LLVM 22.0.0git
LoopVectorizationLegality.cpp
Go to the documentation of this file.
1//===- LoopVectorizationLegality.cpp --------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides loop vectorization legality analysis. Original code
10// resided in LoopVectorize.cpp for a long time.
11//
12// At this point, it is implemented as a utility class, not as an analysis
13// pass. It should be easy to create an analysis pass around it if there
14// is a need (but D45420 needs to happen first).
15//
16
19#include "llvm/Analysis/Loads.h"
32
33using namespace llvm;
34using namespace PatternMatch;
35
36#define LV_NAME "loop-vectorize"
37#define DEBUG_TYPE LV_NAME
38
39static cl::opt<bool>
40 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
41 cl::desc("Enable if-conversion during vectorization."));
42
43static cl::opt<bool>
44AllowStridedPointerIVs("lv-strided-pointer-ivs", cl::init(false), cl::Hidden,
45 cl::desc("Enable recognition of non-constant strided "
46 "pointer induction variables."));
47
48static cl::opt<bool>
49 HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden,
50 cl::desc("Allow enabling loop hints to reorder "
51 "FP operations during vectorization."));
52
53// TODO: Move size-based thresholds out of legality checking, make cost based
54// decisions instead of hard thresholds.
56 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
57 cl::desc("The maximum number of SCEV checks allowed."));
58
60 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
61 cl::desc("The maximum number of SCEV checks allowed with a "
62 "vectorize(enable) pragma"));
63
66 "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified),
68 cl::desc("Control whether the compiler can use scalable vectors to "
69 "vectorize a loop"),
72 "Scalable vectorization is disabled."),
75 "Scalable vectorization is available and favored when the "
76 "cost is inconclusive."),
79 "Scalable vectorization is available and favored when the "
80 "cost is inconclusive.")));
81
83 "enable-histogram-loop-vectorization", cl::init(false), cl::Hidden,
84 cl::desc("Enables autovectorization of some loops containing histograms"));
85
86/// Maximum vectorization interleave count.
87static const unsigned MaxInterleaveFactor = 16;
88
89namespace llvm {
90
91bool LoopVectorizeHints::Hint::validate(unsigned Val) {
92 switch (Kind) {
93 case HK_WIDTH:
95 case HK_INTERLEAVE:
96 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
97 case HK_FORCE:
98 return (Val <= 1);
99 case HK_ISVECTORIZED:
100 case HK_PREDICATE:
101 case HK_SCALABLE:
102 return (Val == 0 || Val == 1);
103 }
104 return false;
105}
106
108 bool InterleaveOnlyWhenForced,
111 : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
112 Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE),
113 Force("vectorize.enable", FK_Undefined, HK_FORCE),
114 IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
115 Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE),
116 Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE),
117 TheLoop(L), ORE(ORE) {
118 // Populate values with existing loop metadata.
119 getHintsFromMetadata();
120
121 // force-vector-interleave overrides DisableInterleaving.
124
125 // If the metadata doesn't explicitly specify whether to enable scalable
126 // vectorization, then decide based on the following criteria (increasing
127 // level of priority):
128 // - Target default
129 // - Metadata width
130 // - Force option (always overrides)
132 if (TTI)
133 Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable
135
136 if (Width.Value)
137 // If the width is set, but the metadata says nothing about the scalable
138 // property, then assume it concerns only a fixed-width UserVF.
139 // If width is not set, the flag takes precedence.
140 Scalable.Value = SK_FixedWidthOnly;
141 }
142
143 // If the flag is set to force any use of scalable vectors, override the loop
144 // hints.
145 if (ForceScalableVectorization.getValue() !=
147 Scalable.Value = ForceScalableVectorization.getValue();
148
149 // Scalable vectorization is disabled if no preference is specified.
151 Scalable.Value = SK_FixedWidthOnly;
152
153 if (IsVectorized.Value != 1)
154 // If the vectorization width and interleaving count are both 1 then
155 // consider the loop to have been already vectorized because there's
156 // nothing more that we can do.
157 IsVectorized.Value =
159 LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs()
160 << "LV: Interleaving disabled by the pass manager\n");
161}
162
164 LLVMContext &Context = TheLoop->getHeader()->getContext();
165
166 MDNode *IsVectorizedMD = MDNode::get(
167 Context,
168 {MDString::get(Context, "llvm.loop.isvectorized"),
169 ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
170 MDNode *LoopID = TheLoop->getLoopID();
171 MDNode *NewLoopID =
172 makePostTransformationMetadata(Context, LoopID,
173 {Twine(Prefix(), "vectorize.").str(),
174 Twine(Prefix(), "interleave.").str()},
175 {IsVectorizedMD});
176 TheLoop->setLoopID(NewLoopID);
177
178 // Update internal cache.
179 IsVectorized.Value = 1;
180}
181
183 Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
185 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
187 return false;
188 }
189
190 if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
191 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
193 return false;
194 }
195
196 if (getIsVectorized() == 1) {
197 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
198 // FIXME: Add interleave.disable metadata. This will allow
199 // vectorize.disable to be used without disabling the pass and errors
200 // to differentiate between disabled vectorization and a width of 1.
201 ORE.emit([&]() {
203 "AllDisabled", L->getStartLoc(),
204 L->getHeader())
205 << "loop not vectorized: vectorization and interleaving are "
206 "explicitly disabled, or the loop has already been "
207 "vectorized";
208 });
209 return false;
210 }
211
212 return true;
213}
214
216 using namespace ore;
217
218 ORE.emit([&]() {
219 if (Force.Value == LoopVectorizeHints::FK_Disabled)
220 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
221 TheLoop->getStartLoc(),
222 TheLoop->getHeader())
223 << "loop not vectorized: vectorization is explicitly disabled";
224
225 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", TheLoop->getStartLoc(),
226 TheLoop->getHeader());
227 R << "loop not vectorized";
228 if (Force.Value == LoopVectorizeHints::FK_Enabled) {
229 R << " (Force=" << NV("Force", true);
230 if (Width.Value != 0)
231 R << ", Vector Width=" << NV("VectorWidth", getWidth());
232 if (getInterleave() != 0)
233 R << ", Interleave Count=" << NV("InterleaveCount", getInterleave());
234 R << ")";
235 }
236 return R;
237 });
238}
239
249
251 // Allow the vectorizer to change the order of operations if enabling
252 // loop hints are provided
253 ElementCount EC = getWidth();
254 return HintsAllowReordering &&
256 EC.getKnownMinValue() > 1);
257}
258
259void LoopVectorizeHints::getHintsFromMetadata() {
260 MDNode *LoopID = TheLoop->getLoopID();
261 if (!LoopID)
262 return;
263
264 // First operand should refer to the loop id itself.
265 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
266 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
267
268 for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) {
269 const MDString *S = nullptr;
271
272 // The expected hint is either a MDString or a MDNode with the first
273 // operand a MDString.
274 if (const MDNode *MD = dyn_cast<MDNode>(MDO)) {
275 if (!MD || MD->getNumOperands() == 0)
276 continue;
277 S = dyn_cast<MDString>(MD->getOperand(0));
278 for (unsigned Idx = 1; Idx < MD->getNumOperands(); ++Idx)
279 Args.push_back(MD->getOperand(Idx));
280 } else {
281 S = dyn_cast<MDString>(MDO);
282 assert(Args.size() == 0 && "too many arguments for MDString");
283 }
284
285 if (!S)
286 continue;
287
288 // Check if the hint starts with the loop metadata prefix.
289 StringRef Name = S->getString();
290 if (Args.size() == 1)
291 setHint(Name, Args[0]);
292 }
293}
294
295void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
296 if (!Name.consume_front(Prefix()))
297 return;
298
299 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
300 if (!C)
301 return;
302 unsigned Val = C->getZExtValue();
303
304 Hint *Hints[] = {&Width, &Interleave, &Force,
305 &IsVectorized, &Predicate, &Scalable};
306 for (auto *H : Hints) {
307 if (Name == H->Name) {
308 if (H->validate(Val))
309 H->Value = Val;
310 else
311 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
312 break;
313 }
314 }
315}
316
317// Return true if the inner loop \p Lp is uniform with regard to the outer loop
318// \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
319// executing the inner loop will execute the same iterations). This check is
320// very constrained for now but it will be relaxed in the future. \p Lp is
321// considered uniform if it meets all the following conditions:
322// 1) it has a canonical IV (starting from 0 and with stride 1),
323// 2) its latch terminator is a conditional branch and,
324// 3) its latch condition is a compare instruction whose operands are the
325// canonical IV and an OuterLp invariant.
326// This check doesn't take into account the uniformity of other conditions not
327// related to the loop latch because they don't affect the loop uniformity.
328//
329// NOTE: We decided to keep all these checks and its associated documentation
330// together so that we can easily have a picture of the current supported loop
331// nests. However, some of the current checks don't depend on \p OuterLp and
332// would be redundantly executed for each \p Lp if we invoked this function for
333// different candidate outer loops. This is not the case for now because we
334// don't currently have the infrastructure to evaluate multiple candidate outer
335// loops and \p OuterLp will be a fixed parameter while we only support explicit
336// outer loop vectorization. It's also very likely that these checks go away
337// before introducing the aforementioned infrastructure. However, if this is not
338// the case, we should move the \p OuterLp independent checks to a separate
339// function that is only executed once for each \p Lp.
340static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
341 assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
342
343 // If Lp is the outer loop, it's uniform by definition.
344 if (Lp == OuterLp)
345 return true;
346 assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
347
348 // 1.
350 if (!IV) {
351 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
352 return false;
353 }
354
355 // 2.
356 BasicBlock *Latch = Lp->getLoopLatch();
357 auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
358 if (!LatchBr || LatchBr->isUnconditional()) {
359 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
360 return false;
361 }
362
363 // 3.
364 auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
365 if (!LatchCmp) {
367 dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
368 return false;
369 }
370
371 Value *CondOp0 = LatchCmp->getOperand(0);
372 Value *CondOp1 = LatchCmp->getOperand(1);
373 Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
374 if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
375 !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
376 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
377 return false;
378 }
379
380 return true;
381}
382
383// Return true if \p Lp and all its nested loops are uniform with regard to \p
384// OuterLp.
385static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
386 if (!isUniformLoop(Lp, OuterLp))
387 return false;
388
389 // Check if nested loops are uniform.
390 for (Loop *SubLp : *Lp)
391 if (!isUniformLoopNest(SubLp, OuterLp))
392 return false;
393
394 return true;
395}
396
398 assert(Ty->isIntOrPtrTy() && "Expected integer or pointer type");
399
400 if (Ty->isPointerTy())
401 return DL.getIntPtrType(Ty->getContext(), Ty->getPointerAddressSpace());
402
403 // It is possible that char's or short's overflow when we ask for the loop's
404 // trip count, work around this by changing the type size.
405 if (Ty->getScalarSizeInBits() < 32)
406 return Type::getInt32Ty(Ty->getContext());
407
408 return cast<IntegerType>(Ty);
409}
410
412 Type *Ty1) {
415 return TyA->getScalarSizeInBits() > TyB->getScalarSizeInBits() ? TyA : TyB;
416}
417
418/// Check that the instruction has outside loop users and is not an
419/// identified reduction variable.
