14#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
15#define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
60 for (
const Value *Operand : Operands)
81 return SI.getNumCases();
163 virtual std::pair<const Value *, unsigned>
165 return std::make_pair(
nullptr, -1);
175 assert(
F &&
"A concrete function must be provided to this routine.");
182 if (
F->isIntrinsic())
185 if (
F->hasLocalLinkage() || !
F->hasName())
192 if (Name ==
"copysign" || Name ==
"copysignf" || Name ==
"copysignl" ||
193 Name ==
"fabs" || Name ==
"fabsf" || Name ==
"fabsl" ||
194 Name ==
"fmin" || Name ==
"fminf" || Name ==
"fminl" ||
195 Name ==
"fmax" || Name ==
"fmaxf" || Name ==
"fmaxl" ||
196 Name ==
"sin" || Name ==
"sinf" || Name ==
"sinl" ||
197 Name ==
"cos" || Name ==
"cosf" || Name ==
"cosl" ||
198 Name ==
"tan" || Name ==
"tanf" || Name ==
"tanl" ||
199 Name ==
"asin" || Name ==
"asinf" || Name ==
"asinl" ||
200 Name ==
"acos" || Name ==
"acosf" || Name ==
"acosl" ||
201 Name ==
"atan" || Name ==
"atanf" || Name ==
"atanl" ||
202 Name ==
"atan2" || Name ==
"atan2f" || Name ==
"atan2l"||
203 Name ==
"sinh" || Name ==
"sinhf" || Name ==
"sinhl" ||
204 Name ==
"cosh" || Name ==
"coshf" || Name ==
"coshl" ||
205 Name ==
"tanh" || Name ==
"tanhf" || Name ==
"tanhl" ||
206 Name ==
"sqrt" || Name ==
"sqrtf" || Name ==
"sqrtl" ||
207 Name ==
"exp10" || Name ==
"exp10l" || Name ==
"exp10f")
211 if (Name ==
"pow" || Name ==
"powf" || Name ==
"powl" || Name ==
"exp2" ||
212 Name ==
"exp2l" || Name ==
"exp2f" || Name ==
"floor" ||
213 Name ==
"floorf" || Name ==
"ceil" || Name ==
"round" ||
214 Name ==
"ffs" || Name ==
"ffsl" || Name ==
"abs" || Name ==
"labs" ||
239 virtual std::optional<Instruction *>
244 virtual std::optional<Value *>
247 bool &KnownBitsComputed)
const {
255 SimplifyAndSetOp)
const {
273 int64_t BaseOffset,
bool HasBaseReg,
274 int64_t Scale,
unsigned AddrSpace,
276 int64_t ScalableOffset = 0)
const {
279 return !BaseGV && BaseOffset == 0 && (Scale == 0 || Scale == 1);
326 unsigned DataSize =
DL.getTypeStoreSize(DataType);
333 unsigned DataSize =
DL.getTypeStoreSize(DataType);
351 Align Alignment)
const {
356 Align Alignment)
const {
361 Align Alignment)
const {
381 unsigned AddrSpace)
const {
386 Type *DataType)
const {
404 bool HasBaseReg, int64_t Scale,
405 unsigned AddrSpace)
const {
408 Scale, AddrSpace,
nullptr,
420 virtual bool useAA()
const {
return false; }
443 unsigned ScalarOpdIdx)
const {
515 unsigned *
Fast)
const {
571 Type *Ty =
nullptr)
const {
578 return "Generic::Unknown Register Class";
580 return "Generic::ScalarRC";
582 return "Generic::VectorRC";
593 virtual std::optional<unsigned>
getMaxVScale()
const {
return std::nullopt; }
608 virtual unsigned getMaximumVF(
unsigned ElemWidth,
unsigned Opcode)
const {
616 const Instruction &
I,
bool &AllowPromotionWithoutCommonHeader)
const {
617 AllowPromotionWithoutCommonHeader =
false;
622 virtual std::optional<unsigned>
633 virtual std::optional<unsigned>
649 unsigned NumStridedMemAccesses,
650 unsigned NumPrefetches,
651 bool HasCall)
const {
659 unsigned Opcode,
Type *InputTypeA,
Type *InputTypeB,
Type *AccumType,
674 auto IsWidenableCondition = [](
const Value *V) {
676 if (
II->getIntrinsicID() == Intrinsic::experimental_widenable_condition)
