LLVM 22.0.0git
LoopAccessAnalysis.cpp
Go to the documentation of this file.
1//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The implementation for the loop memory dependence that was originally
10// developed for the loop vectorizer.
11//
12//===----------------------------------------------------------------------===//
13
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SetVector.h"
22#include "llvm/ADT/SmallSet.h"
40#include "llvm/IR/BasicBlock.h"
41#include "llvm/IR/Constants.h"
42#include "llvm/IR/DataLayout.h"
43#include "llvm/IR/DebugLoc.h"
46#include "llvm/IR/Dominators.h"
47#include "llvm/IR/Function.h"
48#include "llvm/IR/InstrTypes.h"
49#include "llvm/IR/Instruction.h"
52#include "llvm/IR/PassManager.h"
53#include "llvm/IR/Type.h"
54#include "llvm/IR/Value.h"
55#include "llvm/IR/ValueHandle.h"
58#include "llvm/Support/Debug.h"
61#include <algorithm>
62#include <cassert>
63#include <cstdint>
64#include <iterator>
65#include <utility>
66#include <variant>
67#include <vector>
68
69using namespace llvm;
70using namespace llvm::SCEVPatternMatch;
71
72#define DEBUG_TYPE "loop-accesses"
73
75VectorizationFactor("force-vector-width", cl::Hidden,
76 cl::desc("Sets the SIMD width. Zero is autoselect."),
79
81VectorizationInterleave("force-vector-interleave", cl::Hidden,
82 cl::desc("Sets the vectorization interleave count. "
83 "Zero is autoselect."),
87
89 "runtime-memory-check-threshold", cl::Hidden,
90 cl::desc("When performing memory disambiguation checks at runtime do not "
91 "generate more than this number of comparisons (default = 8)."),
94
95/// The maximum iterations used to merge memory checks
97 "memory-check-merge-threshold", cl::Hidden,
98 cl::desc("Maximum number of comparisons done when trying to merge "
99 "runtime memory checks. (default = 100)"),
100 cl::init(100));
101
102/// Maximum SIMD width.
103const unsigned VectorizerParams::MaxVectorWidth = 64;
104
105/// We collect dependences up to this threshold.
107 MaxDependences("max-dependences", cl::Hidden,
108 cl::desc("Maximum number of dependences collected by "
109 "loop-access analysis (default = 100)"),
110 cl::init(100));
111
112/// This enables versioning on the strides of symbolically striding memory
113/// accesses in code like the following.
114/// for (i = 0; i < N; ++i)
115/// A[i * Stride1] += B[i * Stride2] ...
116///
117/// Will be roughly translated to
118/// if (Stride1 == 1 && Stride2 == 1) {
119/// for (i = 0; i < N; i+=4)
120/// A[i:i+3] += ...
121/// } else
122/// ...
124 "enable-mem-access-versioning", cl::init(true), cl::Hidden,
125 cl::desc("Enable symbolic stride memory access versioning"));
126
127/// Enable store-to-load forwarding conflict detection. This option can
128/// be disabled for correctness testing.
130 "store-to-load-forwarding-conflict-detection", cl::Hidden,
131 cl::desc("Enable conflict detection in loop-access analysis"),
132 cl::init(true));
133
135 "max-forked-scev-depth", cl::Hidden,
136 cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"),
137 cl::init(5));
138
140 "laa-speculate-unit-stride", cl::Hidden,
141 cl::desc("Speculate that non-constant strides are unit in LAA"),
142 cl::init(true));
143
145 "hoist-runtime-checks", cl::Hidden,
146 cl::desc(
147 "Hoist inner loop runtime memory checks to outer loop if possible"),
150
152 return ::VectorizationInterleave.getNumOccurrences() > 0;
153}
154
156 const DenseMap<Value *, const SCEV *> &PtrToStride,
157 Value *Ptr) {
158 const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
159
160 // If there is an entry in the map return the SCEV of the pointer with the
161 // symbolic stride replaced by one.
162 const SCEV *StrideSCEV = PtrToStride.lookup(Ptr);
163 if (!StrideSCEV)
164 // For a non-symbolic stride, just return the original expression.
165 return OrigSCEV;
166
167 // Note: This assert is both overly strong and overly weak. The actual
168 // invariant here is that StrideSCEV should be loop invariant. The only
169 // such invariant strides we happen to speculate right now are unknowns
170 // and thus this is a reasonable proxy of the actual invariant.
171 assert(isa<SCEVUnknown>(StrideSCEV) && "shouldn't be in map");
172
173 ScalarEvolution *SE = PSE.getSE();
174 const SCEV *CT = SE->getOne(StrideSCEV->getType());
175 PSE.addPredicate(*SE->getEqualPredicate(StrideSCEV, CT));
176 const SCEV *Expr = PSE.getSCEV(Ptr);
177
178 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
179 << " by: " << *Expr << "\n");
180 return Expr;
181}
182
184 unsigned Index, const RuntimePointerChecking &RtCheck)
185 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start),
186 AddressSpace(RtCheck.Pointers[Index]
187 .PointerValue->getType()
189 NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) {
190 Members.push_back(Index);
191}
192
193/// Returns \p A + \p B, if it is guaranteed not to unsigned wrap. Otherwise
194/// return nullptr. \p A and \p B must have the same type.
195static const SCEV *addSCEVNoOverflow(const SCEV *A, const SCEV *B,
196 ScalarEvolution &SE) {
197 if (!SE.willNotOverflow(Instruction::Add, /*IsSigned=*/false, A, B))
198 return nullptr;
199 return SE.getAddExpr(A, B);
200}
201
202/// Returns \p A * \p B, if it is guaranteed not to unsigned wrap. Otherwise
203/// return nullptr. \p A and \p B must have the same type.
204static const SCEV *mulSCEVOverflow(const SCEV *A, const SCEV *B,
205 ScalarEvolution &SE) {
206 if (!SE.willNotOverflow(Instruction::Mul, /*IsSigned=*/false, A, B))
207 return nullptr;
208 return SE.getMulExpr(A, B);
209}
210
211/// Return true, if evaluating \p AR at \p MaxBTC cannot wrap, because \p AR at
212/// \p MaxBTC is guaranteed inbounds of the accessed object.
214 const SCEVAddRecExpr *AR, const SCEV *MaxBTC, const SCEV *EltSize,
216 AssumptionCache *AC,
217 std::optional<ScalarEvolution::LoopGuards> &LoopGuards) {
218 auto *PointerBase = SE.getPointerBase(AR->getStart());
219 auto *StartPtr = dyn_cast<SCEVUnknown>(PointerBase);
220 if (!StartPtr)
221 return false;
222 const Loop *L = AR->getLoop();
223 bool CheckForNonNull, CheckForFreed;
224 Value *StartPtrV = StartPtr->getValue();
225 uint64_t DerefBytes = StartPtrV->getPointerDereferenceableBytes(
226 DL, CheckForNonNull, CheckForFreed);
227
228 if (DerefBytes && (CheckForNonNull || CheckForFreed))
229 return false;
230
231 const SCEV *Step = AR->getStepRecurrence(SE);
232 Type *WiderTy = SE.getWiderType(MaxBTC->getType(), Step->getType());
233 const SCEV *DerefBytesSCEV = SE.getConstant(WiderTy, DerefBytes);
234
235 // Check if we have a suitable dereferencable assumption we can use.
236 Instruction *CtxI = &*L->getHeader()->getFirstNonPHIIt();
237 if (BasicBlock *LoopPred = L->getLoopPredecessor()) {
238 if (isa<BranchInst>(LoopPred->getTerminator()))
239 CtxI = LoopPred->getTerminator();
240 }
241 RetainedKnowledge DerefRK;
242 getKnowledgeForValue(StartPtrV, {Attribute::Dereferenceable}, *AC,
243 [&](RetainedKnowledge RK, Instruction *Assume, auto) {
244 if (!isValidAssumeForContext(Assume, CtxI, DT))
245 return false;
246 if (StartPtrV->canBeFreed() &&
247 !willNotFreeBetween(Assume, CtxI))
248 return false;
249 DerefRK = std::max(DerefRK, RK);
250 return true;
251 });
252 if (DerefRK) {
253 DerefBytesSCEV =
254 SE.getUMaxExpr(DerefBytesSCEV, SE.getSCEV(DerefRK.IRArgValue));
255 }
256
257 if (DerefBytesSCEV->isZero())
258 return false;
259
260 bool IsKnownNonNegative = SE.isKnownNonNegative(Step);
261 if (!IsKnownNonNegative && !SE.isKnownNegative(Step))
262 return false;
263
264 Step = SE.getNoopOrSignExtend(Step, WiderTy);
265 MaxBTC = SE.getNoopOrZeroExtend(MaxBTC, WiderTy);
266
267 // For the computations below, make sure they don't unsigned wrap.
268 if (!SE.isKnownPredicate(CmpInst::ICMP_UGE, AR->getStart(), StartPtr))
269 return false;
270 const SCEV *StartOffset = SE.getNoopOrZeroExtend(
271 SE.getMinusSCEV(AR->getStart(), StartPtr), WiderTy);
272
273 if (!LoopGuards)
274 LoopGuards.emplace(ScalarEvolution::LoopGuards::collect(AR->getLoop(), SE));
275 MaxBTC = SE.applyLoopGuards(MaxBTC, *LoopGuards);
276
277 const SCEV *OffsetAtLastIter =
278 mulSCEVOverflow(MaxBTC, SE.getAbsExpr(Step, /*IsNSW=*/false), SE);
279 if (!OffsetAtLastIter) {
280 // Re-try with constant max backedge-taken count if using the symbolic one
281 // failed.
282 MaxBTC = SE.getConstantMaxBackedgeTakenCount(AR->getLoop());
283 if (isa<SCEVCouldNotCompute>(MaxBTC))
284 return false;
285 MaxBTC = SE.getNoopOrZeroExtend(
286 MaxBTC, WiderTy);
287 OffsetAtLastIter =
288 mulSCEVOverflow(MaxBTC, SE.getAbsExpr(Step, /*IsNSW=*/false), SE);
289 if (!OffsetAtLastIter)
290 return false;
291 }
292
293 const SCEV *OffsetEndBytes = addSCEVNoOverflow(
294 OffsetAtLastIter, SE.getNoopOrZeroExtend(EltSize, WiderTy), SE);
295 if (!OffsetEndBytes)
296 return false;
297
298 if (IsKnownNonNegative) {
299 // For positive steps, check if
300 // (AR->getStart() - StartPtr) + (MaxBTC * Step) + EltSize <= DerefBytes,
301 // while making sure none of the computations unsigned wrap themselves.
302 const SCEV *EndBytes = addSCEVNoOverflow(StartOffset, OffsetEndBytes, SE);
303 if (!EndBytes)
304 return false;
305
306 DerefBytesSCEV = SE.applyLoopGuards(DerefBytesSCEV, *LoopGuards);
307 return SE.isKnownPredicate(CmpInst::ICMP_ULE, EndBytes, DerefBytesSCEV);
308 }
309
310 // For negative steps check if
311 // * StartOffset >= (MaxBTC * Step + EltSize)
312 // * StartOffset <= DerefBytes.
313 assert(SE.isKnownNegative(Step) && "must be known negative");
314 return SE.isKnownPredicate(CmpInst::ICMP_SGE, StartOffset, OffsetEndBytes) &&
315 SE.isKnownPredicate(CmpInst::ICMP_ULE, StartOffset, DerefBytesSCEV);
316}
317
318std::pair<const SCEV *, const SCEV *> llvm::getStartAndEndForAccess(
319 const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy, const SCEV *BTC,
320 const SCEV *MaxBTC, ScalarEvolution *SE,
321 DenseMap<std::pair<const SCEV *, Type *>,
322 std::pair<const SCEV *, const SCEV *>> *PointerBounds,
324 std::optional<ScalarEvolution::LoopGuards> &LoopGuards) {
325 std::pair<const SCEV *, const SCEV *> *PtrBoundsPair;
326 if (PointerBounds) {
327 auto [Iter, Ins] = PointerBounds->insert(
328 {{PtrExpr, AccessTy},
329 {SE->getCouldNotCompute(), SE->getCouldNotCompute()}});
330 if (!Ins)
331 return Iter->second;
332 PtrBoundsPair = &Iter->second;
333 }
334
335 const SCEV *ScStart;
336 const SCEV *ScEnd;
337
338 auto &DL = Lp->getHeader()->getDataLayout();
339 Type *IdxTy = DL.getIndexType(PtrExpr->getType());
340 const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy);
341 if (SE->isLoopInvariant(PtrExpr, Lp)) {
342 ScStart = ScEnd = PtrExpr;
343 } else if (auto *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr)) {
344 ScStart = AR->getStart();
345 if (!isa<SCEVCouldNotCompute>(BTC))
346 // Evaluating AR at an exact BTC is safe: LAA separately checks that
347 // accesses cannot wrap in the loop. If evaluating AR at BTC wraps, then
348 // the loop either triggers UB when executing a memory access with a
349 // poison pointer or the wrapping/poisoned pointer is not used.
350 ScEnd = AR->evaluateAtIteration(BTC, *SE);
351 else {
352 // Evaluating AR at MaxBTC may wrap and create an expression that is less
353 // than the start of the AddRec due to wrapping (for example consider
354 // MaxBTC = -2). If that's the case, set ScEnd to -(EltSize + 1). ScEnd
355 // will get incremented by EltSize before returning, so this effectively
356 // sets ScEnd to the maximum unsigned value for the type. Note that LAA
357 // separately checks that accesses cannot not wrap, so unsigned max
358 // represents an upper bound.
359 if (evaluatePtrAddRecAtMaxBTCWillNotWrap(AR, MaxBTC, EltSizeSCEV, *SE, DL,
360 DT, AC, LoopGuards)) {
361 ScEnd = AR->evaluateAtIteration(MaxBTC, *SE);
362 } else {
363 ScEnd = SE->getAddExpr(
364 SE->getNegativeSCEV(EltSizeSCEV),
367 AR->getType())));
368 }
369 }
370 const SCEV *Step = AR->getStepRecurrence(*SE);
371
372 // For expressions with negative step, the upper bound is ScStart and the
373 // lower bound is ScEnd.
374 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
375 if (CStep->getValue()->isNegative())
376 std::swap(ScStart, ScEnd);
377 } else {
378 // Fallback case: the step is not constant, but we can still
379 // get the upper and lower bounds of the interval by using min/max
380 // expressions.
381 ScStart = SE->getUMinExpr(ScStart, ScEnd);
382 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
383 }
384 } else
385 return {SE->getCouldNotCompute(), SE->getCouldNotCompute()};
386
387 assert(SE->isLoopInvariant(ScStart, Lp) && "ScStart needs to be invariant");
388 assert(SE->isLoopInvariant(ScEnd, Lp) && "ScEnd needs to be invariant");
389
390 // Add the size of the pointed element to ScEnd.
391 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
392
393 std::pair<const SCEV *, const SCEV *> Res = {ScStart, ScEnd};
394 if (PointerBounds)
395 *PtrBoundsPair = Res;
396 return Res;
397}
398
399/// Calculate Start and End points of memory access using
400/// getStartAndEndForAccess.
401void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr,
402 Type *AccessTy, bool WritePtr,
403 unsigned DepSetId, unsigned ASId,
405 bool NeedsFreeze) {
406 const SCEV *SymbolicMaxBTC = PSE.getSymbolicMaxBackedgeTakenCount();
407 const SCEV *BTC = PSE.getBackedgeTakenCount();
408 const auto &[ScStart, ScEnd] = getStartAndEndForAccess(
409 Lp, PtrExpr, AccessTy, BTC, SymbolicMaxBTC, PSE.getSE(),
410 &DC.getPointerBounds(), DC.getDT(), DC.getAC(), LoopGuards);
412 !isa<SCEVCouldNotCompute>(ScEnd) &&
413 "must be able to compute both start and end expressions");
414 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr,
415 NeedsFreeze);
416}
417
418bool RuntimePointerChecking::tryToCreateDiffCheck(
419 const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) {
420 // If either group contains multiple different pointers, bail out.
421 // TODO: Support multiple pointers by using the minimum or maximum pointer,
422 // depending on src & sink.
423 if (CGI.Members.size() != 1 || CGJ.Members.size() != 1)
424 return false;
425
426 const PointerInfo *Src = &Pointers[CGI.Members[0]];
427 const PointerInfo *Sink = &Pointers[CGJ.Members[0]];
428
429 // If either pointer is read and written, multiple checks may be needed. Bail
430 // out.
431 if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() ||
432 !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty())
433 return false;
434
435 ArrayRef<unsigned> AccSrc =
436 DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr);
437 ArrayRef<unsigned> AccSink =
438 DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr);
439 // If either pointer is accessed multiple times, there may not be a clear
440 // src/sink relation. Bail out for now.
441 if (AccSrc.size() != 1 || AccSink.size() != 1)
442 return false;
443
444 // If the sink is accessed before src, swap src/sink.
445 if (AccSink[0] < AccSrc[0])
446 std::swap(Src, Sink);
447
448 const SCEVConstant *Step;
449 const SCEV *SrcStart;
450 const SCEV *SinkStart;
451 const Loop *InnerLoop = DC.getInnermostLoop();
452 if (!match(Src->Expr,
454 m_SpecificLoop(InnerLoop))) ||
455 !match(Sink->Expr,
457 m_SpecificLoop(InnerLoop))))
458 return false;
459
461 DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr);
463 DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr);
464 Type *SrcTy = getLoadStoreType(SrcInsts[0]);
465 Type *DstTy = getLoadStoreType(SinkInsts[0]);
467 return false;
468
469 const DataLayout &DL = InnerLoop->getHeader()->getDataLayout();
470 unsigned AllocSize =
471 std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy));
472
473 // Only matching constant steps matching the AllocSize are supported at the
474 // moment. This simplifies the difference computation. Can be extended in the
475 // future.
