Bug Summary

File:lib/Target/X86/X86InstrInfo.cpp
Warning:line 1772, column 14
Value stored to 'CommutableOpIdx1' during its initialization is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name X86InstrInfo.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn359999/build-llvm/lib/Target/X86 -I /build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86 -I /build/llvm-toolchain-snapshot-9~svn359999/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn359999/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn359999/build-llvm/lib/Target/X86 -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn359999=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-05-06-051613-19774-1 -x c++ /build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp -faddrsig
1//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the X86 implementation of the TargetInstrInfo class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "X86InstrInfo.h"
14#include "X86.h"
15#include "X86InstrBuilder.h"
16#include "X86InstrFoldTables.h"
17#include "X86MachineFunctionInfo.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/Sequence.h"
22#include "llvm/CodeGen/LivePhysRegs.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineDominators.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/StackMaps.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/LLVMContext.h"
34#include "llvm/MC/MCAsmInfo.h"
35#include "llvm/MC/MCExpr.h"
36#include "llvm/MC/MCInst.h"
37#include "llvm/Support/CommandLine.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Support/raw_ostream.h"
41#include "llvm/Target/TargetOptions.h"
42
43using namespace llvm;
44
45#define DEBUG_TYPE"x86-instr-info" "x86-instr-info"
46
47#define GET_INSTRINFO_CTOR_DTOR
48#include "X86GenInstrInfo.inc"
49
50static cl::opt<bool>
51 NoFusing("disable-spill-fusing",
52 cl::desc("Disable fusing of spill code into instructions"),
53 cl::Hidden);
54static cl::opt<bool>
55PrintFailedFusing("print-failed-fuse-candidates",
56 cl::desc("Print instructions that the allocator wants to"
57 " fuse, but the X86 backend currently can't"),
58 cl::Hidden);
59static cl::opt<bool>
60ReMatPICStubLoad("remat-pic-stub-load",
61 cl::desc("Re-materialize load from stub in PIC mode"),
62 cl::init(false), cl::Hidden);
63static cl::opt<unsigned>
64PartialRegUpdateClearance("partial-reg-update-clearance",
65 cl::desc("Clearance between two register writes "
66 "for inserting XOR to avoid partial "
67 "register update"),
68 cl::init(64), cl::Hidden);
69static cl::opt<unsigned>
70UndefRegClearance("undef-reg-clearance",
71 cl::desc("How many idle instructions we would like before "
72 "certain undef register reads"),
73 cl::init(128), cl::Hidden);
74
75
76// Pin the vtable to this file.
77void X86InstrInfo::anchor() {}
78
79X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
80 : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
81 : X86::ADJCALLSTACKDOWN32),
82 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
83 : X86::ADJCALLSTACKUP32),
84 X86::CATCHRET,
85 (STI.is64Bit() ? X86::RETQ : X86::RETL)),
86 Subtarget(STI), RI(STI.getTargetTriple()) {
87}
88
89bool
90X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
91 unsigned &SrcReg, unsigned &DstReg,
92 unsigned &SubIdx) const {
93 switch (MI.getOpcode()) {
94 default: break;
95 case X86::MOVSX16rr8:
96 case X86::MOVZX16rr8:
97 case X86::MOVSX32rr8:
98 case X86::MOVZX32rr8:
99 case X86::MOVSX64rr8:
100 if (!Subtarget.is64Bit())
101 // It's not always legal to reference the low 8-bit of the larger
102 // register in 32-bit mode.
103 return false;
104 LLVM_FALLTHROUGH[[clang::fallthrough]];
105 case X86::MOVSX32rr16:
106 case X86::MOVZX32rr16:
107 case X86::MOVSX64rr16:
108 case X86::MOVSX64rr32: {
109 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
110 // Be conservative.
111 return false;
112 SrcReg = MI.getOperand(1).getReg();
113 DstReg = MI.getOperand(0).getReg();
114 switch (MI.getOpcode()) {
115 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 115)
;
116 case X86::MOVSX16rr8:
117 case X86::MOVZX16rr8:
118 case X86::MOVSX32rr8:
119 case X86::MOVZX32rr8:
120 case X86::MOVSX64rr8:
121 SubIdx = X86::sub_8bit;
122 break;
123 case X86::MOVSX32rr16:
124 case X86::MOVZX32rr16:
125 case X86::MOVSX64rr16:
126 SubIdx = X86::sub_16bit;
127 break;
128 case X86::MOVSX64rr32:
129 SubIdx = X86::sub_32bit;
130 break;
131 }
132 return true;
133 }
134 }
135 return false;
136}
137
138int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
139 const MachineFunction *MF = MI.getParent()->getParent();
140 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
141
142 if (isFrameInstr(MI)) {
143 unsigned StackAlign = TFI->getStackAlignment();
144 int SPAdj = alignTo(getFrameSize(MI), StackAlign);
145 SPAdj -= getFrameAdjustment(MI);
146 if (!isFrameSetup(MI))
147 SPAdj = -SPAdj;
148 return SPAdj;
149 }
150
151 // To know whether a call adjusts the stack, we need information
152 // that is bound to the following ADJCALLSTACKUP pseudo.
153 // Look for the next ADJCALLSTACKUP that follows the call.
154 if (MI.isCall()) {
155 const MachineBasicBlock *MBB = MI.getParent();
156 auto I = ++MachineBasicBlock::const_iterator(MI);
157 for (auto E = MBB->end(); I != E; ++I) {
158 if (I->getOpcode() == getCallFrameDestroyOpcode() ||
159 I->isCall())
160 break;
161 }
162
163 // If we could not find a frame destroy opcode, then it has already
164 // been simplified, so we don't care.
165 if (I->getOpcode() != getCallFrameDestroyOpcode())
166 return 0;
167
168 return -(I->getOperand(1).getImm());
169 }
170
171 // Currently handle only PUSHes we can reasonably expect to see
172 // in call sequences
173 switch (MI.getOpcode()) {
174 default:
175 return 0;
176 case X86::PUSH32i8:
177 case X86::PUSH32r:
178 case X86::PUSH32rmm:
179 case X86::PUSH32rmr:
180 case X86::PUSHi32:
181 return 4;
182 case X86::PUSH64i8:
183 case X86::PUSH64r:
184 case X86::PUSH64rmm:
185 case X86::PUSH64rmr:
186 case X86::PUSH64i32:
187 return 8;
188 }
189}
190
191/// Return true and the FrameIndex if the specified
192/// operand and follow operands form a reference to the stack frame.
193bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
194 int &FrameIndex) const {
195 if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
196 MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
197 MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
198 MI.getOperand(Op + X86::AddrDisp).isImm() &&
199 MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
200 MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
201 MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
202 FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
203 return true;
204 }
205 return false;
206}
207
208static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
209 switch (Opcode) {
210 default:
211 return false;
212 case X86::MOV8rm:
213 case X86::KMOVBkm:
214 MemBytes = 1;
215 return true;
216 case X86::MOV16rm:
217 case X86::KMOVWkm:
218 MemBytes = 2;
219 return true;
220 case X86::MOV32rm:
221 case X86::MOVSSrm:
222 case X86::VMOVSSZrm:
223 case X86::VMOVSSrm:
224 case X86::KMOVDkm:
225 MemBytes = 4;
226 return true;
227 case X86::MOV64rm:
228 case X86::LD_Fp64m:
229 case X86::MOVSDrm:
230 case X86::VMOVSDrm:
231 case X86::VMOVSDZrm:
232 case X86::MMX_MOVD64rm:
233 case X86::MMX_MOVQ64rm:
234 case X86::KMOVQkm:
235 MemBytes = 8;
236 return true;
237 case X86::MOVAPSrm:
238 case X86::MOVUPSrm:
239 case X86::MOVAPDrm:
240 case X86::MOVUPDrm:
241 case X86::MOVDQArm:
242 case X86::MOVDQUrm:
243 case X86::VMOVAPSrm:
244 case X86::VMOVUPSrm:
245 case X86::VMOVAPDrm:
246 case X86::VMOVUPDrm:
247 case X86::VMOVDQArm:
248 case X86::VMOVDQUrm:
249 case X86::VMOVAPSZ128rm:
250 case X86::VMOVUPSZ128rm:
251 case X86::VMOVAPSZ128rm_NOVLX:
252 case X86::VMOVUPSZ128rm_NOVLX:
253 case X86::VMOVAPDZ128rm:
254 case X86::VMOVUPDZ128rm:
255 case X86::VMOVDQU8Z128rm:
256 case X86::VMOVDQU16Z128rm:
257 case X86::VMOVDQA32Z128rm:
258 case X86::VMOVDQU32Z128rm:
259 case X86::VMOVDQA64Z128rm:
260 case X86::VMOVDQU64Z128rm:
261 MemBytes = 16;
262 return true;
263 case X86::VMOVAPSYrm:
264 case X86::VMOVUPSYrm:
265 case X86::VMOVAPDYrm:
266 case X86::VMOVUPDYrm:
267 case X86::VMOVDQAYrm:
268 case X86::VMOVDQUYrm:
269 case X86::VMOVAPSZ256rm:
270 case X86::VMOVUPSZ256rm:
271 case X86::VMOVAPSZ256rm_NOVLX:
272 case X86::VMOVUPSZ256rm_NOVLX:
273 case X86::VMOVAPDZ256rm:
274 case X86::VMOVUPDZ256rm:
275 case X86::VMOVDQU8Z256rm:
276 case X86::VMOVDQU16Z256rm:
277 case X86::VMOVDQA32Z256rm:
278 case X86::VMOVDQU32Z256rm:
279 case X86::VMOVDQA64Z256rm:
280 case X86::VMOVDQU64Z256rm:
281 MemBytes = 32;
282 return true;
283 case X86::VMOVAPSZrm:
284 case X86::VMOVUPSZrm:
285 case X86::VMOVAPDZrm:
286 case X86::VMOVUPDZrm:
287 case X86::VMOVDQU8Zrm:
288 case X86::VMOVDQU16Zrm:
289 case X86::VMOVDQA32Zrm:
290 case X86::VMOVDQU32Zrm:
291 case X86::VMOVDQA64Zrm:
292 case X86::VMOVDQU64Zrm:
293 MemBytes = 64;
294 return true;
295 }
296}
297
298static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
299 switch (Opcode) {
300 default:
301 return false;
302 case X86::MOV8mr:
303 case X86::KMOVBmk:
304 MemBytes = 1;
305 return true;
306 case X86::MOV16mr:
307 case X86::KMOVWmk:
308 MemBytes = 2;
309 return true;
310 case X86::MOV32mr:
311 case X86::MOVSSmr:
312 case X86::VMOVSSmr:
313 case X86::VMOVSSZmr:
314 case X86::KMOVDmk:
315 MemBytes = 4;
316 return true;
317 case X86::MOV64mr:
318 case X86::ST_FpP64m:
319 case X86::MOVSDmr:
320 case X86::VMOVSDmr:
321 case X86::VMOVSDZmr:
322 case X86::MMX_MOVD64mr:
323 case X86::MMX_MOVQ64mr:
324 case X86::MMX_MOVNTQmr:
325 case X86::KMOVQmk:
326 MemBytes = 8;
327 return true;
328 case X86::MOVAPSmr:
329 case X86::MOVUPSmr:
330 case X86::MOVAPDmr:
331 case X86::MOVUPDmr:
332 case X86::MOVDQAmr:
333 case X86::MOVDQUmr:
334 case X86::VMOVAPSmr:
335 case X86::VMOVUPSmr:
336 case X86::VMOVAPDmr:
337 case X86::VMOVUPDmr:
338 case X86::VMOVDQAmr:
339 case X86::VMOVDQUmr:
340 case X86::VMOVUPSZ128mr:
341 case X86::VMOVAPSZ128mr:
342 case X86::VMOVUPSZ128mr_NOVLX:
343 case X86::VMOVAPSZ128mr_NOVLX:
344 case X86::VMOVUPDZ128mr:
345 case X86::VMOVAPDZ128mr:
346 case X86::VMOVDQA32Z128mr:
347 case X86::VMOVDQU32Z128mr:
348 case X86::VMOVDQA64Z128mr:
349 case X86::VMOVDQU64Z128mr:
350 case X86::VMOVDQU8Z128mr:
351 case X86::VMOVDQU16Z128mr:
352 MemBytes = 16;
353 return true;
354 case X86::VMOVUPSYmr:
355 case X86::VMOVAPSYmr:
356 case X86::VMOVUPDYmr:
357 case X86::VMOVAPDYmr:
358 case X86::VMOVDQUYmr:
359 case X86::VMOVDQAYmr:
360 case X86::VMOVUPSZ256mr:
361 case X86::VMOVAPSZ256mr:
362 case X86::VMOVUPSZ256mr_NOVLX:
363 case X86::VMOVAPSZ256mr_NOVLX:
364 case X86::VMOVUPDZ256mr:
365 case X86::VMOVAPDZ256mr:
366 case X86::VMOVDQU8Z256mr:
367 case X86::VMOVDQU16Z256mr:
368 case X86::VMOVDQA32Z256mr:
369 case X86::VMOVDQU32Z256mr:
370 case X86::VMOVDQA64Z256mr:
371 case X86::VMOVDQU64Z256mr:
372 MemBytes = 32;
373 return true;
374 case X86::VMOVUPSZmr:
375 case X86::VMOVAPSZmr:
376 case X86::VMOVUPDZmr:
377 case X86::VMOVAPDZmr:
378 case X86::VMOVDQU8Zmr:
379 case X86::VMOVDQU16Zmr:
380 case X86::VMOVDQA32Zmr:
381 case X86::VMOVDQU32Zmr:
382 case X86::VMOVDQA64Zmr:
383 case X86::VMOVDQU64Zmr:
384 MemBytes = 64;
385 return true;
386 }
387 return false;
388}
389
390unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
391 int &FrameIndex) const {
392 unsigned Dummy;
393 return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
394}
395
396unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
397 int &FrameIndex,
398 unsigned &MemBytes) const {
399 if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
400 if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
401 return MI.getOperand(0).getReg();
402 return 0;
403}
404
405unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
406 int &FrameIndex) const {
407 unsigned Dummy;
408 if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
409 unsigned Reg;
410 if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
411 return Reg;
412 // Check for post-frame index elimination operations
413 SmallVector<const MachineMemOperand *, 1> Accesses;
414 if (hasLoadFromStackSlot(MI, Accesses)) {
415 FrameIndex =
416 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
417 ->getFrameIndex();
418 return 1;
419 }
420 }
421 return 0;
422}
423
424unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
425 int &FrameIndex) const {
426 unsigned Dummy;
427 return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
428}
429
430unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
431 int &FrameIndex,
432 unsigned &MemBytes) const {
433 if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
434 if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
435 isFrameOperand(MI, 0, FrameIndex))
436 return MI.getOperand(X86::AddrNumOperands).getReg();
437 return 0;
438}
439
440unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
441 int &FrameIndex) const {
442 unsigned Dummy;
443 if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
444 unsigned Reg;
445 if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
446 return Reg;
447 // Check for post-frame index elimination operations
448 SmallVector<const MachineMemOperand *, 1> Accesses;
449 if (hasStoreToStackSlot(MI, Accesses)) {
450 FrameIndex =
451 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
452 ->getFrameIndex();
453 return 1;
454 }
455 }
456 return 0;
457}
458
459/// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
460static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
461 // Don't waste compile time scanning use-def chains of physregs.
462 if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
463 return false;
464 bool isPICBase = false;
465 for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
466 E = MRI.def_instr_end(); I != E; ++I) {
467 MachineInstr *DefMI = &*I;
468 if (DefMI->getOpcode() != X86::MOVPC32r)
469 return false;
470 assert(!isPICBase && "More than one PIC base?")((!isPICBase && "More than one PIC base?") ? static_cast
<void> (0) : __assert_fail ("!isPICBase && \"More than one PIC base?\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 470, __PRETTY_FUNCTION__))
;
471 isPICBase = true;
472 }
473 return isPICBase;
474}
475
476bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
477 AliasAnalysis *AA) const {
478 switch (MI.getOpcode()) {
479 default: break;
480 case X86::MOV8rm:
481 case X86::MOV8rm_NOREX:
482 case X86::MOV16rm:
483 case X86::MOV32rm:
484 case X86::MOV64rm:
485 case X86::MOVSSrm:
486 case X86::MOVSDrm:
487 case X86::MOVAPSrm:
488 case X86::MOVUPSrm:
489 case X86::MOVAPDrm:
490 case X86::MOVUPDrm:
491 case X86::MOVDQArm:
492 case X86::MOVDQUrm:
493 case X86::VMOVSSrm:
494 case X86::VMOVSDrm:
495 case X86::VMOVAPSrm:
496 case X86::VMOVUPSrm:
497 case X86::VMOVAPDrm:
498 case X86::VMOVUPDrm:
499 case X86::VMOVDQArm:
500 case X86::VMOVDQUrm:
501 case X86::VMOVAPSYrm:
502 case X86::VMOVUPSYrm:
503 case X86::VMOVAPDYrm:
504 case X86::VMOVUPDYrm:
505 case X86::VMOVDQAYrm:
506 case X86::VMOVDQUYrm:
507 case X86::MMX_MOVD64rm:
508 case X86::MMX_MOVQ64rm:
509 // AVX-512
510 case X86::VMOVSSZrm:
511 case X86::VMOVSDZrm:
512 case X86::VMOVAPDZ128rm:
513 case X86::VMOVAPDZ256rm:
514 case X86::VMOVAPDZrm:
515 case X86::VMOVAPSZ128rm:
516 case X86::VMOVAPSZ256rm:
517 case X86::VMOVAPSZ128rm_NOVLX:
518 case X86::VMOVAPSZ256rm_NOVLX:
519 case X86::VMOVAPSZrm:
520 case X86::VMOVDQA32Z128rm:
521 case X86::VMOVDQA32Z256rm:
522 case X86::VMOVDQA32Zrm:
523 case X86::VMOVDQA64Z128rm:
524 case X86::VMOVDQA64Z256rm:
525 case X86::VMOVDQA64Zrm:
526 case X86::VMOVDQU16Z128rm:
527 case X86::VMOVDQU16Z256rm:
528 case X86::VMOVDQU16Zrm:
529 case X86::VMOVDQU32Z128rm:
530 case X86::VMOVDQU32Z256rm:
531 case X86::VMOVDQU32Zrm:
532 case X86::VMOVDQU64Z128rm:
533 case X86::VMOVDQU64Z256rm:
534 case X86::VMOVDQU64Zrm:
535 case X86::VMOVDQU8Z128rm:
536 case X86::VMOVDQU8Z256rm:
537 case X86::VMOVDQU8Zrm:
538 case X86::VMOVUPDZ128rm:
539 case X86::VMOVUPDZ256rm:
540 case X86::VMOVUPDZrm:
541 case X86::VMOVUPSZ128rm:
542 case X86::VMOVUPSZ256rm:
543 case X86::VMOVUPSZ128rm_NOVLX:
544 case X86::VMOVUPSZ256rm_NOVLX:
545 case X86::VMOVUPSZrm: {
546 // Loads from constant pools are trivially rematerializable.
547 if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
548 MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
549 MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
550 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
551 MI.isDereferenceableInvariantLoad(AA)) {
552 unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
553 if (BaseReg == 0 || BaseReg == X86::RIP)
554 return true;
555 // Allow re-materialization of PIC load.
556 if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
557 return false;
558 const MachineFunction &MF = *MI.getParent()->getParent();
559 const MachineRegisterInfo &MRI = MF.getRegInfo();
560 return regIsPICBase(BaseReg, MRI);
561 }
562 return false;
563 }
564
565 case X86::LEA32r:
566 case X86::LEA64r: {
567 if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
568 MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
569 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
570 !MI.getOperand(1 + X86::AddrDisp).isReg()) {
571 // lea fi#, lea GV, etc. are all rematerializable.
572 if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
573 return true;
574 unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
575 if (BaseReg == 0)
576 return true;
577 // Allow re-materialization of lea PICBase + x.
578 const MachineFunction &MF = *MI.getParent()->getParent();
579 const MachineRegisterInfo &MRI = MF.getRegInfo();
580 return regIsPICBase(BaseReg, MRI);
581 }
582 return false;
583 }
584 }
585
586 // All other instructions marked M_REMATERIALIZABLE are always trivially
587 // rematerializable.
588 return true;
589}
590
591void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
592 MachineBasicBlock::iterator I,
593 unsigned DestReg, unsigned SubIdx,
594 const MachineInstr &Orig,
595 const TargetRegisterInfo &TRI) const {
596 bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
597 if (ClobbersEFLAGS && !isSafeToClobberEFLAGS(MBB, I)) {
598 // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
599 // effects.
600 int Value;
601 switch (Orig.getOpcode()) {
602 case X86::MOV32r0: Value = 0; break;
603 case X86::MOV32r1: Value = 1; break;
604 case X86::MOV32r_1: Value = -1; break;
605 default:
606 llvm_unreachable("Unexpected instruction!")::llvm::llvm_unreachable_internal("Unexpected instruction!", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 606)
;
607 }
608
609 const DebugLoc &DL = Orig.getDebugLoc();
610 BuildMI(MBB, I, DL, get(X86::MOV32ri))
611 .add(Orig.getOperand(0))
612 .addImm(Value);
613 } else {
614 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
615 MBB.insert(I, MI);
616 }
617
618 MachineInstr &NewMI = *std::prev(I);
619 NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
620}
621
622/// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
623bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
624 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
625 MachineOperand &MO = MI.getOperand(i);
626 if (MO.isReg() && MO.isDef() &&
627 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
628 return true;
629 }
630 }
631 return false;
632}
633
634/// Check whether the shift count for a machine operand is non-zero.
635inline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
636 unsigned ShiftAmtOperandIdx) {
637 // The shift count is six bits with the REX.W prefix and five bits without.
638 unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
639 unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
640 return Imm & ShiftCountMask;
641}
642
643/// Check whether the given shift count is appropriate
644/// can be represented by a LEA instruction.
645inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
646 // Left shift instructions can be transformed into load-effective-address
647 // instructions if we can encode them appropriately.
648 // A LEA instruction utilizes a SIB byte to encode its scale factor.
649 // The SIB.scale field is two bits wide which means that we can encode any
650 // shift amount less than 4.
651 return ShAmt < 4 && ShAmt > 0;
652}
653
654bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
655 unsigned Opc, bool AllowSP, unsigned &NewSrc,
656 bool &isKill, MachineOperand &ImplicitOp,
657 LiveVariables *LV) const {
658 MachineFunction &MF = *MI.getParent()->getParent();
659 const TargetRegisterClass *RC;
660 if (AllowSP) {
661 RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
662 } else {
663 RC = Opc != X86::LEA32r ?
664 &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
665 }
666 unsigned SrcReg = Src.getReg();
667
668 // For both LEA64 and LEA32 the register already has essentially the right
669 // type (32-bit or 64-bit) we may just need to forbid SP.
670 if (Opc != X86::LEA64_32r) {
671 NewSrc = SrcReg;
672 isKill = Src.isKill();
673 assert(!Src.isUndef() && "Undef op doesn't need optimization")((!Src.isUndef() && "Undef op doesn't need optimization"
) ? static_cast<void> (0) : __assert_fail ("!Src.isUndef() && \"Undef op doesn't need optimization\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 673, __PRETTY_FUNCTION__))
;
674
675 if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
676 !MF.getRegInfo().constrainRegClass(NewSrc, RC))
677 return false;
678
679 return true;
680 }
681
682 // This is for an LEA64_32r and incoming registers are 32-bit. One way or
683 // another we need to add 64-bit registers to the final MI.
684 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
685 ImplicitOp = Src;
686 ImplicitOp.setImplicit();
687
688 NewSrc = getX86SubSuperRegister(Src.getReg(), 64);
689 isKill = Src.isKill();
690 assert(!Src.isUndef() && "Undef op doesn't need optimization")((!Src.isUndef() && "Undef op doesn't need optimization"
) ? static_cast<void> (0) : __assert_fail ("!Src.isUndef() && \"Undef op doesn't need optimization\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 690, __PRETTY_FUNCTION__))
;
691 } else {
692 // Virtual register of the wrong class, we have to create a temporary 64-bit
693 // vreg to feed into the LEA.
694 NewSrc = MF.getRegInfo().createVirtualRegister(RC);
695 MachineInstr *Copy =
696 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
697 .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
698 .add(Src);
699
700 // Which is obviously going to be dead after we're done with it.
701 isKill = true;
702
703 if (LV)
704 LV->replaceKillInstruction(SrcReg, MI, *Copy);
705 }
706
707 // We've set all the parameters without issue.
708 return true;
709}
710
711MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(
712 unsigned MIOpc, MachineFunction::iterator &MFI, MachineInstr &MI,
713 LiveVariables *LV, bool Is8BitOp) const {
714 // We handle 8-bit adds and various 16-bit opcodes in the switch below.
715 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
716 assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits((((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits
( *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
"Unexpected type for LEA transform") ? static_cast<void>
(0) : __assert_fail ("(Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits( *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) && \"Unexpected type for LEA transform\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 718, __PRETTY_FUNCTION__))
717 *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&(((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits
( *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
"Unexpected type for LEA transform") ? static_cast<void>
(0) : __assert_fail ("(Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits( *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) && \"Unexpected type for LEA transform\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 718, __PRETTY_FUNCTION__))
718 "Unexpected type for LEA transform")(((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits
( *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
"Unexpected type for LEA transform") ? static_cast<void>
(0) : __assert_fail ("(Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits( *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) && \"Unexpected type for LEA transform\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 718, __PRETTY_FUNCTION__))
;
719
720 // TODO: For a 32-bit target, we need to adjust the LEA variables with
721 // something like this:
722 // Opcode = X86::LEA32r;
723 // InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
724 // OutRegLEA =
725 // Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
726 // : RegInfo.createVirtualRegister(&X86::GR32RegClass);
727 if (!Subtarget.is64Bit())
728 return nullptr;
729
730 unsigned Opcode = X86::LEA64_32r;
731 unsigned InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
732 unsigned OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
733
734 // Build and insert into an implicit UNDEF value. This is OK because
735 // we will be shifting and then extracting the lower 8/16-bits.
736 // This has the potential to cause partial register stall. e.g.
737 // movw (%rbp,%rcx,2), %dx
738 // leal -65(%rdx), %esi
739 // But testing has shown this *does* help performance in 64-bit mode (at
740 // least on modern x86 machines).
741 MachineBasicBlock::iterator MBBI = MI.getIterator();
742 unsigned Dest = MI.getOperand(0).getReg();
743 unsigned Src = MI.getOperand(1).getReg();
744 bool IsDead = MI.getOperand(0).isDead();
745 bool IsKill = MI.getOperand(1).isKill();
746 unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
747 assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization")((!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization"
) ? static_cast<void> (0) : __assert_fail ("!MI.getOperand(1).isUndef() && \"Undef op doesn't need optimization\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 747, __PRETTY_FUNCTION__))
;
748 BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
749 MachineInstr *InsMI =
750 BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
751 .addReg(InRegLEA, RegState::Define, SubReg)
752 .addReg(Src, getKillRegState(IsKill));
753
754 MachineInstrBuilder MIB =
755 BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
756 switch (MIOpc) {
757 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 757)
;
758 case X86::SHL8ri:
759 case X86::SHL16ri: {
760 unsigned ShAmt = MI.getOperand(2).getImm();
761 MIB.addReg(0).addImm(1ULL << ShAmt)
762 .addReg(InRegLEA, RegState::Kill).addImm(0).addReg(0);
763 break;
764 }
765 case X86::INC8r:
766 case X86::INC16r:
767 addRegOffset(MIB, InRegLEA, true, 1);
768 break;
769 case X86::DEC8r:
770 case X86::DEC16r:
771 addRegOffset(MIB, InRegLEA, true, -1);
772 break;
773 case X86::ADD8ri:
774 case X86::ADD8ri_DB:
775 case X86::ADD16ri:
776 case X86::ADD16ri8:
777 case X86::ADD16ri_DB:
778 case X86::ADD16ri8_DB:
779 addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
780 break;
781 case X86::ADD8rr:
782 case X86::ADD8rr_DB:
783 case X86::ADD16rr:
784 case X86::ADD16rr_DB: {
785 unsigned Src2 = MI.getOperand(2).getReg();
786 bool IsKill2 = MI.getOperand(2).isKill();
787 assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization")((!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization"
) ? static_cast<void> (0) : __assert_fail ("!MI.getOperand(2).isUndef() && \"Undef op doesn't need optimization\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 787, __PRETTY_FUNCTION__))
;
788 unsigned InRegLEA2 = 0;
789 MachineInstr *InsMI2 = nullptr;
790 if (Src == Src2) {
791 // ADD8rr/ADD16rr killed %reg1028, %reg1028
792 // just a single insert_subreg.
793 addRegReg(MIB, InRegLEA, true, InRegLEA, false);
794 } else {
795 if (Subtarget.is64Bit())
796 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
797 else
798 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
799 // Build and insert into an implicit UNDEF value. This is OK because
800 // we will be shifting and then extracting the lower 8/16-bits.
801 BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA2);
802 InsMI2 = BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
803 .addReg(InRegLEA2, RegState::Define, SubReg)
804 .addReg(Src2, getKillRegState(IsKill2));
805 addRegReg(MIB, InRegLEA, true, InRegLEA2, true);
806 }
807 if (LV && IsKill2 && InsMI2)
808 LV->replaceKillInstruction(Src2, MI, *InsMI2);
809 break;
810 }
811 }
812
813 MachineInstr *NewMI = MIB;
814 MachineInstr *ExtMI =
815 BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
816 .addReg(Dest, RegState::Define | getDeadRegState(IsDead))
817 .addReg(OutRegLEA, RegState::Kill, SubReg);
818
819 if (LV) {
820 // Update live variables.
821 LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
822 LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
823 if (IsKill)
824 LV->replaceKillInstruction(Src, MI, *InsMI);
825 if (IsDead)
826 LV->replaceKillInstruction(Dest, MI, *ExtMI);
827 }
828
829 return ExtMI;
830}
831
832/// This method must be implemented by targets that
833/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
834/// may be able to convert a two-address instruction into a true
835/// three-address instruction on demand. This allows the X86 target (for
836/// example) to convert ADD and SHL instructions into LEA instructions if they
837/// would require register copies due to two-addressness.
838///
839/// This method returns a null pointer if the transformation cannot be
840/// performed, otherwise it returns the new instruction.
841///
842MachineInstr *
843X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
844 MachineInstr &MI, LiveVariables *LV) const {
845 // The following opcodes also sets the condition code register(s). Only
846 // convert them to equivalent lea if the condition code register def's
847 // are dead!
848 if (hasLiveCondCodeDef(MI))
849 return nullptr;
850
851 MachineFunction &MF = *MI.getParent()->getParent();
852 // All instructions input are two-addr instructions. Get the known operands.
853 const MachineOperand &Dest = MI.getOperand(0);
854 const MachineOperand &Src = MI.getOperand(1);
855
856 // Ideally, operations with undef should be folded before we get here, but we
857 // can't guarantee it. Bail out because optimizing undefs is a waste of time.
858 // Without this, we have to forward undef state to new register operands to
859 // avoid machine verifier errors.
860 if (Src.isUndef())
861 return nullptr;
862 if (MI.getNumOperands() > 2)
863 if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
864 return nullptr;
865
866 MachineInstr *NewMI = nullptr;
867 bool Is64Bit = Subtarget.is64Bit();
868
869 bool Is8BitOp = false;
870 unsigned MIOpc = MI.getOpcode();
871 switch (MIOpc) {
872 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 872)
;
873 case X86::SHL64ri: {
874 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!")((MI.getNumOperands() >= 3 && "Unknown shift instruction!"
) ? static_cast<void> (0) : __assert_fail ("MI.getNumOperands() >= 3 && \"Unknown shift instruction!\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 874, __PRETTY_FUNCTION__))
;
875 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
876 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
877
878 // LEA can't handle RSP.
879 if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
880 !MF.getRegInfo().constrainRegClass(Src.getReg(),
881 &X86::GR64_NOSPRegClass))
882 return nullptr;
883
884 NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
885 .add(Dest)
886 .addReg(0)
887 .addImm(1ULL << ShAmt)
888 .add(Src)
889 .addImm(0)
890 .addReg(0);
891 break;
892 }
893 case X86::SHL32ri: {
894 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!")((MI.getNumOperands() >= 3 && "Unknown shift instruction!"
) ? static_cast<void> (0) : __assert_fail ("MI.getNumOperands() >= 3 && \"Unknown shift instruction!\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 894, __PRETTY_FUNCTION__))
;
895 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
896 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
897
898 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
899
900 // LEA can't handle ESP.
901 bool isKill;
902 unsigned SrcReg;
903 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
904 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
905 SrcReg, isKill, ImplicitOp, LV))
906 return nullptr;
907
908 MachineInstrBuilder MIB =
909 BuildMI(MF, MI.getDebugLoc(), get(Opc))
910 .add(Dest)
911 .addReg(0)
912 .addImm(1ULL << ShAmt)
913 .addReg(SrcReg, getKillRegState(isKill))
914 .addImm(0)
915 .addReg(0);
916 if (ImplicitOp.getReg() != 0)
917 MIB.add(ImplicitOp);
918 NewMI = MIB;
919
920 break;
921 }
922 case X86::SHL8ri:
923 Is8BitOp = true;
924 LLVM_FALLTHROUGH[[clang::fallthrough]];
925 case X86::SHL16ri: {
926 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!")((MI.getNumOperands() >= 3 && "Unknown shift instruction!"
) ? static_cast<void> (0) : __assert_fail ("MI.getNumOperands() >= 3 && \"Unknown shift instruction!\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 926, __PRETTY_FUNCTION__))
;
927 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
928 if (!isTruncatedShiftCountForLEA(ShAmt))
929 return nullptr;
930 return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
931 }
932 case X86::INC64r:
933 case X86::INC32r: {
934 assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!")((MI.getNumOperands() >= 2 && "Unknown inc instruction!"
) ? static_cast<void> (0) : __assert_fail ("MI.getNumOperands() >= 2 && \"Unknown inc instruction!\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 934, __PRETTY_FUNCTION__))
;
935 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r :
936 (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
937 bool isKill;
938 unsigned SrcReg;
939 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
940 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill,
941 ImplicitOp, LV))
942 return nullptr;
943
944 MachineInstrBuilder MIB =
945 BuildMI(MF, MI.getDebugLoc(), get(Opc))
946 .add(Dest)
947 .addReg(SrcReg, getKillRegState(isKill));
948 if (ImplicitOp.getReg() != 0)
949 MIB.add(ImplicitOp);
950
951 NewMI = addOffset(MIB, 1);
952 break;
953 }
954 case X86::DEC64r:
955 case X86::DEC32r: {
956 assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!")((MI.getNumOperands() >= 2 && "Unknown dec instruction!"
) ? static_cast<void> (0) : __assert_fail ("MI.getNumOperands() >= 2 && \"Unknown dec instruction!\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 956, __PRETTY_FUNCTION__))
;
957 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
958 : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
959
960 bool isKill;
961 unsigned SrcReg;
962 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
963 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill,
964 ImplicitOp, LV))
965 return nullptr;
966
967 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
968 .add(Dest)
969 .addReg(SrcReg, getKillRegState(isKill));
970 if (ImplicitOp.getReg() != 0)
971 MIB.add(ImplicitOp);
972
973 NewMI = addOffset(MIB, -1);
974
975 break;
976 }
977 case X86::DEC8r:
978 case X86::INC8r:
979 Is8BitOp = true;
980 LLVM_FALLTHROUGH[[clang::fallthrough]];
981 case X86::DEC16r:
982 case X86::INC16r:
983 return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
984 case X86::ADD64rr:
985 case X86::ADD64rr_DB:
986 case X86::ADD32rr:
987 case X86::ADD32rr_DB: {
988 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!")((MI.getNumOperands() >= 3 && "Unknown add instruction!"
) ? static_cast<void> (0) : __assert_fail ("MI.getNumOperands() >= 3 && \"Unknown add instruction!\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 988, __PRETTY_FUNCTION__))
;
989 unsigned Opc;
990 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
991 Opc = X86::LEA64r;
992 else
993 Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
994
995 bool isKill;
996 unsigned SrcReg;
997 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
998 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
999 SrcReg, isKill, ImplicitOp, LV))
1000 return nullptr;
1001
1002 const MachineOperand &Src2 = MI.getOperand(2);
1003 bool isKill2;
1004 unsigned SrcReg2;
1005 MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
1006 if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
1007 SrcReg2, isKill2, ImplicitOp2, LV))
1008 return nullptr;
1009
1010 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
1011 if (ImplicitOp.getReg() != 0)
1012 MIB.add(ImplicitOp);
1013 if (ImplicitOp2.getReg() != 0)
1014 MIB.add(ImplicitOp2);
1015
1016 NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
1017 if (LV && Src2.isKill())
1018 LV->replaceKillInstruction(SrcReg2, MI, *NewMI);
1019 break;
1020 }
1021 case X86::ADD8rr:
1022 case X86::ADD8rr_DB:
1023 Is8BitOp = true;
1024 LLVM_FALLTHROUGH[[clang::fallthrough]];
1025 case X86::ADD16rr:
1026 case X86::ADD16rr_DB:
1027 return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1028 case X86::ADD64ri32:
1029 case X86::ADD64ri8:
1030 case X86::ADD64ri32_DB:
1031 case X86::ADD64ri8_DB:
1032 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!")((MI.getNumOperands() >= 3 && "Unknown add instruction!"
) ? static_cast<void> (0) : __assert_fail ("MI.getNumOperands() >= 3 && \"Unknown add instruction!\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 1032, __PRETTY_FUNCTION__))
;
1033 NewMI = addOffset(
1034 BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
1035 MI.getOperand(2));
1036 break;
1037 case X86::ADD32ri:
1038 case X86::ADD32ri8:
1039 case X86::ADD32ri_DB:
1040 case X86::ADD32ri8_DB: {
1041 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!")((MI.getNumOperands() >= 3 && "Unknown add instruction!"
) ? static_cast<void> (0) : __assert_fail ("MI.getNumOperands() >= 3 && \"Unknown add instruction!\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 1041, __PRETTY_FUNCTION__))
;
1042 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1043
1044 bool isKill;
1045 unsigned SrcReg;
1046 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1047 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1048 SrcReg, isKill, ImplicitOp, LV))
1049 return nullptr;
1050
1051 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1052 .add(Dest)
1053 .addReg(SrcReg, getKillRegState(isKill));
1054 if (ImplicitOp.getReg() != 0)
1055 MIB.add(ImplicitOp);
1056
1057 NewMI = addOffset(MIB, MI.getOperand(2));
1058 break;
1059 }
1060 case X86::ADD8ri:
1061 case X86::ADD8ri_DB:
1062 Is8BitOp = true;
1063 LLVM_FALLTHROUGH[[clang::fallthrough]];
1064 case X86::ADD16ri:
1065 case X86::ADD16ri8:
1066 case X86::ADD16ri_DB:
1067 case X86::ADD16ri8_DB:
1068 return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1069 case X86::VMOVDQU8Z128rmk:
1070 case X86::VMOVDQU8Z256rmk:
1071 case X86::VMOVDQU8Zrmk:
1072 case X86::VMOVDQU16Z128rmk:
1073 case X86::VMOVDQU16Z256rmk:
1074 case X86::VMOVDQU16Zrmk:
1075 case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
1076 case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
1077 case X86::VMOVDQU32Zrmk: case X86::VMOVDQA32Zrmk:
1078 case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
1079 case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
1080 case X86::VMOVDQU64Zrmk: case X86::VMOVDQA64Zrmk:
1081 case X86::VMOVUPDZ128rmk: case X86::VMOVAPDZ128rmk:
1082 case X86::VMOVUPDZ256rmk: case X86::VMOVAPDZ256rmk:
1083 case X86::VMOVUPDZrmk: case X86::VMOVAPDZrmk:
1084 case X86::VMOVUPSZ128rmk: case X86::VMOVAPSZ128rmk:
1085 case X86::VMOVUPSZ256rmk: case X86::VMOVAPSZ256rmk:
1086 case X86::VMOVUPSZrmk: case X86::VMOVAPSZrmk: {
1087 unsigned Opc;
1088 switch (MIOpc) {
1089 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 1089)
;
1090 case X86::VMOVDQU8Z128rmk: Opc = X86::VPBLENDMBZ128rmk; break;
1091 case X86::VMOVDQU8Z256rmk: Opc = X86::VPBLENDMBZ256rmk; break;
1092 case X86::VMOVDQU8Zrmk: Opc = X86::VPBLENDMBZrmk; break;
1093 case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break;
1094 case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break;
1095 case X86::VMOVDQU16Zrmk: Opc = X86::VPBLENDMWZrmk; break;
1096 case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
1097 case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
1098 case X86::VMOVDQU32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
1099 case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
1100 case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
1101 case X86::VMOVDQU64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
1102 case X86::VMOVUPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
1103 case X86::VMOVUPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
1104 case X86::VMOVUPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
1105 case X86::VMOVUPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
1106 case X86::VMOVUPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
1107 case X86::VMOVUPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
1108 case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
1109 case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
1110 case X86::VMOVDQA32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
1111 case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
1112 case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
1113 case X86::VMOVDQA64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
1114 case X86::VMOVAPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
1115 case X86::VMOVAPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
1116 case X86::VMOVAPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
1117 case X86::VMOVAPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
1118 case X86::VMOVAPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
1119 case X86::VMOVAPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
1120 }
1121
1122 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1123 .add(Dest)
1124 .add(MI.getOperand(2))
1125 .add(Src)
1126 .add(MI.getOperand(3))
1127 .add(MI.getOperand(4))
1128 .add(MI.getOperand(5))
1129 .add(MI.getOperand(6))
1130 .add(MI.getOperand(7));
1131 break;
1132 }
1133 case X86::VMOVDQU8Z128rrk:
1134 case X86::VMOVDQU8Z256rrk:
1135 case X86::VMOVDQU8Zrrk:
1136 case X86::VMOVDQU16Z128rrk:
1137 case X86::VMOVDQU16Z256rrk:
1138 case X86::VMOVDQU16Zrrk:
1139 case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
1140 case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
1141 case X86::VMOVDQU32Zrrk: case X86::VMOVDQA32Zrrk:
1142 case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
1143 case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
1144 case X86::VMOVDQU64Zrrk: case X86::VMOVDQA64Zrrk:
1145 case X86::VMOVUPDZ128rrk: case X86::VMOVAPDZ128rrk:
1146 case X86::VMOVUPDZ256rrk: case X86::VMOVAPDZ256rrk:
1147 case X86::VMOVUPDZrrk: case X86::VMOVAPDZrrk:
1148 case X86::VMOVUPSZ128rrk: case X86::VMOVAPSZ128rrk:
1149 case X86::VMOVUPSZ256rrk: case X86::VMOVAPSZ256rrk:
1150 case X86::VMOVUPSZrrk: case X86::VMOVAPSZrrk: {
1151 unsigned Opc;
1152 switch (MIOpc) {
1153 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 1153)
;
1154 case X86::VMOVDQU8Z128rrk: Opc = X86::VPBLENDMBZ128rrk; break;
1155 case X86::VMOVDQU8Z256rrk: Opc = X86::VPBLENDMBZ256rrk; break;
1156 case X86::VMOVDQU8Zrrk: Opc = X86::VPBLENDMBZrrk; break;
1157 case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
1158 case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
1159 case X86::VMOVDQU16Zrrk: Opc = X86::VPBLENDMWZrrk; break;
1160 case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1161 case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1162 case X86::VMOVDQU32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
1163 case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1164 case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1165 case X86::VMOVDQU64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
1166 case X86::VMOVUPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
1167 case X86::VMOVUPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
1168 case X86::VMOVUPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
1169 case X86::VMOVUPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
1170 case X86::VMOVUPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
1171 case X86::VMOVUPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
1172 case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1173 case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1174 case X86::VMOVDQA32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
1175 case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1176 case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1177 case X86::VMOVDQA64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
1178 case X86::VMOVAPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
1179 case X86::VMOVAPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
1180 case X86::VMOVAPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
1181 case X86::VMOVAPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
1182 case X86::VMOVAPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
1183 case X86::VMOVAPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
1184 }
1185
1186 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1187 .add(Dest)
1188 .add(MI.getOperand(2))
1189 .add(Src)
1190 .add(MI.getOperand(3));
1191 break;
1192 }
1193 }
1194
1195 if (!NewMI) return nullptr;
1196
1197 if (LV) { // Update live variables
1198 if (Src.isKill())
1199 LV->replaceKillInstruction(Src.getReg(), MI, *NewMI);
1200 if (Dest.isDead())
1201 LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI);
1202 }
1203
1204 MFI->insert(MI.getIterator(), NewMI); // Insert the new inst
1205 return NewMI;
1206}
1207
1208/// This determines which of three possible cases of a three source commute
1209/// the source indexes correspond to taking into account any mask operands.
