72#define DEBUG_TYPE "loop-accesses"
76 cl::desc(
"Sets the SIMD width. Zero is autoselect."),
82 cl::desc(
"Sets the vectorization interleave count. "
83 "Zero is autoselect."),
90 cl::desc(
"When performing memory disambiguation checks at runtime do not "
91 "generate more than this number of comparisons (default = 8)."),
98 cl::desc(
"Maximum number of comparisons done when trying to merge "
99 "runtime memory checks. (default = 100)"),
108 cl::desc(
"Maximum number of dependences collected by "
109 "loop-access analysis (default = 100)"),
125 cl::desc(
"Enable symbolic stride memory access versioning"));
130 "store-to-load-forwarding-conflict-detection",
cl::Hidden,
131 cl::desc(
"Enable conflict detection in loop-access analysis"),
136 cl::desc(
"Maximum recursion depth when finding forked SCEVs (default = 5)"),
141 cl::desc(
"Speculate that non-constant strides are unit in LAA"),
147 "Hoist inner loop runtime memory checks to outer loop if possible"),
152 return ::VectorizationInterleave.getNumOccurrences() > 0;
162 const SCEV *StrideSCEV = PtrToStride.
lookup(Ptr);
179 <<
" by: " << *Expr <<
"\n");
185 :
High(RtCheck.Pointers[Index].End),
Low(RtCheck.Pointers[Index].Start),
217 std::optional<ScalarEvolution::LoopGuards> &LoopGuards) {
223 bool CheckForNonNull, CheckForFreed;
224 Value *StartPtrV = StartPtr->getValue();
226 DL, CheckForNonNull, CheckForFreed);
228 if (DerefBytes && (CheckForNonNull || CheckForFreed))
236 Instruction *CtxI = &*L->getHeader()->getFirstNonPHIIt();
237 if (
BasicBlock *LoopPred = L->getLoopPredecessor()) {
239 CtxI = LoopPred->getTerminator();
249 DerefRK = std::max(DerefRK, RK);
257 if (DerefBytesSCEV->
isZero())
277 const SCEV *OffsetAtLastIter =
279 if (!OffsetAtLastIter) {
289 if (!OffsetAtLastIter)
298 if (IsKnownNonNegative) {
321 DenseMap<std::pair<const SCEV *, Type *>,
324 std::optional<ScalarEvolution::LoopGuards> &LoopGuards) {
325 std::pair<const SCEV *, const SCEV *> *PtrBoundsPair;
328 {{PtrExpr, AccessTy},
332 PtrBoundsPair = &Iter->second;
342 ScStart = ScEnd = PtrExpr;
344 ScStart = AR->getStart();
350 ScEnd = AR->evaluateAtIteration(BTC, *SE);
360 DT, AC, LoopGuards)) {
361 ScEnd = AR->evaluateAtIteration(MaxBTC, *SE);
370 const SCEV *Step = AR->getStepRecurrence(*SE);
375 if (CStep->getValue()->isNegative())
393 std::pair<const SCEV *, const SCEV *> Res = {ScStart, ScEnd};
395 *PtrBoundsPair = Res;
402 Type *AccessTy,
bool WritePtr,
403 unsigned DepSetId,
unsigned ASId,
409 Lp, PtrExpr, AccessTy, BTC, SymbolicMaxBTC, PSE.
getSE(),
410 &DC.getPointerBounds(), DC.getDT(), DC.getAC(), LoopGuards);
413 "must be able to compute both start and end expressions");
414 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr,
418bool RuntimePointerChecking::tryToCreateDiffCheck(
441 if (AccSrc.
size() != 1 || AccSink.
size() != 1)
445 if (AccSink[0] < AccSrc[0])
449 const SCEV *SrcStart;
450 const SCEV *SinkStart;
452 if (!
match(Src->Expr,
471 std::max(
DL.getTypeAllocSize(SrcTy),
DL.getTypeAllocSize(DstTy));
501 const Loop *StartARLoop = SrcStartAR->getLoop();
502 if (StartARLoop == SinkStartAR->getLoop() &&
507 SrcStartAR->getStepRecurrence(*SE) !=
508 SinkStartAR->getStepRecurrence(*SE)) {
509 LLVM_DEBUG(
dbgs() <<
"LAA: Not creating diff runtime check, since these "
510 "cannot be hoisted out of the outer loop\n");
516 <<
"SrcStart: " << *SrcStartInt <<
'\n'
517 <<
"SinkStartInt: " << *SinkStartInt <<
'\n');
518 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize,
519 Src->NeedsFreeze ||
Sink->NeedsFreeze);
524 SmallVector<RuntimePointerCheck, 4> Checks;
532 CanUseDiffCheck = CanUseDiffCheck && tryToCreateDiffCheck(CGI, CGJ);
533 Checks.emplace_back(&CGI, &CGJ);
542 assert(Checks.empty() &&
"Checks is not empty");
543 groupChecks(DepCands, UseDependencies);
549 for (
const auto &
I : M.Members)
550 for (
const auto &J :
N.Members)
563 return Diff->isNegative() ? J :
I;
570 RtCheck.
Pointers[Index].PointerValue->getType()->getPointerAddressSpace(),
571 RtCheck.
Pointers[Index].NeedsFreeze, *RtCheck.SE);
575 const SCEV *End,
unsigned AS,
579 "all pointers in a checking group must be in the same address space");
605void RuntimePointerChecking::groupChecks(
651 if (!UseDependencies) {
657 unsigned TotalComparisons = 0;
660 for (
unsigned Index = 0; Index <
Pointers.size(); ++Index)
661 PositionMap[
Pointers[Index].PointerValue].push_back(Index);
687 auto PointerI = PositionMap.
find(M.getPointer());
690 if (PointerI == PositionMap.
end())
692 for (
unsigned Pointer : PointerI->second) {
709 if (Group.addPointer(Pointer, *
this)) {
719 Groups.emplace_back(Pointer, *
this);
732 return (PtrToPartition[PtrIdx1] != -1 &&
733 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
756 for (
const auto &[Idx, CG] :
enumerate(CheckingGroups))
757 PtrIndices[&CG] = Idx;
763 unsigned Depth)
const {
766 for (
const auto &[Check1, Check2] : Checks) {
767 const auto &
First = Check1->Members, &Second = Check2->Members;
769 OS.
indent(
Depth + 2) <<
"Comparing group GRP" << PtrIndices.at(Check1)
771 for (
unsigned K :
First)
773 OS.
indent(
Depth + 2) <<
"Against group GRP" << PtrIndices.at(Check2)
775 for (
unsigned K : Second)
788 OS.
indent(
Depth + 2) <<
"Group GRP" << PtrIndices.at(&CG) <<
":\n";
