162#define LV_NAME "loop-vectorize"
163#define DEBUG_TYPE LV_NAME
169STATISTIC(LoopsVectorized,
"Number of loops vectorized");
170STATISTIC(LoopsAnalyzed,
"Number of loops analyzed for vectorization");
171STATISTIC(LoopsEpilogueVectorized,
"Number of epilogues vectorized");
172STATISTIC(LoopsEarlyExitVectorized,
"Number of early exit loops vectorized");
176 cl::desc(
"Enable vectorization of epilogue loops."));
180 cl::desc(
"When epilogue vectorization is enabled, and a value greater than "
181 "1 is specified, forces the given VF for all applicable epilogue "
185 "epilogue-vectorization-minimum-VF",
cl::Hidden,
186 cl::desc(
"Only loops with vectorization factor equal to or larger than "
187 "the specified value are considered for epilogue vectorization."));
193 cl::desc(
"Loops with a constant trip count that is smaller than this "
194 "value are vectorized only if no scalar iteration overheads "
199 cl::desc(
"The maximum allowed number of runtime memory checks"));
215 "prefer-predicate-over-epilogue",
218 cl::desc(
"Tail-folding and predication preferences over creating a scalar "
222 "Don't tail-predicate loops, create scalar epilogue"),
224 "predicate-else-scalar-epilogue",
225 "prefer tail-folding, create scalar epilogue if tail "
228 "predicate-dont-vectorize",
229 "prefers tail-folding, don't attempt vectorization if "
230 "tail-folding fails.")));
233 "force-tail-folding-style",
cl::desc(
"Force the tail folding style"),
239 "Create lane mask for data only, using active.lane.mask intrinsic"),
241 "data-without-lane-mask",
242 "Create lane mask with compare/stepvector"),
244 "Create lane mask using active.lane.mask intrinsic, and use "
245 "it for both data and control flow"),
247 "data-and-control-without-rt-check",
248 "Similar to data-and-control, but remove the runtime check"),
250 "Use predicated EVL instructions for tail folding. If EVL "
251 "is unsupported, fallback to data-without-lane-mask.")));
255 cl::desc(
"Enable use of wide lane masks when used for control flow in "
256 "tail-folded loops"));
260 cl::desc(
"Maximize bandwidth when selecting vectorization factor which "
261 "will be determined by the smallest type in loop."));
265 cl::desc(
"Enable vectorization on interleaved memory accesses in a loop"));
271 cl::desc(
"Enable vectorization on masked interleaved memory accesses in a loop"));
275 cl::desc(
"A flag that overrides the target's number of scalar registers."));
279 cl::desc(
"A flag that overrides the target's number of vector registers."));
283 cl::desc(
"A flag that overrides the target's max interleave factor for "
288 cl::desc(
"A flag that overrides the target's max interleave factor for "
289 "vectorized loops."));
293 cl::desc(
"A flag that overrides the target's expected cost for "
294 "an instruction to a single constant value. Mostly "
295 "useful for getting consistent testing."));
300 "Pretend that scalable vectors are supported, even if the target does "
301 "not support them. This flag should only be used for testing."));
306 "The cost of a loop that is considered 'small' by the interleaver."));
310 cl::desc(
"Enable the use of the block frequency analysis to access PGO "
311 "heuristics minimizing code growth in cold regions and being more "
312 "aggressive in hot regions."));
318 "Enable runtime interleaving until load/store ports are saturated"));
323 cl::desc(
"Max number of stores to be predicated behind an if."));
327 cl::desc(
"Count the induction variable only once when interleaving"));
331 cl::desc(
"Enable if predication of stores during vectorization."));
335 cl::desc(
"The maximum interleave count to use when interleaving a scalar "
336 "reduction in a nested loop."));
341 cl::desc(
"Prefer in-loop vector reductions, "
342 "overriding the targets preference."));
346 cl::desc(
"Enable the vectorisation of loops with in-order (strict) "
352 "Prefer predicating a reduction operation over an after loop select."));
356 cl::desc(
"Enable VPlan-native vectorization path with "
357 "support for outer loop vectorization."));
361#ifdef EXPENSIVE_CHECKS
367 cl::desc(
"Verfiy VPlans after VPlan transforms."));
376 "Build VPlan for every supported loop nest in the function and bail "
377 "out right after the build (stress test the VPlan H-CFG construction "
378 "in the VPlan-native vectorization path)."));
382 cl::desc(
"Enable loop interleaving in Loop vectorization passes"));
385 cl::desc(
"Run the Loop vectorization passes"));
388 "force-widen-divrem-via-safe-divisor",
cl::Hidden,
390 "Override cost based safe divisor widening for div/rem instructions"));
393 "vectorizer-maximize-bandwidth-for-vector-calls",
cl::init(
true),
395 cl::desc(
"Try wider VFs if they enable the use of vector variants"));
400 "Enable vectorization of early exit loops with uncountable exits."));
404 cl::desc(
"Discard VFs if their register pressure is too high."));
417 return DL.getTypeAllocSizeInBits(Ty) !=
DL.getTypeSizeInBits(Ty);
452static std::optional<ElementCount>
454 bool CanUseConstantMax =
true) {
464 if (!CanUseConstantMax)
476class GeneratedRTChecks;
508 VF(VecWidth),
UF(UnrollFactor),
Builder(
PSE.getSE()->getContext()),
511 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
617 "A high UF for the epilogue loop is likely not beneficial.");
637 UnrollFactor, CM, Checks,
Plan),
666 EPI.MainLoopVF,
EPI.MainLoopUF) {}
704 EPI.EpilogueVF,
EPI.EpilogueUF) {}
721 if (
I->getDebugLoc() !=
Empty)
722 return I->getDebugLoc();
725 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
726 if (OpInst->getDebugLoc() != Empty)
727 return OpInst->getDebugLoc();
730 return I->getDebugLoc();
739 dbgs() <<
"LV: " << Prefix << DebugMsg;
755static OptimizationRemarkAnalysis
761 if (
I &&
I->getDebugLoc())
762 DL =
I->getDebugLoc();
766 return OptimizationRemarkAnalysis(
PassName, RemarkName,
DL, CodeRegion);
774 assert(Ty->isIntegerTy() &&
"Expected an integer step");
782 return B.CreateElementCount(Ty, VFxStep);
787 return B.CreateElementCount(Ty, VF);
798 <<
"loop not vectorized: " << OREMsg);
821 "Vectorizing: ", TheLoop->
isInnermost() ?
"innermost loop" :
"outer loop",
827 <<
"vectorized " << LoopType <<
"loop (vectorization width: "
829 <<
", interleaved count: " <<
ore::NV(
"InterleaveCount", IC) <<
")";
886 initializeVScaleForTuning();
897 bool runtimeChecksRequired();
916 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
935 void collectValuesToIgnore();
938 void collectElementTypesForWidening();
942 void collectInLoopReductions();
963 "Profitable to scalarize relevant only for VF > 1.");
966 "cost-model should not be used for outer loops (in VPlan-native path)");
968 auto Scalars = InstsToScalarize.find(VF);
969 assert(Scalars != InstsToScalarize.end() &&
970 "VF not yet analyzed for scalarization profitability");
971 return Scalars->second.contains(
I);
978 "cost-model should not be used for outer loops (in VPlan-native path)");
988 auto UniformsPerVF = Uniforms.find(VF);
989 assert(UniformsPerVF != Uniforms.end() &&
990 "VF not yet analyzed for uniformity");
991 return UniformsPerVF->second.count(
I);
998 "cost-model should not be used for outer loops (in VPlan-native path)");
1002 auto ScalarsPerVF = Scalars.find(VF);
1003 assert(ScalarsPerVF != Scalars.end() &&
1004 "Scalar values are not calculated for VF");
1005 return ScalarsPerVF->second.count(
I);
1013 I->getType()->getScalarSizeInBits() < MinBWs.lookup(
I))
1015 return VF.
isVector() && MinBWs.contains(
I) &&
1037 WideningDecisions[{
I, VF}] = {W,
Cost};
1056 for (
unsigned Idx = 0; Idx < Grp->
getFactor(); ++Idx) {
1059 WideningDecisions[{
I, VF}] = {W, InsertPosCost};
1061 WideningDecisions[{
I, VF}] = {W, OtherMemberCost};
1073 "cost-model should not be used for outer loops (in VPlan-native path)");
1075 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1076 auto Itr = WideningDecisions.find(InstOnVF);
1077 if (Itr == WideningDecisions.end())
1079 return Itr->second.first;
1086 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1087 assert(WideningDecisions.contains(InstOnVF) &&
1088 "The cost is not calculated");
1089 return WideningDecisions[InstOnVF].second;
1102 std::optional<unsigned> MaskPos,
1105 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos,
Cost};
1111 auto I = CallWideningDecisions.find({CI, VF});
1112 if (
I == CallWideningDecisions.end())
1135 Value *
Op = Trunc->getOperand(0);
1136 if (
Op !=
Legal->getPrimaryInduction() &&
TTI.isTruncateFree(SrcTy, DestTy))
1140 return Legal->isInductionPhi(
Op);
1156 if (VF.
isScalar() || Uniforms.contains(VF))
1159 collectLoopUniforms(VF);
1161 collectLoopScalars(VF);
1169 return Legal->isConsecutivePtr(DataType, Ptr) &&
1177 return Legal->isConsecutivePtr(DataType, Ptr) &&
1192 return (
LI &&
TTI.isLegalMaskedGather(Ty,
Align)) ||
1199 return (
all_of(
Legal->getReductionVars(), [&](
auto &Reduction) ->
bool {
1200 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1201 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1212 return ScalarCost < SafeDivisorCost;
1251 std::pair<InstructionCost, InstructionCost>
1278 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1285 LLVM_DEBUG(
dbgs() <<
"LV: Loop requires scalar epilogue: not exiting "
1286 "from latch block\n");
1291 "interleaved group requires scalar epilogue\n");
1294 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1312 if (!ChosenTailFoldingStyle)
1314 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1315 : ChosenTailFoldingStyle->second;
1323 assert(!ChosenTailFoldingStyle &&
"Tail folding must not be selected yet.");
1324 if (!
Legal->canFoldTailByMasking()) {
1330 ChosenTailFoldingStyle = {
1331 TTI.getPreferredTailFoldingStyle(
true),
1332 TTI.getPreferredTailFoldingStyle(
false)};
1342 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1356 dbgs() <<
"LV: Preference for VP intrinsics indicated. Will "
1357 "not try to generate VP Intrinsics "
1359 ?
"since interleave count specified is greater than 1.\n"
1360 :
"due to non-interleaving reasons.\n"));
1405 return InLoopReductions.contains(Phi);
1416 TTI.preferPredicatedReductionSelect();
1431 WideningDecisions.clear();
1432 CallWideningDecisions.clear();
1450 bool isEpilogueVectorizationProfitable(
const ElementCount VF,
1451 const unsigned IC)
const;
1459 std::optional<InstructionCost> getReductionPatternCost(
Instruction *
I,
1461 Type *VectorTy)
const;
1465 bool shouldConsiderInvariant(
Value *
Op);
1471 unsigned NumPredStores = 0;
1475 std::optional<unsigned> VScaleForTuning;
1480 void initializeVScaleForTuning() {
1485 auto Max = Attr.getVScaleRangeMax();
1486 if (Max && Min == Max) {
1487 VScaleForTuning = Max;
1500 FixedScalableVFPair computeFeasibleMaxVF(
unsigned MaxTripCount,
1501 ElementCount UserVF,
1502 bool FoldTailByMasking);
1506 ElementCount clampVFByMaxTripCount(ElementCount VF,
unsigned MaxTripCount,
1507 bool FoldTailByMasking)
const;
1512 ElementCount getMaximizedVFForTarget(
unsigned MaxTripCount,
1513 unsigned SmallestType,
1514 unsigned WidestType,
1515 ElementCount MaxSafeVF,
1516 bool FoldTailByMasking);
1520 bool isScalableVectorizationAllowed();
1524 ElementCount getMaxLegalScalableVF(
unsigned MaxSafeElements);
1530 InstructionCost getMemInstScalarizationCost(Instruction *
I, ElementCount VF);
1551 ElementCount VF)
const;
1555 bool useEmulatedMaskMemRefHack(Instruction *
I, ElementCount VF);
1560 MapVector<Instruction *, uint64_t> MinBWs;
1565 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1569 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1570 PredicatedBBsAfterVectorization;
1583 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1584 ChosenTailFoldingStyle;
1587 std::optional<bool> IsScalableVectorizationAllowed;
1593 std::optional<unsigned> MaxSafeElements;
1599 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1603 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1607 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1611 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1614 SmallPtrSet<PHINode *, 4> InLoopReductions;
1619 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1627 ScalarCostsTy &ScalarCosts,
1639 void collectLoopUniforms(ElementCount VF);
1648 void collectLoopScalars(ElementCount VF);
1652 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1653 std::pair<InstWidening, InstructionCost>>;
1655 DecisionList WideningDecisions;
1657 using CallDecisionList =
1658 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
1660 CallDecisionList CallWideningDecisions;
1664 bool needsExtract(
Value *V, ElementCount VF)
const {
1668 getWideningDecision(
I, VF) == CM_Scalarize ||
1679 return !Scalars.
contains(VF) || !isScalarAfterVectorization(
I, VF);
1684 ElementCount VF)
const {
1686 SmallPtrSet<const Value *, 4> UniqueOperands;
1690 !needsExtract(
Op, VF))
1776class GeneratedRTChecks {
1782 Value *SCEVCheckCond =
nullptr;
1789 Value *MemRuntimeCheckCond =
nullptr;
1798 bool CostTooHigh =
false;
1800 Loop *OuterLoop =
nullptr;
1811 : DT(DT), LI(LI),
TTI(
TTI),
1812 SCEVExp(*PSE.
getSE(),
DL,
"scev.check",
false),
1813 MemCheckExp(*PSE.
getSE(),
DL,
"scev.check",
false),
1821 void create(Loop *L,
const LoopAccessInfo &LAI,
1822 const SCEVPredicate &UnionPred, ElementCount VF,
unsigned IC) {
1842 nullptr,
"vector.scevcheck");
1849 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1850 SCEVCleaner.cleanup();
1855 if (RtPtrChecking.Need) {
1856 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1857 MemCheckBlock =
SplitBlock(Pred, Pred->getTerminator(), DT, LI,
nullptr,
1860 auto DiffChecks = RtPtrChecking.getDiffChecks();
1862 Value *RuntimeVF =
nullptr;
1865 [VF, &RuntimeVF](IRBuilderBase &
B,
unsigned Bits) {
1867 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1873 MemCheckBlock->
getTerminator(), L, RtPtrChecking.getChecks(),
1876 assert(MemRuntimeCheckCond &&
1877 "no RT checks generated although RtPtrChecking "
1878 "claimed checks are required");
1883 if (!MemCheckBlock && !SCEVCheckBlock)
1893 if (SCEVCheckBlock) {
1896 auto *UI =
new UnreachableInst(Preheader->
getContext(), SCEVCheckBlock);
1900 if (MemCheckBlock) {
1903 auto *UI =
new UnreachableInst(Preheader->
getContext(), MemCheckBlock);
1909 if (MemCheckBlock) {
1913 if (SCEVCheckBlock) {
1919 OuterLoop =
L->getParentLoop();
1923 if (SCEVCheckBlock || MemCheckBlock)
1935 for (Instruction &
I : *SCEVCheckBlock) {
1936 if (SCEVCheckBlock->getTerminator() == &
I)
1942 if (MemCheckBlock) {
1944 for (Instruction &
I : *MemCheckBlock) {
1945 if (MemCheckBlock->getTerminator() == &
I)
1957 ScalarEvolution *SE = MemCheckExp.
getSE();
1962 const SCEV *
Cond = SE->
getSCEV(MemRuntimeCheckCond);
1967 unsigned BestTripCount = 2;
1971 PSE, OuterLoop,
false))
1972 if (EstimatedTC->isFixed())
1973 BestTripCount = EstimatedTC->getFixedValue();
1978 NewMemCheckCost = std::max(NewMemCheckCost.
getValue(),
1979 (InstructionCost::CostType)1);
1981 if (BestTripCount > 1)
1983 <<
"We expect runtime memory checks to be hoisted "
1984 <<
"out of the outer loop. Cost reduced from "
1985 << MemCheckCost <<
" to " << NewMemCheckCost <<
'\n');
1987 MemCheckCost = NewMemCheckCost;
1991 RTCheckCost += MemCheckCost;
1994 if (SCEVCheckBlock || MemCheckBlock)
1995 LLVM_DEBUG(
dbgs() <<
"Total cost of runtime checks: " << RTCheckCost
2003 ~GeneratedRTChecks() {
2004 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2005 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2006 bool SCEVChecksUsed = !SCEVCheckBlock || !
pred_empty(SCEVCheckBlock);
2007 bool MemChecksUsed = !MemCheckBlock || !
pred_empty(MemCheckBlock);
2009 SCEVCleaner.markResultUsed();
2011 if (MemChecksUsed) {
2012 MemCheckCleaner.markResultUsed();
2014 auto &SE = *MemCheckExp.
getSE();
2021 I.eraseFromParent();
2024 MemCheckCleaner.cleanup();
2025 SCEVCleaner.cleanup();
2027 if (!SCEVChecksUsed)
2028 SCEVCheckBlock->eraseFromParent();
2030 MemCheckBlock->eraseFromParent();
2035 std::pair<Value *, BasicBlock *> getSCEVChecks()
const {
2036 using namespace llvm::PatternMatch;
2038 return {
nullptr,
nullptr};
2040 return {SCEVCheckCond, SCEVCheckBlock};
2045 std::pair<Value *, BasicBlock *> getMemRuntimeChecks()
const {
2046 using namespace llvm::PatternMatch;
2047 if (MemRuntimeCheckCond &&
match(MemRuntimeCheckCond,
m_ZeroInt()))
2048 return {
nullptr,
nullptr};
2049 return {MemRuntimeCheckCond, MemCheckBlock};
2053 bool hasChecks()
const {
2054 return getSCEVChecks().first || getMemRuntimeChecks().first;
2097 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent outer loop vectorization.\n");
2103 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Interleave is not supported for "
2133 for (
Loop *InnerL : L)
2156 ?
