LLVM 19.0.0git
SIRegisterInfo.cpp
Go to the documentation of this file.
1//===-- SIRegisterInfo.cpp - SI Register Information ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// SI implementation of the TargetRegisterInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AMDGPU.h"
16#include "GCNSubtarget.h"
20#include "SIRegisterInfo.h"
26
27using namespace llvm;
28
29#define GET_REGINFO_TARGET_DESC
30#include "AMDGPUGenRegisterInfo.inc"
31
33 "amdgpu-spill-sgpr-to-vgpr",
34 cl::desc("Enable spilling SGPRs to VGPRs"),
36 cl::init(true));
37
38std::array<std::vector<int16_t>, 16> SIRegisterInfo::RegSplitParts;
39std::array<std::array<uint16_t, 32>, 9> SIRegisterInfo::SubRegFromChannelTable;
40
41// Map numbers of DWORDs to indexes in SubRegFromChannelTable.
42// Valid indexes are shifted 1, such that a 0 mapping means unsupported.
43// e.g. for 8 DWORDs (256-bit), SubRegFromChannelTableWidthMap[8] = 8,
44// meaning index 7 in SubRegFromChannelTable.
45static const std::array<unsigned, 17> SubRegFromChannelTableWidthMap = {
46 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 0, 0, 0, 0, 0, 9};
47
48namespace llvm {
49
50// A temporary struct to spill SGPRs.
51// This is mostly to spill SGPRs to memory. Spilling SGPRs into VGPR lanes emits
52// just v_writelane and v_readlane.
53//
54// When spilling to memory, the SGPRs are written into VGPR lanes and the VGPR
55// is saved to scratch (or the other way around for loads).
56// For this, a VGPR is required where the needed lanes can be clobbered. The
57// RegScavenger can provide a VGPR where currently active lanes can be
58// clobbered, but we still need to save inactive lanes.
59// The high-level steps are:
60// - Try to scavenge SGPR(s) to save exec
61// - Try to scavenge VGPR
62// - Save needed, all or inactive lanes of a TmpVGPR
63// - Spill/Restore SGPRs using TmpVGPR
64// - Restore TmpVGPR
65//
66// To save all lanes of TmpVGPR, exec needs to be saved and modified. If we
67// cannot scavenge temporary SGPRs to save exec, we use the following code:
68// buffer_store_dword TmpVGPR ; only if active lanes need to be saved
69// s_not exec, exec
70// buffer_store_dword TmpVGPR ; save inactive lanes
71// s_not exec, exec
73 struct PerVGPRData {
74 unsigned PerVGPR;
75 unsigned NumVGPRs;
76 int64_t VGPRLanes;
77 };
78
79 // The SGPR to save
83 unsigned NumSubRegs;
84 bool IsKill;
85 const DebugLoc &DL;
86
87 /* When spilling to stack */
88 // The SGPRs are written into this VGPR, which is then written to scratch
89 // (or vice versa for loads).
90 Register TmpVGPR = AMDGPU::NoRegister;
91 // Temporary spill slot to save TmpVGPR to.
92 int TmpVGPRIndex = 0;
93 // If TmpVGPR is live before the spill or if it is scavenged.
94 bool TmpVGPRLive = false;
95 // Scavenged SGPR to save EXEC.
96 Register SavedExecReg = AMDGPU::NoRegister;
97 // Stack index to write the SGPRs to.
98 int Index;
99 unsigned EltSize = 4;
100
109 unsigned MovOpc;
110 unsigned NotOpc;
111
115 : SGPRSpillBuilder(TRI, TII, IsWave32, MI, MI->getOperand(0).getReg(),
116 MI->getOperand(0).isKill(), Index, RS) {}
117
120 bool IsKill, int Index, RegScavenger *RS)
121 : SuperReg(Reg), MI(MI), IsKill(IsKill), DL(MI->getDebugLoc()),
122 Index(Index), RS(RS), MBB(MI->getParent()), MF(*MBB->getParent()),
123 MFI(*MF.getInfo<SIMachineFunctionInfo>()), TII(TII), TRI(TRI),
125 const TargetRegisterClass *RC = TRI.getPhysRegBaseClass(SuperReg);
128
129 if (IsWave32) {
130 ExecReg = AMDGPU::EXEC_LO;
131 MovOpc = AMDGPU::S_MOV_B32;
132 NotOpc = AMDGPU::S_NOT_B32;
133 } else {
134 ExecReg = AMDGPU::EXEC;
135 MovOpc = AMDGPU::S_MOV_B64;
136 NotOpc = AMDGPU::S_NOT_B64;
137 }
138
139 assert(SuperReg != AMDGPU::M0 && "m0 should never spill");
140 assert(SuperReg != AMDGPU::EXEC_LO && SuperReg != AMDGPU::EXEC_HI &&
141 SuperReg != AMDGPU::EXEC && "exec should never spill");
142 }
143
146 Data.PerVGPR = IsWave32 ? 32 : 64;
147 Data.NumVGPRs = (NumSubRegs + (Data.PerVGPR - 1)) / Data.PerVGPR;
148 Data.VGPRLanes = (1LL << std::min(Data.PerVGPR, NumSubRegs)) - 1LL;
149 return Data;
150 }
151
152 // Tries to scavenge SGPRs to save EXEC and a VGPR. Uses v0 if no VGPR is
153 // free.
154 // Writes these instructions if an SGPR can be scavenged:
155 // s_mov_b64 s[6:7], exec ; Save exec
156 // s_mov_b64 exec, 3 ; Wanted lanemask
157 // buffer_store_dword v1 ; Write scavenged VGPR to emergency slot
158 //
159 // Writes these instructions if no SGPR can be scavenged:
160 // buffer_store_dword v0 ; Only if no free VGPR was found
161 // s_not_b64 exec, exec
162 // buffer_store_dword v0 ; Save inactive lanes
163 // ; exec stays inverted, it is flipped back in
164 // ; restore.
165 void prepare() {
166 // Scavenged temporary VGPR to use. It must be scavenged once for any number
167 // of spilled subregs.
168 // FIXME: The liveness analysis is limited and does not tell if a register
169 // is in use in lanes that are currently inactive. We can never be sure if
170 // a register as actually in use in another lane, so we need to save all
171 // used lanes of the chosen VGPR.
172 assert(RS && "Cannot spill SGPR to memory without RegScavenger");
173 TmpVGPR = RS->scavengeRegisterBackwards(AMDGPU::VGPR_32RegClass, MI, false,
174 0, false);
175
176 // Reserve temporary stack slot
178 if (TmpVGPR) {
179 // Found a register that is dead in the currently active lanes, we only
180 // need to spill inactive lanes.
181 TmpVGPRLive = false;
182 } else {
183 // Pick v0 because it doesn't make a difference.
184 TmpVGPR = AMDGPU::VGPR0;
185 TmpVGPRLive = true;
186 }
187
188 if (TmpVGPRLive) {
189 // We need to inform the scavenger that this index is already in use until
190 // we're done with the custom emergency spill.
192 }
193
194 // We may end up recursively calling the scavenger, and don't want to re-use
195 // the same register.
197
198 // Try to scavenge SGPRs to save exec
199 assert(!SavedExecReg && "Exec is already saved, refuse to save again");
200 const TargetRegisterClass &RC =
201 IsWave32 ? AMDGPU::SGPR_32RegClass : AMDGPU::SGPR_64RegClass;
203 SavedExecReg = RS->scavengeRegisterBackwards(RC, MI, false, 0, false);
204
205 int64_t VGPRLanes = getPerVGPRData().VGPRLanes;
206
207 if (SavedExecReg) {
209 // Set exec to needed lanes
211 auto I =
212 BuildMI(*MBB, MI, DL, TII.get(MovOpc), ExecReg).addImm(VGPRLanes);
213 if (!TmpVGPRLive)
215 // Spill needed lanes
216 TRI.buildVGPRSpillLoadStore(*this, TmpVGPRIndex, 0, /*IsLoad*/ false);
217 } else {
218 // The modify and restore of exec clobber SCC, which we would have to save
219 // and restore. FIXME: We probably would need to reserve a register for
220 // this.
221 if (RS->isRegUsed(AMDGPU::SCC))
222 MI->emitError("unhandled SGPR spill to memory");
223
224 // Spill active lanes
225 if (TmpVGPRLive)
226 TRI.buildVGPRSpillLoadStore(*this, TmpVGPRIndex, 0, /*IsLoad*/ false,
227 /*IsKill*/ false);
228 // Spill inactive lanes
229 auto I = BuildMI(*MBB, MI, DL, TII.get(NotOpc), ExecReg).addReg(ExecReg);
230 if (!TmpVGPRLive)
232 I->getOperand(2).setIsDead(); // Mark SCC as dead.
233 TRI.buildVGPRSpillLoadStore(*this, TmpVGPRIndex, 0, /*IsLoad*/ false);
234 }
235 }
236
237 // Writes these instructions if an SGPR can be scavenged:
238 // buffer_load_dword v1 ; Write scavenged VGPR to emergency slot
239 // s_waitcnt vmcnt(0) ; If a free VGPR was found
240 // s_mov_b64 exec, s[6:7] ; Save exec
241 //
242 // Writes these instructions if no SGPR can be scavenged:
243 // buffer_load_dword v0 ; Restore inactive lanes
244 // s_waitcnt vmcnt(0) ; If a free VGPR was found
245 // s_not_b64 exec, exec
246 // buffer_load_dword v0 ; Only if no free VGPR was found
247 void restore() {
248 if (SavedExecReg) {
249 // Restore used lanes
250 TRI.buildVGPRSpillLoadStore(*this, TmpVGPRIndex, 0, /*IsLoad*/ true,
251 /*IsKill*/ false);
252 // Restore exec
253 auto I = BuildMI(*MBB, MI, DL, TII.get(MovOpc), ExecReg)
255 // Add an implicit use of the load so it is not dead.
256 // FIXME This inserts an unnecessary waitcnt
257 if (!TmpVGPRLive) {
259 }
260 } else {
261 // Restore inactive lanes
262 TRI.buildVGPRSpillLoadStore(*this, TmpVGPRIndex, 0, /*IsLoad*/ true,
263 /*IsKill*/ false);
264 auto I = BuildMI(*MBB, MI, DL, TII.get(NotOpc), ExecReg).addReg(ExecReg);
265 if (!TmpVGPRLive)
267 I->getOperand(2).setIsDead(); // Mark SCC as dead.
268
269 // Restore active lanes
270 if (TmpVGPRLive)
271 TRI.buildVGPRSpillLoadStore(*this, TmpVGPRIndex, 0, /*IsLoad*/ true);
272 }
273
274 // Inform the scavenger where we're releasing our custom scavenged register.
275 if (TmpVGPRLive) {
276 MachineBasicBlock::iterator RestorePt = std::prev(MI);
278 }
279 }
280
281 // Write TmpVGPR to memory or read TmpVGPR from memory.
282 // Either using a single buffer_load/store if exec is set to the needed mask
283 // or using
284 // buffer_load
285 // s_not exec, exec
286 // buffer_load
287 // s_not exec, exec
288 void readWriteTmpVGPR(unsigned Offset, bool IsLoad) {
289 if (SavedExecReg) {
290 // Spill needed lanes
291 TRI.buildVGPRSpillLoadStore(*this, Index, Offset, IsLoad);
292 } else {
293 // The modify and restore of exec clobber SCC, which we would have to save
294 // and restore. FIXME: We probably would need to reserve a register for
295 // this.
296 if (RS->isRegUsed(AMDGPU::SCC))
297 MI->emitError("unhandled SGPR spill to memory");
298
299 // Spill active lanes
300 TRI.buildVGPRSpillLoadStore(*this, Index, Offset, IsLoad,
301 /*IsKill*/ false);
302 // Spill inactive lanes
303 auto Not0 = BuildMI(*MBB, MI, DL, TII.get(NotOpc), ExecReg).addReg(ExecReg);
304 Not0->getOperand(2).setIsDead(); // Mark SCC as dead.
305 TRI.buildVGPRSpillLoadStore(*this, Index, Offset, IsLoad);
306 auto Not1 = BuildMI(*MBB, MI, DL, TII.get(NotOpc), ExecReg).addReg(ExecReg);
307 Not1->getOperand(2).setIsDead(); // Mark SCC as dead.
308 }
309 }
310
312 assert(MBB->getParent() == &MF);
313 MI = NewMI;
314 MBB = NewMBB;
315 }
316};
317
318} // namespace llvm
319
321 : AMDGPUGenRegisterInfo(AMDGPU::PC_REG, ST.getAMDGPUDwarfFlavour(),
322 ST.getAMDGPUDwarfFlavour()),
323 ST(ST), SpillSGPRToVGPR(EnableSpillSGPRToVGPR), isWave32(ST.isWave32()) {
324
325 assert(getSubRegIndexLaneMask(AMDGPU::sub0).getAsInteger() == 3 &&
326 getSubRegIndexLaneMask(AMDGPU::sub31).getAsInteger() == (3ULL << 62) &&
327 (getSubRegIndexLaneMask(AMDGPU::lo16) |
328 getSubRegIndexLaneMask(AMDGPU::hi16)).getAsInteger() ==
329 getSubRegIndexLaneMask(AMDGPU::sub0).getAsInteger() &&
330 "getNumCoveredRegs() will not work with generated subreg masks!");
331
332 RegPressureIgnoredUnits.resize(getNumRegUnits());
333 RegPressureIgnoredUnits.set(*regunits(MCRegister::from(AMDGPU::M0)).begin());
334 for (auto Reg : AMDGPU::VGPR_16RegClass) {
335 if (AMDGPU::isHi(Reg, *this))
336 RegPressureIgnoredUnits.set(*regunits(Reg).begin());
337 }
338
339 // HACK: Until this is fully tablegen'd.
340 static llvm::once_flag InitializeRegSplitPartsFlag;
341
342 static auto InitializeRegSplitPartsOnce = [this]() {
343 for (unsigned Idx = 1, E = getNumSubRegIndices() - 1; Idx < E; ++Idx) {
344 unsigned Size = getSubRegIdxSize(Idx);
345 if (Size & 31)
346 continue;
347 std::vector<int16_t> &Vec = RegSplitParts[Size / 32 - 1];
348 unsigned Pos = getSubRegIdxOffset(Idx);
349 if (Pos % Size)
350 continue;
351 Pos /= Size;
352 if (Vec.empty()) {
353 unsigned MaxNumParts = 1024 / Size; // Maximum register is 1024 bits.
354 Vec.resize(MaxNumParts);
355 }
356 Vec[Pos] = Idx;
357 }
358 };
359
360 static llvm::once_flag InitializeSubRegFromChannelTableFlag;
361
362 static auto InitializeSubRegFromChannelTableOnce = [this]() {
363 for (auto &Row : SubRegFromChannelTable)
364 Row.fill(AMDGPU::NoSubRegister);
365 for (unsigned Idx = 1; Idx < getNumSubRegIndices(); ++Idx) {
366 unsigned Width = getSubRegIdxSize(Idx) / 32;
367 unsigned Offset = getSubRegIdxOffset(Idx) / 32;
369 Width = SubRegFromChannelTableWidthMap[Width];
370 if (Width == 0)
371 continue;
372 unsigned TableIdx = Width - 1;
373 assert(TableIdx < SubRegFromChannelTable.size());
374 assert(Offset < SubRegFromChannelTable[TableIdx].size());
375 SubRegFromChannelTable[TableIdx][Offset] = Idx;
376 }
377 };
378
379 llvm::call_once(InitializeRegSplitPartsFlag, InitializeRegSplitPartsOnce);
380 llvm::call_once(InitializeSubRegFromChannelTableFlag,
381 InitializeSubRegFromChannelTableOnce);
382}
383
384void SIRegisterInfo::reserveRegisterTuples(BitVector &Reserved,
385 MCRegister Reg) const {
386 for (MCRegAliasIterator R(Reg, this, true); R.isValid(); ++R)
387 Reserved.set(*R);
388}
389
390// Forced to be here by one .inc
392 const MachineFunction *MF) const {
394 switch (CC) {
395 case CallingConv::C:
398 return ST.hasGFX90AInsts() ? CSR_AMDGPU_GFX90AInsts_SaveList
399 : CSR_AMDGPU_SaveList;
401 return ST.hasGFX90AInsts() ? CSR_AMDGPU_SI_Gfx_GFX90AInsts_SaveList
402 : CSR_AMDGPU_SI_Gfx_SaveList;
404 return CSR_AMDGPU_CS_ChainPreserve_SaveList;
405 default: {
406 // Dummy to not crash RegisterClassInfo.
407 static const MCPhysReg NoCalleeSavedReg = AMDGPU::NoRegister;
408 return &NoCalleeSavedReg;
409 }
410 }
411}
412
413const MCPhysReg *
415 return nullptr;
416}
417
419 CallingConv::ID CC) const {
420 switch (CC) {
421 case CallingConv::C:
424 return ST.hasGFX90AInsts() ? CSR_AMDGPU_GFX90AInsts_RegMask
425 : CSR_AMDGPU_RegMask;
427 return ST.hasGFX90AInsts() ? CSR_AMDGPU_SI_Gfx_GFX90AInsts_RegMask
428 : CSR_AMDGPU_SI_Gfx_RegMask;
431 // Calls to these functions never return, so we can pretend everything is
432 // preserved.
433 return AMDGPU_AllVGPRs_RegMask;
434 default:
435 return nullptr;
436 }
437}
438
440 return CSR_AMDGPU_NoRegs_RegMask;
441}
442
444 return VGPR >= AMDGPU::VGPR0 && VGPR < AMDGPU::VGPR8;
445}
446
449 const MachineFunction &MF) const {
450 // FIXME: Should have a helper function like getEquivalentVGPRClass to get the
451 // equivalent AV class. If used one, the verifier will crash after
452 // RegBankSelect in the GISel flow. The aligned regclasses are not fully given
453 // until Instruction selection.
454 if (ST.hasMAIInsts() && (isVGPRClass(RC) || isAGPRClass(RC))) {
455 if (RC == &AMDGPU::VGPR_32RegClass || RC == &AMDGPU::AGPR_32RegClass)
456 return &AMDGPU::AV_32RegClass;
457 if (RC == &AMDGPU::VReg_64RegClass || RC == &AMDGPU::AReg_64RegClass)
458 return &AMDGPU::AV_64RegClass;
459 if (RC == &AMDGPU::VReg_64_Align2RegClass ||
460 RC == &AMDGPU::AReg_64_Align2RegClass)
461 return &AMDGPU::AV_64_Align2RegClass;
462 if (RC == &AMDGPU::VReg_96RegClass || RC == &AMDGPU::AReg_96RegClass)
463 return &AMDGPU::AV_96RegClass;
464 if (RC == &AMDGPU::VReg_96_Align2RegClass ||
465 RC == &AMDGPU::AReg_96_Align2RegClass)
466 return &AMDGPU::AV_96_Align2RegClass;
467 if (RC == &AMDGPU::VReg_128RegClass || RC == &AMDGPU::AReg_128RegClass)
468 return &AMDGPU::AV_128RegClass;
469 if (RC == &AMDGPU::VReg_128_Align2RegClass ||
470 RC == &AMDGPU::AReg_128_Align2RegClass)
471 return &AMDGPU::AV_128_Align2RegClass;
472 if (RC == &AMDGPU::VReg_160RegClass || RC == &AMDGPU::AReg_160RegClass)
473 return &AMDGPU::AV_160RegClass;
474 if (RC == &AMDGPU::VReg_160_Align2RegClass ||
475 RC == &AMDGPU::AReg_160_Align2RegClass)
476 return &AMDGPU::AV_160_Align2RegClass;
477 if (RC == &AMDGPU::VReg_192RegClass || RC == &AMDGPU::AReg_192RegClass)
478 return &AMDGPU::AV_192RegClass;
479 if (RC == &AMDGPU::VReg_192_Align2RegClass ||
480 RC == &AMDGPU::AReg_192_Align2RegClass)
481 return &AMDGPU::AV_192_Align2RegClass;
482 if (RC == &AMDGPU::VReg_256RegClass || RC == &AMDGPU::AReg_256RegClass)
483 return &AMDGPU::AV_256RegClass;
484 if (RC == &AMDGPU::VReg_256_Align2RegClass ||
485 RC == &AMDGPU::AReg_256_Align2RegClass)
486 return &AMDGPU::AV_256_Align2RegClass;
487 if (RC == &AMDGPU::VReg_512RegClass || RC == &AMDGPU::AReg_512RegClass)
488 return &AMDGPU::AV_512RegClass;
489 if (RC == &AMDGPU::VReg_512_Align2RegClass ||
490 RC == &AMDGPU::AReg_512_Align2RegClass)
491 return &AMDGPU::AV_512_Align2RegClass;
492 if (RC == &AMDGPU::VReg_1024RegClass || RC == &AMDGPU::AReg_1024RegClass)
493 return &AMDGPU::AV_1024RegClass;
494 if (RC == &AMDGPU::VReg_1024_Align2RegClass ||
495 RC == &AMDGPU::AReg_1024_Align2RegClass)
496 return &AMDGPU::AV_1024_Align2RegClass;
497 }
498
500}
501
503 const SIFrameLowering *TFI = ST.getFrameLowering();
505 // During ISel lowering we always reserve the stack pointer in entry and chain
506 // functions, but never actually want to reference it when accessing our own
507 // frame. If we need a frame pointer we use it, but otherwise we can just use
508 // an immediate "0" which we represent by returning NoRegister.