420static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
421 SmallPtrSetImpl<Value *> &AllowedExit) {
422 // Reductions, Inductions and non-header phis are allowed to have exit users. All
423 // other instructions must not have external users.
424 if (!AllowedExit.count(Inst))
425 // Check that all of the users of the loop are inside the BB.
426 for (User *U : Inst->users()) {
428 // This user may be a reduction exit value.
429 if (!TheLoop->contains(UI)) {
430 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
431 return true;
432 }
433 }
434 return false;
435}
436
437/// Returns true if A and B have same pointer operands or same SCEVs addresses
439 StoreInst *B) {
440 // Compare store
441 if (A == B)
442 return true;
443
444 // Otherwise Compare pointers
445 Value *APtr = A->getPointerOperand();
446 Value *BPtr = B->getPointerOperand();
447 if (APtr == BPtr)
448 return true;
449
450 // Otherwise compare address SCEVs
451 return SE->getSCEV(APtr) == SE->getSCEV(BPtr);
452}
453
455 Value *Ptr) const {
456 // FIXME: Currently, the set of symbolic strides is sometimes queried before
457 // it's collected. This happens from canVectorizeWithIfConvert, when the
458 // pointer is checked to reference consecutive elements suitable for a
459 // masked access.
460 const auto &Strides =
461 LAI ? LAI->getSymbolicStrides() : DenseMap<Value *, const SCEV *>();
462
463 bool CanAddPredicate = !llvm::shouldOptimizeForSize(
464 TheLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
465 int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides,
466 CanAddPredicate, false).value_or(0);
467 if (Stride == 1 || Stride == -1)
468 return Stride;
469 return 0;
470}
471
473 return LAI->isInvariant(V);
474}
475
476namespace {
477/// A rewriter to build the SCEVs for each of the VF lanes in the expected
478/// vectorized loop, which can then be compared to detect their uniformity. This
479/// is done by replacing the AddRec SCEVs of the original scalar loop (TheLoop)
480/// with new AddRecs where the step is multiplied by StepMultiplier and Offset *
481/// Step is added. Also checks if all sub-expressions are analyzable w.r.t.
482/// uniformity.
483class SCEVAddRecForUniformityRewriter
484 : public SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter> {
485 /// Multiplier to be applied to the step of AddRecs in TheLoop.
486 unsigned StepMultiplier;
487
488 /// Offset to be added to the AddRecs in TheLoop.
489 unsigned Offset;
490
491 /// Loop for which to rewrite AddRecsFor.
492 Loop *TheLoop;
493
494 /// Is any sub-expressions not analyzable w.r.t. uniformity?
495 bool CannotAnalyze = false;
496
497 bool canAnalyze() const { return !CannotAnalyze; }
498
499public:
500 SCEVAddRecForUniformityRewriter(ScalarEvolution &SE, unsigned StepMultiplier,
501 unsigned Offset, Loop *TheLoop)
502 : SCEVRewriteVisitor(SE), StepMultiplier(StepMultiplier), Offset(Offset),
503 TheLoop(TheLoop) {}
504
505 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
506 assert(Expr->getLoop() == TheLoop &&
507 "addrec outside of TheLoop must be invariant and should have been "
508 "handled earlier");
509 // Build a new AddRec by multiplying the step by StepMultiplier and
510 // incrementing the start by Offset * step.
511 Type *Ty = Expr->getType();
512 const SCEV *Step = Expr->getStepRecurrence(SE);
513 if (!SE.isLoopInvariant(Step, TheLoop)) {
514 CannotAnalyze = true;
515 return Expr;
516 }
517 const SCEV *NewStep =
518 SE.getMulExpr(Step, SE.getConstant(Ty, StepMultiplier));
519 const SCEV *ScaledOffset = SE.getMulExpr(Step, SE.getConstant(Ty, Offset));
520 const SCEV *NewStart = SE.getAddExpr(Expr->getStart(), ScaledOffset);
521 return SE.getAddRecExpr(NewStart, NewStep, TheLoop, SCEV::FlagAnyWrap);
522 }
523
524 const SCEV *visit(const SCEV *S) {
525 if (CannotAnalyze || SE.isLoopInvariant(S, TheLoop))
526 return S;
528 }
529
530 const SCEV *visitUnknown(const SCEVUnknown *S) {
531 if (SE.isLoopInvariant(S, TheLoop))
532 return S;
533 // The value could vary across iterations.
534 CannotAnalyze = true;
535 return S;
536 }
537
538 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *S) {
539 // Could not analyze the expression.
540 CannotAnalyze = true;
541 return S;
542 }
543
544 static const SCEV *rewrite(const SCEV *S, ScalarEvolution &SE,
545 unsigned StepMultiplier, unsigned Offset,
546 Loop *TheLoop) {
547 /// Bail out if the expression does not contain an UDiv expression.
548 /// Uniform values which are not loop invariant require operations to strip
549 /// out the lowest bits. For now just look for UDivs and use it to avoid
550 /// re-writing UDIV-free expressions for other lanes to limit compile time.
551 if (!SCEVExprContains(S,
552 [](const SCEV *S) { return isa<SCEVUDivExpr>(S); }))
553 return SE.getCouldNotCompute();
554
555 SCEVAddRecForUniformityRewriter Rewriter(SE, StepMultiplier, Offset,
556 TheLoop);
557 const SCEV *Result = Rewriter.visit(S);
558
559 if (Rewriter.canAnalyze())
560 return Result;
561 return SE.getCouldNotCompute();
562 }
563};
564
565} // namespace
566
568 if (isInvariant(V))
569 return true;
570 if (VF.isScalable())
571 return false;
572 if (VF.isScalar())
573 return true;
574
575 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
576 // never considered uniform.
577 auto *SE = PSE.getSE();
578 if (!SE->isSCEVable(V->getType()))
579 return false;
580 const SCEV *S = SE->getSCEV(V);
581
582 // Rewrite AddRecs in TheLoop to step by VF and check if the expression for
583 // lane 0 matches the expressions for all other lanes.
584 unsigned FixedVF = VF.getKnownMinValue();
585 const SCEV *FirstLaneExpr =
586 SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, 0, TheLoop);
587 if (isa<SCEVCouldNotCompute>(FirstLaneExpr))
588 return false;
589
590 // Make sure the expressions for lanes FixedVF-1..1 match the expression for
591 // lane 0. We check lanes in reverse order for compile-time, as frequently
592 // checking the last lane is sufficient to rule out uniformity.
593 return all_of(reverse(seq<unsigned>(1, FixedVF)), [&](unsigned I) {
594 const SCEV *IthLaneExpr =
595 SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, I, TheLoop);
596 return FirstLaneExpr == IthLaneExpr;
597 });
598}
599
601 ElementCount VF) const {
603 if (!Ptr)
604 return false;
605 // Note: There's nothing inherent which prevents predicated loads and
606 // stores from being uniform. The current lowering simply doesn't handle
607 // it; in particular, the cost model distinguishes scatter/gather from
608 // scalar w/predication, and we currently rely on the scalar path.
609 return isUniform(Ptr, VF) && !blockNeedsPredication(I.getParent());
610}
611
612bool LoopVectorizationLegality::canVectorizeOuterLoop() {
613 assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop.");
614 // Store the result and return it at the end instead of exiting early, in case
615 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
616 bool Result = true;
617 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
618
619 for (BasicBlock *BB : TheLoop->blocks()) {
620 // Check whether the BB terminator is a BranchInst. Any other terminator is
621 // not supported yet.
622 auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
623 if (!Br) {
624 reportVectorizationFailure("Unsupported basic block terminator",
625 "loop control flow is not understood by vectorizer",
626 "CFGNotUnderstood", ORE, TheLoop);
627 if (DoExtraAnalysis)
628 Result = false;
629 else
630 return false;
631 }
632
633 // Check whether the BranchInst is a supported one. Only unconditional
634 // branches, conditional branches with an outer loop invariant condition or
635 // backedges are supported.
636 // FIXME: We skip these checks when VPlan predication is enabled as we
637 // want to allow divergent branches. This whole check will be removed
638 // once VPlan predication is on by default.
639 if (Br && Br->isConditional() &&
640 !TheLoop->isLoopInvariant(Br->getCondition()) &&
641 !LI->isLoopHeader(Br->getSuccessor(0)) &&
642 !LI->isLoopHeader(Br->getSuccessor(1))) {
643 reportVectorizationFailure("Unsupported conditional branch",
644 "loop control flow is not understood by vectorizer",
645 "CFGNotUnderstood", ORE, TheLoop);
646 if (DoExtraAnalysis)
647 Result = false;
648 else
649 return false;
650 }
651 }
652
653 // Check whether inner loops are uniform. At this point, we only support
654 // simple outer loops scenarios with uniform nested loops.
655 if (!isUniformLoopNest(TheLoop /*loop nest*/,
656 TheLoop /*context outer loop*/)) {
657 reportVectorizationFailure("Outer loop contains divergent loops",
658 "loop control flow is not understood by vectorizer",
659 "CFGNotUnderstood", ORE, TheLoop);
660 if (DoExtraAnalysis)
661 Result = false;
662 else
663 return false;
664 }
665
666 // Check whether we are able to set up outer loop induction.
667 if (!setupOuterLoopInductions()) {
668 reportVectorizationFailure("Unsupported outer loop Phi(s)",
669 "UnsupportedPhi", ORE, TheLoop);
670 if (DoExtraAnalysis)
671 Result = false;
672 else
673 return false;
674 }
675
676 return Result;
677}
678
679void LoopVectorizationLegality::addInductionPhi(
680 PHINode *Phi, const InductionDescriptor &ID,
681 SmallPtrSetImpl<Value *> &AllowedExit) {
682 Inductions[Phi] = ID;
683
684 // In case this induction also comes with casts that we know we can ignore
685 // in the vectorized loop body, record them here. All casts could be recorded
686 // here for ignoring, but suffices to record only the first (as it is the
687 // only one that may bw used outside the cast sequence).
688 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
689 if (!Casts.empty())
690 InductionCastsToIgnore.insert(*Casts.begin());
691
692 Type *PhiTy = Phi->getType();
693 const DataLayout &DL = Phi->getDataLayout();
694
695 assert((PhiTy->isIntOrPtrTy() || PhiTy->isFloatingPointTy()) &&
696 "Expected int, ptr, or FP induction phi type");
697
698 // Get the widest type.
699 if (PhiTy->isIntOrPtrTy()) {
700 if (!WidestIndTy)
701 WidestIndTy = getInductionIntegerTy(DL, PhiTy);
702 else
703 WidestIndTy = getWiderInductionTy(DL, PhiTy, WidestIndTy);
704 }
705
706 // Int inductions are special because we only allow one IV.
707 if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
708 ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
709 isa<Constant>(ID.getStartValue()) &&
710 cast<Constant>(ID.getStartValue())->isNullValue()) {
711
712 // Use the phi node with the widest type as induction. Use the last
713 // one if there are multiple (no good reason for doing this other
714 // than it is expedient). We've checked that it begins at zero and
715 // steps by one, so this is a canonical induction variable.