B.CreateSExtOrTrunc(Index, StepTy)
2157 :
B.CreateCast(Instruction::SIToFP, Index, StepTy);
2158 if (CastedIndex != Index) {
2160 Index = CastedIndex;
2170 assert(
X->getType() ==
Y->getType() &&
"Types don't match!");
2175 return B.CreateAdd(
X,
Y);
2181 assert(
X->getType()->getScalarType() ==
Y->getType() &&
2182 "Types don't match!");
2189 Y =
B.CreateVectorSplat(XVTy->getElementCount(),
Y);
2190 return B.CreateMul(
X,
Y);
2193 switch (InductionKind) {
2196 "Vector indices not supported for integer inductions yet");
2198 "Index type does not match StartValue type");
2200 return B.CreateSub(StartValue, Index);
2205 return B.CreatePtrAdd(StartValue,
CreateMul(Index, Step));
2208 "Vector indices not supported for FP inductions yet");
2211 (InductionBinOp->
getOpcode() == Instruction::FAdd ||
2212 InductionBinOp->
getOpcode() == Instruction::FSub) &&
2213 "Original bin op should be defined for FP induction");
2215 Value *MulExp =
B.CreateFMul(Step, Index);
2216 return B.CreateBinOp(InductionBinOp->
getOpcode(), StartValue, MulExp,
2227 if (std::optional<unsigned> MaxVScale =
TTI.getMaxVScale())
2230 if (
F.hasFnAttribute(Attribute::VScaleRange))
2231 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2233 return std::nullopt;
2242 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2244 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2246 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2252 if (
unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2255 std::optional<unsigned> MaxVScale =
2259 MaxVF *= *MaxVScale;
2262 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2276 return TTI.enableMaskedInterleavedAccessVectorization();
2289 PreVectorPH = CheckVPIRBB;
2299 "must have incoming values for all operands");
2300 R.addOperand(R.getOperand(NumPredecessors - 2));
2326 auto CreateStep = [&]() ->
Value * {
2333 if (!
VF.isScalable())
2335 return Builder.CreateBinaryIntrinsic(
2341 Value *Step = CreateStep();
2350 CheckMinIters =
Builder.getTrue();
2352 TripCountSCEV, SE.
getSCEV(Step))) {
2355 CheckMinIters =
Builder.CreateICmp(
P,
Count, Step,
"min.iters.check");
2357 }
else if (
VF.isScalable() && !
TTI->isVScaleKnownToBeAPowerOfTwo() &&
2365 Value *MaxUIntTripCount =
2372 return CheckMinIters;
2381 VPlan *Plan =
nullptr) {
2385 auto IP = IRVPBB->
begin();
2387 R.moveBefore(*IRVPBB, IP);
2391 R.moveBefore(*IRVPBB, IRVPBB->
end());
2400 assert(VectorPH &&
"Invalid loop structure");
2402 Cost->requiresScalarEpilogue(
VF.isVector())) &&
2403 "loops not exiting via the latch without required epilogue?");
2410 Twine(Prefix) +
"scalar.ph");
2416 const SCEV2ValueTy &ExpandedSCEVs) {
2417 const SCEV *Step =
ID.getStep();
2419 return C->getValue();
2421 return U->getValue();
2422 Value *V = ExpandedSCEVs.lookup(Step);
2423 assert(V &&
"SCEV must be expanded at this point");
2433 auto *Cmp = L->getLatchCmpInst();
2435 InstsToIgnore.
insert(Cmp);
2436 for (
const auto &KV : IL) {
2445 [&](
const User *U) { return U == IV || U == Cmp; }))
2446 InstsToIgnore.
insert(IVInst);
2458struct CSEDenseMapInfo {
2469 return DenseMapInfo<Instruction *>::getTombstoneKey();
2472 static unsigned getHashValue(
const Instruction *
I) {
2473 assert(canHandle(
I) &&
"Unknown instruction!");
2478 static bool isEqual(
const Instruction *
LHS,
const Instruction *
RHS) {
2479 if (
LHS == getEmptyKey() ||
RHS == getEmptyKey() ||
2480 LHS == getTombstoneKey() ||
RHS == getTombstoneKey())
2482 return LHS->isIdenticalTo(
RHS);
2494 if (!CSEDenseMapInfo::canHandle(&In))
2500 In.replaceAllUsesWith(V);
2501 In.eraseFromParent();
2514 std::optional<unsigned> VScale) {
2518 EstimatedVF *= *VScale;
2519 assert(EstimatedVF >= 1 &&
"Estimated VF shouldn't be less than 1");
2537 for (
auto &ArgOp : CI->
args())
2548 return ScalarCallCost;
2561 assert(
ID &&
"Expected intrinsic call!");
2565 FMF = FPMO->getFastMathFlags();
2571 std::back_inserter(ParamTys),
2572 [&](
Type *Ty) { return maybeVectorizeType(Ty, VF); });
2577 return TTI.getIntrinsicInstrCost(CostAttrs,
CostKind);
2591 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2606 Builder.SetInsertPoint(NewPhi);
2608 NewPhi->
addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2613void LoopVectorizationCostModel::collectLoopScalars(
ElementCount VF) {
2618 "This function should not be visited twice for the same VF");
2641 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
2642 assert(WideningDecision != CM_Unknown &&
2643 "Widening decision should be ready at this moment");
2645 if (Ptr == Store->getValueOperand())
2646 return WideningDecision == CM_Scalarize;
2648 "Ptr is neither a value or pointer operand");
2649 return WideningDecision != CM_GatherScatter;
2654 auto IsLoopVaryingGEP = [&](
Value *
V) {
2665 if (!IsLoopVaryingGEP(Ptr))
2677 if (IsScalarUse(MemAccess, Ptr) &&
2681 PossibleNonScalarPtrs.
insert(
I);
2697 for (
auto *BB : TheLoop->
blocks())
2698 for (
auto &
I : *BB) {
2700 EvaluatePtrUse(Load,
Load->getPointerOperand());
2702 EvaluatePtrUse(Store,
Store->getPointerOperand());
2703 EvaluatePtrUse(Store,
Store->getValueOperand());
2706 for (
auto *
I : ScalarPtrs)
2707 if (!PossibleNonScalarPtrs.
count(
I)) {
2715 auto ForcedScalar = ForcedScalars.
find(VF);
2716 if (ForcedScalar != ForcedScalars.
end())
2717 for (
auto *
I : ForcedScalar->second) {
2718 LLVM_DEBUG(
dbgs() <<
"LV: Found (forced) scalar instruction: " << *
I <<
"\n");
2727 while (Idx != Worklist.
size()) {
2729 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2733 auto *J = cast<Instruction>(U);
2734 return !TheLoop->contains(J) || Worklist.count(J) ||
2735 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2736 IsScalarUse(J, Src));
2739 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Src <<
"\n");
2745 for (
const auto &Induction :
Legal->getInductionVars()) {
2746 auto *Ind = Induction.first;
2751 if (Ind ==
Legal->getPrimaryInduction() && foldTailByMasking())
2756 auto IsDirectLoadStoreFromPtrIndvar = [&](
Instruction *Indvar,
2758 return Induction.second.getKind() ==
2766 bool ScalarInd =
all_of(Ind->users(), [&](User *U) ->
bool {
2767 auto *I = cast<Instruction>(U);
2768 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2769 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2778 if (IndUpdatePhi &&
Legal->isFixedOrderRecurrence(IndUpdatePhi))
2783 bool ScalarIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
2784 auto *I = cast<Instruction>(U);
2785 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2786 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2788 if (!ScalarIndUpdate)
2793 Worklist.
insert(IndUpdate);
2794 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Ind <<
"\n");
2795 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *IndUpdate
2809 switch(
I->getOpcode()) {
2812 case Instruction::Call:
2816 case Instruction::Load:
2817 case Instruction::Store: {
2826 TTI.isLegalMaskedGather(VTy, Alignment))
2828 TTI.isLegalMaskedScatter(VTy, Alignment));
2830 case Instruction::UDiv:
2831 case Instruction::SDiv:
2832 case Instruction::SRem:
2833 case Instruction::URem: {
2854 if (
Legal->blockNeedsPredication(
I->getParent()))
2866 switch(
I->getOpcode()) {
2869 "instruction should have been considered by earlier checks");
2870 case Instruction::Call:
2874 "should have returned earlier for calls not needing a mask");
2876 case Instruction::Load:
2879 case Instruction::Store: {
2887 case Instruction::UDiv:
2888 case Instruction::SDiv:
2889 case Instruction::SRem:
2890 case Instruction::URem:
2892 return !
Legal->isInvariant(
I->getOperand(1));
2902 if (!
Legal->blockNeedsPredication(BB))
2909 "Header has smaller block freq than dominated BB?");
2910 return std::round((
double)HeaderFreq /
BBFreq);
2913std::pair<InstructionCost, InstructionCost>
2916 assert(
I->getOpcode() == Instruction::UDiv ||
2917 I->getOpcode() == Instruction::SDiv ||
2918 I->getOpcode() == Instruction::SRem ||
2919 I->getOpcode() == Instruction::URem);
2928 ScalarizationCost = 0;
2934 ScalarizationCost +=
2938 ScalarizationCost +=
2940 TTI.getArithmeticInstrCost(
I->getOpcode(),
I->getType(),
CostKind);
2958 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2963 SafeDivisorCost +=
TTI.getArithmeticInstrCost(
2965 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2966 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2968 return {ScalarizationCost, SafeDivisorCost};
2975 "Decision should not be set yet.");
2977 assert(Group &&
"Must have a group.");
2978 unsigned InterleaveFactor = Group->getFactor();
2982 auto &
DL =
I->getDataLayout();
2994 bool ScalarNI =
DL.isNonIntegralPointerType(ScalarTy);
2995 for (
unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
3000 bool MemberNI =
DL.isNonIntegralPointerType(MemberTy);
3002 if (MemberNI != ScalarNI)
3005 if (MemberNI && ScalarNI &&
3006 ScalarTy->getPointerAddressSpace() !=
3007 MemberTy->getPointerAddressSpace())
3016 bool PredicatedAccessRequiresMasking =
3018 Legal->isMaskRequired(
I);
3019 bool LoadAccessWithGapsRequiresEpilogMasking =
3022 bool StoreAccessWithGapsRequiresMasking =
3024 if (!PredicatedAccessRequiresMasking &&
3025 !LoadAccessWithGapsRequiresEpilogMasking &&
3026 !StoreAccessWithGapsRequiresMasking)
3033 "Masked interleave-groups for predicated accesses are not enabled.");
3035 if (Group->isReverse())
3039 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
3040 StoreAccessWithGapsRequiresMasking;
3048 :
TTI.isLegalMaskedStore(Ty, Alignment, AS);
3060 if (!
Legal->isConsecutivePtr(ScalarTy, Ptr))
3070 auto &
DL =
I->getDataLayout();
3077void LoopVectorizationCostModel::collectLoopUniforms(
ElementCount VF) {
3084 "This function should not be visited twice for the same VF");
3088 Uniforms[VF].
clear();
3096 auto IsOutOfScope = [&](
Value *V) ->
bool {
3108 auto AddToWorklistIfAllowed = [&](
Instruction *
I) ->
void {
3109 if (IsOutOfScope(
I)) {
3114 if (isPredicatedInst(
I)) {
3116 dbgs() <<
"LV: Found not uniform due to requiring predication: " << *
I
3120 LLVM_DEBUG(
dbgs() <<
"LV: Found uniform instruction: " << *
I <<
"\n");
3130 for (BasicBlock *
E : Exiting) {
3134 if (Cmp && TheLoop->
contains(Cmp) &&
Cmp->hasOneUse())
3135 AddToWorklistIfAllowed(Cmp);
3144 if (PrevVF.isVector()) {
3145 auto Iter = Uniforms.
find(PrevVF);
3146 if (Iter != Uniforms.
end() && !Iter->second.contains(
I))
3149 if (!
Legal->isUniformMemOp(*
I, VF))
3159 auto IsUniformDecision = [&](
Instruction *
I, ElementCount VF) {
3160 InstWidening WideningDecision = getWideningDecision(
I, VF);
3161 assert(WideningDecision != CM_Unknown &&
3162 "Widening decision should be ready at this moment");
3164 if (IsUniformMemOpUse(
I))
3167 return (WideningDecision == CM_Widen ||
3168 WideningDecision == CM_Widen_Reverse ||
3169 WideningDecision == CM_Interleave);
3179 (IsUniformDecision(
I, VF) ||
Legal->isInvariant(Ptr));
3187 SetVector<Value *> HasUniformUse;
3191 for (
auto *BB : TheLoop->
blocks())
3192 for (
auto &
I : *BB) {
3194 switch (
II->getIntrinsicID()) {
3195 case Intrinsic::sideeffect:
3196 case Intrinsic::experimental_noalias_scope_decl:
3197 case Intrinsic::assume:
3198 case Intrinsic::lifetime_start:
3199 case Intrinsic::lifetime_end:
3201 AddToWorklistIfAllowed(&
I);
3209 if (IsOutOfScope(EVI->getAggregateOperand())) {
3210 AddToWorklistIfAllowed(EVI);
3216 "Expected aggregate value to be call return value");
3229 if (IsUniformMemOpUse(&
I))
3230 AddToWorklistIfAllowed(&
I);
3232 if (IsVectorizedMemAccessUse(&
I, Ptr))
3233 HasUniformUse.
insert(Ptr);
3239 for (
auto *V : HasUniformUse) {
3240 if (IsOutOfScope(V))
3243 bool UsersAreMemAccesses =
all_of(
I->users(), [&](User *U) ->
bool {
3244 auto *UI = cast<Instruction>(U);
3245 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3247 if (UsersAreMemAccesses)
3248 AddToWorklistIfAllowed(
I);
3255 while (Idx != Worklist.
size()) {
3258 for (
auto *OV :
I->operand_values()) {
3260 if (IsOutOfScope(OV))
3265 if (
OP &&
Legal->isFixedOrderRecurrence(
OP))
3271 auto *J = cast<Instruction>(U);
3272 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3274 AddToWorklistIfAllowed(OI);
3285 for (
const auto &Induction :
Legal->getInductionVars()) {
3286 auto *Ind = Induction.first;
3291 bool UniformInd =
all_of(Ind->users(), [&](User *U) ->
bool {
3292 auto *I = cast<Instruction>(U);
3293 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3294 IsVectorizedMemAccessUse(I, Ind);
3301 bool UniformIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
3302 auto *I = cast<Instruction>(U);
3303 return I == Ind || Worklist.count(I) ||
3304 IsVectorizedMemAccessUse(I, IndUpdate);
3306 if (!UniformIndUpdate)
3310 AddToWorklistIfAllowed(Ind);
3311 AddToWorklistIfAllowed(IndUpdate);
3320 if (
Legal->getRuntimePointerChecking()->Need) {
3322 "runtime pointer checks needed. Enable vectorization of this "
3323 "loop with '#pragma clang loop vectorize(enable)' when "
3324 "compiling with -Os/-Oz",
3325 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3329 if (!
PSE.getPredicate().isAlwaysTrue()) {
3331 "runtime SCEV checks needed. Enable vectorization of this "
3332 "loop with '#pragma clang loop vectorize(enable)' when "
3333 "compiling with -Os/-Oz",
3334 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3339 if (!