509 if (FuncInfo->isBottomOfStack()) {
510 return TFI->hasFP(MF) ? FuncInfo->getFrameOffsetReg() : Register();
511 }
512 return TFI->hasFP(MF) ? FuncInfo->getFrameOffsetReg()
513 : FuncInfo->getStackPtrOffsetReg();
514}
515
517 // When we need stack realignment, we can't reference off of the
518 // stack pointer, so we reserve a base pointer.
519 const MachineFrameInfo &MFI = MF.getFrameInfo();
520 return MFI.getNumFixedObjects() && shouldRealignStack(MF);
521}
522
523Register SIRegisterInfo::getBaseRegister() const { return AMDGPU::SGPR34; }
524
526 return AMDGPU_AllVGPRs_RegMask;
527}
528
530 return AMDGPU_AllAGPRs_RegMask;
531}
532
534 return AMDGPU_AllVectorRegs_RegMask;
535}
536
538 return AMDGPU_AllAllocatableSRegs_RegMask;
539}
540
541unsigned SIRegisterInfo::getSubRegFromChannel(unsigned Channel,
542 unsigned NumRegs) {
543 assert(NumRegs < SubRegFromChannelTableWidthMap.size());
544 unsigned NumRegIndex = SubRegFromChannelTableWidthMap[NumRegs];
545 assert(NumRegIndex && "Not implemented");
546 assert(Channel < SubRegFromChannelTable[NumRegIndex - 1].size());
547 return SubRegFromChannelTable[NumRegIndex - 1][Channel];
548}
549
552 const unsigned Align,
553 const TargetRegisterClass *RC) const {
554 unsigned BaseIdx = alignDown(ST.getMaxNumSGPRs(MF), Align) - Align;
555 MCRegister BaseReg(AMDGPU::SGPR_32RegClass.getRegister(BaseIdx));
556 return getMatchingSuperReg(BaseReg, AMDGPU::sub0, RC);
557}
558
560 const MachineFunction &MF) const {
561 return getAlignedHighSGPRForRC(MF, /*Align=*/4, &AMDGPU::SGPR_128RegClass);
562}
563
565 BitVector Reserved(getNumRegs());
566 Reserved.set(AMDGPU::MODE);
567
569
570 // Reserve special purpose registers.
571 //
572 // EXEC_LO and EXEC_HI could be allocated and used as regular register, but
573 // this seems likely to result in bugs, so I'm marking them as reserved.
574 reserveRegisterTuples(Reserved, AMDGPU::EXEC);
575 reserveRegisterTuples(Reserved, AMDGPU::FLAT_SCR);
576
577 // M0 has to be reserved so that llvm accepts it as a live-in into a block.
578 reserveRegisterTuples(Reserved, AMDGPU::M0);
579
580 // Reserve src_vccz, src_execz, src_scc.
581 reserveRegisterTuples(Reserved, AMDGPU::SRC_VCCZ);
582 reserveRegisterTuples(Reserved, AMDGPU::SRC_EXECZ);
583 reserveRegisterTuples(Reserved, AMDGPU::SRC_SCC);
584
585 // Reserve the memory aperture registers
586 reserveRegisterTuples(Reserved, AMDGPU::SRC_SHARED_BASE);
587 reserveRegisterTuples(Reserved, AMDGPU::SRC_SHARED_LIMIT);
588 reserveRegisterTuples(Reserved, AMDGPU::SRC_PRIVATE_BASE);
589 reserveRegisterTuples(Reserved, AMDGPU::SRC_PRIVATE_LIMIT);
590
591 // Reserve src_pops_exiting_wave_id - support is not implemented in Codegen.
592 reserveRegisterTuples(Reserved, AMDGPU::SRC_POPS_EXITING_WAVE_ID);
593
594 // Reserve xnack_mask registers - support is not implemented in Codegen.
595 reserveRegisterTuples(Reserved, AMDGPU::XNACK_MASK);
596
597 // Reserve lds_direct register - support is not implemented in Codegen.
598 reserveRegisterTuples(Reserved, AMDGPU::LDS_DIRECT);
599
600 // Reserve Trap Handler registers - support is not implemented in Codegen.
601 reserveRegisterTuples(Reserved, AMDGPU::TBA);
602 reserveRegisterTuples(Reserved, AMDGPU::TMA);
603 reserveRegisterTuples(Reserved, AMDGPU::TTMP0_TTMP1);
604 reserveRegisterTuples(Reserved, AMDGPU::TTMP2_TTMP3);
605 reserveRegisterTuples(Reserved, AMDGPU::TTMP4_TTMP5);
606 reserveRegisterTuples(Reserved, AMDGPU::TTMP6_TTMP7);
607 reserveRegisterTuples(Reserved, AMDGPU::TTMP8_TTMP9);
608 reserveRegisterTuples(Reserved, AMDGPU::TTMP10_TTMP11);
609 reserveRegisterTuples(Reserved, AMDGPU::TTMP12_TTMP13);
610 reserveRegisterTuples(Reserved, AMDGPU::TTMP14_TTMP15);
611
612 // Reserve null register - it shall never be allocated
613 reserveRegisterTuples(Reserved, AMDGPU::SGPR_NULL64);
614
615 // Reserve SGPRs.
616 //
617 unsigned MaxNumSGPRs = ST.getMaxNumSGPRs(MF);
618 unsigned TotalNumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
619 for (const TargetRegisterClass *RC : regclasses()) {
620 if (RC->isBaseClass() && isSGPRClass(RC)) {
621 unsigned NumRegs = divideCeil(getRegSizeInBits(*RC), 32);
622 for (MCPhysReg Reg : *RC) {
623 unsigned Index = getHWRegIndex(Reg);
624 if (Index + NumRegs > MaxNumSGPRs && Index < TotalNumSGPRs)
625 Reserved.set(Reg);
626 }
627 }
628 }
629
630 Register ScratchRSrcReg = MFI->getScratchRSrcReg();
631 if (ScratchRSrcReg != AMDGPU::NoRegister) {
632 // Reserve 4 SGPRs for the scratch buffer resource descriptor in case we
633 // need to spill.
634 // TODO: May need to reserve a VGPR if doing LDS spilling.
635 reserveRegisterTuples(Reserved, ScratchRSrcReg);
636 }
637
638 Register LongBranchReservedReg = MFI->getLongBranchReservedReg();
639 if (LongBranchReservedReg)
640 reserveRegisterTuples(Reserved, LongBranchReservedReg);
641
642 // We have to assume the SP is needed in case there are calls in the function,
643 // which is detected after the function is lowered. If we aren't really going
644 // to need SP, don't bother reserving it.
645 MCRegister StackPtrReg = MFI->getStackPtrOffsetReg();
646 if (StackPtrReg) {
647 reserveRegisterTuples(Reserved, StackPtrReg);
648 assert(!isSubRegister(ScratchRSrcReg, StackPtrReg));
649 }
650
651 MCRegister FrameReg = MFI->getFrameOffsetReg();
652 if (FrameReg) {
653 reserveRegisterTuples(Reserved, FrameReg);
654 assert(!isSubRegister(ScratchRSrcReg, FrameReg));
655 }
656
657 if (hasBasePointer(MF)) {
658 MCRegister BasePtrReg = getBaseRegister();
659 reserveRegisterTuples(Reserved, BasePtrReg);
660 assert(!isSubRegister(ScratchRSrcReg, BasePtrReg));
661 }
662
663 // FIXME: Use same reserved register introduced in D149775
664 // SGPR used to preserve EXEC MASK around WWM spill/copy instructions.
665 Register ExecCopyReg = MFI->getSGPRForEXECCopy();
666 if (ExecCopyReg)
667 reserveRegisterTuples(Reserved, ExecCopyReg);
668
669 // Reserve VGPRs/AGPRs.
670 //
671 unsigned MaxNumVGPRs = ST.getMaxNumVGPRs(MF);
672 unsigned MaxNumAGPRs = MaxNumVGPRs;
673 unsigned TotalNumVGPRs = AMDGPU::VGPR_32RegClass.getNumRegs();
674
675 // On GFX90A, the number of VGPRs and AGPRs need not be equal. Theoretically,
676 // a wave may have up to 512 total vector registers combining together both
677 // VGPRs and AGPRs. Hence, in an entry function without calls and without
678 // AGPRs used within it, it is possible to use the whole vector register
679 // budget for VGPRs.
680 //
681 // TODO: it shall be possible to estimate maximum AGPR/VGPR pressure and split
682 // register file accordingly.
683 if (ST.hasGFX90AInsts()) {
684 if (MFI->usesAGPRs(MF)) {
685 MaxNumVGPRs /= 2;
686 MaxNumAGPRs = MaxNumVGPRs;
687 } else {
688 if (MaxNumVGPRs > TotalNumVGPRs) {
689 MaxNumAGPRs = MaxNumVGPRs - TotalNumVGPRs;
690 MaxNumVGPRs = TotalNumVGPRs;
691 } else
692 MaxNumAGPRs = 0;
693 }
694 }
695
696 for (const TargetRegisterClass *RC : regclasses()) {
697 if (RC->isBaseClass() && isVGPRClass(RC)) {
698 unsigned NumRegs = divideCeil(getRegSizeInBits(*RC), 32);
699 for (MCPhysReg Reg : *RC) {
700 unsigned Index = getHWRegIndex(Reg);
701 if (Index + NumRegs > MaxNumVGPRs)
702 Reserved.set(Reg);
703 }
704 }
705 }
706
707 // Reserve all the AGPRs if there are no instructions to use it.
708 if (!ST.hasMAIInsts())
709 MaxNumAGPRs = 0;
710 for (const TargetRegisterClass *RC : regclasses()) {
711 if (RC->isBaseClass() && isAGPRClass(RC)) {
712 unsigned NumRegs = divideCeil(getRegSizeInBits(*RC), 32);
713 for (MCPhysReg Reg : *RC) {
714 unsigned Index = getHWRegIndex(Reg);
715 if (Index + NumRegs > MaxNumAGPRs)
716 Reserved.set(Reg);
717 }
718 }
719 }
720
721 // On GFX908, in order to guarantee copying between AGPRs, we need a scratch
722 // VGPR available at all times.
723 if (ST.hasMAIInsts() && !ST.hasGFX90AInsts()) {
724 reserveRegisterTuples(Reserved, MFI->getVGPRForAGPRCopy());
725 }
726
727 for (Register Reg : MFI->getWWMReservedRegs())
728 reserveRegisterTuples(Reserved, Reg);
729
730 // FIXME: Stop using reserved registers for this.
731 for (MCPhysReg Reg : MFI->getAGPRSpillVGPRs())
732 reserveRegisterTuples(Reserved, Reg);
733
734 for (MCPhysReg Reg : MFI->getVGPRSpillAGPRs())
735 reserveRegisterTuples(Reserved, Reg);
736
737 return Reserved;
738}
739
741 MCRegister PhysReg) const {
742 return !MF.getRegInfo().isReserved(PhysReg);
743}
744
747 // On entry or in chain functions, the base address is 0, so it can't possibly
748 // need any more alignment.
749
750 // FIXME: Should be able to specify the entry frame alignment per calling
751 // convention instead.
752 if (Info->isBottomOfStack())
753 return false;
754
756}
757
760 if (Info->isEntryFunction()) {
761 const MachineFrameInfo &MFI = Fn.getFrameInfo();
762 return MFI.hasStackObjects() || MFI.hasCalls();
763 }
764
765 // May need scavenger for dealing with callee saved registers.
766 return true;
767}
768
770 const MachineFunction &MF) const {
771 // Do not use frame virtual registers. They used to be used for SGPRs, but
772 // once we reach PrologEpilogInserter, we can no longer spill SGPRs. If the
773 // scavenger fails, we can increment/decrement the necessary SGPRs to avoid a
774 // spill.
775 return false;
776}
777
779 const MachineFunction &MF) const {
780 const MachineFrameInfo &MFI = MF.getFrameInfo();
781 return MFI.hasStackObjects();
782}
783
785 const MachineFunction &) const {
786 // There are no special dedicated stack or frame pointers.
787 return true;
788}
789
792
793 int OffIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
794 AMDGPU::OpName::offset);
795 return MI->getOperand(OffIdx).getImm();
796}
797
799 int Idx) const {
801 return 0;
802
803 assert((Idx == AMDGPU::getNamedOperandIdx(MI->getOpcode(),
804 AMDGPU::OpName::vaddr) ||
805 (Idx == AMDGPU::getNamedOperandIdx(MI->getOpcode(),
806 AMDGPU::OpName::saddr))) &&
807 "Should never see frame index on non-address operand");
808
810}
811
814 return false;
815
816 int64_t FullOffset = Offset + getScratchInstrOffset(MI);
817
818 const SIInstrInfo *TII = ST.getInstrInfo();
820 return !TII->isLegalMUBUFImmOffset(FullOffset);
821
822 return !TII->isLegalFLATOffset(FullOffset, AMDGPUAS::PRIVATE_ADDRESS,
824}
825
827 int FrameIdx,
828 int64_t Offset) const {
830 DebugLoc DL; // Defaults to "unknown"
831
832 if (Ins != MBB->end())
833 DL = Ins->getDebugLoc();
834
836 const SIInstrInfo *TII = ST.getInstrInfo();
838 unsigned MovOpc = ST.enableFlatScratch() ? AMDGPU::S_MOV_B32
839 : AMDGPU::V_MOV_B32_e32;
840
841 Register BaseReg = MRI.createVirtualRegister(
842 ST.enableFlatScratch() ? &AMDGPU::SReg_32_XEXEC_HIRegClass
843 : &AMDGPU::VGPR_32RegClass);
844
845 if (Offset == 0) {
846 BuildMI(*MBB, Ins, DL, TII->get(MovOpc), BaseReg)
847 .addFrameIndex(FrameIdx);
848 return BaseReg;
849 }
850
851 Register OffsetReg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
852
853 Register FIReg = MRI.createVirtualRegister(
854 ST.enableFlatScratch() ? &AMDGPU::SReg_32_XM0RegClass
855 : &AMDGPU::VGPR_32RegClass);
856
857 BuildMI(*MBB, Ins, DL, TII->get(AMDGPU::S_MOV_B32), OffsetReg)
858 .addImm(Offset);
859 BuildMI(*MBB, Ins, DL, TII->get(MovOpc), FIReg)
860 .addFrameIndex(FrameIdx);
861
862 if (ST.enableFlatScratch() ) {
863 BuildMI(*MBB, Ins, DL, TII->get(AMDGPU::S_ADD_I32), BaseReg)
864 .addReg(OffsetReg, RegState::Kill)
865 .addReg(FIReg);
866 return BaseReg;
867 }
868
869 TII->getAddNoCarry(*MBB, Ins, DL, BaseReg)
870 .addReg(OffsetReg, RegState::Kill)
871 .addReg(FIReg)
872 .addImm(0); // clamp bit
873
874 return BaseReg;
875}
876
878 int64_t Offset) const {
879 const SIInstrInfo *TII = ST.getInstrInfo();
880 bool IsFlat = TII->isFLATScratch(MI);
881
882#ifndef NDEBUG
883 // FIXME: Is it possible to be storing a frame index to itself?
884 bool SeenFI = false;
885 for (const MachineOperand &MO: MI.operands()) {
886 if (MO.isFI()) {
887 if (SeenFI)
888 llvm_unreachable("should not see multiple frame indices");
889
890 SeenFI = true;
891 }
892 }
893#endif
894
895 MachineOperand *FIOp =
896 TII->getNamedOperand(MI, IsFlat ? AMDGPU::OpName::saddr
897 : AMDGPU::OpName::vaddr);
898
899 MachineOperand *OffsetOp = TII->getNamedOperand(MI, AMDGPU::OpName::offset);
900 int64_t NewOffset = OffsetOp->getImm() + Offset;
901
902 assert(FIOp && FIOp->isFI() && "frame index must be address operand");
903 assert(TII->isMUBUF(MI) || TII->isFLATScratch(MI));
904
905 if (IsFlat) {
906 assert(TII->isLegalFLATOffset(NewOffset, AMDGPUAS::PRIVATE_ADDRESS,
908 "offset should be legal");
909 FIOp->ChangeToRegister(BaseReg, false);
910 OffsetOp->setImm(NewOffset);
911 return;
912 }
913
914#ifndef NDEBUG
915 MachineOperand *SOffset = TII->getNamedOperand(MI, AMDGPU::OpName::soffset);
916 assert(SOffset->isImm() && SOffset->getImm() == 0);
917#endif
918
919 assert(TII->isLegalMUBUFImmOffset(NewOffset) && "offset should be legal");
920
921 FIOp->ChangeToRegister(BaseReg, false);
922 OffsetOp->setImm(NewOffset);
923}
924
926 Register BaseReg,
927 int64_t Offset) const {
929 return false;
930
931 int64_t NewOffset = Offset + getScratchInstrOffset(MI);
932
933 const SIInstrInfo *TII = ST.getInstrInfo();
935 return TII->isLegalMUBUFImmOffset(NewOffset);
936
937 return TII->isLegalFLATOffset(NewOffset, AMDGPUAS::PRIVATE_ADDRESS,
939}
940
942 const MachineFunction &MF, unsigned Kind) const {
943 // This is inaccurate. It depends on the instruction and address space. The
944 // only place where we should hit this is for dealing with frame indexes /
945 // private accesses, so this is correct in that case.