1210/// All prevents commuting a passthru operand. Returns -1 if the commute isn't
1211/// possible.
1212/// Case 0 - Possible to commute the first and second operands.
1213/// Case 1 - Possible to commute the first and third operands.
1214/// Case 2 - Possible to commute the second and third operands.
1215static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
1216 unsigned SrcOpIdx2) {
1217 // Put the lowest index to SrcOpIdx1 to simplify the checks below.
1218 if (SrcOpIdx1 > SrcOpIdx2)
1219 std::swap(SrcOpIdx1, SrcOpIdx2);
1220
1221 unsigned Op1 = 1, Op2 = 2, Op3 = 3;
1222 if (X86II::isKMasked(TSFlags)) {
1223 Op2++;
1224 Op3++;
1225 }
1226
1227 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
1228 return 0;
1229 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
1230 return 1;
1231 if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
1232 return 2;
1233 llvm_unreachable("Unknown three src commute case.")::llvm::llvm_unreachable_internal("Unknown three src commute case."
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 1233)
;
1234}
1235
1236unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
1237 const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
1238 const X86InstrFMA3Group &FMA3Group) const {
1239
1240 unsigned Opc = MI.getOpcode();
1241
1242 // TODO: Commuting the 1st operand of FMA*_Int requires some additional
1243 // analysis. The commute optimization is legal only if all users of FMA*_Int
1244 // use only the lowest element of the FMA*_Int instruction. Such analysis are
1245 // not implemented yet. So, just return 0 in that case.
1246 // When such analysis are available this place will be the right place for
1247 // calling it.
1248 assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&((!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2
== 1)) && "Intrinsic instructions can't commute operand 1"
) ? static_cast<void> (0) : __assert_fail ("!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) && \"Intrinsic instructions can't commute operand 1\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 1249, __PRETTY_FUNCTION__))
1249 "Intrinsic instructions can't commute operand 1")((!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2
== 1)) && "Intrinsic instructions can't commute operand 1"
) ? static_cast<void> (0) : __assert_fail ("!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) && \"Intrinsic instructions can't commute operand 1\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 1249, __PRETTY_FUNCTION__))
;
1250
1251 // Determine which case this commute is or if it can't be done.
1252 unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1253 SrcOpIdx2);
1254 assert(Case < 3 && "Unexpected case number!")((Case < 3 && "Unexpected case number!") ? static_cast
<void> (0) : __assert_fail ("Case < 3 && \"Unexpected case number!\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 1254, __PRETTY_FUNCTION__))
;
1255
1256 // Define the FMA forms mapping array that helps to map input FMA form
1257 // to output FMA form to preserve the operation semantics after
1258 // commuting the operands.
1259 const unsigned Form132Index = 0;
1260 const unsigned Form213Index = 1;
1261 const unsigned Form231Index = 2;
1262 static const unsigned FormMapping[][3] = {
1263 // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
1264 // FMA132 A, C, b; ==> FMA231 C, A, b;
1265 // FMA213 B, A, c; ==> FMA213 A, B, c;
1266 // FMA231 C, A, b; ==> FMA132 A, C, b;
1267 { Form231Index, Form213Index, Form132Index },
1268 // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
1269 // FMA132 A, c, B; ==> FMA132 B, c, A;
1270 // FMA213 B, a, C; ==> FMA231 C, a, B;
1271 // FMA231 C, a, B; ==> FMA213 B, a, C;
1272 { Form132Index, Form231Index, Form213Index },
1273 // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
1274 // FMA132 a, C, B; ==> FMA213 a, B, C;
1275 // FMA213 b, A, C; ==> FMA132 b, C, A;
1276 // FMA231 c, A, B; ==> FMA231 c, B, A;
1277 { Form213Index, Form132Index, Form231Index }
1278 };
1279
1280 unsigned FMAForms[3];
1281 FMAForms[0] = FMA3Group.get132Opcode();
1282 FMAForms[1] = FMA3Group.get213Opcode();
1283 FMAForms[2] = FMA3Group.get231Opcode();
1284 unsigned FormIndex;
1285 for (FormIndex = 0; FormIndex < 3; FormIndex++)
1286 if (Opc == FMAForms[FormIndex])
1287 break;
1288
1289 // Everything is ready, just adjust the FMA opcode and return it.
1290 FormIndex = FormMapping[Case][FormIndex];
1291 return FMAForms[FormIndex];
1292}
1293
1294static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
1295 unsigned SrcOpIdx2) {
1296 // Determine which case this commute is or if it can't be done.
1297 unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1298 SrcOpIdx2);
1299 assert(Case < 3 && "Unexpected case value!")((Case < 3 && "Unexpected case value!") ? static_cast
<void> (0) : __assert_fail ("Case < 3 && \"Unexpected case value!\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 1299, __PRETTY_FUNCTION__))
;
1300
1301 // For each case we need to swap two pairs of bits in the final immediate.
1302 static const uint8_t SwapMasks[3][4] = {
1303 { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
1304 { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
1305 { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
1306 };
1307
1308 uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
1309 // Clear out the bits we are swapping.
1310 uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
1311 SwapMasks[Case][2] | SwapMasks[Case][3]);
1312 // If the immediate had a bit of the pair set, then set the opposite bit.
1313 if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
1314 if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
1315 if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
1316 if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
1317 MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
1318}
1319
1320// Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
1321// commuted.
1322static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
1323#define VPERM_CASES(Suffix) \
1324 case X86::VPERMI2##Suffix##128rr: case X86::VPERMT2##Suffix##128rr: \
1325 case X86::VPERMI2##Suffix##256rr: case X86::VPERMT2##Suffix##256rr: \
1326 case X86::VPERMI2##Suffix##rr: case X86::VPERMT2##Suffix##rr: \
1327 case X86::VPERMI2##Suffix##128rm: case X86::VPERMT2##Suffix##128rm: \
1328 case X86::VPERMI2##Suffix##256rm: case X86::VPERMT2##Suffix##256rm: \
1329 case X86::VPERMI2##Suffix##rm: case X86::VPERMT2##Suffix##rm: \
1330 case X86::VPERMI2##Suffix##128rrkz: case X86::VPERMT2##Suffix##128rrkz: \
1331 case X86::VPERMI2##Suffix##256rrkz: case X86::VPERMT2##Suffix##256rrkz: \
1332 case X86::VPERMI2##Suffix##rrkz: case X86::VPERMT2##Suffix##rrkz: \
1333 case X86::VPERMI2##Suffix##128rmkz: case X86::VPERMT2##Suffix##128rmkz: \
1334 case X86::VPERMI2##Suffix##256rmkz: case X86::VPERMT2##Suffix##256rmkz: \
1335 case X86::VPERMI2##Suffix##rmkz: case X86::VPERMT2##Suffix##rmkz:
1336
1337#define VPERM_CASES_BROADCAST(Suffix) \
1338 VPERM_CASES(Suffix) \
1339 case X86::VPERMI2##Suffix##128rmb: case X86::VPERMT2##Suffix##128rmb: \
1340 case X86::VPERMI2##Suffix##256rmb: case X86::VPERMT2##Suffix##256rmb: \
1341 case X86::VPERMI2##Suffix##rmb: case X86::VPERMT2##Suffix##rmb: \
1342 case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
1343 case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
1344 case X86::VPERMI2##Suffix##rmbkz: case X86::VPERMT2##Suffix##rmbkz:
1345
1346 switch (Opcode) {
1347 default: return false;
1348 VPERM_CASES(B)
1349 VPERM_CASES_BROADCAST(D)
1350 VPERM_CASES_BROADCAST(PD)
1351 VPERM_CASES_BROADCAST(PS)
1352 VPERM_CASES_BROADCAST(Q)
1353 VPERM_CASES(W)
1354 return true;
1355 }
1356#undef VPERM_CASES_BROADCAST
1357#undef VPERM_CASES
1358}
1359
1360// Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
1361// from the I opcode to the T opcode and vice versa.
1362static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
1363#define VPERM_CASES(Orig, New) \
1364 case X86::Orig##128rr: return X86::New##128rr; \
1365 case X86::Orig##128rrkz: return X86::New##128rrkz; \
1366 case X86::Orig##128rm: return X86::New##128rm; \
1367 case X86::Orig##128rmkz: return X86::New##128rmkz; \
1368 case X86::Orig##256rr: return X86::New##256rr; \
1369 case X86::Orig##256rrkz: return X86::New##256rrkz; \
1370 case X86::Orig##256rm: return X86::New##256rm; \
1371 case X86::Orig##256rmkz: return X86::New##256rmkz; \
1372 case X86::Orig##rr: return X86::New##rr; \
1373 case X86::Orig##rrkz: return X86::New##rrkz; \
1374 case X86::Orig##rm: return X86::New##rm; \
1375 case X86::Orig##rmkz: return X86::New##rmkz;
1376
1377#define VPERM_CASES_BROADCAST(Orig, New) \
1378 VPERM_CASES(Orig, New) \
1379 case X86::Orig##128rmb: return X86::New##128rmb; \
1380 case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
1381 case X86::Orig##256rmb: return X86::New##256rmb; \
1382 case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
1383 case X86::Orig##rmb: return X86::New##rmb; \
1384 case X86::Orig##rmbkz: return X86::New##rmbkz;
1385
1386 switch (Opcode) {
1387 VPERM_CASES(VPERMI2B, VPERMT2B)
1388 VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D)
1389 VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
1390 VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
1391 VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q)
1392 VPERM_CASES(VPERMI2W, VPERMT2W)
1393 VPERM_CASES(VPERMT2B, VPERMI2B)
1394 VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D)
1395 VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
1396 VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
1397 VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q)
1398 VPERM_CASES(VPERMT2W, VPERMI2W)
1399 }
1400
1401 llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 1401)
;
1402#undef VPERM_CASES_BROADCAST
1403#undef VPERM_CASES
1404}
1405
1406MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
1407 unsigned OpIdx1,
1408 unsigned OpIdx2) const {
1409 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
1410 if (NewMI)
1411 return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
1412 return MI;
1413 };
1414
1415 switch (MI.getOpcode()) {
1416 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1417 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1418 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1419 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1420 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1421 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1422 unsigned Opc;
1423 unsigned Size;
1424 switch (MI.getOpcode()) {
1425 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 1425)
;
1426 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1427 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1428 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1429 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1430 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1431 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1432 }
1433 unsigned Amt = MI.getOperand(3).getImm();
1434 auto &WorkingMI = cloneIfNew(MI);
1435 WorkingMI.setDesc(get(Opc));
1436 WorkingMI.getOperand(3).setImm(Size - Amt);
1437 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1438 OpIdx1, OpIdx2);
1439 }
1440 case X86::PFSUBrr:
1441 case X86::PFSUBRrr: {
1442 // PFSUB x, y: x = x - y
1443 // PFSUBR x, y: x = y - x
1444 unsigned Opc =
1445 (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr);
1446 auto &WorkingMI = cloneIfNew(MI);
1447 WorkingMI.setDesc(get(Opc));
1448 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1449 OpIdx1, OpIdx2);
1450 }
1451 case X86::BLENDPDrri:
1452 case X86::BLENDPSrri:
1453 case X86::VBLENDPDrri:
1454 case X86::VBLENDPSrri:
1455 // If we're optimizing for size, try to use MOVSD/MOVSS.
1456 if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
1457 unsigned Mask, Opc;
1458 switch (MI.getOpcode()) {
1459 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 1459)
;
1460 case X86::BLENDPDrri: Opc = X86::MOVSDrr; Mask = 0x03; break;
1461 case X86::BLENDPSrri: Opc = X86::MOVSSrr; Mask = 0x0F; break;
1462 case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break;
1463 case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break;
1464 }
1465 if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
1466 auto &WorkingMI = cloneIfNew(MI);
1467 WorkingMI.setDesc(get(Opc));
1468 WorkingMI.RemoveOperand(3);
1469 return TargetInstrInfo::commuteInstructionImpl(WorkingMI,
1470 /*NewMI=*/false,
1471 OpIdx1, OpIdx2);
1472 }
1473 }
1474 LLVM_FALLTHROUGH[[clang::fallthrough]];
1475 case X86::PBLENDWrri:
1476 case X86::VBLENDPDYrri:
1477 case X86::VBLENDPSYrri:
1478 case X86::VPBLENDDrri:
1479 case X86::VPBLENDWrri:
1480 case X86::VPBLENDDYrri:
1481 case X86::VPBLENDWYrri:{
1482 int8_t Mask;
1483 switch (MI.getOpcode()) {
1484 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 1484)
;
1485 case X86::BLENDPDrri: Mask = (int8_t)0x03; break;
1486 case X86::BLENDPSrri: Mask = (int8_t)0x0F; break;
1487 case X86::PBLENDWrri: Mask = (int8_t)0xFF; break;
1488 case X86::VBLENDPDrri: Mask = (int8_t)0x03; break;
1489 case X86::VBLENDPSrri: Mask = (int8_t)0x0F; break;
1490 case X86::VBLENDPDYrri: Mask = (int8_t)0x0F; break;
1491 case X86::VBLENDPSYrri: Mask = (int8_t)0xFF; break;
1492 case X86::VPBLENDDrri: Mask = (int8_t)0x0F; break;
1493 case X86::VPBLENDWrri: Mask = (int8_t)0xFF; break;
1494 case X86::VPBLENDDYrri: Mask = (int8_t)0xFF; break;
1495 case X86::VPBLENDWYrri: Mask = (int8_t)0xFF; break;
1496 }
1497 // Only the least significant bits of Imm are used.
1498 // Using int8_t to ensure it will be sign extended to the int64_t that
1499 // setImm takes in order to match isel behavior.
1500 int8_t Imm = MI.getOperand(3).getImm() & Mask;
1501 auto &WorkingMI = cloneIfNew(MI);
1502 WorkingMI.getOperand(3).setImm(Mask ^ Imm);
1503 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1504 OpIdx1, OpIdx2);
1505 }
1506 case X86::INSERTPSrr:
1507 case X86::VINSERTPSrr:
1508 case X86::VINSERTPSZrr: {
1509 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
1510 unsigned ZMask = Imm & 15;
1511 unsigned DstIdx = (Imm >> 4) & 3;
1512 unsigned SrcIdx = (Imm >> 6) & 3;
1513
1514 // We can commute insertps if we zero 2 of the elements, the insertion is
1515 // "inline" and we don't override the insertion with a zero.
1516 if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
1517 countPopulation(ZMask) == 2) {
1518 unsigned AltIdx = findFirstSet((ZMask | (1 << DstIdx)) ^ 15);
1519 assert(AltIdx < 4 && "Illegal insertion index")((AltIdx < 4 && "Illegal insertion index") ? static_cast
<void> (0) : __assert_fail ("AltIdx < 4 && \"Illegal insertion index\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 1519, __PRETTY_FUNCTION__))
;
1520 unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
1521 auto &WorkingMI = cloneIfNew(MI);
1522 WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm);
1523 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1524 OpIdx1, OpIdx2);
1525 }
1526 return nullptr;
1527 }
1528 case X86::MOVSDrr:
1529 case X86::MOVSSrr:
1530 case X86::VMOVSDrr:
1531 case X86::VMOVSSrr:{
1532 // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
1533 assert(Subtarget.hasSSE41() && "Commuting MOVSD/MOVSS requires SSE41!")((Subtarget.hasSSE41() && "Commuting MOVSD/MOVSS requires SSE41!"
) ? static_cast<void> (0) : __assert_fail ("Subtarget.hasSSE41() && \"Commuting MOVSD/MOVSS requires SSE41!\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 1533, __PRETTY_FUNCTION__))
;
1534
1535 unsigned Mask, Opc;
1536 switch (MI.getOpcode()) {
1537 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 1537)
;
1538 case X86::MOVSDrr: Opc = X86::BLENDPDrri; Mask = 0x02; break;
1539 case X86::MOVSSrr: Opc = X86::BLENDPSrri; Mask = 0x0E; break;
1540 case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
1541 case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
1542 }
1543
1544 auto &WorkingMI = cloneIfNew(MI);
1545 WorkingMI.setDesc(get(Opc));
1546 WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
1547 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1548 OpIdx1, OpIdx2);
1549 }
1550 case X86::PCLMULQDQrr:
1551 case X86::VPCLMULQDQrr:
1552 case X86::VPCLMULQDQYrr:
1553 case X86::VPCLMULQDQZrr:
1554 case X86::VPCLMULQDQZ128rr:
1555 case X86::VPCLMULQDQZ256rr: {
1556 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
1557 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
1558 unsigned Imm = MI.getOperand(3).getImm();
1559 unsigned Src1Hi = Imm & 0x01;
1560 unsigned Src2Hi = Imm & 0x10;
1561 auto &WorkingMI = cloneIfNew(MI);
1562 WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
1563 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1564 OpIdx1, OpIdx2);
1565 }
1566 case X86::VPCMPBZ128rri: case X86::VPCMPUBZ128rri:
1567 case X86::VPCMPBZ256rri: case X86::VPCMPUBZ256rri:
1568 case X86::VPCMPBZrri: case X86::VPCMPUBZrri:
1569 case X86::VPCMPDZ128rri: case X86::VPCMPUDZ128rri:
1570 case X86::VPCMPDZ256rri: case X86::VPCMPUDZ256rri:
1571 case X86::VPCMPDZrri: case X86::VPCMPUDZrri:
1572 case X86::VPCMPQZ128rri: case X86::VPCMPUQZ128rri:
1573 case X86::VPCMPQZ256rri: case X86::VPCMPUQZ256rri:
1574 case X86::VPCMPQZrri: case X86::VPCMPUQZrri:
1575 case X86::VPCMPWZ128rri: case X86::VPCMPUWZ128rri:
1576 case X86::VPCMPWZ256rri: case X86::VPCMPUWZ256rri:
1577 case X86::VPCMPWZrri: case X86::VPCMPUWZrri:
1578 case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik:
1579 case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik:
1580 case X86::VPCMPBZrrik: case X86::VPCMPUBZrrik:
1581 case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik:
1582 case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik:
1583 case X86::VPCMPDZrrik: case X86::VPCMPUDZrrik:
1584 case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik:
1585 case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik:
1586 case X86::VPCMPQZrrik: case X86::VPCMPUQZrrik:
1587 case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik:
1588 case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik:
1589 case X86::VPCMPWZrrik: case X86::VPCMPUWZrrik: {
1590 // Flip comparison mode immediate (if necessary).
1591 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7;
1592 Imm = X86::getSwappedVPCMPImm(Imm);
1593 auto &WorkingMI = cloneIfNew(MI);
1594 WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm);
1595 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1596 OpIdx1, OpIdx2);
1597 }
1598 case X86::VPCOMBri: case X86::VPCOMUBri:
1599 case X86::VPCOMDri: case X86::VPCOMUDri:
1600 case X86::VPCOMQri: case X86::VPCOMUQri:
1601 case X86::VPCOMWri: case X86::VPCOMUWri: {
1602 // Flip comparison mode immediate (if necessary).
1603 unsigned Imm = MI.getOperand(3).getImm() & 0x7;
1604 Imm = X86::getSwappedVPCOMImm(Imm);
1605 auto &WorkingMI = cloneIfNew(MI);
1606 WorkingMI.getOperand(3).setImm(Imm);
1607 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1608 OpIdx1, OpIdx2);
1609 }
1610 case X86::VPERM2F128rr:
1611 case X86::VPERM2I128rr: {
1612 // Flip permute source immediate.
1613 // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
1614 // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
1615 int8_t Imm = MI.getOperand(3).getImm() & 0xFF;
1616 auto &WorkingMI = cloneIfNew(MI);
1617 WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
1618 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1619 OpIdx1, OpIdx2);
1620 }
1621 case X86::MOVHLPSrr:
1622 case X86::UNPCKHPDrr:
1623 case X86::VMOVHLPSrr:
1624 case X86::VUNPCKHPDrr:
1625 case X86::VMOVHLPSZrr:
1626 case X86::VUNPCKHPDZ128rr: {
1627 assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!")((Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!"
) ? static_cast<void> (0) : __assert_fail ("Subtarget.hasSSE2() && \"Commuting MOVHLP/UNPCKHPD requires SSE2!\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 1627, __PRETTY_FUNCTION__))
;
1628
1629 unsigned Opc = MI.getOpcode();
1630 switch (Opc) {
1631 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 1631)
;
1632 case X86::MOVHLPSrr: Opc = X86::UNPCKHPDrr; break;
1633 case X86::UNPCKHPDrr: Opc = X86::MOVHLPSrr; break;
1634 case X86::VMOVHLPSrr: Opc = X86::VUNPCKHPDrr; break;
1635 case X86::VUNPCKHPDrr: Opc = X86::VMOVHLPSrr; break;
1636 case X86::VMOVHLPSZrr: Opc = X86::VUNPCKHPDZ128rr; break;
1637 case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr; break;
1638 }
1639 auto &WorkingMI = cloneIfNew(MI);
1640 WorkingMI.setDesc(get(Opc));
1641 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1642 OpIdx1, OpIdx2);
1643 }
1644 case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr: {
1645 auto &WorkingMI = cloneIfNew(MI);
1646 unsigned OpNo = MI.getDesc().getNumOperands() - 1;
1647 X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
1648 WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC));
1649 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1650 OpIdx1, OpIdx2);
1651 }
1652 case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
1653 case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
1654 case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
1655 case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
1656 case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
1657 case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
1658 case X86::VPTERNLOGDZrrik:
1659 case X86::VPTERNLOGDZ128rrik:
1660 case X86::VPTERNLOGDZ256rrik:
1661 case X86::VPTERNLOGQZrrik:
1662 case X86::VPTERNLOGQZ128rrik:
1663 case X86::VPTERNLOGQZ256rrik:
1664 case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
1665 case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
1666 case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
1667 case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
1668 case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
1669 case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
1670 case X86::VPTERNLOGDZ128rmbi:
1671 case X86::VPTERNLOGDZ256rmbi:
1672 case X86::VPTERNLOGDZrmbi:
1673 case X86::VPTERNLOGQZ128rmbi:
1674 case X86::VPTERNLOGQZ256rmbi:
1675 case X86::VPTERNLOGQZrmbi:
1676 case X86::VPTERNLOGDZ128rmbikz:
1677 case X86::VPTERNLOGDZ256rmbikz:
1678 case X86::VPTERNLOGDZrmbikz:
1679 case X86::VPTERNLOGQZ128rmbikz:
1680 case X86::VPTERNLOGQZ256rmbikz:
1681 case X86::VPTERNLOGQZrmbikz: {
1682 auto &WorkingMI = cloneIfNew(MI);
1683 commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2);
1684 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1685 OpIdx1, OpIdx2);
1686 }
1687 default: {
1688 if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
1689 unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
1690 auto &WorkingMI = cloneIfNew(MI);
1691 WorkingMI.setDesc(get(Opc));
1692 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1693 OpIdx1, OpIdx2);
1694 }
1695
1696 const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
1697 MI.getDesc().TSFlags);
1698 if (FMA3Group) {
1699 unsigned Opc =
1700 getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
1701 auto &WorkingMI = cloneIfNew(MI);
1702 WorkingMI.setDesc(get(Opc));
1703 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1704 OpIdx1, OpIdx2);
1705 }
1706
1707 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
1708 }
1709 }
1710}
1711
1712bool
1713X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
1714 unsigned &SrcOpIdx1,
1715 unsigned &SrcOpIdx2,
1716 bool IsIntrinsic) const {
1717 uint64_t TSFlags = MI.getDesc().TSFlags;
1718
1719 unsigned FirstCommutableVecOp = 1;
1720 unsigned LastCommutableVecOp = 3;
1721 unsigned KMaskOp = -1U;
1722 if (X86II::isKMasked(TSFlags)) {
1723 // For k-zero-masked operations it is Ok to commute the first vector
1724 // operand.
1725 // For regular k-masked operations a conservative choice is done as the
1726 // elements of the first vector operand, for which the corresponding bit
1727 // in the k-mask operand is set to 0, are copied to the result of the
1728 // instruction.
1729 // TODO/FIXME: The commute still may be legal if it is known that the
1730 // k-mask operand is set to either all ones or all zeroes.
1731 // It is also Ok to commute the 1st operand if all users of MI use only
1732 // the elements enabled by the k-mask operand. For example,
1733 // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
1734 // : v1[i];
1735 // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
1736 // // Ok, to commute v1 in FMADD213PSZrk.
1737
1738 // The k-mask operand has index = 2 for masked and zero-masked operations.
1739 KMaskOp = 2;
1740
1741 // The operand with index = 1 is used as a source for those elements for
1742 // which the corresponding bit in the k-mask is set to 0.
1743 if (X86II::isKMergeMasked(TSFlags))
1744 FirstCommutableVecOp = 3;
1745
1746 LastCommutableVecOp++;
1747 } else if (IsIntrinsic) {
1748 // Commuting the first operand of an intrinsic instruction isn't possible
1749 // unless we can prove that only the lowest element of the result is used.
1750 FirstCommutableVecOp = 2;
1751 }
1752
1753 if (isMem(MI, LastCommutableVecOp))
1754 LastCommutableVecOp--;
1755
1756 // Only the first RegOpsNum operands are commutable.
1757 // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
1758 // that the operand is not specified/fixed.
1759 if (SrcOpIdx1 != CommuteAnyOperandIndex &&
1760 (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
1761 SrcOpIdx1 == KMaskOp))
1762 return false;
1763 if (SrcOpIdx2 != CommuteAnyOperandIndex &&
1764 (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
1765 SrcOpIdx2 == KMaskOp))
1766 return false;
1767
1768 // Look for two different register operands assumed to be commutable
1769 // regardless of the FMA opcode. The FMA opcode is adjusted later.
1770 if (SrcOpIdx1 == CommuteAnyOperandIndex ||
1771 SrcOpIdx2 == CommuteAnyOperandIndex) {
1772 unsigned CommutableOpIdx1 = SrcOpIdx1;
Value stored to 'CommutableOpIdx1' during its initialization is never read
1773 unsigned CommutableOpIdx2 = SrcOpIdx2;
1774
1775 // At least one of operands to be commuted is not specified and
1776 // this method is free to choose appropriate commutable operands.
1777 if (SrcOpIdx1 == SrcOpIdx2)
1778 // Both of operands are not fixed. By default set one of commutable
1779 // operands to the last register operand of the instruction.
1780 CommutableOpIdx2 = LastCommutableVecOp;
1781 else if (SrcOpIdx2 == CommuteAnyOperandIndex)
1782 // Only one of operands is not fixed.
1783 CommutableOpIdx2 = SrcOpIdx1;
1784
1785 // CommutableOpIdx2 is well defined now. Let's choose another commutable
1786 // operand and assign its index to CommutableOpIdx1.
1787 unsigned Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
1788 for (CommutableOpIdx1 = LastCommutableVecOp;
1789 CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
1790 // Just ignore and skip the k-mask operand.
1791 if (CommutableOpIdx1 == KMaskOp)
1792 continue;
1793
1794 // The commuted operands must have different registers.
1795 // Otherwise, the commute transformation does not change anything and
1796 // is useless then.
1797 if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
1798 break;
1799 }
1800
1801 // No appropriate commutable operands were found.
1802 if (CommutableOpIdx1 < FirstCommutableVecOp)
1803 return false;
1804
1805 // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
1806 // to return those values.
1807 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
1808 CommutableOpIdx1, CommutableOpIdx2))
1809 return false;
1810 }
1811
1812 return true;
1813}
1814
1815bool X86InstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
1816 unsigned &SrcOpIdx2) const {
1817 const MCInstrDesc &Desc = MI.getDesc();
1818 if (!Desc.isCommutable())
1819 return false;
1820
1821 switch (MI.getOpcode()) {
1822 case X86::CMPSDrr:
1823 case X86::CMPSSrr:
1824 case X86::CMPPDrri:
1825 case X86::CMPPSrri:
1826 case X86::VCMPSDrr:
1827 case X86::VCMPSSrr:
1828 case X86::VCMPPDrri:
1829 case X86::VCMPPSrri:
1830 case X86::VCMPPDYrri:
1831 case X86::VCMPPSYrri:
1832 case X86::VCMPSDZrr:
1833 case X86::VCMPSSZrr:
1834 case X86::VCMPPDZrri:
1835 case X86::VCMPPSZrri:
1836 case X86::VCMPPDZ128rri:
1837 case X86::VCMPPSZ128rri:
1838 case X86::VCMPPDZ256rri:
1839 case X86::VCMPPSZ256rri: {
1840 // Float comparison can be safely commuted for
1841 // Ordered/Unordered/Equal/NotEqual tests
1842 unsigned Imm = MI.getOperand(3).getImm() & 0x7;
1843 switch (Imm) {
1844 case 0x00: // EQUAL
1845 case 0x03: // UNORDERED
1846 case 0x04: // NOT EQUAL
1847 case 0x07: // ORDERED
1848 // The indices of the commutable operands are 1 and 2.
1849 // Assign them to the returned operand indices here.
1850 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1, 2);
1851 }
1852 return false;
1853 }
1854 case X86::MOVSDrr:
1855 case X86::MOVSSrr:
1856 case X86::VMOVSDrr:
1857 case X86::VMOVSSrr:
1858 if (Subtarget.hasSSE41())
1859 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1860 return false;
1861 case X86::MOVHLPSrr:
1862 case X86::UNPCKHPDrr:
1863 case X86::VMOVHLPSrr:
1864 case X86::VUNPCKHPDrr:
1865 case X86::VMOVHLPSZrr:
1866 case X86::VUNPCKHPDZ128rr:
1867 if (Subtarget.hasSSE2())
1868 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1869 return false;
1870 case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
1871 case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
1872 case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
1873 case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
1874 case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
1875 case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
1876 case X86::VPTERNLOGDZrrik:
1877 case X86::VPTERNLOGDZ128rrik:
1878 case X86::VPTERNLOGDZ256rrik:
1879 case X86::VPTERNLOGQZrrik:
1880 case X86::VPTERNLOGQZ128rrik:
1881 case X86::VPTERNLOGQZ256rrik:
1882 case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
1883 case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
1884 case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
1885 case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
1886 case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
1887 case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
1888 case X86::VPTERNLOGDZ128rmbi:
1889 case X86::VPTERNLOGDZ256rmbi:
1890 case X86::VPTERNLOGDZrmbi:
1891 case X86::VPTERNLOGQZ128rmbi:
1892 case X86::VPTERNLOGQZ256rmbi:
1893 case X86::VPTERNLOGQZrmbi:
1894 case X86::VPTERNLOGDZ128rmbikz:
1895 case X86::VPTERNLOGDZ256rmbikz:
1896 case X86::VPTERNLOGDZrmbikz:
1897 case X86::VPTERNLOGQZ128rmbikz:
1898 case X86::VPTERNLOGQZ256rmbikz:
1899 case X86::VPTERNLOGQZrmbikz:
1900 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1901 case X86::VPMADD52HUQZ128r:
1902 case X86::VPMADD52HUQZ128rk:
1903 case X86::VPMADD52HUQZ128rkz:
1904 case X86::VPMADD52HUQZ256r:
1905 case X86::VPMADD52HUQZ256rk:
1906 case X86::VPMADD52HUQZ256rkz:
1907 case X86::VPMADD52HUQZr:
1908 case X86::VPMADD52HUQZrk:
1909 case X86::VPMADD52HUQZrkz:
1910 case X86::VPMADD52LUQZ128r:
1911 case X86::VPMADD52LUQZ128rk:
1912 case X86::VPMADD52LUQZ128rkz:
1913 case X86::VPMADD52LUQZ256r:
1914 case X86::VPMADD52LUQZ256rk:
1915 case X86::VPMADD52LUQZ256rkz:
1916 case X86::VPMADD52LUQZr:
1917 case X86::VPMADD52LUQZrk:
1918 case X86::VPMADD52LUQZrkz: {
1919 unsigned CommutableOpIdx1 = 2;
1920 unsigned CommutableOpIdx2 = 3;
1921 if (X86II::isKMasked(Desc.TSFlags)) {
1922 // Skip the mask register.
1923 ++CommutableOpIdx1;
1924 ++CommutableOpIdx2;
1925 }
1926 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
1927 CommutableOpIdx1, CommutableOpIdx2))
1928 return false;
1929 if (!MI.getOperand(SrcOpIdx1).isReg() ||
1930 !MI.getOperand(SrcOpIdx2).isReg())
1931 // No idea.
1932 return false;
1933 return true;
1934 }
1935
1936 default:
1937 const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
1938 MI.getDesc().TSFlags);
1939 if (FMA3Group)
1940 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
1941 FMA3Group->isIntrinsic());
1942
1943 // Handled masked instructions since we need to skip over the mask input
1944 // and the preserved input.
1945 if (X86II::isKMasked(Desc.TSFlags)) {
1946 // First assume that the first input is the mask operand and skip past it.
1947 unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
1948 unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
1949 // Check if the first input is tied. If there isn't one then we only
1950 // need to skip the mask operand which we did above.
1951 if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
1952 MCOI::TIED_TO) != -1)) {
1953 // If this is zero masking instruction with a tied operand, we need to
1954 // move the first index back to the first input since this must
1955 // be a 3 input instruction and we want the first two non-mask inputs.
1956 // Otherwise this is a 2 input instruction with a preserved input and
1957 // mask, so we need to move the indices to skip one more input.
1958 if (X86II::isKMergeMasked(Desc.TSFlags)) {
1959 ++CommutableOpIdx1;
1960 ++CommutableOpIdx2;
1961 } else {
1962 --CommutableOpIdx1;
1963 }
1964 }
1965
1966 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
1967 CommutableOpIdx1, CommutableOpIdx2))
1968 return false;
1969
1970 if (!MI.getOperand(SrcOpIdx1).isReg() ||
1971 !MI.getOperand(SrcOpIdx2).isReg())
1972 // No idea.
1973 return false;
1974 return true;
1975 }
1976
1977 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1978 }
1979 return false;
1980}
1981
1982X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) {
1983 switch (MI.getOpcode()) {
1984 default: return X86::COND_INVALID;
1985 case X86::JCC_1:
1986 return static_cast<X86::CondCode>(
1987 MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
1988 }
1989}
1990
1991/// Return condition code of a SETCC opcode.
1992X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) {
1993 switch (MI.getOpcode()) {
1994 default: return X86::COND_INVALID;
1995 case X86::SETCCr: case X86::SETCCm:
1996 return static_cast<X86::CondCode>(
1997 MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
1998 }
1999}
2000
2001/// Return condition code of a CMov opcode.
2002X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) {
2003 switch (MI.getOpcode()) {
2004 default: return X86::COND_INVALID;
2005 case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr:
2006 case X86::CMOV16rm: case X86::CMOV32rm: case X86::CMOV64rm:
2007 return static_cast<X86::CondCode>(
2008 MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2009 }
2010}
2011
2012/// Return the inverse of the specified condition,
2013/// e.g. turning COND_E to COND_NE.
2014X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2015 switch (CC) {
2016 default: llvm_unreachable("Illegal condition code!")::llvm::llvm_unreachable_internal("Illegal condition code!", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2016)
;
2017 case X86::COND_E: return X86::COND_NE;
2018 case X86::COND_NE: return X86::COND_E;
2019 case X86::COND_L: return X86::COND_GE;
2020 case X86::COND_LE: return X86::COND_G;
2021 case X86::COND_G: return X86::COND_LE;
2022 case X86::COND_GE: return X86::COND_L;
2023 case X86::COND_B: return X86::COND_AE;
2024 case X86::COND_BE: return X86::COND_A;
2025 case X86::COND_A: return X86::COND_BE;
2026 case X86::COND_AE: return X86::COND_B;
2027 case X86::COND_S: return X86::COND_NS;
2028 case X86::COND_NS: return X86::COND_S;
2029 case X86::COND_P: return X86::COND_NP;
2030 case X86::COND_NP: return X86::COND_P;
2031 case X86::COND_O: return X86::COND_NO;
2032 case X86::COND_NO: return X86::COND_O;
2033 case X86::COND_NE_OR_P: return X86::COND_E_AND_NP;
2034 case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
2035 }
2036}
2037
2038/// Assuming the flags are set by MI(a,b), return the condition code if we
2039/// modify the instructions such that flags are set by MI(b,a).
2040static X86::CondCode getSwappedCondition(X86::CondCode CC) {
2041 switch (CC) {
2042 default: return X86::COND_INVALID;
2043 case X86::COND_E: return X86::COND_E;
2044 case X86::COND_NE: return X86::COND_NE;
2045 case X86::COND_L: return X86::COND_G;
2046 case X86::COND_LE: return X86::COND_GE;
2047 case X86::COND_G: return X86::COND_L;
2048 case X86::COND_GE: return X86::COND_LE;
2049 case X86::COND_B: return X86::COND_A;
2050 case X86::COND_BE: return X86::COND_AE;
2051 case X86::COND_A: return X86::COND_B;
2052 case X86::COND_AE: return X86::COND_BE;
2053 }
2054}
2055
2056std::pair<X86::CondCode, bool>
2057X86::getX86ConditionCode(CmpInst::Predicate Predicate) {
2058 X86::CondCode CC = X86::COND_INVALID;
2059 bool NeedSwap = false;
2060 switch (Predicate) {
2061 default: break;
2062 // Floating-point Predicates
2063 case CmpInst::FCMP_UEQ: CC = X86::COND_E; break;
2064 case CmpInst::FCMP_OLT: NeedSwap = true; LLVM_FALLTHROUGH[[clang::fallthrough]];
2065 case CmpInst::FCMP_OGT: CC = X86::COND_A; break;
2066 case CmpInst::FCMP_OLE: NeedSwap = true; LLVM_FALLTHROUGH[[clang::fallthrough]];
2067 case CmpInst::FCMP_OGE: CC = X86::COND_AE; break;
2068 case CmpInst::FCMP_UGT: NeedSwap = true; LLVM_FALLTHROUGH[[clang::fallthrough]];
2069 case CmpInst::FCMP_ULT: CC = X86::COND_B; break;
2070 case CmpInst::FCMP_UGE: NeedSwap = true; LLVM_FALLTHROUGH[[clang::fallthrough]];
2071 case CmpInst::FCMP_ULE: CC = X86::COND_BE; break;
2072 case CmpInst::FCMP_ONE: CC = X86::COND_NE; break;
2073 case CmpInst::FCMP_UNO: CC = X86::COND_P; break;
2074 case CmpInst::FCMP_ORD: CC = X86::COND_NP; break;
2075 case CmpInst::FCMP_OEQ: LLVM_FALLTHROUGH[[clang::fallthrough]];
2076 case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
2077
2078 // Integer Predicates
2079 case CmpInst::ICMP_EQ: CC = X86::COND_E; break;
2080 case CmpInst::ICMP_NE: CC = X86::COND_NE; break;
2081 case CmpInst::ICMP_UGT: CC = X86::COND_A; break;
2082 case CmpInst::ICMP_UGE: CC = X86::COND_AE; break;
2083 case CmpInst::ICMP_ULT: CC = X86::COND_B; break;
2084 case CmpInst::ICMP_ULE: CC = X86::COND_BE; break;
2085 case CmpInst::ICMP_SGT: CC = X86::COND_G; break;
2086 case CmpInst::ICMP_SGE: CC = X86::COND_GE; break;
2087 case CmpInst::ICMP_SLT: CC = X86::COND_L; break;
2088 case CmpInst::ICMP_SLE: CC = X86::COND_LE; break;
2089 }
2090
2091 return std::make_pair(CC, NeedSwap);
2092}
2093
2094/// Return a setcc opcode based on whether it has memory operand.
