LLVM 18.0.0git
X86DisassemblerDecoder.h
Go to the documentation of this file.
1//===-- X86DisassemblerDecoderInternal.h - Disassembler decoder -*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is part of the X86 Disassembler.
10// It contains the public interface of the instruction decoder.
11// Documentation for the disassembler can be found in X86Disassembler.h.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLERDECODER_H
16#define LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLERDECODER_H
17
18#include "llvm/ADT/ArrayRef.h"
20
21namespace llvm {
22namespace X86Disassembler {
23
24// Accessor functions for various fields of an Intel instruction
25#define modFromModRM(modRM) (((modRM) & 0xc0) >> 6)
26#define regFromModRM(modRM) (((modRM) & 0x38) >> 3)
27#define rmFromModRM(modRM) ((modRM) & 0x7)
28#define scaleFromSIB(sib) (((sib) & 0xc0) >> 6)
29#define indexFromSIB(sib) (((sib) & 0x38) >> 3)
30#define baseFromSIB(sib) ((sib) & 0x7)
31#define wFromREX(rex) (((rex) & 0x8) >> 3)
32#define rFromREX(rex) (((rex) & 0x4) >> 2)
33#define xFromREX(rex) (((rex) & 0x2) >> 1)
34#define bFromREX(rex) ((rex) & 0x1)
35
36#define rFromEVEX2of4(evex) (((~(evex)) & 0x80) >> 7)
37#define xFromEVEX2of4(evex) (((~(evex)) & 0x40) >> 6)
38#define bFromEVEX2of4(evex) (((~(evex)) & 0x20) >> 5)
39#define r2FromEVEX2of4(evex) (((~(evex)) & 0x10) >> 4)
40#define mmmFromEVEX2of4(evex) ((evex) & 0x7)
41#define wFromEVEX3of4(evex) (((evex) & 0x80) >> 7)
42#define vvvvFromEVEX3of4(evex) (((~(evex)) & 0x78) >> 3)
43#define ppFromEVEX3of4(evex) ((evex) & 0x3)
44#define zFromEVEX4of4(evex) (((evex) & 0x80) >> 7)
45#define l2FromEVEX4of4(evex) (((evex) & 0x40) >> 6)
46#define lFromEVEX4of4(evex) (((evex) & 0x20) >> 5)
47#define bFromEVEX4of4(evex) (((evex) & 0x10) >> 4)
48#define v2FromEVEX4of4(evex) (((~evex) & 0x8) >> 3)
49#define aaaFromEVEX4of4(evex) ((evex) & 0x7)
50
51#define rFromVEX2of3(vex) (((~(vex)) & 0x80) >> 7)
52#define xFromVEX2of3(vex) (((~(vex)) & 0x40) >> 6)
53#define bFromVEX2of3(vex) (((~(vex)) & 0x20) >> 5)
54#define mmmmmFromVEX2of3(vex) ((vex) & 0x1f)
55#define wFromVEX3of3(vex) (((vex) & 0x80) >> 7)
56#define vvvvFromVEX3of3(vex) (((~(vex)) & 0x78) >> 3)
57#define lFromVEX3of3(vex) (((vex) & 0x4) >> 2)
58#define ppFromVEX3of3(vex) ((vex) & 0x3)
59
60#define rFromVEX2of2(vex) (((~(vex)) & 0x80) >> 7)
61#define vvvvFromVEX2of2(vex) (((~(vex)) & 0x78) >> 3)
62#define lFromVEX2of2(vex) (((vex) & 0x4) >> 2)
63#define ppFromVEX2of2(vex) ((vex) & 0x3)
64
65#define rFromXOP2of3(xop) (((~(xop)) & 0x80) >> 7)
66#define xFromXOP2of3(xop) (((~(xop)) & 0x40) >> 6)
67#define bFromXOP2of3(xop) (((~(xop)) & 0x20) >> 5)
68#define mmmmmFromXOP2of3(xop) ((xop) & 0x1f)
69#define wFromXOP3of3(xop) (((xop) & 0x80) >> 7)
70#define vvvvFromXOP3of3(vex) (((~(vex)) & 0x78) >> 3)
71#define lFromXOP3of3(xop) (((xop) & 0x4) >> 2)
72#define ppFromXOP3of3(xop) ((xop) & 0x3)
73
74// These enums represent Intel registers for use by the decoder.
