LLVM  7.0.0svn
STLExtras.h
Go to the documentation of this file.
1 //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains some templates that are useful if you are working with the
11 // STL at all.
12 //
13 // No library is required when using these functions.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_ADT_STLEXTRAS_H
18 #define LLVM_ADT_STLEXTRAS_H
19 
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/iterator.h"
25 #include <algorithm>
26 #include <cassert>
27 #include <cstddef>
28 #include <cstdint>
29 #include <cstdlib>
30 #include <functional>
31 #include <initializer_list>
32 #include <iterator>
33 #include <limits>
34 #include <memory>
35 #include <tuple>
36 #include <type_traits>
37 #include <utility>
38 
39 #ifdef EXPENSIVE_CHECKS
40 #include <random> // for std::mt19937
41 #endif
42 
43 namespace llvm {
44 
45 // Only used by compiler if both template types are the same. Useful when
46 // using SFINAE to test for the existence of member functions.
47 template <typename T, T> struct SameType;
48 
49 namespace detail {
50 
51 template <typename RangeT>
52 using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
53 
54 template <typename RangeT>
55 using ValueOfRange = typename std::remove_reference<decltype(
56  *std::begin(std::declval<RangeT &>()))>::type;
57 
58 } // end namespace detail
59 
60 //===----------------------------------------------------------------------===//
61 // Extra additions to <functional>
62 //===----------------------------------------------------------------------===//
63 
64 template <class Ty> struct identity {
65  using argument_type = Ty;
66 
67  Ty &operator()(Ty &self) const {
68  return self;
69  }
70  const Ty &operator()(const Ty &self) const {
71  return self;
72  }
73 };
74 
75 template <class Ty> struct less_ptr {
76  bool operator()(const Ty* left, const Ty* right) const {
77  return *left < *right;
78  }
79 };
80 
81 template <class Ty> struct greater_ptr {
82  bool operator()(const Ty* left, const Ty* right) const {
83  return *right < *left;
84  }
85 };
86 
87 /// An efficient, type-erasing, non-owning reference to a callable. This is
88 /// intended for use as the type of a function parameter that is not used
89 /// after the function in question returns.
90 ///
91 /// This class does not own the callable, so it is not in general safe to store
92 /// a function_ref.
93 template<typename Fn> class function_ref;
94 
95 template<typename Ret, typename ...Params>
96 class function_ref<Ret(Params...)> {
97  Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
98  intptr_t callable;
99 
100  template<typename Callable>
101  static Ret callback_fn(intptr_t callable, Params ...params) {
102  return (*reinterpret_cast<Callable*>(callable))(
103  std::forward<Params>(params)...);
104  }
105 
106 public:
107  function_ref() = default;
108  function_ref(std::nullptr_t) {}
109 
110  template <typename Callable>
111  function_ref(Callable &&callable,
112  typename std::enable_if<
113  !std::is_same<typename std::remove_reference<Callable>::type,
114  function_ref>::value>::type * = nullptr)
115  : callback(callback_fn<typename std::remove_reference<Callable>::type>),
116  callable(reinterpret_cast<intptr_t>(&callable)) {}
117 
118  Ret operator()(Params ...params) const {
119  return callback(callable, std::forward<Params>(params)...);
120  }
121 
122  operator bool() const { return callback; }
123 };
124 
125 // deleter - Very very very simple method that is used to invoke operator
126 // delete on something. It is used like this:
127 //
128 // for_each(V.begin(), B.end(), deleter<Interval>);
129 template <class T>
130 inline void deleter(T *Ptr) {
131  delete Ptr;
132 }
133 
134 //===----------------------------------------------------------------------===//
135 // Extra additions to <iterator>
136 //===----------------------------------------------------------------------===//
137 
138 namespace adl_detail {
139 
140 using std::begin;
141 
142 template <typename ContainerTy>
143 auto adl_begin(ContainerTy &&container)
144  -> decltype(begin(std::forward<ContainerTy>(container))) {
145  return begin(std::forward<ContainerTy>(container));
146 }
147 
148 using std::end;
149 
150 template <typename ContainerTy>
151 auto adl_end(ContainerTy &&container)
152  -> decltype(end(std::forward<ContainerTy>(container))) {
153  return end(std::forward<ContainerTy>(container));
154 }
155 
156 using std::swap;
157 
158 template <typename T>
159 void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
160  std::declval<T>()))) {
161  swap(std::forward<T>(lhs), std::forward<T>(rhs));
162 }
163 
164 } // end namespace adl_detail
165 
166 template <typename ContainerTy>
167 auto adl_begin(ContainerTy &&container)
168  -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
169  return adl_detail::adl_begin(std::forward<ContainerTy>(container));
170 }
171 
172 template <typename ContainerTy>
173 auto adl_end(ContainerTy &&container)
174  -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
175  return adl_detail::adl_end(std::forward<ContainerTy>(container));
176 }
177 
178 template <typename T>
179 void adl_swap(T &&lhs, T &&rhs) noexcept(
180  noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
181  adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
182 }
183 
184 // mapped_iterator - This is a simple iterator adapter that causes a function to
185 // be applied whenever operator* is invoked on the iterator.
186 
187 template <typename ItTy, typename FuncTy,
188  typename FuncReturnTy =
189  decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
191  : public iterator_adaptor_base<
192  mapped_iterator<ItTy, FuncTy>, ItTy,
193  typename std::iterator_traits<ItTy>::iterator_category,
194  typename std::remove_reference<FuncReturnTy>::type> {
195 public:
196  mapped_iterator(ItTy U, FuncTy F)
197  : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
198 
199  ItTy getCurrent() { return this->I; }
200 
201  FuncReturnTy operator*() { return F(*this->I); }
202 
203 private:
204  FuncTy F;
205 };
206 
207 // map_iterator - Provide a convenient way to create mapped_iterators, just like
208 // make_pair is useful for creating pairs...
209 template <class ItTy, class FuncTy>
211  return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
212 }
213 
214 /// Helper to determine if type T has a member called rbegin().
215 template <typename Ty> class has_rbegin_impl {
216  using yes = char[1];
217  using no = char[2];
218 
219  template <typename Inner>
220  static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
221 
222  template <typename>
223  static no& test(...);
224 
225 public:
226  static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
227 };
228 
229 /// Metafunction to determine if T& or T has a member called rbegin().