946 return &AMDGPU::VGPR_32RegClass;
947}
948
951 if (isAGPRClass(RC) && !ST.hasGFX90AInsts())
952 return getEquivalentVGPRClass(RC);
953 if (RC == &AMDGPU::SCC_CLASSRegClass)
954 return getWaveMaskRegClass();
955
956 return RC;
957}
958
959static unsigned getNumSubRegsForSpillOp(unsigned Op) {
960
961 switch (Op) {
962 case AMDGPU::SI_SPILL_S1024_SAVE:
963 case AMDGPU::SI_SPILL_S1024_RESTORE:
964 case AMDGPU::SI_SPILL_V1024_SAVE:
965 case AMDGPU::SI_SPILL_V1024_RESTORE:
966 case AMDGPU::SI_SPILL_A1024_SAVE:
967 case AMDGPU::SI_SPILL_A1024_RESTORE:
968 case AMDGPU::SI_SPILL_AV1024_SAVE:
969 case AMDGPU::SI_SPILL_AV1024_RESTORE:
970 return 32;
971 case AMDGPU::SI_SPILL_S512_SAVE:
972 case AMDGPU::SI_SPILL_S512_RESTORE:
973 case AMDGPU::SI_SPILL_V512_SAVE:
974 case AMDGPU::SI_SPILL_V512_RESTORE:
975 case AMDGPU::SI_SPILL_A512_SAVE:
976 case AMDGPU::SI_SPILL_A512_RESTORE:
977 case AMDGPU::SI_SPILL_AV512_SAVE:
978 case AMDGPU::SI_SPILL_AV512_RESTORE:
979 return 16;
980 case AMDGPU::SI_SPILL_S384_SAVE:
981 case AMDGPU::SI_SPILL_S384_RESTORE:
982 case AMDGPU::SI_SPILL_V384_SAVE:
983 case AMDGPU::SI_SPILL_V384_RESTORE:
984 case AMDGPU::SI_SPILL_A384_SAVE:
985 case AMDGPU::SI_SPILL_A384_RESTORE:
986 case AMDGPU::SI_SPILL_AV384_SAVE:
987 case AMDGPU::SI_SPILL_AV384_RESTORE:
988 return 12;
989 case AMDGPU::SI_SPILL_S352_SAVE:
990 case AMDGPU::SI_SPILL_S352_RESTORE:
991 case AMDGPU::SI_SPILL_V352_SAVE:
992 case AMDGPU::SI_SPILL_V352_RESTORE:
993 case AMDGPU::SI_SPILL_A352_SAVE:
994 case AMDGPU::SI_SPILL_A352_RESTORE:
995 case AMDGPU::SI_SPILL_AV352_SAVE:
996 case AMDGPU::SI_SPILL_AV352_RESTORE:
997 return 11;
998 case AMDGPU::SI_SPILL_S320_SAVE:
999 case AMDGPU::SI_SPILL_S320_RESTORE:
1000 case AMDGPU::SI_SPILL_V320_SAVE:
1001 case AMDGPU::SI_SPILL_V320_RESTORE:
1002 case AMDGPU::SI_SPILL_A320_SAVE:
1003 case AMDGPU::SI_SPILL_A320_RESTORE:
1004 case AMDGPU::SI_SPILL_AV320_SAVE:
1005 case AMDGPU::SI_SPILL_AV320_RESTORE:
1006 return 10;
1007 case AMDGPU::SI_SPILL_S288_SAVE:
1008 case AMDGPU::SI_SPILL_S288_RESTORE:
1009 case AMDGPU::SI_SPILL_V288_SAVE:
1010 case AMDGPU::SI_SPILL_V288_RESTORE:
1011 case AMDGPU::SI_SPILL_A288_SAVE:
1012 case AMDGPU::SI_SPILL_A288_RESTORE:
1013 case AMDGPU::SI_SPILL_AV288_SAVE:
1014 case AMDGPU::SI_SPILL_AV288_RESTORE:
1015 return 9;
1016 case AMDGPU::SI_SPILL_S256_SAVE:
1017 case AMDGPU::SI_SPILL_S256_RESTORE:
1018 case AMDGPU::SI_SPILL_V256_SAVE:
1019 case AMDGPU::SI_SPILL_V256_RESTORE:
1020 case AMDGPU::SI_SPILL_A256_SAVE:
1021 case AMDGPU::SI_SPILL_A256_RESTORE:
1022 case AMDGPU::SI_SPILL_AV256_SAVE:
1023 case AMDGPU::SI_SPILL_AV256_RESTORE:
1024 return 8;
1025 case AMDGPU::SI_SPILL_S224_SAVE:
1026 case AMDGPU::SI_SPILL_S224_RESTORE:
1027 case AMDGPU::SI_SPILL_V224_SAVE:
1028 case AMDGPU::SI_SPILL_V224_RESTORE:
1029 case AMDGPU::SI_SPILL_A224_SAVE:
1030 case AMDGPU::SI_SPILL_A224_RESTORE:
1031 case AMDGPU::SI_SPILL_AV224_SAVE:
1032 case AMDGPU::SI_SPILL_AV224_RESTORE:
1033 return 7;
1034 case AMDGPU::SI_SPILL_S192_SAVE:
1035 case AMDGPU::SI_SPILL_S192_RESTORE:
1036 case AMDGPU::SI_SPILL_V192_SAVE:
1037 case AMDGPU::SI_SPILL_V192_RESTORE:
1038 case AMDGPU::SI_SPILL_A192_SAVE:
1039 case AMDGPU::SI_SPILL_A192_RESTORE:
1040 case AMDGPU::SI_SPILL_AV192_SAVE:
1041 case AMDGPU::SI_SPILL_AV192_RESTORE:
1042 return 6;
1043 case AMDGPU::SI_SPILL_S160_SAVE:
1044 case AMDGPU::SI_SPILL_S160_RESTORE:
1045 case AMDGPU::SI_SPILL_V160_SAVE:
1046 case AMDGPU::SI_SPILL_V160_RESTORE:
1047 case AMDGPU::SI_SPILL_A160_SAVE:
1048 case AMDGPU::SI_SPILL_A160_RESTORE:
1049 case AMDGPU::SI_SPILL_AV160_SAVE:
1050 case AMDGPU::SI_SPILL_AV160_RESTORE:
1051 return 5;
1052 case AMDGPU::SI_SPILL_S128_SAVE:
1053 case AMDGPU::SI_SPILL_S128_RESTORE:
1054 case AMDGPU::SI_SPILL_V128_SAVE:
1055 case AMDGPU::SI_SPILL_V128_RESTORE:
1056 case AMDGPU::SI_SPILL_A128_SAVE:
1057 case AMDGPU::SI_SPILL_A128_RESTORE:
1058 case AMDGPU::SI_SPILL_AV128_SAVE:
1059 case AMDGPU::SI_SPILL_AV128_RESTORE:
1060 return 4;
1061 case AMDGPU::SI_SPILL_S96_SAVE:
1062 case AMDGPU::SI_SPILL_S96_RESTORE:
1063 case AMDGPU::SI_SPILL_V96_SAVE:
1064 case AMDGPU::SI_SPILL_V96_RESTORE:
1065 case AMDGPU::SI_SPILL_A96_SAVE:
1066 case AMDGPU::SI_SPILL_A96_RESTORE:
1067 case AMDGPU::SI_SPILL_AV96_SAVE:
1068 case AMDGPU::SI_SPILL_AV96_RESTORE:
1069 return 3;
1070 case AMDGPU::SI_SPILL_S64_SAVE:
1071 case AMDGPU::SI_SPILL_S64_RESTORE:
1072 case AMDGPU::SI_SPILL_V64_SAVE:
1073 case AMDGPU::SI_SPILL_V64_RESTORE:
1074 case AMDGPU::SI_SPILL_A64_SAVE:
1075 case AMDGPU::SI_SPILL_A64_RESTORE:
1076 case AMDGPU::SI_SPILL_AV64_SAVE:
1077 case AMDGPU::SI_SPILL_AV64_RESTORE:
1078 return 2;
1079 case AMDGPU::SI_SPILL_S32_SAVE:
1080 case AMDGPU::SI_SPILL_S32_RESTORE:
1081 case AMDGPU::SI_SPILL_V32_SAVE:
1082 case AMDGPU::SI_SPILL_V32_RESTORE:
1083 case AMDGPU::SI_SPILL_A32_SAVE:
1084 case AMDGPU::SI_SPILL_A32_RESTORE:
1085 case AMDGPU::SI_SPILL_AV32_SAVE:
1086 case AMDGPU::SI_SPILL_AV32_RESTORE:
1087 case AMDGPU::SI_SPILL_WWM_V32_SAVE:
1088 case AMDGPU::SI_SPILL_WWM_V32_RESTORE:
1089 case AMDGPU::SI_SPILL_WWM_AV32_SAVE:
1090 case AMDGPU::SI_SPILL_WWM_AV32_RESTORE:
1091 return 1;
1092 default: llvm_unreachable("Invalid spill opcode");
1093 }
1094}
1095
1096static int getOffsetMUBUFStore(unsigned Opc) {
1097 switch (Opc) {
1098 case AMDGPU::BUFFER_STORE_DWORD_OFFEN:
1099 return AMDGPU::BUFFER_STORE_DWORD_OFFSET;
1100 case AMDGPU::BUFFER_STORE_BYTE_OFFEN:
1101 return AMDGPU::BUFFER_STORE_BYTE_OFFSET;
1102 case AMDGPU::BUFFER_STORE_SHORT_OFFEN:
1103 return AMDGPU::BUFFER_STORE_SHORT_OFFSET;
1104 case AMDGPU::BUFFER_STORE_DWORDX2_OFFEN:
1105 return AMDGPU::BUFFER_STORE_DWORDX2_OFFSET;
1106 case AMDGPU::BUFFER_STORE_DWORDX3_OFFEN:
1107 return AMDGPU::BUFFER_STORE_DWORDX3_OFFSET;
1108 case AMDGPU::BUFFER_STORE_DWORDX4_OFFEN:
1109 return AMDGPU::BUFFER_STORE_DWORDX4_OFFSET;
1110 case AMDGPU::BUFFER_STORE_SHORT_D16_HI_OFFEN:
1111 return AMDGPU::BUFFER_STORE_SHORT_D16_HI_OFFSET;
1112 case AMDGPU::BUFFER_STORE_BYTE_D16_HI_OFFEN:
1113 return AMDGPU::BUFFER_STORE_BYTE_D16_HI_OFFSET;
1114 default:
1115 return -1;
1116 }
1117}
1118
1119static int getOffsetMUBUFLoad(unsigned Opc) {
1120 switch (Opc) {
1121 case AMDGPU::BUFFER_LOAD_DWORD_OFFEN:
1122 return AMDGPU::BUFFER_LOAD_DWORD_OFFSET;
1123 case AMDGPU::BUFFER_LOAD_UBYTE_OFFEN:
1124 return AMDGPU::BUFFER_LOAD_UBYTE_OFFSET;
1125 case AMDGPU::BUFFER_LOAD_SBYTE_OFFEN:
1126 return AMDGPU::BUFFER_LOAD_SBYTE_OFFSET;
1127 case AMDGPU::BUFFER_LOAD_USHORT_OFFEN:
1128 return AMDGPU::BUFFER_LOAD_USHORT_OFFSET;
1129 case AMDGPU::BUFFER_LOAD_SSHORT_OFFEN:
1130 return AMDGPU::BUFFER_LOAD_SSHORT_OFFSET;
1131 case AMDGPU::BUFFER_LOAD_DWORDX2_OFFEN:
1132 return AMDGPU::BUFFER_LOAD_DWORDX2_OFFSET;
1133 case AMDGPU::BUFFER_LOAD_DWORDX3_OFFEN:
1134 return AMDGPU::BUFFER_LOAD_DWORDX3_OFFSET;
1135 case AMDGPU::BUFFER_LOAD_DWORDX4_OFFEN:
1136 return AMDGPU::BUFFER_LOAD_DWORDX4_OFFSET;
1137 case AMDGPU::BUFFER_LOAD_UBYTE_D16_OFFEN:
1138 return AMDGPU::BUFFER_LOAD_UBYTE_D16_OFFSET;
1139 case AMDGPU::BUFFER_LOAD_UBYTE_D16_HI_OFFEN:
1140 return AMDGPU::BUFFER_LOAD_UBYTE_D16_HI_OFFSET;
1141 case AMDGPU::BUFFER_LOAD_SBYTE_D16_OFFEN:
1142 return AMDGPU::BUFFER_LOAD_SBYTE_D16_OFFSET;
1143 case AMDGPU::BUFFER_LOAD_SBYTE_D16_HI_OFFEN:
1144 return AMDGPU::BUFFER_LOAD_SBYTE_D16_HI_OFFSET;
1145 case AMDGPU::BUFFER_LOAD_SHORT_D16_OFFEN:
1146 return AMDGPU::BUFFER_LOAD_SHORT_D16_OFFSET;
1147 case AMDGPU::BUFFER_LOAD_SHORT_D16_HI_OFFEN:
1148 return AMDGPU::BUFFER_LOAD_SHORT_D16_HI_OFFSET;
1149 default:
1150 return -1;
1151 }
1152}
1153
1154static int getOffenMUBUFStore(unsigned Opc) {
1155 switch (Opc) {
1156 case AMDGPU::BUFFER_STORE_DWORD_OFFSET:
1157 return AMDGPU::BUFFER_STORE_DWORD_OFFEN;
1158 case AMDGPU::BUFFER_STORE_BYTE_OFFSET:
1159 return AMDGPU::BUFFER_STORE_BYTE_OFFEN;
1160 case AMDGPU::BUFFER_STORE_SHORT_OFFSET:
1161 return AMDGPU::BUFFER_STORE_SHORT_OFFEN;
1162 case AMDGPU::BUFFER_STORE_DWORDX2_OFFSET:
1163 return AMDGPU::BUFFER_STORE_DWORDX2_OFFEN;
1164 case AMDGPU::BUFFER_STORE_DWORDX3_OFFSET:
1165 return AMDGPU::BUFFER_STORE_DWORDX3_OFFEN;
1166 case AMDGPU::BUFFER_STORE_DWORDX4_OFFSET:
1167 return AMDGPU::BUFFER_STORE_DWORDX4_OFFEN;
1168 case AMDGPU::BUFFER_STORE_SHORT_D16_HI_OFFSET:
1169 return AMDGPU::BUFFER_STORE_SHORT_D16_HI_OFFEN;
1170 case AMDGPU::BUFFER_STORE_BYTE_D16_HI_OFFSET:
1171 return AMDGPU::BUFFER_STORE_BYTE_D16_HI_OFFEN;
1172 default:
1173 return -1;
1174 }
1175}
1176
1177static int getOffenMUBUFLoad(unsigned Opc) {
1178 switch (Opc) {
1179 case AMDGPU::BUFFER_LOAD_DWORD_OFFSET:
1180 return AMDGPU::BUFFER_LOAD_DWORD_OFFEN;
1181 case AMDGPU::BUFFER_LOAD_UBYTE_OFFSET:
1182 return AMDGPU::BUFFER_LOAD_UBYTE_OFFEN;
1183 case AMDGPU::BUFFER_LOAD_SBYTE_OFFSET:
1184 return AMDGPU::BUFFER_LOAD_SBYTE_OFFEN;
1185 case AMDGPU::BUFFER_LOAD_USHORT_OFFSET:
1186 return AMDGPU::BUFFER_LOAD_USHORT_OFFEN;
1187 case AMDGPU::BUFFER_LOAD_SSHORT_OFFSET:
1188 return AMDGPU::BUFFER_LOAD_SSHORT_OFFEN;
1189 case AMDGPU::BUFFER_LOAD_DWORDX2_OFFSET:
1190 return AMDGPU::BUFFER_LOAD_DWORDX2_OFFEN;
1191 case AMDGPU::BUFFER_LOAD_DWORDX3_OFFSET:
1192 return AMDGPU::BUFFER_LOAD_DWORDX3_OFFEN;
1193 case AMDGPU::BUFFER_LOAD_DWORDX4_OFFSET:
1194 return AMDGPU::BUFFER_LOAD_DWORDX4_OFFEN;
1195 case AMDGPU::BUFFER_LOAD_UBYTE_D16_OFFSET:
1196 return AMDGPU::BUFFER_LOAD_UBYTE_D16_OFFEN;
1197 case AMDGPU::BUFFER_LOAD_UBYTE_D16_HI_OFFSET:
1198 return AMDGPU::BUFFER_LOAD_UBYTE_D16_HI_OFFEN;
1199 case AMDGPU::BUFFER_LOAD_SBYTE_D16_OFFSET:
1200 return AMDGPU::BUFFER_LOAD_SBYTE_D16_OFFEN;
1201 case AMDGPU::BUFFER_LOAD_SBYTE_D16_HI_OFFSET:
1202 return AMDGPU::BUFFER_LOAD_SBYTE_D16_HI_OFFEN;
1203 case AMDGPU::BUFFER_LOAD_SHORT_D16_OFFSET:
1204 return AMDGPU::BUFFER_LOAD_SHORT_D16_OFFEN;
1205 case AMDGPU::BUFFER_LOAD_SHORT_D16_HI_OFFSET:
1206 return AMDGPU::BUFFER_LOAD_SHORT_D16_HI_OFFEN;
1207 default:
1208 return -1;
1209 }
1210}
1211
1215 int Index, unsigned Lane,
1216 unsigned ValueReg, bool IsKill) {
1219 const SIInstrInfo *TII = ST.getInstrInfo();
1220
1221 MCPhysReg Reg = MFI->getVGPRToAGPRSpill(Index, Lane);
1222
1223 if (Reg == AMDGPU::NoRegister)
1224 return MachineInstrBuilder();
1225
1226 bool IsStore = MI->mayStore();
1228 auto *TRI = static_cast<const SIRegisterInfo*>(MRI.getTargetRegisterInfo());
1229
1230 unsigned Dst = IsStore ? Reg : ValueReg;
1231 unsigned Src = IsStore ? ValueReg : Reg;
1232 bool IsVGPR = TRI->isVGPR(MRI, Reg);
1233 DebugLoc DL = MI->getDebugLoc();
1234 if (IsVGPR == TRI->isVGPR(MRI, ValueReg)) {
1235 // Spiller during regalloc may restore a spilled register to its superclass.
1236 // It could result in AGPR spills restored to VGPRs or the other way around,
1237 // making the src and dst with identical regclasses at this point. It just
1238 // needs a copy in such cases.
1239 auto CopyMIB = BuildMI(MBB, MI, DL, TII->get(AMDGPU::COPY), Dst)
1240 .addReg(Src, getKillRegState(IsKill));
1242 return CopyMIB;
1243 }
1244 unsigned Opc = (IsStore ^ IsVGPR) ? AMDGPU::V_ACCVGPR_WRITE_B32_e64
1245 : AMDGPU::V_ACCVGPR_READ_B32_e64;
1246
1247 auto MIB = BuildMI(MBB, MI, DL, TII->get(Opc), Dst)
1248 .addReg(Src, getKillRegState(IsKill));
1250 return MIB;
1251}
1252
1253// This differs from buildSpillLoadStore by only scavenging a VGPR. It does not
1254// need to handle the case where an SGPR may need to be spilled while spilling.
1256 MachineFrameInfo &MFI,
1258 int Index,
1259 int64_t Offset) {
1260 const SIInstrInfo *TII = ST.getInstrInfo();
1261 MachineBasicBlock *MBB = MI->getParent();
1262 const DebugLoc &DL = MI->getDebugLoc();
1263 bool IsStore = MI->mayStore();
1264
1265 unsigned Opc = MI->getOpcode();
1266 int LoadStoreOp = IsStore ?
1268 if (LoadStoreOp == -1)
1269 return false;
1270
1271 const MachineOperand *Reg = TII->getNamedOperand(*MI, AMDGPU::OpName::vdata);
1272 if (spillVGPRtoAGPR(ST, *MBB, MI, Index, 0, Reg->getReg(), false).getInstr())
1273 return true;
1274
1275 MachineInstrBuilder NewMI =
1276 BuildMI(*MBB, MI, DL, TII->get(LoadStoreOp))
1277 .add(*Reg)
1278 .add(*TII->getNamedOperand(*MI, AMDGPU::OpName::srsrc))
1279 .add(*TII->getNamedOperand(*MI, AMDGPU::OpName::soffset))
1280 .addImm(Offset)
1281 .addImm(0) // cpol
1282 .addImm(0) // swz
1283 .cloneMemRefs(*MI);
1284
1285 const MachineOperand *VDataIn = TII->getNamedOperand(*MI,
1286 AMDGPU::OpName::vdata_in);
1287 if (VDataIn)
1288 NewMI.add(*VDataIn);
1289 return true;
1290}
1291
1293 unsigned LoadStoreOp,
1294 unsigned EltSize) {
1295 bool IsStore = TII->get(LoadStoreOp).mayStore();
1296 bool HasVAddr = AMDGPU::hasNamedOperand(LoadStoreOp, AMDGPU::OpName::vaddr);
1297 bool UseST =
1298 !HasVAddr && !AMDGPU::hasNamedOperand(LoadStoreOp, AMDGPU::OpName::saddr);
1299
1300 switch (EltSize) {
1301 case 4:
1302 LoadStoreOp = IsStore ? AMDGPU::SCRATCH_STORE_DWORD_SADDR
1303 : AMDGPU::SCRATCH_LOAD_DWORD_SADDR;
1304 break;
1305 case 8:
1306 LoadStoreOp = IsStore ? AMDGPU::SCRATCH_STORE_DWORDX2_SADDR
1307 : AMDGPU::SCRATCH_LOAD_DWORDX2_SADDR;
1308 break;
1309 case 12:
1310 LoadStoreOp = IsStore ? AMDGPU::SCRATCH_STORE_DWORDX3_SADDR
1311 : AMDGPU::SCRATCH_LOAD_DWORDX3_SADDR;
1312 break;
1313 case 16:
1314 LoadStoreOp = IsStore ? AMDGPU::SCRATCH_STORE_DWORDX4_SADDR
1315 : AMDGPU::SCRATCH_LOAD_DWORDX4_SADDR;
1316 break;
1317 default:
1318 llvm_unreachable("Unexpected spill load/store size!");
1319 }
1320
1321 if (HasVAddr)
1322 LoadStoreOp = AMDGPU::getFlatScratchInstSVfromSS(LoadStoreOp);
1323 else if (UseST)
1324 LoadStoreOp = AMDGPU::getFlatScratchInstSTfromSS(LoadStoreOp);
1325
1326 return LoadStoreOp;
1327}
1328
1331 unsigned LoadStoreOp, int Index, Register ValueReg, bool IsKill,
1332 MCRegister ScratchOffsetReg, int64_t InstOffset, MachineMemOperand *MMO,
1333 RegScavenger *RS, LiveRegUnits *LiveUnits) const {
1334 assert((!RS || !LiveUnits) && "Only RS or LiveUnits can be set but not both");
1335
1337 const SIInstrInfo *TII = ST.getInstrInfo();
1338 const MachineFrameInfo &MFI = MF->getFrameInfo();
1339 const SIMachineFunctionInfo *FuncInfo = MF->getInfo<SIMachineFunctionInfo>();
1340
1341 const MCInstrDesc *Desc = &TII->get(LoadStoreOp);
1342 bool IsStore = Desc->mayStore();
1343 bool IsFlat = TII->isFLATScratch(LoadStoreOp);
1344
1345 bool CanClobberSCC = false;
1346 bool Scavenged = false;
1347 MCRegister SOffset = ScratchOffsetReg;
1348
1349 const TargetRegisterClass *RC = getRegClassForReg(MF->getRegInfo(), ValueReg);
1350 // On gfx90a+ AGPR is a regular VGPR acceptable for loads and stores.
1351 const bool IsAGPR = !ST.hasGFX90AInsts() && isAGPRClass(RC);
1352 const unsigned RegWidth = AMDGPU::getRegBitWidth(*RC) / 8;
1353
1354 // Always use 4 byte operations for AGPRs because we need to scavenge
1355 // a temporary VGPR.
1356 unsigned EltSize = (IsFlat && !IsAGPR) ? std::min(RegWidth, 16u) : 4u;
1357 unsigned NumSubRegs = RegWidth / EltSize;
1358 unsigned Size = NumSubRegs * EltSize;
1359 unsigned RemSize = RegWidth - Size;
1360 unsigned NumRemSubRegs = RemSize ? 1 : 0;
1361 int64_t Offset = InstOffset + MFI.getObjectOffset(Index);
1362 int64_t MaterializedOffset = Offset;
1363
1364 int64_t MaxOffset = Offset + Size + RemSize - EltSize;
1365 int64_t ScratchOffsetRegDelta = 0;
1366
1367 if (IsFlat && EltSize > 4) {
1368 LoadStoreOp = getFlatScratchSpillOpcode(TII, LoadStoreOp, EltSize);
1369 Desc = &TII->get(LoadStoreOp);
1370 }
1371
1372 Align Alignment = MFI.getObjectAlign(Index);
1373 const MachinePointerInfo &BasePtrInfo = MMO->getPointerInfo();
1374
1375 assert((IsFlat || ((Offset % EltSize) == 0)) &&
1376 "unexpected VGPR spill offset");
1377
1378 // Track a VGPR to use for a constant offset we need to materialize.
1379 Register TmpOffsetVGPR;
1380
1381 // Track a VGPR to use as an intermediate value.
1382 Register TmpIntermediateVGPR;
1383 bool UseVGPROffset = false;
1384
1385 // Materialize a VGPR offset required for the given SGPR/VGPR/Immediate
1386 // combination.