2095unsigned X86::getSETOpc(bool HasMemoryOperand) {
2096 return HasMemoryOperand ? X86::SETCCr : X86::SETCCm;
2097}
2098
2099/// Return a cmov opcode for the given register size in bytes, and operand type.
2100unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) {
2101 switch(RegBytes) {
2102 default: llvm_unreachable("Illegal register size!")::llvm::llvm_unreachable_internal("Illegal register size!", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2102)
;
2103 case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr;
2104 case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr;
2105 case 8: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV64rr;
2106 }
2107}
2108
2109/// Get the VPCMP immediate for the given condition.
2110unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
2111 switch (CC) {
2112 default: llvm_unreachable("Unexpected SETCC condition")::llvm::llvm_unreachable_internal("Unexpected SETCC condition"
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2112)
;
2113 case ISD::SETNE: return 4;
2114 case ISD::SETEQ: return 0;
2115 case ISD::SETULT:
2116 case ISD::SETLT: return 1;
2117 case ISD::SETUGT:
2118 case ISD::SETGT: return 6;
2119 case ISD::SETUGE:
2120 case ISD::SETGE: return 5;
2121 case ISD::SETULE:
2122 case ISD::SETLE: return 2;
2123 }
2124}
2125
2126/// Get the VPCMP immediate if the opcodes are swapped.
2127unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
2128 switch (Imm) {
2129 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2129)
;
2130 case 0x01: Imm = 0x06; break; // LT -> NLE
2131 case 0x02: Imm = 0x05; break; // LE -> NLT
2132 case 0x05: Imm = 0x02; break; // NLT -> LE
2133 case 0x06: Imm = 0x01; break; // NLE -> LT
2134 case 0x00: // EQ
2135 case 0x03: // FALSE
2136 case 0x04: // NE
2137 case 0x07: // TRUE
2138 break;
2139 }
2140
2141 return Imm;
2142}
2143
2144/// Get the VPCOM immediate if the opcodes are swapped.
2145unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
2146 switch (Imm) {
2147 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2147)
;
2148 case 0x00: Imm = 0x02; break; // LT -> GT
2149 case 0x01: Imm = 0x03; break; // LE -> GE
2150 case 0x02: Imm = 0x00; break; // GT -> LT
2151 case 0x03: Imm = 0x01; break; // GE -> LE
2152 case 0x04: // EQ
2153 case 0x05: // NE
2154 case 0x06: // FALSE
2155 case 0x07: // TRUE
2156 break;
2157 }
2158
2159 return Imm;
2160}
2161
2162bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
2163 if (!MI.isTerminator()) return false;
2164
2165 // Conditional branch is a special case.
2166 if (MI.isBranch() && !MI.isBarrier())
2167 return true;
2168 if (!MI.isPredicable())
2169 return true;
2170 return !isPredicated(MI);
2171}
2172
2173bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
2174 switch (MI.getOpcode()) {
2175 case X86::TCRETURNdi:
2176 case X86::TCRETURNri:
2177 case X86::TCRETURNmi:
2178 case X86::TCRETURNdi64:
2179 case X86::TCRETURNri64:
2180 case X86::TCRETURNmi64:
2181 return true;
2182 default:
2183 return false;
2184 }
2185}
2186
2187bool X86InstrInfo::canMakeTailCallConditional(
2188 SmallVectorImpl<MachineOperand> &BranchCond,
2189 const MachineInstr &TailCall) const {
2190 if (TailCall.getOpcode() != X86::TCRETURNdi &&
2191 TailCall.getOpcode() != X86::TCRETURNdi64) {
2192 // Only direct calls can be done with a conditional branch.
2193 return false;
2194 }
2195
2196 const MachineFunction *MF = TailCall.getParent()->getParent();
2197 if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
2198 // Conditional tail calls confuse the Win64 unwinder.
2199 return false;
2200 }
2201
2202 assert(BranchCond.size() == 1)((BranchCond.size() == 1) ? static_cast<void> (0) : __assert_fail
("BranchCond.size() == 1", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2202, __PRETTY_FUNCTION__))
;
2203 if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
2204 // Can't make a conditional tail call with this condition.
2205 return false;
2206 }
2207
2208 const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
2209 if (X86FI->getTCReturnAddrDelta() != 0 ||
2210 TailCall.getOperand(1).getImm() != 0) {
2211 // A conditional tail call cannot do any stack adjustment.
2212 return false;
2213 }
2214
2215 return true;
2216}
2217
2218void X86InstrInfo::replaceBranchWithTailCall(
2219 MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
2220 const MachineInstr &TailCall) const {
2221 assert(canMakeTailCallConditional(BranchCond, TailCall))((canMakeTailCallConditional(BranchCond, TailCall)) ? static_cast
<void> (0) : __assert_fail ("canMakeTailCallConditional(BranchCond, TailCall)"
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2221, __PRETTY_FUNCTION__))
;
2222
2223 MachineBasicBlock::iterator I = MBB.end();
2224 while (I != MBB.begin()) {
2225 --I;
2226 if (I->isDebugInstr())
2227 continue;
2228 if (!I->isBranch())
2229 assert(0 && "Can't find the branch to replace!")((0 && "Can't find the branch to replace!") ? static_cast
<void> (0) : __assert_fail ("0 && \"Can't find the branch to replace!\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2229, __PRETTY_FUNCTION__))
;
2230
2231 X86::CondCode CC = X86::getCondFromBranch(*I);
2232 assert(BranchCond.size() == 1)((BranchCond.size() == 1) ? static_cast<void> (0) : __assert_fail
("BranchCond.size() == 1", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2232, __PRETTY_FUNCTION__))
;
2233 if (CC != BranchCond[0].getImm())
2234 continue;
2235
2236 break;
2237 }
2238
2239 unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
2240 : X86::TCRETURNdi64cc;
2241
2242 auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
2243 MIB->addOperand(TailCall.getOperand(0)); // Destination.
2244 MIB.addImm(0); // Stack offset (not used).
2245 MIB->addOperand(BranchCond[0]); // Condition.
2246 MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
2247
2248 // Add implicit uses and defs of all live regs potentially clobbered by the
2249 // call. This way they still appear live across the call.
2250 LivePhysRegs LiveRegs(getRegisterInfo());
2251 LiveRegs.addLiveOuts(MBB);
2252 SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
2253 LiveRegs.stepForward(*MIB, Clobbers);
2254 for (const auto &C : Clobbers) {
2255 MIB.addReg(C.first, RegState::Implicit);
2256 MIB.addReg(C.first, RegState::Implicit | RegState::Define);
2257 }
2258
2259 I->eraseFromParent();
2260}
2261
2262// Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
2263// not be a fallthrough MBB now due to layout changes). Return nullptr if the
2264// fallthrough MBB cannot be identified.
2265static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
2266 MachineBasicBlock *TBB) {
2267 // Look for non-EHPad successors other than TBB. If we find exactly one, it
2268 // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
2269 // and fallthrough MBB. If we find more than one, we cannot identify the
2270 // fallthrough MBB and should return nullptr.
2271 MachineBasicBlock *FallthroughBB = nullptr;
2272 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) {
2273 if ((*SI)->isEHPad() || (*SI == TBB && FallthroughBB))
2274 continue;
2275 // Return a nullptr if we found more than one fallthrough successor.
2276 if (FallthroughBB && FallthroughBB != TBB)
2277 return nullptr;
2278 FallthroughBB = *SI;
2279 }
2280 return FallthroughBB;
2281}
2282
2283bool X86InstrInfo::AnalyzeBranchImpl(
2284 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
2285 SmallVectorImpl<MachineOperand> &Cond,
2286 SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
2287
2288 // Start from the bottom of the block and work up, examining the
2289 // terminator instructions.
2290 MachineBasicBlock::iterator I = MBB.end();
2291 MachineBasicBlock::iterator UnCondBrIter = MBB.end();
2292 while (I != MBB.begin()) {
2293 --I;
2294 if (I->isDebugInstr())
2295 continue;
2296
2297 // Working from the bottom, when we see a non-terminator instruction, we're
2298 // done.
2299 if (!isUnpredicatedTerminator(*I))
2300 break;
2301
2302 // A terminator that isn't a branch can't easily be handled by this
2303 // analysis.
2304 if (!I->isBranch())
2305 return true;
2306
2307 // Handle unconditional branches.
2308 if (I->getOpcode() == X86::JMP_1) {
2309 UnCondBrIter = I;
2310
2311 if (!AllowModify) {
2312 TBB = I->getOperand(0).getMBB();
2313 continue;
2314 }
2315
2316 // If the block has any instructions after a JMP, delete them.
2317 while (std::next(I) != MBB.end())
2318 std::next(I)->eraseFromParent();
2319
2320 Cond.clear();
2321 FBB = nullptr;
2322
2323 // Delete the JMP if it's equivalent to a fall-through.
2324 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
2325 TBB = nullptr;
2326 I->eraseFromParent();
2327 I = MBB.end();
2328 UnCondBrIter = MBB.end();
2329 continue;
2330 }
2331
2332 // TBB is used to indicate the unconditional destination.
2333 TBB = I->getOperand(0).getMBB();
2334 continue;
2335 }
2336
2337 // Handle conditional branches.
2338 X86::CondCode BranchCode = X86::getCondFromBranch(*I);
2339 if (BranchCode == X86::COND_INVALID)
2340 return true; // Can't handle indirect branch.
2341
2342 // In practice we should never have an undef eflags operand, if we do
2343 // abort here as we are not prepared to preserve the flag.
2344 if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef())
2345 return true;
2346
2347 // Working from the bottom, handle the first conditional branch.
2348 if (Cond.empty()) {
2349 MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
2350 if (AllowModify && UnCondBrIter != MBB.end() &&
2351 MBB.isLayoutSuccessor(TargetBB)) {
2352 // If we can modify the code and it ends in something like:
2353 //
2354 // jCC L1
2355 // jmp L2
2356 // L1:
2357 // ...
2358 // L2:
2359 //
2360 // Then we can change this to:
2361 //
2362 // jnCC L2
2363 // L1:
2364 // ...
2365 // L2:
2366 //
2367 // Which is a bit more efficient.
2368 // We conditionally jump to the fall-through block.
2369 BranchCode = GetOppositeBranchCondition(BranchCode);
2370 MachineBasicBlock::iterator OldInst = I;
2371
2372 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JCC_1))
2373 .addMBB(UnCondBrIter->getOperand(0).getMBB())
2374 .addImm(BranchCode);
2375 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
2376 .addMBB(TargetBB);
2377
2378 OldInst->eraseFromParent();
2379 UnCondBrIter->eraseFromParent();
2380
2381 // Restart the analysis.
2382 UnCondBrIter = MBB.end();
2383 I = MBB.end();
2384 continue;
2385 }
2386
2387 FBB = TBB;
2388 TBB = I->getOperand(0).getMBB();
2389 Cond.push_back(MachineOperand::CreateImm(BranchCode));
2390 CondBranches.push_back(&*I);
2391 continue;
2392 }
2393
2394 // Handle subsequent conditional branches. Only handle the case where all
2395 // conditional branches branch to the same destination and their condition
2396 // opcodes fit one of the special multi-branch idioms.
2397 assert(Cond.size() == 1)((Cond.size() == 1) ? static_cast<void> (0) : __assert_fail
("Cond.size() == 1", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2397, __PRETTY_FUNCTION__))
;
2398 assert(TBB)((TBB) ? static_cast<void> (0) : __assert_fail ("TBB", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2398, __PRETTY_FUNCTION__))
;
2399
2400 // If the conditions are the same, we can leave them alone.
2401 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
2402 auto NewTBB = I->getOperand(0).getMBB();
2403 if (OldBranchCode == BranchCode && TBB == NewTBB)
2404 continue;
2405
2406 // If they differ, see if they fit one of the known patterns. Theoretically,
2407 // we could handle more patterns here, but we shouldn't expect to see them
2408 // if instruction selection has done a reasonable job.
2409 if (TBB == NewTBB &&
2410 ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
2411 (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
2412 BranchCode = X86::COND_NE_OR_P;
2413 } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
2414 (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
2415 if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
2416 return true;
2417
2418 // X86::COND_E_AND_NP usually has two different branch destinations.
2419 //
2420 // JP B1
2421 // JE B2
2422 // JMP B1
2423 // B1:
2424 // B2:
2425 //
2426 // Here this condition branches to B2 only if NP && E. It has another
2427 // equivalent form:
2428 //
2429 // JNE B1
2430 // JNP B2
2431 // JMP B1
2432 // B1:
2433 // B2:
2434 //
2435 // Similarly it branches to B2 only if E && NP. That is why this condition
2436 // is named with COND_E_AND_NP.
2437 BranchCode = X86::COND_E_AND_NP;
2438 } else
2439 return true;
2440
2441 // Update the MachineOperand.
2442 Cond[0].setImm(BranchCode);
2443 CondBranches.push_back(&*I);
2444 }
2445
2446 return false;
2447}
2448
2449bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
2450 MachineBasicBlock *&TBB,
2451 MachineBasicBlock *&FBB,
2452 SmallVectorImpl<MachineOperand> &Cond,
2453 bool AllowModify) const {
2454 SmallVector<MachineInstr *, 4> CondBranches;
2455 return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
2456}
2457
2458bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
2459 MachineBranchPredicate &MBP,
2460 bool AllowModify) const {
2461 using namespace std::placeholders;
2462
2463 SmallVector<MachineOperand, 4> Cond;
2464 SmallVector<MachineInstr *, 4> CondBranches;
2465 if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
2466 AllowModify))
2467 return true;
2468
2469 if (Cond.size() != 1)
2470 return true;
2471
2472 assert(MBP.TrueDest && "expected!")((MBP.TrueDest && "expected!") ? static_cast<void>
(0) : __assert_fail ("MBP.TrueDest && \"expected!\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2472, __PRETTY_FUNCTION__))
;
2473
2474 if (!MBP.FalseDest)
2475 MBP.FalseDest = MBB.getNextNode();
2476
2477 const TargetRegisterInfo *TRI = &getRegisterInfo();
2478
2479 MachineInstr *ConditionDef = nullptr;
2480 bool SingleUseCondition = true;
2481
2482 for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) {
2483 if (I->modifiesRegister(X86::EFLAGS, TRI)) {
2484 ConditionDef = &*I;
2485 break;
2486 }
2487
2488 if (I->readsRegister(X86::EFLAGS, TRI))
2489 SingleUseCondition = false;
2490 }
2491
2492 if (!ConditionDef)
2493 return true;
2494
2495 if (SingleUseCondition) {
2496 for (auto *Succ : MBB.successors())
2497 if (Succ->isLiveIn(X86::EFLAGS))
2498 SingleUseCondition = false;
2499 }
2500
2501 MBP.ConditionDef = ConditionDef;
2502 MBP.SingleUseCondition = SingleUseCondition;
2503
2504 // Currently we only recognize the simple pattern:
2505 //
2506 // test %reg, %reg
2507 // je %label
2508 //
2509 const unsigned TestOpcode =
2510 Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
2511
2512 if (ConditionDef->getOpcode() == TestOpcode &&
2513 ConditionDef->getNumOperands() == 3 &&
2514 ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
2515 (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
2516 MBP.LHS = ConditionDef->getOperand(0);
2517 MBP.RHS = MachineOperand::CreateImm(0);
2518 MBP.Predicate = Cond[0].getImm() == X86::COND_NE
2519 ? MachineBranchPredicate::PRED_NE
2520 : MachineBranchPredicate::PRED_EQ;
2521 return false;
2522 }
2523
2524 return true;
2525}
2526
2527unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
2528 int *BytesRemoved) const {
2529 assert(!BytesRemoved && "code size not handled")((!BytesRemoved && "code size not handled") ? static_cast
<void> (0) : __assert_fail ("!BytesRemoved && \"code size not handled\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2529, __PRETTY_FUNCTION__))
;
2530
2531 MachineBasicBlock::iterator I = MBB.end();
2532 unsigned Count = 0;
2533
2534 while (I != MBB.begin()) {
2535 --I;
2536 if (I->isDebugInstr())
2537 continue;
2538 if (I->getOpcode() != X86::JMP_1 &&
2539 X86::getCondFromBranch(*I) == X86::COND_INVALID)
2540 break;
2541 // Remove the branch.
2542 I->eraseFromParent();
2543 I = MBB.end();
2544 ++Count;
2545 }
2546
2547 return Count;
2548}
2549
2550unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
2551 MachineBasicBlock *TBB,
2552 MachineBasicBlock *FBB,
2553 ArrayRef<MachineOperand> Cond,
2554 const DebugLoc &DL,
2555 int *BytesAdded) const {
2556 // Shouldn't be a fall through.
2557 assert(TBB && "insertBranch must not be told to insert a fallthrough")((TBB && "insertBranch must not be told to insert a fallthrough"
) ? static_cast<void> (0) : __assert_fail ("TBB && \"insertBranch must not be told to insert a fallthrough\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2557, __PRETTY_FUNCTION__))
;
2558 assert((Cond.size() == 1 || Cond.size() == 0) &&(((Cond.size() == 1 || Cond.size() == 0) && "X86 branch conditions have one component!"
) ? static_cast<void> (0) : __assert_fail ("(Cond.size() == 1 || Cond.size() == 0) && \"X86 branch conditions have one component!\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2559, __PRETTY_FUNCTION__))
2559 "X86 branch conditions have one component!")(((Cond.size() == 1 || Cond.size() == 0) && "X86 branch conditions have one component!"
) ? static_cast<void> (0) : __assert_fail ("(Cond.size() == 1 || Cond.size() == 0) && \"X86 branch conditions have one component!\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2559, __PRETTY_FUNCTION__))
;
2560 assert(!BytesAdded && "code size not handled")((!BytesAdded && "code size not handled") ? static_cast
<void> (0) : __assert_fail ("!BytesAdded && \"code size not handled\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2560, __PRETTY_FUNCTION__))
;
2561
2562 if (Cond.empty()) {
2563 // Unconditional branch?
2564 assert(!FBB && "Unconditional branch with multiple successors!")((!FBB && "Unconditional branch with multiple successors!"
) ? static_cast<void> (0) : __assert_fail ("!FBB && \"Unconditional branch with multiple successors!\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2564, __PRETTY_FUNCTION__))
;
2565 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
2566 return 1;
2567 }
2568
2569 // If FBB is null, it is implied to be a fall-through block.
2570 bool FallThru = FBB == nullptr;
2571
2572 // Conditional branch.
2573 unsigned Count = 0;
2574 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
2575 switch (CC) {
2576 case X86::COND_NE_OR_P:
2577 // Synthesize NE_OR_P with two branches.
2578 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
2579 ++Count;
2580 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
2581 ++Count;
2582 break;
2583 case X86::COND_E_AND_NP:
2584 // Use the next block of MBB as FBB if it is null.
2585 if (FBB == nullptr) {
2586 FBB = getFallThroughMBB(&MBB, TBB);
2587 assert(FBB && "MBB cannot be the last block in function when the false "((FBB && "MBB cannot be the last block in function when the false "
"body is a fall-through.") ? static_cast<void> (0) : __assert_fail
("FBB && \"MBB cannot be the last block in function when the false \" \"body is a fall-through.\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2588, __PRETTY_FUNCTION__))
2588 "body is a fall-through.")((FBB && "MBB cannot be the last block in function when the false "
"body is a fall-through.") ? static_cast<void> (0) : __assert_fail
("FBB && \"MBB cannot be the last block in function when the false \" \"body is a fall-through.\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2588, __PRETTY_FUNCTION__))
;
2589 }
2590 // Synthesize COND_E_AND_NP with two branches.
2591 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
2592 ++Count;
2593 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
2594 ++Count;
2595 break;
2596 default: {
2597 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
2598 ++Count;
2599 }
2600 }
2601 if (!FallThru) {
2602 // Two-way Conditional branch. Insert the second branch.
2603 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
2604 ++Count;
2605 }
2606 return Count;
2607}
2608
2609bool X86InstrInfo::
2610canInsertSelect(const MachineBasicBlock &MBB,
2611 ArrayRef<MachineOperand> Cond,
2612 unsigned TrueReg, unsigned FalseReg,
2613 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
2614 // Not all subtargets have cmov instructions.
2615 if (!Subtarget.hasCMov())
2616 return false;
2617 if (Cond.size() != 1)
2618 return false;
2619 // We cannot do the composite conditions, at least not in SSA form.
2620 if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
2621 return false;
2622
2623 // Check register classes.
2624 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2625 const TargetRegisterClass *RC =
2626 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
2627 if (!RC)
2628 return false;
2629
2630 // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
2631 if (X86::GR16RegClass.hasSubClassEq(RC) ||
2632 X86::GR32RegClass.hasSubClassEq(RC) ||
2633 X86::GR64RegClass.hasSubClassEq(RC)) {
2634 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
2635 // Bridge. Probably Ivy Bridge as well.
2636 CondCycles = 2;
2637 TrueCycles = 2;
2638 FalseCycles = 2;
2639 return true;
2640 }
2641
2642 // Can't do vectors.
2643 return false;
2644}
2645
2646void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
2647 MachineBasicBlock::iterator I,
2648 const DebugLoc &DL, unsigned DstReg,
2649 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
2650 unsigned FalseReg) const {
2651 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2652 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
2653 const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
2654 assert(Cond.size() == 1 && "Invalid Cond array")((Cond.size() == 1 && "Invalid Cond array") ? static_cast
<void> (0) : __assert_fail ("Cond.size() == 1 && \"Invalid Cond array\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2654, __PRETTY_FUNCTION__))
;
2655 unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
2656 false /*HasMemoryOperand*/);
2657 BuildMI(MBB, I, DL, get(Opc), DstReg)
2658 .addReg(FalseReg)
2659 .addReg(TrueReg)
2660 .addImm(Cond[0].getImm());
2661}
2662
2663/// Test if the given register is a physical h register.
2664static bool isHReg(unsigned Reg) {
2665 return X86::GR8_ABCD_HRegClass.contains(Reg);
2666}
2667
2668// Try and copy between VR128/VR64 and GR64 registers.
2669static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
2670 const X86Subtarget &Subtarget) {
2671 bool HasAVX = Subtarget.hasAVX();
2672 bool HasAVX512 = Subtarget.hasAVX512();
2673
2674 // SrcReg(MaskReg) -> DestReg(GR64)
2675 // SrcReg(MaskReg) -> DestReg(GR32)
2676
2677 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2678 if (X86::VK16RegClass.contains(SrcReg)) {
2679 if (X86::GR64RegClass.contains(DestReg)) {
2680 assert(Subtarget.hasBWI())((Subtarget.hasBWI()) ? static_cast<void> (0) : __assert_fail
("Subtarget.hasBWI()", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2680, __PRETTY_FUNCTION__))
;
2681 return X86::KMOVQrk;
2682 }
2683 if (X86::GR32RegClass.contains(DestReg))
2684 return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
2685 }
2686
2687 // SrcReg(GR64) -> DestReg(MaskReg)
2688 // SrcReg(GR32) -> DestReg(MaskReg)
2689
2690 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2691 if (X86::VK16RegClass.contains(DestReg)) {
2692 if (X86::GR64RegClass.contains(SrcReg)) {
2693 assert(Subtarget.hasBWI())((Subtarget.hasBWI()) ? static_cast<void> (0) : __assert_fail
("Subtarget.hasBWI()", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2693, __PRETTY_FUNCTION__))
;
2694 return X86::KMOVQkr;
2695 }
2696 if (X86::GR32RegClass.contains(SrcReg))
2697 return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
2698 }
2699
2700
2701 // SrcReg(VR128) -> DestReg(GR64)
2702 // SrcReg(VR64) -> DestReg(GR64)
2703 // SrcReg(GR64) -> DestReg(VR128)
2704 // SrcReg(GR64) -> DestReg(VR64)
2705
2706 if (X86::GR64RegClass.contains(DestReg)) {
2707 if (X86::VR128XRegClass.contains(SrcReg))
2708 // Copy from a VR128 register to a GR64 register.
2709 return HasAVX512 ? X86::VMOVPQIto64Zrr :
2710 HasAVX ? X86::VMOVPQIto64rr :
2711 X86::MOVPQIto64rr;
2712 if (X86::VR64RegClass.contains(SrcReg))
2713 // Copy from a VR64 register to a GR64 register.
2714 return X86::MMX_MOVD64from64rr;
2715 } else if (X86::GR64RegClass.contains(SrcReg)) {
2716 // Copy from a GR64 register to a VR128 register.
2717 if (X86::VR128XRegClass.contains(DestReg))
2718 return HasAVX512 ? X86::VMOV64toPQIZrr :
2719 HasAVX ? X86::VMOV64toPQIrr :
2720 X86::MOV64toPQIrr;
2721 // Copy from a GR64 register to a VR64 register.
2722 if (X86::VR64RegClass.contains(DestReg))
2723 return X86::MMX_MOVD64to64rr;
2724 }
2725
2726 // SrcReg(VR128) -> DestReg(GR32)
2727 // SrcReg(GR32) -> DestReg(VR128)
2728
2729 if (X86::GR32RegClass.contains(DestReg) &&
2730 X86::VR128XRegClass.contains(SrcReg))
2731 // Copy from a VR128 register to a GR32 register.
2732 return HasAVX512 ? X86::VMOVPDI2DIZrr :
2733 HasAVX ? X86::VMOVPDI2DIrr :
2734 X86::MOVPDI2DIrr;
2735
2736 if (X86::VR128XRegClass.contains(DestReg) &&
2737 X86::GR32RegClass.contains(SrcReg))
2738 // Copy from a VR128 register to a VR128 register.
2739 return HasAVX512 ? X86::VMOVDI2PDIZrr :
2740 HasAVX ? X86::VMOVDI2PDIrr :
2741 X86::MOVDI2PDIrr;
2742 return 0;
2743}
2744
2745void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
2746 MachineBasicBlock::iterator MI,
2747 const DebugLoc &DL, unsigned DestReg,
2748 unsigned SrcReg, bool KillSrc) const {
2749 // First deal with the normal symmetric copies.
2750 bool HasAVX = Subtarget.hasAVX();
2751 bool HasVLX = Subtarget.hasVLX();
2752 unsigned Opc = 0;
2753 if (X86::GR64RegClass.contains(DestReg, SrcReg))
2754 Opc = X86::MOV64rr;
2755 else if (X86::GR32RegClass.contains(DestReg, SrcReg))
2756 Opc = X86::MOV32rr;
2757 else if (X86::GR16RegClass.contains(DestReg, SrcReg))
2758 Opc = X86::MOV16rr;
2759 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
2760 // Copying to or from a physical H register on x86-64 requires a NOREX
2761 // move. Otherwise use a normal move.
2762 if ((isHReg(DestReg) || isHReg(SrcReg)) &&
2763 Subtarget.is64Bit()) {
2764 Opc = X86::MOV8rr_NOREX;
2765 // Both operands must be encodable without an REX prefix.
2766 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&((X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
"8-bit H register can not be copied outside GR8_NOREX") ? static_cast
<void> (0) : __assert_fail ("X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && \"8-bit H register can not be copied outside GR8_NOREX\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2767, __PRETTY_FUNCTION__))
2767 "8-bit H register can not be copied outside GR8_NOREX")((X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
"8-bit H register can not be copied outside GR8_NOREX") ? static_cast
<void> (0) : __assert_fail ("X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && \"8-bit H register can not be copied outside GR8_NOREX\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2767, __PRETTY_FUNCTION__))
;
2768 } else
2769 Opc = X86::MOV8rr;
2770 }
2771 else if (X86::VR64RegClass.contains(DestReg, SrcReg))
2772 Opc = X86::MMX_MOVQ64rr;
2773 else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
2774 if (HasVLX)
2775 Opc = X86::VMOVAPSZ128rr;
2776 else if (X86::VR128RegClass.contains(DestReg, SrcReg))
2777 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
2778 else {
2779 // If this an extended register and we don't have VLX we need to use a
2780 // 512-bit move.
2781 Opc = X86::VMOVAPSZrr;
2782 const TargetRegisterInfo *TRI = &getRegisterInfo();
2783 DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
2784 &X86::VR512RegClass);
2785 SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
2786 &X86::VR512RegClass);
2787 }
2788 } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
2789 if (HasVLX)
2790 Opc = X86::VMOVAPSZ256rr;
2791 else if (X86::VR256RegClass.contains(DestReg, SrcReg))
2792 Opc = X86::VMOVAPSYrr;
2793 else {
2794 // If this an extended register and we don't have VLX we need to use a
2795 // 512-bit move.
2796 Opc = X86::VMOVAPSZrr;
2797 const TargetRegisterInfo *TRI = &getRegisterInfo();
2798 DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
2799 &X86::VR512RegClass);
2800 SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
2801 &X86::VR512RegClass);
2802 }
2803 } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
2804 Opc = X86::VMOVAPSZrr;
2805 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2806 else if (X86::VK16RegClass.contains(DestReg, SrcReg))
2807 Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
2808 if (!Opc)
2809 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
2810
2811 if (Opc) {
2812 BuildMI(MBB, MI, DL, get(Opc), DestReg)
2813 .addReg(SrcReg, getKillRegState(KillSrc));
2814 return;
2815 }
2816
2817 if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
2818 // FIXME: We use a fatal error here because historically LLVM has tried
2819 // lower some of these physreg copies and we want to ensure we get
2820 // reasonable bug reports if someone encounters a case no other testing
2821 // found. This path should be removed after the LLVM 7 release.
2822 report_fatal_error("Unable to copy EFLAGS physical register!");
2823 }
2824
2825 LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("x86-instr-info")) { dbgs() << "Cannot copy " <<
RI.getName(SrcReg) << " to " << RI.getName(DestReg
) << '\n'; } } while (false)
2826 << RI.getName(DestReg) << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("x86-instr-info")) { dbgs() << "Cannot copy " <<
RI.getName(SrcReg) << " to " << RI.getName(DestReg
) << '\n'; } } while (false)
;
2827 report_fatal_error("Cannot emit physreg copy instruction");
2828}
2829
2830bool X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI,
2831 const MachineOperand *&Src,
2832 const MachineOperand *&Dest) const {
2833 if (MI.isMoveReg()) {
2834 Dest = &MI.getOperand(0);
2835 Src = &MI.getOperand(1);
2836 return true;
2837 }
2838 return false;
2839}
2840
2841static unsigned getLoadStoreRegOpcode(unsigned Reg,
2842 const TargetRegisterClass *RC,
2843 bool isStackAligned,
2844 const X86Subtarget &STI,
2845 bool load) {
2846 bool HasAVX = STI.hasAVX();
2847 bool HasAVX512 = STI.hasAVX512();
2848 bool HasVLX = STI.hasVLX();
2849
2850 switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
2851 default:
2852 llvm_unreachable("Unknown spill size")::llvm::llvm_unreachable_internal("Unknown spill size", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2852)
;
2853 case 1:
2854 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass")((X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass"
) ? static_cast<void> (0) : __assert_fail ("X86::GR8RegClass.hasSubClassEq(RC) && \"Unknown 1-byte regclass\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2854, __PRETTY_FUNCTION__))
;
2855 if (STI.is64Bit())
2856 // Copying to or from a physical H register on x86-64 requires a NOREX
2857 // move. Otherwise use a normal move.
2858 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
2859 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
2860 return load ? X86::MOV8rm : X86::MOV8mr;
2861 case 2:
2862 if (X86::VK16RegClass.hasSubClassEq(RC))
2863 return load ? X86::KMOVWkm : X86::KMOVWmk;
2864 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass")((X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass"
) ? static_cast<void> (0) : __assert_fail ("X86::GR16RegClass.hasSubClassEq(RC) && \"Unknown 2-byte regclass\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2864, __PRETTY_FUNCTION__))
;
2865 return load ? X86::MOV16rm : X86::MOV16mr;
2866 case 4:
2867 if (X86::GR32RegClass.hasSubClassEq(RC))
2868 return load ? X86::MOV32rm : X86::MOV32mr;
2869 if (X86::FR32XRegClass.hasSubClassEq(RC))
2870 return load ?
2871 (HasAVX512 ? X86::VMOVSSZrm : HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
2872 (HasAVX512 ? X86::VMOVSSZmr : HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
2873 if (X86::RFP32RegClass.hasSubClassEq(RC))
2874 return load ? X86::LD_Fp32m : X86::ST_Fp32m;
2875 if (X86::VK32RegClass.hasSubClassEq(RC)) {
2876 assert(STI.hasBWI() && "KMOVD requires BWI")((STI.hasBWI() && "KMOVD requires BWI") ? static_cast
<void> (0) : __assert_fail ("STI.hasBWI() && \"KMOVD requires BWI\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2876, __PRETTY_FUNCTION__))
;
2877 return load ? X86::KMOVDkm : X86::KMOVDmk;
2878 }
2879 llvm_unreachable("Unknown 4-byte regclass")::llvm::llvm_unreachable_internal("Unknown 4-byte regclass", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2879)
;
2880 case 8:
2881 if (X86::GR64RegClass.hasSubClassEq(RC))
2882 return load ? X86::MOV64rm : X86::MOV64mr;
2883 if (X86::FR64XRegClass.hasSubClassEq(RC))
2884 return load ?
2885 (HasAVX512 ? X86::VMOVSDZrm : HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
2886 (HasAVX512 ? X86::VMOVSDZmr : HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
2887 if (X86::VR64RegClass.hasSubClassEq(RC))
2888 return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
2889 if (X86::RFP64RegClass.hasSubClassEq(RC))
2890 return load ? X86::LD_Fp64m : X86::ST_Fp64m;
2891 if (X86::VK64RegClass.hasSubClassEq(RC)) {
2892 assert(STI.hasBWI() && "KMOVQ requires BWI")((STI.hasBWI() && "KMOVQ requires BWI") ? static_cast
<void> (0) : __assert_fail ("STI.hasBWI() && \"KMOVQ requires BWI\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2892, __PRETTY_FUNCTION__))
;
2893 return load ? X86::KMOVQkm : X86::KMOVQmk;
2894 }
2895 llvm_unreachable("Unknown 8-byte regclass")::llvm::llvm_unreachable_internal("Unknown 8-byte regclass", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2895)
;
2896 case 10:
2897 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass")((X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass"
) ? static_cast<void> (0) : __assert_fail ("X86::RFP80RegClass.hasSubClassEq(RC) && \"Unknown 10-byte regclass\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2897, __PRETTY_FUNCTION__))
;
2898 return load ? X86::LD_Fp80m : X86::ST_FpP80m;
2899 case 16: {
2900 if (X86::VR128XRegClass.hasSubClassEq(RC)) {
2901 // If stack is realigned we can use aligned stores.
2902 if (isStackAligned)
2903 return load ?
2904 (HasVLX ? X86::VMOVAPSZ128rm :
2905 HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
2906 HasAVX ? X86::VMOVAPSrm :
2907 X86::MOVAPSrm):
2908 (HasVLX ? X86::VMOVAPSZ128mr :
2909 HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
2910 HasAVX ? X86::VMOVAPSmr :
2911 X86::MOVAPSmr);
2912 else
2913 return load ?
2914 (HasVLX ? X86::VMOVUPSZ128rm :
2915 HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
2916 HasAVX ? X86::VMOVUPSrm :
2917 X86::MOVUPSrm):
2918 (HasVLX ? X86::VMOVUPSZ128mr :
2919 HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
2920 HasAVX ? X86::VMOVUPSmr :
2921 X86::MOVUPSmr);
2922 }
2923 if (X86::BNDRRegClass.hasSubClassEq(RC)) {
2924 if (STI.is64Bit())
2925 return load ? X86::BNDMOV64rm : X86::BNDMOV64mr;
2926 else
2927 return load ? X86::BNDMOV32rm : X86::BNDMOV32mr;
2928 }
2929 llvm_unreachable("Unknown 16-byte regclass")::llvm::llvm_unreachable_internal("Unknown 16-byte regclass",
"/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2929)
;
2930 }
2931 case 32:
2932 assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass")((X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass"
) ? static_cast<void> (0) : __assert_fail ("X86::VR256XRegClass.hasSubClassEq(RC) && \"Unknown 32-byte regclass\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2932, __PRETTY_FUNCTION__))
;
2933 // If stack is realigned we can use aligned stores.
2934 if (isStackAligned)
2935 return load ?
2936 (HasVLX ? X86::VMOVAPSZ256rm :
2937 HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
2938 X86::VMOVAPSYrm) :
2939 (HasVLX ? X86::VMOVAPSZ256mr :
2940 HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
2941 X86::VMOVAPSYmr);
2942 else
2943 return load ?
2944 (HasVLX ? X86::VMOVUPSZ256rm :
2945 HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
2946 X86::VMOVUPSYrm) :
2947 (HasVLX ? X86::VMOVUPSZ256mr :
2948 HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
2949 X86::VMOVUPSYmr);
2950 case 64:
2951 assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass")((X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass"
) ? static_cast<void> (0) : __assert_fail ("X86::VR512RegClass.hasSubClassEq(RC) && \"Unknown 64-byte regclass\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2951, __PRETTY_FUNCTION__))
;
2952 assert(STI.hasAVX512() && "Using 512-bit register requires AVX512")((STI.hasAVX512() && "Using 512-bit register requires AVX512"
) ? static_cast<void> (0) : __assert_fail ("STI.hasAVX512() && \"Using 512-bit register requires AVX512\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2952, __PRETTY_FUNCTION__))
;
2953 if (isStackAligned)
2954 return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
2955 else
2956 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
2957 }
2958}
2959
2960bool X86InstrInfo::getMemOperandWithOffset(
2961 const MachineInstr &MemOp, const MachineOperand *&BaseOp, int64_t &Offset,
2962 const TargetRegisterInfo *TRI) const {
2963 const MCInstrDesc &Desc = MemOp.getDesc();
2964 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
2965 if (MemRefBegin < 0)
2966 return false;
2967
2968 MemRefBegin += X86II::getOperandBias(Desc);
2969
2970 BaseOp = &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
2971 if (!BaseOp->isReg()) // Can be an MO_FrameIndex
2972 return false;
2973
2974 if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
2975 return false;
2976
2977 if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
2978 X86::NoRegister)
2979 return false;
2980
2981 const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
2982
2983 // Displacement can be symbolic
2984 if (!DispMO.isImm())
2985 return false;
2986
2987 Offset = DispMO.getImm();
2988
2989 assert(BaseOp->isReg() && "getMemOperandWithOffset only supports base "((BaseOp->isReg() && "getMemOperandWithOffset only supports base "
"operands of type register.") ? static_cast<void> (0) :
__assert_fail ("BaseOp->isReg() && \"getMemOperandWithOffset only supports base \" \"operands of type register.\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2990, __PRETTY_FUNCTION__))
2990 "operands of type register.")((BaseOp->isReg() && "getMemOperandWithOffset only supports base "
"operands of type register.") ? static_cast<void> (0) :
__assert_fail ("BaseOp->isReg() && \"getMemOperandWithOffset only supports base \" \"operands of type register.\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 2990, __PRETTY_FUNCTION__))
;
2991 return true;
2992}
2993
2994static unsigned getStoreRegOpcode(unsigned SrcReg,
2995 const TargetRegisterClass *RC,
2996 bool isStackAligned,
2997 const X86Subtarget &STI) {
2998 return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false);
2999}
3000
3001
3002static unsigned getLoadRegOpcode(unsigned DestReg,
3003 const TargetRegisterClass *RC,
3004 bool isStackAligned,
3005 const X86Subtarget &STI) {
3006 return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true);
3007}
3008
3009void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3010 MachineBasicBlock::iterator MI,
3011 unsigned SrcReg, bool isKill, int FrameIdx,
3012 const TargetRegisterClass *RC,
3013 const TargetRegisterInfo *TRI) const {
3014 const MachineFunction &MF = *MBB.getParent();
3015 assert(MF.getFrameInfo().getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&((MF.getFrameInfo().getObjectSize(FrameIdx) >= TRI->getSpillSize
(*RC) && "Stack slot too small for store") ? static_cast
<void> (0) : __assert_fail ("MF.getFrameInfo().getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) && \"Stack slot too small for store\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 3016, __PRETTY_FUNCTION__))
3016 "Stack slot too small for store")((MF.getFrameInfo().getObjectSize(FrameIdx) >= TRI->getSpillSize
(*RC) && "Stack slot too small for store") ? static_cast
<void> (0) : __assert_fail ("MF.getFrameInfo().getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) && \"Stack slot too small for store\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 3016, __PRETTY_FUNCTION__))
;
3017 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3018 bool isAligned =
3019 (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
3020 RI.canRealignStack(MF);
3021 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3022 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3023 .addReg(SrcReg, getKillRegState(isKill));
3024}
3025
3026void X86InstrInfo::storeRegToAddr(
3027 MachineFunction &MF, unsigned SrcReg, bool isKill,
3028 SmallVectorImpl<MachineOperand> &Addr, const TargetRegisterClass *RC,
3029 ArrayRef<MachineMemOperand *> MMOs,
3030 SmallVectorImpl<MachineInstr *> &NewMIs) const {
3031 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
3032 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
3033 bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
3034 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3035 DebugLoc DL;
3036 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
3037 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
3038 MIB.add(Addr[i]);
3039 MIB.addReg(SrcReg, getKillRegState(isKill));
3040 MIB.setMemRefs(MMOs);
3041 NewMIs.push_back(MIB);
3042}
3043
3044
3045void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
3046 MachineBasicBlock::iterator MI,
3047 unsigned DestReg, int FrameIdx,
3048 const TargetRegisterClass *RC,
3049 const TargetRegisterInfo *TRI) const {
3050 const MachineFunction &MF = *MBB.getParent();
3051 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3052 bool isAligned =
3053 (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
3054 RI.canRealignStack(MF);
3055 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
3056 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg), FrameIdx);
3057}
3058
3059void X86InstrInfo::loadRegFromAddr(
3060 MachineFunction &MF, unsigned DestReg,
3061 SmallVectorImpl<MachineOperand> &Addr, const TargetRegisterClass *RC,
3062 ArrayRef<MachineMemOperand *> MMOs,
3063 SmallVectorImpl<MachineInstr *> &NewMIs) const {
3064 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
3065 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
3066 bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
3067 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
3068 DebugLoc DL;
3069 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
3070 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
3071 MIB.add(Addr[i]);
3072 MIB.setMemRefs(MMOs);
3073 NewMIs.push_back(MIB);
3074}
3075
3076bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
3077 unsigned &SrcReg2, int &CmpMask,
3078 int &CmpValue) const {
3079 switch (MI.getOpcode()) {
3080 default: break;
3081 case X86::CMP64ri32:
3082 case X86::CMP64ri8:
3083 case X86::CMP32ri:
3084 case X86::CMP32ri8:
3085 case X86::CMP16ri:
3086 case X86::CMP16ri8:
3087 case X86::CMP8ri:
3088 SrcReg = MI.getOperand(0).getReg();
3089 SrcReg2 = 0;
3090 if (MI.getOperand(1).isImm()) {
3091 CmpMask = ~0;
3092 CmpValue = MI.getOperand(1).getImm();
3093 } else {
3094 CmpMask = CmpValue = 0;
3095 }
3096 return true;
3097 // A SUB can be used to perform comparison.
