| File: | bolt/runtime/instr.cpp |
| Warning: | line 1333, column 27 Array access (via field 'EdgeFreqs') results in a null pointer dereference |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===- bolt/runtime/instr.cpp ---------------------------------------------===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | // | |||
| 9 | // BOLT runtime instrumentation library for x86 Linux. Currently, BOLT does | |||
| 10 | // not support linking modules with dependencies on one another into the final | |||
| 11 | // binary (TODO?), which means this library has to be self-contained in a single | |||
| 12 | // module. | |||
| 13 | // | |||
| 14 | // All extern declarations here need to be defined by BOLT itself. Those will be | |||
| 15 | // undefined symbols that BOLT needs to resolve by emitting these symbols with | |||
| 16 | // MCStreamer. Currently, Passes/Instrumentation.cpp is the pass responsible | |||
| 17 | // for defining the symbols here and these two files have a tight coupling: one | |||
| 18 | // working statically when you run BOLT and another during program runtime when | |||
| 19 | // you run an instrumented binary. The main goal here is to output an fdata file | |||
| 20 | // (BOLT profile) with the instrumentation counters inserted by the static pass. | |||
| 21 | // Counters for indirect calls are an exception, as we can't know them | |||
| 22 | // statically. These counters are created and managed here. To allow this, we | |||
| 23 | // need a minimal framework for allocating memory dynamically. We provide this | |||
| 24 | // with the BumpPtrAllocator class (not LLVM's, but our own version of it). | |||
| 25 | // | |||
| 26 | // Since this code is intended to be inserted into any executable, we decided to | |||
| 27 | // make it standalone and do not depend on any external libraries (i.e. language | |||
| 28 | // support libraries, such as glibc or stdc++). To allow this, we provide a few | |||
| 29 | // light implementations of common OS interacting functionalities using direct | |||
| 30 | // syscall wrappers. Our simple allocator doesn't manage deallocations that | |||
| 31 | // fragment the memory space, so it's stack based. This is the minimal framework | |||
| 32 | // provided here to allow processing instrumented counters and writing fdata. | |||
| 33 | // | |||
| 34 | // In the C++ idiom used here, we never use or rely on constructors or | |||
| 35 | // destructors for global objects. That's because those need support from the | |||
| 36 | // linker in initialization/finalization code, and we want to keep our linker | |||
| 37 | // very simple. Similarly, we don't create any global objects that are zero | |||
| 38 | // initialized, since those would need to go .bss, which our simple linker also | |||
| 39 | // don't support (TODO?). | |||
| 40 | // | |||
| 41 | //===----------------------------------------------------------------------===// | |||
| 42 | ||||
| 43 | #include "common.h" | |||
| 44 | ||||
| 45 | // Enables a very verbose logging to stderr useful when debugging | |||
| 46 | //#define ENABLE_DEBUG | |||
| 47 | ||||
| 48 | #ifdef ENABLE_DEBUG | |||
| 49 | #define DEBUG(X){} \ | |||
| 50 | { X; } | |||
| 51 | #else | |||
| 52 | #define DEBUG(X){} \ | |||
| 53 | {} | |||
| 54 | #endif | |||
| 55 | ||||
| 56 | #pragma GCC visibility push(hidden) | |||
| 57 | ||||
| 58 | extern "C" { | |||
| 59 | ||||
| 60 | #if defined(__APPLE__) | |||
| 61 | extern uint64_t* _bolt_instr_locations_getter(); | |||
| 62 | extern uint32_t _bolt_num_counters_getter(); | |||
| 63 | ||||
| 64 | extern uint8_t* _bolt_instr_tables_getter(); | |||
| 65 | extern uint32_t _bolt_instr_num_funcs_getter(); | |||
| 66 | ||||
| 67 | #else | |||
| 68 | ||||
| 69 | // Main counters inserted by instrumentation, incremented during runtime when | |||
| 70 | // points of interest (locations) in the program are reached. Those are direct | |||
| 71 | // calls and direct and indirect branches (local ones). There are also counters | |||
| 72 | // for basic block execution if they are a spanning tree leaf and need to be | |||
| 73 | // counted in order to infer the execution count of other edges of the CFG. | |||
| 74 | extern uint64_t __bolt_instr_locations[]; | |||
| 75 | extern uint32_t __bolt_num_counters; | |||
| 76 | // Descriptions are serialized metadata about binary functions written by BOLT, | |||
| 77 | // so we have a minimal understanding about the program structure. For a | |||
| 78 | // reference on the exact format of this metadata, see *Description structs, | |||
| 79 | // Location, IntrumentedNode and EntryNode. | |||
| 80 | // Number of indirect call site descriptions | |||
| 81 | extern uint32_t __bolt_instr_num_ind_calls; | |||
| 82 | // Number of indirect call target descriptions | |||
| 83 | extern uint32_t __bolt_instr_num_ind_targets; | |||
| 84 | // Number of function descriptions | |||
| 85 | extern uint32_t __bolt_instr_num_funcs; | |||
| 86 | // Time to sleep across dumps (when we write the fdata profile to disk) | |||
| 87 | extern uint32_t __bolt_instr_sleep_time; | |||
| 88 | // Do not clear counters across dumps, rewrite file with the updated values | |||
| 89 | extern bool __bolt_instr_no_counters_clear; | |||
| 90 | // Wait until all forks of instrumented process will finish | |||
| 91 | extern bool __bolt_instr_wait_forks; | |||
| 92 | // Filename to dump data to | |||
| 93 | extern char __bolt_instr_filename[]; | |||
| 94 | // Instumented binary file path | |||
| 95 | extern char __bolt_instr_binpath[]; | |||
| 96 | // If true, append current PID to the fdata filename when creating it so | |||
| 97 | // different invocations of the same program can be differentiated. | |||
| 98 | extern bool __bolt_instr_use_pid; | |||
| 99 | // Functions that will be used to instrument indirect calls. BOLT static pass | |||
| 100 | // will identify indirect calls and modify them to load the address in these | |||
| 101 | // trampolines and call this address instead. BOLT can't use direct calls to | |||
| 102 | // our handlers because our addresses here are not known at analysis time. We | |||
| 103 | // only support resolving dependencies from this file to the output of BOLT, | |||
| 104 | // *not* the other way around. | |||
| 105 | // TODO: We need better linking support to make that happen. | |||
| 106 | extern void (*__bolt_ind_call_counter_func_pointer)(); | |||
| 107 | extern void (*__bolt_ind_tailcall_counter_func_pointer)(); | |||
| 108 | // Function pointers to init/fini trampoline routines in the binary, so we can | |||
| 109 | // resume regular execution of these functions that we hooked | |||
| 110 | extern void __bolt_start_trampoline(); | |||
| 111 | extern void __bolt_fini_trampoline(); | |||
| 112 | ||||
| 113 | #endif | |||
| 114 | } | |||
| 115 | ||||
| 116 | namespace { | |||
| 117 | ||||
| 118 | /// A simple allocator that mmaps a fixed size region and manages this space | |||
| 119 | /// in a stack fashion, meaning you always deallocate the last element that | |||
| 120 | /// was allocated. In practice, we don't need to deallocate individual elements. | |||
| 121 | /// We monotonically increase our usage and then deallocate everything once we | |||
| 122 | /// are done processing something. | |||
| 123 | class BumpPtrAllocator { | |||
| 124 | /// This is written before each allocation and act as a canary to detect when | |||
| 125 | /// a bug caused our program to cross allocation boundaries. | |||
| 126 | struct EntryMetadata { | |||
| 127 | uint64_t Magic; | |||
| 128 | uint64_t AllocSize; | |||
| 129 | }; | |||
| 130 | ||||
| 131 | public: | |||
| 132 | void *allocate(size_t Size) { | |||
| 133 | Lock L(M); | |||
| 134 | ||||
| 135 | if (StackBase == nullptr) { | |||
| 136 | StackBase = reinterpret_cast<uint8_t *>( | |||
| 137 | __mmap(0, MaxSize, PROT_READ0x1 | PROT_WRITE0x2, | |||
| 138 | (Shared ? MAP_SHARED0x01 : MAP_PRIVATE0x02) | MAP_ANONYMOUS0x20, -1, 0)); | |||
| 139 | assert(StackBase != MAP_FAILED((void *)-1), | |||
| 140 | "BumpPtrAllocator: failed to mmap stack!"); | |||
| 141 | StackSize = 0; | |||
| 142 | } | |||
| 143 | ||||
| 144 | Size = alignTo(Size + sizeof(EntryMetadata), 16); | |||
| 145 | uint8_t *AllocAddress = StackBase + StackSize + sizeof(EntryMetadata); | |||
| 146 | auto *M = reinterpret_cast<EntryMetadata *>(StackBase + StackSize); | |||
| 147 | M->Magic = Magic; | |||
| 148 | M->AllocSize = Size; | |||
| 149 | StackSize += Size; | |||
| 150 | assert(StackSize < MaxSize, "allocator ran out of memory"); | |||
| 151 | return AllocAddress; | |||
| 152 | } | |||
| 153 | ||||
| 154 | #ifdef DEBUG | |||
| 155 | /// Element-wise deallocation is only used for debugging to catch memory | |||
| 156 | /// bugs by checking magic bytes. Ordinarily, we reset the allocator once | |||
| 157 | /// we are done with it. Reset is done with clear(). There's no need | |||
| 158 | /// to deallocate each element individually. | |||
| 159 | void deallocate(void *Ptr) { | |||
| 160 | Lock L(M); | |||
| 161 | uint8_t MetadataOffset = sizeof(EntryMetadata); | |||
| 162 | auto *M = reinterpret_cast<EntryMetadata *>( | |||
| 163 | reinterpret_cast<uint8_t *>(Ptr) - MetadataOffset); | |||
| 164 | const uint8_t *StackTop = StackBase + StackSize + MetadataOffset; | |||
| 165 | // Validate size | |||
| 166 | if (Ptr != StackTop - M->AllocSize) { | |||
| 167 | // Failed validation, check if it is a pointer returned by operator new [] | |||
| 168 | MetadataOffset += | |||
| 169 | sizeof(uint64_t); // Space for number of elements alloc'ed | |||
| 170 | M = reinterpret_cast<EntryMetadata *>(reinterpret_cast<uint8_t *>(Ptr) - | |||
| 171 | MetadataOffset); | |||
| 172 | // Ok, it failed both checks if this assertion fails. Stop the program, we | |||
| 173 | // have a memory bug. | |||
| 174 | assert(Ptr == StackTop - M->AllocSize, | |||
| 175 | "must deallocate the last element alloc'ed"); | |||
| 176 | } | |||
| 177 | assert(M->Magic == Magic, "allocator magic is corrupt"); | |||
| 178 | StackSize -= M->AllocSize; | |||
| 179 | } | |||
| 180 | #else | |||
| 181 | void deallocate(void *) {} | |||
| 182 | #endif | |||
| 183 | ||||
| 184 | void clear() { | |||
| 185 | Lock L(M); | |||
| 186 | StackSize = 0; | |||
| 187 | } | |||
| 188 | ||||
| 189 | /// Set mmap reservation size (only relevant before first allocation) | |||
| 190 | void setMaxSize(uint64_t Size) { MaxSize = Size; } | |||
| 191 | ||||
| 192 | /// Set mmap reservation privacy (only relevant before first allocation) | |||
| 193 | void setShared(bool S) { Shared = S; } | |||
| 194 | ||||
| 195 | void destroy() { | |||
