttr::Keyword_single_inheritance;
7715 break;
7716 case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
7717 IM = MSInheritanceAttr::Keyword_multiple_inheritance;
7718 break;
7719 case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
7720 IM = MSInheritanceAttr::Keyword_unspecified_inheritance;
7721 break;
7722 }
7723
7724 RD->addAttr(MSInheritanceAttr::CreateImplicit(
7725 S.getASTContext(), IM,
7726 /*BestCase=*/S.MSPointerToMemberRepresentationMethod ==
7727 LangOptions::PPTMK_BestCase,
7728 S.ImplicitMSInheritanceAttrLoc.isValid()
7729 ? S.ImplicitMSInheritanceAttrLoc
7730 : RD->getSourceRange()));
7731 S.Consumer.AssignInheritanceModel(RD);
7732 }
7733}
7734
7735/// The implementation of RequireCompleteType
7736bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
7737 TypeDiagnoser *Diagnoser) {
7738 // FIXME: Add this assertion to make sure we always get instantiation points.
7739 // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
7740 // FIXME: Add this assertion to help us flush out problems with
7741 // checking for dependent types and type-dependent expressions.
7742 //
7743 // assert(!T->isDependentType() &&
7744 // "Can't ask whether a dependent type is complete");
7745
7746 if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
7747 if (!MPTy->getClass()->isDependentType()) {
7748 if (getLangOpts().CompleteMemberPointers &&
7749 !MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
7750 RequireCompleteType(Loc, QualType(MPTy->getClass(), 0),
7751 diag::err_memptr_incomplete))
7752 return true;
7753
7754 // We lock in the inheritance model once somebody has asked us to ensure
7755 // that a pointer-to-member type is complete.
7756 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
7757 (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
7758 assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
7759 }
7760 }
7761 }
7762
7763 NamedDecl *Def = nullptr;
7764 bool Incomplete = T->isIncompleteType(&Def);
7765
7766 // Check that any necessary explicit specializations are visible. For an
7767 // enum, we just need the declaration, so don't check this.
7768 if (Def && !isa<EnumDecl>(Def))
7769 checkSpecializationVisibility(Loc, Def);
7770
7771 // If we have a complete type, we're done.
7772 if (!Incomplete) {
7773 // If we know about the definition but it is not visible, complain.
7774 NamedDecl *SuggestedDef = nullptr;
7775 if (Def &&
7776 !hasVisibleDefinition(Def, &SuggestedDef, /*OnlyNeedComplete*/true)) {
7777 // If the user is going to see an error here, recover by making the
7778 // definition visible.
7779 bool TreatAsComplete = Diagnoser && !isSFINAEContext();
7780 if (Diagnoser && SuggestedDef)
7781 diagnoseMissingImport(Loc, SuggestedDef, MissingImportKind::Definition,
7782 /*Recover*/TreatAsComplete);
7783 return !TreatAsComplete;
7784 } else if (Def && !TemplateInstCallbacks.empty()) {
7785 CodeSynthesisContext TempInst;
7786 TempInst.Kind = CodeSynthesisContext::Memoization;
7787 TempInst.Template = Def;
7788 TempInst.Entity = Def;
7789 TempInst.PointOfInstantiation = Loc;
7790 atTemplateBegin(TemplateInstCallbacks, *this, TempInst);
7791 atTemplateEnd(TemplateInstCallbacks, *this, TempInst);
7792 }
7793
7794 return false;
7795 }
7796
7797 TagDecl *Tag = dyn_cast_or_null<TagDecl>(Def);
7798 ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Def);
7799
7800 // Give the external source a chance to provide a definition of the type.
7801 // This is kept separate from completing the redeclaration chain so that
7802 // external sources such as LLDB can avoid synthesizing a type definition
7803 // unless it's actually needed.
7804 if (Tag || IFace) {
7805 // Avoid diagnosing invalid decls as incomplete.
7806 if (Def->isInvalidDecl())
7807 return true;
7808
7809 // Give the external AST source a chance to complete the type.
