Bug Summary

File:lib/Analysis/VectorUtils.cpp
Warning:line 996, column 11
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name VectorUtils.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/lib/Analysis -I /build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn362543/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/lib/Analysis -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn362543=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-06-05-060531-1271-1 -x c++ /build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/VectorUtils.cpp -faddrsig
1//===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines vectorizer utilities.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/Analysis/VectorUtils.h"
14#include "llvm/ADT/EquivalenceClasses.h"
15#include "llvm/Analysis/DemandedBits.h"
16#include "llvm/Analysis/LoopInfo.h"
17#include "llvm/Analysis/LoopIterator.h"
18#include "llvm/Analysis/ScalarEvolution.h"
19#include "llvm/Analysis/ScalarEvolutionExpressions.h"
20#include "llvm/Analysis/TargetTransformInfo.h"
21#include "llvm/Analysis/ValueTracking.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/GetElementPtrTypeIterator.h"
24#include "llvm/IR/IRBuilder.h"
25#include "llvm/IR/PatternMatch.h"
26#include "llvm/IR/Value.h"
27
28#define DEBUG_TYPE"vectorutils" "vectorutils"
29
30using namespace llvm;
31using namespace llvm::PatternMatch;
32
33/// Maximum factor for an interleaved memory access.
34static cl::opt<unsigned> MaxInterleaveGroupFactor(
35 "max-interleave-group-factor", cl::Hidden,
36 cl::desc("Maximum factor for an interleaved access group (default = 8)"),
37 cl::init(8));
38
39/// Return true if all of the intrinsic's arguments and return type are scalars
40/// for the scalar form of the intrinsic and vectors for the vector form of the
41/// intrinsic.
42bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
43 switch (ID) {
44 case Intrinsic::bswap: // Begin integer bit-manipulation.
45 case Intrinsic::bitreverse:
46 case Intrinsic::ctpop:
47 case Intrinsic::ctlz:
48 case Intrinsic::cttz:
49 case Intrinsic::fshl:
50 case Intrinsic::fshr:
51 case Intrinsic::sadd_sat:
52 case Intrinsic::ssub_sat:
53 case Intrinsic::uadd_sat:
54 case Intrinsic::usub_sat:
55 case Intrinsic::smul_fix:
56 case Intrinsic::umul_fix:
57 case Intrinsic::sqrt: // Begin floating-point.
58 case Intrinsic::sin:
59 case Intrinsic::cos:
60 case Intrinsic::exp:
61 case Intrinsic::exp2:
62 case Intrinsic::log:
63 case Intrinsic::log10:
64 case Intrinsic::log2:
65 case Intrinsic::fabs:
66 case Intrinsic::minnum:
67 case Intrinsic::maxnum:
68 case Intrinsic::minimum:
69 case Intrinsic::maximum:
70 case Intrinsic::copysign:
71 case Intrinsic::floor:
72 case Intrinsic::ceil:
73 case Intrinsic::trunc:
74 case Intrinsic::rint:
75 case Intrinsic::nearbyint:
76 case Intrinsic::round:
77 case Intrinsic::pow:
78 case Intrinsic::fma:
79 case Intrinsic::fmuladd:
80 case Intrinsic::powi:
81 case Intrinsic::canonicalize:
82 return true;
83 default:
84 return false;
85 }
86}
87
88/// Identifies if the intrinsic has a scalar operand. It check for
89/// ctlz,cttz and powi special intrinsics whose argument is scalar.
90bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
91 unsigned ScalarOpdIdx) {
92 switch (ID) {
93 case Intrinsic::ctlz:
94 case Intrinsic::cttz:
95 case Intrinsic::powi:
96 return (ScalarOpdIdx == 1);
97 case Intrinsic::smul_fix:
98 case Intrinsic::umul_fix:
99 return (ScalarOpdIdx == 2);
100 default:
101 return false;
102 }
103}
104
105/// Returns intrinsic ID for call.
106/// For the input call instruction it finds mapping intrinsic and returns
107/// its ID, in case it does not found it return not_intrinsic.
108Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
109 const TargetLibraryInfo *TLI) {
110 Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
111 if (ID == Intrinsic::not_intrinsic)
112 return Intrinsic::not_intrinsic;
113
114 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
115 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
116 ID == Intrinsic::sideeffect)
117 return ID;
118 return Intrinsic::not_intrinsic;
119}
120
121/// Find the operand of the GEP that should be checked for consecutive
122/// stores. This ignores trailing indices that have no effect on the final
123/// pointer.
124unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
125 const DataLayout &DL = Gep->getModule()->getDataLayout();
126 unsigned LastOperand = Gep->getNumOperands() - 1;
127 unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
128
129 // Walk backwards and try to peel off zeros.
130 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
131 // Find the type we're currently indexing into.
132 gep_type_iterator GEPTI = gep_type_begin(Gep);
133 std::advance(GEPTI, LastOperand - 2);
134
135 // If it's a type with the same allocation size as the result of the GEP we
136 // can peel off the zero index.
137 if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
138 break;
139 --LastOperand;
140 }
141
142 return LastOperand;
143}
144
145/// If the argument is a GEP, then returns the operand identified by
146/// getGEPInductionOperand. However, if there is some other non-loop-invariant
147/// operand, it returns that instead.
148Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
149 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
150 if (!GEP)
151 return Ptr;
152
153 unsigned InductionOperand = getGEPInductionOperand(GEP);
154
155 // Check that all of the gep indices are uniform except for our induction
156 // operand.
157 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
158 if (i != InductionOperand &&
159 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
160 return Ptr;
161 return GEP->getOperand(InductionOperand);
162}
163
164/// If a value has only one user that is a CastInst, return it.
165Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
166 Value *UniqueCast = nullptr;
167 for (User *U : Ptr->users()) {
168 CastInst *CI = dyn_cast<CastInst>(U);
169 if (CI && CI->getType() == Ty) {
170 if (!UniqueCast)
171 UniqueCast = CI;
172 else
173 return nullptr;
174 }
175 }
176 return UniqueCast;
177}
178
179/// Get the stride of a pointer access in a loop. Looks for symbolic
180/// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
181Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
182 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
183 if (!PtrTy || PtrTy->isAggregateType())
184 return nullptr;
185
186 // Try to remove a gep instruction to make the pointer (actually index at this
187 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
188 // pointer, otherwise, we are analyzing the index.
189 Value *OrigPtr = Ptr;
190
191 // The size of the pointer access.
192 int64_t PtrAccessSize = 1;
193
194 Ptr = stripGetElementPtr(Ptr, SE, Lp);
195 const SCEV *V = SE->getSCEV(Ptr);
196
197 if (Ptr != OrigPtr)
198 // Strip off casts.
199 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
200 V = C->getOperand();
201
202 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
203 if (!S)
204 return nullptr;
205
206 V = S->getStepRecurrence(*SE);
207 if (!V)
208 return nullptr;
209
210 // Strip off the size of access multiplication if we are still analyzing the
211 // pointer.
212 if (OrigPtr == Ptr) {
213 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
214 if (M->getOperand(0)->getSCEVType() != scConstant)
215 return nullptr;
216
217 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
218
219 // Huge step value - give up.
220 if (APStepVal.getBitWidth() > 64)
221 return nullptr;
222
223 int64_t StepVal = APStepVal.getSExtValue();
224 if (PtrAccessSize != StepVal)
225 return nullptr;
226 V = M->getOperand(1);
227 }
228 }
229
230 // Strip off casts.
231 Type *StripedOffRecurrenceCast = nullptr;
232 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
233 StripedOffRecurrenceCast = C->getType();
234 V = C->getOperand();
235 }
236
237 // Look for the loop invariant symbolic value.
238 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
239 if (!U)
240 return nullptr;
241
242 Value *Stride = U->getValue();
243 if (!Lp->isLoopInvariant(Stride))
244 return nullptr;
245
246 // If we have stripped off the recurrence cast we have to make sure that we
247 // return the value that is used in this loop so that we can replace it later.
248 if (StripedOffRecurrenceCast)
249 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
250
251 return Stride;
252}
253
254/// Given a vector and an element number, see if the scalar value is
255/// already around as a register, for example if it were inserted then extracted
256/// from the vector.
257Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
258 assert(V->getType()->isVectorTy() && "Not looking at a vector?")((V->getType()->isVectorTy() && "Not looking at a vector?"
) ? static_cast<void> (0) : __assert_fail ("V->getType()->isVectorTy() && \"Not looking at a vector?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/VectorUtils.cpp"
, 258, __PRETTY_FUNCTION__))
;
259 VectorType *VTy = cast<VectorType>(V->getType());
260 unsigned Width = VTy->getNumElements();
261 if (EltNo >= Width) // Out of range access.
262 return UndefValue::get(VTy->getElementType());
263
264 if (Constant *C = dyn_cast<Constant>(V))
265 return C->getAggregateElement(EltNo);
266
267 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
268 // If this is an insert to a variable element, we don't know what it is.
269 if (!isa<ConstantInt>(III->getOperand(2)))
270 return nullptr;
271 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
272
273 // If this is an insert to the element we are looking for, return the
274 // inserted value.
275 if (EltNo == IIElt)
276 return III->getOperand(1);
277
278 // Otherwise, the insertelement doesn't modify the value, recurse on its
279 // vector input.
280 return findScalarElement(III->getOperand(0), EltNo);
281 }
282
283 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
284 unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
285 int InEl = SVI->getMaskValue(EltNo);
286 if (InEl < 0)
287 return UndefValue::get(VTy->getElementType());
288 if (InEl < (int)LHSWidth)
289 return findScalarElement(SVI->getOperand(0), InEl);
290 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
291 }
292
293 // Extract a value from a vector add operation with a constant zero.
294 // TODO: Use getBinOpIdentity() to generalize this.
295 Value *Val; Constant *C;
296 if (match(V, m_Add(m_Value(Val), m_Constant(C))))
297 if (Constant *Elt = C->getAggregateElement(EltNo))
298 if (Elt->isNullValue())
299 return findScalarElement(Val, EltNo);
300
301 // Otherwise, we don't know.
302 return nullptr;
303}
304
305/// Get splat value if the input is a splat vector or return nullptr.
306/// This function is not fully general. It checks only 2 cases:
307/// the input value is (1) a splat constants vector or (2) a sequence
308/// of instructions that broadcast a single value into a vector.
309///
310const llvm::Value *llvm::getSplatValue(const Value *V) {
311
312 if (auto *C = dyn_cast<Constant>(V))
313 if (isa<VectorType>(V->getType()))
314 return C->getSplatValue();
315
316 auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V);
317 if (!ShuffleInst)
318 return nullptr;
319 // All-zero (or undef) shuffle mask elements.
320 for (int MaskElt : ShuffleInst->getShuffleMask())
321 if (MaskElt != 0 && MaskElt != -1)
322 return nullptr;
323 // The first shuffle source is 'insertelement' with index 0.
324 auto *InsertEltInst =
325 dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0));
326 if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) ||
327 !cast<ConstantInt>(InsertEltInst->getOperand(2))->isZero())
328 return nullptr;
329
330 return InsertEltInst->getOperand(1);
331}
332
333MapVector<Instruction *, uint64_t>
334llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
335 const TargetTransformInfo *TTI) {
336
337 // DemandedBits will give us every value's live-out bits. But we want
338 // to ensure no extra casts would need to be inserted, so every DAG
339 // of connected values must have the same minimum bitwidth.
340 EquivalenceClasses<Value *> ECs;
341 SmallVector<Value *, 16> Worklist;
342 SmallPtrSet<Value *, 4> Roots;
343 SmallPtrSet<Value *, 16> Visited;
344 DenseMap<Value *, uint64_t> DBits;
345 SmallPtrSet<Instruction *, 4> InstructionSet;
346 MapVector<Instruction *, uint64_t> MinBWs;
347
348 // Determine the roots. We work bottom-up, from truncs or icmps.