230 template <typename Ty>
231 struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
232 };
233 
234 // Returns an iterator_range over the given container which iterates in reverse.
235 // Note that the container must have rbegin()/rend() methods for this to work.
236 template <typename ContainerTy>
237 auto reverse(ContainerTy &&C,
238  typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
239  nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
240  return make_range(C.rbegin(), C.rend());
241 }
242 
243 // Returns a std::reverse_iterator wrapped around the given iterator.
244 template <typename IteratorTy>
245 std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
246  return std::reverse_iterator<IteratorTy>(It);
247 }
248 
249 // Returns an iterator_range over the given container which iterates in reverse.
250 // Note that the container must have begin()/end() methods which return
251 // bidirectional iterators for this to work.
252 template <typename ContainerTy>
253 auto reverse(
254  ContainerTy &&C,
255  typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
260 }
261 
262 /// An iterator adaptor that filters the elements of given inner iterators.
263 ///
264 /// The predicate parameter should be a callable object that accepts the wrapped
265 /// iterator's reference type and returns a bool. When incrementing or
266 /// decrementing the iterator, it will call the predicate on each element and
267 /// skip any where it returns false.
268 ///
269 /// \code
270 /// int A[] = { 1, 2, 3, 4 };
271 /// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
272 /// // R contains { 1, 3 }.
273 /// \endcode
274 template <typename WrappedIteratorT, typename PredicateT>
276  : public iterator_adaptor_base<
277  filter_iterator<WrappedIteratorT, PredicateT>, WrappedIteratorT,
278  typename std::common_type<
279  std::forward_iterator_tag,
280  typename std::iterator_traits<
281  WrappedIteratorT>::iterator_category>::type> {
284  typename std::common_type<
285  std::forward_iterator_tag,
286  typename std::iterator_traits<WrappedIteratorT>::iterator_category>::
287  type>;
288 
289  struct PayloadType {
290  WrappedIteratorT End;
291  PredicateT Pred;
292  };
293 
294  Optional<PayloadType> Payload;
295 
296  void findNextValid() {
297  assert(Payload && "Payload should be engaged when findNextValid is called");
298  while (this->I != Payload->End && !Payload->Pred(*this->I))
299  BaseT::operator++();
300  }
301 
302  // Construct the begin iterator. The begin iterator requires to know where end
303  // is, so that it can properly stop when it hits end.
304  filter_iterator(WrappedIteratorT Begin, WrappedIteratorT End, PredicateT Pred)
305  : BaseT(std::move(Begin)),
306  Payload(PayloadType{std::move(End), std::move(Pred)}) {
307  findNextValid();
308  }
309 
310  // Construct the end iterator. It's not incrementable, so Payload doesn't
311  // have to be engaged.
312  filter_iterator(WrappedIteratorT End) : BaseT(End) {}
313 
314 public:
315  using BaseT::operator++;
316 
318  BaseT::operator++();
319  findNextValid();
320  return *this;
321  }
322 
323  template <typename RT, typename PT>
325  make_filter_range(RT &&, PT);
326 };
327 
328 /// Convenience function that takes a range of elements and a predicate,
329 /// and return a new filter_iterator range.
330 ///
331 /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
332 /// lifetime of that temporary is not kept by the returned range object, and the
333 /// temporary is going to be dropped on the floor after the make_iterator_range
334 /// full expression that contains this function call.
335 template <typename RangeT, typename PredicateT>
337 make_filter_range(RangeT &&Range, PredicateT Pred) {
338  using FilterIteratorT =
340  return make_range(FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
341  std::end(std::forward<RangeT>(Range)),
342  std::move(Pred)),
343  FilterIteratorT(std::end(std::forward<RangeT>(Range))));
344 }
345 
346 // forward declarations required by zip_shortest/zip_first
347 template <typename R, typename UnaryPredicate>
348 bool all_of(R &&range, UnaryPredicate P);
349 
350 template <size_t... I> struct index_sequence;
351 
352 template <class... Ts> struct index_sequence_for;
353 
354 namespace detail {
355 
356 using std::declval;
357 
358 // We have to alias this since inlining the actual type at the usage site
359 // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
360 template<typename... Iters> struct ZipTupleType {
361  using type = std::tuple<decltype(*declval<Iters>())...>;
362 };
363 
364 template <typename ZipType, typename... Iters>
366  ZipType, typename std::common_type<std::bidirectional_iterator_tag,
367  typename std::iterator_traits<
368  Iters>::iterator_category...>::type,
369  // ^ TODO: Implement random access methods.
370  typename ZipTupleType<Iters...>::type,
371  typename std::iterator_traits<typename std::tuple_element<
372  0, std::tuple<Iters...>>::type>::difference_type,
373  // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
374  // inner iterators have the same difference_type. It would fail if, for
375  // instance, the second field's difference_type were non-numeric while the
376  // first is.
377  typename ZipTupleType<Iters...>::type *,
378  typename ZipTupleType<Iters...>::type>;
379 
380 template <typename ZipType, typename... Iters>
381 struct zip_common : public zip_traits<ZipType, Iters...> {
382  using Base = zip_traits<ZipType, Iters...>;
383  using value_type = typename Base::value_type;
384 
385  std::tuple<Iters...> iterators;
386 
387 protected:
388  template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
389  return value_type(*std::get<Ns>(iterators)...);
390  }
391 
392  template <size_t... Ns>
393  decltype(iterators) tup_inc(index_sequence<Ns...>) const {
394  return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
395  }
396 
397  template <size_t... Ns>
398  decltype(iterators) tup_dec(index_sequence<Ns...>) const {
399  return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
400  }
401 
402 public:
403  zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
404 
406 
407  const value_type operator*() const {
409  }
410 
411  ZipType &operator++() {
412  iterators = tup_inc(index_sequence_for<Iters...>{});
413  return *reinterpret_cast<ZipType *>(this);
414  }
415 
416  ZipType &operator--() {
417  static_assert(Base::IsBidirectional,
418  "All inner iterators must be at least bidirectional.");
419  iterators = tup_dec(index_sequence_for<Iters...>{});
420  return *reinterpret_cast<ZipType *>(this);
421  }
422 };
423 
424 template <typename... Iters>
425 struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
426  using Base = zip_common<zip_first<Iters...>, Iters...>;
427 
428  bool operator==(const zip_first<Iters...> &other) const {
429  return std::get<0>(this->iterators) == std::get<0>(other.iterators);
430  }
431 
432  zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
433 };
434 
435 template <typename... Iters>
436 class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
437  template <size_t... Ns>
438  bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
439  return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
440  std::get<Ns>(other.iterators)...},
441  identity<bool>{});
442  }
443 
444 public:
445  using Base = zip_common<zip_shortest<Iters...>, Iters...>;
446 
447  zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
448 
449  bool operator==(const zip_shortest<Iters...> &other) const {
450  return !test(other, index_sequence_for<Iters...>{});
451  }
452 };
453 
454 template <template <typename...> class ItType, typename... Args> class zippy {
455 public:
456  using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
457  using iterator_category = typename iterator::iterator_category;
458  using value_type = typename iterator::value_type;
459  using difference_type = typename iterator::difference_type;
460  using pointer = typename iterator::pointer;
461  using reference = typename iterator::reference;
462 
463 private:
464  std::tuple<Args...> ts;
465 
466  template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
467  return iterator(std::begin(std::get<Ns>(ts))...);
468  }
469  template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
470  return iterator(std::end(std::get<Ns>(ts))...);
471  }
472 
473 public:
474  zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
475 
476  iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
477  iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
478 };
479 
480 } // end namespace detail
481 
482 /// zip iterator for two or more iteratable types.