789 OS.
indent(
Depth + 4) <<
"(Low: " << *CG.Low <<
" High: " << *CG.High
791 for (
unsigned Member : CG.Members) {
803class AccessAnalysis {
813 : TheLoop(TheLoop), BAA(*
AA), AST(BAA), LI(LI), DT(DT), DepCands(DA),
814 PSE(PSE), LoopAliasScopes(LoopAliasScopes) {
816 BAA.enableCrossIterationMode();
822 AST.add(adjustLoc(
Loc));
823 Accesses[MemAccessInfo(Ptr,
false)].insert(AccessTy);
825 ReadOnlyPtr.insert(Ptr);
829 void addStore(
const MemoryLocation &Loc,
Type *AccessTy) {
831 AST.add(adjustLoc(Loc));
832 Accesses[MemAccessInfo(Ptr,
true)].insert(AccessTy);
842 bool createCheckForAccess(RuntimePointerChecking &RtCheck,
844 const DenseMap<Value *, const SCEV *> &Strides,
845 DenseMap<Value *, unsigned> &DepSetId,
846 Loop *TheLoop,
unsigned &RunningDepId,
847 unsigned ASId,
bool Assume);
857 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, Loop *TheLoop,
858 const DenseMap<Value *, const SCEV *> &Strides,
859 Value *&UncomputablePtr,
bool AllowPartial);
863 void buildDependenceSets() {
864 processMemAccesses();
872 bool isDependencyCheckNeeded()
const {
return !CheckDeps.empty(); }
875 void resetDepChecks(MemoryDepChecker &DepChecker) {
880 const MemAccessInfoList &getDependenciesToCheck()
const {
return CheckDeps; }
883 typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap;
887 MemoryLocation adjustLoc(MemoryLocation Loc)
const {
897 MDNode *adjustAliasScopeList(MDNode *ScopeList)
const {
904 return LoopAliasScopes.contains(cast<MDNode>(Scope));
913 void processMemAccesses();
923 MemAccessInfoList CheckDeps;
926 SmallPtrSet<Value*, 16> ReadOnlyPtr;
953 bool IsRTCheckAnalysisNeeded =
false;
956 PredicatedScalarEvolution &PSE;
958 DenseMap<Value *, SmallVector<const Value *, 16>> UnderlyingObjects;
962 SmallPtrSetImpl<MDNode *> &LoopAliasScopes;
969static std::optional<int64_t>
973 LLVM_DEBUG(
dbgs() <<
"LAA: Bad stride - Scalable object: " << *AccessTy
981 dbgs() <<
"LAA: Bad stride - Not striding over innermost loop ";
983 dbgs() << *Ptr <<
" ";
985 dbgs() <<
"SCEV: " << *AR <<
"\n";
994 const APInt *APStepVal;
997 dbgs() <<
"LAA: Bad stride - Not a constant strided ";
999 dbgs() << *Ptr <<
" ";
1000 dbgs() <<
"SCEV: " << *AR <<
"\n";
1002 return std::nullopt;
1006 TypeSize AllocSize =
DL.getTypeAllocSize(AccessTy);
1010 std::optional<int64_t> StepVal = APStepVal->
trySExtValue();
1012 return std::nullopt;
1015 return *StepVal %
Size ? std::nullopt : std::make_optional(*StepVal /
Size);
1023 std::optional<int64_t> Stride = std::nullopt) {
1037 GEP &&
GEP->hasNoUnsignedSignedWrap()) {
1040 if (L->getHeader() == L->getLoopLatch() ||
1042 if (getLoadStorePointerOperand(U) != GEP)
1044 BasicBlock *UserBB = cast<Instruction>(U)->getParent();
1045 return !LoopAccessInfo::blockNeedsPredication(UserBB, L, &DT);
1058 (Stride == 1 || Stride == -1))
1062 if (Ptr && Assume) {
1065 <<
"LAA: Pointer: " << *Ptr <<
"\n"
1066 <<
"LAA: SCEV: " << *AR <<
"\n"
1067 <<
"LAA: Added an overflow assumption\n");
1080 while (!WorkList.
empty()) {
1082 if (!Visited.
insert(Ptr).second)
1088 if (PN && InnermostLoop.
contains(PN->getParent()) &&
1089 PN->getParent() != InnermostLoop.
getHeader()) {
1134 auto GetBinOpExpr = [&SE](
unsigned Opcode,
const SCEV *L,
const SCEV *R) {
1136 case Instruction::Add:
1138 case Instruction::Sub:
1146 unsigned Opcode =
I->getOpcode();
1148 case Instruction::GetElementPtr: {
1150 Type *SourceTy =
GEP->getSourceElementType();
1153 if (
I->getNumOperands() != 2 || SourceTy->
isVectorTy()) {
1163 bool NeedsFreeze =
any_of(BaseScevs, UndefPoisonCheck) ||
1164 any_of(OffsetScevs, UndefPoisonCheck);
1169 if (OffsetScevs.
size() == 2 && BaseScevs.
size() == 1)
1171 else if (BaseScevs.
size() == 2 && OffsetScevs.
size() == 1)
1174 ScevList.emplace_back(Scev, NeedsFreeze);
1185 for (
auto [
B, O] :
zip(BaseScevs, OffsetScevs)) {
1196 case Instruction::Select: {
1203 if (ChildScevs.
size() == 2)
1209 case Instruction::PHI: {
1214 if (
I->getNumOperands() == 2) {
1218 if (ChildScevs.
size() == 2)
1224 case Instruction::Add:
1225 case Instruction::Sub: {
1233 any_of(LScevs, UndefPoisonCheck) ||
any_of(RScevs, UndefPoisonCheck);
1238 if (LScevs.
size() == 2 && RScevs.
size() == 1)
1240 else if (RScevs.
size() == 2 && LScevs.
size() == 1)
1243 ScevList.emplace_back(Scev, NeedsFreeze);
1247 for (
auto [L, R] :
zip(LScevs, RScevs))
1248 ScevList.emplace_back(GetBinOpExpr(Opcode,
get<0>(L),
get<0>(R)),
1254 LLVM_DEBUG(
dbgs() <<
"ForkedPtr unhandled instruction: " << *
I <<
"\n");
1260bool AccessAnalysis::createCheckForAccess(
1264 unsigned &RunningDepId,
unsigned ASId,
bool Assume) {
1272 "Must have some runtime-check pointer candidates");
1276 auto IsLoopInvariantOrAR =
1281 if (RTCheckPtrs.
size() == 2 &&
all_of(RTCheckPtrs, IsLoopInvariantOrAR)) {
1282 LLVM_DEBUG(
dbgs() <<
"LAA: Found forked pointer: " << *Ptr <<
"\n";
1284 <<
"\t(" << Idx <<
") " << *Q.getPointer() <<
"\n");
1291 for (
auto &
P : RTCheckPtrs) {
1304 if (RTCheckPtrs.size() == 1) {
1310 if (!
isNoWrap(PSE, AR, RTCheckPtrs.size() == 1 ? Ptr :
nullptr, AccessTy,
1311 TheLoop, Assume, DT))
1315 for (
const auto &[PtrExpr, NeedsFreeze] : RTCheckPtrs) {
1319 if (isDependencyCheckNeeded()) {
1321 unsigned &LeaderId = DepSetId[Leader];
1323 LeaderId = RunningDepId++;
1327 DepId = RunningDepId++;
1329 bool IsWrite =
Access.getInt();
1330 RtCheck.
insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE,
1332 LLVM_DEBUG(
dbgs() <<
"LAA: Found a runtime check ptr:" << *Ptr <<
'\n');
1338bool AccessAnalysis::canCheckPtrAtRT(
1341 bool AllowPartial) {
1344 bool CanDoRT =
true;
1346 bool MayNeedRTCheck =
false;
1347 if (!IsRTCheckAnalysisNeeded)
return true;
1349 bool IsDepCheckNeeded = isDependencyCheckNeeded();
1354 for (
const auto &AS : AST) {
1355 int NumReadPtrChecks = 0;
1356 int NumWritePtrChecks = 0;
1357 bool CanDoAliasSetRT =
true;
1359 auto ASPointers = AS.getPointers();
1363 unsigned RunningDepId = 1;
1371 for (
const Value *ConstPtr : ASPointers) {
1373 bool IsWrite =
Accesses.contains(MemAccessInfo(Ptr,
true));
1375 ++NumWritePtrChecks;
1383 if (NumWritePtrChecks == 0 ||
1384 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
1385 assert((ASPointers.size() <= 1 ||
1387 [
this](
const Value *Ptr) {
1388 MemAccessInfo AccessWrite(
const_cast<Value *
>(Ptr),
1390 return !DepCands.
contains(AccessWrite);
1392 "Can only skip updating CanDoRT below, if all entries in AS "
1393 "are reads or there is at most 1 entry");
1397 for (
auto &
Access : AccessInfos) {
1399 if (!createCheckForAccess(RtCheck,
Access, AccessTy, StridesMap,
1400 DepSetId, TheLoop, RunningDepId, ASId,
1403 << *
Access.getPointer() <<
'\n');
1405 CanDoAliasSetRT =
false;
1419 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.
empty();
1423 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
1427 CanDoAliasSetRT =
true;
1428 for (
const auto &[
Access, AccessTy] : Retries) {
1429 if (!createCheckForAccess(RtCheck,
Access, AccessTy, StridesMap,
1430 DepSetId, TheLoop, RunningDepId, ASId,
1432 CanDoAliasSetRT =
false;
1433 UncomputablePtr =
Access.getPointer();
1440 CanDoRT &= CanDoAliasSetRT;
1441 MayNeedRTCheck |= NeedsAliasSetRTCheck;
1450 unsigned NumPointers = RtCheck.
Pointers.size();
1451 for (
unsigned i = 0; i < NumPointers; ++i) {
1452 for (
unsigned j = i + 1;
j < NumPointers; ++
j) {
1454 if (RtCheck.
Pointers[i].DependencySetId ==
1455 RtCheck.
Pointers[j].DependencySetId)
1468 dbgs() <<
"LAA: Runtime check would require comparison between"
1469 " different address spaces\n");
1475 if (MayNeedRTCheck && (CanDoRT || AllowPartial))
1479 <<
" pointer comparisons.\n");
1486 bool CanDoRTIfNeeded = !RtCheck.