7810 if (auto *Source = Context.getExternalSource()) {
7811 if (Tag && Tag->hasExternalLexicalStorage())
7812 Source->CompleteType(Tag);
7813 if (IFace && IFace->hasExternalLexicalStorage())
7814 Source->CompleteType(IFace);
7815 // If the external source completed the type, go through the motions
7816 // again to ensure we're allowed to use the completed type.
7817 if (!T->isIncompleteType())
7818 return RequireCompleteTypeImpl(Loc, T, Diagnoser);
7819 }
7820 }
7821
7822 // If we have a class template specialization or a class member of a
7823 // class template specialization, or an array with known size of such,
7824 // try to instantiate it.
7825 if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Tag)) {
7826 bool Instantiated = false;
7827 bool Diagnosed = false;
7828 if (RD->isDependentContext()) {
7829 // Don't try to instantiate a dependent class (eg, a member template of
7830 // an instantiated class template specialization).
7831 // FIXME: Can this ever happen?
7832 } else if (auto *ClassTemplateSpec =
7833 dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
7834 if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
7835 Diagnosed = InstantiateClassTemplateSpecialization(
7836 Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
7837 /*Complain=*/Diagnoser);
7838 Instantiated = true;
7839 }
7840 } else {
7841 CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass();
7842 if (!RD->isBeingDefined() && Pattern) {
7843 MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo();
7844 assert(MSI && "Missing member specialization information?")((MSI && "Missing member specialization information?"
) ? static_cast<void> (0) : __assert_fail ("MSI && \"Missing member specialization information?\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 7844, __PRETTY_FUNCTION__))
;
7845 // This record was instantiated from a class within a template.
7846 if (MSI->getTemplateSpecializationKind() !=
7847 TSK_ExplicitSpecialization) {
7848 Diagnosed = InstantiateClass(Loc, RD, Pattern,
7849 getTemplateInstantiationArgs(RD),
7850 TSK_ImplicitInstantiation,
7851 /*Complain=*/Diagnoser);
7852 Instantiated = true;
7853 }
7854 }
7855 }
7856
7857 if (Instantiated) {
7858 // Instantiate* might have already complained that the template is not
7859 // defined, if we asked it to.
7860 if (Diagnoser && Diagnosed)
7861 return true;
7862 // If we instantiated a definition, check that it's usable, even if
7863 // instantiation produced an error, so that repeated calls to this
7864 // function give consistent answers.
7865 if (!T->isIncompleteType())
7866 return RequireCompleteTypeImpl(Loc, T, Diagnoser);
7867 }
7868 }
7869
7870 // FIXME: If we didn't instantiate a definition because of an explicit
7871 // specialization declaration, check that it's visible.
7872
7873 if (!Diagnoser)
7874 return true;
7875
7876 Diagnoser->diagnose(*this, Loc, T);
7877
7878 // If the type was a forward declaration of a class/struct/union
7879 // type, produce a note.
7880 if (Tag && !Tag->isInvalidDecl())
7881 Diag(Tag->getLocation(),
7882 Tag->isBeingDefined() ? diag::note_type_being_defined
7883 : diag::note_forward_declaration)
7884 << Context.getTagDeclType(Tag);
7885
7886 // If the Objective-C class was a forward declaration, produce a note.
7887 if (IFace && !IFace->isInvalidDecl())
7888 Diag(IFace->getLocation(), diag::note_forward_class);
7889
7890 // If we have external information that we can use to suggest a fix,
7891 // produce a note.
7892 if (ExternalSource)
7893 ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
7894
7895 return true;
7896}
7897
7898bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
7899 unsigned DiagID) {
7900 BoundTypeDiagnoser<> Diagnoser(DiagID);
7901 return RequireCompleteType(Loc, T, Diagnoser);
7902}
7903
7904/// Get diagnostic %select index for tag kind for
7905/// literal type diagnostic message.
7906/// WARNING: Indexes apply to particular diagnostics only!