476 if (Step->getAPInt().abs() != AllocSize)
477 return false;
478
479 IntegerType *IntTy =
480 IntegerType::get(Src->PointerValue->getContext(),
481 DL.getPointerSizeInBits(CGI.AddressSpace));
482
483 // When counting down, the dependence distance needs to be swapped.
484 if (Step->getValue()->isNegative())
485 std::swap(SinkStart, SrcStart);
486
487 const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkStart, IntTy);
488 const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcStart, IntTy);
489 if (isa<SCEVCouldNotCompute>(SinkStartInt) ||
490 isa<SCEVCouldNotCompute>(SrcStartInt))
491 return false;
492
493 // If the start values for both Src and Sink also vary according to an outer
494 // loop, then it's probably better to avoid creating diff checks because
495 // they may not be hoisted. We should instead let llvm::addRuntimeChecks
496 // do the expanded full range overlap checks, which can be hoisted.
497 if (HoistRuntimeChecks && InnerLoop->getParentLoop() &&
498 isa<SCEVAddRecExpr>(SinkStartInt) && isa<SCEVAddRecExpr>(SrcStartInt)) {
499 auto *SrcStartAR = cast<SCEVAddRecExpr>(SrcStartInt);
500 auto *SinkStartAR = cast<SCEVAddRecExpr>(SinkStartInt);
501 const Loop *StartARLoop = SrcStartAR->getLoop();
502 if (StartARLoop == SinkStartAR->getLoop() &&
503 StartARLoop == InnerLoop->getParentLoop() &&
504 // If the diff check would already be loop invariant (due to the
505 // recurrences being the same), then we prefer to keep the diff checks
506 // because they are cheaper.
507 SrcStartAR->getStepRecurrence(*SE) !=
508 SinkStartAR->getStepRecurrence(*SE)) {
509 LLVM_DEBUG(dbgs() << "LAA: Not creating diff runtime check, since these "
510 "cannot be hoisted out of the outer loop\n");
511 return false;
512 }
513 }
514
515 LLVM_DEBUG(dbgs() << "LAA: Creating diff runtime check for:\n"
516 << "SrcStart: " << *SrcStartInt << '\n'
517 << "SinkStartInt: " << *SinkStartInt << '\n');
518 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize,
519 Src->NeedsFreeze || Sink->NeedsFreeze);
520 return true;
521}
522
524 SmallVector<RuntimePointerCheck, 4> Checks;
525
526 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
527 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
530
531 if (needsChecking(CGI, CGJ)) {
532 CanUseDiffCheck = CanUseDiffCheck && tryToCreateDiffCheck(CGI, CGJ);
533 Checks.emplace_back(&CGI, &CGJ);
534 }
535 }
536 }
537 return Checks;
538}
539
541 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
542 assert(Checks.empty() && "Checks is not empty");
543 groupChecks(DepCands, UseDependencies);
544 Checks = generateChecks();
545}
546
548 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const {
549 for (const auto &I : M.Members)
550 for (const auto &J : N.Members)
551 if (needsChecking(I, J))
552 return true;
553 return false;
554}
555
556/// Compare \p I and \p J and return the minimum.
557/// Return nullptr in case we couldn't find an answer.
558static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
559 ScalarEvolution *SE) {
560 std::optional<APInt> Diff = SE->computeConstantDifference(J, I);
561 if (!Diff)
562 return nullptr;
563 return Diff->isNegative() ? J : I;
564}
565
567 unsigned Index, const RuntimePointerChecking &RtCheck) {
568 return addPointer(
569 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End,
570 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(),
571 RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE);
572}
573
574bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start,
575 const SCEV *End, unsigned AS,
576 bool NeedsFreeze,
577 ScalarEvolution &SE) {
578 assert(AddressSpace == AS &&
579 "all pointers in a checking group must be in the same address space");
580
581 // Compare the starts and ends with the known minimum and maximum
582 // of this set. We need to know how we compare against the min/max
583 // of the set in order to be able to emit memchecks.
584 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE);
585 if (!Min0)
586 return false;
587
588 const SCEV *Min1 = getMinFromExprs(End, High, &SE);
589 if (!Min1)
590 return false;
591
592 // Update the low bound expression if we've found a new min value.
593 if (Min0 == Start)
594 Low = Start;
595
596 // Update the high bound expression if we've found a new max value.
597 if (Min1 != End)
598 High = End;
599
600 Members.push_back(Index);
601 this->NeedsFreeze |= NeedsFreeze;
602 return true;
603}
604
605void RuntimePointerChecking::groupChecks(
606 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
607 // We build the groups from dependency candidates equivalence classes
608 // because:
609 // - We know that pointers in the same equivalence class share
610 // the same underlying object and therefore there is a chance
611 // that we can compare pointers
612 // - We wouldn't be able to merge two pointers for which we need
613 // to emit a memcheck. The classes in DepCands are already
614 // conveniently built such that no two pointers in the same
615 // class need checking against each other.
616
617 // We use the following (greedy) algorithm to construct the groups
618 // For every pointer in the equivalence class:
619 // For each existing group:
620 // - if the difference between this pointer and the min/max bounds
621 // of the group is a constant, then make the pointer part of the
622 // group and update the min/max bounds of that group as required.
623
624 CheckingGroups.clear();
625
626 // If we need to check two pointers to the same underlying object
627 // with a non-constant difference, we shouldn't perform any pointer
628 // grouping with those pointers. This is because we can easily get
629 // into cases where the resulting check would return false, even when
630 // the accesses are safe.
631 //
632 // The following example shows this:
633 // for (i = 0; i < 1000; ++i)
634 // a[5000 + i * m] = a[i] + a[i + 9000]
635 //
636 // Here grouping gives a check of (5000, 5000 + 1000 * m) against
637 // (0, 10000) which is always false. However, if m is 1, there is no
638 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
639 // us to perform an accurate check in this case.
640 //
641 // In the above case, we have a non-constant distance and an Unknown
642 // dependence between accesses to the same underlying object, and could retry
643 // with runtime checks. Therefore UseDependencies is false. In this case we
644 // will use the fallback path and create separate checking groups for all
645 // pointers.
646
647 // If we don't have the dependency partitions, construct a new
648 // checking pointer group for each pointer. This is also required
649 // for correctness, because in this case we can have checking between
650 // pointers to the same underlying object.
651 if (!UseDependencies) {
652 for (unsigned I = 0; I < Pointers.size(); ++I)
653 CheckingGroups.emplace_back(I, *this);
654 return;
655 }
656
657 unsigned TotalComparisons = 0;
658
660 for (unsigned Index = 0; Index < Pointers.size(); ++Index)
661 PositionMap[Pointers[Index].PointerValue].push_back(Index);
662
663 // We need to keep track of what pointers we've already seen so we
664 // don't process them twice.
666
667 // Go through all equivalence classes, get the "pointer check groups"
668 // and add them to the overall solution. We use the order in which accesses
669 // appear in 'Pointers' to enforce determinism.
670 for (unsigned I = 0; I < Pointers.size(); ++I) {
671 // We've seen this pointer before, and therefore already processed
672 // its equivalence class.
673 if (Seen.contains(I))
674 continue;
675
677 Pointers[I].IsWritePtr);
678
680
681 // Because DepCands is constructed by visiting accesses in the order in
682 // which they appear in alias sets (which is deterministic) and the
683 // iteration order within an equivalence class member is only dependent on
684 // the order in which unions and insertions are performed on the
685 // equivalence class, the iteration order is deterministic.
686 for (auto M : DepCands.members(Access)) {
687 auto PointerI = PositionMap.find(M.getPointer());
688 // If we can't find the pointer in PositionMap that means we can't
689 // generate a memcheck for it.
690 if (PointerI == PositionMap.end())
691 continue;
692 for (unsigned Pointer : PointerI->second) {
693 bool Merged = false;
694 // Mark this pointer as seen.
695 Seen.insert(Pointer);
696
697 // Go through all the existing sets and see if we can find one
698 // which can include this pointer.
699 for (RuntimeCheckingPtrGroup &Group : Groups) {
700 // Don't perform more than a certain amount of comparisons.
701 // This should limit the cost of grouping the pointers to something
702 // reasonable. If we do end up hitting this threshold, the algorithm
703 // will create separate groups for all remaining pointers.
704 if (TotalComparisons > MemoryCheckMergeThreshold)
705 break;
706
707 TotalComparisons++;
708
709 if (Group.addPointer(Pointer, *this)) {
710 Merged = true;
711 break;
712 }
713 }
714
715 if (!Merged)
716 // We couldn't add this pointer to any existing set or the threshold
717 // for the number of comparisons has been reached. Create a new group
718 // to hold the current pointer.
719 Groups.emplace_back(Pointer, *this);
720 }
721 }
722
723 // We've computed the grouped checks for this partition.
724 // Save the results and continue with the next one.
726 }
727}
728
730 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
731 unsigned PtrIdx2) {
732 return (PtrToPartition[PtrIdx1] != -1 &&
733 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
734}
735
736bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
737 const PointerInfo &PointerI = Pointers[I];
738 const PointerInfo &PointerJ = Pointers[J];
739
740 // No need to check if two readonly pointers intersect.
741 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
742 return false;
743
744 // Only need to check pointers between two different dependency sets.
745 if (PointerI.DependencySetId == PointerJ.DependencySetId)
746 return false;
747
748 // Only need to check pointers in the same alias set.
749 return PointerI.AliasSetId == PointerJ.AliasSetId;
750}
751
752/// Assign each RuntimeCheckingPtrGroup pointer an index for stable UTC output.
756 for (const auto &[Idx, CG] : enumerate(CheckingGroups))
757 PtrIndices[&CG] = Idx;
758 return PtrIndices;
759}
760
763 unsigned Depth) const {
764 unsigned N = 0;
765 auto PtrIndices = getPtrToIdxMap(CheckingGroups);
766 for (const auto &[Check1, Check2] : Checks) {
767 const auto &First = Check1->Members, &Second = Check2->Members;
768 OS.indent(Depth) << "Check " << N++ << ":\n";
769 OS.indent(Depth + 2) << "Comparing group GRP" << PtrIndices.at(Check1)
770 << ":\n";
771 for (unsigned K : First)
772 OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n";
773 OS.indent(Depth + 2) << "Against group GRP" << PtrIndices.at(Check2)
774 << ":\n";
775 for (unsigned K : Second)
776 OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n";
777 }
778}
779
781
782 OS.indent(Depth) << "Run-time memory checks:\n";
783 printChecks(OS, Checks, Depth);
784
785 OS.indent(Depth) << "Grouped accesses:\n";
786 auto PtrIndices = getPtrToIdxMap(CheckingGroups);
787 for (const auto &CG : CheckingGroups) {
788 OS.indent(Depth + 2) << "Group GRP" << PtrIndices.at(&CG) << ":\n";
789 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
790 << ")\n";
791 for (unsigned Member : CG.Members) {
792 OS.indent(Depth + 6) << "Member: " << *Pointers[Member].Expr << "\n";
793 }
794 }
795}
796
797namespace {
798
799/// Analyses memory accesses in a loop.
800///
801/// Checks whether run time pointer checks are needed and builds sets for data
802/// dependence checking.
803class AccessAnalysis {
804public:
805 /// Read or write access location.
806 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
807 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
808
809 AccessAnalysis(const Loop *TheLoop, AAResults *AA, const LoopInfo *LI,
812 SmallPtrSetImpl<MDNode *> &LoopAliasScopes)
813 : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DT(DT), DepCands(DA),
814 PSE(PSE), LoopAliasScopes(LoopAliasScopes) {
815 // We're analyzing dependences across loop iterations.
816 BAA.enableCrossIterationMode();
817 }
818
819 /// Register a load and whether it is only read from.
820 void addLoad(const MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) {
821 Value *Ptr = const_cast<Value *>(Loc.Ptr);
822 AST.add(adjustLoc(Loc));
823 Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy);
824 if (IsReadOnly)
825 ReadOnlyPtr.insert(Ptr);
826 }
827
828 /// Register a store.
829 void addStore(const MemoryLocation &Loc, Type *AccessTy) {
830 Value *Ptr = const_cast<Value *>(Loc.Ptr);
831 AST.add(adjustLoc(Loc));
832 Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy);
833 }
834
835 /// Check if we can emit a run-time no-alias check for \p Access.
836 ///
837 /// Returns true if we can emit a run-time no alias check for \p Access.
838 /// If we can check this access, this also adds it to a dependence set and
839 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
840 /// we will attempt to use additional run-time checks in order to get
841 /// the bounds of the pointer.
842 bool createCheckForAccess(RuntimePointerChecking &RtCheck,
843 MemAccessInfo Access, Type *AccessTy,
844 const DenseMap<Value *, const SCEV *> &Strides,
845 DenseMap<Value *, unsigned> &DepSetId,
846 Loop *TheLoop, unsigned &RunningDepId,
847 unsigned ASId, bool Assume);
848
849 /// Check whether we can check the pointers at runtime for
850 /// non-intersection.
851 ///
852 /// Returns true if we need no check or if we do and we can generate them
853 /// (i.e. the pointers have computable bounds). A return value of false means
854 /// we couldn't analyze and generate runtime checks for all pointers in the
855 /// loop, but if \p AllowPartial is set then we will have checks for those
856 /// pointers we could analyze.
857 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, Loop *TheLoop,
858 const DenseMap<Value *, const SCEV *> &Strides,
859 Value *&UncomputablePtr, bool AllowPartial);
860
861 /// Goes over all memory accesses, checks whether a RT check is needed
862 /// and builds sets of dependent accesses.
863 void buildDependenceSets() {
864 processMemAccesses();
865 }
866
867 /// Initial processing of memory accesses determined that we need to
868 /// perform dependency checking.
869 ///
870 /// Note that this can later be cleared if we retry memcheck analysis without
871 /// dependency checking (i.e. ShouldRetryWithRuntimeChecks).
872 bool isDependencyCheckNeeded() const { return !CheckDeps.empty(); }
873
874 /// We decided that no dependence analysis would be used. Reset the state.
875 void resetDepChecks(MemoryDepChecker &DepChecker) {
876 CheckDeps.clear();
877 DepChecker.clearDependences();
878 }
879
880 const MemAccessInfoList &getDependenciesToCheck() const { return CheckDeps; }
881
882private:
883 typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap;
884
885 /// Adjust the MemoryLocation so that it represents accesses to this
886 /// location across all iterations, rather than a single one.
887 MemoryLocation adjustLoc(MemoryLocation Loc) const {
888 // The accessed location varies within the loop, but remains within the
889 // underlying object.
891 Loc.AATags.Scope = adjustAliasScopeList(Loc.AATags.Scope);
892 Loc.AATags.NoAlias = adjustAliasScopeList(Loc.AATags.NoAlias);
893 return Loc;
894 }
895
896 /// Drop alias scopes that are only valid within a single loop iteration.
897 MDNode *adjustAliasScopeList(MDNode *ScopeList) const {
898 if (!ScopeList)
899 return nullptr;
900
901 // For the sake of simplicity, drop the whole scope list if any scope is
902 // iteration-local.
903 if (any_of(ScopeList->operands(), [&](Metadata *Scope) {
904 return LoopAliasScopes.contains(cast<MDNode>(Scope));
905 }))
906 return nullptr;
907
908 return ScopeList;
909 }
910
911 /// Go over all memory access and check whether runtime pointer checks
912 /// are needed and build sets of dependency check candidates.
913 void processMemAccesses();
914
915 /// Map of all accesses. Values are the types used to access memory pointed to
916 /// by the pointer.
917 PtrAccessMap Accesses;
918
919 /// The loop being checked.
920 const Loop *TheLoop;
921
922 /// List of accesses that need a further dependence check.
923 MemAccessInfoList CheckDeps;
924
925 /// Set of pointers that are read only.
926 SmallPtrSet<Value*, 16> ReadOnlyPtr;
927
928 /// Batched alias analysis results.
929 BatchAAResults BAA;
930
931 /// An alias set tracker to partition the access set by underlying object and
932 //intrinsic property (such as TBAA metadata).
933 AliasSetTracker AST;
934
935 /// The LoopInfo of the loop being checked.
936 const LoopInfo *LI;
937
938 /// The dominator tree of the function.
939 DominatorTree &DT;
940
941 /// Sets of potentially dependent accesses - members of one set share an
942 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
943 /// dependence check.
945
946 /// Initial processing of memory accesses determined that we may need
947 /// to add memchecks. Perform the analysis to determine the necessary checks.
948 ///
949 /// Note that, this is different from isDependencyCheckNeeded. When we retry
950 /// memcheck analysis without dependency checking
951 /// (i.e. ShouldRetryWithRuntimeChecks), isDependencyCheckNeeded is
952 /// cleared while this remains set if we have potentially dependent accesses.
953 bool IsRTCheckAnalysisNeeded = false;
954
955 /// The SCEV predicate containing all the SCEV-related assumptions.
956 PredicatedScalarEvolution &PSE;
957
958 DenseMap<Value *, SmallVector<const Value *, 16>> UnderlyingObjects;
959
960 /// Alias scopes that are declared inside the loop, and as such not valid
961 /// across iterations.
962 SmallPtrSetImpl<MDNode *> &LoopAliasScopes;
963};
964
965} // end anonymous namespace
966
967/// Try to compute a constant stride for \p AR. Used by getPtrStride and
968/// isNoWrap.
969static std::optional<int64_t>
970getStrideFromAddRec(const SCEVAddRecExpr *AR, const Loop *Lp, Type *AccessTy,
971 Value *Ptr, PredicatedScalarEvolution &PSE) {
972 if (isa<ScalableVectorType>(AccessTy)) {
973 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy
974 << "\n");
975 return std::nullopt;
976 }
977
978 // The access function must stride over the innermost loop.
979 if (Lp != AR->getLoop()) {
980 LLVM_DEBUG({
981 dbgs() << "LAA: Bad stride - Not striding over innermost loop ";
982 if (Ptr)
983 dbgs() << *Ptr << " ";
984
985 dbgs() << "SCEV: " << *AR << "\n";
986 });
987 return std::nullopt;
988 }
989
990 // Check the step is constant.
991 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
992
993 // Calculate the pointer stride and check if it is constant.