1387 auto MaterializeVOffset = [&](Register SGPRBase, Register TmpVGPR,
1388 int64_t VOffset) {
1389 // We are using a VGPR offset
1390 if (IsFlat && SGPRBase) {
1391 // We only have 1 VGPR offset, or 1 SGPR offset. We don't have a free
1392 // SGPR, so perform the add as vector.
1393 // We don't need a base SGPR in the kernel.
1394
1395 if (ST.getConstantBusLimit(AMDGPU::V_ADD_U32_e64) >= 2) {
1396 BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_ADD_U32_e64), TmpVGPR)
1397 .addReg(SGPRBase)
1398 .addImm(VOffset)
1399 .addImm(0); // clamp
1400 } else {
1401 BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), TmpVGPR)
1402 .addReg(SGPRBase);
1403 BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_ADD_U32_e32), TmpVGPR)
1404 .addImm(VOffset)
1405 .addReg(TmpOffsetVGPR);
1406 }
1407 } else {
1408 assert(TmpOffsetVGPR);
1409 BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), TmpVGPR)
1410 .addImm(VOffset);
1411 }
1412 };
1413
1414 bool IsOffsetLegal =
1415 IsFlat ? TII->isLegalFLATOffset(MaxOffset, AMDGPUAS::PRIVATE_ADDRESS,
1417 : TII->isLegalMUBUFImmOffset(MaxOffset);
1418 if (!IsOffsetLegal || (IsFlat && !SOffset && !ST.hasFlatScratchSTMode())) {
1419 SOffset = MCRegister();
1420
1421 // We don't have access to the register scavenger if this function is called
1422 // during PEI::scavengeFrameVirtualRegs() so use LiveUnits in this case.
1423 // TODO: Clobbering SCC is not necessary for scratch instructions in the
1424 // entry.
1425 if (RS) {
1426 SOffset = RS->scavengeRegisterBackwards(AMDGPU::SGPR_32RegClass, MI, false, 0, false);
1427
1428 // Piggy back on the liveness scan we just did see if SCC is dead.
1429 CanClobberSCC = !RS->isRegUsed(AMDGPU::SCC);
1430 } else if (LiveUnits) {
1431 CanClobberSCC = LiveUnits->available(AMDGPU::SCC);
1432 for (MCRegister Reg : AMDGPU::SGPR_32RegClass) {
1433 if (LiveUnits->available(Reg) && !MF->getRegInfo().isReserved(Reg)) {
1434 SOffset = Reg;
1435 break;
1436 }
1437 }
1438 }
1439
1440 if (ScratchOffsetReg != AMDGPU::NoRegister && !CanClobberSCC)
1441 SOffset = Register();
1442
1443 if (!SOffset) {
1444 UseVGPROffset = true;
1445
1446 if (RS) {
1447 TmpOffsetVGPR = RS->scavengeRegisterBackwards(AMDGPU::VGPR_32RegClass, MI, false, 0);
1448 } else {
1449 assert(LiveUnits);
1450 for (MCRegister Reg : AMDGPU::VGPR_32RegClass) {
1451 if (LiveUnits->available(Reg) && !MF->getRegInfo().isReserved(Reg)) {
1452 TmpOffsetVGPR = Reg;
1453 break;
1454 }
1455 }
1456 }
1457
1458 assert(TmpOffsetVGPR);
1459 } else if (!SOffset && CanClobberSCC) {
1460 // There are no free SGPRs, and since we are in the process of spilling
1461 // VGPRs too. Since we need a VGPR in order to spill SGPRs (this is true
1462 // on SI/CI and on VI it is true until we implement spilling using scalar
1463 // stores), we have no way to free up an SGPR. Our solution here is to
1464 // add the offset directly to the ScratchOffset or StackPtrOffset
1465 // register, and then subtract the offset after the spill to return the
1466 // register to it's original value.
1467
1468 // TODO: If we don't have to do an emergency stack slot spill, converting
1469 // to use the VGPR offset is fewer instructions.
1470 if (!ScratchOffsetReg)
1471 ScratchOffsetReg = FuncInfo->getStackPtrOffsetReg();
1472 SOffset = ScratchOffsetReg;
1473 ScratchOffsetRegDelta = Offset;
1474 } else {
1475 Scavenged = true;
1476 }
1477
1478 // We currently only support spilling VGPRs to EltSize boundaries, meaning
1479 // we can simplify the adjustment of Offset here to just scale with
1480 // WavefrontSize.
1481 if (!IsFlat && !UseVGPROffset)
1482 Offset *= ST.getWavefrontSize();
1483
1484 if (!UseVGPROffset && !SOffset)
1485 report_fatal_error("could not scavenge SGPR to spill in entry function");
1486
1487 if (UseVGPROffset) {
1488 // We are using a VGPR offset
1489 MaterializeVOffset(ScratchOffsetReg, TmpOffsetVGPR, Offset);
1490 } else if (ScratchOffsetReg == AMDGPU::NoRegister) {
1491 BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_MOV_B32), SOffset).addImm(Offset);
1492 } else {
1493 assert(Offset != 0);
1494 auto Add = BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_ADD_I32), SOffset)
1495 .addReg(ScratchOffsetReg)
1496 .addImm(Offset);
1497 Add->getOperand(3).setIsDead(); // Mark SCC as dead.
1498 }
1499
1500 Offset = 0;
1501 }
1502
1503 if (IsFlat && SOffset == AMDGPU::NoRegister) {
1504 assert(AMDGPU::getNamedOperandIdx(LoadStoreOp, AMDGPU::OpName::vaddr) < 0
1505 && "Unexpected vaddr for flat scratch with a FI operand");
1506
1507 if (UseVGPROffset) {
1508 LoadStoreOp = AMDGPU::getFlatScratchInstSVfromSS(LoadStoreOp);
1509 } else {
1511 LoadStoreOp = AMDGPU::getFlatScratchInstSTfromSS(LoadStoreOp);
1512 }
1513
1514 Desc = &TII->get(LoadStoreOp);
1515 }
1516
1517 for (unsigned i = 0, e = NumSubRegs + NumRemSubRegs, RegOffset = 0; i != e;
1518 ++i, RegOffset += EltSize) {
1519 if (i == NumSubRegs) {
1520 EltSize = RemSize;
1521 LoadStoreOp = getFlatScratchSpillOpcode(TII, LoadStoreOp, EltSize);
1522 }
1523 Desc = &TII->get(LoadStoreOp);
1524
1525 if (!IsFlat && UseVGPROffset) {
1526 int NewLoadStoreOp = IsStore ? getOffenMUBUFStore(LoadStoreOp)
1527 : getOffenMUBUFLoad(LoadStoreOp);
1528 Desc = &TII->get(NewLoadStoreOp);
1529 }
1530
1531 if (UseVGPROffset && TmpOffsetVGPR == TmpIntermediateVGPR) {
1532 // If we are spilling an AGPR beyond the range of the memory instruction
1533 // offset and need to use a VGPR offset, we ideally have at least 2
1534 // scratch VGPRs. If we don't have a second free VGPR without spilling,
1535 // recycle the VGPR used for the offset which requires resetting after
1536 // each subregister.
1537
1538 MaterializeVOffset(ScratchOffsetReg, TmpOffsetVGPR, MaterializedOffset);
1539 }
1540
1541 unsigned NumRegs = EltSize / 4;
1542 Register SubReg = e == 1
1543 ? ValueReg
1544 : Register(getSubReg(ValueReg,
1545 getSubRegFromChannel(RegOffset / 4, NumRegs)));
1546
1547 unsigned SOffsetRegState = 0;
1548 unsigned SrcDstRegState = getDefRegState(!IsStore);
1549 const bool IsLastSubReg = i + 1 == e;
1550 const bool IsFirstSubReg = i == 0;
1551 if (IsLastSubReg) {
1552 SOffsetRegState |= getKillRegState(Scavenged);
1553 // The last implicit use carries the "Kill" flag.
1554 SrcDstRegState |= getKillRegState(IsKill);
1555 }
1556
1557 // Make sure the whole register is defined if there are undef components by
1558 // adding an implicit def of the super-reg on the first instruction.
1559 bool NeedSuperRegDef = e > 1 && IsStore && IsFirstSubReg;
1560 bool NeedSuperRegImpOperand = e > 1;
1561
1562 // Remaining element size to spill into memory after some parts of it
1563 // spilled into either AGPRs or VGPRs.
1564 unsigned RemEltSize = EltSize;
1565
1566 // AGPRs to spill VGPRs and vice versa are allocated in a reverse order,
1567 // starting from the last lane. In case if a register cannot be completely
1568 // spilled into another register that will ensure its alignment does not
1569 // change. For targets with VGPR alignment requirement this is important
1570 // in case of flat scratch usage as we might get a scratch_load or
1571 // scratch_store of an unaligned register otherwise.
1572 for (int LaneS = (RegOffset + EltSize) / 4 - 1, Lane = LaneS,
1573 LaneE = RegOffset / 4;
1574 Lane >= LaneE; --Lane) {
1575 bool IsSubReg = e > 1 || EltSize > 4;
1576 Register Sub = IsSubReg
1577 ? Register(getSubReg(ValueReg, getSubRegFromChannel(Lane)))
1578 : ValueReg;
1579 auto MIB = spillVGPRtoAGPR(ST, MBB, MI, Index, Lane, Sub, IsKill);
1580 if (!MIB.getInstr())
1581 break;
1582 if (NeedSuperRegDef || (IsSubReg && IsStore && Lane == LaneS && IsFirstSubReg)) {
1583 MIB.addReg(ValueReg, RegState::ImplicitDefine);
1584 NeedSuperRegDef = false;
1585 }
1586 if ((IsSubReg || NeedSuperRegImpOperand) && (IsFirstSubReg || IsLastSubReg)) {
1587 NeedSuperRegImpOperand = true;
1588 unsigned State = SrcDstRegState;
1589 if (!IsLastSubReg || (Lane != LaneE))
1590 State &= ~RegState::Kill;
1591 if (!IsFirstSubReg || (Lane != LaneS))
1592 State &= ~RegState::Define;
1593 MIB.addReg(ValueReg, RegState::Implicit | State);
1594 }
1595 RemEltSize -= 4;
1596 }
1597
1598 if (!RemEltSize) // Fully spilled into AGPRs.
1599 continue;
1600
1601 if (RemEltSize != EltSize) { // Partially spilled to AGPRs
1602 assert(IsFlat && EltSize > 4);
1603
1604 unsigned NumRegs = RemEltSize / 4;
1605 SubReg = Register(getSubReg(ValueReg,
1606 getSubRegFromChannel(RegOffset / 4, NumRegs)));
1607 unsigned Opc = getFlatScratchSpillOpcode(TII, LoadStoreOp, RemEltSize);
1608 Desc = &TII->get(Opc);
1609 }
1610
1611 unsigned FinalReg = SubReg;
1612
1613 if (IsAGPR) {
1614 assert(EltSize == 4);
1615
1616 if (!TmpIntermediateVGPR) {
1617 TmpIntermediateVGPR = FuncInfo->getVGPRForAGPRCopy();
1618 assert(MF->getRegInfo().isReserved(TmpIntermediateVGPR));
1619 }
1620 if (IsStore) {
1621 auto AccRead = BuildMI(MBB, MI, DL,
1622 TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64),
1623 TmpIntermediateVGPR)
1624 .addReg(SubReg, getKillRegState(IsKill));
1625 if (NeedSuperRegDef)
1626 AccRead.addReg(ValueReg, RegState::ImplicitDefine);
1628 }
1629 SubReg = TmpIntermediateVGPR;
1630 } else if (UseVGPROffset) {
1631 if (!TmpOffsetVGPR) {
1632 TmpOffsetVGPR = RS->scavengeRegisterBackwards(AMDGPU::VGPR_32RegClass,
1633 MI, false, 0);
1634 RS->setRegUsed(TmpOffsetVGPR);
1635 }
1636 }
1637
1638 MachinePointerInfo PInfo = BasePtrInfo.getWithOffset(RegOffset);
1639 MachineMemOperand *NewMMO =
1640 MF->getMachineMemOperand(PInfo, MMO->getFlags(), RemEltSize,
1641 commonAlignment(Alignment, RegOffset));
1642
1643 auto MIB =
1644 BuildMI(MBB, MI, DL, *Desc)
1645 .addReg(SubReg, getDefRegState(!IsStore) | getKillRegState(IsKill));
1646
1647 if (UseVGPROffset) {
1648 // For an AGPR spill, we reuse the same temp VGPR for the offset and the
1649 // intermediate accvgpr_write.
1650 MIB.addReg(TmpOffsetVGPR, getKillRegState(IsLastSubReg && !IsAGPR));
1651 }
1652
1653 if (!IsFlat)
1654 MIB.addReg(FuncInfo->getScratchRSrcReg());
1655
1656 if (SOffset == AMDGPU::NoRegister) {
1657 if (!IsFlat) {
1658 if (UseVGPROffset && ScratchOffsetReg) {
1659 MIB.addReg(ScratchOffsetReg);
1660 } else {
1661 assert(FuncInfo->isBottomOfStack());
1662 MIB.addImm(0);
1663 }
1664 }
1665 } else {
1666 MIB.addReg(SOffset, SOffsetRegState);
1667 }
1668
1669 MIB.addImm(Offset + RegOffset);
1670
1671 bool LastUse = MMO->getFlags() & MOLastUse;
1672 MIB.addImm(LastUse ? AMDGPU::CPol::TH_LU : 0); // cpol
1673
1674 if (!IsFlat)
1675 MIB.addImm(0); // swz
1676 MIB.addMemOperand(NewMMO);
1677
1678 if (!IsAGPR && NeedSuperRegDef)
1679 MIB.addReg(ValueReg, RegState::ImplicitDefine);
1680
1681 if (!IsStore && IsAGPR && TmpIntermediateVGPR != AMDGPU::NoRegister) {
1682 MIB = BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64),
1683 FinalReg)
1684 .addReg(TmpIntermediateVGPR, RegState::Kill);
1686 }
1687
1688 if (NeedSuperRegImpOperand && (IsFirstSubReg || IsLastSubReg))
1689 MIB.addReg(ValueReg, RegState::Implicit | SrcDstRegState);
1690
1691 // The epilog restore of a wwm-scratch register can cause undesired
1692 // optimization during machine-cp post PrologEpilogInserter if the same
1693 // register was assigned for return value ABI lowering with a COPY
1694 // instruction. As given below, with the epilog reload, the earlier COPY
1695 // appeared to be dead during machine-cp.
1696 // ...
1697 // v0 in WWM operation, needs the WWM spill at prolog/epilog.
1698 // $vgpr0 = V_WRITELANE_B32 $sgpr20, 0, $vgpr0
1699 // ...
1700 // Epilog block:
1701 // $vgpr0 = COPY $vgpr1 // outgoing value moved to v0
1702 // ...
1703 // WWM spill restore to preserve the inactive lanes of v0.
1704 // $sgpr4_sgpr5 = S_XOR_SAVEEXEC_B64 -1
1705 // $vgpr0 = BUFFER_LOAD $sgpr0_sgpr1_sgpr2_sgpr3, $sgpr32, 0, 0, 0
1706 // $exec = S_MOV_B64 killed $sgpr4_sgpr5
1707 // ...
1708 // SI_RETURN implicit $vgpr0
1709 // ...
1710 // To fix it, mark the same reg as a tied op for such restore instructions
1711 // so that it marks a usage for the preceding COPY.
1712 if (!IsStore && MI != MBB.end() && MI->isReturn() &&
1713 MI->readsRegister(SubReg, this)) {
1714 MIB.addReg(SubReg, RegState::Implicit);
1715 MIB->tieOperands(0, MIB->getNumOperands() - 1);
1716 }
1717 }
1718
1719 if (ScratchOffsetRegDelta != 0) {
1720 // Subtract the offset we added to the ScratchOffset register.
1721 BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_ADD_I32), SOffset)
1722 .addReg(SOffset)
1723 .addImm(-ScratchOffsetRegDelta);
1724 }
1725}
1726
1728 int Offset, bool IsLoad,
1729 bool IsKill) const {
1730 // Load/store VGPR
1731 MachineFrameInfo &FrameInfo = SB.MF.getFrameInfo();
1733
1734 Register FrameReg =
1735 FrameInfo.isFixedObjectIndex(Index) && hasBasePointer(SB.MF)
1736 ? getBaseRegister()
1737 : getFrameRegister(SB.MF);
1738
1739 Align Alignment = FrameInfo.getObjectAlign(Index);
1743 SB.EltSize, Alignment);
1744
1745 if (IsLoad) {
1746 unsigned Opc = ST.enableFlatScratch() ? AMDGPU::SCRATCH_LOAD_DWORD_SADDR
1747 : AMDGPU::BUFFER_LOAD_DWORD_OFFSET;
1748 buildSpillLoadStore(*SB.MBB, SB.MI, SB.DL, Opc, Index, SB.TmpVGPR, false,
1749 FrameReg, (int64_t)Offset * SB.EltSize, MMO, SB.RS);
1750 } else {
1751 unsigned Opc = ST.enableFlatScratch() ? AMDGPU::SCRATCH_STORE_DWORD_SADDR
1752 : AMDGPU::BUFFER_STORE_DWORD_OFFSET;
1753 buildSpillLoadStore(*SB.MBB, SB.MI, SB.DL, Opc, Index, SB.TmpVGPR, IsKill,
1754 FrameReg, (int64_t)Offset * SB.EltSize, MMO, SB.RS);
1755 // This only ever adds one VGPR spill
1756 SB.MFI.addToSpilledVGPRs(1);
1757 }
1758}
1759
1761 RegScavenger *RS, SlotIndexes *Indexes,
1762 LiveIntervals *LIS, bool OnlyToVGPR,
1763 bool SpillToPhysVGPRLane) const {
1764 SGPRSpillBuilder SB(*this, *ST.getInstrInfo(), isWave32, MI, Index, RS);
1765
1766 ArrayRef<SpilledReg> VGPRSpills =
1767 SpillToPhysVGPRLane ? SB.MFI.getSGPRSpillToPhysicalVGPRLanes(Index)
1769 bool SpillToVGPR = !VGPRSpills.empty();
1770 if (OnlyToVGPR && !SpillToVGPR)
1771 return false;
1772
1773 assert(SpillToVGPR || (SB.SuperReg != SB.MFI.getStackPtrOffsetReg() &&
1774 SB.SuperReg != SB.MFI.getFrameOffsetReg()));
1775
1776 if (SpillToVGPR) {
1777
1778 assert(SB.NumSubRegs == VGPRSpills.size() &&
1779 "Num of VGPR lanes should be equal to num of SGPRs spilled");
1780
1781 for (unsigned i = 0, e = SB.NumSubRegs; i < e; ++i) {
1783 SB.NumSubRegs == 1
1784 ? SB.SuperReg
1785 : Register(getSubReg(SB.SuperReg, SB.SplitParts[i]));
1786 SpilledReg Spill = VGPRSpills[i];
1787
1788 bool IsFirstSubreg = i == 0;
1789 bool IsLastSubreg = i == SB.NumSubRegs - 1;
1790 bool UseKill = SB.IsKill && IsLastSubreg;
1791
1792
1793 // Mark the "old value of vgpr" input undef only if this is the first sgpr
1794 // spill to this specific vgpr in the first basic block.
1795 auto MIB = BuildMI(*SB.MBB, MI, SB.DL,
1796 SB.TII.get(AMDGPU::SI_SPILL_S32_TO_VGPR), Spill.VGPR)
1797 .addReg(SubReg, getKillRegState(UseKill))
1798 .addImm(Spill.Lane)
1799 .addReg(Spill.VGPR);
1800 if (Indexes) {
1801 if (IsFirstSubreg)
1802 Indexes->replaceMachineInstrInMaps(*MI, *MIB);
1803 else
1804 Indexes->insertMachineInstrInMaps(*MIB);
1805 }
1806
1807 if (IsFirstSubreg && SB.NumSubRegs > 1) {
1808 // We may be spilling a super-register which is only partially defined,
1809 // and need to ensure later spills think the value is defined.
1810 MIB.addReg(SB.SuperReg, RegState::ImplicitDefine);
1811 }
1812
1813 if (SB.NumSubRegs > 1 && (IsFirstSubreg || IsLastSubreg))
1814 MIB.addReg(SB.SuperReg, getKillRegState(UseKill) | RegState::Implicit);
1815
1816 // FIXME: Since this spills to another register instead of an actual
1817 // frame index, we should delete the frame index when all references to
1818 // it are fixed.
1819 }
1820 } else {
1821 SB.prepare();
1822
1823 // SubReg carries the "Kill" flag when SubReg == SB.SuperReg.
1824 unsigned SubKillState = getKillRegState((SB.NumSubRegs == 1) && SB.IsKill);
1825
1826 // Per VGPR helper data
1827 auto PVD = SB.getPerVGPRData();
1828
1829 for (unsigned Offset = 0; Offset < PVD.NumVGPRs; ++Offset) {
1830 unsigned TmpVGPRFlags = RegState::Undef;
1831
1832 // Write sub registers into the VGPR
1833 for (unsigned i = Offset * PVD.PerVGPR,
1834 e = std::min((Offset + 1) * PVD.PerVGPR, SB.NumSubRegs);
1835 i < e; ++i) {
1837 SB.NumSubRegs == 1
1838 ? SB.SuperReg
1839 : Register(getSubReg(SB.SuperReg, SB.SplitParts[i]));
1840
1841 MachineInstrBuilder WriteLane =
1842 BuildMI(*SB.MBB, MI, SB.DL,
1843 SB.TII.get(AMDGPU::SI_SPILL_S32_TO_VGPR), SB.TmpVGPR)
1844 .addReg(SubReg, SubKillState)
1845 .addImm(i % PVD.PerVGPR)
1846 .addReg(SB.TmpVGPR, TmpVGPRFlags);
1847 TmpVGPRFlags = 0;
1848
1849 if (Indexes) {
1850 if (i == 0)
1851 Indexes->replaceMachineInstrInMaps(*MI, *WriteLane);
1852 else
1853 Indexes->insertMachineInstrInMaps(*WriteLane);
1854 }
1855
1856 // There could be undef components of a spilled super register.