685 case Instruction::FDiv:
686 case Instruction::FRem:
687 case Instruction::SDiv:
688 case Instruction::SRem:
689 case Instruction::UDiv:
690 case Instruction::URem:
693 case Instruction::And:
694 case Instruction::Or:
695 if (
any_of(Args, IsWidenableCondition))
702 if (Ty->getScalarType()->isFloatingPointTy())
730 case Instruction::IntToPtr: {
731 unsigned SrcSize = Src->getScalarSizeInBits();
732 if (
DL.isLegalInteger(SrcSize) &&
733 SrcSize <=
DL.getPointerTypeSizeInBits(Dst))
737 case Instruction::PtrToAddr: {
738 unsigned DstSize = Dst->getScalarSizeInBits();
739 assert(DstSize ==
DL.getAddressSizeInBits(Src));
740 if (
DL.isLegalInteger(DstSize))
744 case Instruction::PtrToInt: {
745 unsigned DstSize = Dst->getScalarSizeInBits();
746 if (
DL.isLegalInteger(DstSize) &&
747 DstSize >=
DL.getPointerTypeSizeInBits(Src))
751 case Instruction::BitCast:
752 if (Dst == Src || (Dst->isPointerTy() && Src->isPointerTy()))
756 case Instruction::Trunc: {
793 unsigned Index,
const Value *Op0,
794 const Value *Op1)
const {
805 ArrayRef<std::tuple<Value *, User *, int>> ScalarUserAndIdx)
const {
811 unsigned Index)
const {
818 unsigned Index)
const {
824 const APInt &DemandedDstElts,
835 if (Opcode == Instruction::InsertValue &&
851 bool UseMaskForCond,
bool UseMaskForGaps)
const {
858 switch (ICA.
getID()) {
861 case Intrinsic::allow_runtime_check:
862 case Intrinsic::allow_ubsan_check:
863 case Intrinsic::annotation:
864 case Intrinsic::assume:
865 case Intrinsic::sideeffect:
866 case Intrinsic::pseudoprobe:
867 case Intrinsic::arithmetic_fence:
868 case Intrinsic::dbg_assign:
869 case Intrinsic::dbg_declare:
870 case Intrinsic::dbg_value:
871 case Intrinsic::dbg_label:
872 case Intrinsic::invariant_start:
873 case Intrinsic::invariant_end:
874 case Intrinsic::launder_invariant_group:
875 case Intrinsic::strip_invariant_group:
876 case Intrinsic::is_constant:
877 case Intrinsic::lifetime_start:
878 case Intrinsic::lifetime_end:
879 case Intrinsic::experimental_noalias_scope_decl:
880 case Intrinsic::objectsize:
881 case Intrinsic::ptr_annotation:
882 case Intrinsic::var_annotation:
883 case Intrinsic::experimental_gc_result:
884 case Intrinsic::experimental_gc_relocate:
885 case Intrinsic::coro_alloc:
886 case Intrinsic::coro_begin:
887 case Intrinsic::coro_begin_custom_abi:
888 case Intrinsic::coro_free:
889 case Intrinsic::coro_end:
890 case Intrinsic::coro_frame:
891 case Intrinsic::coro_size:
892 case Intrinsic::coro_align:
893 case Intrinsic::coro_suspend:
894 case Intrinsic::coro_subfn_addr:
895 case Intrinsic::threadlocal_address:
896 case Intrinsic::experimental_widenable_condition:
897 case Intrinsic::ssa_copy:
907 switch (MICA.
getID()) {
908 case Intrinsic::masked_scatter:
909 case Intrinsic::masked_gather:
910 case Intrinsic::masked_load:
911 case Intrinsic::masked_store:
912 case Intrinsic::vp_scatter:
913 case Intrinsic::vp_gather:
914 case Intrinsic::masked_compressstore:
915 case Intrinsic::masked_expandload:
939 std::optional<FastMathFlags> FMF,
952 VectorType *Ty, std::optional<FastMathFlags> FMF,
984 bool CanCreate =
true)
const {
990 unsigned SrcAddrSpace,
unsigned DestAddrSpace,
992 std::optional<uint32_t> AtomicElementSize)
const {
993 return AtomicElementSize ?