349 bool SeenExtFromIllegalType = false;
350 for (auto *BB : Blocks)
351 for (auto &I : *BB) {
352 InstructionSet.insert(&I);
353
354 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
355 !TTI->isTypeLegal(I.getOperand(0)->getType()))
356 SeenExtFromIllegalType = true;
357
358 // Only deal with non-vector integers up to 64-bits wide.
359 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
360 !I.getType()->isVectorTy() &&
361 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
362 // Don't make work for ourselves. If we know the loaded type is legal,
363 // don't add it to the worklist.
364 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
365 continue;
366
367 Worklist.push_back(&I);
368 Roots.insert(&I);
369 }
370 }
371 // Early exit.
372 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
373 return MinBWs;
374
375 // Now proceed breadth-first, unioning values together.
376 while (!Worklist.empty()) {
377 Value *Val = Worklist.pop_back_val();
378 Value *Leader = ECs.getOrInsertLeaderValue(Val);
379
380 if (Visited.count(Val))
381 continue;
382 Visited.insert(Val);
383
384 // Non-instructions terminate a chain successfully.
385 if (!isa<Instruction>(Val))
386 continue;
387 Instruction *I = cast<Instruction>(Val);
388
389 // If we encounter a type that is larger than 64 bits, we can't represent
390 // it so bail out.
391 if (DB.getDemandedBits(I).getBitWidth() > 64)
392 return MapVector<Instruction *, uint64_t>();
393
394 uint64_t V = DB.getDemandedBits(I).getZExtValue();
395 DBits[Leader] |= V;
396 DBits[I] = V;
397
398 // Casts, loads and instructions outside of our range terminate a chain
399 // successfully.
400 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
401 !InstructionSet.count(I))
402 continue;
403
404 // Unsafe casts terminate a chain unsuccessfully. We can't do anything
405 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
406 // transform anything that relies on them.
407 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
408 !I->getType()->isIntegerTy()) {
409 DBits[Leader] |= ~0ULL;
410 continue;
411 }
412
413 // We don't modify the types of PHIs. Reductions will already have been
414 // truncated if possible, and inductions' sizes will have been chosen by
415 // indvars.
416 if (isa<PHINode>(I))
417 continue;
418
419 if (DBits[Leader] == ~0ULL)
420 // All bits demanded, no point continuing.
421 continue;
422
423 for (Value *O : cast<User>(I)->operands()) {
424 ECs.unionSets(Leader, O);
425 Worklist.push_back(O);
426 }
427 }
428
429 // Now we've discovered all values, walk them to see if there are
430 // any users we didn't see. If there are, we can't optimize that
431 // chain.
432 for (auto &I : DBits)
433 for (auto *U : I.first->users())
434 if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
435 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
436
437 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
438 uint64_t LeaderDemandedBits = 0;
439 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
440 LeaderDemandedBits |= DBits[*MI];
441
442 uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
443 llvm::countLeadingZeros(LeaderDemandedBits);
444 // Round up to a power of 2
445 if (!isPowerOf2_64((uint64_t)MinBW))
446 MinBW = NextPowerOf2(MinBW);
447
448 // We don't modify the types of PHIs. Reductions will already have been
449 // truncated if possible, and inductions' sizes will have been chosen by
450 // indvars.
451 // If we are required to shrink a PHI, abandon this entire equivalence class.
452 bool Abort = false;
453 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
454 if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
455 Abort = true;
456 break;
457 }
458 if (Abort)
459 continue;
460
461 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
462 if (!isa<Instruction>(*MI))
463 continue;
464 Type *Ty = (*MI)->getType();
465 if (Roots.count(*MI))
466 Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
467 if (MinBW < Ty->getScalarSizeInBits())
468 MinBWs[cast<Instruction>(*MI)] = MinBW;
469 }
470 }
471
472 return MinBWs;
473}
474
475/// Add all access groups in @p AccGroups to @p List.
476template <typename ListT>
477static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
478 // Interpret an access group as a list containing itself.
479 if (AccGroups->getNumOperands() == 0) {
480 assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group")((isValidAsAccessGroup(AccGroups) && "Node must be an access group"
) ? static_cast<void> (0) : __assert_fail ("isValidAsAccessGroup(AccGroups) && \"Node must be an access group\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/VectorUtils.cpp"
, 480, __PRETTY_FUNCTION__))
;
481 List.insert(AccGroups);
482 return;
483 }
484
485 for (auto &AccGroupListOp : AccGroups->operands()) {
486 auto *Item = cast<MDNode>(AccGroupListOp.get());
487 assert(isValidAsAccessGroup(Item) && "List item must be an access group")((isValidAsAccessGroup(Item) && "List item must be an access group"
) ? static_cast<void> (0) : __assert_fail ("isValidAsAccessGroup(Item) && \"List item must be an access group\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/VectorUtils.cpp"
, 487, __PRETTY_FUNCTION__))
;
488 List.insert(Item);
489 }
490}
491
492MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
493 if (!AccGroups1)
494 return AccGroups2;
495 if (!AccGroups2)
496 return AccGroups1;
497 if (AccGroups1 == AccGroups2)
498 return AccGroups1;
499
500 SmallSetVector<Metadata *, 4> Union;
501 addToAccessGroupList(Union, AccGroups1);
502 addToAccessGroupList(Union, AccGroups2);
503
504 if (Union.size() == 0)
505 return nullptr;
506 if (Union.size() == 1)
507 return cast<MDNode>(Union.front());
508
509 LLVMContext &Ctx = AccGroups1->getContext();
510 return MDNode::get(Ctx, Union.getArrayRef());
511}
512
513MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
514 const Instruction *Inst2) {
515 bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
516 bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
517
518 if (!MayAccessMem1 && !MayAccessMem2)
519 return nullptr;
520 if (!MayAccessMem1)
521 return Inst2->getMetadata(LLVMContext::MD_access_group);
522 if (!MayAccessMem2)
523 return Inst1->getMetadata(LLVMContext::MD_access_group);
524
525 MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
526 MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
527 if (!MD1 || !MD2)
528 return nullptr;
529 if (MD1 == MD2)
530 return MD1;
531
532 // Use set for scalable 'contains' check.