1857 // TODO: Can we detect this and skip the spill?
1858 if (SB.NumSubRegs > 1) {
1859 // The last implicit use of the SB.SuperReg carries the "Kill" flag.
1860 unsigned SuperKillState = 0;
1861 if (i + 1 == SB.NumSubRegs)
1862 SuperKillState |= getKillRegState(SB.IsKill);
1863 WriteLane.addReg(SB.SuperReg, RegState::Implicit | SuperKillState);
1864 }
1865 }
1866
1867 // Write out VGPR
1868 SB.readWriteTmpVGPR(Offset, /*IsLoad*/ false);
1869 }
1870
1871 SB.restore();
1872 }
1873
1874 MI->eraseFromParent();
1876
1877 if (LIS)
1879
1880 return true;
1881}
1882
1884 RegScavenger *RS, SlotIndexes *Indexes,
1885 LiveIntervals *LIS, bool OnlyToVGPR,
1886 bool SpillToPhysVGPRLane) const {
1887 SGPRSpillBuilder SB(*this, *ST.getInstrInfo(), isWave32, MI, Index, RS);
1888
1889 ArrayRef<SpilledReg> VGPRSpills =
1890 SpillToPhysVGPRLane ? SB.MFI.getSGPRSpillToPhysicalVGPRLanes(Index)
1892 bool SpillToVGPR = !VGPRSpills.empty();
1893 if (OnlyToVGPR && !SpillToVGPR)
1894 return false;
1895
1896 if (SpillToVGPR) {
1897 for (unsigned i = 0, e = SB.NumSubRegs; i < e; ++i) {
1899 SB.NumSubRegs == 1
1900 ? SB.SuperReg
1901 : Register(getSubReg(SB.SuperReg, SB.SplitParts[i]));
1902
1903 SpilledReg Spill = VGPRSpills[i];
1904 auto MIB = BuildMI(*SB.MBB, MI, SB.DL,
1905 SB.TII.get(AMDGPU::SI_RESTORE_S32_FROM_VGPR), SubReg)
1906 .addReg(Spill.VGPR)
1907 .addImm(Spill.Lane);
1908 if (SB.NumSubRegs > 1 && i == 0)
1910 if (Indexes) {
1911 if (i == e - 1)
1912 Indexes->replaceMachineInstrInMaps(*MI, *MIB);
1913 else
1914 Indexes->insertMachineInstrInMaps(*MIB);
1915 }
1916 }
1917 } else {
1918 SB.prepare();
1919
1920 // Per VGPR helper data
1921 auto PVD = SB.getPerVGPRData();
1922
1923 for (unsigned Offset = 0; Offset < PVD.NumVGPRs; ++Offset) {
1924 // Load in VGPR data
1925 SB.readWriteTmpVGPR(Offset, /*IsLoad*/ true);
1926
1927 // Unpack lanes
1928 for (unsigned i = Offset * PVD.PerVGPR,
1929 e = std::min((Offset + 1) * PVD.PerVGPR, SB.NumSubRegs);
1930 i < e; ++i) {
1932 SB.NumSubRegs == 1
1933 ? SB.SuperReg
1934 : Register(getSubReg(SB.SuperReg, SB.SplitParts[i]));
1935
1936 bool LastSubReg = (i + 1 == e);
1937 auto MIB = BuildMI(*SB.MBB, MI, SB.DL,
1938 SB.TII.get(AMDGPU::SI_RESTORE_S32_FROM_VGPR), SubReg)
1939 .addReg(SB.TmpVGPR, getKillRegState(LastSubReg))
1940 .addImm(i);
1941 if (SB.NumSubRegs > 1 && i == 0)
1943 if (Indexes) {
1944 if (i == e - 1)
1945 Indexes->replaceMachineInstrInMaps(*MI, *MIB);
1946 else
1947 Indexes->insertMachineInstrInMaps(*MIB);
1948 }
1949 }
1950 }
1951
1952 SB.restore();
1953 }
1954
1955 MI->eraseFromParent();
1956
1957 if (LIS)
1959
1960 return true;
1961}
1962
1964 MachineBasicBlock &RestoreMBB,
1965 Register SGPR, RegScavenger *RS) const {
1966 SGPRSpillBuilder SB(*this, *ST.getInstrInfo(), isWave32, MI, SGPR, false, 0,
1967 RS);
1968 SB.prepare();
1969 // Generate the spill of SGPR to SB.TmpVGPR.
1970 unsigned SubKillState = getKillRegState((SB.NumSubRegs == 1) && SB.IsKill);
1971 auto PVD = SB.getPerVGPRData();
1972 for (unsigned Offset = 0; Offset < PVD.NumVGPRs; ++Offset) {
1973 unsigned TmpVGPRFlags = RegState::Undef;
1974 // Write sub registers into the VGPR
1975 for (unsigned i = Offset * PVD.PerVGPR,
1976 e = std::min((Offset + 1) * PVD.PerVGPR, SB.NumSubRegs);
1977 i < e; ++i) {
1979 SB.NumSubRegs == 1
1980 ? SB.SuperReg
1981 : Register(getSubReg(SB.SuperReg, SB.SplitParts[i]));
1982
1983 MachineInstrBuilder WriteLane =
1984 BuildMI(*SB.MBB, MI, SB.DL, SB.TII.get(AMDGPU::V_WRITELANE_B32),
1985 SB.TmpVGPR)
1986 .addReg(SubReg, SubKillState)
1987 .addImm(i % PVD.PerVGPR)
1988 .addReg(SB.TmpVGPR, TmpVGPRFlags);
1989 TmpVGPRFlags = 0;
1990 // There could be undef components of a spilled super register.
1991 // TODO: Can we detect this and skip the spill?
1992 if (SB.NumSubRegs > 1) {
1993 // The last implicit use of the SB.SuperReg carries the "Kill" flag.
1994 unsigned SuperKillState = 0;
1995 if (i + 1 == SB.NumSubRegs)
1996 SuperKillState |= getKillRegState(SB.IsKill);
1997 WriteLane.addReg(SB.SuperReg, RegState::Implicit | SuperKillState);
1998 }
1999 }
2000 // Don't need to write VGPR out.
2001 }
2002
2003 // Restore clobbered registers in the specified restore block.
2004 MI = RestoreMBB.end();
2005 SB.setMI(&RestoreMBB, MI);
2006 // Generate the restore of SGPR from SB.TmpVGPR.
2007 for (unsigned Offset = 0; Offset < PVD.NumVGPRs; ++Offset) {
2008 // Don't need to load VGPR in.
2009 // Unpack lanes
2010 for (unsigned i = Offset * PVD.PerVGPR,
2011 e = std::min((Offset + 1) * PVD.PerVGPR, SB.NumSubRegs);
2012 i < e; ++i) {
2014 SB.NumSubRegs == 1
2015 ? SB.SuperReg
2016 : Register(getSubReg(SB.SuperReg, SB.SplitParts[i]));
2017 bool LastSubReg = (i + 1 == e);
2018 auto MIB = BuildMI(*SB.MBB, MI, SB.DL, SB.TII.get(AMDGPU::V_READLANE_B32),
2019 SubReg)
2020 .addReg(SB.TmpVGPR, getKillRegState(LastSubReg))
2021 .addImm(i);
2022 if (SB.NumSubRegs > 1 && i == 0)
2024 }
2025 }
2026 SB.restore();
2027
2029 return false;
2030}
2031
2032/// Special case of eliminateFrameIndex. Returns true if the SGPR was spilled to
2033/// a VGPR and the stack slot can be safely eliminated when all other users are
2034/// handled.
2037 SlotIndexes *Indexes, LiveIntervals *LIS, bool SpillToPhysVGPRLane) const {
2038 switch (MI->getOpcode()) {
2039 case AMDGPU::SI_SPILL_S1024_SAVE:
2040 case AMDGPU::SI_SPILL_S512_SAVE:
2041 case AMDGPU::SI_SPILL_S384_SAVE:
2042 case AMDGPU::SI_SPILL_S352_SAVE:
2043 case AMDGPU::SI_SPILL_S320_SAVE:
2044 case AMDGPU::SI_SPILL_S288_SAVE:
2045 case AMDGPU::SI_SPILL_S256_SAVE:
2046 case AMDGPU::SI_SPILL_S224_SAVE:
2047 case AMDGPU::SI_SPILL_S192_SAVE:
2048 case AMDGPU::SI_SPILL_S160_SAVE:
2049 case AMDGPU::SI_SPILL_S128_SAVE:
2050 case AMDGPU::SI_SPILL_S96_SAVE:
2051 case AMDGPU::SI_SPILL_S64_SAVE:
2052 case AMDGPU::SI_SPILL_S32_SAVE:
2053 return spillSGPR(MI, FI, RS, Indexes, LIS, true, SpillToPhysVGPRLane);
2054 case AMDGPU::SI_SPILL_S1024_RESTORE:
2055 case AMDGPU::SI_SPILL_S512_RESTORE:
2056 case AMDGPU::SI_SPILL_S384_RESTORE:
2057 case AMDGPU::SI_SPILL_S352_RESTORE:
2058 case AMDGPU::SI_SPILL_S320_RESTORE:
2059 case AMDGPU::SI_SPILL_S288_RESTORE:
2060 case AMDGPU::SI_SPILL_S256_RESTORE:
2061 case AMDGPU::SI_SPILL_S224_RESTORE:
2062 case AMDGPU::SI_SPILL_S192_RESTORE:
2063 case AMDGPU::SI_SPILL_S160_RESTORE:
2064 case AMDGPU::SI_SPILL_S128_RESTORE:
2065 case AMDGPU::SI_SPILL_S96_RESTORE:
2066 case AMDGPU::SI_SPILL_S64_RESTORE:
2067 case AMDGPU::SI_SPILL_S32_RESTORE:
2068 return restoreSGPR(MI, FI, RS, Indexes, LIS, true, SpillToPhysVGPRLane);
2069 default:
2070 llvm_unreachable("not an SGPR spill instruction");
2071 }
2072}
2073
2075 int SPAdj, unsigned FIOperandNum,
2076 RegScavenger *RS) const {
2077 MachineFunction *MF = MI->getParent()->getParent();
2078 MachineBasicBlock *MBB = MI->getParent();
2080 MachineFrameInfo &FrameInfo = MF->getFrameInfo();
2081 const SIInstrInfo *TII = ST.getInstrInfo();
2082 DebugLoc DL = MI->getDebugLoc();
2083
2084 assert(SPAdj == 0 && "unhandled SP adjustment in call sequence?");
2085
2086 MachineOperand &FIOp = MI->getOperand(FIOperandNum);
2087 int Index = MI->getOperand(FIOperandNum).getIndex();
2088
2089 Register FrameReg = FrameInfo.isFixedObjectIndex(Index) && hasBasePointer(*MF)
2090 ? getBaseRegister()
2091 : getFrameRegister(*MF);
2092
2093 switch (MI->getOpcode()) {
2094 // SGPR register spill
2095 case AMDGPU::SI_SPILL_S1024_SAVE:
2096 case AMDGPU::SI_SPILL_S512_SAVE:
2097 case AMDGPU::SI_SPILL_S384_SAVE:
2098 case AMDGPU::SI_SPILL_S352_SAVE:
2099 case AMDGPU::SI_SPILL_S320_SAVE:
2100 case AMDGPU::SI_SPILL_S288_SAVE:
2101 case AMDGPU::SI_SPILL_S256_SAVE:
2102 case AMDGPU::SI_SPILL_S224_SAVE:
2103 case AMDGPU::SI_SPILL_S192_SAVE:
2104 case AMDGPU::SI_SPILL_S160_SAVE:
2105 case AMDGPU::SI_SPILL_S128_SAVE:
2106 case AMDGPU::SI_SPILL_S96_SAVE:
2107 case AMDGPU::SI_SPILL_S64_SAVE:
2108 case AMDGPU::SI_SPILL_S32_SAVE: {
2109 return spillSGPR(MI, Index, RS);
2110 }
2111
2112 // SGPR register restore
2113 case AMDGPU::SI_SPILL_S1024_RESTORE:
2114 case AMDGPU::SI_SPILL_S512_RESTORE:
2115 case AMDGPU::SI_SPILL_S384_RESTORE:
2116 case AMDGPU::SI_SPILL_S352_RESTORE:
2117 case AMDGPU::SI_SPILL_S320_RESTORE:
2118 case AMDGPU::SI_SPILL_S288_RESTORE:
2119 case AMDGPU::SI_SPILL_S256_RESTORE:
2120 case AMDGPU::SI_SPILL_S224_RESTORE:
2121 case AMDGPU::SI_SPILL_S192_RESTORE:
2122 case AMDGPU::SI_SPILL_S160_RESTORE:
2123 case AMDGPU::SI_SPILL_S128_RESTORE:
2124 case AMDGPU::SI_SPILL_S96_RESTORE:
2125 case AMDGPU::SI_SPILL_S64_RESTORE:
2126 case AMDGPU::SI_SPILL_S32_RESTORE: {
2127 return restoreSGPR(MI, Index, RS);
2128 }
2129
2130 // VGPR register spill
2131 case AMDGPU::SI_SPILL_V1024_SAVE:
2132 case AMDGPU::SI_SPILL_V512_SAVE:
2133 case AMDGPU::SI_SPILL_V384_SAVE:
2134 case AMDGPU::SI_SPILL_V352_SAVE:
2135 case AMDGPU::SI_SPILL_V320_SAVE:
2136 case AMDGPU::SI_SPILL_V288_SAVE:
2137 case AMDGPU::SI_SPILL_V256_SAVE:
2138 case AMDGPU::SI_SPILL_V224_SAVE:
2139 case AMDGPU::SI_SPILL_V192_SAVE:
2140 case AMDGPU::SI_SPILL_V160_SAVE:
2141 case AMDGPU::SI_SPILL_V128_SAVE:
2142 case AMDGPU::SI_SPILL_V96_SAVE:
2143 case AMDGPU::SI_SPILL_V64_SAVE:
2144 case AMDGPU::SI_SPILL_V32_SAVE:
2145 case AMDGPU::SI_SPILL_A1024_SAVE:
2146 case AMDGPU::SI_SPILL_A512_SAVE:
2147 case AMDGPU::SI_SPILL_A384_SAVE:
2148 case AMDGPU::SI_SPILL_A352_SAVE:
2149 case AMDGPU::SI_SPILL_A320_SAVE:
2150 case AMDGPU::SI_SPILL_A288_SAVE:
2151 case AMDGPU::SI_SPILL_A256_SAVE:
2152 case AMDGPU::SI_SPILL_A224_SAVE:
2153 case AMDGPU::SI_SPILL_A192_SAVE:
2154 case AMDGPU::SI_SPILL_A160_SAVE:
2155 case AMDGPU::SI_SPILL_A128_SAVE:
2156 case AMDGPU::SI_SPILL_A96_SAVE:
2157 case AMDGPU::SI_SPILL_A64_SAVE:
2158 case AMDGPU::SI_SPILL_A32_SAVE:
2159 case AMDGPU::SI_SPILL_AV1024_SAVE:
2160 case AMDGPU::SI_SPILL_AV512_SAVE:
2161 case AMDGPU::SI_SPILL_AV384_SAVE:
2162 case AMDGPU::SI_SPILL_AV352_SAVE:
2163 case AMDGPU::SI_SPILL_AV320_SAVE:
2164 case AMDGPU::SI_SPILL_AV288_SAVE:
2165 case AMDGPU::SI_SPILL_AV256_SAVE:
2166 case AMDGPU::SI_SPILL_AV224_SAVE:
2167 case AMDGPU::SI_SPILL_AV192_SAVE:
2168 case AMDGPU::SI_SPILL_AV160_SAVE:
2169 case AMDGPU::SI_SPILL_AV128_SAVE:
2170 case AMDGPU::SI_SPILL_AV96_SAVE:
2171 case AMDGPU::SI_SPILL_AV64_SAVE:
2172 case AMDGPU::SI_SPILL_AV32_SAVE:
2173 case AMDGPU::SI_SPILL_WWM_V32_SAVE:
2174 case AMDGPU::SI_SPILL_WWM_AV32_SAVE: {
2175 const MachineOperand *VData = TII->getNamedOperand(*MI,
2176 AMDGPU::OpName::vdata);
2177 assert(TII->getNamedOperand(*MI, AMDGPU::OpName::soffset)->getReg() ==
2178 MFI->getStackPtrOffsetReg());
2179
2180 unsigned Opc = ST.enableFlatScratch() ? AMDGPU::SCRATCH_STORE_DWORD_SADDR
2181 : AMDGPU::BUFFER_STORE_DWORD_OFFSET;
2182 auto *MBB = MI->getParent();
2183 bool IsWWMRegSpill = TII->isWWMRegSpillOpcode(MI->getOpcode());
2184 if (IsWWMRegSpill) {
2185 TII->insertScratchExecCopy(*MF, *MBB, MI, DL, MFI->getSGPRForEXECCopy(),
2186 RS->isRegUsed(AMDGPU::SCC));
2187 }
2189 *MBB, MI, DL, Opc, Index, VData->getReg(), VData->isKill(), FrameReg,
2190 TII->getNamedOperand(*MI, AMDGPU::OpName::offset)->getImm(),
2191 *MI->memoperands_begin(), RS);
2192 MFI->addToSpilledVGPRs(getNumSubRegsForSpillOp(MI->getOpcode()));
2193 if (IsWWMRegSpill)
2194 TII->restoreExec(*MF, *MBB, MI, DL, MFI->getSGPRForEXECCopy());
2195
2196 MI->eraseFromParent();
2197 return true;
2198 }
2199 case AMDGPU::SI_SPILL_V32_RESTORE:
2200 case AMDGPU::SI_SPILL_V64_RESTORE:
2201 case AMDGPU::SI_SPILL_V96_RESTORE:
2202 case AMDGPU::SI_SPILL_V128_RESTORE:
2203 case AMDGPU::SI_SPILL_V160_RESTORE:
2204 case AMDGPU::SI_SPILL_V192_RESTORE:
2205 case AMDGPU::SI_SPILL_V224_RESTORE:
2206 case AMDGPU::SI_SPILL_V256_RESTORE:
2207 case AMDGPU::SI_SPILL_V288_RESTORE:
2208 case AMDGPU::SI_SPILL_V320_RESTORE:
2209 case AMDGPU::SI_SPILL_V352_RESTORE:
2210 case AMDGPU::SI_SPILL_V384_RESTORE:
2211 case AMDGPU::SI_SPILL_V512_RESTORE:
2212 case AMDGPU::SI_SPILL_V1024_RESTORE:
2213 case AMDGPU::SI_SPILL_A32_RESTORE:
2214 case AMDGPU::SI_SPILL_A64_RESTORE:
2215 case AMDGPU::SI_SPILL_A96_RESTORE:
2216 case AMDGPU::SI_SPILL_A128_RESTORE:
2217 case AMDGPU::SI_SPILL_A160_RESTORE:
2218 case AMDGPU::SI_SPILL_A192_RESTORE:
2219 case AMDGPU::SI_SPILL_A224_RESTORE:
2220 case AMDGPU::SI_SPILL_A256_RESTORE:
2221 case AMDGPU::SI_SPILL_A288_RESTORE:
2222 case AMDGPU::SI_SPILL_A320_RESTORE:
2223 case AMDGPU::SI_SPILL_A352_RESTORE:
2224 case AMDGPU::SI_SPILL_A384_RESTORE:
2225 case AMDGPU::SI_SPILL_A512_RESTORE:
2226 case AMDGPU::SI_SPILL_A1024_RESTORE:
2227 case AMDGPU::SI_SPILL_AV32_RESTORE:
2228 case AMDGPU::SI_SPILL_AV64_RESTORE:
2229 case AMDGPU::SI_SPILL_AV96_RESTORE:
2230 case AMDGPU::SI_SPILL_AV128_RESTORE:
2231 case AMDGPU::SI_SPILL_AV160_RESTORE:
2232 case AMDGPU::SI_SPILL_AV192_RESTORE:
2233 case AMDGPU::SI_SPILL_AV224_RESTORE:
2234 case AMDGPU::SI_SPILL_AV256_RESTORE:
2235 case AMDGPU::SI_SPILL_AV288_RESTORE:
2236 case AMDGPU::SI_SPILL_AV320_RESTORE:
2237 case AMDGPU::SI_SPILL_AV352_RESTORE:
2238 case AMDGPU::SI_SPILL_AV384_RESTORE:
2239 case AMDGPU::SI_SPILL_AV512_RESTORE:
2240 case AMDGPU::SI_SPILL_AV1024_RESTORE:
2241 case AMDGPU::SI_SPILL_WWM_V32_RESTORE:
2242 case AMDGPU::SI_SPILL_WWM_AV32_RESTORE: {
2243 const MachineOperand *VData = TII->getNamedOperand(*MI,
2244 AMDGPU::OpName::vdata);
2245 assert(TII->getNamedOperand(*MI, AMDGPU::OpName::soffset)->getReg() ==
2246 MFI->getStackPtrOffsetReg());
2247
2248 unsigned Opc = ST.enableFlatScratch() ? AMDGPU::SCRATCH_LOAD_DWORD_SADDR
2249 : AMDGPU::BUFFER_LOAD_DWORD_OFFSET;
2250 auto *MBB = MI->getParent();
2251 bool IsWWMRegSpill = TII->isWWMRegSpillOpcode(MI->getOpcode());
2252 if (IsWWMRegSpill) {
2253 TII->insertScratchExecCopy(*MF, *MBB, MI, DL, MFI->getSGPRForEXECCopy(),
2254 RS->isRegUsed(AMDGPU::SCC));
2255 }
2256
2258 *MBB, MI, DL, Opc, Index, VData->getReg(), VData->isKill(), FrameReg,
2259 TII->getNamedOperand(*MI, AMDGPU::OpName::offset)->getImm(),
2260 *MI->memoperands_begin(), RS);
2261
2262 if (IsWWMRegSpill)
2263 TII->restoreExec(*MF, *MBB, MI, DL, MFI->getSGPRForEXECCopy());
2264
2265 MI->eraseFromParent();
2266 return true;
2267 }
2268
2269 default: {
2270 // Other access to frame index
2271 const DebugLoc &DL = MI->getDebugLoc();
2272
2273 int64_t Offset = FrameInfo.getObjectOffset(Index);
2274 if (ST.enableFlatScratch()) {
2275 if (TII->isFLATScratch(*MI)) {
2276 assert((int16_t)FIOperandNum ==
2277 AMDGPU::getNamedOperandIdx(MI->getOpcode(),
2278 AMDGPU::OpName::saddr));
2279
2280 // The offset is always swizzled, just replace it
2281 if (FrameReg)
2282 FIOp.ChangeToRegister(FrameReg, false);
2283
2284 MachineOperand *OffsetOp =
2285 TII->getNamedOperand(*MI, AMDGPU::OpName::offset);
2286 int64_t NewOffset = Offset + OffsetOp->getImm();
2287 if (TII->isLegalFLATOffset(NewOffset, AMDGPUAS::PRIVATE_ADDRESS,
2289 OffsetOp->setImm(NewOffset);
2290 if (FrameReg)
2291 return false;
2292 Offset = 0;
2293 }
2294
2295 if (!Offset) {
2296 unsigned Opc = MI->getOpcode();
2297 int NewOpc = -1;
2298 if (AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vaddr)) {
2300 } else if (ST.hasFlatScratchSTMode()) {
2301 // On GFX10 we have ST mode to use no registers for an address.