| 196 | if (StackBase == nullptr) | |||
| 197 | return; | |||
| 198 | __munmap(StackBase, MaxSize); | |||
| 199 | } | |||
| 200 | ||||
| 201 | // Placement operator to construct allocator in possibly shared mmaped memory | |||
| 202 | static void *operator new(size_t, void *Ptr) { return Ptr; }; | |||
| 203 | ||||
| 204 | private: | |||
| 205 | static constexpr uint64_t Magic = 0x1122334455667788ull; | |||
| 206 | uint64_t MaxSize = 0xa00000; | |||
| 207 | uint8_t *StackBase{nullptr}; | |||
| 208 | uint64_t StackSize{0}; | |||
| 209 | bool Shared{false}; | |||
| 210 | Mutex M; | |||
| 211 | }; | |||
| 212 | ||||
| 213 | /// Used for allocating indirect call instrumentation counters. Initialized by | |||
| 214 | /// __bolt_instr_setup, our initialization routine. | |||
| 215 | BumpPtrAllocator *GlobalAlloc; | |||
| 216 | ||||
| 217 | // Base address which we substract from recorded PC values when searching for | |||
| 218 | // indirect call description entries. Needed because indCall descriptions are | |||
| 219 | // mapped read-only and contain static addresses. Initialized in | |||
| 220 | // __bolt_instr_setup. | |||
| 221 | uint64_t TextBaseAddress = 0; | |||
| 222 | ||||
| 223 | // Storage for GlobalAlloc which can be shared if not using | |||
| 224 | // instrumentation-file-append-pid. | |||
| 225 | void *GlobalMetadataStorage; | |||
| 226 | ||||
| 227 | } // anonymous namespace | |||
| 228 | ||||
| 229 | // User-defined placement new operators. We only use those (as opposed to | |||
| 230 | // overriding the regular operator new) so we can keep our allocator in the | |||
| 231 | // stack instead of in a data section (global). | |||
| 232 | void *operator new(size_t Sz, BumpPtrAllocator &A) { return A.allocate(Sz); } | |||
| 233 | void *operator new(size_t Sz, BumpPtrAllocator &A, char C) { | |||
| 234 | auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz)); | |||
| 235 | memset(Ptr, C, Sz); | |||
| 236 | return Ptr; | |||
| 237 | } | |||
| 238 | void *operator new[](size_t Sz, BumpPtrAllocator &A) { | |||
| 239 | return A.allocate(Sz); | |||
| 240 | } | |||
| 241 | void *operator new[](size_t Sz, BumpPtrAllocator &A, char C) { | |||
| 242 | auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz)); | |||
| 243 | memset(Ptr, C, Sz); | |||
| 244 | return Ptr; | |||
| 245 | } | |||
| 246 | // Only called during exception unwinding (useless). We must manually dealloc. | |||
| 247 | // C++ language weirdness | |||
| 248 | void operator delete(void *Ptr, BumpPtrAllocator &A) { A.deallocate(Ptr); } | |||
| 249 | ||||
| 250 | namespace { | |||
| 251 | ||||
| 252 | // Disable instrumentation optimizations that sacrifice profile accuracy | |||
| 253 | extern "C" bool __bolt_instr_conservative; | |||
| 254 | ||||
| 255 | /// Basic key-val atom stored in our hash | |||
| 256 | struct SimpleHashTableEntryBase { | |||
| 257 | uint64_t Key; | |||
| 258 | uint64_t Val; | |||
| 259 | void dump(const char *Msg = nullptr) { | |||
| 260 | // TODO: make some sort of formatting function | |||
| 261 | // Currently we have to do it the ugly way because | |||
| 262 | // we want every message to be printed atomically via a single call to | |||
| 263 | // __write. If we use reportNumber() and others nultiple times, we'll get | |||
| 264 | // garbage in mulithreaded environment | |||
| 265 | char Buf[BufSize]; | |||
| 266 | char *Ptr = Buf; | |||
| 267 | Ptr = intToStr(Ptr, __getpid(), 10); | |||
| 268 | *Ptr++ = ':'; | |||
| 269 | *Ptr++ = ' '; | |||
| 270 | if (Msg) | |||
| 271 | Ptr = strCopy(Ptr, Msg, strLen(Msg)); | |||
| 272 | *Ptr++ = '0'; | |||
| 273 | *Ptr++ = 'x'; | |||
| 274 | Ptr = intToStr(Ptr, (uint64_t)this, 16); | |||
| 275 | *Ptr++ = ':'; | |||
| 276 | *Ptr++ = ' '; | |||
| 277 | Ptr = strCopy(Ptr, "MapEntry(0x", sizeof("MapEntry(0x") - 1); | |||
| 278 | Ptr = intToStr(Ptr, Key, 16); | |||
| 279 | *Ptr++ = ','; | |||
| 280 | *Ptr++ = ' '; | |||
| 281 | *Ptr++ = '0'; | |||
| 282 | *Ptr++ = 'x'; | |||
| 283 | Ptr = intToStr(Ptr, Val, 16); | |||
| 284 | *Ptr++ = ')'; | |||
| 285 | *Ptr++ = '\n'; | |||
| 286 | assert(Ptr - Buf < BufSize, "Buffer overflow!"); | |||
| 287 | // print everything all at once for atomicity | |||
| 288 | __write(2, Buf, Ptr - Buf); | |||
| 289 | } | |||
| 290 | }; | |||
| 291 | ||||
| 292 | /// This hash table implementation starts by allocating a table of size | |||
| 293 | /// InitialSize. When conflicts happen in this main table, it resolves | |||
| 294 | /// them by chaining a new table of size IncSize. It never reallocs as our | |||
| 295 | /// allocator doesn't support it. The key is intended to be function pointers. | |||
| 296 | /// There's no clever hash function (it's just x mod size, size being prime). | |||
| 297 | /// I never tuned the coefficientes in the modular equation (TODO) | |||
| 298 | /// This is used for indirect calls (each call site has one of this, so it | |||
| 299 | /// should have a small footprint) and for tallying call counts globally for | |||
| 300 | /// each target to check if we missed the origin of some calls (this one is a | |||
| 301 | /// large instantiation of this template, since it is global for all call sites) | |||
| 302 | template <typename T = SimpleHashTableEntryBase, uint32_t InitialSize = 7, | |||
| 303 | uint32_t IncSize = 7> | |||
| 304 | class SimpleHashTable { | |||
| 305 | public: | |||
| 306 | using MapEntry = T; | |||
| 307 | ||||
| 308 | /// Increment by 1 the value of \p Key. If it is not in this table, it will be | |||
| 309 | /// added to the table and its value set to 1. | |||
| 310 | void incrementVal(uint64_t Key, BumpPtrAllocator &Alloc) { | |||
| 311 | if (!__bolt_instr_conservative) { | |||
| 312 | TryLock L(M); | |||
| 313 | if (!L.isLocked()) | |||
| 314 | return; | |||
| 315 | auto &E = getOrAllocEntry(Key, Alloc); | |||
| 316 | ++E.Val; | |||
| 317 | return; | |||
| 318 | } | |||
| 319 | Lock L(M); | |||
| 320 | auto &E = getOrAllocEntry(Key, Alloc); | |||
| 321 | ++E.Val; | |||
| 322 | } | |||
| 323 | ||||
| 324 | /// Basic member accessing interface. Here we pass the allocator explicitly to | |||
| 325 | /// avoid storing a pointer to it as part of this table (remember there is one | |||
| 326 | /// hash for each indirect call site, so we want to minimize our footprint). | |||
| 327 | MapEntry &get(uint64_t Key, BumpPtrAllocator &Alloc) { | |||
| 328 | if (!__bolt_instr_conservative) { | |||
| 329 | TryLock L(M); | |||
| 330 | if (!L.isLocked()) | |||
| 331 | return NoEntry; | |||
| 332 | return getOrAllocEntry(Key, Alloc); | |||
| 333 | } | |||
| 334 | Lock L(M); | |||
| 335 | return getOrAllocEntry(Key, Alloc); | |||
| 336 | } | |||
| 337 | ||||
| 338 | /// Traverses all elements in the table | |||
| 339 | template <typename... Args> | |||
| 340 | void forEachElement(void (*Callback)(MapEntry &, Args...), Args... args) { | |||
| 341 | Lock L(M); | |||
| 342 | if (!TableRoot) | |||
| 343 | return; | |||
| 344 | return forEachElement(Callback, InitialSize, TableRoot, args...); | |||
| 345 | } | |||
| 346 | ||||
| 347 | void resetCounters(); | |||
| 348 | ||||
| 349 | private: | |||
| 350 | constexpr static uint64_t VacantMarker = 0; | |||
| 351 | constexpr static uint64_t FollowUpTableMarker = 0x8000000000000000ull; | |||
| 352 | ||||
| 353 | MapEntry *TableRoot{nullptr}; | |||
| 354 | MapEntry NoEntry; | |||
| 355 | Mutex M; | |||
| 356 | ||||
| 357 | template <typename... Args> | |||
| 358 | void forEachElement(void (*Callback)(MapEntry &, Args...), | |||
| 359 | uint32_t NumEntries, MapEntry *Entries, Args... args) { | |||
| 360 | for (uint32_t I = 0; I < NumEntries; ++I) { | |||
| 361 | MapEntry &Entry = Entries[I]; | |||
| 362 | if (Entry.Key == VacantMarker) | |||
| 363 | continue; | |||
| 364 | if (Entry.Key & FollowUpTableMarker) { | |||
| 365 | MapEntry *Next = | |||
| 366 | reinterpret_cast<MapEntry *>(Entry.Key & ~FollowUpTableMarker); | |||
| 367 | assert(Next != Entries, "Circular reference!"); | |||
| 368 | forEachElement(Callback, IncSize, Next, args...); | |||
| 369 | continue; | |||
| 370 | } | |||
| 371 | Callback(Entry, args...); | |||
| 372 | } | |||
| 373 | } | |||
| 374 | ||||
| 375 | MapEntry &firstAllocation(uint64_t Key, BumpPtrAllocator &Alloc) { | |||
| 376 | TableRoot = new (Alloc, 0) MapEntry[InitialSize]; | |||
| 377 | MapEntry &Entry = TableRoot[Key % InitialSize]; | |||
| 378 | Entry.Key = Key; | |||
| 379 | // DEBUG(Entry.dump("Created root entry: ")); | |||
| 380 | return Entry; | |||
| 381 | } | |||
| 382 | ||||
| 383 | MapEntry &getEntry(MapEntry *Entries, uint64_t Key, uint64_t Selector, | |||
| 384 | BumpPtrAllocator &Alloc, int CurLevel) { | |||
| 385 | // DEBUG(reportNumber("getEntry called, level ", CurLevel, 10)); | |||
| 386 | const uint32_t NumEntries = CurLevel == 0 ? InitialSize : IncSize; | |||
| 387 | uint64_t Remainder = Selector / NumEntries; | |||
| 388 | Selector = Selector % NumEntries; | |||
| 389 | MapEntry &Entry = Entries[Selector]; | |||
| 390 | ||||
| 391 | // A hit | |||
| 392 | if (Entry.Key == Key) { | |||
| 393 | // DEBUG(Entry.dump("Hit: ")); | |||
| 394 | return Entry; | |||
| 395 | } | |||
| 396 | ||||
| 397 | // Vacant - add new entry | |||
| 398 | if (Entry.Key == VacantMarker) { | |||
| 399 | Entry.Key = Key; | |||
| 400 | // DEBUG(Entry.dump("Adding new entry: ")); | |||
| 401 | return Entry; | |||
| 402 | } | |||
| 403 | ||||
| 404 | // Defer to the next level | |||
| 405 | if (Entry.Key & FollowUpTableMarker) { | |||
| 406 | return getEntry( | |||
| 407 | reinterpret_cast<MapEntry *>(Entry.Key & ~FollowUpTableMarker), | |||
| 408 | Key, Remainder, Alloc, CurLevel + 1); | |||
| 409 | } | |||
| 410 | ||||
| 411 | // Conflict - create the next level | |||
| 412 | // DEBUG(Entry.dump("Creating new level: ")); | |||
| 413 | ||||
| 414 | MapEntry *NextLevelTbl = new (Alloc, 0) MapEntry[IncSize]; | |||
| 415 | // DEBUG( | |||
| 416 | // reportNumber("Newly allocated level: 0x", uint64_t(NextLevelTbl), | |||
| 417 | // 16)); | |||
| 418 | uint64_t CurEntrySelector = Entry.Key / InitialSize; | |||
| 419 | for (int I = 0; I < CurLevel; ++I) | |||
| 420 | CurEntrySelector /= IncSize; | |||
| 421 | CurEntrySelector = CurEntrySelector % IncSize; | |||
| 422 | NextLevelTbl[CurEntrySelector] = Entry; | |||
| 423 | Entry.Key = reinterpret_cast<uint64_t>(NextLevelTbl) | FollowUpTableMarker; | |||
| 424 | assert((NextLevelTbl[CurEntrySelector].Key & ~FollowUpTableMarker) != | |||
| 425 | uint64_t(Entries), | |||
| 426 | "circular reference created!\n"); | |||
| 427 | // DEBUG(NextLevelTbl[CurEntrySelector].dump("New level entry: ")); | |||
| 428 | // DEBUG(Entry.dump("Updated old entry: ")); | |||