716 if (!PrimaryInduction || PhiTy == WidestIndTy)
717 PrimaryInduction = Phi;
718 }
719
720 // Both the PHI node itself, and the "post-increment" value feeding
721 // back into the PHI node may have external users.
722 // We can allow those uses, except if the SCEVs we have for them rely
723 // on predicates that only hold within the loop, since allowing the exit
724 // currently means re-using this SCEV outside the loop (see PR33706 for more
725 // details).
726 if (PSE.getPredicate().isAlwaysTrue()) {
727 AllowedExit.insert(Phi);
728 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
729 }
730
731 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
732}
733
734bool LoopVectorizationLegality::setupOuterLoopInductions() {
735 BasicBlock *Header = TheLoop->getHeader();
736
737 // Returns true if a given Phi is a supported induction.
738 auto IsSupportedPhi = [&](PHINode &Phi) -> bool {
739 InductionDescriptor ID;
740 if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
742 addInductionPhi(&Phi, ID, AllowedExit);
743 return true;
744 }
745 // Bail out for any Phi in the outer loop header that is not a supported
746 // induction.
748 dbgs() << "LV: Found unsupported PHI for outer loop vectorization.\n");
749 return false;
750 };
751
752 return llvm::all_of(Header->phis(), IsSupportedPhi);
753}
754
755/// Checks if a function is scalarizable according to the TLI, in
756/// the sense that it should be vectorized and then expanded in
757/// multiple scalar calls. This is represented in the
758/// TLI via mappings that do not specify a vector name, as in the
759/// following example:
760///
761/// const VecDesc VecIntrinsics[] = {
762/// {"llvm.phx.abs.i32", "", 4}
763/// };
764static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
765 const StringRef ScalarName = CI.getCalledFunction()->getName();
766 bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
767 // Check that all known VFs are not associated to a vector
768 // function, i.e. the vector name is emty.
769 if (Scalarize) {
770 ElementCount WidestFixedVF, WidestScalableVF;
771 TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF);
773 ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2)
774 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
776 ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2)
777 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
778 assert((WidestScalableVF.isZero() || !Scalarize) &&
779 "Caller may decide to scalarize a variant using a scalable VF");
780 }
781 return Scalarize;
782}
783
784/// Returns true if the call return type `Ty` can be widened by the loop
785/// vectorizer.
786static bool canWidenCallReturnType(Type *Ty) {
787 auto *StructTy = dyn_cast<StructType>(Ty);
788 // TODO: Remove the homogeneous types restriction. This is just an initial
789 // simplification. When we want to support things like the overflow intrinsics
790 // we will have to lift this restriction.
791 if (StructTy && !StructTy->containsHomogeneousTypes())
792 return false;
793 return canVectorizeTy(StructTy);
794}
795
796bool LoopVectorizationLegality::canVectorizeInstrs() {
797 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
798 bool Result = true;
799
800 // For each block in the loop.
801 for (BasicBlock *BB : TheLoop->blocks()) {
802 // Scan the instructions in the block and look for hazards.
803 for (Instruction &I : *BB) {
804 Result &= canVectorizeInstr(I);
805 if (!DoExtraAnalysis && !Result)
806 return false;
807 }
808 }
809
810 if (!PrimaryInduction) {
811 if (Inductions.empty()) {
813 "Did not find one integer induction var",
814 "loop induction variable could not be identified",
815 "NoInductionVariable", ORE, TheLoop);
816 return false;
817 }
818 if (!WidestIndTy) {
820 "Did not find one integer induction var",
821 "integer loop induction variable could not be identified",
822 "NoIntegerInductionVariable", ORE, TheLoop);
823 return false;
824 }
825 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
826 }
827
828 // Now we know the widest induction type, check if our found induction
829 // is the same size. If it's not, unset it here and InnerLoopVectorizer
830 // will create another.
831 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
832 PrimaryInduction = nullptr;
833
834 return Result;
835}
836
837bool LoopVectorizationLegality::canVectorizeInstr(Instruction &I) {
838 BasicBlock *BB = I.getParent();
839 BasicBlock *Header = TheLoop->getHeader();
840
841 if (auto *Phi = dyn_cast<PHINode>(&I)) {
842 Type *PhiTy = Phi->getType();
843 // Check that this PHI type is allowed.
844 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
845 !PhiTy->isPointerTy()) {
847 "Found a non-int non-pointer PHI",
848 "loop control flow is not understood by vectorizer",
849 "CFGNotUnderstood", ORE, TheLoop);
850 return false;
851 }
852
853 // If this PHINode is not in the header block, then we know that we
854 // can convert it to select during if-conversion. No need to check if
855 // the PHIs in this block are induction or reduction variables.
856 if (BB != Header) {
857 // Non-header phi nodes that have outside uses can be vectorized. Add
858 // them to the list of allowed exits.
859 // Unsafe cyclic dependencies with header phis are identified during
860 // legalization for reduction, induction and fixed order
861 // recurrences.
862 AllowedExit.insert(&I);
863 return true;
864 }
865
866 // We only allow if-converted PHIs with exactly two incoming values.
867 if (Phi->getNumIncomingValues() != 2) {
869 "Found an invalid PHI",
870 "loop control flow is not understood by vectorizer",
871 "CFGNotUnderstood", ORE, TheLoop, Phi);
872 return false;
873 }
874
875 RecurrenceDescriptor RedDes;
876 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, DT,
877 PSE.getSE())) {
878 Requirements->addExactFPMathInst(RedDes.getExactFPMathInst());
879 AllowedExit.insert(RedDes.getLoopExitInstr());
880 Reductions[Phi] = RedDes;
881 return true;
882 }
883
884 // We prevent matching non-constant strided pointer IVS to preserve
885 // historical vectorizer behavior after a generalization of the
886 // IVDescriptor code. The intent is to remove this check, but we
887 // have to fix issues around code quality for such loops first.
888 auto IsDisallowedStridedPointerInduction =
889 [](const InductionDescriptor &ID) {
891 return false;
892 return ID.getKind() == InductionDescriptor::IK_PtrInduction &&
893 ID.getConstIntStepValue() == nullptr;
894 };
895
896 // TODO: Instead of recording the AllowedExit, it would be good to
897 // record the complementary set: NotAllowedExit. These include (but may
898 // not be limited to):
899 // 1. Reduction phis as they represent the one-before-last value, which
900 // is not available when vectorized
901 // 2. Induction phis and increment when SCEV predicates cannot be used
902 // outside the loop - see addInductionPhi
903 // 3. Non-Phis with outside uses when SCEV predicates cannot be used
904 // outside the loop - see call to hasOutsideLoopUser in the non-phi
905 // handling below
906 // 4. FixedOrderRecurrence phis that can possibly be handled by
907 // extraction.
908 // By recording these, we can then reason about ways to vectorize each
909 // of these NotAllowedExit.
910 InductionDescriptor ID;
911 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID) &&
912 !IsDisallowedStridedPointerInduction(ID)) {
913 addInductionPhi(Phi, ID, AllowedExit);
914 Requirements->addExactFPMathInst(ID.getExactFPMathInst());
915 return true;
916 }
917
918 if (RecurrenceDescriptor::isFixedOrderRecurrence(Phi, TheLoop, DT)) {
919 AllowedExit.insert(Phi);
920 FixedOrderRecurrences.insert(Phi);
921 return true;
922 }
923
924 // As a last resort, coerce the PHI to a AddRec expression
925 // and re-try classifying it a an induction PHI.
926 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true) &&
927 !IsDisallowedStridedPointerInduction(ID)) {
928 addInductionPhi(Phi, ID, AllowedExit);
929 return true;
930 }
931
932 reportVectorizationFailure("Found an unidentified PHI",
933 "value that could not be identified as "
934 "reduction is used outside the loop",
935 "NonReductionValueUsedOutsideLoop", ORE, TheLoop,
936 Phi);
937 return false;
938 } // end of PHI handling
939
940 // We handle calls that:
941 // * Have a mapping to an IR intrinsic.
942 // * Have a vector version available.
943 auto *CI = dyn_cast<CallInst>(&I);
944
945 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
946 !(CI->getCalledFunction() && TLI &&
947 (!VFDatabase::getMappings(*CI).empty() || isTLIScalarize(*TLI, *CI)))) {
948 // If the call is a recognized math libary call, it is likely that
949 // we can vectorize it given loosened floating-point constraints.
951 bool IsMathLibCall =
952 TLI && CI->getCalledFunction() && CI->getType()->isFloatingPointTy() &&
953 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
954 TLI->hasOptimizedCodeGen(Func);
955
956 if (IsMathLibCall) {
957 // TODO: Ideally, we should not use clang-specific language here,
958 // but it's hard to provide meaningful yet generic advice.
959 // Also, should this be guarded by allowExtraAnalysis() and/or be part
960 // of the returned info from isFunctionVectorizable()?
962 "Found a non-intrinsic callsite",
963 "library call cannot be vectorized. "
964 "Try compiling with -fno-math-errno, -ffast-math, "
965 "or similar flags",
966 "CantVectorizeLibcall", ORE, TheLoop, CI);
967 } else {
968 reportVectorizationFailure("Found a non-intrinsic callsite",
969 "call instruction cannot be vectorized",
970 "CantVectorizeLibcall", ORE, TheLoop, CI);
971 }
972 return false;
973 }
974
975 // Some intrinsics have scalar arguments and should be same in order for
976 // them to be vectorized (i.e. loop invariant).
977 if (CI) {
978 auto *SE = PSE.getSE();
979 Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
980 for (unsigned Idx = 0; Idx < CI->arg_size(); ++Idx)
981 if (isVectorIntrinsicWithScalarOpAtArg(IntrinID, Idx, TTI)) {
982 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(Idx)), TheLoop)) {
984 "Found unvectorizable intrinsic",
985 "intrinsic instruction cannot be vectorized",
986 "CantVectorizeIntrinsic", ORE, TheLoop, CI);
987 return false;
988 }
989 }
990 }
991
992 // If we found a vectorized variant of a function, note that so LV can
993 // make better decisions about maximum VF.
994 if (CI && !VFDatabase::getMappings(*CI).empty())
995 VecCallVariantsFound = true;
996
997 auto CanWidenInstructionTy = [](Instruction const &Inst) {
998 Type *InstTy = Inst.getType();
999 if (!isa<StructType>(InstTy))
1000 return canVectorizeTy(InstTy);
1001
1002 // For now, we only recognize struct values returned from calls where
1003 // all users are extractvalue as vectorizable. All element types of the
1004 // struct must be types that can be widened.
1005 return isa<CallInst>(Inst) && canWidenCallReturnType(InstTy) &&
1006 all_of(Inst.users(), IsaPred<ExtractValueInst>);
1007 };
1008
1009 // Check that the instruction return type is vectorizable.
1010 // We can't vectorize casts from vector type to scalar type.
1011 // Also, we can't vectorize extractelement instructions.
1012 if (!CanWidenInstructionTy(I) ||
1013 (isa<CastInst>(I) &&
1014 !VectorType::isValidElementType(I.getOperand(0)->getType())) ||
1016 reportVectorizationFailure("Found unvectorizable type",
1017 "instruction return type cannot be vectorized",
1018 "CantVectorizeInstructionReturnType", ORE,
1019 TheLoop, &I);
1020 return false;
1021 }
1022
1023 // Check that the stored type is vectorizable.