483 template <typename T, typename U, typename... Args>
485  Args &&... args) {
486  return detail::zippy<detail::zip_shortest, T, U, Args...>(
487  std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
488 }
489 
490 /// zip iterator that, for the sake of efficiency, assumes the first iteratee to
491 /// be the shortest.
492 template <typename T, typename U, typename... Args>
494  Args &&... args) {
495  return detail::zippy<detail::zip_first, T, U, Args...>(
496  std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
497 }
498 
499 /// Iterator wrapper that concatenates sequences together.
500 ///
501 /// This can concatenate different iterators, even with different types, into
502 /// a single iterator provided the value types of all the concatenated
503 /// iterators expose `reference` and `pointer` types that can be converted to
504 /// `ValueT &` and `ValueT *` respectively. It doesn't support more
505 /// interesting/customized pointer or reference types.
506 ///
507 /// Currently this only supports forward or higher iterator categories as
508 /// inputs and always exposes a forward iterator interface.
509 template <typename ValueT, typename... IterTs>
511  : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
512  std::forward_iterator_tag, ValueT> {
513  using BaseT = typename concat_iterator::iterator_facade_base;
514 
515  /// We store both the current and end iterators for each concatenated
516  /// sequence in a tuple of pairs.
517  ///
518  /// Note that something like iterator_range seems nice at first here, but the
519  /// range properties are of little benefit and end up getting in the way
520  /// because we need to do mutation on the current iterators.
521  std::tuple<std::pair<IterTs, IterTs>...> IterPairs;
522 
523  /// Attempts to increment a specific iterator.
524  ///
525  /// Returns true if it was able to increment the iterator. Returns false if
526  /// the iterator is already at the end iterator.
527  template <size_t Index> bool incrementHelper() {
528  auto &IterPair = std::get<Index>(IterPairs);
529  if (IterPair.first == IterPair.second)
530  return false;
531 
532  ++IterPair.first;
533  return true;
534  }
535 
536  /// Increments the first non-end iterator.
537  ///
538  /// It is an error to call this with all iterators at the end.
539  template <size_t... Ns> void increment(index_sequence<Ns...>) {
540  // Build a sequence of functions to increment each iterator if possible.
541  bool (concat_iterator::*IncrementHelperFns[])() = {
542  &concat_iterator::incrementHelper<Ns>...};
543 
544  // Loop over them, and stop as soon as we succeed at incrementing one.
545  for (auto &IncrementHelperFn : IncrementHelperFns)
546  if ((this->*IncrementHelperFn)())
547  return;
548 
549  llvm_unreachable("Attempted to increment an end concat iterator!");
550  }
551 
552  /// Returns null if the specified iterator is at the end. Otherwise,
553  /// dereferences the iterator and returns the address of the resulting
554  /// reference.
555  template <size_t Index> ValueT *getHelper() const {
556  auto &IterPair = std::get<Index>(IterPairs);
557  if (IterPair.first == IterPair.second)
558  return nullptr;
559 
560  return &*IterPair.first;
561  }
562 
563  /// Finds the first non-end iterator, dereferences, and returns the resulting
564  /// reference.
565  ///
566  /// It is an error to call this with all iterators at the end.
567  template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
568  // Build a sequence of functions to get from iterator if possible.
569  ValueT *(concat_iterator::*GetHelperFns[])() const = {
570  &concat_iterator::getHelper<Ns>...};
571 
572  // Loop over them, and return the first result we find.
573  for (auto &GetHelperFn : GetHelperFns)
574  if (ValueT *P = (this->*GetHelperFn)())
575  return *P;
576 
577  llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
578  }
579 
580 public:
581  /// Constructs an iterator from a squence of ranges.
582  ///
583  /// We need the full range to know how to switch between each of the
584  /// iterators.
585  template <typename... RangeTs>
586  explicit concat_iterator(RangeTs &&... Ranges)
587  : IterPairs({std::begin(Ranges), std::end(Ranges)}...) {}
588 
589  using BaseT::operator++;
590 
592  increment(index_sequence_for<IterTs...>());
593  return *this;
594  }
595 
596  ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }
597 
598  bool operator==(const concat_iterator &RHS) const {
599  return IterPairs == RHS.IterPairs;
600  }
601 };
602 
603 namespace detail {
604 
605 /// Helper to store a sequence of ranges being concatenated and access them.
606 ///
607 /// This is designed to facilitate providing actual storage when temporaries
608 /// are passed into the constructor such that we can use it as part of range
609 /// based for loops.
610 template <typename ValueT, typename... RangeTs> class concat_range {
611 public:
612  using iterator =
614  decltype(std::begin(std::declval<RangeTs &>()))...>;
615 
616 private:
617  std::tuple<RangeTs...> Ranges;
618 
619  template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
620  return iterator(std::get<Ns>(Ranges)...);
621  }
622  template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
623  return iterator(make_range(std::end(std::get<Ns>(Ranges)),
624  std::end(std::get<Ns>(Ranges)))...);
625  }
626 
627 public:
628  concat_range(RangeTs &&... Ranges)
629  : Ranges(std::forward<RangeTs>(Ranges)...) {}
630 
631  iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
632  iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
633 };
634 
635 } // end namespace detail
636 
637 /// Concatenated range across two or more ranges.