Type::getIntNTy(Context, *AtomicElementSize * 8)
999 unsigned RemainingBytes,
unsigned SrcAddrSpace,
unsigned DestAddrSpace,
1001 std::optional<uint32_t> AtomicCpySize)
const {
1002 unsigned OpSizeInBytes = AtomicCpySize.value_or(1);
1004 for (
unsigned i = 0; i != RemainingBytes; i += OpSizeInBytes)
1010 return (Caller->getFnAttribute(
"target-cpu") ==
1011 Callee->getFnAttribute(
"target-cpu")) &&
1012 (Caller->getFnAttribute(
"target-features") ==
1013 Callee->getFnAttribute(
"target-features"));
1017 unsigned DefaultCallPenalty)
const {
1018 return DefaultCallPenalty;
1024 return (Caller->getFnAttribute(
"target-cpu") ==
1025 Callee->getFnAttribute(
"target-cpu")) &&
1026 (Caller->getFnAttribute(
"target-features") ==
1027 Callee->getFnAttribute(
"target-features"));
1048 unsigned AddrSpace)
const {
1054 unsigned AddrSpace)
const {
1068 unsigned ChainSizeInBytes,
1074 unsigned ChainSizeInBytes,
1169 unsigned MaxRequiredSize =
1170 VT->getElementType()->getPrimitiveSizeInBits().getFixedValue();
1172 unsigned MinRequiredSize = 0;
1173 for (
unsigned i = 0, e = VT->getNumElements(); i < e; ++i) {
1174 if (
auto *IntElement =
1176 bool signedElement = IntElement->getValue().isNegative();
1178 unsigned ElementMinRequiredSize =
1179 IntElement->getValue().getSignificantBits() - 1;
1183 MinRequiredSize = std::max(MinRequiredSize, ElementMinRequiredSize);
1186 return MaxRequiredSize;
1189 return MinRequiredSize;
1193 isSigned = CI->getValue().isNegative();
1194 return CI->getValue().getSignificantBits() - 1;
1199 return Cast->getSrcTy()->getScalarSizeInBits() - 1;
1204 return Cast->getSrcTy()->getScalarSizeInBits();
1216 const SCEV *Ptr)
const {
1224 int64_t MergeDistance)
const {
1238template <
typename T>
1250 assert(PointeeType && Ptr &&
"can't get GEPCost of nullptr");
1252 bool HasBaseReg = (BaseGV ==
nullptr);
1254 auto PtrSizeBits =
DL.getPointerTypeSizeInBits(Ptr->
getType());
1255 APInt BaseOffset(PtrSizeBits, 0);
1259 Type *TargetType =
nullptr;
1263 if (Operands.
empty())
1266 for (
auto I = Operands.
begin();
I != Operands.
end(); ++
I, ++GTI) {
1267 TargetType = GTI.getIndexedType();
1274 if (
StructType *STy = GTI.getStructTypeOrNull()) {
1276 assert(ConstIdx &&
"Unexpected GEP index");
1278 BaseOffset +=
DL.getStructLayout(STy)->getElementOffset(
Field);
1284 int64_t ElementSize =
1285 GTI.getSequentialElementStride(
DL).getFixedValue();
1294 Scale = ElementSize;
1309 AccessType = TargetType;
1340 for (
const Value *V : Ptrs) {
1344 if (
Info.isSameBase() && V !=
Base) {
1345 if (
GEP->hasAllConstantIndices())
1349 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
1354 GEP->getSourceElementType(),
GEP->getPointerOperand(), Indices,
1366 auto *TargetTTI =
static_cast<const T *
>(
this);
1371 if (
const Function *
F = CB->getCalledFunction()) {
1372 if (!TargetTTI->isLoweredToCall(
F))
1381 Type *Ty = U->getType();
1387 case Instruction::Call: {
1391 return TargetTTI->getIntrinsicInstrCost(CostAttrs,
CostKind);
1393 case Instruction::Br:
1394 case Instruction::Ret:
1395 case Instruction::PHI:
1396 case Instruction::Switch:
1397 return TargetTTI->getCFInstrCost(Opcode,
CostKind,
I);
1398 case Instruction::Freeze:
1400 case Instruction::ExtractValue:
1401 case Instruction::InsertValue:
1402 return TargetTTI->getInsertExtractValueCost(Opcode,
CostKind);
1403 case Instruction::Alloca:
1407 case Instruction::GetElementPtr: {
1409 Type *AccessType =
nullptr;
1412 if (