Legal->getLAI()->getSymbolicStrides().empty()) {
3341 "runtime stride == 1 checks needed. Enable vectorization of "
3342 "this loop without such check by compiling with -Os/-Oz",
3343 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3350bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3351 if (IsScalableVectorizationAllowed)
3352 return *IsScalableVectorizationAllowed;
3354 IsScalableVectorizationAllowed =
false;
3358 if (Hints->isScalableVectorizationDisabled()) {
3360 "ScalableVectorizationDisabled", ORE, TheLoop);
3364 LLVM_DEBUG(
dbgs() <<
"LV: Scalable vectorization is available\n");
3367 std::numeric_limits<ElementCount::ScalarTy>::max());
3376 if (!canVectorizeReductions(MaxScalableVF)) {
3378 "Scalable vectorization not supported for the reduction "
3379 "operations found in this loop.",
3380 "ScalableVFUnfeasible", ORE, TheLoop);
3386 if (
any_of(ElementTypesInLoop, [&](
Type *Ty) {
3391 "for all element types found in this loop.",
3392 "ScalableVFUnfeasible", ORE, TheLoop);
3398 "for safe distance analysis.",
3399 "ScalableVFUnfeasible", ORE, TheLoop);
3403 IsScalableVectorizationAllowed =
true;
3408LoopVectorizationCostModel::getMaxLegalScalableVF(
unsigned MaxSafeElements) {
3409 if (!isScalableVectorizationAllowed())
3413 std::numeric_limits<ElementCount::ScalarTy>::max());
3414 if (
Legal->isSafeForAnyVectorWidth())
3415 return MaxScalableVF;
3423 "Max legal vector width too small, scalable vectorization "
3425 "ScalableVFUnfeasible", ORE, TheLoop);
3427 return MaxScalableVF;
3430FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3431 unsigned MaxTripCount, ElementCount UserVF,
bool FoldTailByMasking) {
3433 unsigned SmallestType, WidestType;
3434 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3440 unsigned MaxSafeElementsPowerOf2 =
3442 if (!
Legal->isSafeForAnyStoreLoadForwardDistances()) {
3443 unsigned SLDist =
Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3444 MaxSafeElementsPowerOf2 =
3445 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3448 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3450 if (!
Legal->isSafeForAnyVectorWidth())
3451 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3453 LLVM_DEBUG(
dbgs() <<
"LV: The max safe fixed VF is: " << MaxSafeFixedVF
3455 LLVM_DEBUG(
dbgs() <<
"LV: The max safe scalable VF is: " << MaxSafeScalableVF
3460 auto MaxSafeUserVF =
3461 UserVF.
isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3463 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
3466 return FixedScalableVFPair(
3472 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
3478 <<
" is unsafe, clamping to max safe VF="
3479 << MaxSafeFixedVF <<
".\n");
3481 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3484 <<
"User-specified vectorization factor "
3485 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3486 <<
" is unsafe, clamping to maximum safe vectorization factor "
3487 <<
ore::NV(
"VectorizationFactor", MaxSafeFixedVF);
3489 return MaxSafeFixedVF;
3494 <<
" is ignored because scalable vectors are not "
3497 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3500 <<
"User-specified vectorization factor "
3501 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3502 <<
" is ignored because the target does not support scalable "
3503 "vectors. The compiler will pick a more suitable value.";
3507 <<
" is unsafe. Ignoring scalable UserVF.\n");
3509 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3512 <<
"User-specified vectorization factor "
3513 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3514 <<
" is unsafe. Ignoring the hint to let the compiler pick a "
3515 "more suitable value.";
3520 LLVM_DEBUG(
dbgs() <<
"LV: The Smallest and Widest types: " << SmallestType
3521 <<
" / " << WidestType <<
" bits.\n");
3526 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3527 MaxSafeFixedVF, FoldTailByMasking))
3531 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3532 MaxSafeScalableVF, FoldTailByMasking))
3533 if (MaxVF.isScalable()) {
3534 Result.ScalableVF = MaxVF;
3535 LLVM_DEBUG(
dbgs() <<
"LV: Found feasible scalable VF = " << MaxVF
3544 if (
Legal->getRuntimePointerChecking()->Need &&
TTI.hasBranchDivergence()) {
3548 "Not inserting runtime ptr check for divergent target",
3549 "runtime pointer checks needed. Not enabled for divergent target",
3550 "CantVersionLoopWithDivergentTarget",
ORE,
TheLoop);
3556 unsigned MaxTC =
PSE.getSmallConstantMaxTripCount();
3559 LLVM_DEBUG(
dbgs() <<
"LV: Found maximum trip count: " << MaxTC <<
'\n');
3562 "loop trip count is one, irrelevant for vectorization",
3573 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3577 "Trip count computation wrapped",
3578 "backedge-taken count is -1, loop trip count wrapped to 0",
3583 switch (ScalarEpilogueStatus) {
3585 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
3590 dbgs() <<
"LV: vector predicate hint/switch found.\n"
3591 <<
"LV: Not allowing scalar epilogue, creating predicated "
3592 <<
"vector loop.\n");
3599 dbgs() <<
"LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3601 LLVM_DEBUG(
dbgs() <<
"LV: Not allowing scalar epilogue due to low trip "
3617 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3618 "No decisions should have been taken at this point");
3628 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3632 if (MaxVScale &&
TTI.isVScaleKnownToBeAPowerOfTwo()) {
3633 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3634 *MaxPowerOf2RuntimeVF,
3637 MaxPowerOf2RuntimeVF = std::nullopt;
3640 auto NoScalarEpilogueNeeded = [
this, &UserIC](
unsigned MaxVF) {
3644 !
Legal->hasUncountableEarlyExit())
3646 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3651 const SCEV *BackedgeTakenCount =
PSE.getSymbolicMaxBackedgeTakenCount();
3653 BackedgeTakenCount ==
PSE.getBackedgeTakenCount()) &&
3654 "Invalid loop count");
3656 BackedgeTakenCount, SE->
getOne(BackedgeTakenCount->
getType()));
3663 if (MaxPowerOf2RuntimeVF > 0u) {
3665 "MaxFixedVF must be a power of 2");
3666 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3668 LLVM_DEBUG(
dbgs() <<
"LV: No tail will remain for any chosen VF.\n");
3674 if (ExpectedTC && ExpectedTC->isFixed() &&
3675 ExpectedTC->getFixedValue() <=
3676 TTI.getMinTripCountTailFoldingThreshold()) {
3677 if (MaxPowerOf2RuntimeVF > 0u) {
3683 LLVM_DEBUG(
dbgs() <<
"LV: Picking a fixed-width so that no tail will "
3684 "remain for any chosen VF.\n");
3691 "The trip count is below the minial threshold value.",
3692 "loop trip count is too low, avoiding vectorization",
"LowTripCount",
3707 <<
"LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3708 "try to generate VP Intrinsics with scalable vector "
3713 assert(ContainsScalableVF &&
"Expected scalable vector factor.");
3723 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
3724 "scalar epilogue instead.\n");
3730 LLVM_DEBUG(
dbgs() <<
"LV: Can't fold tail by masking: don't vectorize\n");
3736 "unable to calculate the loop count due to complex control flow",
3742 "Cannot optimize for size and vectorize at the same time.",
3743 "cannot optimize for size and vectorize at the same time. "
3744 "Enable vectorization of this loop with '#pragma clang loop "
3745 "vectorize(enable)' when compiling with -Os/-Oz",
3757 if (
TTI.shouldConsiderVectorizationRegPressure())
3773 (
TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3775 Legal->hasVectorCallVariants())));
3778ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3779 ElementCount VF,
unsigned MaxTripCount,
bool FoldTailByMasking)
const {
3781 if (VF.
isScalable() && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
3782 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
3783 auto Min = Attr.getVScaleRangeMin();
3790 if (MaxTripCount > 0 && requiresScalarEpilogue(
true))
3793 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3801 LLVM_DEBUG(
dbgs() <<
"LV: Clamping the MaxVF to maximum power of two not "
3802 "exceeding the constant trip count: "
3803 << ClampedUpperTripCount <<
"\n");
3805 FoldTailByMasking ? VF.
isScalable() :
false);
3810ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3811 unsigned MaxTripCount,
unsigned SmallestType,
unsigned WidestType,
3812 ElementCount MaxSafeVF,
bool FoldTailByMasking) {
3813 bool ComputeScalableMaxVF = MaxSafeVF.
isScalable();
3819 auto MinVF = [](
const ElementCount &
LHS,
const ElementCount &
RHS) {
3821 "Scalable flags must match");
3829 ComputeScalableMaxVF);
3830 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3832 << (MaxVectorElementCount * WidestType) <<
" bits.\n");
3834 if (!MaxVectorElementCount) {
3836 << (ComputeScalableMaxVF ?
"scalable" :
"fixed")
3837 <<
" vector registers.\n");
3841 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3842 MaxTripCount, FoldTailByMasking);
3845 if (MaxVF != MaxVectorElementCount)
3853 MaxPermissibleVFWithoutMaxBW.ScalableVF = MaxVF;
3855 MaxPermissibleVFWithoutMaxBW.FixedVF = MaxVF;
3857 if (useMaxBandwidth(RegKind)) {
3860 ComputeScalableMaxVF);
3861 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3863 if (ElementCount MinVF =
3865 if (ElementCount::isKnownLT(MaxVF, MinVF)) {
3867 <<
") with target's minimum: " << MinVF <<
'\n');
3872 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3874 if (MaxVectorElementCount != MaxVF) {
3878 invalidateCostModelingDecisions();
3886 const unsigned MaxTripCount,
3888 bool IsEpilogue)
const {
3894 unsigned EstimatedWidthB =
B.Width.getKnownMinValue();
3895 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3896 if (
A.Width.isScalable())
3897 EstimatedWidthA *= *VScale;
3898 if (
B.Width.isScalable())
3899 EstimatedWidthB *= *VScale;
3906 return CostA < CostB ||
3907 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3913 A.Width.isScalable() && !
B.Width.isScalable();
3924 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3926 auto GetCostForTC = [MaxTripCount, HasTail](
unsigned VF,
3938 return VectorCost * (MaxTripCount / VF) +
3939 ScalarCost * (MaxTripCount % VF);
3940 return VectorCost *
divideCeil(MaxTripCount, VF);
3943 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA,
A.ScalarCost);
3944 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB,
B.ScalarCost);
3945 return CmpFn(RTCostA, RTCostB);
3951 bool IsEpilogue)
const {
3953 return LoopVectorizationPlanner::isMoreProfitable(
A,
B, MaxTripCount, HasTail,
3959 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3961 for (
const auto &Plan : VPlans) {
3970 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind,
3971 *CM.PSE.getSE(), OrigLoop);
3972 precomputeCosts(*Plan, VF, CostCtx);
3975 for (
auto &R : *VPBB) {
3976 if (!R.cost(VF, CostCtx).isValid())
3982 if (InvalidCosts.
empty())
3990 for (
auto &Pair : InvalidCosts)
3995 sort(InvalidCosts, [&Numbering](RecipeVFPair &
A, RecipeVFPair &
B) {
3996 unsigned NA = Numbering[
A.first];
3997 unsigned NB = Numbering[
B.first];
4012 Subset =
Tail.take_front(1);
4019 [](
const auto *R) {
return Instruction::PHI; })
4020 .Case<VPWidenSelectRecipe>(
4021 [](
const auto *R) {
return Instruction::Select; })
4022 .Case<VPWidenStoreRecipe>(
4023 [](
const auto *R) {
return Instruction::Store; })
4024 .Case<VPWidenLoadRecipe>(
4025 [](
const auto *R) {
return Instruction::Load; })
4026 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
4027 [](
const auto *R) {
return Instruction::Call; })
4030 [](
const auto *R) {
return R->getOpcode(); })
4032 return R->getStoredValues().empty() ? Instruction::Load
4033 : Instruction::Store;
4035 .Case<VPReductionRecipe>([](
const auto *R) {
4044 if (Subset ==
Tail ||
Tail[Subset.size()].first != R) {
4045 std::string OutString;
4047 assert(!Subset.empty() &&
"Unexpected empty range");
4048 OS <<
"Recipe with invalid costs prevented vectorization at VF=(";
4049 for (
const auto &Pair : Subset)
4050 OS << (Pair.second == Subset.front().second ?
"" :
", ") << Pair.second;
4052 if (Opcode == Instruction::Call) {
4055 Name =
Int->getIntrinsicName();
4059 WidenCall ? WidenCall->getCalledScalarFunction()
4061 ->getLiveInIRValue());
4064 OS <<
" call to " << Name;
4069 Tail =
Tail.drop_front(Subset.size());
4073 Subset =
Tail.take_front(Subset.size() + 1);
4074 }
while (!
Tail.empty());
4096 switch (R.getVPDefID()) {
4097 case VPDef::VPDerivedIVSC:
4098 case VPDef::VPScalarIVStepsSC:
4099 case VPDef::VPReplicateSC:
4100 case VPDef::VPInstructionSC:
4101 case VPDef::VPCanonicalIVPHISC:
4102 case VPDef::VPVectorPointerSC:
4103 case VPDef::VPVectorEndPointerSC:
4104 case VPDef::VPExpandSCEVSC:
4105 case VPDef::VPEVLBasedIVPHISC:
4106 case VPDef::VPPredInstPHISC:
4107 case VPDef::VPBranchOnMaskSC:
4109 case VPDef::VPReductionSC:
4110 case VPDef::VPActiveLaneMaskPHISC:
4111 case VPDef::VPWidenCallSC:
4112 case VPDef::VPWidenCanonicalIVSC:
4113 case VPDef::VPWidenCastSC:
4114 case VPDef::VPWidenGEPSC:
4115 case VPDef::VPWidenIntrinsicSC:
4116 case VPDef::VPWidenSC:
4117 case VPDef::VPWidenSelectSC:
4118 case VPDef::VPBlendSC:
4119 case VPDef::VPFirstOrderRecurrencePHISC:
4120 case VPDef::VPHistogramSC:
4121 case VPDef::VPWidenPHISC:
4122 case VPDef::VPWidenIntOrFpInductionSC:
4123 case VPDef::VPWidenPointerInductionSC:
4124 case VPDef::VPReductionPHISC:
4125 case VPDef::VPInterleaveEVLSC:
4126 case VPDef::VPInterleaveSC:
4127 case VPDef::VPWidenLoadEVLSC:
4128 case VPDef::VPWidenLoadSC:
4129 case VPDef::VPWidenStoreEVLSC:
4130 case VPDef::VPWidenStoreSC:
4136 auto WillGenerateTargetVectors = [&
TTI, VF](
Type *VectorTy) {
4137 unsigned NumLegalParts =
TTI.getNumberOfParts(VectorTy);
4153 if (R.getNumDefinedValues() == 0 &&
4162 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4164 if (!Visited.
insert({ScalarTy}).second)
4178 [](
auto *VPRB) { return VPRB->isReplicator(); });
4184 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ExpectedCost <<
".\n");
4185 assert(ExpectedCost.
isValid() &&
"Unexpected invalid cost for scalar loop");
4188 [](std::unique_ptr<VPlan> &
P) {
return P->hasScalarVFOnly(); }) &&
4189 "Expected Scalar VF to be a candidate");
4196 if (ForceVectorization &&
4197 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4201 ChosenFactor.
Cost = InstructionCost::getMax();
4204 for (
auto &
P : VPlans) {
4206 P->vectorFactors().end());
4209 if (
any_of(VFs, [
this](ElementCount VF) {
4210 return CM.shouldConsiderRegPressureForVF(VF);
4214 for (
unsigned I = 0;
I < VFs.size();
I++) {
4215 ElementCount VF = VFs[
I];
4223 if (CM.shouldConsiderRegPressureForVF(VF) &&
4231 VPCostContext CostCtx(CM.TTI, *CM.TLI, *
P, CM, CM.CostKind,
4232 *CM.PSE.getSE(), OrigLoop);
4233 VPRegionBlock *VectorRegion =
P->getVectorLoopRegion();
4234 assert(VectorRegion &&
"Expected to have a vector region!");
4237 for (VPRecipeBase &R : *VPBB) {
4241 switch (VPI->getOpcode()) {
4244 case Instruction::Select: {
4247 switch (WR->getOpcode()) {
4248 case Instruction::UDiv:
4249 case Instruction::SDiv:
4250 case Instruction::URem:
4251 case Instruction::SRem:
4257 C += VPI->cost(VF, CostCtx);
4261 unsigned Multiplier =
4264 C += VPI->cost(VF * Multiplier, CostCtx);
4268 C += VPI->cost(VF, CostCtx);
4280 <<
" costs: " << (Candidate.Cost / Width));
4283 << CM.getVScaleForTuning().value_or(1) <<
")");
4289 <<
"LV: Not considering vector loop of width " << VF
4290 <<
" because it will not generate any vector instructions.\n");
4297 <<
"LV: Not considering vector loop of width " << VF
4298 <<
" because it would cause replicated blocks to be generated,"
4299 <<
" which isn't allowed when optimizing for size.\n");
4303 if (isMoreProfitable(Candidate, ChosenFactor,
P->hasScalarTail()))
4304 ChosenFactor = Candidate;
4310 "There are conditional stores.",
4311 "store that is conditionally executed prevents vectorization",
4312 "ConditionalStore", ORE, OrigLoop);
4313 ChosenFactor = ScalarCost;
4317 !isMoreProfitable(ChosenFactor, ScalarCost,
4318 !CM.foldTailByMasking()))
dbgs()
4319 <<
"LV: Vectorization seems to be not beneficial, "
4320 <<
"but was forced by a user.\n");
4321 return ChosenFactor;
4325bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4326 ElementCount VF)
const {
4329 if (
any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4330 if (!Legal->isReductionVariable(&Phi))
4331 return Legal->isFixedOrderRecurrence(&Phi);
4332 return RecurrenceDescriptor::isFPMinMaxNumRecurrenceKind(
4333 Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind());
4339 for (
const auto &Entry :
Legal->getInductionVars()) {
4342 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4343 for (User *U :
PostInc->users())
4347 for (User *U :
Entry.first->users())
4356 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4370 if (!