| 429 | return getEntry(NextLevelTbl, Key, Remainder, Alloc, CurLevel + 1); | |||
| 430 | } | |||
| 431 | ||||
| 432 | MapEntry &getOrAllocEntry(uint64_t Key, BumpPtrAllocator &Alloc) { | |||
| 433 | if (TableRoot) { | |||
| 434 | MapEntry &E = getEntry(TableRoot, Key, Key, Alloc, 0); | |||
| 435 | assert(!(E.Key & FollowUpTableMarker), "Invalid entry!"); | |||
| 436 | return E; | |||
| 437 | } | |||
| 438 | return firstAllocation(Key, Alloc); | |||
| 439 | } | |||
| 440 | }; | |||
| 441 | ||||
| 442 | template <typename T> void resetIndCallCounter(T &Entry) { | |||
| 443 | Entry.Val = 0; | |||
| 444 | } | |||
| 445 | ||||
| 446 | template <typename T, uint32_t X, uint32_t Y> | |||
| 447 | void SimpleHashTable<T, X, Y>::resetCounters() { | |||
| 448 | forEachElement(resetIndCallCounter); | |||
| 449 | } | |||
| 450 | ||||
| 451 | /// Represents a hash table mapping a function target address to its counter. | |||
| 452 | using IndirectCallHashTable = SimpleHashTable<>; | |||
| 453 | ||||
| 454 | /// Initialize with number 1 instead of 0 so we don't go into .bss. This is the | |||
| 455 | /// global array of all hash tables storing indirect call destinations happening | |||
| 456 | /// during runtime, one table per call site. | |||
| 457 | IndirectCallHashTable *GlobalIndCallCounters{ | |||
| 458 | reinterpret_cast<IndirectCallHashTable *>(1)}; | |||
| 459 | ||||
| 460 | /// Don't allow reentrancy in the fdata writing phase - only one thread writes | |||
| 461 | /// it | |||
| 462 | Mutex *GlobalWriteProfileMutex{reinterpret_cast<Mutex *>(1)}; | |||
| 463 | ||||
| 464 | /// Store number of calls in additional to target address (Key) and frequency | |||
| 465 | /// as perceived by the basic block counter (Val). | |||
| 466 | struct CallFlowEntryBase : public SimpleHashTableEntryBase { | |||
| 467 | uint64_t Calls; | |||
| 468 | }; | |||
| 469 | ||||
| 470 | using CallFlowHashTableBase = SimpleHashTable<CallFlowEntryBase, 11939, 233>; | |||
| 471 | ||||
| 472 | /// This is a large table indexing all possible call targets (indirect and | |||
| 473 | /// direct ones). The goal is to find mismatches between number of calls (for | |||
| 474 | /// those calls we were able to track) and the entry basic block counter of the | |||
| 475 | /// callee. In most cases, these two should be equal. If not, there are two | |||
| 476 | /// possible scenarios here: | |||
| 477 | /// | |||
| 478 | /// * Entry BB has higher frequency than all known calls to this function. | |||
| 479 | /// In this case, we have dynamic library code or any uninstrumented code | |||
| 480 | /// calling this function. We will write the profile for these untracked | |||
| 481 | /// calls as having source "0 [unknown] 0" in the fdata file. | |||
| 482 | /// | |||
| 483 | /// * Number of known calls is higher than the frequency of entry BB | |||
| 484 | /// This only happens when there is no counter for the entry BB / callee | |||
| 485 | /// function is not simple (in BOLT terms). We don't do anything special | |||
| 486 | /// here and just ignore those (we still report all calls to the non-simple | |||
| 487 | /// function, though). | |||
| 488 | /// | |||
| 489 | class CallFlowHashTable : public CallFlowHashTableBase { | |||
| 490 | public: | |||
| 491 | CallFlowHashTable(BumpPtrAllocator &Alloc) : Alloc(Alloc) {} | |||
| 492 | ||||
| 493 | MapEntry &get(uint64_t Key) { return CallFlowHashTableBase::get(Key, Alloc); } | |||
| 494 | ||||
| 495 | private: | |||
| 496 | // Different than the hash table for indirect call targets, we do store the | |||
| 497 | // allocator here since there is only one call flow hash and space overhead | |||
| 498 | // is negligible. | |||
| 499 | BumpPtrAllocator &Alloc; | |||
| 500 | }; | |||
| 501 | ||||
| 502 | /// | |||
| 503 | /// Description metadata emitted by BOLT to describe the program - refer to | |||
| 504 | /// Passes/Instrumentation.cpp - Instrumentation::emitTablesAsELFNote() | |||
| 505 | /// | |||
| 506 | struct Location { | |||
| 507 | uint32_t FunctionName; | |||
| 508 | uint32_t Offset; | |||
| 509 | }; | |||
| 510 | ||||
| 511 | struct CallDescription { | |||
| 512 | Location From; | |||
| 513 | uint32_t FromNode; | |||
| 514 | Location To; | |||
| 515 | uint32_t Counter; | |||
| 516 | uint64_t TargetAddress; | |||
| 517 | }; | |||
| 518 | ||||
| 519 | using IndCallDescription = Location; | |||
| 520 | ||||
| 521 | struct IndCallTargetDescription { | |||
| 522 | Location Loc; | |||
| 523 | uint64_t Address; | |||
| 524 | }; | |||
| 525 | ||||
| 526 | struct EdgeDescription { | |||
| 527 | Location From; | |||
| 528 | uint32_t FromNode; | |||
| 529 | Location To; | |||
| 530 | uint32_t ToNode; | |||
| 531 | uint32_t Counter; | |||
| 532 | }; | |||
| 533 | ||||
| 534 | struct InstrumentedNode { | |||
| 535 | uint32_t Node; | |||
| 536 | uint32_t Counter; | |||
| 537 | }; | |||
| 538 | ||||
| 539 | struct EntryNode { | |||
| 540 | uint64_t Node; | |||
| 541 | uint64_t Address; | |||
| 542 | }; | |||
| 543 | ||||
| 544 | struct FunctionDescription { | |||
| 545 | uint32_t NumLeafNodes; | |||
| 546 | const InstrumentedNode *LeafNodes; | |||
| 547 | uint32_t NumEdges; | |||
| 548 | const EdgeDescription *Edges; | |||
| 549 | uint32_t NumCalls; | |||
| 550 | const CallDescription *Calls; | |||
| 551 | uint32_t NumEntryNodes; | |||
| 552 | const EntryNode *EntryNodes; | |||
| 553 | ||||
| 554 | /// Constructor will parse the serialized function metadata written by BOLT | |||
| 555 | FunctionDescription(const uint8_t *FuncDesc); | |||
| 556 | ||||
| 557 | uint64_t getSize() const { | |||
| 558 | return 16 + NumLeafNodes * sizeof(InstrumentedNode) + | |||
| 559 | NumEdges * sizeof(EdgeDescription) + | |||
| 560 | NumCalls * sizeof(CallDescription) + | |||
| 561 | NumEntryNodes * sizeof(EntryNode); | |||
| 562 | } | |||
| 563 | }; | |||
| 564 | ||||
| 565 | /// The context is created when the fdata profile needs to be written to disk | |||
| 566 | /// and we need to interpret our runtime counters. It contains pointers to the | |||
| 567 | /// mmaped binary (only the BOLT written metadata section). Deserialization | |||
| 568 | /// should be straightforward as most data is POD or an array of POD elements. | |||
| 569 | /// This metadata is used to reconstruct function CFGs. | |||
| 570 | struct ProfileWriterContext { | |||
| 571 | IndCallDescription *IndCallDescriptions; | |||
| 572 | IndCallTargetDescription *IndCallTargets; | |||
| 573 | uint8_t *FuncDescriptions; | |||
| 574 | char *Strings; // String table with function names used in this binary | |||
| 575 | int FileDesc; // File descriptor for the file on disk backing this | |||
| 576 | // information in memory via mmap | |||
| 577 | void *MMapPtr; // The mmap ptr | |||
| 578 | int MMapSize; // The mmap size | |||
| 579 | ||||
| 580 | /// Hash table storing all possible call destinations to detect untracked | |||
| 581 | /// calls and correctly report them as [unknown] in output fdata. | |||
| 582 | CallFlowHashTable *CallFlowTable; | |||
| 583 | ||||
| 584 | /// Lookup the sorted indirect call target vector to fetch function name and | |||
| 585 | /// offset for an arbitrary function pointer. | |||
| 586 | const IndCallTargetDescription *lookupIndCallTarget(uint64_t Target) const; | |||
| 587 | }; | |||
| 588 | ||||
| 589 | /// Perform a string comparison and returns zero if Str1 matches Str2. Compares | |||
| 590 | /// at most Size characters. | |||
| 591 | int compareStr(const char *Str1, const char *Str2, int Size) { | |||
| 592 | while (*Str1 == *Str2) { | |||
| 593 | if (*Str1 == '\0' || --Size == 0) | |||
| 594 | return 0; | |||
| 595 | ++Str1; | |||
| 596 | ++Str2; | |||
| 597 | } | |||
| 598 | return 1; | |||
| 599 | } | |||
| 600 | ||||
| 601 | /// Output Location to the fdata file | |||
| 602 | char *serializeLoc(const ProfileWriterContext &Ctx, char *OutBuf, | |||
| 603 | const Location Loc, uint32_t BufSize) { | |||
| 604 | // fdata location format: Type Name Offset | |||
| 605 | // Type 1 - regular symbol | |||
| 606 | OutBuf = strCopy(OutBuf, "1 "); | |||
| 607 | const char *Str = Ctx.Strings + Loc.FunctionName; | |||
| 608 | uint32_t Size = 25; | |||
| 609 | while (*Str) { | |||
| 610 | *OutBuf++ = *Str++; | |||
| 611 | if (++Size >= BufSize) | |||
| 612 | break; | |||
| 613 | } | |||
| 614 | assert(!*Str, "buffer overflow, function name too large"); | |||
| 615 | *OutBuf++ = ' '; | |||
| 616 | OutBuf = intToStr(OutBuf, Loc.Offset, 16); | |||
| 617 | *OutBuf++ = ' '; | |||
| 618 | return OutBuf; | |||
| 619 | } | |||
| 620 | ||||
| 621 | /// Read and deserialize a function description written by BOLT. \p FuncDesc | |||
| 622 | /// points at the beginning of the function metadata structure in the file. | |||
| 623 | /// See Instrumentation::emitTablesAsELFNote() | |||
| 624 | FunctionDescription::FunctionDescription(const uint8_t *FuncDesc) { | |||
| 625 | NumLeafNodes = *reinterpret_cast<const uint32_t *>(FuncDesc); | |||
| 626 | DEBUG(reportNumber("NumLeafNodes = ", NumLeafNodes, 10)){}; | |||
| 627 | LeafNodes = reinterpret_cast<const InstrumentedNode *>(FuncDesc + 4); | |||
| 628 | ||||
| 629 | NumEdges = *reinterpret_cast<const uint32_t *>( | |||
| 630 | FuncDesc + 4 + NumLeafNodes * sizeof(InstrumentedNode)); | |||
| 631 | DEBUG(reportNumber("NumEdges = ", NumEdges, 10)){}; | |||
| 632 | Edges = reinterpret_cast<const EdgeDescription *>( | |||
| 633 | FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode)); | |||
| 634 | ||||
| 635 | NumCalls = *reinterpret_cast<const uint32_t *>( | |||
| 636 | FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode) + | |||
| 637 | NumEdges * sizeof(EdgeDescription)); | |||
| 638 | DEBUG(reportNumber("NumCalls = ", NumCalls, 10)){}; | |||
| 639 | Calls = reinterpret_cast<const CallDescription *>( | |||
| 640 | FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) + | |||
| 641 | NumEdges * sizeof(EdgeDescription)); | |||
| 642 | NumEntryNodes = *reinterpret_cast<const uint32_t *>( | |||
| 643 | FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) + | |||
| 644 | NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription)); | |||
| 645 | DEBUG(reportNumber("NumEntryNodes = ", NumEntryNodes, 10)){}; | |||
| 646 | EntryNodes = reinterpret_cast<const EntryNode *>( | |||
| 647 | FuncDesc + 16 + NumLeafNodes * sizeof(InstrumentedNode) + | |||
| 648 | NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription)); | |||
| 649 | } | |||
| 650 | ||||
| 651 | /// Read and mmap descriptions written by BOLT from the executable's notes | |||
| 652 | /// section | |||