638 ///
639 /// The desired value type must be explicitly specified.
640 template <typename ValueT, typename... RangeTs>
641 detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
642  static_assert(sizeof...(RangeTs) > 1,
643  "Need more than one range to concatenate!");
644  return detail::concat_range<ValueT, RangeTs...>(
645  std::forward<RangeTs>(Ranges)...);
646 }
647 
648 //===----------------------------------------------------------------------===//
649 // Extra additions to <utility>
650 //===----------------------------------------------------------------------===//
651 
652 /// \brief Function object to check whether the first component of a std::pair
653 /// compares less than the first component of another std::pair.
654 struct less_first {
655  template <typename T> bool operator()(const T &lhs, const T &rhs) const {
656  return lhs.first < rhs.first;
657  }
658 };
659 
660 /// \brief Function object to check whether the second component of a std::pair
661 /// compares less than the second component of another std::pair.
662 struct less_second {
663  template <typename T> bool operator()(const T &lhs, const T &rhs) const {
664  return lhs.second < rhs.second;
665  }
666 };
667 
668 // A subset of N3658. More stuff can be added as-needed.
669 
670 /// \brief Represents a compile-time sequence of integers.
671 template <class T, T... I> struct integer_sequence {
672  using value_type = T;
673 
674  static constexpr size_t size() { return sizeof...(I); }
675 };
676 
677 /// \brief Alias for the common case of a sequence of size_ts.
678 template <size_t... I>
679 struct index_sequence : integer_sequence<std::size_t, I...> {};
680 
681 template <std::size_t N, std::size_t... I>
682 struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
683 template <std::size_t... I>
684 struct build_index_impl<0, I...> : index_sequence<I...> {};
685 
686 /// \brief Creates a compile-time integer sequence for a parameter pack.
687 template <class... Ts>
688 struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
689 
690 /// Utility type to build an inheritance chain that makes it easy to rank
691 /// overload candidates.
692 template <int N> struct rank : rank<N - 1> {};
693 template <> struct rank<0> {};
694 
695 /// \brief traits class for checking whether type T is one of any of the given
696 /// types in the variadic list.
697 template <typename T, typename... Ts> struct is_one_of {
698  static const bool value = false;
699 };
700 
701 template <typename T, typename U, typename... Ts>
702 struct is_one_of<T, U, Ts...> {
703  static const bool value =
704  std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
705 };
706 
707 /// \brief traits class for checking whether type T is a base class for all
708 /// the given types in the variadic list.
709 template <typename T, typename... Ts> struct are_base_of {
710  static const bool value = true;
711 };
712 
713 template <typename T, typename U, typename... Ts>
714 struct are_base_of<T, U, Ts...> {
715  static const bool value =
716  std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
717 };
718 
719 //===----------------------------------------------------------------------===//
720 // Extra additions for arrays
721 //===----------------------------------------------------------------------===//
722 
723 /// Find the length of an array.
724 template <class T, std::size_t N>
725 constexpr inline size_t array_lengthof(T (&)[N]) {
726  return N;
727 }
728 
729 /// Adapt std::less<T> for array_pod_sort.
730 template<typename T>
731 inline int array_pod_sort_comparator(const void *P1, const void *P2) {
732  if (std::less<T>()(*reinterpret_cast<const T*>(P1),
733  *reinterpret_cast<const T*>(P2)))
734  return -1;
735  if (std::less<T>()(*reinterpret_cast<const T*>(P2),
736  *reinterpret_cast<const T*>(P1)))
737  return 1;
738  return 0;
739 }
740 
741 /// get_array_pod_sort_comparator - This is an internal helper function used to
742 /// get type deduction of T right.
743 template<typename T>
744 inline int (*get_array_pod_sort_comparator(const T &))
745  (const void*, const void*) {
746  return array_pod_sort_comparator<T>;
747 }
748 
749 /// array_pod_sort - This sorts an array with the specified start and end
750 /// extent. This is just like std::sort, except that it calls qsort instead of
751 /// using an inlined template. qsort is slightly slower than std::sort, but
752 /// most sorts are not performance critical in LLVM and std::sort has to be
753 /// template instantiated for each type, leading to significant measured code
754 /// bloat. This function should generally be used instead of std::sort where
755 /// possible.
756 ///
757 /// This function assumes that you have simple POD-like types that can be
758 /// compared with std::less and can be moved with memcpy. If this isn't true,
759 /// you should use std::sort.
760 ///
761 /// NOTE: If qsort_r were portable, we could allow a custom comparator and
762 /// default to std::less.
763 template<class IteratorTy>
764 inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
765  // Don't inefficiently call qsort with one element or trigger undefined
766  // behavior with an empty sequence.
767  auto NElts = End - Start;
768  if (NElts <= 1) return;
769 #ifdef EXPENSIVE_CHECKS
770  std::mt19937 Generator(std::random_device{}());
771  std::shuffle(Start, End, Generator);
772 #endif
773  qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
774 }
775 
776 template <class IteratorTy>
777 inline void array_pod_sort(
778  IteratorTy Start, IteratorTy End,
779  int (*Compare)(
780  const typename std::iterator_traits<IteratorTy>::value_type *,
781  const typename std::iterator_traits<IteratorTy>::value_type *)) {
782  // Don't inefficiently call qsort with one element or trigger undefined
783  // behavior with an empty sequence.
784  auto NElts = End - Start;
785  if (NElts <= 1) return;
786 #ifdef EXPENSIVE_CHECKS
787  std::mt19937 Generator(std::random_device{}());
788  std::shuffle(Start, End, Generator);
789 #endif
790  qsort(&*Start, NElts, sizeof(*Start),
791  reinterpret_cast<int (*)(const void *, const void *)>(Compare));
792 }
793 
794 // Provide wrappers to std::sort which shuffle the elements before sorting
795 // to help uncover non-deterministic behavior (PR35135).
