| File: | bolt/runtime/instr.cpp |
| Warning: | line 1248, column 20 Value stored to 'Parent' during its initialization is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===- bolt/runtime/instr.cpp ---------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // BOLT runtime instrumentation library for x86 Linux. Currently, BOLT does |
| 10 | // not support linking modules with dependencies on one another into the final |
| 11 | // binary (TODO?), which means this library has to be self-contained in a single |
| 12 | // module. |
| 13 | // |
| 14 | // All extern declarations here need to be defined by BOLT itself. Those will be |
| 15 | // undefined symbols that BOLT needs to resolve by emitting these symbols with |
| 16 | // MCStreamer. Currently, Passes/Instrumentation.cpp is the pass responsible |
| 17 | // for defining the symbols here and these two files have a tight coupling: one |
| 18 | // working statically when you run BOLT and another during program runtime when |
| 19 | // you run an instrumented binary. The main goal here is to output an fdata file |
| 20 | // (BOLT profile) with the instrumentation counters inserted by the static pass. |
| 21 | // Counters for indirect calls are an exception, as we can't know them |
| 22 | // statically. These counters are created and managed here. To allow this, we |
| 23 | // need a minimal framework for allocating memory dynamically. We provide this |
| 24 | // with the BumpPtrAllocator class (not LLVM's, but our own version of it). |
| 25 | // |
| 26 | // Since this code is intended to be inserted into any executable, we decided to |
| 27 | // make it standalone and do not depend on any external libraries (i.e. language |
| 28 | // support libraries, such as glibc or stdc++). To allow this, we provide a few |
| 29 | // light implementations of common OS interacting functionalities using direct |
| 30 | // syscall wrappers. Our simple allocator doesn't manage deallocations that |
| 31 | // fragment the memory space, so it's stack based. This is the minimal framework |
| 32 | // provided here to allow processing instrumented counters and writing fdata. |
| 33 | // |
| 34 | // In the C++ idiom used here, we never use or rely on constructors or |
| 35 | // destructors for global objects. That's because those need support from the |
| 36 | // linker in initialization/finalization code, and we want to keep our linker |
| 37 | // very simple. Similarly, we don't create any global objects that are zero |
| 38 | // initialized, since those would need to go .bss, which our simple linker also |
| 39 | // don't support (TODO?). |
| 40 | // |
| 41 | //===----------------------------------------------------------------------===// |
| 42 | |
| 43 | #include "common.h" |
| 44 | |
| 45 | // Enables a very verbose logging to stderr useful when debugging |
| 46 | //#define ENABLE_DEBUG |
| 47 | |
| 48 | #ifdef ENABLE_DEBUG |
| 49 | #define DEBUG(X){} \ |
| 50 | { X; } |
| 51 | #else |
| 52 | #define DEBUG(X){} \ |
| 53 | {} |
| 54 | #endif |
| 55 | |
| 56 | #pragma GCC visibility push(hidden) |
| 57 | |
| 58 | extern "C" { |
| 59 | |
| 60 | #if defined(__APPLE__) |
| 61 | extern uint64_t* _bolt_instr_locations_getter(); |
| 62 | extern uint32_t _bolt_num_counters_getter(); |
| 63 | |
| 64 | extern uint8_t* _bolt_instr_tables_getter(); |
| 65 | extern uint32_t _bolt_instr_num_funcs_getter(); |
| 66 | |
| 67 | #else |
| 68 | |
| 69 | // Main counters inserted by instrumentation, incremented during runtime when |
| 70 | // points of interest (locations) in the program are reached. Those are direct |
| 71 | // calls and direct and indirect branches (local ones). There are also counters |
| 72 | // for basic block execution if they are a spanning tree leaf and need to be |
| 73 | // counted in order to infer the execution count of other edges of the CFG. |
| 74 | extern uint64_t __bolt_instr_locations[]; |
| 75 | extern uint32_t __bolt_num_counters; |
| 76 | // Descriptions are serialized metadata about binary functions written by BOLT, |
| 77 | // so we have a minimal understanding about the program structure. For a |
| 78 | // reference on the exact format of this metadata, see *Description structs, |
| 79 | // Location, IntrumentedNode and EntryNode. |
| 80 | // Number of indirect call site descriptions |
| 81 | extern uint32_t __bolt_instr_num_ind_calls; |
| 82 | // Number of indirect call target descriptions |
| 83 | extern uint32_t __bolt_instr_num_ind_targets; |
| 84 | // Number of function descriptions |
| 85 | extern uint32_t __bolt_instr_num_funcs; |
| 86 | // Time to sleep across dumps (when we write the fdata profile to disk) |
| 87 | extern uint32_t __bolt_instr_sleep_time; |
| 88 | // Do not clear counters across dumps, rewrite file with the updated values |
| 89 | extern bool __bolt_instr_no_counters_clear; |
| 90 | // Wait until all forks of instrumented process will finish |
| 91 | extern bool __bolt_instr_wait_forks; |
| 92 | // Filename to dump data to |
| 93 | extern char __bolt_instr_filename[]; |
| 94 | // Instumented binary file path |
| 95 | extern char __bolt_instr_binpath[]; |
| 96 | // If true, append current PID to the fdata filename when creating it so |
| 97 | // different invocations of the same program can be differentiated. |
| 98 | extern bool __bolt_instr_use_pid; |
| 99 | // Functions that will be used to instrument indirect calls. BOLT static pass |
| 100 | // will identify indirect calls and modify them to load the address in these |
| 101 | // trampolines and call this address instead. BOLT can't use direct calls to |
| 102 | // our handlers because our addresses here are not known at analysis time. We |
| 103 | // only support resolving dependencies from this file to the output of BOLT, |
| 104 | // *not* the other way around. |
| 105 | // TODO: We need better linking support to make that happen. |
| 106 | extern void (*__bolt_ind_call_counter_func_pointer)(); |
| 107 | extern void (*__bolt_ind_tailcall_counter_func_pointer)(); |
| 108 | // Function pointers to init/fini trampoline routines in the binary, so we can |
| 109 | // resume regular execution of these functions that we hooked |
| 110 | extern void __bolt_start_trampoline(); |
| 111 | extern void __bolt_fini_trampoline(); |
| 112 | |
| 113 | #endif |
| 114 | } |
| 115 | |
| 116 | namespace { |
| 117 | |
| 118 | /// A simple allocator that mmaps a fixed size region and manages this space |
| 119 | /// in a stack fashion, meaning you always deallocate the last element that |
| 120 | /// was allocated. In practice, we don't need to deallocate individual elements. |
| 121 | /// We monotonically increase our usage and then deallocate everything once we |
| 122 | /// are done processing something. |
| 123 | class BumpPtrAllocator { |
| 124 | /// This is written before each allocation and act as a canary to detect when |
| 125 | /// a bug caused our program to cross allocation boundaries. |
| 126 | struct EntryMetadata { |
| 127 | uint64_t Magic; |
| 128 | uint64_t AllocSize; |
| 129 | }; |
| 130 | |
| 131 | public: |
| 132 | void *allocate(size_t Size) { |
| 133 | Lock L(M); |
| 134 | |
| 135 | if (StackBase == nullptr) { |
| 136 | StackBase = reinterpret_cast<uint8_t *>( |
| 137 | __mmap(0, MaxSize, PROT_READ0x1 | PROT_WRITE0x2, |
| 138 | (Shared ? MAP_SHARED0x01 : MAP_PRIVATE0x02) | MAP_ANONYMOUS0x20, -1, 0)); |
| 139 | assert(StackBase != MAP_FAILED((void *)-1), |
| 140 | "BumpPtrAllocator: failed to mmap stack!"); |
| 141 | StackSize = 0; |
| 142 | } |
| 143 | |
| 144 | Size = alignTo(Size + sizeof(EntryMetadata), 16); |
| 145 | uint8_t *AllocAddress = StackBase + StackSize + sizeof(EntryMetadata); |
| 146 | auto *M = reinterpret_cast<EntryMetadata *>(StackBase + StackSize); |
| 147 | M->Magic = Magic; |
| 148 | M->AllocSize = Size; |
| 149 | StackSize += Size; |
| 150 | assert(StackSize < MaxSize, "allocator ran out of memory"); |
| 151 | return AllocAddress; |
| 152 | } |
| 153 | |
| 154 | #ifdef DEBUG |
| 155 | /// Element-wise deallocation is only used for debugging to catch memory |
| 156 | /// bugs by checking magic bytes. Ordinarily, we reset the allocator once |
| 157 | /// we are done with it. Reset is done with clear(). There's no need |
| 158 | /// to deallocate each element individually. |
| 159 | void deallocate(void *Ptr) { |
| 160 | Lock L(M); |
| 161 | uint8_t MetadataOffset = sizeof(EntryMetadata); |
| 162 | auto *M = reinterpret_cast<EntryMetadata *>( |
| 163 | reinterpret_cast<uint8_t *>(Ptr) - MetadataOffset); |
| 164 | const uint8_t *StackTop = StackBase + StackSize + MetadataOffset; |
| 165 | // Validate size |
| 166 | if (Ptr != StackTop - M->AllocSize) { |
| 167 | // Failed validation, check if it is a pointer returned by operator new [] |
| 168 | MetadataOffset += |
| 169 | sizeof(uint64_t); // Space for number of elements alloc'ed |
| 170 | M = reinterpret_cast<EntryMetadata *>(reinterpret_cast<uint8_t *>(Ptr) - |
| 171 | MetadataOffset); |
| 172 | // Ok, it failed both checks if this assertion fails. Stop the program, we |
| 173 | // have a memory bug. |
| 174 | assert(Ptr == StackTop - M->AllocSize, |
| 175 | "must deallocate the last element alloc'ed"); |
| 176 | } |
| 177 | assert(M->Magic == Magic, "allocator magic is corrupt"); |
| 178 | StackSize -= M->AllocSize; |
| 179 | } |
| 180 | #else |
| 181 | void deallocate(void *) {} |
| 182 | #endif |
| 183 | |
| 184 | void clear() { |
| 185 | Lock L(M); |
| 186 | StackSize = 0; |
| 187 | } |
| 188 | |
| 189 | /// Set mmap reservation size (only relevant before first allocation) |
| 190 | void setMaxSize(uint64_t Size) { MaxSize = Size; } |
| 191 | |
| 192 | /// Set mmap reservation privacy (only relevant before first allocation) |