TTI.preferEpilogueVectorization())
4375 if (
TTI.getMaxInterleaveFactor(VF) <= 1)
4380 :
TTI.getEpilogueVectorizationMinVF();
4388 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is disabled.\n");
4392 if (!CM.isScalarEpilogueAllowed()) {
4393 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because no "
4394 "epilogue is allowed.\n");
4400 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4401 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because the loop "
4402 "is not a supported candidate.\n");
4407 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization factor is forced.\n");
4410 return {ForcedEC, 0, 0};
4412 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization forced factor is not "
4417 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4419 dbgs() <<
"LEV: Epilogue vectorization skipped due to opt for size.\n");
4423 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4424 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is not profitable for "
4436 Type *TCType = Legal->getWidestInductionType();
4437 const SCEV *RemainingIterations =
nullptr;
4438 unsigned MaxTripCount = 0;
4442 const SCEV *KnownMinTC;
4444 bool ScalableRemIter =
false;
4447 ScalableRemIter = ScalableTC;
4448 RemainingIterations =
4450 }
else if (ScalableTC) {
4453 SE.
getConstant(TCType, CM.getVScaleForTuning().value_or(1)));
4457 RemainingIterations =
4461 if (RemainingIterations->
isZero())
4471 << MaxTripCount <<
"\n");
4474 auto SkipVF = [&](
const SCEV *VF,
const SCEV *RemIter) ->
bool {
4477 for (
auto &NextVF : ProfitableVFs) {
4484 if ((!NextVF.Width.isScalable() && MainLoopVF.
isScalable() &&
4486 (NextVF.Width.isScalable() &&
4488 (!NextVF.Width.isScalable() && !MainLoopVF.
isScalable() &&
4497 if (!ScalableRemIter) {
4501 if (NextVF.Width.isScalable())
4508 if (Result.Width.isScalar() ||
4509 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4516 << Result.Width <<
"\n");
4520std::pair<unsigned, unsigned>
4522 unsigned MinWidth = -1U;
4523 unsigned MaxWidth = 8;
4529 for (
const auto &PhiDescriptorPair :
Legal->getReductionVars()) {
4533 MinWidth = std::min(
4537 MaxWidth = std::max(MaxWidth,
4542 MinWidth = std::min<unsigned>(
4543 MinWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4544 MaxWidth = std::max<unsigned>(
4545 MaxWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4548 return {MinWidth, MaxWidth};
4556 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
4570 if (!
Legal->isReductionVariable(PN))
4573 Legal->getRecurrenceDescriptor(PN);
4583 T = ST->getValueOperand()->getType();
4586 "Expected the load/store/recurrence type to be sized");
4614 if (!CM.isScalarEpilogueAllowed() &&
4615 !(CM.preferPredicatedLoop() && CM.useWideActiveLaneMask()))
4620 LLVM_DEBUG(
dbgs() <<
"LV: Preference for VP intrinsics indicated. "
4621 "Unroll factor forced to be 1.\n");
4626 if (!Legal->isSafeForAnyVectorWidth())
4635 const bool HasReductions =
4641 if (LoopCost == 0) {
4643 LoopCost = CM.expectedCost(VF);
4645 LoopCost = cost(Plan, VF);
4646 assert(LoopCost.
isValid() &&
"Expected to have chosen a VF with valid cost");
4657 for (
auto &Pair : R.MaxLocalUsers) {
4658 Pair.second = std::max(Pair.second, 1U);
4672 unsigned IC = UINT_MAX;
4674 for (
const auto &Pair : R.MaxLocalUsers) {
4675 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4678 << TTI.getRegisterClassName(Pair.first)
4679 <<
" register class\n");
4687 unsigned MaxLocalUsers = Pair.second;
4688 unsigned LoopInvariantRegs = 0;
4689 if (R.LoopInvariantRegs.contains(Pair.first))
4690 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4692 unsigned TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4696 TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4697 std::max(1U, (MaxLocalUsers - 1)));
4700 IC = std::min(IC, TmpIC);
4704 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4720 if (BestKnownTC && (BestKnownTC->isFixed() || VF.
isScalable())) {
4722 unsigned AvailableTC =
4728 if (CM.requiresScalarEpilogue(VF.
isVector()))
4731 unsigned InterleaveCountLB =
bit_floor(std::max(
4732 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4746 unsigned InterleaveCountUB =
bit_floor(std::max(
4747 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4748 MaxInterleaveCount = InterleaveCountLB;
4750 if (InterleaveCountUB != InterleaveCountLB) {
4751 unsigned TailTripCountUB =
4752 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4753 unsigned TailTripCountLB =
4754 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4757 if (TailTripCountUB == TailTripCountLB)
4758 MaxInterleaveCount = InterleaveCountUB;
4766 MaxInterleaveCount = InterleaveCountLB;
4770 assert(MaxInterleaveCount > 0 &&
4771 "Maximum interleave count must be greater than 0");
4775 if (IC > MaxInterleaveCount)
4776 IC = MaxInterleaveCount;
4779 IC = std::max(1u, IC);
4781 assert(IC > 0 &&
"Interleave count must be greater than 0.");
4785 if (VF.
isVector() && HasReductions) {
4786 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving because of reductions.\n");
4794 bool ScalarInterleavingRequiresPredication =
4796 return Legal->blockNeedsPredication(BB);
4798 bool ScalarInterleavingRequiresRuntimePointerCheck =
4799 (VF.
isScalar() && Legal->getRuntimePointerChecking()->Need);
4804 <<
"LV: IC is " << IC <<
'\n'
4805 <<
"LV: VF is " << VF <<
'\n');
4806 const bool AggressivelyInterleaveReductions =
4807 TTI.enableAggressiveInterleaving(HasReductions);
4808 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4809 !ScalarInterleavingRequiresPredication && LoopCost <
SmallLoopCost) {
4818 unsigned NumStores = 0;
4819 unsigned NumLoads = 0;
4833 if (
unsigned StoreOps = InterleaveR->getNumStoreOperands())
4834 NumStores += StoreOps;
4836 NumLoads += InterleaveR->getNumDefinedValues();
4851 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4852 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4858 bool HasSelectCmpReductions =
4862 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4863 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4864 RedR->getRecurrenceKind()) ||
4865 RecurrenceDescriptor::isFindIVRecurrenceKind(
4866 RedR->getRecurrenceKind()));
4868 if (HasSelectCmpReductions) {
4869 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving select-cmp reductions.\n");
4878 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4879 bool HasOrderedReductions =
4882 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4884 return RedR && RedR->isOrdered();
4886 if (HasOrderedReductions) {
4888 dbgs() <<
"LV: Not interleaving scalar ordered reductions.\n");
4893 SmallIC = std::min(SmallIC,
F);
4894 StoresIC = std::min(StoresIC,
F);
4895 LoadsIC = std::min(LoadsIC,
F);
4899 std::max(StoresIC, LoadsIC) > SmallIC) {
4901 dbgs() <<
"LV: Interleaving to saturate store or load ports.\n");
4902 return std::max(StoresIC, LoadsIC);
4907 if (VF.
isScalar() && AggressivelyInterleaveReductions) {
4911 return std::max(IC / 2, SmallIC);
4914 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving to reduce branch cost.\n");
4920 if (AggressivelyInterleaveReductions) {
4929bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(
Instruction *
I,
4939 assert((isPredicatedInst(
I)) &&
4940 "Expecting a scalar emulated instruction");
4953 if (InstsToScalarize.contains(VF) ||
4954 PredicatedBBsAfterVectorization.contains(VF))
4960 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
4970 ScalarCostsTy ScalarCosts;
4977 !useEmulatedMaskMemRefHack(&
I, VF) &&
4978 computePredInstDiscount(&
I, ScalarCosts, VF) >= 0) {
4979 for (
const auto &[
I, IC] : ScalarCosts)
4980 ScalarCostsVF.
insert({
I, IC});
4983 for (
const auto &[
I,
Cost] : ScalarCosts) {
4985 if (!CI || !CallWideningDecisions.contains({CI, VF}))
4988 CallWideningDecisions[{CI, VF}].Cost =
Cost;
4992 PredicatedBBsAfterVectorization[VF].insert(BB);
4994 if (Pred->getSingleSuccessor() == BB)
4995 PredicatedBBsAfterVectorization[VF].insert(Pred);
5003 assert(!isUniformAfterVectorization(PredInst, VF) &&
5004 "Instruction marked uniform-after-vectorization will be predicated");
5022 if (!
I->hasOneUse() || PredInst->
getParent() !=
I->getParent() ||
5023 isScalarAfterVectorization(
I, VF))
5028 if (isScalarWithPredication(
I, VF))
5041 for (
Use &U :
I->operands())
5043 if (isUniformAfterVectorization(J, VF))
5054 while (!Worklist.
empty()) {
5058 if (ScalarCosts.contains(
I))
5078 if (isScalarWithPredication(
I, VF) && !
I->getType()->isVoidTy()) {
5081 ScalarCost +=
TTI.getScalarizationOverhead(
5094 for (Use &U :
I->operands())
5097 "Instruction has non-scalar type");
5098 if (CanBeScalarized(J))
5100 else if (needsExtract(J, VF)) {
5112 ScalarCost /= getPredBlockCostDivisor(
CostKind,
I->getParent());
5116 Discount += VectorCost - ScalarCost;
5117 ScalarCosts[
I] = ScalarCost;
5133 ValuesToIgnoreForVF);
5140 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5163 LLVM_DEBUG(
dbgs() <<
"LV: Found an estimated cost of " <<
C <<
" for VF "
5164 << VF <<
" For instruction: " <<
I <<
'\n');
5193 const Loop *TheLoop) {
5201 auto *SE = PSE.
getSE();
5202 unsigned NumOperands = Gep->getNumOperands();
5203 for (
unsigned Idx = 1; Idx < NumOperands; ++Idx) {
5204 Value *Opd = Gep->getOperand(Idx);
5206 !
Legal->isInductionVariable(Opd))
5215LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *
I,
5218 "Scalarization cost of instruction implies vectorization.");
5220 return InstructionCost::getInvalid();
5223 auto *SE = PSE.
getSE();
5254 if (isPredicatedInst(
I)) {
5259 VectorType::get(IntegerType::getInt1Ty(ValTy->
getContext()), VF);
5265 if (useEmulatedMaskMemRefHack(
I, VF))
5275LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *
I,
5281 int ConsecutiveStride =
Legal->isConsecutivePtr(ValTy, Ptr);
5283 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5284 "Stride should be 1 or -1 for consecutive memory access");
5287 if (
Legal->isMaskRequired(
I)) {
5288 unsigned IID =
I->getOpcode() == Instruction::Load
5289 ? Intrinsic::masked_load
5290 : Intrinsic::masked_store;
5292 MemIntrinsicCostAttributes(IID, VectorTy, Alignment, AS),
CostKind);
5299 bool Reverse = ConsecutiveStride < 0;
5307LoopVectorizationCostModel::getUniformMemOpCost(Instruction *
I,
5325 bool IsLoopInvariantStoreValue =
Legal->isInvariant(
SI->getValueOperand());
5333 if (!IsLoopInvariantStoreValue)
5340LoopVectorizationCostModel::getGatherScatterCost(Instruction *
I,
5348 if (!
Legal->isUniform(Ptr, VF))
5351 unsigned IID =
I->getOpcode() == Instruction::Load
5352 ? Intrinsic::masked_gather
5353 : Intrinsic::masked_scatter;
5356 MemIntrinsicCostAttributes(IID, VectorTy, Ptr,
5357 Legal->isMaskRequired(
I), Alignment,
I),
5362LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *
I,
5364 const auto *Group = getInterleavedAccessGroup(
I);
5365 assert(Group &&
"Fail to get an interleaved access group.");
5372 unsigned InterleaveFactor = Group->getFactor();
5373 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5376 SmallVector<unsigned, 4> Indices;
5377 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
5378 if (Group->getMember(IF))
5382 bool UseMaskForGaps =
5383 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5386 InsertPos->
getOpcode(), WideVecTy, Group->getFactor(), Indices,
5390 if (Group->isReverse()) {
5393 "Reverse masked interleaved access not supported.");
5394 Cost += Group->getNumMembers() *
5401std::optional<InstructionCost>
5408 return std::nullopt;
5426 return std::nullopt;
5437 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5439 return std::nullopt;
5445 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5454 BaseCost =
TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5457 BaseCost =
TTI.getArithmeticReductionCost(
5465 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy,
CostKind);
5482 if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5488 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1) &&
5500 TTI.getCastInstrCost(Op0->
getOpcode(), MulType, ExtType,
5503 TTI.getArithmeticInstrCost(Instruction::Mul, MulType,
CostKind);
5505 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, MulType,
5513 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5514 return I == RetI ? RedCost : 0;
5516 !
TheLoop->isLoopInvariant(RedOp)) {
5525 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, ExtType,
5527 if (RedCost.
isValid() && RedCost < BaseCost + ExtCost)
5528 return I == RetI ? RedCost : 0;
5529 }
else if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5533 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1)) {
5552 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5558 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5559 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5560 ExtraExtCost =
TTI.getCastInstrCost(
5567 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5568 return I == RetI ? RedCost : 0;
5572 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5578 if (RedCost.
isValid() && RedCost < MulCost + BaseCost)
5579 return I == RetI ? RedCost : 0;
5583 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5587LoopVectorizationCostModel::getMemoryInstructionCost(
Instruction *
I,
5598 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5599 TTI.getMemoryOpCost(
I->getOpcode(), ValTy, Alignment, AS,
CostKind,
5602 return getWideningCost(
I, VF);
5606LoopVectorizationCostModel::getScalarizationOverhead(Instruction *
I,
5607 ElementCount VF)
const {
5612 return InstructionCost::getInvalid();
5640 Instruction::op_range
Ops = CI ? CI->
args() :
I->operands();
5645 for (
auto *V : filterExtractingOperands(
Ops, VF))
5668 if (
Legal->isUniformMemOp(
I, VF)) {
5669 auto IsLegalToScalarize = [&]() {
5689 return TheLoop->isLoopInvariant(
SI.getValueOperand());
5701 IsLegalToScalarize() ? getUniformMemOpCost(&
I, VF)
5707 if (GatherScatterCost < ScalarizationCost)
5717 int ConsecutiveStride =
Legal->isConsecutivePtr(
5719 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5720 "Expected consecutive stride.");
5729 unsigned NumAccesses = 1;
5732 assert(Group &&
"Fail to get an interleaved access group.");
5738 NumAccesses = Group->getNumMembers();
5740 InterleaveCost = getInterleaveGroupCost(&
I, VF);
5745 ? getGatherScatterCost(&
I, VF) * NumAccesses
5749 getMemInstScalarizationCost(&
I, VF) * NumAccesses;
5755 if (InterleaveCost <= GatherScatterCost &&
5756 InterleaveCost < ScalarizationCost) {
5758 Cost = InterleaveCost;
5759 }
else if (GatherScatterCost < ScalarizationCost) {
5761 Cost = GatherScatterCost;
5764 Cost = ScalarizationCost;
5771 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5772 if (
auto *
I = Group->getMember(Idx)) {
5774 getMemInstScalarizationCost(
I, VF));
5790 if (
TTI.prefersVectorizedAddressing())
5799 if (PtrDef &&
TheLoop->contains(PtrDef) &&
5807 while (!Worklist.
empty()) {
5809 for (
auto &
Op :
I->operands())
5812 AddrDefs.
insert(InstOp).second)
5816 auto UpdateMemOpUserCost = [
this, VF](
LoadInst *
LI) {
5820 for (
User *U :
LI->users()) {
5830 for (
auto *
I : AddrDefs) {
5851 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5852 if (
Instruction *Member = Group->getMember(Idx)) {
5856 getMemoryInstructionCost(Member,
5858 : getMemInstScalarizationCost(Member, VF);
5871 ForcedScalars[VF].insert(
I);
5878 "Trying to set a vectorization decision for a scalar VF");
5880 auto ForcedScalar = ForcedScalars.find(VF);
5895 for (
auto &ArgOp : CI->
args())
5904 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys,
CostKind);
5914 "Unexpected valid cost for scalarizing scalable vectors");
5921 if (VF.
isVector() && ((ForcedScalar != ForcedScalars.end() &&
5922 ForcedScalar->second.contains(CI)) ||
5930 bool MaskRequired =
Legal->isMaskRequired(CI);
5933 for (
Type *ScalarTy : ScalarTys)
5942 std::nullopt, *RedCost);
5953 if (Info.Shape.VF != VF)
5957 if (MaskRequired && !Info.isMasked())
5961 bool ParamsOk =
true;
5963 switch (Param.ParamKind) {
5969 if (!