Need || CanDoRT;
1487 assert(CanDoRTIfNeeded == (CanDoRT || !MayNeedRTCheck) &&
1488 "CanDoRTIfNeeded depends on RtCheck.Need");
1489 if (!CanDoRTIfNeeded && !AllowPartial)
1491 return CanDoRTIfNeeded;
1494void AccessAnalysis::processMemAccesses() {
1504 dbgs() <<
"\t" << *
A.getPointer() <<
" ("
1507 : (ReadOnlyPtr.contains(
A.getPointer()) ?
"read-only"
1516 for (
const auto &AS : AST) {
1520 auto ASPointers = AS.getPointers();
1522 bool SetHasWrite =
false;
1527 UnderlyingObjToAccessMap;
1528 UnderlyingObjToAccessMap ObjToLastAccess;
1531 PtrAccessMap DeferredAccesses;
1535 for (
int SetIteration = 0; SetIteration < 2; ++SetIteration) {
1536 bool UseDeferred = SetIteration > 0;
1537 PtrAccessMap &S = UseDeferred ? DeferredAccesses :
Accesses;
1539 for (
const Value *ConstPtr : ASPointers) {
1544 for (
const auto &[AC,
_] : S) {
1545 if (AC.getPointer() != Ptr)
1548 bool IsWrite = AC.getInt();
1552 bool IsReadOnlyPtr = ReadOnlyPtr.contains(Ptr) && !IsWrite;
1553 if (UseDeferred && !IsReadOnlyPtr)
1557 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
1558 S.contains(MemAccessInfo(Ptr,
false))) &&
1559 "Alias-set pointer not in the access set?");
1561 MemAccessInfo
Access(Ptr, IsWrite);
1569 if (!UseDeferred && IsReadOnlyPtr) {
1572 DeferredAccesses.insert({
Access, {}});
1580 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
1581 CheckDeps.push_back(
Access);
1582 IsRTCheckAnalysisNeeded =
true;
1594 <<
"Underlying objects for pointer " << *Ptr <<
"\n");
1595 for (
const Value *UnderlyingObj : UOs) {
1604 auto [It,
Inserted] = ObjToLastAccess.try_emplace(
1622std::optional<int64_t>
1626 bool Assume,
bool ShouldCheckWrap) {
1638 LLVM_DEBUG(
dbgs() <<
"LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1639 <<
" SCEV: " << *PtrScev <<
"\n");
1640 return std::nullopt;
1643 std::optional<int64_t> Stride =
1645 if (!ShouldCheckWrap || !Stride)
1648 if (
isNoWrap(PSE, AR, Ptr, AccessTy, Lp, Assume, DT, Stride))
1652 dbgs() <<
"LAA: Bad stride - Pointer may wrap in the address space "
1653 << *Ptr <<
" SCEV: " << *AR <<
"\n");
1654 return std::nullopt;
1662 assert(PtrA && PtrB &&
"Expected non-nullptr pointers.");
1670 return std::nullopt;
1677 return std::nullopt;
1678 unsigned IdxWidth =
DL.getIndexSizeInBits(ASA);
1680 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1686 std::optional<int64_t> Val;
1687 if (PtrA1 == PtrB1) {
1694 return std::nullopt;
1696 IdxWidth =
DL.getIndexSizeInBits(ASA);
1697 OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1706 std::optional<APInt> Diff =
1709 return std::nullopt;
1710 Val = Diff->trySExtValue();
1714 return std::nullopt;
1716 int64_t
Size =
DL.getTypeStoreSize(ElemTyA);
1717 int64_t Dist = *Val /
Size;
1721 if (!StrictCheck || Dist *
Size == Val)
1723 return std::nullopt;
1730 VL, [](
const Value *V) {
return V->getType()->isPointerTy(); }) &&
1731 "Expected list of pointer operands.");
1734 Value *Ptr0 = VL[0];
1736 using DistOrdPair = std::pair<int64_t, unsigned>;
1738 std::set<DistOrdPair,
decltype(Compare)> Offsets(Compare);
1739 Offsets.emplace(0, 0);
1740 bool IsConsecutive =
true;
1742 std::optional<int64_t> Diff =
1750 auto [It, IsInserted] = Offsets.emplace(
Offset, Idx);
1754 IsConsecutive &= std::next(It) == Offsets.end();
1756 SortedIndices.
clear();
1757 if (!IsConsecutive) {
1760 for (
auto [Idx, Off] :
enumerate(Offsets))
1761 SortedIndices[Idx] = Off.second;
1775 std::optional<int64_t> Diff =
1784 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
1785 InstMap.push_back(SI);
1792 [
this, LI](
Value *Ptr) {
1793 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
1794 InstMap.push_back(LI);
1856bool MemoryDepChecker::couldPreventStoreLoadForward(
uint64_t Distance,
1858 unsigned CommonStride) {
1871 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1873 uint64_t MaxVFWithoutSLForwardIssuesPowerOf2 =
1875 MaxStoreLoadForwardSafeDistanceInBits);
1878 for (
uint64_t VF = 2 * TypeByteSize;
1879 VF <= MaxVFWithoutSLForwardIssuesPowerOf2; VF *= 2) {
1882 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1883 MaxVFWithoutSLForwardIssuesPowerOf2 = (VF >> 1);
1888 if (MaxVFWithoutSLForwardIssuesPowerOf2 < 2 * TypeByteSize) {
1890 dbgs() <<
"LAA: Distance " << Distance
1891 <<
" that could cause a store-load forwarding conflict\n");
1896 MaxVFWithoutSLForwardIssuesPowerOf2 <
1897 MaxStoreLoadForwardSafeDistanceInBits &&
1898 MaxVFWithoutSLForwardIssuesPowerOf2 !=
1901 bit_floor(MaxVFWithoutSLForwardIssuesPowerOf2 / CommonStride);
1902 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
1903 MaxStoreLoadForwardSafeDistanceInBits =
1904 std::min(MaxStoreLoadForwardSafeDistanceInBits, MaxVFInBits);
1927 const SCEV &MaxBTC,
const SCEV &Dist,
1950 const SCEV *CastedDist = &Dist;
1951 const SCEV *CastedProduct = Product;
1958 if (DistTypeSizeBits > ProductTypeSizeBits)
1983 assert(Stride > 1 &&
"The stride must be greater than 1");
1984 assert(TypeByteSize > 0 &&
"The type size in byte must be non-zero");
1985 assert(Distance > 0 &&
"The distance must be non-zero");
1988 if (Distance % TypeByteSize)
2007 return Distance % Stride;
2010bool MemoryDepChecker::areAccessesCompletelyBeforeOrAfter(
const SCEV *Src,
2014 const SCEV *BTC = PSE.getBackedgeTakenCount();
2015 const SCEV *SymbolicMaxBTC = PSE.getSymbolicMaxBackedgeTakenCount();
2016 ScalarEvolution &SE = *PSE.getSE();
2017 const auto &[SrcStart_, SrcEnd_] =
2019 &SE, &PointerBounds, DT, AC, LoopGuards);
2023 const auto &[SinkStart_, SinkEnd_] =
2025 &SE, &PointerBounds, DT, AC, LoopGuards);
2044 MemoryDepChecker::DepDistanceStrideAndSizeInfo>
2045MemoryDepChecker::getDependenceDistanceStrideAndSize(
2046 const AccessAnalysis::MemAccessInfo &
A, Instruction *AInst,
2047 const AccessAnalysis::MemAccessInfo &
B, Instruction *BInst) {
2048 const auto &
DL = InnermostLoop->getHeader()->getDataLayout();
2049 auto &SE = *PSE.getSE();
2050 const auto &[APtr, AIsWrite] =
A;
2051 const auto &[BPtr, BIsWrite] =
B;
2054 if (!AIsWrite && !BIsWrite)
2061 if (APtr->getType()->getPointerAddressSpace() !=
2062 BPtr->getType()->getPointerAddressSpace())
2066 PSE, ATy, APtr, InnermostLoop, *DT, SymbolicStrides,
true,
true);
2068 PSE, BTy, BPtr, InnermostLoop, *DT, SymbolicStrides,
true,
true);
2070 const SCEV *Src = PSE.getSCEV(APtr);
2071 const SCEV *
Sink = PSE.getSCEV(BPtr);
2076 if (StrideAPtr && *StrideAPtr < 0) {
2085 LLVM_DEBUG(
dbgs() <<
"LAA: Src Scev: " << *Src <<
"Sink Scev: " << *Sink
2087 LLVM_DEBUG(
dbgs() <<
"LAA: Distance for " << *AInst <<
" to " << *BInst
2088 <<
": " << *Dist <<
"\n");
2097 if (!StrideAPtr || !StrideBPtr) {
2098 LLVM_DEBUG(
dbgs() <<
"Pointer access with non-constant stride\n");
2102 int64_t StrideAPtrInt = *StrideAPtr;
2103 int64_t StrideBPtrInt = *StrideBPtr;
2104 LLVM_DEBUG(
dbgs() <<
"LAA: Src induction step: " << StrideAPtrInt
2105 <<