75#define REGS_8BIT \
76 ENTRY(AL) \
77 ENTRY(CL) \
78 ENTRY(DL) \
79 ENTRY(BL) \
80 ENTRY(AH) \
81 ENTRY(CH) \
82 ENTRY(DH) \
83 ENTRY(BH) \
84 ENTRY(R8B) \
85 ENTRY(R9B) \
86 ENTRY(R10B) \
87 ENTRY(R11B) \
88 ENTRY(R12B) \
89 ENTRY(R13B) \
90 ENTRY(R14B) \
91 ENTRY(R15B) \
92 ENTRY(SPL) \
93 ENTRY(BPL) \
94 ENTRY(SIL) \
95 ENTRY(DIL)
96
97#define EA_BASES_16BIT \
98 ENTRY(BX_SI) \
99 ENTRY(BX_DI) \
100 ENTRY(BP_SI) \
101 ENTRY(BP_DI) \
102 ENTRY(SI) \
103 ENTRY(DI) \
104 ENTRY(BP) \
105 ENTRY(BX) \
106 ENTRY(R8W) \
107 ENTRY(R9W) \
108 ENTRY(R10W) \
109 ENTRY(R11W) \
110 ENTRY(R12W) \
111 ENTRY(R13W) \
112 ENTRY(R14W) \
113 ENTRY(R15W)
114
115#define REGS_16BIT \
116 ENTRY(AX) \
117 ENTRY(CX) \
118 ENTRY(DX) \
119 ENTRY(BX) \
120 ENTRY(SP) \
121 ENTRY(BP) \
122 ENTRY(SI) \
123 ENTRY(DI) \
124 ENTRY(R8W) \
125 ENTRY(R9W) \
126 ENTRY(R10W) \
127 ENTRY(R11W) \
128 ENTRY(R12W) \
129 ENTRY(R13W) \
130 ENTRY(R14W) \
131 ENTRY(R15W)
132
133#define EA_BASES_32BIT \
134 ENTRY(EAX) \
135 ENTRY(ECX) \
136 ENTRY(EDX) \
137 ENTRY(EBX) \
138 ENTRY(sib) \
139 ENTRY(EBP) \
140 ENTRY(ESI) \
141 ENTRY(EDI) \
142 ENTRY(R8D) \
143 ENTRY(R9D) \
144 ENTRY(R10D) \
145 ENTRY(R11D) \
146 ENTRY(R12D) \
147 ENTRY(R13D) \
148 ENTRY(R14D) \
149 ENTRY(R15D)
150
151#define REGS_32BIT \
152 ENTRY(EAX) \
153 ENTRY(ECX) \
154 ENTRY(EDX) \
155 ENTRY(EBX) \
156 ENTRY(ESP) \
157 ENTRY(EBP) \
158 ENTRY(ESI) \
159 ENTRY(EDI) \
160 ENTRY(R8D) \
161 ENTRY(R9D) \
162 ENTRY(R10D) \
163 ENTRY(R11D) \
164 ENTRY(R12D) \
165 ENTRY(R13D) \
166 ENTRY(R14D) \
167 ENTRY(R15D)
168
169#define EA_BASES_64BIT \
170 ENTRY(RAX) \
171 ENTRY(RCX) \
172 ENTRY(RDX) \
173 ENTRY(RBX) \
174 ENTRY(sib64) \
175 ENTRY(RBP) \
176 ENTRY(RSI) \
177 ENTRY(RDI) \
178 ENTRY(R8) \
179 ENTRY(R9) \
180 ENTRY(R10) \
181 ENTRY(R11) \
182 ENTRY(R12) \
183 ENTRY(R13) \
184 ENTRY(R14) \
185 ENTRY(R15)
186
187#define REGS_64BIT \
188 ENTRY(RAX) \
189 ENTRY(RCX) \
190 ENTRY(RDX) \
191 ENTRY(RBX) \
192 ENTRY(RSP) \
193 ENTRY(RBP) \
194 ENTRY(RSI) \
195 ENTRY(RDI) \
196 ENTRY(R8) \
197 ENTRY(R9) \
198 ENTRY(R10) \
199 ENTRY(R11) \
200 ENTRY(R12) \
201 ENTRY(R13) \
202 ENTRY(R14) \
203 ENTRY(R15)
204