994 const APInt *APStepVal;
995 if (!match(Step, m_scev_APInt(APStepVal))) {
996 LLVM_DEBUG({
997 dbgs() << "LAA: Bad stride - Not a constant strided ";
998 if (Ptr)
999 dbgs() << *Ptr << " ";
1000 dbgs() << "SCEV: " << *AR << "\n";
1001 });
1002 return std::nullopt;
1003 }
1004
1005 const auto &DL = Lp->getHeader()->getDataLayout();
1006 TypeSize AllocSize = DL.getTypeAllocSize(AccessTy);
1007 int64_t Size = AllocSize.getFixedValue();
1008
1009 // Huge step value - give up.
1010 std::optional<int64_t> StepVal = APStepVal->trySExtValue();
1011 if (!StepVal)
1012 return std::nullopt;
1013
1014 // Strided access.
1015 return *StepVal % Size ? std::nullopt : std::make_optional(*StepVal / Size);
1016}
1017
1018/// Check whether \p AR is a non-wrapping AddRec. If \p Ptr is not nullptr, use
1019/// informating from the IR pointer value to determine no-wrap.
1021 Value *Ptr, Type *AccessTy, const Loop *L, bool Assume,
1022 const DominatorTree &DT,
1023 std::optional<int64_t> Stride = std::nullopt) {
1024 // FIXME: This should probably only return true for NUW.
1026 return true;
1027
1029 return true;
1030
1031 // An nusw getelementptr that is an AddRec cannot wrap. If it would wrap,
1032 // the distance between the previously accessed location and the wrapped
1033 // location will be larger than half the pointer index type space. In that
1034 // case, the GEP would be poison and any memory access dependent on it would
1035 // be immediate UB when executed.
1037 GEP && GEP->hasNoUnsignedSignedWrap()) {
1038 // For the above reasoning to apply, the pointer must be dereferenced in
1039 // every iteration.
1040 if (L->getHeader() == L->getLoopLatch() ||
1041 any_of(GEP->users(), [L, &DT, GEP](User *U) {
1042 if (getLoadStorePointerOperand(U) != GEP)
1043 return false;
1044 BasicBlock *UserBB = cast<Instruction>(U)->getParent();
1045 return !LoopAccessInfo::blockNeedsPredication(UserBB, L, &DT);
1046 }))
1047 return true;
1048 }
1049
1050 if (!Stride)
1051 Stride = getStrideFromAddRec(AR, L, AccessTy, Ptr, PSE);
1052 if (Stride) {
1053 // If the null pointer is undefined, then a access sequence which would
1054 // otherwise access it can be assumed not to unsigned wrap. Note that this
1055 // assumes the object in memory is aligned to the natural alignment.
1056 unsigned AddrSpace = AR->getType()->getPointerAddressSpace();
1057 if (!NullPointerIsDefined(L->getHeader()->getParent(), AddrSpace) &&
1058 (Stride == 1 || Stride == -1))
1059 return true;
1060 }
1061
1062 if (Ptr && Assume) {
1064 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap:\n"
1065 << "LAA: Pointer: " << *Ptr << "\n"
1066 << "LAA: SCEV: " << *AR << "\n"
1067 << "LAA: Added an overflow assumption\n");
1068 return true;
1069 }
1070
1071 return false;
1072}
1073
1074static void visitPointers(Value *StartPtr, const Loop &InnermostLoop,
1075 function_ref<void(Value *)> AddPointer) {
1077 SmallVector<Value *> WorkList;
1078 WorkList.push_back(StartPtr);
1079
1080 while (!WorkList.empty()) {
1081 Value *Ptr = WorkList.pop_back_val();
1082 if (!Visited.insert(Ptr).second)
1083 continue;
1084 auto *PN = dyn_cast<PHINode>(Ptr);
1085 // SCEV does not look through non-header PHIs inside the loop. Such phis
1086 // can be analyzed by adding separate accesses for each incoming pointer
1087 // value.
1088 if (PN && InnermostLoop.contains(PN->getParent()) &&
1089 PN->getParent() != InnermostLoop.getHeader()) {
1090 llvm::append_range(WorkList, PN->incoming_values());
1091 } else
1092 AddPointer(Ptr);
1093 }
1094}
1095
1096// Walk back through the IR for a pointer, looking for a select like the
1097// following:
1098//
1099// %offset = select i1 %cmp, i64 %a, i64 %b
1100// %addr = getelementptr double, double* %base, i64 %offset
1101// %ld = load double, double* %addr, align 8
1102//
1103// We won't be able to form a single SCEVAddRecExpr from this since the
1104// address for each loop iteration depends on %cmp. We could potentially
1105// produce multiple valid SCEVAddRecExprs, though, and check all of them for
1106// memory safety/aliasing if needed.
1107//
1108// If we encounter some IR we don't yet handle, or something obviously fine
1109// like a constant, then we just add the SCEV for that term to the list passed
1110// in by the caller. If we have a node that may potentially yield a valid
1111// SCEVAddRecExpr then we decompose it into parts and build the SCEV terms
1112// ourselves before adding to the list.
1114 ScalarEvolution *SE, const Loop *L, Value *Ptr,
1116 unsigned Depth) {
1117 // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or
1118 // we've exceeded our limit on recursion, just return whatever we have
1119 // regardless of whether it can be used for a forked pointer or not, along
1120 // with an indication of whether it might be a poison or undef value.
1121 const SCEV *Scev = SE->getSCEV(Ptr);
1122 if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) ||
1123 !isa<Instruction>(Ptr) || Depth == 0) {
1124 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
1125 return;
1126 }
1127
1128 Depth--;
1129
1130 auto UndefPoisonCheck = [](PointerIntPair<const SCEV *, 1, bool> S) {
1131 return get<1>(S);
1132 };
1133
1134 auto GetBinOpExpr = [&SE](unsigned Opcode, const SCEV *L, const SCEV *R) {
1135 switch (Opcode) {
1136 case Instruction::Add:
1137 return SE->getAddExpr(L, R);
1138 case Instruction::Sub:
1139 return SE->getMinusSCEV(L, R);
1140 default:
1141 llvm_unreachable("Unexpected binary operator when walking ForkedPtrs");
1142 }
1143 };
1144
1146 unsigned Opcode = I->getOpcode();
1147 switch (Opcode) {
1148 case Instruction::GetElementPtr: {
1149 auto *GEP = cast<GetElementPtrInst>(I);
1150 Type *SourceTy = GEP->getSourceElementType();
1151 // We only handle base + single offset GEPs here for now.
1152 // Not dealing with preexisting gathers yet, so no vectors.
1153 if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) {
1154 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP));
1155 break;
1156 }
1159 findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth);
1160 findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth);
1161
1162 // See if we need to freeze our fork...
1163 bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) ||
1164 any_of(OffsetScevs, UndefPoisonCheck);
1165
1166 // Check that we only have a single fork, on either the base or the offset.
1167 // Copy the SCEV across for the one without a fork in order to generate
1168 // the full SCEV for both sides of the GEP.
1169 if (OffsetScevs.size() == 2 && BaseScevs.size() == 1)
1170 BaseScevs.push_back(BaseScevs[0]);
1171 else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1)
1172 OffsetScevs.push_back(OffsetScevs[0]);
1173 else {
1174 ScevList.emplace_back(Scev, NeedsFreeze);
1175 break;
1176 }
1177
1178 Type *IntPtrTy = SE->getEffectiveSCEVType(GEP->getPointerOperandType());
1179
1180 // Find the size of the type being pointed to. We only have a single
1181 // index term (guarded above) so we don't need to index into arrays or
1182 // structures, just get the size of the scalar value.
1183 const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy);
1184
1185 for (auto [B, O] : zip(BaseScevs, OffsetScevs)) {
1186 const SCEV *Base = get<0>(B);
1187 const SCEV *Offset = get<0>(O);
1188
1189 // Scale up the offsets by the size of the type, then add to the bases.
1190 const SCEV *Scaled =
1191 SE->getMulExpr(Size, SE->getTruncateOrSignExtend(Offset, IntPtrTy));
1192 ScevList.emplace_back(SE->getAddExpr(Base, Scaled), NeedsFreeze);
1193 }
1194 break;
1195 }
1196 case Instruction::Select: {
1198 // A select means we've found a forked pointer, but we currently only
1199 // support a single select per pointer so if there's another behind this
1200 // then we just bail out and return the generic SCEV.
1201 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
1202 findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth);
1203 if (ChildScevs.size() == 2)
1204 append_range(ScevList, ChildScevs);
1205 else
1206 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
1207 break;
1208 }
1209 case Instruction::PHI: {
1211 // A phi means we've found a forked pointer, but we currently only
1212 // support a single phi per pointer so if there's another behind this
1213 // then we just bail out and return the generic SCEV.
1214 if (I->getNumOperands() == 2) {
1215 findForkedSCEVs(SE, L, I->getOperand(0), ChildScevs, Depth);
1216 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
1217 }
1218 if (ChildScevs.size() == 2)
1219 append_range(ScevList, ChildScevs);
1220 else
1221 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
1222 break;
1223 }
1224 case Instruction::Add:
1225 case Instruction::Sub: {
1228 findForkedSCEVs(SE, L, I->getOperand(0), LScevs, Depth);
1229 findForkedSCEVs(SE, L, I->getOperand(1), RScevs, Depth);
1230
1231 // See if we need to freeze our fork...
1232 bool NeedsFreeze =
1233 any_of(LScevs, UndefPoisonCheck) || any_of(RScevs, UndefPoisonCheck);
1234
1235 // Check that we only have a single fork, on either the left or right side.
1236 // Copy the SCEV across for the one without a fork in order to generate
1237 // the full SCEV for both sides of the BinOp.
1238 if (LScevs.size() == 2 && RScevs.size() == 1)
1239 RScevs.push_back(RScevs[0]);
1240 else if (RScevs.size() == 2 && LScevs.size() == 1)
1241 LScevs.push_back(LScevs[0]);
1242 else {
1243 ScevList.emplace_back(Scev, NeedsFreeze);
1244 break;
1245 }
1246
1247 for (auto [L, R] : zip(LScevs, RScevs))
1248 ScevList.emplace_back(GetBinOpExpr(Opcode, get<0>(L), get<0>(R)),
1249 NeedsFreeze);
1250 break;
1251 }
1252 default:
1253 // Just return the current SCEV if we haven't handled the instruction yet.
1254 LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n");
1255 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
1256 break;
1257 }
1258}
1259
1260bool AccessAnalysis::createCheckForAccess(
1261 RuntimePointerChecking &RtCheck, MemAccessInfo Access, Type *AccessTy,
1262 const DenseMap<Value *, const SCEV *> &StridesMap,
1263 DenseMap<Value *, unsigned> &DepSetId, Loop *TheLoop,
1264 unsigned &RunningDepId, unsigned ASId, bool Assume) {
1265 Value *Ptr = Access.getPointer();
1266 ScalarEvolution *SE = PSE.getSE();
1267 assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!");
1268
1270 findForkedSCEVs(SE, TheLoop, Ptr, RTCheckPtrs, MaxForkedSCEVDepth);
1271 assert(!RTCheckPtrs.empty() &&
1272 "Must have some runtime-check pointer candidates");
1273
1274 // RTCheckPtrs must have size 2 if there are forked pointers. Otherwise, there
1275 // are no forked pointers; replaceSymbolicStridesSCEV in this case.
1276 auto IsLoopInvariantOrAR =
1277 [&SE, &TheLoop](const PointerIntPair<const SCEV *, 1, bool> &P) {
1278 return SE->isLoopInvariant(P.getPointer(), TheLoop) ||
1279 isa<SCEVAddRecExpr>(P.getPointer());
1280 };
1281 if (RTCheckPtrs.size() == 2 && all_of(RTCheckPtrs, IsLoopInvariantOrAR)) {
1282 LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr << "\n";
1283 for (const auto &[Idx, Q] : enumerate(RTCheckPtrs)) dbgs()
1284 << "\t(" << Idx << ") " << *Q.getPointer() << "\n");
1285 } else {
1286 RTCheckPtrs = {{replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false}};
1287 }
1288
1289 /// Check whether all pointers can participate in a runtime bounds check. They
1290 /// must either be invariant or non-wrapping affine AddRecs.
1291 for (auto &P : RTCheckPtrs) {
1292 // The bounds for loop-invariant pointer is trivial.
1293 if (SE->isLoopInvariant(P.getPointer(), TheLoop))
1294 continue;
1295
1296 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(P.getPointer());
1297 if (!AR && Assume)
1298 AR = PSE.getAsAddRec(Ptr);
1299 if (!AR || !AR->isAffine())
1300 return false;
1301
1302 // If there's only one option for Ptr, look it up after bounds and wrap
1303 // checking, because assumptions might have been added to PSE.
1304 if (RTCheckPtrs.size() == 1) {
1305 AR =
1306 cast<SCEVAddRecExpr>(replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr));
1307 P.setPointer(AR);
1308 }
1309
1310 if (!isNoWrap(PSE, AR, RTCheckPtrs.size() == 1 ? Ptr : nullptr, AccessTy,
1311 TheLoop, Assume, DT))
1312 return false;
1313 }
1314
1315 for (const auto &[PtrExpr, NeedsFreeze] : RTCheckPtrs) {
1316 // The id of the dependence set.
1317 unsigned DepId;
1318
1319 if (isDependencyCheckNeeded()) {
1320 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
1321 unsigned &LeaderId = DepSetId[Leader];
1322 if (!LeaderId)
1323 LeaderId = RunningDepId++;
1324 DepId = LeaderId;
1325 } else
1326 // Each access has its own dependence set.
1327 DepId = RunningDepId++;
1328
1329 bool IsWrite = Access.getInt();
1330 RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE,
1331 NeedsFreeze);
1332 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
1333 }
1334
1335 return true;
1336}
1337
1338bool AccessAnalysis::canCheckPtrAtRT(
1339 RuntimePointerChecking &RtCheck, Loop *TheLoop,
1340 const DenseMap<Value *, const SCEV *> &StridesMap, Value *&UncomputablePtr,
1341 bool AllowPartial) {
1342 // Find pointers with computable bounds. We are going to use this information
1343 // to place a runtime bound check.
1344 bool CanDoRT = true;
1345
1346 bool MayNeedRTCheck = false;
1347 if (!IsRTCheckAnalysisNeeded) return true;
1348
1349 bool IsDepCheckNeeded = isDependencyCheckNeeded();
1350
1351 // We assign a consecutive id to access from different alias sets.
1352 // Accesses between different groups doesn't need to be checked.
1353 unsigned ASId = 0;
1354 for (const auto &AS : AST) {
1355 int NumReadPtrChecks = 0;
1356 int NumWritePtrChecks = 0;
1357 bool CanDoAliasSetRT = true;
1358 ++ASId;
1359 auto ASPointers = AS.getPointers();
1360
1361 // We assign consecutive id to access from different dependence sets.
1362 // Accesses within the same set don't need a runtime check.
1363 unsigned RunningDepId = 1;
1365
1367
1368 // First, count how many write and read accesses are in the alias set. Also
1369 // collect MemAccessInfos for later.
1371 for (const Value *ConstPtr : ASPointers) {
1372 Value *Ptr = const_cast<Value *>(ConstPtr);
1373 bool IsWrite = Accesses.contains(MemAccessInfo(Ptr, true));
1374 if (IsWrite)
1375 ++NumWritePtrChecks;
1376 else
1377 ++NumReadPtrChecks;
1378 AccessInfos.emplace_back(Ptr, IsWrite);
1379 }
1380
1381 // We do not need runtime checks for this alias set, if there are no writes
1382 // or a single write and no reads.
1383 if (NumWritePtrChecks == 0 ||
1384 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
1385 assert((ASPointers.size() <= 1 ||
1386 all_of(ASPointers,
1387 [this](const Value *Ptr) {
1388 MemAccessInfo AccessWrite(const_cast<Value *>(Ptr),
1389 true);
1390 return !DepCands.contains(AccessWrite);
1391 })) &&
1392 "Can only skip updating CanDoRT below, if all entries in AS "
1393 "are reads or there is at most 1 entry");
1394 continue;
1395 }
1396
1397 for (auto &Access : AccessInfos) {
1398 for (const auto &AccessTy : Accesses[Access]) {
1399 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1400 DepSetId, TheLoop, RunningDepId, ASId,
1401 false)) {
1402 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"
1403 << *Access.getPointer() << '\n');
1404 Retries.emplace_back(Access, AccessTy);
1405 CanDoAliasSetRT = false;
1406 }
1407 }
1408 }
1409
1410 // Note that this function computes CanDoRT and MayNeedRTCheck
1411 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
1412 // we have a pointer for which we couldn't find the bounds but we don't
1413 // actually need to emit any checks so it does not matter.
1414 //
1415 // We need runtime checks for this alias set, if there are at least 2
1416 // dependence sets (in which case RunningDepId > 2) or if we need to re-try
1417 // any bound checks (because in that case the number of dependence sets is
1418 // incomplete).
1419 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty();
1420
1421 // We need to perform run-time alias checks, but some pointers had bounds
1422 // that couldn't be checked.
1423 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
1424 // Reset the CanDoSetRt flag and retry all accesses that have failed.
1425 // We know that we need these checks, so we can now be more aggressive
1426 // and add further checks if required (overflow checks).
1427 CanDoAliasSetRT = true;
1428 for (const auto &[Access, AccessTy] : Retries) {
1429 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1430 DepSetId, TheLoop, RunningDepId, ASId,
1431 /*Assume=*/true)) {
1432 CanDoAliasSetRT = false;
1433 UncomputablePtr = Access.getPointer();
1434 if (!AllowPartial)
1435 break;
1436 }
1437 }
1438 }
1439
1440 CanDoRT &= CanDoAliasSetRT;
1441 MayNeedRTCheck |= NeedsAliasSetRTCheck;
1442 ++ASId;
1443 }
1444
1445 // If the pointers that we would use for the bounds comparison have different
1446 // address spaces, assume the values aren't directly comparable, so we can't
1447 // use them for the runtime check. We also have to assume they could
1448 // overlap. In the future there should be metadata for whether address spaces
1449 // are disjoint.