| 653 | #if defined(HAVE_ELF_H) and !defined(__APPLE__) | |||
| 654 | ||||
| 655 | void *__attribute__((noinline)) __get_pc() { | |||
| 656 | return __builtin_extract_return_addr(__builtin_return_address(0)); | |||
| 657 | } | |||
| 658 | ||||
| 659 | /// Get string with address and parse it to hex pair <StartAddress, EndAddress> | |||
| 660 | bool parseAddressRange(const char *Str, uint64_t &StartAddress, | |||
| 661 | uint64_t &EndAddress) { | |||
| 662 | if (!Str) | |||
| 663 | return false; | |||
| 664 | // Parsed string format: <hex1>-<hex2> | |||
| 665 | StartAddress = hexToLong(Str, '-'); | |||
| 666 | while (*Str && *Str != '-') | |||
| 667 | ++Str; | |||
| 668 | if (!*Str) | |||
| 669 | return false; | |||
| 670 | ++Str; // swallow '-' | |||
| 671 | EndAddress = hexToLong(Str); | |||
| 672 | return true; | |||
| 673 | } | |||
| 674 | ||||
| 675 | /// Get full path to the real binary by getting current virtual address | |||
| 676 | /// and searching for the appropriate link in address range in | |||
| 677 | /// /proc/self/map_files | |||
| 678 | static char *getBinaryPath() { | |||
| 679 | const uint32_t BufSize = 1024; | |||
| 680 | const uint32_t NameMax = 4096; | |||
| 681 | const char DirPath[] = "/proc/self/map_files/"; | |||
| 682 | static char TargetPath[NameMax] = {}; | |||
| 683 | char Buf[BufSize]; | |||
| 684 | ||||
| 685 | if (__bolt_instr_binpath[0] != '\0') | |||
| 686 | return __bolt_instr_binpath; | |||
| 687 | ||||
| 688 | if (TargetPath[0] != '\0') | |||
| 689 | return TargetPath; | |||
| 690 | ||||
| 691 | unsigned long CurAddr = (unsigned long)__get_pc(); | |||
| 692 | uint64_t FDdir = __open(DirPath, O_RDONLY0, | |||
| 693 | /*mode=*/0666); | |||
| 694 | assert(static_cast<int64_t>(FDdir) >= 0, | |||
| 695 | "failed to open /proc/self/map_files"); | |||
| 696 | ||||
| 697 | while (long Nread = __getdents64(FDdir, (struct dirent64 *)Buf, BufSize)) { | |||
| 698 | assert(static_cast<int64_t>(Nread) != -1, "failed to get folder entries"); | |||
| 699 | ||||
| 700 | struct dirent64 *d; | |||
| 701 | for (long Bpos = 0; Bpos < Nread; Bpos += d->d_reclen) { | |||
| 702 | d = (struct dirent64 *)(Buf + Bpos); | |||
| 703 | ||||
| 704 | uint64_t StartAddress, EndAddress; | |||
| 705 | if (!parseAddressRange(d->d_name, StartAddress, EndAddress)) | |||
| 706 | continue; | |||
| 707 | if (CurAddr < StartAddress || CurAddr > EndAddress) | |||
| 708 | continue; | |||
| 709 | char FindBuf[NameMax]; | |||
| 710 | char *C = strCopy(FindBuf, DirPath, NameMax); | |||
| 711 | C = strCopy(C, d->d_name, NameMax - (C - FindBuf)); | |||
| 712 | *C = '\0'; | |||
| 713 | uint32_t Ret = __readlink(FindBuf, TargetPath, sizeof(TargetPath)); | |||
| 714 | assert(Ret != -1 && Ret != BufSize, "readlink error"); | |||
| 715 | TargetPath[Ret] = '\0'; | |||
| 716 | return TargetPath; | |||
| 717 | } | |||
| 718 | } | |||
| 719 | return nullptr; | |||
| 720 | } | |||
| 721 | ||||
| 722 | ProfileWriterContext readDescriptions() { | |||
| 723 | ProfileWriterContext Result; | |||
| 724 | char *BinPath = getBinaryPath(); | |||
| 725 | assert(BinPath && BinPath[0] != '\0', "failed to find binary path"); | |||
| 726 | ||||
| 727 | uint64_t FD = __open(BinPath, O_RDONLY0, | |||
| 728 | /*mode=*/0666); | |||
| 729 | assert(static_cast<int64_t>(FD) >= 0, "failed to open binary path"); | |||
| 730 | ||||
| 731 | Result.FileDesc = FD; | |||
| 732 | ||||
| 733 | // mmap our binary to memory | |||
| 734 | uint64_t Size = __lseek(FD, 0, SEEK_END2); | |||
| 735 | uint8_t *BinContents = reinterpret_cast<uint8_t *>( | |||
| 736 | __mmap(0, Size, PROT_READ0x1, MAP_PRIVATE0x02, FD, 0)); | |||
| 737 | assert(BinContents != MAP_FAILED((void *)-1), "readDescriptions: Failed to mmap self!"); | |||
| 738 | Result.MMapPtr = BinContents; | |||
| 739 | Result.MMapSize = Size; | |||
| 740 | Elf64_Ehdr *Hdr = reinterpret_cast<Elf64_Ehdr *>(BinContents); | |||
| 741 | Elf64_Shdr *Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff); | |||
| 742 | Elf64_Shdr *StringTblHeader = reinterpret_cast<Elf64_Shdr *>( | |||
| 743 | BinContents + Hdr->e_shoff + Hdr->e_shstrndx * Hdr->e_shentsize); | |||
| 744 | ||||
| 745 | // Find .bolt.instr.tables with the data we need and set pointers to it | |||
| 746 | for (int I = 0; I < Hdr->e_shnum; ++I) { | |||
| 747 | char *SecName = reinterpret_cast<char *>( | |||
| 748 | BinContents + StringTblHeader->sh_offset + Shdr->sh_name); | |||
| 749 | if (compareStr(SecName, ".bolt.instr.tables", 64) != 0) { | |||
| 750 | Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff + | |||
| 751 | (I + 1) * Hdr->e_shentsize); | |||
| 752 | continue; | |||
| 753 | } | |||
| 754 | // Actual contents of the ELF note start after offset 20 decimal: | |||
| 755 | // Offset 0: Producer name size (4 bytes) | |||
| 756 | // Offset 4: Contents size (4 bytes) | |||
| 757 | // Offset 8: Note type (4 bytes) | |||
| 758 | // Offset 12: Producer name (BOLT\0) (5 bytes + align to 4-byte boundary) | |||
| 759 | // Offset 20: Contents | |||
| 760 | uint32_t IndCallDescSize = | |||
| 761 | *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 20); | |||
| 762 | uint32_t IndCallTargetDescSize = *reinterpret_cast<uint32_t *>( | |||
| 763 | BinContents + Shdr->sh_offset + 24 + IndCallDescSize); | |||
| 764 | uint32_t FuncDescSize = | |||
| 765 | *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 28 + | |||
| 766 | IndCallDescSize + IndCallTargetDescSize); | |||
| 767 | Result.IndCallDescriptions = reinterpret_cast<IndCallDescription *>( | |||
| 768 | BinContents + Shdr->sh_offset + 24); | |||
| 769 | Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>( | |||
| 770 | BinContents + Shdr->sh_offset + 28 + IndCallDescSize); | |||
| 771 | Result.FuncDescriptions = BinContents + Shdr->sh_offset + 32 + | |||
| 772 | IndCallDescSize + IndCallTargetDescSize; | |||
| 773 | Result.Strings = reinterpret_cast<char *>( | |||
| 774 | BinContents + Shdr->sh_offset + 32 + IndCallDescSize + | |||
| 775 | IndCallTargetDescSize + FuncDescSize); | |||
| 776 | return Result; | |||
| 777 | } | |||
| 778 | const char ErrMsg[] = | |||
| 779 | "BOLT instrumentation runtime error: could not find section " | |||
| 780 | ".bolt.instr.tables\n"; | |||
| 781 | reportError(ErrMsg, sizeof(ErrMsg)); | |||
| 782 | return Result; | |||
| 783 | } | |||
| 784 | ||||
| 785 | #else | |||
| 786 | ||||
| 787 | ProfileWriterContext readDescriptions() { | |||
| 788 | ProfileWriterContext Result; | |||
| 789 | uint8_t *Tables = _bolt_instr_tables_getter(); | |||
| 790 | uint32_t IndCallDescSize = *reinterpret_cast<uint32_t *>(Tables); | |||
| 791 | uint32_t IndCallTargetDescSize = | |||
| 792 | *reinterpret_cast<uint32_t *>(Tables + 4 + IndCallDescSize); | |||
| 793 | uint32_t FuncDescSize = *reinterpret_cast<uint32_t *>( | |||
| 794 | Tables + 8 + IndCallDescSize + IndCallTargetDescSize); | |||
| 795 | Result.IndCallDescriptions = | |||
| 796 | reinterpret_cast<IndCallDescription *>(Tables + 4); | |||
| 797 | Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>( | |||
| 798 | Tables + 8 + IndCallDescSize); | |||
| 799 | Result.FuncDescriptions = | |||
| 800 | Tables + 12 + IndCallDescSize + IndCallTargetDescSize; | |||
| 801 | Result.Strings = reinterpret_cast<char *>( | |||
| 802 | Tables + 12 + IndCallDescSize + IndCallTargetDescSize + FuncDescSize); | |||
| 803 | return Result; | |||
| 804 | } | |||
| 805 | ||||
| 806 | #endif | |||
| 807 | ||||
| 808 | #if !defined(__APPLE__) | |||
| 809 | /// Debug by printing overall metadata global numbers to check it is sane | |||
| 810 | void printStats(const ProfileWriterContext &Ctx) { | |||
| 811 | char StatMsg[BufSize]; | |||
| 812 | char *StatPtr = StatMsg; | |||
| 813 | StatPtr = | |||
| 814 | strCopy(StatPtr, | |||
| 815 | "\nBOLT INSTRUMENTATION RUNTIME STATISTICS\n\nIndCallDescSize: "); | |||
| 816 | StatPtr = intToStr(StatPtr, | |||
| 817 | Ctx.FuncDescriptions - | |||
| 818 | reinterpret_cast<uint8_t *>(Ctx.IndCallDescriptions), | |||
| 819 | 10); | |||
| 820 | StatPtr = strCopy(StatPtr, "\nFuncDescSize: "); | |||
| 821 | StatPtr = intToStr( | |||
| 822 | StatPtr, | |||
| 823 | reinterpret_cast<uint8_t *>(Ctx.Strings) - Ctx.FuncDescriptions, 10); | |||
| 824 | StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_ind_calls: "); | |||
| 825 | StatPtr = intToStr(StatPtr, __bolt_instr_num_ind_calls, 10); | |||
| 826 | StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_funcs: "); | |||
| 827 | StatPtr = intToStr(StatPtr, __bolt_instr_num_funcs, 10); | |||
| 828 | StatPtr = strCopy(StatPtr, "\n"); | |||
| 829 | __write(2, StatMsg, StatPtr - StatMsg); | |||
| 830 | } | |||
| 831 | #endif | |||
| 832 | ||||
| 833 | ||||
| 834 | /// This is part of a simple CFG representation in memory, where we store | |||
| 835 | /// a dynamically sized array of input and output edges per node, and store | |||
| 836 | /// a dynamically sized array of nodes per graph. We also store the spanning | |||
| 837 | /// tree edges for that CFG in a separate array of nodes in | |||
| 838 | /// \p SpanningTreeNodes, while the regular nodes live in \p CFGNodes. | |||
| 839 | struct Edge { | |||
| 840 | uint32_t Node; // Index in nodes array regarding the destination of this edge | |||
| 841 | uint32_t ID; // Edge index in an array comprising all edges of the graph | |||
| 842 | }; | |||
| 843 | ||||
| 844 | /// A regular graph node or a spanning tree node | |||
| 845 | struct Node { | |||
| 846 | uint32_t NumInEdges{0}; // Input edge count used to size InEdge | |||
| 847 | uint32_t NumOutEdges{0}; // Output edge count used to size OutEdges | |||
| 848 | Edge *InEdges{nullptr}; // Created and managed by \p Graph | |||
| 849 | Edge *OutEdges{nullptr}; // ditto | |||
| 850 | }; | |||
| 851 | ||||
| 852 | /// Main class for CFG representation in memory. Manages object creation and | |||
| 853 | /// destruction, populates an array of CFG nodes as well as corresponding | |||
| 854 | /// spanning tree nodes. | |||
| 855 | struct Graph { | |||
| 856 | uint32_t NumNodes; | |||
| 857 | Node *CFGNodes; | |||
| 858 | Node *SpanningTreeNodes; | |||
| 859 | uint64_t *EdgeFreqs; | |||
| 860 | uint64_t *CallFreqs; | |||
| 861 | BumpPtrAllocator &Alloc; | |||
| 862 | const FunctionDescription &D; | |||
| 863 | ||||
| 864 | /// Reads a list of edges from function description \p D and builds | |||
| 865 | /// the graph from it. Allocates several internal dynamic structures that are | |||
| 866 | /// later destroyed by ~Graph() and uses \p Alloc. D.LeafNodes contain all | |||
| 867 | /// spanning tree leaf nodes descriptions (their counters). They are the seed | |||