1024 if (auto *ST = dyn_cast<StoreInst>(&I)) {
1025 Type *T = ST->getValueOperand()->getType();
1027 reportVectorizationFailure("Store instruction cannot be vectorized",
1028 "CantVectorizeStore", ORE, TheLoop, ST);
1029 return false;
1030 }
1031
1032 // For nontemporal stores, check that a nontemporal vector version is
1033 // supported on the target.
1034 if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
1035 // Arbitrarily try a vector of 2 elements.
1036 auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2);
1037 assert(VecTy && "did not find vectorized version of stored type");
1038 if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
1040 "nontemporal store instruction cannot be vectorized",
1041 "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
1042 return false;
1043 }
1044 }
1045
1046 } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
1047 if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
1048 // For nontemporal loads, check that a nontemporal vector version is
1049 // supported on the target (arbitrarily try a vector of 2 elements).
1050 auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2);
1051 assert(VecTy && "did not find vectorized version of load type");
1052 if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
1054 "nontemporal load instruction cannot be vectorized",
1055 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
1056 return false;
1057 }
1058 }
1059
1060 // FP instructions can allow unsafe algebra, thus vectorizable by
1061 // non-IEEE-754 compliant SIMD units.
1062 // This applies to floating-point math operations and calls, not memory
1063 // operations, shuffles, or casts, as they don't change precision or
1064 // semantics.
1065 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
1066 !I.isFast()) {
1067 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
1068 Hints->setPotentiallyUnsafe();
1069 }
1070
1071 // Reduction instructions are allowed to have exit users.
1072 // All other instructions must not have external users.
1073 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
1074 // We can safely vectorize loops where instructions within the loop are
1075 // used outside the loop only if the SCEV predicates within the loop is
1076 // same as outside the loop. Allowing the exit means reusing the SCEV
1077 // outside the loop.
1078 if (PSE.getPredicate().isAlwaysTrue()) {
1079 AllowedExit.insert(&I);
1080 return true;
1081 }
1082 reportVectorizationFailure("Value cannot be used outside the loop",
1083 "ValueUsedOutsideLoop", ORE, TheLoop, &I);
1084 return false;
1085 }
1086
1087 return true;
1088}
1089
1090/// Find histogram operations that match high-level code in loops:
1091/// \code
1092/// buckets[indices[i]]+=step;
1093/// \endcode
1094///
1095/// It matches a pattern starting from \p HSt, which Stores to the 'buckets'
1096/// array the computed histogram. It uses a BinOp to sum all counts, storing
1097/// them using a loop-variant index Load from the 'indices' input array.
1098///
1099/// On successful matches it updates the STATISTIC 'HistogramsDetected',
1100/// regardless of hardware support. When there is support, it additionally
1101/// stores the BinOp/Load pairs in \p HistogramCounts, as well the pointers
1102/// used to update histogram in \p HistogramPtrs.
1103static bool findHistogram(LoadInst *LI, StoreInst *HSt, Loop *TheLoop,
1104 const PredicatedScalarEvolution &PSE,
1105 SmallVectorImpl<HistogramInfo> &Histograms) {
1106
1107 // Store value must come from a Binary Operation.
1108 Instruction *HPtrInstr = nullptr;
1109 BinaryOperator *HBinOp = nullptr;
1110 if (!match(HSt, m_Store(m_BinOp(HBinOp), m_Instruction(HPtrInstr))))
1111 return false;
1112
1113 // BinOp must be an Add or a Sub modifying the bucket value by a
1114 // loop invariant amount.
1115 // FIXME: We assume the loop invariant term is on the RHS.
1116 // Fine for an immediate/constant, but maybe not a generic value?
1117 Value *HIncVal = nullptr;
1118 if (!match(HBinOp, m_Add(m_Load(m_Specific(HPtrInstr)), m_Value(HIncVal))) &&
1119 !match(HBinOp, m_Sub(m_Load(m_Specific(HPtrInstr)), m_Value(HIncVal))))
1120 return false;
1121
1122 // Make sure the increment value is loop invariant.
1123 if (!TheLoop->isLoopInvariant(HIncVal))
1124 return false;
1125
1126 // The address to store is calculated through a GEP Instruction.
1128 if (!GEP)
1129 return false;
1130
1131 // Restrict address calculation to constant indices except for the last term.
1132 Value *HIdx = nullptr;
1133 for (Value *Index : GEP->indices()) {
1134 if (HIdx)
1135 return false;
1136 if (!isa<ConstantInt>(Index))
1137 HIdx = Index;
1138 }
1139
1140 if (!HIdx)
1141 return false;
1142
1143 // Check that the index is calculated by loading from another array. Ignore
1144 // any extensions.
1145 // FIXME: Support indices from other sources than a linear load from memory?
1146 // We're currently trying to match an operation looping over an array
1147 // of indices, but there could be additional levels of indirection
1148 // in place, or possibly some additional calculation to form the index
1149 // from the loaded data.
1150 Value *VPtrVal;
1151 if (!match(HIdx, m_ZExtOrSExtOrSelf(m_Load(m_Value(VPtrVal)))))
1152 return false;
1153
1154 // Make sure the index address varies in this loop, not an outer loop.
1155 const auto *AR = dyn_cast<SCEVAddRecExpr>(PSE.getSE()->getSCEV(VPtrVal));
1156 if (!AR || AR->getLoop() != TheLoop)
1157 return false;
1158
1159 // Ensure we'll have the same mask by checking that all parts of the histogram
1160 // (gather load, update, scatter store) are in the same block.
1161 LoadInst *IndexedLoad = cast<LoadInst>(HBinOp->getOperand(0));
1162 BasicBlock *LdBB = IndexedLoad->getParent();
1163 if (LdBB != HBinOp->getParent() || LdBB != HSt->getParent())
1164 return false;
1165
1166 LLVM_DEBUG(dbgs() << "LV: Found histogram for: " << *HSt << "\n");
1167
1168 // Store the operations that make up the histogram.
1169 Histograms.emplace_back(IndexedLoad, HBinOp, HSt);
1170 return true;
1171}
1172
1173bool LoopVectorizationLegality::canVectorizeIndirectUnsafeDependences() {
1174 // For now, we only support an IndirectUnsafe dependency that calculates
1175 // a histogram
1177 return false;
1178
1179 // Find a single IndirectUnsafe dependency.
1180 const MemoryDepChecker::Dependence *IUDep = nullptr;
1181 const MemoryDepChecker &DepChecker = LAI->getDepChecker();
1182 const auto *Deps = DepChecker.getDependences();
1183 // If there were too many dependences, LAA abandons recording them. We can't
1184 // proceed safely if we don't know what the dependences are.
1185 if (!Deps)
1186 return false;
1187
1188 for (const MemoryDepChecker::Dependence &Dep : *Deps) {
1189 // Ignore dependencies that are either known to be safe or can be
1190 // checked at runtime.
1193 continue;
1194
1195 // We're only interested in IndirectUnsafe dependencies here, where the
1196 // address might come from a load from memory. We also only want to handle
1197 // one such dependency, at least for now.
1198 if (Dep.Type != MemoryDepChecker::Dependence::IndirectUnsafe || IUDep)
1199 return false;
1200
1201 IUDep = &Dep;
1202 }
1203 if (!IUDep)
1204 return false;
1205
1206 // For now only normal loads and stores are supported.
1207 LoadInst *LI = dyn_cast<LoadInst>(IUDep->getSource(DepChecker));
1208 StoreInst *SI = dyn_cast<StoreInst>(IUDep->getDestination(DepChecker));
1209
1210 if (!LI || !SI)
1211 return false;
1212
1213 LLVM_DEBUG(dbgs() << "LV: Checking for a histogram on: " << *SI << "\n");
1214 return findHistogram(LI, SI, TheLoop, LAI->getPSE(), Histograms);
1215}
1216
1217bool LoopVectorizationLegality::canVectorizeMemory() {
1218 LAI = &LAIs.getInfo(*TheLoop);
1219 const OptimizationRemarkAnalysis *LAR = LAI->getReport();
1220 if (LAR) {
1221 ORE->emit([&]() {
1222 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
1223 "loop not vectorized: ", *LAR);
1224 });
1225 }
1226
1227 if (!LAI->canVectorizeMemory()) {
1230 "Cannot vectorize unsafe dependencies in uncountable exit loop with "
1231 "side effects",
1232 "CantVectorizeUnsafeDependencyForEELoopWithSideEffects", ORE,
1233 TheLoop);
1234 return false;
1235 }
1236
1237 return canVectorizeIndirectUnsafeDependences();
1238 }
1239
1240 if (LAI->hasLoadStoreDependenceInvolvingLoopInvariantAddress()) {
1241 reportVectorizationFailure("We don't allow storing to uniform addresses",
1242 "write to a loop invariant address could not "
1243 "be vectorized",
1244 "CantVectorizeStoreToLoopInvariantAddress", ORE,
1245 TheLoop);
1246 return false;
1247 }
1248
1249 // We can vectorize stores to invariant address when final reduction value is
1250 // guaranteed to be stored at the end of the loop. Also, if decision to
1251 // vectorize loop is made, runtime checks are added so as to make sure that
1252 // invariant address won't alias with any other objects.
1253 if (!LAI->getStoresToInvariantAddresses().empty()) {
1254 // For each invariant address, check if last stored value is unconditional
1255 // and the address is not calculated inside the loop.
1256 for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
1258 continue;
1259
1260 if (blockNeedsPredication(SI->getParent())) {
1262 "We don't allow storing to uniform addresses",
1263 "write of conditional recurring variant value to a loop "
1264 "invariant address could not be vectorized",
1265 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1266 return false;
1267 }
1268
1269 // Invariant address should be defined outside of loop. LICM pass usually
1270 // makes sure it happens, but in rare cases it does not, we do not want
1271 // to overcomplicate vectorization to support this case.
1272 if (Instruction *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) {
1273 if (TheLoop->contains(Ptr)) {
1275 "Invariant address is calculated inside the loop",
1276 "write to a loop invariant address could not "
1277 "be vectorized",
1278 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1279 return false;
1280 }
1281 }
1282 }
1283
1284 if (LAI->hasStoreStoreDependenceInvolvingLoopInvariantAddress()) {
1285 // For each invariant address, check its last stored value is the result
1286 // of one of our reductions.
1287 //
1288 // We do not check if dependence with loads exists because that is already
1289 // checked via hasLoadStoreDependenceInvolvingLoopInvariantAddress.
1290 ScalarEvolution *SE = PSE.getSE();
1291 SmallVector<StoreInst *, 4> UnhandledStores;
1292 for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
1294 // Earlier stores to this address are effectively deadcode.
1295 // With opaque pointers it is possible for one pointer to be used with
1296 // different sizes of stored values:
1297 // store i32 0, ptr %x
1298 // store i8 0, ptr %x
1299 // The latest store doesn't complitely overwrite the first one in the
1300 // example. That is why we have to make sure that types of stored
1301 // values are same.
1302 // TODO: Check that bitwidth of unhandled store is smaller then the
1303 // one that overwrites it and add a test.