205#define REGS_MMX \
206 ENTRY(MM0) \
207 ENTRY(MM1) \
208 ENTRY(MM2) \
209 ENTRY(MM3) \
210 ENTRY(MM4) \
211 ENTRY(MM5) \
212 ENTRY(MM6) \
213 ENTRY(MM7)
214
215#define REGS_XMM \
216 ENTRY(XMM0) \
217 ENTRY(XMM1) \
218 ENTRY(XMM2) \
219 ENTRY(XMM3) \
220 ENTRY(XMM4) \
221 ENTRY(XMM5) \
222 ENTRY(XMM6) \
223 ENTRY(XMM7) \
224 ENTRY(XMM8) \
225 ENTRY(XMM9) \
226 ENTRY(XMM10) \
227 ENTRY(XMM11) \
228 ENTRY(XMM12) \
229 ENTRY(XMM13) \
230 ENTRY(XMM14) \
231 ENTRY(XMM15) \
232 ENTRY(XMM16) \
233 ENTRY(XMM17) \
234 ENTRY(XMM18) \
235 ENTRY(XMM19) \
236 ENTRY(XMM20) \
237 ENTRY(XMM21) \
238 ENTRY(XMM22) \
239 ENTRY(XMM23) \
240 ENTRY(XMM24) \
241 ENTRY(XMM25) \
242 ENTRY(XMM26) \
243 ENTRY(XMM27) \
244 ENTRY(XMM28) \
245 ENTRY(XMM29) \
246 ENTRY(XMM30) \
247 ENTRY(XMM31)
248
249#define REGS_YMM \
250 ENTRY(YMM0) \
251 ENTRY(YMM1) \
252 ENTRY(YMM2) \
253 ENTRY(YMM3) \
254 ENTRY(YMM4) \
255 ENTRY(YMM5) \
256 ENTRY(YMM6) \
257 ENTRY(YMM7) \
258 ENTRY(YMM8) \
259 ENTRY(YMM9) \
260 ENTRY(YMM10) \
261 ENTRY(YMM11) \
262 ENTRY(YMM12) \
263 ENTRY(YMM13) \
264 ENTRY(YMM14) \
265 ENTRY(YMM15) \
266 ENTRY(YMM16) \
267 ENTRY(YMM17) \
268 ENTRY(YMM18) \
269 ENTRY(YMM19) \
270 ENTRY(YMM20) \
271 ENTRY(YMM21) \
272 ENTRY(YMM22) \
273 ENTRY(YMM23) \
274 ENTRY(YMM24) \
275 ENTRY(YMM25) \
276 ENTRY(YMM26) \
277 ENTRY(YMM27) \
278 ENTRY(YMM28) \
279 ENTRY(YMM29) \
280 ENTRY(YMM30) \
281 ENTRY(YMM31)
282
283#define REGS_ZMM \
284 ENTRY(ZMM0) \
285 ENTRY(ZMM1) \
286 ENTRY(ZMM2) \
287 ENTRY(ZMM3) \
288 ENTRY(ZMM4) \
289 ENTRY(ZMM5) \
290 ENTRY(ZMM6) \
291 ENTRY(ZMM7) \
292 ENTRY(ZMM8) \
293 ENTRY(ZMM9) \
294 ENTRY(ZMM10) \
295 ENTRY(ZMM11) \
296 ENTRY(ZMM12) \
297 ENTRY(ZMM13) \
298 ENTRY(ZMM14) \
299 ENTRY(ZMM15) \
300 ENTRY(ZMM16) \
301 ENTRY(ZMM17) \
302 ENTRY(ZMM18) \
303 ENTRY(ZMM19) \
304 ENTRY(ZMM20) \
305 ENTRY(ZMM21) \
306 ENTRY(ZMM22) \
307 ENTRY(ZMM23) \
308 ENTRY(ZMM24) \
309 ENTRY(ZMM25) \
310 ENTRY(ZMM26) \
311 ENTRY(ZMM27) \
312 ENTRY(ZMM28) \
313 ENTRY(ZMM29) \
314 ENTRY(ZMM30) \
315 ENTRY(ZMM31)
316
317#define REGS_MASKS \
318 ENTRY(K0) \
319 ENTRY(K1) \
320 ENTRY(K2) \
321 ENTRY(K3) \
322 ENTRY(K4) \
323 ENTRY(K5) \
324 ENTRY(K6) \
325 ENTRY(K7)