| 868 | /// used to compute the rest of the missing edge counts in a bottom-up | |||
| 869 | /// traversal of the spanning tree. | |||
| 870 | Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D, | |||
| 871 | const uint64_t *Counters, ProfileWriterContext &Ctx); | |||
| 872 | ~Graph(); | |||
| 873 | void dump() const; | |||
| 874 | ||||
| 875 | private: | |||
| 876 | void computeEdgeFrequencies(const uint64_t *Counters, | |||
| 877 | ProfileWriterContext &Ctx); | |||
| 878 | void dumpEdgeFreqs() const; | |||
| 879 | }; | |||
| 880 | ||||
| 881 | Graph::Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D, | |||
| 882 | const uint64_t *Counters, ProfileWriterContext &Ctx) | |||
| 883 | : Alloc(Alloc), D(D) { | |||
| 884 | DEBUG(reportNumber("G = 0x", (uint64_t)this, 16)){}; | |||
| 885 | // First pass to determine number of nodes | |||
| 886 | int32_t MaxNodes = -1; | |||
| 887 | CallFreqs = nullptr; | |||
| 888 | EdgeFreqs = nullptr; | |||
| 889 | for (int I = 0; I < D.NumEdges; ++I) { | |||
| 890 | if (static_cast<int32_t>(D.Edges[I].FromNode) > MaxNodes) | |||
| 891 | MaxNodes = D.Edges[I].FromNode; | |||
| 892 | if (static_cast<int32_t>(D.Edges[I].ToNode) > MaxNodes) | |||
| 893 | MaxNodes = D.Edges[I].ToNode; | |||
| 894 | } | |||
| 895 | ||||
| 896 | for (int I = 0; I < D.NumLeafNodes; ++I) | |||
| 897 | if (static_cast<int32_t>(D.LeafNodes[I].Node) > MaxNodes) | |||
| 898 | MaxNodes = D.LeafNodes[I].Node; | |||
| 899 | ||||
| 900 | for (int I = 0; I < D.NumCalls; ++I) | |||
| 901 | if (static_cast<int32_t>(D.Calls[I].FromNode) > MaxNodes) | |||
| 902 | MaxNodes = D.Calls[I].FromNode; | |||
| 903 | ||||
| 904 | // No nodes? Nothing to do | |||
| 905 | if (MaxNodes < 0) { | |||
| 906 | DEBUG(report("No nodes!\n")){}; | |||
| 907 | CFGNodes = nullptr; | |||
| 908 | SpanningTreeNodes = nullptr; | |||
| 909 | NumNodes = 0; | |||
| 910 | return; | |||
| 911 | } | |||
| 912 | ++MaxNodes; | |||
| 913 | DEBUG(reportNumber("NumNodes = ", MaxNodes, 10)){}; | |||
| 914 | NumNodes = static_cast<uint32_t>(MaxNodes); | |||
| 915 | ||||
| 916 | // Initial allocations | |||
| 917 | CFGNodes = new (Alloc) Node[MaxNodes]; | |||
| 918 | ||||
| 919 | DEBUG(reportNumber("G->CFGNodes = 0x", (uint64_t)CFGNodes, 16)){}; | |||
| 920 | SpanningTreeNodes = new (Alloc) Node[MaxNodes]; | |||
| 921 | DEBUG(reportNumber("G->SpanningTreeNodes = 0x",{} | |||
| 922 | (uint64_t)SpanningTreeNodes, 16)){}; | |||
| 923 | ||||
| 924 | // Figure out how much to allocate to each vector (in/out edge sets) | |||
| 925 | for (int I = 0; I < D.NumEdges; ++I) { | |||
| 926 | CFGNodes[D.Edges[I].FromNode].NumOutEdges++; | |||
| 927 | CFGNodes[D.Edges[I].ToNode].NumInEdges++; | |||
| 928 | if (D.Edges[I].Counter != 0xffffffff) | |||
| 929 | continue; | |||
| 930 | ||||
| 931 | SpanningTreeNodes[D.Edges[I].FromNode].NumOutEdges++; | |||
| 932 | SpanningTreeNodes[D.Edges[I].ToNode].NumInEdges++; | |||
| 933 | } | |||
| 934 | ||||
| 935 | // Allocate in/out edge sets | |||
| 936 | for (int I = 0; I < MaxNodes; ++I) { | |||
| 937 | if (CFGNodes[I].NumInEdges > 0) | |||
| 938 | CFGNodes[I].InEdges = new (Alloc) Edge[CFGNodes[I].NumInEdges]; | |||
| 939 | if (CFGNodes[I].NumOutEdges > 0) | |||
| 940 | CFGNodes[I].OutEdges = new (Alloc) Edge[CFGNodes[I].NumOutEdges]; | |||
| 941 | if (SpanningTreeNodes[I].NumInEdges > 0) | |||
| 942 | SpanningTreeNodes[I].InEdges = | |||
| 943 | new (Alloc) Edge[SpanningTreeNodes[I].NumInEdges]; | |||
| 944 | if (SpanningTreeNodes[I].NumOutEdges > 0) | |||
| 945 | SpanningTreeNodes[I].OutEdges = | |||
| 946 | new (Alloc) Edge[SpanningTreeNodes[I].NumOutEdges]; | |||
| 947 | CFGNodes[I].NumInEdges = 0; | |||
| 948 | CFGNodes[I].NumOutEdges = 0; | |||
| 949 | SpanningTreeNodes[I].NumInEdges = 0; | |||
| 950 | SpanningTreeNodes[I].NumOutEdges = 0; | |||
| 951 | } | |||
| 952 | ||||
| 953 | // Fill in/out edge sets | |||
| 954 | for (int I = 0; I < D.NumEdges; ++I) { | |||
| 955 | const uint32_t Src = D.Edges[I].FromNode; | |||
| 956 | const uint32_t Dst = D.Edges[I].ToNode; | |||
| 957 | Edge *E = &CFGNodes[Src].OutEdges[CFGNodes[Src].NumOutEdges++]; | |||
| 958 | E->Node = Dst; | |||
| 959 | E->ID = I; | |||
| 960 | ||||
| 961 | E = &CFGNodes[Dst].InEdges[CFGNodes[Dst].NumInEdges++]; | |||
| 962 | E->Node = Src; | |||
| 963 | E->ID = I; | |||
| 964 | ||||
| 965 | if (D.Edges[I].Counter != 0xffffffff) | |||
| 966 | continue; | |||
| 967 | ||||
| 968 | E = &SpanningTreeNodes[Src] | |||
| 969 | .OutEdges[SpanningTreeNodes[Src].NumOutEdges++]; | |||
| 970 | E->Node = Dst; | |||
| 971 | E->ID = I; | |||
| 972 | ||||
| 973 | E = &SpanningTreeNodes[Dst] | |||
| 974 | .InEdges[SpanningTreeNodes[Dst].NumInEdges++]; | |||
| 975 | E->Node = Src; | |||
| 976 | E->ID = I; | |||
| 977 | } | |||
| 978 | ||||
| 979 | computeEdgeFrequencies(Counters, Ctx); | |||
| 980 | } | |||
| 981 | ||||
| 982 | Graph::~Graph() { | |||
| 983 | if (CallFreqs) | |||
| 984 | Alloc.deallocate(CallFreqs); | |||
| 985 | if (EdgeFreqs) | |||
| 986 | Alloc.deallocate(EdgeFreqs); | |||
| 987 | for (int I = NumNodes - 1; I >= 0; --I) { | |||
| 988 | if (SpanningTreeNodes[I].OutEdges) | |||
| 989 | Alloc.deallocate(SpanningTreeNodes[I].OutEdges); | |||
| 990 | if (SpanningTreeNodes[I].InEdges) | |||
| 991 | Alloc.deallocate(SpanningTreeNodes[I].InEdges); | |||
| 992 | if (CFGNodes[I].OutEdges) | |||
| 993 | Alloc.deallocate(CFGNodes[I].OutEdges); | |||
| 994 | if (CFGNodes[I].InEdges) | |||
| 995 | Alloc.deallocate(CFGNodes[I].InEdges); | |||
| 996 | } | |||
| 997 | if (SpanningTreeNodes) | |||
| 998 | Alloc.deallocate(SpanningTreeNodes); | |||
| 999 | if (CFGNodes) | |||
| 1000 | Alloc.deallocate(CFGNodes); | |||
| 1001 | } | |||
| 1002 | ||||
| 1003 | void Graph::dump() const { | |||
| 1004 | reportNumber("Dumping graph with number of nodes: ", NumNodes, 10); | |||
| 1005 | report(" Full graph:\n"); | |||
| 1006 | for (int I = 0; I < NumNodes; ++I) { | |||
| 1007 | const Node *N = &CFGNodes[I]; | |||
| 1008 | reportNumber(" Node #", I, 10); | |||
| 1009 | reportNumber(" InEdges total ", N->NumInEdges, 10); | |||
| 1010 | for (int J = 0; J < N->NumInEdges; ++J) | |||
| 1011 | reportNumber(" ", N->InEdges[J].Node, 10); | |||
| 1012 | reportNumber(" OutEdges total ", N->NumOutEdges, 10); | |||
| 1013 | for (int J = 0; J < N->NumOutEdges; ++J) | |||
| 1014 | reportNumber(" ", N->OutEdges[J].Node, 10); | |||
| 1015 | report("\n"); | |||
| 1016 | } | |||
| 1017 | report(" Spanning tree:\n"); | |||
| 1018 | for (int I = 0; I < NumNodes; ++I) { | |||
| 1019 | const Node *N = &SpanningTreeNodes[I]; | |||
| 1020 | reportNumber(" Node #", I, 10); | |||
| 1021 | reportNumber(" InEdges total ", N->NumInEdges, 10); | |||
| 1022 | for (int J = 0; J < N->NumInEdges; ++J) | |||
| 1023 | reportNumber(" ", N->InEdges[J].Node, 10); | |||
| 1024 | reportNumber(" OutEdges total ", N->NumOutEdges, 10); | |||
| 1025 | for (int J = 0; J < N->NumOutEdges; ++J) | |||
| 1026 | reportNumber(" ", N->OutEdges[J].Node, 10); | |||
| 1027 | report("\n"); | |||
| 1028 | } | |||
| 1029 | } | |||
| 1030 | ||||
| 1031 | void Graph::dumpEdgeFreqs() const { | |||
| 1032 | reportNumber( | |||
| 1033 | "Dumping edge frequencies for graph with num edges: ", D.NumEdges, 10); | |||
| 1034 | for (int I = 0; I < D.NumEdges; ++I) { | |||
| 1035 | reportNumber("* Src: ", D.Edges[I].FromNode, 10); | |||
| 1036 | reportNumber(" Dst: ", D.Edges[I].ToNode, 10); | |||
| 1037 | reportNumber(" Cnt: ", EdgeFreqs[I], 10); | |||
| 1038 | } | |||
| 1039 | } | |||
| 1040 | ||||
| 1041 | /// Auxiliary map structure for fast lookups of which calls map to each node of | |||
| 1042 | /// the function CFG | |||
| 1043 | struct NodeToCallsMap { | |||
| 1044 | struct MapEntry { | |||
| 1045 | uint32_t NumCalls; | |||
| 1046 | uint32_t *Calls; | |||
| 1047 | }; | |||
| 1048 | MapEntry *Entries; | |||
| 1049 | BumpPtrAllocator &Alloc; | |||
| 1050 | const uint32_t NumNodes; | |||
| 1051 | ||||
| 1052 | NodeToCallsMap(BumpPtrAllocator &Alloc, const FunctionDescription &D, | |||
| 1053 | uint32_t NumNodes) | |||
| 1054 | : Alloc(Alloc), NumNodes(NumNodes) { | |||
| 1055 | Entries = new (Alloc, 0) MapEntry[NumNodes]; | |||
| 1056 | for (int I = 0; I < D.NumCalls; ++I) { | |||
| 1057 | DEBUG(reportNumber("Registering call in node ", D.Calls[I].FromNode, 10)){}; | |||
| 1058 | ++Entries[D.Calls[I].FromNode].NumCalls; | |||
| 1059 | } | |||
| 1060 | for (int I = 0; I < NumNodes; ++I) { | |||
| 1061 | Entries[I].Calls = Entries[I].NumCalls ? new (Alloc) | |||
| 1062 | uint32_t[Entries[I].NumCalls] | |||
| 1063 | : nullptr; | |||
| 1064 | Entries[I].NumCalls = 0; | |||
| 1065 | } | |||
| 1066 | for (int I = 0; I < D.NumCalls; ++I) { | |||
| 1067 | MapEntry &Entry = Entries[D.Calls[I].FromNode]; | |||
| 1068 | Entry.Calls[Entry.NumCalls++] = I; | |||
| 1069 | } | |||
| 1070 | } | |||
| 1071 | ||||
| 1072 | /// Set the frequency of all calls in node \p NodeID to Freq. However, if | |||
| 1073 | /// the calls have their own counters and do not depend on the basic block | |||
| 1074 | /// counter, this means they have landing pads and throw exceptions. In this | |||
| 1075 | /// case, set their frequency with their counters and return the maximum | |||
| 1076 | /// value observed in such counters. This will be used as the new frequency | |||
| 1077 | /// at basic block entry. This is used to fix the CFG edge frequencies in the | |||
| 1078 | /// presence of exceptions. | |||
| 1079 | uint64_t visitAllCallsIn(uint32_t NodeID, uint64_t Freq, uint64_t *CallFreqs, | |||
| 1080 | const FunctionDescription &D, | |||
| 1081 | const uint64_t *Counters, | |||
| 1082 | ProfileWriterContext &Ctx) const { | |||
| 1083 | const MapEntry &Entry = Entries[NodeID]; | |||
| 1084 | uint64_t MaxValue = 0ull; | |||
| 1085 | for (int I = 0, E = Entry.NumCalls; I != E; ++I) { | |||
| 1086 | const uint32_t CallID = Entry.Calls[I]; | |||
| 1087 | DEBUG(reportNumber(" Setting freq for call ID: ", CallID, 10)){}; | |||
| 1088 | const CallDescription &CallDesc = D.Calls[CallID]; | |||
| 1089 | if (CallDesc.Counter == 0xffffffff) { | |||
| 1090 | CallFreqs[CallID] = Freq; | |||
| 1091 | DEBUG(reportNumber(" with : ", Freq, 10)){}; | |||
| 1092 | } else { | |||
| 1093 | const uint64_t CounterVal = Counters[CallDesc.Counter]; | |||
| 1094 | CallFreqs[CallID] = CounterVal; | |||
| 1095 | MaxValue = CounterVal > MaxValue ? CounterVal : MaxValue; | |||
| 1096 | DEBUG(reportNumber(" with (private counter) : ", CounterVal, 10)){}; | |||
| 1097 | } | |||
| 1098 | DEBUG(reportNumber(" Address: 0x", CallDesc.TargetAddress, 16)){}; | |||
| 1099 | if (CallFreqs[CallID] > 0) | |||
| 1100 | Ctx.CallFlowTable->get(CallDesc.TargetAddress).Calls += | |||