7907///
7908/// \returns diagnostic %select index.
7909static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
7910 switch (Tag) {
7911 case TTK_Struct: return 0;
7912 case TTK_Interface: return 1;
7913 case TTK_Class: return 2;
7914 default: llvm_unreachable("Invalid tag kind for literal type diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for literal type diagnostic!"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 7914)
;
7915 }
7916}
7917
7918/// Ensure that the type T is a literal type.
7919///
7920/// This routine checks whether the type @p T is a literal type. If @p T is an
7921/// incomplete type, an attempt is made to complete it. If @p T is a literal
7922/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
7923/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
7924/// it the type @p T), along with notes explaining why the type is not a
7925/// literal type, and returns true.
7926///
7927/// @param Loc The location in the source that the non-literal type
7928/// diagnostic should refer to.
7929///
7930/// @param T The type that this routine is examining for literalness.
7931///
7932/// @param Diagnoser Emits a diagnostic if T is not a literal type.
7933///
7934/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
7935/// @c false otherwise.
7936bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
7937 TypeDiagnoser &Diagnoser) {
7938 assert(!T->isDependentType() && "type should not be dependent")((!T->isDependentType() && "type should not be dependent"
) ? static_cast<void> (0) : __assert_fail ("!T->isDependentType() && \"type should not be dependent\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 7938, __PRETTY_FUNCTION__))
;
7939
7940 QualType ElemType = Context.getBaseElementType(T);
7941 if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
7942 T->isLiteralType(Context))
7943 return false;
7944
7945 Diagnoser.diagnose(*this, Loc, T);
7946
7947 if (T->isVariableArrayType())
7948 return true;
7949
7950 const RecordType *RT = ElemType->getAs<RecordType>();
7951 if (!RT)
7952 return true;
7953
7954 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
7955
7956 // A partially-defined class type can't be a literal type, because a literal
7957 // class type must have a trivial destructor (which can't be checked until
7958 // the class definition is complete).
7959 if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
7960 return true;
7961
7962 // [expr.prim.lambda]p3:
7963 // This class type is [not] a literal type.
7964 if (RD->isLambda() && !getLangOpts().CPlusPlus17) {
7965 Diag(RD->getLocation(), diag::note_non_literal_lambda);
7966 return true;
7967 }
7968
7969 // If the class has virtual base classes, then it's not an aggregate, and
7970 // cannot have any constexpr constructors or a trivial default constructor,
7971 // so is non-literal. This is better to diagnose than the resulting absence
7972 // of constexpr constructors.
7973 if (RD->getNumVBases()) {
7974 Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
7975 << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
7976 for (const auto &I : RD->vbases())
7977 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
7978 << I.getSourceRange();
7979 } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
7980 !RD->hasTrivialDefaultConstructor()) {
7981 Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
7982 } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
7983 for (const auto &I : RD->bases()) {
7984 if (!I.getType()->isLiteralType(Context)) {
7985 Diag(I.getBeginLoc(), diag::note_non_literal_base_class)
7986 << RD << I.getType() << I.getSourceRange();
7987 return true;
7988 }
7989 }
7990 for (const auto *I : RD->fields()) {
7991 if (!I->getType()->isLiteralType(Context) ||
7992 I->getType().isVolatileQualified()) {
7993 Diag(I->getLocation(), diag::note_non_literal_field)
7994 << RD << I << I->getType()
7995 << I->getType().isVolatileQualified();
7996 return true;
7997 }
7998 }
7999 } else if (!RD->hasTrivialDestructor()) {
8000 // All fields and bases are of literal types, so have trivial destructors.
8001 // If this class's destructor is non-trivial it must be user-declared.
8002 CXXDestructorDecl *Dtor = RD->getDestructor();
8003 assert(Dtor && "class has literal fields and bases but no dtor?")((Dtor && "class has literal fields and bases but no dtor?"