PSE.getSE()->isLoopInvariant(
PSE.getSCEV(ScalarParam),
6006 VectorCost =
TTI.getCallInstrCost(
nullptr, RetTy, Tys,
CostKind);
6017 if (VectorCost <=
Cost) {
6039 return !OpI || !
TheLoop->contains(OpI) ||
6043 [
this](
Value *
Op) { return shouldConsiderInvariant(Op); }));
6055 return InstsToScalarize[VF][
I];
6058 auto ForcedScalar = ForcedScalars.find(VF);
6059 if (VF.
isVector() && ForcedScalar != ForcedScalars.end()) {
6060 auto InstSet = ForcedScalar->second;
6061 if (InstSet.count(
I))
6066 Type *RetTy =
I->getType();
6069 auto *SE =
PSE.getSE();
6073 [[maybe_unused]]
auto HasSingleCopyAfterVectorization =
6078 auto Scalarized = InstsToScalarize.find(VF);
6079 assert(Scalarized != InstsToScalarize.end() &&
6080 "VF not yet analyzed for scalarization profitability");
6081 return !Scalarized->second.count(
I) &&
6083 auto *UI = cast<Instruction>(U);
6084 return !Scalarized->second.count(UI);
6093 assert(
I->getOpcode() == Instruction::GetElementPtr ||
6094 I->getOpcode() == Instruction::PHI ||
6095 (
I->getOpcode() == Instruction::BitCast &&
6096 I->getType()->isPointerTy()) ||
6097 HasSingleCopyAfterVectorization(
I, VF));
6103 !
TTI.getNumberOfParts(VectorTy))
6107 switch (
I->getOpcode()) {
6108 case Instruction::GetElementPtr:
6114 case Instruction::Br: {
6121 bool ScalarPredicatedBB =
false;
6124 (PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(0)) ||
6125 PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(1))) &&
6127 ScalarPredicatedBB =
true;
6129 if (ScalarPredicatedBB) {
6137 TTI.getScalarizationOverhead(
6145 return TTI.getCFInstrCost(Instruction::Br,
CostKind);
6153 case Instruction::Switch: {
6155 return TTI.getCFInstrCost(Instruction::Switch,
CostKind);
6157 return Switch->getNumCases() *
6158 TTI.getCmpSelInstrCost(
6160 toVectorTy(Switch->getCondition()->getType(), VF),
6164 case Instruction::PHI: {
6181 Type *ResultTy = Phi->getType();
6187 auto *Phi = dyn_cast<PHINode>(U);
6188 if (Phi && Phi->getParent() == TheLoop->getHeader())
6193 auto &ReductionVars =
Legal->getReductionVars();
6194 auto Iter = ReductionVars.find(HeaderUser);
6195 if (Iter != ReductionVars.end() &&
6197 Iter->second.getRecurrenceKind()))
6200 return (Phi->getNumIncomingValues() - 1) *
6201 TTI.getCmpSelInstrCost(
6202 Instruction::Select,
toVectorTy(ResultTy, VF),
6212 Intrinsic::vp_merge,
toVectorTy(Phi->getType(), VF),
6213 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6217 return TTI.getCFInstrCost(Instruction::PHI,
CostKind);
6219 case Instruction::UDiv:
6220 case Instruction::SDiv:
6221 case Instruction::URem:
6222 case Instruction::SRem:
6226 ScalarCost : SafeDivisorCost;
6230 case Instruction::Add:
6231 case Instruction::Sub: {
6232 auto Info =
Legal->getHistogramInfo(
I);
6239 if (!RHS || RHS->getZExtValue() != 1)
6241 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6245 Type *ScalarTy =
I->getType();
6249 {PtrTy, ScalarTy, MaskTy});
6252 return TTI.getIntrinsicInstrCost(ICA,
CostKind) + MulCost +
6253 TTI.getArithmeticInstrCost(
I->getOpcode(), VectorTy,
CostKind);
6257 case Instruction::FAdd:
6258 case Instruction::FSub:
6259 case Instruction::Mul:
6260 case Instruction::FMul:
6261 case Instruction::FDiv:
6262 case Instruction::FRem:
6263 case Instruction::Shl:
6264 case Instruction::LShr:
6265 case Instruction::AShr:
6266 case Instruction::And:
6267 case Instruction::Or:
6268 case Instruction::Xor: {
6272 if (
I->getOpcode() == Instruction::Mul &&
6273 ((
TheLoop->isLoopInvariant(
I->getOperand(0)) &&
6274 PSE.getSCEV(
I->getOperand(0))->isOne()) ||
6275 (
TheLoop->isLoopInvariant(
I->getOperand(1)) &&
6276 PSE.getSCEV(
I->getOperand(1))->isOne())))
6285 Value *Op2 =
I->getOperand(1);
6291 auto Op2Info =
TTI.getOperandInfo(Op2);
6297 return TTI.getArithmeticInstrCost(
6299 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6300 Op2Info, Operands,
I,
TLI);
6302 case Instruction::FNeg: {
6303 return TTI.getArithmeticInstrCost(
6305 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6306 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6307 I->getOperand(0),
I);
6309 case Instruction::Select: {
6314 const Value *Op0, *Op1;
6325 return TTI.getArithmeticInstrCost(
6327 VectorTy,
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1},
I);
6330 Type *CondTy =
SI->getCondition()->getType();
6336 Pred = Cmp->getPredicate();
6337 return TTI.getCmpSelInstrCost(
I->getOpcode(), VectorTy, CondTy, Pred,
6338 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6339 {TTI::OK_AnyValue, TTI::OP_None},
I);
6341 case Instruction::ICmp:
6342 case Instruction::FCmp: {
6343 Type *ValTy =
I->getOperand(0)->getType();
6349 MinBWs[
I] == MinBWs[Op0AsInstruction]) &&
6350 "if both the operand and the compare are marked for "
6351 "truncation, they must have the same bitwidth");
6356 return TTI.getCmpSelInstrCost(
6359 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
I);
6361 case Instruction::Store:
6362 case Instruction::Load: {
6367 "CM decision should be taken at this point");
6374 return getMemoryInstructionCost(
I, VF);
6376 case Instruction::BitCast:
6377 if (
I->getType()->isPointerTy())
6380 case Instruction::ZExt:
6381 case Instruction::SExt:
6382 case Instruction::FPToUI:
6383 case Instruction::FPToSI:
6384 case Instruction::FPExt:
6385 case Instruction::PtrToInt:
6386 case Instruction::IntToPtr:
6387 case Instruction::SIToFP:
6388 case Instruction::UIToFP:
6389 case Instruction::Trunc:
6390 case Instruction::FPTrunc: {
6394 "Expected a load or a store!");
6420 unsigned Opcode =
I->getOpcode();
6423 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6426 CCH = ComputeCCH(Store);
6429 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6430 Opcode == Instruction::FPExt) {
6432 CCH = ComputeCCH(Load);
6440 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6441 Trunc->getSrcTy(), CCH,
CostKind, Trunc);
6448 Type *SrcScalarTy =
I->getOperand(0)->getType();
6460 (
I->getOpcode() == Instruction::ZExt ||
6461 I->getOpcode() == Instruction::SExt))
6465 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH,
CostKind,
I);
6467 case Instruction::Call:
6469 case Instruction::ExtractValue:
6471 case Instruction::Alloca:
6479 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6494 auto IsLiveOutDead = [
this, RequiresScalarEpilogue](
User *U) {
6495 return RequiresScalarEpilogue &&
6509 all_of(
I.users(), [
this, IsLiveOutDead](
User *U) {
6510 return VecValuesToIgnore.contains(U) ||
6511 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6520 if (Group->getInsertPos() == &
I)
6523 DeadInterleavePointerOps.
push_back(PointerOp);
6529 if (Br->isConditional())
6536 for (
unsigned I = 0;
I != DeadInterleavePointerOps.
size(); ++
I) {
6539 Instruction *UI = cast<Instruction>(U);
6540 return !VecValuesToIgnore.contains(U) &&
6541 (!isAccessInterleaved(UI) ||
6542 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6562 for (
unsigned I = 0;
I != DeadOps.
size(); ++
I) {
6574 if ((ThenEmpty && ElseEmpty) ||
6576 ElseBB->
phis().empty()) ||
6578 ThenBB->
phis().empty())) {
6590 return !VecValuesToIgnore.contains(U) &&
6591 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6599 [
this](
User *U) { return ValuesToIgnore.contains(U); }))
6608 for (
const auto &Reduction :
Legal->getReductionVars()) {
6615 for (
const auto &Induction :
Legal->getInductionVars()) {
6623 if (!InLoopReductions.empty())
6626 for (
const auto &Reduction :
Legal->getReductionVars()) {
6627 PHINode *Phi = Reduction.first;
6648 !
TTI.preferInLoopReduction(Kind, Phi->getType()))
6656 bool InLoop = !ReductionOperations.
empty();
6659 InLoopReductions.insert(Phi);
6662 for (
auto *
I : ReductionOperations) {
6663 InLoopReductionImmediateChains[
I] = LastChain;
6667 LLVM_DEBUG(
dbgs() <<
"LV: Using " << (InLoop ?
"inloop" :
"out of loop")
6668 <<
" reduction for phi: " << *Phi <<
"\n");
6681 unsigned WidestType;
6685 TTI.enableScalableVectorization()
6690 unsigned N =
RegSize.getKnownMinValue() / WidestType;
6701 if (!OrigLoop->isInnermost()) {
6711 <<
"overriding computed VF.\n");
6714 }
else if (UserVF.
isScalable() && !TTI.supportsScalableVectors() &&
6716 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing. Scalable VF requested, but "
6717 <<
"not supported by the target.\n");
6719 "Scalable vectorization requested but not supported by the target",
6720 "the scalable user-specified vectorization width for outer-loop "
6721 "vectorization cannot be used because the target does not support "
6722 "scalable vectors.",
6723 "ScalableVFUnfeasible", ORE, OrigLoop);
6728 "VF needs to be a power of two");
6730 <<
"VF " << VF <<
" to build VPlans.\n");
6740 return {VF, 0 , 0 };
6744 dbgs() <<
"LV: Not vectorizing. Inner loops aren't supported in the "
6745 "VPlan-native path.\n");
6750 assert(OrigLoop->isInnermost() &&
"Inner loop expected.");
6751 CM.collectValuesToIgnore();
6752 CM.collectElementTypesForWidening();
6759 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6763 <<
"LV: Invalidate all interleaved groups due to fold-tail by masking "
6764 "which requires masked-interleaved support.\n");
6765 if (CM.InterleaveInfo.invalidateGroups())
6769 CM.invalidateCostModelingDecisions();
6772 if (CM.foldTailByMasking())
6773 Legal->prepareToFoldTailByMasking();
6780 "UserVF ignored because it may be larger than the maximal safe VF",
6781 "InvalidUserVF", ORE, OrigLoop);
6784 "VF needs to be a power of two");
6787 CM.collectInLoopReductions();
6788 if (CM.selectUserVectorizationFactor(UserVF)) {
6790 buildVPlansWithVPRecipes(UserVF, UserVF);
6795 "InvalidCost", ORE, OrigLoop);
6808 CM.collectInLoopReductions();
6809 for (
const auto &VF : VFCandidates) {
6811 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6830 return CM.isUniformAfterVectorization(
I, VF);
6834 return CM.ValuesToIgnore.contains(UI) ||
6835 (IsVector &&
CM.VecValuesToIgnore.contains(UI)) ||
6840 return CM.getPredBlockCostDivisor(
CostKind, BB);
6859 for (
const auto &[
IV, IndDesc] :
Legal->getInductionVars()) {
6861 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
6863 for (
unsigned I = 0;
I != IVInsts.
size();
I++) {
6864 for (
Value *
Op : IVInsts[
I]->operands()) {
6866 if (
Op ==
IV || !OpI || !OrigLoop->contains(OpI) || !
Op->hasOneUse())
6872 for (User *U :
IV->users()) {
6885 if (TC == VF && !CM.foldTailByMasking())
6889 for (Instruction *IVInst : IVInsts) {
6894 dbgs() <<
"Cost of " << InductionCost <<
" for VF " << VF
6895 <<
": induction instruction " << *IVInst <<
"\n";
6897 Cost += InductionCost;
6907 CM.TheLoop->getExitingBlocks(Exiting);
6908 SetVector<Instruction *> ExitInstrs;
6910 for (BasicBlock *EB : Exiting) {
6915 ExitInstrs.
insert(CondI);
6919 for (
unsigned I = 0;
I != ExitInstrs.
size(); ++
I) {
6921 if (!OrigLoop->contains(CondI) ||
6926 dbgs() <<
"Cost of " << CondICost <<
" for VF " << VF
6927 <<
": exit condition instruction " << *CondI <<
"\n";
6933 any_of(OpI->users(), [&ExitInstrs,
this](User *U) {
6934 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
6935 !ExitInstrs.contains(cast<Instruction>(U));
6947 for (BasicBlock *BB : OrigLoop->blocks()) {
6951 if (BB == OrigLoop->getLoopLatch())
6953 auto BranchCost = CostCtx.
getLegacyCost(BB->getTerminator(), VF);
6960 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6966 dbgs() <<
"Cost of " << ForcedCost <<
" for VF " << VF
6967 <<
": forced scalar " << *ForcedScalar <<
"\n";
6971 for (
const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6976 dbgs() <<
"Cost of " << ScalarCost <<
" for VF " << VF
6977 <<
": profitable to scalarize " << *Scalarized <<
"\n";
6986 ElementCount VF)
const {
6987 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind, *PSE.
getSE(),
6996 <<
" (Estimated cost per lane: ");
6998 double CostPerLane = double(
Cost.
getValue()) / EstimatedWidth;
7021 return &WidenMem->getIngredient();
7030 if (!VPI || VPI->getOpcode() != Instruction::Select)
7034 switch (WR->getOpcode()) {
7035 case Instruction::UDiv:
7036 case Instruction::SDiv:
7037 case Instruction::URem:
7038 case Instruction::SRem:
7051 auto *IG =
IR->getInterleaveGroup();
7052 unsigned NumMembers = IG->getNumMembers();
7053 for (
unsigned I = 0;
I != NumMembers; ++
I) {
7071 if (VPR->isPartialReduction())
7088 if (RepR->isSingleScalar() &&
7090 RepR->getUnderlyingInstr(), VF))
7093 if (
Instruction *UI = GetInstructionForCost(&R)) {
7098 if (
match(&R,
m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
7110 return any_of(TheLoop->
blocks(), [&SeenInstrs, &CostCtx,
7112 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
7115 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
7116 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
7118 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
7128 VPlan &FirstPlan = *VPlans[0];
7134 ?
"Reciprocal Throughput\n"
7136 ?
"Instruction Latency\n"
7139 ?
"Code Size and Latency\n"
7144 "More than a single plan/VF w/o any plan having scalar VF");
7148 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ScalarCost <<
".\n");
7153 if (ForceVectorization) {
7160 for (
auto &
P : VPlans) {
7162 P->vectorFactors().end());
7166 return CM.shouldConsiderRegPressureForVF(VF);
7170 for (
unsigned I = 0;
I < VFs.
size();
I++) {
7177 <<
"LV: Not considering vector loop of width " << VF
7178 <<
" because it will not generate any vector instructions.\n");
7184 <<
"LV: Not considering vector loop of width " << VF
7185 <<
" because it would cause replicated blocks to be generated,"
7186 <<
" which isn't allowed when optimizing for size.\n");
7193 if (CM.shouldConsiderRegPressureForVF(VF) &&
7195 LLVM_DEBUG(
dbgs() <<
"LV(REG): Not considering vector loop of width "
7196 << VF <<
" because it uses too many registers\n");
7200 if (isMoreProfitable(CurrentFactor, BestFactor,
P->hasScalarTail()))
7201 BestFactor = CurrentFactor;
7204 if (isMoreProfitable(CurrentFactor, ScalarFactor,
P->hasScalarTail()))
7205 ProfitableVFs.push_back(CurrentFactor);
7221 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind,
7222 *CM.PSE.getSE(), OrigLoop);
7223 precomputeCosts(BestPlan, BestFactor.
Width, CostCtx);
7230 bool UsesEVLGatherScatter =
7234 return any_of(*VPBB, [](VPRecipeBase &R) {
7235 return isa<VPWidenLoadEVLRecipe, VPWidenStoreEVLRecipe>(&R) &&
7236 !cast<VPWidenMemoryRecipe>(&R)->isConsecutive();
7240 (BestFactor.Width == LegacyVF.Width || BestPlan.hasEarlyExit() ||
7241 !