1450 unsigned NumPointers = RtCheck.Pointers.size();
1451 for (unsigned i = 0; i < NumPointers; ++i) {
1452 for (unsigned j = i + 1; j < NumPointers; ++j) {
1453 // Only need to check pointers between two different dependency sets.
1454 if (RtCheck.Pointers[i].DependencySetId ==
1455 RtCheck.Pointers[j].DependencySetId)
1456 continue;
1457 // Only need to check pointers in the same alias set.
1458 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
1459 continue;
1460
1461 Value *PtrI = RtCheck.Pointers[i].PointerValue;
1462 Value *PtrJ = RtCheck.Pointers[j].PointerValue;
1463
1464 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
1465 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
1466 if (ASi != ASj) {
1467 LLVM_DEBUG(
1468 dbgs() << "LAA: Runtime check would require comparison between"
1469 " different address spaces\n");
1470 return false;
1471 }
1472 }
1473 }
1474
1475 if (MayNeedRTCheck && (CanDoRT || AllowPartial))
1476 RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
1477
1478 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
1479 << " pointer comparisons.\n");
1480
1481 // If we can do run-time checks, but there are no checks, no runtime checks
1482 // are needed. This can happen when all pointers point to the same underlying
1483 // object for example.
1484 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck;
1485
1486 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT;
1487 assert(CanDoRTIfNeeded == (CanDoRT || !MayNeedRTCheck) &&
1488 "CanDoRTIfNeeded depends on RtCheck.Need");
1489 if (!CanDoRTIfNeeded && !AllowPartial)
1490 RtCheck.reset();
1491 return CanDoRTIfNeeded;
1492}
1493
1494void AccessAnalysis::processMemAccesses() {
1495 // We process the set twice: first we process read-write pointers, last we
1496 // process read-only pointers. This allows us to skip dependence tests for
1497 // read-only pointers.
1498
1499 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
1500 LLVM_DEBUG(dbgs() << " AST: "; AST.dump());
1501 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n");
1502 LLVM_DEBUG({
1503 for (const auto &[A, _] : Accesses)
1504 dbgs() << "\t" << *A.getPointer() << " ("
1505 << (A.getInt()
1506 ? "write"
1507 : (ReadOnlyPtr.contains(A.getPointer()) ? "read-only"
1508 : "read"))
1509 << ")\n";
1510 });
1511
1512 // The AliasSetTracker has nicely partitioned our pointers by metadata
1513 // compatibility and potential for underlying-object overlap. As a result, we
1514 // only need to check for potential pointer dependencies within each alias
1515 // set.
1516 for (const auto &AS : AST) {
1517 // Note that both the alias-set tracker and the alias sets themselves used
1518 // ordered collections internally and so the iteration order here is
1519 // deterministic.
1520 auto ASPointers = AS.getPointers();
1521
1522 bool SetHasWrite = false;
1523
1524 // Map of (pointer to underlying objects, accessed address space) to last
1525 // access encountered.
1526 typedef DenseMap<std::pair<const Value *, unsigned>, MemAccessInfo>
1527 UnderlyingObjToAccessMap;
1528 UnderlyingObjToAccessMap ObjToLastAccess;
1529
1530 // Set of access to check after all writes have been processed.
1531 PtrAccessMap DeferredAccesses;
1532
1533 // Iterate over each alias set twice, once to process read/write pointers,
1534 // and then to process read-only pointers.
1535 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
1536 bool UseDeferred = SetIteration > 0;
1537 PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses;
1538
1539 for (const Value *ConstPtr : ASPointers) {
1540 Value *Ptr = const_cast<Value *>(ConstPtr);
1541
1542 // For a single memory access in AliasSetTracker, Accesses may contain
1543 // both read and write, and they both need to be handled for CheckDeps.
1544 for (const auto &[AC, _] : S) {
1545 if (AC.getPointer() != Ptr)
1546 continue;
1547
1548 bool IsWrite = AC.getInt();
1549
1550 // If we're using the deferred access set, then it contains only
1551 // reads.
1552 bool IsReadOnlyPtr = ReadOnlyPtr.contains(Ptr) && !IsWrite;
1553 if (UseDeferred && !IsReadOnlyPtr)
1554 continue;
1555 // Otherwise, the pointer must be in the PtrAccessSet, either as a
1556 // read or a write.
1557 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
1558 S.contains(MemAccessInfo(Ptr, false))) &&
1559 "Alias-set pointer not in the access set?");
1560
1561 MemAccessInfo Access(Ptr, IsWrite);
1562 DepCands.insert(Access);
1563
1564 // Memorize read-only pointers for later processing and skip them in
1565 // the first round (they need to be checked after we have seen all
1566 // write pointers). Note: we also mark pointer that are not
1567 // consecutive as "read-only" pointers (so that we check
1568 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
1569 if (!UseDeferred && IsReadOnlyPtr) {
1570 // We only use the pointer keys, the types vector values don't
1571 // matter.
1572 DeferredAccesses.insert({Access, {}});
1573 continue;
1574 }
1575
1576 // If this is a write - check other reads and writes for conflicts. If
1577 // this is a read only check other writes for conflicts (but only if
1578 // there is no other write to the ptr - this is an optimization to
1579 // catch "a[i] = a[i] + " without having to do a dependence check).
1580 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
1581 CheckDeps.push_back(Access);
1582 IsRTCheckAnalysisNeeded = true;
1583 }
1584
1585 if (IsWrite)
1586 SetHasWrite = true;
1587
1588 // Create sets of pointers connected by a shared alias set and
1589 // underlying object.
1590 SmallVector<const Value *, 16> &UOs = UnderlyingObjects[Ptr];
1591 UOs = {};
1592 ::getUnderlyingObjects(Ptr, UOs, LI);
1594 << "Underlying objects for pointer " << *Ptr << "\n");
1595 for (const Value *UnderlyingObj : UOs) {
1596 // nullptr never alias, don't join sets for pointer that have "null"
1597 // in their UnderlyingObjects list.
1598 if (isa<ConstantPointerNull>(UnderlyingObj) &&
1600 TheLoop->getHeader()->getParent(),
1601 UnderlyingObj->getType()->getPointerAddressSpace()))
1602 continue;
1603
1604 auto [It, Inserted] = ObjToLastAccess.try_emplace(
1605 {UnderlyingObj,
1606 cast<PointerType>(Ptr->getType())->getAddressSpace()},
1607 Access);
1608 if (!Inserted) {
1609 DepCands.unionSets(Access, It->second);
1610 It->second = Access;
1611 }
1612
1613 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n");
1614 }
1615 }
1616 }
1617 }
1618 }
1619}
1620
1621/// Check whether the access through \p Ptr has a constant stride.
1622std::optional<int64_t>
1624 const Loop *Lp, const DominatorTree &DT,
1625 const DenseMap<Value *, const SCEV *> &StridesMap,
1626 bool Assume, bool ShouldCheckWrap) {
1627 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
1628 if (PSE.getSE()->isLoopInvariant(PtrScev, Lp))
1629 return 0;
1630
1631 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr");
1632
1633 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1634 if (Assume && !AR)
1635 AR = PSE.getAsAddRec(Ptr);
1636
1637 if (!AR) {
1638 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1639 << " SCEV: " << *PtrScev << "\n");
1640 return std::nullopt;
1641 }
1642
1643 std::optional<int64_t> Stride =
1644 getStrideFromAddRec(AR, Lp, AccessTy, Ptr, PSE);
1645 if (!ShouldCheckWrap || !Stride)
1646 return Stride;
1647
1648 if (isNoWrap(PSE, AR, Ptr, AccessTy, Lp, Assume, DT, Stride))
1649 return Stride;
1650
1651 LLVM_DEBUG(
1652 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1653 << *Ptr << " SCEV: " << *AR << "\n");
1654 return std::nullopt;
1655}
1656
1657std::optional<int64_t> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA,
1658 Type *ElemTyB, Value *PtrB,
1659 const DataLayout &DL,
1660 ScalarEvolution &SE,
1661 bool StrictCheck, bool CheckType) {
1662 assert(PtrA && PtrB && "Expected non-nullptr pointers.");
1663
1664 // Make sure that A and B are different pointers.
1665 if (PtrA == PtrB)
1666 return 0;
1667
1668 // Make sure that the element types are the same if required.
1669 if (CheckType && ElemTyA != ElemTyB)
1670 return std::nullopt;
1671
1672 unsigned ASA = PtrA->getType()->getPointerAddressSpace();
1673 unsigned ASB = PtrB->getType()->getPointerAddressSpace();
1674
1675 // Check that the address spaces match.
1676 if (ASA != ASB)
1677 return std::nullopt;
1678 unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1679
1680 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1681 const Value *PtrA1 = PtrA->stripAndAccumulateConstantOffsets(
1682 DL, OffsetA, /*AllowNonInbounds=*/true);
1683 const Value *PtrB1 = PtrB->stripAndAccumulateConstantOffsets(
1684 DL, OffsetB, /*AllowNonInbounds=*/true);
1685
1686 std::optional<int64_t> Val;
1687 if (PtrA1 == PtrB1) {
1688 // Retrieve the address space again as pointer stripping now tracks through
1689 // `addrspacecast`.
1690 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace();
1691 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace();
1692 // Check that the address spaces match and that the pointers are valid.
1693 if (ASA != ASB)
1694 return std::nullopt;
1695
1696 IdxWidth = DL.getIndexSizeInBits(ASA);
1697 OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1698 OffsetB = OffsetB.sextOrTrunc(IdxWidth);
1699
1700 OffsetB -= OffsetA;
1701 Val = OffsetB.trySExtValue();
1702 } else {
1703 // Otherwise compute the distance with SCEV between the base pointers.
1704 const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1705 const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1706 std::optional<APInt> Diff =
1707 SE.computeConstantDifference(PtrSCEVB, PtrSCEVA);
1708 if (!Diff)
1709 return std::nullopt;
1710 Val = Diff->trySExtValue();
1711 }
1712
1713 if (!Val)
1714 return std::nullopt;
1715
1716 int64_t Size = DL.getTypeStoreSize(ElemTyA);
1717 int64_t Dist = *Val / Size;
1718
1719 // Ensure that the calculated distance matches the type-based one after all
1720 // the bitcasts removal in the provided pointers.
1721 if (!StrictCheck || Dist * Size == Val)
1722 return Dist;
1723 return std::nullopt;
1724}
1725
1727 const DataLayout &DL, ScalarEvolution &SE,
1728 SmallVectorImpl<unsigned> &SortedIndices) {
1730 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1731 "Expected list of pointer operands.");
1732 // Walk over the pointers, and map each of them to an offset relative to
1733 // first pointer in the array.
1734 Value *Ptr0 = VL[0];
1735
1736 using DistOrdPair = std::pair<int64_t, unsigned>;
1737 auto Compare = llvm::less_first();
1738 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare);
1739 Offsets.emplace(0, 0);
1740 bool IsConsecutive = true;
1741 for (auto [Idx, Ptr] : drop_begin(enumerate(VL))) {
1742 std::optional<int64_t> Diff =
1743 getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE,
1744 /*StrictCheck=*/true);
1745 if (!Diff)
1746 return false;
1747
1748 // Check if the pointer with the same offset is found.
1749 int64_t Offset = *Diff;
1750 auto [It, IsInserted] = Offsets.emplace(Offset, Idx);
1751 if (!IsInserted)
1752 return false;
1753 // Consecutive order if the inserted element is the last one.
1754 IsConsecutive &= std::next(It) == Offsets.end();
1755 }
1756 SortedIndices.clear();
1757 if (!IsConsecutive) {
1758 // Fill SortedIndices array only if it is non-consecutive.
1759 SortedIndices.resize(VL.size());
1760 for (auto [Idx, Off] : enumerate(Offsets))
1761 SortedIndices[Idx] = Off.second;
1762 }
1763 return true;
1764}
1765
1766/// Returns true if the memory operations \p A and \p B are consecutive.
1768 ScalarEvolution &SE, bool CheckType) {
1771 if (!PtrA || !PtrB)
1772 return false;
1773 Type *ElemTyA = getLoadStoreType(A);
1774 Type *ElemTyB = getLoadStoreType(B);
1775 std::optional<int64_t> Diff =
1776 getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE,
1777 /*StrictCheck=*/true, CheckType);
1778 return Diff == 1;
1779}
1780
1782 visitPointers(SI->getPointerOperand(), *InnermostLoop,
1783 [this, SI](Value *Ptr) {
1784 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
1785 InstMap.push_back(SI);
1786 ++AccessIdx;
1787 });
1788}
1789
1791 visitPointers(LI->getPointerOperand(), *InnermostLoop,
1792 [this, LI](Value *Ptr) {
1793 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
1794 InstMap.push_back(LI);
1795 ++AccessIdx;
1796 });
1797}
1798
1817
1819 switch (Type) {
1820 case NoDep:
1821 case Forward:
1823 case Unknown:
1824 case IndirectUnsafe:
1825 return false;
1826
1828 case Backward:
1830 return true;
1831 }
1832 llvm_unreachable("unexpected DepType!");
1833}
1834
1838
1840 switch (Type) {
1841 case Forward:
1843 return true;
1844
1845 case NoDep:
1846 case Unknown:
1848 case Backward:
1850 case IndirectUnsafe:
1851 return false;
1852 }
1853 llvm_unreachable("unexpected DepType!");
1854}
1855
1856bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1857 uint64_t TypeByteSize,
1858 unsigned CommonStride) {
1859 // If loads occur at a distance that is not a multiple of a feasible vector
1860 // factor store-load forwarding does not take place.
1861 // Positive dependences might cause troubles because vectorizing them might
1862 // prevent store-load forwarding making vectorized code run a lot slower.
1863 // a[i] = a[i-3] ^ a[i-8];
1864 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1865 // hence on your typical architecture store-load forwarding does not take
1866 // place. Vectorizing in such cases does not make sense.
1867 // Store-load forwarding distance.
1868
1869 // After this many iterations store-to-load forwarding conflicts should not
1870 // cause any slowdowns.
1871 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1872 // Maximum vector factor.
1873 uint64_t MaxVFWithoutSLForwardIssuesPowerOf2 =
1874 std::min(VectorizerParams::MaxVectorWidth * TypeByteSize,
1875 MaxStoreLoadForwardSafeDistanceInBits);
1876
1877 // Compute the smallest VF at which the store and load would be misaligned.
1878 for (uint64_t VF = 2 * TypeByteSize;
1879 VF <= MaxVFWithoutSLForwardIssuesPowerOf2; VF *= 2) {
1880 // If the number of vector iteration between the store and the load are
1881 // small we could incur conflicts.
1882 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1883 MaxVFWithoutSLForwardIssuesPowerOf2 = (VF >> 1);
1884 break;
1885 }
1886 }
1887
1888 if (MaxVFWithoutSLForwardIssuesPowerOf2 < 2 * TypeByteSize) {
1889 LLVM_DEBUG(
1890 dbgs() << "LAA: Distance " << Distance
1891 << " that could cause a store-load forwarding conflict\n");
1892 return true;
1893 }
1894
1895 if (CommonStride &&
1896 MaxVFWithoutSLForwardIssuesPowerOf2 <
1897 MaxStoreLoadForwardSafeDistanceInBits &&
1898 MaxVFWithoutSLForwardIssuesPowerOf2 !=
1899 VectorizerParams::MaxVectorWidth * TypeByteSize) {
1900 uint64_t MaxVF =
1901 bit_floor(MaxVFWithoutSLForwardIssuesPowerOf2 / CommonStride);
1902 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
1903 MaxStoreLoadForwardSafeDistanceInBits =
1904 std::min(MaxStoreLoadForwardSafeDistanceInBits, MaxVFInBits);
1905 }
1906 return false;
1907}
1908
1909void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
1910 if (Status < S)
1911 Status = S;
1912}
1913
1914/// Given a dependence-distance \p Dist between two memory accesses, that have
1915/// strides in the same direction whose absolute value of the maximum stride is
1916/// given in \p MaxStride, in a loop whose maximum backedge taken count is \p
1917/// MaxBTC, check if it is possible to prove statically that the dependence
1918/// distance is larger than the range that the accesses will travel through the
1919/// execution of the loop. If so, return true; false otherwise. This is useful
1920/// for example in loops such as the following (PR31098):
1921///
1922/// for (i = 0; i < D; ++i) {
1923/// = out[i];
1924/// out[i+D] =
1925/// }
1927 const SCEV &MaxBTC, const SCEV &Dist,
1928 uint64_t MaxStride) {
1929
1930 // If we can prove that
1931 // (**) |Dist| > MaxBTC * Step
1932 // where Step is the absolute stride of the memory accesses in bytes,
1933 // then there is no dependence.
1934 //
1935 // Rationale:
1936 // We basically want to check if the absolute distance (|Dist/Step|)
1937 // is >= the loop iteration count (or > MaxBTC).
1938 // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1939 // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1940 // that the dependence distance is >= VF; This is checked elsewhere.
1941 // But in some cases we can prune dependence distances early, and
1942 // even before selecting the VF, and without a runtime test, by comparing
1943 // the distance against the loop iteration count. Since the vectorized code
1944 // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1945 // also guarantees that distance >= VF.
1946 //
1947 const SCEV *Step = SE.getConstant(MaxBTC.getType(), MaxStride);
1948 const SCEV *Product = SE.getMulExpr(&MaxBTC, Step);
1949
1950 const SCEV *CastedDist = &Dist;
1951 const SCEV *CastedProduct = Product;
1952 uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType());
1953 uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType());
1954
1955 // The dependence distance can be positive/negative, so we sign extend Dist;
1956 // The multiplication of the absolute stride in bytes and the
1957 // backedgeTakenCount is non-negative, so we zero extend Product.
1958 if (DistTypeSizeBits > ProductTypeSizeBits)
1959 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1960 else
1961 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1962
1963 // Is Dist - (MaxBTC * Step) > 0 ?