" Sink induction step: " << StrideBPtrInt <<
"\n");
2108 if (!StrideAPtrInt || !StrideBPtrInt)
2113 if ((StrideAPtrInt > 0) != (StrideBPtrInt > 0)) {
2115 dbgs() <<
"Pointer access with strides in different directions\n");
2119 TypeSize AStoreSz =
DL.getTypeStoreSize(ATy);
2120 TypeSize BStoreSz =
DL.getTypeStoreSize(BTy);
2124 uint64_t ASz =
DL.getTypeAllocSize(ATy);
2125 uint64_t BSz =
DL.getTypeAllocSize(BTy);
2126 uint64_t TypeByteSize = (AStoreSz == BStoreSz) ? BSz : 0;
2128 uint64_t StrideAScaled = std::abs(StrideAPtrInt) * ASz;
2129 uint64_t StrideBScaled = std::abs(StrideBPtrInt) * BSz;
2131 uint64_t MaxStride = std::max(StrideAScaled, StrideBScaled);
2133 std::optional<uint64_t> CommonStride;
2134 if (StrideAScaled == StrideBScaled)
2135 CommonStride = StrideAScaled;
2140 ShouldRetryWithRuntimeChecks |= StrideAPtrInt == StrideBPtrInt;
2148 return DepDistanceStrideAndSizeInfo(Dist, MaxStride, CommonStride,
2149 TypeByteSize, AIsWrite, BIsWrite);
2153MemoryDepChecker::isDependent(
const MemAccessInfo &
A,
unsigned AIdx,
2155 assert(AIdx < BIdx &&
"Must pass arguments in program order");
2160 auto CheckCompletelyBeforeOrAfter = [&]() {
2161 auto *APtr =
A.getPointer();
2162 auto *BPtr =
B.getPointer();
2165 const SCEV *Src = PSE.getSCEV(APtr);
2166 const SCEV *
Sink = PSE.getSCEV(BPtr);
2167 return areAccessesCompletelyBeforeOrAfter(Src, ATy, Sink, BTy);
2173 getDependenceDistanceStrideAndSize(
A, InstMap[AIdx],
B, InstMap[BIdx]);
2174 if (std::holds_alternative<Dependence::DepType>(Res)) {
2176 CheckCompletelyBeforeOrAfter())
2178 return std::get<Dependence::DepType>(Res);
2181 auto &[Dist, MaxStride, CommonStride, TypeByteSize, AIsWrite, BIsWrite] =
2182 std::get<DepDistanceStrideAndSizeInfo>(Res);
2183 bool HasSameSize = TypeByteSize > 0;
2185 ScalarEvolution &SE = *PSE.getSE();
2186 auto &
DL = InnermostLoop->getHeader()->getDataLayout();
2195 DL, SE, *(PSE.getSymbolicMaxBackedgeTakenCount()), *Dist, MaxStride))
2200 const APInt *APDist =
nullptr;
2201 uint64_t ConstDist =
2208 if (ConstDist > 0 && CommonStride && CommonStride > 1 && HasSameSize &&
2227 LLVM_DEBUG(
dbgs() <<
"LAA: possibly zero dependence difference but "
2228 "different type sizes\n");
2232 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
2247 couldPreventStoreLoadForward(ConstDist, TypeByteSize)) {
2249 dbgs() <<
"LAA: Forward but may prevent st->ld forwarding\n");
2260 if (MinDistance <= 0) {
2266 if (CheckCompletelyBeforeOrAfter())
2268 LLVM_DEBUG(
dbgs() <<
"LAA: ReadWrite-Write positive dependency with "
2269 "different type sizes\n");
2278 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
2313 uint64_t MinDistanceNeeded = MaxStride * (MinNumIter - 1) + TypeByteSize;
2314 if (MinDistanceNeeded >
static_cast<uint64_t
>(MinDistance)) {
2323 LLVM_DEBUG(
dbgs() <<
"LAA: Failure because of positive minimum distance "
2324 << MinDistance <<
'\n');
2330 if (MinDistanceNeeded > MinDepDistBytes) {
2332 << MinDistanceNeeded <<
" size in bytes\n");
2337 std::min(
static_cast<uint64_t
>(MinDistance), MinDepDistBytes);
2339 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
2341 couldPreventStoreLoadForward(MinDistance, TypeByteSize, *CommonStride))
2344 uint64_t MaxVF = MinDepDistBytes / MaxStride;
2345 LLVM_DEBUG(
dbgs() <<
"LAA: Positive min distance " << MinDistance
2346 <<
" with max VF = " << MaxVF <<
'\n');
2348 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
2349 if (!ConstDist && MaxVFInBits < MaxTargetVectorWidthInBits) {
2358 if (CheckCompletelyBeforeOrAfter())
2361 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
2368 MinDepDistBytes = -1;
2383 bool AIIsWrite = AI->getInt();
2387 (AIIsWrite ? AI : std::next(AI));
2390 auto &Acc = Accesses[*AI];
2391 for (std::vector<unsigned>::iterator I1 = Acc.begin(), I1E = Acc.end();
2395 for (std::vector<unsigned>::iterator
2396 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
2397 I2E = (OI == AI ? I1E : Accesses[*OI].end());
2399 auto A = std::make_pair(&*AI, *I1);
2400 auto B = std::make_pair(&*OI, *I2);
2407 isDependent(*
A.first,
A.second, *
B.first,
B.second);
2414 if (RecordDependences) {
2416 Dependences.emplace_back(
A.second,
B.second,
Type);
2419 RecordDependences =
false;
2420 Dependences.clear();
2422 <<
"Too many dependences, stopped recording\n");
2434 LLVM_DEBUG(
dbgs() <<
"Total Dependences: " << Dependences.size() <<
"\n");
2441 auto I = Accesses.find(
Access);
2443 if (
I != Accesses.end()) {
2444 transform(
I->second, std::back_inserter(Insts),
2445 [&](
unsigned Idx) { return this->InstMap[Idx]; });
2456 "ForwardButPreventsForwarding",
2458 "BackwardVectorizable",
2459 "BackwardVectorizableButPreventsForwarding"};
2469bool LoopAccessInfo::canAnalyzeLoop() {
2478 recordAnalysis(
"NotInnerMostLoop") <<
"loop is not the innermost loop";
2485 dbgs() <<
"LAA: loop control flow is not understood by analyzer\n");
2486 recordAnalysis(
"CFGNotUnderstood")
2487 <<
"loop control flow is not understood by analyzer";
2496 recordAnalysis(
"CantComputeNumberOfIterations")
2497 <<
"could not determine number of loop iterations";
2498 LLVM_DEBUG(
dbgs() <<
"LAA: SCEV could not compute the loop exit count.\n");
2507bool LoopAccessInfo::analyzeLoop(AAResults *AA,
const LoopInfo *LI,
2508 const TargetLibraryInfo *TLI,
2509 DominatorTree *DT) {
2513 SmallPtrSet<MDNode *, 8> LoopAliasScopes;
2516 unsigned NumReads = 0;
2517 unsigned NumReadWrites = 0;
2519 bool HasComplexMemInst =
false;
2522 HasConvergentOp =
false;
2524 PtrRtChecking->Pointers.
clear();
2525 PtrRtChecking->Need =
false;
2529 const bool EnableMemAccessVersioningOfLoop =
2535 LoopBlocksRPO RPOT(TheLoop);
2537 for (BasicBlock *BB : RPOT) {
2540 for (Instruction &
I : *BB) {
2543 HasConvergentOp =
true;
2548 if (HasComplexMemInst && HasConvergentOp)
2552 if (HasComplexMemInst)
2557 for (
Metadata *
Op : Decl->getScopeList()->operands())
2570 if (
I.mayReadFromMemory()) {
2571 auto hasPointerArgs = [](CallBase *CB) {
2573 return Arg->getType()->isPointerTy();
2586 recordAnalysis(
"CantVectorizeInstruction", Ld)
2587 <<
"instruction cannot be vectorized";
2588 HasComplexMemInst =
true;
2591 if (!Ld->isSimple() && !IsAnnotatedParallel) {
2592 recordAnalysis(
"NonSimpleLoad", Ld)
2593 <<
"read with atomic ordering or volatile read";
2595 HasComplexMemInst =
true;
2601 if (EnableMemAccessVersioningOfLoop)
2602 collectStridedAccess(Ld);
2607 if (
I.mayWriteToMemory()) {
2610 recordAnalysis(
"CantVectorizeInstruction", St)
2611 <<
"instruction cannot be vectorized";
2612 HasComplexMemInst =
true;
2615 if (!St->isSimple() && !IsAnnotatedParallel) {
2616 recordAnalysis(
"NonSimpleStore", St)
2617 <<
"write with atomic ordering or volatile write";
2619 HasComplexMemInst =
true;
2625 if (EnableMemAccessVersioningOfLoop)
2626 collectStridedAccess(St);
2631 if (HasComplexMemInst)
2639 if (!Stores.