533 SmallPtrSet<Metadata *, 4> AccGroupSet2;
534 addToAccessGroupList(AccGroupSet2, MD2);
535
536 SmallVector<Metadata *, 4> Intersection;
537 if (MD1->getNumOperands() == 0) {
538 assert(isValidAsAccessGroup(MD1) && "Node must be an access group")((isValidAsAccessGroup(MD1) && "Node must be an access group"
) ? static_cast<void> (0) : __assert_fail ("isValidAsAccessGroup(MD1) && \"Node must be an access group\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/VectorUtils.cpp"
, 538, __PRETTY_FUNCTION__))
;
539 if (AccGroupSet2.count(MD1))
540 Intersection.push_back(MD1);
541 } else {
542 for (const MDOperand &Node : MD1->operands()) {
543 auto *Item = cast<MDNode>(Node.get());
544 assert(isValidAsAccessGroup(Item) && "List item must be an access group")((isValidAsAccessGroup(Item) && "List item must be an access group"
) ? static_cast<void> (0) : __assert_fail ("isValidAsAccessGroup(Item) && \"List item must be an access group\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/VectorUtils.cpp"
, 544, __PRETTY_FUNCTION__))
;
545 if (AccGroupSet2.count(Item))
546 Intersection.push_back(Item);
547 }
548 }
549
550 if (Intersection.size() == 0)
551 return nullptr;
552 if (Intersection.size() == 1)
553 return cast<MDNode>(Intersection.front());
554
555 LLVMContext &Ctx = Inst1->getContext();
556 return MDNode::get(Ctx, Intersection);
557}
558
559/// \returns \p I after propagating metadata from \p VL.
560Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
561 Instruction *I0 = cast<Instruction>(VL[0]);
562 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
563 I0->getAllMetadataOtherThanDebugLoc(Metadata);
564
565 for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
566 LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
567 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
568 LLVMContext::MD_access_group}) {
569 MDNode *MD = I0->getMetadata(Kind);
570
571 for (int J = 1, E = VL.size(); MD && J != E; ++J) {
572 const Instruction *IJ = cast<Instruction>(VL[J]);
573 MDNode *IMD = IJ->getMetadata(Kind);
574 switch (Kind) {
575 case LLVMContext::MD_tbaa:
576 MD = MDNode::getMostGenericTBAA(MD, IMD);
577 break;
578 case LLVMContext::MD_alias_scope:
579 MD = MDNode::getMostGenericAliasScope(MD, IMD);
580 break;
581 case LLVMContext::MD_fpmath:
582 MD = MDNode::getMostGenericFPMath(MD, IMD);
583 break;
584 case LLVMContext::MD_noalias:
585 case LLVMContext::MD_nontemporal:
586 case LLVMContext::MD_invariant_load:
587 MD = MDNode::intersect(MD, IMD);
588 break;
589 case LLVMContext::MD_access_group:
590 MD = intersectAccessGroups(Inst, IJ);
591 break;
592 default:
593 llvm_unreachable("unhandled metadata")::llvm::llvm_unreachable_internal("unhandled metadata", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/VectorUtils.cpp"
, 593)
;
594 }
595 }
596
597 Inst->setMetadata(Kind, MD);
598 }
599
600 return Inst;
601}
602
603Constant *
604llvm::createBitMaskForGaps(IRBuilder<> &Builder, unsigned VF,
605 const InterleaveGroup<Instruction> &Group) {
606 // All 1's means mask is not needed.
607 if (Group.getNumMembers() == Group.getFactor())
608 return nullptr;
609
610 // TODO: support reversed access.
611 assert(!Group.isReverse() && "Reversed group not supported.")((!Group.isReverse() && "Reversed group not supported."
) ? static_cast<void> (0) : __assert_fail ("!Group.isReverse() && \"Reversed group not supported.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/VectorUtils.cpp"
, 611, __PRETTY_FUNCTION__))
;
612
613 SmallVector<Constant *, 16> Mask;
614 for (unsigned i = 0; i < VF; i++)
615 for (unsigned j = 0; j < Group.getFactor(); ++j) {
616 unsigned HasMember = Group.getMember(j) ? 1 : 0;
617 Mask.push_back(Builder.getInt1(HasMember));
618 }
619
620 return ConstantVector::get(Mask);
621}
622
623Constant *llvm::createReplicatedMask(IRBuilder<> &Builder,
624 unsigned ReplicationFactor, unsigned VF) {
625 SmallVector<Constant *, 16> MaskVec;
626 for (unsigned i = 0; i < VF; i++)
627 for (unsigned j = 0; j < ReplicationFactor; j++)
628 MaskVec.push_back(Builder.getInt32(i));
629
630 return ConstantVector::get(MaskVec);
631}
632
633Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF,
634 unsigned NumVecs) {
635 SmallVector<Constant *, 16> Mask;
636 for (unsigned i = 0; i < VF; i++)
637 for (unsigned j = 0; j < NumVecs; j++)
638 Mask.push_back(Builder.getInt32(j * VF + i));
639
640 return ConstantVector::get(Mask);
641}
642
643Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start,
644 unsigned Stride, unsigned VF) {
645 SmallVector<Constant *, 16> Mask;
646 for (unsigned i = 0; i < VF; i++)
647 Mask.push_back(Builder.getInt32(Start + i * Stride));
648
649 return ConstantVector::get(Mask);
650}
651
652Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start,
653 unsigned NumInts, unsigned NumUndefs) {
654 SmallVector<Constant *, 16> Mask;
655 for (unsigned i = 0; i < NumInts; i++)
656 Mask.push_back(Builder.getInt32(Start + i));
657
658 Constant *Undef = UndefValue::get(Builder.getInt32Ty());
659 for (unsigned i = 0; i < NumUndefs; i++)
660 Mask.push_back(Undef);
661
662 return ConstantVector::get(Mask);
663}
664
665/// A helper function for concatenating vectors. This function concatenates two
666/// vectors having the same element type. If the second vector has fewer
667/// elements than the first, it is padded with undefs.