1964 // (If so, then we have proven (**) because |Dist| >= Dist)
1965 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1966 if (SE.isKnownPositive(Minus))
1967 return true;
1968
1969 // Second try: Is -Dist - (MaxBTC * Step) > 0 ?
1970 // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1971 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1972 Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1973 return SE.isKnownPositive(Minus);
1974}
1975
1976/// Check the dependence for two accesses with the same stride \p Stride.
1977/// \p Distance is the positive distance in bytes, and \p TypeByteSize is type
1978/// size in bytes.
1979///
1980/// \returns true if they are independent.
1982 uint64_t TypeByteSize) {
1983 assert(Stride > 1 && "The stride must be greater than 1");
1984 assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1985 assert(Distance > 0 && "The distance must be non-zero");
1986
1987 // Skip if the distance is not multiple of type byte size.
1988 if (Distance % TypeByteSize)
1989 return false;
1990
1991 // No dependence if the distance is not multiple of the stride.
1992 // E.g.
1993 // for (i = 0; i < 1024 ; i += 4)
1994 // A[i+2] = A[i] + 1;
1995 //
1996 // Two accesses in memory (distance is 2, stride is 4):
1997 // | A[0] | | | | A[4] | | | |
1998 // | | | A[2] | | | | A[6] | |
1999 //
2000 // E.g.
2001 // for (i = 0; i < 1024 ; i += 3)
2002 // A[i+4] = A[i] + 1;
2003 //
2004 // Two accesses in memory (distance is 4, stride is 3):
2005 // | A[0] | | | A[3] | | | A[6] | | |
2006 // | | | | | A[4] | | | A[7] | |
2007 return Distance % Stride;
2008}
2009
2010bool MemoryDepChecker::areAccessesCompletelyBeforeOrAfter(const SCEV *Src,
2011 Type *SrcTy,
2012 const SCEV *Sink,
2013 Type *SinkTy) {
2014 const SCEV *BTC = PSE.getBackedgeTakenCount();
2015 const SCEV *SymbolicMaxBTC = PSE.getSymbolicMaxBackedgeTakenCount();
2016 ScalarEvolution &SE = *PSE.getSE();
2017 const auto &[SrcStart_, SrcEnd_] =
2018 getStartAndEndForAccess(InnermostLoop, Src, SrcTy, BTC, SymbolicMaxBTC,
2019 &SE, &PointerBounds, DT, AC, LoopGuards);
2020 if (isa<SCEVCouldNotCompute>(SrcStart_) || isa<SCEVCouldNotCompute>(SrcEnd_))
2021 return false;
2022
2023 const auto &[SinkStart_, SinkEnd_] =
2024 getStartAndEndForAccess(InnermostLoop, Sink, SinkTy, BTC, SymbolicMaxBTC,
2025 &SE, &PointerBounds, DT, AC, LoopGuards);
2026 if (isa<SCEVCouldNotCompute>(SinkStart_) ||
2027 isa<SCEVCouldNotCompute>(SinkEnd_))
2028 return false;
2029
2030 if (!LoopGuards)
2031 LoopGuards.emplace(ScalarEvolution::LoopGuards::collect(InnermostLoop, SE));
2032
2033 auto SrcEnd = SE.applyLoopGuards(SrcEnd_, *LoopGuards);
2034 auto SinkStart = SE.applyLoopGuards(SinkStart_, *LoopGuards);
2035 if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SrcEnd, SinkStart))
2036 return true;
2037
2038 auto SinkEnd = SE.applyLoopGuards(SinkEnd_, *LoopGuards);
2039 auto SrcStart = SE.applyLoopGuards(SrcStart_, *LoopGuards);
2040 return SE.isKnownPredicate(CmpInst::ICMP_ULE, SinkEnd, SrcStart);
2041}
2042
2044 MemoryDepChecker::DepDistanceStrideAndSizeInfo>
2045MemoryDepChecker::getDependenceDistanceStrideAndSize(
2046 const AccessAnalysis::MemAccessInfo &A, Instruction *AInst,
2047 const AccessAnalysis::MemAccessInfo &B, Instruction *BInst) {
2048 const auto &DL = InnermostLoop->getHeader()->getDataLayout();
2049 auto &SE = *PSE.getSE();
2050 const auto &[APtr, AIsWrite] = A;
2051 const auto &[BPtr, BIsWrite] = B;
2052
2053 // Two reads are independent.
2054 if (!AIsWrite && !BIsWrite)
2056
2057 Type *ATy = getLoadStoreType(AInst);
2058 Type *BTy = getLoadStoreType(BInst);
2059
2060 // We cannot check pointers in different address spaces.
2061 if (APtr->getType()->getPointerAddressSpace() !=
2062 BPtr->getType()->getPointerAddressSpace())
2064
2065 std::optional<int64_t> StrideAPtr = getPtrStride(
2066 PSE, ATy, APtr, InnermostLoop, *DT, SymbolicStrides, true, true);
2067 std::optional<int64_t> StrideBPtr = getPtrStride(
2068 PSE, BTy, BPtr, InnermostLoop, *DT, SymbolicStrides, true, true);
2069
2070 const SCEV *Src = PSE.getSCEV(APtr);
2071 const SCEV *Sink = PSE.getSCEV(BPtr);
2072
2073 // If the induction step is negative we have to invert source and sink of the
2074 // dependence when measuring the distance between them. We should not swap
2075 // AIsWrite with BIsWrite, as their uses expect them in program order.
2076 if (StrideAPtr && *StrideAPtr < 0) {
2077 std::swap(Src, Sink);
2078 std::swap(AInst, BInst);
2079 std::swap(ATy, BTy);
2080 std::swap(StrideAPtr, StrideBPtr);
2081 }
2082
2083 const SCEV *Dist = SE.getMinusSCEV(Sink, Src);
2084
2085 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
2086 << "\n");
2087 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *AInst << " to " << *BInst
2088 << ": " << *Dist << "\n");
2089
2090 // Need accesses with constant strides and the same direction for further
2091 // dependence analysis. We don't want to vectorize "A[B[i]] += ..." and
2092 // similar code or pointer arithmetic that could wrap in the address space.
2093
2094 // If either Src or Sink are not strided (i.e. not a non-wrapping AddRec) and
2095 // not loop-invariant (stride will be 0 in that case), we cannot analyze the
2096 // dependence further and also cannot generate runtime checks.
2097 if (!StrideAPtr || !StrideBPtr) {
2098 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
2100 }
2101
2102 int64_t StrideAPtrInt = *StrideAPtr;
2103 int64_t StrideBPtrInt = *StrideBPtr;
2104 LLVM_DEBUG(dbgs() << "LAA: Src induction step: " << StrideAPtrInt
2105 << " Sink induction step: " << StrideBPtrInt << "\n");
2106 // At least Src or Sink are loop invariant and the other is strided or
2107 // invariant. We can generate a runtime check to disambiguate the accesses.
2108 if (!StrideAPtrInt || !StrideBPtrInt)
2110
2111 // Both Src and Sink have a constant stride, check if they are in the same
2112 // direction.
2113 if ((StrideAPtrInt > 0) != (StrideBPtrInt > 0)) {
2114 LLVM_DEBUG(
2115 dbgs() << "Pointer access with strides in different directions\n");
2117 }
2118
2119 TypeSize AStoreSz = DL.getTypeStoreSize(ATy);
2120 TypeSize BStoreSz = DL.getTypeStoreSize(BTy);
2121
2122 // If store sizes are not the same, set TypeByteSize to zero, so we can check
2123 // it in the caller isDependent.
2124 uint64_t ASz = DL.getTypeAllocSize(ATy);
2125 uint64_t BSz = DL.getTypeAllocSize(BTy);
2126 uint64_t TypeByteSize = (AStoreSz == BStoreSz) ? BSz : 0;
2127
2128 uint64_t StrideAScaled = std::abs(StrideAPtrInt) * ASz;
2129 uint64_t StrideBScaled = std::abs(StrideBPtrInt) * BSz;
2130
2131 uint64_t MaxStride = std::max(StrideAScaled, StrideBScaled);
2132
2133 std::optional<uint64_t> CommonStride;
2134 if (StrideAScaled == StrideBScaled)
2135 CommonStride = StrideAScaled;
2136
2137 // TODO: Historically, we didn't retry with runtime checks when (unscaled)
2138 // strides were different but there is no inherent reason to.
2139 if (!isa<SCEVConstant>(Dist))
2140 ShouldRetryWithRuntimeChecks |= StrideAPtrInt == StrideBPtrInt;
2141
2142 // If distance is a SCEVCouldNotCompute, return Unknown immediately.
2143 if (isa<SCEVCouldNotCompute>(Dist)) {
2144 LLVM_DEBUG(dbgs() << "LAA: Uncomputable distance.\n");
2145 return Dependence::Unknown;
2146 }
2147
2148 return DepDistanceStrideAndSizeInfo(Dist, MaxStride, CommonStride,
2149 TypeByteSize, AIsWrite, BIsWrite);
2150}
2151
2153MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
2154 const MemAccessInfo &B, unsigned BIdx) {
2155 assert(AIdx < BIdx && "Must pass arguments in program order");
2156
2157 // Check if we can prove that Sink only accesses memory after Src's end or
2158 // vice versa. The helper is used to perform the checks only on the exit paths
2159 // where it helps to improve the analysis result.
2160 auto CheckCompletelyBeforeOrAfter = [&]() {
2161 auto *APtr = A.getPointer();
2162 auto *BPtr = B.getPointer();
2163 Type *ATy = getLoadStoreType(InstMap[AIdx]);
2164 Type *BTy = getLoadStoreType(InstMap[BIdx]);
2165 const SCEV *Src = PSE.getSCEV(APtr);
2166 const SCEV *Sink = PSE.getSCEV(BPtr);
2167 return areAccessesCompletelyBeforeOrAfter(Src, ATy, Sink, BTy);
2168 };
2169
2170 // Get the dependence distance, stride, type size and what access writes for
2171 // the dependence between A and B.
2172 auto Res =
2173 getDependenceDistanceStrideAndSize(A, InstMap[AIdx], B, InstMap[BIdx]);
2174 if (std::holds_alternative<Dependence::DepType>(Res)) {
2175 if (std::get<Dependence::DepType>(Res) == Dependence::Unknown &&
2176 CheckCompletelyBeforeOrAfter())
2177 return Dependence::NoDep;
2178 return std::get<Dependence::DepType>(Res);
2179 }
2180
2181 auto &[Dist, MaxStride, CommonStride, TypeByteSize, AIsWrite, BIsWrite] =
2182 std::get<DepDistanceStrideAndSizeInfo>(Res);
2183 bool HasSameSize = TypeByteSize > 0;
2184
2185 ScalarEvolution &SE = *PSE.getSE();
2186 auto &DL = InnermostLoop->getHeader()->getDataLayout();
2187
2188 // If the distance between the acecsses is larger than their maximum absolute
2189 // stride multiplied by the symbolic maximum backedge taken count (which is an
2190 // upper bound of the number of iterations), the accesses are independet, i.e.
2191 // they are far enough appart that accesses won't access the same location
2192 // across all loop ierations.
2193 if (HasSameSize &&
2195 DL, SE, *(PSE.getSymbolicMaxBackedgeTakenCount()), *Dist, MaxStride))
2196 return Dependence::NoDep;
2197
2198 // The rest of this function relies on ConstDist being at most 64-bits, which
2199 // is checked earlier. Will assert if the calling code changes.
2200 const APInt *APDist = nullptr;
2201 uint64_t ConstDist =
2202 match(Dist, m_scev_APInt(APDist)) ? APDist->abs().getZExtValue() : 0;
2203
2204 // Attempt to prove strided accesses independent.
2205 if (APDist) {
2206 // If the distance between accesses and their strides are known constants,
2207 // check whether the accesses interlace each other.
2208 if (ConstDist > 0 && CommonStride && CommonStride > 1 && HasSameSize &&
2209 areStridedAccessesIndependent(ConstDist, *CommonStride, TypeByteSize)) {
2210 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
2211 return Dependence::NoDep;
2212 }
2213 } else {
2214 if (!LoopGuards)
2215 LoopGuards.emplace(
2216 ScalarEvolution::LoopGuards::collect(InnermostLoop, SE));
2217 Dist = SE.applyLoopGuards(Dist, *LoopGuards);
2218 }
2219
2220 // Negative distances are not plausible dependencies.
2221 if (SE.isKnownNonPositive(Dist)) {
2222 if (SE.isKnownNonNegative(Dist)) {
2223 if (HasSameSize) {
2224 // Write to the same location with the same size.
2225 return Dependence::Forward;
2226 }
2227 LLVM_DEBUG(dbgs() << "LAA: possibly zero dependence difference but "
2228 "different type sizes\n");
2229 return Dependence::Unknown;
2230 }
2231
2232 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
2233 // Check if the first access writes to a location that is read in a later
2234 // iteration, where the distance between them is not a multiple of a vector
2235 // factor and relatively small.
2236 //
2237 // NOTE: There is no need to update MaxSafeVectorWidthInBits after call to
2238 // couldPreventStoreLoadForward, even if it changed MinDepDistBytes, since a
2239 // forward dependency will allow vectorization using any width.
2240
2241 if (IsTrueDataDependence && EnableForwardingConflictDetection) {
2242 if (!ConstDist) {
2243 return CheckCompletelyBeforeOrAfter() ? Dependence::NoDep
2245 }
2246 if (!HasSameSize ||
2247 couldPreventStoreLoadForward(ConstDist, TypeByteSize)) {
2248 LLVM_DEBUG(
2249 dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
2251 }
2252 }
2253
2254 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
2255 return Dependence::Forward;
2256 }
2257
2258 int64_t MinDistance = SE.getSignedRangeMin(Dist).getSExtValue();
2259 // Below we only handle strictly positive distances.
2260 if (MinDistance <= 0) {
2261 return CheckCompletelyBeforeOrAfter() ? Dependence::NoDep
2263 }
2264
2265 if (!HasSameSize) {
2266 if (CheckCompletelyBeforeOrAfter())
2267 return Dependence::NoDep;
2268 LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with "
2269 "different type sizes\n");
2270 return Dependence::Unknown;
2271 }
2272 // Bail out early if passed-in parameters make vectorization not feasible.
2273 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
2275 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
2277 // The minimum number of iterations for a vectorized/unrolled version.
2278 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
2279
2280 // It's not vectorizable if the distance is smaller than the minimum distance
2281 // needed for a vectroized/unrolled version. Vectorizing one iteration in
2282 // front needs MaxStride. Vectorizing the last iteration needs TypeByteSize.
2283 // (No need to plus the last gap distance).
2284 //
2285 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
2286 // foo(int *A) {
2287 // int *B = (int *)((char *)A + 14);
2288 // for (i = 0 ; i < 1024 ; i += 2)
2289 // B[i] = A[i] + 1;
2290 // }
2291 //
2292 // Two accesses in memory (stride is 4 * 2):
2293 // | A[0] | | A[2] | | A[4] | | A[6] | |
2294 // | B[0] | | B[2] | | B[4] |
2295 //
2296 // MinDistance needs for vectorizing iterations except the last iteration:
2297 // 4 * 2 * (MinNumIter - 1). MinDistance needs for the last iteration: 4.
2298 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
2299 //
2300 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
2301 // 12, which is less than distance.
2302 //
2303 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
2304 // the minimum distance needed is 28, which is greater than distance. It is
2305 // not safe to do vectorization.
2306 //
2307 // We use MaxStride (maximum of src and sink strides) to get a conservative
2308 // lower bound on the MinDistanceNeeded in case of different strides.
2309
2310 // We know that Dist is positive, but it may not be constant. Use the signed
2311 // minimum for computations below, as this ensures we compute the closest
2312 // possible dependence distance.
2313 uint64_t MinDistanceNeeded = MaxStride * (MinNumIter - 1) + TypeByteSize;
2314 if (MinDistanceNeeded > static_cast<uint64_t>(MinDistance)) {
2315 if (!ConstDist) {
2316 // For non-constant distances, we checked the lower bound of the
2317 // dependence distance and the distance may be larger at runtime (and safe
2318 // for vectorization). Classify it as Unknown, so we re-try with runtime
2319 // checks, unless we can prove both accesses cannot overlap.
2320 return CheckCompletelyBeforeOrAfter() ? Dependence::NoDep
2322 }
2323 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive minimum distance "
2324 << MinDistance << '\n');
2325 return Dependence::Backward;
2326 }
2327
2328 // Unsafe if the minimum distance needed is greater than smallest dependence
2329 // distance distance.
2330 if (MinDistanceNeeded > MinDepDistBytes) {
2331 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
2332 << MinDistanceNeeded << " size in bytes\n");
2333 return Dependence::Backward;
2334 }
2335
2336 MinDepDistBytes =
2337 std::min(static_cast<uint64_t>(MinDistance), MinDepDistBytes);
2338
2339 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
2340 if (IsTrueDataDependence && EnableForwardingConflictDetection && ConstDist &&
2341 couldPreventStoreLoadForward(MinDistance, TypeByteSize, *CommonStride))
2343
2344 uint64_t MaxVF = MinDepDistBytes / MaxStride;
2345 LLVM_DEBUG(dbgs() << "LAA: Positive min distance " << MinDistance
2346 << " with max VF = " << MaxVF << '\n');
2347
2348 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
2349 if (!ConstDist && MaxVFInBits < MaxTargetVectorWidthInBits) {
2350 // For non-constant distances, we checked the lower bound of the dependence
2351 // distance and the distance may be larger at runtime (and safe for
2352 // vectorization). Classify it as Unknown, so we re-try with runtime checks,
2353 // unless we can prove both accesses cannot overlap.
2354 return CheckCompletelyBeforeOrAfter() ? Dependence::NoDep
2356 }
2357
2358 if (CheckCompletelyBeforeOrAfter())
2359 return Dependence::NoDep;
2360
2361 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
2363}
2364
2366 const MemAccessInfoList &CheckDeps) {
2367
2368 MinDepDistBytes = -1;
2370 for (MemAccessInfo CurAccess : CheckDeps) {
2371 if (Visited.contains(CurAccess))
2372 continue;
2373
2374 // Check accesses within this set.