3098 case X86::SUB64rm:
3099 case X86::SUB32rm:
3100 case X86::SUB16rm:
3101 case X86::SUB8rm:
3102 SrcReg = MI.getOperand(1).getReg();
3103 SrcReg2 = 0;
3104 CmpMask = 0;
3105 CmpValue = 0;
3106 return true;
3107 case X86::SUB64rr:
3108 case X86::SUB32rr:
3109 case X86::SUB16rr:
3110 case X86::SUB8rr:
3111 SrcReg = MI.getOperand(1).getReg();
3112 SrcReg2 = MI.getOperand(2).getReg();
3113 CmpMask = 0;
3114 CmpValue = 0;
3115 return true;
3116 case X86::SUB64ri32:
3117 case X86::SUB64ri8:
3118 case X86::SUB32ri:
3119 case X86::SUB32ri8:
3120 case X86::SUB16ri:
3121 case X86::SUB16ri8:
3122 case X86::SUB8ri:
3123 SrcReg = MI.getOperand(1).getReg();
3124 SrcReg2 = 0;
3125 if (MI.getOperand(2).isImm()) {
3126 CmpMask = ~0;
3127 CmpValue = MI.getOperand(2).getImm();
3128 } else {
3129 CmpMask = CmpValue = 0;
3130 }
3131 return true;
3132 case X86::CMP64rr:
3133 case X86::CMP32rr:
3134 case X86::CMP16rr:
3135 case X86::CMP8rr:
3136 SrcReg = MI.getOperand(0).getReg();
3137 SrcReg2 = MI.getOperand(1).getReg();
3138 CmpMask = 0;
3139 CmpValue = 0;
3140 return true;
3141 case X86::TEST8rr:
3142 case X86::TEST16rr:
3143 case X86::TEST32rr:
3144 case X86::TEST64rr:
3145 SrcReg = MI.getOperand(0).getReg();
3146 if (MI.getOperand(1).getReg() != SrcReg)
3147 return false;
3148 // Compare against zero.
3149 SrcReg2 = 0;
3150 CmpMask = ~0;
3151 CmpValue = 0;
3152 return true;
3153 }
3154 return false;
3155}
3156
3157/// Check whether the first instruction, whose only
3158/// purpose is to update flags, can be made redundant.
3159/// CMPrr can be made redundant by SUBrr if the operands are the same.
3160/// This function can be extended later on.
3161/// SrcReg, SrcRegs: register operands for FlagI.
3162/// ImmValue: immediate for FlagI if it takes an immediate.
3163inline static bool isRedundantFlagInstr(const MachineInstr &FlagI,
3164 unsigned SrcReg, unsigned SrcReg2,
3165 int ImmMask, int ImmValue,
3166 const MachineInstr &OI) {
3167 if (((FlagI.getOpcode() == X86::CMP64rr && OI.getOpcode() == X86::SUB64rr) ||
3168 (FlagI.getOpcode() == X86::CMP32rr && OI.getOpcode() == X86::SUB32rr) ||
3169 (FlagI.getOpcode() == X86::CMP16rr && OI.getOpcode() == X86::SUB16rr) ||
3170 (FlagI.getOpcode() == X86::CMP8rr && OI.getOpcode() == X86::SUB8rr)) &&
3171 ((OI.getOperand(1).getReg() == SrcReg &&
3172 OI.getOperand(2).getReg() == SrcReg2) ||
3173 (OI.getOperand(1).getReg() == SrcReg2 &&
3174 OI.getOperand(2).getReg() == SrcReg)))
3175 return true;
3176
3177 if (ImmMask != 0 &&
3178 ((FlagI.getOpcode() == X86::CMP64ri32 &&
3179 OI.getOpcode() == X86::SUB64ri32) ||
3180 (FlagI.getOpcode() == X86::CMP64ri8 &&
3181 OI.getOpcode() == X86::SUB64ri8) ||
3182 (FlagI.getOpcode() == X86::CMP32ri && OI.getOpcode() == X86::SUB32ri) ||
3183 (FlagI.getOpcode() == X86::CMP32ri8 &&
3184 OI.getOpcode() == X86::SUB32ri8) ||
3185 (FlagI.getOpcode() == X86::CMP16ri && OI.getOpcode() == X86::SUB16ri) ||
3186 (FlagI.getOpcode() == X86::CMP16ri8 &&
3187 OI.getOpcode() == X86::SUB16ri8) ||
3188 (FlagI.getOpcode() == X86::CMP8ri && OI.getOpcode() == X86::SUB8ri)) &&
3189 OI.getOperand(1).getReg() == SrcReg &&
3190 OI.getOperand(2).getImm() == ImmValue)
3191 return true;
3192 return false;
3193}
3194
3195/// Check whether the definition can be converted
3196/// to remove a comparison against zero.
3197inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag) {
3198 NoSignFlag = false;
3199
3200 switch (MI.getOpcode()) {
3201 default: return false;
3202
3203 // The shift instructions only modify ZF if their shift count is non-zero.
3204 // N.B.: The processor truncates the shift count depending on the encoding.
3205 case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri:
3206 case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri:
3207 return getTruncatedShiftCount(MI, 2) != 0;
3208
3209 // Some left shift instructions can be turned into LEA instructions but only
3210 // if their flags aren't used. Avoid transforming such instructions.
3211 case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{
3212 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
3213 if (isTruncatedShiftCountForLEA(ShAmt)) return false;
3214 return ShAmt != 0;
3215 }
3216
3217 case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
3218 case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
3219 return getTruncatedShiftCount(MI, 3) != 0;
3220
3221 case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
3222 case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8:
3223 case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr:
3224 case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm:
3225 case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm:
3226 case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r:
3227 case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
3228 case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8:
3229 case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr:
3230 case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm:
3231 case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm:
3232 case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r:
3233 case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
3234 case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8:
3235 case X86::AND8ri: case X86::AND64rr: case X86::AND32rr:
3236 case X86::AND16rr: case X86::AND8rr: case X86::AND64rm:
3237 case X86::AND32rm: case X86::AND16rm: case X86::AND8rm:
3238 case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
3239 case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8:
3240 case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr:
3241 case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm:
3242 case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm:
3243 case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri:
3244 case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8:
3245 case X86::OR8ri: case X86::OR64rr: case X86::OR32rr:
3246 case X86::OR16rr: case X86::OR8rr: case X86::OR64rm:
3247 case X86::OR32rm: case X86::OR16rm: case X86::OR8rm:
3248 case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri:
3249 case X86::ADC32ri8: case X86::ADC16ri: case X86::ADC16ri8:
3250 case X86::ADC8ri: case X86::ADC64rr: case X86::ADC32rr:
3251 case X86::ADC16rr: case X86::ADC8rr: case X86::ADC64rm:
3252 case X86::ADC32rm: case X86::ADC16rm: case X86::ADC8rm:
3253 case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri:
3254 case X86::SBB32ri8: case X86::SBB16ri: case X86::SBB16ri8:
3255 case X86::SBB8ri: case X86::SBB64rr: case X86::SBB32rr:
3256 case X86::SBB16rr: case X86::SBB8rr: case X86::SBB64rm:
3257 case X86::SBB32rm: case X86::SBB16rm: case X86::SBB8rm:
3258 case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
3259 case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1:
3260 case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1:
3261 case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1:
3262 case X86::ANDN32rr: case X86::ANDN32rm:
3263 case X86::ANDN64rr: case X86::ANDN64rm:
3264 case X86::BLSI32rr: case X86::BLSI32rm:
3265 case X86::BLSI64rr: case X86::BLSI64rm:
3266 case X86::BLSMSK32rr:case X86::BLSMSK32rm:
3267 case X86::BLSMSK64rr:case X86::BLSMSK64rm:
3268 case X86::BLSR32rr: case X86::BLSR32rm:
3269 case X86::BLSR64rr: case X86::BLSR64rm:
3270 case X86::BZHI32rr: case X86::BZHI32rm:
3271 case X86::BZHI64rr: case X86::BZHI64rm:
3272 case X86::LZCNT16rr: case X86::LZCNT16rm:
3273 case X86::LZCNT32rr: case X86::LZCNT32rm:
3274 case X86::LZCNT64rr: case X86::LZCNT64rm:
3275 case X86::POPCNT16rr:case X86::POPCNT16rm:
3276 case X86::POPCNT32rr:case X86::POPCNT32rm:
3277 case X86::POPCNT64rr:case X86::POPCNT64rm:
3278 case X86::TZCNT16rr: case X86::TZCNT16rm:
3279 case X86::TZCNT32rr: case X86::TZCNT32rm:
3280 case X86::TZCNT64rr: case X86::TZCNT64rm:
3281 case X86::BLCFILL32rr: case X86::BLCFILL32rm:
3282 case X86::BLCFILL64rr: case X86::BLCFILL64rm:
3283 case X86::BLCI32rr: case X86::BLCI32rm:
3284 case X86::BLCI64rr: case X86::BLCI64rm:
3285 case X86::BLCIC32rr: case X86::BLCIC32rm:
3286 case X86::BLCIC64rr: case X86::BLCIC64rm:
3287 case X86::BLCMSK32rr: case X86::BLCMSK32rm:
3288 case X86::BLCMSK64rr: case X86::BLCMSK64rm:
3289 case X86::BLCS32rr: case X86::BLCS32rm:
3290 case X86::BLCS64rr: case X86::BLCS64rm:
3291 case X86::BLSFILL32rr: case X86::BLSFILL32rm:
3292 case X86::BLSFILL64rr: case X86::BLSFILL64rm:
3293 case X86::BLSIC32rr: case X86::BLSIC32rm:
3294 case X86::BLSIC64rr: case X86::BLSIC64rm:
3295 case X86::T1MSKC32rr: case X86::T1MSKC32rm:
3296 case X86::T1MSKC64rr: case X86::T1MSKC64rm:
3297 case X86::TZMSK32rr: case X86::TZMSK32rm:
3298 case X86::TZMSK64rr: case X86::TZMSK64rm:
3299 return true;
3300 case X86::BEXTR32rr: case X86::BEXTR64rr:
3301 case X86::BEXTR32rm: case X86::BEXTR64rm:
3302 case X86::BEXTRI32ri: case X86::BEXTRI32mi:
3303 case X86::BEXTRI64ri: case X86::BEXTRI64mi:
3304 // BEXTR doesn't update the sign flag so we can't use it.
3305 NoSignFlag = true;
3306 return true;
3307 }
3308}
3309
3310/// Check whether the use can be converted to remove a comparison against zero.
3311static X86::CondCode isUseDefConvertible(const MachineInstr &MI) {
3312 switch (MI.getOpcode()) {
3313 default: return X86::COND_INVALID;
3314 case X86::LZCNT16rr: case X86::LZCNT16rm:
3315 case X86::LZCNT32rr: case X86::LZCNT32rm:
3316 case X86::LZCNT64rr: case X86::LZCNT64rm:
3317 return X86::COND_B;
3318 case X86::POPCNT16rr:case X86::POPCNT16rm:
3319 case X86::POPCNT32rr:case X86::POPCNT32rm:
3320 case X86::POPCNT64rr:case X86::POPCNT64rm:
3321 return X86::COND_E;
3322 case X86::TZCNT16rr: case X86::TZCNT16rm:
3323 case X86::TZCNT32rr: case X86::TZCNT32rm:
3324 case X86::TZCNT64rr: case X86::TZCNT64rm:
3325 return X86::COND_B;
3326 case X86::BSF16rr: case X86::BSF16rm:
3327 case X86::BSF32rr: case X86::BSF32rm:
3328 case X86::BSF64rr: case X86::BSF64rm:
3329 case X86::BSR16rr: case X86::BSR16rm:
3330 case X86::BSR32rr: case X86::BSR32rm:
3331 case X86::BSR64rr: case X86::BSR64rm:
3332 return X86::COND_E;
3333 }
3334}
3335
3336/// Check if there exists an earlier instruction that
3337/// operates on the same source operands and sets flags in the same way as
3338/// Compare; remove Compare if possible.
3339bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
3340 unsigned SrcReg2, int CmpMask,
3341 int CmpValue,
3342 const MachineRegisterInfo *MRI) const {
3343 // Check whether we can replace SUB with CMP.
3344 unsigned NewOpcode = 0;
3345 switch (CmpInstr.getOpcode()) {
3346 default: break;
3347 case X86::SUB64ri32:
3348 case X86::SUB64ri8:
3349 case X86::SUB32ri:
3350 case X86::SUB32ri8:
3351 case X86::SUB16ri:
3352 case X86::SUB16ri8:
3353 case X86::SUB8ri:
3354 case X86::SUB64rm:
3355 case X86::SUB32rm:
3356 case X86::SUB16rm:
3357 case X86::SUB8rm:
3358 case X86::SUB64rr:
3359 case X86::SUB32rr:
3360 case X86::SUB16rr:
3361 case X86::SUB8rr: {
3362 if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
3363 return false;
3364 // There is no use of the destination register, we can replace SUB with CMP.
3365 switch (CmpInstr.getOpcode()) {
3366 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 3366)
;
3367 case X86::SUB64rm: NewOpcode = X86::CMP64rm; break;
3368 case X86::SUB32rm: NewOpcode = X86::CMP32rm; break;
3369 case X86::SUB16rm: NewOpcode = X86::CMP16rm; break;
3370 case X86::SUB8rm: NewOpcode = X86::CMP8rm; break;
3371 case X86::SUB64rr: NewOpcode = X86::CMP64rr; break;
3372 case X86::SUB32rr: NewOpcode = X86::CMP32rr; break;
3373 case X86::SUB16rr: NewOpcode = X86::CMP16rr; break;
3374 case X86::SUB8rr: NewOpcode = X86::CMP8rr; break;
3375 case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
3376 case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break;
3377 case X86::SUB32ri: NewOpcode = X86::CMP32ri; break;
3378 case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break;
3379 case X86::SUB16ri: NewOpcode = X86::CMP16ri; break;
3380 case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break;
3381 case X86::SUB8ri: NewOpcode = X86::CMP8ri; break;
3382 }
3383 CmpInstr.setDesc(get(NewOpcode));
3384 CmpInstr.RemoveOperand(0);
3385 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
3386 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
3387 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
3388 return false;
3389 }
3390 }
3391
3392 // Get the unique definition of SrcReg.
3393 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3394 if (!MI) return false;
3395
3396 // CmpInstr is the first instruction of the BB.
3397 MachineBasicBlock::iterator I = CmpInstr, Def = MI;
3398
3399 // If we are comparing against zero, check whether we can use MI to update
3400 // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
3401 bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
3402 if (IsCmpZero && MI->getParent() != CmpInstr.getParent())
3403 return false;
3404
3405 // If we have a use of the source register between the def and our compare
3406 // instruction we can eliminate the compare iff the use sets EFLAGS in the
3407 // right way.
3408 bool ShouldUpdateCC = false;
3409 bool NoSignFlag = false;
3410 X86::CondCode NewCC = X86::COND_INVALID;
3411 if (IsCmpZero && !isDefConvertible(*MI, NoSignFlag)) {
3412 // Scan forward from the use until we hit the use we're looking for or the
3413 // compare instruction.
3414 for (MachineBasicBlock::iterator J = MI;; ++J) {
3415 // Do we have a convertible instruction?
3416 NewCC = isUseDefConvertible(*J);
3417 if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
3418 J->getOperand(1).getReg() == SrcReg) {
3419 assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!")((J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!"
) ? static_cast<void> (0) : __assert_fail ("J->definesRegister(X86::EFLAGS) && \"Must be an EFLAGS def!\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 3419, __PRETTY_FUNCTION__))
;
3420 ShouldUpdateCC = true; // Update CC later on.
3421 // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
3422 // with the new def.
3423 Def = J;
3424 MI = &*Def;
3425 break;
3426 }
3427
3428 if (J == I)
3429 return false;
3430 }
3431 }
3432
3433 // We are searching for an earlier instruction that can make CmpInstr
3434 // redundant and that instruction will be saved in Sub.
3435 MachineInstr *Sub = nullptr;
3436 const TargetRegisterInfo *TRI = &getRegisterInfo();
3437
3438 // We iterate backward, starting from the instruction before CmpInstr and
3439 // stop when reaching the definition of a source register or done with the BB.
3440 // RI points to the instruction before CmpInstr.
3441 // If the definition is in this basic block, RE points to the definition;
3442 // otherwise, RE is the rend of the basic block.
3443 MachineBasicBlock::reverse_iterator
3444 RI = ++I.getReverse(),
3445 RE = CmpInstr.getParent() == MI->getParent()
3446 ? Def.getReverse() /* points to MI */
3447 : CmpInstr.getParent()->rend();
3448 MachineInstr *Movr0Inst = nullptr;
3449 for (; RI != RE; ++RI) {
3450 MachineInstr &Instr = *RI;
3451 // Check whether CmpInstr can be made redundant by the current instruction.
3452 if (!IsCmpZero && isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask,
3453 CmpValue, Instr)) {
3454 Sub = &Instr;
3455 break;
3456 }
3457
3458 if (Instr.modifiesRegister(X86::EFLAGS, TRI) ||
3459 Instr.readsRegister(X86::EFLAGS, TRI)) {
3460 // This instruction modifies or uses EFLAGS.
3461
3462 // MOV32r0 etc. are implemented with xor which clobbers condition code.
3463 // They are safe to move up, if the definition to EFLAGS is dead and
3464 // earlier instructions do not read or write EFLAGS.
3465 if (!Movr0Inst && Instr.getOpcode() == X86::MOV32r0 &&
3466 Instr.registerDefIsDead(X86::EFLAGS, TRI)) {
3467 Movr0Inst = &Instr;
3468 continue;
3469 }
3470
3471 // We can't remove CmpInstr.
3472 return false;
3473 }
3474 }
3475
3476 // Return false if no candidates exist.
3477 if (!IsCmpZero && !Sub)
3478 return false;
3479
3480 bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
3481 Sub->getOperand(2).getReg() == SrcReg);
3482
3483 // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
3484 // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
3485 // If we are done with the basic block, we need to check whether EFLAGS is
3486 // live-out.
3487 bool IsSafe = false;
3488 SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate;
3489 MachineBasicBlock::iterator E = CmpInstr.getParent()->end();
3490 for (++I; I != E; ++I) {
3491 const MachineInstr &Instr = *I;
3492 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
3493 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
3494 // We should check the usage if this instruction uses and updates EFLAGS.
3495 if (!UseEFLAGS && ModifyEFLAGS) {
3496 // It is safe to remove CmpInstr if EFLAGS is updated again.
3497 IsSafe = true;
3498 break;
3499 }
3500 if (!UseEFLAGS && !ModifyEFLAGS)
3501 continue;
3502
3503 // EFLAGS is used by this instruction.
3504 X86::CondCode OldCC = X86::COND_INVALID;
3505 if (IsCmpZero || IsSwapped) {
3506 // We decode the condition code from opcode.
3507 if (Instr.isBranch())
3508 OldCC = X86::getCondFromBranch(Instr);
3509 else {
3510 OldCC = X86::getCondFromSETCC(Instr);
3511 if (OldCC == X86::COND_INVALID)
3512 OldCC = X86::getCondFromCMov(Instr);
3513 }
3514 if (OldCC == X86::COND_INVALID) return false;
3515 }
3516 X86::CondCode ReplacementCC = X86::COND_INVALID;
3517 if (IsCmpZero) {
3518 switch (OldCC) {
3519 default: break;
3520 case X86::COND_A: case X86::COND_AE:
3521 case X86::COND_B: case X86::COND_BE:
3522 case X86::COND_G: case X86::COND_GE:
3523 case X86::COND_L: case X86::COND_LE:
3524 case X86::COND_O: case X86::COND_NO:
3525 // CF and OF are used, we can't perform this optimization.
3526 return false;
3527 case X86::COND_S: case X86::COND_NS:
3528 // If SF is used, but the instruction doesn't update the SF, then we
3529 // can't do the optimization.
3530 if (NoSignFlag)
3531 return false;
3532 break;
3533 }
3534
3535 // If we're updating the condition code check if we have to reverse the
3536 // condition.
3537 if (ShouldUpdateCC)
3538 switch (OldCC) {
3539 default:
3540 return false;
3541 case X86::COND_E:
3542 ReplacementCC = NewCC;
3543 break;
3544 case X86::COND_NE:
3545 ReplacementCC = GetOppositeBranchCondition(NewCC);
3546 break;
3547 }
3548 } else if (IsSwapped) {
3549 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
3550 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3551 // We swap the condition code and synthesize the new opcode.
3552 ReplacementCC = getSwappedCondition(OldCC);
3553 if (ReplacementCC == X86::COND_INVALID) return false;
3554 }
3555
3556 if ((ShouldUpdateCC || IsSwapped) && ReplacementCC != OldCC) {
3557 // Push the MachineInstr to OpsToUpdate.
3558 // If it is safe to remove CmpInstr, the condition code of these
3559 // instructions will be modified.
3560 OpsToUpdate.push_back(std::make_pair(&*I, ReplacementCC));
3561 }
3562 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
3563 // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
3564 IsSafe = true;
3565 break;
3566 }
3567 }
3568
3569 // If EFLAGS is not killed nor re-defined, we should check whether it is
3570 // live-out. If it is live-out, do not optimize.
3571 if ((IsCmpZero || IsSwapped) && !IsSafe) {
3572 MachineBasicBlock *MBB = CmpInstr.getParent();
3573 for (MachineBasicBlock *Successor : MBB->successors())
3574 if (Successor->isLiveIn(X86::EFLAGS))
3575 return false;
3576 }
3577
3578 // The instruction to be updated is either Sub or MI.
3579 Sub = IsCmpZero ? MI : Sub;
3580 // Move Movr0Inst to the appropriate place before Sub.
3581 if (Movr0Inst) {
3582 // Look backwards until we find a def that doesn't use the current EFLAGS.
3583 Def = Sub;
3584 MachineBasicBlock::reverse_iterator InsertI = Def.getReverse(),
3585 InsertE = Sub->getParent()->rend();
3586 for (; InsertI != InsertE; ++InsertI) {
3587 MachineInstr *Instr = &*InsertI;
3588 if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
3589 Instr->modifiesRegister(X86::EFLAGS, TRI)) {
3590 Sub->getParent()->remove(Movr0Inst);
3591 Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
3592 Movr0Inst);
3593 break;
3594 }
3595 }
3596 if (InsertI == InsertE)
3597 return false;
3598 }
3599
3600 // Make sure Sub instruction defines EFLAGS and mark the def live.
3601 unsigned i = 0, e = Sub->getNumOperands();
3602 for (; i != e; ++i) {
3603 MachineOperand &MO = Sub->getOperand(i);
3604 if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
3605 MO.setIsDead(false);
3606 break;
3607 }
3608 }
3609 assert(i != e && "Unable to locate a def EFLAGS operand")((i != e && "Unable to locate a def EFLAGS operand") ?
static_cast<void> (0) : __assert_fail ("i != e && \"Unable to locate a def EFLAGS operand\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 3609, __PRETTY_FUNCTION__))
;
3610
3611 CmpInstr.eraseFromParent();
3612
3613 // Modify the condition code of instructions in OpsToUpdate.
3614 for (auto &Op : OpsToUpdate) {
3615 Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
3616 .setImm(Op.second);
3617 }
3618 return true;
3619}
3620
3621/// Try to remove the load by folding it to a register
3622/// operand at the use. We fold the load instructions if load defines a virtual
3623/// register, the virtual register is used once in the same BB, and the
3624/// instructions in-between do not load or store, and have no side effects.
3625MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
3626 const MachineRegisterInfo *MRI,
3627 unsigned &FoldAsLoadDefReg,
3628 MachineInstr *&DefMI) const {
3629 // Check whether we can move DefMI here.
3630 DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
3631 assert(DefMI)((DefMI) ? static_cast<void> (0) : __assert_fail ("DefMI"
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 3631, __PRETTY_FUNCTION__))
;
3632 bool SawStore = false;
3633 if (!DefMI->isSafeToMove(nullptr, SawStore))
3634 return nullptr;
3635
3636 // Collect information about virtual register operands of MI.
3637 SmallVector<unsigned, 1> SrcOperandIds;
3638 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
3639 MachineOperand &MO = MI.getOperand(i);
3640 if (!MO.isReg())
3641 continue;
3642 unsigned Reg = MO.getReg();
3643 if (Reg != FoldAsLoadDefReg)
3644 continue;
3645 // Do not fold if we have a subreg use or a def.
3646 if (MO.getSubReg() || MO.isDef())
3647 return nullptr;
3648 SrcOperandIds.push_back(i);
3649 }
3650 if (SrcOperandIds.empty())
3651 return nullptr;
3652
3653 // Check whether we can fold the def into SrcOperandId.
3654 if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
3655 FoldAsLoadDefReg = 0;
3656 return FoldMI;
3657 }
3658
3659 return nullptr;
3660}
3661
3662/// Expand a single-def pseudo instruction to a two-addr
3663/// instruction with two undef reads of the register being defined.
3664/// This is used for mapping:
3665/// %xmm4 = V_SET0
3666/// to:
3667/// %xmm4 = PXORrr undef %xmm4, undef %xmm4
3668///
3669static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
3670 const MCInstrDesc &Desc) {
3671 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.")((Desc.getNumOperands() == 3 && "Expected two-addr instruction."
) ? static_cast<void> (0) : __assert_fail ("Desc.getNumOperands() == 3 && \"Expected two-addr instruction.\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 3671, __PRETTY_FUNCTION__))
;
3672 unsigned Reg = MIB->getOperand(0).getReg();
3673 MIB->setDesc(Desc);
3674
3675 // MachineInstr::addOperand() will insert explicit operands before any
3676 // implicit operands.
3677 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
3678 // But we don't trust that.
3679 assert(MIB->getOperand(1).getReg() == Reg &&((MIB->getOperand(1).getReg() == Reg && MIB->getOperand
(2).getReg() == Reg && "Misplaced operand") ? static_cast
<void> (0) : __assert_fail ("MIB->getOperand(1).getReg() == Reg && MIB->getOperand(2).getReg() == Reg && \"Misplaced operand\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 3680, __PRETTY_FUNCTION__))
3680 MIB->getOperand(2).getReg() == Reg && "Misplaced operand")((MIB->getOperand(1).getReg() == Reg && MIB->getOperand
(2).getReg() == Reg && "Misplaced operand") ? static_cast
<void> (0) : __assert_fail ("MIB->getOperand(1).getReg() == Reg && MIB->getOperand(2).getReg() == Reg && \"Misplaced operand\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 3680, __PRETTY_FUNCTION__))
;
3681 return true;
3682}
3683
3684/// Expand a single-def pseudo instruction to a two-addr
3685/// instruction with two %k0 reads.
3686/// This is used for mapping:
3687/// %k4 = K_SET1
3688/// to:
3689/// %k4 = KXNORrr %k0, %k0
3690static bool Expand2AddrKreg(MachineInstrBuilder &MIB,
3691 const MCInstrDesc &Desc, unsigned Reg) {
3692 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.")((Desc.getNumOperands() == 3 && "Expected two-addr instruction."
) ? static_cast<void> (0) : __assert_fail ("Desc.getNumOperands() == 3 && \"Expected two-addr instruction.\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 3692, __PRETTY_FUNCTION__))
;
3693 MIB->setDesc(Desc);
3694 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
3695 return true;
3696}
3697
3698static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
3699 bool MinusOne) {
3700 MachineBasicBlock &MBB = *MIB->getParent();
3701 DebugLoc DL = MIB->getDebugLoc();
3702 unsigned Reg = MIB->getOperand(0).getReg();
3703
3704 // Insert the XOR.
3705 BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
3706 .addReg(Reg, RegState::Undef)
3707 .addReg(Reg, RegState::Undef);
3708
3709 // Turn the pseudo into an INC or DEC.
3710 MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
3711 MIB.addReg(Reg);
3712
3713 return true;
3714}
3715
3716static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
3717 const TargetInstrInfo &TII,
3718 const X86Subtarget &Subtarget) {
3719 MachineBasicBlock &MBB = *MIB->getParent();
3720 DebugLoc DL = MIB->getDebugLoc();
3721 int64_t Imm = MIB->getOperand(1).getImm();
3722 assert(Imm != 0 && "Using push/pop for 0 is not efficient.")((Imm != 0 && "Using push/pop for 0 is not efficient."
) ? static_cast<void> (0) : __assert_fail ("Imm != 0 && \"Using push/pop for 0 is not efficient.\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 3722, __PRETTY_FUNCTION__))
;
3723 MachineBasicBlock::iterator I = MIB.getInstr();
3724
3725 int StackAdjustment;
3726
3727 if (Subtarget.is64Bit()) {
3728 assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||((MIB->getOpcode() == X86::MOV64ImmSExti8 || MIB->getOpcode
() == X86::MOV32ImmSExti8) ? static_cast<void> (0) : __assert_fail
("MIB->getOpcode() == X86::MOV64ImmSExti8 || MIB->getOpcode() == X86::MOV32ImmSExti8"
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 3729, __PRETTY_FUNCTION__))
3729 MIB->getOpcode() == X86::MOV32ImmSExti8)((MIB->getOpcode() == X86::MOV64ImmSExti8 || MIB->getOpcode
() == X86::MOV32ImmSExti8) ? static_cast<void> (0) : __assert_fail
("MIB->getOpcode() == X86::MOV64ImmSExti8 || MIB->getOpcode() == X86::MOV32ImmSExti8"
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 3729, __PRETTY_FUNCTION__))
;
3730
3731 // Can't use push/pop lowering if the function might write to the red zone.
3732 X86MachineFunctionInfo *X86FI =
3733 MBB.getParent()->getInfo<X86MachineFunctionInfo>();
3734 if (X86FI->getUsesRedZone()) {
3735 MIB->setDesc(TII.get(MIB->getOpcode() ==
3736 X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
3737 return true;
3738 }
3739
3740 // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
3741 // widen the register if necessary.
3742 StackAdjustment = 8;
3743 BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm);
3744 MIB->setDesc(TII.get(X86::POP64r));
3745 MIB->getOperand(0)
3746 .setReg(getX86SubSuperRegister(MIB->getOperand(0).getReg(), 64));
3747 } else {
3748 assert(MIB->getOpcode() == X86::MOV32ImmSExti8)((MIB->getOpcode() == X86::MOV32ImmSExti8) ? static_cast<
void> (0) : __assert_fail ("MIB->getOpcode() == X86::MOV32ImmSExti8"
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 3748, __PRETTY_FUNCTION__))
;
3749 StackAdjustment = 4;
3750 BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm);
3751 MIB->setDesc(TII.get(X86::POP32r));
3752 }
3753
3754 // Build CFI if necessary.
3755 MachineFunction &MF = *MBB.getParent();
3756 const X86FrameLowering *TFL = Subtarget.getFrameLowering();
3757 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
3758 bool NeedsDwarfCFI =
3759 !IsWin64Prologue &&
3760 (MF.getMMI().hasDebugInfo() || MF.getFunction().needsUnwindTableEntry());
3761 bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
3762 if (EmitCFI) {
3763 TFL->BuildCFI(MBB, I, DL,
3764 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
3765 TFL->BuildCFI(MBB, std::next(I), DL,
3766 MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
3767 }
3768
3769 return true;
3770}
3771
3772// LoadStackGuard has so far only been implemented for 64-bit MachO. Different
3773// code sequence is needed for other targets.
3774static void expandLoadStackGuard(MachineInstrBuilder &MIB,
3775 const TargetInstrInfo &TII) {
3776 MachineBasicBlock &MBB = *MIB->getParent();
3777 DebugLoc DL = MIB->getDebugLoc();
3778 unsigned Reg = MIB->getOperand(0).getReg();
3779 const GlobalValue *GV =
3780 cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
3781 auto Flags = MachineMemOperand::MOLoad |
3782 MachineMemOperand::MODereferenceable |
3783 MachineMemOperand::MOInvariant;
3784 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
3785 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, 8);
3786 MachineBasicBlock::iterator I = MIB.getInstr();
3787
3788 BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
3789 .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
3790 .addMemOperand(MMO);
3791 MIB->setDebugLoc(DL);
3792 MIB->setDesc(TII.get(X86::MOV64rm));
3793 MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
3794}
3795
3796static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
3797 MachineBasicBlock &MBB = *MIB->getParent();
3798 MachineFunction &MF = *MBB.getParent();
3799 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
3800 const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
3801 unsigned XorOp =
3802 MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
3803 MIB->setDesc(TII.get(XorOp));
3804 MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
3805 return true;
3806}
3807
3808// This is used to handle spills for 128/256-bit registers when we have AVX512,
3809// but not VLX. If it uses an extended register we need to use an instruction
3810// that loads the lower 128/256-bit, but is available with only AVX512F.
3811static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
3812 const TargetRegisterInfo *TRI,
3813 const MCInstrDesc &LoadDesc,
3814 const MCInstrDesc &BroadcastDesc,
3815 unsigned SubIdx) {
3816 unsigned DestReg = MIB->getOperand(0).getReg();
3817 // Check if DestReg is XMM16-31 or YMM16-31.
3818 if (TRI->getEncodingValue(DestReg) < 16) {
3819 // We can use a normal VEX encoded load.
3820 MIB->setDesc(LoadDesc);
3821 } else {
3822 // Use a 128/256-bit VBROADCAST instruction.
3823 MIB->setDesc(BroadcastDesc);
3824 // Change the destination to a 512-bit register.
3825 DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
3826 MIB->getOperand(0).setReg(DestReg);
3827 }
3828 return true;
3829}
3830
3831// This is used to handle spills for 128/256-bit registers when we have AVX512,
3832// but not VLX. If it uses an extended register we need to use an instruction
3833// that stores the lower 128/256-bit, but is available with only AVX512F.
3834static bool expandNOVLXStore(MachineInstrBuilder &MIB,
3835 const TargetRegisterInfo *TRI,
3836 const MCInstrDesc &StoreDesc,
3837 const MCInstrDesc &ExtractDesc,
3838 unsigned SubIdx) {
3839 unsigned SrcReg = MIB->getOperand(X86::AddrNumOperands).getReg();
3840 // Check if DestReg is XMM16-31 or YMM16-31.
3841 if (TRI->getEncodingValue(SrcReg) < 16) {
3842 // We can use a normal VEX encoded store.
3843 MIB->setDesc(StoreDesc);
3844 } else {
3845 // Use a VEXTRACTF instruction.
3846 MIB->setDesc(ExtractDesc);
3847 // Change the destination to a 512-bit register.
3848 SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
3849 MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
3850 MIB.addImm(0x0); // Append immediate to extract from the lower bits.
3851 }
3852
3853 return true;
3854}
3855
3856static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) {
3857 MIB->setDesc(Desc);
3858 int64_t ShiftAmt = MIB->getOperand(2).getImm();
3859 // Temporarily remove the immediate so we can add another source register.
3860 MIB->RemoveOperand(2);
3861 // Add the register. Don't copy the kill flag if there is one.
3862 MIB.addReg(MIB->getOperand(1).getReg(),
3863 getUndefRegState(MIB->getOperand(1).isUndef()));
3864 // Add back the immediate.
3865 MIB.addImm(ShiftAmt);
3866 return true;
3867}
3868
3869bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
3870 bool HasAVX = Subtarget.hasAVX();
3871 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
3872 switch (MI.getOpcode()) {
3873 case X86::MOV32r0:
3874 return Expand2AddrUndef(MIB, get(X86::XOR32rr));
3875 case X86::MOV32r1:
3876 return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
3877 case X86::MOV32r_1:
3878 return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
3879 case X86::MOV32ImmSExti8:
3880 case X86::MOV64ImmSExti8:
3881 return ExpandMOVImmSExti8(MIB, *this, Subtarget);
3882 case X86::SETB_C8r:
3883 return Expand2AddrUndef(MIB, get(X86::SBB8rr));
3884 case X86::SETB_C16r:
3885 return Expand2AddrUndef(MIB, get(X86::SBB16rr));
3886 case X86::SETB_C32r:
3887 return Expand2AddrUndef(MIB, get(X86::SBB32rr));
3888 case X86::SETB_C64r:
3889 return Expand2AddrUndef(MIB, get(X86::SBB64rr));
3890 case X86::MMX_SET0:
3891 return Expand2AddrUndef(MIB, get(X86::MMX_PXORirr));
3892 case X86::V_SET0:
3893 case X86::FsFLD0SS:
3894 case X86::FsFLD0SD:
3895 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
3896 case X86::AVX_SET0: {
3897 assert(HasAVX && "AVX not supported")((HasAVX && "AVX not supported") ? static_cast<void
> (0) : __assert_fail ("HasAVX && \"AVX not supported\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 3897, __PRETTY_FUNCTION__))
;
3898 const TargetRegisterInfo *TRI = &getRegisterInfo();
3899 unsigned SrcReg = MIB->getOperand(0).getReg();
3900 unsigned XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
3901 MIB->getOperand(0).setReg(XReg);
3902 Expand2AddrUndef(MIB, get(X86::VXORPSrr));
3903 MIB.addReg(SrcReg, RegState::ImplicitDefine);
3904 return true;
3905 }
3906 case X86::AVX512_128_SET0:
3907 case X86::AVX512_FsFLD0SS:
3908 case X86::AVX512_FsFLD0SD: {
3909 bool HasVLX = Subtarget.hasVLX();
3910 unsigned SrcReg = MIB->getOperand(0).getReg();
3911 const TargetRegisterInfo *TRI = &getRegisterInfo();
3912 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
3913 return Expand2AddrUndef(MIB,
3914 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
3915 // Extended register without VLX. Use a larger XOR.
3916 SrcReg =
3917 TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
3918 MIB->getOperand(0).setReg(SrcReg);
3919 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
3920 }
3921 case X86::AVX512_256_SET0:
3922 case X86::AVX512_512_SET0: {
3923 bool HasVLX = Subtarget.hasVLX();
3924 unsigned SrcReg = MIB->getOperand(0).getReg();
3925 const TargetRegisterInfo *TRI = &getRegisterInfo();
3926 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
3927 unsigned XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
3928 MIB->getOperand(0).setReg(XReg);
3929 Expand2AddrUndef(MIB,
3930 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
3931 MIB.addReg(SrcReg, RegState::ImplicitDefine);
3932 return true;
3933 }
3934 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
3935 }
3936 case X86::V_SETALLONES:
3937 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
3938 case X86::AVX2_SETALLONES:
3939 return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
3940 case X86::AVX1_SETALLONES: {
3941 unsigned Reg = MIB->getOperand(0).getReg();
3942 // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
3943 MIB->setDesc(get(X86::VCMPPSYrri));
3944 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
3945 return true;
3946 }
3947 case X86::AVX512_512_SETALLONES: {
3948 unsigned Reg = MIB->getOperand(0).getReg();
3949 MIB->setDesc(get(X86::VPTERNLOGDZrri));
3950 // VPTERNLOGD needs 3 register inputs and an immediate.
3951 // 0xff will return 1s for any input.
3952 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
3953 .addReg(Reg, RegState::Undef).addImm(0xff);
3954 return true;
3955 }
3956 case X86::AVX512_512_SEXT_MASK_32:
3957 case X86::AVX512_512_SEXT_MASK_64: {
3958 unsigned Reg = MIB->getOperand(0).getReg();
3959 unsigned MaskReg = MIB->getOperand(1).getReg();
3960 unsigned MaskState = getRegState(MIB->getOperand(1));
3961 unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ?
3962 X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz;
3963 MI.RemoveOperand(1);
3964 MIB->setDesc(get(Opc));
3965 // VPTERNLOG needs 3 register inputs and an immediate.
3966 // 0xff will return 1s for any input.