size()) {
2645 AccessAnalysis
Accesses(TheLoop, AA, LI, *DT, DepCands, *PSE,
2653 SmallSet<std::pair<Value *, Type *>, 16> Seen;
2657 SmallPtrSet<Value *, 16> UniformStores;
2659 for (StoreInst *ST : Stores) {
2660 Value *Ptr =
ST->getPointerOperand();
2662 if (isInvariant(Ptr)) {
2664 StoresToInvariantAddresses.push_back(ST);
2665 HasStoreStoreDependenceInvolvingLoopInvariantAddress |=
2666 !UniformStores.
insert(Ptr).second;
2672 if (Seen.
insert({Ptr, AccessTy}).second) {
2679 if (blockNeedsPredication(
ST->getParent(), TheLoop, DT))
2683 [&Accesses, AccessTy, Loc](
Value *Ptr) {
2684 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2685 Accesses.addStore(NewLoc, AccessTy);
2690 if (IsAnnotatedParallel) {
2692 dbgs() <<
"LAA: A loop annotated parallel, ignore memory dependency "
2697 for (LoadInst *LD : Loads) {
2698 Value *Ptr =
LD->getPointerOperand();
2707 bool IsReadOnlyPtr =
false;
2709 if (Seen.
insert({Ptr, AccessTy}).second ||
2710 !
getPtrStride(*PSE, AccessTy, Ptr, TheLoop, *DT, SymbolicStrides,
false,
2713 IsReadOnlyPtr =
true;
2719 LLVM_DEBUG(
dbgs() <<
"LAA: Found an unsafe dependency between a uniform "
2720 "load and uniform store to the same address!\n");
2721 HasLoadStoreDependenceInvolvingLoopInvariantAddress =
true;
2728 if (blockNeedsPredication(
LD->getParent(), TheLoop, DT))
2732 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](
Value *Ptr) {
2733 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2734 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr);
2740 if (NumReadWrites == 1 && NumReads == 0) {
2747 Accesses.buildDependenceSets();
2751 Value *UncomputablePtr =
nullptr;
2752 HasCompletePtrRtChecking = Accesses.canCheckPtrAtRT(
2753 *PtrRtChecking, TheLoop, SymbolicStrides, UncomputablePtr, AllowPartial);
2754 if (!HasCompletePtrRtChecking) {
2756 recordAnalysis(
"CantIdentifyArrayBounds",
I)
2757 <<
"cannot identify array bounds";
2758 LLVM_DEBUG(
dbgs() <<
"LAA: We can't vectorize because we can't find "
2759 <<
"the array bounds.\n");
2764 dbgs() <<
"LAA: May be able to perform a memory runtime check if needed.\n");
2766 bool DepsAreSafe =
true;
2767 if (Accesses.isDependencyCheckNeeded()) {
2770 DepChecker->
areDepsSafe(DepCands, Accesses.getDependenciesToCheck());
2776 Accesses.resetDepChecks(*DepChecker);
2778 PtrRtChecking->reset();
2779 PtrRtChecking->Need =
true;
2781 UncomputablePtr =
nullptr;
2782 HasCompletePtrRtChecking =
2783 Accesses.canCheckPtrAtRT(*PtrRtChecking, TheLoop, SymbolicStrides,
2784 UncomputablePtr, AllowPartial);
2787 if (!HasCompletePtrRtChecking) {
2789 recordAnalysis(
"CantCheckMemDepsAtRunTime",
I)
2790 <<
"cannot check memory dependencies at runtime";
2791 LLVM_DEBUG(
dbgs() <<
"LAA: Can't vectorize with memory checks\n");
2798 if (HasConvergentOp) {
2799 recordAnalysis(
"CantInsertRuntimeCheckWithConvergent")
2800 <<
"cannot add control dependency to convergent operation";
2801 LLVM_DEBUG(
dbgs() <<
"LAA: We can't vectorize because a runtime check "
2802 "would be needed with a convergent operation\n");
2808 dbgs() <<
"LAA: No unsafe dependent memory operations in loop. We"
2809 << (PtrRtChecking->Need ?
"" :
" don't")
2810 <<
" need runtime memory checks.\n");
2814 emitUnsafeDependenceRemark();
2818void LoopAccessInfo::emitUnsafeDependenceRemark() {
2819 const auto *Deps = getDepChecker().getDependences();
2827 if (Found == Deps->end())
2829 MemoryDepChecker::Dependence Dep = *Found;
2831 LLVM_DEBUG(
dbgs() <<
"LAA: unsafe dependent memory operations in loop\n");
2834 bool HasForcedDistribution =
false;
2835 std::optional<const MDOperand *>
Value =
2843 const std::string
Info =
2844 HasForcedDistribution
2845 ?
"unsafe dependent memory operations in loop."
2846 :
"unsafe dependent memory operations in loop. Use "
2847 "#pragma clang loop distribute(enable) to allow loop distribution "
2848 "to attempt to isolate the offending operations into a separate "
2850 OptimizationRemarkAnalysis &
R =
2859 R <<
"\nBackward loop carried data dependence.";
2862 R <<
"\nForward loop carried data dependence that prevents "
2863 "store-to-load forwarding.";
2866 R <<
"\nBackward loop carried data dependence that prevents "
2867 "store-to-load forwarding.";
2870 R <<
"\nUnsafe indirect dependence.";
2873 R <<
"\nUnknown data dependence.";
2877 if (Instruction *
I = Dep.
getSource(getDepChecker())) {
2880 SourceLoc = DD->getDebugLoc();
2882 R <<
" Memory location is the same as accessed at "
2883 <<
ore::NV(
"Location", SourceLoc);
2888 const Loop *TheLoop,
2890 assert(TheLoop->contains(BB) &&
"Unknown block used");
2893 const BasicBlock *Latch = TheLoop->getLoopLatch();
2899 assert(!Report &&
"Multiple reports generated");
2905 CodeRegion =
I->getParent();
2908 if (
I->getDebugLoc())
2909 DL =
I->getDebugLoc();
2912 Report = std::make_unique<OptimizationRemarkAnalysis>(
DEBUG_TYPE, RemarkName,
2918 auto *SE = PSE->getSE();
2919 if (TheLoop->isLoopInvariant(V))
2936 for (
const Use &U :
GEP->operands()) {
2958 Value *OrigPtr = Ptr;
2966 V =
C->getOperand();
2987void LoopAccessInfo::collectStridedAccess(
Value *MemAccess) {
3005 LLVM_DEBUG(
dbgs() <<
"LAA: Found a strided access that is a candidate for "
3007 LLVM_DEBUG(
dbgs() <<
" Ptr: " << *Ptr <<
" Stride: " << *StrideExpr <<
"\n");
3010 LLVM_DEBUG(
dbgs() <<
" Chose not to due to -laa-speculate-unit-stride\n");
3027 const SCEV *MaxBTC = PSE->getSymbolicMaxBackedgeTakenCount();
3033 uint64_t StrideTypeSizeBits =
DL.getTypeSizeInBits(StrideExpr->
getType());
3034 uint64_t BETypeSizeBits =
DL.getTypeSizeInBits(MaxBTC->
getType());
3035 const SCEV *CastedStride = StrideExpr;
3036 const SCEV *CastedBECount = MaxBTC;
3037 ScalarEvolution *SE = PSE->getSE();
3038 if (BETypeSizeBits >= StrideTypeSizeBits)
3042 const SCEV *StrideMinusBETaken = SE->
getMinusSCEV(CastedStride, CastedBECount);
3048 dbgs() <<
"LAA: Stride>=TripCount; No point in versioning as the "
3049 "Stride==1 predicate will imply that the loop executes "
3053 LLVM_DEBUG(
dbgs() <<
"LAA: Found a strided access that we can version.\n");
3057 const SCEV *StrideBase = StrideExpr;
3059 StrideBase =
C->getOperand();
3069 PtrRtChecking(nullptr), TheLoop(L), AllowPartial(AllowPartial) {
3070 unsigned MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
3071 if (
TTI && !