668static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
669 Value *V2) {
670 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
671 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
672 assert(VecTy1 && VecTy2 &&((VecTy1 && VecTy2 && VecTy1->getScalarType
() == VecTy2->getScalarType() && "Expect two vectors with the same element type"
) ? static_cast<void> (0) : __assert_fail ("VecTy1 && VecTy2 && VecTy1->getScalarType() == VecTy2->getScalarType() && \"Expect two vectors with the same element type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/VectorUtils.cpp"
, 674, __PRETTY_FUNCTION__))
673 VecTy1->getScalarType() == VecTy2->getScalarType() &&((VecTy1 && VecTy2 && VecTy1->getScalarType
() == VecTy2->getScalarType() && "Expect two vectors with the same element type"
) ? static_cast<void> (0) : __assert_fail ("VecTy1 && VecTy2 && VecTy1->getScalarType() == VecTy2->getScalarType() && \"Expect two vectors with the same element type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/VectorUtils.cpp"
, 674, __PRETTY_FUNCTION__))
674 "Expect two vectors with the same element type")((VecTy1 && VecTy2 && VecTy1->getScalarType
() == VecTy2->getScalarType() && "Expect two vectors with the same element type"
) ? static_cast<void> (0) : __assert_fail ("VecTy1 && VecTy2 && VecTy1->getScalarType() == VecTy2->getScalarType() && \"Expect two vectors with the same element type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/VectorUtils.cpp"
, 674, __PRETTY_FUNCTION__))
;
675
676 unsigned NumElts1 = VecTy1->getNumElements();
677 unsigned NumElts2 = VecTy2->getNumElements();
678 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements")((NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"
) ? static_cast<void> (0) : __assert_fail ("NumElts1 >= NumElts2 && \"Unexpect the first vector has less elements\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/VectorUtils.cpp"
, 678, __PRETTY_FUNCTION__))
;
679
680 if (NumElts1 > NumElts2) {
681 // Extend with UNDEFs.
682 Constant *ExtMask =
683 createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2);
684 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
685 }
686
687 Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0);
688 return Builder.CreateShuffleVector(V1, V2, Mask);
689}
690
691Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) {
692 unsigned NumVecs = Vecs.size();
693 assert(NumVecs > 1 && "Should be at least two vectors")((NumVecs > 1 && "Should be at least two vectors")
? static_cast<void> (0) : __assert_fail ("NumVecs > 1 && \"Should be at least two vectors\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/VectorUtils.cpp"
, 693, __PRETTY_FUNCTION__))
;
694
695 SmallVector<Value *, 8> ResList;
696 ResList.append(Vecs.begin(), Vecs.end());
697 do {
698 SmallVector<Value *, 8> TmpList;
699 for (unsigned i = 0; i < NumVecs - 1; i += 2) {
700 Value *V0 = ResList[i], *V1 = ResList[i + 1];
701 assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&(((V0->getType() == V1->getType() || i == NumVecs - 2) &&
"Only the last vector may have a different type") ? static_cast
<void> (0) : __assert_fail ("(V0->getType() == V1->getType() || i == NumVecs - 2) && \"Only the last vector may have a different type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/VectorUtils.cpp"
, 702, __PRETTY_FUNCTION__))
702 "Only the last vector may have a different type")(((V0->getType() == V1->getType() || i == NumVecs - 2) &&
"Only the last vector may have a different type") ? static_cast
<void> (0) : __assert_fail ("(V0->getType() == V1->getType() || i == NumVecs - 2) && \"Only the last vector may have a different type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/VectorUtils.cpp"
, 702, __PRETTY_FUNCTION__))
;
703
704 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
705 }
706
707 // Push the last vector if the total number of vectors is odd.
708 if (NumVecs % 2 != 0)
709 TmpList.push_back(ResList[NumVecs - 1]);
710
711 ResList = TmpList;
712 NumVecs = ResList.size();
713 } while (NumVecs > 1);
714
715 return ResList[0];
716}
717
718bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
719 auto *ConstMask = dyn_cast<Constant>(Mask);
720 if (!ConstMask)
721 return false;
722 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
723 return true;
724 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
725 ++I) {
726 if (auto *MaskElt = ConstMask->getAggregateElement(I))
727 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
728 continue;
729 return false;
730 }
731 return true;
732}
733
734
735bool llvm::maskIsAllOneOrUndef(Value *Mask) {
736 auto *ConstMask = dyn_cast<Constant>(Mask);
737 if (!ConstMask)
738 return false;
739 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
740 return true;
741 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
742 ++I) {
743 if (auto *MaskElt = ConstMask->getAggregateElement(I))
744 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
745 continue;
746 return false;
747 }
748 return true;
749}
750
751/// TODO: This is a lot like known bits, but for
752/// vectors. Is there something we can common this with?
753APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
754
755 const unsigned VWidth = cast<VectorType>(Mask->getType())->getNumElements();
756 APInt DemandedElts = APInt::getAllOnesValue(VWidth);
757 if (auto *CV = dyn_cast<ConstantVector>(Mask))
758 for (unsigned i = 0; i < VWidth; i++)
759 if (CV->getAggregateElement(i)->isNullValue())
760 DemandedElts.clearBit(i);
761 return DemandedElts;
762}
763
764bool InterleavedAccessInfo::isStrided(int Stride) {
765 unsigned Factor = std::abs(Stride);
766 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
767}
768
769void InterleavedAccessInfo::collectConstStrideAccesses(
770 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
771 const ValueToValueMap &Strides) {
772 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
773
774 // Since it's desired that the load/store instructions be maintained in
775 // "program order" for the interleaved access analysis, we have to visit the
776 // blocks in the loop in reverse postorder (i.e., in a topological order).