3967 MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState)
3968 .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff);
3969 return true;
3970 }
3971 case X86::VMOVAPSZ128rm_NOVLX:
3972 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
3973 get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
3974 case X86::VMOVUPSZ128rm_NOVLX:
3975 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
3976 get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
3977 case X86::VMOVAPSZ256rm_NOVLX:
3978 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
3979 get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
3980 case X86::VMOVUPSZ256rm_NOVLX:
3981 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
3982 get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
3983 case X86::VMOVAPSZ128mr_NOVLX:
3984 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
3985 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
3986 case X86::VMOVUPSZ128mr_NOVLX:
3987 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
3988 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
3989 case X86::VMOVAPSZ256mr_NOVLX:
3990 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
3991 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
3992 case X86::VMOVUPSZ256mr_NOVLX:
3993 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
3994 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
3995 case X86::MOV32ri64: {
3996 unsigned Reg = MIB->getOperand(0).getReg();
3997 unsigned Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
3998 MI.setDesc(get(X86::MOV32ri));
3999 MIB->getOperand(0).setReg(Reg32);
4000 MIB.addReg(Reg, RegState::ImplicitDefine);
4001 return true;
4002 }
4003
4004 // KNL does not recognize dependency-breaking idioms for mask registers,
4005 // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
4006 // Using %k0 as the undef input register is a performance heuristic based
4007 // on the assumption that %k0 is used less frequently than the other mask
4008 // registers, since it is not usable as a write mask.
4009 // FIXME: A more advanced approach would be to choose the best input mask
4010 // register based on context.
4011 case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
4012 case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
4013 case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
4014 case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
4015 case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
4016 case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
4017 case TargetOpcode::LOAD_STACK_GUARD:
4018 expandLoadStackGuard(MIB, *this);
4019 return true;
4020 case X86::XOR64_FP:
4021 case X86::XOR32_FP:
4022 return expandXorFP(MIB, *this);
4023 case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8));
4024 case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8));
4025 case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8));
4026 case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8));
4027 case X86::ADD8rr_DB: MIB->setDesc(get(X86::OR8rr)); break;
4028 case X86::ADD16rr_DB: MIB->setDesc(get(X86::OR16rr)); break;
4029 case X86::ADD32rr_DB: MIB->setDesc(get(X86::OR32rr)); break;
4030 case X86::ADD64rr_DB: MIB->setDesc(get(X86::OR64rr)); break;
4031 case X86::ADD8ri_DB: MIB->setDesc(get(X86::OR8ri)); break;
4032 case X86::ADD16ri_DB: MIB->setDesc(get(X86::OR16ri)); break;
4033 case X86::ADD32ri_DB: MIB->setDesc(get(X86::OR32ri)); break;
4034 case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break;
4035 case X86::ADD16ri8_DB: MIB->setDesc(get(X86::OR16ri8)); break;
4036 case X86::ADD32ri8_DB: MIB->setDesc(get(X86::OR32ri8)); break;
4037 case X86::ADD64ri8_DB: MIB->setDesc(get(X86::OR64ri8)); break;
4038 }
4039 return false;
4040}
4041
4042/// Return true for all instructions that only update
4043/// the first 32 or 64-bits of the destination register and leave the rest
4044/// unmodified. This can be used to avoid folding loads if the instructions
4045/// only update part of the destination register, and the non-updated part is
4046/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
4047/// instructions breaks the partial register dependency and it can improve
4048/// performance. e.g.:
4049///
4050/// movss (%rdi), %xmm0
4051/// cvtss2sd %xmm0, %xmm0
4052///
4053/// Instead of
4054/// cvtss2sd (%rdi), %xmm0
4055///
4056/// FIXME: This should be turned into a TSFlags.
4057///
4058static bool hasPartialRegUpdate(unsigned Opcode,
4059 const X86Subtarget &Subtarget,
4060 bool ForLoadFold = false) {
4061 switch (Opcode) {
4062 case X86::CVTSI2SSrr:
4063 case X86::CVTSI2SSrm:
4064 case X86::CVTSI642SSrr:
4065 case X86::CVTSI642SSrm:
4066 case X86::CVTSI2SDrr:
4067 case X86::CVTSI2SDrm:
4068 case X86::CVTSI642SDrr:
4069 case X86::CVTSI642SDrm:
4070 // Load folding won't effect the undef register update since the input is
4071 // a GPR.
4072 return !ForLoadFold;
4073 case X86::CVTSD2SSrr:
4074 case X86::CVTSD2SSrm:
4075 case X86::CVTSS2SDrr:
4076 case X86::CVTSS2SDrm:
4077 case X86::MOVHPDrm:
4078 case X86::MOVHPSrm:
4079 case X86::MOVLPDrm:
4080 case X86::MOVLPSrm:
4081 case X86::RCPSSr:
4082 case X86::RCPSSm:
4083 case X86::RCPSSr_Int:
4084 case X86::RCPSSm_Int:
4085 case X86::ROUNDSDr:
4086 case X86::ROUNDSDm:
4087 case X86::ROUNDSSr:
4088 case X86::ROUNDSSm:
4089 case X86::RSQRTSSr:
4090 case X86::RSQRTSSm:
4091 case X86::RSQRTSSr_Int:
4092 case X86::RSQRTSSm_Int:
4093 case X86::SQRTSSr:
4094 case X86::SQRTSSm:
4095 case X86::SQRTSSr_Int:
4096 case X86::SQRTSSm_Int:
4097 case X86::SQRTSDr:
4098 case X86::SQRTSDm:
4099 case X86::SQRTSDr_Int:
4100 case X86::SQRTSDm_Int:
4101 return true;
4102 // GPR
4103 case X86::POPCNT32rm:
4104 case X86::POPCNT32rr:
4105 case X86::POPCNT64rm:
4106 case X86::POPCNT64rr:
4107 return Subtarget.hasPOPCNTFalseDeps();
4108 case X86::LZCNT32rm:
4109 case X86::LZCNT32rr:
4110 case X86::LZCNT64rm:
4111 case X86::LZCNT64rr:
4112 case X86::TZCNT32rm:
4113 case X86::TZCNT32rr:
4114 case X86::TZCNT64rm:
4115 case X86::TZCNT64rr:
4116 return Subtarget.hasLZCNTFalseDeps();
4117 }
4118
4119 return false;
4120}
4121
4122/// Inform the BreakFalseDeps pass how many idle
4123/// instructions we would like before a partial register update.
4124unsigned X86InstrInfo::getPartialRegUpdateClearance(
4125 const MachineInstr &MI, unsigned OpNum,
4126 const TargetRegisterInfo *TRI) const {
4127 if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
4128 return 0;
4129
4130 // If MI is marked as reading Reg, the partial register update is wanted.
4131 const MachineOperand &MO = MI.getOperand(0);
4132 unsigned Reg = MO.getReg();
4133 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4134 if (MO.readsReg() || MI.readsVirtualRegister(Reg))
4135 return 0;
4136 } else {
4137 if (MI.readsRegister(Reg, TRI))
4138 return 0;
4139 }
4140
4141 // If any instructions in the clearance range are reading Reg, insert a
4142 // dependency breaking instruction, which is inexpensive and is likely to
4143 // be hidden in other instruction's cycles.
4144 return PartialRegUpdateClearance;
4145}
4146
4147// Return true for any instruction the copies the high bits of the first source
4148// operand into the unused high bits of the destination operand.
4149static bool hasUndefRegUpdate(unsigned Opcode, bool ForLoadFold = false) {
4150 switch (Opcode) {
4151 case X86::VCVTSI2SSrr:
4152 case X86::VCVTSI2SSrm:
4153 case X86::VCVTSI2SSrr_Int:
4154 case X86::VCVTSI2SSrm_Int:
4155 case X86::VCVTSI642SSrr:
4156 case X86::VCVTSI642SSrm:
4157 case X86::VCVTSI642SSrr_Int:
4158 case X86::VCVTSI642SSrm_Int:
4159 case X86::VCVTSI2SDrr:
4160 case X86::VCVTSI2SDrm:
4161 case X86::VCVTSI2SDrr_Int:
4162 case X86::VCVTSI2SDrm_Int:
4163 case X86::VCVTSI642SDrr:
4164 case X86::VCVTSI642SDrm:
4165 case X86::VCVTSI642SDrr_Int:
4166 case X86::VCVTSI642SDrm_Int:
4167 // AVX-512
4168 case X86::VCVTSI2SSZrr:
4169 case X86::VCVTSI2SSZrm:
4170 case X86::VCVTSI2SSZrr_Int:
4171 case X86::VCVTSI2SSZrrb_Int:
4172 case X86::VCVTSI2SSZrm_Int:
4173 case X86::VCVTSI642SSZrr:
4174 case X86::VCVTSI642SSZrm:
4175 case X86::VCVTSI642SSZrr_Int:
4176 case X86::VCVTSI642SSZrrb_Int:
4177 case X86::VCVTSI642SSZrm_Int:
4178 case X86::VCVTSI2SDZrr:
4179 case X86::VCVTSI2SDZrm:
4180 case X86::VCVTSI2SDZrr_Int:
4181 case X86::VCVTSI2SDZrm_Int:
4182 case X86::VCVTSI642SDZrr:
4183 case X86::VCVTSI642SDZrm:
4184 case X86::VCVTSI642SDZrr_Int:
4185 case X86::VCVTSI642SDZrrb_Int:
4186 case X86::VCVTSI642SDZrm_Int:
4187 case X86::VCVTUSI2SSZrr:
4188 case X86::VCVTUSI2SSZrm:
4189 case X86::VCVTUSI2SSZrr_Int:
4190 case X86::VCVTUSI2SSZrrb_Int:
4191 case X86::VCVTUSI2SSZrm_Int:
4192 case X86::VCVTUSI642SSZrr:
4193 case X86::VCVTUSI642SSZrm:
4194 case X86::VCVTUSI642SSZrr_Int:
4195 case X86::VCVTUSI642SSZrrb_Int:
4196 case X86::VCVTUSI642SSZrm_Int:
4197 case X86::VCVTUSI2SDZrr:
4198 case X86::VCVTUSI2SDZrm:
4199 case X86::VCVTUSI2SDZrr_Int:
4200 case X86::VCVTUSI2SDZrm_Int:
4201 case X86::VCVTUSI642SDZrr:
4202 case X86::VCVTUSI642SDZrm:
4203 case X86::VCVTUSI642SDZrr_Int:
4204 case X86::VCVTUSI642SDZrrb_Int:
4205 case X86::VCVTUSI642SDZrm_Int:
4206 // Load folding won't effect the undef register update since the input is
4207 // a GPR.
4208 return !ForLoadFold;
4209 case X86::VCVTSD2SSrr:
4210 case X86::VCVTSD2SSrm:
4211 case X86::VCVTSD2SSrr_Int:
4212 case X86::VCVTSD2SSrm_Int:
4213 case X86::VCVTSS2SDrr:
4214 case X86::VCVTSS2SDrm:
4215 case X86::VCVTSS2SDrr_Int:
4216 case X86::VCVTSS2SDrm_Int:
4217 case X86::VRCPSSr:
4218 case X86::VRCPSSr_Int:
4219 case X86::VRCPSSm:
4220 case X86::VRCPSSm_Int:
4221 case X86::VROUNDSDr:
4222 case X86::VROUNDSDm:
4223 case X86::VROUNDSDr_Int:
4224 case X86::VROUNDSDm_Int:
4225 case X86::VROUNDSSr:
4226 case X86::VROUNDSSm:
4227 case X86::VROUNDSSr_Int:
4228 case X86::VROUNDSSm_Int:
4229 case X86::VRSQRTSSr:
4230 case X86::VRSQRTSSr_Int:
4231 case X86::VRSQRTSSm:
4232 case X86::VRSQRTSSm_Int:
4233 case X86::VSQRTSSr:
4234 case X86::VSQRTSSr_Int:
4235 case X86::VSQRTSSm:
4236 case X86::VSQRTSSm_Int:
4237 case X86::VSQRTSDr:
4238 case X86::VSQRTSDr_Int:
4239 case X86::VSQRTSDm:
4240 case X86::VSQRTSDm_Int:
4241 // AVX-512
4242 case X86::VCVTSD2SSZrr:
4243 case X86::VCVTSD2SSZrr_Int:
4244 case X86::VCVTSD2SSZrrb_Int:
4245 case X86::VCVTSD2SSZrm:
4246 case X86::VCVTSD2SSZrm_Int:
4247 case X86::VCVTSS2SDZrr:
4248 case X86::VCVTSS2SDZrr_Int:
4249 case X86::VCVTSS2SDZrrb_Int:
4250 case X86::VCVTSS2SDZrm:
4251 case X86::VCVTSS2SDZrm_Int:
4252 case X86::VGETEXPSDZr:
4253 case X86::VGETEXPSDZrb:
4254 case X86::VGETEXPSDZm:
4255 case X86::VGETEXPSSZr:
4256 case X86::VGETEXPSSZrb:
4257 case X86::VGETEXPSSZm:
4258 case X86::VGETMANTSDZrri:
4259 case X86::VGETMANTSDZrrib:
4260 case X86::VGETMANTSDZrmi:
4261 case X86::VGETMANTSSZrri:
4262 case X86::VGETMANTSSZrrib:
4263 case X86::VGETMANTSSZrmi:
4264 case X86::VRNDSCALESDZr:
4265 case X86::VRNDSCALESDZr_Int:
4266 case X86::VRNDSCALESDZrb_Int:
4267 case X86::VRNDSCALESDZm:
4268 case X86::VRNDSCALESDZm_Int:
4269 case X86::VRNDSCALESSZr:
4270 case X86::VRNDSCALESSZr_Int:
4271 case X86::VRNDSCALESSZrb_Int:
4272 case X86::VRNDSCALESSZm:
4273 case X86::VRNDSCALESSZm_Int:
4274 case X86::VRCP14SDZrr:
4275 case X86::VRCP14SDZrm:
4276 case X86::VRCP14SSZrr:
4277 case X86::VRCP14SSZrm:
4278 case X86::VRCP28SDZr:
4279 case X86::VRCP28SDZrb:
4280 case X86::VRCP28SDZm:
4281 case X86::VRCP28SSZr:
4282 case X86::VRCP28SSZrb:
4283 case X86::VRCP28SSZm:
4284 case X86::VREDUCESSZrmi:
4285 case X86::VREDUCESSZrri:
4286 case X86::VREDUCESSZrrib:
4287 case X86::VRSQRT14SDZrr:
4288 case X86::VRSQRT14SDZrm:
4289 case X86::VRSQRT14SSZrr:
4290 case X86::VRSQRT14SSZrm:
4291 case X86::VRSQRT28SDZr:
4292 case X86::VRSQRT28SDZrb:
4293 case X86::VRSQRT28SDZm:
4294 case X86::VRSQRT28SSZr:
4295 case X86::VRSQRT28SSZrb:
4296 case X86::VRSQRT28SSZm:
4297 case X86::VSQRTSSZr:
4298 case X86::VSQRTSSZr_Int:
4299 case X86::VSQRTSSZrb_Int:
4300 case X86::VSQRTSSZm:
4301 case X86::VSQRTSSZm_Int:
4302 case X86::VSQRTSDZr:
4303 case X86::VSQRTSDZr_Int:
4304 case X86::VSQRTSDZrb_Int:
4305 case X86::VSQRTSDZm:
4306 case X86::VSQRTSDZm_Int:
4307 return true;
4308 }
4309
4310 return false;
4311}
4312
4313/// Inform the BreakFalseDeps pass how many idle instructions we would like
4314/// before certain undef register reads.
4315///
4316/// This catches the VCVTSI2SD family of instructions:
4317///
4318/// vcvtsi2sdq %rax, undef %xmm0, %xmm14
4319///
4320/// We should to be careful *not* to catch VXOR idioms which are presumably
4321/// handled specially in the pipeline:
4322///
4323/// vxorps undef %xmm1, undef %xmm1, %xmm1
4324///
4325/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
4326/// high bits that are passed-through are not live.
4327unsigned
4328X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
4329 const TargetRegisterInfo *TRI) const {
4330 if (!hasUndefRegUpdate(MI.getOpcode()))
4331 return 0;
4332
4333 // Set the OpNum parameter to the first source operand.
4334 OpNum = 1;
4335
4336 const MachineOperand &MO = MI.getOperand(OpNum);
4337 if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
4338 return UndefRegClearance;
4339 }
4340 return 0;
4341}
4342
4343void X86InstrInfo::breakPartialRegDependency(
4344 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
4345 unsigned Reg = MI.getOperand(OpNum).getReg();
4346 // If MI kills this register, the false dependence is already broken.
4347 if (MI.killsRegister(Reg, TRI))
4348 return;
4349
4350 if (X86::VR128RegClass.contains(Reg)) {
4351 // These instructions are all floating point domain, so xorps is the best
4352 // choice.
4353 unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
4354 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
4355 .addReg(Reg, RegState::Undef)
4356 .addReg(Reg, RegState::Undef);
4357 MI.addRegisterKilled(Reg, TRI, true);
4358 } else if (X86::VR256RegClass.contains(Reg)) {
4359 // Use vxorps to clear the full ymm register.
4360 // It wants to read and write the xmm sub-register.
4361 unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
4362 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
4363 .addReg(XReg, RegState::Undef)
4364 .addReg(XReg, RegState::Undef)
4365 .addReg(Reg, RegState::ImplicitDefine);
4366 MI.addRegisterKilled(Reg, TRI, true);
4367 } else if (X86::GR64RegClass.contains(Reg)) {
4368 // Using XOR32rr because it has shorter encoding and zeros up the upper bits
4369 // as well.
4370 unsigned XReg = TRI->getSubReg(Reg, X86::sub_32bit);
4371 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
4372 .addReg(XReg, RegState::Undef)
4373 .addReg(XReg, RegState::Undef)
4374 .addReg(Reg, RegState::ImplicitDefine);
4375 MI.addRegisterKilled(Reg, TRI, true);
4376 } else if (X86::GR32RegClass.contains(Reg)) {
4377 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
4378 .addReg(Reg, RegState::Undef)
4379 .addReg(Reg, RegState::Undef);
4380 MI.addRegisterKilled(Reg, TRI, true);
4381 }
4382}
4383
4384static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
4385 int PtrOffset = 0) {
4386 unsigned NumAddrOps = MOs.size();
4387
4388 if (NumAddrOps < 4) {
4389 // FrameIndex only - add an immediate offset (whether its zero or not).
4390 for (unsigned i = 0; i != NumAddrOps; ++i)
4391 MIB.add(MOs[i]);
4392 addOffset(MIB, PtrOffset);
4393 } else {
4394 // General Memory Addressing - we need to add any offset to an existing
4395 // offset.
4396 assert(MOs.size() == 5 && "Unexpected memory operand list length")((MOs.size() == 5 && "Unexpected memory operand list length"
) ? static_cast<void> (0) : __assert_fail ("MOs.size() == 5 && \"Unexpected memory operand list length\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 4396, __PRETTY_FUNCTION__))
;
4397 for (unsigned i = 0; i != NumAddrOps; ++i) {
4398 const MachineOperand &MO = MOs[i];
4399 if (i == 3 && PtrOffset != 0) {
4400 MIB.addDisp(MO, PtrOffset);
4401 } else {
4402 MIB.add(MO);
4403 }
4404 }
4405 }
4406}
4407
4408static void updateOperandRegConstraints(MachineFunction &MF,
4409 MachineInstr &NewMI,
4410 const TargetInstrInfo &TII) {
4411 MachineRegisterInfo &MRI = MF.getRegInfo();
4412 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
4413
4414 for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
4415 MachineOperand &MO = NewMI.getOperand(Idx);
4416 // We only need to update constraints on virtual register operands.
4417 if (!MO.isReg())
4418 continue;
4419 unsigned Reg = MO.getReg();
4420 if (!TRI.isVirtualRegister(Reg))
4421 continue;
4422
4423 auto *NewRC = MRI.constrainRegClass(
4424 Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
4425 if (!NewRC) {
4426 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("x86-instr-info")) { dbgs() << "WARNING: Unable to update register constraint for operand "
<< Idx << " of instruction:\n"; NewMI.dump(); dbgs
() << "\n"; } } while (false)
4427 dbgs() << "WARNING: Unable to update register constraint for operand "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("x86-instr-info")) { dbgs() << "WARNING: Unable to update register constraint for operand "
<< Idx << " of instruction:\n"; NewMI.dump(); dbgs
() << "\n"; } } while (false)
4428 << Idx << " of instruction:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("x86-instr-info")) { dbgs() << "WARNING: Unable to update register constraint for operand "
<< Idx << " of instruction:\n"; NewMI.dump(); dbgs
() << "\n"; } } while (false)
4429 NewMI.dump(); dbgs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("x86-instr-info")) { dbgs() << "WARNING: Unable to update register constraint for operand "
<< Idx << " of instruction:\n"; NewMI.dump(); dbgs
() << "\n"; } } while (false)
;
4430 }
4431 }
4432}
4433
4434static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
4435 ArrayRef<MachineOperand> MOs,
4436 MachineBasicBlock::iterator InsertPt,
4437 MachineInstr &MI,
4438 const TargetInstrInfo &TII) {
4439 // Create the base instruction with the memory operand as the first part.
4440 // Omit the implicit operands, something BuildMI can't do.
4441 MachineInstr *NewMI =
4442 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
4443 MachineInstrBuilder MIB(MF, NewMI);
4444 addOperands(MIB, MOs);
4445
4446 // Loop over the rest of the ri operands, converting them over.
4447 unsigned NumOps = MI.getDesc().getNumOperands() - 2;
4448 for (unsigned i = 0; i != NumOps; ++i) {
4449 MachineOperand &MO = MI.getOperand(i + 2);
4450 MIB.add(MO);
4451 }
4452 for (unsigned i = NumOps + 2, e = MI.getNumOperands(); i != e; ++i) {
4453 MachineOperand &MO = MI.getOperand(i);
4454 MIB.add(MO);
4455 }
4456
4457 updateOperandRegConstraints(MF, *NewMI, TII);
4458
4459 MachineBasicBlock *MBB = InsertPt->getParent();
4460 MBB->insert(InsertPt, NewMI);
4461
4462 return MIB;
4463}
4464
4465static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
4466 unsigned OpNo, ArrayRef<MachineOperand> MOs,
4467 MachineBasicBlock::iterator InsertPt,
4468 MachineInstr &MI, const TargetInstrInfo &TII,
4469 int PtrOffset = 0) {
4470 // Omit the implicit operands, something BuildMI can't do.
4471 MachineInstr *NewMI =
4472 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
4473 MachineInstrBuilder MIB(MF, NewMI);
4474
4475 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
4476 MachineOperand &MO = MI.getOperand(i);
4477 if (i == OpNo) {
4478 assert(MO.isReg() && "Expected to fold into reg operand!")((MO.isReg() && "Expected to fold into reg operand!")
? static_cast<void> (0) : __assert_fail ("MO.isReg() && \"Expected to fold into reg operand!\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 4478, __PRETTY_FUNCTION__))
;
4479 addOperands(MIB, MOs, PtrOffset);
4480 } else {
4481 MIB.add(MO);
4482 }
4483 }
4484
4485 updateOperandRegConstraints(MF, *NewMI, TII);
4486
4487 MachineBasicBlock *MBB = InsertPt->getParent();
4488 MBB->insert(InsertPt, NewMI);
4489
4490 return MIB;
4491}
4492
4493static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
4494 ArrayRef<MachineOperand> MOs,
4495 MachineBasicBlock::iterator InsertPt,
4496 MachineInstr &MI) {
4497 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
4498 MI.getDebugLoc(), TII.get(Opcode));
4499 addOperands(MIB, MOs);
4500 return MIB.addImm(0);
4501}
4502
4503MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
4504 MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
4505 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
4506 unsigned Size, unsigned Align) const {
4507 switch (MI.getOpcode()) {
4508 case X86::INSERTPSrr:
4509 case X86::VINSERTPSrr:
4510 case X86::VINSERTPSZrr:
4511 // Attempt to convert the load of inserted vector into a fold load
4512 // of a single float.
4513 if (OpNum == 2) {
4514 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
4515 unsigned ZMask = Imm & 15;
4516 unsigned DstIdx = (Imm >> 4) & 3;
4517 unsigned SrcIdx = (Imm >> 6) & 3;
4518
4519 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4520 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4521 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4522 if (Size <= RCSize && 4 <= Align) {
4523 int PtrOffset = SrcIdx * 4;
4524 unsigned NewImm = (DstIdx << 4) | ZMask;
4525 unsigned NewOpCode =
4526 (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm :
4527 (MI.getOpcode() == X86::VINSERTPSrr) ? X86::VINSERTPSrm :
4528 X86::INSERTPSrm;
4529 MachineInstr *NewMI =
4530 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
4531 NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
4532 return NewMI;
4533 }
4534 }
4535 break;
4536 case X86::MOVHLPSrr:
4537 case X86::VMOVHLPSrr:
4538 case X86::VMOVHLPSZrr:
4539 // Move the upper 64-bits of the second operand to the lower 64-bits.
4540 // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
4541 // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
4542 if (OpNum == 2) {
4543 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4544 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4545 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4546 if (Size <= RCSize && 8 <= Align) {
4547 unsigned NewOpCode =
4548 (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm :
4549 (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm :
4550 X86::MOVLPSrm;
4551 MachineInstr *NewMI =
4552 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
4553 return NewMI;
4554 }
4555 }
4556 break;
4557 };
4558
4559 return nullptr;
4560}
4561
4562static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF,
4563 MachineInstr &MI) {
4564 if (!hasUndefRegUpdate(MI.getOpcode(), /*ForLoadFold*/true) ||
4565 !MI.getOperand(1).isReg())
4566 return false;
4567
4568 // The are two cases we need to handle depending on where in the pipeline
4569 // the folding attempt is being made.
4570 // -Register has the undef flag set.
4571 // -Register is produced by the IMPLICIT_DEF instruction.
4572
4573 if (MI.getOperand(1).isUndef())
4574 return true;
4575
4576 MachineRegisterInfo &RegInfo = MF.getRegInfo();
4577 MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
4578 return VRegDef && VRegDef->isImplicitDef();
4579}
4580
4581
4582MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
4583 MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
4584 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
4585 unsigned Size, unsigned Align, bool AllowCommute) const {
4586 bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
4587 bool isTwoAddrFold = false;
4588
4589 // For CPUs that favor the register form of a call or push,
4590 // do not fold loads into calls or pushes, unless optimizing for size
4591 // aggressively.
4592 if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
4593 (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
4594 MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
4595 MI.getOpcode() == X86::PUSH64r))
4596 return nullptr;
4597
4598 // Avoid partial and undef register update stalls unless optimizing for size.
4599 if (!MF.getFunction().hasOptSize() &&
4600 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
4601 shouldPreventUndefRegUpdateMemFold(MF, MI)))
4602 return nullptr;
4603
4604 unsigned NumOps = MI.getDesc().getNumOperands();
4605 bool isTwoAddr =
4606 NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
4607
4608 // FIXME: AsmPrinter doesn't know how to handle
4609 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
4610 if (MI.getOpcode() == X86::ADD32ri &&
4611 MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
4612 return nullptr;
4613
4614 // GOTTPOFF relocation loads can only be folded into add instructions.
4615 // FIXME: Need to exclude other relocations that only support specific
4616 // instructions.
4617 if (MOs.size() == X86::AddrNumOperands &&
4618 MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
4619 MI.getOpcode() != X86::ADD64rr)
4620 return nullptr;
4621
4622 MachineInstr *NewMI = nullptr;
4623
4624 // Attempt to fold any custom cases we have.
4625 if (MachineInstr *CustomMI =
4626 foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt, Size, Align))
4627 return CustomMI;
4628
4629 const X86MemoryFoldTableEntry *I = nullptr;
4630
4631 // Folding a memory location into the two-address part of a two-address
4632 // instruction is different than folding it other places. It requires
4633 // replacing the *two* registers with the memory location.
4634 if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
4635 MI.getOperand(1).isReg() &&
4636 MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
4637 I = lookupTwoAddrFoldTable(MI.getOpcode());
4638 isTwoAddrFold = true;
4639 } else {
4640 if (OpNum == 0) {
4641 if (MI.getOpcode() == X86::MOV32r0) {
4642 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
4643 if (NewMI)
4644 return NewMI;
4645 }
4646 }
4647
4648 I = lookupFoldTable(MI.getOpcode(), OpNum);
4649 }
4650
4651 if (I != nullptr) {
4652 unsigned Opcode = I->DstOp;
4653 unsigned MinAlign = (I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
4654 if (Align < MinAlign)
4655 return nullptr;
4656 bool NarrowToMOV32rm = false;
4657 if (Size) {
4658 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4659 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum,
4660 &RI, MF);
4661 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4662 if (Size < RCSize) {
4663 // Check if it's safe to fold the load. If the size of the object is
4664 // narrower than the load width, then it's not.
4665 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
4666 return nullptr;
4667 // If this is a 64-bit load, but the spill slot is 32, then we can do
4668 // a 32-bit load which is implicitly zero-extended. This likely is
4669 // due to live interval analysis remat'ing a load from stack slot.
4670 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
4671 return nullptr;
4672 Opcode = X86::MOV32rm;
4673 NarrowToMOV32rm = true;
4674 }
4675 }
4676
4677 if (isTwoAddrFold)
4678 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
4679 else
4680 NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
4681
4682 if (NarrowToMOV32rm) {
4683 // If this is the special case where we use a MOV32rm to load a 32-bit
4684 // value and zero-extend the top bits. Change the destination register
4685 // to a 32-bit one.
4686 unsigned DstReg = NewMI->getOperand(0).getReg();
4687 if (TargetRegisterInfo::isPhysicalRegister(DstReg))
4688 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
4689 else
4690 NewMI->getOperand(0).setSubReg(X86::sub_32bit);
4691 }
4692 return NewMI;
4693 }
4694
4695 // If the instruction and target operand are commutable, commute the
4696 // instruction and try again.
4697 if (AllowCommute) {
4698 unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
4699 if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
4700 bool HasDef = MI.getDesc().getNumDefs();
4701 unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0;
4702 unsigned Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
4703 unsigned Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
4704 bool Tied1 =
4705 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
4706 bool Tied2 =
4707 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
4708
4709 // If either of the commutable operands are tied to the destination
4710 // then we can not commute + fold.
4711 if ((HasDef && Reg0 == Reg1 && Tied1) ||
4712 (HasDef && Reg0 == Reg2 && Tied2))
4713 return nullptr;
4714
4715 MachineInstr *CommutedMI =
4716 commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
4717 if (!CommutedMI) {
4718 // Unable to commute.
4719 return nullptr;
4720 }
4721 if (CommutedMI != &MI) {
4722 // New instruction. We can't fold from this.
4723 CommutedMI->eraseFromParent();
4724 return nullptr;
4725 }
4726
4727 // Attempt to fold with the commuted version of the instruction.
4728 NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt,
4729 Size, Align, /*AllowCommute=*/false);
4730 if (NewMI)
4731 return NewMI;
4732
4733 // Folding failed again - undo the commute before returning.
4734 MachineInstr *UncommutedMI =
4735 commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
4736 if (!UncommutedMI) {
4737 // Unable to commute.
4738 return nullptr;
4739 }
4740 if (UncommutedMI != &MI) {
4741 // New instruction. It doesn't need to be kept.
4742 UncommutedMI->eraseFromParent();
4743 return nullptr;
4744 }
4745
4746 // Return here to prevent duplicate fuse failure report.
4747 return nullptr;
4748 }
4749 }
4750
4751 // No fusion
4752 if (PrintFailedFusing && !MI.isCopy())
4753 dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
4754 return nullptr;
4755}
4756
4757MachineInstr *
4758X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
4759 ArrayRef<unsigned> Ops,
4760 MachineBasicBlock::iterator InsertPt,
4761 int FrameIndex, LiveIntervals *LIS) const {
4762 // Check switch flag
4763 if (NoFusing)
4764 return nullptr;
4765
4766 // Avoid partial and undef register update stalls unless optimizing for size.
4767 if (!MF.getFunction().hasOptSize() &&
4768 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
4769 shouldPreventUndefRegUpdateMemFold(MF, MI)))
4770 return nullptr;
4771
4772 // Don't fold subreg spills, or reloads that use a high subreg.
4773 for (auto Op : Ops) {
4774 MachineOperand &MO = MI.getOperand(Op);
4775 auto SubReg = MO.getSubReg();
4776 if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
4777 return nullptr;
4778 }
4779
4780 const MachineFrameInfo &MFI = MF.getFrameInfo();
4781 unsigned Size = MFI.getObjectSize(FrameIndex);
4782 unsigned Alignment = MFI.getObjectAlignment(FrameIndex);
4783 // If the function stack isn't realigned we don't want to fold instructions
4784 // that need increased alignment.
4785 if (!RI.needsStackRealignment(MF))
4786 Alignment =
4787 std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment());
4788 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
4789 unsigned NewOpc = 0;
4790 unsigned RCSize = 0;
4791 switch (MI.getOpcode()) {
4792 default: return nullptr;
4793 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
4794 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
4795 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
4796 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
4797 }
4798 // Check if it's safe to fold the load. If the size of the object is
4799 // narrower than the load width, then it's not.
4800 if (Size < RCSize)
4801 return nullptr;
4802 // Change to CMPXXri r, 0 first.
4803 MI.setDesc(get(NewOpc));
4804 MI.getOperand(1).ChangeToImmediate(0);
4805 } else if (Ops.size() != 1)
4806 return nullptr;
4807
4808 return foldMemoryOperandImpl(MF, MI, Ops[0],
4809 MachineOperand::CreateFI(FrameIndex), InsertPt,
4810 Size, Alignment, /*AllowCommute=*/true);
4811}
4812
4813/// Check if \p LoadMI is a partial register load that we can't fold into \p MI
4814/// because the latter uses contents that wouldn't be defined in the folded
4815/// version. For instance, this transformation isn't legal:
4816/// movss (%rdi), %xmm0
4817/// addps %xmm0, %xmm0
4818/// ->
4819/// addps (%rdi), %xmm0
4820///
4821/// But this one is:
4822/// movss (%rdi), %xmm0
4823/// addss %xmm0, %xmm0
4824/// ->
4825/// addss (%rdi), %xmm0
4826///
4827static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
4828 const MachineInstr &UserMI,
4829 const MachineFunction &MF) {
4830 unsigned Opc = LoadMI.getOpcode();
4831 unsigned UserOpc = UserMI.getOpcode();
4832 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4833 const TargetRegisterClass *RC =
4834 MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
4835 unsigned RegSize = TRI.getRegSizeInBits(*RC);
4836
4837 if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm) &&
4838 RegSize > 32) {
4839 // These instructions only load 32 bits, we can't fold them if the
4840 // destination register is wider than 32 bits (4 bytes), and its user
4841 // instruction isn't scalar (SS).
4842 switch (UserOpc) {
4843 case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int:
4844 case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int:
4845 case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int:
4846 case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int:
4847 case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int:
4848 case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int:
4849 case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int:
4850 case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz:
4851 case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz:
4852 case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz:
4853 case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz:
4854 case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz:
4855 case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz:
4856 case X86::VFMADDSS4rr_Int: case X86::VFNMADDSS4rr_Int:
4857 case X86::VFMSUBSS4rr_Int: case X86::VFNMSUBSS4rr_Int:
4858 case X86::VFMADD132SSr_Int: case X86::VFNMADD132SSr_Int:
4859 case X86::VFMADD213SSr_Int: case X86::VFNMADD213SSr_Int:
4860 case X86::VFMADD231SSr_Int: case X86::VFNMADD231SSr_Int:
4861 case X86::VFMSUB132SSr_Int: case X86::VFNMSUB132SSr_Int:
4862 case X86::VFMSUB213SSr_Int: case X86::VFNMSUB213SSr_Int:
4863 case X86::VFMSUB231SSr_Int: case X86::VFNMSUB231SSr_Int:
4864 case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int:
4865 case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int:
4866 case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int:
4867 case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int:
4868 case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int:
4869 case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int:
4870 case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk:
4871 case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk:
4872 case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk:
4873 case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk:
4874 case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk:
4875 case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk:
4876 case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz:
4877 case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz:
4878 case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz:
4879 case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz:
4880 case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz:
4881 case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz:
4882 return false;
4883 default:
4884 return true;
4885 }
4886 }
4887
4888 if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm) &&
4889 RegSize > 64) {
4890 // These instructions only load 64 bits, we can't fold them if the
4891 // destination register is wider than 64 bits (8 bytes), and its user
4892 // instruction isn't scalar (SD).
4893 switch (UserOpc) {
4894 case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int:
4895 case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int:
4896 case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int:
4897 case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int:
4898 case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int:
4899 case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int:
4900 case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int:
4901 case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz:
4902 case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz:
4903 case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz:
4904 case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz:
4905 case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz:
4906 case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz:
4907 case X86::VFMADDSD4rr_Int: case X86::VFNMADDSD4rr_Int:
4908 case X86::VFMSUBSD4rr_Int: case X86::VFNMSUBSD4rr_Int:
4909 case X86::VFMADD132SDr_Int: case X86::VFNMADD132SDr_Int:
4910 case X86::VFMADD213SDr_Int: case X86::VFNMADD213SDr_Int:
4911 case X86::VFMADD231SDr_Int: case X86::VFNMADD231SDr_Int:
4912 case X86::VFMSUB132SDr_Int: case X86::VFNMSUB132SDr_Int:
4913 case X86::VFMSUB213SDr_Int: case X86::VFNMSUB213SDr_Int:
4914 case X86::VFMSUB231SDr_Int: case X86::VFNMSUB231SDr_Int:
4915 case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int:
4916 case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int:
4917 case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int:
4918 case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int:
4919 case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int:
4920 case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int:
4921 case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk:
4922 case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk:
4923 case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk:
4924 case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk:
4925 case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk:
4926 case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk:
4927 case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz:
4928 case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz:
4929 case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz:
4930 case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz:
4931 case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz:
4932 case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz:
4933 return false;
4934 default:
4935 return true;
4936 }
4937 }
4938
4939 return false;
4940}
4941
4942MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
4943 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
4944 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
4945 LiveIntervals *LIS) const {
4946
4947 // TODO: Support the case where LoadMI loads a wide register, but MI
4948 // only uses a subreg.
4949 for (auto Op : Ops) {
4950 if (MI.getOperand(Op).getSubReg())
4951 return nullptr;
4952 }
4953
4954 // If loading from a FrameIndex, fold directly from the FrameIndex.
4955 unsigned NumOps = LoadMI.getDesc().getNumOperands();
4956 int FrameIndex;
4957 if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
4958 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
4959 return nullptr;
4960 return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
4961 }
4962
4963 // Check switch flag
4964 if (NoFusing) return nullptr;
4965
4966 // Avoid partial and undef register update stalls unless optimizing for size.
4967 if (!MF.getFunction().hasOptSize() &&
4968 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
4969 shouldPreventUndefRegUpdateMemFold(MF, MI)))
4970 return nullptr;
4971
4972 // Determine the alignment of the load.
4973 unsigned Alignment = 0;
4974 if (LoadMI.hasOneMemOperand())
4975 Alignment = (*LoadMI.memoperands_begin())->getAlignment();
4976 else
4977 switch (LoadMI.getOpcode()) {
4978 case X86::AVX512_512_SET0:
4979 case X86::AVX512_512_SETALLONES:
4980 Alignment = 64;
4981 break;
4982 case X86::AVX2_SETALLONES:
4983 case X86::AVX1_SETALLONES:
4984 case X86::AVX_SET0:
4985 case X86::AVX512_256_SET0:
4986 Alignment = 32;
4987 break;
4988 case X86::V_SET0:
4989 case X86::V_SETALLONES:
4990 case X86::AVX512_128_SET0:
4991 Alignment = 16;
4992 break;
4993 case X86::MMX_SET0:
4994 case X86::FsFLD0SD:
4995 case X86::AVX512_FsFLD0SD:
4996 Alignment = 8;
4997 break;
4998 case X86::FsFLD0SS:
4999 case X86::AVX512_FsFLD0SS:
5000 Alignment = 4;
5001 break;
5002 default:
5003 return nullptr;
5004 }
5005 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5006 unsigned NewOpc = 0;
5007 switch (MI.getOpcode()) {
5008 default: return nullptr;
5009 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
5010 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
5011 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
5012 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
5013 }
5014 // Change to CMPXXri r, 0 first.
5015 MI.setDesc(get(NewOpc));
5016 MI.getOperand(1).ChangeToImmediate(0);
5017 } else if (Ops.size() != 1)
5018 return nullptr;
5019
5020 // Make sure the subregisters match.
5021 // Otherwise we risk changing the size of the load.
5022 if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
5023 return nullptr;
5024
5025 SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
5026 switch (LoadMI.getOpcode()) {
5027 case X86::MMX_SET0:
5028 case X86::V_SET0:
5029 case X86::V_SETALLONES:
5030 case X86::AVX2_SETALLONES:
5031 case X86::AVX1_SETALLONES:
5032 case X86::AVX_SET0:
5033 case X86::AVX512_128_SET0:
5034 case X86::AVX512_256_SET0:
5035 case X86::AVX512_512_SET0:
5036 case X86::AVX512_512_SETALLONES:
5037 case X86::FsFLD0SD:
5038 case X86::AVX512_FsFLD0SD:
5039 case X86::FsFLD0SS:
5040 case X86::AVX512_FsFLD0SS: {
5041 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
5042 // Create a constant-pool entry and operands to load from it.
5043
5044 // Medium and large mode can't fold loads this way.
5045 if (MF.getTarget().getCodeModel() != CodeModel::Small &&
5046 MF.getTarget().getCodeModel() != CodeModel::Kernel)
5047 return nullptr;
5048
5049 // x86-32 PIC requires a PIC base register for constant pools.
5050 unsigned PICBase = 0;
5051 if (MF.getTarget().isPositionIndependent()) {
5052 if (Subtarget.is64Bit())
5053 PICBase = X86::RIP;
5054 else
5055 // FIXME: PICBase = getGlobalBaseReg(&MF);
5056 // This doesn't work for several reasons.
5057 // 1. GlobalBaseReg may have been spilled.
5058 // 2. It may not be live at MI.
5059 return nullptr;
5060 }
5061
5062 // Create a constant-pool entry.