TTI->enableScalableVectorization())
3074 MaxTargetVectorWidthInBits =
3077 DepChecker = std::make_unique<MemoryDepChecker>(
3078 *PSE, AC, DT, L, SymbolicStrides, MaxTargetVectorWidthInBits, LoopGuards);
3080 std::make_unique<RuntimePointerChecking>(*DepChecker, SE, LoopGuards);
3081 if (canAnalyzeLoop())
3082 CanVecMem = analyzeLoop(
AA, LI, TLI, DT);
3087 OS.
indent(
Depth) <<
"Memory dependences are safe";
3090 OS <<
" with a maximum safe vector width of "
3094 OS <<
", with a maximum safe store-load forward width of " << SLDist
3097 if (PtrRtChecking->Need)
3098 OS <<
" with run-time checks";
3102 if (HasConvergentOp)
3103 OS.
indent(
Depth) <<
"Has convergent operation in loop\n";
3106 OS.
indent(
Depth) <<
"Report: " << Report->getMsg() <<
"\n";
3108 if (
auto *Dependences = DepChecker->getDependences()) {
3110 for (
const auto &Dep : *Dependences) {
3111 Dep.
print(OS,
Depth + 2, DepChecker->getMemoryInstructions());
3115 OS.
indent(
Depth) <<
"Too many dependences, not recorded\n";
3118 PtrRtChecking->print(OS,
Depth);
3119 if (PtrRtChecking->Need && !HasCompletePtrRtChecking)
3120 OS.
indent(
Depth) <<
"Generated run-time checks are incomplete\n";
3124 <<
"Non vectorizable stores to invariant address were "
3125 << (HasStoreStoreDependenceInvolvingLoopInvariantAddress ||
3126 HasLoadStoreDependenceInvolvingLoopInvariantAddress
3129 <<
"found in loop.\n";
3132 PSE->getPredicate().print(OS,
Depth);
3137 PSE->print(OS,
Depth);
3141 bool AllowPartial) {
3142 const auto &[It, Inserted] = LoopAccessInfoMap.try_emplace(&L);
3146 if (Inserted || It->second->hasAllowPartial() != AllowPartial)
3147 It->second = std::make_unique<LoopAccessInfo>(&L, &SE, TTI, TLI, &AA, &DT,
3148 &LI, AC, AllowPartial);
3157 for (
const auto &[L, LAI] : LoopAccessInfoMap) {
3158 if (LAI->getRuntimePointerChecking()->getChecks().empty() &&
3159 LAI->getPSE().getPredicate().isAlwaysTrue())
3161 LoopAccessInfoMap.erase(L);
3167 FunctionAnalysisManager::Invalidator &Inv) {
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
This file contains the declarations for the subclasses of Constant, which represent the different fla...
DXIL Forward Handle Accesses
This file defines the DenseMap class.
Generic implementation of equivalence classes through the use Tarjan's efficient union-find algorithm...
This header defines various interfaces for pass management in LLVM.
static cl::opt< unsigned > MaxDependences("max-dependences", cl::Hidden, cl::desc("Maximum number of dependences collected by " "loop-access analysis (default = 100)"), cl::init(100))
We collect dependences up to this threshold.
static cl::opt< bool > EnableForwardingConflictDetection("store-to-load-forwarding-conflict-detection", cl::Hidden, cl::desc("Enable conflict detection in loop-access analysis"), cl::init(true))
Enable store-to-load forwarding conflict detection.
static void findForkedSCEVs(ScalarEvolution *SE, const Loop *L, Value *Ptr, SmallVectorImpl< PointerIntPair< const SCEV *, 1, bool > > &ScevList, unsigned Depth)
static cl::opt< unsigned > MemoryCheckMergeThreshold("memory-check-merge-threshold", cl::Hidden, cl::desc("Maximum number of comparisons done when trying to merge " "runtime memory checks. (default = 100)"), cl::init(100))
The maximum iterations used to merge memory checks.
static const SCEV * getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp)
Get the stride of a pointer access in a loop.
static bool evaluatePtrAddRecAtMaxBTCWillNotWrap(const SCEVAddRecExpr *AR, const SCEV *MaxBTC, const SCEV *EltSize, ScalarEvolution &SE, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC, std::optional< ScalarEvolution::LoopGuards > &LoopGuards)
Return true, if evaluating AR at MaxBTC cannot wrap, because AR at MaxBTC is guaranteed inbounds of t...
static std::optional< int64_t > getStrideFromAddRec(const SCEVAddRecExpr *AR, const Loop *Lp, Type *AccessTy, Value *Ptr, PredicatedScalarEvolution &PSE)
Try to compute a constant stride for AR.
static cl::opt< unsigned, true > VectorizationInterleave("force-vector-interleave", cl::Hidden, cl::desc("Sets the vectorization interleave count. " "Zero is autoselect."), cl::location(VectorizerParams::VectorizationInterleave))
static cl::opt< bool, true > HoistRuntimeChecks("hoist-runtime-checks", cl::Hidden, cl::desc("Hoist inner loop runtime memory checks to outer loop if possible"), cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true))
static DenseMap< const RuntimeCheckingPtrGroup *, unsigned > getPtrToIdxMap(ArrayRef< RuntimeCheckingPtrGroup > CheckingGroups)
Assign each RuntimeCheckingPtrGroup pointer an index for stable UTC output.
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
static cl::opt< unsigned, true > RuntimeMemoryCheckThreshold("runtime-memory-check-threshold", cl::Hidden, cl::desc("When performing memory disambiguation checks at runtime do not " "generate more than this number of comparisons (default = 8)."), cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8))
static void visitPointers(Value *StartPtr, const Loop &InnermostLoop, function_ref< void(Value *)> AddPointer)
static bool isNoWrap(PredicatedScalarEvolution &PSE, const SCEVAddRecExpr *AR, Value *Ptr, Type *AccessTy, const Loop *L, bool Assume, const DominatorTree &DT, std::optional< int64_t > Stride=std::nullopt)
Check whether AR is a non-wrapping AddRec.
static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, const SCEV &MaxBTC, const SCEV &Dist, uint64_t MaxStride)
Given a dependence-distance Dist between two memory accesses, that have strides in the same direction...
static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, uint64_t TypeByteSize)
Check the dependence for two accesses with the same stride Stride.
static const SCEV * getMinFromExprs(const SCEV *I, const SCEV *J, ScalarEvolution *SE)
Compare I and J and return the minimum.
static const SCEV * mulSCEVOverflow(const SCEV *A, const SCEV *B, ScalarEvolution &SE)
Returns A * B, if it is guaranteed not to unsigned wrap.
static Value * getLoopVariantGEPOperand(Value *Ptr, ScalarEvolution *SE, Loop *Lp)
If Ptr is a GEP, which has a loop-variant operand, return that operand.
static cl::opt< unsigned > MaxForkedSCEVDepth("max-forked-scev-depth", cl::Hidden, cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"), cl::init(5))
static cl::opt< bool > SpeculateUnitStride("laa-speculate-unit-stride", cl::Hidden, cl::desc("Speculate that non-constant strides are unit in LAA"), cl::init(true))
static cl::opt< bool > EnableMemAccessVersioning("enable-mem-access-versioning", cl::init(true), cl::Hidden, cl::desc("Enable symbolic stride memory access versioning"))
This enables versioning on the strides of symbolically striding memory accesses in code like the foll...
static const SCEV * addSCEVNoOverflow(const SCEV *A, const SCEV *B, ScalarEvolution &SE)
Returns A + B, if it is guaranteed not to unsigned wrap.
This header provides classes for managing per-loop analyses.
This file provides utility analysis objects describing memory locations.
FunctionAnalysisManager FAM
This file defines the PointerIntPair class.
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallSet class.
This file defines the SmallVector class.
static SymbolRef::Type getType(const Symbol *Sym)
static const X86InstrFMA3Group Groups[]
A manager for alias analyses.
Class for arbitrary precision integers.
uint64_t getZExtValue() const
Get zero extended value.
APInt abs() const
Get the absolute value.
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
std::optional< int64_t > trySExtValue() const
Get sign extended value if possible.
int64_t getSExtValue() const
Get sign extended value.
This templated class represents "all analyses that operate over <aparticular IR unit>" (e....
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
bool isConvergent() const
Determine if the invoke is convergent.