2376 DepCands.findLeader(CurAccess);
2378 DepCands.member_end();
2379
2380 // Check every access pair.
2381 while (AI != AE) {
2382 Visited.insert(*AI);
2383 bool AIIsWrite = AI->getInt();
2384 // Check loads only against next equivalent class, but stores also against
2385 // other stores in the same equivalence class - to the same address.
2387 (AIIsWrite ? AI : std::next(AI));
2388 while (OI != AE) {
2389 // Check every accessing instruction pair in program order.
2390 auto &Acc = Accesses[*AI];
2391 for (std::vector<unsigned>::iterator I1 = Acc.begin(), I1E = Acc.end();
2392 I1 != I1E; ++I1)
2393 // Scan all accesses of another equivalence class, but only the next
2394 // accesses of the same equivalent class.
2395 for (std::vector<unsigned>::iterator
2396 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
2397 I2E = (OI == AI ? I1E : Accesses[*OI].end());
2398 I2 != I2E; ++I2) {
2399 auto A = std::make_pair(&*AI, *I1);
2400 auto B = std::make_pair(&*OI, *I2);
2401
2402 assert(*I1 != *I2);
2403 if (*I1 > *I2)
2404 std::swap(A, B);
2405
2407 isDependent(*A.first, A.second, *B.first, B.second);
2409
2410 // Gather dependences unless we accumulated MaxDependences
2411 // dependences. In that case return as soon as we find the first
2412 // unsafe dependence. This puts a limit on this quadratic
2413 // algorithm.
2414 if (RecordDependences) {
2415 if (Type != Dependence::NoDep)
2416 Dependences.emplace_back(A.second, B.second, Type);
2417
2418 if (Dependences.size() >= MaxDependences) {
2419 RecordDependences = false;
2420 Dependences.clear();
2422 << "Too many dependences, stopped recording\n");
2423 }
2424 }
2425 if (!RecordDependences && !isSafeForVectorization())
2426 return false;
2427 }
2428 ++OI;
2429 }
2430 ++AI;
2431 }
2432 }
2433
2434 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
2435 return isSafeForVectorization();
2436}
2437
2440 MemAccessInfo Access(Ptr, IsWrite);
2441 auto I = Accesses.find(Access);
2443 if (I != Accesses.end()) {
2444 transform(I->second, std::back_inserter(Insts),
2445 [&](unsigned Idx) { return this->InstMap[Idx]; });
2446 }
2447
2448 return Insts;
2449}
2450
2452 "NoDep",
2453 "Unknown",
2454 "IndirectUnsafe",
2455 "Forward",
2456 "ForwardButPreventsForwarding",
2457 "Backward",
2458 "BackwardVectorizable",
2459 "BackwardVectorizableButPreventsForwarding"};
2460
2462 raw_ostream &OS, unsigned Depth,
2463 const SmallVectorImpl<Instruction *> &Instrs) const {
2464 OS.indent(Depth) << DepName[Type] << ":\n";
2465 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
2466 OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
2467}
2468
2469bool LoopAccessInfo::canAnalyzeLoop() {
2470 // We need to have a loop header.
2471 LLVM_DEBUG(dbgs() << "\nLAA: Checking a loop in '"
2472 << TheLoop->getHeader()->getParent()->getName() << "' from "
2473 << TheLoop->getLocStr() << "\n");
2474
2475 // We can only analyze innermost loops.
2476 if (!TheLoop->isInnermost()) {
2477 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
2478 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
2479 return false;
2480 }
2481
2482 // We must have a single backedge.
2483 if (TheLoop->getNumBackEdges() != 1) {
2484 LLVM_DEBUG(
2485 dbgs() << "LAA: loop control flow is not understood by analyzer\n");
2486 recordAnalysis("CFGNotUnderstood")
2487 << "loop control flow is not understood by analyzer";
2488 return false;
2489 }
2490
2491 // ScalarEvolution needs to be able to find the symbolic max backedge taken
2492 // count, which is an upper bound on the number of loop iterations. The loop
2493 // may execute fewer iterations, if it exits via an uncountable exit.
2494 const SCEV *ExitCount = PSE->getSymbolicMaxBackedgeTakenCount();
2495 if (isa<SCEVCouldNotCompute>(ExitCount)) {
2496 recordAnalysis("CantComputeNumberOfIterations")
2497 << "could not determine number of loop iterations";
2498 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
2499 return false;
2500 }
2501
2502 LLVM_DEBUG(dbgs() << "LAA: Found an analyzable loop: "
2503 << TheLoop->getHeader()->getName() << "\n");
2504 return true;
2505}
2506
2507bool LoopAccessInfo::analyzeLoop(AAResults *AA, const LoopInfo *LI,
2508 const TargetLibraryInfo *TLI,
2509 DominatorTree *DT) {
2510 // Holds the Load and Store instructions.
2513 SmallPtrSet<MDNode *, 8> LoopAliasScopes;
2514
2515 // Holds all the different accesses in the loop.
2516 unsigned NumReads = 0;
2517 unsigned NumReadWrites = 0;
2518
2519 bool HasComplexMemInst = false;
2520
2521 // A runtime check is only legal to insert if there are no convergent calls.
2522 HasConvergentOp = false;
2523
2524 PtrRtChecking->Pointers.clear();
2525 PtrRtChecking->Need = false;
2526
2527 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
2528
2529 const bool EnableMemAccessVersioningOfLoop =
2531 !TheLoop->getHeader()->getParent()->hasOptSize();
2532
2533 // Traverse blocks in fixed RPOT order, regardless of their storage in the
2534 // loop info, as it may be arbitrary.
2535 LoopBlocksRPO RPOT(TheLoop);
2536 RPOT.perform(LI);
2537 for (BasicBlock *BB : RPOT) {
2538 // Scan the BB and collect legal loads and stores. Also detect any
2539 // convergent instructions.
2540 for (Instruction &I : *BB) {
2541 if (auto *Call = dyn_cast<CallBase>(&I)) {
2542 if (Call->isConvergent())
2543 HasConvergentOp = true;
2544 }
2545
2546 // With both a non-vectorizable memory instruction and a convergent
2547 // operation, found in this loop, no reason to continue the search.
2548 if (HasComplexMemInst && HasConvergentOp)
2549 return false;
2550
2551 // Avoid hitting recordAnalysis multiple times.
2552 if (HasComplexMemInst)
2553 continue;
2554
2555 // Record alias scopes defined inside the loop.
2556 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
2557 for (Metadata *Op : Decl->getScopeList()->operands())
2558 LoopAliasScopes.insert(cast<MDNode>(Op));
2559
2560 // Many math library functions read the rounding mode. We will only
2561 // vectorize a loop if it contains known function calls that don't set
2562 // the flag. Therefore, it is safe to ignore this read from memory.
2563 auto *Call = dyn_cast<CallInst>(&I);
2565 continue;
2566
2567 // If this is a load, save it. If this instruction can read from memory
2568 // but is not a load, we only allow it if it's a call to a function with a
2569 // vector mapping and no pointer arguments.
2570 if (I.mayReadFromMemory()) {
2571 auto hasPointerArgs = [](CallBase *CB) {
2572 return any_of(CB->args(), [](Value const *Arg) {
2573 return Arg->getType()->isPointerTy();
2574 });
2575 };
2576
2577 // If the function has an explicit vectorized counterpart, and does not
2578 // take output/input pointers, we can safely assume that it can be
2579 // vectorized.
2580 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
2581 !hasPointerArgs(Call) && !VFDatabase::getMappings(*Call).empty())
2582 continue;
2583
2584 auto *Ld = dyn_cast<LoadInst>(&I);
2585 if (!Ld) {
2586 recordAnalysis("CantVectorizeInstruction", Ld)
2587 << "instruction cannot be vectorized";
2588 HasComplexMemInst = true;
2589 continue;
2590 }
2591 if (!Ld->isSimple() && !IsAnnotatedParallel) {
2592 recordAnalysis("NonSimpleLoad", Ld)
2593 << "read with atomic ordering or volatile read";
2594 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
2595 HasComplexMemInst = true;
2596 continue;
2597 }
2598 NumLoads++;
2599 Loads.push_back(Ld);
2600 DepChecker->addAccess(Ld);
2601 if (EnableMemAccessVersioningOfLoop)
2602 collectStridedAccess(Ld);
2603 continue;
2604 }
2605
2606 // Save 'store' instructions. Abort if other instructions write to memory.
2607 if (I.mayWriteToMemory()) {
2608 auto *St = dyn_cast<StoreInst>(&I);
2609 if (!St) {
2610 recordAnalysis("CantVectorizeInstruction", St)
2611 << "instruction cannot be vectorized";
2612 HasComplexMemInst = true;
2613 continue;
2614 }
2615 if (!St->isSimple() && !IsAnnotatedParallel) {
2616 recordAnalysis("NonSimpleStore", St)
2617 << "write with atomic ordering or volatile write";
2618 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
2619 HasComplexMemInst = true;
2620 continue;
2621 }
2622 NumStores++;
2623 Stores.push_back(St);
2624 DepChecker->addAccess(St);
2625 if (EnableMemAccessVersioningOfLoop)
2626 collectStridedAccess(St);
2627 }
2628 } // Next instr.
2629 } // Next block.
2630
2631 if (HasComplexMemInst)
2632 return false;
2633
2634 // Now we have two lists that hold the loads and the stores.
2635 // Next, we find the pointers that they use.
2636
2637 // Check if we see any stores. If there are no stores, then we don't
2638 // care if the pointers are *restrict*.
2639 if (!Stores.size()) {
2640 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
2641 return true;
2642 }
2643
2645 AccessAnalysis Accesses(TheLoop, AA, LI, *DT, DepCands, *PSE,
2646 LoopAliasScopes);
2647
2648 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects
2649 // multiple times on the same object. If the ptr is accessed twice, once
2650 // for read and once for write, it will only appear once (on the write
2651 // list). This is okay, since we are going to check for conflicts between
2652 // writes and between reads and writes, but not between reads and reads.
2653 SmallSet<std::pair<Value *, Type *>, 16> Seen;
2654
2655 // Record uniform store addresses to identify if we have multiple stores
2656 // to the same address.
2657 SmallPtrSet<Value *, 16> UniformStores;
2658
2659 for (StoreInst *ST : Stores) {
2660 Value *Ptr = ST->getPointerOperand();
2661
2662 if (isInvariant(Ptr)) {
2663 // Record store instructions to loop invariant addresses
2664 StoresToInvariantAddresses.push_back(ST);
2665 HasStoreStoreDependenceInvolvingLoopInvariantAddress |=
2666 !UniformStores.insert(Ptr).second;
2667 }
2668
2669 // If we did *not* see this pointer before, insert it to the read-write
2670 // list. At this phase it is only a 'write' list.
2671 Type *AccessTy = getLoadStoreType(ST);
2672 if (Seen.insert({Ptr, AccessTy}).second) {
2673 ++NumReadWrites;
2674
2675 MemoryLocation Loc = MemoryLocation::get(ST);
2676 // The TBAA metadata could have a control dependency on the predication
2677 // condition, so we cannot rely on it when determining whether or not we
2678 // need runtime pointer checks.
2679 if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
2680 Loc.AATags.TBAA = nullptr;
2681
2682 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2683 [&Accesses, AccessTy, Loc](Value *Ptr) {
2684 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2685 Accesses.addStore(NewLoc, AccessTy);
2686 });
2687 }
2688 }
2689
2690 if (IsAnnotatedParallel) {
2691 LLVM_DEBUG(
2692 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
2693 << "checks.\n");
2694 return true;
2695 }
2696
2697 for (LoadInst *LD : Loads) {
2698 Value *Ptr = LD->getPointerOperand();
2699 // If we did *not* see this pointer before, insert it to the
2700 // read list. If we *did* see it before, then it is already in
2701 // the read-write list. This allows us to vectorize expressions
2702 // such as A[i] += x; Because the address of A[i] is a read-write
2703 // pointer. This only works if the index of A[i] is consecutive.
2704 // If the address of i is unknown (for example A[B[i]]) then we may
2705 // read a few words, modify, and write a few words, and some of the
2706 // words may be written to the same address.
2707 bool IsReadOnlyPtr = false;
2708 Type *AccessTy = getLoadStoreType(LD);
2709 if (Seen.insert({Ptr, AccessTy}).second ||
2710 !getPtrStride(*PSE, AccessTy, Ptr, TheLoop, *DT, SymbolicStrides, false,
2711 true)) {
2712 ++NumReads;
2713 IsReadOnlyPtr = true;
2714 }
2715
2716 // See if there is an unsafe dependency between a load to a uniform address and
2717 // store to the same uniform address.
2718 if (UniformStores.contains(Ptr)) {
2719 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
2720 "load and uniform store to the same address!\n");
2721 HasLoadStoreDependenceInvolvingLoopInvariantAddress = true;
2722 }
2723
2724 MemoryLocation Loc = MemoryLocation::get(LD);
2725 // The TBAA metadata could have a control dependency on the predication
2726 // condition, so we cannot rely on it when determining whether or not we
2727 // need runtime pointer checks.
2728 if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
2729 Loc.AATags.TBAA = nullptr;
2730
2731 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2732 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) {
2733 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2734 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr);
2735 });
2736 }
2737
2738 // If we write (or read-write) to a single destination and there are no
2739 // other reads in this loop then is it safe to vectorize.
2740 if (NumReadWrites == 1 && NumReads == 0) {
2741 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
2742 return true;
2743 }
2744
2745 // Build dependence sets and check whether we need a runtime pointer bounds
2746 // check.
2747 Accesses.buildDependenceSets();
2748
2749 // Find pointers with computable bounds. We are going to use this information
2750 // to place a runtime bound check.
2751 Value *UncomputablePtr = nullptr;
2752 HasCompletePtrRtChecking = Accesses.canCheckPtrAtRT(
2753 *PtrRtChecking, TheLoop, SymbolicStrides, UncomputablePtr, AllowPartial);
2754 if (!HasCompletePtrRtChecking) {
2755 const auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2756 recordAnalysis("CantIdentifyArrayBounds", I)
2757 << "cannot identify array bounds";
2758 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
2759 << "the array bounds.\n");
2760 return false;
2761 }
2762
2763 LLVM_DEBUG(
2764 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
2765
2766 bool DepsAreSafe = true;
2767 if (Accesses.isDependencyCheckNeeded()) {
2768 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2769 DepsAreSafe =
2770 DepChecker->areDepsSafe(DepCands, Accesses.getDependenciesToCheck());
2771
2772 if (!DepsAreSafe && DepChecker->shouldRetryWithRuntimeChecks()) {
2773 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
2774
2775 // Clear the dependency checks. We assume they are not needed.
2776 Accesses.resetDepChecks(*DepChecker);
2777
2778 PtrRtChecking->reset();
2779 PtrRtChecking->Need = true;
2780
2781 UncomputablePtr = nullptr;
2782 HasCompletePtrRtChecking =
2783 Accesses.canCheckPtrAtRT(*PtrRtChecking, TheLoop, SymbolicStrides,
2784 UncomputablePtr, AllowPartial);
2785
2786 // Check that we found the bounds for the pointer.
2787 if (!HasCompletePtrRtChecking) {
2788 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2789 recordAnalysis("CantCheckMemDepsAtRunTime", I)
2790 << "cannot check memory dependencies at runtime";
2791 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2792 return false;
2793 }
2794 DepsAreSafe = true;
2795 }
2796 }
2797
2798 if (HasConvergentOp) {
2799 recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2800 << "cannot add control dependency to convergent operation";
2801 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
2802 "would be needed with a convergent operation\n");
2803 return false;
2804 }
2805
2806 if (DepsAreSafe) {
2807 LLVM_DEBUG(
2808 dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
2809 << (PtrRtChecking->Need ? "" : " don't")
2810 << " need runtime memory checks.\n");
2811 return true;
2812 }
2813
2814 emitUnsafeDependenceRemark();
2815 return false;
2816}
2817
2818void LoopAccessInfo::emitUnsafeDependenceRemark() {
2819 const auto *Deps = getDepChecker().getDependences();
2820 if (!Deps)
2821 return;
2822 const auto *Found =
2823 llvm::find_if(*Deps, [](const MemoryDepChecker::Dependence &D) {
2826 });
2827 if (Found == Deps->end())
2828 return;
2829 MemoryDepChecker::Dependence Dep = *Found;
2830
2831 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2832
2833 // Emit remark for first unsafe dependence
2834 bool HasForcedDistribution = false;
2835 std::optional<const MDOperand *> Value =
2836 findStringMetadataForLoop(TheLoop, "llvm.loop.distribute.enable");
2837 if (Value) {
2838 const MDOperand *Op = *Value;
2839 assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata");
2840 HasForcedDistribution = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
2841 }
2842
2843 const std::string Info =
2844 HasForcedDistribution
2845 ? "unsafe dependent memory operations in loop."
2846 : "unsafe dependent memory operations in loop. Use "
2847 "#pragma clang loop distribute(enable) to allow loop distribution "
2848 "to attempt to isolate the offending operations into a separate "
2849 "loop";
2850 OptimizationRemarkAnalysis &R =
2851 recordAnalysis("UnsafeDep", Dep.getDestination(getDepChecker())) << Info;
2852
2853 switch (Dep.Type) {
2857 llvm_unreachable("Unexpected dependence");
2859 R << "\nBackward loop carried data dependence.";
2860 break;
2862 R << "\nForward loop carried data dependence that prevents "
2863 "store-to-load forwarding.";
2864 break;
2866 R << "\nBackward loop carried data dependence that prevents "
2867 "store-to-load forwarding.";
2868 break;
2870 R << "\nUnsafe indirect dependence.";
2871 break;
2873 R << "\nUnknown data dependence.";
2874 break;
2875 }
2876
2877 if (Instruction *I = Dep.getSource(getDepChecker())) {
2878 DebugLoc SourceLoc = I->getDebugLoc();
2880 SourceLoc = DD->getDebugLoc();
2881 if (SourceLoc)
2882 R << " Memory location is the same as accessed at "
2883 << ore::NV("Location", SourceLoc);
2884 }
2885}
2886
2888 const Loop *TheLoop,
2889 const DominatorTree *DT) {
2890 assert(TheLoop->contains(BB) && "Unknown block used");
2891
2892 // Blocks that do not dominate the latch need predication.