) ? static_cast<void> (0) : __assert_fail ("Dtor && \"class has literal fields and bases but no dtor?\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 8003, __PRETTY_FUNCTION__))
;
8004 if (!Dtor)
8005 return true;
8006
8007 Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
8008 diag::note_non_literal_user_provided_dtor :
8009 diag::note_non_literal_nontrivial_dtor) << RD;
8010 if (!Dtor->isUserProvided())
8011 SpecialMemberIsTrivial(Dtor, CXXDestructor, TAH_IgnoreTrivialABI,
8012 /*Diagnose*/true);
8013 }
8014
8015 return true;
8016}
8017
8018bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
8019 BoundTypeDiagnoser<> Diagnoser(DiagID);
8020 return RequireLiteralType(Loc, T, Diagnoser);
8021}
8022
8023/// Retrieve a version of the type 'T' that is elaborated by Keyword, qualified
8024/// by the nested-name-specifier contained in SS, and that is (re)declared by
8025/// OwnedTagDecl, which is nullptr if this is not a (re)declaration.
8026QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
8027 const CXXScopeSpec &SS, QualType T,
8028 TagDecl *OwnedTagDecl) {
8029 if (T.isNull())
8030 return T;
8031 NestedNameSpecifier *NNS;
8032 if (SS.isValid())
8033 NNS = SS.getScopeRep();
8034 else {
8035 if (Keyword == ETK_None)
8036 return T;
8037 NNS = nullptr;
8038 }
8039 return Context.getElaboratedType(Keyword, NNS, T, OwnedTagDecl);
8040}
8041
8042QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
8043 ExprResult ER = CheckPlaceholderExpr(E);
8044 if (ER.isInvalid()) return QualType();
8045 E = ER.get();
8046
8047 if (!getLangOpts().CPlusPlus && E->refersToBitField())
8048 Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 2;
8049
8050 if (!E->isTypeDependent()) {
8051 QualType T = E->getType();
8052 if (const TagType *TT = T->getAs<TagType>())
8053 DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
8054 }
8055 return Context.getTypeOfExprType(E);
8056}
8057
8058/// getDecltypeForExpr - Given an expr, will return the decltype for
8059/// that expression, according to the rules in C++11
8060/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
8061static QualType getDecltypeForExpr(Sema &S, Expr *E) {
8062 if (E->isTypeDependent())
8063 return S.Context.DependentTy;
8064
8065 // C++11 [dcl.type.simple]p4:
8066 // The type denoted by decltype(e) is defined as follows:
8067 //
8068 // - if e is an unparenthesized id-expression or an unparenthesized class
8069 // member access (5.2.5), decltype(e) is the type of the entity named
8070 // by e. If there is no such entity, or if e names a set of overloaded
8071 // functions, the program is ill-formed;
8072 //
8073 // We apply the same rules for Objective-C ivar and property references.
8074 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
8075 const ValueDecl *VD = DRE->getDecl();
8076 return VD->getType();
8077 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
8078 if (const ValueDecl *VD = ME->getMemberDecl())
8079 if (isa<FieldDecl>(VD) || isa<VarDecl>(VD))
8080 return VD->getType();
8081 } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
8082 return IR->getDecl()->getType();
8083 } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
8084 if (PR->isExplicitProperty())
8085 return PR->getExplicitProperty()->getType();
8086 } else if (auto *PE = dyn_cast<PredefinedExpr>(E)) {
8087 return PE->getType();
8088 }
8089
8090 // C++11 [expr.lambda.prim]p18:
8091 // Every occurrence of decltype((x)) where x is a possibly
8092 // parenthesized id-expression that names an entity of automatic
8093 // storage duration is treated as if x were transformed into an
8094 // access to a corresponding data member of the closure type that
8095 // would have been declared if x were an odr-use of the denoted
8096 // entity.
8097 using namespace sema;
8098 if (S.getCurLambda()) {
8099 if (isa<ParenExpr>(E)) {
8100 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
8101 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
8102 QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
8103 if (!T.isNull())
8104 return S.Context.getLValueReferenceType(T);
8105 }
8106 }
8107 }
8108 }
8109
8110
8111 // C++11 [dcl.type.simple]p4:
8112 // [...]