777 // Such an ordering will ensure that any load/store that may be executed
778 // before a second load/store will precede the second load/store in
779 // AccessStrideInfo.
780 LoopBlocksDFS DFS(TheLoop);
781 DFS.perform(LI);
782 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
783 for (auto &I : *BB) {
784 auto *LI = dyn_cast<LoadInst>(&I);
785 auto *SI = dyn_cast<StoreInst>(&I);
786 if (!LI && !SI)
787 continue;
788
789 Value *Ptr = getLoadStorePointerOperand(&I);
790 // We don't check wrapping here because we don't know yet if Ptr will be
791 // part of a full group or a group with gaps. Checking wrapping for all
792 // pointers (even those that end up in groups with no gaps) will be overly
793 // conservative. For full groups, wrapping should be ok since if we would
794 // wrap around the address space we would do a memory access at nullptr
795 // even without the transformation. The wrapping checks are therefore
796 // deferred until after we've formed the interleaved groups.
797 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
798 /*Assume=*/true, /*ShouldCheckWrap=*/false);
799
800 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
801 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
802 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
803
804 // An alignment of 0 means target ABI alignment.
805 unsigned Align = getLoadStoreAlignment(&I);
806 if (!Align)
807 Align = DL.getABITypeAlignment(PtrTy->getElementType());
808
809 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align);
810 }
811}
812
813// Analyze interleaved accesses and collect them into interleaved load and
814// store groups.
815//
816// When generating code for an interleaved load group, we effectively hoist all
817// loads in the group to the location of the first load in program order. When
818// generating code for an interleaved store group, we sink all stores to the
819// location of the last store. This code motion can change the order of load
820// and store instructions and may break dependences.
821//
822// The code generation strategy mentioned above ensures that we won't violate
823// any write-after-read (WAR) dependences.
824//
825// E.g., for the WAR dependence: a = A[i]; // (1)
826// A[i] = b; // (2)
827//
828// The store group of (2) is always inserted at or below (2), and the load
829// group of (1) is always inserted at or above (1). Thus, the instructions will
830// never be reordered. All other dependences are checked to ensure the
831// correctness of the instruction reordering.
832//
833// The algorithm visits all memory accesses in the loop in bottom-up program
834// order. Program order is established by traversing the blocks in the loop in
835// reverse postorder when collecting the accesses.
836//
837// We visit the memory accesses in bottom-up order because it can simplify the
838// construction of store groups in the presence of write-after-write (WAW)
839// dependences.
840//
841// E.g., for the WAW dependence: A[i] = a; // (1)
842// A[i] = b; // (2)
843// A[i + 1] = c; // (3)
844//
845// We will first create a store group with (3) and (2). (1) can't be added to
846// this group because it and (2) are dependent. However, (1) can be grouped
847// with other accesses that may precede it in program order. Note that a
848// bottom-up order does not imply that WAW dependences should not be checked.
849void InterleavedAccessInfo::analyzeInterleaving(
850 bool EnablePredicatedInterleavedMemAccesses) {
851 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("vectorutils")) { dbgs() << "LV: Analyzing interleaved accesses...\n"
; } } while (false)
;
1
Assuming 'DebugFlag' is 0
2
Loop condition is false. Exiting loop
852 const ValueToValueMap &Strides = LAI->getSymbolicStrides();
853
854 // Holds all accesses with a constant stride.
855 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
856 collectConstStrideAccesses(AccessStrideInfo, Strides);
857
858 if (AccessStrideInfo.empty())
3
Assuming the condition is false
4
Taking false branch
859 return;
860
861 // Collect the dependences in the loop.
862 collectDependences();
863
864 // Holds all interleaved store groups temporarily.
865 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
866 // Holds all interleaved load groups temporarily.
867 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
868
869 // Search in bottom-up program order for pairs of accesses (A and B) that can
870 // form interleaved load or store groups. In the algorithm below, access A
871 // precedes access B in program order. We initialize a group for B in the
872 // outer loop of the algorithm, and then in the inner loop, we attempt to
873 // insert each A into B's group if:
874 //
875 // 1. A and B have the same stride,
876 // 2. A and B have the same memory object size, and
877 // 3. A belongs in B's group according to its distance from B.
878 //
879 // Special care is taken to ensure group formation will not break any
880 // dependences.
881 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
5
Loop condition is true. Entering loop body
882 BI != E; ++BI) {
883 Instruction *B = BI->first;
884 StrideDescriptor DesB = BI->second;
885
886 // Initialize a group for B if it has an allowable stride. Even if we don't
887 // create a group for B, we continue with the bottom-up algorithm to ensure
888 // we don't break any of B's dependences.
889 InterleaveGroup<Instruction> *Group = nullptr;
6
'Group' initialized to a null pointer value
890 if (isStrided(DesB.Stride) &&
891 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
892 Group = getInterleaveGroup(B);
893 if (!Group) {
894 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *Bdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("vectorutils")) { dbgs() << "LV: Creating an interleave group with:"
<< *B << '\n'; } } while (false)
895 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("vectorutils")) { dbgs() << "LV: Creating an interleave group with:"
<< *B << '\n'; } } while (false)
;
896 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align);
897 }
898 if (B->mayWriteToMemory())
899 StoreGroups.insert(Group);
900 else
901 LoadGroups.insert(Group);
902 }
903
904 for (auto AI = std::next(BI); AI != E; ++AI) {
7
Loop condition is true. Entering loop body
905 Instruction *A = AI->first;
906 StrideDescriptor DesA = AI->second;
907
908 // Our code motion strategy implies that we can't have dependences
909 // between accesses in an interleaved group and other accesses located
910 // between the first and last member of the group. Note that this also
911 // means that a group can't have more than one member at a given offset.