GEP->hasOneUser() &&
I)
1413 AccessType =
I->user_back()->getAccessType();
1415 return TargetTTI->getGEPCost(
GEP->getSourceElementType(),
1419 case Instruction::Add:
1420 case Instruction::FAdd:
1421 case Instruction::Sub:
1422 case Instruction::FSub:
1423 case Instruction::Mul:
1424 case Instruction::FMul:
1425 case Instruction::UDiv:
1426 case Instruction::SDiv:
1427 case Instruction::FDiv:
1428 case Instruction::URem:
1429 case Instruction::SRem:
1430 case Instruction::FRem:
1431 case Instruction::Shl:
1432 case Instruction::LShr:
1433 case Instruction::AShr:
1434 case Instruction::And:
1435 case Instruction::Or:
1436 case Instruction::Xor:
1437 case Instruction::FNeg: {
1440 if (Opcode != Instruction::FNeg)
1442 return TargetTTI->getArithmeticInstrCost(Opcode, Ty,
CostKind, Op1Info,
1443 Op2Info, Operands,
I);
1445 case Instruction::IntToPtr:
1446 case Instruction::PtrToAddr:
1447 case Instruction::PtrToInt:
1448 case Instruction::SIToFP:
1449 case Instruction::UIToFP:
1450 case Instruction::FPToUI:
1451 case Instruction::FPToSI:
1452 case Instruction::Trunc:
1453 case Instruction::FPTrunc:
1454 case Instruction::BitCast:
1455 case Instruction::FPExt:
1456 case Instruction::SExt:
1457 case Instruction::ZExt:
1458 case Instruction::AddrSpaceCast: {
1459 Type *OpTy = Operands[0]->getType();
1460 return TargetTTI->getCastInstrCost(
1463 case Instruction::Store: {
1465 Type *ValTy = Operands[0]->getType();
1467 return TargetTTI->getMemoryOpCost(Opcode, ValTy,
SI->getAlign(),
1471 case Instruction::Load: {
1476 Type *LoadType = U->getType();
1487 LoadType = TI->getDestTy();
1489 return TargetTTI->getMemoryOpCost(Opcode, LoadType, LI->getAlign(),
1491 {TTI::OK_AnyValue, TTI::OP_None},
I);
1493 case Instruction::Select: {
1494 const Value *Op0, *Op1;
1505 return TargetTTI->getArithmeticInstrCost(
1507 CostKind, Op1Info, Op2Info, Operands,
I);
1511 Type *CondTy = Operands[0]->getType();
1512 return TargetTTI->getCmpSelInstrCost(Opcode, U->getType(), CondTy,
1516 case Instruction::ICmp:
1517 case Instruction::FCmp: {
1520 Type *ValTy = Operands[0]->getType();
1522 return TargetTTI->getCmpSelInstrCost(Opcode, ValTy, U->getType(),
1527 case Instruction::InsertElement: {
1533 if (CI->getValue().getActiveBits() <= 32)
1534 Idx = CI->getZExtValue();
1535 return TargetTTI->getVectorInstrCost(*IE, Ty,
CostKind, Idx);
1537 case Instruction::ShuffleVector: {
1545 int NumSubElts, SubIndex;
1548 if (
all_of(Mask, [](
int M) {
return M < 0; }))
1552 if (Shuffle->changesLength()) {
1554 if (Shuffle->increasesLength() && Shuffle->isIdentityWithPadding())
1557 if (Shuffle->isExtractSubvectorMask(SubIndex))
1559 VecSrcTy, Mask,
CostKind, SubIndex,
1560 VecTy, Operands, Shuffle);
1562 if (Shuffle->isInsertSubvectorMask(NumSubElts, SubIndex))
1563 return TargetTTI->getShuffleCost(
1569 int ReplicationFactor, VF;
1570 if (Shuffle->isReplicationMask(ReplicationFactor, VF)) {
1574 DemandedDstElts.
setBit(
I.index());
1576 return TargetTTI->getReplicationShuffleCost(
1577 VecSrcTy->getElementType(), ReplicationFactor, VF,
1582 NumSubElts = VecSrcTy->getElementCount().getKnownMinValue();
1588 if (Shuffle->increasesLength()) {
1589 for (
int &M : AdjustMask)
1590 M = M >= NumSubElts ? (M + (Mask.size() - NumSubElts)) : M;
1592 return TargetTTI->getShuffleCost(
1594 VecTy, AdjustMask,
CostKind, 0,
nullptr, Operands, Shuffle);
1605 VecSrcTy, VecSrcTy, AdjustMask,
CostKind, 0,
nullptr, Operands,
1609 std::iota(ExtractMask.