326
327#define REGS_MASK_PAIRS \
328 ENTRY(K0_K1) \
329 ENTRY(K2_K3) \
330 ENTRY(K4_K5) \
331 ENTRY(K6_K7)
332
333#define REGS_SEGMENT \
334 ENTRY(ES) \
335 ENTRY(CS) \
336 ENTRY(SS) \
337 ENTRY(DS) \
338 ENTRY(FS) \
339 ENTRY(GS)
340
341#define REGS_DEBUG \
342 ENTRY(DR0) \
343 ENTRY(DR1) \
344 ENTRY(DR2) \
345 ENTRY(DR3) \
346 ENTRY(DR4) \
347 ENTRY(DR5) \
348 ENTRY(DR6) \
349 ENTRY(DR7) \
350 ENTRY(DR8) \
351 ENTRY(DR9) \
352 ENTRY(DR10) \
353 ENTRY(DR11) \
354 ENTRY(DR12) \
355 ENTRY(DR13) \
356 ENTRY(DR14) \
357 ENTRY(DR15)
358
359#define REGS_CONTROL \
360 ENTRY(CR0) \
361 ENTRY(CR1) \
362 ENTRY(CR2) \
363 ENTRY(CR3) \
364 ENTRY(CR4) \
365 ENTRY(CR5) \
366 ENTRY(CR6) \
367 ENTRY(CR7) \
368 ENTRY(CR8) \
369 ENTRY(CR9) \
370 ENTRY(CR10) \
371 ENTRY(CR11) \
372 ENTRY(CR12) \
373 ENTRY(CR13) \
374 ENTRY(CR14) \
375 ENTRY(CR15)
376
377#undef REGS_TMM
378#define REGS_TMM \
379 ENTRY(TMM0) \
380 ENTRY(TMM1) \
381 ENTRY(TMM2) \
382 ENTRY(TMM3) \
383 ENTRY(TMM4) \
384 ENTRY(TMM5) \
385 ENTRY(TMM6) \
386 ENTRY(TMM7)
387
388#define ALL_EA_BASES \
389 EA_BASES_16BIT \
390 EA_BASES_32BIT \
391 EA_BASES_64BIT
392
393#define ALL_SIB_BASES \
394 REGS_32BIT \
395 REGS_64BIT
396
397#define ALL_REGS \
398 REGS_8BIT \
399 REGS_16BIT \
400 REGS_32BIT \
401 REGS_64BIT \
402 REGS_MMX \
403 REGS_XMM \
404 REGS_YMM \
405 REGS_ZMM \
406 REGS_MASKS \
407 REGS_MASK_PAIRS \
408 REGS_SEGMENT \
409 REGS_DEBUG \
410 REGS_CONTROL \
411 REGS_TMM \
412 ENTRY(RIP)
413
414/// All possible values of the base field for effective-address
415/// computations, a.k.a. the Mod and R/M fields of the ModR/M byte.
416/// We distinguish between bases (EA_BASE_*) and registers that just happen
417/// to be referred to when Mod == 0b11 (EA_REG_*).
418enum EABase {
420#define ENTRY(x) EA_BASE_##x,
422#undef ENTRY
423#define ENTRY(x) EA_REG_##x,
425#undef ENTRY
426 EA_max
428
429/// All possible values of the SIB index field.
430/// borrows entries from ALL_EA_BASES with the special case that
431/// sib is synonymous with NONE.
432/// Vector SIB: index can be XMM or YMM.
435#define ENTRY(x) SIB_INDEX_##x,
440#undef ENTRY
443
444/// All possible values of the SIB base field.