1304 erase_if(UnhandledStores, [SE, SI](StoreInst *I) {
1305 return storeToSameAddress(SE, SI, I) &&
1306 I->getValueOperand()->getType() ==
1307 SI->getValueOperand()->getType();
1308 });
1309 continue;
1310 }
1311 UnhandledStores.push_back(SI);
1312 }
1313
1314 bool IsOK = UnhandledStores.empty();
1315 // TODO: we should also validate against InvariantMemSets.
1316 if (!IsOK) {
1318 "We don't allow storing to uniform addresses",
1319 "write to a loop invariant address could not "
1320 "be vectorized",
1321 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1322 return false;
1323 }
1324 }
1325 }
1326
1327 PSE.addPredicate(LAI->getPSE().getPredicate());
1328 return true;
1329}
1330
1332 bool EnableStrictReductions) {
1333
1334 // First check if there is any ExactFP math or if we allow reassociations
1335 if (!Requirements->getExactFPInst() || Hints->allowReordering())
1336 return true;
1337
1338 // If the above is false, we have ExactFPMath & do not allow reordering.
1339 // If the EnableStrictReductions flag is set, first check if we have any
1340 // Exact FP induction vars, which we cannot vectorize.
1341 if (!EnableStrictReductions ||
1342 any_of(getInductionVars(), [&](auto &Induction) -> bool {
1343 InductionDescriptor IndDesc = Induction.second;
1344 return IndDesc.getExactFPMathInst();
1345 }))
1346 return false;
1347
1348 // We can now only vectorize if all reductions with Exact FP math also
1349 // have the isOrdered flag set, which indicates that we can move the
1350 // reduction operations in-loop.
1351 return (all_of(getReductionVars(), [&](auto &Reduction) -> bool {
1352 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1353 return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered();
1354 }));
1355}
1356
1358 return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
1359 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1360 return RdxDesc.IntermediateStore == SI;
1361 });
1362}
1363
1365 return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
1366 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1367 if (!RdxDesc.IntermediateStore)
1368 return false;
1369
1370 ScalarEvolution *SE = PSE.getSE();
1371 Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand();
1372 return V == InvariantAddress ||
1373 SE->getSCEV(V) == SE->getSCEV(InvariantAddress);
1374 });
1375}
1376
1378 Value *In0 = const_cast<Value *>(V);
1380 if (!PN)
1381 return false;
1382
1383 return Inductions.count(PN);
1384}
1385
1386const InductionDescriptor *
1388 if (!isInductionPhi(Phi))
1389 return nullptr;
1390 auto &ID = getInductionVars().find(Phi)->second;
1391 if (ID.getKind() == InductionDescriptor::IK_IntInduction ||
1393 return &ID;
1394 return nullptr;
1395}
1396
1397const InductionDescriptor *
1399 if (!isInductionPhi(Phi))
1400 return nullptr;
1401 auto &ID = getInductionVars().find(Phi)->second;
1403 return &ID;
1404 return nullptr;
1405}
1406
1408 const Value *V) const {
1409 auto *Inst = dyn_cast<Instruction>(V);
1410 return (Inst && InductionCastsToIgnore.count(Inst));
1411}
1412
1416
1418 const PHINode *Phi) const {
1419 return FixedOrderRecurrences.count(Phi);
1420}
1421
1423 // When vectorizing early exits, create predicates for the latch block only.
1424 // The early exiting block must be a direct predecessor of the latch at the
1425 // moment.
1426 BasicBlock *Latch = TheLoop->getLoopLatch();
1428 assert(
1430 "Uncountable exiting block must be a direct predecessor of latch");
1431 return BB == Latch;
1432 }
1433 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
1434}
1435
1436bool LoopVectorizationLegality::blockCanBePredicated(
1437 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
1438 SmallPtrSetImpl<const Instruction *> &MaskedOp) const {
1439 for (Instruction &I : *BB) {
1440 // We can predicate blocks with calls to assume, as long as we drop them in
1441 // case we flatten the CFG via predication.
1443 MaskedOp.insert(&I);
1444 continue;
1445 }
1446
1447 // Do not let llvm.experimental.noalias.scope.decl block the vectorization.
1448 // TODO: there might be cases that it should block the vectorization. Let's
1449 // ignore those for now.
1451 continue;
1452
1453 // We can allow masked calls if there's at least one vector variant, even
1454 // if we end up scalarizing due to the cost model calculations.
1455 // TODO: Allow other calls if they have appropriate attributes... readonly
1456 // and argmemonly?
1457 if (CallInst *CI = dyn_cast<CallInst>(&I))
1459 MaskedOp.insert(CI);
1460 continue;
1461 }
1462
1463 // Loads are handled via masking (or speculated if safe to do so.)
1464 if (auto *LI = dyn_cast<LoadInst>(&I)) {
1465 if (!SafePtrs.count(LI->getPointerOperand()))
1466 MaskedOp.insert(LI);
1467 continue;
1468 }
1469
1470 // Predicated store requires some form of masking:
1471 // 1) masked store HW instruction,
1472 // 2) emulation via load-blend-store (only if safe and legal to do so,
1473 // be aware on the race conditions), or
1474 // 3) element-by-element predicate check and scalar store.
1475 if (auto *SI = dyn_cast<StoreInst>(&I)) {
1476 MaskedOp.insert(SI);
1477 continue;
1478 }
1479
1480 if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow())
1481 return false;
1482 }
1483
1484 return true;
1485}
1486
1487bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
1488 if (!EnableIfConversion) {
1489 reportVectorizationFailure("If-conversion is disabled",
1490 "IfConversionDisabled", ORE, TheLoop);
1491 return false;
1492 }
1493
1494 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
1495
1496 // A list of pointers which are known to be dereferenceable within scope of
1497 // the loop body for each iteration of the loop which executes. That is,
1498 // the memory pointed to can be dereferenced (with the access size implied by
1499 // the value's type) unconditionally within the loop header without
1500 // introducing a new fault.
1501 SmallPtrSet<Value *, 8> SafePointers;
1502
1503 // Collect safe addresses.
1504 for (BasicBlock *BB : TheLoop->blocks()) {
1505 if (!blockNeedsPredication(BB)) {
1506 for (Instruction &I : *BB)
1507 if (auto *Ptr = getLoadStorePointerOperand(&I))
1508 SafePointers.insert(Ptr);
1509 continue;
1510 }
1511
1512 // For a block which requires predication, a address may be safe to access
1513 // in the loop w/o predication if we can prove dereferenceability facts
1514 // sufficient to ensure it'll never fault within the loop. For the moment,
1515 // we restrict this to loads; stores are more complicated due to
1516 // concurrency restrictions.
1517 ScalarEvolution &SE = *PSE.getSE();
1519 for (Instruction &I : *BB) {
1520 LoadInst *LI = dyn_cast<LoadInst>(&I);
1521
1522 // Make sure we can execute all computations feeding into Ptr in the loop
1523 // w/o triggering UB and that none of the out-of-loop operands are poison.
1524 // We do not need to check if operations inside the loop can produce
1525 // poison due to flags (e.g. due to an inbounds GEP going out of bounds),
1526 // because flags will be dropped when executing them unconditionally.
1527 // TODO: Results could be improved by considering poison-propagation
1528 // properties of visited ops.
1529 auto CanSpeculatePointerOp = [this](Value *Ptr) {
1530 SmallVector<Value *> Worklist = {Ptr};
1531 SmallPtrSet<Value *, 4> Visited;
1532 while (!Worklist.empty()) {
1533 Value *CurrV = Worklist.pop_back_val();
1534 if (!Visited.insert(CurrV).second)
1535 continue;
1536
1537 auto *CurrI = dyn_cast<Instruction>(CurrV);
1538 if (!CurrI || !TheLoop->contains(CurrI)) {
1539 // If operands from outside the loop may be poison then Ptr may also
1540 // be poison.
1541 if (!isGuaranteedNotToBePoison(CurrV, AC,
1542 TheLoop->getLoopPredecessor()
1543 ->getTerminator()
1544 ->getIterator(),
1545 DT))
1546 return false;
1547 continue;
1548 }
1549
1550 // A loaded value may be poison, independent of any flags.
1551 if (isa<LoadInst>(CurrI) && !isGuaranteedNotToBePoison(CurrV, AC))
1552 return false;
1553
1554 // For other ops, assume poison can only be introduced via flags,
1555 // which can be dropped.
1556 if (!isa<PHINode>(CurrI) && !isSafeToSpeculativelyExecute(CurrI))
1557 return false;
1558 append_range(Worklist, CurrI->operands());
1559 }
1560 return true;
1561 };
1562 // Pass the Predicates pointer to isDereferenceableAndAlignedInLoop so
1563 // that it will consider loops that need guarding by SCEV checks. The
1564 // vectoriser will generate these checks if we decide to vectorise.
1565 if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) &&
1566 CanSpeculatePointerOp(LI->getPointerOperand()) &&
1567 isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT, AC,
1568 &Predicates))
1569 SafePointers.insert(LI->getPointerOperand());
1570 Predicates.clear();
1571 }
1572 }
1573
1574 // Collect the blocks that need predication.
1575 for (BasicBlock *BB : TheLoop->blocks()) {
1576 // We support only branches and switch statements as terminators inside the
1577 // loop.
1578 if (isa<SwitchInst>(BB->getTerminator())) {
1579 if (TheLoop->isLoopExiting(BB)) {
1580 reportVectorizationFailure("Loop contains an unsupported switch",
1581 "LoopContainsUnsupportedSwitch", ORE,
1582 TheLoop, BB->getTerminator());
1583 return false;
1584 }
1585 } else if (!isa<BranchInst>(BB->getTerminator())) {
1586 reportVectorizationFailure("Loop contains an unsupported terminator",
1587 "LoopContainsUnsupportedTerminator", ORE,
1588 TheLoop, BB->getTerminator());
1589 return false;
1590 }
1591
1592 // We must be able to predicate all blocks that need to be predicated.
1593 if (blockNeedsPredication(BB) &&
1594 !blockCanBePredicated(BB, SafePointers, MaskedOp)) {
1596 "Control flow cannot be substituted for a select", "NoCFGForSelect",
1597 ORE, TheLoop, BB->getTerminator());
1598 return false;
1599 }
1600 }
1601
1602 // We can if-convert this loop.
1603 return true;
1604}
1605
1606// Helper function to canVectorizeLoopNestCFG.
1607bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
1608 bool UseVPlanNativePath) {
1609 assert((UseVPlanNativePath || Lp->isInnermost()) &&
1610 "VPlan-native path is not enabled.");
1611
1612 // TODO: ORE should be improved to show more accurate information when an
1613 // outer loop can't be vectorized because a nested loop is not understood or
1614 // legal. Something like: "outer_loop_location: loop not vectorized:
1615 // (inner_loop_location) loop control flow is not understood by vectorizer".
1616
1617 // Store the result and return it at the end instead of exiting early, in case
1618 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1619 bool Result = true;
1620 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1621
1622 // We must have a loop in canonical form. Loops with indirectbr in them cannot
1623 // be canonicalized.
1624 if (!Lp->getLoopPreheader()) {
1625 reportVectorizationFailure("Loop doesn't have a legal pre-header",
1626 "loop control flow is not understood by vectorizer",
1627 "CFGNotUnderstood", ORE, TheLoop);
1628 if (DoExtraAnalysis)
1629 Result = false;
1630 else
1631 return false;
1632 }
1633
1634 // We must have a single backedge.
1635 if (Lp->getNumBackEdges() != 1) {
1636 reportVectorizationFailure("The loop must have a single backedge",
1637 "loop control flow is not understood by vectorizer",
1638 "CFGNotUnderstood", ORE, TheLoop);
1639 if (DoExtraAnalysis)
1640 Result = false;
1641 else
1642 return false;
1643 }
1644
1645 return Result;
1646}
1647
1648bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1649 Loop *Lp, bool UseVPlanNativePath) {
1650 // Store the result and return it at the end instead of exiting early, in case
1651 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1652 bool Result = true;
1653 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1654 if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1655 if (DoExtraAnalysis)
1656 Result = false;
1657 else
1658 return false;
1659 }
1660
1661 // Recursively check whether the loop control flow of nested loops is
1662 // understood.
1663 for (Loop *SubLp : *Lp)
1664 if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1665 if (DoExtraAnalysis)
1666 Result = false;
1667 else
1668 return false;
1669 }
1670
1671 return Result;
1672}
1673
1674bool LoopVectorizationLegality::isVectorizableEarlyExitLoop() {
1675 BasicBlock *LatchBB = TheLoop->getLoopLatch();
1676 if (!LatchBB) {
1677 reportVectorizationFailure("Loop does not have a latch",
1678 "Cannot vectorize early exit loop",
1679 "NoLatchEarlyExit", ORE, TheLoop);
1680 return false;
1681 }
1682
1683 if (Reductions.size() || FixedOrderRecurrences.size()) {
1685 "Found reductions or recurrences in early-exit loop",
1686 "Cannot vectorize early exit loop with reductions or recurrences",
1687 "RecurrencesInEarlyExitLoop", ORE, TheLoop);
1688 return false;
1689 }
1690
1691 SmallVector<BasicBlock *, 8> ExitingBlocks;
1692 TheLoop->getExitingBlocks(ExitingBlocks);
1693
1694 // Keep a record of all the exiting blocks.
1696 BasicBlock *SingleUncountableExitingBlock = nullptr;
1697 for (BasicBlock *BB : ExitingBlocks) {
1698 const SCEV *EC =
1699 PSE.getSE()->getPredicatedExitCount(TheLoop, BB, &Predicates);
1700 if (isa<SCEVCouldNotCompute>(EC)) {
1701 if (size(successors(BB)) != 2) {
1703 "Early exiting block does not have exactly two successors",
1704 "Incorrect number of successors from early exiting block",
1705 "EarlyExitTooManySuccessors", ORE, TheLoop);
1706 return false;
1707 }
1708
1709 if (SingleUncountableExitingBlock) {
1711 "Loop has too many uncountable exits",
1712 "Cannot vectorize early exit loop with more than one early exit",
1713 "TooManyUncountableEarlyExits", ORE, TheLoop);
1714 return false;
1715 }
1716
1717 SingleUncountableExitingBlock = BB;
1718 } else
1719 CountableExitingBlocks.push_back(BB);
1720 }
1721 // We can safely ignore the predicates here because when vectorizing the loop
1722 // the PredicatatedScalarEvolution class will keep track of all predicates
1723 // for each exiting block anyway. This happens when calling
1724 // PSE.getSymbolicMaxBackedgeTakenCount() below.
1725 Predicates.clear();
1726
1727 if (!SingleUncountableExitingBlock) {
1728 LLVM_DEBUG(dbgs() << "LV: Cound not find any uncountable exits");
1729 return false;
1730 }
1731
1732 // The only supported early exit loops so far are ones where the early
1733 // exiting block is a unique predecessor of the latch block.
1734 BasicBlock *LatchPredBB = LatchBB->getUniquePredecessor();
1735 if (LatchPredBB != SingleUncountableExitingBlock) {
1736 reportVectorizationFailure("Early exit is not the latch predecessor",
1737 "Cannot vectorize early exit loop",
1738 "EarlyExitNotLatchPredecessor", ORE, TheLoop);
1739 return false;
1740 }
1741
1742 // The latch block must have a countable exit.
1744 PSE.getSE()->getPredicatedExitCount(TheLoop, LatchBB, &Predicates))) {
1746 "Cannot determine exact exit count for latch block",
1747 "Cannot vectorize early exit loop",
1748 "UnknownLatchExitCountEarlyExitLoop", ORE, TheLoop);
1749 return false;
1750 }
1751 assert(llvm::is_contained(CountableExitingBlocks, LatchBB) &&
1752 "Latch block not found in list of countable exits!");
1753
1754 // Check to see if there are instructions that could potentially generate
1755 // exceptions or have side-effects.
1756 auto IsSafeOperation = [](Instruction *I) -> bool {
1757 switch (I->getOpcode()) {
1758 case Instruction::Load:
1759 case Instruction::Store:
1760 case Instruction::PHI:
1761 case Instruction::Br:
1762 // These are checked separately.
1763 return true;
1764 default:
1766 }
1767 };
1768
1769 bool HasSideEffects = false;
1770 for (auto *BB : TheLoop->blocks())
1771 for (auto &I : *BB) {
1772 if (I.mayWriteToMemory()) {
1773 if (isa<StoreInst>(&I) && cast<StoreInst>(&I)->isSimple()) {
1774 HasSideEffects = true;
1775 continue;
1776 }
1777
1778 // We don't support complex writes to memory.
1780 "Complex writes to memory unsupported in early exit loops",
1781 "Cannot vectorize early exit loop with complex writes to memory",
1782 "WritesInEarlyExitLoop", ORE, TheLoop);
1783 return false;
1784 }
1785
1786 if (!IsSafeOperation(&I)) {
1787 reportVectorizationFailure("Early exit loop contains operations that "
1788 "cannot be speculatively executed",
1789 "UnsafeOperationsEarlyExitLoop", ORE,
1790 TheLoop);
1791 return false;
1792 }
1793 }
1794
1795 // The vectoriser cannot handle loads that occur after the early exit block.
1796 assert(LatchBB->getUniquePredecessor() == SingleUncountableExitingBlock &&
1797 "Expected latch predecessor to be the early exiting block");
1798
1799 SmallVector<LoadInst *, 4> NonDerefLoads;
1800 // TODO: Handle loops that may fault.
1801 if (!HasSideEffects) {
1802 // Read-only loop.
1803 Predicates.clear();
1804 if (!isReadOnlyLoop(TheLoop, PSE.getSE(), DT, AC, NonDerefLoads,
1805 &Predicates)) {
1807 "Loop may fault", "Cannot vectorize non-read-only early exit loop",
1808 "NonReadOnlyEarlyExitLoop", ORE, TheLoop);
1809 return false;
1810 }
1811 } else if (!canUncountableExitConditionLoadBeMoved(
1812 SingleUncountableExitingBlock))
1813 return false;
1814
1815 // Check non-dereferenceable loads if any.
1816 for (LoadInst *LI : NonDerefLoads) {
1817 // Only support unit-stride access for now.
1818 int Stride = isConsecutivePtr(LI->getType(), LI->getPointerOperand());
1819 if (Stride != 1) {
1821 "Loop contains potentially faulting strided load",
1822 "Cannot vectorize early exit loop with "
1823 "strided fault-only-first load",
1824 "EarlyExitLoopWithStridedFaultOnlyFirstLoad", ORE, TheLoop);
1825 return false;
1826 }
1827 PotentiallyFaultingLoads.insert(LI);
1828 LLVM_DEBUG(dbgs() << "LV: Found potentially faulting load: " << *LI
1829 << "\n");
1830 }
1831
1832 [[maybe_unused]] const SCEV *SymbolicMaxBTC =
1833 PSE.getSymbolicMaxBackedgeTakenCount();
1834 // Since we have an exact exit count for the latch and the early exit
1835 // dominates the latch, then this should guarantee a computed SCEV value.
1836 assert(!isa<SCEVCouldNotCompute>(SymbolicMaxBTC) &&
1837 "Failed to get symbolic expression for backedge taken count");
1838 LLVM_DEBUG(dbgs() << "LV: Found an early exit loop with symbolic max "
1839 "backedge taken count: "
1840 << *SymbolicMaxBTC << '\n');
1841 UncountableExitingBB = SingleUncountableExitingBlock;
1842 UncountableExitWithSideEffects = HasSideEffects;
1843 return true;
1844}
1845
1846bool LoopVectorizationLegality::canUncountableExitConditionLoadBeMoved(
1847 BasicBlock *ExitingBlock) {
1848 // Try to find a load in the critical path for the uncountable exit condition.
1849 // This is currently matching about the simplest form we can, expecting
1850 // only one in-loop load, the result of which is directly compared against
1851 // a loop-invariant value.
1852 // FIXME: We're insisting on a single use for now, because otherwise we will
1853 // need to make PHI nodes for other users. That can be done once the initial
1854 // transform code lands.
1855 auto *Br = cast<BranchInst>(ExitingBlock->getTerminator());
1856
1857 using namespace llvm::PatternMatch;
1858 Instruction *L = nullptr;
1859 Value *Ptr = nullptr;
1860 Value *R = nullptr;
1861 if (!match(Br->getCondition(),
1863 m_Value(R))))) {
1865 "Early exit loop with store but no supported condition load",
1866 "NoConditionLoadForEarlyExitLoop", ORE, TheLoop);
1867 return false;
1868 }
1869
1870 // FIXME: Don't rely on operand ordering for the comparison.
1871 if (!TheLoop->isLoopInvariant(R)) {
1873 "Early exit loop with store but no supported condition load",
1874 "NoConditionLoadForEarlyExitLoop", ORE, TheLoop);
1875 return false;
1876 }
1877
1878 // Make sure that the load address is not loop invariant; we want an
1879 // address calculation that we can rotate to the next vector iteration.
1880 const auto *AR = dyn_cast<SCEVAddRecExpr>(PSE.getSE()->getSCEV(Ptr));
1881 if (!AR || AR->getLoop() != TheLoop || !AR->isAffine()) {
1883 "Uncountable exit condition depends on load with an address that is "
1884 "not an add recurrence in the loop",
1885 "EarlyExitLoadInvariantAddress", ORE, TheLoop);
1886 return false;
1887 }
1888
1889 // FIXME: Support gathers after first-faulting load support lands.
1891 LoadInst *Load = cast<LoadInst>(L);
1892 if (!isDereferenceableAndAlignedInLoop(Load, TheLoop, *PSE.getSE(), *DT, AC,
1893 &Predicates)) {
1895 "Loop may fault",
1896 "Cannot vectorize potentially faulting early exit loop",
1897 "PotentiallyFaultingEarlyExitLoop", ORE, TheLoop);
1898 return false;
1899 }
1900
1901 ICFLoopSafetyInfo SafetyInfo;
1902 SafetyInfo.computeLoopSafetyInfo(TheLoop);
1903 // We need to know that load will be executed before we can hoist a
1904 // copy out to run just before the first iteration.
1905 if (!SafetyInfo.isGuaranteedToExecute(*Load, DT, TheLoop)) {
1907 "Load for uncountable exit not guaranteed to execute",
1908 "ConditionalUncountableExitLoad", ORE, TheLoop);
1909 return false;
1910 }
1911
1912 // Prohibit any potential aliasing with any instruction in the loop which
1913 // might store to memory.
1914 // FIXME: Relax this constraint where possible.
1915 for (auto *BB : TheLoop->blocks()) {
1916 for (auto &I : *BB) {
1917 if (&I == Load)
1918 continue;
1919
1920 if (I.mayWriteToMemory()) {
1921 if (auto *SI = dyn_cast<StoreInst>(&I)) {
1922 AliasResult AR = AA->alias(Ptr, SI->getPointerOperand());
1923 if (AR == AliasResult::NoAlias)
1924 continue;
1925 }
1926
1928 "Cannot determine whether critical uncountable exit load address "
1929 "does not alias with a memory write",
1930 "CantVectorizeAliasWithCriticalUncountableExitLoad", ORE, TheLoop);
1931 return false;
1932 }
1933 }
1934 }
1935
1936 return true;
1937}
1938
1939bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1940 // Store the result and return it at the end instead of exiting early, in case
1941 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1942 bool Result = true;
1943
1944 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1945 // Check whether the loop-related control flow in the loop nest is expected by
1946 // vectorizer.
1947 if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1948 if (DoExtraAnalysis) {
1949 LLVM_DEBUG(dbgs() << "LV: legality check failed: loop nest");
1950 Result = false;
1951 } else {
1952 return false;
1953 }
1954 }
1955
1956 // We need to have a loop header.
1957 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1958 << '\n');
1959
1960 // Specific checks for outer loops. We skip the remaining legal checks at this
1961 // point because they don't support outer loops.
1962 if (!TheLoop->isInnermost()) {
1963 assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1964
1965 if (!canVectorizeOuterLoop()) {
1966 reportVectorizationFailure("Unsupported outer loop",
1967 "UnsupportedOuterLoop", ORE, TheLoop);
1968 // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1969 // outer loops.
1970 return false;
1971 }
1972
1973 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1974 return Result;
1975 }
1976
1977 assert(TheLoop->isInnermost() && "Inner loop expected.");
1978 // Check if we can if-convert non-single-bb loops.
1979 unsigned NumBlocks = TheLoop->getNumBlocks();
1980 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1981 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1982 if (DoExtraAnalysis)
1983 Result = false;
1984 else
1985 return false;
1986 }
1987
1988 // Check if we can vectorize the instructions and CFG in this loop.
1989 if (!canVectorizeInstrs()) {
1990 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1991 if (DoExtraAnalysis)
1992 Result = false;
1993 else
1994 return false;
1995 }
1996
1997 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
1998 if (TheLoop->getExitingBlock()) {
1999 reportVectorizationFailure("Cannot vectorize uncountable loop",
2000 "UnsupportedUncountableLoop", ORE, TheLoop);
2001 if (DoExtraAnalysis)
2002 Result = false;
2003 else
2004 return false;
2005 } else {
2006 if (!isVectorizableEarlyExitLoop()) {
2009 "Must be false without vectorizable early-exit loop");
2010 if (DoExtraAnalysis)
2011 Result = false;
2012 else
2013 return false;
2014 }
2015 }
2016 }
2017
2018 // Go over each instruction and look at memory deps.
2019 if (!canVectorizeMemory()) {
2020 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
2021 if (DoExtraAnalysis)
2022 Result = false;
2023 else
2024 return false;
2025 }
2026
2027 // Bail out for state-changing loops with uncountable exits for now.
2028 if (UncountableExitWithSideEffects) {
2030 "Writes to memory unsupported in early exit loops",
2031 "Cannot vectorize early exit loop with writes to memory",
2032 "WritesInEarlyExitLoop", ORE, TheLoop);
2033 return false;
2034 }
2035
2036 if (Result) {
2037 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
2038 << (LAI->getRuntimePointerChecking()->Need
2039 ? " (with a runtime bound check)"
2040 : "")
2041 << "!\n");
2042 }
2043
2044 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
2045 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
2046 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
2047
2048 if (PSE.getPredicate().getComplexity() > SCEVThreshold) {
2049 LLVM_DEBUG(dbgs() << "LV: Vectorization not profitable "
2050 "due to SCEVThreshold");
2051 reportVectorizationFailure("Too many SCEV checks needed",
2052 "Too many SCEV assumptions need to be made and checked at runtime",
2053 "TooManySCEVRunTimeChecks", ORE, TheLoop);
2054 if (DoExtraAnalysis)
2055 Result = false;
2056 else
2057 return false;
2058 }
2059
2060 // Okay! We've done all the tests. If any have failed, return false. Otherwise
2061 // we can vectorize, and at this point we don't have any other mem analysis
2062 // which may limit our maximum vectorization factor, so just return true with
2063 // no restrictions.
2064 return Result;
2065}
2066
2068 // The only loops we can vectorize without a scalar epilogue, are loops with
2069 // a bottom-test and a single exiting block. We'd have to handle the fact
2070 // that not every instruction executes on the last iteration. This will
2071 // require a lane mask which varies through the vector loop body. (TODO)
2072 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
2073 LLVM_DEBUG(
2074 dbgs()
2075 << "LV: Cannot fold tail by masking. Requires a singe latch exit\n");
2076 return false;
2077 }
2078
2079 LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
2080
2081 SmallPtrSet<const Value *, 8> ReductionLiveOuts;
2082
2083 for (const auto &Reduction : getReductionVars())
2084 ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
2085
2086 // TODO: handle non-reduction outside users when tail is folded by masking.
2087 for (auto *AE : AllowedExit) {
2088 // Check that all users of allowed exit values are inside the loop or
2089 // are the live-out of a reduction.
2090 if (ReductionLiveOuts.count(AE))
2091 continue;
2092 for (User *U : AE->users()) {
2094 if (TheLoop->contains(UI))
2095 continue;
2096 LLVM_DEBUG(
2097 dbgs()
2098 << "LV: Cannot fold tail by masking, loop has an outside user for "
2099 << *UI << "\n");
2100 return false;
2101 }
2102 }
2103
2104 for (const auto &Entry : getInductionVars()) {
2105 PHINode *OrigPhi = Entry.first;
2106 for (User *U : OrigPhi->users()) {
2107 auto *UI = cast<Instruction>(U);
2108 if (!TheLoop->contains(UI)) {
2109 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking, loop IV has an "
2110 "outside user for "
2111 << *UI << "\n");
2112 return false;
2113 }
2114 }
2115 }
2116
2117 // The list of pointers that we can safely read and write to remains empty.
2118 SmallPtrSet<Value *, 8> SafePointers;
2119
2120 // Check all blocks for predication, including those that ordinarily do not
2121 // need predication such as the header block.
2123 for (BasicBlock *BB : TheLoop->blocks()) {
2124 if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp)) {
2125 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking.\n");
2126 return false;
2127 }
2128 }
2129
2130 LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
2131
2132 return true;
2133}
2134
2136 // The list of pointers that we can safely read and write to remains empty.
2137 SmallPtrSet<Value *, 8> SafePointers;
2138
2139 // Mark all blocks for predication, including those that ordinarily do not
2140 // need predication such as the header block.
2141 for (BasicBlock *BB : TheLoop->blocks()) {
2142 [[maybe_unused]] bool R = blockCanBePredicated(BB, SafePointers, MaskedOp);
2143 assert(R && "Must be able to predicate block when tail-folding.");
2144 }
2145}
2146
2147} // namespace llvm
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
#define DEBUG_TYPE
Hexagon Common GEP
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition Lint.cpp:539
static cl::opt< LoopVectorizeHints::ScalableForceKind > ForceScalableVectorization("scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified), cl::Hidden, cl::desc("Control whether the compiler can use scalable vectors to " "vectorize a loop"), cl::values(clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off", "Scalable vectorization is disabled."), clEnumValN(LoopVectorizeHints::SK_PreferScalable, "preferred", "Scalable vectorization is available and favored when the " "cost is inconclusive."), clEnumValN(LoopVectorizeHints::SK_PreferScalable, "on", "Scalable vectorization is available and favored when the " "cost is inconclusive.")))
#define LV_NAME
static cl::opt< unsigned > PragmaVectorizeSCEVCheckThreshold("pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum number of SCEV checks allowed with a " "vectorize(enable) pragma"))
static cl::opt< bool > HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden, cl::desc("Allow enabling loop hints to reorder " "FP operations during vectorization."))
static const unsigned MaxInterleaveFactor
Maximum vectorization interleave count.
static cl::opt< bool > AllowStridedPointerIVs("lv-strided-pointer-ivs", cl::init(false), cl::Hidden, cl::desc("Enable recognition of non-constant strided " "pointer induction variables."))
static cl::opt< unsigned > VectorizeSCEVCheckThreshold("vectorize-scev-check-threshold", cl::init(16), cl::Hidden, cl::desc("The maximum number of SCEV checks allowed."))
static cl::opt< bool > EnableHistogramVectorization("enable-histogram-loop-vectorization", cl::init(false), cl::Hidden, cl::desc("Enables autovectorization of some loops containing histograms"))
static cl::opt< bool > EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, cl::desc("Enable if-conversion during vectorization."))
This file defines the LoopVectorizationLegality class.
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
#define H(x, y, z)
Definition MD5.cpp:57
#define T
Contains a collection of routines for determining if a given instruction is guaranteed to execute if ...
static bool isSimple(Instruction *I)
void visit(MachineFunction &MF, MachineBasicBlock &Start, std::function< void(MachineBasicBlock *)> op)
#define LLVM_DEBUG(...)
Definition Debug.h:114
This pass exposes codegen information to IR-level passes.
Virtual Register Rewriter
static const uint32_t IV[8]
Definition blake3_impl.h:83
Class for arbitrary precision integers.
Definition APInt.h:78
@ NoAlias
The two locations do not alias at all.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
LLVM_ABI const BasicBlock * getUniquePredecessor() const
Return the predecessor of this block if it has a unique predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
This class represents a function call, abstracting a target machine's calling convention.
static ConstantAsMetadata * get(Constant *C)
Definition Metadata.h:536
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:313
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:310
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:321
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition Type.cpp:803
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
bool isGuaranteedToExecute(const Instruction &Inst, const DominatorTree *DT, const Loop *CurLoop) const override
Returns true if the instruction in a loop is guaranteed to execute at least once (under the assumptio...
void computeLoopSafetyInfo(const Loop *CurLoop) override
Computes safety information for a loop checks loop body & header for the possibility of may throw exc...
A struct for saving information about induction variables.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
static LLVM_ABI bool isInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE, InductionDescriptor &D, const SCEV *Expr=nullptr, SmallVectorImpl< Instruction * > *CastsToIgnore=nullptr)
Returns true if Phi is an induction in the loop L.
Instruction * getExactFPMathInst()
Returns floating-point induction operator that does not allow reassociation (transforming the inducti...