| 193 | void setShared(bool S) { Shared = S; } |
| 194 | |
| 195 | void destroy() { |
| 196 | if (StackBase == nullptr) |
| 197 | return; |
| 198 | __munmap(StackBase, MaxSize); |
| 199 | } |
| 200 | |
| 201 | // Placement operator to construct allocator in possibly shared mmaped memory |
| 202 | static void *operator new(size_t, void *Ptr) { return Ptr; }; |
| 203 | |
| 204 | private: |
| 205 | static constexpr uint64_t Magic = 0x1122334455667788ull; |
| 206 | uint64_t MaxSize = 0xa00000; |
| 207 | uint8_t *StackBase{nullptr}; |
| 208 | uint64_t StackSize{0}; |
| 209 | bool Shared{false}; |
| 210 | Mutex M; |
| 211 | }; |
| 212 | |
| 213 | /// Used for allocating indirect call instrumentation counters. Initialized by |
| 214 | /// __bolt_instr_setup, our initialization routine. |
| 215 | BumpPtrAllocator *GlobalAlloc; |
| 216 | |
| 217 | // Base address which we substract from recorded PC values when searching for |
| 218 | // indirect call description entries. Needed because indCall descriptions are |
| 219 | // mapped read-only and contain static addresses. Initialized in |
| 220 | // __bolt_instr_setup. |
| 221 | uint64_t TextBaseAddress = 0; |
| 222 | |
| 223 | // Storage for GlobalAlloc which can be shared if not using |
| 224 | // instrumentation-file-append-pid. |
| 225 | void *GlobalMetadataStorage; |
| 226 | |
| 227 | } // anonymous namespace |
| 228 | |
| 229 | // User-defined placement new operators. We only use those (as opposed to |
| 230 | // overriding the regular operator new) so we can keep our allocator in the |
| 231 | // stack instead of in a data section (global). |
| 232 | void *operator new(size_t Sz, BumpPtrAllocator &A) { return A.allocate(Sz); } |
| 233 | void *operator new(size_t Sz, BumpPtrAllocator &A, char C) { |
| 234 | auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz)); |
| 235 | memset(Ptr, C, Sz); |
| 236 | return Ptr; |
| 237 | } |
| 238 | void *operator new[](size_t Sz, BumpPtrAllocator &A) { |
| 239 | return A.allocate(Sz); |
| 240 | } |
| 241 | void *operator new[](size_t Sz, BumpPtrAllocator &A, char C) { |
| 242 | auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz)); |
| 243 | memset(Ptr, C, Sz); |
| 244 | return Ptr; |
| 245 | } |
| 246 | // Only called during exception unwinding (useless). We must manually dealloc. |
| 247 | // C++ language weirdness |
| 248 | void operator delete(void *Ptr, BumpPtrAllocator &A) { A.deallocate(Ptr); } |
| 249 | |
| 250 | namespace { |
| 251 | |
| 252 | // Disable instrumentation optimizations that sacrifice profile accuracy |
| 253 | extern "C" bool __bolt_instr_conservative; |
| 254 | |
| 255 | /// Basic key-val atom stored in our hash |
| 256 | struct SimpleHashTableEntryBase { |
| 257 | uint64_t Key; |
| 258 | uint64_t Val; |
| 259 | void dump(const char *Msg = nullptr) { |
| 260 | // TODO: make some sort of formatting function |
| 261 | // Currently we have to do it the ugly way because |
| 262 | // we want every message to be printed atomically via a single call to |
| 263 | // __write. If we use reportNumber() and others nultiple times, we'll get |
| 264 | // garbage in mulithreaded environment |
| 265 | char Buf[BufSize]; |
| 266 | char *Ptr = Buf; |
| 267 | Ptr = intToStr(Ptr, __getpid(), 10); |
| 268 | *Ptr++ = ':'; |
| 269 | *Ptr++ = ' '; |
| 270 | if (Msg) |
| 271 | Ptr = strCopy(Ptr, Msg, strLen(Msg)); |
| 272 | *Ptr++ = '0'; |
| 273 | *Ptr++ = 'x'; |
| 274 | Ptr = intToStr(Ptr, (uint64_t)this, 16); |
| 275 | *Ptr++ = ':'; |
| 276 | *Ptr++ = ' '; |
| 277 | Ptr = strCopy(Ptr, "MapEntry(0x", sizeof("MapEntry(0x") - 1); |
| 278 | Ptr = intToStr(Ptr, Key, 16); |
| 279 | *Ptr++ = ','; |
| 280 | *Ptr++ = ' '; |
| 281 | *Ptr++ = '0'; |
| 282 | *Ptr++ = 'x'; |
| 283 | Ptr = intToStr(Ptr, Val, 16); |
| 284 | *Ptr++ = ')'; |
| 285 | *Ptr++ = '\n'; |
| 286 | assert(Ptr - Buf < BufSize, "Buffer overflow!"); |
| 287 | // print everything all at once for atomicity |
| 288 | __write(2, Buf, Ptr - Buf); |
| 289 | } |
| 290 | }; |
| 291 | |
| 292 | /// This hash table implementation starts by allocating a table of size |
| 293 | /// InitialSize. When conflicts happen in this main table, it resolves |
| 294 | /// them by chaining a new table of size IncSize. It never reallocs as our |
| 295 | /// allocator doesn't support it. The key is intended to be function pointers. |
| 296 | /// There's no clever hash function (it's just x mod size, size being prime). |
| 297 | /// I never tuned the coefficientes in the modular equation (TODO) |
| 298 | /// This is used for indirect calls (each call site has one of this, so it |
| 299 | /// should have a small footprint) and for tallying call counts globally for |
| 300 | /// each target to check if we missed the origin of some calls (this one is a |
| 301 | /// large instantiation of this template, since it is global for all call sites) |
| 302 | template <typename T = SimpleHashTableEntryBase, uint32_t InitialSize = 7, |
| 303 | uint32_t IncSize = 7> |
| 304 | class SimpleHashTable { |
| 305 | public: |
| 306 | using MapEntry = T; |
| 307 | |
| 308 | /// Increment by 1 the value of \p Key. If it is not in this table, it will be |
| 309 | /// added to the table and its value set to 1. |
| 310 | void incrementVal(uint64_t Key, BumpPtrAllocator &Alloc) { |
| 311 | if (!__bolt_instr_conservative) { |
| 312 | TryLock L(M); |
| 313 | if (!L.isLocked()) |
| 314 | return; |
| 315 | auto &E = getOrAllocEntry(Key, Alloc); |
| 316 | ++E.Val; |
| 317 | return; |
| 318 | } |
| 319 | Lock L(M); |
| 320 | auto &E = getOrAllocEntry(Key, Alloc); |
| 321 | ++E.Val; |
| 322 | } |
| 323 | |
| 324 | /// Basic member accessing interface. Here we pass the allocator explicitly to |
| 325 | /// avoid storing a pointer to it as part of this table (remember there is one |
| 326 | /// hash for each indirect call site, so we want to minimize our footprint). |
| 327 | MapEntry &get(uint64_t Key, BumpPtrAllocator &Alloc) { |
| 328 | if (!__bolt_instr_conservative) { |
| 329 | TryLock L(M); |
| 330 | if (!L.isLocked()) |
| 331 | return NoEntry; |
| 332 | return getOrAllocEntry(Key, Alloc); |
| 333 | } |
| 334 | Lock L(M); |
| 335 | return getOrAllocEntry(Key, Alloc); |
| 336 | } |
| 337 | |
| 338 | /// Traverses all elements in the table |
| 339 | template <typename... Args> |
| 340 | void forEachElement(void (*Callback)(MapEntry &, Args...), Args... args) { |
| 341 | Lock L(M); |
| 342 | if (!TableRoot) |
| 343 | return; |
| 344 | return forEachElement(Callback, InitialSize, TableRoot, args...); |
| 345 | } |
| 346 | |
| 347 | void resetCounters(); |
| 348 | |
| 349 | private: |
| 350 | constexpr static uint64_t VacantMarker = 0; |
| 351 | constexpr static uint64_t FollowUpTableMarker = 0x8000000000000000ull; |
| 352 | |
| 353 | MapEntry *TableRoot{nullptr}; |
| 354 | MapEntry NoEntry; |
| 355 | Mutex M; |
| 356 | |
| 357 | template <typename... Args> |
| 358 | void forEachElement(void (*Callback)(MapEntry &, Args...), |
| 359 | uint32_t NumEntries, MapEntry *Entries, Args... args) { |
| 360 | for (uint32_t I = 0; I < NumEntries; ++I) { |
| 361 | MapEntry &Entry = Entries[I]; |
| 362 | if (Entry.Key == VacantMarker) |
| 363 | continue; |
| 364 | if (Entry.Key & FollowUpTableMarker) { |
| 365 | MapEntry *Next = |
| 366 | reinterpret_cast<MapEntry *>(Entry.Key & ~FollowUpTableMarker); |
| 367 | assert(Next != Entries, "Circular reference!"); |
| 368 | forEachElement(Callback, IncSize, Next, args...); |
| 369 | continue; |
| 370 | } |
| 371 | Callback(Entry, args...); |
| 372 | } |
| 373 | } |
| 374 | |
| 375 | MapEntry &firstAllocation(uint64_t Key, BumpPtrAllocator &Alloc) { |
| 376 | TableRoot = new (Alloc, 0) MapEntry[InitialSize]; |
| 377 | MapEntry &Entry = TableRoot[Key % InitialSize]; |
| 378 | Entry.Key = Key; |
| 379 | // DEBUG(Entry.dump("Created root entry: ")); |
| 380 | return Entry; |
| 381 | } |
| 382 | |
| 383 | MapEntry &getEntry(MapEntry *Entries, uint64_t Key, uint64_t Selector, |
| 384 | BumpPtrAllocator &Alloc, int CurLevel) { |
| 385 | // DEBUG(reportNumber("getEntry called, level ", CurLevel, 10)); |
| 386 | const uint32_t NumEntries = CurLevel == 0 ? InitialSize : IncSize; |
| 387 | uint64_t Remainder = Selector / NumEntries; |
| 388 | Selector = Selector % NumEntries; |
| 389 | MapEntry &Entry = Entries[Selector]; |
| 390 | |
| 391 | // A hit |
| 392 | if (Entry.Key == Key) { |
| 393 | // DEBUG(Entry.dump("Hit: ")); |
| 394 | return Entry; |
| 395 | } |
| 396 | |
| 397 | // Vacant - add new entry |
| 398 | if (Entry.Key == VacantMarker) { |
| 399 | Entry.Key = Key; |
| 400 | // DEBUG(Entry.dump("Adding new entry: ")); |
| 401 | return Entry; |
| 402 | } |
| 403 | |
| 404 | // Defer to the next level |
| 405 | if (Entry.Key & FollowUpTableMarker) { |
| 406 | return getEntry( |
| 407 | reinterpret_cast<MapEntry *>(Entry.Key & ~FollowUpTableMarker), |
| 408 | Key, Remainder, Alloc, CurLevel + 1); |
| 409 | } |
| 410 | |
| 411 | // Conflict - create the next level |
| 412 | // DEBUG(Entry.dump("Creating new level: ")); |
| 413 | |
| 414 | MapEntry *NextLevelTbl = new (Alloc, 0) MapEntry[IncSize]; |
| 415 | // DEBUG( |
| 416 | // reportNumber("Newly allocated level: 0x", uint64_t(NextLevelTbl), |
| 417 | // 16)); |
| 418 | uint64_t CurEntrySelector = Entry.Key / InitialSize; |
| 419 | for (int I = 0; I < CurLevel; ++I) |
| 420 | CurEntrySelector /= IncSize; |
| 421 | CurEntrySelector = CurEntrySelector % IncSize; |
| 422 | NextLevelTbl[CurEntrySelector] = Entry; |
| 423 | Entry.Key = reinterpret_cast<uint64_t>(NextLevelTbl) | FollowUpTableMarker; |
| 424 | assert((NextLevelTbl[CurEntrySelector].Key & ~FollowUpTableMarker) != |
| 425 | uint64_t(Entries), |
| 426 | "circular reference created!\n"); |
| 427 | // DEBUG(NextLevelTbl[CurEntrySelector].dump("New level entry: ")); |