447#define ENTRY(x) SIB_BASE_##x,
449#undef ENTRY
452
453/// Possible displacement types for effective-address computations.
460
461/// All possible values of the reg field in the ModR/M byte.
462enum Reg {
463#define ENTRY(x) MODRM_REG_##x,
465#undef ENTRY
468
469/// All possible segment overrides.
480
481/// Possible values for the VEX.m-mmmm field
487 VEX_LOB_MAP6 = 0x6
489
493 XOP_MAP_SELECT_A = 0xA
495
496/// Possible values for the VEX.pp/EVEX.pp field
501 VEX_PREFIX_F2 = 0x3
503
509 TYPE_XOP = 0x4
511
512/// The specification for how to extract and interpret a full instruction and
513/// its operands.
516};
517
518/// The x86 internal instruction, which is produced by the decoder.
520 // Opaque value passed to the reader
522 // The address of the next byte to read via the reader
524
525 // General instruction information
526
527 // The mode to disassemble for (64-bit, protected, real)
529 // The start of the instruction, usable with the reader
531 // The length of the instruction, in bytes
532 size_t length;
533
534 // Prefix state
535
536 // The possible mandatory prefix
538 // The value of the vector extension prefix(EVEX/VEX/XOP), if present
540 // The type of the vector extension prefix
542 // The value of the REX prefix, if present
543 uint8_t rexPrefix;
544 // The segment override type
546 // 1 if the prefix byte, 0xf2 or 0xf3 is xacquire or xrelease
548
549 // Address-size override
551 // Operand-size override
553 // Lock prefix
555 // The repeat prefix if any
557
558 // Sizes of various critical pieces of data, in bytes
560 uint8_t addressSize;
563
564 // Offsets from the start of the instruction to the pieces of data, which is
565 // needed to find relocation entries for adding symbolic operands.
568
569 // opcode state
570
571 // The last byte of the opcode, not counting any ModR/M extension
572 uint8_t opcode;
573
574 // decode state
575
576 // The type of opcode, used for indexing into the array of decode tables
578 // The instruction ID, extracted from the decode table
580 // The specifier for the instruction, from the instruction info table
582
583 // state for additional bytes, consumed during operand decode. Pattern:
584 // consumed___ indicates that the byte was already consumed and does not
585 // need to be consumed again.
586
587 // The VEX.vvvv field, which contains a third register operand for some AVX
588 // instructions.
590
591 // The writemask for AVX-512 instructions which is contained in EVEX.aaa
593
594 // The ModR/M byte, which contains most register operands and some portion of
595 // all memory operands.
597 uint8_t modRM;
598
599 // The SIB byte, used for more complex 32- or 64-bit memory operands
600 uint8_t sib;
601
602 // The displacement, used for memory operands
604
605 // Immediates. There can be two in some cases
609
610 // A register or immediate operand encoded into the opcode
612
613 // Portions of the ModR/M byte
614
615 // These fields determine the allowable values for the ModR/M fields, which
616 // depend on operand and address widths.
619
620 // The Mod and R/M fields can encode a base for an effective address, or a
621 // register. These are separated into two fields here.
624 // The reg field always encodes a register
626
627 // SIB state
630 uint8_t sibScale;
632
633 // Embedded rounding control.
634 uint8_t RC;
635
637};
638
639} // namespace X86Disassembler
640} // namespace llvm
641
642#endif
#define REGS_YMM
#define REGS_XMM
#define ALL_REGS
#define ALL_SIB_BASES
#define REGS_ZMM
#define ALL_EA_BASES
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
EABase
All possible values of the base field for effective-address computations, a.k.a.
VEXLeadingOpcodeByte
Possible values for the VEX.m-mmmm field.
Reg
All possible values of the reg field in the ModR/M byte.
DisassemblerMode
Decoding mode for the Intel disassembler.
SIBBase
All possible values of the SIB base field.
VEXPrefixCode
Possible values for the VEX.pp/EVEX.pp field.
EADisplacement
Possible displacement types for effective-address computations.
SIBIndex
All possible values of the SIB index field.
SegmentOverride
All possible segment overrides.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
The specification for how to extract and interpret a full instruction and its operands.
The x86 internal instruction, which is produced by the decoder.