Class to represent integer types.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
An instruction for reading from memory.
const MemoryDepChecker & getDepChecker() const
the Memory Dependence Checker which can determine the loop-independent and loop-carried dependences b...
static LLVM_ABI bool blockNeedsPredication(const BasicBlock *BB, const Loop *TheLoop, const DominatorTree *DT)
Return true if the block BB needs to be predicated in order for the loop to be vectorized.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
unsigned getNumBackEdges() const
Calculate the number of back edges to the loop header.
iterator_range< block_iterator > blocks() const
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
bool isLoopHeader(const BlockT *BB) const
bool isInvariantStoreOfReduction(StoreInst *SI)
Returns True if given store is a final invariant store of one of the reductions found in the loop.
bool isInvariantAddressOfReduction(Value *V)
Returns True if given address is invariant and is used to store recurrent expression.
bool blockNeedsPredication(BasicBlock *BB) const
Return true if the block BB needs to be predicated in order for the loop to be vectorized.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
int isConsecutivePtr(Type *AccessTy, Value *Ptr) const
Check if this pointer is consecutive when vectorizing.
bool hasUncountableExitWithSideEffects() const
Returns true if this is an early exit loop with state-changing or potentially-faulting operations and...
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
bool isFixedOrderRecurrence(const PHINode *Phi) const
Returns True if Phi is a fixed-order recurrence in this loop.
const InductionDescriptor * getPointerInductionDescriptor(PHINode *Phi) const
Returns a pointer to the induction descriptor, if Phi is pointer induction.
const InductionDescriptor * getIntOrFpInductionDescriptor(PHINode *Phi) const
Returns a pointer to the induction descriptor, if Phi is an integer or floating point induction.
bool isInductionPhi(const Value *V) const
Returns True if V is a Phi node of an induction variable in this loop.
bool isUniform(Value *V, ElementCount VF) const
Returns true if value V is uniform across VF lanes, when VF is provided, and otherwise if V is invari...
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool isInvariant(Value *V) const
Returns true if V is invariant across all loop iterations according to SCEV.
const ReductionList & getReductionVars() const
Returns the reduction variables found in the loop.
bool canFoldTailByMasking() const
Return true if we can vectorize this loop while folding its tail by masking.
void prepareToFoldTailByMasking()
Mark all respective loads/stores for masking.
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool isUniformMemOp(Instruction &I, ElementCount VF) const
A uniform memory op is a load or store which accesses the same memory location on all VF lanes,...
BasicBlock * getUncountableEarlyExitingBlock() const
Returns the uncountable early exiting block, if there is exactly one.
bool isInductionVariable(const Value *V) const
Returns True if V can be considered as an induction variable in this loop.
bool isCastedInductionVariable(const Value *V) const
Returns True if V is a cast that is part of an induction def-use chain, and had been proven to be red...
@ SK_PreferScalable
Vectorize loops using scalable vectors or fixed-width vectors, but favor scalable vectors when the co...
@ SK_FixedWidthOnly
Disables vectorization with scalable vectors.
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
bool allowReordering() const
When enabling loop hints are provided we allow the vectorizer to change the order of operations that ...
void emitRemarkWithHints() const
Dumps all the hint information.
void setAlreadyVectorized()
Mark the loop L as already vectorized by setting the width to 1.
LoopVectorizeHints(const Loop *L, bool InterleaveOnlyWhenForced, OptimizationRemarkEmitter &ORE, const TargetTransformInfo *TTI=nullptr)
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
Definition LoopInfo.cpp:61
PHINode * getCanonicalInductionVariable() const
Check to see if the loop has a canonical induction variable: an integer recurrence that starts at 0 a...
Definition LoopInfo.cpp:151
MDNode * getLoopID() const
Return the llvm.loop loop id metadata node for this loop if it is present.
Definition LoopInfo.cpp:502
Metadata node.
Definition Metadata.h:1078
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1442
ArrayRef< MDOperand > operands() const
Definition Metadata.h:1440
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1569
unsigned getNumOperands() const
Return number of MDNode operands.
Definition Metadata.h:1448
Tracking metadata reference owned by Metadata.
Definition Metadata.h:900
A single uniqued string.
Definition Metadata.h:721
LLVM_ABI StringRef getString() const
Definition Metadata.cpp:618
static LLVM_ABI MDString * get(LLVMContext &Context, StringRef Str)
Definition Metadata.cpp:608
iterator find(const KeyT &Key)
Definition MapVector.h:149
Checks memory dependences among accesses to the same underlying object to determine whether there vec...
const SmallVectorImpl< Dependence > * getDependences() const
Returns the memory dependences.
Root of the metadata hierarchy.
Definition Metadata.h:64
Diagnostic information for optimization analysis remarks.
The optimization diagnostic interface.
bool allowExtraAnalysis(StringRef PassName) const
Whether we allow for extra compile-time budget to perform more analysis to produce fewer false positi...
Diagnostic information for missed-optimization remarks.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
Instruction * getExactFPMathInst() const
Returns 1st non-reassociative FP instruction in the PHI node's use-chain.
static LLVM_ABI bool isFixedOrderRecurrence(PHINode *Phi, Loop *TheLoop, DominatorTree *DT)
Returns true if Phi is a fixed-order recurrence.
bool hasExactFPMath() const
Returns true if the recurrence has floating-point math that requires precise (ordered) operations.
Instruction * getLoopExitInstr() const
static LLVM_ABI bool isReductionPHI(PHINode *Phi, Loop *TheLoop, RecurrenceDescriptor &RedDes, DemandedBits *DB=nullptr, AssumptionCache *AC=nullptr, DominatorTree *DT=nullptr, ScalarEvolution *SE=nullptr)
Returns true if Phi is a reduction in TheLoop.
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
StoreInst * IntermediateStore
Reductions may store temporary or final result to an invariant address.
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
This visitor recursively visits a SCEV expression and re-writes it.
const SCEV * visit(const SCEV *S)
This class represents an analyzed expression in the program.
The main scalar evolution driver.
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI const SCEV * getCouldNotCompute()
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
Value * getPointerOperand()
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Provides information about what library functions are available for the current target.
void getWidestVF(StringRef ScalarF, ElementCount &FixedVF, ElementCount &ScalableVF) const
Returns the largest vectorization factor used in the list of vector functions.
bool isFunctionVectorizable(StringRef F, const ElementCount &VF) const
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
LLVM_ABI std::string str() const
Return the twine contents as a std::string.
Definition Twine.cpp:17
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntOrPtrTy() const
Return true if this is an integer type or a pointer type.
Definition Type.h:255
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
Value * getOperand(unsigned i) const
Definition User.h:232
static bool hasMaskedVariant(const CallInst &CI, std::optional< ElementCount > VF=std::nullopt)
Definition VectorUtils.h:85
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
Definition VectorUtils.h:74
LLVM Value Representation.
Definition Value.h:75
iterator_range< user_iterator > users()
Definition Value.h:426
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
static LLVM_ABI bool isValidElementType(Type *ElemTy)
Return true if the specified type is valid as a element type.
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:231
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
constexpr bool isZero() const
Definition TypeSize.h:154
const ParentTy * getParent() const
Definition ilist_node.h:34
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
TwoOps_match< ValueOpTy, PointerOpTy, Instruction::Store > m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp)
Matches StoreInst.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
match_combine_or< match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > >, OpTy > m_ZExtOrSExtOrSelf(const OpTy &Op)
OneOps_match< OpTy, Instruction::Load > m_Load(const OpTy &Op)
Matches LoadInst.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > dyn_extract(Y &&MD)
Extract a Value from Metadata, if any.
Definition Metadata.h:695
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
NodeAddr< PhiNode * > Phi
Definition RDFGraph.h:390
NodeAddr< FuncNode * > Func
Definition RDFGraph.h:393
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:318
@ Offset
Definition DWP.cpp:477
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1705
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1657
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:644
auto successors(const MachineBasicBlock *BB)
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp)
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2116
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
static bool isUniformLoop(Loop *Lp, Loop *OuterLp)
LLVM_ABI bool mustSuppressSpeculation(const LoadInst &LI)
Return true if speculation of the given load must be suppressed to avoid ordering or interfering with...
Definition Loads.cpp:416
static bool canWidenCallReturnType(Type *Ty)
Returns true if the call return type Ty can be widened by the loop vectorizer.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:754
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1712
auto reverse(ContainerTy &&C)
Definition STLExtras.h:408
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:288
static IntegerType * getWiderInductionTy(const DataLayout &DL, Type *Ty0, Type *Ty1)
static IntegerType * getInductionIntegerTy(const DataLayout &DL, Type *Ty)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI std::optional< int64_t > getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr, const Loop *Lp, const DenseMap< Value *, const SCEV * > &StridesMap=DenseMap< Value *, const SCEV * >(), bool Assume=false, bool ShouldCheckWrap=true)
If the pointer has a constant stride return it in units of the access type size.
static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, SmallPtrSetImpl< Value * > &AllowedExit)
Check that the instruction has outside loop users and is not an identified reduction variable.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A, StoreInst *B)
Returns true if A and B have same pointer operands or same SCEVs addresses.
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
TargetTransformInfo TTI
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:560
LLVM_ABI bool isReadOnlyLoop(Loop *L, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, SmallVectorImpl< LoadInst * > &NonDereferenceableAndAlignedLoads, SmallVectorImpl< const SCEVPredicate * > *Predicates=nullptr)
Returns true if the loop contains read-only memory accesses and doesn't throw.
Definition Loads.cpp:863
LLVM_ABI llvm::MDNode * makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID, llvm::ArrayRef< llvm::StringRef > RemovePrefixes, llvm::ArrayRef< llvm::MDNode * > AddAttrs)
Create a new LoopID after the loop has been transformed.
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
Definition STLExtras.h:2100
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1877
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
Definition Sequence.h:305
static bool findHistogram(LoadInst *LI, StoreInst *HSt, Loop *TheLoop, const PredicatedScalarEvolution &PSE, SmallVectorImpl< HistogramInfo > &Histograms)
Find histogram operations that match high-level code in loops:
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI)
Checks if a function is scalarizable according to the TLI, in the sense that it should be vectorized ...
LLVM_ABI bool isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L, ScalarEvolution &SE, DominatorTree &DT, AssumptionCache *AC=nullptr, SmallVectorImpl< const SCEVPredicate * > *Predicates=nullptr)
Return true if we can prove that the given load (which is assumed to be within the specified loop) wo...
Definition Loads.cpp:289
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
Definition Casting.h:831
bool SCEVExprContains(const SCEV *Root, PredTy Pred)
Return true if any node in Root satisfies the predicate Pred.
Dependece between memory access instructions.
Instruction * getDestination(const MemoryDepChecker &DepChecker) const
Return the destination instruction of the dependence.
Instruction * getSource(const MemoryDepChecker &DepChecker) const
Return the source instruction of the dependence.
static LLVM_ABI VectorizationSafetyStatus isSafeForVectorization(DepType Type)
Dependence types that don't prevent vectorization.
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
Collection of parameters shared beetween the Loop Vectorizer and the Loop Access Analysis.
static LLVM_ABI const unsigned MaxVectorWidth
Maximum SIMD width.
static LLVM_ABI bool isInterleaveForced()
True if force-vector-interleave was specified by the user.
static LLVM_ABI unsigned VectorizationInterleave
Interleave factor as overridden by the user.