@ ICMP_UGE
unsigned greater or equal
@ ICMP_SGE
signed greater or equal
@ ICMP_ULE
unsigned less or equal
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
A parsed version of the target data layout string in and methods for querying it.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
Analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
iterator_range< member_iterator > members(const ECValue &ECV) const
bool contains(const ElemTy &V) const
Returns true if V is contained an equivalence class.
const ECValue & insert(const ElemTy &Data)
insert - Insert a new value into the union/find set, ignoring the request if the value already exists...
member_iterator member_end() const
const ElemTy & getLeaderValue(const ElemTy &V) const
getLeaderValue - Return the leader for the specified value that is in the set.
member_iterator findLeader(const ElemTy &V) const
findLeader - Given a value in the set, return a member iterator for the equivalence class it is in.
member_iterator unionSets(const ElemTy &V1, const ElemTy &V2)
union - Merge the two equivalence sets for the specified values, inserting them if they do not alread...
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
PointerType * getType() const
Global values are always pointers.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
An instruction for reading from memory.
Value * getPointerOperand()
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
This analysis provides dependence information for the memory accesses of a loop.
LLVM_ABI Result run(Function &F, FunctionAnalysisManager &AM)
LLVM_ABI bool invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &Inv)
LLVM_ABI const LoopAccessInfo & getInfo(Loop &L, bool AllowPartial=false)
Drive the analysis of memory accesses in the loop.
const MemoryDepChecker & getDepChecker() const
the Memory Dependence Checker which can determine the loop-independent and loop-carried dependences b...
LLVM_ABI bool isInvariant(Value *V) const
Returns true if value V is loop invariant.
LLVM_ABI void print(raw_ostream &OS, unsigned Depth=0) const
Print the information about the memory accesses in the loop.
static LLVM_ABI bool blockNeedsPredication(const BasicBlock *BB, const Loop *TheLoop, const DominatorTree *DT)
Return true if the block BB needs to be predicated in order for the loop to be vectorized.
LLVM_ABI LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetTransformInfo *TTI, const TargetLibraryInfo *TLI, AAResults *AA, DominatorTree *DT, LoopInfo *LI, AssumptionCache *AC, bool AllowPartial=false)
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
unsigned getNumBackEdges() const
Calculate the number of back edges to the loop header.
BlockT * getHeader() const
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
Represents a single loop in the control flow graph.
std::string getLocStr() const
Return a string containing the debug location of the loop (file name + line number if present,...
bool isAnnotatedParallel() const
Returns true if the loop is annotated parallel.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
ArrayRef< MDOperand > operands() const
Checks memory dependences among accesses to the same underlying object to determine whether there vec...
ArrayRef< unsigned > getOrderForAccess(Value *Ptr, bool IsWrite) const
Return the program order indices for the access location (Ptr, IsWrite).
bool isSafeForAnyStoreLoadForwardDistances() const
Return true if there are no store-load forwarding dependencies.
bool isSafeForAnyVectorWidth() const
Return true if the number of elements that are safe to operate on simultaneously is not bounded.
LLVM_ABI bool areDepsSafe(const DepCandidates &AccessSets, const MemAccessInfoList &CheckDeps)
Check whether the dependencies between the accesses are safe, and records the dependence information ...
EquivalenceClasses< MemAccessInfo > DepCandidates
Set of potential dependent memory accesses.
bool shouldRetryWithRuntimeChecks() const
In same cases when the dependency check fails we can still vectorize the loop with a dynamic array ac...
const Loop * getInnermostLoop() const
uint64_t getMaxSafeVectorWidthInBits() const
Return the number of elements that are safe to operate on simultaneously, multiplied by the size of t...
bool isSafeForVectorization() const
No memory dependence was encountered that would inhibit vectorization.
SmallVector< MemAccessInfo, 8 > MemAccessInfoList
LLVM_ABI SmallVector< Instruction *, 4 > getInstructionsForAccess(Value *Ptr, bool isWrite) const
Find the set of instructions that read or write via Ptr.
VectorizationSafetyStatus
Type to keep track of the status of the dependence check.
@ PossiblySafeWithRtChecks
LLVM_ABI void addAccess(StoreInst *SI)
Register the location (instructions are given increasing numbers) of a write access.
PointerIntPair< Value *, 1, bool > MemAccessInfo
uint64_t getStoreLoadForwardSafeDistanceInBits() const
Return safe power-of-2 number of elements, which do not prevent store-load forwarding,...
Representation for a specific memory location.
static LLVM_ABI MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
LocationSize Size
The maximum size of the location, in address-units, or UnknownSize if the size is not known.
AAMDNodes AATags
The metadata nodes which describes the aliasing of the location (each member is null if that kind of ...
const Value * Ptr
The address of the start of the location.
PointerIntPair - This class implements a pair of a pointer and small integer.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
LLVM_ABI void addPredicate(const SCEVPredicate &Pred)
Adds a new predicate.
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Returns true if we've proved that V doesn't wrap by means of a SCEV predicate.
LLVM_ABI void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Proves that V doesn't overflow by adding SCEV predicate.
LLVM_ABI const SCEVAddRecExpr * getAsAddRec(Value *V)
Attempts to produce an AddRecExpr for V by adding additional SCEV predicates.
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
PreservedAnalysisChecker getChecker() const
Build a checker for this PreservedAnalyses and the specified analysis type.
Holds information about the memory runtime legality checks to verify that a group of pointers do not ...
bool Need
This flag indicates if we need to add the runtime check.
void reset()
Reset the state of the pointer runtime information.
unsigned getNumberOfChecks() const
Returns the number of run-time checks required according to needsChecking.
LLVM_ABI void printChecks(raw_ostream &OS, const SmallVectorImpl< RuntimePointerCheck > &Checks, unsigned Depth=0) const
Print Checks.
LLVM_ABI bool needsChecking(const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const
Decide if we need to add a check between two groups of pointers, according to needsChecking.
LLVM_ABI void print(raw_ostream &OS, unsigned Depth=0) const
Print the list run-time memory checks necessary.
SmallVector< RuntimeCheckingPtrGroup, 2 > CheckingGroups
Holds a partitioning of pointers into "check groups".
LLVM_ABI void generateChecks(MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies)
Generate the checks and store it.
friend struct RuntimeCheckingPtrGroup
static LLVM_ABI bool arePointersInSamePartition(const SmallVectorImpl< int > &PtrToPartition, unsigned PtrIdx1, unsigned PtrIdx2)
Check if pointers are in the same partition.
SmallVector< PointerInfo, 2 > Pointers
Information about the pointers that may require checking.
LLVM_ABI void insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, Type *AccessTy, bool WritePtr, unsigned DepSetId, unsigned ASId, PredicatedScalarEvolution &PSE, bool NeedsFreeze)
Insert a pointer and calculate the start and end SCEVs.
This node represents a polynomial recurrence on the trip count of the specified loop.
const SCEV * getStart() const
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
bool isAffine() const
Return true if this represents an expression A + B*x where A and B are loop invariant values.
const Loop * getLoop() const
This class represents a constant integer value.
ConstantInt * getValue() const
const APInt & getAPInt() const
NoWrapFlags getNoWrapFlags(NoWrapFlags Mask=NoWrapMask) const
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
static LLVM_ABI LoopGuards collect(const Loop *L, ScalarEvolution &SE)
Collect rewrite map for loop guards for loop L, together with flags indicating if NUW and NSW can be ...
The main scalar evolution driver.
const SCEV * getConstantMaxBackedgeTakenCount(const Loop *L)
When successful, this returns a SCEVConstant that is greater than or equal to (i.e.
LLVM_ABI bool isKnownNonNegative(const SCEV *S)
Test if the given expression is known to be non-negative.
LLVM_ABI const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
LLVM_ABI Type * getWiderType(Type *Ty1, Type *Ty2) const
LLVM_ABI const SCEV * getAbsExpr(const SCEV *Op, bool IsNSW)
LLVM_ABI bool isKnownNonPositive(const SCEV *S)
Test if the given expression is known to be non-positive.
LLVM_ABI bool isKnownNegative(const SCEV *S)
Test if the given expression is known to be negative.
LLVM_ABI const SCEV * getUMaxExpr(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI=nullptr)
Is operation BinOp between LHS and RHS provably does not have a signed/unsigned overflow (Signed)?
LLVM_ABI const SCEVPredicate * getEqualPredicate(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getNoopOrSignExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI const SCEV * getPtrToIntExpr(const SCEV *Op, Type *Ty)
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isKnownPositive(const SCEV *S)
Test if the given expression is known to be positive.
LLVM_ABI const SCEV * getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI Type * getEffectiveSCEVType(Type *Ty) const
Return a type with the same bitwidth as the given type and which represents how SCEV will treat the g...