| 428 | // DEBUG(Entry.dump("Updated old entry: ")); |
| 429 | return getEntry(NextLevelTbl, Key, Remainder, Alloc, CurLevel + 1); |
| 430 | } |
| 431 | |
| 432 | MapEntry &getOrAllocEntry(uint64_t Key, BumpPtrAllocator &Alloc) { |
| 433 | if (TableRoot) { |
| 434 | MapEntry &E = getEntry(TableRoot, Key, Key, Alloc, 0); |
| 435 | assert(!(E.Key & FollowUpTableMarker), "Invalid entry!"); |
| 436 | return E; |
| 437 | } |
| 438 | return firstAllocation(Key, Alloc); |
| 439 | } |
| 440 | }; |
| 441 | |
| 442 | template <typename T> void resetIndCallCounter(T &Entry) { |
| 443 | Entry.Val = 0; |
| 444 | } |
| 445 | |
| 446 | template <typename T, uint32_t X, uint32_t Y> |
| 447 | void SimpleHashTable<T, X, Y>::resetCounters() { |
| 448 | forEachElement(resetIndCallCounter); |
| 449 | } |
| 450 | |
| 451 | /// Represents a hash table mapping a function target address to its counter. |
| 452 | using IndirectCallHashTable = SimpleHashTable<>; |
| 453 | |
| 454 | /// Initialize with number 1 instead of 0 so we don't go into .bss. This is the |
| 455 | /// global array of all hash tables storing indirect call destinations happening |
| 456 | /// during runtime, one table per call site. |
| 457 | IndirectCallHashTable *GlobalIndCallCounters{ |
| 458 | reinterpret_cast<IndirectCallHashTable *>(1)}; |
| 459 | |
| 460 | /// Don't allow reentrancy in the fdata writing phase - only one thread writes |
| 461 | /// it |
| 462 | Mutex *GlobalWriteProfileMutex{reinterpret_cast<Mutex *>(1)}; |
| 463 | |
| 464 | /// Store number of calls in additional to target address (Key) and frequency |
| 465 | /// as perceived by the basic block counter (Val). |
| 466 | struct CallFlowEntryBase : public SimpleHashTableEntryBase { |
| 467 | uint64_t Calls; |
| 468 | }; |
| 469 | |
| 470 | using CallFlowHashTableBase = SimpleHashTable<CallFlowEntryBase, 11939, 233>; |
| 471 | |
| 472 | /// This is a large table indexing all possible call targets (indirect and |
| 473 | /// direct ones). The goal is to find mismatches between number of calls (for |
| 474 | /// those calls we were able to track) and the entry basic block counter of the |
| 475 | /// callee. In most cases, these two should be equal. If not, there are two |
| 476 | /// possible scenarios here: |
| 477 | /// |
| 478 | /// * Entry BB has higher frequency than all known calls to this function. |
| 479 | /// In this case, we have dynamic library code or any uninstrumented code |
| 480 | /// calling this function. We will write the profile for these untracked |
| 481 | /// calls as having source "0 [unknown] 0" in the fdata file. |
| 482 | /// |
| 483 | /// * Number of known calls is higher than the frequency of entry BB |
| 484 | /// This only happens when there is no counter for the entry BB / callee |
| 485 | /// function is not simple (in BOLT terms). We don't do anything special |
| 486 | /// here and just ignore those (we still report all calls to the non-simple |
| 487 | /// function, though). |
| 488 | /// |
| 489 | class CallFlowHashTable : public CallFlowHashTableBase { |
| 490 | public: |
| 491 | CallFlowHashTable(BumpPtrAllocator &Alloc) : Alloc(Alloc) {} |
| 492 | |
| 493 | MapEntry &get(uint64_t Key) { return CallFlowHashTableBase::get(Key, Alloc); } |
| 494 | |
| 495 | private: |
| 496 | // Different than the hash table for indirect call targets, we do store the |
| 497 | // allocator here since there is only one call flow hash and space overhead |
| 498 | // is negligible. |
| 499 | BumpPtrAllocator &Alloc; |
| 500 | }; |
| 501 | |
| 502 | /// |
| 503 | /// Description metadata emitted by BOLT to describe the program - refer to |
| 504 | /// Passes/Instrumentation.cpp - Instrumentation::emitTablesAsELFNote() |
| 505 | /// |
| 506 | struct Location { |
| 507 | uint32_t FunctionName; |
| 508 | uint32_t Offset; |
| 509 | }; |
| 510 | |
| 511 | struct CallDescription { |
| 512 | Location From; |
| 513 | uint32_t FromNode; |
| 514 | Location To; |
| 515 | uint32_t Counter; |
| 516 | uint64_t TargetAddress; |
| 517 | }; |
| 518 | |
| 519 | using IndCallDescription = Location; |
| 520 | |
| 521 | struct IndCallTargetDescription { |
| 522 | Location Loc; |
| 523 | uint64_t Address; |
| 524 | }; |
| 525 | |
| 526 | struct EdgeDescription { |
| 527 | Location From; |
| 528 | uint32_t FromNode; |
| 529 | Location To; |
| 530 | uint32_t ToNode; |
| 531 | uint32_t Counter; |
| 532 | }; |
| 533 | |
| 534 | struct InstrumentedNode { |
| 535 | uint32_t Node; |
| 536 | uint32_t Counter; |
| 537 | }; |
| 538 | |
| 539 | struct EntryNode { |
| 540 | uint64_t Node; |
| 541 | uint64_t Address; |
| 542 | }; |
| 543 | |
| 544 | struct FunctionDescription { |
| 545 | uint32_t NumLeafNodes; |
| 546 | const InstrumentedNode *LeafNodes; |
| 547 | uint32_t NumEdges; |
| 548 | const EdgeDescription *Edges; |
| 549 | uint32_t NumCalls; |
| 550 | const CallDescription *Calls; |
| 551 | uint32_t NumEntryNodes; |
| 552 | const EntryNode *EntryNodes; |
| 553 | |
| 554 | /// Constructor will parse the serialized function metadata written by BOLT |
| 555 | FunctionDescription(const uint8_t *FuncDesc); |
| 556 | |
| 557 | uint64_t getSize() const { |
| 558 | return 16 + NumLeafNodes * sizeof(InstrumentedNode) + |
| 559 | NumEdges * sizeof(EdgeDescription) + |
| 560 | NumCalls * sizeof(CallDescription) + |
| 561 | NumEntryNodes * sizeof(EntryNode); |
| 562 | } |
| 563 | }; |
| 564 | |
| 565 | /// The context is created when the fdata profile needs to be written to disk |
| 566 | /// and we need to interpret our runtime counters. It contains pointers to the |
| 567 | /// mmaped binary (only the BOLT written metadata section). Deserialization |
| 568 | /// should be straightforward as most data is POD or an array of POD elements. |
| 569 | /// This metadata is used to reconstruct function CFGs. |
| 570 | struct ProfileWriterContext { |
| 571 | IndCallDescription *IndCallDescriptions; |
| 572 | IndCallTargetDescription *IndCallTargets; |
| 573 | uint8_t *FuncDescriptions; |
| 574 | char *Strings; // String table with function names used in this binary |
| 575 | int FileDesc; // File descriptor for the file on disk backing this |
| 576 | // information in memory via mmap |
| 577 | void *MMapPtr; // The mmap ptr |
| 578 | int MMapSize; // The mmap size |
| 579 | |
| 580 | /// Hash table storing all possible call destinations to detect untracked |
| 581 | /// calls and correctly report them as [unknown] in output fdata. |
| 582 | CallFlowHashTable *CallFlowTable; |
| 583 | |
| 584 | /// Lookup the sorted indirect call target vector to fetch function name and |
| 585 | /// offset for an arbitrary function pointer. |
| 586 | const IndCallTargetDescription *lookupIndCallTarget(uint64_t Target) const; |
| 587 | }; |
| 588 | |
| 589 | /// Perform a string comparison and returns zero if Str1 matches Str2. Compares |
| 590 | /// at most Size characters. |
| 591 | int compareStr(const char *Str1, const char *Str2, int Size) { |
| 592 | while (*Str1 == *Str2) { |
| 593 | if (*Str1 == '\0' || --Size == 0) |
| 594 | return 0; |
| 595 | ++Str1; |
| 596 | ++Str2; |
| 597 | } |
| 598 | return 1; |
| 599 | } |
| 600 | |
| 601 | /// Output Location to the fdata file |
| 602 | char *serializeLoc(const ProfileWriterContext &Ctx, char *OutBuf, |
| 603 | const Location Loc, uint32_t BufSize) { |
| 604 | // fdata location format: Type Name Offset |
| 605 | // Type 1 - regular symbol |
| 606 | OutBuf = strCopy(OutBuf, "1 "); |
| 607 | const char *Str = Ctx.Strings + Loc.FunctionName; |
| 608 | uint32_t Size = 25; |
| 609 | while (*Str) { |
| 610 | *OutBuf++ = *Str++; |
| 611 | if (++Size >= BufSize) |
| 612 | break; |
| 613 | } |
| 614 | assert(!*Str, "buffer overflow, function name too large"); |
| 615 | *OutBuf++ = ' '; |
| 616 | OutBuf = intToStr(OutBuf, Loc.Offset, 16); |
| 617 | *OutBuf++ = ' '; |
| 618 | return OutBuf; |
| 619 | } |
| 620 | |
| 621 | /// Read and deserialize a function description written by BOLT. \p FuncDesc |
| 622 | /// points at the beginning of the function metadata structure in the file. |
| 623 | /// See Instrumentation::emitTablesAsELFNote() |
| 624 | FunctionDescription::FunctionDescription(const uint8_t *FuncDesc) { |
| 625 | NumLeafNodes = *reinterpret_cast<const uint32_t *>(FuncDesc); |
| 626 | DEBUG(reportNumber("NumLeafNodes = ", NumLeafNodes, 10)){}; |
| 627 | LeafNodes = reinterpret_cast<const InstrumentedNode *>(FuncDesc + 4); |
| 628 | |
| 629 | NumEdges = *reinterpret_cast<const uint32_t *>( |
| 630 | FuncDesc + 4 + NumLeafNodes * sizeof(InstrumentedNode)); |
| 631 | DEBUG(reportNumber("NumEdges = ", NumEdges, 10)){}; |
| 632 | Edges = reinterpret_cast<const EdgeDescription *>( |
| 633 | FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode)); |
| 634 | |
| 635 | NumCalls = *reinterpret_cast<const uint32_t *>( |
| 636 | FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode) + |
| 637 | NumEdges * sizeof(EdgeDescription)); |
| 638 | DEBUG(reportNumber("NumCalls = ", NumCalls, 10)){}; |
| 639 | Calls = reinterpret_cast<const CallDescription *>( |
| 640 | FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) + |
| 641 | NumEdges * sizeof(EdgeDescription)); |
| 642 | NumEntryNodes = *reinterpret_cast<const uint32_t *>( |
| 643 | FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) + |
| 644 | NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription)); |
| 645 | DEBUG(reportNumber("NumEntryNodes = ", NumEntryNodes, 10)){}; |
| 646 | EntryNodes = reinterpret_cast<const EntryNode *>( |
| 647 | FuncDesc + 16 + NumLeafNodes * sizeof(InstrumentedNode) + |
| 648 | NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription)); |
| 649 | } |
| 650 | |
| 651 | /// Read and mmap descriptions written by BOLT from the executable's notes |