2302 // Otherwise we need to materialize 0 into an SGPR.
2304 }
2305
2306 if (NewOpc != -1) {
2307 // removeOperand doesn't fixup tied operand indexes as it goes, so
2308 // it asserts. Untie vdst_in for now and retie them afterwards.
2309 int VDstIn = AMDGPU::getNamedOperandIdx(Opc,
2310 AMDGPU::OpName::vdst_in);
2311 bool TiedVDst = VDstIn != -1 &&
2312 MI->getOperand(VDstIn).isReg() &&
2313 MI->getOperand(VDstIn).isTied();
2314 if (TiedVDst)
2315 MI->untieRegOperand(VDstIn);
2316
2317 MI->removeOperand(
2318 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::saddr));
2319
2320 if (TiedVDst) {
2321 int NewVDst =
2322 AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::vdst);
2323 int NewVDstIn =
2324 AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::vdst_in);
2325 assert (NewVDst != -1 && NewVDstIn != -1 && "Must be tied!");
2326 MI->tieOperands(NewVDst, NewVDstIn);
2327 }
2328 MI->setDesc(TII->get(NewOpc));
2329 return false;
2330 }
2331 }
2332 }
2333
2334 if (!FrameReg) {
2336 if (TII->isImmOperandLegal(*MI, FIOperandNum, FIOp))
2337 return false;
2338 }
2339
2340 // We need to use register here. Check if we can use an SGPR or need
2341 // a VGPR.
2342 FIOp.ChangeToRegister(AMDGPU::M0, false);
2343 bool UseSGPR = TII->isOperandLegal(*MI, FIOperandNum, &FIOp);
2344
2345 if (!Offset && FrameReg && UseSGPR) {
2346 FIOp.setReg(FrameReg);
2347 return false;
2348 }
2349
2350 const TargetRegisterClass *RC = UseSGPR ? &AMDGPU::SReg_32_XM0RegClass
2351 : &AMDGPU::VGPR_32RegClass;
2352
2353 Register TmpReg =
2354 RS->scavengeRegisterBackwards(*RC, MI, false, 0, !UseSGPR);
2355 FIOp.setReg(TmpReg);
2356 FIOp.setIsKill();
2357
2358 if ((!FrameReg || !Offset) && TmpReg) {
2359 unsigned Opc = UseSGPR ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
2360 auto MIB = BuildMI(*MBB, MI, DL, TII->get(Opc), TmpReg);
2361 if (FrameReg)
2362 MIB.addReg(FrameReg);
2363 else
2364 MIB.addImm(Offset);
2365
2366 return false;
2367 }
2368
2369 bool NeedSaveSCC = RS->isRegUsed(AMDGPU::SCC) &&
2370 !MI->definesRegister(AMDGPU::SCC, /*TRI=*/nullptr);
2371
2372 Register TmpSReg =
2373 UseSGPR ? TmpReg
2374 : RS->scavengeRegisterBackwards(AMDGPU::SReg_32_XM0RegClass,
2375 MI, false, 0, !UseSGPR);
2376
2377 // TODO: for flat scratch another attempt can be made with a VGPR index
2378 // if no SGPRs can be scavenged.
2379 if ((!TmpSReg && !FrameReg) || (!TmpReg && !UseSGPR))
2380 report_fatal_error("Cannot scavenge register in FI elimination!");
2381
2382 if (!TmpSReg) {
2383 // Use frame register and restore it after.
2384 TmpSReg = FrameReg;
2385 FIOp.setReg(FrameReg);
2386 FIOp.setIsKill(false);
2387 }
2388
2389 if (NeedSaveSCC) {
2390 assert(!(Offset & 0x1) && "Flat scratch offset must be aligned!");
2391 BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_ADDC_U32), TmpSReg)
2392 .addReg(FrameReg)
2393 .addImm(Offset);
2394 BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_BITCMP1_B32))
2395 .addReg(TmpSReg)
2396 .addImm(0);
2397 BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_BITSET0_B32), TmpSReg)
2398 .addImm(0)
2399 .addReg(TmpSReg);
2400 } else {
2401 BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_ADD_I32), TmpSReg)
2402 .addReg(FrameReg)
2403 .addImm(Offset);
2404 }
2405
2406 if (!UseSGPR)
2407 BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), TmpReg)
2408 .addReg(TmpSReg, RegState::Kill);
2409
2410 if (TmpSReg == FrameReg) {
2411 // Undo frame register modification.
2412 if (NeedSaveSCC &&
2413 !MI->registerDefIsDead(AMDGPU::SCC, /*TRI=*/nullptr)) {
2415 BuildMI(*MBB, std::next(MI), DL, TII->get(AMDGPU::S_ADDC_U32),
2416 TmpSReg)
2417 .addReg(FrameReg)
2418 .addImm(-Offset);
2419 I = BuildMI(*MBB, std::next(I), DL, TII->get(AMDGPU::S_BITCMP1_B32))
2420 .addReg(TmpSReg)
2421 .addImm(0);
2422 BuildMI(*MBB, std::next(I), DL, TII->get(AMDGPU::S_BITSET0_B32),
2423 TmpSReg)
2424 .addImm(0)
2425 .addReg(TmpSReg);
2426 } else {
2427 BuildMI(*MBB, std::next(MI), DL, TII->get(AMDGPU::S_ADD_I32),
2428 FrameReg)
2429 .addReg(FrameReg)
2430 .addImm(-Offset);
2431 }
2432 }
2433
2434 return false;
2435 }
2436
2437 bool IsMUBUF = TII->isMUBUF(*MI);
2438
2439 if (!IsMUBUF && !MFI->isBottomOfStack()) {
2440 // Convert to a swizzled stack address by scaling by the wave size.
2441 // In an entry function/kernel the offset is already swizzled.
2442 bool IsSALU = isSGPRClass(TII->getOpRegClass(*MI, FIOperandNum));
2443 bool LiveSCC = RS->isRegUsed(AMDGPU::SCC) &&
2444 !MI->definesRegister(AMDGPU::SCC, /*TRI=*/nullptr);
2445 const TargetRegisterClass *RC = IsSALU && !LiveSCC
2446 ? &AMDGPU::SReg_32RegClass
2447 : &AMDGPU::VGPR_32RegClass;
2448 bool IsCopy = MI->getOpcode() == AMDGPU::V_MOV_B32_e32 ||
2449 MI->getOpcode() == AMDGPU::V_MOV_B32_e64;
2450 Register ResultReg =
2451 IsCopy ? MI->getOperand(0).getReg()
2452 : RS->scavengeRegisterBackwards(*RC, MI, false, 0);
2453
2454 int64_t Offset = FrameInfo.getObjectOffset(Index);
2455 if (Offset == 0) {
2456 unsigned OpCode = IsSALU && !LiveSCC ? AMDGPU::S_LSHR_B32
2457 : AMDGPU::V_LSHRREV_B32_e64;
2458 auto Shift = BuildMI(*MBB, MI, DL, TII->get(OpCode), ResultReg);
2459 if (OpCode == AMDGPU::V_LSHRREV_B32_e64)
2460 // For V_LSHRREV, the operands are reversed (the shift count goes
2461 // first).
2462 Shift.addImm(ST.getWavefrontSizeLog2()).addReg(FrameReg);
2463 else
2464 Shift.addReg(FrameReg).addImm(ST.getWavefrontSizeLog2());
2465 if (IsSALU && !LiveSCC)
2466 Shift.getInstr()->getOperand(3).setIsDead(); // Mark SCC as dead.
2467 if (IsSALU && LiveSCC) {
2468 Register NewDest = RS->scavengeRegisterBackwards(
2469 AMDGPU::SReg_32RegClass, Shift, false, 0);
2470 BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32),
2471 NewDest)
2472 .addReg(ResultReg);
2473 ResultReg = NewDest;
2474 }
2475 } else {
2477 if (!IsSALU) {
2478 if ((MIB = TII->getAddNoCarry(*MBB, MI, DL, ResultReg, *RS)) !=
2479 nullptr) {
2480 // Reuse ResultReg in intermediate step.
2481 Register ScaledReg = ResultReg;
2482
2483 BuildMI(*MBB, *MIB, DL, TII->get(AMDGPU::V_LSHRREV_B32_e64),
2484 ScaledReg)
2486 .addReg(FrameReg);
2487
2488 const bool IsVOP2 = MIB->getOpcode() == AMDGPU::V_ADD_U32_e32;
2489
2490 // TODO: Fold if use instruction is another add of a constant.
2492 // FIXME: This can fail
2493 MIB.addImm(Offset);
2494 MIB.addReg(ScaledReg, RegState::Kill);
2495 if (!IsVOP2)
2496 MIB.addImm(0); // clamp bit
2497 } else {
2498 assert(MIB->getOpcode() == AMDGPU::V_ADD_CO_U32_e64 &&
2499 "Need to reuse carry out register");
2500
2501 // Use scavenged unused carry out as offset register.
2502 Register ConstOffsetReg;
2503 if (!isWave32)
2504 ConstOffsetReg = getSubReg(MIB.getReg(1), AMDGPU::sub0);
2505 else
2506 ConstOffsetReg = MIB.getReg(1);
2507
2508 BuildMI(*MBB, *MIB, DL, TII->get(AMDGPU::S_MOV_B32), ConstOffsetReg)
2509 .addImm(Offset);
2510 MIB.addReg(ConstOffsetReg, RegState::Kill);
2511 MIB.addReg(ScaledReg, RegState::Kill);
2512 MIB.addImm(0); // clamp bit
2513 }
2514 }
2515 }
2516 if (!MIB || IsSALU) {
2517 // We have to produce a carry out, and there isn't a free SGPR pair
2518 // for it. We can keep the whole computation on the SALU to avoid
2519 // clobbering an additional register at the cost of an extra mov.
2520
2521 // We may have 1 free scratch SGPR even though a carry out is
2522 // unavailable. Only one additional mov is needed.
2523 Register TmpScaledReg = RS->scavengeRegisterBackwards(
2524 AMDGPU::SReg_32_XM0RegClass, MI, false, 0, false);
2525 Register ScaledReg = TmpScaledReg.isValid() ? TmpScaledReg : FrameReg;
2526
2527 BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_LSHR_B32), ScaledReg)
2528 .addReg(FrameReg)
2530 BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_ADD_I32), ScaledReg)
2531 .addReg(ScaledReg, RegState::Kill)
2532 .addImm(Offset);
2533 if (!IsSALU)
2534 BuildMI(*MBB, MI, DL, TII->get(AMDGPU::COPY), ResultReg)
2535 .addReg(ScaledReg, RegState::Kill);
2536 else
2537 ResultReg = ScaledReg;
2538
2539 // If there were truly no free SGPRs, we need to undo everything.
2540 if (!TmpScaledReg.isValid()) {
2541 BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_ADD_I32), ScaledReg)
2542 .addReg(ScaledReg, RegState::Kill)
2543 .addImm(-Offset);
2544 BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_LSHL_B32), ScaledReg)
2545 .addReg(FrameReg)
2547 }
2548 }
2549 }
2550
2551 // Don't introduce an extra copy if we're just materializing in a mov.
2552 if (IsCopy) {
2553 MI->eraseFromParent();
2554 return true;
2555 }
2556 FIOp.ChangeToRegister(ResultReg, false, false, true);
2557 return false;
2558 }
2559
2560 if (IsMUBUF) {
2561 // Disable offen so we don't need a 0 vgpr base.
2562 assert(static_cast<int>(FIOperandNum) ==
2563 AMDGPU::getNamedOperandIdx(MI->getOpcode(),
2564 AMDGPU::OpName::vaddr));
2565
2566 auto &SOffset = *TII->getNamedOperand(*MI, AMDGPU::OpName::soffset);
2567 assert((SOffset.isImm() && SOffset.getImm() == 0));
2568
2569 if (FrameReg != AMDGPU::NoRegister)
2570 SOffset.ChangeToRegister(FrameReg, false);
2571
2572 int64_t Offset = FrameInfo.getObjectOffset(Index);
2573 int64_t OldImm
2574 = TII->getNamedOperand(*MI, AMDGPU::OpName::offset)->getImm();
2575 int64_t NewOffset = OldImm + Offset;
2576
2577 if (TII->isLegalMUBUFImmOffset(NewOffset) &&
2578 buildMUBUFOffsetLoadStore(ST, FrameInfo, MI, Index, NewOffset)) {
2579 MI->eraseFromParent();
2580 return true;
2581 }
2582 }
2583
2584 // If the offset is simply too big, don't convert to a scratch wave offset
2585 // relative index.
2586
2588 if (!TII->isImmOperandLegal(*MI, FIOperandNum, FIOp)) {
2589 Register TmpReg = RS->scavengeRegisterBackwards(AMDGPU::VGPR_32RegClass,
2590 MI, false, 0);
2591 BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), TmpReg)
2592 .addImm(Offset);
2593 FIOp.ChangeToRegister(TmpReg, false, false, true);
2594 }
2595 }
2596 }
2597 return false;
2598}
2599
2602}
2603
2605 return getRegBitWidth(RC.getID());
2606}
2607
2608static const TargetRegisterClass *
2610 if (BitWidth == 64)
2611 return &AMDGPU::VReg_64RegClass;
2612 if (BitWidth == 96)
2613 return &AMDGPU::VReg_96RegClass;
2614 if (BitWidth == 128)
2615 return &AMDGPU::VReg_128RegClass;
2616 if (BitWidth == 160)
2617 return &AMDGPU::VReg_160RegClass;
2618 if (BitWidth == 192)
2619 return &AMDGPU::VReg_192RegClass;
2620 if (BitWidth == 224)
2621 return &AMDGPU::VReg_224RegClass;
2622 if (BitWidth == 256)
2623 return &AMDGPU::VReg_256RegClass;
2624 if (BitWidth == 288)
2625 return &AMDGPU::VReg_288RegClass;
2626 if (BitWidth == 320)
2627 return &AMDGPU::VReg_320RegClass;
2628 if (BitWidth == 352)
2629 return &AMDGPU::VReg_352RegClass;
2630 if (BitWidth == 384)
2631 return &AMDGPU::VReg_384RegClass;
2632 if (BitWidth == 512)
2633 return &AMDGPU::VReg_512RegClass;
2634 if (BitWidth == 1024)
2635 return &AMDGPU::VReg_1024RegClass;
2636
2637 return nullptr;
2638}
2639
2640static const TargetRegisterClass *
2642 if (BitWidth == 64)
2643 return &AMDGPU::VReg_64_Align2RegClass;
2644 if (BitWidth == 96)
2645 return &AMDGPU::VReg_96_Align2RegClass;
2646 if (BitWidth == 128)
2647 return &AMDGPU::VReg_128_Align2RegClass;
2648 if (BitWidth == 160)
2649 return &AMDGPU::VReg_160_Align2RegClass;
2650 if (BitWidth == 192)
2651 return &AMDGPU::VReg_192_Align2RegClass;
2652 if (BitWidth == 224)
2653 return &AMDGPU::VReg_224_Align2RegClass;
2654 if (BitWidth == 256)
2655 return &AMDGPU::VReg_256_Align2RegClass;
2656 if (BitWidth == 288)
2657 return &AMDGPU::VReg_288_Align2RegClass;
2658 if (BitWidth == 320)
2659 return &AMDGPU::VReg_320_Align2RegClass;
2660 if (BitWidth == 352)
2661 return &AMDGPU::VReg_352_Align2RegClass;
2662 if (BitWidth == 384)
2663 return &AMDGPU::VReg_384_Align2RegClass;
2664 if (BitWidth == 512)
2665 return &AMDGPU::VReg_512_Align2RegClass;
2666 if (BitWidth == 1024)
2667 return &AMDGPU::VReg_1024_Align2RegClass;
2668
2669 return nullptr;
2670}
2671
2672const TargetRegisterClass *
2674 if (BitWidth == 1)
2675 return &AMDGPU::VReg_1RegClass;
2676 if (BitWidth == 16)
2677 return &AMDGPU::VGPR_16RegClass;
2678 if (BitWidth == 32)
2679 return &AMDGPU::VGPR_32RegClass;
2682}
2683
2684static const TargetRegisterClass *
2686 if (BitWidth == 64)
2687 return &AMDGPU::AReg_64RegClass;
2688 if (BitWidth == 96)
2689 return &AMDGPU::AReg_96RegClass;
2690 if (BitWidth == 128)
2691 return &AMDGPU::AReg_128RegClass;
2692 if (BitWidth == 160)
2693 return &AMDGPU::AReg_160RegClass;
2694 if (BitWidth == 192)
2695 return &AMDGPU::AReg_192RegClass;
2696 if (BitWidth == 224)
2697 return &AMDGPU::AReg_224RegClass;
2698 if (BitWidth == 256)
2699 return &AMDGPU::AReg_256RegClass;
2700 if (BitWidth == 288)
2701 return &AMDGPU::AReg_288RegClass;
2702 if (BitWidth == 320)
2703 return &AMDGPU::AReg_320RegClass;
2704 if (BitWidth == 352)
2705 return &AMDGPU::AReg_352RegClass;
2706 if (BitWidth == 384)
2707 return &AMDGPU::AReg_384RegClass;
2708 if (BitWidth == 512)
2709 return &AMDGPU::AReg_512RegClass;
2710 if (BitWidth == 1024)
2711 return &AMDGPU::AReg_1024RegClass;
2712
2713 return nullptr;
2714}
2715
2716static const TargetRegisterClass *
2718 if (BitWidth == 64)
2719 return &AMDGPU::AReg_64_Align2RegClass;
2720 if (BitWidth == 96)
2721 return &AMDGPU::AReg_96_Align2RegClass;
2722 if (BitWidth == 128)
2723 return &AMDGPU::AReg_128_Align2RegClass;
2724 if (BitWidth == 160)
2725 return &AMDGPU::AReg_160_Align2RegClass;
2726 if (BitWidth == 192)
2727 return &AMDGPU::AReg_192_Align2RegClass;
2728 if (BitWidth == 224)
2729 return &AMDGPU::AReg_224_Align2RegClass;
2730 if (BitWidth == 256)
2731 return &AMDGPU::AReg_256_Align2RegClass;
2732 if (BitWidth == 288)
2733 return &AMDGPU::AReg_288_Align2RegClass;
2734 if (BitWidth == 320)
2735 return &AMDGPU::AReg_320_Align2RegClass;
2736 if (BitWidth == 352)
2737 return &AMDGPU::AReg_352_Align2RegClass;
2738 if (BitWidth == 384)
2739 return &AMDGPU::AReg_384_Align2RegClass;
2740 if (BitWidth == 512)
2741 return &AMDGPU::AReg_512_Align2RegClass;
2742 if (BitWidth == 1024)
2743 return &AMDGPU::AReg_1024_Align2RegClass;
2744
2745 return nullptr;
2746}
2747
2748const TargetRegisterClass *
2750 if (BitWidth == 16)
2751 return &AMDGPU::AGPR_LO16RegClass;
2752 if (BitWidth == 32)
2753 return &AMDGPU::AGPR_32RegClass;
2756}
2757
2758static const TargetRegisterClass *
2760 if (BitWidth == 64)
2761 return &AMDGPU::AV_64RegClass;
2762 if (BitWidth == 96)
2763 return &AMDGPU::AV_96RegClass;
2764 if (BitWidth == 128)
2765 return &AMDGPU::AV_128RegClass;
2766 if (BitWidth == 160)
2767 return &AMDGPU::AV_160RegClass;
2768 if (BitWidth == 192)
2769 return &AMDGPU::AV_192RegClass;
2770 if (BitWidth == 224)
2771 return &AMDGPU::AV_224RegClass;
2772 if (BitWidth == 256)
2773 return &AMDGPU::AV_256RegClass;
2774 if (BitWidth == 288)
2775 return &AMDGPU::AV_288RegClass;
2776 if (BitWidth == 320)
2777 return &AMDGPU::AV_320RegClass;
2778 if (BitWidth == 352)
2779 return &AMDGPU::AV_352RegClass;
2780 if (BitWidth == 384)
2781 return &AMDGPU::AV_384RegClass;
2782 if (BitWidth == 512)
2783 return &AMDGPU::AV_512RegClass;
2784 if (BitWidth == 1024)
2785 return &AMDGPU::AV_1024RegClass;
2786
2787 return nullptr;
2788}
2789
2790static const TargetRegisterClass *
2792 if (BitWidth == 64)
2793 return &AMDGPU::AV_64_Align2RegClass;
2794 if (BitWidth == 96)
2795 return &AMDGPU::AV_96_Align2RegClass;
2796 if (BitWidth == 128)
2797 return &AMDGPU::AV_128_Align2RegClass;
2798 if (BitWidth == 160)
2799 return &AMDGPU::AV_160_Align2RegClass;
2800 if (BitWidth == 192)
2801 return &AMDGPU::AV_192_Align2RegClass;
2802 if (BitWidth == 224)
2803 return &AMDGPU::AV_224_Align2RegClass;
2804 if (BitWidth == 256)
2805 return &AMDGPU::AV_256_Align2RegClass;
2806 if (BitWidth == 288)
2807 return &AMDGPU::AV_288_Align2RegClass;
2808 if (BitWidth == 320)
2809 return &AMDGPU::AV_320_Align2RegClass;
2810 if (BitWidth == 352)
2811 return &AMDGPU::AV_352_Align2RegClass;
2812 if (BitWidth == 384)
2813 return &AMDGPU::AV_384_Align2RegClass;
2814 if (BitWidth == 512)
2815 return &AMDGPU::AV_512_Align2RegClass;
2816 if (BitWidth == 1024)
2817 return &AMDGPU::AV_1024_Align2RegClass;
2818
2819 return nullptr;
2820}
2821
2822const TargetRegisterClass *
2824 if (BitWidth == 32)
2825 return &AMDGPU::AV_32RegClass;
2826 return ST.needsAlignedVGPRs()
2829}
2830
2831const TargetRegisterClass *
2833 if (BitWidth == 16)
2834 return &AMDGPU::SGPR_LO16RegClass;
2835 if (BitWidth == 32)
2836 return &AMDGPU::SReg_32RegClass;
2837 if (BitWidth == 64)
2838 return &AMDGPU::SReg_64RegClass;
2839 if (BitWidth == 96)
2840 return &AMDGPU::SGPR_96RegClass;
2841 if (BitWidth == 128)
2842 return &AMDGPU::SGPR_128RegClass;
2843 if (BitWidth == 160)
2844 return &AMDGPU::SGPR_160RegClass;
2845 if (BitWidth == 192)
2846 return &AMDGPU::SGPR_192RegClass;
2847 if (BitWidth == 224)
2848 return &AMDGPU::SGPR_224RegClass;
2849 if (BitWidth == 256)
2850 return &AMDGPU::SGPR_256RegClass;
2851 if (BitWidth == 288)
2852 return &AMDGPU::SGPR_288RegClass;
2853 if (BitWidth == 320)
2854 return &AMDGPU::SGPR_320RegClass;
2855 if (BitWidth == 352)
2856 return &AMDGPU::SGPR_352RegClass;
2857 if (BitWidth == 384)
2858 return &AMDGPU::SGPR_384RegClass;
2859 if (BitWidth == 512)
2860 return &AMDGPU::SGPR_512RegClass;
2861 if (BitWidth == 1024)
2862 return &AMDGPU::SGPR_1024RegClass;
2863
2864 return nullptr;
2865}
2866
2868 Register Reg) const {
2869 const TargetRegisterClass *RC;
2870 if (Reg.isVirtual())
2871 RC = MRI.getRegClass(Reg);
2872 else
2873 RC = getPhysRegBaseClass(Reg);
2874 return RC ? isSGPRClass(RC) : false;
2875}
2876
2877const TargetRegisterClass *
2879 unsigned Size = getRegSizeInBits(*SRC);
2881 assert(VRC && "Invalid register class size");
2882 return VRC;
2883}
2884
2885const TargetRegisterClass *
2887 unsigned Size = getRegSizeInBits(*SRC);
2889 assert(ARC && "Invalid register class size");
2890 return ARC;
2891}
2892
2893const TargetRegisterClass *
2895 unsigned Size = getRegSizeInBits(*VRC);
2896 if (Size == 32)
2897 return &AMDGPU::SGPR_32RegClass;
2899 assert(SRC && "Invalid register class size");
2900 return SRC;
2901}
2902
2903const TargetRegisterClass *
2905 const TargetRegisterClass *SubRC,
2906 unsigned SubIdx) const {
2907 // Ensure this subregister index is aligned in the super register.