begin(), ExtractMask.
end(), 0);
1610 return ShuffleCost + TargetTTI->getShuffleCost(
1612 ExtractMask,
CostKind, 0, VecTy, {}, Shuffle);
1615 if (Shuffle->isIdentity())
1618 if (Shuffle->isReverse())
1619 return TargetTTI->getShuffleCost(
TTI::SK_Reverse, VecTy, VecSrcTy, Mask,
1623 if (Shuffle->isTranspose())
1625 Mask,
CostKind, 0,
nullptr, Operands,
1628 if (Shuffle->isZeroEltSplat())
1630 Mask,
CostKind, 0,
nullptr, Operands,
1633 if (Shuffle->isSingleSource())
1635 VecSrcTy, Mask,
CostKind, 0,
nullptr,
1638 if (Shuffle->isInsertSubvectorMask(NumSubElts, SubIndex))
1639 return TargetTTI->getShuffleCost(
1644 if (Shuffle->isSelect())
1645 return TargetTTI->getShuffleCost(
TTI::SK_Select, VecTy, VecSrcTy, Mask,
1649 if (Shuffle->isSplice(SubIndex))
1650 return TargetTTI->getShuffleCost(
TTI::SK_Splice, VecTy, VecSrcTy, Mask,
1651 CostKind, SubIndex,
nullptr, Operands,
1655 Mask,
CostKind, 0,
nullptr, Operands,
1658 case Instruction::ExtractElement: {
1664 if (CI->getValue().getActiveBits() <= 32)
1665 Idx = CI->getZExtValue();
1666 Type *DstTy = Operands[0]->getType();
1667 return TargetTTI->getVectorInstrCost(*EEI, DstTy,
CostKind, Idx);
1676 auto *TargetTTI =
static_cast<const T *
>(
this);
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
Analysis containing CSE Info
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static bool isSigned(unsigned int Opcode)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
uint64_t IntrinsicInst * II
OptimizedStructLayoutField Field
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
static SymbolRef::Type getType(const Symbol *Sym)
Class for arbitrary precision integers.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
unsigned getBitWidth() const
Return the number of bits in the APInt.
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
int64_t getSExtValue() const
Get sign extended value.
an instruction to allocate memory on the stack
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
ArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
const T & front() const
front - Get the first element.
bool empty() const
empty - Check if the array is empty.
Class to represent array types.
A cache of @llvm.assume calls within a function.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
This is the shared class of boolean and integer constants.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
const APInt & getValue() const
Return the constant as an APInt value reference.
This is an important base class in LLVM.
A parsed version of the target data layout string in and methods for querying it.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Convenience struct for specifying and reasoning about fast-math flags.
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
The core instruction combiner logic.
static InstructionCost getInvalid(CostType Val=0)
Intrinsic::ID getID() const
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Represents a single loop in the control flow graph.
Information for memory intrinsic cost model.
Intrinsic::ID getID() const
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Analysis providing profile information.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
This node represents a polynomial recurrence on the trip count of the specified loop.
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
This class represents a constant integer value.
const APInt & getAPInt() const
This class represents an analyzed expression in the program.
The main scalar evolution driver.
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StackOffset holds a fixed and a scalable offset in bytes.
static StackOffset getScalable(int64_t Scalable)
static StackOffset getFixed(int64_t Fixed)
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Class to represent struct types.
Provides information about what library functions are available for the current target.
This class represents a truncation of integer types.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
LLVM_ABI bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this is a type whose size is a known multiple of vscale.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Base class of all SIMD vector types.
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
bool match(Val *V, const Pattern &P)
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
This is an optimization pass for GlobalISel generic memory operations.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
FunctionAddr VTableAddr uintptr_t uintptr_t DataSize
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
constexpr int PoisonMaskElem
RecurKind
These are the kinds of recurrences that we support.
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
gep_type_iterator gep_type_begin(const User *GEP)
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Attributes of a target dependent hardware loop.
Information about a load/store intrinsic defined by the target.