| 652 | /// section |
| 653 | #if defined(HAVE_ELF_H) and !defined(__APPLE__) |
| 654 | |
| 655 | void *__attribute__((noinline)) __get_pc() { |
| 656 | return __builtin_extract_return_addr(__builtin_return_address(0)); |
| 657 | } |
| 658 | |
| 659 | /// Get string with address and parse it to hex pair <StartAddress, EndAddress> |
| 660 | bool parseAddressRange(const char *Str, uint64_t &StartAddress, |
| 661 | uint64_t &EndAddress) { |
| 662 | if (!Str) |
| 663 | return false; |
| 664 | // Parsed string format: <hex1>-<hex2> |
| 665 | StartAddress = hexToLong(Str, '-'); |
| 666 | while (*Str && *Str != '-') |
| 667 | ++Str; |
| 668 | if (!*Str) |
| 669 | return false; |
| 670 | ++Str; // swallow '-' |
| 671 | EndAddress = hexToLong(Str); |
| 672 | return true; |
| 673 | } |
| 674 | |
| 675 | /// Get full path to the real binary by getting current virtual address |
| 676 | /// and searching for the appropriate link in address range in |
| 677 | /// /proc/self/map_files |
| 678 | static char *getBinaryPath() { |
| 679 | const uint32_t BufSize = 1024; |
| 680 | const uint32_t NameMax = 4096; |
| 681 | const char DirPath[] = "/proc/self/map_files/"; |
| 682 | static char TargetPath[NameMax] = {}; |
| 683 | char Buf[BufSize]; |
| 684 | |
| 685 | if (__bolt_instr_binpath[0] != '\0') |
| 686 | return __bolt_instr_binpath; |
| 687 | |
| 688 | if (TargetPath[0] != '\0') |
| 689 | return TargetPath; |
| 690 | |
| 691 | unsigned long CurAddr = (unsigned long)__get_pc(); |
| 692 | uint64_t FDdir = __open(DirPath, O_RDONLY0, |
| 693 | /*mode=*/0666); |
| 694 | assert(static_cast<int64_t>(FDdir) >= 0, |
| 695 | "failed to open /proc/self/map_files"); |
| 696 | |
| 697 | while (long Nread = __getdents64(FDdir, (struct dirent64 *)Buf, BufSize)) { |
| 698 | assert(static_cast<int64_t>(Nread) != -1, "failed to get folder entries"); |
| 699 | |
| 700 | struct dirent64 *d; |
| 701 | for (long Bpos = 0; Bpos < Nread; Bpos += d->d_reclen) { |
| 702 | d = (struct dirent64 *)(Buf + Bpos); |
| 703 | |
| 704 | uint64_t StartAddress, EndAddress; |
| 705 | if (!parseAddressRange(d->d_name, StartAddress, EndAddress)) |
| 706 | continue; |
| 707 | if (CurAddr < StartAddress || CurAddr > EndAddress) |
| 708 | continue; |
| 709 | char FindBuf[NameMax]; |
| 710 | char *C = strCopy(FindBuf, DirPath, NameMax); |
| 711 | C = strCopy(C, d->d_name, NameMax - (C - FindBuf)); |
| 712 | *C = '\0'; |
| 713 | uint32_t Ret = __readlink(FindBuf, TargetPath, sizeof(TargetPath)); |
| 714 | assert(Ret != -1 && Ret != BufSize, "readlink error"); |
| 715 | TargetPath[Ret] = '\0'; |
| 716 | return TargetPath; |
| 717 | } |
| 718 | } |
| 719 | return nullptr; |
| 720 | } |
| 721 | |
| 722 | ProfileWriterContext readDescriptions() { |
| 723 | ProfileWriterContext Result; |
| 724 | char *BinPath = getBinaryPath(); |
| 725 | assert(BinPath && BinPath[0] != '\0', "failed to find binary path"); |
| 726 | |
| 727 | uint64_t FD = __open(BinPath, O_RDONLY0, |
| 728 | /*mode=*/0666); |
| 729 | assert(static_cast<int64_t>(FD) >= 0, "failed to open binary path"); |
| 730 | |
| 731 | Result.FileDesc = FD; |
| 732 | |
| 733 | // mmap our binary to memory |
| 734 | uint64_t Size = __lseek(FD, 0, SEEK_END2); |
| 735 | uint8_t *BinContents = reinterpret_cast<uint8_t *>( |
| 736 | __mmap(0, Size, PROT_READ0x1, MAP_PRIVATE0x02, FD, 0)); |
| 737 | assert(BinContents != MAP_FAILED((void *)-1), "readDescriptions: Failed to mmap self!"); |
| 738 | Result.MMapPtr = BinContents; |
| 739 | Result.MMapSize = Size; |
| 740 | Elf64_Ehdr *Hdr = reinterpret_cast<Elf64_Ehdr *>(BinContents); |
| 741 | Elf64_Shdr *Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff); |
| 742 | Elf64_Shdr *StringTblHeader = reinterpret_cast<Elf64_Shdr *>( |
| 743 | BinContents + Hdr->e_shoff + Hdr->e_shstrndx * Hdr->e_shentsize); |
| 744 | |
| 745 | // Find .bolt.instr.tables with the data we need and set pointers to it |
| 746 | for (int I = 0; I < Hdr->e_shnum; ++I) { |
| 747 | char *SecName = reinterpret_cast<char *>( |
| 748 | BinContents + StringTblHeader->sh_offset + Shdr->sh_name); |
| 749 | if (compareStr(SecName, ".bolt.instr.tables", 64) != 0) { |
| 750 | Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff + |
| 751 | (I + 1) * Hdr->e_shentsize); |
| 752 | continue; |
| 753 | } |
| 754 | // Actual contents of the ELF note start after offset 20 decimal: |
| 755 | // Offset 0: Producer name size (4 bytes) |
| 756 | // Offset 4: Contents size (4 bytes) |
| 757 | // Offset 8: Note type (4 bytes) |
| 758 | // Offset 12: Producer name (BOLT\0) (5 bytes + align to 4-byte boundary) |
| 759 | // Offset 20: Contents |
| 760 | uint32_t IndCallDescSize = |
| 761 | *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 20); |
| 762 | uint32_t IndCallTargetDescSize = *reinterpret_cast<uint32_t *>( |
| 763 | BinContents + Shdr->sh_offset + 24 + IndCallDescSize); |
| 764 | uint32_t FuncDescSize = |
| 765 | *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 28 + |
| 766 | IndCallDescSize + IndCallTargetDescSize); |
| 767 | Result.IndCallDescriptions = reinterpret_cast<IndCallDescription *>( |
| 768 | BinContents + Shdr->sh_offset + 24); |
| 769 | Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>( |
| 770 | BinContents + Shdr->sh_offset + 28 + IndCallDescSize); |
| 771 | Result.FuncDescriptions = BinContents + Shdr->sh_offset + 32 + |
| 772 | IndCallDescSize + IndCallTargetDescSize; |
| 773 | Result.Strings = reinterpret_cast<char *>( |
| 774 | BinContents + Shdr->sh_offset + 32 + IndCallDescSize + |
| 775 | IndCallTargetDescSize + FuncDescSize); |
| 776 | return Result; |
| 777 | } |
| 778 | const char ErrMsg[] = |
| 779 | "BOLT instrumentation runtime error: could not find section " |
| 780 | ".bolt.instr.tables\n"; |
| 781 | reportError(ErrMsg, sizeof(ErrMsg)); |
| 782 | return Result; |
| 783 | } |
| 784 | |
| 785 | #else |
| 786 | |
| 787 | ProfileWriterContext readDescriptions() { |
| 788 | ProfileWriterContext Result; |
| 789 | uint8_t *Tables = _bolt_instr_tables_getter(); |
| 790 | uint32_t IndCallDescSize = *reinterpret_cast<uint32_t *>(Tables); |
| 791 | uint32_t IndCallTargetDescSize = |
| 792 | *reinterpret_cast<uint32_t *>(Tables + 4 + IndCallDescSize); |
| 793 | uint32_t FuncDescSize = *reinterpret_cast<uint32_t *>( |
| 794 | Tables + 8 + IndCallDescSize + IndCallTargetDescSize); |
| 795 | Result.IndCallDescriptions = |
| 796 | reinterpret_cast<IndCallDescription *>(Tables + 4); |
| 797 | Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>( |
| 798 | Tables + 8 + IndCallDescSize); |
| 799 | Result.FuncDescriptions = |
| 800 | Tables + 12 + IndCallDescSize + IndCallTargetDescSize; |
| 801 | Result.Strings = reinterpret_cast<char *>( |
| 802 | Tables + 12 + IndCallDescSize + IndCallTargetDescSize + FuncDescSize); |
| 803 | return Result; |
| 804 | } |
| 805 | |
| 806 | #endif |
| 807 | |
| 808 | #if !defined(__APPLE__) |
| 809 | /// Debug by printing overall metadata global numbers to check it is sane |
| 810 | void printStats(const ProfileWriterContext &Ctx) { |
| 811 | char StatMsg[BufSize]; |
| 812 | char *StatPtr = StatMsg; |
| 813 | StatPtr = |
| 814 | strCopy(StatPtr, |
| 815 | "\nBOLT INSTRUMENTATION RUNTIME STATISTICS\n\nIndCallDescSize: "); |
| 816 | StatPtr = intToStr(StatPtr, |
| 817 | Ctx.FuncDescriptions - |
| 818 | reinterpret_cast<uint8_t *>(Ctx.IndCallDescriptions), |
| 819 | 10); |
| 820 | StatPtr = strCopy(StatPtr, "\nFuncDescSize: "); |
| 821 | StatPtr = intToStr( |
| 822 | StatPtr, |
| 823 | reinterpret_cast<uint8_t *>(Ctx.Strings) - Ctx.FuncDescriptions, 10); |
| 824 | StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_ind_calls: "); |
| 825 | StatPtr = intToStr(StatPtr, __bolt_instr_num_ind_calls, 10); |
| 826 | StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_funcs: "); |
| 827 | StatPtr = intToStr(StatPtr, __bolt_instr_num_funcs, 10); |
| 828 | StatPtr = strCopy(StatPtr, "\n"); |
| 829 | __write(2, StatMsg, StatPtr - StatMsg); |
| 830 | } |
| 831 | #endif |
| 832 | |
| 833 | |
| 834 | /// This is part of a simple CFG representation in memory, where we store |
| 835 | /// a dynamically sized array of input and output edges per node, and store |
| 836 | /// a dynamically sized array of nodes per graph. We also store the spanning |
| 837 | /// tree edges for that CFG in a separate array of nodes in |
| 838 | /// \p SpanningTreeNodes, while the regular nodes live in \p CFGNodes. |
| 839 | struct Edge { |
| 840 | uint32_t Node; // Index in nodes array regarding the destination of this edge |
| 841 | uint32_t ID; // Edge index in an array comprising all edges of the graph |
| 842 | }; |
| 843 | |
| 844 | /// A regular graph node or a spanning tree node |
| 845 | struct Node { |
| 846 | uint32_t NumInEdges{0}; // Input edge count used to size InEdge |
| 847 | uint32_t NumOutEdges{0}; // Output edge count used to size OutEdges |
| 848 | Edge *InEdges{nullptr}; // Created and managed by \p Graph |
| 849 | Edge *OutEdges{nullptr}; // ditto |
| 850 | }; |
| 851 | |
| 852 | /// Main class for CFG representation in memory. Manages object creation and |
| 853 | /// destruction, populates an array of CFG nodes as well as corresponding |
| 854 | /// spanning tree nodes. |
| 855 | struct Graph { |
| 856 | uint32_t NumNodes; |
| 857 | Node *CFGNodes; |
| 858 | Node *SpanningTreeNodes; |
| 859 | uint64_t *EdgeFreqs; |
| 860 | uint64_t *CallFreqs; |
| 861 | BumpPtrAllocator &Alloc; |
| 862 | const FunctionDescription &D; |
| 863 | |
| 864 | /// Reads a list of edges from function description \p D and builds |
| 865 | /// the graph from it. Allocates several internal dynamic structures that are |
| 866 | /// later destroyed by ~Graph() and uses \p Alloc. D.LeafNodes contain all |