2908 const TargetRegisterClass *MatchRC =
2909 getMatchingSuperRegClass(SuperRC, SubRC, SubIdx);
2910 return MatchRC && MatchRC->hasSubClassEq(SuperRC) ? MatchRC : nullptr;
2911}
2912
2913bool SIRegisterInfo::opCanUseInlineConstant(unsigned OpType) const {
2916 return !ST.hasMFMAInlineLiteralBug();
2917
2918 return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
2919 OpType <= AMDGPU::OPERAND_SRC_LAST;
2920}
2921
2923 const TargetRegisterClass *DefRC,
2924 unsigned DefSubReg,
2925 const TargetRegisterClass *SrcRC,
2926 unsigned SrcSubReg) const {
2927 // We want to prefer the smallest register class possible, so we don't want to
2928 // stop and rewrite on anything that looks like a subregister
2929 // extract. Operations mostly don't care about the super register class, so we
2930 // only want to stop on the most basic of copies between the same register
2931 // class.
2932 //
2933 // e.g. if we have something like
2934 // %0 = ...
2935 // %1 = ...
2936 // %2 = REG_SEQUENCE %0, sub0, %1, sub1, %2, sub2
2937 // %3 = COPY %2, sub0
2938 //
2939 // We want to look through the COPY to find:
2940 // => %3 = COPY %0
2941
2942 // Plain copy.
2943 return getCommonSubClass(DefRC, SrcRC) != nullptr;
2944}
2945
2946bool SIRegisterInfo::opCanUseLiteralConstant(unsigned OpType) const {
2947 // TODO: 64-bit operands have extending behavior from 32-bit literal.
2948 return OpType >= AMDGPU::OPERAND_REG_IMM_FIRST &&
2950}
2951
2952/// Returns a lowest register that is not used at any point in the function.
2953/// If all registers are used, then this function will return
2954/// AMDGPU::NoRegister. If \p ReserveHighestRegister = true, then return
2955/// highest unused register.
2958 const MachineFunction &MF, bool ReserveHighestRegister) const {
2959 if (ReserveHighestRegister) {
2960 for (MCRegister Reg : reverse(*RC))
2961 if (MRI.isAllocatable(Reg) && !MRI.isPhysRegUsed(Reg))
2962 return Reg;
2963 } else {
2964 for (MCRegister Reg : *RC)
2965 if (MRI.isAllocatable(Reg) && !MRI.isPhysRegUsed(Reg))
2966 return Reg;
2967 }
2968 return MCRegister();
2969}
2970
2972 const RegisterBankInfo &RBI,
2973 Register Reg) const {
2974 auto *RB = RBI.getRegBank(Reg, MRI, *MRI.getTargetRegisterInfo());
2975 if (!RB)
2976 return false;
2977
2978 return !RBI.isDivergentRegBank(RB);
2979}
2980
2982 unsigned EltSize) const {
2983 const unsigned RegBitWidth = AMDGPU::getRegBitWidth(*RC);
2984 assert(RegBitWidth >= 32 && RegBitWidth <= 1024);
2985
2986 const unsigned RegDWORDs = RegBitWidth / 32;
2987 const unsigned EltDWORDs = EltSize / 4;
2988 assert(RegSplitParts.size() + 1 >= EltDWORDs);
2989
2990 const std::vector<int16_t> &Parts = RegSplitParts[EltDWORDs - 1];
2991 const unsigned NumParts = RegDWORDs / EltDWORDs;
2992
2993 return ArrayRef(Parts.data(), NumParts);
2994}
2995
2998 Register Reg) const {
2999 return Reg.isVirtual() ? MRI.getRegClass(Reg) : getPhysRegBaseClass(Reg);
3000}
3001
3002const TargetRegisterClass *
3004 const MachineOperand &MO) const {
3005 const TargetRegisterClass *SrcRC = getRegClassForReg(MRI, MO.getReg());
3006 return getSubRegisterClass(SrcRC, MO.getSubReg());
3007}
3008
3010 Register Reg) const {
3011 const TargetRegisterClass *RC = getRegClassForReg(MRI, Reg);
3012 // Registers without classes are unaddressable, SGPR-like registers.
3013 return RC && isVGPRClass(RC);
3014}
3015
3017 Register Reg) const {
3018 const TargetRegisterClass *RC = getRegClassForReg(MRI, Reg);
3019
3020 // Registers without classes are unaddressable, SGPR-like registers.
3021 return RC && isAGPRClass(RC);
3022}
3023
3025 const TargetRegisterClass *SrcRC,
3026 unsigned SubReg,
3027 const TargetRegisterClass *DstRC,
3028 unsigned DstSubReg,
3029 const TargetRegisterClass *NewRC,
3030 LiveIntervals &LIS) const {
3031 unsigned SrcSize = getRegSizeInBits(*SrcRC);
3032 unsigned DstSize = getRegSizeInBits(*DstRC);
3033 unsigned NewSize = getRegSizeInBits(*NewRC);
3034
3035 // Do not increase size of registers beyond dword, we would need to allocate
3036 // adjacent registers and constraint regalloc more than needed.
3037
3038 // Always allow dword coalescing.
3039 if (SrcSize <= 32 || DstSize <= 32)
3040 return true;
3041
3042 return NewSize <= DstSize || NewSize <= SrcSize;
3043}
3044
3046 MachineFunction &MF) const {
3048
3049 unsigned Occupancy = ST.getOccupancyWithLocalMemSize(MFI->getLDSSize(),
3050 MF.getFunction());
3051 switch (RC->getID()) {
3052 default:
3053 return AMDGPUGenRegisterInfo::getRegPressureLimit(RC, MF);
3054 case AMDGPU::VGPR_32RegClassID:
3055 return std::min(ST.getMaxNumVGPRs(Occupancy), ST.getMaxNumVGPRs(MF));
3056 case AMDGPU::SGPR_32RegClassID:
3057 case AMDGPU::SGPR_LO16RegClassID:
3058 return std::min(ST.getMaxNumSGPRs(Occupancy, true), ST.getMaxNumSGPRs(MF));
3059 }
3060}
3061
3063 unsigned Idx) const {
3064 if (Idx == AMDGPU::RegisterPressureSets::VGPR_32 ||
3065 Idx == AMDGPU::RegisterPressureSets::AGPR_32)
3066 return getRegPressureLimit(&AMDGPU::VGPR_32RegClass,
3067 const_cast<MachineFunction &>(MF));
3068
3069 if (Idx == AMDGPU::RegisterPressureSets::SReg_32)
3070 return getRegPressureLimit(&AMDGPU::SGPR_32RegClass,
3071 const_cast<MachineFunction &>(MF));
3072
3073 llvm_unreachable("Unexpected register pressure set!");
3074}
3075
3076const int *SIRegisterInfo::getRegUnitPressureSets(unsigned RegUnit) const {
3077 static const int Empty[] = { -1 };
3078
3079 if (RegPressureIgnoredUnits[RegUnit])
3080 return Empty;
3081
3082 return AMDGPUGenRegisterInfo::getRegUnitPressureSets(RegUnit);
3083}
3084
3086 // Not a callee saved register.
3087 return AMDGPU::SGPR30_SGPR31;
3088}
3089
3090const TargetRegisterClass *
3092 const RegisterBank &RB) const {
3093 switch (RB.getID()) {
3094 case AMDGPU::VGPRRegBankID:
3096 std::max(ST.useRealTrue16Insts() ? 16u : 32u, Size));
3097 case AMDGPU::VCCRegBankID:
3098 assert(Size == 1);
3099 return isWave32 ? &AMDGPU::SReg_32_XM0_XEXECRegClass
3100 : &AMDGPU::SReg_64_XEXECRegClass;
3101 case AMDGPU::SGPRRegBankID:
3102 return getSGPRClassForBitWidth(std::max(32u, Size));
3103 case AMDGPU::AGPRRegBankID:
3104 return getAGPRClassForBitWidth(std::max(32u, Size));
3105 default:
3106 llvm_unreachable("unknown register bank");
3107 }
3108}
3109
3110const TargetRegisterClass *
3112 const MachineRegisterInfo &MRI) const {
3113 const RegClassOrRegBank &RCOrRB = MRI.getRegClassOrRegBank(MO.getReg());
3114 if (const RegisterBank *RB = RCOrRB.dyn_cast<const RegisterBank*>())
3115 return getRegClassForTypeOnBank(MRI.getType(MO.getReg()), *RB);
3116
3117 if (const auto *RC = RCOrRB.dyn_cast<const TargetRegisterClass *>())
3118 return getAllocatableClass(RC);
3119
3120 return nullptr;
3121}
3122
3124 return isWave32 ? AMDGPU::VCC_LO : AMDGPU::VCC;
3125}
3126
3128 return isWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3129}
3130
3132 // VGPR tuples have an alignment requirement on gfx90a variants.
3133 return ST.needsAlignedVGPRs() ? &AMDGPU::VReg_64_Align2RegClass
3134 : &AMDGPU::VReg_64RegClass;
3135}
3136
3137const TargetRegisterClass *
3138SIRegisterInfo::getRegClass(unsigned RCID) const {
3139 switch ((int)RCID) {
3140 case AMDGPU::SReg_1RegClassID:
3141 return getBoolRC();
3142 case AMDGPU::SReg_1_XEXECRegClassID:
3143 return isWave32 ? &AMDGPU::SReg_32_XM0_XEXECRegClass
3144 : &AMDGPU::SReg_64_XEXECRegClass;
3145 case -1:
3146 return nullptr;
3147 default:
3148 return AMDGPUGenRegisterInfo::getRegClass(RCID);
3149 }
3150}
3151
3152// Find reaching register definition
3156 LiveIntervals *LIS) const {
3157 auto &MDT = LIS->getAnalysis<MachineDominatorTree>();
3158 SlotIndex UseIdx = LIS->getInstructionIndex(Use);
3159 SlotIndex DefIdx;
3160
3161 if (Reg.isVirtual()) {
3162 if (!LIS->hasInterval(Reg))
3163 return nullptr;
3164 LiveInterval &LI = LIS->getInterval(Reg);
3165 LaneBitmask SubLanes = SubReg ? getSubRegIndexLaneMask(SubReg)
3166 : MRI.getMaxLaneMaskForVReg(Reg);
3167 VNInfo *V = nullptr;
3168 if (LI.hasSubRanges()) {
3169 for (auto &S : LI.subranges()) {
3170 if ((S.LaneMask & SubLanes) == SubLanes) {
3171 V = S.getVNInfoAt(UseIdx);
3172 break;
3173 }
3174 }
3175 } else {
3176 V = LI.getVNInfoAt(UseIdx);
3177 }
3178 if (!V)
3179 return nullptr;
3180 DefIdx = V->def;
3181 } else {
3182 // Find last def.
3183 for (MCRegUnit Unit : regunits(Reg.asMCReg())) {
3184 LiveRange &LR = LIS->getRegUnit(Unit);
3185 if (VNInfo *V = LR.getVNInfoAt(UseIdx)) {
3186 if (!DefIdx.isValid() ||
3187 MDT.dominates(LIS->getInstructionFromIndex(DefIdx),
3188 LIS->getInstructionFromIndex(V->def)))
3189 DefIdx = V->def;
3190 } else {
3191 return nullptr;
3192 }
3193 }
3194 }
3195
3196 MachineInstr *Def = LIS->getInstructionFromIndex(DefIdx);
3197
3198 if (!Def || !MDT.dominates(Def, &Use))
3199 return nullptr;
3200
3201 assert(Def->modifiesRegister(Reg, this));
3202
3203 return Def;
3204}
3205
3207 assert(getRegSizeInBits(*getPhysRegBaseClass(Reg)) <= 32);
3208
3209 for (const TargetRegisterClass &RC : { AMDGPU::VGPR_32RegClass,
3210 AMDGPU::SReg_32RegClass,
3211 AMDGPU::AGPR_32RegClass } ) {
3212 if (MCPhysReg Super = getMatchingSuperReg(Reg, AMDGPU::lo16, &RC))
3213 return Super;
3214 }
3215 if (MCPhysReg Super = getMatchingSuperReg(Reg, AMDGPU::hi16,
3216 &AMDGPU::VGPR_32RegClass)) {
3217 return Super;
3218 }
3219
3220 return AMDGPU::NoRegister;
3221}
3222
3224 if (!ST.needsAlignedVGPRs())
3225 return true;
3226
3227 if (isVGPRClass(&RC))
3228 return RC.hasSuperClassEq(getVGPRClassForBitWidth(getRegSizeInBits(RC)));
3229 if (isAGPRClass(&RC))
3230 return RC.hasSuperClassEq(getAGPRClassForBitWidth(getRegSizeInBits(RC)));
3231 if (isVectorSuperClass(&RC))
3232 return RC.hasSuperClassEq(
3233 getVectorSuperClassForBitWidth(getRegSizeInBits(RC)));
3234
3235 return true;
3236}
3237
3238const TargetRegisterClass *
3240 if (!RC || !ST.needsAlignedVGPRs())
3241 return RC;
3242
3243 unsigned Size = getRegSizeInBits(*RC);
3244 if (Size <= 32)
3245 return RC;
3246
3247 if (isVGPRClass(RC))
3249 if (isAGPRClass(RC))
3251 if (isVectorSuperClass(RC))
3253
3254 return RC;
3255}
3256
3259 return ArrayRef(AMDGPU::SGPR_128RegClass.begin(), ST.getMaxNumSGPRs(MF) / 4);
3260}
3261
3264 return ArrayRef(AMDGPU::SGPR_64RegClass.begin(), ST.getMaxNumSGPRs(MF) / 2);
3265}
3266
3269 return ArrayRef(AMDGPU::SGPR_32RegClass.begin(), ST.getMaxNumSGPRs(MF));
3270}
3271
3272unsigned
3274 unsigned SubReg) const {
3275 switch (RC->TSFlags & SIRCFlags::RegKindMask) {
3276 case SIRCFlags::HasSGPR:
3277 return std::min(128u, getSubRegIdxSize(SubReg));
3278 case SIRCFlags::HasAGPR:
3279 case SIRCFlags::HasVGPR:
3281 return std::min(32u, getSubRegIdxSize(SubReg));
3282 default:
3283 break;
3284 }
3285 return 0;
3286}
unsigned SubReg
unsigned const MachineRegisterInfo * MRI
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Provides AMDGPU specific target descriptions.
This file declares the targeting of the RegisterBankInfo class for AMDGPU.
static const Function * getParent(const Value *V)
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
uint64_t Size
AMD GCN specific subclass of TargetSubtarget.
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
A set of register units.