8113 QualType T = E->getType();
8114 switch (E->getValueKind()) {
8115 // - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
8116 // type of e;
8117 case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
8118 // - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
8119 // type of e;
8120 case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
8121 // - otherwise, decltype(e) is the type of e.
8122 case VK_RValue: break;
8123 }
8124
8125 return T;
8126}
8127
8128QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc,
8129 bool AsUnevaluated) {
8130 ExprResult ER = CheckPlaceholderExpr(E);
8131 if (ER.isInvalid()) return QualType();
8132 E = ER.get();
8133
8134 if (AsUnevaluated && CodeSynthesisContexts.empty() &&
8135 E->HasSideEffects(Context, false)) {
8136 // The expression operand for decltype is in an unevaluated expression
8137 // context, so side effects could result in unintended consequences.
8138 Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
8139 }
8140
8141 return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
8142}
8143
8144QualType Sema::BuildUnaryTransformType(QualType BaseType,
8145 UnaryTransformType::UTTKind UKind,
8146 SourceLocation Loc) {
8147 switch (UKind) {
8148 case UnaryTransformType::EnumUnderlyingType:
8149 if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
8150 Diag(Loc, diag::err_only_enums_have_underlying_types);
8151 return QualType();
8152 } else {
8153 QualType Underlying = BaseType;
8154 if (!BaseType->isDependentType()) {
8155 // The enum could be incomplete if we're parsing its definition or
8156 // recovering from an error.
8157 NamedDecl *FwdDecl = nullptr;
8158 if (BaseType->isIncompleteType(&FwdDecl)) {
8159 Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
8160 Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
8161 return QualType();
8162 }
8163
8164 EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
8165 assert(ED && "EnumType has no EnumDecl")((ED && "EnumType has no EnumDecl") ? static_cast<
void> (0) : __assert_fail ("ED && \"EnumType has no EnumDecl\""
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 8165, __PRETTY_FUNCTION__))
;
8166
8167 DiagnoseUseOfDecl(ED, Loc);
8168
8169 Underlying = ED->getIntegerType();
8170 assert(!Underlying.isNull())((!Underlying.isNull()) ? static_cast<void> (0) : __assert_fail
("!Underlying.isNull()", "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 8170, __PRETTY_FUNCTION__))
;
8171 }
8172 return Context.getUnaryTransformType(BaseType, Underlying,
8173 UnaryTransformType::EnumUnderlyingType);
8174 }
8175 }
8176 llvm_unreachable("unknown unary transform type")::llvm::llvm_unreachable_internal("unknown unary transform type"
, "/build/llvm-toolchain-snapshot-8~svn348900/tools/clang/lib/Sema/SemaType.cpp"
, 8176)
;
8177}
8178
8179QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
8180 if (!T->isDependentType()) {
8181 // FIXME: It isn't entirely clear whether incomplete atomic types
8182 // are allowed or not; for simplicity, ban them for the moment.
8183 if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
8184 return QualType();
8185
8186 int DisallowedKind = -1;
8187 if (T->isArrayType())
8188 DisallowedKind = 1;
8189 else if (T->isFunctionType())
8190 DisallowedKind = 2;
8191 else if (T->isReferenceType())
8192 DisallowedKind = 3;
8193 else if (T->isAtomicType())
8194 DisallowedKind = 4;
8195 else if (T.hasQualifiers())
8196 DisallowedKind = 5;
8197 else if (!T.isTriviallyCopyableType(Context))
8198 // Some other non-trivially-copyable type (probably a C++ class)
8199 DisallowedKind = 6;
8200
8201 if (DisallowedKind != -1) {
8202 Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
8203 return QualType();
8204 }
8205
8206 // FIXME: Do we need any handling for ARC here?
8207 }
8208
8209 // Build the pointer type.
8210 return Context.getAtomicType(T);
8211}