| 1101 | CallFreqs[CallID]; | |||
| 1102 | } | |||
| 1103 | return MaxValue; | |||
| 1104 | } | |||
| 1105 | ||||
| 1106 | ~NodeToCallsMap() { | |||
| 1107 | for (int I = NumNodes - 1; I >= 0; --I) | |||
| 1108 | if (Entries[I].Calls) | |||
| 1109 | Alloc.deallocate(Entries[I].Calls); | |||
| 1110 | Alloc.deallocate(Entries); | |||
| 1111 | } | |||
| 1112 | }; | |||
| 1113 | ||||
| 1114 | /// Fill an array with the frequency of each edge in the function represented | |||
| 1115 | /// by G, as well as another array for each call. | |||
| 1116 | void Graph::computeEdgeFrequencies(const uint64_t *Counters, | |||
| 1117 | ProfileWriterContext &Ctx) { | |||
| 1118 | if (NumNodes == 0) | |||
| 1119 | return; | |||
| 1120 | ||||
| 1121 | EdgeFreqs = D.NumEdges ? new (Alloc, 0) uint64_t [D.NumEdges] : nullptr; | |||
| 1122 | CallFreqs = D.NumCalls ? new (Alloc, 0) uint64_t [D.NumCalls] : nullptr; | |||
| 1123 | ||||
| 1124 | // Setup a lookup for calls present in each node (BB) | |||
| 1125 | NodeToCallsMap *CallMap = new (Alloc) NodeToCallsMap(Alloc, D, NumNodes); | |||
| 1126 | ||||
| 1127 | // Perform a bottom-up, BFS traversal of the spanning tree in G. Edges in the | |||
| 1128 | // spanning tree don't have explicit counters. We must infer their value using | |||
| 1129 | // a linear combination of other counters (sum of counters of the outgoing | |||
| 1130 | // edges minus sum of counters of the incoming edges). | |||
| 1131 | uint32_t *Stack = new (Alloc) uint32_t [NumNodes]; | |||
| 1132 | uint32_t StackTop = 0; | |||
| 1133 | enum Status : uint8_t { S_NEW = 0, S_VISITING, S_VISITED }; | |||
| 1134 | Status *Visited = new (Alloc, 0) Status[NumNodes]; | |||
| 1135 | uint64_t *LeafFrequency = new (Alloc, 0) uint64_t[NumNodes]; | |||
| 1136 | uint64_t *EntryAddress = new (Alloc, 0) uint64_t[NumNodes]; | |||
| 1137 | ||||
| 1138 | // Setup a fast lookup for frequency of leaf nodes, which have special | |||
| 1139 | // basic block frequency instrumentation (they are not edge profiled). | |||
| 1140 | for (int I = 0; I < D.NumLeafNodes; ++I) { | |||
| 1141 | LeafFrequency[D.LeafNodes[I].Node] = Counters[D.LeafNodes[I].Counter]; | |||
| 1142 | DEBUG({{} | |||
| 1143 | if (Counters[D.LeafNodes[I].Counter] > 0) {{} | |||
| 1144 | reportNumber("Leaf Node# ", D.LeafNodes[I].Node, 10);{} | |||
| 1145 | reportNumber(" Counter: ", Counters[D.LeafNodes[I].Counter], 10);{} | |||
| 1146 | }{} | |||
| 1147 | }){}; | |||
| 1148 | } | |||
| 1149 | for (int I = 0; I < D.NumEntryNodes; ++I) { | |||
| 1150 | EntryAddress[D.EntryNodes[I].Node] = D.EntryNodes[I].Address; | |||
| 1151 | DEBUG({{} | |||
| 1152 | reportNumber("Entry Node# ", D.EntryNodes[I].Node, 10);{} | |||
| 1153 | reportNumber(" Address: ", D.EntryNodes[I].Address, 16);{} | |||
| 1154 | }){}; | |||
| 1155 | } | |||
| 1156 | // Add all root nodes to the stack | |||
| 1157 | for (int I = 0; I < NumNodes; ++I) | |||
| 1158 | if (SpanningTreeNodes[I].NumInEdges == 0) | |||
| 1159 | Stack[StackTop++] = I; | |||
| 1160 | ||||
| 1161 | // Empty stack? | |||
| 1162 | if (StackTop == 0) { | |||
| 1163 | DEBUG(report("Empty stack!\n")){}; | |||
| 1164 | Alloc.deallocate(EntryAddress); | |||
| 1165 | Alloc.deallocate(LeafFrequency); | |||
| 1166 | Alloc.deallocate(Visited); | |||
| 1167 | Alloc.deallocate(Stack); | |||
| 1168 | CallMap->~NodeToCallsMap(); | |||
| 1169 | Alloc.deallocate(CallMap); | |||
| 1170 | if (CallFreqs) | |||
| 1171 | Alloc.deallocate(CallFreqs); | |||
| 1172 | if (EdgeFreqs) | |||
| 1173 | Alloc.deallocate(EdgeFreqs); | |||
| 1174 | EdgeFreqs = nullptr; | |||
| 1175 | CallFreqs = nullptr; | |||
| 1176 | return; | |||
| 1177 | } | |||
| 1178 | // Add all known edge counts, will infer the rest | |||
| 1179 | for (int I = 0; I < D.NumEdges; ++I) { | |||
| 1180 | const uint32_t C = D.Edges[I].Counter; | |||
| 1181 | if (C == 0xffffffff) // inferred counter - we will compute its value | |||
| 1182 | continue; | |||
| 1183 | EdgeFreqs[I] = Counters[C]; | |||
| 1184 | } | |||
| 1185 | ||||
| 1186 | while (StackTop > 0) { | |||
| 1187 | const uint32_t Cur = Stack[--StackTop]; | |||
| 1188 | DEBUG({{} | |||
| 1189 | if (Visited[Cur] == S_VISITING){} | |||
| 1190 | report("(visiting) ");{} | |||
| 1191 | else{} | |||
| 1192 | report("(new) ");{} | |||
| 1193 | reportNumber("Cur: ", Cur, 10);{} | |||
| 1194 | }){}; | |||
| 1195 | ||||
| 1196 | // This shouldn't happen in a tree | |||
| 1197 | assert(Visited[Cur] != S_VISITED, "should not have visited nodes in stack"); | |||
| 1198 | if (Visited[Cur] == S_NEW) { | |||
| 1199 | Visited[Cur] = S_VISITING; | |||
| 1200 | Stack[StackTop++] = Cur; | |||
| 1201 | assert(StackTop <= NumNodes, "stack grew too large"); | |||
| 1202 | for (int I = 0, E = SpanningTreeNodes[Cur].NumOutEdges; I < E; ++I) { | |||
| 1203 | const uint32_t Succ = SpanningTreeNodes[Cur].OutEdges[I].Node; | |||
| 1204 | Stack[StackTop++] = Succ; | |||
| 1205 | assert(StackTop <= NumNodes, "stack grew too large"); | |||
| 1206 | } | |||
| 1207 | continue; | |||
| 1208 | } | |||
| 1209 | Visited[Cur] = S_VISITED; | |||
| 1210 | ||||
| 1211 | // Establish our node frequency based on outgoing edges, which should all be | |||
| 1212 | // resolved by now. | |||
| 1213 | int64_t CurNodeFreq = LeafFrequency[Cur]; | |||
| 1214 | // Not a leaf? | |||
| 1215 | if (!CurNodeFreq) { | |||
| 1216 | for (int I = 0, E = CFGNodes[Cur].NumOutEdges; I != E; ++I) { | |||
| 1217 | const uint32_t SuccEdge = CFGNodes[Cur].OutEdges[I].ID; | |||
| 1218 | CurNodeFreq += EdgeFreqs[SuccEdge]; | |||
| 1219 | } | |||
| 1220 | } | |||
| 1221 | if (CurNodeFreq < 0) | |||
| 1222 | CurNodeFreq = 0; | |||
| 1223 | ||||
| 1224 | const uint64_t CallFreq = CallMap->visitAllCallsIn( | |||
| 1225 | Cur, CurNodeFreq > 0 ? CurNodeFreq : 0, CallFreqs, D, Counters, Ctx); | |||
| 1226 | ||||
| 1227 | // Exception handling affected our output flow? Fix with calls info | |||
| 1228 | DEBUG({{} | |||
| 1229 | if (CallFreq > CurNodeFreq){} | |||
| 1230 | report("Bumping node frequency with call info\n");{} | |||
| 1231 | }){}; | |||
| 1232 | CurNodeFreq = CallFreq > CurNodeFreq ? CallFreq : CurNodeFreq; | |||
| 1233 | ||||
| 1234 | if (CurNodeFreq > 0) { | |||
| 1235 | if (uint64_t Addr = EntryAddress[Cur]) { | |||
| 1236 | DEBUG({} | |||
| 1237 | reportNumber(" Setting flow at entry point address 0x", Addr, 16)){}; | |||
| 1238 | DEBUG(reportNumber(" with: ", CurNodeFreq, 10)){}; | |||
| 1239 | Ctx.CallFlowTable->get(Addr).Val = CurNodeFreq; | |||
| 1240 | } | |||
| 1241 | } | |||
| 1242 | ||||
| 1243 | // No parent? Reached a tree root, limit to call frequency updating. | |||
| 1244 | if (SpanningTreeNodes[Cur].NumInEdges == 0) | |||
| 1245 | continue; | |||
| 1246 | ||||
| 1247 | assert(SpanningTreeNodes[Cur].NumInEdges == 1, "must have 1 parent"); | |||
| 1248 | const uint32_t Parent = SpanningTreeNodes[Cur].InEdges[0].Node; | |||
| 1249 | const uint32_t ParentEdge = SpanningTreeNodes[Cur].InEdges[0].ID; | |||
| 1250 | ||||
| 1251 | // Calculate parent edge freq. | |||
| 1252 | int64_t ParentEdgeFreq = CurNodeFreq; | |||
| 1253 | for (int I = 0, E = CFGNodes[Cur].NumInEdges; I != E; ++I) { | |||
| 1254 | const uint32_t PredEdge = CFGNodes[Cur].InEdges[I].ID; | |||
| 1255 | ParentEdgeFreq -= EdgeFreqs[PredEdge]; | |||
| 1256 | } | |||
| 1257 | ||||
| 1258 | // Sometimes the conservative CFG that BOLT builds will lead to incorrect | |||
| 1259 | // flow computation. For example, in a BB that transitively calls the exit | |||
| 1260 | // syscall, BOLT will add a fall-through successor even though it should not | |||
| 1261 | // have any successors. So this block execution will likely be wrong. We | |||
| 1262 | // tolerate this imperfection since this case should be quite infrequent. | |||
| 1263 | if (ParentEdgeFreq < 0) { | |||
| 1264 | DEBUG(dumpEdgeFreqs()){}; | |||
| 1265 | DEBUG(report("WARNING: incorrect flow")){}; | |||
| 1266 | ParentEdgeFreq = 0; | |||
| 1267 | } | |||
| 1268 | DEBUG(reportNumber(" Setting freq for ParentEdge: ", ParentEdge, 10)){}; | |||
| 1269 | DEBUG(reportNumber(" with ParentEdgeFreq: ", ParentEdgeFreq, 10)){}; | |||
| 1270 | EdgeFreqs[ParentEdge] = ParentEdgeFreq; | |||
| 1271 | } | |||
| 1272 | ||||
| 1273 | Alloc.deallocate(EntryAddress); | |||
| 1274 | Alloc.deallocate(LeafFrequency); | |||
| 1275 | Alloc.deallocate(Visited); | |||
| 1276 | Alloc.deallocate(Stack); | |||
| 1277 | CallMap->~NodeToCallsMap(); | |||
| 1278 | Alloc.deallocate(CallMap); | |||
| 1279 | DEBUG(dumpEdgeFreqs()){}; | |||
| 1280 | } | |||
| 1281 | ||||
| 1282 | /// Write to \p FD all of the edge profiles for function \p FuncDesc. Uses | |||
| 1283 | /// \p Alloc to allocate helper dynamic structures used to compute profile for | |||
| 1284 | /// edges that we do not explicitly instrument. | |||
| 1285 | const uint8_t *writeFunctionProfile(int FD, ProfileWriterContext &Ctx, | |||
| 1286 | const uint8_t *FuncDesc, | |||
| 1287 | BumpPtrAllocator &Alloc) { | |||
| 1288 | const FunctionDescription F(FuncDesc); | |||
| 1289 | const uint8_t *next = FuncDesc + F.getSize(); | |||
| 1290 | ||||
| 1291 | #if !defined(__APPLE__) | |||
| 1292 | uint64_t *bolt_instr_locations = __bolt_instr_locations; | |||
| 1293 | #else | |||
| 1294 | uint64_t *bolt_instr_locations = _bolt_instr_locations_getter(); | |||
| 1295 | #endif | |||
| 1296 | ||||
| 1297 | // Skip funcs we know are cold | |||
| 1298 | #ifndef ENABLE_DEBUG | |||
| 1299 | uint64_t CountersFreq = 0; | |||
| 1300 | for (int I = 0; I < F.NumLeafNodes; ++I) | |||
| 1301 | CountersFreq += bolt_instr_locations[F.LeafNodes[I].Counter]; | |||
| 1302 | ||||
| 1303 | if (CountersFreq == 0) { | |||
| 1304 | for (int I = 0; I < F.NumEdges; ++I) { | |||
| 1305 | const uint32_t C = F.Edges[I].Counter; | |||
| 1306 | if (C == 0xffffffff) | |||
| 1307 | continue; | |||
| 1308 | CountersFreq += bolt_instr_locations[C]; | |||
| 1309 | } | |||
| 1310 | if (CountersFreq == 0) { | |||
| 1311 | for (int I = 0; I < F.NumCalls; ++I) { | |||
| 1312 | const uint32_t C = F.Calls[I].Counter; | |||
| 1313 | if (C == 0xffffffff) | |||
| 1314 | continue; | |||
| 1315 | CountersFreq += bolt_instr_locations[C]; | |||
| 1316 | } | |||
| 1317 | if (CountersFreq == 0) | |||
| 1318 | return next; | |||
| 1319 | } | |||
| 1320 | } | |||
| 1321 | #endif | |||
| 1322 | ||||
| 1323 | Graph *G = new (Alloc) Graph(Alloc, F, bolt_instr_locations, Ctx); | |||
| 1324 | DEBUG(G->dump()){}; | |||
| 1325 | ||||
| 1326 | if (!G->EdgeFreqs && !G->CallFreqs) { | |||
| 1327 | G->~Graph(); | |||
| 1328 | Alloc.deallocate(G); | |||
| 1329 | return next; | |||
| 1330 | } | |||
| 1331 | ||||