2893 const BasicBlock *Latch = TheLoop->getLoopLatch();
2894 return !DT->dominates(BB, Latch);
2895}
2896
2898LoopAccessInfo::recordAnalysis(StringRef RemarkName, const Instruction *I) {
2899 assert(!Report && "Multiple reports generated");
2900
2901 const BasicBlock *CodeRegion = TheLoop->getHeader();
2902 DebugLoc DL = TheLoop->getStartLoc();
2903
2904 if (I) {
2905 CodeRegion = I->getParent();
2906 // If there is no debug location attached to the instruction, revert back to
2907 // using the loop's.
2908 if (I->getDebugLoc())
2909 DL = I->getDebugLoc();
2910 }
2911
2912 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName,
2913 DL, CodeRegion);
2914 return *Report;
2915}
2916
2918 auto *SE = PSE->getSE();
2919 if (TheLoop->isLoopInvariant(V))
2920 return true;
2921 if (!SE->isSCEVable(V->getType()))
2922 return false;
2923 const SCEV *S = SE->getSCEV(V);
2924 return SE->isLoopInvariant(S, TheLoop);
2925}
2926
2927/// If \p Ptr is a GEP, which has a loop-variant operand, return that operand.
2928/// Otherwise, return \p Ptr.
2930 Loop *Lp) {
2931 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
2932 if (!GEP)
2933 return Ptr;
2934
2935 Value *V = Ptr;
2936 for (const Use &U : GEP->operands()) {
2937 if (!SE->isLoopInvariant(SE->getSCEV(U), Lp)) {
2938 if (V == Ptr)
2939 V = U;
2940 else
2941 // There must be exactly one loop-variant operand.
2942 return Ptr;
2943 }
2944 }
2945 return V;
2946}
2947
2948/// Get the stride of a pointer access in a loop. Looks for symbolic
2949/// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
2950static const SCEV *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
2951 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
2952 if (!PtrTy)
2953 return nullptr;
2954
2955 // Try to remove a gep instruction to make the pointer (actually index at this
2956 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
2957 // pointer, otherwise, we are analyzing the index.
2958 Value *OrigPtr = Ptr;
2959
2960 Ptr = getLoopVariantGEPOperand(Ptr, SE, Lp);
2961 const SCEV *V = SE->getSCEV(Ptr);
2962
2963 if (Ptr != OrigPtr)
2964 // Strip off casts.
2965 while (auto *C = dyn_cast<SCEVIntegralCastExpr>(V))
2966 V = C->getOperand();
2967
2969 return nullptr;
2970
2971 // Note that the restriction after this loop invariant check are only
2972 // profitability restrictions.
2973 if (!SE->isLoopInvariant(V, Lp))
2974 return nullptr;
2975
2976 // Look for the loop invariant symbolic value.
2977 if (isa<SCEVUnknown>(V))
2978 return V;
2979
2980 if (auto *C = dyn_cast<SCEVIntegralCastExpr>(V))
2981 if (isa<SCEVUnknown>(C->getOperand()))
2982 return V;
2983
2984 return nullptr;
2985}
2986
2987void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2988 Value *Ptr = getLoadStorePointerOperand(MemAccess);
2989 if (!Ptr)
2990 return;
2991
2992 // Note: getStrideFromPointer is a *profitability* heuristic. We
2993 // could broaden the scope of values returned here - to anything
2994 // which happens to be loop invariant and contributes to the
2995 // computation of an interesting IV - but we chose not to as we
2996 // don't have a cost model here, and broadening the scope exposes
2997 // far too many unprofitable cases.
2998 const SCEV *StrideExpr = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2999 if (!StrideExpr)
3000 return;
3001
3002 if (match(StrideExpr, m_scev_UndefOrPoison()))
3003 return;
3004
3005 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
3006 "versioning:");
3007 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *StrideExpr << "\n");
3008
3009 if (!SpeculateUnitStride) {
3010 LLVM_DEBUG(dbgs() << " Chose not to due to -laa-speculate-unit-stride\n");
3011 return;
3012 }
3013
3014 // Avoid adding the "Stride == 1" predicate when we know that
3015 // Stride >= Trip-Count. Such a predicate will effectively optimize a single
3016 // or zero iteration loop, as Trip-Count <= Stride == 1.
3017 //
3018 // TODO: We are currently not making a very informed decision on when it is
3019 // beneficial to apply stride versioning. It might make more sense that the
3020 // users of this analysis (such as the vectorizer) will trigger it, based on
3021 // their specific cost considerations; For example, in cases where stride
3022 // versioning does not help resolving memory accesses/dependences, the
3023 // vectorizer should evaluate the cost of the runtime test, and the benefit
3024 // of various possible stride specializations, considering the alternatives
3025 // of using gather/scatters (if available).
3026
3027 const SCEV *MaxBTC = PSE->getSymbolicMaxBackedgeTakenCount();
3028
3029 // Match the types so we can compare the stride and the MaxBTC.
3030 // The Stride can be positive/negative, so we sign extend Stride;
3031 // The backedgeTakenCount is non-negative, so we zero extend MaxBTC.
3032 const DataLayout &DL = TheLoop->getHeader()->getDataLayout();
3033 uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType());
3034 uint64_t BETypeSizeBits = DL.getTypeSizeInBits(MaxBTC->getType());
3035 const SCEV *CastedStride = StrideExpr;
3036 const SCEV *CastedBECount = MaxBTC;
3037 ScalarEvolution *SE = PSE->getSE();
3038 if (BETypeSizeBits >= StrideTypeSizeBits)
3039 CastedStride = SE->getNoopOrSignExtend(StrideExpr, MaxBTC->getType());
3040 else
3041 CastedBECount = SE->getZeroExtendExpr(MaxBTC, StrideExpr->getType());
3042 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
3043 // Since TripCount == BackEdgeTakenCount + 1, checking:
3044 // "Stride >= TripCount" is equivalent to checking:
3045 // Stride - MaxBTC> 0
3046 if (SE->isKnownPositive(StrideMinusBETaken)) {
3047 LLVM_DEBUG(
3048 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
3049 "Stride==1 predicate will imply that the loop executes "
3050 "at most once.\n");
3051 return;
3052 }
3053 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n");
3054
3055 // Strip back off the integer cast, and check that our result is a
3056 // SCEVUnknown as we expect.
3057 const SCEV *StrideBase = StrideExpr;
3058 if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(StrideBase))
3059 StrideBase = C->getOperand();
3060 SymbolicStrides[Ptr] = cast<SCEVUnknown>(StrideBase);
3061}
3062
3064 const TargetTransformInfo *TTI,
3065 const TargetLibraryInfo *TLI, AAResults *AA,
3066 DominatorTree *DT, LoopInfo *LI,
3067 AssumptionCache *AC, bool AllowPartial)
3068 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
3069 PtrRtChecking(nullptr), TheLoop(L), AllowPartial(AllowPartial) {
3070 unsigned MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
3071 if (TTI && !TTI->enableScalableVectorization())
3072 // Scale the vector width by 2 as rough estimate to also consider
3073 // interleaving.
3074 MaxTargetVectorWidthInBits =
3075 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) * 2;
3076
3077 DepChecker = std::make_unique<MemoryDepChecker>(
3078 *PSE, AC, DT, L, SymbolicStrides, MaxTargetVectorWidthInBits, LoopGuards);
3079 PtrRtChecking =
3080 std::make_unique<RuntimePointerChecking>(*DepChecker, SE, LoopGuards);
3081 if (canAnalyzeLoop())
3082 CanVecMem = analyzeLoop(AA, LI, TLI, DT);
3083}
3084
3085void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
3086 if (CanVecMem) {
3087 OS.indent(Depth) << "Memory dependences are safe";
3088 const MemoryDepChecker &DC = getDepChecker();
3089 if (!DC.isSafeForAnyVectorWidth())
3090 OS << " with a maximum safe vector width of "
3091 << DC.getMaxSafeVectorWidthInBits() << " bits";
3094 OS << ", with a maximum safe store-load forward width of " << SLDist
3095 << " bits";
3096 }
3097 if (PtrRtChecking->Need)
3098 OS << " with run-time checks";
3099 OS << "\n";
3100 }
3101
3102 if (HasConvergentOp)
3103 OS.indent(Depth) << "Has convergent operation in loop\n";
3104
3105 if (Report)
3106 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
3107
3108 if (auto *Dependences = DepChecker->getDependences()) {
3109 OS.indent(Depth) << "Dependences:\n";
3110 for (const auto &Dep : *Dependences) {
3111 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
3112 OS << "\n";
3113 }
3114 } else
3115 OS.indent(Depth) << "Too many dependences, not recorded\n";
3116
3117 // List the pair of accesses need run-time checks to prove independence.
3118 PtrRtChecking->print(OS, Depth);
3119 if (PtrRtChecking->Need && !HasCompletePtrRtChecking)
3120 OS.indent(Depth) << "Generated run-time checks are incomplete\n";
3121 OS << "\n";
3122
3123 OS.indent(Depth)
3124 << "Non vectorizable stores to invariant address were "
3125 << (HasStoreStoreDependenceInvolvingLoopInvariantAddress ||
3126 HasLoadStoreDependenceInvolvingLoopInvariantAddress
3127 ? ""
3128 : "not ")
3129 << "found in loop.\n";
3130
3131 OS.indent(Depth) << "SCEV assumptions:\n";
3132 PSE->getPredicate().print(OS, Depth);
3133
3134 OS << "\n";
3135
3136 OS.indent(Depth) << "Expressions re-written:\n";
3137 PSE->print(OS, Depth);
3138}
3139
3141 bool AllowPartial) {
3142 const auto &[It, Inserted] = LoopAccessInfoMap.try_emplace(&L);
3143
3144 // We need to create the LoopAccessInfo if either we don't already have one,
3145 // or if it was created with a different value of AllowPartial.
3146 if (Inserted || It->second->hasAllowPartial() != AllowPartial)
3147 It->second = std::make_unique<LoopAccessInfo>(&L, &SE, TTI, TLI, &AA, &DT,
3148 &LI, AC, AllowPartial);
3149
3150 return *It->second;
3151}
3153 // Collect LoopAccessInfo entries that may keep references to IR outside the
3154 // analyzed loop or SCEVs that may have been modified or invalidated. At the
3155 // moment, that is loops requiring memory or SCEV runtime checks, as those cache
3156 // SCEVs, e.g. for pointer expressions.
3157 for (const auto &[L, LAI] : LoopAccessInfoMap) {
3158 if (LAI->getRuntimePointerChecking()->getChecks().empty() &&
3159 LAI->getPSE().getPredicate().isAlwaysTrue())
3160 continue;
3161 LoopAccessInfoMap.erase(L);
3162 }
3163}
3164
3166 Function &F, const PreservedAnalyses &PA,
3167 FunctionAnalysisManager::Invalidator &Inv) {
3168 // Check whether our analysis is preserved.
3169 auto PAC = PA.getChecker<LoopAccessAnalysis>();
3170 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
3171 // If not, give up now.
3172 return true;
3173
3174 // Check whether the analyses we depend on became invalid for any reason.
3175 // Skip checking TargetLibraryAnalysis as it is immutable and can't become
3176 // invalid.
3177 return Inv.invalidate<AAManager>(F, PA) ||
3178 Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
3179 Inv.invalidate<LoopAnalysis>(F, PA) ||
3180 Inv.invalidate<DominatorTreeAnalysis>(F, PA);
3181}
3182
3185 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
3186 auto &AA = FAM.getResult<AAManager>(F);
3187 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
3188 auto &LI = FAM.getResult<LoopAnalysis>(F);
3189 auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
3190 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
3191 auto &AC = FAM.getResult<AssumptionAnalysis>(F);
3192 return LoopAccessInfoManager(SE, AA, DT, LI, &TTI, &TLI, &AC);
3193}
3194
3195AnalysisKey LoopAccessAnalysis::Key;
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file implements a class to represent arbitrary precision integral constant values and operations...
@ Scaled
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
Definition CSEInfo.cpp:27
This file contains the declarations for the subclasses of Constant, which represent the different fla...
DXIL Forward Handle Accesses
DXIL Resource Access
dxil translate DXIL Translate Metadata
This file defines the DenseMap class.
Generic implementation of equivalence classes through the use Tarjan's efficient union-find algorithm...
#define DEBUG_TYPE
Hexagon Common GEP
#define _
This header defines various interfaces for pass management in LLVM.
static cl::opt< unsigned > MaxDependences("max-dependences", cl::Hidden, cl::desc("Maximum number of dependences collected by " "loop-access analysis (default = 100)"), cl::init(100))
We collect dependences up to this threshold.
static cl::opt< bool > EnableForwardingConflictDetection("store-to-load-forwarding-conflict-detection", cl::Hidden, cl::desc("Enable conflict detection in loop-access analysis"), cl::init(true))
Enable store-to-load forwarding conflict detection.
static void findForkedSCEVs(ScalarEvolution *SE, const Loop *L, Value *Ptr, SmallVectorImpl< PointerIntPair< const SCEV *, 1, bool > > &ScevList, unsigned Depth)
static cl::opt< unsigned > MemoryCheckMergeThreshold("memory-check-merge-threshold", cl::Hidden, cl::desc("Maximum number of comparisons done when trying to merge " "runtime memory checks. (default = 100)"), cl::init(100))
The maximum iterations used to merge memory checks.
static const SCEV * getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp)
Get the stride of a pointer access in a loop.
static bool evaluatePtrAddRecAtMaxBTCWillNotWrap(const SCEVAddRecExpr *AR, const SCEV *MaxBTC, const SCEV *EltSize, ScalarEvolution &SE, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC, std::optional< ScalarEvolution::LoopGuards > &LoopGuards)
Return true, if evaluating AR at MaxBTC cannot wrap, because AR at MaxBTC is guaranteed inbounds of t...
static std::optional< int64_t > getStrideFromAddRec(const SCEVAddRecExpr *AR, const Loop *Lp, Type *AccessTy, Value *Ptr, PredicatedScalarEvolution &PSE)
Try to compute a constant stride for AR.
static cl::opt< unsigned, true > VectorizationInterleave("force-vector-interleave", cl::Hidden, cl::desc("Sets the vectorization interleave count. " "Zero is autoselect."), cl::location(VectorizerParams::VectorizationInterleave))
static cl::opt< bool, true > HoistRuntimeChecks("hoist-runtime-checks", cl::Hidden, cl::desc("Hoist inner loop runtime memory checks to outer loop if possible"), cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true))
static DenseMap< const RuntimeCheckingPtrGroup *, unsigned > getPtrToIdxMap(ArrayRef< RuntimeCheckingPtrGroup > CheckingGroups)
Assign each RuntimeCheckingPtrGroup pointer an index for stable UTC output.
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
static cl::opt< unsigned, true > RuntimeMemoryCheckThreshold("runtime-memory-check-threshold", cl::Hidden, cl::desc("When performing memory disambiguation checks at runtime do not " "generate more than this number of comparisons (default = 8)."), cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8))
static void visitPointers(Value *StartPtr, const Loop &InnermostLoop, function_ref< void(Value *)> AddPointer)
static bool isNoWrap(PredicatedScalarEvolution &PSE, const SCEVAddRecExpr *AR, Value *Ptr, Type *AccessTy, const Loop *L, bool Assume, const DominatorTree &DT, std::optional< int64_t > Stride=std::nullopt)
Check whether AR is a non-wrapping AddRec.
static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, const SCEV &MaxBTC, const SCEV &Dist, uint64_t MaxStride)
Given a dependence-distance Dist between two memory accesses, that have strides in the same direction...
static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, uint64_t TypeByteSize)
Check the dependence for two accesses with the same stride Stride.
static const SCEV * getMinFromExprs(const SCEV *I, const SCEV *J, ScalarEvolution *SE)
Compare I and J and return the minimum.
static const SCEV * mulSCEVOverflow(const SCEV *A, const SCEV *B, ScalarEvolution &SE)
Returns A * B, if it is guaranteed not to unsigned wrap.
static Value * getLoopVariantGEPOperand(Value *Ptr, ScalarEvolution *SE, Loop *Lp)
If Ptr is a GEP, which has a loop-variant operand, return that operand.
static cl::opt< unsigned > MaxForkedSCEVDepth("max-forked-scev-depth", cl::Hidden, cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"), cl::init(5))
static cl::opt< bool > SpeculateUnitStride("laa-speculate-unit-stride", cl::Hidden, cl::desc("Speculate that non-constant strides are unit in LAA"), cl::init(true))
static cl::opt< bool > EnableMemAccessVersioning("enable-mem-access-versioning", cl::init(true), cl::Hidden, cl::desc("Enable symbolic stride memory access versioning"))
This enables versioning on the strides of symbolically striding memory accesses in code like the foll...
static const SCEV * addSCEVNoOverflow(const SCEV *A, const SCEV *B, ScalarEvolution &SE)
Returns A + B, if it is guaranteed not to unsigned wrap.
This header provides classes for managing per-loop analyses.
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
This file provides utility analysis objects describing memory locations.
#define P(N)
FunctionAnalysisManager FAM
This file defines the PointerIntPair class.
This file contains some templates that are useful if you are working with the STL at all.
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallSet class.
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
This pass exposes codegen information to IR-level passes.
static const X86InstrFMA3Group Groups[]
A manager for alias analyses.
Class for arbitrary precision integers.
Definition APInt.h:78
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1541
APInt abs() const
Get the absolute value.
Definition APInt.h:1796
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition APInt.cpp:1041
std::optional< int64_t > trySExtValue() const
Get sign extended value if possible.
Definition APInt.h:1575
int64_t getSExtValue() const
Get sign extended value.