912 // The accesses in a group can have dependences with other accesses, but
913 // we must ensure we don't extend the boundaries of the group such that
914 // we encompass those dependent accesses.
915 //
916 // For example, assume we have the sequence of accesses shown below in a
917 // stride-2 loop:
918 //
919 // (1, 2) is a group | A[i] = a; // (1)
920 // | A[i-1] = b; // (2) |
921 // A[i-3] = c; // (3)
922 // A[i] = d; // (4) | (2, 4) is not a group
923 //
924 // Because accesses (2) and (3) are dependent, we can group (2) with (1)
925 // but not with (4). If we did, the dependent access (3) would be within
926 // the boundaries of the (2, 4) group.
927 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
8
Taking false branch
928 // If a dependence exists and A is already in a group, we know that A
929 // must be a store since A precedes B and WAR dependences are allowed.
930 // Thus, A would be sunk below B. We release A's group to prevent this
931 // illegal code motion. A will then be free to form another group with
932 // instructions that precede it.
933 if (isInterleaved(A)) {
934 InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);
935 StoreGroups.remove(StoreGroup);
936 releaseGroup(StoreGroup);
937 }
938
939 // If a dependence exists and A is not already in a group (or it was
940 // and we just released it), B might be hoisted above A (if B is a
941 // load) or another store might be sunk below A (if B is a store). In
942 // either case, we can't add additional instructions to B's group. B
943 // will only form a group with instructions that it precedes.
944 break;
945 }
946
947 // At this point, we've checked for illegal code motion. If either A or B
948 // isn't strided, there's nothing left to do.
949 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
9
Taking false branch
950 continue;
951
952 // Ignore A if it's already in a group or isn't the same kind of memory
953 // operation as B.
954 // Note that mayReadFromMemory() isn't mutually exclusive to
955 // mayWriteToMemory in the case of atomic loads. We shouldn't see those
956 // here, canVectorizeMemory() should have returned false - except for the
957 // case we asked for optimization remarks.
958 if (isInterleaved(A) ||
10
Assuming the condition is false
13
Taking false branch
959 (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
11
Assuming the condition is false
960 (A->mayWriteToMemory() != B->mayWriteToMemory()))
12
Assuming the condition is false
961 continue;
962
963 // Check rules 1 and 2. Ignore A if its stride or size is different from
964 // that of B.
965 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
14
Assuming the condition is false
15
Assuming the condition is false
16
Taking false branch
966 continue;
967
968 // Ignore A if the memory object of A and B don't belong to the same
969 // address space
970 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
17
Assuming the condition is false
18
Taking false branch
971 continue;
972
973 // Calculate the distance from A to B.
974 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
975 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
976 if (!DistToB)
19
Taking false branch
977 continue;
978 int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
979
980 // Check rule 3. Ignore A if its distance to B is not a multiple of the
981 // size.
982 if (DistanceToB % static_cast<int64_t>(DesB.Size))
20
Assuming the condition is false
21
Taking false branch
983 continue;
984
985 // All members of a predicated interleave-group must have the same predicate,
986 // and currently must reside in the same BB.
987 BasicBlock *BlockA = A->getParent();
988 BasicBlock *BlockB = B->getParent();
989 if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
22
Assuming the condition is false
23
Assuming the condition is false
990 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
991 continue;
992
993 // The index of A is the index of B plus A's distance to B in multiples
994 // of the size.
995 int IndexA =
996 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
24
Called C++ object pointer is null
997
998 // Try to insert A into B's group.
999 if (Group->insertMember(A, IndexA, DesA.Align)) {
1000 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("vectorutils")) { dbgs() << "LV: Inserted:" << *
A << '\n' << " into the interleave group with"
<< *B << '\n'; } } while (false)
1001 << " into the interleave group with" << *Bdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("vectorutils")) { dbgs() << "LV: Inserted:" << *
A << '\n' << " into the interleave group with"
<< *B << '\n'; } } while (false)
1002 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("vectorutils")) { dbgs() << "LV: Inserted:" << *
A << '\n' << " into the interleave group with"
<< *B << '\n'; } } while (false)
;
1003 InterleaveGroupMap[A] = Group;
1004
1005 // Set the first load in program order as the insert position.
1006 if (A->mayReadFromMemory())
1007 Group->setInsertPos(A);
1008 }
1009 } // Iteration over A accesses.
1010 } // Iteration over B accesses.
1011
1012 // Remove interleaved store groups with gaps.
1013 for (auto *Group : StoreGroups)
1014 if (Group->getNumMembers() != Group->getFactor()) {
1015 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("vectorutils")) { dbgs() << "LV: Invalidate candidate interleaved store group due "
"to gaps.\n"; } } while (false)
1016 dbgs() << "LV: Invalidate candidate interleaved store group due "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("vectorutils")) { dbgs() << "LV: Invalidate candidate interleaved store group due "
"to gaps.\n"; } } while (false)
1017 "to gaps.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("vectorutils")) { dbgs() << "LV: Invalidate candidate interleaved store group due "
"to gaps.\n"; } } while (false)
;
1018 releaseGroup(Group);
1019 }
1020 // Remove interleaved groups with gaps (currently only loads) whose memory
1021 // accesses may wrap around. We have to revisit the getPtrStride analysis,
1022 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1023 // not check wrapping (see documentation there).
1024 // FORNOW we use Assume=false;
1025 // TODO: Change to Assume=true but making sure we don't exceed the threshold
1026 // of runtime SCEV assumptions checks (thereby potentially failing to
1027 // vectorize altogether).
1028 // Additional optional optimizations:
1029 // TODO: If we are peeling the loop and we know that the first pointer doesn't
1030 // wrap then we can deduce that all pointers in the group don't wrap.
1031 // This means that we can forcefully peel the loop in order to only have to
1032 // check the first pointer for no-wrap. When we'll change to use Assume=true
1033 // we'll only need at most one runtime check per interleaved group.