| 867 | /// spanning tree leaf nodes descriptions (their counters). They are the seed |
| 868 | /// used to compute the rest of the missing edge counts in a bottom-up |
| 869 | /// traversal of the spanning tree. |
| 870 | Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D, |
| 871 | const uint64_t *Counters, ProfileWriterContext &Ctx); |
| 872 | ~Graph(); |
| 873 | void dump() const; |
| 874 | |
| 875 | private: |
| 876 | void computeEdgeFrequencies(const uint64_t *Counters, |
| 877 | ProfileWriterContext &Ctx); |
| 878 | void dumpEdgeFreqs() const; |
| 879 | }; |
| 880 | |
| 881 | Graph::Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D, |
| 882 | const uint64_t *Counters, ProfileWriterContext &Ctx) |
| 883 | : Alloc(Alloc), D(D) { |
| 884 | DEBUG(reportNumber("G = 0x", (uint64_t)this, 16)){}; |
| 885 | // First pass to determine number of nodes |
| 886 | int32_t MaxNodes = -1; |
| 887 | CallFreqs = nullptr; |
| 888 | EdgeFreqs = nullptr; |
| 889 | for (int I = 0; I < D.NumEdges; ++I) { |
| 890 | if (static_cast<int32_t>(D.Edges[I].FromNode) > MaxNodes) |
| 891 | MaxNodes = D.Edges[I].FromNode; |
| 892 | if (static_cast<int32_t>(D.Edges[I].ToNode) > MaxNodes) |
| 893 | MaxNodes = D.Edges[I].ToNode; |
| 894 | } |
| 895 | |
| 896 | for (int I = 0; I < D.NumLeafNodes; ++I) |
| 897 | if (static_cast<int32_t>(D.LeafNodes[I].Node) > MaxNodes) |
| 898 | MaxNodes = D.LeafNodes[I].Node; |
| 899 | |
| 900 | for (int I = 0; I < D.NumCalls; ++I) |
| 901 | if (static_cast<int32_t>(D.Calls[I].FromNode) > MaxNodes) |
| 902 | MaxNodes = D.Calls[I].FromNode; |
| 903 | |
| 904 | // No nodes? Nothing to do |
| 905 | if (MaxNodes < 0) { |
| 906 | DEBUG(report("No nodes!\n")){}; |
| 907 | CFGNodes = nullptr; |
| 908 | SpanningTreeNodes = nullptr; |
| 909 | NumNodes = 0; |
| 910 | return; |
| 911 | } |
| 912 | ++MaxNodes; |
| 913 | DEBUG(reportNumber("NumNodes = ", MaxNodes, 10)){}; |
| 914 | NumNodes = static_cast<uint32_t>(MaxNodes); |
| 915 | |
| 916 | // Initial allocations |
| 917 | CFGNodes = new (Alloc) Node[MaxNodes]; |
| 918 | |
| 919 | DEBUG(reportNumber("G->CFGNodes = 0x", (uint64_t)CFGNodes, 16)){}; |
| 920 | SpanningTreeNodes = new (Alloc) Node[MaxNodes]; |
| 921 | DEBUG(reportNumber("G->SpanningTreeNodes = 0x",{} |
| 922 | (uint64_t)SpanningTreeNodes, 16)){}; |
| 923 | |
| 924 | // Figure out how much to allocate to each vector (in/out edge sets) |
| 925 | for (int I = 0; I < D.NumEdges; ++I) { |
| 926 | CFGNodes[D.Edges[I].FromNode].NumOutEdges++; |
| 927 | CFGNodes[D.Edges[I].ToNode].NumInEdges++; |
| 928 | if (D.Edges[I].Counter != 0xffffffff) |
| 929 | continue; |
| 930 | |
| 931 | SpanningTreeNodes[D.Edges[I].FromNode].NumOutEdges++; |
| 932 | SpanningTreeNodes[D.Edges[I].ToNode].NumInEdges++; |
| 933 | } |
| 934 | |
| 935 | // Allocate in/out edge sets |
| 936 | for (int I = 0; I < MaxNodes; ++I) { |
| 937 | if (CFGNodes[I].NumInEdges > 0) |
| 938 | CFGNodes[I].InEdges = new (Alloc) Edge[CFGNodes[I].NumInEdges]; |
| 939 | if (CFGNodes[I].NumOutEdges > 0) |
| 940 | CFGNodes[I].OutEdges = new (Alloc) Edge[CFGNodes[I].NumOutEdges]; |
| 941 | if (SpanningTreeNodes[I].NumInEdges > 0) |
| 942 | SpanningTreeNodes[I].InEdges = |
| 943 | new (Alloc) Edge[SpanningTreeNodes[I].NumInEdges]; |
| 944 | if (SpanningTreeNodes[I].NumOutEdges > 0) |
| 945 | SpanningTreeNodes[I].OutEdges = |
| 946 | new (Alloc) Edge[SpanningTreeNodes[I].NumOutEdges]; |
| 947 | CFGNodes[I].NumInEdges = 0; |
| 948 | CFGNodes[I].NumOutEdges = 0; |
| 949 | SpanningTreeNodes[I].NumInEdges = 0; |
| 950 | SpanningTreeNodes[I].NumOutEdges = 0; |
| 951 | } |
| 952 | |
| 953 | // Fill in/out edge sets |
| 954 | for (int I = 0; I < D.NumEdges; ++I) { |
| 955 | const uint32_t Src = D.Edges[I].FromNode; |
| 956 | const uint32_t Dst = D.Edges[I].ToNode; |
| 957 | Edge *E = &CFGNodes[Src].OutEdges[CFGNodes[Src].NumOutEdges++]; |
| 958 | E->Node = Dst; |
| 959 | E->ID = I; |
| 960 | |
| 961 | E = &CFGNodes[Dst].InEdges[CFGNodes[Dst].NumInEdges++]; |
| 962 | E->Node = Src; |
| 963 | E->ID = I; |
| 964 | |
| 965 | if (D.Edges[I].Counter != 0xffffffff) |
| 966 | continue; |
| 967 | |
| 968 | E = &SpanningTreeNodes[Src] |
| 969 | .OutEdges[SpanningTreeNodes[Src].NumOutEdges++]; |
| 970 | E->Node = Dst; |
| 971 | E->ID = I; |
| 972 | |
| 973 | E = &SpanningTreeNodes[Dst] |
| 974 | .InEdges[SpanningTreeNodes[Dst].NumInEdges++]; |
| 975 | E->Node = Src; |
| 976 | E->ID = I; |
| 977 | } |
| 978 | |
| 979 | computeEdgeFrequencies(Counters, Ctx); |
| 980 | } |
| 981 | |
| 982 | Graph::~Graph() { |
| 983 | if (CallFreqs) |
| 984 | Alloc.deallocate(CallFreqs); |
| 985 | if (EdgeFreqs) |
| 986 | Alloc.deallocate(EdgeFreqs); |
| 987 | for (int I = NumNodes - 1; I >= 0; --I) { |
| 988 | if (SpanningTreeNodes[I].OutEdges) |
| 989 | Alloc.deallocate(SpanningTreeNodes[I].OutEdges); |
| 990 | if (SpanningTreeNodes[I].InEdges) |
| 991 | Alloc.deallocate(SpanningTreeNodes[I].InEdges); |
| 992 | if (CFGNodes[I].OutEdges) |
| 993 | Alloc.deallocate(CFGNodes[I].OutEdges); |
| 994 | if (CFGNodes[I].InEdges) |
| 995 | Alloc.deallocate(CFGNodes[I].InEdges); |
| 996 | } |
| 997 | if (SpanningTreeNodes) |
| 998 | Alloc.deallocate(SpanningTreeNodes); |
| 999 | if (CFGNodes) |
| 1000 | Alloc.deallocate(CFGNodes); |
| 1001 | } |
| 1002 | |
| 1003 | void Graph::dump() const { |
| 1004 | reportNumber("Dumping graph with number of nodes: ", NumNodes, 10); |
| 1005 | report(" Full graph:\n"); |
| 1006 | for (int I = 0; I < NumNodes; ++I) { |
| 1007 | const Node *N = &CFGNodes[I]; |
| 1008 | reportNumber(" Node #", I, 10); |
| 1009 | reportNumber(" InEdges total ", N->NumInEdges, 10); |
| 1010 | for (int J = 0; J < N->NumInEdges; ++J) |
| 1011 | reportNumber(" ", N->InEdges[J].Node, 10); |
| 1012 | reportNumber(" OutEdges total ", N->NumOutEdges, 10); |
| 1013 | for (int J = 0; J < N->NumOutEdges; ++J) |
| 1014 | reportNumber(" ", N->OutEdges[J].Node, 10); |
| 1015 | report("\n"); |
| 1016 | } |
| 1017 | report(" Spanning tree:\n"); |
| 1018 | for (int I = 0; I < NumNodes; ++I) { |
| 1019 | const Node *N = &SpanningTreeNodes[I]; |
| 1020 | reportNumber(" Node #", I, 10); |
| 1021 | reportNumber(" InEdges total ", N->NumInEdges, 10); |
| 1022 | for (int J = 0; J < N->NumInEdges; ++J) |
| 1023 | reportNumber(" ", N->InEdges[J].Node, 10); |
| 1024 | reportNumber(" OutEdges total ", N->NumOutEdges, 10); |
| 1025 | for (int J = 0; J < N->NumOutEdges; ++J) |
| 1026 | reportNumber(" ", N->OutEdges[J].Node, 10); |
| 1027 | report("\n"); |
| 1028 | } |
| 1029 | } |
| 1030 | |
| 1031 | void Graph::dumpEdgeFreqs() const { |
| 1032 | reportNumber( |
| 1033 | "Dumping edge frequencies for graph with num edges: ", D.NumEdges, 10); |
| 1034 | for (int I = 0; I < D.NumEdges; ++I) { |
| 1035 | reportNumber("* Src: ", D.Edges[I].FromNode, 10); |
| 1036 | reportNumber(" Dst: ", D.Edges[I].ToNode, 10); |
| 1037 | reportNumber(" Cnt: ", EdgeFreqs[I], 10); |
| 1038 | } |
| 1039 | } |
| 1040 | |
| 1041 | /// Auxiliary map structure for fast lookups of which calls map to each node of |
| 1042 | /// the function CFG |
| 1043 | struct NodeToCallsMap { |
| 1044 | struct MapEntry { |
| 1045 | uint32_t NumCalls; |
| 1046 | uint32_t *Calls; |
| 1047 | }; |
| 1048 | MapEntry *Entries; |
| 1049 | BumpPtrAllocator &Alloc; |
| 1050 | const uint32_t NumNodes; |
| 1051 | |
| 1052 | NodeToCallsMap(BumpPtrAllocator &Alloc, const FunctionDescription &D, |
| 1053 | uint32_t NumNodes) |
| 1054 | : Alloc(Alloc), NumNodes(NumNodes) { |
| 1055 | Entries = new (Alloc, 0) MapEntry[NumNodes]; |
| 1056 | for (int I = 0; I < D.NumCalls; ++I) { |
| 1057 | DEBUG(reportNumber("Registering call in node ", D.Calls[I].FromNode, 10)){}; |
| 1058 | ++Entries[D.Calls[I].FromNode].NumCalls; |
| 1059 | } |
| 1060 | for (int I = 0; I < NumNodes; ++I) { |
| 1061 | Entries[I].Calls = Entries[I].NumCalls ? new (Alloc) |
| 1062 | uint32_t[Entries[I].NumCalls] |
| 1063 | : nullptr; |
| 1064 | Entries[I].NumCalls = 0; |
| 1065 | } |
| 1066 | for (int I = 0; I < D.NumCalls; ++I) { |
| 1067 | MapEntry &Entry = Entries[D.Calls[I].FromNode]; |
| 1068 | Entry.Calls[Entry.NumCalls++] = I; |
| 1069 | } |
| 1070 | } |
| 1071 | |
| 1072 | /// Set the frequency of all calls in node \p NodeID to Freq. However, if |
| 1073 | /// the calls have their own counters and do not depend on the basic block |
| 1074 | /// counter, this means they have landing pads and throw exceptions. In this |
| 1075 | /// case, set their frequency with their counters and return the maximum |
| 1076 | /// value observed in such counters. This will be used as the new frequency |
| 1077 | /// at basic block entry. This is used to fix the CFG edge frequencies in the |
| 1078 | /// presence of exceptions. |
| 1079 | uint64_t visitAllCallsIn(uint32_t NodeID, uint64_t Freq, uint64_t *CallFreqs, |
| 1080 | const FunctionDescription &D, |
| 1081 | const uint64_t *Counters, |
| 1082 | ProfileWriterContext &Ctx) const { |
| 1083 | const MapEntry &Entry = Entries[NodeID]; |
| 1084 | uint64_t MaxValue = 0ull; |
| 1085 | for (int I = 0, E = Entry.NumCalls; I != E; ++I) { |
| 1086 | const uint32_t CallID = Entry.Calls[I]; |
| 1087 | DEBUG(reportNumber(" Setting freq for call ID: ", CallID, 10)){}; |
| 1088 | const CallDescription &CallDesc = D.Calls[CallID]; |
| 1089 | if (CallDesc.Counter == 0xffffffff) { |
| 1090 | CallFreqs[CallID] = Freq; |
| 1091 | DEBUG(reportNumber(" with : ", Freq, 10)){}; |
| 1092 | } else { |
| 1093 | const uint64_t CounterVal = Counters[CallDesc.Counter]; |
| 1094 | CallFreqs[CallID] = CounterVal; |
| 1095 | MaxValue = CounterVal > MaxValue ? CounterVal : MaxValue; |
| 1096 | DEBUG(reportNumber(" with (private counter) : ", CounterVal, 10)){}; |
| 1097 | } |
| 1098 | DEBUG(reportNumber(" Address: 0x", CallDesc.TargetAddress, 16)){}; |
| 1099 | if (CallFreqs[CallID] > 0) |