Definition APInt.h:1563
This templated class represents "all analyses that operate over <aparticular IR unit>" (e....
Definition Analysis.h:50
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:137
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
bool isConvergent() const
Determine if the invoke is convergent.
@ ICMP_UGE
unsigned greater or equal
Definition InstrTypes.h:700
@ ICMP_SGE
signed greater or equal
Definition InstrTypes.h:704
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:702
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
bool isNegative() const
Definition Constants.h:214
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
A debug info location.
Definition DebugLoc.h:123
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:205
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
iterator end()
Definition DenseMap.h:81
Analysis pass which computes a DominatorTree.
Definition Dominators.h:283
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:164
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
iterator_range< member_iterator > members(const ECValue &ECV) const
bool contains(const ElemTy &V) const
Returns true if V is contained an equivalence class.
const ECValue & insert(const ElemTy &Data)
insert - Insert a new value into the union/find set, ignoring the request if the value already exists...
member_iterator member_end() const
const ElemTy & getLeaderValue(const ElemTy &V) const
getLeaderValue - Return the leader for the specified value that is in the set.
member_iterator findLeader(const ElemTy &V) const
findLeader - Given a value in the set, return a member iterator for the equivalence class it is in.
member_iterator unionSets(const ElemTy &V1, const ElemTy &V2)
union - Merge the two equivalence sets for the specified values, inserting them if they do not alread...
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
Definition Function.h:706
bool empty() const
Definition Function.h:857
PointerType * getType() const
Global values are always pointers.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
An instruction for reading from memory.
Value * getPointerOperand()
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
This analysis provides dependence information for the memory accesses of a loop.
LLVM_ABI Result run(Function &F, FunctionAnalysisManager &AM)
LLVM_ABI bool invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &Inv)
LLVM_ABI const LoopAccessInfo & getInfo(Loop &L, bool AllowPartial=false)
Drive the analysis of memory accesses in the loop.
const MemoryDepChecker & getDepChecker() const
the Memory Dependence Checker which can determine the loop-independent and loop-carried dependences b...
LLVM_ABI bool isInvariant(Value *V) const
Returns true if value V is loop invariant.
LLVM_ABI void print(raw_ostream &OS, unsigned Depth=0) const
Print the information about the memory accesses in the loop.
static LLVM_ABI bool blockNeedsPredication(const BasicBlock *BB, const Loop *TheLoop, const DominatorTree *DT)
Return true if the block BB needs to be predicated in order for the loop to be vectorized.
LLVM_ABI LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetTransformInfo *TTI, const TargetLibraryInfo *TLI, AAResults *AA, DominatorTree *DT, LoopInfo *LI, AssumptionCache *AC, bool AllowPartial=false)
Analysis pass that exposes the LoopInfo for a function.
Definition LoopInfo.h:569
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
unsigned getNumBackEdges() const
Calculate the number of back edges to the loop header.
BlockT * getHeader() const
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
std::string getLocStr() const
Return a string containing the debug location of the loop (file name + line number if present,...
Definition LoopInfo.cpp:667
bool isAnnotatedParallel() const
Returns true if the loop is annotated parallel.
Definition LoopInfo.cpp:565
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
Definition LoopInfo.cpp:632
ArrayRef< MDOperand > operands() const
Definition Metadata.h:1440
Checks memory dependences among accesses to the same underlying object to determine whether there vec...
ArrayRef< unsigned > getOrderForAccess(Value *Ptr, bool IsWrite) const
Return the program order indices for the access location (Ptr, IsWrite).
bool isSafeForAnyStoreLoadForwardDistances() const
Return true if there are no store-load forwarding dependencies.
bool isSafeForAnyVectorWidth() const
Return true if the number of elements that are safe to operate on simultaneously is not bounded.
LLVM_ABI bool areDepsSafe(const DepCandidates &AccessSets, const MemAccessInfoList &CheckDeps)
Check whether the dependencies between the accesses are safe, and records the dependence information ...
EquivalenceClasses< MemAccessInfo > DepCandidates
Set of potential dependent memory accesses.
bool shouldRetryWithRuntimeChecks() const
In same cases when the dependency check fails we can still vectorize the loop with a dynamic array ac...
const Loop * getInnermostLoop() const
uint64_t getMaxSafeVectorWidthInBits() const
Return the number of elements that are safe to operate on simultaneously, multiplied by the size of t...
bool isSafeForVectorization() const
No memory dependence was encountered that would inhibit vectorization.
SmallVector< MemAccessInfo, 8 > MemAccessInfoList
LLVM_ABI SmallVector< Instruction *, 4 > getInstructionsForAccess(Value *Ptr, bool isWrite) const
Find the set of instructions that read or write via Ptr.
VectorizationSafetyStatus
Type to keep track of the status of the dependence check.
LLVM_ABI void addAccess(StoreInst *SI)
Register the location (instructions are given increasing numbers) of a write access.
PointerIntPair< Value *, 1, bool > MemAccessInfo
uint64_t getStoreLoadForwardSafeDistanceInBits() const
Return safe power-of-2 number of elements, which do not prevent store-load forwarding,...
Representation for a specific memory location.
static LLVM_ABI MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
LocationSize Size
The maximum size of the location, in address-units, or UnknownSize if the size is not known.
AAMDNodes AATags
The metadata nodes which describes the aliasing of the location (each member is null if that kind of ...
const Value * Ptr
The address of the start of the location.
Diagnostic information for optimization analysis remarks.
PointerIntPair - This class implements a pair of a pointer and small integer.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
LLVM_ABI void addPredicate(const SCEVPredicate &Pred)
Adds a new predicate.
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Returns true if we've proved that V doesn't wrap by means of a SCEV predicate.
LLVM_ABI void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Proves that V doesn't overflow by adding SCEV predicate.
LLVM_ABI const SCEVAddRecExpr * getAsAddRec(Value *V)
Attempts to produce an AddRecExpr for V by adding additional SCEV predicates.
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
PreservedAnalysisChecker getChecker() const
Build a checker for this PreservedAnalyses and the specified analysis type.
Definition Analysis.h:275
Holds information about the memory runtime legality checks to verify that a group of pointers do not ...
bool Need
This flag indicates if we need to add the runtime check.
void reset()
Reset the state of the pointer runtime information.
unsigned getNumberOfChecks() const
Returns the number of run-time checks required according to needsChecking.
LLVM_ABI void printChecks(raw_ostream &OS, const SmallVectorImpl< RuntimePointerCheck > &Checks, unsigned Depth=0) const
Print Checks.
LLVM_ABI bool needsChecking(const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const
Decide if we need to add a check between two groups of pointers, according to needsChecking.
LLVM_ABI void print(raw_ostream &OS, unsigned Depth=0) const
Print the list run-time memory checks necessary.
SmallVector< RuntimeCheckingPtrGroup, 2 > CheckingGroups
Holds a partitioning of pointers into "check groups".
LLVM_ABI void generateChecks(MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies)
Generate the checks and store it.
static LLVM_ABI bool arePointersInSamePartition(const SmallVectorImpl< int > &PtrToPartition, unsigned PtrIdx1, unsigned PtrIdx2)
Check if pointers are in the same partition.
SmallVector< PointerInfo, 2 > Pointers
Information about the pointers that may require checking.
LLVM_ABI void insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, Type *AccessTy, bool WritePtr, unsigned DepSetId, unsigned ASId, PredicatedScalarEvolution &PSE, bool NeedsFreeze)
Insert a pointer and calculate the start and end SCEVs.
This node represents a polynomial recurrence on the trip count of the specified loop.
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
bool isAffine() const
Return true if this represents an expression A + B*x where A and B are loop invariant values.
This class represents a constant integer value.
ConstantInt * getValue() const
const APInt & getAPInt() const
NoWrapFlags getNoWrapFlags(NoWrapFlags Mask=NoWrapMask) const
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
static LLVM_ABI LoopGuards collect(const Loop *L, ScalarEvolution &SE)
Collect rewrite map for loop guards for loop L, together with flags indicating if NUW and NSW can be ...
The main scalar evolution driver.
const SCEV * getConstantMaxBackedgeTakenCount(const Loop *L)
When successful, this returns a SCEVConstant that is greater than or equal to (i.e.
LLVM_ABI bool isKnownNonNegative(const SCEV *S)
Test if the given expression is known to be non-negative.
LLVM_ABI const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
LLVM_ABI Type * getWiderType(Type *Ty1, Type *Ty2) const
LLVM_ABI const SCEV * getAbsExpr(const SCEV *Op, bool IsNSW)
LLVM_ABI bool isKnownNonPositive(const SCEV *S)
Test if the given expression is known to be non-positive.
LLVM_ABI bool isKnownNegative(const SCEV *S)
Test if the given expression is known to be negative.
LLVM_ABI const SCEV * getUMaxExpr(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI=nullptr)
Is operation BinOp between LHS and RHS provably does not have a signed/unsigned overflow (Signed)?
LLVM_ABI const SCEVPredicate * getEqualPredicate(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getNoopOrSignExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI const SCEV * getPtrToIntExpr(const SCEV *Op, Type *Ty)
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isKnownPositive(const SCEV *S)
Test if the given expression is known to be positive.
LLVM_ABI const SCEV * getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI Type * getEffectiveSCEVType(Type *Ty) const
Return a type with the same bitwidth as the given type and which represents how SCEV will treat the g...
LLVM_ABI const SCEV * getUMinExpr(const SCEV *LHS, const SCEV *RHS, bool Sequential=false)
APInt getSignedRangeMin(const SCEV *S)
Determine the min of the signed range for a particular SCEV.
LLVM_ABI const SCEV * getStoreSizeOfExpr(Type *IntTy, Type *StoreTy)
Return an expression for the store size of StoreTy that is type IntTy.
LLVM_ABI const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Return LHS-RHS.
LLVM_ABI const SCEV * getNoopOrZeroExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI const SCEV * getCouldNotCompute()
LLVM_ABI const SCEV * getPointerBase(const SCEV *V)
Transitively follow the chain of pointer-type operands until reaching a SCEV that does not have a sin...
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEV * getSizeOfExpr(Type *IntTy, TypeSize Size)
Return an expression for a TypeSize.
LLVM_ABI std::optional< APInt > computeConstantDifference(const SCEV *LHS, const SCEV *RHS)
Compute LHS - RHS and returns the result as an APInt if it is a constant, and std::nullopt if it isn'...
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI const SCEV * getTruncateOrSignExtend(const SCEV *V, Type *Ty, unsigned Depth=0)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition SmallSet.h:133
bool contains(const T &V) const
Check if the SmallSet contains the given element.
Definition SmallSet.h:228
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
Definition SmallSet.h:183
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void resize(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
Definition VectorUtils.h:74
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI bool canBeFreed() const
Return true if the memory object referred to by V can by freed in the scope for which the SSA value d...
Definition Value.cpp:816
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI uint64_t getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull, bool &CanBeFreed) const
Returns the number of bytes known to be dereferenceable for the pointer value.
Definition Value.cpp:881
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
An efficient, type-erasing, non-owning reference to a callable.
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
raw_ostream & indent(unsigned NumSpaces)
indent - Insert 'NumSpaces' spaces.
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Abstract Attribute helper functions.
Definition Attributor.h:165
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
bool match(Val *V, const Pattern &P)
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
is_undef_or_poison m_scev_UndefOrPoison()
Match an SCEVUnknown wrapping undef or poison.
class_match< const SCEVConstant > m_SCEVConstant()
specificloop_ty m_SpecificLoop(const Loop *L)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
specificscev_ty m_scev_Specific(const SCEV *S)
Match if we have a specific specified SCEV.
class_match< const SCEV > m_SCEV()
initializer< Ty > init(const Ty &Val)
LocationClass< Ty > location(Ty &L)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, bool > hasa(Y &&MD)
Check whether Metadata has a Value.
Definition Metadata.h:650
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
Definition Metadata.h:667
DiagnosticInfoOptimizationBase::Argument NV
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
LLVM_ABI bool willNotFreeBetween(const Instruction *Assume, const Instruction *CtxI)
Returns true, if no instruction between Assume and CtxI may free memory and the function is marked as...
@ Offset
Definition DWP.cpp:532
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition STLExtras.h:829
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
LLVM_ABI RetainedKnowledge getKnowledgeForValue(const Value *V, ArrayRef< Attribute::AttrKind > AttrKinds, AssumptionCache &AC, function_ref< bool(RetainedKnowledge, Instruction *, const CallBase::BundleOpInfo *)> Filter=[](auto...) { return true;})
Return a valid Knowledge associated to the Value V if its Attribute kind is in AttrKinds and it match...
LLVM_ABI bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2484
unsigned getPointerAddressSpace(const Type *T)
Definition SPIRVUtils.h:365
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI std::optional< const MDOperand * > findStringMetadataForLoop(const Loop *TheLoop, StringRef Name)
Find string metadata for loop.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:732
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2148
const Value * getPointerOperand(const Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
Definition STLExtras.h:1980
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI std::optional< int64_t > getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB, Value *PtrB, const DataLayout &DL, ScalarEvolution &SE, bool StrictCheck=false, bool CheckType=true)
Returns the distance between the pointers PtrA and PtrB iff they are compatible and it is possible to...
LLVM_ABI bool sortPtrAccesses(ArrayRef< Value * > VL, Type *ElemTy, const DataLayout &DL, ScalarEvolution &SE, SmallVectorImpl< unsigned > &SortedIndices)
Attempt to sort the pointers in VL and return the sorted indices in SortedIndices,...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
Definition ModRef.h:74
TargetTransformInfo TTI
LLVM_ABI const SCEV * replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &PtrToStride, Value *Ptr)
Return the SCEV corresponding to a pointer with the symbolic stride replaced with constant one,...
LLVM_ABI bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, ScalarEvolution &SE, bool CheckType=true)
Returns true if the memory operations A and B are consecutive.
DWARFExpression::Operation Op
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1770
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Definition bit.h:330
LLVM_ABI void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, const LoopInfo *LI=nullptr, unsigned MaxLookup=MaxLookupSearchDepth)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
LLVM_ABI std::pair< const SCEV *, const SCEV * > getStartAndEndForAccess(const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy, const SCEV *BTC, const SCEV *MaxBTC, ScalarEvolution *SE, DenseMap< std::pair< const SCEV *, Type * >, std::pair< const SCEV *, const SCEV * > > *PointerBounds, DominatorTree *DT, AssumptionCache *AC, std::optional< ScalarEvolution::LoopGuards > &LoopGuards)
Calculate Start and End points of memory access using exact backedge taken count BTC if computable or...
LLVM_ABI std::optional< int64_t > getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr, const Loop *Lp, const DominatorTree &DT, const DenseMap< Value *, const SCEV * > &StridesMap=DenseMap< Value *, const SCEV * >(), bool Assume=false, bool ShouldCheckWrap=true)
If the pointer has a constant stride return it in units of the access type size.
Implement std::hash so that hash_code can be used in STL containers.
Definition BitVector.h:870
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define N
IR Values for the lower and upper bounds of a pointer evolution.
MDNode * Scope
The tag for alias scope specification (used with noalias).
Definition Metadata.h:784
MDNode * TBAA
The tag for type-based alias analysis.
Definition Metadata.h:778
MDNode * NoAlias
The tag specifying the noalias scope.
Definition Metadata.h:787
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition Analysis.h:29
Instruction * getDestination(const MemoryDepChecker &DepChecker) const
Return the destination instruction of the dependence.
DepType Type
The type of the dependence.
unsigned Destination
Index of the destination of the dependence in the InstMap vector.
LLVM_ABI bool isPossiblyBackward() const
May be a lexically backward dependence type (includes Unknown).
Instruction * getSource(const MemoryDepChecker &DepChecker) const
Return the source instruction of the dependence.
LLVM_ABI bool isForward() const
Lexically forward dependence.
LLVM_ABI bool isBackward() const
Lexically backward dependence.
LLVM_ABI void print(raw_ostream &OS, unsigned Depth, const SmallVectorImpl< Instruction * > &Instrs) const
Print the dependence.
unsigned Source
Index of the source of the dependence in the InstMap vector.
DepType
The type of the dependence.
static LLVM_ABI const char * DepName[]
String version of the types.
static LLVM_ABI VectorizationSafetyStatus isSafeForVectorization(DepType Type)
Dependence types that don't prevent vectorization.
Represent one information held inside an operand bundle of an llvm.assume.
unsigned AddressSpace
Address space of the involved pointers.
LLVM_ABI bool addPointer(unsigned Index, const RuntimePointerChecking &RtCheck)
Tries to add the pointer recorded in RtCheck at index Index to this pointer checking group.
bool NeedsFreeze
Whether the pointer needs to be frozen after expansion, e.g.
LLVM_ABI RuntimeCheckingPtrGroup(unsigned Index, const RuntimePointerChecking &RtCheck)
Create a new pointer checking group containing a single pointer, with index Index in RtCheck.
const SCEV * High
The SCEV expression which represents the upper bound of all the pointers in this group.
SmallVector< unsigned, 2 > Members
Indices of all the pointers that constitute this grouping.
const SCEV * Low
The SCEV expression which represents the lower bound of all the pointers in this group.
bool IsWritePtr
Holds the information if this pointer is used for writing to memory.
unsigned DependencySetId
Holds the id of the set of pointers that could be dependent because of a shared underlying object.
unsigned AliasSetId
Holds the id of the disjoint alias set to which this pointer belongs.
static LLVM_ABI const unsigned MaxVectorWidth
Maximum SIMD width.
static LLVM_ABI unsigned VectorizationFactor
VF as overridden by the user.
static LLVM_ABI unsigned RuntimeMemoryCheckThreshold
\When performing memory disambiguation checks at runtime do not make more than this number of compari...
static LLVM_ABI bool isInterleaveForced()
True if force-vector-interleave was specified by the user.
static LLVM_ABI unsigned VectorizationInterleave
Interleave factor as overridden by the user.
static LLVM_ABI bool HoistRuntimeChecks
Function object to check whether the first component of a container supported by std::get (like std::...
Definition STLExtras.h:1437