796 template <typename IteratorTy>
797 inline void sort(IteratorTy Start, IteratorTy End) {
798 #ifdef EXPENSIVE_CHECKS
799  std::mt19937 Generator(std::random_device{}());
800  std::shuffle(Start, End, Generator);
801 #endif
802  std::sort(Start, End);
803 }
804 
805 template <typename IteratorTy, typename Compare>
806 inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
807 #ifdef EXPENSIVE_CHECKS
808  std::mt19937 Generator(std::random_device{}());
809  std::shuffle(Start, End, Generator);
810 #endif
811  std::sort(Start, End, Comp);
812 }
813 
814 //===----------------------------------------------------------------------===//
815 // Extra additions to <algorithm>
816 //===----------------------------------------------------------------------===//
817 
818 /// For a container of pointers, deletes the pointers and then clears the
819 /// container.
820 template<typename Container>
821 void DeleteContainerPointers(Container &C) {
822  for (auto V : C)
823  delete V;
824  C.clear();
825 }
826 
827 /// In a container of pairs (usually a map) whose second element is a pointer,
828 /// deletes the second elements and then clears the container.
829 template<typename Container>
830 void DeleteContainerSeconds(Container &C) {
831  for (auto &V : C)
832  delete V.second;
833  C.clear();
834 }
835 
836 /// Provide wrappers to std::for_each which take ranges instead of having to
837 /// pass begin/end explicitly.
838 template <typename R, typename UnaryPredicate>
839 UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
840  return std::for_each(adl_begin(Range), adl_end(Range), P);
841 }
842 
843 /// Provide wrappers to std::all_of which take ranges instead of having to pass
844 /// begin/end explicitly.
845 template <typename R, typename UnaryPredicate>
846 bool all_of(R &&Range, UnaryPredicate P) {
847  return std::all_of(adl_begin(Range), adl_end(Range), P);
848 }
849 
850 /// Provide wrappers to std::any_of which take ranges instead of having to pass
851 /// begin/end explicitly.
852 template <typename R, typename UnaryPredicate>
853 bool any_of(R &&Range, UnaryPredicate P) {
854  return std::any_of(adl_begin(Range), adl_end(Range), P);
855 }
856 
857 /// Provide wrappers to std::none_of which take ranges instead of having to pass
858 /// begin/end explicitly.
859 template <typename R, typename UnaryPredicate>
860 bool none_of(R &&Range, UnaryPredicate P) {
861  return std::none_of(adl_begin(Range), adl_end(Range), P);
862 }
863 
864 /// Provide wrappers to std::find which take ranges instead of having to pass
865 /// begin/end explicitly.
866 template <typename R, typename T>
867 auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
868  return std::find(adl_begin(Range), adl_end(Range), Val);
869 }
870 
871 /// Provide wrappers to std::find_if which take ranges instead of having to pass
872 /// begin/end explicitly.
873 template <typename R, typename UnaryPredicate>
874 auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
875  return std::find_if(adl_begin(Range), adl_end(Range), P);
876 }
877 
878 template <typename R, typename UnaryPredicate>
879 auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
880  return std::find_if_not(adl_begin(Range), adl_end(Range), P);
881 }
882 
883 /// Provide wrappers to std::remove_if which take ranges instead of having to
884 /// pass begin/end explicitly.
885 template <typename R, typename UnaryPredicate>
886 auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
887  return std::remove_if(adl_begin(Range), adl_end(Range), P);
888 }
889 
890 /// Provide wrappers to std::copy_if which take ranges instead of having to
891 /// pass begin/end explicitly.
892 template <typename R, typename OutputIt, typename UnaryPredicate>
893 OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
894  return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
895 }
896 
897 template <typename R, typename OutputIt>
898 OutputIt copy(R &&Range, OutputIt Out) {
899  return std::copy(adl_begin(Range), adl_end(Range), Out);
900 }
901 
902 /// Wrapper function around std::find to detect if an element exists
903 /// in a container.
904 template <typename R, typename E>
905 bool is_contained(R &&Range, const E &Element) {
906  return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
907 }
908 
909 /// Wrapper function around std::count to count the number of times an element
910 /// \p Element occurs in the given range \p Range.
911 template <typename R, typename E>
912 auto count(R &&Range, const E &Element) ->
913  typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
914  return std::count(adl_begin(Range), adl_end(Range), Element);
915 }
916 
917 /// Wrapper function around std::count_if to count the number of times an
918 /// element satisfying a given predicate occurs in a range.
919 template <typename R, typename UnaryPredicate>
920 auto count_if(R &&Range, UnaryPredicate P) ->
921  typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
922  return std::count_if(adl_begin(Range), adl_end(Range), P);
923 }
924 
925 /// Wrapper function around std::transform to apply a function to a range and
926 /// store the result elsewhere.
927 template <typename R, typename OutputIt, typename UnaryPredicate>
928 OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
929  return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
930 }
931 
932 /// Provide wrappers to std::partition which take ranges instead of having to
933 /// pass begin/end explicitly.
934 template <typename R, typename UnaryPredicate>
935 auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
936  return std::partition(adl_begin(Range), adl_end(Range), P);
937 }
938 
939 /// Provide wrappers to std::lower_bound which take ranges instead of having to
940 /// pass begin/end explicitly.
941 template <typename R, typename ForwardIt>
942 auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
943  return std::lower_bound(adl_begin(Range), adl_end(Range), I);
944 }
945 
946 /// \brief Given a range of type R, iterate the entire range and return a
947 /// SmallVector with elements of the vector. This is useful, for example,
948 /// when you want to iterate a range and then sort the results.
949 template <unsigned Size, typename R>
951 to_vector(R &&Range) {
952  return {adl_begin(Range), adl_end(Range)};
953 }
954 
955 /// Provide a container algorithm similar to C++ Library Fundamentals v2's
956 /// `erase_if` which is equivalent to:
957 ///
958 /// C.erase(remove_if(C, pred), C.end());
959 ///
960 /// This version works for any container with an erase method call accepting
961 /// two iterators.
962 template <typename Container, typename UnaryPredicate>
963 void erase_if(Container &C, UnaryPredicate P) {
964  C.erase(remove_if(C, P), C.end());
965 }
966 
967 //===----------------------------------------------------------------------===//
968 // Extra additions to <memory>
969 //===----------------------------------------------------------------------===//
970 
971 // Implement make_unique according to N3656.