5063 MachineConstantPool &MCP = *MF.getConstantPool();
5064 Type *Ty;
5065 unsigned Opc = LoadMI.getOpcode();
5066 if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
5067 Ty = Type::getFloatTy(MF.getFunction().getContext());
5068 else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
5069 Ty = Type::getDoubleTy(MF.getFunction().getContext());
5070 else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
5071 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),16);
5072 else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
5073 Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES)
5074 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 8);
5075 else if (Opc == X86::MMX_SET0)
5076 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 2);
5077 else
5078 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 4);
5079
5080 bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
5081 Opc == X86::AVX512_512_SETALLONES ||
5082 Opc == X86::AVX1_SETALLONES);
5083 const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
5084 Constant::getNullValue(Ty);
5085 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
5086
5087 // Create operands to load from the constant pool entry.
5088 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
5089 MOs.push_back(MachineOperand::CreateImm(1));
5090 MOs.push_back(MachineOperand::CreateReg(0, false));
5091 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
5092 MOs.push_back(MachineOperand::CreateReg(0, false));
5093 break;
5094 }
5095 default: {
5096 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
5097 return nullptr;
5098
5099 // Folding a normal load. Just copy the load's address operands.
5100 MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
5101 LoadMI.operands_begin() + NumOps);
5102 break;
5103 }
5104 }
5105 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
5106 /*Size=*/0, Alignment, /*AllowCommute=*/true);
5107}
5108
5109static SmallVector<MachineMemOperand *, 2>
5110extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
5111 SmallVector<MachineMemOperand *, 2> LoadMMOs;
5112
5113 for (MachineMemOperand *MMO : MMOs) {
5114 if (!MMO->isLoad())
5115 continue;
5116
5117 if (!MMO->isStore()) {
5118 // Reuse the MMO.
5119 LoadMMOs.push_back(MMO);
5120 } else {
5121 // Clone the MMO and unset the store flag.
5122 LoadMMOs.push_back(MF.getMachineMemOperand(
5123 MMO->getPointerInfo(), MMO->getFlags() & ~MachineMemOperand::MOStore,
5124 MMO->getSize(), MMO->getBaseAlignment(), MMO->getAAInfo(), nullptr,
5125 MMO->getSyncScopeID(), MMO->getOrdering(),
5126 MMO->getFailureOrdering()));
5127 }
5128 }
5129
5130 return LoadMMOs;
5131}
5132
5133static SmallVector<MachineMemOperand *, 2>
5134extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
5135 SmallVector<MachineMemOperand *, 2> StoreMMOs;
5136
5137 for (MachineMemOperand *MMO : MMOs) {
5138 if (!MMO->isStore())
5139 continue;
5140
5141 if (!MMO->isLoad()) {
5142 // Reuse the MMO.
5143 StoreMMOs.push_back(MMO);
5144 } else {
5145 // Clone the MMO and unset the load flag.
5146 StoreMMOs.push_back(MF.getMachineMemOperand(
5147 MMO->getPointerInfo(), MMO->getFlags() & ~MachineMemOperand::MOLoad,
5148 MMO->getSize(), MMO->getBaseAlignment(), MMO->getAAInfo(), nullptr,
5149 MMO->getSyncScopeID(), MMO->getOrdering(),
5150 MMO->getFailureOrdering()));
5151 }
5152 }
5153
5154 return StoreMMOs;
5155}
5156
5157bool X86InstrInfo::unfoldMemoryOperand(
5158 MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
5159 bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
5160 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
5161 if (I == nullptr)
5162 return false;
5163 unsigned Opc = I->DstOp;
5164 unsigned Index = I->Flags & TB_INDEX_MASK;
5165 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5166 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5167 if (UnfoldLoad && !FoldedLoad)
5168 return false;
5169 UnfoldLoad &= FoldedLoad;
5170 if (UnfoldStore && !FoldedStore)
5171 return false;
5172 UnfoldStore &= FoldedStore;
5173
5174 const MCInstrDesc &MCID = get(Opc);
5175 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
5176 // TODO: Check if 32-byte or greater accesses are slow too?
5177 if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
5178 Subtarget.isUnalignedMem16Slow())
5179 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
5180 // conservatively assume the address is unaligned. That's bad for
5181 // performance.
5182 return false;
5183 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
5184 SmallVector<MachineOperand,2> BeforeOps;
5185 SmallVector<MachineOperand,2> AfterOps;
5186 SmallVector<MachineOperand,4> ImpOps;
5187 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
5188 MachineOperand &Op = MI.getOperand(i);
5189 if (i >= Index && i < Index + X86::AddrNumOperands)
5190 AddrOps.push_back(Op);
5191 else if (Op.isReg() && Op.isImplicit())
5192 ImpOps.push_back(Op);
5193 else if (i < Index)
5194 BeforeOps.push_back(Op);
5195 else if (i > Index)
5196 AfterOps.push_back(Op);
5197 }
5198
5199 // Emit the load instruction.
5200 if (UnfoldLoad) {
5201 auto MMOs = extractLoadMMOs(MI.memoperands(), MF);
5202 loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs, NewMIs);
5203 if (UnfoldStore) {
5204 // Address operands cannot be marked isKill.
5205 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
5206 MachineOperand &MO = NewMIs[0]->getOperand(i);
5207 if (MO.isReg())
5208 MO.setIsKill(false);
5209 }
5210 }
5211 }
5212
5213 // Emit the data processing instruction.
5214 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
5215 MachineInstrBuilder MIB(MF, DataMI);
5216
5217 if (FoldedStore)
5218 MIB.addReg(Reg, RegState::Define);
5219 for (MachineOperand &BeforeOp : BeforeOps)
5220 MIB.add(BeforeOp);
5221 if (FoldedLoad)
5222 MIB.addReg(Reg);
5223 for (MachineOperand &AfterOp : AfterOps)
5224 MIB.add(AfterOp);
5225 for (MachineOperand &ImpOp : ImpOps) {
5226 MIB.addReg(ImpOp.getReg(),
5227 getDefRegState(ImpOp.isDef()) |
5228 RegState::Implicit |
5229 getKillRegState(ImpOp.isKill()) |
5230 getDeadRegState(ImpOp.isDead()) |
5231 getUndefRegState(ImpOp.isUndef()));
5232 }
5233 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5234 switch (DataMI->getOpcode()) {
5235 default: break;
5236 case X86::CMP64ri32:
5237 case X86::CMP64ri8:
5238 case X86::CMP32ri:
5239 case X86::CMP32ri8:
5240 case X86::CMP16ri:
5241 case X86::CMP16ri8:
5242 case X86::CMP8ri: {
5243 MachineOperand &MO0 = DataMI->getOperand(0);
5244 MachineOperand &MO1 = DataMI->getOperand(1);
5245 if (MO1.getImm() == 0) {
5246 unsigned NewOpc;
5247 switch (DataMI->getOpcode()) {
5248 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 5248)
;
5249 case X86::CMP64ri8:
5250 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
5251 case X86::CMP32ri8:
5252 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
5253 case X86::CMP16ri8:
5254 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
5255 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
5256 }
5257 DataMI->setDesc(get(NewOpc));
5258 MO1.ChangeToRegister(MO0.getReg(), false);
5259 }
5260 }
5261 }
5262 NewMIs.push_back(DataMI);
5263
5264 // Emit the store instruction.
5265 if (UnfoldStore) {
5266 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
5267 auto MMOs = extractStoreMMOs(MI.memoperands(), MF);
5268 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs, NewMIs);
5269 }
5270
5271 return true;
5272}
5273
5274bool
5275X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
5276 SmallVectorImpl<SDNode*> &NewNodes) const {
5277 if (!N->isMachineOpcode())
5278 return false;
5279
5280 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
5281 if (I == nullptr)
5282 return false;
5283 unsigned Opc = I->DstOp;
5284 unsigned Index = I->Flags & TB_INDEX_MASK;
5285 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5286 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5287 const MCInstrDesc &MCID = get(Opc);
5288 MachineFunction &MF = DAG.getMachineFunction();
5289 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5290 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
5291 unsigned NumDefs = MCID.NumDefs;
5292 std::vector<SDValue> AddrOps;
5293 std::vector<SDValue> BeforeOps;
5294 std::vector<SDValue> AfterOps;
5295 SDLoc dl(N);
5296 unsigned NumOps = N->getNumOperands();
5297 for (unsigned i = 0; i != NumOps-1; ++i) {
5298 SDValue Op = N->getOperand(i);
5299 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
5300 AddrOps.push_back(Op);
5301 else if (i < Index-NumDefs)
5302 BeforeOps.push_back(Op);
5303 else if (i > Index-NumDefs)
5304 AfterOps.push_back(Op);
5305 }
5306 SDValue Chain = N->getOperand(NumOps-1);
5307 AddrOps.push_back(Chain);
5308
5309 // Emit the load instruction.
5310 SDNode *Load = nullptr;
5311 if (FoldedLoad) {
5312 EVT VT = *TRI.legalclasstypes_begin(*RC);
5313 auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
5314 if (MMOs.empty() && RC == &X86::VR128RegClass &&
5315 Subtarget.isUnalignedMem16Slow())
5316 // Do not introduce a slow unaligned load.
5317 return false;
5318 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
5319 // memory access is slow above.
5320 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
5321 bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
5322 Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl,
5323 VT, MVT::Other, AddrOps);
5324 NewNodes.push_back(Load);
5325
5326 // Preserve memory reference information.
5327 DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs);
5328 }
5329
5330 // Emit the data processing instruction.
5331 std::vector<EVT> VTs;
5332 const TargetRegisterClass *DstRC = nullptr;
5333 if (MCID.getNumDefs() > 0) {
5334 DstRC = getRegClass(MCID, 0, &RI, MF);
5335 VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
5336 }
5337 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
5338 EVT VT = N->getValueType(i);
5339 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
5340 VTs.push_back(VT);
5341 }
5342 if (Load)
5343 BeforeOps.push_back(SDValue(Load, 0));
5344 BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end());
5345 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5346 switch (Opc) {
5347 default: break;
5348 case X86::CMP64ri32:
5349 case X86::CMP64ri8:
5350 case X86::CMP32ri:
5351 case X86::CMP32ri8:
5352 case X86::CMP16ri:
5353 case X86::CMP16ri8:
5354 case X86::CMP8ri:
5355 if (isNullConstant(BeforeOps[1])) {
5356 switch (Opc) {
5357 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 5357)
;
5358 case X86::CMP64ri8:
5359 case X86::CMP64ri32: Opc = X86::TEST64rr; break;
5360 case X86::CMP32ri8:
5361 case X86::CMP32ri: Opc = X86::TEST32rr; break;
5362 case X86::CMP16ri8:
5363 case X86::CMP16ri: Opc = X86::TEST16rr; break;
5364 case X86::CMP8ri: Opc = X86::TEST8rr; break;
5365 }
5366 BeforeOps[1] = BeforeOps[0];
5367 }
5368 }
5369 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
5370 NewNodes.push_back(NewNode);
5371
5372 // Emit the store instruction.
5373 if (FoldedStore) {
5374 AddrOps.pop_back();
5375 AddrOps.push_back(SDValue(NewNode, 0));
5376 AddrOps.push_back(Chain);
5377 auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
5378 if (MMOs.empty() && RC == &X86::VR128RegClass &&
5379 Subtarget.isUnalignedMem16Slow())
5380 // Do not introduce a slow unaligned store.
5381 return false;
5382 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
5383 // memory access is slow above.
5384 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
5385 bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
5386 SDNode *Store =
5387 DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
5388 dl, MVT::Other, AddrOps);
5389 NewNodes.push_back(Store);
5390
5391 // Preserve memory reference information.
5392 DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs);
5393 }
5394
5395 return true;
5396}
5397
5398unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
5399 bool UnfoldLoad, bool UnfoldStore,
5400 unsigned *LoadRegIndex) const {
5401 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc);
5402 if (I == nullptr)
5403 return 0;
5404 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5405 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5406 if (UnfoldLoad && !FoldedLoad)
5407 return 0;
5408 if (UnfoldStore && !FoldedStore)
5409 return 0;
5410 if (LoadRegIndex)
5411 *LoadRegIndex = I->Flags & TB_INDEX_MASK;
5412 return I->DstOp;
5413}
5414
5415bool
5416X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
5417 int64_t &Offset1, int64_t &Offset2) const {
5418 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
5419 return false;
5420 unsigned Opc1 = Load1->getMachineOpcode();
5421 unsigned Opc2 = Load2->getMachineOpcode();
5422 switch (Opc1) {
5423 default: return false;
5424 case X86::MOV8rm:
5425 case X86::MOV16rm:
5426 case X86::MOV32rm:
5427 case X86::MOV64rm:
5428 case X86::LD_Fp32m:
5429 case X86::LD_Fp64m:
5430 case X86::LD_Fp80m:
5431 case X86::MOVSSrm:
5432 case X86::MOVSDrm:
5433 case X86::MMX_MOVD64rm:
5434 case X86::MMX_MOVQ64rm:
5435 case X86::MOVAPSrm:
5436 case X86::MOVUPSrm:
5437 case X86::MOVAPDrm:
5438 case X86::MOVUPDrm:
5439 case X86::MOVDQArm:
5440 case X86::MOVDQUrm:
5441 // AVX load instructions
5442 case X86::VMOVSSrm:
5443 case X86::VMOVSDrm:
5444 case X86::VMOVAPSrm:
5445 case X86::VMOVUPSrm:
5446 case X86::VMOVAPDrm:
5447 case X86::VMOVUPDrm:
5448 case X86::VMOVDQArm:
5449 case X86::VMOVDQUrm:
5450 case X86::VMOVAPSYrm:
5451 case X86::VMOVUPSYrm:
5452 case X86::VMOVAPDYrm:
5453 case X86::VMOVUPDYrm:
5454 case X86::VMOVDQAYrm:
5455 case X86::VMOVDQUYrm:
5456 // AVX512 load instructions
5457 case X86::VMOVSSZrm:
5458 case X86::VMOVSDZrm:
5459 case X86::VMOVAPSZ128rm:
5460 case X86::VMOVUPSZ128rm:
5461 case X86::VMOVAPSZ128rm_NOVLX:
5462 case X86::VMOVUPSZ128rm_NOVLX:
5463 case X86::VMOVAPDZ128rm:
5464 case X86::VMOVUPDZ128rm:
5465 case X86::VMOVDQU8Z128rm:
5466 case X86::VMOVDQU16Z128rm:
5467 case X86::VMOVDQA32Z128rm:
5468 case X86::VMOVDQU32Z128rm:
5469 case X86::VMOVDQA64Z128rm:
5470 case X86::VMOVDQU64Z128rm:
5471 case X86::VMOVAPSZ256rm:
5472 case X86::VMOVUPSZ256rm:
5473 case X86::VMOVAPSZ256rm_NOVLX:
5474 case X86::VMOVUPSZ256rm_NOVLX:
5475 case X86::VMOVAPDZ256rm:
5476 case X86::VMOVUPDZ256rm:
5477 case X86::VMOVDQU8Z256rm:
5478 case X86::VMOVDQU16Z256rm:
5479 case X86::VMOVDQA32Z256rm:
5480 case X86::VMOVDQU32Z256rm:
5481 case X86::VMOVDQA64Z256rm:
5482 case X86::VMOVDQU64Z256rm:
5483 case X86::VMOVAPSZrm:
5484 case X86::VMOVUPSZrm:
5485 case X86::VMOVAPDZrm:
5486 case X86::VMOVUPDZrm:
5487 case X86::VMOVDQU8Zrm:
5488 case X86::VMOVDQU16Zrm:
5489 case X86::VMOVDQA32Zrm:
5490 case X86::VMOVDQU32Zrm:
5491 case X86::VMOVDQA64Zrm:
5492 case X86::VMOVDQU64Zrm:
5493 case X86::KMOVBkm:
5494 case X86::KMOVWkm:
5495 case X86::KMOVDkm:
5496 case X86::KMOVQkm:
5497 break;
5498 }
5499 switch (Opc2) {
5500 default: return false;
5501 case X86::MOV8rm:
5502 case X86::MOV16rm:
5503 case X86::MOV32rm:
5504 case X86::MOV64rm:
5505 case X86::LD_Fp32m:
5506 case X86::LD_Fp64m:
5507 case X86::LD_Fp80m:
5508 case X86::MOVSSrm:
5509 case X86::MOVSDrm:
5510 case X86::MMX_MOVD64rm:
5511 case X86::MMX_MOVQ64rm:
5512 case X86::MOVAPSrm:
5513 case X86::MOVUPSrm:
5514 case X86::MOVAPDrm:
5515 case X86::MOVUPDrm:
5516 case X86::MOVDQArm:
5517 case X86::MOVDQUrm:
5518 // AVX load instructions
5519 case X86::VMOVSSrm:
5520 case X86::VMOVSDrm:
5521 case X86::VMOVAPSrm:
5522 case X86::VMOVUPSrm:
5523 case X86::VMOVAPDrm:
5524 case X86::VMOVUPDrm:
5525 case X86::VMOVDQArm:
5526 case X86::VMOVDQUrm:
5527 case X86::VMOVAPSYrm:
5528 case X86::VMOVUPSYrm:
5529 case X86::VMOVAPDYrm:
5530 case X86::VMOVUPDYrm:
5531 case X86::VMOVDQAYrm:
5532 case X86::VMOVDQUYrm:
5533 // AVX512 load instructions
5534 case X86::VMOVSSZrm:
5535 case X86::VMOVSDZrm:
5536 case X86::VMOVAPSZ128rm:
5537 case X86::VMOVUPSZ128rm:
5538 case X86::VMOVAPSZ128rm_NOVLX:
5539 case X86::VMOVUPSZ128rm_NOVLX:
5540 case X86::VMOVAPDZ128rm:
5541 case X86::VMOVUPDZ128rm:
5542 case X86::VMOVDQU8Z128rm:
5543 case X86::VMOVDQU16Z128rm:
5544 case X86::VMOVDQA32Z128rm:
5545 case X86::VMOVDQU32Z128rm:
5546 case X86::VMOVDQA64Z128rm:
5547 case X86::VMOVDQU64Z128rm:
5548 case X86::VMOVAPSZ256rm:
5549 case X86::VMOVUPSZ256rm:
5550 case X86::VMOVAPSZ256rm_NOVLX:
5551 case X86::VMOVUPSZ256rm_NOVLX:
5552 case X86::VMOVAPDZ256rm:
5553 case X86::VMOVUPDZ256rm:
5554 case X86::VMOVDQU8Z256rm:
5555 case X86::VMOVDQU16Z256rm:
5556 case X86::VMOVDQA32Z256rm:
5557 case X86::VMOVDQU32Z256rm:
5558 case X86::VMOVDQA64Z256rm:
5559 case X86::VMOVDQU64Z256rm:
5560 case X86::VMOVAPSZrm:
5561 case X86::VMOVUPSZrm:
5562 case X86::VMOVAPDZrm:
5563 case X86::VMOVUPDZrm:
5564 case X86::VMOVDQU8Zrm:
5565 case X86::VMOVDQU16Zrm:
5566 case X86::VMOVDQA32Zrm:
5567 case X86::VMOVDQU32Zrm:
5568 case X86::VMOVDQA64Zrm:
5569 case X86::VMOVDQU64Zrm:
5570 case X86::KMOVBkm:
5571 case X86::KMOVWkm:
5572 case X86::KMOVDkm:
5573 case X86::KMOVQkm:
5574 break;
5575 }
5576
5577 // Lambda to check if both the loads have the same value for an operand index.
5578 auto HasSameOp = [&](int I) {
5579 return Load1->getOperand(I) == Load2->getOperand(I);
5580 };
5581
5582 // All operands except the displacement should match.
5583 if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
5584 !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
5585 return false;
5586
5587 // Chain Operand must be the same.
5588 if (!HasSameOp(5))
5589 return false;
5590
5591 // Now let's examine if the displacements are constants.
5592 auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
5593 auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
5594 if (!Disp1 || !Disp2)
5595 return false;
5596
5597 Offset1 = Disp1->getSExtValue();
5598 Offset2 = Disp2->getSExtValue();
5599 return true;
5600}
5601
5602bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
5603 int64_t Offset1, int64_t Offset2,
5604 unsigned NumLoads) const {
5605 assert(Offset2 > Offset1)((Offset2 > Offset1) ? static_cast<void> (0) : __assert_fail
("Offset2 > Offset1", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 5605, __PRETTY_FUNCTION__))
;
5606 if ((Offset2 - Offset1) / 8 > 64)
5607 return false;
5608
5609 unsigned Opc1 = Load1->getMachineOpcode();
5610 unsigned Opc2 = Load2->getMachineOpcode();
5611 if (Opc1 != Opc2)
5612 return false; // FIXME: overly conservative?
5613
5614 switch (Opc1) {
5615 default: break;
5616 case X86::LD_Fp32m:
5617 case X86::LD_Fp64m:
5618 case X86::LD_Fp80m:
5619 case X86::MMX_MOVD64rm:
5620 case X86::MMX_MOVQ64rm:
5621 return false;
5622 }
5623
5624 EVT VT = Load1->getValueType(0);
5625 switch (VT.getSimpleVT().SimpleTy) {
5626 default:
5627 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
5628 // have 16 of them to play with.
5629 if (Subtarget.is64Bit()) {
5630 if (NumLoads >= 3)
5631 return false;
5632 } else if (NumLoads) {
5633 return false;
5634 }
5635 break;
5636 case MVT::i8:
5637 case MVT::i16:
5638 case MVT::i32:
5639 case MVT::i64:
5640 case MVT::f32:
5641 case MVT::f64:
5642 if (NumLoads)
5643 return false;
5644 break;
5645 }
5646
5647 return true;
5648}
5649
5650bool X86InstrInfo::
5651reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
5652 assert(Cond.size() == 1 && "Invalid X86 branch condition!")((Cond.size() == 1 && "Invalid X86 branch condition!"
) ? static_cast<void> (0) : __assert_fail ("Cond.size() == 1 && \"Invalid X86 branch condition!\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 5652, __PRETTY_FUNCTION__))
;
5653 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
5654 Cond[0].setImm(GetOppositeBranchCondition(CC));
5655 return false;
5656}
5657
5658bool X86InstrInfo::
5659isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
5660 // FIXME: Return false for x87 stack register classes for now. We can't
5661 // allow any loads of these registers before FpGet_ST0_80.
5662 return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
5663 RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
5664 RC == &X86::RFP80RegClass);
5665}
5666
5667/// Return a virtual register initialized with the
5668/// the global base register value. Output instructions required to
5669/// initialize the register in the function entry block, if necessary.
5670///
5671/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
5672///
5673unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
5674 assert((!Subtarget.is64Bit() ||(((!Subtarget.is64Bit() || MF->getTarget().getCodeModel() ==
CodeModel::Medium || MF->getTarget().getCodeModel() == CodeModel
::Large) && "X86-64 PIC uses RIP relative addressing"
) ? static_cast<void> (0) : __assert_fail ("(!Subtarget.is64Bit() || MF->getTarget().getCodeModel() == CodeModel::Medium || MF->getTarget().getCodeModel() == CodeModel::Large) && \"X86-64 PIC uses RIP relative addressing\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 5677, __PRETTY_FUNCTION__))
5675 MF->getTarget().getCodeModel() == CodeModel::Medium ||(((!Subtarget.is64Bit() || MF->getTarget().getCodeModel() ==
CodeModel::Medium || MF->getTarget().getCodeModel() == CodeModel
::Large) && "X86-64 PIC uses RIP relative addressing"
) ? static_cast<void> (0) : __assert_fail ("(!Subtarget.is64Bit() || MF->getTarget().getCodeModel() == CodeModel::Medium || MF->getTarget().getCodeModel() == CodeModel::Large) && \"X86-64 PIC uses RIP relative addressing\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 5677, __PRETTY_FUNCTION__))
5676 MF->getTarget().getCodeModel() == CodeModel::Large) &&(((!Subtarget.is64Bit() || MF->getTarget().getCodeModel() ==
CodeModel::Medium || MF->getTarget().getCodeModel() == CodeModel
::Large) && "X86-64 PIC uses RIP relative addressing"
) ? static_cast<void> (0) : __assert_fail ("(!Subtarget.is64Bit() || MF->getTarget().getCodeModel() == CodeModel::Medium || MF->getTarget().getCodeModel() == CodeModel::Large) && \"X86-64 PIC uses RIP relative addressing\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 5677, __PRETTY_FUNCTION__))
5677 "X86-64 PIC uses RIP relative addressing")(((!Subtarget.is64Bit() || MF->getTarget().getCodeModel() ==
CodeModel::Medium || MF->getTarget().getCodeModel() == CodeModel
::Large) && "X86-64 PIC uses RIP relative addressing"
) ? static_cast<void> (0) : __assert_fail ("(!Subtarget.is64Bit() || MF->getTarget().getCodeModel() == CodeModel::Medium || MF->getTarget().getCodeModel() == CodeModel::Large) && \"X86-64 PIC uses RIP relative addressing\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 5677, __PRETTY_FUNCTION__))
;
5678
5679 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
5680 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
5681 if (GlobalBaseReg != 0)
5682 return GlobalBaseReg;
5683
5684 // Create the register. The code to initialize it is inserted
5685 // later, by the CGBR pass (below).
5686 MachineRegisterInfo &RegInfo = MF->getRegInfo();
5687 GlobalBaseReg = RegInfo.createVirtualRegister(
5688 Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
5689 X86FI->setGlobalBaseReg(GlobalBaseReg);
5690 return GlobalBaseReg;
5691}
5692
5693// These are the replaceable SSE instructions. Some of these have Int variants
5694// that we don't include here. We don't want to replace instructions selected
5695// by intrinsics.
5696static const uint16_t ReplaceableInstrs[][3] = {
5697 //PackedSingle PackedDouble PackedInt
5698 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
5699 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
5700 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
5701 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
5702 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
5703 { X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr },
5704 { X86::MOVSDmr, X86::MOVSDmr, X86::MOVPQI2QImr },
5705 { X86::MOVSSmr, X86::MOVSSmr, X86::MOVPDI2DImr },
5706 { X86::MOVSDrm, X86::MOVSDrm, X86::MOVQI2PQIrm },
5707 { X86::MOVSSrm, X86::MOVSSrm, X86::MOVDI2PDIrm },
5708 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
5709 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
5710 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
5711 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
5712 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
5713 { X86::ORPSrm, X86::ORPDrm, X86::PORrm },
5714 { X86::ORPSrr, X86::ORPDrr, X86::PORrr },
5715 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
5716 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
5717 { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm },
5718 { X86::MOVLHPSrr, X86::UNPCKLPDrr, X86::PUNPCKLQDQrr },
5719 { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm },
5720 { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr },
5721 { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm },
5722 { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr },
5723 { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm },
5724 { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr },
5725 { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr },
5726 { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr },
5727 // AVX 128-bit support
5728 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
5729 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
5730 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
5731 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
5732 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
5733 { X86::VMOVLPSmr, X86::VMOVLPDmr, X86::VMOVPQI2QImr },
5734 { X86::VMOVSDmr, X86::VMOVSDmr, X86::VMOVPQI2QImr },
5735 { X86::VMOVSSmr, X86::VMOVSSmr, X86::VMOVPDI2DImr },
5736 { X86::VMOVSDrm, X86::VMOVSDrm, X86::VMOVQI2PQIrm },
5737 { X86::VMOVSSrm, X86::VMOVSSrm, X86::VMOVDI2PDIrm },
5738 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
5739 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
5740 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
5741 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
5742 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
5743 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
5744 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
5745 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
5746 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
5747 { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm },
5748 { X86::VMOVLHPSrr, X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr },
5749 { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm },
5750 { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr },
5751 { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm },
5752 { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr },
5753 { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm },
5754 { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr },
5755 { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr },
5756 { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr },
5757 // AVX 256-bit support
5758 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr },
5759 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm },
5760 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr },
5761 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr },
5762 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm },
5763 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr },
5764 { X86::VPERMPSYrm, X86::VPERMPSYrm, X86::VPERMDYrm },
5765 { X86::VPERMPSYrr, X86::VPERMPSYrr, X86::VPERMDYrr },
5766 { X86::VPERMPDYmi, X86::VPERMPDYmi, X86::VPERMQYmi },
5767 { X86::VPERMPDYri, X86::VPERMPDYri, X86::VPERMQYri },
5768 // AVX512 support
5769 { X86::VMOVLPSZ128mr, X86::VMOVLPDZ128mr, X86::VMOVPQI2QIZmr },
5770 { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
5771 { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr },
5772 { X86::VMOVNTPSZmr, X86::VMOVNTPDZmr, X86::VMOVNTDQZmr },
5773 { X86::VMOVSDZmr, X86::VMOVSDZmr, X86::VMOVPQI2QIZmr },
5774 { X86::VMOVSSZmr, X86::VMOVSSZmr, X86::VMOVPDI2DIZmr },
5775 { X86::VMOVSDZrm, X86::VMOVSDZrm, X86::VMOVQI2PQIZrm },
5776 { X86::VMOVSSZrm, X86::VMOVSSZrm, X86::VMOVDI2PDIZrm },
5777 { X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128r, X86::VPBROADCASTDZ128r },
5778 { X86::VBROADCASTSSZ128m, X86::VBROADCASTSSZ128m, X86::VPBROADCASTDZ128m },
5779 { X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256r, X86::VPBROADCASTDZ256r },
5780 { X86::VBROADCASTSSZ256m, X86::VBROADCASTSSZ256m, X86::VPBROADCASTDZ256m },
5781 { X86::VBROADCASTSSZr, X86::VBROADCASTSSZr, X86::VPBROADCASTDZr },
5782 { X86::VBROADCASTSSZm, X86::VBROADCASTSSZm, X86::VPBROADCASTDZm },
5783 { X86::VMOVDDUPZ128rr, X86::VMOVDDUPZ128rr, X86::VPBROADCASTQZ128r },
5784 { X86::VMOVDDUPZ128rm, X86::VMOVDDUPZ128rm, X86::VPBROADCASTQZ128m },
5785 { X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256r, X86::VPBROADCASTQZ256r },
5786 { X86::VBROADCASTSDZ256m, X86::VBROADCASTSDZ256m, X86::VPBROADCASTQZ256m },
5787 { X86::VBROADCASTSDZr, X86::VBROADCASTSDZr, X86::VPBROADCASTQZr },
5788 { X86::VBROADCASTSDZm, X86::VBROADCASTSDZm, X86::VPBROADCASTQZm },
5789 { X86::VINSERTF32x4Zrr, X86::VINSERTF32x4Zrr, X86::VINSERTI32x4Zrr },
5790 { X86::VINSERTF32x4Zrm, X86::VINSERTF32x4Zrm, X86::VINSERTI32x4Zrm },
5791 { X86::VINSERTF32x8Zrr, X86::VINSERTF32x8Zrr, X86::VINSERTI32x8Zrr },
5792 { X86::VINSERTF32x8Zrm, X86::VINSERTF32x8Zrm, X86::VINSERTI32x8Zrm },
5793 { X86::VINSERTF64x2Zrr, X86::VINSERTF64x2Zrr, X86::VINSERTI64x2Zrr },
5794 { X86::VINSERTF64x2Zrm, X86::VINSERTF64x2Zrm, X86::VINSERTI64x2Zrm },
5795 { X86::VINSERTF64x4Zrr, X86::VINSERTF64x4Zrr, X86::VINSERTI64x4Zrr },
5796 { X86::VINSERTF64x4Zrm, X86::VINSERTF64x4Zrm, X86::VINSERTI64x4Zrm },
5797 { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr },
5798 { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm },
5799 { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr },
5800 { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm },
5801 { X86::VEXTRACTF32x4Zrr, X86::VEXTRACTF32x4Zrr, X86::VEXTRACTI32x4Zrr },
5802 { X86::VEXTRACTF32x4Zmr, X86::VEXTRACTF32x4Zmr, X86::VEXTRACTI32x4Zmr },
5803 { X86::VEXTRACTF32x8Zrr, X86::VEXTRACTF32x8Zrr, X86::VEXTRACTI32x8Zrr },
5804 { X86::VEXTRACTF32x8Zmr, X86::VEXTRACTF32x8Zmr, X86::VEXTRACTI32x8Zmr },
5805 { X86::VEXTRACTF64x2Zrr, X86::VEXTRACTF64x2Zrr, X86::VEXTRACTI64x2Zrr },
5806 { X86::VEXTRACTF64x2Zmr, X86::VEXTRACTF64x2Zmr, X86::VEXTRACTI64x2Zmr },
5807 { X86::VEXTRACTF64x4Zrr, X86::VEXTRACTF64x4Zrr, X86::VEXTRACTI64x4Zrr },
5808 { X86::VEXTRACTF64x4Zmr, X86::VEXTRACTF64x4Zmr, X86::VEXTRACTI64x4Zmr },
5809 { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr },
5810 { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr },
5811 { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr },
5812 { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr },
5813 { X86::VPERMILPSmi, X86::VPERMILPSmi, X86::VPSHUFDmi },
5814 { X86::VPERMILPSri, X86::VPERMILPSri, X86::VPSHUFDri },
5815 { X86::VPERMILPSZ128mi, X86::VPERMILPSZ128mi, X86::VPSHUFDZ128mi },
5816 { X86::VPERMILPSZ128ri, X86::VPERMILPSZ128ri, X86::VPSHUFDZ128ri },
5817 { X86::VPERMILPSZ256mi, X86::VPERMILPSZ256mi, X86::VPSHUFDZ256mi },
5818 { X86::VPERMILPSZ256ri, X86::VPERMILPSZ256ri, X86::VPSHUFDZ256ri },
5819 { X86::VPERMILPSZmi, X86::VPERMILPSZmi, X86::VPSHUFDZmi },
5820 { X86::VPERMILPSZri, X86::VPERMILPSZri, X86::VPSHUFDZri },
5821 { X86::VPERMPSZ256rm, X86::VPERMPSZ256rm, X86::VPERMDZ256rm },
5822 { X86::VPERMPSZ256rr, X86::VPERMPSZ256rr, X86::VPERMDZ256rr },
5823 { X86::VPERMPDZ256mi, X86::VPERMPDZ256mi, X86::VPERMQZ256mi },
5824 { X86::VPERMPDZ256ri, X86::VPERMPDZ256ri, X86::VPERMQZ256ri },
5825 { X86::VPERMPDZ256rm, X86::VPERMPDZ256rm, X86::VPERMQZ256rm },
5826 { X86::VPERMPDZ256rr, X86::VPERMPDZ256rr, X86::VPERMQZ256rr },
5827 { X86::VPERMPSZrm, X86::VPERMPSZrm, X86::VPERMDZrm },
5828 { X86::VPERMPSZrr, X86::VPERMPSZrr, X86::VPERMDZrr },
5829 { X86::VPERMPDZmi, X86::VPERMPDZmi, X86::VPERMQZmi },
5830 { X86::VPERMPDZri, X86::VPERMPDZri, X86::VPERMQZri },
5831 { X86::VPERMPDZrm, X86::VPERMPDZrm, X86::VPERMQZrm },
5832 { X86::VPERMPDZrr, X86::VPERMPDZrr, X86::VPERMQZrr },
5833 { X86::VUNPCKLPDZ256rm, X86::VUNPCKLPDZ256rm, X86::VPUNPCKLQDQZ256rm },
5834 { X86::VUNPCKLPDZ256rr, X86::VUNPCKLPDZ256rr, X86::VPUNPCKLQDQZ256rr },
5835 { X86::VUNPCKHPDZ256rm, X86::VUNPCKHPDZ256rm, X86::VPUNPCKHQDQZ256rm },
5836 { X86::VUNPCKHPDZ256rr, X86::VUNPCKHPDZ256rr, X86::VPUNPCKHQDQZ256rr },
5837 { X86::VUNPCKLPSZ256rm, X86::VUNPCKLPSZ256rm, X86::VPUNPCKLDQZ256rm },
5838 { X86::VUNPCKLPSZ256rr, X86::VUNPCKLPSZ256rr, X86::VPUNPCKLDQZ256rr },
5839 { X86::VUNPCKHPSZ256rm, X86::VUNPCKHPSZ256rm, X86::VPUNPCKHDQZ256rm },
5840 { X86::VUNPCKHPSZ256rr, X86::VUNPCKHPSZ256rr, X86::VPUNPCKHDQZ256rr },
5841 { X86::VUNPCKLPDZ128rm, X86::VUNPCKLPDZ128rm, X86::VPUNPCKLQDQZ128rm },
5842 { X86::VMOVLHPSZrr, X86::VUNPCKLPDZ128rr, X86::VPUNPCKLQDQZ128rr },
5843 { X86::VUNPCKHPDZ128rm, X86::VUNPCKHPDZ128rm, X86::VPUNPCKHQDQZ128rm },
5844 { X86::VUNPCKHPDZ128rr, X86::VUNPCKHPDZ128rr, X86::VPUNPCKHQDQZ128rr },
5845 { X86::VUNPCKLPSZ128rm, X86::VUNPCKLPSZ128rm, X86::VPUNPCKLDQZ128rm },
5846 { X86::VUNPCKLPSZ128rr, X86::VUNPCKLPSZ128rr, X86::VPUNPCKLDQZ128rr },
5847 { X86::VUNPCKHPSZ128rm, X86::VUNPCKHPSZ128rm, X86::VPUNPCKHDQZ128rm },
5848 { X86::VUNPCKHPSZ128rr, X86::VUNPCKHPSZ128rr, X86::VPUNPCKHDQZ128rr },
5849 { X86::VUNPCKLPDZrm, X86::VUNPCKLPDZrm, X86::VPUNPCKLQDQZrm },
5850 { X86::VUNPCKLPDZrr, X86::VUNPCKLPDZrr, X86::VPUNPCKLQDQZrr },
5851 { X86::VUNPCKHPDZrm, X86::VUNPCKHPDZrm, X86::VPUNPCKHQDQZrm },
5852 { X86::VUNPCKHPDZrr, X86::VUNPCKHPDZrr, X86::VPUNPCKHQDQZrr },
5853 { X86::VUNPCKLPSZrm, X86::VUNPCKLPSZrm, X86::VPUNPCKLDQZrm },
5854 { X86::VUNPCKLPSZrr, X86::VUNPCKLPSZrr, X86::VPUNPCKLDQZrr },
5855 { X86::VUNPCKHPSZrm, X86::VUNPCKHPSZrm, X86::VPUNPCKHDQZrm },
5856 { X86::VUNPCKHPSZrr, X86::VUNPCKHPSZrr, X86::VPUNPCKHDQZrr },
5857 { X86::VEXTRACTPSZmr, X86::VEXTRACTPSZmr, X86::VPEXTRDZmr },
5858 { X86::VEXTRACTPSZrr, X86::VEXTRACTPSZrr, X86::VPEXTRDZrr },
5859};
5860
5861static const uint16_t ReplaceableInstrsAVX2[][3] = {
5862 //PackedSingle PackedDouble PackedInt
5863 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm },
5864 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr },
5865 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm },
5866 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr },
5867 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm },
5868 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr },
5869 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm },
5870 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr },
5871 { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm },
5872 { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr },
5873 { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
5874 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
5875 { X86::VMOVDDUPrm, X86::VMOVDDUPrm, X86::VPBROADCASTQrm},
5876 { X86::VMOVDDUPrr, X86::VMOVDDUPrr, X86::VPBROADCASTQrr},
5877 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
5878 { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
5879 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
5880 { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm},
5881 { X86::VBROADCASTF128, X86::VBROADCASTF128, X86::VBROADCASTI128 },
5882 { X86::VBLENDPSYrri, X86::VBLENDPSYrri, X86::VPBLENDDYrri },
5883 { X86::VBLENDPSYrmi, X86::VBLENDPSYrmi, X86::VPBLENDDYrmi },
5884 { X86::VPERMILPSYmi, X86::VPERMILPSYmi, X86::VPSHUFDYmi },
5885 { X86::VPERMILPSYri, X86::VPERMILPSYri, X86::VPSHUFDYri },
5886 { X86::VUNPCKLPDYrm, X86::VUNPCKLPDYrm, X86::VPUNPCKLQDQYrm },
5887 { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrr, X86::VPUNPCKLQDQYrr },
5888 { X86::VUNPCKHPDYrm, X86::VUNPCKHPDYrm, X86::VPUNPCKHQDQYrm },
5889 { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrr, X86::VPUNPCKHQDQYrr },
5890 { X86::VUNPCKLPSYrm, X86::VUNPCKLPSYrm, X86::VPUNPCKLDQYrm },
5891 { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrr, X86::VPUNPCKLDQYrr },
5892 { X86::VUNPCKHPSYrm, X86::VUNPCKHPSYrm, X86::VPUNPCKHDQYrm },
5893 { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrr, X86::VPUNPCKHDQYrr },
5894};
5895
5896static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = {
5897 //PackedSingle PackedDouble PackedInt
5898 { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
5899 { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
5900 { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm },
5901 { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr },
5902};
5903
5904static const uint16_t ReplaceableInstrsAVX512[][4] = {
5905 // Two integer columns for 64-bit and 32-bit elements.
5906 //PackedSingle PackedDouble PackedInt PackedInt
5907 { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr },
5908 { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm },
5909 { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr },
5910 { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr },
5911 { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm },
5912 { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr },
5913 { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm },
5914 { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr },
5915 { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr },
5916 { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm },
5917 { X86::VMOVAPSZmr, X86::VMOVAPDZmr, X86::VMOVDQA64Zmr, X86::VMOVDQA32Zmr },
5918 { X86::VMOVAPSZrm, X86::VMOVAPDZrm, X86::VMOVDQA64Zrm, X86::VMOVDQA32Zrm },
5919 { X86::VMOVAPSZrr, X86::VMOVAPDZrr, X86::VMOVDQA64Zrr, X86::VMOVDQA32Zrr },
5920 { X86::VMOVUPSZmr, X86::VMOVUPDZmr, X86::VMOVDQU64Zmr, X86::VMOVDQU32Zmr },
5921 { X86::VMOVUPSZrm, X86::VMOVUPDZrm, X86::VMOVDQU64Zrm, X86::VMOVDQU32Zrm },
5922};
5923
5924static const uint16_t ReplaceableInstrsAVX512DQ[][4] = {
5925 // Two integer columns for 64-bit and 32-bit elements.