#define I(x, y, z)
Definition: MD5.cpp:58
static DebugLoc getDebugLoc(MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI)
Return the first found DebugLoc that has a DILocation, given a range of instructions.
unsigned const TargetRegisterInfo * TRI
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
This file declares the machine register scavenger class.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static int getOffenMUBUFStore(unsigned Opc)
static const TargetRegisterClass * getAnyAGPRClassForBitWidth(unsigned BitWidth)
static int getOffsetMUBUFLoad(unsigned Opc)
static const std::array< unsigned, 17 > SubRegFromChannelTableWidthMap
static const TargetRegisterClass * getAlignedAGPRClassForBitWidth(unsigned BitWidth)
static bool buildMUBUFOffsetLoadStore(const GCNSubtarget &ST, MachineFrameInfo &MFI, MachineBasicBlock::iterator MI, int Index, int64_t Offset)
static unsigned getFlatScratchSpillOpcode(const SIInstrInfo *TII, unsigned LoadStoreOp, unsigned EltSize)
static const TargetRegisterClass * getAlignedVGPRClassForBitWidth(unsigned BitWidth)
static int getOffsetMUBUFStore(unsigned Opc)
static const TargetRegisterClass * getAnyVGPRClassForBitWidth(unsigned BitWidth)
static cl::opt< bool > EnableSpillSGPRToVGPR("amdgpu-spill-sgpr-to-vgpr", cl::desc("Enable spilling SGPRs to VGPRs"), cl::ReallyHidden, cl::init(true))
static unsigned getNumSubRegsForSpillOp(unsigned Op)
static const TargetRegisterClass * getAlignedVectorSuperClassForBitWidth(unsigned BitWidth)
static const TargetRegisterClass * getAnyVectorSuperClassForBitWidth(unsigned BitWidth)
static MachineInstrBuilder spillVGPRtoAGPR(const GCNSubtarget &ST, MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, int Index, unsigned Lane, unsigned ValueReg, bool IsKill)
static int getOffenMUBUFLoad(unsigned Opc)
Interface definition for SIRegisterInfo.
static const char * getRegisterName(MCRegister Reg)
unsigned getOccupancyWithLocalMemSize(uint32_t Bytes, const Function &) const
Inverse of getMaxLocalMemWithWaveCount.
bool useRealTrue16Insts() const
Return true if real (non-fake) variants of True16 instructions using 16-bit registers should be code-...
unsigned getWavefrontSizeLog2() const
unsigned getWavefrontSize() const
bool hasInv2PiInlineImm() const
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:165
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:160
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
Definition: BitVector.h:341
BitVector & set()
Definition: BitVector.h:351
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:33
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition: Function.h:264
bool hasGFX90AInsts() const
bool hasMAIInsts() const
Definition: GCNSubtarget.h:805
bool hasMFMAInlineLiteralBug() const
const SIInstrInfo * getInstrInfo() const override
Definition: GCNSubtarget.h:253
unsigned getConstantBusLimit(unsigned Opcode) const
bool needsAlignedVGPRs() const
Return if operations acting on VGPR tuples require even alignment.
bool enableFlatScratch() const
Definition: GCNSubtarget.h:639
unsigned getMaxNumVGPRs(unsigned WavesPerEU) const
const SIFrameLowering * getFrameLowering() const override
Definition: GCNSubtarget.h:257
unsigned getMaxNumSGPRs(unsigned WavesPerEU, bool Addressable) const
bool hasFlatScratchSTMode() const
Definition: GCNSubtarget.h:629
LiveInterval - This class represents the liveness of a register, or stack slot.
Definition: LiveInterval.h:687
bool hasSubRanges() const
Returns true if subregister liveness information is available.
Definition: LiveInterval.h:810
iterator_range< subrange_iterator > subranges()
Definition: LiveInterval.h:782
void removeAllRegUnitsForPhysReg(MCRegister Reg)
Remove associated live ranges for the register units associated with Reg.
bool hasInterval(Register Reg) const
MachineInstr * getInstructionFromIndex(SlotIndex index) const
Returns the instruction associated with the given index.
SlotIndex getInstructionIndex(const MachineInstr &Instr) const
Returns the base index of the given instruction.
LiveRange & getRegUnit(unsigned Unit)
Return the live range for register unit Unit.
LiveInterval & getInterval(Register Reg)
This class represents the liveness of a register, stack slot, etc.
Definition: LiveInterval.h:157
VNInfo * getVNInfoAt(SlotIndex Idx) const
getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
Definition: LiveInterval.h:421
A set of register units used to track register liveness.
Definition: LiveRegUnits.h:30
bool available(MCPhysReg Reg) const
Returns true if no part of physical register Reg is live.
Definition: LiveRegUnits.h:116
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
MCRegAliasIterator enumerates all registers aliasing Reg.
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
static MCRegister from(unsigned Val)
Check the provided unsigned value is a valid MCRegister.
Definition: MCRegister.h:74
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool hasCalls() const
Return true if the current function has any function calls.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
bool hasStackObjects() const
Return true if there are any stack objects in this function.
uint8_t getStackID(int ObjectIdx) const
unsigned getNumFixedObjects() const
Return the number of fixed objects.
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
Register getReg(unsigned Idx) const
Get the register for the operand index.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addFrameIndex(int Idx) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
MachineInstr * getInstr() const
If conversion operators fail, use this method to get the MachineInstr explicitly.
Representation of each machine instruction.
Definition: MachineInstr.h:69
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:558
void setAsmPrinterFlag(uint8_t Flag)
Set a flag for the AsmPrinter.
Definition: MachineInstr.h:372
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:568
A description of a memory reference used in the backend.
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
const MachinePointerInfo & getPointerInfo() const
Flags getFlags() const
Return the raw flags of the source value,.
MachineOperand class - Representation of each machine instruction operand.
unsigned getSubReg() const
void setImm(int64_t immVal)
int64_t getImm() const
void setIsDead(bool Val=true)
void setReg(Register Reg)
Change the register this operand corresponds to.
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
void ChangeToImmediate(int64_t ImmVal, unsigned TargetFlags=0)
ChangeToImmediate - Replace this operand with a new immediate operand of the specified value.
void setIsKill(bool Val=true)
void ChangeToRegister(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isDebug=false)
ChangeToRegister - Replace this operand with a new register operand of the specified value.
Register getReg() const
getReg - Returns the register number.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
bool isReserved(MCRegister PhysReg) const
isReserved - Returns true when PhysReg is a reserved register.
AnalysisType & getAnalysis() const
getAnalysis<AnalysisType>() - This function is used by subclasses to get to the analysis information ...
T dyn_cast() const
Returns the current pointer if it is of the specified pointer type, otherwise returns null.
Definition: PointerUnion.h:162
bool isRegUsed(Register Reg, bool includeReserved=true) const
Return if a specific register is currently used.
void setRegUsed(Register Reg, LaneBitmask LaneMask=LaneBitmask::getAll())
Tell the scavenger a register is used.
void assignRegToScavengingIndex(int FI, Register Reg, MachineInstr *Restore=nullptr)
Record that Reg is in use at scavenging index FI.
Register scavengeRegisterBackwards(const TargetRegisterClass &RC, MachineBasicBlock::iterator To, bool RestoreAfter, int SPAdj, bool AllowSpill=true)
Make a register of the specific register class available from the current position backwards to the p...
Holds all the information related to register banks.
virtual bool isDivergentRegBank(const RegisterBank *RB) const
Returns true if the register bank is considered divergent.
const RegisterBank & getRegBank(unsigned ID)
Get the register bank identified by ID.
This class implements the register bank concept.
Definition: RegisterBank.h:28
unsigned getID() const
Get the identifier of this register bank.
Definition: RegisterBank.h:45
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
constexpr bool isValid() const
Definition: Register.h:116
bool hasFP(const MachineFunction &MF) const override
hasFP - Return true if the specified function should have a dedicated frame pointer register.
static bool isFLATScratch(const MachineInstr &MI)
Definition: SIInstrInfo.h:636
static bool isMUBUF(const MachineInstr &MI)
Definition: SIInstrInfo.h:528
This class keeps track of the SPI_SP_INPUT_ADDR config register, which tells the hardware which inter...
bool usesAGPRs(const MachineFunction &MF) const
ArrayRef< MCPhysReg > getAGPRSpillVGPRs() const
MCPhysReg getVGPRToAGPRSpill(int FrameIndex, unsigned Lane) const
Register getScratchRSrcReg() const
Returns the physical register reserved for use as the resource descriptor for scratch accesses.
ArrayRef< MCPhysReg > getVGPRSpillAGPRs() const
int getScavengeFI(MachineFrameInfo &MFI, const SIRegisterInfo &TRI)
ArrayRef< SIRegisterInfo::SpilledReg > getSGPRSpillToVirtualVGPRLanes(int FrameIndex) const
ArrayRef< SIRegisterInfo::SpilledReg > getSGPRSpillToPhysicalVGPRLanes(int FrameIndex) const
const ReservedRegSet & getWWMReservedRegs() const
Register materializeFrameBaseRegister(MachineBasicBlock *MBB, int FrameIdx, int64_t Offset) const override
int64_t getScratchInstrOffset(const MachineInstr *MI) const
bool isFrameOffsetLegal(const MachineInstr *MI, Register BaseReg, int64_t Offset) const override
const TargetRegisterClass * getRegClass(unsigned RCID) const
const TargetRegisterClass * getCompatibleSubRegClass(const TargetRegisterClass *SuperRC, const TargetRegisterClass *SubRC, unsigned SubIdx) const
Returns a register class which is compatible with SuperRC, such that a subregister exists with class ...
ArrayRef< MCPhysReg > getAllSGPR64(const MachineFunction &MF) const
Return all SGPR64 which satisfy the waves per execution unit requirement of the subtarget.
MCRegister findUnusedRegister(const MachineRegisterInfo &MRI, const TargetRegisterClass *RC, const MachineFunction &MF, bool ReserveHighestVGPR=false) const
Returns a lowest register that is not used at any point in the function.
static unsigned getSubRegFromChannel(unsigned Channel, unsigned NumRegs=1)
MCPhysReg get32BitRegister(MCPhysReg Reg) const
const uint32_t * getCallPreservedMask(const MachineFunction &MF, CallingConv::ID) const override
bool requiresFrameIndexReplacementScavenging(const MachineFunction &MF) const override
const TargetRegisterClass * getProperlyAlignedRC(const TargetRegisterClass *RC) const
bool shouldRealignStack(const MachineFunction &MF) const override
bool restoreSGPR(MachineBasicBlock::iterator MI, int FI, RegScavenger *RS, SlotIndexes *Indexes=nullptr, LiveIntervals *LIS=nullptr, bool OnlyToVGPR=false, bool SpillToPhysVGPRLane=false) const
bool isProperlyAlignedRC(const TargetRegisterClass &RC) const
const TargetRegisterClass * getEquivalentVGPRClass(const TargetRegisterClass *SRC) const
Register getFrameRegister(const MachineFunction &MF) const override
LLVM_READONLY const TargetRegisterClass * getVectorSuperClassForBitWidth(unsigned BitWidth) const
bool spillEmergencySGPR(MachineBasicBlock::iterator MI, MachineBasicBlock &RestoreMBB, Register SGPR, RegScavenger *RS) const
SIRegisterInfo(const GCNSubtarget &ST)
const uint32_t * getAllVGPRRegMask() const
MCRegister getReturnAddressReg(const MachineFunction &MF) const
const MCPhysReg * getCalleeSavedRegs(const MachineFunction *MF) const override
bool hasBasePointer(const MachineFunction &MF) const
const TargetRegisterClass * getCrossCopyRegClass(const TargetRegisterClass *RC) const override
Returns a legal register class to copy a register in the specified class to or from.
ArrayRef< int16_t > getRegSplitParts(const TargetRegisterClass *RC, unsigned EltSize) const
ArrayRef< MCPhysReg > getAllSGPR32(const MachineFunction &MF) const
Return all SGPR32 which satisfy the waves per execution unit requirement of the subtarget.
const TargetRegisterClass * getLargestLegalSuperClass(const TargetRegisterClass *RC, const MachineFunction &MF) const override
MCRegister reservedPrivateSegmentBufferReg(const MachineFunction &MF) const
Return the end register initially reserved for the scratch buffer in case spilling is needed.
bool eliminateSGPRToVGPRSpillFrameIndex(MachineBasicBlock::iterator MI, int FI, RegScavenger *RS, SlotIndexes *Indexes=nullptr, LiveIntervals *LIS=nullptr, bool SpillToPhysVGPRLane=false) const
Special case of eliminateFrameIndex.
bool isVGPR(const MachineRegisterInfo &MRI, Register Reg) const
void buildSpillLoadStore(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, unsigned LoadStoreOp, int Index, Register ValueReg, bool ValueIsKill, MCRegister ScratchOffsetReg, int64_t InstrOffset, MachineMemOperand *MMO, RegScavenger *RS, LiveRegUnits *LiveUnits=nullptr) const
bool isAsmClobberable(const MachineFunction &MF, MCRegister PhysReg) const override
LLVM_READONLY const TargetRegisterClass * getAGPRClassForBitWidth(unsigned BitWidth) const
static bool isChainScratchRegister(Register VGPR)
bool requiresRegisterScavenging(const MachineFunction &Fn) const override
bool opCanUseInlineConstant(unsigned OpType) const
const TargetRegisterClass * getRegClassForSizeOnBank(unsigned Size, const RegisterBank &Bank) const
const TargetRegisterClass * getConstrainedRegClassForOperand(const MachineOperand &MO, const MachineRegisterInfo &MRI) const override
bool isUniformReg(const MachineRegisterInfo &MRI, const RegisterBankInfo &RBI, Register Reg) const override
const uint32_t * getNoPreservedMask() const override
StringRef getRegAsmName(MCRegister Reg) const override
const uint32_t * getAllAllocatableSRegMask() const
MCRegister getAlignedHighSGPRForRC(const MachineFunction &MF, const unsigned Align, const TargetRegisterClass *RC) const
Return the largest available SGPR aligned to Align for the register class RC.
const TargetRegisterClass * getRegClassForReg(const MachineRegisterInfo &MRI, Register Reg) const
const MCPhysReg * getCalleeSavedRegsViaCopy(const MachineFunction *MF) const
const uint32_t * getAllVectorRegMask() const
const TargetRegisterClass * getEquivalentAGPRClass(const TargetRegisterClass *SRC) const
static LLVM_READONLY const TargetRegisterClass * getSGPRClassForBitWidth(unsigned BitWidth)
const TargetRegisterClass * getRegClassForTypeOnBank(LLT Ty, const RegisterBank &Bank) const
bool opCanUseLiteralConstant(unsigned OpType) const
Register getBaseRegister() const
LLVM_READONLY const TargetRegisterClass * getVGPRClassForBitWidth(unsigned BitWidth) const
bool requiresFrameIndexScavenging(const MachineFunction &MF) const override
bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC, unsigned DefSubReg, const TargetRegisterClass *SrcRC, unsigned SrcSubReg) const override
static bool isVGPRClass(const TargetRegisterClass *RC)
unsigned getHWRegIndex(MCRegister Reg) const
MachineInstr * findReachingDef(Register Reg, unsigned SubReg, MachineInstr &Use, MachineRegisterInfo &MRI, LiveIntervals *LIS) const
bool isSGPRReg(const MachineRegisterInfo &MRI, Register Reg) const
const TargetRegisterClass * getEquivalentSGPRClass(const TargetRegisterClass *VRC) const
unsigned getRegPressureLimit(const TargetRegisterClass *RC, MachineFunction &MF) const override
ArrayRef< MCPhysReg > getAllSGPR128(const MachineFunction &MF) const
Return all SGPR128 which satisfy the waves per execution unit requirement of the subtarget.
unsigned getRegPressureSetLimit(const MachineFunction &MF, unsigned Idx) const override
BitVector getReservedRegs(const MachineFunction &MF) const override
bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const override
const TargetRegisterClass * getRegClassForOperandReg(const MachineRegisterInfo &MRI, const MachineOperand &MO) const
const uint32_t * getAllAGPRRegMask() const
bool shouldCoalesce(MachineInstr *MI, const TargetRegisterClass *SrcRC, unsigned SubReg, const TargetRegisterClass *DstRC, unsigned DstSubReg, const TargetRegisterClass *NewRC, LiveIntervals &LIS) const override
const TargetRegisterClass * getBoolRC() const
const TargetRegisterClass * getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const override
bool isAGPR(const MachineRegisterInfo &MRI, Register Reg) const
bool eliminateFrameIndex(MachineBasicBlock::iterator MI, int SPAdj, unsigned FIOperandNum, RegScavenger *RS) const override
bool spillSGPR(MachineBasicBlock::iterator MI, int FI, RegScavenger *RS, SlotIndexes *Indexes=nullptr, LiveIntervals *LIS=nullptr, bool OnlyToVGPR=false, bool SpillToPhysVGPRLane=false) const
If OnlyToVGPR is true, this will only succeed if this manages to find a free VGPR lane to spill.
MCRegister getExec() const
MCRegister getVCC() const
int64_t getFrameIndexInstrOffset(const MachineInstr *MI, int Idx) const override
bool isVectorSuperClass(const TargetRegisterClass *RC) const
const TargetRegisterClass * getWaveMaskRegClass() const
unsigned getSubRegAlignmentNumBits(const TargetRegisterClass *RC, unsigned SubReg) const
void resolveFrameIndex(MachineInstr &MI, Register BaseReg, int64_t Offset) const override
bool requiresVirtualBaseRegisters(const MachineFunction &Fn) const override
const TargetRegisterClass * getVGPR64Class() const
void buildVGPRSpillLoadStore(SGPRSpillBuilder &SB, int Index, int Offset, bool IsLoad, bool IsKill=true) const
static bool isSGPRClass(const TargetRegisterClass *RC)
static bool isAGPRClass(const TargetRegisterClass *RC)
const int * getRegUnitPressureSets(unsigned RegUnit) const override
SlotIndex - An opaque wrapper around machine indexes.
Definition: SlotIndexes.h:68
bool isValid() const
Returns true if this is a valid index.
Definition: SlotIndexes.h:133
SlotIndexes pass.
Definition: SlotIndexes.h:300
SlotIndex insertMachineInstrInMaps(MachineInstr &MI, bool Late=false)
Insert the given machine instruction into the mapping.
Definition: SlotIndexes.h:523
SlotIndex replaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI)
ReplaceMachineInstrInMaps - Replacing a machine instr with a new one in maps used by register allocat...
Definition: SlotIndexes.h:580
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
const uint8_t TSFlags
Configurable target specific flags.
unsigned getID() const
Return the register class ID number.
bool hasSubClassEq(const TargetRegisterClass *RC) const
Returns true if RC is a sub-class of or equal to this class.
bool hasSuperClassEq(const TargetRegisterClass *RC) const
Returns true if RC is a super-class of or equal to this class.
virtual const TargetRegisterClass * getLargestLegalSuperClass(const TargetRegisterClass *RC, const MachineFunction &) const
Returns the largest super class of RC that is legal to use in the current sub-target and has the same...
virtual bool shouldRealignStack(const MachineFunction &MF) const
True if storage within the function requires the stack pointer to be aligned more than the normal cal...
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
VNInfo - Value Number Information.
Definition: LiveInterval.h:53
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PRIVATE_ADDRESS
Address space for private memory.
LLVM_READONLY int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx)
LLVM_READONLY int getFlatScratchInstSVfromSS(uint16_t Opcode)
LLVM_READONLY int getFlatScratchInstSTfromSS(uint16_t Opcode)
LLVM_READONLY int getFlatScratchInstSVfromSVS(uint16_t Opcode)
bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi)
LLVM_READONLY bool hasNamedOperand(uint64_t Opcode, uint64_t NamedIdx)
bool isHi(unsigned Reg, const MCRegisterInfo &MRI)
@ OPERAND_REG_IMM_FIRST
Definition: SIDefines.h:256
@ OPERAND_SRC_FIRST
Definition: SIDefines.h:265
@ OPERAND_REG_INLINE_AC_FIRST
Definition: SIDefines.h:262
@ OPERAND_REG_INLINE_AC_LAST
Definition: SIDefines.h:263
@ OPERAND_REG_IMM_LAST
Definition: SIDefines.h:257
@ OPERAND_SRC_LAST
Definition: SIDefines.h:266
unsigned getRegBitWidth(const TargetRegisterClass &RC)
Get the size in bits of a register from the register class RC.
@ AMDGPU_Gfx
Used for AMD graphics targets.
Definition: CallingConv.h:232
@ AMDGPU_CS_ChainPreserve
Used on AMDGPUs to give the middle-end more control over argument placement.
Definition: CallingConv.h:249
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
Definition: CallingConv.h:245
@ Cold
Attempts to make code in the caller as efficient as possible under the assumption that the call is no...
Definition: CallingConv.h:47
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
@ Implicit
Not emitted register (e.g. carry, or temporary result).
@ Kill
The last use of a register.
@ Undef
Value of the register doesn't matter.
@ ReallyHidden
Definition: CommandLine.h:139
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:450
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:456
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1680
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition: MathExtras.h:428
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
Definition: MCRegister.h:21
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:419
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:156
@ HasSGPR
Definition: SIDefines.h:26
@ HasVGPR
Definition: SIDefines.h:24
@ RegKindMask
Definition: SIDefines.h:29
@ HasAGPR
Definition: SIDefines.h:25
unsigned getDefRegState(bool B)
@ Add
Sum of integers.
unsigned getKillRegState(bool B)
void call_once(once_flag &flag, Function &&F, Args &&... ArgList)
Execute the function specified as a parameter once.
Definition: Threading.h:87
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:191
static const MachineMemOperand::Flags MOLastUse
Mark the MMO of a load as the last use.
Definition: SIInstrInfo.h:45
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition: Alignment.h:212
uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew=0)
Returns the largest uint64_t less than or equal to Value and is Skew mod Align.
Definition: MathExtras.h:439
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
Description of the encoding of one expression Op.
This class contains a discriminated union of information about pointers in memory operands,...
MachinePointerInfo getWithOffset(int64_t O) const
static MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
void setMI(MachineBasicBlock *NewMBB, MachineBasicBlock::iterator NewMI)
ArrayRef< int16_t > SplitParts
SIMachineFunctionInfo & MFI
SGPRSpillBuilder(const SIRegisterInfo &TRI, const SIInstrInfo &TII, bool IsWave32, MachineBasicBlock::iterator MI, int Index, RegScavenger *RS)
SGPRSpillBuilder(const SIRegisterInfo &TRI, const SIInstrInfo &TII, bool IsWave32, MachineBasicBlock::iterator MI, Register Reg, bool IsKill, int Index, RegScavenger *RS)
PerVGPRData getPerVGPRData()
MachineBasicBlock::iterator MI
void readWriteTmpVGPR(unsigned Offset, bool IsLoad)
const SIRegisterInfo & TRI
MachineFunction & MF
MachineBasicBlock * MBB
const SIInstrInfo & TII
The llvm::once_flag structure.
Definition: Threading.h:68