LLVM_ABI const SCEV * getUMinExpr(const SCEV *LHS, const SCEV *RHS, bool Sequential=false)
APInt getSignedRangeMin(const SCEV *S)
Determine the min of the signed range for a particular SCEV.
LLVM_ABI const SCEV * getStoreSizeOfExpr(Type *IntTy, Type *StoreTy)
Return an expression for the store size of StoreTy that is type IntTy.
LLVM_ABI const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Return LHS-RHS.
LLVM_ABI const SCEV * getNoopOrZeroExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI const SCEV * getCouldNotCompute()
LLVM_ABI const SCEV * getPointerBase(const SCEV *V)
Transitively follow the chain of pointer-type operands until reaching a SCEV that does not have a sin...
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEV * getSizeOfExpr(Type *IntTy, TypeSize Size)
Return an expression for a TypeSize.
LLVM_ABI std::optional< APInt > computeConstantDifference(const SCEV *LHS, const SCEV *RHS)
Compute LHS - RHS and returns the result as an APInt if it is a constant, and std::nullopt if it isn'...
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI const SCEV * getTruncateOrSignExtend(const SCEV *V, Type *Ty, unsigned Depth=0)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
bool contains(const T &V) const
Check if the SmallSet contains the given element.
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
A Use represents the edge between a Value definition and its users.
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI bool canBeFreed() const
Return true if the memory object referred to by V can by freed in the scope for which the SSA value d...
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI uint64_t getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull, bool &CanBeFreed) const
Returns the number of bytes known to be dereferenceable for the pointer value.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
constexpr ScalarTy getFixedValue() const
An efficient, type-erasing, non-owning reference to a callable.
This class implements an extremely fast bulk output stream that can only output to a stream.
raw_ostream & indent(unsigned NumSpaces)
indent - Insert 'NumSpaces' spaces.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Abstract Attribute helper functions.
@ C
The default llvm calling convention, compatible with C.
bool match(Val *V, const Pattern &P)
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
is_undef_or_poison m_scev_UndefOrPoison()
Match an SCEVUnknown wrapping undef or poison.
class_match< const SCEVConstant > m_SCEVConstant()
specificloop_ty m_SpecificLoop(const Loop *L)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
specificscev_ty m_scev_Specific(const SCEV *S)
Match if we have a specific specified SCEV.
class_match< const SCEV > m_SCEV()
initializer< Ty > init(const Ty &Val)
LocationClass< Ty > location(Ty &L)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, bool > hasa(Y &&MD)
Check whether Metadata has a Value.
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
DiagnosticInfoOptimizationBase::Argument NV
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI bool willNotFreeBetween(const Instruction *Assume, const Instruction *CtxI)
Returns true, if no instruction between Assume and CtxI may free memory and the function is marked as...
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI RetainedKnowledge getKnowledgeForValue(const Value *V, ArrayRef< Attribute::AttrKind > AttrKinds, AssumptionCache &AC, function_ref< bool(RetainedKnowledge, Instruction *, const CallBase::BundleOpInfo *)> Filter=[](auto...) { return true;})
Return a valid Knowledge associated to the Value V if its Attribute kind is in AttrKinds and it match...
LLVM_ABI bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
unsigned getPointerAddressSpace(const Type *T)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI std::optional< const MDOperand * > findStringMetadataForLoop(const Loop *TheLoop, StringRef Name)
Find string metadata for loop.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
const Value * getPointerOperand(const Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
auto dyn_cast_or_null(const Y &Val)
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI std::optional< int64_t > getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB, Value *PtrB, const DataLayout &DL, ScalarEvolution &SE, bool StrictCheck=false, bool CheckType=true)
Returns the distance between the pointers PtrA and PtrB iff they are compatible and it is possible to...
LLVM_ABI bool sortPtrAccesses(ArrayRef< Value * > VL, Type *ElemTy, const DataLayout &DL, ScalarEvolution &SE, SmallVectorImpl< unsigned > &SortedIndices)
Attempt to sort the pointers in VL and return the sorted indices in SortedIndices,...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
LLVM_ABI const SCEV * replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &PtrToStride, Value *Ptr)
Return the SCEV corresponding to a pointer with the symbolic stride replaced with constant one,...
LLVM_ABI bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, ScalarEvolution &SE, bool CheckType=true)
Returns true if the memory operations A and B are consecutive.
DWARFExpression::Operation Op
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
LLVM_ABI void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, const LoopInfo *LI=nullptr, unsigned MaxLookup=MaxLookupSearchDepth)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
LLVM_ABI std::pair< const SCEV *, const SCEV * > getStartAndEndForAccess(const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy, const SCEV *BTC, const SCEV *MaxBTC, ScalarEvolution *SE, DenseMap< std::pair< const SCEV *, Type * >, std::pair< const SCEV *, const SCEV * > > *PointerBounds, DominatorTree *DT, AssumptionCache *AC, std::optional< ScalarEvolution::LoopGuards > &LoopGuards)
Calculate Start and End points of memory access using exact backedge taken count BTC if computable or...
LLVM_ABI std::optional< int64_t > getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr, const Loop *Lp, const DominatorTree &DT, const DenseMap< Value *, const SCEV * > &StridesMap=DenseMap< Value *, const SCEV * >(), bool Assume=false, bool ShouldCheckWrap=true)
If the pointer has a constant stride return it in units of the access type size.
Implement std::hash so that hash_code can be used in STL containers.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
IR Values for the lower and upper bounds of a pointer evolution.
MDNode * Scope
The tag for alias scope specification (used with noalias).
MDNode * TBAA
The tag for type-based alias analysis.
MDNode * NoAlias
The tag specifying the noalias scope.
A special type used by analysis passes to provide an address that identifies that particular analysis...
Instruction * getDestination(const MemoryDepChecker &DepChecker) const
Return the destination instruction of the dependence.
DepType Type
The type of the dependence.
unsigned Destination
Index of the destination of the dependence in the InstMap vector.
LLVM_ABI bool isPossiblyBackward() const
May be a lexically backward dependence type (includes Unknown).
Instruction * getSource(const MemoryDepChecker &DepChecker) const
Return the source instruction of the dependence.
LLVM_ABI bool isForward() const
Lexically forward dependence.
LLVM_ABI bool isBackward() const
Lexically backward dependence.
LLVM_ABI void print(raw_ostream &OS, unsigned Depth, const SmallVectorImpl< Instruction * > &Instrs) const
Print the dependence.
unsigned Source
Index of the source of the dependence in the InstMap vector.
DepType
The type of the dependence.
@ BackwardVectorizableButPreventsForwarding
@ ForwardButPreventsForwarding
static LLVM_ABI const char * DepName[]
String version of the types.
static LLVM_ABI VectorizationSafetyStatus isSafeForVectorization(DepType Type)
Dependence types that don't prevent vectorization.
Represent one information held inside an operand bundle of an llvm.assume.
unsigned AddressSpace
Address space of the involved pointers.
LLVM_ABI bool addPointer(unsigned Index, const RuntimePointerChecking &RtCheck)
Tries to add the pointer recorded in RtCheck at index Index to this pointer checking group.
bool NeedsFreeze
Whether the pointer needs to be frozen after expansion, e.g.
LLVM_ABI RuntimeCheckingPtrGroup(unsigned Index, const RuntimePointerChecking &RtCheck)
Create a new pointer checking group containing a single pointer, with index Index in RtCheck.
const SCEV * High
The SCEV expression which represents the upper bound of all the pointers in this group.
SmallVector< unsigned, 2 > Members
Indices of all the pointers that constitute this grouping.
const SCEV * Low
The SCEV expression which represents the lower bound of all the pointers in this group.
bool IsWritePtr
Holds the information if this pointer is used for writing to memory.
unsigned DependencySetId
Holds the id of the set of pointers that could be dependent because of a shared underlying object.
unsigned AliasSetId
Holds the id of the disjoint alias set to which this pointer belongs.
static LLVM_ABI const unsigned MaxVectorWidth
Maximum SIMD width.
static LLVM_ABI unsigned VectorizationFactor
VF as overridden by the user.
static LLVM_ABI unsigned RuntimeMemoryCheckThreshold
\When performing memory disambiguation checks at runtime do not make more than this number of compari...
static LLVM_ABI bool isInterleaveForced()
True if force-vector-interleave was specified by the user.
static LLVM_ABI unsigned VectorizationInterleave
Interleave factor as overridden by the user.
static LLVM_ABI bool HoistRuntimeChecks
Function object to check whether the first component of a container supported by std::get (like std::...