5926 //PackedSingle PackedDouble PackedInt PackedInt
5927 { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
5928 { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
5929 { X86::VANDPSZ128rm, X86::VANDPDZ128rm, X86::VPANDQZ128rm, X86::VPANDDZ128rm },
5930 { X86::VANDPSZ128rr, X86::VANDPDZ128rr, X86::VPANDQZ128rr, X86::VPANDDZ128rr },
5931 { X86::VORPSZ128rm, X86::VORPDZ128rm, X86::VPORQZ128rm, X86::VPORDZ128rm },
5932 { X86::VORPSZ128rr, X86::VORPDZ128rr, X86::VPORQZ128rr, X86::VPORDZ128rr },
5933 { X86::VXORPSZ128rm, X86::VXORPDZ128rm, X86::VPXORQZ128rm, X86::VPXORDZ128rm },
5934 { X86::VXORPSZ128rr, X86::VXORPDZ128rr, X86::VPXORQZ128rr, X86::VPXORDZ128rr },
5935 { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
5936 { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
5937 { X86::VANDPSZ256rm, X86::VANDPDZ256rm, X86::VPANDQZ256rm, X86::VPANDDZ256rm },
5938 { X86::VANDPSZ256rr, X86::VANDPDZ256rr, X86::VPANDQZ256rr, X86::VPANDDZ256rr },
5939 { X86::VORPSZ256rm, X86::VORPDZ256rm, X86::VPORQZ256rm, X86::VPORDZ256rm },
5940 { X86::VORPSZ256rr, X86::VORPDZ256rr, X86::VPORQZ256rr, X86::VPORDZ256rr },
5941 { X86::VXORPSZ256rm, X86::VXORPDZ256rm, X86::VPXORQZ256rm, X86::VPXORDZ256rm },
5942 { X86::VXORPSZ256rr, X86::VXORPDZ256rr, X86::VPXORQZ256rr, X86::VPXORDZ256rr },
5943 { X86::VANDNPSZrm, X86::VANDNPDZrm, X86::VPANDNQZrm, X86::VPANDNDZrm },
5944 { X86::VANDNPSZrr, X86::VANDNPDZrr, X86::VPANDNQZrr, X86::VPANDNDZrr },
5945 { X86::VANDPSZrm, X86::VANDPDZrm, X86::VPANDQZrm, X86::VPANDDZrm },
5946 { X86::VANDPSZrr, X86::VANDPDZrr, X86::VPANDQZrr, X86::VPANDDZrr },
5947 { X86::VORPSZrm, X86::VORPDZrm, X86::VPORQZrm, X86::VPORDZrm },
5948 { X86::VORPSZrr, X86::VORPDZrr, X86::VPORQZrr, X86::VPORDZrr },
5949 { X86::VXORPSZrm, X86::VXORPDZrm, X86::VPXORQZrm, X86::VPXORDZrm },
5950 { X86::VXORPSZrr, X86::VXORPDZrr, X86::VPXORQZrr, X86::VPXORDZrr },
5951};
5952
5953static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = {
5954 // Two integer columns for 64-bit and 32-bit elements.
5955 //PackedSingle PackedDouble
5956 //PackedInt PackedInt
5957 { X86::VANDNPSZ128rmk, X86::VANDNPDZ128rmk,
5958 X86::VPANDNQZ128rmk, X86::VPANDNDZ128rmk },
5959 { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz,
5960 X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz },
5961 { X86::VANDNPSZ128rrk, X86::VANDNPDZ128rrk,
5962 X86::VPANDNQZ128rrk, X86::VPANDNDZ128rrk },
5963 { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz,
5964 X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz },
5965 { X86::VANDPSZ128rmk, X86::VANDPDZ128rmk,
5966 X86::VPANDQZ128rmk, X86::VPANDDZ128rmk },
5967 { X86::VANDPSZ128rmkz, X86::VANDPDZ128rmkz,
5968 X86::VPANDQZ128rmkz, X86::VPANDDZ128rmkz },
5969 { X86::VANDPSZ128rrk, X86::VANDPDZ128rrk,
5970 X86::VPANDQZ128rrk, X86::VPANDDZ128rrk },
5971 { X86::VANDPSZ128rrkz, X86::VANDPDZ128rrkz,
5972 X86::VPANDQZ128rrkz, X86::VPANDDZ128rrkz },
5973 { X86::VORPSZ128rmk, X86::VORPDZ128rmk,
5974 X86::VPORQZ128rmk, X86::VPORDZ128rmk },
5975 { X86::VORPSZ128rmkz, X86::VORPDZ128rmkz,
5976 X86::VPORQZ128rmkz, X86::VPORDZ128rmkz },
5977 { X86::VORPSZ128rrk, X86::VORPDZ128rrk,
5978 X86::VPORQZ128rrk, X86::VPORDZ128rrk },
5979 { X86::VORPSZ128rrkz, X86::VORPDZ128rrkz,
5980 X86::VPORQZ128rrkz, X86::VPORDZ128rrkz },
5981 { X86::VXORPSZ128rmk, X86::VXORPDZ128rmk,
5982 X86::VPXORQZ128rmk, X86::VPXORDZ128rmk },
5983 { X86::VXORPSZ128rmkz, X86::VXORPDZ128rmkz,
5984 X86::VPXORQZ128rmkz, X86::VPXORDZ128rmkz },
5985 { X86::VXORPSZ128rrk, X86::VXORPDZ128rrk,
5986 X86::VPXORQZ128rrk, X86::VPXORDZ128rrk },
5987 { X86::VXORPSZ128rrkz, X86::VXORPDZ128rrkz,
5988 X86::VPXORQZ128rrkz, X86::VPXORDZ128rrkz },
5989 { X86::VANDNPSZ256rmk, X86::VANDNPDZ256rmk,
5990 X86::VPANDNQZ256rmk, X86::VPANDNDZ256rmk },
5991 { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz,
5992 X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz },
5993 { X86::VANDNPSZ256rrk, X86::VANDNPDZ256rrk,
5994 X86::VPANDNQZ256rrk, X86::VPANDNDZ256rrk },
5995 { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz,
5996 X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz },
5997 { X86::VANDPSZ256rmk, X86::VANDPDZ256rmk,
5998 X86::VPANDQZ256rmk, X86::VPANDDZ256rmk },
5999 { X86::VANDPSZ256rmkz, X86::VANDPDZ256rmkz,
6000 X86::VPANDQZ256rmkz, X86::VPANDDZ256rmkz },
6001 { X86::VANDPSZ256rrk, X86::VANDPDZ256rrk,
6002 X86::VPANDQZ256rrk, X86::VPANDDZ256rrk },
6003 { X86::VANDPSZ256rrkz, X86::VANDPDZ256rrkz,
6004 X86::VPANDQZ256rrkz, X86::VPANDDZ256rrkz },
6005 { X86::VORPSZ256rmk, X86::VORPDZ256rmk,
6006 X86::VPORQZ256rmk, X86::VPORDZ256rmk },
6007 { X86::VORPSZ256rmkz, X86::VORPDZ256rmkz,
6008 X86::VPORQZ256rmkz, X86::VPORDZ256rmkz },
6009 { X86::VORPSZ256rrk, X86::VORPDZ256rrk,
6010 X86::VPORQZ256rrk, X86::VPORDZ256rrk },
6011 { X86::VORPSZ256rrkz, X86::VORPDZ256rrkz,
6012 X86::VPORQZ256rrkz, X86::VPORDZ256rrkz },
6013 { X86::VXORPSZ256rmk, X86::VXORPDZ256rmk,
6014 X86::VPXORQZ256rmk, X86::VPXORDZ256rmk },
6015 { X86::VXORPSZ256rmkz, X86::VXORPDZ256rmkz,
6016 X86::VPXORQZ256rmkz, X86::VPXORDZ256rmkz },
6017 { X86::VXORPSZ256rrk, X86::VXORPDZ256rrk,
6018 X86::VPXORQZ256rrk, X86::VPXORDZ256rrk },
6019 { X86::VXORPSZ256rrkz, X86::VXORPDZ256rrkz,
6020 X86::VPXORQZ256rrkz, X86::VPXORDZ256rrkz },
6021 { X86::VANDNPSZrmk, X86::VANDNPDZrmk,
6022 X86::VPANDNQZrmk, X86::VPANDNDZrmk },
6023 { X86::VANDNPSZrmkz, X86::VANDNPDZrmkz,
6024 X86::VPANDNQZrmkz, X86::VPANDNDZrmkz },
6025 { X86::VANDNPSZrrk, X86::VANDNPDZrrk,
6026 X86::VPANDNQZrrk, X86::VPANDNDZrrk },
6027 { X86::VANDNPSZrrkz, X86::VANDNPDZrrkz,
6028 X86::VPANDNQZrrkz, X86::VPANDNDZrrkz },
6029 { X86::VANDPSZrmk, X86::VANDPDZrmk,
6030 X86::VPANDQZrmk, X86::VPANDDZrmk },
6031 { X86::VANDPSZrmkz, X86::VANDPDZrmkz,
6032 X86::VPANDQZrmkz, X86::VPANDDZrmkz },
6033 { X86::VANDPSZrrk, X86::VANDPDZrrk,
6034 X86::VPANDQZrrk, X86::VPANDDZrrk },
6035 { X86::VANDPSZrrkz, X86::VANDPDZrrkz,
6036 X86::VPANDQZrrkz, X86::VPANDDZrrkz },
6037 { X86::VORPSZrmk, X86::VORPDZrmk,
6038 X86::VPORQZrmk, X86::VPORDZrmk },
6039 { X86::VORPSZrmkz, X86::VORPDZrmkz,
6040 X86::VPORQZrmkz, X86::VPORDZrmkz },
6041 { X86::VORPSZrrk, X86::VORPDZrrk,
6042 X86::VPORQZrrk, X86::VPORDZrrk },
6043 { X86::VORPSZrrkz, X86::VORPDZrrkz,
6044 X86::VPORQZrrkz, X86::VPORDZrrkz },
6045 { X86::VXORPSZrmk, X86::VXORPDZrmk,
6046 X86::VPXORQZrmk, X86::VPXORDZrmk },
6047 { X86::VXORPSZrmkz, X86::VXORPDZrmkz,
6048 X86::VPXORQZrmkz, X86::VPXORDZrmkz },
6049 { X86::VXORPSZrrk, X86::VXORPDZrrk,
6050 X86::VPXORQZrrk, X86::VPXORDZrrk },
6051 { X86::VXORPSZrrkz, X86::VXORPDZrrkz,
6052 X86::VPXORQZrrkz, X86::VPXORDZrrkz },
6053 // Broadcast loads can be handled the same as masked operations to avoid
6054 // changing element size.
6055 { X86::VANDNPSZ128rmb, X86::VANDNPDZ128rmb,
6056 X86::VPANDNQZ128rmb, X86::VPANDNDZ128rmb },
6057 { X86::VANDPSZ128rmb, X86::VANDPDZ128rmb,
6058 X86::VPANDQZ128rmb, X86::VPANDDZ128rmb },
6059 { X86::VORPSZ128rmb, X86::VORPDZ128rmb,
6060 X86::VPORQZ128rmb, X86::VPORDZ128rmb },
6061 { X86::VXORPSZ128rmb, X86::VXORPDZ128rmb,
6062 X86::VPXORQZ128rmb, X86::VPXORDZ128rmb },
6063 { X86::VANDNPSZ256rmb, X86::VANDNPDZ256rmb,
6064 X86::VPANDNQZ256rmb, X86::VPANDNDZ256rmb },
6065 { X86::VANDPSZ256rmb, X86::VANDPDZ256rmb,
6066 X86::VPANDQZ256rmb, X86::VPANDDZ256rmb },
6067 { X86::VORPSZ256rmb, X86::VORPDZ256rmb,
6068 X86::VPORQZ256rmb, X86::VPORDZ256rmb },
6069 { X86::VXORPSZ256rmb, X86::VXORPDZ256rmb,
6070 X86::VPXORQZ256rmb, X86::VPXORDZ256rmb },
6071 { X86::VANDNPSZrmb, X86::VANDNPDZrmb,
6072 X86::VPANDNQZrmb, X86::VPANDNDZrmb },
6073 { X86::VANDPSZrmb, X86::VANDPDZrmb,
6074 X86::VPANDQZrmb, X86::VPANDDZrmb },
6075 { X86::VANDPSZrmb, X86::VANDPDZrmb,
6076 X86::VPANDQZrmb, X86::VPANDDZrmb },
6077 { X86::VORPSZrmb, X86::VORPDZrmb,
6078 X86::VPORQZrmb, X86::VPORDZrmb },
6079 { X86::VXORPSZrmb, X86::VXORPDZrmb,
6080 X86::VPXORQZrmb, X86::VPXORDZrmb },
6081 { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk,
6082 X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk },
6083 { X86::VANDPSZ128rmbk, X86::VANDPDZ128rmbk,
6084 X86::VPANDQZ128rmbk, X86::VPANDDZ128rmbk },
6085 { X86::VORPSZ128rmbk, X86::VORPDZ128rmbk,
6086 X86::VPORQZ128rmbk, X86::VPORDZ128rmbk },
6087 { X86::VXORPSZ128rmbk, X86::VXORPDZ128rmbk,
6088 X86::VPXORQZ128rmbk, X86::VPXORDZ128rmbk },
6089 { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk,
6090 X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk },
6091 { X86::VANDPSZ256rmbk, X86::VANDPDZ256rmbk,
6092 X86::VPANDQZ256rmbk, X86::VPANDDZ256rmbk },
6093 { X86::VORPSZ256rmbk, X86::VORPDZ256rmbk,
6094 X86::VPORQZ256rmbk, X86::VPORDZ256rmbk },
6095 { X86::VXORPSZ256rmbk, X86::VXORPDZ256rmbk,
6096 X86::VPXORQZ256rmbk, X86::VPXORDZ256rmbk },
6097 { X86::VANDNPSZrmbk, X86::VANDNPDZrmbk,
6098 X86::VPANDNQZrmbk, X86::VPANDNDZrmbk },
6099 { X86::VANDPSZrmbk, X86::VANDPDZrmbk,
6100 X86::VPANDQZrmbk, X86::VPANDDZrmbk },
6101 { X86::VANDPSZrmbk, X86::VANDPDZrmbk,
6102 X86::VPANDQZrmbk, X86::VPANDDZrmbk },
6103 { X86::VORPSZrmbk, X86::VORPDZrmbk,
6104 X86::VPORQZrmbk, X86::VPORDZrmbk },
6105 { X86::VXORPSZrmbk, X86::VXORPDZrmbk,
6106 X86::VPXORQZrmbk, X86::VPXORDZrmbk },
6107 { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz,
6108 X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz},
6109 { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz,
6110 X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz },
6111 { X86::VORPSZ128rmbkz, X86::VORPDZ128rmbkz,
6112 X86::VPORQZ128rmbkz, X86::VPORDZ128rmbkz },
6113 { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz,
6114 X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz },
6115 { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz,
6116 X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz},
6117 { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz,
6118 X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz },
6119 { X86::VORPSZ256rmbkz, X86::VORPDZ256rmbkz,
6120 X86::VPORQZ256rmbkz, X86::VPORDZ256rmbkz },
6121 { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz,
6122 X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz },
6123 { X86::VANDNPSZrmbkz, X86::VANDNPDZrmbkz,
6124 X86::VPANDNQZrmbkz, X86::VPANDNDZrmbkz },
6125 { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz,
6126 X86::VPANDQZrmbkz, X86::VPANDDZrmbkz },
6127 { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz,
6128 X86::VPANDQZrmbkz, X86::VPANDDZrmbkz },
6129 { X86::VORPSZrmbkz, X86::VORPDZrmbkz,
6130 X86::VPORQZrmbkz, X86::VPORDZrmbkz },
6131 { X86::VXORPSZrmbkz, X86::VXORPDZrmbkz,
6132 X86::VPXORQZrmbkz, X86::VPXORDZrmbkz },
6133};
6134
6135// NOTE: These should only be used by the custom domain methods.
6136static const uint16_t ReplaceableCustomInstrs[][3] = {
6137 //PackedSingle PackedDouble PackedInt
6138 { X86::BLENDPSrmi, X86::BLENDPDrmi, X86::PBLENDWrmi },
6139 { X86::BLENDPSrri, X86::BLENDPDrri, X86::PBLENDWrri },
6140 { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDWrmi },
6141 { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDWrri },
6142 { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDWYrmi },
6143 { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDWYrri },
6144};
6145static const uint16_t ReplaceableCustomAVX2Instrs[][3] = {
6146 //PackedSingle PackedDouble PackedInt
6147 { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDDrmi },
6148 { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDDrri },
6149 { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDDYrmi },
6150 { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDDYrri },
6151};
6152
6153// Special table for changing EVEX logic instructions to VEX.
6154// TODO: Should we run EVEX->VEX earlier?
6155static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = {
6156 // Two integer columns for 64-bit and 32-bit elements.
6157 //PackedSingle PackedDouble PackedInt PackedInt
6158 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
6159 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
6160 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDQZ128rm, X86::VPANDDZ128rm },
6161 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDQZ128rr, X86::VPANDDZ128rr },
6162 { X86::VORPSrm, X86::VORPDrm, X86::VPORQZ128rm, X86::VPORDZ128rm },
6163 { X86::VORPSrr, X86::VORPDrr, X86::VPORQZ128rr, X86::VPORDZ128rr },
6164 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORQZ128rm, X86::VPXORDZ128rm },
6165 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORQZ128rr, X86::VPXORDZ128rr },
6166 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
6167 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
6168 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDQZ256rm, X86::VPANDDZ256rm },
6169 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDQZ256rr, X86::VPANDDZ256rr },
6170 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORQZ256rm, X86::VPORDZ256rm },
6171 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORQZ256rr, X86::VPORDZ256rr },
6172 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORQZ256rm, X86::VPXORDZ256rm },
6173 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORQZ256rr, X86::VPXORDZ256rr },
6174};
6175
6176// FIXME: Some shuffle and unpack instructions have equivalents in different
6177// domains, but they require a bit more work than just switching opcodes.
6178
6179static const uint16_t *lookup(unsigned opcode, unsigned domain,
6180 ArrayRef<uint16_t[3]> Table) {
6181 for (const uint16_t (&Row)[3] : Table)
6182 if (Row[domain-1] == opcode)
6183 return Row;
6184 return nullptr;
6185}
6186
6187static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
6188 ArrayRef<uint16_t[4]> Table) {
6189 // If this is the integer domain make sure to check both integer columns.
6190 for (const uint16_t (&Row)[4] : Table)
6191 if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode))
6192 return Row;
6193 return nullptr;
6194}
6195
6196// Helper to attempt to widen/narrow blend masks.
6197static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
6198 unsigned NewWidth, unsigned *pNewMask = nullptr) {
6199 assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&((((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
"Illegal blend mask scale") ? static_cast<void> (0) : __assert_fail
("((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) && \"Illegal blend mask scale\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 6200, __PRETTY_FUNCTION__))
6200 "Illegal blend mask scale")((((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
"Illegal blend mask scale") ? static_cast<void> (0) : __assert_fail
("((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) && \"Illegal blend mask scale\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 6200, __PRETTY_FUNCTION__))
;
6201 unsigned NewMask = 0;
6202
6203 if ((OldWidth % NewWidth) == 0) {
6204 unsigned Scale = OldWidth / NewWidth;
6205 unsigned SubMask = (1u << Scale) - 1;
6206 for (unsigned i = 0; i != NewWidth; ++i) {
6207 unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
6208 if (Sub == SubMask)
6209 NewMask |= (1u << i);
6210 else if (Sub != 0x0)
6211 return false;
6212 }
6213 } else {
6214 unsigned Scale = NewWidth / OldWidth;
6215 unsigned SubMask = (1u << Scale) - 1;
6216 for (unsigned i = 0; i != OldWidth; ++i) {
6217 if (OldMask & (1 << i)) {
6218 NewMask |= (SubMask << (i * Scale));
6219 }
6220 }
6221 }
6222
6223 if (pNewMask)
6224 *pNewMask = NewMask;
6225 return true;
6226}
6227
6228uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
6229 unsigned Opcode = MI.getOpcode();
6230 unsigned NumOperands = MI.getDesc().getNumOperands();
6231
6232 auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
6233 uint16_t validDomains = 0;
6234 if (MI.getOperand(NumOperands - 1).isImm()) {
6235 unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
6236 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
6237 validDomains |= 0x2; // PackedSingle
6238 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
6239 validDomains |= 0x4; // PackedDouble
6240 if (!Is256 || Subtarget.hasAVX2())
6241 validDomains |= 0x8; // PackedInt
6242 }
6243 return validDomains;
6244 };
6245
6246 switch (Opcode) {
6247 case X86::BLENDPDrmi:
6248 case X86::BLENDPDrri:
6249 case X86::VBLENDPDrmi:
6250 case X86::VBLENDPDrri:
6251 return GetBlendDomains(2, false);
6252 case X86::VBLENDPDYrmi:
6253 case X86::VBLENDPDYrri:
6254 return GetBlendDomains(4, true);
6255 case X86::BLENDPSrmi:
6256 case X86::BLENDPSrri:
6257 case X86::VBLENDPSrmi:
6258 case X86::VBLENDPSrri:
6259 case X86::VPBLENDDrmi:
6260 case X86::VPBLENDDrri:
6261 return GetBlendDomains(4, false);
6262 case X86::VBLENDPSYrmi:
6263 case X86::VBLENDPSYrri:
6264 case X86::VPBLENDDYrmi:
6265 case X86::VPBLENDDYrri:
6266 return GetBlendDomains(8, true);
6267 case X86::PBLENDWrmi:
6268 case X86::PBLENDWrri:
6269 case X86::VPBLENDWrmi:
6270 case X86::VPBLENDWrri:
6271 // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
6272 case X86::VPBLENDWYrmi:
6273 case X86::VPBLENDWYrri:
6274 return GetBlendDomains(8, false);
6275 case X86::VPANDDZ128rr: case X86::VPANDDZ128rm:
6276 case X86::VPANDDZ256rr: case X86::VPANDDZ256rm:
6277 case X86::VPANDQZ128rr: case X86::VPANDQZ128rm:
6278 case X86::VPANDQZ256rr: case X86::VPANDQZ256rm:
6279 case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
6280 case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
6281 case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
6282 case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
6283 case X86::VPORDZ128rr: case X86::VPORDZ128rm:
6284 case X86::VPORDZ256rr: case X86::VPORDZ256rm:
6285 case X86::VPORQZ128rr: case X86::VPORQZ128rm:
6286 case X86::VPORQZ256rr: case X86::VPORQZ256rm:
6287 case X86::VPXORDZ128rr: case X86::VPXORDZ128rm:
6288 case X86::VPXORDZ256rr: case X86::VPXORDZ256rm:
6289 case X86::VPXORQZ128rr: case X86::VPXORQZ128rm:
6290 case X86::VPXORQZ256rr: case X86::VPXORQZ256rm:
6291 // If we don't have DQI see if we can still switch from an EVEX integer
6292 // instruction to a VEX floating point instruction.
6293 if (Subtarget.hasDQI())
6294 return 0;
6295
6296 if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
6297 return 0;
6298 if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
6299 return 0;
6300 // Register forms will have 3 operands. Memory form will have more.
6301 if (NumOperands == 3 &&
6302 RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
6303 return 0;
6304
6305 // All domains are valid.
6306 return 0xe;
6307 case X86::MOVHLPSrr:
6308 // We can swap domains when both inputs are the same register.
6309 // FIXME: This doesn't catch all the cases we would like. If the input
6310 // register isn't KILLed by the instruction, the two address instruction
6311 // pass puts a COPY on one input. The other input uses the original
6312 // register. This prevents the same physical register from being used by
6313 // both inputs.
6314 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
6315 MI.getOperand(0).getSubReg() == 0 &&
6316 MI.getOperand(1).getSubReg() == 0 &&
6317 MI.getOperand(2).getSubReg() == 0)
6318 return 0x6;
6319 return 0;
6320 }
6321 return 0;
6322}
6323
6324bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
6325 unsigned Domain) const {
6326 assert(Domain > 0 && Domain < 4 && "Invalid execution domain")((Domain > 0 && Domain < 4 && "Invalid execution domain"
) ? static_cast<void> (0) : __assert_fail ("Domain > 0 && Domain < 4 && \"Invalid execution domain\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 6326, __PRETTY_FUNCTION__))
;
6327 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6328 assert(dom && "Not an SSE instruction")((dom && "Not an SSE instruction") ? static_cast<void
> (0) : __assert_fail ("dom && \"Not an SSE instruction\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 6328, __PRETTY_FUNCTION__))
;
6329
6330 unsigned Opcode = MI.getOpcode();
6331 unsigned NumOperands = MI.getDesc().getNumOperands();
6332
6333 auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
6334 if (MI.getOperand(NumOperands - 1).isImm()) {
6335 unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
6336 Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
6337 unsigned NewImm = Imm;
6338
6339 const uint16_t *table = lookup(Opcode, dom, ReplaceableCustomInstrs);
6340 if (!table)
6341 table = lookup(Opcode, dom, ReplaceableCustomAVX2Instrs);
6342
6343 if (Domain == 1) { // PackedSingle
6344 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
6345 } else if (Domain == 2) { // PackedDouble
6346 AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
6347 } else if (Domain == 3) { // PackedInt
6348 if (Subtarget.hasAVX2()) {
6349 // If we are already VPBLENDW use that, else use VPBLENDD.
6350 if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
6351 table = lookup(Opcode, dom, ReplaceableCustomAVX2Instrs);
6352 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
6353 }
6354 } else {
6355 assert(!Is256 && "128-bit vector expected")((!Is256 && "128-bit vector expected") ? static_cast<
void> (0) : __assert_fail ("!Is256 && \"128-bit vector expected\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 6355, __PRETTY_FUNCTION__))
;
6356 AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
6357 }
6358 }
6359
6360 assert(table && table[Domain - 1] && "Unknown domain op")((table && table[Domain - 1] && "Unknown domain op"
) ? static_cast<void> (0) : __assert_fail ("table && table[Domain - 1] && \"Unknown domain op\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 6360, __PRETTY_FUNCTION__))
;
6361 MI.setDesc(get(table[Domain - 1]));
6362 MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
6363 }
6364 return true;
6365 };
6366
6367 switch (Opcode) {
6368 case X86::BLENDPDrmi:
6369 case X86::BLENDPDrri:
6370 case X86::VBLENDPDrmi:
6371 case X86::VBLENDPDrri:
6372 return SetBlendDomain(2, false);
6373 case X86::VBLENDPDYrmi:
6374 case X86::VBLENDPDYrri:
6375 return SetBlendDomain(4, true);
6376 case X86::BLENDPSrmi:
6377 case X86::BLENDPSrri:
6378 case X86::VBLENDPSrmi:
6379 case X86::VBLENDPSrri:
6380 case X86::VPBLENDDrmi:
6381 case X86::VPBLENDDrri:
6382 return SetBlendDomain(4, false);
6383 case X86::VBLENDPSYrmi:
6384 case X86::VBLENDPSYrri:
6385 case X86::VPBLENDDYrmi:
6386 case X86::VPBLENDDYrri:
6387 return SetBlendDomain(8, true);
6388 case X86::PBLENDWrmi:
6389 case X86::PBLENDWrri:
6390 case X86::VPBLENDWrmi:
6391 case X86::VPBLENDWrri:
6392 return SetBlendDomain(8, false);
6393 case X86::VPBLENDWYrmi:
6394 case X86::VPBLENDWYrri:
6395 return SetBlendDomain(16, true);
6396 case X86::VPANDDZ128rr: case X86::VPANDDZ128rm:
6397 case X86::VPANDDZ256rr: case X86::VPANDDZ256rm:
6398 case X86::VPANDQZ128rr: case X86::VPANDQZ128rm:
6399 case X86::VPANDQZ256rr: case X86::VPANDQZ256rm:
6400 case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
6401 case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
6402 case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
6403 case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
6404 case X86::VPORDZ128rr: case X86::VPORDZ128rm:
6405 case X86::VPORDZ256rr: case X86::VPORDZ256rm:
6406 case X86::VPORQZ128rr: case X86::VPORQZ128rm:
6407 case X86::VPORQZ256rr: case X86::VPORQZ256rm:
6408 case X86::VPXORDZ128rr: case X86::VPXORDZ128rm:
6409 case X86::VPXORDZ256rr: case X86::VPXORDZ256rm:
6410 case X86::VPXORQZ128rr: case X86::VPXORQZ128rm:
6411 case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: {
6412 // Without DQI, convert EVEX instructions to VEX instructions.
6413 if (Subtarget.hasDQI())
6414 return false;
6415
6416 const uint16_t *table = lookupAVX512(MI.getOpcode(), dom,
6417 ReplaceableCustomAVX512LogicInstrs);
6418 assert(table && "Instruction not found in table?")((table && "Instruction not found in table?") ? static_cast
<void> (0) : __assert_fail ("table && \"Instruction not found in table?\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 6418, __PRETTY_FUNCTION__))
;
6419 // Don't change integer Q instructions to D instructions and
6420 // use D intructions if we started with a PS instruction.
6421 if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6422 Domain = 4;
6423 MI.setDesc(get(table[Domain - 1]));
6424 return true;
6425 }
6426 case X86::UNPCKHPDrr:
6427 case X86::MOVHLPSrr:
6428 // We just need to commute the instruction which will switch the domains.
6429 if (Domain != dom && Domain != 3 &&
6430 MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
6431 MI.getOperand(0).getSubReg() == 0 &&
6432 MI.getOperand(1).getSubReg() == 0 &&
6433 MI.getOperand(2).getSubReg() == 0) {
6434 commuteInstruction(MI, false);
6435 return true;
6436 }
6437 // We must always return true for MOVHLPSrr.
6438 if (Opcode == X86::MOVHLPSrr)
6439 return true;
6440 }
6441 return false;
6442}
6443
6444std::pair<uint16_t, uint16_t>
6445X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
6446 uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6447 unsigned opcode = MI.getOpcode();
6448 uint16_t validDomains = 0;
6449 if (domain) {
6450 // Attempt to match for custom instructions.
6451 validDomains = getExecutionDomainCustom(MI);
6452 if (validDomains)
6453 return std::make_pair(domain, validDomains);
6454
6455 if (lookup(opcode, domain, ReplaceableInstrs)) {
6456 validDomains = 0xe;
6457 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
6458 validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
6459 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
6460 // Insert/extract instructions should only effect domain if AVX2
6461 // is enabled.
6462 if (!Subtarget.hasAVX2())
6463 return std::make_pair(0, 0);
6464 validDomains = 0xe;
6465 } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
6466 validDomains = 0xe;
6467 } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain,
6468 ReplaceableInstrsAVX512DQ)) {
6469 validDomains = 0xe;
6470 } else if (Subtarget.hasDQI()) {
6471 if (const uint16_t *table = lookupAVX512(opcode, domain,
6472 ReplaceableInstrsAVX512DQMasked)) {
6473 if (domain == 1 || (domain == 3 && table[3] == opcode))
6474 validDomains = 0xa;
6475 else
6476 validDomains = 0xc;
6477 }
6478 }
6479 }
6480 return std::make_pair(domain, validDomains);
6481}
6482
6483void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
6484 assert(Domain>0 && Domain<4 && "Invalid execution domain")((Domain>0 && Domain<4 && "Invalid execution domain"
) ? static_cast<void> (0) : __assert_fail ("Domain>0 && Domain<4 && \"Invalid execution domain\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 6484, __PRETTY_FUNCTION__))
;
6485 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6486 assert(dom && "Not an SSE instruction")((dom && "Not an SSE instruction") ? static_cast<void
> (0) : __assert_fail ("dom && \"Not an SSE instruction\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 6486, __PRETTY_FUNCTION__))
;
6487
6488 // Attempt to match for custom instructions.
6489 if (setExecutionDomainCustom(MI, Domain))
6490 return;
6491
6492 const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
6493 if (!table) { // try the other table
6494 assert((Subtarget.hasAVX2() || Domain < 3) &&(((Subtarget.hasAVX2() || Domain < 3) && "256-bit vector operations only available in AVX2"
) ? static_cast<void> (0) : __assert_fail ("(Subtarget.hasAVX2() || Domain < 3) && \"256-bit vector operations only available in AVX2\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 6495, __PRETTY_FUNCTION__))
6495 "256-bit vector operations only available in AVX2")(((Subtarget.hasAVX2() || Domain < 3) && "256-bit vector operations only available in AVX2"
) ? static_cast<void> (0) : __assert_fail ("(Subtarget.hasAVX2() || Domain < 3) && \"256-bit vector operations only available in AVX2\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 6495, __PRETTY_FUNCTION__))
;
6496 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
6497 }
6498 if (!table) { // try the other table
6499 assert(Subtarget.hasAVX2() &&((Subtarget.hasAVX2() && "256-bit insert/extract only available in AVX2"
) ? static_cast<void> (0) : __assert_fail ("Subtarget.hasAVX2() && \"256-bit insert/extract only available in AVX2\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 6500, __PRETTY_FUNCTION__))
6500 "256-bit insert/extract only available in AVX2")((Subtarget.hasAVX2() && "256-bit insert/extract only available in AVX2"
) ? static_cast<void> (0) : __assert_fail ("Subtarget.hasAVX2() && \"256-bit insert/extract only available in AVX2\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 6500, __PRETTY_FUNCTION__))
;
6501 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
6502 }
6503 if (!table) { // try the AVX512 table
6504 assert(Subtarget.hasAVX512() && "Requires AVX-512")((Subtarget.hasAVX512() && "Requires AVX-512") ? static_cast
<void> (0) : __assert_fail ("Subtarget.hasAVX512() && \"Requires AVX-512\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 6504, __PRETTY_FUNCTION__))
;
6505 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
6506 // Don't change integer Q instructions to D instructions.
6507 if (table && Domain == 3 && table[3] == MI.getOpcode())
6508 Domain = 4;
6509 }
6510 if (!table) { // try the AVX512DQ table
6511 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ")(((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ"
) ? static_cast<void> (0) : __assert_fail ("(Subtarget.hasDQI() || Domain >= 3) && \"Requires AVX-512DQ\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 6511, __PRETTY_FUNCTION__))
;
6512 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
6513 // Don't change integer Q instructions to D instructions and
6514 // use D intructions if we started with a PS instruction.
6515 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6516 Domain = 4;
6517 }
6518 if (!table) { // try the AVX512DQMasked table
6519 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ")(((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ"
) ? static_cast<void> (0) : __assert_fail ("(Subtarget.hasDQI() || Domain >= 3) && \"Requires AVX-512DQ\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 6519, __PRETTY_FUNCTION__))
;
6520 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
6521 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6522 Domain = 4;
6523 }
6524 assert(table && "Cannot change domain")((table && "Cannot change domain") ? static_cast<void
> (0) : __assert_fail ("table && \"Cannot change domain\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 6524, __PRETTY_FUNCTION__))
;
6525 MI.setDesc(get(table[Domain - 1]));
6526}
6527
6528/// Return the noop instruction to use for a noop.