Legal->getLAI()->getSymbolicStrides().empty() || UsesEVLGatherScatter ||
7243 getPlanFor(BestFactor.Width), CostCtx, OrigLoop, BestFactor.Width) ||
7245 getPlanFor(LegacyVF.Width), CostCtx, OrigLoop, LegacyVF.Width)) &&
7246 " VPlan cost model and legacy cost model disagreed");
7247 assert((BestFactor.Width.isScalar() || BestFactor.ScalarCost > 0) &&
7248 "when vectorizing, the scalar cost must be computed.");
7251 LLVM_DEBUG(
dbgs() <<
"LV: Selecting VF: " << BestFactor.Width <<
".\n");
7258 "RdxResult must be ComputeFindIVResult");
7276 if (!EpiRedResult ||
7282 auto *EpiRedHeaderPhi =
7284 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7285 Value *MainResumeValue;
7289 "unexpected start recipe");
7290 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7292 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7294 [[maybe_unused]]
Value *StartV =
7295 EpiRedResult->getOperand(1)->getLiveInIRValue();
7298 "AnyOf expected to start with ICMP_NE");
7299 assert(Cmp->getOperand(1) == StartV &&
7300 "AnyOf expected to start by comparing main resume value to original "
7302 MainResumeValue = Cmp->getOperand(0);
7305 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7307 Value *Cmp, *OrigResumeV, *CmpOp;
7308 [[maybe_unused]]
bool IsExpectedPattern =
7309 match(MainResumeValue,
7315 assert(IsExpectedPattern &&
"Unexpected reduction resume pattern");
7316 MainResumeValue = OrigResumeV;
7331 "Trying to execute plan with unsupported VF");
7333 "Trying to execute plan with unsupported UF");
7335 ++LoopsEarlyExitVectorized;
7343 bool HasBranchWeights =
7345 if (HasBranchWeights) {
7346 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7348 BestVPlan, BestVF, VScale);
7353 attachRuntimeChecks(BestVPlan, ILV.
RTChecks, HasBranchWeights);
7366 OrigLoop->getStartLoc(),
7367 OrigLoop->getHeader())
7368 <<
"Created vector loop never executes due to insufficient trip "
7389 BestVPlan, VectorPH, CM.foldTailByMasking(),
7390 CM.requiresScalarEpilogue(BestVF.
isVector()));
7402 assert(VectorizingEpilogue &&
"should only re-use the existing trip "
7403 "count during epilogue vectorization");
7407 OrigLoop->getParentLoop(),
7408 Legal->getWidestInductionType());
7410#ifdef EXPENSIVE_CHECKS
7411 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7422 "final VPlan is invalid");
7429 if (!Exit->hasPredecessors())
7451 MDNode *LID = OrigLoop->getLoopID();
7452 unsigned OrigLoopInvocationWeight = 0;
7453 std::optional<unsigned> OrigAverageTripCount =
7465 bool DisableRuntimeUnroll = !ILV.
RTChecks.hasChecks() && !BestVF.
isScalar();
7467 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7469 HeaderVPBB, BestVPlan, VectorizingEpilogue, LID, OrigAverageTripCount,
7470 OrigLoopInvocationWeight,
7472 DisableRuntimeUnroll);
7480 return ExpandedSCEVs;
7495 EPI.EpilogueIterationCountCheck =
7497 EPI.EpilogueIterationCountCheck->setName(
"iter.check");
7507 EPI.MainLoopIterationCountCheck =
7516 dbgs() <<
"Create Skeleton for epilogue vectorized loop (first pass)\n"
7517 <<
"Main Loop VF:" <<
EPI.MainLoopVF
7518 <<
", Main Loop UF:" <<
EPI.MainLoopUF
7519 <<
", Epilogue Loop VF:" <<
EPI.EpilogueVF
7520 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7526 dbgs() <<
"intermediate fn:\n"
7527 << *
OrigLoop->getHeader()->getParent() <<
"\n";
7533 assert(Bypass &&
"Expected valid bypass basic block.");
7537 VectorPH, ForEpilogue ?
EPI.EpilogueVF :
EPI.MainLoopVF,
7538 ForEpilogue ?
EPI.EpilogueUF :
EPI.MainLoopUF);
7542 TCCheckBlock->
setName(
"vector.main.loop.iter.check");
7568 return TCCheckBlock;
7581 OriginalScalarPH->
setName(
"vec.epilog.iter.check");
7589 R.moveBefore(*NewEntry, NewEntry->
end());
7593 Plan.setEntry(NewEntry);
7596 return OriginalScalarPH;
7601 dbgs() <<
"Create Skeleton for epilogue vectorized loop (second pass)\n"
7602 <<
"Epilogue Loop VF:" <<
EPI.EpilogueVF
7603 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7609 dbgs() <<
"final fn:\n" << *
OrigLoop->getHeader()->getParent() <<
"\n";
7616 VPI->
getOpcode() == Instruction::Store) &&
7617 "Must be called with either a load or store");
7624 "CM decision should be taken at this point.");
7637 if (
Legal->isMaskRequired(
I))
7662 :
GEP->getNoWrapFlags().withoutNoUnsignedWrap();
7668 GEP ?
GEP->getNoWrapFlags()
7672 Builder.insert(VectorPtr);
7675 if (VPI->
getOpcode() == Instruction::Load) {
7677 return new VPWidenLoadRecipe(*Load, Ptr, Mask, Consecutive,
Reverse, *VPI,
7682 return new VPWidenStoreRecipe(*Store, Ptr, VPI->
getOperand(0), Mask,
7693 "step must be loop invariant");
7700 "Start VPValue must match IndDesc's start value");
7722VPRecipeBuilder::tryToOptimizeInductionPHI(
VPInstruction *VPI) {
7727 if (
auto *
II = Legal->getIntOrFpInductionDescriptor(Phi))
7731 if (
auto *
II = Legal->getPointerInductionDescriptor(Phi)) {
7733 return new VPWidenPointerInductionRecipe(Phi, VPI->
getOperand(0), Step,
7734 &Plan.getVFxUF(), *
II,
7741VPRecipeBuilder::tryToOptimizeInductionTruncate(
VPInstruction *VPI,
7751 auto IsOptimizableIVTruncate =
7752 [&](
Instruction *
K) -> std::function<
bool(ElementCount)> {
7753 return [=](ElementCount VF) ->
bool {
7754 return CM.isOptimizableIVTruncate(K, VF);
7759 IsOptimizableIVTruncate(
I),
Range))
7766 const InductionDescriptor &IndDesc =
WidenIV->getInductionDescriptor();
7774 return new VPWidenIntOrFpInductionRecipe(
7775 Phi, Start, Step, &Plan.getVF(), IndDesc,
I, Flags, VPI->
getDebugLoc());
7782 [
this, CI](ElementCount VF) {
7783 return CM.isScalarWithPredication(CI, VF);
7791 if (
ID && (
ID == Intrinsic::assume ||
ID == Intrinsic::lifetime_end ||
7792 ID == Intrinsic::lifetime_start ||
ID == Intrinsic::sideeffect ||
7793 ID == Intrinsic::pseudoprobe ||
7794 ID == Intrinsic::experimental_noalias_scope_decl))
7801 bool ShouldUseVectorIntrinsic =
7803 [&](ElementCount VF) ->
bool {
7804 return CM.getCallWideningDecision(CI, VF).Kind ==
7808 if (ShouldUseVectorIntrinsic)
7809 return new VPWidenIntrinsicRecipe(*CI,
ID,
Ops, CI->
getType(), *VPI, *VPI,
7813 std::optional<unsigned> MaskPos;
7817 [&](ElementCount VF) ->
bool {
7832 LoopVectorizationCostModel::CallWideningDecision Decision =
7833 CM.getCallWideningDecision(CI, VF);
7843 if (ShouldUseVectorCall) {
7844 if (MaskPos.has_value()) {
7852 VPValue *
Mask =
nullptr;
7853 if (Legal->isMaskRequired(CI))
7856 Mask = Plan.getOrAddLiveIn(
7859 Ops.insert(
Ops.begin() + *MaskPos, Mask);
7863 return new VPWidenCallRecipe(CI, Variant,
Ops, *VPI, *VPI,
7872 !
isa<StoreInst>(
I) &&
"Instruction should have been handled earlier");
7875 auto WillScalarize = [
this,
I](ElementCount VF) ->
bool {
7876 return CM.isScalarAfterVectorization(
I, VF) ||
7877 CM.isProfitableToScalarize(
I, VF) ||
7878 CM.isScalarWithPredication(
I, VF);
7889 case Instruction::SDiv:
7890 case Instruction::UDiv:
7891 case Instruction::SRem:
7892 case Instruction::URem: {
7895 if (CM.isPredicatedInst(
I)) {
7898 VPValue *One = Plan.getConstantInt(
I->getType(), 1u);
7906 case Instruction::Add:
7907 case Instruction::And:
7908 case Instruction::AShr:
7909 case Instruction::FAdd:
7910 case Instruction::FCmp:
7911 case Instruction::FDiv:
7912 case Instruction::FMul:
7913 case Instruction::FNeg:
7914 case Instruction::FRem:
7915 case Instruction::FSub:
7916 case Instruction::ICmp:
7917 case Instruction::LShr:
7918 case Instruction::Mul:
7919 case Instruction::Or:
7920 case Instruction::Select:
7921 case Instruction::Shl:
7922 case Instruction::Sub:
7923 case Instruction::Xor:
7924 case Instruction::Freeze: {
7930 ScalarEvolution &SE = *PSE.getSE();
7931 auto GetConstantViaSCEV = [
this, &SE](VPValue *
Op) {
7932 if (!
Op->isLiveIn())
7934 Value *
V =
Op->getUnderlyingValue();
7940 return Plan.getOrAddLiveIn(
C->getValue());
7943 if (VPI->
getOpcode() == Instruction::Mul)
7944 NewOps[0] = GetConstantViaSCEV(NewOps[0]);
7946 NewOps[1] = GetConstantViaSCEV(NewOps[1]);
7948 return new VPWidenRecipe(*
I, NewOps, *VPI, *VPI, VPI->
getDebugLoc());
7950 case Instruction::ExtractValue: {
7953 assert(EVI->getNumIndices() == 1 &&
"Expected one extractvalue index");
7954 unsigned Idx = EVI->getIndices()[0];
7955 NewOps.push_back(Plan.getConstantInt(32, Idx));
7956 return new VPWidenRecipe(*
I, NewOps, *VPI, *VPI, VPI->
getDebugLoc());
7964 unsigned Opcode =
HI->Update->getOpcode();
7965 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7966 "Histogram update operation must be an Add or Sub");
7976 if (Legal->isMaskRequired(
HI->Store))
7979 return new VPHistogramRecipe(Opcode, HGramOps, VPI->
getDebugLoc());
7986 [&](
ElementCount VF) {
return CM.isUniformAfterVectorization(
I, VF); },
7989 bool IsPredicated = CM.isPredicatedInst(
I);
7997 case Intrinsic::assume:
7998 case Intrinsic::lifetime_start:
7999 case Intrinsic::lifetime_end:
8021 VPValue *BlockInMask =
nullptr;
8022 if (!IsPredicated) {
8026 LLVM_DEBUG(
dbgs() <<
"LV: Scalarizing and predicating:" << *
I <<
"\n");
8037 assert((
Range.Start.isScalar() || !IsUniform || !IsPredicated ||
8039 "Should not predicate a uniform recipe");
8055 for (
const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
8056 if (
Instruction *RdxExitInstr = RdxDesc.getLoopExitInstr())
8057 getScaledReductions(Phi, RdxExitInstr,
Range, ChainsByPhi[Phi]);
8066 for (
const auto &[
_, Chains] : ChainsByPhi)
8067 for (
const auto &[PartialRdx,
_] : Chains)
8068 PartialReductionOps.
insert(PartialRdx.ExtendUser);
8070 auto ExtendIsOnlyUsedByPartialReductions =
8072 return all_of(Extend->users(), [&](
const User *U) {
8073 return PartialReductionOps.contains(U);
8079 for (
const auto &[
_, Chains] : ChainsByPhi) {
8080 for (
const auto &[Chain, Scale] : Chains) {
8081 if (ExtendIsOnlyUsedByPartialReductions(Chain.ExtendA) &&
8083 ExtendIsOnlyUsedByPartialReductions(Chain.ExtendB)))
8084 ScaledReductionMap.try_emplace(Chain.Reduction, Scale);
8092 for (
const auto &[Phi, Chains] : ChainsByPhi) {
8093 for (
const auto &[Chain, Scale] : Chains) {
8094 auto AllUsersPartialRdx = [ScaleVal = Scale, RdxPhi = Phi,
8095 this](
const User *U) {
8097 if (
isa<PHINode>(UI) && UI->getParent() == OrigLoop->getHeader())
8098 return UI == RdxPhi;
8099 return ScaledReductionMap.lookup_or(UI, 0) == ScaleVal ||
8100 !OrigLoop->contains(UI->getParent());
8105 if (!
all_of(Chain.Reduction->users(), AllUsersPartialRdx)) {
8106 for (
const auto &[Chain,
_] : Chains)
8107 ScaledReductionMap.erase(Chain.Reduction);
8114bool VPRecipeBuilder::getScaledReductions(
8116 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
8124 Value *
Op = Update->getOperand(0);
8125 Value *PhiOp = Update->getOperand(1);
8135 std::optional<TTI::PartialReductionExtendKind> OuterExtKind = std::nullopt;
8139 Op = Cast->getOperand(0);
8146 if (getScaledReductions(
PHI, OpInst,
Range, Chains)) {
8147 PHI = Chains.rbegin()->first.Reduction;
8149 Op = Update->getOperand(0);
8150 PhiOp = Update->getOperand(1);
8163 std::optional<unsigned> BinOpc;
8164 Type *ExtOpTypes[2] = {
nullptr};
8167 auto CollectExtInfo = [
this, OuterExtKind, &Exts, &ExtOpTypes,
8168 &ExtKinds](SmallVectorImpl<Value *> &
Ops) ->
bool {
8173 ExtOpTypes[
I] = ExtOpTypes[0];
8174 ExtKinds[
I] = ExtKinds[0];
8183 if (!CM.TheLoop->contains(Exts[
I]))
8190 if (OuterExtKind.has_value() && OuterExtKind.value() != ExtKinds[
I])
8205 if (!CollectExtInfo(
Ops))
8208 BinOpc = std::make_optional(ExtendUser->
getOpcode());
8212 if (!CollectExtInfo(
Ops))
8215 ExtendUser = Update;
8216 BinOpc = std::nullopt;
8220 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
8222 TypeSize PHISize =
PHI->getType()->getPrimitiveSizeInBits();
8229 [&](ElementCount VF) {
8231 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
8232 PHI->getType(), VF, ExtKinds[0], ExtKinds[1], BinOpc,
8237 Chains.emplace_back(Chain, TargetScaleFactor);
8254 "Non-header phis should have been handled during predication");
8256 assert(R->getNumOperands() == 2 &&
"Must have 2 operands for header phis");
8257 if ((Recipe = tryToOptimizeInductionPHI(PhiR)))
8261 assert((Legal->isReductionVariable(Phi) ||
8262 Legal->isFixedOrderRecurrence(Phi)) &&
8263 "can only widen reductions and fixed-order recurrences here");
8264 VPValue *StartV = R->getOperand(0);
8265 if (Legal->isReductionVariable(Phi)) {
8268 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8271 bool UseInLoopReduction = CM.isInLoopReduction(Phi);
8272 bool UseOrderedReductions = CM.useOrderedReductions(RdxDesc);
8273 unsigned ScaleFactor =
8292 assert(!R->isPhi() &&
"only VPPhi nodes expected at this point");
8296 if (VPI->
getOpcode() == Instruction::Trunc &&
8297 (Recipe = tryToOptimizeInductionTruncate(VPI,
Range)))
8305 if (VPI->
getOpcode() == Instruction::Call)
8306 return tryToWidenCall(VPI,
Range);
8308 if (VPI->
getOpcode() == Instruction::Store)
8310 return tryToWidenHistogram(*HistInfo, VPI);
8312 if (VPI->
getOpcode() == Instruction::Load ||
8314 return tryToWidenMemory(VPI,
Range);
8319 if (!shouldWiden(Instr,
Range))
8322 if (VPI->
getOpcode() == Instruction::GetElementPtr)
8326 if (VPI->
getOpcode() == Instruction::Select)
8334 CastR->getResultType(), CI, *VPI, *VPI,
8338 return tryToWiden(VPI);
8343 unsigned ScaleFactor) {
8344 assert(Reduction->getNumOperands() == 2 &&
8345 "Unexpected number of operands for partial reduction");
8347 VPValue *BinOp = Reduction->getOperand(0);
8357 "all accumulators in chain must have same scale factor");
8359 auto *ReductionI = Reduction->getUnderlyingInstr();
8360 if (Reduction->getOpcode() == Instruction::Sub) {
8361 auto *
const Zero = ConstantInt::get(ReductionI->getType(), 0);
8363 Ops.push_back(Plan.getOrAddLiveIn(Zero));
8364 Ops.push_back(BinOp);
8371 if (CM.blockNeedsPredicationForAnyReason(ReductionI->getParent()))
8379void LoopVectorizationPlanner::buildVPlansWithVPRecipes(
ElementCount MinVF,
8388 OrigLoop, LI, DT, PSE.
getSE());
8393 LVer.prepareNoAliasMetadata();
8399 OrigLoop, *LI,
Legal->getWidestInductionType(),
8402 auto MaxVFTimes2 = MaxVF * 2;
8404 VFRange SubRange = {VF, MaxVFTimes2};
8405 if (
auto Plan = tryToBuildVPlanWithVPRecipes(
8406 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8411 *Plan, CM.getMinimalBitwidths());
8414 if (CM.foldTailWithEVL())
8416 *Plan, CM.getMaxSafeElements());
8418 VPlans.push_back(std::move(Plan));
8424VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8427 using namespace llvm::VPlanPatternMatch;
8428 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8435 bool RequiresScalarEpilogueCheck =
8437 [
this](ElementCount VF) {
8438 return !CM.requiresScalarEpilogue(VF.