1034 for (auto *Group : LoadGroups) {
1035 // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1036 // load would wrap around the address space we would do a memory access at
1037 // nullptr even without the transformation.
1038 if (Group->getNumMembers() == Group->getFactor())
1039 continue;
1040
1041 // Case 2: If first and last members of the group don't wrap this implies
1042 // that all the pointers in the group don't wrap.
1043 // So we check only group member 0 (which is always guaranteed to exist),
1044 // and group member Factor - 1; If the latter doesn't exist we rely on
1045 // peeling (if it is a non-reversed accsess -- see Case 3).
1046 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
1047 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
1048 /*ShouldCheckWrap=*/true)) {
1049 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("vectorutils")) { dbgs() << "LV: Invalidate candidate interleaved group due to "
"first group member potentially pointer-wrapping.\n"; } } while
(false)
1050 dbgs() << "LV: Invalidate candidate interleaved group due to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("vectorutils")) { dbgs() << "LV: Invalidate candidate interleaved group due to "
"first group member potentially pointer-wrapping.\n"; } } while
(false)
1051 "first group member potentially pointer-wrapping.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("vectorutils")) { dbgs() << "LV: Invalidate candidate interleaved group due to "
"first group member potentially pointer-wrapping.\n"; } } while
(false)
;
1052 releaseGroup(Group);
1053 continue;
1054 }
1055 Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
1056 if (LastMember) {
1057 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
1058 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
1059 /*ShouldCheckWrap=*/true)) {
1060 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("vectorutils")) { dbgs() << "LV: Invalidate candidate interleaved group due to "
"last group member potentially pointer-wrapping.\n"; } } while
(false)
1061 dbgs() << "LV: Invalidate candidate interleaved group due to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("vectorutils")) { dbgs() << "LV: Invalidate candidate interleaved group due to "
"last group member potentially pointer-wrapping.\n"; } } while
(false)
1062 "last group member potentially pointer-wrapping.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("vectorutils")) { dbgs() << "LV: Invalidate candidate interleaved group due to "
"last group member potentially pointer-wrapping.\n"; } } while
(false)
;
1063 releaseGroup(Group);
1064 }
1065 } else {
1066 // Case 3: A non-reversed interleaved load group with gaps: We need
1067 // to execute at least one scalar epilogue iteration. This will ensure
1068 // we don't speculatively access memory out-of-bounds. We only need
1069 // to look for a member at index factor - 1, since every group must have
1070 // a member at index zero.
1071 if (Group->isReverse()) {
1072 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("vectorutils")) { dbgs() << "LV: Invalidate candidate interleaved group due to "
"a reverse access with gaps.\n"; } } while (false)
1073 dbgs() << "LV: Invalidate candidate interleaved group due to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("vectorutils")) { dbgs() << "LV: Invalidate candidate interleaved group due to "
"a reverse access with gaps.\n"; } } while (false)
1074 "a reverse access with gaps.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("vectorutils")) { dbgs() << "LV: Invalidate candidate interleaved group due to "
"a reverse access with gaps.\n"; } } while (false)
;
1075 releaseGroup(Group);
1076 continue;
1077 }
1078 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("vectorutils")) { dbgs() << "LV: Interleaved group requires epilogue iteration.\n"
; } } while (false)
1079 dbgs() << "LV: Interleaved group requires epilogue iteration.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("vectorutils")) { dbgs() << "LV: Interleaved group requires epilogue iteration.\n"
; } } while (false)
;
1080 RequiresScalarEpilogue = true;
1081 }
1082 }
1083}
1084
1085void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1086 // If no group had triggered the requirement to create an epilogue loop,
1087 // there is nothing to do.
1088 if (!requiresScalarEpilogue())
1089 return;
1090
1091 // Avoid releasing a Group twice.
1092 SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet;
1093 for (auto &I : InterleaveGroupMap) {
1094 InterleaveGroup<Instruction> *Group = I.second;
1095 if (Group->requiresScalarEpilogue())
1096 DelSet.insert(Group);
1097 }
1098 for (auto *Ptr : DelSet) {
1099 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("vectorutils")) { dbgs() << "LV: Invalidate candidate interleaved group due to gaps that "
"require a scalar epilogue (not allowed under optsize) and cannot "
"be masked (not enabled). \n"; } } while (false)
1100 dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("vectorutils")) { dbgs() << "LV: Invalidate candidate interleaved group due to gaps that "
"require a scalar epilogue (not allowed under optsize) and cannot "
"be masked (not enabled). \n"; } } while (false)
1101 << "LV: Invalidate candidate interleaved group due to gaps that "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("vectorutils")) { dbgs() << "LV: Invalidate candidate interleaved group due to gaps that "
"require a scalar epilogue (not allowed under optsize) and cannot "
"be masked (not enabled). \n"; } } while (false)
1102 "require a scalar epilogue (not allowed under optsize) and cannot "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("vectorutils")) { dbgs() << "LV: Invalidate candidate interleaved group due to gaps that "
"require a scalar epilogue (not allowed under optsize) and cannot "
"be masked (not enabled). \n"; } } while (false)
1103 "be masked (not enabled). \n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("vectorutils")) { dbgs() << "LV: Invalidate candidate interleaved group due to gaps that "
"require a scalar epilogue (not allowed under optsize) and cannot "
"be masked (not enabled). \n"; } } while (false)
;
1104 releaseGroup(Ptr);
1105 }
1106
1107 RequiresScalarEpilogue = false;
1108}
1109
1110template <typename InstT>
1111void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1112 llvm_unreachable("addMetadata can only be used for Instruction")::llvm::llvm_unreachable_internal("addMetadata can only be used for Instruction"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/VectorUtils.cpp"
, 1112)
;
1113}
1114
1115namespace llvm {
1116template <>
1117void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1118 SmallVector<Value *, 4> VL;
1119 std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1120 [](std::pair<int, Instruction *> p) { return p.second; });
1121 propagateMetadata(NewInst, VL);
1122}
1123}