6529void X86InstrInfo::getNoop(MCInst &NopInst) const {
6530 NopInst.setOpcode(X86::NOOP);
6531}
6532
6533bool X86InstrInfo::isHighLatencyDef(int opc) const {
6534 switch (opc) {
6535 default: return false;
6536 case X86::DIVPDrm:
6537 case X86::DIVPDrr:
6538 case X86::DIVPSrm:
6539 case X86::DIVPSrr:
6540 case X86::DIVSDrm:
6541 case X86::DIVSDrm_Int:
6542 case X86::DIVSDrr:
6543 case X86::DIVSDrr_Int:
6544 case X86::DIVSSrm:
6545 case X86::DIVSSrm_Int:
6546 case X86::DIVSSrr:
6547 case X86::DIVSSrr_Int:
6548 case X86::SQRTPDm:
6549 case X86::SQRTPDr:
6550 case X86::SQRTPSm:
6551 case X86::SQRTPSr:
6552 case X86::SQRTSDm:
6553 case X86::SQRTSDm_Int:
6554 case X86::SQRTSDr:
6555 case X86::SQRTSDr_Int:
6556 case X86::SQRTSSm:
6557 case X86::SQRTSSm_Int:
6558 case X86::SQRTSSr:
6559 case X86::SQRTSSr_Int:
6560 // AVX instructions with high latency
6561 case X86::VDIVPDrm:
6562 case X86::VDIVPDrr:
6563 case X86::VDIVPDYrm:
6564 case X86::VDIVPDYrr:
6565 case X86::VDIVPSrm:
6566 case X86::VDIVPSrr:
6567 case X86::VDIVPSYrm:
6568 case X86::VDIVPSYrr:
6569 case X86::VDIVSDrm:
6570 case X86::VDIVSDrm_Int:
6571 case X86::VDIVSDrr:
6572 case X86::VDIVSDrr_Int:
6573 case X86::VDIVSSrm:
6574 case X86::VDIVSSrm_Int:
6575 case X86::VDIVSSrr:
6576 case X86::VDIVSSrr_Int:
6577 case X86::VSQRTPDm:
6578 case X86::VSQRTPDr:
6579 case X86::VSQRTPDYm:
6580 case X86::VSQRTPDYr:
6581 case X86::VSQRTPSm:
6582 case X86::VSQRTPSr:
6583 case X86::VSQRTPSYm:
6584 case X86::VSQRTPSYr:
6585 case X86::VSQRTSDm:
6586 case X86::VSQRTSDm_Int:
6587 case X86::VSQRTSDr:
6588 case X86::VSQRTSDr_Int:
6589 case X86::VSQRTSSm:
6590 case X86::VSQRTSSm_Int:
6591 case X86::VSQRTSSr:
6592 case X86::VSQRTSSr_Int:
6593 // AVX512 instructions with high latency
6594 case X86::VDIVPDZ128rm:
6595 case X86::VDIVPDZ128rmb:
6596 case X86::VDIVPDZ128rmbk:
6597 case X86::VDIVPDZ128rmbkz:
6598 case X86::VDIVPDZ128rmk:
6599 case X86::VDIVPDZ128rmkz:
6600 case X86::VDIVPDZ128rr:
6601 case X86::VDIVPDZ128rrk:
6602 case X86::VDIVPDZ128rrkz:
6603 case X86::VDIVPDZ256rm:
6604 case X86::VDIVPDZ256rmb:
6605 case X86::VDIVPDZ256rmbk:
6606 case X86::VDIVPDZ256rmbkz:
6607 case X86::VDIVPDZ256rmk:
6608 case X86::VDIVPDZ256rmkz:
6609 case X86::VDIVPDZ256rr:
6610 case X86::VDIVPDZ256rrk:
6611 case X86::VDIVPDZ256rrkz:
6612 case X86::VDIVPDZrrb:
6613 case X86::VDIVPDZrrbk:
6614 case X86::VDIVPDZrrbkz:
6615 case X86::VDIVPDZrm:
6616 case X86::VDIVPDZrmb:
6617 case X86::VDIVPDZrmbk:
6618 case X86::VDIVPDZrmbkz:
6619 case X86::VDIVPDZrmk:
6620 case X86::VDIVPDZrmkz:
6621 case X86::VDIVPDZrr:
6622 case X86::VDIVPDZrrk:
6623 case X86::VDIVPDZrrkz:
6624 case X86::VDIVPSZ128rm:
6625 case X86::VDIVPSZ128rmb:
6626 case X86::VDIVPSZ128rmbk:
6627 case X86::VDIVPSZ128rmbkz:
6628 case X86::VDIVPSZ128rmk:
6629 case X86::VDIVPSZ128rmkz:
6630 case X86::VDIVPSZ128rr:
6631 case X86::VDIVPSZ128rrk:
6632 case X86::VDIVPSZ128rrkz:
6633 case X86::VDIVPSZ256rm:
6634 case X86::VDIVPSZ256rmb:
6635 case X86::VDIVPSZ256rmbk:
6636 case X86::VDIVPSZ256rmbkz:
6637 case X86::VDIVPSZ256rmk:
6638 case X86::VDIVPSZ256rmkz:
6639 case X86::VDIVPSZ256rr:
6640 case X86::VDIVPSZ256rrk:
6641 case X86::VDIVPSZ256rrkz:
6642 case X86::VDIVPSZrrb:
6643 case X86::VDIVPSZrrbk:
6644 case X86::VDIVPSZrrbkz:
6645 case X86::VDIVPSZrm:
6646 case X86::VDIVPSZrmb:
6647 case X86::VDIVPSZrmbk:
6648 case X86::VDIVPSZrmbkz:
6649 case X86::VDIVPSZrmk:
6650 case X86::VDIVPSZrmkz:
6651 case X86::VDIVPSZrr:
6652 case X86::VDIVPSZrrk:
6653 case X86::VDIVPSZrrkz:
6654 case X86::VDIVSDZrm:
6655 case X86::VDIVSDZrr:
6656 case X86::VDIVSDZrm_Int:
6657 case X86::VDIVSDZrm_Intk:
6658 case X86::VDIVSDZrm_Intkz:
6659 case X86::VDIVSDZrr_Int:
6660 case X86::VDIVSDZrr_Intk:
6661 case X86::VDIVSDZrr_Intkz:
6662 case X86::VDIVSDZrrb_Int:
6663 case X86::VDIVSDZrrb_Intk:
6664 case X86::VDIVSDZrrb_Intkz:
6665 case X86::VDIVSSZrm:
6666 case X86::VDIVSSZrr:
6667 case X86::VDIVSSZrm_Int:
6668 case X86::VDIVSSZrm_Intk:
6669 case X86::VDIVSSZrm_Intkz:
6670 case X86::VDIVSSZrr_Int:
6671 case X86::VDIVSSZrr_Intk:
6672 case X86::VDIVSSZrr_Intkz:
6673 case X86::VDIVSSZrrb_Int:
6674 case X86::VDIVSSZrrb_Intk:
6675 case X86::VDIVSSZrrb_Intkz:
6676 case X86::VSQRTPDZ128m:
6677 case X86::VSQRTPDZ128mb:
6678 case X86::VSQRTPDZ128mbk:
6679 case X86::VSQRTPDZ128mbkz:
6680 case X86::VSQRTPDZ128mk:
6681 case X86::VSQRTPDZ128mkz:
6682 case X86::VSQRTPDZ128r:
6683 case X86::VSQRTPDZ128rk:
6684 case X86::VSQRTPDZ128rkz:
6685 case X86::VSQRTPDZ256m:
6686 case X86::VSQRTPDZ256mb:
6687 case X86::VSQRTPDZ256mbk:
6688 case X86::VSQRTPDZ256mbkz:
6689 case X86::VSQRTPDZ256mk:
6690 case X86::VSQRTPDZ256mkz:
6691 case X86::VSQRTPDZ256r:
6692 case X86::VSQRTPDZ256rk:
6693 case X86::VSQRTPDZ256rkz:
6694 case X86::VSQRTPDZm:
6695 case X86::VSQRTPDZmb:
6696 case X86::VSQRTPDZmbk:
6697 case X86::VSQRTPDZmbkz:
6698 case X86::VSQRTPDZmk:
6699 case X86::VSQRTPDZmkz:
6700 case X86::VSQRTPDZr:
6701 case X86::VSQRTPDZrb:
6702 case X86::VSQRTPDZrbk:
6703 case X86::VSQRTPDZrbkz:
6704 case X86::VSQRTPDZrk:
6705 case X86::VSQRTPDZrkz:
6706 case X86::VSQRTPSZ128m:
6707 case X86::VSQRTPSZ128mb:
6708 case X86::VSQRTPSZ128mbk:
6709 case X86::VSQRTPSZ128mbkz:
6710 case X86::VSQRTPSZ128mk:
6711 case X86::VSQRTPSZ128mkz:
6712 case X86::VSQRTPSZ128r:
6713 case X86::VSQRTPSZ128rk:
6714 case X86::VSQRTPSZ128rkz:
6715 case X86::VSQRTPSZ256m:
6716 case X86::VSQRTPSZ256mb:
6717 case X86::VSQRTPSZ256mbk:
6718 case X86::VSQRTPSZ256mbkz:
6719 case X86::VSQRTPSZ256mk:
6720 case X86::VSQRTPSZ256mkz:
6721 case X86::VSQRTPSZ256r:
6722 case X86::VSQRTPSZ256rk:
6723 case X86::VSQRTPSZ256rkz:
6724 case X86::VSQRTPSZm:
6725 case X86::VSQRTPSZmb:
6726 case X86::VSQRTPSZmbk:
6727 case X86::VSQRTPSZmbkz:
6728 case X86::VSQRTPSZmk:
6729 case X86::VSQRTPSZmkz:
6730 case X86::VSQRTPSZr:
6731 case X86::VSQRTPSZrb:
6732 case X86::VSQRTPSZrbk:
6733 case X86::VSQRTPSZrbkz:
6734 case X86::VSQRTPSZrk:
6735 case X86::VSQRTPSZrkz:
6736 case X86::VSQRTSDZm:
6737 case X86::VSQRTSDZm_Int:
6738 case X86::VSQRTSDZm_Intk:
6739 case X86::VSQRTSDZm_Intkz:
6740 case X86::VSQRTSDZr:
6741 case X86::VSQRTSDZr_Int:
6742 case X86::VSQRTSDZr_Intk:
6743 case X86::VSQRTSDZr_Intkz:
6744 case X86::VSQRTSDZrb_Int:
6745 case X86::VSQRTSDZrb_Intk:
6746 case X86::VSQRTSDZrb_Intkz:
6747 case X86::VSQRTSSZm:
6748 case X86::VSQRTSSZm_Int:
6749 case X86::VSQRTSSZm_Intk:
6750 case X86::VSQRTSSZm_Intkz:
6751 case X86::VSQRTSSZr:
6752 case X86::VSQRTSSZr_Int:
6753 case X86::VSQRTSSZr_Intk:
6754 case X86::VSQRTSSZr_Intkz:
6755 case X86::VSQRTSSZrb_Int:
6756 case X86::VSQRTSSZrb_Intk:
6757 case X86::VSQRTSSZrb_Intkz:
6758
6759 case X86::VGATHERDPDYrm:
6760 case X86::VGATHERDPDZ128rm:
6761 case X86::VGATHERDPDZ256rm:
6762 case X86::VGATHERDPDZrm:
6763 case X86::VGATHERDPDrm:
6764 case X86::VGATHERDPSYrm:
6765 case X86::VGATHERDPSZ128rm:
6766 case X86::VGATHERDPSZ256rm:
6767 case X86::VGATHERDPSZrm:
6768 case X86::VGATHERDPSrm:
6769 case X86::VGATHERPF0DPDm:
6770 case X86::VGATHERPF0DPSm:
6771 case X86::VGATHERPF0QPDm:
6772 case X86::VGATHERPF0QPSm:
6773 case X86::VGATHERPF1DPDm:
6774 case X86::VGATHERPF1DPSm:
6775 case X86::VGATHERPF1QPDm:
6776 case X86::VGATHERPF1QPSm:
6777 case X86::VGATHERQPDYrm:
6778 case X86::VGATHERQPDZ128rm:
6779 case X86::VGATHERQPDZ256rm:
6780 case X86::VGATHERQPDZrm:
6781 case X86::VGATHERQPDrm:
6782 case X86::VGATHERQPSYrm:
6783 case X86::VGATHERQPSZ128rm:
6784 case X86::VGATHERQPSZ256rm:
6785 case X86::VGATHERQPSZrm:
6786 case X86::VGATHERQPSrm:
6787 case X86::VPGATHERDDYrm:
6788 case X86::VPGATHERDDZ128rm:
6789 case X86::VPGATHERDDZ256rm:
6790 case X86::VPGATHERDDZrm:
6791 case X86::VPGATHERDDrm:
6792 case X86::VPGATHERDQYrm:
6793 case X86::VPGATHERDQZ128rm:
6794 case X86::VPGATHERDQZ256rm:
6795 case X86::VPGATHERDQZrm:
6796 case X86::VPGATHERDQrm:
6797 case X86::VPGATHERQDYrm:
6798 case X86::VPGATHERQDZ128rm:
6799 case X86::VPGATHERQDZ256rm:
6800 case X86::VPGATHERQDZrm:
6801 case X86::VPGATHERQDrm:
6802 case X86::VPGATHERQQYrm:
6803 case X86::VPGATHERQQZ128rm:
6804 case X86::VPGATHERQQZ256rm:
6805 case X86::VPGATHERQQZrm:
6806 case X86::VPGATHERQQrm:
6807 case X86::VSCATTERDPDZ128mr:
6808 case X86::VSCATTERDPDZ256mr:
6809 case X86::VSCATTERDPDZmr:
6810 case X86::VSCATTERDPSZ128mr:
6811 case X86::VSCATTERDPSZ256mr:
6812 case X86::VSCATTERDPSZmr:
6813 case X86::VSCATTERPF0DPDm:
6814 case X86::VSCATTERPF0DPSm:
6815 case X86::VSCATTERPF0QPDm:
6816 case X86::VSCATTERPF0QPSm:
6817 case X86::VSCATTERPF1DPDm:
6818 case X86::VSCATTERPF1DPSm:
6819 case X86::VSCATTERPF1QPDm:
6820 case X86::VSCATTERPF1QPSm:
6821 case X86::VSCATTERQPDZ128mr:
6822 case X86::VSCATTERQPDZ256mr:
6823 case X86::VSCATTERQPDZmr:
6824 case X86::VSCATTERQPSZ128mr:
6825 case X86::VSCATTERQPSZ256mr:
6826 case X86::VSCATTERQPSZmr:
6827 case X86::VPSCATTERDDZ128mr:
6828 case X86::VPSCATTERDDZ256mr:
6829 case X86::VPSCATTERDDZmr:
6830 case X86::VPSCATTERDQZ128mr:
6831 case X86::VPSCATTERDQZ256mr:
6832 case X86::VPSCATTERDQZmr:
6833 case X86::VPSCATTERQDZ128mr:
6834 case X86::VPSCATTERQDZ256mr:
6835 case X86::VPSCATTERQDZmr:
6836 case X86::VPSCATTERQQZ128mr:
6837 case X86::VPSCATTERQQZ256mr:
6838 case X86::VPSCATTERQQZmr:
6839 return true;
6840 }
6841}
6842
6843bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
6844 const MachineRegisterInfo *MRI,
6845 const MachineInstr &DefMI,
6846 unsigned DefIdx,
6847 const MachineInstr &UseMI,
6848 unsigned UseIdx) const {
6849 return isHighLatencyDef(DefMI.getOpcode());
6850}
6851
6852bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
6853 const MachineBasicBlock *MBB) const {
6854 assert((Inst.getNumOperands() == 3 || Inst.getNumOperands() == 4) &&(((Inst.getNumOperands() == 3 || Inst.getNumOperands() == 4) &&
"Reassociation needs binary operators") ? static_cast<void
> (0) : __assert_fail ("(Inst.getNumOperands() == 3 || Inst.getNumOperands() == 4) && \"Reassociation needs binary operators\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 6855, __PRETTY_FUNCTION__))
6855 "Reassociation needs binary operators")(((Inst.getNumOperands() == 3 || Inst.getNumOperands() == 4) &&
"Reassociation needs binary operators") ? static_cast<void
> (0) : __assert_fail ("(Inst.getNumOperands() == 3 || Inst.getNumOperands() == 4) && \"Reassociation needs binary operators\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 6855, __PRETTY_FUNCTION__))
;
6856
6857 // Integer binary math/logic instructions have a third source operand:
6858 // the EFLAGS register. That operand must be both defined here and never
6859 // used; ie, it must be dead. If the EFLAGS operand is live, then we can
6860 // not change anything because rearranging the operands could affect other
6861 // instructions that depend on the exact status flags (zero, sign, etc.)
6862 // that are set by using these particular operands with this operation.
6863 if (Inst.getNumOperands() == 4) {
6864 assert(Inst.getOperand(3).isReg() &&((Inst.getOperand(3).isReg() && Inst.getOperand(3).getReg
() == X86::EFLAGS && "Unexpected operand in reassociable instruction"
) ? static_cast<void> (0) : __assert_fail ("Inst.getOperand(3).isReg() && Inst.getOperand(3).getReg() == X86::EFLAGS && \"Unexpected operand in reassociable instruction\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 6866, __PRETTY_FUNCTION__))
6865 Inst.getOperand(3).getReg() == X86::EFLAGS &&((Inst.getOperand(3).isReg() && Inst.getOperand(3).getReg
() == X86::EFLAGS && "Unexpected operand in reassociable instruction"
) ? static_cast<void> (0) : __assert_fail ("Inst.getOperand(3).isReg() && Inst.getOperand(3).getReg() == X86::EFLAGS && \"Unexpected operand in reassociable instruction\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 6866, __PRETTY_FUNCTION__))
6866 "Unexpected operand in reassociable instruction")((Inst.getOperand(3).isReg() && Inst.getOperand(3).getReg
() == X86::EFLAGS && "Unexpected operand in reassociable instruction"
) ? static_cast<void> (0) : __assert_fail ("Inst.getOperand(3).isReg() && Inst.getOperand(3).getReg() == X86::EFLAGS && \"Unexpected operand in reassociable instruction\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 6866, __PRETTY_FUNCTION__))
;
6867 if (!Inst.getOperand(3).isDead())
6868 return false;
6869 }
6870
6871 return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
6872}
6873
6874// TODO: There are many more machine instruction opcodes to match:
6875// 1. Other data types (integer, vectors)
6876// 2. Other math / logic operations (xor, or)
6877// 3. Other forms of the same operation (intrinsics and other variants)
6878bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
6879 switch (Inst.getOpcode()) {
6880 case X86::AND8rr:
6881 case X86::AND16rr:
6882 case X86::AND32rr:
6883 case X86::AND64rr:
6884 case X86::OR8rr:
6885 case X86::OR16rr:
6886 case X86::OR32rr:
6887 case X86::OR64rr:
6888 case X86::XOR8rr:
6889 case X86::XOR16rr:
6890 case X86::XOR32rr:
6891 case X86::XOR64rr:
6892 case X86::IMUL16rr:
6893 case X86::IMUL32rr:
6894 case X86::IMUL64rr:
6895 case X86::PANDrr:
6896 case X86::PORrr:
6897 case X86::PXORrr:
6898 case X86::ANDPDrr:
6899 case X86::ANDPSrr:
6900 case X86::ORPDrr:
6901 case X86::ORPSrr:
6902 case X86::XORPDrr:
6903 case X86::XORPSrr:
6904 case X86::PADDBrr:
6905 case X86::PADDWrr:
6906 case X86::PADDDrr:
6907 case X86::PADDQrr:
6908 case X86::VPANDrr:
6909 case X86::VPANDYrr:
6910 case X86::VPANDDZ128rr:
6911 case X86::VPANDDZ256rr:
6912 case X86::VPANDDZrr:
6913 case X86::VPANDQZ128rr:
6914 case X86::VPANDQZ256rr:
6915 case X86::VPANDQZrr:
6916 case X86::VPORrr:
6917 case X86::VPORYrr:
6918 case X86::VPORDZ128rr:
6919 case X86::VPORDZ256rr:
6920 case X86::VPORDZrr:
6921 case X86::VPORQZ128rr:
6922 case X86::VPORQZ256rr:
6923 case X86::VPORQZrr:
6924 case X86::VPXORrr:
6925 case X86::VPXORYrr:
6926 case X86::VPXORDZ128rr:
6927 case X86::VPXORDZ256rr:
6928 case X86::VPXORDZrr:
6929 case X86::VPXORQZ128rr:
6930 case X86::VPXORQZ256rr:
6931 case X86::VPXORQZrr:
6932 case X86::VANDPDrr:
6933 case X86::VANDPSrr:
6934 case X86::VANDPDYrr:
6935 case X86::VANDPSYrr:
6936 case X86::VANDPDZ128rr:
6937 case X86::VANDPSZ128rr:
6938 case X86::VANDPDZ256rr:
6939 case X86::VANDPSZ256rr:
6940 case X86::VANDPDZrr:
6941 case X86::VANDPSZrr:
6942 case X86::VORPDrr:
6943 case X86::VORPSrr:
6944 case X86::VORPDYrr:
6945 case X86::VORPSYrr:
6946 case X86::VORPDZ128rr:
6947 case X86::VORPSZ128rr:
6948 case X86::VORPDZ256rr:
6949 case X86::VORPSZ256rr:
6950 case X86::VORPDZrr:
6951 case X86::VORPSZrr:
6952 case X86::VXORPDrr:
6953 case X86::VXORPSrr:
6954 case X86::VXORPDYrr:
6955 case X86::VXORPSYrr:
6956 case X86::VXORPDZ128rr:
6957 case X86::VXORPSZ128rr:
6958 case X86::VXORPDZ256rr:
6959 case X86::VXORPSZ256rr:
6960 case X86::VXORPDZrr:
6961 case X86::VXORPSZrr:
6962 case X86::KADDBrr:
6963 case X86::KADDWrr:
6964 case X86::KADDDrr:
6965 case X86::KADDQrr:
6966 case X86::KANDBrr:
6967 case X86::KANDWrr:
6968 case X86::KANDDrr:
6969 case X86::KANDQrr:
6970 case X86::KORBrr:
6971 case X86::KORWrr:
6972 case X86::KORDrr:
6973 case X86::KORQrr:
6974 case X86::KXORBrr:
6975 case X86::KXORWrr:
6976 case X86::KXORDrr:
6977 case X86::KXORQrr:
6978 case X86::VPADDBrr:
6979 case X86::VPADDWrr:
6980 case X86::VPADDDrr:
6981 case X86::VPADDQrr:
6982 case X86::VPADDBYrr:
6983 case X86::VPADDWYrr:
6984 case X86::VPADDDYrr:
6985 case X86::VPADDQYrr:
6986 case X86::VPADDBZ128rr:
6987 case X86::VPADDWZ128rr:
6988 case X86::VPADDDZ128rr:
6989 case X86::VPADDQZ128rr:
6990 case X86::VPADDBZ256rr:
6991 case X86::VPADDWZ256rr:
6992 case X86::VPADDDZ256rr:
6993 case X86::VPADDQZ256rr:
6994 case X86::VPADDBZrr:
6995 case X86::VPADDWZrr:
6996 case X86::VPADDDZrr:
6997 case X86::VPADDQZrr:
6998 case X86::VPMULLWrr:
6999 case X86::VPMULLWYrr:
7000 case X86::VPMULLWZ128rr:
7001 case X86::VPMULLWZ256rr:
7002 case X86::VPMULLWZrr:
7003 case X86::VPMULLDrr:
7004 case X86::VPMULLDYrr:
7005 case X86::VPMULLDZ128rr:
7006 case X86::VPMULLDZ256rr:
7007 case X86::VPMULLDZrr:
7008 case X86::VPMULLQZ128rr:
7009 case X86::VPMULLQZ256rr:
7010 case X86::VPMULLQZrr:
7011 // Normal min/max instructions are not commutative because of NaN and signed
7012 // zero semantics, but these are. Thus, there's no need to check for global
7013 // relaxed math; the instructions themselves have the properties we need.
7014 case X86::MAXCPDrr:
7015 case X86::MAXCPSrr:
7016 case X86::MAXCSDrr:
7017 case X86::MAXCSSrr:
7018 case X86::MINCPDrr:
7019 case X86::MINCPSrr:
7020 case X86::MINCSDrr:
7021 case X86::MINCSSrr:
7022 case X86::VMAXCPDrr:
7023 case X86::VMAXCPSrr:
7024 case X86::VMAXCPDYrr:
7025 case X86::VMAXCPSYrr:
7026 case X86::VMAXCPDZ128rr:
7027 case X86::VMAXCPSZ128rr:
7028 case X86::VMAXCPDZ256rr:
7029 case X86::VMAXCPSZ256rr:
7030 case X86::VMAXCPDZrr:
7031 case X86::VMAXCPSZrr:
7032 case X86::VMAXCSDrr:
7033 case X86::VMAXCSSrr:
7034 case X86::VMAXCSDZrr:
7035 case X86::VMAXCSSZrr:
7036 case X86::VMINCPDrr:
7037 case X86::VMINCPSrr:
7038 case X86::VMINCPDYrr:
7039 case X86::VMINCPSYrr:
7040 case X86::VMINCPDZ128rr:
7041 case X86::VMINCPSZ128rr:
7042 case X86::VMINCPDZ256rr:
7043 case X86::VMINCPSZ256rr:
7044 case X86::VMINCPDZrr:
7045 case X86::VMINCPSZrr:
7046 case X86::VMINCSDrr:
7047 case X86::VMINCSSrr:
7048 case X86::VMINCSDZrr:
7049 case X86::VMINCSSZrr:
7050 return true;
7051 case X86::ADDPDrr:
7052 case X86::ADDPSrr:
7053 case X86::ADDSDrr:
7054 case X86::ADDSSrr:
7055 case X86::MULPDrr:
7056 case X86::MULPSrr:
7057 case X86::MULSDrr:
7058 case X86::MULSSrr:
7059 case X86::VADDPDrr:
7060 case X86::VADDPSrr:
7061 case X86::VADDPDYrr:
7062 case X86::VADDPSYrr:
7063 case X86::VADDPDZ128rr:
7064 case X86::VADDPSZ128rr:
7065 case X86::VADDPDZ256rr:
7066 case X86::VADDPSZ256rr:
7067 case X86::VADDPDZrr:
7068 case X86::VADDPSZrr:
7069 case X86::VADDSDrr:
7070 case X86::VADDSSrr:
7071 case X86::VADDSDZrr:
7072 case X86::VADDSSZrr:
7073 case X86::VMULPDrr:
7074 case X86::VMULPSrr:
7075 case X86::VMULPDYrr:
7076 case X86::VMULPSYrr:
7077 case X86::VMULPDZ128rr:
7078 case X86::VMULPSZ128rr:
7079 case X86::VMULPDZ256rr:
7080 case X86::VMULPSZ256rr:
7081 case X86::VMULPDZrr:
7082 case X86::VMULPSZrr:
7083 case X86::VMULSDrr:
7084 case X86::VMULSSrr:
7085 case X86::VMULSDZrr:
7086 case X86::VMULSSZrr:
7087 return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath;
7088 default:
7089 return false;
7090 }
7091}
7092
7093/// This is an architecture-specific helper function of reassociateOps.
7094/// Set special operand attributes for new instructions after reassociation.
7095void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
7096 MachineInstr &OldMI2,
7097 MachineInstr &NewMI1,
7098 MachineInstr &NewMI2) const {
7099 // Integer instructions define an implicit EFLAGS source register operand as
7100 // the third source (fourth total) operand.
7101 if (OldMI1.getNumOperands() != 4 || OldMI2.getNumOperands() != 4)
7102 return;
7103
7104 assert(NewMI1.getNumOperands() == 4 && NewMI2.getNumOperands() == 4 &&((NewMI1.getNumOperands() == 4 && NewMI2.getNumOperands
() == 4 && "Unexpected instruction type for reassociation"
) ? static_cast<void> (0) : __assert_fail ("NewMI1.getNumOperands() == 4 && NewMI2.getNumOperands() == 4 && \"Unexpected instruction type for reassociation\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 7105, __PRETTY_FUNCTION__))
7105 "Unexpected instruction type for reassociation")((NewMI1.getNumOperands() == 4 && NewMI2.getNumOperands
() == 4 && "Unexpected instruction type for reassociation"
) ? static_cast<void> (0) : __assert_fail ("NewMI1.getNumOperands() == 4 && NewMI2.getNumOperands() == 4 && \"Unexpected instruction type for reassociation\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 7105, __PRETTY_FUNCTION__))
;
7106
7107 MachineOperand &OldOp1 = OldMI1.getOperand(3);
7108 MachineOperand &OldOp2 = OldMI2.getOperand(3);
7109 MachineOperand &NewOp1 = NewMI1.getOperand(3);
7110 MachineOperand &NewOp2 = NewMI2.getOperand(3);
7111
7112 assert(OldOp1.isReg() && OldOp1.getReg() == X86::EFLAGS && OldOp1.isDead() &&((OldOp1.isReg() && OldOp1.getReg() == X86::EFLAGS &&
OldOp1.isDead() && "Must have dead EFLAGS operand in reassociable instruction"
) ? static_cast<void> (0) : __assert_fail ("OldOp1.isReg() && OldOp1.getReg() == X86::EFLAGS && OldOp1.isDead() && \"Must have dead EFLAGS operand in reassociable instruction\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 7113, __PRETTY_FUNCTION__))
7113 "Must have dead EFLAGS operand in reassociable instruction")((OldOp1.isReg() && OldOp1.getReg() == X86::EFLAGS &&
OldOp1.isDead() && "Must have dead EFLAGS operand in reassociable instruction"
) ? static_cast<void> (0) : __assert_fail ("OldOp1.isReg() && OldOp1.getReg() == X86::EFLAGS && OldOp1.isDead() && \"Must have dead EFLAGS operand in reassociable instruction\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 7113, __PRETTY_FUNCTION__))
;
7114 assert(OldOp2.isReg() && OldOp2.getReg() == X86::EFLAGS && OldOp2.isDead() &&((OldOp2.isReg() && OldOp2.getReg() == X86::EFLAGS &&
OldOp2.isDead() && "Must have dead EFLAGS operand in reassociable instruction"
) ? static_cast<void> (0) : __assert_fail ("OldOp2.isReg() && OldOp2.getReg() == X86::EFLAGS && OldOp2.isDead() && \"Must have dead EFLAGS operand in reassociable instruction\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 7115, __PRETTY_FUNCTION__))
7115 "Must have dead EFLAGS operand in reassociable instruction")((OldOp2.isReg() && OldOp2.getReg() == X86::EFLAGS &&
OldOp2.isDead() && "Must have dead EFLAGS operand in reassociable instruction"
) ? static_cast<void> (0) : __assert_fail ("OldOp2.isReg() && OldOp2.getReg() == X86::EFLAGS && OldOp2.isDead() && \"Must have dead EFLAGS operand in reassociable instruction\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 7115, __PRETTY_FUNCTION__))
;
7116
7117 (void)OldOp1;
7118 (void)OldOp2;
7119
7120 assert(NewOp1.isReg() && NewOp1.getReg() == X86::EFLAGS &&((NewOp1.isReg() && NewOp1.getReg() == X86::EFLAGS &&
"Unexpected operand in reassociable instruction") ? static_cast
<void> (0) : __assert_fail ("NewOp1.isReg() && NewOp1.getReg() == X86::EFLAGS && \"Unexpected operand in reassociable instruction\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 7121, __PRETTY_FUNCTION__))
7121 "Unexpected operand in reassociable instruction")((NewOp1.isReg() && NewOp1.getReg() == X86::EFLAGS &&
"Unexpected operand in reassociable instruction") ? static_cast
<void> (0) : __assert_fail ("NewOp1.isReg() && NewOp1.getReg() == X86::EFLAGS && \"Unexpected operand in reassociable instruction\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 7121, __PRETTY_FUNCTION__))
;
7122 assert(NewOp2.isReg() && NewOp2.getReg() == X86::EFLAGS &&((NewOp2.isReg() && NewOp2.getReg() == X86::EFLAGS &&
"Unexpected operand in reassociable instruction") ? static_cast
<void> (0) : __assert_fail ("NewOp2.isReg() && NewOp2.getReg() == X86::EFLAGS && \"Unexpected operand in reassociable instruction\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 7123, __PRETTY_FUNCTION__))
7123 "Unexpected operand in reassociable instruction")((NewOp2.isReg() && NewOp2.getReg() == X86::EFLAGS &&
"Unexpected operand in reassociable instruction") ? static_cast
<void> (0) : __assert_fail ("NewOp2.isReg() && NewOp2.getReg() == X86::EFLAGS && \"Unexpected operand in reassociable instruction\""
, "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 7123, __PRETTY_FUNCTION__))
;
7124
7125 // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
7126 // of this pass or other passes. The EFLAGS operands must be dead in these new
7127 // instructions because the EFLAGS operands in the original instructions must
7128 // be dead in order for reassociation to occur.
7129 NewOp1.setIsDead();
7130 NewOp2.setIsDead();
7131}
7132
7133std::pair<unsigned, unsigned>
7134X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
7135 return std::make_pair(TF, 0u);
7136}
7137
7138ArrayRef<std::pair<unsigned, const char *>>
7139X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
7140 using namespace X86II;
7141 static const std::pair<unsigned, const char *> TargetFlags[] = {
7142 {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
7143 {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
7144 {MO_GOT, "x86-got"},
7145 {MO_GOTOFF, "x86-gotoff"},
7146 {MO_GOTPCREL, "x86-gotpcrel"},
7147 {MO_PLT, "x86-plt"},
7148 {MO_TLSGD, "x86-tlsgd"},
7149 {MO_TLSLD, "x86-tlsld"},
7150 {MO_TLSLDM, "x86-tlsldm"},
7151 {MO_GOTTPOFF, "x86-gottpoff"},
7152 {MO_INDNTPOFF, "x86-indntpoff"},
7153 {MO_TPOFF, "x86-tpoff"},
7154 {MO_DTPOFF, "x86-dtpoff"},
7155 {MO_NTPOFF, "x86-ntpoff"},
7156 {MO_GOTNTPOFF, "x86-gotntpoff"},
7157 {MO_DLLIMPORT, "x86-dllimport"},
7158 {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
7159 {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
7160 {MO_TLVP, "x86-tlvp"},
7161 {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
7162 {MO_SECREL, "x86-secrel"},
7163 {MO_COFFSTUB, "x86-coffstub"}};
7164 return makeArrayRef(TargetFlags);
7165}
7166
7167namespace {
7168 /// Create Global Base Reg pass. This initializes the PIC
7169 /// global base register for x86-32.
7170 struct CGBR : public MachineFunctionPass {
7171 static char ID;
7172 CGBR() : MachineFunctionPass(ID) {}
7173
7174 bool runOnMachineFunction(MachineFunction &MF) override {
7175 const X86TargetMachine *TM =
7176 static_cast<const X86TargetMachine *>(&MF.getTarget());
7177 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
7178
7179 // Don't do anything in the 64-bit small and kernel code models. They use
7180 // RIP-relative addressing for everything.
7181 if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small ||
7182 TM->getCodeModel() == CodeModel::Kernel))
7183 return false;
7184
7185 // Only emit a global base reg in PIC mode.
7186 if (!TM->isPositionIndependent())
7187 return false;
7188
7189 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
7190 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
7191
7192 // If we didn't need a GlobalBaseReg, don't insert code.
7193 if (GlobalBaseReg == 0)
7194 return false;
7195
7196 // Insert the set of GlobalBaseReg into the first MBB of the function
7197 MachineBasicBlock &FirstMBB = MF.front();
7198 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
7199 DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
7200 MachineRegisterInfo &RegInfo = MF.getRegInfo();
7201 const X86InstrInfo *TII = STI.getInstrInfo();
7202
7203 unsigned PC;
7204 if (STI.isPICStyleGOT())
7205 PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
7206 else
7207 PC = GlobalBaseReg;
7208
7209 if (STI.is64Bit()) {
7210 if (TM->getCodeModel() == CodeModel::Medium) {
7211 // In the medium code model, use a RIP-relative LEA to materialize the
7212 // GOT.
7213 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
7214 .addReg(X86::RIP)
7215 .addImm(0)
7216 .addReg(0)
7217 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
7218 .addReg(0);
7219 } else if (TM->getCodeModel() == CodeModel::Large) {
7220 // In the large code model, we are aiming for this code, though the
7221 // register allocation may vary:
7222 // leaq .LN$pb(%rip), %rax
7223 // movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
7224 // addq %rcx, %rax
7225 // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
7226 unsigned PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
7227 unsigned GOTReg =
7228 RegInfo.createVirtualRegister(&X86::GR64RegClass);
7229 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
7230 .addReg(X86::RIP)
7231 .addImm(0)
7232 .addReg(0)
7233 .addSym(MF.getPICBaseSymbol())
7234 .addReg(0);
7235 std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol());
7236 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
7237 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
7238 X86II::MO_PIC_BASE_OFFSET);
7239 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
7240 .addReg(PBReg, RegState::Kill)
7241 .addReg(GOTReg, RegState::Kill);
7242 } else {
7243 llvm_unreachable("unexpected code model")::llvm::llvm_unreachable_internal("unexpected code model", "/build/llvm-toolchain-snapshot-9~svn359999/lib/Target/X86/X86InstrInfo.cpp"
, 7243)
;
7244 }
7245 } else {
7246 // Operand of MovePCtoStack is completely ignored by asm printer. It's
7247 // only used in JIT code emission as displacement to pc.
7248 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
7249
7250 // If we're using vanilla 'GOT' PIC style, we should use relative
7251 // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
7252 if (STI.isPICStyleGOT()) {
7253 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
7254 // %some_register
7255 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
7256 .addReg(PC)
7257 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
7258 X86II::MO_GOT_ABSOLUTE_ADDRESS);
7259 }
7260 }
7261
7262 return true;
7263 }
7264
7265 StringRef getPassName() const override {
7266 return "X86 PIC Global Base Reg Initialization";
7267 }
7268
7269 void getAnalysisUsage(AnalysisUsage &AU) const override {
7270 AU.setPreservesCFG();
7271 MachineFunctionPass::getAnalysisUsage(AU);
7272 }
7273 };
7274}
7275
7276char CGBR::ID = 0;
7277FunctionPass*
7278llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
7279
7280namespace {
7281 struct LDTLSCleanup : public MachineFunctionPass {
7282 static char ID;
7283 LDTLSCleanup() : MachineFunctionPass(ID) {}
7284
7285 bool runOnMachineFunction(MachineFunction &MF) override {
7286 if (skipFunction(MF.getFunction()))
7287 return false;
7288
7289 X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
7290 if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
7291 // No point folding accesses if there isn't at least two.
7292 return false;
7293 }
7294
7295 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
7296 return VisitNode(DT->getRootNode(), 0);
7297 }
7298
7299 // Visit the dominator subtree rooted at Node in pre-order.
7300 // If TLSBaseAddrReg is non-null, then use that to replace any
7301 // TLS_base_addr instructions. Otherwise, create the register
7302 // when the first such instruction is seen, and then use it
7303 // as we encounter more instructions.
7304 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
7305 MachineBasicBlock *BB = Node->getBlock();
7306 bool Changed = false;
7307
7308 // Traverse the current block.
7309 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
7310 ++I) {
7311 switch (I->getOpcode()) {
7312 case X86::TLS_base_addr32:
7313 case X86::TLS_base_addr64:
7314 if (TLSBaseAddrReg)
7315 I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
7316 else
7317 I = SetRegister(*I, &TLSBaseAddrReg);
7318 Changed = true;
7319 break;
7320 default:
7321 break;
7322 }
7323 }
7324
7325 // Visit the children of this block in the dominator tree.
7326 for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
7327 I != E; ++I) {
7328 Changed |= VisitNode(*I, TLSBaseAddrReg);
7329 }
7330
7331 return Changed;
7332 }
7333
7334 // Replace the TLS_base_addr instruction I with a copy from
7335 // TLSBaseAddrReg, returning the new instruction.
7336 MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
7337 unsigned TLSBaseAddrReg) {
7338 MachineFunction *MF = I.getParent()->getParent();
7339 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
7340 const bool is64Bit = STI.is64Bit();
7341 const X86InstrInfo *TII = STI.getInstrInfo();
7342
7343 // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
7344 MachineInstr *Copy =
7345 BuildMI(*I.getParent(), I, I.getDebugLoc(),
7346 TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
7347 .addReg(TLSBaseAddrReg);
7348
7349 // Erase the TLS_base_addr instruction.
7350 I.eraseFromParent();
7351
7352 return Copy;
7353 }
7354
7355 // Create a virtual register in *TLSBaseAddrReg, and populate it by
7356 // inserting a copy instruction after I. Returns the new instruction.
7357 MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
7358 MachineFunction *MF = I.getParent()->getParent();
7359 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
7360 const bool is64Bit = STI.is64Bit();
7361 const X86InstrInfo *TII = STI.getInstrInfo();
7362
7363 // Create a virtual register for the TLS base address.
7364 MachineRegisterInfo &RegInfo = MF->getRegInfo();
7365 *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
7366 ? &X86::GR64RegClass
7367 : &X86::GR32RegClass);
7368
7369 // Insert a copy from RAX/EAX to TLSBaseAddrReg.
7370 MachineInstr *Next = I.getNextNode();
7371 MachineInstr *Copy =
7372 BuildMI(*I.getParent(), Next, I.getDebugLoc(),
7373 TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
7374 .addReg(is64Bit ? X86::RAX : X86::EAX);
7375
7376 return Copy;
7377 }
7378
7379 StringRef getPassName() const override {
7380 return "Local Dynamic TLS Access Clean-up";
7381 }
7382
7383 void getAnalysisUsage(AnalysisUsage &AU) const override {
7384 AU.setPreservesCFG();
7385 AU.addRequired<MachineDominatorTree>();
7386 MachineFunctionPass::getAnalysisUsage(AU);
7387 }
7388 };
7389}
7390
7391char LDTLSCleanup::ID = 0;
7392FunctionPass*
7393llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
7394
7395/// Constants defining how certain sequences should be outlined.
7396///
7397/// \p MachineOutlinerDefault implies that the function is called with a call
7398/// instruction, and a return must be emitted for the outlined function frame.
7399///
7400/// That is,
7401///
7402/// I1 OUTLINED_FUNCTION:
7403/// I2 --> call OUTLINED_FUNCTION I1
7404/// I3 I2
7405/// I3
7406/// ret
7407///
7408/// * Call construction overhead: 1 (call instruction)
7409/// * Frame construction overhead: 1 (return instruction)
7410///
7411/// \p MachineOutlinerTailCall implies that the function is being tail called.
7412/// A jump is emitted instead of a call, and the return is already present in
7413/// the outlined sequence. That is,
7414///
7415/// I1 OUTLINED_FUNCTION:
7416/// I2 --> jmp OUTLINED_FUNCTION I1
7417/// ret I2
7418/// ret
7419///
7420/// * Call construction overhead: 1 (jump instruction)
7421/// * Frame construction overhead: 0 (don't need to return)
7422///
7423enum MachineOutlinerClass {
7424 MachineOutlinerDefault,
7425 MachineOutlinerTailCall
7426};
7427
7428outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo(
7429 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
7430 unsigned SequenceSize =
7431 std::accumulate(RepeatedSequenceLocs[0].front(),
7432 std::next(RepeatedSequenceLocs[0].back()), 0,
7433 [](unsigned Sum, const MachineInstr &MI) {
7434 // FIXME: x86 doesn't implement getInstSizeInBytes, so
7435 // we can't tell the cost. Just assume each instruction
7436 // is one byte.
7437 if (MI.isDebugInstr() || MI.isKill())
7438 return Sum;
7439 return Sum + 1;
7440 });
7441
7442 // FIXME: Use real size in bytes for call and ret instructions.
7443 if (RepeatedSequenceLocs[0].back()->isTerminator()) {
7444 for (outliner::Candidate &C : RepeatedSequenceLocs)
7445 C.setCallInfo(MachineOutlinerTailCall, 1);
7446
7447 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
7448 0, // Number of bytes to emit frame.
7449 MachineOutlinerTailCall // Type of frame.
7450 );
7451 }
7452
7453 for (outliner::Candidate &C : RepeatedSequenceLocs)
7454 C.setCallInfo(MachineOutlinerDefault, 1);
7455
7456 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
7457 MachineOutlinerDefault);
7458}
7459
7460bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF,
7461 bool OutlineFromLinkOnceODRs) const {
7462 const Function &F = MF.getFunction();
7463
7464 // Does the function use a red zone? If it does, then we can't risk messing
7465 // with the stack.
7466 if (!F.hasFnAttribute(Attribute::NoRedZone)) {
7467 // It could have a red zone. If it does, then we don't want to touch it.
7468 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
7469 if (!X86FI || X86FI->getUsesRedZone())
7470 return false;
7471 }
7472
7473 // If we *don't* want to outline from things that could potentially be deduped
7474 // then return false.
7475 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
7476 return false;
7477
7478 // This function is viable for outlining, so return true.
7479 return true;
7480}
7481
7482outliner::InstrType
7483X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
7484 MachineInstr &MI = *MIT;
7485 // Don't allow debug values to impact outlining type.
7486 if (MI.isDebugInstr() || MI.isIndirectDebugValue())
7487 return outliner::InstrType::Invisible;
7488
7489 // At this point, KILL instructions don't really tell us much so we can go
7490 // ahead and skip over them.
7491 if (MI.isKill())
7492 return outliner::InstrType::Invisible;
7493
7494 // Is this a tail call? If yes, we can outline as a tail call.
7495 if (isTailCall(MI))
7496 return outliner::InstrType::Legal;
7497
7498 // Is this the terminator of a basic block?
7499 if (MI.isTerminator() || MI.isReturn()) {
7500
7501 // Does its parent have any successors in its MachineFunction?
7502 if (MI.getParent()->succ_empty())
7503 return outliner::InstrType::Legal;
7504
7505 // It does, so we can't tail call it.
7506 return outliner::InstrType::Illegal;
7507 }
7508
7509 // Don't outline anything that modifies or reads from the stack pointer.
7510 //
7511 // FIXME: There are instructions which are being manually built without
7512 // explicit uses/defs so we also have to check the MCInstrDesc. We should be
7513 // able to remove the extra checks once those are fixed up. For example,
7514 // sometimes we might get something like %rax = POP64r 1. This won't be
7515 // caught by modifiesRegister or readsRegister even though the instruction
7516 // really ought to be formed so that modifiesRegister/readsRegister would
7517 // catch it.
7518 if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
7519 MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
7520 MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
7521 return outliner::InstrType::Illegal;
7522
7523 // Outlined calls change the instruction pointer, so don't read from it.
7524 if (MI.readsRegister(X86::RIP, &RI) ||
7525 MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
7526 MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
7527 return outliner::InstrType::Illegal;
7528
7529 // Positions can't safely be outlined.
7530 if (MI.isPosition())
7531 return outliner::InstrType::Illegal;
7532
7533 // Make sure none of the operands of this instruction do anything tricky.
7534 for (const MachineOperand &MOP : MI.operands())
7535 if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
7536 MOP.isTargetIndex())
7537 return outliner::InstrType::Illegal;
7538
7539 return outliner::InstrType::Legal;
7540}
7541
7542void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB,
7543 MachineFunction &MF,
7544 const outliner::OutlinedFunction &OF)
7545 const {
7546 // If we're a tail call, we already have a return, so don't do anything.
7547 if (OF.FrameConstructionID == MachineOutlinerTailCall)
7548 return;
7549
7550 // We're a normal call, so our sequence doesn't have a return instruction.
7551 // Add it in.
7552 MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RETQ));
7553 MBB.insert(MBB.end(), retq);
7554}
7555
7556MachineBasicBlock::iterator
7557X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
7558 MachineBasicBlock::iterator &It,
7559 MachineFunction &MF,
7560 const outliner::Candidate &C) const {
7561 // Is it a tail call?
7562 if (C.CallConstructionID == MachineOutlinerTailCall) {
7563 // Yes, just insert a JMP.
7564 It = MBB.insert(It,
7565 BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
7566 .addGlobalAddress(M.getNamedValue(MF.getName())));
7567 } else {
7568 // No, insert a call.
7569 It = MBB.insert(It,
7570 BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
7571 .addGlobalAddress(M.getNamedValue(MF.getName())));
7572 }
7573
7574 return It;
7575}
7576
7577#define GET_INSTRINFO_HELPERS
7578#include "X86GenInstrInfo.inc"