| 1332 | for (int I = 0; I < F.NumEdges; ++I) { | |||
| 1333 | const uint64_t Freq = G->EdgeFreqs[I]; | |||
| ||||
| 1334 | if (Freq == 0) | |||
| 1335 | continue; | |||
| 1336 | const EdgeDescription *Desc = &F.Edges[I]; | |||
| 1337 | char LineBuf[BufSize]; | |||
| 1338 | char *Ptr = LineBuf; | |||
| 1339 | Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize); | |||
| 1340 | Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf)); | |||
| 1341 | Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 22); | |||
| 1342 | Ptr = intToStr(Ptr, Freq, 10); | |||
| 1343 | *Ptr++ = '\n'; | |||
| 1344 | __write(FD, LineBuf, Ptr - LineBuf); | |||
| 1345 | } | |||
| 1346 | ||||
| 1347 | for (int I = 0; I < F.NumCalls; ++I) { | |||
| 1348 | const uint64_t Freq = G->CallFreqs[I]; | |||
| 1349 | if (Freq == 0) | |||
| 1350 | continue; | |||
| 1351 | char LineBuf[BufSize]; | |||
| 1352 | char *Ptr = LineBuf; | |||
| 1353 | const CallDescription *Desc = &F.Calls[I]; | |||
| 1354 | Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize); | |||
| 1355 | Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf)); | |||
| 1356 | Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); | |||
| 1357 | Ptr = intToStr(Ptr, Freq, 10); | |||
| 1358 | *Ptr++ = '\n'; | |||
| 1359 | __write(FD, LineBuf, Ptr - LineBuf); | |||
| 1360 | } | |||
| 1361 | ||||
| 1362 | G->~Graph(); | |||
| 1363 | Alloc.deallocate(G); | |||
| 1364 | return next; | |||
| 1365 | } | |||
| 1366 | ||||
| 1367 | #if !defined(__APPLE__) | |||
| 1368 | const IndCallTargetDescription * | |||
| 1369 | ProfileWriterContext::lookupIndCallTarget(uint64_t Target) const { | |||
| 1370 | uint32_t B = 0; | |||
| 1371 | uint32_t E = __bolt_instr_num_ind_targets; | |||
| 1372 | if (E == 0) | |||
| 1373 | return nullptr; | |||
| 1374 | do { | |||
| 1375 | uint32_t I = (E - B) / 2 + B; | |||
| 1376 | if (IndCallTargets[I].Address == Target) | |||
| 1377 | return &IndCallTargets[I]; | |||
| 1378 | if (IndCallTargets[I].Address < Target) | |||
| 1379 | B = I + 1; | |||
| 1380 | else | |||
| 1381 | E = I; | |||
| 1382 | } while (B < E); | |||
| 1383 | return nullptr; | |||
| 1384 | } | |||
| 1385 | ||||
| 1386 | /// Write a single indirect call <src, target> pair to the fdata file | |||
| 1387 | void visitIndCallCounter(IndirectCallHashTable::MapEntry &Entry, | |||
| 1388 | int FD, int CallsiteID, | |||
| 1389 | ProfileWriterContext *Ctx) { | |||
| 1390 | if (Entry.Val == 0) | |||
| 1391 | return; | |||
| 1392 | DEBUG(reportNumber("Target func 0x", Entry.Key, 16)){}; | |||
| 1393 | DEBUG(reportNumber("Target freq: ", Entry.Val, 10)){}; | |||
| 1394 | const IndCallDescription *CallsiteDesc = | |||
| 1395 | &Ctx->IndCallDescriptions[CallsiteID]; | |||
| 1396 | const IndCallTargetDescription *TargetDesc = | |||
| 1397 | Ctx->lookupIndCallTarget(Entry.Key - TextBaseAddress); | |||
| 1398 | if (!TargetDesc) { | |||
| 1399 | DEBUG(report("Failed to lookup indirect call target\n")){}; | |||
| 1400 | char LineBuf[BufSize]; | |||
| 1401 | char *Ptr = LineBuf; | |||
| 1402 | Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize); | |||
| 1403 | Ptr = strCopy(Ptr, "0 [unknown] 0 0 ", BufSize - (Ptr - LineBuf) - 40); | |||
| 1404 | Ptr = intToStr(Ptr, Entry.Val, 10); | |||
| 1405 | *Ptr++ = '\n'; | |||
| 1406 | __write(FD, LineBuf, Ptr - LineBuf); | |||
| 1407 | return; | |||
| 1408 | } | |||
| 1409 | Ctx->CallFlowTable->get(TargetDesc->Address).Calls += Entry.Val; | |||
| 1410 | char LineBuf[BufSize]; | |||
| 1411 | char *Ptr = LineBuf; | |||
| 1412 | Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize); | |||
| 1413 | Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf)); | |||
| 1414 | Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); | |||
| 1415 | Ptr = intToStr(Ptr, Entry.Val, 10); | |||
| 1416 | *Ptr++ = '\n'; | |||
| 1417 | __write(FD, LineBuf, Ptr - LineBuf); | |||
| 1418 | } | |||
| 1419 | ||||
| 1420 | /// Write to \p FD all of the indirect call profiles. | |||
| 1421 | void writeIndirectCallProfile(int FD, ProfileWriterContext &Ctx) { | |||
| 1422 | for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) { | |||
| 1423 | DEBUG(reportNumber("IndCallsite #", I, 10)){}; | |||
| 1424 | GlobalIndCallCounters[I].forEachElement(visitIndCallCounter, FD, I, &Ctx); | |||
| 1425 | } | |||
| 1426 | } | |||
| 1427 | ||||
| 1428 | /// Check a single call flow for a callee versus all known callers. If there are | |||
| 1429 | /// less callers than what the callee expects, write the difference with source | |||
| 1430 | /// [unknown] in the profile. | |||
| 1431 | void visitCallFlowEntry(CallFlowHashTable::MapEntry &Entry, int FD, | |||
| 1432 | ProfileWriterContext *Ctx) { | |||
| 1433 | DEBUG(reportNumber("Call flow entry address: 0x", Entry.Key, 16)){}; | |||
| 1434 | DEBUG(reportNumber("Calls: ", Entry.Calls, 10)){}; | |||
| 1435 | DEBUG(reportNumber("Reported entry frequency: ", Entry.Val, 10)){}; | |||
| 1436 | DEBUG({{} | |||
| 1437 | if (Entry.Calls > Entry.Val){} | |||
| 1438 | report(" More calls than expected!\n");{} | |||
| 1439 | }){}; | |||
| 1440 | if (Entry.Val <= Entry.Calls) | |||
| 1441 | return; | |||
| 1442 | DEBUG(reportNumber({} | |||
| 1443 | " Balancing calls with traffic: ", Entry.Val - Entry.Calls, 10)){}; | |||
| 1444 | const IndCallTargetDescription *TargetDesc = | |||
| 1445 | Ctx->lookupIndCallTarget(Entry.Key); | |||
| 1446 | if (!TargetDesc) { | |||
| 1447 | // There is probably something wrong with this callee and this should be | |||
| 1448 | // investigated, but I don't want to assert and lose all data collected. | |||
| 1449 | DEBUG(report("WARNING: failed to look up call target!\n")){}; | |||
| 1450 | return; | |||
| 1451 | } | |||
| 1452 | char LineBuf[BufSize]; | |||
| 1453 | char *Ptr = LineBuf; | |||
| 1454 | Ptr = strCopy(Ptr, "0 [unknown] 0 ", BufSize); | |||
| 1455 | Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf)); | |||
| 1456 | Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); | |||
| 1457 | Ptr = intToStr(Ptr, Entry.Val - Entry.Calls, 10); | |||
| 1458 | *Ptr++ = '\n'; | |||
| 1459 | __write(FD, LineBuf, Ptr - LineBuf); | |||
| 1460 | } | |||
| 1461 | ||||
| 1462 | /// Open fdata file for writing and return a valid file descriptor, aborting | |||
| 1463 | /// program upon failure. | |||
| 1464 | int openProfile() { | |||
| 1465 | // Build the profile name string by appending our PID | |||
| 1466 | char Buf[BufSize]; | |||
| 1467 | char *Ptr = Buf; | |||
| 1468 | uint64_t PID = __getpid(); | |||
| 1469 | Ptr = strCopy(Buf, __bolt_instr_filename, BufSize); | |||
| 1470 | if (__bolt_instr_use_pid) { | |||
| 1471 | Ptr = strCopy(Ptr, ".", BufSize - (Ptr - Buf + 1)); | |||
| 1472 | Ptr = intToStr(Ptr, PID, 10); | |||
| 1473 | Ptr = strCopy(Ptr, ".fdata", BufSize - (Ptr - Buf + 1)); | |||
| 1474 | } | |||
| 1475 | *Ptr++ = '\0'; | |||
| 1476 | uint64_t FD = __open(Buf, O_WRONLY1 | O_TRUNC512 | O_CREAT64, | |||
| 1477 | /*mode=*/0666); | |||
| 1478 | if (static_cast<int64_t>(FD) < 0) { | |||
| 1479 | report("Error while trying to open profile file for writing: "); | |||
| 1480 | report(Buf); | |||
| 1481 | reportNumber("\nFailed with error number: 0x", | |||
| 1482 | 0 - static_cast<int64_t>(FD), 16); | |||
| 1483 | __exit(1); | |||
| 1484 | } | |||
| 1485 | return FD; | |||
| 1486 | } | |||
| 1487 | ||||
| 1488 | #endif | |||
| 1489 | ||||
| 1490 | } // anonymous namespace | |||
| 1491 | ||||
| 1492 | #if !defined(__APPLE__) | |||
| 1493 | ||||
| 1494 | /// Reset all counters in case you want to start profiling a new phase of your | |||
| 1495 | /// program independently of prior phases. | |||
| 1496 | /// The address of this function is printed by BOLT and this can be called by | |||
| 1497 | /// any attached debugger during runtime. There is a useful oneliner for gdb: | |||
| 1498 | /// | |||
| 1499 | /// gdb -p $(pgrep -xo PROCESSNAME) -ex 'p ((void(*)())0xdeadbeef)()' \ | |||
| 1500 | /// -ex 'set confirm off' -ex quit | |||
| 1501 | /// | |||
| 1502 | /// Where 0xdeadbeef is this function address and PROCESSNAME your binary file | |||
| 1503 | /// name. | |||
| 1504 | extern "C" void __bolt_instr_clear_counters() { | |||
| 1505 | memset(reinterpret_cast<char *>(__bolt_instr_locations), 0, | |||
| 1506 | __bolt_num_counters * 8); | |||
| 1507 | for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) | |||
| 1508 | GlobalIndCallCounters[I].resetCounters(); | |||
| 1509 | } | |||
| 1510 | ||||
| 1511 | /// This is the entry point for profile writing. | |||
| 1512 | /// There are three ways of getting here: | |||
| 1513 | /// | |||
| 1514 | /// * Program execution ended, finalization methods are running and BOLT | |||
| 1515 | /// hooked into FINI from your binary dynamic section; | |||
| 1516 | /// * You used the sleep timer option and during initialization we forked | |||
| 1517 | /// a separate process that will call this function periodically; | |||
| 1518 | /// * BOLT prints this function address so you can attach a debugger and | |||
| 1519 | /// call this function directly to get your profile written to disk | |||
| 1520 | /// on demand. | |||
| 1521 | /// | |||
| 1522 | extern "C" void __attribute((force_align_arg_pointer)) | |||
| 1523 | __bolt_instr_data_dump(int FD) { | |||
| 1524 | // Already dumping | |||
| 1525 | if (!GlobalWriteProfileMutex->acquire()) | |||
| 1526 | return; | |||
| 1527 | ||||
| 1528 | int ret = __lseek(FD, 0, SEEK_SET0); | |||
| 1529 | assert(ret == 0, "Failed to lseek!"); | |||
| 1530 | ret = __ftruncate(FD, 0); | |||
| 1531 | assert(ret == 0, "Failed to ftruncate!"); | |||
| 1532 | BumpPtrAllocator HashAlloc; | |||
| 1533 | HashAlloc.setMaxSize(0x6400000); | |||
| 1534 | ProfileWriterContext Ctx = readDescriptions(); | |||
| 1535 | Ctx.CallFlowTable = new (HashAlloc, 0) CallFlowHashTable(HashAlloc); | |||
| 1536 | ||||
| 1537 | DEBUG(printStats(Ctx)){}; | |||
| 1538 | ||||
| 1539 | BumpPtrAllocator Alloc; | |||
| 1540 | Alloc.setMaxSize(0x6400000); | |||
| 1541 | const uint8_t *FuncDesc = Ctx.FuncDescriptions; | |||
| 1542 | for (int I = 0, E = __bolt_instr_num_funcs; I < E; ++I) { | |||
| 1543 | FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc); | |||
| 1544 | Alloc.clear(); | |||
| 1545 | DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16)){}; | |||
| 1546 | } | |||
| 1547 | assert(FuncDesc == (void *)Ctx.Strings, | |||
| 1548 | "FuncDesc ptr must be equal to stringtable"); | |||
| 1549 | ||||
| 1550 | writeIndirectCallProfile(FD, Ctx); | |||
| 1551 | Ctx.CallFlowTable->forEachElement(visitCallFlowEntry, FD, &Ctx); | |||
| 1552 | ||||
| 1553 | __fsync(FD); | |||