972 
973 /// \brief Constructs a `new T()` with the given args and returns a
974 /// `unique_ptr<T>` which owns the object.
975 ///
976 /// Example:
977 ///
978 /// auto p = make_unique<int>();
979 /// auto p = make_unique<std::tuple<int, int>>(0, 1);
980 template <class T, class... Args>
981 typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
982 make_unique(Args &&... args) {
983  return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
984 }
985 
986 /// \brief Constructs a `new T[n]` with the given args and returns a
987 /// `unique_ptr<T[]>` which owns the object.
988 ///
989 /// \param n size of the new array.
990 ///
991 /// Example:
992 ///
993 /// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
994 template <class T>
995 typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
996  std::unique_ptr<T>>::type
997 make_unique(size_t n) {
998  return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
999 }
1000 
1001 /// This function isn't used and is only here to provide better compile errors.
1002 template <class T, class... Args>
1003 typename std::enable_if<std::extent<T>::value != 0>::type
1004 make_unique(Args &&...) = delete;
1005 
1006 struct FreeDeleter {
1007  void operator()(void* v) {
1008  ::free(v);
1009  }
1010 };
1011 
1012 template<typename First, typename Second>
1013 struct pair_hash {
1014  size_t operator()(const std::pair<First, Second> &P) const {
1015  return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
1016  }
1017 };
1018 
1019 /// A functor like C++14's std::less<void> in its absence.
1020 struct less {
1021  template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1022  return std::forward<A>(a) < std::forward<B>(b);
1023  }
1024 };
1025 
1026 /// A functor like C++14's std::equal<void> in its absence.
1027 struct equal {
1028  template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1029  return std::forward<A>(a) == std::forward<B>(b);
1030  }
1031 };
1032 
1033 /// Binary functor that adapts to any other binary functor after dereferencing
1034 /// operands.
1035 template <typename T> struct deref {
1036  T func;
1037 
1038  // Could be further improved to cope with non-derivable functors and
1039  // non-binary functors (should be a variadic template member function
1040  // operator()).
1041  template <typename A, typename B>
1042  auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
1043  assert(lhs);
1044  assert(rhs);
1045  return func(*lhs, *rhs);
1046  }
1047 };
1048 
1049 namespace detail {
1050 
1051 template <typename R> class enumerator_iter;
1052 
1053 template <typename R> struct result_pair {
1054  friend class enumerator_iter<R>;
1055 
1056  result_pair() = default;
1057  result_pair(std::size_t Index, IterOfRange<R> Iter)
1058  : Index(Index), Iter(Iter) {}
1059 
1061  Index = Other.Index;
1062  Iter = Other.Iter;
1063  return *this;
1064  }
1065 
1066  std::size_t index() const { return Index; }
1067  const ValueOfRange<R> &value() const { return *Iter; }
1068  ValueOfRange<R> &value() { return *Iter; }
1069 
1070 private:
1072  IterOfRange<R> Iter;
1073 };
1074 
1075 template <typename R>
1076 class enumerator_iter
1077  : public iterator_facade_base<
1078  enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
1079  typename std::iterator_traits<IterOfRange<R>>::difference_type,
1080  typename std::iterator_traits<IterOfRange<R>>::pointer,
1081  typename std::iterator_traits<IterOfRange<R>>::reference> {
1082  using result_type = result_pair<R>;
1083 
1084 public:
1086  : Result(std::numeric_limits<size_t>::max(), EndIter) {}
1087 
1089  : Result(Index, Iter) {}
1090 
1091  result_type &operator*() { return Result; }
1092  const result_type &operator*() const { return Result; }
1093 
1095  assert(Result.Index != std::numeric_limits<size_t>::max());
1096  ++Result.Iter;
1097  ++Result.Index;
1098  return *this;
1099  }
1100 
1101  bool operator==(const enumerator_iter<R> &RHS) const {
1102  // Don't compare indices here, only iterators. It's possible for an end
1103  // iterator to have different indices depending on whether it was created
1104  // by calling std::end() versus incrementing a valid iterator.
1105  return Result.Iter == RHS.Result.Iter;
1106  }
1107 
1109  Result = Other.Result;
1110  return *this;
1111  }
1112 
1113 private:
1114  result_type Result;
1115 };
1116 
1117 template <typename R> class enumerator {
1118 public:
1119  explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
1120 
1122  return enumerator_iter<R>(0, std::begin(TheRange));
1123  }
1124 
1126  return enumerator_iter<R>(std::end(TheRange));
1127  }
1128 
1129 private:
1130  R TheRange;
1131 };
1132 
1133 } // end namespace detail
1134 
1135 /// Given an input range, returns a new range whose values are are pair (A,B)
1136 /// such that A is the 0-based index of the item in the sequence, and B is
1137 /// the value from the original sequence. Example:
1138 ///
1139 /// std::vector<char> Items = {'A', 'B', 'C', 'D'};
1140 /// for (auto X : enumerate(Items)) {
1141 /// printf("Item %d - %c\n", X.index(), X.value());
1142 /// }
1143 ///
1144 /// Output:
1145 /// Item 0 - A
1146 /// Item 1 - B
1147 /// Item 2 - C
1148 /// Item 3 - D
1149 ///
1150 template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
1151  return detail::enumerator<R>(std::forward<R>(TheRange));
1152 }
1153 
1154 namespace detail {
1155 
1156 template <typename F, typename Tuple, std::size_t... I>
1158  -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
1159  return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
1160 }
1161 
1162 } // end namespace detail
1163 
1164 /// Given an input tuple (a1, a2, ..., an), pass the arguments of the
1165 /// tuple variadically to f as if by calling f(a1, a2, ..., an) and
1166 /// return the result.
1167 template <typename F, typename Tuple>
1168 auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
1169  std::forward<F>(f), std::forward<Tuple>(t),
1171  std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
1172  using Indices = build_index_impl<
1173  std::tuple_size<typename std::decay<Tuple>::type>::value>;
1174 
1175  return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
1176  Indices{});
1177 }
1178 
1179 } // end namespace llvm
1180 
1181 #endif // LLVM_ADT_STLEXTRAS_H
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&... Ranges)
Concatenated range across two or more ranges.
Definition: STLExtras.h:641
result_pair(std::size_t Index, IterOfRange< R > Iter)
Definition: STLExtras.h:1057
void DeleteContainerSeconds(Container &C)
In a container of pairs (usually a map) whose second element is a pointer, deletes the second element...