| 1100 | Ctx.CallFlowTable->get(CallDesc.TargetAddress).Calls += |
| 1101 | CallFreqs[CallID]; |
| 1102 | } |
| 1103 | return MaxValue; |
| 1104 | } |
| 1105 | |
| 1106 | ~NodeToCallsMap() { |
| 1107 | for (int I = NumNodes - 1; I >= 0; --I) |
| 1108 | if (Entries[I].Calls) |
| 1109 | Alloc.deallocate(Entries[I].Calls); |
| 1110 | Alloc.deallocate(Entries); |
| 1111 | } |
| 1112 | }; |
| 1113 | |
| 1114 | /// Fill an array with the frequency of each edge in the function represented |
| 1115 | /// by G, as well as another array for each call. |
| 1116 | void Graph::computeEdgeFrequencies(const uint64_t *Counters, |
| 1117 | ProfileWriterContext &Ctx) { |
| 1118 | if (NumNodes == 0) |
| 1119 | return; |
| 1120 | |
| 1121 | EdgeFreqs = D.NumEdges ? new (Alloc, 0) uint64_t [D.NumEdges] : nullptr; |
| 1122 | CallFreqs = D.NumCalls ? new (Alloc, 0) uint64_t [D.NumCalls] : nullptr; |
| 1123 | |
| 1124 | // Setup a lookup for calls present in each node (BB) |
| 1125 | NodeToCallsMap *CallMap = new (Alloc) NodeToCallsMap(Alloc, D, NumNodes); |
| 1126 | |
| 1127 | // Perform a bottom-up, BFS traversal of the spanning tree in G. Edges in the |
| 1128 | // spanning tree don't have explicit counters. We must infer their value using |
| 1129 | // a linear combination of other counters (sum of counters of the outgoing |
| 1130 | // edges minus sum of counters of the incoming edges). |
| 1131 | uint32_t *Stack = new (Alloc) uint32_t [NumNodes]; |
| 1132 | uint32_t StackTop = 0; |
| 1133 | enum Status : uint8_t { S_NEW = 0, S_VISITING, S_VISITED }; |
| 1134 | Status *Visited = new (Alloc, 0) Status[NumNodes]; |
| 1135 | uint64_t *LeafFrequency = new (Alloc, 0) uint64_t[NumNodes]; |
| 1136 | uint64_t *EntryAddress = new (Alloc, 0) uint64_t[NumNodes]; |
| 1137 | |
| 1138 | // Setup a fast lookup for frequency of leaf nodes, which have special |
| 1139 | // basic block frequency instrumentation (they are not edge profiled). |
| 1140 | for (int I = 0; I < D.NumLeafNodes; ++I) { |
| 1141 | LeafFrequency[D.LeafNodes[I].Node] = Counters[D.LeafNodes[I].Counter]; |
| 1142 | DEBUG({{} |
| 1143 | if (Counters[D.LeafNodes[I].Counter] > 0) {{} |
| 1144 | reportNumber("Leaf Node# ", D.LeafNodes[I].Node, 10);{} |
| 1145 | reportNumber(" Counter: ", Counters[D.LeafNodes[I].Counter], 10);{} |
| 1146 | }{} |
| 1147 | }){}; |
| 1148 | } |
| 1149 | for (int I = 0; I < D.NumEntryNodes; ++I) { |
| 1150 | EntryAddress[D.EntryNodes[I].Node] = D.EntryNodes[I].Address; |
| 1151 | DEBUG({{} |
| 1152 | reportNumber("Entry Node# ", D.EntryNodes[I].Node, 10);{} |
| 1153 | reportNumber(" Address: ", D.EntryNodes[I].Address, 16);{} |
| 1154 | }){}; |
| 1155 | } |
| 1156 | // Add all root nodes to the stack |
| 1157 | for (int I = 0; I < NumNodes; ++I) |
| 1158 | if (SpanningTreeNodes[I].NumInEdges == 0) |
| 1159 | Stack[StackTop++] = I; |
| 1160 | |
| 1161 | // Empty stack? |
| 1162 | if (StackTop == 0) { |
| 1163 | DEBUG(report("Empty stack!\n")){}; |
| 1164 | Alloc.deallocate(EntryAddress); |
| 1165 | Alloc.deallocate(LeafFrequency); |
| 1166 | Alloc.deallocate(Visited); |
| 1167 | Alloc.deallocate(Stack); |
| 1168 | CallMap->~NodeToCallsMap(); |
| 1169 | Alloc.deallocate(CallMap); |
| 1170 | if (CallFreqs) |
| 1171 | Alloc.deallocate(CallFreqs); |
| 1172 | if (EdgeFreqs) |
| 1173 | Alloc.deallocate(EdgeFreqs); |
| 1174 | EdgeFreqs = nullptr; |
| 1175 | CallFreqs = nullptr; |
| 1176 | return; |
| 1177 | } |
| 1178 | // Add all known edge counts, will infer the rest |
| 1179 | for (int I = 0; I < D.NumEdges; ++I) { |
| 1180 | const uint32_t C = D.Edges[I].Counter; |
| 1181 | if (C == 0xffffffff) // inferred counter - we will compute its value |
| 1182 | continue; |
| 1183 | EdgeFreqs[I] = Counters[C]; |
| 1184 | } |
| 1185 | |
| 1186 | while (StackTop > 0) { |
| 1187 | const uint32_t Cur = Stack[--StackTop]; |
| 1188 | DEBUG({{} |
| 1189 | if (Visited[Cur] == S_VISITING){} |
| 1190 | report("(visiting) ");{} |
| 1191 | else{} |
| 1192 | report("(new) ");{} |
| 1193 | reportNumber("Cur: ", Cur, 10);{} |
| 1194 | }){}; |
| 1195 | |
| 1196 | // This shouldn't happen in a tree |
| 1197 | assert(Visited[Cur] != S_VISITED, "should not have visited nodes in stack"); |
| 1198 | if (Visited[Cur] == S_NEW) { |
| 1199 | Visited[Cur] = S_VISITING; |
| 1200 | Stack[StackTop++] = Cur; |
| 1201 | assert(StackTop <= NumNodes, "stack grew too large"); |
| 1202 | for (int I = 0, E = SpanningTreeNodes[Cur].NumOutEdges; I < E; ++I) { |
| 1203 | const uint32_t Succ = SpanningTreeNodes[Cur].OutEdges[I].Node; |
| 1204 | Stack[StackTop++] = Succ; |
| 1205 | assert(StackTop <= NumNodes, "stack grew too large"); |
| 1206 | } |
| 1207 | continue; |
| 1208 | } |
| 1209 | Visited[Cur] = S_VISITED; |
| 1210 | |
| 1211 | // Establish our node frequency based on outgoing edges, which should all be |
| 1212 | // resolved by now. |
| 1213 | int64_t CurNodeFreq = LeafFrequency[Cur]; |
| 1214 | // Not a leaf? |
| 1215 | if (!CurNodeFreq) { |
| 1216 | for (int I = 0, E = CFGNodes[Cur].NumOutEdges; I != E; ++I) { |
| 1217 | const uint32_t SuccEdge = CFGNodes[Cur].OutEdges[I].ID; |
| 1218 | CurNodeFreq += EdgeFreqs[SuccEdge]; |
| 1219 | } |
| 1220 | } |
| 1221 | if (CurNodeFreq < 0) |
| 1222 | CurNodeFreq = 0; |
| 1223 | |
| 1224 | const uint64_t CallFreq = CallMap->visitAllCallsIn( |
| 1225 | Cur, CurNodeFreq > 0 ? CurNodeFreq : 0, CallFreqs, D, Counters, Ctx); |
| 1226 | |
| 1227 | // Exception handling affected our output flow? Fix with calls info |
| 1228 | DEBUG({{} |
| 1229 | if (CallFreq > CurNodeFreq){} |
| 1230 | report("Bumping node frequency with call info\n");{} |
| 1231 | }){}; |
| 1232 | CurNodeFreq = CallFreq > CurNodeFreq ? CallFreq : CurNodeFreq; |
| 1233 | |
| 1234 | if (CurNodeFreq > 0) { |
| 1235 | if (uint64_t Addr = EntryAddress[Cur]) { |
| 1236 | DEBUG({} |
| 1237 | reportNumber(" Setting flow at entry point address 0x", Addr, 16)){}; |
| 1238 | DEBUG(reportNumber(" with: ", CurNodeFreq, 10)){}; |
| 1239 | Ctx.CallFlowTable->get(Addr).Val = CurNodeFreq; |
| 1240 | } |
| 1241 | } |
| 1242 | |
| 1243 | // No parent? Reached a tree root, limit to call frequency updating. |
| 1244 | if (SpanningTreeNodes[Cur].NumInEdges == 0) |
| 1245 | continue; |
| 1246 | |
| 1247 | assert(SpanningTreeNodes[Cur].NumInEdges == 1, "must have 1 parent"); |
| 1248 | const uint32_t Parent = SpanningTreeNodes[Cur].InEdges[0].Node; |
Value stored to 'Parent' during its initialization is never read | |
| 1249 | const uint32_t ParentEdge = SpanningTreeNodes[Cur].InEdges[0].ID; |
| 1250 | |
| 1251 | // Calculate parent edge freq. |
| 1252 | int64_t ParentEdgeFreq = CurNodeFreq; |
| 1253 | for (int I = 0, E = CFGNodes[Cur].NumInEdges; I != E; ++I) { |
| 1254 | const uint32_t PredEdge = CFGNodes[Cur].InEdges[I].ID; |
| 1255 | ParentEdgeFreq -= EdgeFreqs[PredEdge]; |
| 1256 | } |
| 1257 | |
| 1258 | // Sometimes the conservative CFG that BOLT builds will lead to incorrect |
| 1259 | // flow computation. For example, in a BB that transitively calls the exit |
| 1260 | // syscall, BOLT will add a fall-through successor even though it should not |
| 1261 | // have any successors. So this block execution will likely be wrong. We |
| 1262 | // tolerate this imperfection since this case should be quite infrequent. |
| 1263 | if (ParentEdgeFreq < 0) { |
| 1264 | DEBUG(dumpEdgeFreqs()){}; |
| 1265 | DEBUG(report("WARNING: incorrect flow")){}; |
| 1266 | ParentEdgeFreq = 0; |
| 1267 | } |
| 1268 | DEBUG(reportNumber(" Setting freq for ParentEdge: ", ParentEdge, 10)){}; |
| 1269 | DEBUG(reportNumber(" with ParentEdgeFreq: ", ParentEdgeFreq, 10)){}; |
| 1270 | EdgeFreqs[ParentEdge] = ParentEdgeFreq; |
| 1271 | } |
| 1272 | |
| 1273 | Alloc.deallocate(EntryAddress); |
| 1274 | Alloc.deallocate(LeafFrequency); |
| 1275 | Alloc.deallocate(Visited); |
| 1276 | Alloc.deallocate(Stack); |
| 1277 | CallMap->~NodeToCallsMap(); |
| 1278 | Alloc.deallocate(CallMap); |
| 1279 | DEBUG(dumpEdgeFreqs()){}; |
| 1280 | } |
| 1281 | |
| 1282 | /// Write to \p FD all of the edge profiles for function \p FuncDesc. Uses |
| 1283 | /// \p Alloc to allocate helper dynamic structures used to compute profile for |
| 1284 | /// edges that we do not explicitly instrument. |
| 1285 | const uint8_t *writeFunctionProfile(int FD, ProfileWriterContext &Ctx, |
| 1286 | const uint8_t *FuncDesc, |
| 1287 | BumpPtrAllocator &Alloc) { |
| 1288 | const FunctionDescription F(FuncDesc); |
| 1289 | const uint8_t *next = FuncDesc + F.getSize(); |
| 1290 | |
| 1291 | #if !defined(__APPLE__) |
| 1292 | uint64_t *bolt_instr_locations = __bolt_instr_locations; |
| 1293 | #else |
| 1294 | uint64_t *bolt_instr_locations = _bolt_instr_locations_getter(); |
| 1295 | #endif |
| 1296 | |
| 1297 | // Skip funcs we know are cold |
| 1298 | #ifndef ENABLE_DEBUG |
| 1299 | uint64_t CountersFreq = 0; |
| 1300 | for (int I = 0; I < F.NumLeafNodes; ++I) |
| 1301 | CountersFreq += bolt_instr_locations[F.LeafNodes[I].Counter]; |
| 1302 | |
| 1303 | if (CountersFreq == 0) { |
| 1304 | for (int I = 0; I < F.NumEdges; ++I) { |
| 1305 | const uint32_t C = F.Edges[I].Counter; |
| 1306 | if (C == 0xffffffff) |
| 1307 | continue; |
| 1308 | CountersFreq += bolt_instr_locations[C]; |
| 1309 | } |
| 1310 | if (CountersFreq == 0) { |
| 1311 | for (int I = 0; I < F.NumCalls; ++I) { |
| 1312 | const uint32_t C = F.Calls[I].Counter; |
| 1313 | if (C == 0xffffffff) |
| 1314 | continue; |
| 1315 | CountersFreq += bolt_instr_locations[C]; |
| 1316 | } |
| 1317 | if (CountersFreq == 0) |
| 1318 | return next; |
| 1319 | } |
| 1320 | } |
| 1321 | #endif |
| 1322 | |
| 1323 | Graph *G = new (Alloc) Graph(Alloc, F, bolt_instr_locations, Ctx); |
| 1324 | DEBUG(G->dump()){}; |
| 1325 | |
| 1326 | if (!G->EdgeFreqs && !G->CallFreqs) { |
| 1327 | G->~Graph(); |
| 1328 | Alloc.deallocate(G); |
| 1329 | return next; |
| 1330 | } |
| 1331 | |
| 1332 | for (int I = 0; I < F.NumEdges; ++I) { |
| 1333 | const uint64_t Freq = G->EdgeFreqs[I]; |
| 1334 | if (Freq == 0) |
| 1335 | continue; |
| 1336 | const EdgeDescription *Desc = &F.Edges[I]; |
| 1337 | char LineBuf[BufSize]; |
| 1338 | char *Ptr = LineBuf; |
| 1339 | Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize); |
| 1340 | Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf)); |
| 1341 | Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 22); |
| 1342 | Ptr = intToStr(Ptr, Freq, 10); |
| 1343 | *Ptr++ = '\n'; |
| 1344 | __write(FD, LineBuf, Ptr - LineBuf); |
| 1345 | } |
| 1346 | |
| 1347 | for (int I = 0; I < F.NumCalls; ++I) { |
| 1348 | const uint64_t Freq = G->CallFreqs[I]; |
| 1349 | if (Freq == 0) |
| 1350 | continue; |
| 1351 | char LineBuf[BufSize]; |
| 1352 | char *Ptr = LineBuf; |
| 1353 | const CallDescription *Desc = &F.Calls[I]; |
| 1354 | Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize); |
| 1355 | Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf)); |
| 1356 | Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); |
| 1357 | Ptr = intToStr(Ptr, Freq, 10); |
| 1358 | *Ptr++ = '\n'; |
| 1359 | __write(FD, LineBuf, Ptr - LineBuf); |
| 1360 | } |
| 1361 | |
| 1362 | G->~Graph(); |
| 1363 | Alloc.deallocate(G); |
| 1364 | return next; |
| 1365 | } |
| 1366 | |
| 1367 | #if !defined(__APPLE__) |
| 1368 | const IndCallTargetDescription * |
| 1369 | ProfileWriterContext::lookupIndCallTarget(uint64_t Target) const { |
| 1370 | uint32_t B = 0; |
| 1371 | uint32_t E = __bolt_instr_num_ind_targets; |
| 1372 | if (E == 0) |
| 1373 | return nullptr; |
| 1374 | do { |
| 1375 | uint32_t I = (E - B) / 2 + B; |
| 1376 | if (IndCallTargets[I].Address == Target) |
| 1377 | return &IndCallTargets[I]; |
| 1378 | if (IndCallTargets[I].Address < Target) |
| 1379 | B = I + 1; |
| 1380 | else |
| 1381 | E = I; |
| 1382 | } while (B < E); |
| 1383 | return nullptr; |
| 1384 | } |
| 1385 | |
| 1386 | /// Write a single indirect call <src, target> pair to the fdata file |
| 1387 | void visitIndCallCounter(IndirectCallHashTable::MapEntry &Entry, |
| 1388 | int FD, int CallsiteID, |
| 1389 | ProfileWriterContext *Ctx) { |
| 1390 | if (Entry.Val == 0) |
| 1391 | return; |
| 1392 | DEBUG(reportNumber("Target func 0x", Entry.Key, 16)){}; |
| 1393 | DEBUG(reportNumber("Target freq: ", Entry.Val, 10)){}; |
| 1394 | const IndCallDescription *CallsiteDesc = |
| 1395 | &Ctx->IndCallDescriptions[CallsiteID]; |
| 1396 | const IndCallTargetDescription *TargetDesc = |
| 1397 | Ctx->lookupIndCallTarget(Entry.Key - TextBaseAddress); |
| 1398 | if (!TargetDesc) { |
| 1399 | DEBUG(report("Failed to lookup indirect call target\n")){}; |
| 1400 | char LineBuf[BufSize]; |
| 1401 | char *Ptr = LineBuf; |
| 1402 | Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize); |
| 1403 | Ptr = strCopy(Ptr, "0 [unknown] 0 0 ", BufSize - (Ptr - LineBuf) - 40); |
| 1404 | Ptr = intToStr(Ptr, Entry.Val, 10); |
| 1405 | *Ptr++ = '\n'; |
| 1406 | __write(FD, LineBuf, Ptr - LineBuf); |
| 1407 | return; |
| 1408 | } |
| 1409 | Ctx->CallFlowTable->get(TargetDesc->Address).Calls += Entry.Val; |
| 1410 | char LineBuf[BufSize]; |
| 1411 | char *Ptr = LineBuf; |
| 1412 | Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize); |
| 1413 | Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf)); |
| 1414 | Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); |
| 1415 | Ptr = intToStr(Ptr, Entry.Val, 10); |
| 1416 | *Ptr++ = '\n'; |
| 1417 | __write(FD, LineBuf, Ptr - LineBuf); |
| 1418 | } |
| 1419 | |
| 1420 | /// Write to \p FD all of the indirect call profiles. |
| 1421 | void writeIndirectCallProfile(int FD, ProfileWriterContext &Ctx) { |
| 1422 | for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) { |
| 1423 | DEBUG(reportNumber("IndCallsite #", I, 10)){}; |
| 1424 | GlobalIndCallCounters[I].forEachElement(visitIndCallCounter, FD, I, &Ctx); |
| 1425 | } |
| 1426 | } |
| 1427 | |
| 1428 | /// Check a single call flow for a callee versus all known callers. If there are |
| 1429 | /// less callers than what the callee expects, write the difference with source |
| 1430 | /// [unknown] in the profile. |
| 1431 | void visitCallFlowEntry(CallFlowHashTable::MapEntry &Entry, int FD, |
| 1432 | ProfileWriterContext *Ctx) { |
| 1433 | DEBUG(reportNumber("Call flow entry address: 0x", Entry.Key, 16)){}; |
| 1434 | DEBUG(reportNumber("Calls: ", Entry.Calls, 10)){}; |
| 1435 | DEBUG(reportNumber("Reported entry frequency: ", Entry.Val, 10)){}; |
| 1436 | DEBUG({{} |
| 1437 | if (Entry.Calls > Entry.Val){} |
| 1438 | report(" More calls than expected!\n");{} |
| 1439 | }){}; |
| 1440 | if (Entry.Val <= Entry.Calls) |
| 1441 | return; |
| 1442 | DEBUG(reportNumber({} |
| 1443 | " Balancing calls with traffic: ", Entry.Val - Entry.Calls, 10)){}; |
| 1444 | const IndCallTargetDescription *TargetDesc = |
| 1445 | Ctx->lookupIndCallTarget(Entry.Key); |
| 1446 | if (!TargetDesc) { |
| 1447 | // There is probably something wrong with this callee and this should be |
| 1448 | // investigated, but I don't want to assert and lose all data collected. |
| 1449 | DEBUG(report("WARNING: failed to look up call target!\n")){}; |
| 1450 | return; |
| 1451 | } |
| 1452 | char LineBuf[BufSize]; |
| 1453 | char *Ptr = LineBuf; |
| 1454 | Ptr = strCopy(Ptr, "0 [unknown] 0 ", BufSize); |
| 1455 | Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf)); |
| 1456 | Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); |
| 1457 | Ptr = intToStr(Ptr, Entry.Val - Entry.Calls, 10); |
| 1458 | *Ptr++ = '\n'; |
| 1459 | __write(FD, LineBuf, Ptr - LineBuf); |
| 1460 | } |
| 1461 | |
| 1462 | /// Open fdata file for writing and return a valid file descriptor, aborting |
| 1463 | /// program upon failure. |
| 1464 | int openProfile() { |
| 1465 | // Build the profile name string by appending our PID |
| 1466 | char Buf[BufSize]; |
| 1467 | char *Ptr = Buf; |
| 1468 | uint64_t PID = __getpid(); |
| 1469 | Ptr = strCopy(Buf, __bolt_instr_filename, BufSize); |
| 1470 | if (__bolt_instr_use_pid) { |
| 1471 | Ptr = strCopy(Ptr, ".", BufSize - (Ptr - Buf + 1)); |
| 1472 | Ptr = intToStr(Ptr, PID, 10); |
| 1473 | Ptr = strCopy(Ptr, ".fdata", BufSize - (Ptr - Buf + 1)); |
| 1474 | } |
| 1475 | *Ptr++ = '\0'; |
| 1476 | uint64_t FD = __open(Buf, O_WRONLY1 | O_TRUNC512 | O_CREAT64, |
| 1477 | /*mode=*/0666); |
| 1478 | if (static_cast<int64_t>(FD) < 0) { |
| 1479 | report("Error while trying to open profile file for writing: "); |
| 1480 | report(Buf); |
| 1481 | reportNumber("\nFailed with error number: 0x", |
| 1482 | 0 - static_cast<int64_t>(FD), 16); |
| 1483 | __exit(1); |
| 1484 | } |
| 1485 | return FD; |
| 1486 | } |
| 1487 | |
| 1488 | #endif |
| 1489 | |
| 1490 | } // anonymous namespace |
| 1491 | |
| 1492 | #if !defined(__APPLE__) |
| 1493 | |
| 1494 | /// Reset all counters in case you want to start profiling a new phase of your |
| 1495 | /// program independently of prior phases. |
| 1496 | /// The address of this function is printed by BOLT and this can be called by |
| 1497 | /// any attached debugger during runtime. There is a useful oneliner for gdb: |
| 1498 | /// |
| 1499 | /// gdb -p $(pgrep -xo PROCESSNAME) -ex 'p ((void(*)())0xdeadbeef)()' \ |
| 1500 | /// -ex 'set confirm off' -ex quit |
| 1501 | /// |
| 1502 | /// Where 0xdeadbeef is this function address and PROCESSNAME your binary file |
| 1503 | /// name. |
| 1504 | extern "C" void __bolt_instr_clear_counters() { |
| 1505 | memset(reinterpret_cast<char *>(__bolt_instr_locations), 0, |
| 1506 | __bolt_num_counters * 8); |
| 1507 | for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) |
| 1508 | GlobalIndCallCounters[I].resetCounters(); |
| 1509 | } |
| 1510 | |
| 1511 | /// This is the entry point for profile writing. |
| 1512 | /// There are three ways of getting here: |
| 1513 | /// |
| 1514 | /// * Program execution ended, finalization methods are running and BOLT |
| 1515 | /// hooked into FINI from your binary dynamic section; |
| 1516 | /// * You used the sleep timer option and during initialization we forked |
| 1517 | /// a separate process that will call this function periodically; |
| 1518 | /// * BOLT prints this function address so you can attach a debugger and |
| 1519 | /// call this function directly to get your profile written to disk |
| 1520 | /// on demand. |
| 1521 | /// |
| 1522 | extern "C" void __attribute((force_align_arg_pointer)) |
| 1523 | __bolt_instr_data_dump(int FD) { |
| 1524 | // Already dumping |
| 1525 | if (!GlobalWriteProfileMutex->acquire()) |
| 1526 | return; |
| 1527 | |
| 1528 | int ret = __lseek(FD, 0, SEEK_SET0); |
| 1529 | assert(ret == 0, "Failed to lseek!"); |
| 1530 | ret = __ftruncate(FD, 0); |
| 1531 | assert(ret == 0, "Failed to ftruncate!"); |
| 1532 | BumpPtrAllocator HashAlloc; |
| 1533 | HashAlloc.setMaxSize(0x6400000); |
| 1534 | ProfileWriterContext Ctx = readDescriptions(); |
| 1535 | Ctx.CallFlowTable = new (HashAlloc, 0) CallFlowHashTable(HashAlloc); |
| 1536 | |
| 1537 | DEBUG(printStats(Ctx)){}; |
| 1538 | |
| 1539 | BumpPtrAllocator Alloc; |
| 1540 | Alloc.setMaxSize(0x6400000); |
| 1541 | const uint8_t *FuncDesc = Ctx.FuncDescriptions; |
| 1542 | for (int I = 0, E = __bolt_instr_num_funcs; I < E; ++I) { |
| 1543 | FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc); |
| 1544 | Alloc.clear(); |
| 1545 | DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16)){}; |
| 1546 | } |
| 1547 | assert(FuncDesc == (void *)Ctx.Strings, |
| 1548 | "FuncDesc ptr must be equal to stringtable"); |
| 1549 | |
| 1550 | writeIndirectCallProfile(FD, Ctx); |
| 1551 | Ctx.CallFlowTable->forEachElement(visitCallFlowEntry, FD, &Ctx); |
| 1552 | |
| 1553 | __fsync(FD); |
| 1554 | __munmap(Ctx.MMapPtr, Ctx.MMapSize); |
| 1555 | __close(Ctx.FileDesc); |
| 1556 | HashAlloc.destroy(); |
| 1557 | GlobalWriteProfileMutex->release(); |
| 1558 | DEBUG(report("Finished writing profile.\n")){}; |
| 1559 | } |
| 1560 | |
| 1561 | /// Event loop for our child process spawned during setup to dump profile data |
| 1562 | /// at user-specified intervals |
| 1563 | void watchProcess() { |
| 1564 | timespec ts, rem; |
| 1565 | uint64_t Ellapsed = 0ull; |
| 1566 | int FD = openProfile(); |
| 1567 | uint64_t ppid; |
| 1568 | if (__bolt_instr_wait_forks) { |
| 1569 | // Store parent pgid |
| 1570 | ppid = -__getpgid(0); |
| 1571 | // And leave parent process group |
| 1572 | __setpgid(0, 0); |
| 1573 | } else { |
| 1574 | // Store parent pid |
| 1575 | ppid = __getppid(); |
| 1576 | if (ppid == 1) { |
| 1577 | // Parent already dead |
| 1578 | __bolt_instr_data_dump(FD); |
| 1579 | goto out; |
| 1580 | } |
| 1581 | } |
| 1582 | |
| 1583 | ts.tv_sec = 1; |
| 1584 | ts.tv_nsec = 0; |
| 1585 | while (1) { |
| 1586 | __nanosleep(&ts, &rem); |
| 1587 | // This means our parent process or all its forks are dead, |
| 1588 | // so no need for us to keep dumping. |
| 1589 | if (__kill(ppid, 0) < 0) { |
| 1590 | if (__bolt_instr_no_counters_clear) |
| 1591 | __bolt_instr_data_dump(FD); |
| 1592 | break; |
| 1593 | } |
| 1594 | |
| 1595 | if (++Ellapsed < __bolt_instr_sleep_time) |
| 1596 | continue; |
| 1597 | |
| 1598 | Ellapsed = 0; |
| 1599 | __bolt_instr_data_dump(FD); |
| 1600 | if (__bolt_instr_no_counters_clear == false) |
| 1601 | __bolt_instr_clear_counters(); |
| 1602 | } |
| 1603 | |
| 1604 | out:; |
| 1605 | DEBUG(report("My parent process is dead, bye!\n")){}; |
| 1606 | __close(FD); |
| 1607 | __exit(0); |
| 1608 | } |
| 1609 | |
| 1610 | extern "C" void __bolt_instr_indirect_call(); |
| 1611 | extern "C" void __bolt_instr_indirect_tailcall(); |
| 1612 | |
| 1613 | /// Initialization code |
| 1614 | extern "C" void __attribute((force_align_arg_pointer)) __bolt_instr_setup() { |
| 1615 | __bolt_ind_call_counter_func_pointer = __bolt_instr_indirect_call; |
| 1616 | __bolt_ind_tailcall_counter_func_pointer = __bolt_instr_indirect_tailcall; |
| 1617 | TextBaseAddress = getTextBaseAddress(); |
| 1618 | |
| 1619 | const uint64_t CountersStart = |
| 1620 | reinterpret_cast<uint64_t>(&__bolt_instr_locations[0]); |
| 1621 | const uint64_t CountersEnd = alignTo( |
| 1622 | reinterpret_cast<uint64_t>(&__bolt_instr_locations[__bolt_num_counters]), |
| 1623 | 0x1000); |
| 1624 | DEBUG(reportNumber("replace mmap start: ", CountersStart, 16)){}; |
| 1625 | DEBUG(reportNumber("replace mmap stop: ", CountersEnd, 16)){}; |
| 1626 | assert(CountersEnd > CountersStart, "no counters"); |
| 1627 | |
| 1628 | const bool Shared = !__bolt_instr_use_pid; |
| 1629 | const uint64_t MapPrivateOrShared = Shared ? MAP_SHARED0x01 : MAP_PRIVATE0x02; |
| 1630 | |
| 1631 | void *Ret = |
| 1632 | __mmap(CountersStart, CountersEnd - CountersStart, PROT_READ0x1 | PROT_WRITE0x2, |
| 1633 | MAP_ANONYMOUS0x20 | MapPrivateOrShared | MAP_FIXED0x10, -1, 0); |
| 1634 | assert(Ret != MAP_FAILED((void *)-1), "__bolt_instr_setup: Failed to mmap counters!"); |
| 1635 | |
| 1636 | GlobalMetadataStorage = __mmap(0, 4096, PROT_READ0x1 | PROT_WRITE0x2, |
| 1637 | MapPrivateOrShared | MAP_ANONYMOUS0x20, -1, 0); |
| 1638 | assert(GlobalMetadataStorage != MAP_FAILED((void *)-1), |
| 1639 | "__bolt_instr_setup: failed to mmap page for metadata!"); |
| 1640 | |
| 1641 | GlobalAlloc = new (GlobalMetadataStorage) BumpPtrAllocator; |
| 1642 | // Conservatively reserve 100MiB |
| 1643 | GlobalAlloc->setMaxSize(0x6400000); |
| 1644 | GlobalAlloc->setShared(Shared); |
| 1645 | GlobalWriteProfileMutex = new (*GlobalAlloc, 0) Mutex(); |
| 1646 | if (__bolt_instr_num_ind_calls > 0) |
| 1647 | GlobalIndCallCounters = |
| 1648 | new (*GlobalAlloc, 0) IndirectCallHashTable[__bolt_instr_num_ind_calls]; |
| 1649 | |
| 1650 | if (__bolt_instr_sleep_time != 0) { |
| 1651 | // Separate instrumented process to the own process group |
| 1652 | if (__bolt_instr_wait_forks) |
| 1653 | __setpgid(0, 0); |
| 1654 | |
| 1655 | if (long PID = __fork()) |
| 1656 | return; |
| 1657 | watchProcess(); |
| 1658 | } |
| 1659 | } |
| 1660 | |
| 1661 | extern "C" __attribute((force_align_arg_pointer)) void |
| 1662 | instrumentIndirectCall(uint64_t Target, uint64_t IndCallID) { |
| 1663 | GlobalIndCallCounters[IndCallID].incrementVal(Target, *GlobalAlloc); |
| 1664 | } |
| 1665 | |
| 1666 | /// We receive as in-stack arguments the identifier of the indirect call site |
| 1667 | /// as well as the target address for the call |
| 1668 | extern "C" __attribute((naked)) void __bolt_instr_indirect_call() |
| 1669 | { |
| 1670 | #if defined(__aarch64__) |
| 1671 | // clang-format off |
| 1672 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" |
| 1673 | "ldp x0, x1, [sp, #288]\n" |
| 1674 | "bl instrumentIndirectCall\n" |
| 1675 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" |
| 1676 | "ret\n" |
| 1677 | :::); |
| 1678 | // clang-format on |
| 1679 | #else |
| 1680 | // clang-format off |
| 1681 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" |
| 1682 | "mov 0xa0(%%rsp), %%rdi\n" |
| 1683 | "mov 0x98(%%rsp), %%rsi\n" |
| 1684 | "call instrumentIndirectCall\n" |
| 1685 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" |
| 1686 | "ret\n" |
| 1687 | :::); |
| 1688 | // clang-format on |
| 1689 | #endif |
| 1690 | } |
| 1691 | |
| 1692 | extern "C" __attribute((naked)) void __bolt_instr_indirect_tailcall() |
| 1693 | { |
| 1694 | #if defined(__aarch64__) |
| 1695 | // clang-format off |
| 1696 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" |
| 1697 | "ldp x0, x1, [sp, #288]\n" |
| 1698 | "bl instrumentIndirectCall\n" |
| 1699 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" |
| 1700 | "ret\n" |
| 1701 | :::); |
| 1702 | // clang-format on |
| 1703 | #else |
| 1704 | // clang-format off |
| 1705 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" |
| 1706 | "mov 0x98(%%rsp), %%rdi\n" |
| 1707 | "mov 0x90(%%rsp), %%rsi\n" |
| 1708 | "call instrumentIndirectCall\n" |
| 1709 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" |
| 1710 | "ret\n" |
| 1711 | :::); |
| 1712 | // clang-format on |
| 1713 | #endif |
| 1714 | } |
| 1715 | |
| 1716 | /// This is hooking ELF's entry, it needs to save all machine state. |
| 1717 | extern "C" __attribute((naked)) void __bolt_instr_start() |
| 1718 | { |
| 1719 | #if defined(__aarch64__) |
| 1720 | // clang-format off |
| 1721 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" |
| 1722 | "bl __bolt_instr_setup\n" |
| 1723 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" |
| 1724 | "adrp x16, __bolt_start_trampoline\n" |
| 1725 | "add x16, x16, #:lo12:__bolt_start_trampoline\n" |
| 1726 | "br x16\n" |
| 1727 | :::); |
| 1728 | // clang-format on |
| 1729 | #else |
| 1730 | // clang-format off |
| 1731 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" |
| 1732 | "call __bolt_instr_setup\n" |
| 1733 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" |
| 1734 | "jmp __bolt_start_trampoline\n" |
| 1735 | :::); |
| 1736 | // clang-format on |
| 1737 | #endif |
| 1738 | } |
| 1739 | |
| 1740 | /// This is hooking into ELF's DT_FINI |
| 1741 | extern "C" void __bolt_instr_fini() { |
| 1742 | #if defined(__aarch64__) |
| 1743 | // clang-format off |
| 1744 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" |
| 1745 | "adrp x16, __bolt_fini_trampoline\n" |
| 1746 | "add x16, x16, #:lo12:__bolt_fini_trampoline\n" |
| 1747 | "blr x16\n" |
| 1748 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" |
| 1749 | :::); |
| 1750 | // clang-format on |
| 1751 | #else |
| 1752 | __asm__ __volatile__("call __bolt_fini_trampoline\n" :::); |
| 1753 | #endif |
| 1754 | if (__bolt_instr_sleep_time == 0) { |
| 1755 | int FD = openProfile(); |
| 1756 | __bolt_instr_data_dump(FD); |
| 1757 | __close(FD); |
| 1758 | } |
| 1759 | DEBUG(report("Finished.\n")){}; |
| 1760 | } |
| 1761 | |
| 1762 | #endif |
| 1763 | |
| 1764 | #if defined(__APPLE__) |
| 1765 | |
| 1766 | extern "C" void __bolt_instr_data_dump() { |
| 1767 | ProfileWriterContext Ctx = readDescriptions(); |
| 1768 | |
| 1769 | int FD = 2; |
| 1770 | BumpPtrAllocator Alloc; |
| 1771 | const uint8_t *FuncDesc = Ctx.FuncDescriptions; |
| 1772 | uint32_t bolt_instr_num_funcs = _bolt_instr_num_funcs_getter(); |
| 1773 | |
| 1774 | for (int I = 0, E = bolt_instr_num_funcs; I < E; ++I) { |
| 1775 | FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc); |
| 1776 | Alloc.clear(); |
| 1777 | DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16)){}; |
| 1778 | } |
| 1779 | assert(FuncDesc == (void *)Ctx.Strings, |
| 1780 | "FuncDesc ptr must be equal to stringtable"); |
| 1781 | } |
| 1782 | |
| 1783 | // On OSX/iOS the final symbol name of an extern "C" function/variable contains |
| 1784 | // one extra leading underscore: _bolt_instr_setup -> __bolt_instr_setup. |
| 1785 | extern "C" |
| 1786 | __attribute__((section("__TEXT,__setup"))) |
| 1787 | __attribute__((force_align_arg_pointer)) |
| 1788 | void _bolt_instr_setup() { |
| 1789 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" :::); |
| 1790 | |
| 1791 | report("Hello!\n"); |
| 1792 | |
| 1793 | __asm__ __volatile__(RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" :::); |
| 1794 | } |
| 1795 | |
| 1796 | extern "C" |
| 1797 | __attribute__((section("__TEXT,__fini"))) |
| 1798 | __attribute__((force_align_arg_pointer)) |
| 1799 | void _bolt_instr_fini() { |
| 1800 | report("Bye!\n"); |
| 1801 | __bolt_instr_data_dump(); |
| 1802 | } |
| 1803 | |
| 1804 | #endif |