isVector());
8443 CM.foldTailByMasking());
8451 bool IVUpdateMayOverflow =
false;
8452 for (ElementCount VF :
Range)
8460 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8466 m_VPInstruction<Instruction::Add>(
8468 "Did not find the canonical IV increment");
8481 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8482 auto ApplyIG = [IG,
this](ElementCount VF) ->
bool {
8484 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8489 "Unsupported interleave factor for scalable vectors");
8494 InterleaveGroups.
insert(IG);
8501 *Plan, CM.foldTailByMasking());
8507 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, PSE,
8508 Builder, BlockMaskCache);
8510 if (!CM.foldTailWithEVL())
8511 RecipeBuilder.collectScaledReductions(
Range);
8516 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8519 auto *MiddleVPBB = Plan->getMiddleBlock();
8523 DenseMap<VPValue *, VPValue *> Old2New;
8528 auto *UnderlyingValue = SingleDef->getUnderlyingValue();
8543 Builder.setInsertPoint(SingleDef);
8550 Legal->isInvariantAddressOfReduction(
SI->getPointerOperand())) {
8552 if (Legal->isInvariantStoreOfReduction(SI)) {
8554 auto *Recipe =
new VPReplicateRecipe(
8555 SI,
R.operands(),
true ,
nullptr , *VPI,
8557 Recipe->insertBefore(*MiddleVPBB, MBIP);
8559 R.eraseFromParent();
8563 VPRecipeBase *Recipe =
8564 RecipeBuilder.tryToCreateWidenRecipe(SingleDef,
Range);
8569 RecipeBuilder.setRecipe(Instr, Recipe);
8575 Builder.insert(Recipe);
8582 "Unexpected multidef recipe");
8583 R.eraseFromParent();
8592 RecipeBuilder.updateBlockMaskCache(Old2New);
8593 for (VPValue *Old : Old2New.
keys())
8594 Old->getDefiningRecipe()->eraseFromParent();
8598 "entry block must be set to a VPRegionBlock having a non-empty entry "
8604 DenseMap<VPValue *, VPValue *> IVEndValues;
8613 adjustRecipesForReductions(Plan, RecipeBuilder,
Range.Start);
8630 if (!CM.foldTailWithEVL()) {
8631 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind,
8632 *CM.PSE.getSE(), OrigLoop);
8637 for (ElementCount VF :
Range)
8639 Plan->setName(
"Initial VPlan");
8645 InterleaveGroups, RecipeBuilder,
8646 CM.isScalarEpilogueAllowed());
8650 Legal->getLAI()->getSymbolicStrides());
8652 auto BlockNeedsPredication = [
this](
BasicBlock *BB) {
8653 return Legal->blockNeedsPredication(BB);
8656 BlockNeedsPredication);
8668 bool WithoutRuntimeCheck =
8671 WithoutRuntimeCheck);
8684 assert(!OrigLoop->isInnermost());
8688 OrigLoop, *LI, Legal->getWidestInductionType(),
8697 for (ElementCount VF :
Range)
8702 [
this](PHINode *
P) {
8703 return Legal->getIntOrFpInductionDescriptor(
P);
8712 DenseMap<VPValue *, VPValue *> IVEndValues;
8732void LoopVectorizationPlanner::adjustRecipesForReductions(
8734 using namespace VPlanPatternMatch;
8735 VPTypeAnalysis TypeInfo(*Plan);
8736 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8738 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8741 for (VPRecipeBase &R : Header->phis()) {
8743 if (!PhiR || !PhiR->isInLoop() || (MinVF.
isScalar() && !PhiR->isOrdered()))
8750 "AnyOf and FindIV reductions are not allowed for in-loop reductions");
8752 bool IsFPRecurrence =
8754 FastMathFlags FMFs =
8758 SetVector<VPSingleDefRecipe *> Worklist;
8760 for (
unsigned I = 0;
I != Worklist.
size(); ++
I) {
8761 VPSingleDefRecipe *Cur = Worklist[
I];
8762 for (VPUser *U : Cur->
users()) {
8764 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
8765 assert((UserRecipe->getParent() == MiddleVPBB ||
8766 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
8767 "U must be either in the loop region, the middle block or the "
8768 "scalar preheader.");
8771 Worklist.
insert(UserRecipe);
8782 VPSingleDefRecipe *PreviousLink = PhiR;
8783 for (VPSingleDefRecipe *CurrentLink :
drop_begin(Worklist)) {
8785 assert(Blend->getNumIncomingValues() == 2 &&
8786 "Blend must have 2 incoming values");
8787 if (Blend->getIncomingValue(0) == PhiR) {
8788 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
8790 assert(Blend->getIncomingValue(1) == PhiR &&
8791 "PhiR must be an operand of the blend");
8792 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
8797 if (IsFPRecurrence) {
8798 FastMathFlags CurFMF =
8802 ->getFastMathFlags();
8806 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
8809 unsigned IndexOfFirstOperand;
8813 VPBasicBlock *LinkVPBB = CurrentLink->getParent();
8817 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
8820 CurrentLink->getOperand(2) == PreviousLink &&
8821 "expected a call where the previous link is the added operand");
8827 VPInstruction *FMulRecipe =
new VPInstruction(
8829 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
8831 LinkVPBB->
insert(FMulRecipe, CurrentLink->getIterator());
8835 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8836 auto *
Zero = Plan->getConstantInt(PhiTy, 0);
8837 auto *
Sub =
new VPInstruction(Instruction::Sub,
8838 {
Zero, CurrentLink->getOperand(1)}, {},
8840 Sub->setUnderlyingValue(CurrentLinkI);
8841 LinkVPBB->
insert(
Sub, CurrentLink->getIterator());
8848 "must be a select recipe");
8849 IndexOfFirstOperand = 1;
8852 "Expected to replace a VPWidenSC");
8853 IndexOfFirstOperand = 0;
8858 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
8859 ? IndexOfFirstOperand + 1
8860 : IndexOfFirstOperand;
8861 VecOp = CurrentLink->getOperand(VecOpId);
8862 assert(VecOp != PreviousLink &&
8863 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
8864 (VecOpId - IndexOfFirstOperand)) ==
8866 "PreviousLink must be the operand other than VecOp");
8869 VPValue *CondOp =
nullptr;
8870 if (CM.blockNeedsPredicationForAnyReason(CurrentLinkI->
getParent()))
8875 new VPReductionRecipe(Kind, FMFs, CurrentLinkI, PreviousLink, VecOp,
8882 RedRecipe->insertBefore(&*std::prev(std::prev(LinkVPBB->
end())));
8886 CurrentLink->replaceAllUsesWith(RedRecipe);
8888 PreviousLink = RedRecipe;
8892 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->
end())));
8894 for (VPRecipeBase &R :
8895 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8900 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(
8902 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8912 if (!PhiR->
isInLoop() && CM.foldTailByMasking() &&
8913 (!RR || !RR->isPartialReduction())) {
8915 std::optional<FastMathFlags> FMFs =
8920 Builder.createSelect(
Cond, OrigExitingVPV, PhiR, {},
"", FMFs);
8921 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U,
unsigned) {
8930 if (CM.usePredicatedReductionSelect())
8941 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8947 VPInstruction *FinalReductionResult;
8948 VPBuilder::InsertPointGuard Guard(Builder);
8949 Builder.setInsertPoint(MiddleVPBB, IP);
8954 FinalReductionResult =
8959 FinalReductionResult =
8961 {PhiR,
Start, NewExitingVPV}, ExitDL);
8967 FinalReductionResult =
8969 {PhiR, NewExitingVPV},
Flags, ExitDL);
8976 assert(!PhiR->
isInLoop() &&
"Unexpected truncated inloop reduction!");
8978 "Unexpected truncated min-max recurrence!");
8980 VPWidenCastRecipe *Trunc;
8982 RdxDesc.
isSigned() ? Instruction::SExt : Instruction::ZExt;
8983 VPWidenCastRecipe *Extnd;
8985 VPBuilder::InsertPointGuard Guard(Builder);
8986 Builder.setInsertPoint(
8987 NewExitingVPV->getDefiningRecipe()->getParent(),
8988 std::next(NewExitingVPV->getDefiningRecipe()->getIterator()));
8990 Builder.createWidenCast(Instruction::Trunc, NewExitingVPV, RdxTy);
8991 Extnd = Builder.createWidenCast(ExtendOpc, Trunc, PhiTy);
8999 FinalReductionResult =
9000 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
9005 for (
auto *U :
to_vector(OrigExitingVPV->users())) {
9007 if (FinalReductionResult == U || Parent->getParent())
9009 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
9026 return isa<VPWidenSelectRecipe>(U) ||
9027 (isa<VPReplicateRecipe>(U) &&
9028 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
9029 Instruction::Select);
9034 if (VPRecipeBase *CmpR =
Cmp->getDefiningRecipe())
9036 Builder.setInsertPoint(
Select);
9040 if (
Select->getOperand(1) == PhiR)
9041 Cmp = Builder.createNot(Cmp);
9042 VPValue *
Or = Builder.createOr(PhiR, Cmp);
9043 Select->getVPSingleValue()->replaceAllUsesWith(
Or);
9063 VPBuilder PHBuilder(Plan->getVectorPreheader());
9064 VPValue *Iden = Plan->getOrAddLiveIn(
9067 unsigned ScaleFactor =
9070 auto *ScaleFactorVPV = Plan->getConstantInt(32, ScaleFactor);
9071 VPValue *StartV = PHBuilder.createNaryOp(
9079 for (VPRecipeBase *R : ToDelete)
9080 R->eraseFromParent();
9085void LoopVectorizationPlanner::attachRuntimeChecks(
9086 VPlan &Plan, GeneratedRTChecks &RTChecks,
bool HasBranchWeights)
const {
9087 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
9088 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
9089 assert((!CM.OptForSize ||
9091 "Cannot SCEV check stride or overflow when optimizing for size");
9095 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
9096 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
9100 "Runtime checks are not supported for outer loops yet");
9102 if (CM.OptForSize) {
9105 "Cannot emit memory checks when optimizing for size, unless forced "
9108 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationCodeSize",
9109 OrigLoop->getStartLoc(),
9110 OrigLoop->getHeader())
9111 <<
"Code-size may be reduced by not forcing "
9112 "vectorization, or by source-code modifications "
9113 "eliminating the need for runtime checks "
9114 "(e.g., adding 'restrict').";
9128 bool IsIndvarOverflowCheckNeededForVF =
9129 VF.
isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
9131 CM.getTailFoldingStyle() !=
9138 Plan, VF, UF, MinProfitableTripCount,
9139 CM.requiresScalarEpilogue(VF.
isVector()), CM.foldTailByMasking(),
9140 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
9141 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(),
9146 assert(!State.Lane &&
"VPDerivedIVRecipe being replicated.");
9151 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
9159 State.set(
this, DerivedIV,
VPLane(0));
9172 if (
F->hasOptSize() ||
9198 if (
TTI->preferPredicateOverEpilogue(&TFI))
9217 LLVM_DEBUG(
dbgs() <<
"LV: cannot compute the outer-loop trip count\n");
9221 Function *
F = L->getHeader()->getParent();
9227 LoopVectorizationCostModel CM(
SEL, L, PSE, LI, LVL, *
TTI, TLI, DB, AC, ORE,
9228 GetBFI,
F, &Hints, IAI, OptForSize);
9232 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *
TTI, LVL, CM, IAI, PSE, Hints,
9252 GeneratedRTChecks Checks(PSE, DT, LI,
TTI,
F->getDataLayout(), CM.
CostKind);
9256 << L->getHeader()->getParent()->getName() <<
"\"\n");
9278 if (S->getValueOperand()->getType()->isFloatTy())
9288 while (!Worklist.
empty()) {
9290 if (!L->contains(
I))
9292 if (!Visited.
insert(
I).second)
9302 I->getDebugLoc(), L->getHeader())
9303 <<
"floating point conversion changes vector width. "
9304 <<
"Mixed floating point precision requires an up/down "
9305 <<
"cast that will negatively impact performance.";
9308 for (
Use &
Op :
I->operands())
9324 for (
auto *PredVPBB : ExitVPBB->getPredecessors()) {
9330 << PredVPBB->getName() <<
":\n");
9331 Cost += PredVPBB->cost(VF, CostCtx);
9351 std::optional<unsigned> VScale) {
9375 <<
"LV: Interleaving only is not profitable due to runtime checks\n");
9436 uint64_t MinTC = std::max(MinTC1, MinTC2);
9438 MinTC =
alignTo(MinTC, IntVF);
9442 dbgs() <<
"LV: Minimum required TC for runtime checks to be profitable:"
9449 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is not beneficial: expected "
9450 "trip count < minimum profitable VF ("
9461 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9463 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9484 if (EpiWidenedPhis.
contains(&VPIRInst->getIRPhi()))
9503 auto AddFreezeForFindLastIVReductions = [](
VPlan &Plan,
9504 bool UpdateResumePhis) {
9514 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {},
"fr");
9516 if (UpdateResumePhis)
9522 AddFreezeForFindLastIVReductions(MainPlan,
true);
9523 AddFreezeForFindLastIVReductions(EpiPlan,
false);
9530 auto ResumePhiIter =
9532 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9535 VPPhi *ResumePhi =
nullptr;
9536 if (ResumePhiIter == MainScalarPH->
phis().
end()) {
9541 {},
"vec.epilog.resume.val");
9544 if (MainScalarPH->
begin() == MainScalarPH->
end())
9546 else if (&*MainScalarPH->
begin() != ResumePhi)
9561 VPlan &Plan,
Loop *L,
const SCEV2ValueTy &ExpandedSCEVs,
9566 Header->
setName(
"vec.epilog.vector.body");
9577 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9582 "Must only have a single non-zero incoming value");
9593 [](
Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9594 "all incoming values must be 0");
9600 return isa<VPScalarIVStepsRecipe>(U) ||
9601 isa<VPDerivedIVRecipe>(U) ||
9602 cast<VPRecipeBase>(U)->isScalarCast() ||
9603 cast<VPInstruction>(U)->getOpcode() ==
9606 "the canonical IV should only be used by its increment or "
9607 "ScalarIVSteps when resetting the start value");
9608 VPBuilder Builder(Header, Header->getFirstNonPhi());
9610 IV->replaceAllUsesWith(
Add);
9611 Add->setOperand(0,
IV);
9619 Value *ResumeV =
nullptr;
9624 auto *VPI = dyn_cast<VPInstruction>(U);
9626 (VPI->getOpcode() == VPInstruction::ComputeAnyOfResult ||
9627 VPI->getOpcode() == VPInstruction::ComputeReductionResult ||
9628 VPI->getOpcode() == VPInstruction::ComputeFindIVResult);
9631 ->getIncomingValueForBlock(L->getLoopPreheader());
9632 RecurKind RK = ReductionPhi->getRecurrenceKind();
9640 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9645 ToFrozen[StartV] =
cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9656 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9659 Value *
Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9660 ResumeV = Builder.CreateSelect(Cmp,
Sentinel, ResumeV);
9668 "unexpected start value");
9681 assert(ResumeV &&
"Must have a resume value");