Definition: STLExtras.h:830
uint64_t CallInst * C
void DeleteContainerPointers(Container &C)
For a container of pointers, deletes the pointers and then clears the container.
Definition: STLExtras.h:821
bool operator()(const Ty *left, const Ty *right) const
Definition: STLExtras.h:82
ZipType & operator++()
Definition: STLExtras.h:411
bool operator==(const enumerator_iter< R > &RHS) const
Definition: STLExtras.h:1101
const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:245
zippy(Args &&... ts_)
Definition: STLExtras.h:474
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
Ret operator()(Params ...params) const
Definition: STLExtras.h:118
const_iterator begin(StringRef path, Style style=Style::native)
Get begin iterator over path.
Definition: Path.cpp:236
bool operator()(const T &lhs, const T &rhs) const
Definition: STLExtras.h:655
Compute iterated dominance frontiers using a linear time algorithm.
Definition: AllocatorList.h:24
typename std::remove_reference< decltype(*std::begin(std::declval< RangeT & >()))>::type ValueOfRange
Definition: STLExtras.h:56
decltype(iterators) tup_inc(index_sequence< Ns... >) const
Definition: STLExtras.h:393
Function object to check whether the second component of a std::pair compares less than the second co...
Definition: STLExtras.h:662
OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P)
Provide wrappers to std::copy_if which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:893
typename iterator::value_type value_type
Definition: STLExtras.h:458
const Ty & operator()(const Ty &self) const
Definition: STLExtras.h:70
This provides a very simple, boring adaptor for a begin and end iterator into a range type...
int(*)(const void *, const void *) get_array_pod_sort_comparator(const T &)
get_array_pod_sort_comparator - This is an internal helper function used to get type deduction of T r...
Definition: STLExtras.h:744
bool operator()(const T &lhs, const T &rhs) const
Definition: STLExtras.h:663
An efficient, type-erasing, non-owning reference to a callable.
Definition: STLExtras.h:93
A functor like C++14&#39;s std::less<void> in its absence.
Definition: STLExtras.h:1020
zip_common(Iters &&... ts)
Definition: STLExtras.h:403
void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(adl_detail::adl_swap(std::declval< T >(), std::declval< T >())))
Definition: STLExtras.h:179
enumerator_iter(IterOfRange< R > EndIter)
Definition: STLExtras.h:1085
auto count_if(R &&Range, UnaryPredicate P) -> typename std::iterator_traits< decltype(adl_begin(Range))>::difference_type
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition: STLExtras.h:920
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:846
filter_iterator & operator++()
Definition: STLExtras.h:317
F(f)
std::tuple< decltype(*declval< Iters >())... > type
Definition: STLExtras.h:361
std::enable_if<!std::is_array< T >::value, std::unique_ptr< T > >::type make_unique(Args &&... args)
Constructs a new T() with the given args and returns a unique_ptr<T> which owns the object...
Definition: STLExtras.h:982
typename iterator::pointer pointer
Definition: STLExtras.h:460
int array_pod_sort_comparator(const void *P1, const void *P2)
Adapt std::less<T> for array_pod_sort.
Definition: STLExtras.h:731
void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval< T >(), std::declval< T >())))
Definition: STLExtras.h:159
Metafunction to determine if T& or T has a member called rbegin().
Definition: STLExtras.h:231
function_ref(Callable &&callable, typename std::enable_if< !std::is_same< typename std::remove_reference< Callable >::type, function_ref >::value >::type *=nullptr)
Definition: STLExtras.h:111
Ty & operator()(Ty &self) const
Definition: STLExtras.h:67
Definition: BitVector.h:921
concat_range(RangeTs &&... Ranges)
Definition: STLExtras.h:628
void operator()(void *v)
Definition: STLExtras.h:1007
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:860
decltype(iterators) tup_dec(index_sequence< Ns... >) const
Definition: STLExtras.h:398
SmallVector< typename std::remove_const< detail::ValueOfRange< R > >::type, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Definition: STLExtras.h:951
Alias for the common case of a sequence of size_ts.
Definition: STLExtras.h:350
ELFYAML::ELF_STO Other
Definition: ELFYAML.cpp:767
auto reverse(ContainerTy &&C, typename std::enable_if< has_rbegin< ContainerTy >::value >::type *=nullptr) -> decltype(make_range(C.rbegin(), C.rend()))
Definition: STLExtras.h:237
bool operator()(const Ty *left, const Ty *right) const
Definition: STLExtras.h:76
#define T
enumerator_iter< R > & operator++()
Definition: STLExtras.h:1094
auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(std::forward< F >(f), std::forward< Tuple >(t), build_index_impl< std::tuple_size< typename std::decay< Tuple >::type >::value >
Given an input tuple (a1, a2, ..., an), pass the arguments of the tuple variadically to f as if by ca...
Definition: STLExtras.h:1168
auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range))
Provide wrappers to std::partition which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:935
auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range))
Provide wrappers to std::lower_bound which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:942
CRTP base class which implements the entire standard iterator facade in terms of a minimal subset of ...
Definition: iterator.h:68
enumerator_iter(std::size_t Index, IterOfRange< R > Iter)
Definition: STLExtras.h:1088
Helper to store a sequence of ranges being concatenated and access them.
Definition: STLExtras.h:610
auto count(R &&Range, const E &Element) -> typename std::iterator_traits< decltype(adl_begin(Range))>::difference_type
Wrapper function around std::count to count the number of times an element Element occurs in the give...
Definition: STLExtras.h:912
traits class for checking whether type T is one of any of the given types in the variadic list...
Definition: STLExtras.h:697
ValueOfRange< R > & value()
Definition: STLExtras.h:1068
typename iterator::reference reference
Definition: STLExtras.h:461
#define P(N)
ItType< decltype(std::begin(std::declval< Args >()))... > iterator
Definition: STLExtras.h:456
void array_pod_sort(IteratorTy Start, IteratorTy End)
array_pod_sort - This sorts an array with the specified start and end extent.
Definition: STLExtras.h:764
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs))
Definition: STLExtras.h:1042
auto adl_end(ContainerTy &&container) -> decltype(end(std::forward< ContainerTy >(container)))
Definition: STLExtras.h:151
ZipType & operator--()
Definition: STLExtras.h:416
An iterator adaptor that filters the elements of given inner iterators.
Definition: STLExtras.h:275
CRTP base class for adapting an iterator to a different type.
Definition: iterator.h:208
mapped_iterator(ItTy U, FuncTy F)
Definition: STLExtras.h:196
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&... args)
zip iterator for two or more iteratable types.
Definition: STLExtras.h:484
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
const result_type & operator*() const
Definition: STLExtras.h:1092
mapped_iterator< ItTy, FuncTy > map_iterator(ItTy I, FuncTy F)
Definition: STLExtras.h:210
auto adl_begin(ContainerTy &&container) -> decltype(adl_detail::adl_begin(std::forward< ContainerTy >(container)))
Definition: STLExtras.h:167
void sort(IteratorTy Start, IteratorTy End, Compare Comp)
Definition: STLExtras.h:806
Helper to determine if type T has a member called rbegin().
Definition: STLExtras.h:215
bool any_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:853
static const unsigned End
auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range))
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:874
auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range))
Provide wrappers to std::remove_if which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:886
auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range))
Definition: STLExtras.h:879
detail::zippy< detail::zip_first, T, U, Args... > zip_first(T &&t, U &&u, Args &&... args)
zip iterator that, for the sake of efficiency, assumes the first iteratee to be the shortest...
Definition: STLExtras.h:493
auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range))
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:867
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
static constexpr size_t size()
Definition: STLExtras.h:674
iterator end() const
Definition: STLExtras.h:477
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:797
bool operator()(A &&a, B &&b) const
Definition: STLExtras.h:1021
auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence< I... >) -> decltype(std::forward< F >(f)(std::get< I >(std::forward< Tuple >(t))...))
Definition: STLExtras.h:1157
A functor like C++14&#39;s std::equal<void> in its absence.
Definition: STLExtras.h:1027
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
value_type deref(index_sequence< Ns... >) const
Definition: STLExtras.h:388
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:862
constexpr size_t array_lengthof(T(&)[N])
Find the length of an array.
Definition: STLExtras.h:725
Creates a compile-time integer sequence for a parameter pack.
Definition: STLExtras.h:352
auto adl_begin(ContainerTy &&container) -> decltype(begin(std::forward< ContainerTy >(container)))
Definition: STLExtras.h:143
typename iterator::difference_type difference_type
Definition: STLExtras.h:459
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2&#39;s erase_if which is equivalent t...
Definition: STLExtras.h:963
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:924
A range adaptor for a pair of iterators.
bool operator()(A &&a, B &&b) const
Definition: STLExtras.h:1028
Represents a compile-time sequence of integers.
Definition: STLExtras.h:671
enumerator_iter< R > & operator=(const enumerator_iter< R > &Other)
Definition: STLExtras.h:1108
concat_iterator & operator++()
Definition: STLExtras.h:591
FuncReturnTy operator*()
Definition: STLExtras.h:201
result_pair< R > & operator=(const result_pair< R > &Other)
Definition: STLExtras.h:1060
ValueT & operator*() const
Definition: STLExtras.h:596
bool operator==(const zip_first< Iters... > &other) const
Definition: STLExtras.h:428
#define I(x, y, z)
Definition: MD5.cpp:58
#define N
bool operator==(const concat_iterator &RHS) const
Definition: STLExtras.h:598
typename iterator::iterator_category iterator_category
Definition: STLExtras.h:457
value_type operator*()
Definition: STLExtras.h:405
decltype(std::begin(std::declval< RangeT & >())) IterOfRange
Definition: STLExtras.h:52
const ValueOfRange< R > & value() const
Definition: STLExtras.h:1067
iterator_range< filter_iterator< detail::IterOfRange< RangeT >, PredicateT > > make_filter_range(RangeT &&Range, PredicateT Pred)
Convenience function that takes a range of elements and a predicate, and return a new filter_iterator...
Definition: STLExtras.h:337
std::tuple< Iters... > iterators
Definition: STLExtras.h:385
OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere...
Definition: STLExtras.h:928
const value_type operator*() const
Definition: STLExtras.h:407
auto adl_end(ContainerTy &&container) -> decltype(adl_detail::adl_end(std::forward< ContainerTy >(container)))
Definition: STLExtras.h:173
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
std::reverse_iterator< IteratorTy > make_reverse_iterator(IteratorTy It)
Definition: STLExtras.h:245
traits class for checking whether type T is a base class for all the given types in the variadic list...
Definition: STLExtras.h:709
enumerator_iter< R > begin()
Definition: STLExtras.h:1121
constexpr char Size[]
Key for Kernel::Arg::Metadata::mSize.
enumerator_iter< R > end()
Definition: STLExtras.h:1125
iterator begin() const
Definition: STLExtras.h:476
Binary functor that adapts to any other binary functor after dereferencing operands.
Definition: STLExtras.h:1035
Iterator wrapper that concatenates sequences together.
Definition: STLExtras.h:510
Utility type to build an inheritance chain that makes it easy to rank overload candidates.
Definition: STLExtras.h:692
zip_shortest(Iters &&... ts)
Definition: STLExtras.h:447
UnaryPredicate for_each(R &&Range, UnaryPredicate P)
Provide wrappers to std::for_each which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:839
void deleter(T *Ptr)
Definition: STLExtras.h:130
OutputIt copy(R &&Range, OutputIt Out)
Definition: STLExtras.h:898
zip_first(Iters &&... ts)
Definition: STLExtras.h:432
std::size_t index() const
Definition: STLExtras.h:1066
Function object to check whether the first component of a std::pair compares less than the first comp...
Definition: STLExtras.h:654
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
concat_iterator(RangeTs &&... Ranges)
Constructs an iterator from a squence of ranges.
Definition: STLExtras.h:586
bool operator==(const zip_shortest< Iters... > &other) const
Definition: STLExtras.h:449
detail::enumerator< R > enumerate(R &&TheRange)
Given an input range, returns a new range whose values are are pair (A,B) such that A is the 0-based ...
Definition: STLExtras.h:1150
bool is_contained(R &&Range, const E &Element)
Wrapper function around std::find to detect if an element exists in a container.
Definition: STLExtras.h:905
size_t operator()(const std::pair< First, Second > &P) const
Definition: STLExtras.h:1014