| 1554 | __munmap(Ctx.MMapPtr, Ctx.MMapSize); | |||
| 1555 | __close(Ctx.FileDesc); | |||
| 1556 | HashAlloc.destroy(); | |||
| 1557 | GlobalWriteProfileMutex->release(); | |||
| 1558 | DEBUG(report("Finished writing profile.\n")){}; | |||
| 1559 | } | |||
| 1560 | ||||
| 1561 | /// Event loop for our child process spawned during setup to dump profile data | |||
| 1562 | /// at user-specified intervals | |||
| 1563 | void watchProcess() { | |||
| 1564 | timespec ts, rem; | |||
| 1565 | uint64_t Ellapsed = 0ull; | |||
| 1566 | int FD = openProfile(); | |||
| 1567 | uint64_t ppid; | |||
| 1568 | if (__bolt_instr_wait_forks) { | |||
| 1569 | // Store parent pgid | |||
| 1570 | ppid = -__getpgid(0); | |||
| 1571 | // And leave parent process group | |||
| 1572 | __setpgid(0, 0); | |||
| 1573 | } else { | |||
| 1574 | // Store parent pid | |||
| 1575 | ppid = __getppid(); | |||
| 1576 | if (ppid == 1) { | |||
| 1577 | // Parent already dead | |||
| 1578 | __bolt_instr_data_dump(FD); | |||
| 1579 | goto out; | |||
| 1580 | } | |||
| 1581 | } | |||
| 1582 | ||||
| 1583 | ts.tv_sec = 1; | |||
| 1584 | ts.tv_nsec = 0; | |||
| 1585 | while (1) { | |||
| 1586 | __nanosleep(&ts, &rem); | |||
| 1587 | // This means our parent process or all its forks are dead, | |||
| 1588 | // so no need for us to keep dumping. | |||
| 1589 | if (__kill(ppid, 0) < 0) { | |||
| 1590 | if (__bolt_instr_no_counters_clear) | |||
| 1591 | __bolt_instr_data_dump(FD); | |||
| 1592 | break; | |||
| 1593 | } | |||
| 1594 | ||||
| 1595 | if (++Ellapsed < __bolt_instr_sleep_time) | |||
| 1596 | continue; | |||
| 1597 | ||||
| 1598 | Ellapsed = 0; | |||
| 1599 | __bolt_instr_data_dump(FD); | |||
| 1600 | if (__bolt_instr_no_counters_clear == false) | |||
| 1601 | __bolt_instr_clear_counters(); | |||
| 1602 | } | |||
| 1603 | ||||
| 1604 | out:; | |||
| 1605 | DEBUG(report("My parent process is dead, bye!\n")){}; | |||
| 1606 | __close(FD); | |||
| 1607 | __exit(0); | |||
| 1608 | } | |||
| 1609 | ||||
| 1610 | extern "C" void __bolt_instr_indirect_call(); | |||
| 1611 | extern "C" void __bolt_instr_indirect_tailcall(); | |||
| 1612 | ||||
| 1613 | /// Initialization code | |||
| 1614 | extern "C" void __attribute((force_align_arg_pointer)) __bolt_instr_setup() { | |||
| 1615 | __bolt_ind_call_counter_func_pointer = __bolt_instr_indirect_call; | |||
| 1616 | __bolt_ind_tailcall_counter_func_pointer = __bolt_instr_indirect_tailcall; | |||
| 1617 | TextBaseAddress = getTextBaseAddress(); | |||
| 1618 | ||||
| 1619 | const uint64_t CountersStart = | |||
| 1620 | reinterpret_cast<uint64_t>(&__bolt_instr_locations[0]); | |||
| 1621 | const uint64_t CountersEnd = alignTo( | |||
| 1622 | reinterpret_cast<uint64_t>(&__bolt_instr_locations[__bolt_num_counters]), | |||
| 1623 | 0x1000); | |||
| 1624 | DEBUG(reportNumber("replace mmap start: ", CountersStart, 16)){}; | |||
| 1625 | DEBUG(reportNumber("replace mmap stop: ", CountersEnd, 16)){}; | |||
| 1626 | assert(CountersEnd > CountersStart, "no counters"); | |||
| 1627 | ||||
| 1628 | const bool Shared = !__bolt_instr_use_pid; | |||
| 1629 | const uint64_t MapPrivateOrShared = Shared ? MAP_SHARED0x01 : MAP_PRIVATE0x02; | |||
| 1630 | ||||
| 1631 | void *Ret = | |||
| 1632 | __mmap(CountersStart, CountersEnd - CountersStart, PROT_READ0x1 | PROT_WRITE0x2, | |||
| 1633 | MAP_ANONYMOUS0x20 | MapPrivateOrShared | MAP_FIXED0x10, -1, 0); | |||
| 1634 | assert(Ret != MAP_FAILED((void *)-1), "__bolt_instr_setup: Failed to mmap counters!"); | |||
| 1635 | ||||
| 1636 | GlobalMetadataStorage = __mmap(0, 4096, PROT_READ0x1 | PROT_WRITE0x2, | |||
| 1637 | MapPrivateOrShared | MAP_ANONYMOUS0x20, -1, 0); | |||
| 1638 | assert(GlobalMetadataStorage != MAP_FAILED((void *)-1), | |||
| 1639 | "__bolt_instr_setup: failed to mmap page for metadata!"); | |||
| 1640 | ||||
| 1641 | GlobalAlloc = new (GlobalMetadataStorage) BumpPtrAllocator; | |||
| 1642 | // Conservatively reserve 100MiB | |||
| 1643 | GlobalAlloc->setMaxSize(0x6400000); | |||
| 1644 | GlobalAlloc->setShared(Shared); | |||
| 1645 | GlobalWriteProfileMutex = new (*GlobalAlloc, 0) Mutex(); | |||
| 1646 | if (__bolt_instr_num_ind_calls > 0) | |||
| 1647 | GlobalIndCallCounters = | |||
| 1648 | new (*GlobalAlloc, 0) IndirectCallHashTable[__bolt_instr_num_ind_calls]; | |||
| 1649 | ||||
| 1650 | if (__bolt_instr_sleep_time != 0) { | |||
| 1651 | // Separate instrumented process to the own process group | |||
| 1652 | if (__bolt_instr_wait_forks) | |||
| 1653 | __setpgid(0, 0); | |||
| 1654 | ||||
| 1655 | if (long PID = __fork()) | |||
| 1656 | return; | |||
| 1657 | watchProcess(); | |||
| 1658 | } | |||
| 1659 | } | |||
| 1660 | ||||
| 1661 | extern "C" __attribute((force_align_arg_pointer)) void | |||
| 1662 | instrumentIndirectCall(uint64_t Target, uint64_t IndCallID) { | |||
| 1663 | GlobalIndCallCounters[IndCallID].incrementVal(Target, *GlobalAlloc); | |||
| 1664 | } | |||
| 1665 | ||||
| 1666 | /// We receive as in-stack arguments the identifier of the indirect call site | |||
| 1667 | /// as well as the target address for the call | |||
| 1668 | extern "C" __attribute((naked)) void __bolt_instr_indirect_call() | |||
| 1669 | { | |||
| 1670 | #if defined(__aarch64__) | |||
| 1671 | // clang-format off | |||
| 1672 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" | |||
| 1673 | "ldp x0, x1, [sp, #288]\n" | |||
| 1674 | "bl instrumentIndirectCall\n" | |||
| 1675 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" | |||
| 1676 | "ret\n" | |||
| 1677 | :::); | |||
| 1678 | // clang-format on | |||
| 1679 | #else | |||
| 1680 | // clang-format off | |||
| 1681 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" | |||
| 1682 | "mov 0xa0(%%rsp), %%rdi\n" | |||
| 1683 | "mov 0x98(%%rsp), %%rsi\n" | |||
| 1684 | "call instrumentIndirectCall\n" | |||
| 1685 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" | |||
| 1686 | "ret\n" | |||
| 1687 | :::); | |||
| 1688 | // clang-format on | |||
| 1689 | #endif | |||
| 1690 | } | |||
| 1691 | ||||
| 1692 | extern "C" __attribute((naked)) void __bolt_instr_indirect_tailcall() | |||
| 1693 | { | |||
| 1694 | #if defined(__aarch64__) | |||
| 1695 | // clang-format off | |||
| 1696 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" | |||
| 1697 | "ldp x0, x1, [sp, #288]\n" | |||
| 1698 | "bl instrumentIndirectCall\n" | |||
| 1699 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" | |||
| 1700 | "ret\n" | |||
| 1701 | :::); | |||
| 1702 | // clang-format on | |||
| 1703 | #else | |||
| 1704 | // clang-format off | |||
| 1705 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" | |||
| 1706 | "mov 0x98(%%rsp), %%rdi\n" | |||
| 1707 | "mov 0x90(%%rsp), %%rsi\n" | |||
| 1708 | "call instrumentIndirectCall\n" | |||
| 1709 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" | |||
| 1710 | "ret\n" | |||
| 1711 | :::); | |||
| 1712 | // clang-format on | |||
| 1713 | #endif | |||
| 1714 | } | |||
| 1715 | ||||
| 1716 | /// This is hooking ELF's entry, it needs to save all machine state. | |||
| 1717 | extern "C" __attribute((naked)) void __bolt_instr_start() | |||
| 1718 | { | |||
| 1719 | #if defined(__aarch64__) | |||
| 1720 | // clang-format off | |||
| 1721 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" | |||
| 1722 | "bl __bolt_instr_setup\n" | |||
| 1723 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" | |||
| 1724 | "adrp x16, __bolt_start_trampoline\n" | |||
| 1725 | "add x16, x16, #:lo12:__bolt_start_trampoline\n" | |||
| 1726 | "br x16\n" | |||
| 1727 | :::); | |||
| 1728 | // clang-format on | |||
| 1729 | #else | |||
| 1730 | // clang-format off | |||
| 1731 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" | |||
| 1732 | "call __bolt_instr_setup\n" | |||
| 1733 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" | |||
| 1734 | "jmp __bolt_start_trampoline\n" | |||
| 1735 | :::); | |||
| 1736 | // clang-format on | |||
| 1737 | #endif | |||
| 1738 | } | |||
| 1739 | ||||
| 1740 | /// This is hooking into ELF's DT_FINI | |||
| 1741 | extern "C" void __bolt_instr_fini() { | |||
| 1742 | #if defined(__aarch64__) | |||
| 1743 | // clang-format off | |||
| 1744 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" | |||
| 1745 | "adrp x16, __bolt_fini_trampoline\n" | |||
| 1746 | "add x16, x16, #:lo12:__bolt_fini_trampoline\n" | |||
| 1747 | "blr x16\n" | |||
| 1748 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" | |||
| 1749 | :::); | |||
| 1750 | // clang-format on | |||
| 1751 | #else | |||
| 1752 | __asm__ __volatile__("call __bolt_fini_trampoline\n" :::); | |||
| 1753 | #endif | |||
| 1754 | if (__bolt_instr_sleep_time == 0) { | |||
| ||||
| 1755 | int FD = openProfile(); | |||
| 1756 | __bolt_instr_data_dump(FD); | |||
| 1757 | __close(FD); | |||
| 1758 | } | |||
| 1759 | DEBUG(report("Finished.\n")){}; | |||
| 1760 | } | |||
| 1761 | ||||
| 1762 | #endif | |||
| 1763 | ||||
| 1764 | #if defined(__APPLE__) | |||
| 1765 | ||||
| 1766 | extern "C" void __bolt_instr_data_dump() { | |||
| 1767 | ProfileWriterContext Ctx = readDescriptions(); | |||
| 1768 | ||||
| 1769 | int FD = 2; | |||
| 1770 | BumpPtrAllocator Alloc; | |||
| 1771 | const uint8_t *FuncDesc = Ctx.FuncDescriptions; | |||
| 1772 | uint32_t bolt_instr_num_funcs = _bolt_instr_num_funcs_getter(); | |||
| 1773 | ||||
| 1774 | for (int I = 0, E = bolt_instr_num_funcs; I < E; ++I) { | |||
| 1775 | FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc); | |||
| 1776 | Alloc.clear(); | |||
| 1777 | DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16)){}; | |||
| 1778 | } | |||
| 1779 | assert(FuncDesc == (void *)Ctx.Strings, | |||
| 1780 | "FuncDesc ptr must be equal to stringtable"); | |||
| 1781 | } | |||
| 1782 | ||||
| 1783 | // On OSX/iOS the final symbol name of an extern "C" function/variable contains | |||
| 1784 | // one extra leading underscore: _bolt_instr_setup -> __bolt_instr_setup. | |||
| 1785 | extern "C" | |||
| 1786 | __attribute__((section("__TEXT,__setup"))) | |||
| 1787 | __attribute__((force_align_arg_pointer)) | |||
| 1788 | void _bolt_instr_setup() { | |||
| 1789 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" :::); | |||
| 1790 | ||||
| 1791 | report("Hello!\n"); | |||
| 1792 | ||||
| 1793 | __asm__ __volatile__(RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" :::); | |||
| 1794 | } | |||
| 1795 | ||||
| 1796 | extern "C" | |||
| 1797 | __attribute__((section("__TEXT,__fini"))) | |||
| 1798 | __attribute__((force_align_arg_pointer)) | |||
| 1799 | void _bolt_instr_fini() { | |||
| 1800 | report("Bye!\n"); | |||
| 1801 | __bolt_instr_data_dump(); | |||
| 1802 | } | |||
| 1803 | ||||
| 1804 | #endif |