9695 if (VPI && VPI->
getOpcode() == Instruction::Freeze) {
9712 ExpandR->eraseFromParent();
9716 unsigned MainLoopStep =
9718 unsigned EpilogueLoopStep =
9723 EPI.
EpilogueUF, MainLoopStep, EpilogueLoopStep, SE);
9734 const SCEV2ValueTy &ExpandedSCEVs,
Value *MainVectorTripCount,
9739 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9740 if (OrigPhi != OldInduction) {
9741 auto *BinOp =
II.getInductionBinOp();
9747 EndValueFromAdditionalBypass =
9749 II.getStartValue(), Step,
II.getKind(), BinOp);
9750 EndValueFromAdditionalBypass->
setName(
"ind.end");
9752 return EndValueFromAdditionalBypass;
9758 const SCEV2ValueTy &ExpandedSCEVs,
9759 Value *MainVectorTripCount) {
9764 if (Phi.getBasicBlockIndex(Pred) != -1)
9766 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9770 if (ScalarPH->hasPredecessors()) {
9773 for (
const auto &[R, IRPhi] :
9774 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9783 auto *Inc =
cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9785 IVPhi,
II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9788 Inc->setIncomingValueForBlock(BypassBlock, V);
9811 "expected this to be saved from the previous pass.");
9814 VecEpilogueIterationCountCheck, VecEpiloguePreHeader);
9817 VecEpilogueIterationCountCheck},
9819 VecEpiloguePreHeader}});
9824 VecEpilogueIterationCountCheck, ScalarPH);
9827 VecEpilogueIterationCountCheck},
9831 BasicBlock *SCEVCheckBlock = Checks.getSCEVChecks().second;
9832 BasicBlock *MemCheckBlock = Checks.getMemRuntimeChecks().second;
9833 if (SCEVCheckBlock) {
9835 VecEpilogueIterationCountCheck, ScalarPH);
9837 VecEpilogueIterationCountCheck},
9840 if (MemCheckBlock) {
9842 VecEpilogueIterationCountCheck, ScalarPH);
9855 for (
PHINode *Phi : PhisInBlock) {
9857 Phi->replaceIncomingBlockWith(
9859 VecEpilogueIterationCountCheck);
9866 return EPI.EpilogueIterationCountCheck == IncB;
9871 Phi->removeIncomingValue(SCEVCheckBlock);
9873 Phi->removeIncomingValue(MemCheckBlock);
9877 for (
auto *
I : InstsToMove)
9889 "VPlan-native path is not enabled. Only process inner loops.");
9892 << L->getHeader()->getParent()->getName() <<
"' from "
9893 << L->getLocStr() <<
"\n");
9898 dbgs() <<
"LV: Loop hints:"
9909 Function *
F = L->getHeader()->getParent();
9929 L->getHeader(),
PSI,
9936 &Requirements, &Hints,
DB,
AC,
9939 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Cannot prove legality.\n");
9946 "early exit is not enabled",
9947 "UncountableEarlyExitLoopsDisabled",
ORE, L);
9953 "faulting load is not supported",
9954 "PotentiallyFaultingLoadsNotSupported",
ORE, L);
9963 if (!L->isInnermost())
9968 assert(L->isInnermost() &&
"Inner loop expected.");
9971 bool UseInterleaved =
TTI->enableInterleavedAccessVectorization();
9985 [LoopLatch](
BasicBlock *BB) { return BB != LoopLatch; })) {
9987 "requiring a scalar epilogue is unsupported",
9988 "UncountableEarlyExitUnsupported",
ORE, L);
10001 if (ExpectedTC && ExpectedTC->isFixed() &&
10003 LLVM_DEBUG(
dbgs() <<
"LV: Found a loop with a very small trip count. "
10004 <<
"This loop is worth vectorizing only if no scalar "
10005 <<
"iteration overheads are incurred.");
10007 LLVM_DEBUG(
dbgs() <<
" But vectorizing was explicitly forced.\n");
10023 if (
F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10025 "Can't vectorize when the NoImplicitFloat attribute is used",
10026 "loop not vectorized due to NoImplicitFloat attribute",
10027 "NoImplicitFloat",
ORE, L);
10037 TTI->isFPVectorizationPotentiallyUnsafe()) {
10039 "Potentially unsafe FP op prevents vectorization",
10040 "loop not vectorized due to unsafe FP support.",
10041 "UnsafeFP",
ORE, L);
10046 bool AllowOrderedReductions;
10051 AllowOrderedReductions =
TTI->enableOrderedReductions();
10056 ExactFPMathInst->getDebugLoc(),
10057 ExactFPMathInst->getParent())
10058 <<
"loop not vectorized: cannot prove it is safe to reorder "
10059 "floating-point operations";
10061 LLVM_DEBUG(
dbgs() <<
"LV: loop not vectorized: cannot prove it is safe to "
10062 "reorder floating-point operations\n");
10068 LoopVectorizationCostModel CM(
SEL, L, PSE,
LI, &LVL, *
TTI,
TLI,
DB,
AC,
ORE,
10069 GetBFI,
F, &Hints, IAI, OptForSize);
10071 LoopVectorizationPlanner LVP(L,
LI,
DT,
TLI, *
TTI, &LVL, CM, IAI, PSE, Hints,
10081 LVP.
plan(UserVF, UserIC);
10088 GeneratedRTChecks Checks(PSE,
DT,
LI,
TTI,
F->getDataLayout(), CM.
CostKind);
10093 unsigned SelectedIC = std::max(IC, UserIC);
10102 if (Checks.getSCEVChecks().first &&
10103 match(Checks.getSCEVChecks().first,
m_One()))
10105 if (Checks.getMemRuntimeChecks().first &&
10106 match(Checks.getMemRuntimeChecks().first,
m_One()))
10111 bool ForceVectorization =
10115 if (!ForceVectorization &&
10121 DEBUG_TYPE,
"CantReorderMemOps", L->getStartLoc(),
10123 <<
"loop not vectorized: cannot prove it is safe to reorder "
10124 "memory operations";
10133 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10134 bool VectorizeLoop =
true, InterleaveLoop =
true;
10136 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is possible but not beneficial.\n");
10138 "VectorizationNotBeneficial",
10139 "the cost-model indicates that vectorization is not beneficial"};
10140 VectorizeLoop =
false;
10145 "UserIC should only be ignored due to unsafe dependencies");
10146 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring user-specified interleave count.\n");
10147 IntDiagMsg = {
"InterleavingUnsafe",
10148 "Ignoring user-specified interleave count due to possibly "
10149 "unsafe dependencies in the loop."};
10150 InterleaveLoop =
false;
10154 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring UserIC, because vectorization and "
10155 "interleaving should be avoided up front\n");
10156 IntDiagMsg = {
"InterleavingAvoided",
10157 "Ignoring UserIC, because interleaving was avoided up front"};
10158 InterleaveLoop =
false;
10159 }
else if (IC == 1 && UserIC <= 1) {
10163 "InterleavingNotBeneficial",
10164 "the cost-model indicates that interleaving is not beneficial"};
10165 InterleaveLoop =
false;
10167 IntDiagMsg.first =
"InterleavingNotBeneficialAndDisabled";
10168 IntDiagMsg.second +=
10169 " and is explicitly disabled or interleave count is set to 1";
10171 }
else if (IC > 1 && UserIC == 1) {
10173 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving is beneficial but is explicitly "
10175 IntDiagMsg = {
"InterleavingBeneficialButDisabled",
10176 "the cost-model indicates that interleaving is beneficial "
10177 "but is explicitly disabled or interleave count is set to 1"};
10178 InterleaveLoop =
false;
10184 if (!VectorizeLoop && InterleaveLoop && LVL.
hasHistograms()) {
10185 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving without vectorization due "
10186 <<
"to histogram operations.\n");
10188 "HistogramPreventsScalarInterleaving",
10189 "Unable to interleave without vectorization due to constraints on "
10190 "the order of histogram operations"};
10191 InterleaveLoop =
false;
10195 IC = UserIC > 0 ? UserIC : IC;
10199 if (!VectorizeLoop && !InterleaveLoop) {
10203 L->getStartLoc(), L->getHeader())
10204 << VecDiagMsg.second;
10208 L->getStartLoc(), L->getHeader())
10209 << IntDiagMsg.second;
10214 if (!VectorizeLoop && InterleaveLoop) {
10218 L->getStartLoc(), L->getHeader())
10219 << VecDiagMsg.second;
10221 }
else if (VectorizeLoop && !InterleaveLoop) {
10223 <<
") in " << L->getLocStr() <<
'\n');
10226 L->getStartLoc(), L->getHeader())
10227 << IntDiagMsg.second;
10229 }
else if (VectorizeLoop && InterleaveLoop) {
10231 <<
") in " << L->getLocStr() <<
'\n');
10237 using namespace ore;
10242 <<
"interleaved loop (interleaved count: "
10243 << NV(
"InterleaveCount", IC) <<
")";
10260 std::unique_ptr<VPlan> BestMainPlan(BestPlan.
duplicate());
10272 Checks, *BestMainPlan);
10274 *BestMainPlan, MainILV,
DT,
false);
10280 Checks, BestEpiPlan);
10282 BestEpiPlan, L, ExpandedSCEVs, EPI, CM, *PSE.
getSE());
10286 Checks, InstsToMove);
10287 ++LoopsEpilogueVectorized;
10289 InnerLoopVectorizer LB(L, PSE,
LI,
DT,
TTI,
AC, VF.
Width, IC, &CM, Checks,
10303 assert(
DT->verify(DominatorTree::VerificationLevel::Fast) &&
10304 "DT not preserved correctly");
10319 if (!
TTI->getNumberOfRegisters(
TTI->getRegisterClassForType(
true)) &&
10323 bool Changed =
false, CFGChanged =
false;
10330 for (
const auto &L : *
LI)
10342 LoopsAnalyzed += Worklist.
size();
10345 while (!Worklist.
empty()) {
10391 if (!Result.MadeAnyChange)
10405 if (Result.MadeCFGChange) {
10421 OS, MapClassName2PassName);
10424 OS << (InterleaveOnlyWhenForced ?
"" :
"no-") <<
"interleave-forced-only;";
10425 OS << (VectorizeOnlyWhenForced ?
"" :
"no-") <<
"vectorize-forced-only;";
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static cl::opt< bool > WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), cl::desc("Widen the loop induction variables, if possible, so " "overflow checks won't reject flattening"))
static const char * VerboseDebug
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static void legacyCSE(BasicBlock *BB)
FIXME: This legacy common-subexpression-elimination routine is scheduled for removal,...
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB, VPlan *Plan=nullptr)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static VPWidenIntOrFpInductionRecipe * createWidenInductionRecipes(VPInstruction *PhiR, const InductionDescriptor &IndDesc, VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop)
Creates a VPWidenIntOrFpInductionRecipe for PhiR.
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, bool OptForSize, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static void connectEpilogueVectorLoop(VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI, DominatorTree *DT, LoopVectorizationLegality &LVL, DenseMap< const SCEV *, Value * > &ExpandedSCEVs, GeneratedRTChecks &Checks, ArrayRef< Instruction * > InstsToMove)
Connect the epilogue vector loop generated for EpiPlan to the main vector.
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, bool OptForSize, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static SmallVector< Instruction * > preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel &CM, ScalarEvolution &SE)
Prepare Plan for vectorizing the epilogue loop.
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
This file implements a map that provides insertion order iteration.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static InstructionCost getScalarizationOverhead(const TargetTransformInfo &TTI, Type *ScalarTy, VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={})
This is similar to TargetTransformInfo::getScalarizationOverhead, but if ScalarTy is a FixedVectorTyp...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
static const uint32_t IV[8]
A manager for alias analyses.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
uint64_t getZExtValue() const
Get zero extended value.
unsigned getActiveBits() const
Compute the number of active bits in the value.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getTemporary()
static DebugLoc getUnknown()
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Implements a dense probed hash-table based set.
Analysis pass which computes a DominatorTree.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
static constexpr UpdateKind Delete
static constexpr UpdateKind Insert
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
void printDebugTracesAtEnd() override
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
void printDebugTracesAtEnd() override
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Check, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
static FastMathFlags getFast()
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Common base class shared among various IRBuilders.
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
const SCEV * getStep() const
ArrayRef< Instruction * > getCastInsts() const
Returns an ArrayRef to the type cast instructions in the induction update chain, that are redundant w...
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
Value * getStartValue() const
ElementCount MinProfitableTripCount
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, GeneratedRTChecks &RTChecks, VPlan &Plan)
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool useWideActiveLaneMask() const
Returns true if the use of wide lane masks is requested and the loop is using tail-folding with a lan...
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
bool hasPredStores() const
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
BlockFrequencyInfo * BFI
The BlockFrequencyInfo returned from GetBFI.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
BlockFrequencyInfo & getBFI()
Returns the BlockFrequencyInfo for the function if cached, otherwise fetches it via GetBFI.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
friend class LoopVectorizationPlanner
const Function * TheFunction
LoopVectorizationLegality * Legal
Vectorization legality.
uint64_t getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind, const BasicBlock *BB)
A helper function that returns how much we should divide the cost of a predicated block by.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
bool preferPredicatedLoop() const
Returns true if tail-folding is preferred over a scalar epilogue.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool runtimeChecksRequired()
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF)
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool isScalarWithPredication(Instruction *I, ElementCount VF)
Returns true if I is an instruction which requires predication and for which our chosen predication s...
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
std::function< BlockFrequencyInfo &()> GetBFI
A function to lazily fetch BlockFrequencyInfo.
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, bool OptForSize)
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool isSafeForAnyVectorWidth() const
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan, bool VectorizingEpilogue, MDNode *OrigLoopID, std::optional< unsigned > OrigAverageTripCount, unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Instruction * getExactFPInst()
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
enum ForceKind getForce() const
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
void emitRemarkWithHints() const
Dumps all the hint information.
bool isPotentiallyUnsafe() const
ElementCount getWidth() const
@ FK_Enabled
Forcing enabled.
@ FK_Undefined
Not selected.
@ FK_Disabled
Forcing disabled.
unsigned getPredicate() const
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
unsigned getInterleave() const
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
This class implements a map that also provides access to all stored values in a deterministic order.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
Type * getRecurrenceType() const
Returns the type of the recurrence.
bool hasUsesOutsideReductionChain() const
Returns true if the reduction PHI has any uses outside the reduction chain.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
TrackingVH< Value > getRecurrenceStartValue() const
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
void insert_range(Range &&R)
size_type count(const_arg_type key) const
Count the number of elements of a given key in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
A Use represents the edge between a Value definition and its users.
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Value * getOperand(unsigned i) const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of this VPBasicBlock.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRegionBlock * getEnclosingLoopRegion()
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
size_t getNumPredecessors() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
VPlan-based builder utility analogous to IRBuilder.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
Canonical scalar induction phi of the vector loop.
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
VPValue * getStartValue() const
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
A special type of VPBasicBlock that wraps an existing IR basic block.
Class to record and manage LLVM IR flags.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
unsigned getOpcode() const
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPRecipeBase * tryToCreateWidenRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for R if one can be created within the given VF Range.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
VPValue * getVPValueOrAddLiveIn(Value *V)
VPRecipeBase * tryToCreatePartialReduction(VPInstruction *Reduction, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(VPInstruction *VPI, VFRange &Range)
Build a VPReplicationRecipe for VPI.
A recipe for handling reduction phis.
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
A recipe to represent inloop, ordered or partial reduction operations.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the region.
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
void addOperand(VPValue *Operand)
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A common base class for widening memory operations.
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
bool hasVF(ElementCount VF) const
VPBasicBlock * getEntry()
VPValue & getVectorTripCount()
The vector trip count.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPValue * getLiveIn(Value *V) const
Return the live-in VPValue for V, if there is one or nullptr otherwise.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
LLVM_ABI_FOR_TEST VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isNonZero() const
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr bool isZero() const
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PredicateElseScalarEpilogue
@ PredicateOrDontVectorize
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
bind_ty< const SCEVMulExpr > m_scev_Mul(const SCEVMulExpr *&V)
bool match(const SCEV *S, const Pattern &P)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t, SCEV::FlagAnyWrap, true > m_scev_c_Mul(const Op0_t &Op0, const Op1_t &Op1)
class_match< const SCEV > m_SCEV()
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastLane, Op0_t > m_ExtractLastLane(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastPart, Op0_t > m_ExtractLastPart(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::ExtractLane, Op0_t, Op1_t > m_ExtractLane(const Op0_t &Op0, const Op1_t &Op1)
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
friend class Instruction
Iterator for Instructions in a `BasicBlock.
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
VPIRFlags getFlagsFromIndDesc(const InductionDescriptor &ID)
Extracts and returns NoWrap and FastMath flags from the induction binop in ID.
unsigned getVFScaleFactor(VPRecipeBase *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
const SCEV * getSCEVExprForVPValue(const VPValue *V, ScalarEvolution &SE, const Loop *L=nullptr)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
LLVM_ABI_FOR_TEST cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
ReductionStyle getReductionStyle(bool InLoop, bool Ordered, unsigned ScaleFactor)
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI_FOR_TEST cl::opt< bool > EnableWideActiveLaneMask
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
FunctionAddr VTableAddr Count
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
bool canConstantBeExtended(const APInt *C, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ Sub
Subtraction of integers.
@ AddChainWithSubs
A chain of adds and subs.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
std::variant< RdxOrdered, RdxInLoop, RdxUnordered > ReductionStyle
bool pred_empty(const BasicBlock *BB)
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
BasicBlock * MainLoopIterationCountCheck
BasicBlock * EpilogueIterationCountCheck
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
std::optional< unsigned > MaskPos
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
std::function< BlockFrequencyInfo &()> GetBFI
TargetTransformInfo * TTI
Storage for information about made changes.
A CRTP mix-in to automatically provide informational APIs needed for passes.
This reduction is unordered with the partial result scaled down by some factor.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
unsigned getPredBlockCostDivisor(BasicBlock *BB) const
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
TargetTransformInfo::TargetCostKind CostKind
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A recipe for handling first-order recurrence phis.
A struct that represents some properties of the register usage of a loop.
A recipe for widening select instructions.
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks