LLVM 22.0.0git
LoopVectorize.cpp
Go to the documentation of this file.
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10// and generates target-independent LLVM-IR.
11// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12// of instructions in order to estimate the profitability of vectorization.
13//
14// The loop vectorizer combines consecutive loop iterations into a single
15// 'wide' iteration. After this transformation the index is incremented
16// by the SIMD vector width, and not by one.
17//
18// This pass has three parts:
19// 1. The main loop pass that drives the different parts.
20// 2. LoopVectorizationLegality - A unit that checks for the legality
21// of the vectorization.
22// 3. InnerLoopVectorizer - A unit that performs the actual
23// widening of instructions.
24// 4. LoopVectorizationCostModel - A unit that checks for the profitability
25// of vectorization. It decides on the optimal vector width, which
26// can be one, if vectorization is not profitable.
27//
28// There is a development effort going on to migrate loop vectorizer to the
29// VPlan infrastructure and to introduce outer loop vectorization support (see
30// docs/VectorizationPlan.rst and
31// http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32// purpose, we temporarily introduced the VPlan-native vectorization path: an
33// alternative vectorization path that is natively implemented on top of the
34// VPlan infrastructure. See EnableVPlanNativePath for enabling.
35//
36//===----------------------------------------------------------------------===//
37//
38// The reduction-variable vectorization is based on the paper:
39// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40//
41// Variable uniformity checks are inspired by:
42// Karrenberg, R. and Hack, S. Whole Function Vectorization.
43//
44// The interleaved access vectorization is based on the paper:
45// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
46// Data for SIMD
47//
48// Other ideas/concepts are from:
49// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50//
51// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
52// Vectorizing Compilers.
53//
54//===----------------------------------------------------------------------===//
55
58#include "VPRecipeBuilder.h"
59#include "VPlan.h"
60#include "VPlanAnalysis.h"
61#include "VPlanCFG.h"
62#include "VPlanHelpers.h"
63#include "VPlanPatternMatch.h"
64#include "VPlanTransforms.h"
65#include "VPlanUtils.h"
66#include "VPlanVerifier.h"
67#include "llvm/ADT/APInt.h"
68#include "llvm/ADT/ArrayRef.h"
69#include "llvm/ADT/DenseMap.h"
71#include "llvm/ADT/Hashing.h"
72#include "llvm/ADT/MapVector.h"
73#include "llvm/ADT/STLExtras.h"
76#include "llvm/ADT/Statistic.h"
77#include "llvm/ADT/StringRef.h"
78#include "llvm/ADT/Twine.h"
79#include "llvm/ADT/TypeSwitch.h"
84#include "llvm/Analysis/CFG.h"
101#include "llvm/IR/Attributes.h"
102#include "llvm/IR/BasicBlock.h"
103#include "llvm/IR/CFG.h"
104#include "llvm/IR/Constant.h"
105#include "llvm/IR/Constants.h"
106#include "llvm/IR/DataLayout.h"
107#include "llvm/IR/DebugInfo.h"
108#include "llvm/IR/DebugLoc.h"
109#include "llvm/IR/DerivedTypes.h"
111#include "llvm/IR/Dominators.h"
112#include "llvm/IR/Function.h"
113#include "llvm/IR/IRBuilder.h"
114#include "llvm/IR/InstrTypes.h"
115#include "llvm/IR/Instruction.h"
116#include "llvm/IR/Instructions.h"
118#include "llvm/IR/Intrinsics.h"
119#include "llvm/IR/MDBuilder.h"
120#include "llvm/IR/Metadata.h"
121#include "llvm/IR/Module.h"
122#include "llvm/IR/Operator.h"
123#include "llvm/IR/PatternMatch.h"
125#include "llvm/IR/Type.h"
126#include "llvm/IR/Use.h"
127#include "llvm/IR/User.h"
128#include "llvm/IR/Value.h"
129#include "llvm/IR/Verifier.h"
130#include "llvm/Support/Casting.h"
132#include "llvm/Support/Debug.h"
147#include <algorithm>
148#include <cassert>
149#include <cmath>
150#include <cstdint>
151#include <functional>
152#include <iterator>
153#include <limits>
154#include <memory>
155#include <string>
156#include <tuple>
157#include <utility>
158
159using namespace llvm;
160using namespace SCEVPatternMatch;
161
162#define LV_NAME "loop-vectorize"
163#define DEBUG_TYPE LV_NAME
164
165#ifndef NDEBUG
166const char VerboseDebug[] = DEBUG_TYPE "-verbose";
167#endif
168
169STATISTIC(LoopsVectorized, "Number of loops vectorized");
170STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
171STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
172STATISTIC(LoopsEarlyExitVectorized, "Number of early exit loops vectorized");
173
175 "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
176 cl::desc("Enable vectorization of epilogue loops."));
177
179 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
180 cl::desc("When epilogue vectorization is enabled, and a value greater than "
181 "1 is specified, forces the given VF for all applicable epilogue "
182 "loops."));
183
185 "epilogue-vectorization-minimum-VF", cl::Hidden,
186 cl::desc("Only loops with vectorization factor equal to or larger than "
187 "the specified value are considered for epilogue vectorization."));
188
189/// Loops with a known constant trip count below this number are vectorized only
190/// if no scalar iteration overheads are incurred.
192 "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
193 cl::desc("Loops with a constant trip count that is smaller than this "
194 "value are vectorized only if no scalar iteration overheads "
195 "are incurred."));
196
198 "vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
199 cl::desc("The maximum allowed number of runtime memory checks"));
200
201// Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
202// that predication is preferred, and this lists all options. I.e., the
203// vectorizer will try to fold the tail-loop (epilogue) into the vector body
204// and predicate the instructions accordingly. If tail-folding fails, there are
205// different fallback strategies depending on these values:
212} // namespace PreferPredicateTy
213
215 "prefer-predicate-over-epilogue",
218 cl::desc("Tail-folding and predication preferences over creating a scalar "
219 "epilogue loop."),
221 "scalar-epilogue",
222 "Don't tail-predicate loops, create scalar epilogue"),
224 "predicate-else-scalar-epilogue",
225 "prefer tail-folding, create scalar epilogue if tail "
226 "folding fails."),
228 "predicate-dont-vectorize",
229 "prefers tail-folding, don't attempt vectorization if "
230 "tail-folding fails.")));
231
233 "force-tail-folding-style", cl::desc("Force the tail folding style"),
236 clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"),
239 "Create lane mask for data only, using active.lane.mask intrinsic"),
241 "data-without-lane-mask",
242 "Create lane mask with compare/stepvector"),
244 "Create lane mask using active.lane.mask intrinsic, and use "
245 "it for both data and control flow"),
247 "data-and-control-without-rt-check",
248 "Similar to data-and-control, but remove the runtime check"),
250 "Use predicated EVL instructions for tail folding. If EVL "
251 "is unsupported, fallback to data-without-lane-mask.")));
252
254 "enable-wide-lane-mask", cl::init(false), cl::Hidden,
255 cl::desc("Enable use of wide lane masks when used for control flow in "
256 "tail-folded loops"));
257
259 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
260 cl::desc("Maximize bandwidth when selecting vectorization factor which "
261 "will be determined by the smallest type in loop."));
262
264 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
265 cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
266
267/// An interleave-group may need masking if it resides in a block that needs
268/// predication, or in order to mask away gaps.
270 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
271 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
272
274 "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
275 cl::desc("A flag that overrides the target's number of scalar registers."));
276
278 "force-target-num-vector-regs", cl::init(0), cl::Hidden,
279 cl::desc("A flag that overrides the target's number of vector registers."));
280
282 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
283 cl::desc("A flag that overrides the target's max interleave factor for "
284 "scalar loops."));
285
287 "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
288 cl::desc("A flag that overrides the target's max interleave factor for "
289 "vectorized loops."));
290
292 "force-target-instruction-cost", cl::init(0), cl::Hidden,
293 cl::desc("A flag that overrides the target's expected cost for "
294 "an instruction to a single constant value. Mostly "
295 "useful for getting consistent testing."));
296
298 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
299 cl::desc(
300 "Pretend that scalable vectors are supported, even if the target does "
301 "not support them. This flag should only be used for testing."));
302
304 "small-loop-cost", cl::init(20), cl::Hidden,
305 cl::desc(
306 "The cost of a loop that is considered 'small' by the interleaver."));
307
309 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
310 cl::desc("Enable the use of the block frequency analysis to access PGO "
311 "heuristics minimizing code growth in cold regions and being more "
312 "aggressive in hot regions."));
313
314// Runtime interleave loops for load/store throughput.
316 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
317 cl::desc(
318 "Enable runtime interleaving until load/store ports are saturated"));
319
320/// The number of stores in a loop that are allowed to need predication.
322 "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
323 cl::desc("Max number of stores to be predicated behind an if."));
324
326 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
327 cl::desc("Count the induction variable only once when interleaving"));
328
330 "enable-cond-stores-vec", cl::init(true), cl::Hidden,
331 cl::desc("Enable if predication of stores during vectorization."));
332
334 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
335 cl::desc("The maximum interleave count to use when interleaving a scalar "
336 "reduction in a nested loop."));
337
338static cl::opt<bool>
339 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
341 cl::desc("Prefer in-loop vector reductions, "
342 "overriding the targets preference."));
343
345 "force-ordered-reductions", cl::init(false), cl::Hidden,
346 cl::desc("Enable the vectorisation of loops with in-order (strict) "
347 "FP reductions"));
348
350 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
351 cl::desc(
352 "Prefer predicating a reduction operation over an after loop select."));
353
355 "enable-vplan-native-path", cl::Hidden,
356 cl::desc("Enable VPlan-native vectorization path with "
357 "support for outer loop vectorization."));
358
360 llvm::VerifyEachVPlan("vplan-verify-each",
361#ifdef EXPENSIVE_CHECKS
362 cl::init(true),
363#else
364 cl::init(false),
365#endif
367 cl::desc("Verfiy VPlans after VPlan transforms."));
368
369// This flag enables the stress testing of the VPlan H-CFG construction in the
370// VPlan-native vectorization path. It must be used in conjuction with
371// -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
372// verification of the H-CFGs built.
374 "vplan-build-stress-test", cl::init(false), cl::Hidden,
375 cl::desc(
376 "Build VPlan for every supported loop nest in the function and bail "
377 "out right after the build (stress test the VPlan H-CFG construction "
378 "in the VPlan-native vectorization path)."));
379
381 "interleave-loops", cl::init(true), cl::Hidden,
382 cl::desc("Enable loop interleaving in Loop vectorization passes"));
384 "vectorize-loops", cl::init(true), cl::Hidden,
385 cl::desc("Run the Loop vectorization passes"));
386
388 "force-widen-divrem-via-safe-divisor", cl::Hidden,
389 cl::desc(
390 "Override cost based safe divisor widening for div/rem instructions"));
391
393 "vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true),
395 cl::desc("Try wider VFs if they enable the use of vector variants"));
396
398 "enable-early-exit-vectorization", cl::init(true), cl::Hidden,
399 cl::desc(
400 "Enable vectorization of early exit loops with uncountable exits."));
401
403 "vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden,
404 cl::desc("Discard VFs if their register pressure is too high."));
405
406// Likelyhood of bypassing the vectorized loop because there are zero trips left
407// after prolog. See `emitIterationCountCheck`.
408static constexpr uint32_t MinItersBypassWeights[] = {1, 127};
409
410/// A helper function that returns true if the given type is irregular. The
411/// type is irregular if its allocated size doesn't equal the store size of an
412/// element of the corresponding vector type.
413static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
414 // Determine if an array of N elements of type Ty is "bitcast compatible"
415 // with a <N x Ty> vector.
416 // This is only true if there is no padding between the array elements.
417 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
418}
419
420/// A version of ScalarEvolution::getSmallConstantTripCount that returns an
421/// ElementCount to include loops whose trip count is a function of vscale.
423 const Loop *L) {
424 if (unsigned ExpectedTC = SE->getSmallConstantTripCount(L))
425 return ElementCount::getFixed(ExpectedTC);
426
427 const SCEV *BTC = SE->getBackedgeTakenCount(L);
429 return ElementCount::getFixed(0);
430
431 const SCEV *ExitCount = SE->getTripCountFromExitCount(BTC, BTC->getType(), L);
432 if (isa<SCEVVScale>(ExitCount))
434
435 const APInt *Scale;
436 if (match(ExitCount, m_scev_Mul(m_scev_APInt(Scale), m_SCEVVScale())))
437 if (cast<SCEVMulExpr>(ExitCount)->hasNoUnsignedWrap())
438 if (Scale->getActiveBits() <= 32)
440
441 return ElementCount::getFixed(0);
442}
443
444/// Returns "best known" trip count, which is either a valid positive trip count
445/// or std::nullopt when an estimate cannot be made (including when the trip
446/// count would overflow), for the specified loop \p L as defined by the
447/// following procedure:
448/// 1) Returns exact trip count if it is known.
449/// 2) Returns expected trip count according to profile data if any.
450/// 3) Returns upper bound estimate if known, and if \p CanUseConstantMax.
451/// 4) Returns std::nullopt if all of the above failed.
452static std::optional<ElementCount>
454 bool CanUseConstantMax = true) {
455 // Check if exact trip count is known.
456 if (auto ExpectedTC = getSmallConstantTripCount(PSE.getSE(), L))
457 return ExpectedTC;
458
459 // Check if there is an expected trip count available from profile data.
461 if (auto EstimatedTC = getLoopEstimatedTripCount(L))
462 return ElementCount::getFixed(*EstimatedTC);
463
464 if (!CanUseConstantMax)
465 return std::nullopt;
466
467 // Check if upper bound estimate is known.
468 if (unsigned ExpectedTC = PSE.getSmallConstantMaxTripCount())
469 return ElementCount::getFixed(ExpectedTC);
470
471 return std::nullopt;
472}
473
474namespace {
475// Forward declare GeneratedRTChecks.
476class GeneratedRTChecks;
477
478using SCEV2ValueTy = DenseMap<const SCEV *, Value *>;
479} // namespace
480
481namespace llvm {
482
484
485/// InnerLoopVectorizer vectorizes loops which contain only one basic
486/// block to a specified vectorization factor (VF).
487/// This class performs the widening of scalars into vectors, or multiple
488/// scalars. This class also implements the following features:
489/// * It inserts an epilogue loop for handling loops that don't have iteration
490/// counts that are known to be a multiple of the vectorization factor.
491/// * It handles the code generation for reduction variables.
492/// * Scalarization (implementation using scalars) of un-vectorizable
493/// instructions.
494/// InnerLoopVectorizer does not perform any vectorization-legality
495/// checks, and relies on the caller to check for the different legality
496/// aspects. The InnerLoopVectorizer relies on the
497/// LoopVectorizationLegality class to provide information about the induction
498/// and reduction variables that were found to a given vectorization factor.
500public:
504 ElementCount VecWidth, unsigned UnrollFactor,
506 GeneratedRTChecks &RTChecks, VPlan &Plan)
507 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TTI(TTI), AC(AC),
508 VF(VecWidth), UF(UnrollFactor), Builder(PSE.getSE()->getContext()),
511 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
512
513 virtual ~InnerLoopVectorizer() = default;
514
515 /// Creates a basic block for the scalar preheader. Both
516 /// EpilogueVectorizerMainLoop and EpilogueVectorizerEpilogueLoop overwrite
517 /// the method to create additional blocks and checks needed for epilogue
518 /// vectorization.
520
521 /// Fix the vectorized code, taking care of header phi's, and more.
523
524 /// Fix the non-induction PHIs in \p Plan.
526
527 /// Returns the original loop trip count.
528 Value *getTripCount() const { return TripCount; }
529
530 /// Used to set the trip count after ILV's construction and after the
531 /// preheader block has been executed. Note that this always holds the trip
532 /// count of the original loop for both main loop and epilogue vectorization.
533 void setTripCount(Value *TC) { TripCount = TC; }
534
535protected:
537
538 /// Create and return a new IR basic block for the scalar preheader whose name
539 /// is prefixed with \p Prefix.
541
542 /// Allow subclasses to override and print debug traces before/after vplan
543 /// execution, when trace information is requested.
544 virtual void printDebugTracesAtStart() {}
545 virtual void printDebugTracesAtEnd() {}
546
547 /// The original loop.
549
550 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
551 /// dynamic knowledge to simplify SCEV expressions and converts them to a
552 /// more usable form.
554
555 /// Loop Info.
557
558 /// Dominator Tree.
560
561 /// Target Transform Info.
563
564 /// Assumption Cache.
566
567 /// The vectorization SIMD factor to use. Each vector will have this many
568 /// vector elements.
570
571 /// The vectorization unroll factor to use. Each scalar is vectorized to this
572 /// many different vector instructions.
573 unsigned UF;
574
575 /// The builder that we use
577
578 // --- Vectorization state ---
579
580 /// Trip count of the original loop.
581 Value *TripCount = nullptr;
582
583 /// The profitablity analysis.
585
586 /// Structure to hold information about generated runtime checks, responsible
587 /// for cleaning the checks, if vectorization turns out unprofitable.
588 GeneratedRTChecks &RTChecks;
589
591
592 /// The vector preheader block of \p Plan, used as target for check blocks
593 /// introduced during skeleton creation.
595};
596
597/// Encapsulate information regarding vectorization of a loop and its epilogue.
598/// This information is meant to be updated and used across two stages of
599/// epilogue vectorization.
602 unsigned MainLoopUF = 0;
604 unsigned EpilogueUF = 0;
607 Value *TripCount = nullptr;
610
612 ElementCount EVF, unsigned EUF,
614 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF),
616 assert(EUF == 1 &&
617 "A high UF for the epilogue loop is likely not beneficial.");
618 }
619};
620
621/// An extension of the inner loop vectorizer that creates a skeleton for a
622/// vectorized loop that has its epilogue (residual) also vectorized.
623/// The idea is to run the vplan on a given loop twice, firstly to setup the
624/// skeleton and vectorize the main loop, and secondly to complete the skeleton
625/// from the first step and vectorize the epilogue. This is achieved by
626/// deriving two concrete strategy classes from this base class and invoking
627/// them in succession from the loop vectorizer planner.
629public:
639
640 /// Holds and updates state information required to vectorize the main loop
641 /// and its epilogue in two separate passes. This setup helps us avoid
642 /// regenerating and recomputing runtime safety checks. It also helps us to
643 /// shorten the iteration-count-check path length for the cases where the
644 /// iteration count of the loop is so small that the main vector loop is
645 /// completely skipped.
647
648protected:
650};
651
652/// A specialized derived class of inner loop vectorizer that performs
653/// vectorization of *main* loops in the process of vectorizing loops and their
654/// epilogues.
656public:
667 /// Implements the interface for creating a vectorized skeleton using the
668 /// *main loop* strategy (i.e., the first pass of VPlan execution).
670
671protected:
672 /// Introduces a new VPIRBasicBlock for \p CheckIRBB to Plan between the
673 /// vector preheader and its predecessor, also connecting the new block to the
674 /// scalar preheader.
675 void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB);
676
677 // Create a check to see if the main vector loop should be executed
679 unsigned UF) const;
680
681 /// Emits an iteration count bypass check once for the main loop (when \p
682 /// ForEpilogue is false) and once for the epilogue loop (when \p
683 /// ForEpilogue is true).
685 bool ForEpilogue);
686 void printDebugTracesAtStart() override;
687 void printDebugTracesAtEnd() override;
688};
689
690// A specialized derived class of inner loop vectorizer that performs
691// vectorization of *epilogue* loops in the process of vectorizing loops and
692// their epilogues.
694public:
701 GeneratedRTChecks &Checks, VPlan &Plan)
703 Checks, Plan, EPI.EpilogueVF,
704 EPI.EpilogueVF, EPI.EpilogueUF) {}
705 /// Implements the interface for creating a vectorized skeleton using the
706 /// *epilogue loop* strategy (i.e., the second pass of VPlan execution).
708
709protected:
710 void printDebugTracesAtStart() override;
711 void printDebugTracesAtEnd() override;
712};
713} // end namespace llvm
714
715/// Look for a meaningful debug location on the instruction or its operands.
717 if (!I)
718 return DebugLoc::getUnknown();
719
721 if (I->getDebugLoc() != Empty)
722 return I->getDebugLoc();
723
724 for (Use &Op : I->operands()) {
725 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
726 if (OpInst->getDebugLoc() != Empty)
727 return OpInst->getDebugLoc();
728 }
729
730 return I->getDebugLoc();
731}
732
733/// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
734/// is passed, the message relates to that particular instruction.
735#ifndef NDEBUG
736static void debugVectorizationMessage(const StringRef Prefix,
737 const StringRef DebugMsg,
738 Instruction *I) {
739 dbgs() << "LV: " << Prefix << DebugMsg;
740 if (I != nullptr)
741 dbgs() << " " << *I;
742 else
743 dbgs() << '.';
744 dbgs() << '\n';
745}
746#endif
747
748/// Create an analysis remark that explains why vectorization failed
749///
750/// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p
751/// RemarkName is the identifier for the remark. If \p I is passed it is an
752/// instruction that prevents vectorization. Otherwise \p TheLoop is used for
753/// the location of the remark. If \p DL is passed, use it as debug location for
754/// the remark. \return the remark object that can be streamed to.
755static OptimizationRemarkAnalysis
756createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop,
757 Instruction *I, DebugLoc DL = {}) {
758 BasicBlock *CodeRegion = I ? I->getParent() : TheLoop->getHeader();
759 // If debug location is attached to the instruction, use it. Otherwise if DL
760 // was not provided, use the loop's.
761 if (I && I->getDebugLoc())
762 DL = I->getDebugLoc();
763 else if (!DL)
764 DL = TheLoop->getStartLoc();
765
766 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
767}
768
769namespace llvm {
770
771/// Return a value for Step multiplied by VF.
773 int64_t Step) {
774 assert(Ty->isIntegerTy() && "Expected an integer step");
775 ElementCount VFxStep = VF.multiplyCoefficientBy(Step);
776 assert(isPowerOf2_64(VF.getKnownMinValue()) && "must pass power-of-2 VF");
777 if (VF.isScalable() && isPowerOf2_64(Step)) {
778 return B.CreateShl(
779 B.CreateVScale(Ty),
780 ConstantInt::get(Ty, Log2_64(VFxStep.getKnownMinValue())), "", true);
781 }
782 return B.CreateElementCount(Ty, VFxStep);
783}
784
785/// Return the runtime value for VF.
787 return B.CreateElementCount(Ty, VF);
788}
789
791 const StringRef OREMsg, const StringRef ORETag,
792 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
793 Instruction *I) {
794 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
795 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
796 ORE->emit(
797 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
798 << "loop not vectorized: " << OREMsg);
799}
800
801/// Reports an informative message: print \p Msg for debugging purposes as well
802/// as an optimization remark. Uses either \p I as location of the remark, or
803/// otherwise \p TheLoop. If \p DL is passed, use it as debug location for the
804/// remark. If \p DL is passed, use it as debug location for the remark.
805static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
807 Loop *TheLoop, Instruction *I = nullptr,
808 DebugLoc DL = {}) {
810 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
811 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop,
812 I, DL)
813 << Msg);
814}
815
816/// Report successful vectorization of the loop. In case an outer loop is
817/// vectorized, prepend "outer" to the vectorization remark.
819 VectorizationFactor VF, unsigned IC) {
821 "Vectorizing: ", TheLoop->isInnermost() ? "innermost loop" : "outer loop",
822 nullptr));
823 StringRef LoopType = TheLoop->isInnermost() ? "" : "outer ";
824 ORE->emit([&]() {
825 return OptimizationRemark(LV_NAME, "Vectorized", TheLoop->getStartLoc(),
826 TheLoop->getHeader())
827 << "vectorized " << LoopType << "loop (vectorization width: "
828 << ore::NV("VectorizationFactor", VF.Width)
829 << ", interleaved count: " << ore::NV("InterleaveCount", IC) << ")";
830 });
831}
832
833} // end namespace llvm
834
835namespace llvm {
836
837// Loop vectorization cost-model hints how the scalar epilogue loop should be
838// lowered.
840
841 // The default: allowing scalar epilogues.
843
844 // Vectorization with OptForSize: don't allow epilogues.
846
847 // A special case of vectorisation with OptForSize: loops with a very small
848 // trip count are considered for vectorization under OptForSize, thereby
849 // making sure the cost of their loop body is dominant, free of runtime
850 // guards and scalar iteration overheads.
852
853 // Loop hint predicate indicating an epilogue is undesired.
855
856 // Directive indicating we must either tail fold or not vectorize
858};
859
860/// LoopVectorizationCostModel - estimates the expected speedups due to
861/// vectorization.
862/// In many cases vectorization is not profitable. This can happen because of
863/// a number of reasons. In this class we mainly attempt to predict the
864/// expected speedup/slowdowns due to the supported instruction set. We use the
865/// TargetTransformInfo to query the different backends for the cost of
866/// different operations.
869
870public:
878 std::function<BlockFrequencyInfo &()> GetBFI,
879 const Function *F, const LoopVectorizeHints *Hints,
881 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
882 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), GetBFI(GetBFI),
885 if (TTI.supportsScalableVectors() || ForceTargetSupportsScalableVectors)
886 initializeVScaleForTuning();
888 }
889
890 /// \return An upper bound for the vectorization factors (both fixed and
891 /// scalable). If the factors are 0, vectorization and interleaving should be
892 /// avoided up front.
893 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
894
895 /// \return True if runtime checks are required for vectorization, and false
896 /// otherwise.
897 bool runtimeChecksRequired();
898
899 /// Setup cost-based decisions for user vectorization factor.
900 /// \return true if the UserVF is a feasible VF to be chosen.
903 return expectedCost(UserVF).isValid();
904 }
905
906 /// \return True if maximizing vector bandwidth is enabled by the target or
907 /// user options, for the given register kind.
908 bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind);
909
910 /// \return True if register pressure should be considered for the given VF.
911 bool shouldConsiderRegPressureForVF(ElementCount VF);
912
913 /// \return The size (in bits) of the smallest and widest types in the code
914 /// that needs to be vectorized. We ignore values that remain scalar such as
915 /// 64 bit loop indices.
916 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
917
918 /// Memory access instruction may be vectorized in more than one way.
919 /// Form of instruction after vectorization depends on cost.
920 /// This function takes cost-based decisions for Load/Store instructions
921 /// and collects them in a map. This decisions map is used for building
922 /// the lists of loop-uniform and loop-scalar instructions.
923 /// The calculated cost is saved with widening decision in order to
924 /// avoid redundant calculations.
925 void setCostBasedWideningDecision(ElementCount VF);
926
927 /// A call may be vectorized in different ways depending on whether we have
928 /// vectorized variants available and whether the target supports masking.
929 /// This function analyzes all calls in the function at the supplied VF,
930 /// makes a decision based on the costs of available options, and stores that
931 /// decision in a map for use in planning and plan execution.
932 void setVectorizedCallDecision(ElementCount VF);
933
934 /// Collect values we want to ignore in the cost model.
935 void collectValuesToIgnore();
936
937 /// Collect all element types in the loop for which widening is needed.
938 void collectElementTypesForWidening();
939
940 /// Split reductions into those that happen in the loop, and those that happen
941 /// outside. In loop reductions are collected into InLoopReductions.
942 void collectInLoopReductions();
943
944 /// Returns true if we should use strict in-order reductions for the given
945 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
946 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
947 /// of FP operations.
948 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const {
949 return !Hints->allowReordering() && RdxDesc.isOrdered();
950 }
951
952 /// \returns The smallest bitwidth each instruction can be represented with.
953 /// The vector equivalents of these instructions should be truncated to this
954 /// type.
956 return MinBWs;
957 }
958
959 /// \returns True if it is more profitable to scalarize instruction \p I for
960 /// vectorization factor \p VF.
962 assert(VF.isVector() &&
963 "Profitable to scalarize relevant only for VF > 1.");
964 assert(
965 TheLoop->isInnermost() &&
966 "cost-model should not be used for outer loops (in VPlan-native path)");
967
968 auto Scalars = InstsToScalarize.find(VF);
969 assert(Scalars != InstsToScalarize.end() &&
970 "VF not yet analyzed for scalarization profitability");
971 return Scalars->second.contains(I);
972 }
973
974 /// Returns true if \p I is known to be uniform after vectorization.
976 assert(
977 TheLoop->isInnermost() &&
978 "cost-model should not be used for outer loops (in VPlan-native path)");
979 // Pseudo probe needs to be duplicated for each unrolled iteration and
980 // vector lane so that profiled loop trip count can be accurately
981 // accumulated instead of being under counted.
983 return false;
984
985 if (VF.isScalar())
986 return true;
987
988 auto UniformsPerVF = Uniforms.find(VF);
989 assert(UniformsPerVF != Uniforms.end() &&
990 "VF not yet analyzed for uniformity");
991 return UniformsPerVF->second.count(I);
992 }
993
994 /// Returns true if \p I is known to be scalar after vectorization.
996 assert(
997 TheLoop->isInnermost() &&
998 "cost-model should not be used for outer loops (in VPlan-native path)");
999 if (VF.isScalar())
1000 return true;
1001
1002 auto ScalarsPerVF = Scalars.find(VF);
1003 assert(ScalarsPerVF != Scalars.end() &&
1004 "Scalar values are not calculated for VF");
1005 return ScalarsPerVF->second.count(I);
1006 }
1007
1008 /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1009 /// for vectorization factor \p VF.
1011 // Truncs must truncate at most to their destination type.
1012 if (isa_and_nonnull<TruncInst>(I) && MinBWs.contains(I) &&
1013 I->getType()->getScalarSizeInBits() < MinBWs.lookup(I))
1014 return false;
1015 return VF.isVector() && MinBWs.contains(I) &&
1016 !isProfitableToScalarize(I, VF) &&
1018 }
1019
1020 /// Decision that was taken during cost calculation for memory instruction.
1023 CM_Widen, // For consecutive accesses with stride +1.
1024 CM_Widen_Reverse, // For consecutive accesses with stride -1.
1030 };
1031
1032 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1033 /// instruction \p I and vector width \p VF.
1036 assert(VF.isVector() && "Expected VF >=2");
1037 WideningDecisions[{I, VF}] = {W, Cost};
1038 }
1039
1040 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1041 /// interleaving group \p Grp and vector width \p VF.
1045 assert(VF.isVector() && "Expected VF >=2");
1046 /// Broadcast this decicion to all instructions inside the group.
1047 /// When interleaving, the cost will only be assigned one instruction, the
1048 /// insert position. For other cases, add the appropriate fraction of the
1049 /// total cost to each instruction. This ensures accurate costs are used,
1050 /// even if the insert position instruction is not used.
1051 InstructionCost InsertPosCost = Cost;
1052 InstructionCost OtherMemberCost = 0;
1053 if (W != CM_Interleave)
1054 OtherMemberCost = InsertPosCost = Cost / Grp->getNumMembers();
1055 ;
1056 for (unsigned Idx = 0; Idx < Grp->getFactor(); ++Idx) {
1057 if (auto *I = Grp->getMember(Idx)) {
1058 if (Grp->getInsertPos() == I)
1059 WideningDecisions[{I, VF}] = {W, InsertPosCost};
1060 else
1061 WideningDecisions[{I, VF}] = {W, OtherMemberCost};
1062 }
1063 }
1064 }
1065
1066 /// Return the cost model decision for the given instruction \p I and vector
1067 /// width \p VF. Return CM_Unknown if this instruction did not pass
1068 /// through the cost modeling.
1070 assert(VF.isVector() && "Expected VF to be a vector VF");
1071 assert(
1072 TheLoop->isInnermost() &&
1073 "cost-model should not be used for outer loops (in VPlan-native path)");
1074
1075 std::pair<Instruction *, ElementCount> InstOnVF(I, VF);
1076 auto Itr = WideningDecisions.find(InstOnVF);
1077 if (Itr == WideningDecisions.end())
1078 return CM_Unknown;
1079 return Itr->second.first;
1080 }
1081
1082 /// Return the vectorization cost for the given instruction \p I and vector
1083 /// width \p VF.
1085 assert(VF.isVector() && "Expected VF >=2");
1086 std::pair<Instruction *, ElementCount> InstOnVF(I, VF);
1087 assert(WideningDecisions.contains(InstOnVF) &&
1088 "The cost is not calculated");
1089 return WideningDecisions[InstOnVF].second;
1090 }
1091
1099
1101 Function *Variant, Intrinsic::ID IID,
1102 std::optional<unsigned> MaskPos,
1104 assert(!VF.isScalar() && "Expected vector VF");
1105 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos, Cost};
1106 }
1107
1109 ElementCount VF) const {
1110 assert(!VF.isScalar() && "Expected vector VF");
1111 auto I = CallWideningDecisions.find({CI, VF});
1112 if (I == CallWideningDecisions.end())
1113 return {CM_Unknown, nullptr, Intrinsic::not_intrinsic, std::nullopt, 0};
1114 return I->second;
1115 }
1116
1117 /// Return True if instruction \p I is an optimizable truncate whose operand
1118 /// is an induction variable. Such a truncate will be removed by adding a new
1119 /// induction variable with the destination type.
1121 // If the instruction is not a truncate, return false.
1122 auto *Trunc = dyn_cast<TruncInst>(I);
1123 if (!Trunc)
1124 return false;
1125
1126 // Get the source and destination types of the truncate.
1127 Type *SrcTy = toVectorTy(Trunc->getSrcTy(), VF);
1128 Type *DestTy = toVectorTy(Trunc->getDestTy(), VF);
1129
1130 // If the truncate is free for the given types, return false. Replacing a
1131 // free truncate with an induction variable would add an induction variable
1132 // update instruction to each iteration of the loop. We exclude from this
1133 // check the primary induction variable since it will need an update
1134 // instruction regardless.
1135 Value *Op = Trunc->getOperand(0);
1136 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1137 return false;
1138
1139 // If the truncated value is not an induction variable, return false.
1140 return Legal->isInductionPhi(Op);
1141 }
1142
1143 /// Collects the instructions to scalarize for each predicated instruction in
1144 /// the loop.
1145 void collectInstsToScalarize(ElementCount VF);
1146
1147 /// Collect values that will not be widened, including Uniforms, Scalars, and
1148 /// Instructions to Scalarize for the given \p VF.
1149 /// The sets depend on CM decision for Load/Store instructions
1150 /// that may be vectorized as interleave, gather-scatter or scalarized.
1151 /// Also make a decision on what to do about call instructions in the loop
1152 /// at that VF -- scalarize, call a known vector routine, or call a
1153 /// vector intrinsic.
1155 // Do the analysis once.
1156 if (VF.isScalar() || Uniforms.contains(VF))
1157 return;
1159 collectLoopUniforms(VF);
1161 collectLoopScalars(VF);
1163 }
1164
1165 /// Returns true if the target machine supports masked store operation
1166 /// for the given \p DataType and kind of access to \p Ptr.
1167 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment,
1168 unsigned AddressSpace) const {
1169 return Legal->isConsecutivePtr(DataType, Ptr) &&
1170 TTI.isLegalMaskedStore(DataType, Alignment, AddressSpace);
1171 }
1172
1173 /// Returns true if the target machine supports masked load operation
1174 /// for the given \p DataType and kind of access to \p Ptr.
1175 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment,
1176 unsigned AddressSpace) const {
1177 return Legal->isConsecutivePtr(DataType, Ptr) &&
1178 TTI.isLegalMaskedLoad(DataType, Alignment, AddressSpace);
1179 }
1180
1181 /// Returns true if the target machine can represent \p V as a masked gather
1182 /// or scatter operation.
1184 bool LI = isa<LoadInst>(V);
1185 bool SI = isa<StoreInst>(V);
1186 if (!LI && !SI)
1187 return false;
1188 auto *Ty = getLoadStoreType(V);
1190 if (VF.isVector())
1191 Ty = VectorType::get(Ty, VF);
1192 return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1193 (SI && TTI.isLegalMaskedScatter(Ty, Align));
1194 }
1195
1196 /// Returns true if the target machine supports all of the reduction
1197 /// variables found for the given VF.
1199 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1200 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1201 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1202 }));
1203 }
1204
1205 /// Given costs for both strategies, return true if the scalar predication
1206 /// lowering should be used for div/rem. This incorporates an override
1207 /// option so it is not simply a cost comparison.
1209 InstructionCost SafeDivisorCost) const {
1210 switch (ForceSafeDivisor) {
1211 case cl::BOU_UNSET:
1212 return ScalarCost < SafeDivisorCost;
1213 case cl::BOU_TRUE:
1214 return false;
1215 case cl::BOU_FALSE:
1216 return true;
1217 }
1218 llvm_unreachable("impossible case value");
1219 }
1220
1221 /// Returns true if \p I is an instruction which requires predication and
1222 /// for which our chosen predication strategy is scalarization (i.e. we
1223 /// don't have an alternate strategy such as masking available).
1224 /// \p VF is the vectorization factor that will be used to vectorize \p I.
1225 bool isScalarWithPredication(Instruction *I, ElementCount VF);
1226
1227 /// Returns true if \p I is an instruction that needs to be predicated
1228 /// at runtime. The result is independent of the predication mechanism.
1229 /// Superset of instructions that return true for isScalarWithPredication.
1230 bool isPredicatedInst(Instruction *I) const;
1231
1232 /// A helper function that returns how much we should divide the cost of a
1233 /// predicated block by. Typically this is the reciprocal of the block
1234 /// probability, i.e. if we return X we are assuming the predicated block will
1235 /// execute once for every X iterations of the loop header so the block should
1236 /// only contribute 1/X of its cost to the total cost calculation, but when
1237 /// optimizing for code size it will just be 1 as code size costs don't depend
1238 /// on execution probabilities.
1239 ///
1240 /// Note that if a block wasn't originally predicated but was predicated due
1241 /// to tail folding, the divisor will still be 1 because it will execute for
1242 /// every iteration of the loop header.
1243 inline uint64_t
1244 getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind,
1245 const BasicBlock *BB);
1246
1247 /// Return the costs for our two available strategies for lowering a
1248 /// div/rem operation which requires speculating at least one lane.
1249 /// First result is for scalarization (will be invalid for scalable
1250 /// vectors); second is for the safe-divisor strategy.
1251 std::pair<InstructionCost, InstructionCost>
1252 getDivRemSpeculationCost(Instruction *I, ElementCount VF);
1253
1254 /// Returns true if \p I is a memory instruction with consecutive memory
1255 /// access that can be widened.
1256 bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF);
1257
1258 /// Returns true if \p I is a memory instruction in an interleaved-group
1259 /// of memory accesses that can be vectorized with wide vector loads/stores
1260 /// and shuffles.
1261 bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const;
1262
1263 /// Check if \p Instr belongs to any interleaved access group.
1265 return InterleaveInfo.isInterleaved(Instr);
1266 }
1267
1268 /// Get the interleaved access group that \p Instr belongs to.
1271 return InterleaveInfo.getInterleaveGroup(Instr);
1272 }
1273
1274 /// Returns true if we're required to use a scalar epilogue for at least
1275 /// the final iteration of the original loop.
1276 bool requiresScalarEpilogue(bool IsVectorizing) const {
1277 if (!isScalarEpilogueAllowed()) {
1278 LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n");
1279 return false;
1280 }
1281 // If we might exit from anywhere but the latch and early exit vectorization
1282 // is disabled, we must run the exiting iteration in scalar form.
1283 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch() &&
1284 !(EnableEarlyExitVectorization && Legal->hasUncountableEarlyExit())) {
1285 LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: not exiting "
1286 "from latch block\n");
1287 return true;
1288 }
1289 if (IsVectorizing && InterleaveInfo.requiresScalarEpilogue()) {
1290 LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: "
1291 "interleaved group requires scalar epilogue\n");
1292 return true;
1293 }
1294 LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n");
1295 return false;
1296 }
1297
1298 /// Returns true if a scalar epilogue is not allowed due to optsize or a
1299 /// loop hint annotation.
1301 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1302 }
1303
1304 /// Returns true if tail-folding is preferred over a scalar epilogue.
1306 return ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate ||
1307 ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate;
1308 }
1309
1310 /// Returns the TailFoldingStyle that is best for the current loop.
1311 TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow = true) const {
1312 if (!ChosenTailFoldingStyle)
1314 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1315 : ChosenTailFoldingStyle->second;
1316 }
1317
1318 /// Selects and saves TailFoldingStyle for 2 options - if IV update may
1319 /// overflow or not.
1320 /// \param IsScalableVF true if scalable vector factors enabled.
1321 /// \param UserIC User specific interleave count.
1322 void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC) {
1323 assert(!ChosenTailFoldingStyle && "Tail folding must not be selected yet.");
1324 if (!Legal->canFoldTailByMasking()) {
1325 ChosenTailFoldingStyle = {TailFoldingStyle::None, TailFoldingStyle::None};
1326 return;
1327 }
1328
1329 // Default to TTI preference, but allow command line override.
1330 ChosenTailFoldingStyle = {
1331 TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/true),
1332 TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/false)};
1333 if (ForceTailFoldingStyle.getNumOccurrences())
1334 ChosenTailFoldingStyle = {ForceTailFoldingStyle.getValue(),
1335 ForceTailFoldingStyle.getValue()};
1336
1337 if (ChosenTailFoldingStyle->first != TailFoldingStyle::DataWithEVL &&
1338 ChosenTailFoldingStyle->second != TailFoldingStyle::DataWithEVL)
1339 return;
1340 // Override EVL styles if needed.
1341 // FIXME: Investigate opportunity for fixed vector factor.
1342 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1343 TTI.hasActiveVectorLength() && !EnableVPlanNativePath;
1344 if (EVLIsLegal)
1345 return;
1346 // If for some reason EVL mode is unsupported, fallback to a scalar epilogue
1347 // if it's allowed, or DataWithoutLaneMask otherwise.
1348 if (ScalarEpilogueStatus == CM_ScalarEpilogueAllowed ||
1349 ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate)
1350 ChosenTailFoldingStyle = {TailFoldingStyle::None, TailFoldingStyle::None};
1351 else
1352 ChosenTailFoldingStyle = {TailFoldingStyle::DataWithoutLaneMask,
1354
1355 LLVM_DEBUG(
1356 dbgs() << "LV: Preference for VP intrinsics indicated. Will "
1357 "not try to generate VP Intrinsics "
1358 << (UserIC > 1
1359 ? "since interleave count specified is greater than 1.\n"
1360 : "due to non-interleaving reasons.\n"));
1361 }
1362
1363 /// Returns true if all loop blocks should be masked to fold tail loop.
1364 bool foldTailByMasking() const {
1365 // TODO: check if it is possible to check for None style independent of
1366 // IVUpdateMayOverflow flag in getTailFoldingStyle.
1368 }
1369
1370 /// Returns true if the use of wide lane masks is requested and the loop is
1371 /// using tail-folding with a lane mask for control flow.
1380
1381 /// Return maximum safe number of elements to be processed per vector
1382 /// iteration, which do not prevent store-load forwarding and are safe with
1383 /// regard to the memory dependencies. Required for EVL-based VPlans to
1384 /// correctly calculate AVL (application vector length) as min(remaining AVL,
1385 /// MaxSafeElements).
1386 /// TODO: need to consider adjusting cost model to use this value as a
1387 /// vectorization factor for EVL-based vectorization.
1388 std::optional<unsigned> getMaxSafeElements() const { return MaxSafeElements; }
1389
1390 /// Returns true if the instructions in this block requires predication
1391 /// for any reason, e.g. because tail folding now requires a predicate
1392 /// or because the block in the original loop was predicated.
1394 return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1395 }
1396
1397 /// Returns true if VP intrinsics with explicit vector length support should
1398 /// be generated in the tail folded loop.
1402
1403 /// Returns true if the Phi is part of an inloop reduction.
1404 bool isInLoopReduction(PHINode *Phi) const {
1405 return InLoopReductions.contains(Phi);
1406 }
1407
1408 /// Returns true if the predicated reduction select should be used to set the
1409 /// incoming value for the reduction phi.
1411 // Force to use predicated reduction select since the EVL of the
1412 // second-to-last iteration might not be VF*UF.
1413 if (foldTailWithEVL())
1414 return true;
1416 TTI.preferPredicatedReductionSelect();
1417 }
1418
1419 /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1420 /// with factor VF. Return the cost of the instruction, including
1421 /// scalarization overhead if it's needed.
1422 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1423
1424 /// Estimate cost of a call instruction CI if it were vectorized with factor
1425 /// VF. Return the cost of the instruction, including scalarization overhead
1426 /// if it's needed.
1427 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const;
1428
1429 /// Invalidates decisions already taken by the cost model.
1431 WideningDecisions.clear();
1432 CallWideningDecisions.clear();
1433 Uniforms.clear();
1434 Scalars.clear();
1435 }
1436
1437 /// Returns the expected execution cost. The unit of the cost does
1438 /// not matter because we use the 'cost' units to compare different
1439 /// vector widths. The cost that is returned is *not* normalized by
1440 /// the factor width.
1441 InstructionCost expectedCost(ElementCount VF);
1442
1443 bool hasPredStores() const { return NumPredStores > 0; }
1444
1445 /// Returns true if epilogue vectorization is considered profitable, and
1446 /// false otherwise.
1447 /// \p VF is the vectorization factor chosen for the original loop.
1448 /// \p Multiplier is an aditional scaling factor applied to VF before
1449 /// comparing to EpilogueVectorizationMinVF.
1450 bool isEpilogueVectorizationProfitable(const ElementCount VF,
1451 const unsigned IC) const;
1452
1453 /// Returns the execution time cost of an instruction for a given vector
1454 /// width. Vector width of one means scalar.
1455 InstructionCost getInstructionCost(Instruction *I, ElementCount VF);
1456
1457 /// Return the cost of instructions in an inloop reduction pattern, if I is
1458 /// part of that pattern.
1459 std::optional<InstructionCost> getReductionPatternCost(Instruction *I,
1460 ElementCount VF,
1461 Type *VectorTy) const;
1462
1463 /// Returns true if \p Op should be considered invariant and if it is
1464 /// trivially hoistable.
1465 bool shouldConsiderInvariant(Value *Op);
1466
1467 /// Return the value of vscale used for tuning the cost model.
1468 std::optional<unsigned> getVScaleForTuning() const { return VScaleForTuning; }
1469
1470private:
1471 unsigned NumPredStores = 0;
1472
1473 /// Used to store the value of vscale used for tuning the cost model. It is
1474 /// initialized during object construction.
1475 std::optional<unsigned> VScaleForTuning;
1476
1477 /// Initializes the value of vscale used for tuning the cost model. If
1478 /// vscale_range.min == vscale_range.max then return vscale_range.max, else
1479 /// return the value returned by the corresponding TTI method.
1480 void initializeVScaleForTuning() {
1481 const Function *Fn = TheLoop->getHeader()->getParent();
1482 if (Fn->hasFnAttribute(Attribute::VScaleRange)) {
1483 auto Attr = Fn->getFnAttribute(Attribute::VScaleRange);
1484 auto Min = Attr.getVScaleRangeMin();
1485 auto Max = Attr.getVScaleRangeMax();
1486 if (Max && Min == Max) {
1487 VScaleForTuning = Max;
1488 return;
1489 }
1490 }
1491
1492 VScaleForTuning = TTI.getVScaleForTuning();
1493 }
1494
1495 /// \return An upper bound for the vectorization factors for both
1496 /// fixed and scalable vectorization, where the minimum-known number of
1497 /// elements is a power-of-2 larger than zero. If scalable vectorization is
1498 /// disabled or unsupported, then the scalable part will be equal to
1499 /// ElementCount::getScalable(0).
1500 FixedScalableVFPair computeFeasibleMaxVF(unsigned MaxTripCount,
1501 ElementCount UserVF,
1502 bool FoldTailByMasking);
1503
1504 /// If \p VF > MaxTripcount, clamps it to the next lower VF that is <=
1505 /// MaxTripCount.
1506 ElementCount clampVFByMaxTripCount(ElementCount VF, unsigned MaxTripCount,
1507 bool FoldTailByMasking) const;
1508
1509 /// \return the maximized element count based on the targets vector
1510 /// registers and the loop trip-count, but limited to a maximum safe VF.
1511 /// This is a helper function of computeFeasibleMaxVF.
1512 ElementCount getMaximizedVFForTarget(unsigned MaxTripCount,
1513 unsigned SmallestType,
1514 unsigned WidestType,
1515 ElementCount MaxSafeVF,
1516 bool FoldTailByMasking);
1517
1518 /// Checks if scalable vectorization is supported and enabled. Caches the
1519 /// result to avoid repeated debug dumps for repeated queries.
1520 bool isScalableVectorizationAllowed();
1521
1522 /// \return the maximum legal scalable VF, based on the safe max number
1523 /// of elements.
1524 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1525
1526 /// Calculate vectorization cost of memory instruction \p I.
1527 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1528
1529 /// The cost computation for scalarized memory instruction.
1530 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1531
1532 /// The cost computation for interleaving group of memory instructions.
1533 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1534
1535 /// The cost computation for Gather/Scatter instruction.
1536 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1537
1538 /// The cost computation for widening instruction \p I with consecutive
1539 /// memory access.
1540 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1541
1542 /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1543 /// Load: scalar load + broadcast.
1544 /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1545 /// element)
1546 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1547
1548 /// Estimate the overhead of scalarizing an instruction. This is a
1549 /// convenience wrapper for the type-based getScalarizationOverhead API.
1551 ElementCount VF) const;
1552
1553 /// Returns true if an artificially high cost for emulated masked memrefs
1554 /// should be used.
1555 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1556
1557 /// Map of scalar integer values to the smallest bitwidth they can be legally
1558 /// represented as. The vector equivalents of these values should be truncated
1559 /// to this type.
1560 MapVector<Instruction *, uint64_t> MinBWs;
1561
1562 /// A type representing the costs for instructions if they were to be
1563 /// scalarized rather than vectorized. The entries are Instruction-Cost
1564 /// pairs.
1565 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1566
1567 /// A set containing all BasicBlocks that are known to present after
1568 /// vectorization as a predicated block.
1569 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1570 PredicatedBBsAfterVectorization;
1571
1572 /// Records whether it is allowed to have the original scalar loop execute at
1573 /// least once. This may be needed as a fallback loop in case runtime
1574 /// aliasing/dependence checks fail, or to handle the tail/remainder
1575 /// iterations when the trip count is unknown or doesn't divide by the VF,
1576 /// or as a peel-loop to handle gaps in interleave-groups.
1577 /// Under optsize and when the trip count is very small we don't allow any
1578 /// iterations to execute in the scalar loop.
1579 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1580
1581 /// Control finally chosen tail folding style. The first element is used if
1582 /// the IV update may overflow, the second element - if it does not.
1583 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1584 ChosenTailFoldingStyle;
1585
1586 /// true if scalable vectorization is supported and enabled.
1587 std::optional<bool> IsScalableVectorizationAllowed;
1588
1589 /// Maximum safe number of elements to be processed per vector iteration,
1590 /// which do not prevent store-load forwarding and are safe with regard to the
1591 /// memory dependencies. Required for EVL-based veectorization, where this
1592 /// value is used as the upper bound of the safe AVL.
1593 std::optional<unsigned> MaxSafeElements;
1594
1595 /// A map holding scalar costs for different vectorization factors. The
1596 /// presence of a cost for an instruction in the mapping indicates that the
1597 /// instruction will be scalarized when vectorizing with the associated
1598 /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1599 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1600
1601 /// Holds the instructions known to be uniform after vectorization.
1602 /// The data is collected per VF.
1603 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1604
1605 /// Holds the instructions known to be scalar after vectorization.
1606 /// The data is collected per VF.
1607 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1608
1609 /// Holds the instructions (address computations) that are forced to be
1610 /// scalarized.
1611 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1612
1613 /// PHINodes of the reductions that should be expanded in-loop.
1614 SmallPtrSet<PHINode *, 4> InLoopReductions;
1615
1616 /// A Map of inloop reduction operations and their immediate chain operand.
1617 /// FIXME: This can be removed once reductions can be costed correctly in
1618 /// VPlan. This was added to allow quick lookup of the inloop operations.
1619 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1620
1621 /// Returns the expected difference in cost from scalarizing the expression
1622 /// feeding a predicated instruction \p PredInst. The instructions to
1623 /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1624 /// non-negative return value implies the expression will be scalarized.
1625 /// Currently, only single-use chains are considered for scalarization.
1626 InstructionCost computePredInstDiscount(Instruction *PredInst,
1627 ScalarCostsTy &ScalarCosts,
1628 ElementCount VF);
1629
1630 /// Collect the instructions that are uniform after vectorization. An
1631 /// instruction is uniform if we represent it with a single scalar value in
1632 /// the vectorized loop corresponding to each vector iteration. Examples of
1633 /// uniform instructions include pointer operands of consecutive or
1634 /// interleaved memory accesses. Note that although uniformity implies an
1635 /// instruction will be scalar, the reverse is not true. In general, a
1636 /// scalarized instruction will be represented by VF scalar values in the
1637 /// vectorized loop, each corresponding to an iteration of the original
1638 /// scalar loop.
1639 void collectLoopUniforms(ElementCount VF);
1640
1641 /// Collect the instructions that are scalar after vectorization. An
1642 /// instruction is scalar if it is known to be uniform or will be scalarized
1643 /// during vectorization. collectLoopScalars should only add non-uniform nodes
1644 /// to the list if they are used by a load/store instruction that is marked as
1645 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1646 /// VF values in the vectorized loop, each corresponding to an iteration of
1647 /// the original scalar loop.
1648 void collectLoopScalars(ElementCount VF);
1649
1650 /// Keeps cost model vectorization decision and cost for instructions.
1651 /// Right now it is used for memory instructions only.
1652 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1653 std::pair<InstWidening, InstructionCost>>;
1654
1655 DecisionList WideningDecisions;
1656
1657 using CallDecisionList =
1658 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
1659
1660 CallDecisionList CallWideningDecisions;
1661
1662 /// Returns true if \p V is expected to be vectorized and it needs to be
1663 /// extracted.
1664 bool needsExtract(Value *V, ElementCount VF) const {
1666 if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1667 TheLoop->isLoopInvariant(I) ||
1668 getWideningDecision(I, VF) == CM_Scalarize ||
1669 (isa<CallInst>(I) &&
1670 getCallWideningDecision(cast<CallInst>(I), VF).Kind == CM_Scalarize))
1671 return false;
1672
1673 // Assume we can vectorize V (and hence we need extraction) if the
1674 // scalars are not computed yet. This can happen, because it is called
1675 // via getScalarizationOverhead from setCostBasedWideningDecision, before
1676 // the scalars are collected. That should be a safe assumption in most
1677 // cases, because we check if the operands have vectorizable types
1678 // beforehand in LoopVectorizationLegality.
1679 return !Scalars.contains(VF) || !isScalarAfterVectorization(I, VF);
1680 };
1681
1682 /// Returns a range containing only operands needing to be extracted.
1683 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1684 ElementCount VF) const {
1685
1686 SmallPtrSet<const Value *, 4> UniqueOperands;
1688 for (Value *Op : Ops) {
1689 if (isa<Constant>(Op) || !UniqueOperands.insert(Op).second ||
1690 !needsExtract(Op, VF))
1691 continue;
1692 Res.push_back(Op);
1693 }
1694 return Res;
1695 }
1696
1697public:
1698 /// The loop that we evaluate.
1700
1701 /// Predicated scalar evolution analysis.
1703
1704 /// Loop Info analysis.
1706
1707 /// Vectorization legality.
1709
1710 /// Vector target information.
1712
1713 /// Target Library Info.
1715
1716 /// Demanded bits analysis.
1718
1719 /// Assumption cache.
1721
1722 /// Interface to emit optimization remarks.
1724
1725 /// A function to lazily fetch BlockFrequencyInfo. This avoids computing it
1726 /// unless necessary, e.g. when the loop isn't legal to vectorize or when
1727 /// there is no predication.
1728 std::function<BlockFrequencyInfo &()> GetBFI;
1729 /// The BlockFrequencyInfo returned from GetBFI.
1731 /// Returns the BlockFrequencyInfo for the function if cached, otherwise
1732 /// fetches it via GetBFI. Avoids an indirect call to the std::function.
1734 if (!BFI)
1735 BFI = &GetBFI();
1736 return *BFI;
1737 }
1738
1740
1741 /// Loop Vectorize Hint.
1743
1744 /// The interleave access information contains groups of interleaved accesses
1745 /// with the same stride and close to each other.
1747
1748 /// Values to ignore in the cost model.
1750
1751 /// Values to ignore in the cost model when VF > 1.
1753
1754 /// All element types found in the loop.
1756
1757 /// The kind of cost that we are calculating
1759
1760 /// Whether this loop should be optimized for size based on function attribute
1761 /// or profile information.
1763
1764 /// The highest VF possible for this loop, without using MaxBandwidth.
1766};
1767} // end namespace llvm
1768
1769namespace {
1770/// Helper struct to manage generating runtime checks for vectorization.
1771///
1772/// The runtime checks are created up-front in temporary blocks to allow better
1773/// estimating the cost and un-linked from the existing IR. After deciding to
1774/// vectorize, the checks are moved back. If deciding not to vectorize, the
1775/// temporary blocks are completely removed.
1776class GeneratedRTChecks {
1777 /// Basic block which contains the generated SCEV checks, if any.
1778 BasicBlock *SCEVCheckBlock = nullptr;
1779
1780 /// The value representing the result of the generated SCEV checks. If it is
1781 /// nullptr no SCEV checks have been generated.
1782 Value *SCEVCheckCond = nullptr;
1783
1784 /// Basic block which contains the generated memory runtime checks, if any.
1785 BasicBlock *MemCheckBlock = nullptr;
1786
1787 /// The value representing the result of the generated memory runtime checks.
1788 /// If it is nullptr no memory runtime checks have been generated.
1789 Value *MemRuntimeCheckCond = nullptr;
1790
1791 DominatorTree *DT;
1792 LoopInfo *LI;
1794
1795 SCEVExpander SCEVExp;
1796 SCEVExpander MemCheckExp;
1797
1798 bool CostTooHigh = false;
1799
1800 Loop *OuterLoop = nullptr;
1801
1803
1804 /// The kind of cost that we are calculating
1806
1807public:
1808 GeneratedRTChecks(PredicatedScalarEvolution &PSE, DominatorTree *DT,
1811 : DT(DT), LI(LI), TTI(TTI),
1812 SCEVExp(*PSE.getSE(), DL, "scev.check", /*PreserveLCSSA=*/false),
1813 MemCheckExp(*PSE.getSE(), DL, "scev.check", /*PreserveLCSSA=*/false),
1814 PSE(PSE), CostKind(CostKind) {}
1815
1816 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1817 /// accurately estimate the cost of the runtime checks. The blocks are
1818 /// un-linked from the IR and are added back during vector code generation. If
1819 /// there is no vector code generation, the check blocks are removed
1820 /// completely.
1821 void create(Loop *L, const LoopAccessInfo &LAI,
1822 const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) {
1823
1824 // Hard cutoff to limit compile-time increase in case a very large number of
1825 // runtime checks needs to be generated.
1826 // TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to
1827 // profile info.
1828 CostTooHigh =
1830 if (CostTooHigh)
1831 return;
1832
1833 BasicBlock *LoopHeader = L->getHeader();
1834 BasicBlock *Preheader = L->getLoopPreheader();
1835
1836 // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1837 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1838 // may be used by SCEVExpander. The blocks will be un-linked from their
1839 // predecessors and removed from LI & DT at the end of the function.
1840 if (!UnionPred.isAlwaysTrue()) {
1841 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1842 nullptr, "vector.scevcheck");
1843
1844 SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1845 &UnionPred, SCEVCheckBlock->getTerminator());
1846 if (isa<Constant>(SCEVCheckCond)) {
1847 // Clean up directly after expanding the predicate to a constant, to
1848 // avoid further expansions re-using anything left over from SCEVExp.
1849 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1850 SCEVCleaner.cleanup();
1851 }
1852 }
1853
1854 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1855 if (RtPtrChecking.Need) {
1856 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1857 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1858 "vector.memcheck");
1859
1860 auto DiffChecks = RtPtrChecking.getDiffChecks();
1861 if (DiffChecks) {
1862 Value *RuntimeVF = nullptr;
1863 MemRuntimeCheckCond = addDiffRuntimeChecks(
1864 MemCheckBlock->getTerminator(), *DiffChecks, MemCheckExp,
1865 [VF, &RuntimeVF](IRBuilderBase &B, unsigned Bits) {
1866 if (!RuntimeVF)
1867 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1868 return RuntimeVF;
1869 },
1870 IC);
1871 } else {
1872 MemRuntimeCheckCond = addRuntimeChecks(
1873 MemCheckBlock->getTerminator(), L, RtPtrChecking.getChecks(),
1875 }
1876 assert(MemRuntimeCheckCond &&
1877 "no RT checks generated although RtPtrChecking "
1878 "claimed checks are required");
1879 }
1880
1881 SCEVExp.eraseDeadInstructions(SCEVCheckCond);
1882
1883 if (!MemCheckBlock && !SCEVCheckBlock)
1884 return;
1885
1886 // Unhook the temporary block with the checks, update various places
1887 // accordingly.
1888 if (SCEVCheckBlock)
1889 SCEVCheckBlock->replaceAllUsesWith(Preheader);
1890 if (MemCheckBlock)
1891 MemCheckBlock->replaceAllUsesWith(Preheader);
1892
1893 if (SCEVCheckBlock) {
1894 SCEVCheckBlock->getTerminator()->moveBefore(
1895 Preheader->getTerminator()->getIterator());
1896 auto *UI = new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1897 UI->setDebugLoc(DebugLoc::getTemporary());
1898 Preheader->getTerminator()->eraseFromParent();
1899 }
1900 if (MemCheckBlock) {
1901 MemCheckBlock->getTerminator()->moveBefore(
1902 Preheader->getTerminator()->getIterator());
1903 auto *UI = new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1904 UI->setDebugLoc(DebugLoc::getTemporary());
1905 Preheader->getTerminator()->eraseFromParent();
1906 }
1907
1908 DT->changeImmediateDominator(LoopHeader, Preheader);
1909 if (MemCheckBlock) {
1910 DT->eraseNode(MemCheckBlock);
1911 LI->removeBlock(MemCheckBlock);
1912 }
1913 if (SCEVCheckBlock) {
1914 DT->eraseNode(SCEVCheckBlock);
1915 LI->removeBlock(SCEVCheckBlock);
1916 }
1917
1918 // Outer loop is used as part of the later cost calculations.
1919 OuterLoop = L->getParentLoop();
1920 }
1921
1923 if (SCEVCheckBlock || MemCheckBlock)
1924 LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n");
1925
1926 if (CostTooHigh) {
1928 Cost.setInvalid();
1929 LLVM_DEBUG(dbgs() << " number of checks exceeded threshold\n");
1930 return Cost;
1931 }
1932
1933 InstructionCost RTCheckCost = 0;
1934 if (SCEVCheckBlock)
1935 for (Instruction &I : *SCEVCheckBlock) {
1936 if (SCEVCheckBlock->getTerminator() == &I)
1937 continue;
1939 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
1940 RTCheckCost += C;
1941 }
1942 if (MemCheckBlock) {
1943 InstructionCost MemCheckCost = 0;
1944 for (Instruction &I : *MemCheckBlock) {
1945 if (MemCheckBlock->getTerminator() == &I)
1946 continue;
1948 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
1949 MemCheckCost += C;
1950 }
1951
1952 // If the runtime memory checks are being created inside an outer loop
1953 // we should find out if these checks are outer loop invariant. If so,
1954 // the checks will likely be hoisted out and so the effective cost will
1955 // reduce according to the outer loop trip count.
1956 if (OuterLoop) {
1957 ScalarEvolution *SE = MemCheckExp.getSE();
1958 // TODO: If profitable, we could refine this further by analysing every
1959 // individual memory check, since there could be a mixture of loop
1960 // variant and invariant checks that mean the final condition is
1961 // variant.
1962 const SCEV *Cond = SE->getSCEV(MemRuntimeCheckCond);
1963 if (SE->isLoopInvariant(Cond, OuterLoop)) {
1964 // It seems reasonable to assume that we can reduce the effective
1965 // cost of the checks even when we know nothing about the trip
1966 // count. Assume that the outer loop executes at least twice.
1967 unsigned BestTripCount = 2;
1968
1969 // Get the best known TC estimate.
1970 if (auto EstimatedTC = getSmallBestKnownTC(
1971 PSE, OuterLoop, /* CanUseConstantMax = */ false))
1972 if (EstimatedTC->isFixed())
1973 BestTripCount = EstimatedTC->getFixedValue();
1974
1975 InstructionCost NewMemCheckCost = MemCheckCost / BestTripCount;
1976
1977 // Let's ensure the cost is always at least 1.
1978 NewMemCheckCost = std::max(NewMemCheckCost.getValue(),
1979 (InstructionCost::CostType)1);
1980
1981 if (BestTripCount > 1)
1983 << "We expect runtime memory checks to be hoisted "
1984 << "out of the outer loop. Cost reduced from "
1985 << MemCheckCost << " to " << NewMemCheckCost << '\n');
1986
1987 MemCheckCost = NewMemCheckCost;
1988 }
1989 }
1990
1991 RTCheckCost += MemCheckCost;
1992 }
1993
1994 if (SCEVCheckBlock || MemCheckBlock)
1995 LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost
1996 << "\n");
1997
1998 return RTCheckCost;
1999 }
2000
2001 /// Remove the created SCEV & memory runtime check blocks & instructions, if
2002 /// unused.
2003 ~GeneratedRTChecks() {
2004 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2005 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2006 bool SCEVChecksUsed = !SCEVCheckBlock || !pred_empty(SCEVCheckBlock);
2007 bool MemChecksUsed = !MemCheckBlock || !pred_empty(MemCheckBlock);
2008 if (SCEVChecksUsed)
2009 SCEVCleaner.markResultUsed();
2010
2011 if (MemChecksUsed) {
2012 MemCheckCleaner.markResultUsed();
2013 } else {
2014 auto &SE = *MemCheckExp.getSE();
2015 // Memory runtime check generation creates compares that use expanded
2016 // values. Remove them before running the SCEVExpanderCleaners.
2017 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2018 if (MemCheckExp.isInsertedInstruction(&I))
2019 continue;
2020 SE.forgetValue(&I);
2021 I.eraseFromParent();
2022 }
2023 }
2024 MemCheckCleaner.cleanup();
2025 SCEVCleaner.cleanup();
2026
2027 if (!SCEVChecksUsed)
2028 SCEVCheckBlock->eraseFromParent();
2029 if (!MemChecksUsed)
2030 MemCheckBlock->eraseFromParent();
2031 }
2032
2033 /// Retrieves the SCEVCheckCond and SCEVCheckBlock that were generated as IR
2034 /// outside VPlan.
2035 std::pair<Value *, BasicBlock *> getSCEVChecks() const {
2036 using namespace llvm::PatternMatch;
2037 if (!SCEVCheckCond || match(SCEVCheckCond, m_ZeroInt()))
2038 return {nullptr, nullptr};
2039
2040 return {SCEVCheckCond, SCEVCheckBlock};
2041 }
2042
2043 /// Retrieves the MemCheckCond and MemCheckBlock that were generated as IR
2044 /// outside VPlan.
2045 std::pair<Value *, BasicBlock *> getMemRuntimeChecks() const {
2046 using namespace llvm::PatternMatch;
2047 if (MemRuntimeCheckCond && match(MemRuntimeCheckCond, m_ZeroInt()))
2048 return {nullptr, nullptr};
2049 return {MemRuntimeCheckCond, MemCheckBlock};
2050 }
2051
2052 /// Return true if any runtime checks have been added
2053 bool hasChecks() const {
2054 return getSCEVChecks().first || getMemRuntimeChecks().first;
2055 }
2056};
2057} // namespace
2058
2064
2069
2070// Return true if \p OuterLp is an outer loop annotated with hints for explicit
2071// vectorization. The loop needs to be annotated with #pragma omp simd
2072// simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2073// vector length information is not provided, vectorization is not considered
2074// explicit. Interleave hints are not allowed either. These limitations will be
2075// relaxed in the future.
2076// Please, note that we are currently forced to abuse the pragma 'clang
2077// vectorize' semantics. This pragma provides *auto-vectorization hints*
2078// (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2079// provides *explicit vectorization hints* (LV can bypass legal checks and
2080// assume that vectorization is legal). However, both hints are implemented
2081// using the same metadata (llvm.loop.vectorize, processed by
2082// LoopVectorizeHints). This will be fixed in the future when the native IR
2083// representation for pragma 'omp simd' is introduced.
2084static bool isExplicitVecOuterLoop(Loop *OuterLp,
2086 assert(!OuterLp->isInnermost() && "This is not an outer loop");
2087 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2088
2089 // Only outer loops with an explicit vectorization hint are supported.
2090 // Unannotated outer loops are ignored.
2092 return false;
2093
2094 Function *Fn = OuterLp->getHeader()->getParent();
2095 if (!Hints.allowVectorization(Fn, OuterLp,
2096 true /*VectorizeOnlyWhenForced*/)) {
2097 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2098 return false;
2099 }
2100
2101 if (Hints.getInterleave() > 1) {
2102 // TODO: Interleave support is future work.
2103 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2104 "outer loops.\n");
2105 Hints.emitRemarkWithHints();
2106 return false;
2107 }
2108
2109 return true;
2110}
2111
2115 // Collect inner loops and outer loops without irreducible control flow. For
2116 // now, only collect outer loops that have explicit vectorization hints. If we
2117 // are stress testing the VPlan H-CFG construction, we collect the outermost
2118 // loop of every loop nest.
2119 if (L.isInnermost() || VPlanBuildStressTest ||
2121 LoopBlocksRPO RPOT(&L);
2122 RPOT.perform(LI);
2124 V.push_back(&L);
2125 // TODO: Collect inner loops inside marked outer loops in case
2126 // vectorization fails for the outer loop. Do not invoke
2127 // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2128 // already known to be reducible. We can use an inherited attribute for
2129 // that.
2130 return;
2131 }
2132 }
2133 for (Loop *InnerL : L)
2134 collectSupportedLoops(*InnerL, LI, ORE, V);
2135}
2136
2137//===----------------------------------------------------------------------===//
2138// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2139// LoopVectorizationCostModel and LoopVectorizationPlanner.
2140//===----------------------------------------------------------------------===//
2141
2142/// Compute the transformed value of Index at offset StartValue using step
2143/// StepValue.
2144/// For integer induction, returns StartValue + Index * StepValue.
2145/// For pointer induction, returns StartValue[Index * StepValue].
2146/// FIXME: The newly created binary instructions should contain nsw/nuw
2147/// flags, which can be found from the original scalar operations.
2148static Value *
2150 Value *Step,
2152 const BinaryOperator *InductionBinOp) {
2153 using namespace llvm::PatternMatch;
2154 Type *StepTy = Step->getType();
2155 Value *CastedIndex = StepTy->isIntegerTy()
2156 ? B.CreateSExtOrTrunc(Index, StepTy)
2157 : B.CreateCast(Instruction::SIToFP, Index, StepTy);
2158 if (CastedIndex != Index) {
2159 CastedIndex->setName(CastedIndex->getName() + ".cast");
2160 Index = CastedIndex;
2161 }
2162
2163 // Note: the IR at this point is broken. We cannot use SE to create any new
2164 // SCEV and then expand it, hoping that SCEV's simplification will give us
2165 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2166 // lead to various SCEV crashes. So all we can do is to use builder and rely
2167 // on InstCombine for future simplifications. Here we handle some trivial
2168 // cases only.
2169 auto CreateAdd = [&B](Value *X, Value *Y) {
2170 assert(X->getType() == Y->getType() && "Types don't match!");
2171 if (match(X, m_ZeroInt()))
2172 return Y;
2173 if (match(Y, m_ZeroInt()))
2174 return X;
2175 return B.CreateAdd(X, Y);
2176 };
2177
2178 // We allow X to be a vector type, in which case Y will potentially be
2179 // splatted into a vector with the same element count.
2180 auto CreateMul = [&B](Value *X, Value *Y) {
2181 assert(X->getType()->getScalarType() == Y->getType() &&
2182 "Types don't match!");
2183 if (match(X, m_One()))
2184 return Y;
2185 if (match(Y, m_One()))
2186 return X;
2187 VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2188 if (XVTy && !isa<VectorType>(Y->getType()))
2189 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2190 return B.CreateMul(X, Y);
2191 };
2192
2193 switch (InductionKind) {
2195 assert(!isa<VectorType>(Index->getType()) &&
2196 "Vector indices not supported for integer inductions yet");
2197 assert(Index->getType() == StartValue->getType() &&
2198 "Index type does not match StartValue type");
2199 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2200 return B.CreateSub(StartValue, Index);
2201 auto *Offset = CreateMul(Index, Step);
2202 return CreateAdd(StartValue, Offset);
2203 }
2205 return B.CreatePtrAdd(StartValue, CreateMul(Index, Step));
2207 assert(!isa<VectorType>(Index->getType()) &&
2208 "Vector indices not supported for FP inductions yet");
2209 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2210 assert(InductionBinOp &&
2211 (InductionBinOp->getOpcode() == Instruction::FAdd ||
2212 InductionBinOp->getOpcode() == Instruction::FSub) &&
2213 "Original bin op should be defined for FP induction");
2214
2215 Value *MulExp = B.CreateFMul(Step, Index);
2216 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2217 "induction");
2218 }
2220 return nullptr;
2221 }
2222 llvm_unreachable("invalid enum");
2223}
2224
2225static std::optional<unsigned> getMaxVScale(const Function &F,
2226 const TargetTransformInfo &TTI) {
2227 if (std::optional<unsigned> MaxVScale = TTI.getMaxVScale())
2228 return MaxVScale;
2229
2230 if (F.hasFnAttribute(Attribute::VScaleRange))
2231 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2232
2233 return std::nullopt;
2234}
2235
2236/// For the given VF and UF and maximum trip count computed for the loop, return
2237/// whether the induction variable might overflow in the vectorized loop. If not,
2238/// then we know a runtime overflow check always evaluates to false and can be
2239/// removed.
2241 const LoopVectorizationCostModel *Cost,
2242 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2243 // Always be conservative if we don't know the exact unroll factor.
2244 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2245
2246 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2247 APInt MaxUIntTripCount = IdxTy->getMask();
2248
2249 // We know the runtime overflow check is known false iff the (max) trip-count
2250 // is known and (max) trip-count + (VF * UF) does not overflow in the type of
2251 // the vector loop induction variable.
2252 if (unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2253 uint64_t MaxVF = VF.getKnownMinValue();
2254 if (VF.isScalable()) {
2255 std::optional<unsigned> MaxVScale =
2256 getMaxVScale(*Cost->TheFunction, Cost->TTI);
2257 if (!MaxVScale)
2258 return false;
2259 MaxVF *= *MaxVScale;
2260 }
2261
2262 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2263 }
2264
2265 return false;
2266}
2267
2268// Return whether we allow using masked interleave-groups (for dealing with
2269// strided loads/stores that reside in predicated blocks, or for dealing
2270// with gaps).
2272 // If an override option has been passed in for interleaved accesses, use it.
2273 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2275
2276 return TTI.enableMaskedInterleavedAccessVectorization();
2277}
2278
2280 BasicBlock *CheckIRBB) {
2281 // Note: The block with the minimum trip-count check is already connected
2282 // during earlier VPlan construction.
2283 VPBlockBase *ScalarPH = Plan.getScalarPreheader();
2284 VPBlockBase *PreVectorPH = VectorPHVPBB->getSinglePredecessor();
2285 assert(PreVectorPH->getNumSuccessors() == 2 && "Expected 2 successors");
2286 assert(PreVectorPH->getSuccessors()[0] == ScalarPH && "Unexpected successor");
2287 VPIRBasicBlock *CheckVPIRBB = Plan.createVPIRBasicBlock(CheckIRBB);
2288 VPBlockUtils::insertOnEdge(PreVectorPH, VectorPHVPBB, CheckVPIRBB);
2289 PreVectorPH = CheckVPIRBB;
2290 VPBlockUtils::connectBlocks(PreVectorPH, ScalarPH);
2291 PreVectorPH->swapSuccessors();
2292
2293 // We just connected a new block to the scalar preheader. Update all
2294 // VPPhis by adding an incoming value for it, replicating the last value.
2295 unsigned NumPredecessors = ScalarPH->getNumPredecessors();
2296 for (VPRecipeBase &R : cast<VPBasicBlock>(ScalarPH)->phis()) {
2297 assert(isa<VPPhi>(&R) && "Phi expected to be VPPhi");
2298 assert(cast<VPPhi>(&R)->getNumIncoming() == NumPredecessors - 1 &&
2299 "must have incoming values for all operands");
2300 R.addOperand(R.getOperand(NumPredecessors - 2));
2301 }
2302}
2303
2305 BasicBlock *VectorPH, ElementCount VF, unsigned UF) const {
2306 // Generate code to check if the loop's trip count is less than VF * UF, or
2307 // equal to it in case a scalar epilogue is required; this implies that the
2308 // vector trip count is zero. This check also covers the case where adding one
2309 // to the backedge-taken count overflowed leading to an incorrect trip count
2310 // of zero. In this case we will also jump to the scalar loop.
2311 auto P = Cost->requiresScalarEpilogue(VF.isVector()) ? ICmpInst::ICMP_ULE
2313
2314 // Reuse existing vector loop preheader for TC checks.
2315 // Note that new preheader block is generated for vector loop.
2316 BasicBlock *const TCCheckBlock = VectorPH;
2318 TCCheckBlock->getContext(),
2319 InstSimplifyFolder(TCCheckBlock->getDataLayout()));
2320 Builder.SetInsertPoint(TCCheckBlock->getTerminator());
2321
2322 // If tail is to be folded, vector loop takes care of all iterations.
2324 Type *CountTy = Count->getType();
2325 Value *CheckMinIters = Builder.getFalse();
2326 auto CreateStep = [&]() -> Value * {
2327 // Create step with max(MinProTripCount, UF * VF).
2328 if (UF * VF.getKnownMinValue() >= MinProfitableTripCount.getKnownMinValue())
2329 return createStepForVF(Builder, CountTy, VF, UF);
2330
2331 Value *MinProfTC =
2332 Builder.CreateElementCount(CountTy, MinProfitableTripCount);
2333 if (!VF.isScalable())
2334 return MinProfTC;
2335 return Builder.CreateBinaryIntrinsic(
2336 Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF));
2337 };
2338
2339 TailFoldingStyle Style = Cost->getTailFoldingStyle();
2340 if (Style == TailFoldingStyle::None) {
2341 Value *Step = CreateStep();
2342 ScalarEvolution &SE = *PSE.getSE();
2343 // TODO: Emit unconditional branch to vector preheader instead of
2344 // conditional branch with known condition.
2345 const SCEV *TripCountSCEV = SE.applyLoopGuards(SE.getSCEV(Count), OrigLoop);
2346 // Check if the trip count is < the step.
2347 if (SE.isKnownPredicate(P, TripCountSCEV, SE.getSCEV(Step))) {
2348 // TODO: Ensure step is at most the trip count when determining max VF and
2349 // UF, w/o tail folding.
2350 CheckMinIters = Builder.getTrue();
2352 TripCountSCEV, SE.getSCEV(Step))) {
2353 // Generate the minimum iteration check only if we cannot prove the
2354 // check is known to be true, or known to be false.
2355 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
2356 } // else step known to be < trip count, use CheckMinIters preset to false.
2357 } else if (VF.isScalable() && !TTI->isVScaleKnownToBeAPowerOfTwo() &&
2360 // vscale is not necessarily a power-of-2, which means we cannot guarantee
2361 // an overflow to zero when updating induction variables and so an
2362 // additional overflow check is required before entering the vector loop.
2363
2364 // Get the maximum unsigned value for the type.
2365 Value *MaxUIntTripCount =
2366 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
2367 Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count);
2368
2369 // Don't execute the vector loop if (UMax - n) < (VF * UF).
2370 CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep());
2371 }
2372 return CheckMinIters;
2373}
2374
2375/// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p
2376/// VPBB are moved to the end of the newly created VPIRBasicBlock. All
2377/// predecessors and successors of VPBB, if any, are rewired to the new
2378/// VPIRBasicBlock. If \p VPBB may be unreachable, \p Plan must be passed.
2380 BasicBlock *IRBB,
2381 VPlan *Plan = nullptr) {
2382 if (!Plan)
2383 Plan = VPBB->getPlan();
2384 VPIRBasicBlock *IRVPBB = Plan->createVPIRBasicBlock(IRBB);
2385 auto IP = IRVPBB->begin();
2386 for (auto &R : make_early_inc_range(VPBB->phis()))
2387 R.moveBefore(*IRVPBB, IP);
2388
2389 for (auto &R :
2391 R.moveBefore(*IRVPBB, IRVPBB->end());
2392
2393 VPBlockUtils::reassociateBlocks(VPBB, IRVPBB);
2394 // VPBB is now dead and will be cleaned up when the plan gets destroyed.
2395 return IRVPBB;
2396}
2397
2399 BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
2400 assert(VectorPH && "Invalid loop structure");
2401 assert((OrigLoop->getUniqueLatchExitBlock() ||
2402 Cost->requiresScalarEpilogue(VF.isVector())) &&
2403 "loops not exiting via the latch without required epilogue?");
2404
2405 // NOTE: The Plan's scalar preheader VPBB isn't replaced with a VPIRBasicBlock
2406 // wrapping the newly created scalar preheader here at the moment, because the
2407 // Plan's scalar preheader may be unreachable at this point. Instead it is
2408 // replaced in executePlan.
2409 return SplitBlock(VectorPH, VectorPH->getTerminator(), DT, LI, nullptr,
2410 Twine(Prefix) + "scalar.ph");
2411}
2412
2413/// Return the expanded step for \p ID using \p ExpandedSCEVs to look up SCEV
2414/// expansion results.
2416 const SCEV2ValueTy &ExpandedSCEVs) {
2417 const SCEV *Step = ID.getStep();
2418 if (auto *C = dyn_cast<SCEVConstant>(Step))
2419 return C->getValue();
2420 if (auto *U = dyn_cast<SCEVUnknown>(Step))
2421 return U->getValue();
2422 Value *V = ExpandedSCEVs.lookup(Step);
2423 assert(V && "SCEV must be expanded at this point");
2424 return V;
2425}
2426
2427/// Knowing that loop \p L executes a single vector iteration, add instructions
2428/// that will get simplified and thus should not have any cost to \p
2429/// InstsToIgnore.
2432 SmallPtrSetImpl<Instruction *> &InstsToIgnore) {
2433 auto *Cmp = L->getLatchCmpInst();
2434 if (Cmp)
2435 InstsToIgnore.insert(Cmp);
2436 for (const auto &KV : IL) {
2437 // Extract the key by hand so that it can be used in the lambda below. Note
2438 // that captured structured bindings are a C++20 extension.
2439 const PHINode *IV = KV.first;
2440
2441 // Get next iteration value of the induction variable.
2442 Instruction *IVInst =
2443 cast<Instruction>(IV->getIncomingValueForBlock(L->getLoopLatch()));
2444 if (all_of(IVInst->users(),
2445 [&](const User *U) { return U == IV || U == Cmp; }))
2446 InstsToIgnore.insert(IVInst);
2447 }
2448}
2449
2451 // Create a new IR basic block for the scalar preheader.
2452 BasicBlock *ScalarPH = createScalarPreheader("");
2453 return ScalarPH->getSinglePredecessor();
2454}
2455
2456namespace {
2457
2458struct CSEDenseMapInfo {
2459 static bool canHandle(const Instruction *I) {
2462 }
2463
2464 static inline Instruction *getEmptyKey() {
2466 }
2467
2468 static inline Instruction *getTombstoneKey() {
2469 return DenseMapInfo<Instruction *>::getTombstoneKey();
2470 }
2471
2472 static unsigned getHashValue(const Instruction *I) {
2473 assert(canHandle(I) && "Unknown instruction!");
2474 return hash_combine(I->getOpcode(),
2475 hash_combine_range(I->operand_values()));
2476 }
2477
2478 static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
2479 if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
2480 LHS == getTombstoneKey() || RHS == getTombstoneKey())
2481 return LHS == RHS;
2482 return LHS->isIdenticalTo(RHS);
2483 }
2484};
2485
2486} // end anonymous namespace
2487
2488/// FIXME: This legacy common-subexpression-elimination routine is scheduled for
2489/// removal, in favor of the VPlan-based one.
2490static void legacyCSE(BasicBlock *BB) {
2491 // Perform simple cse.
2493 for (Instruction &In : llvm::make_early_inc_range(*BB)) {
2494 if (!CSEDenseMapInfo::canHandle(&In))
2495 continue;
2496
2497 // Check if we can replace this instruction with any of the
2498 // visited instructions.
2499 if (Instruction *V = CSEMap.lookup(&In)) {
2500 In.replaceAllUsesWith(V);
2501 In.eraseFromParent();
2502 continue;
2503 }
2504
2505 CSEMap[&In] = &In;
2506 }
2507}
2508
2509/// This function attempts to return a value that represents the ElementCount
2510/// at runtime. For fixed-width VFs we know this precisely at compile
2511/// time, but for scalable VFs we calculate it based on an estimate of the
2512/// vscale value.
2514 std::optional<unsigned> VScale) {
2515 unsigned EstimatedVF = VF.getKnownMinValue();
2516 if (VF.isScalable())
2517 if (VScale)
2518 EstimatedVF *= *VScale;
2519 assert(EstimatedVF >= 1 && "Estimated VF shouldn't be less than 1");
2520 return EstimatedVF;
2521}
2522
2525 ElementCount VF) const {
2526 // We only need to calculate a cost if the VF is scalar; for actual vectors
2527 // we should already have a pre-calculated cost at each VF.
2528 if (!VF.isScalar())
2529 return getCallWideningDecision(CI, VF).Cost;
2530
2531 Type *RetTy = CI->getType();
2533 if (auto RedCost = getReductionPatternCost(CI, VF, RetTy))
2534 return *RedCost;
2535
2537 for (auto &ArgOp : CI->args())
2538 Tys.push_back(ArgOp->getType());
2539
2540 InstructionCost ScalarCallCost =
2541 TTI.getCallInstrCost(CI->getCalledFunction(), RetTy, Tys, CostKind);
2542
2543 // If this is an intrinsic we may have a lower cost for it.
2546 return std::min(ScalarCallCost, IntrinsicCost);
2547 }
2548 return ScalarCallCost;
2549}
2550
2552 if (VF.isScalar() || !canVectorizeTy(Ty))
2553 return Ty;
2554 return toVectorizedTy(Ty, VF);
2555}
2556
2559 ElementCount VF) const {
2561 assert(ID && "Expected intrinsic call!");
2562 Type *RetTy = maybeVectorizeType(CI->getType(), VF);
2563 FastMathFlags FMF;
2564 if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
2565 FMF = FPMO->getFastMathFlags();
2566
2569 SmallVector<Type *> ParamTys;
2570 std::transform(FTy->param_begin(), FTy->param_end(),
2571 std::back_inserter(ParamTys),
2572 [&](Type *Ty) { return maybeVectorizeType(Ty, VF); });
2573
2574 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
2577 return TTI.getIntrinsicInstrCost(CostAttrs, CostKind);
2578}
2579
2581 // Fix widened non-induction PHIs by setting up the PHI operands.
2582 fixNonInductionPHIs(State);
2583
2584 // Don't apply optimizations below when no (vector) loop remains, as they all
2585 // require one at the moment.
2586 VPBasicBlock *HeaderVPBB =
2587 vputils::getFirstLoopHeader(*State.Plan, State.VPDT);
2588 if (!HeaderVPBB)
2589 return;
2590
2591 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2592
2593 // Remove redundant induction instructions.
2594 legacyCSE(HeaderBB);
2595}
2596
2598 auto Iter = vp_depth_first_shallow(Plan.getEntry());
2600 for (VPRecipeBase &P : VPBB->phis()) {
2602 if (!VPPhi)
2603 continue;
2604 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi));
2605 // Make sure the builder has a valid insert point.
2606 Builder.SetInsertPoint(NewPhi);
2607 for (const auto &[Inc, VPBB] : VPPhi->incoming_values_and_blocks())
2608 NewPhi->addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2609 }
2610 }
2611}
2612
2613void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
2614 // We should not collect Scalars more than once per VF. Right now, this
2615 // function is called from collectUniformsAndScalars(), which already does
2616 // this check. Collecting Scalars for VF=1 does not make any sense.
2617 assert(VF.isVector() && !Scalars.contains(VF) &&
2618 "This function should not be visited twice for the same VF");
2619
2620 // This avoids any chances of creating a REPLICATE recipe during planning
2621 // since that would result in generation of scalarized code during execution,
2622 // which is not supported for scalable vectors.
2623 if (VF.isScalable()) {
2624 Scalars[VF].insert_range(Uniforms[VF]);
2625 return;
2626 }
2627
2629
2630 // These sets are used to seed the analysis with pointers used by memory
2631 // accesses that will remain scalar.
2633 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
2634 auto *Latch = TheLoop->getLoopLatch();
2635
2636 // A helper that returns true if the use of Ptr by MemAccess will be scalar.
2637 // The pointer operands of loads and stores will be scalar as long as the
2638 // memory access is not a gather or scatter operation. The value operand of a
2639 // store will remain scalar if the store is scalarized.
2640 auto IsScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
2641 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
2642 assert(WideningDecision != CM_Unknown &&
2643 "Widening decision should be ready at this moment");
2644 if (auto *Store = dyn_cast<StoreInst>(MemAccess))
2645 if (Ptr == Store->getValueOperand())
2646 return WideningDecision == CM_Scalarize;
2647 assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
2648 "Ptr is neither a value or pointer operand");
2649 return WideningDecision != CM_GatherScatter;
2650 };
2651
2652 // A helper that returns true if the given value is a getelementptr
2653 // instruction contained in the loop.
2654 auto IsLoopVaryingGEP = [&](Value *V) {
2655 return isa<GetElementPtrInst>(V) && !TheLoop->isLoopInvariant(V);
2656 };
2657
2658 // A helper that evaluates a memory access's use of a pointer. If the use will
2659 // be a scalar use and the pointer is only used by memory accesses, we place
2660 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
2661 // PossibleNonScalarPtrs.
2662 auto EvaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
2663 // We only care about bitcast and getelementptr instructions contained in
2664 // the loop.
2665 if (!IsLoopVaryingGEP(Ptr))
2666 return;
2667
2668 // If the pointer has already been identified as scalar (e.g., if it was
2669 // also identified as uniform), there's nothing to do.
2670 auto *I = cast<Instruction>(Ptr);
2671 if (Worklist.count(I))
2672 return;
2673
2674 // If the use of the pointer will be a scalar use, and all users of the
2675 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
2676 // place the pointer in PossibleNonScalarPtrs.
2677 if (IsScalarUse(MemAccess, Ptr) &&
2679 ScalarPtrs.insert(I);
2680 else
2681 PossibleNonScalarPtrs.insert(I);
2682 };
2683
2684 // We seed the scalars analysis with three classes of instructions: (1)
2685 // instructions marked uniform-after-vectorization and (2) bitcast,
2686 // getelementptr and (pointer) phi instructions used by memory accesses
2687 // requiring a scalar use.
2688 //
2689 // (1) Add to the worklist all instructions that have been identified as
2690 // uniform-after-vectorization.
2691 Worklist.insert_range(Uniforms[VF]);
2692
2693 // (2) Add to the worklist all bitcast and getelementptr instructions used by
2694 // memory accesses requiring a scalar use. The pointer operands of loads and
2695 // stores will be scalar unless the operation is a gather or scatter.
2696 // The value operand of a store will remain scalar if the store is scalarized.
2697 for (auto *BB : TheLoop->blocks())
2698 for (auto &I : *BB) {
2699 if (auto *Load = dyn_cast<LoadInst>(&I)) {
2700 EvaluatePtrUse(Load, Load->getPointerOperand());
2701 } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
2702 EvaluatePtrUse(Store, Store->getPointerOperand());
2703 EvaluatePtrUse(Store, Store->getValueOperand());
2704 }
2705 }
2706 for (auto *I : ScalarPtrs)
2707 if (!PossibleNonScalarPtrs.count(I)) {
2708 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
2709 Worklist.insert(I);
2710 }
2711
2712 // Insert the forced scalars.
2713 // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector
2714 // induction variable when the PHI user is scalarized.
2715 auto ForcedScalar = ForcedScalars.find(VF);
2716 if (ForcedScalar != ForcedScalars.end())
2717 for (auto *I : ForcedScalar->second) {
2718 LLVM_DEBUG(dbgs() << "LV: Found (forced) scalar instruction: " << *I << "\n");
2719 Worklist.insert(I);
2720 }
2721
2722 // Expand the worklist by looking through any bitcasts and getelementptr
2723 // instructions we've already identified as scalar. This is similar to the
2724 // expansion step in collectLoopUniforms(); however, here we're only
2725 // expanding to include additional bitcasts and getelementptr instructions.
2726 unsigned Idx = 0;
2727 while (Idx != Worklist.size()) {
2728 Instruction *Dst = Worklist[Idx++];
2729 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2730 continue;
2731 auto *Src = cast<Instruction>(Dst->getOperand(0));
2732 if (llvm::all_of(Src->users(), [&](User *U) -> bool {
2733 auto *J = cast<Instruction>(U);
2734 return !TheLoop->contains(J) || Worklist.count(J) ||
2735 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2736 IsScalarUse(J, Src));
2737 })) {
2738 Worklist.insert(Src);
2739 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
2740 }
2741 }
2742
2743 // An induction variable will remain scalar if all users of the induction
2744 // variable and induction variable update remain scalar.
2745 for (const auto &Induction : Legal->getInductionVars()) {
2746 auto *Ind = Induction.first;
2747 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
2748
2749 // If tail-folding is applied, the primary induction variable will be used
2750 // to feed a vector compare.
2751 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
2752 continue;
2753
2754 // Returns true if \p Indvar is a pointer induction that is used directly by
2755 // load/store instruction \p I.
2756 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
2757 Instruction *I) {
2758 return Induction.second.getKind() ==
2761 Indvar == getLoadStorePointerOperand(I) && IsScalarUse(I, Indvar);
2762 };
2763
2764 // Determine if all users of the induction variable are scalar after
2765 // vectorization.
2766 bool ScalarInd = all_of(Ind->users(), [&](User *U) -> bool {
2767 auto *I = cast<Instruction>(U);
2768 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2769 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2770 });
2771 if (!ScalarInd)
2772 continue;
2773
2774 // If the induction variable update is a fixed-order recurrence, neither the
2775 // induction variable or its update should be marked scalar after
2776 // vectorization.
2777 auto *IndUpdatePhi = dyn_cast<PHINode>(IndUpdate);
2778 if (IndUpdatePhi && Legal->isFixedOrderRecurrence(IndUpdatePhi))
2779 continue;
2780
2781 // Determine if all users of the induction variable update instruction are
2782 // scalar after vectorization.
2783 bool ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
2784 auto *I = cast<Instruction>(U);
2785 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2786 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2787 });
2788 if (!ScalarIndUpdate)
2789 continue;
2790
2791 // The induction variable and its update instruction will remain scalar.
2792 Worklist.insert(Ind);
2793 Worklist.insert(IndUpdate);
2794 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
2795 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
2796 << "\n");
2797 }
2798
2799 Scalars[VF].insert_range(Worklist);
2800}
2801
2803 ElementCount VF) {
2804 if (!isPredicatedInst(I))
2805 return false;
2806
2807 // Do we have a non-scalar lowering for this predicated
2808 // instruction? No - it is scalar with predication.
2809 switch(I->getOpcode()) {
2810 default:
2811 return true;
2812 case Instruction::Call:
2813 if (VF.isScalar())
2814 return true;
2816 case Instruction::Load:
2817 case Instruction::Store: {
2818 auto *Ptr = getLoadStorePointerOperand(I);
2819 auto *Ty = getLoadStoreType(I);
2820 unsigned AS = getLoadStoreAddressSpace(I);
2821 Type *VTy = Ty;
2822 if (VF.isVector())
2823 VTy = VectorType::get(Ty, VF);
2824 const Align Alignment = getLoadStoreAlignment(I);
2825 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment, AS) ||
2826 TTI.isLegalMaskedGather(VTy, Alignment))
2827 : !(isLegalMaskedStore(Ty, Ptr, Alignment, AS) ||
2828 TTI.isLegalMaskedScatter(VTy, Alignment));
2829 }
2830 case Instruction::UDiv:
2831 case Instruction::SDiv:
2832 case Instruction::SRem:
2833 case Instruction::URem: {
2834 // We have the option to use the safe-divisor idiom to avoid predication.
2835 // The cost based decision here will always select safe-divisor for
2836 // scalable vectors as scalarization isn't legal.
2837 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
2838 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost);
2839 }
2840 }
2841}
2842
2843// TODO: Fold into LoopVectorizationLegality::isMaskRequired.
2845 // TODO: We can use the loop-preheader as context point here and get
2846 // context sensitive reasoning for isSafeToSpeculativelyExecute.
2848 (isa<LoadInst, StoreInst, CallInst>(I) && !Legal->isMaskRequired(I)) ||
2850 return false;
2851
2852 // If the instruction was executed conditionally in the original scalar loop,
2853 // predication is needed with a mask whose lanes are all possibly inactive.
2854 if (Legal->blockNeedsPredication(I->getParent()))
2855 return true;
2856
2857 // If we're not folding the tail by masking, predication is unnecessary.
2858 if (!foldTailByMasking())
2859 return false;
2860
2861 // All that remain are instructions with side-effects originally executed in
2862 // the loop unconditionally, but now execute under a tail-fold mask (only)
2863 // having at least one active lane (the first). If the side-effects of the
2864 // instruction are invariant, executing it w/o (the tail-folding) mask is safe
2865 // - it will cause the same side-effects as when masked.
2866 switch(I->getOpcode()) {
2867 default:
2869 "instruction should have been considered by earlier checks");
2870 case Instruction::Call:
2871 // Side-effects of a Call are assumed to be non-invariant, needing a
2872 // (fold-tail) mask.
2873 assert(Legal->isMaskRequired(I) &&
2874 "should have returned earlier for calls not needing a mask");
2875 return true;
2876 case Instruction::Load:
2877 // If the address is loop invariant no predication is needed.
2878 return !Legal->isInvariant(getLoadStorePointerOperand(I));
2879 case Instruction::Store: {
2880 // For stores, we need to prove both speculation safety (which follows from
2881 // the same argument as loads), but also must prove the value being stored
2882 // is correct. The easiest form of the later is to require that all values
2883 // stored are the same.
2884 return !(Legal->isInvariant(getLoadStorePointerOperand(I)) &&
2885 TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand()));
2886 }
2887 case Instruction::UDiv:
2888 case Instruction::SDiv:
2889 case Instruction::SRem:
2890 case Instruction::URem:
2891 // If the divisor is loop-invariant no predication is needed.
2892 return !Legal->isInvariant(I->getOperand(1));
2893 }
2894}
2895
2899 return 1;
2900 // If the block wasn't originally predicated then return early to avoid
2901 // computing BlockFrequencyInfo unnecessarily.
2902 if (!Legal->blockNeedsPredication(BB))
2903 return 1;
2904
2905 uint64_t HeaderFreq =
2906 getBFI().getBlockFreq(TheLoop->getHeader()).getFrequency();
2907 uint64_t BBFreq = getBFI().getBlockFreq(BB).getFrequency();
2908 assert(HeaderFreq >= BBFreq &&
2909 "Header has smaller block freq than dominated BB?");
2910 return std::round((double)HeaderFreq / BBFreq);
2911}
2912
2913std::pair<InstructionCost, InstructionCost>
2915 ElementCount VF) {
2916 assert(I->getOpcode() == Instruction::UDiv ||
2917 I->getOpcode() == Instruction::SDiv ||
2918 I->getOpcode() == Instruction::SRem ||
2919 I->getOpcode() == Instruction::URem);
2921
2922 // Scalarization isn't legal for scalable vector types
2923 InstructionCost ScalarizationCost = InstructionCost::getInvalid();
2924 if (!VF.isScalable()) {
2925 // Get the scalarization cost and scale this amount by the probability of
2926 // executing the predicated block. If the instruction is not predicated,
2927 // we fall through to the next case.
2928 ScalarizationCost = 0;
2929
2930 // These instructions have a non-void type, so account for the phi nodes
2931 // that we will create. This cost is likely to be zero. The phi node
2932 // cost, if any, should be scaled by the block probability because it
2933 // models a copy at the end of each predicated block.
2934 ScalarizationCost +=
2935 VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind);
2936
2937 // The cost of the non-predicated instruction.
2938 ScalarizationCost +=
2939 VF.getFixedValue() *
2940 TTI.getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind);
2941
2942 // The cost of insertelement and extractelement instructions needed for
2943 // scalarization.
2944 ScalarizationCost += getScalarizationOverhead(I, VF);
2945
2946 // Scale the cost by the probability of executing the predicated blocks.
2947 // This assumes the predicated block for each vector lane is equally
2948 // likely.
2949 ScalarizationCost =
2950 ScalarizationCost / getPredBlockCostDivisor(CostKind, I->getParent());
2951 }
2952
2953 InstructionCost SafeDivisorCost = 0;
2954 auto *VecTy = toVectorTy(I->getType(), VF);
2955 // The cost of the select guard to ensure all lanes are well defined
2956 // after we speculate above any internal control flow.
2957 SafeDivisorCost +=
2958 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2959 toVectorTy(Type::getInt1Ty(I->getContext()), VF),
2961
2962 SmallVector<const Value *, 4> Operands(I->operand_values());
2963 SafeDivisorCost += TTI.getArithmeticInstrCost(
2964 I->getOpcode(), VecTy, CostKind,
2965 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2966 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2967 Operands, I);
2968 return {ScalarizationCost, SafeDivisorCost};
2969}
2970
2972 Instruction *I, ElementCount VF) const {
2973 assert(isAccessInterleaved(I) && "Expecting interleaved access.");
2975 "Decision should not be set yet.");
2976 auto *Group = getInterleavedAccessGroup(I);
2977 assert(Group && "Must have a group.");
2978 unsigned InterleaveFactor = Group->getFactor();
2979
2980 // If the instruction's allocated size doesn't equal its type size, it
2981 // requires padding and will be scalarized.
2982 auto &DL = I->getDataLayout();
2983 auto *ScalarTy = getLoadStoreType(I);
2984 if (hasIrregularType(ScalarTy, DL))
2985 return false;
2986
2987 // For scalable vectors, the interleave factors must be <= 8 since we require
2988 // the (de)interleaveN intrinsics instead of shufflevectors.
2989 if (VF.isScalable() && InterleaveFactor > 8)
2990 return false;
2991
2992 // If the group involves a non-integral pointer, we may not be able to
2993 // losslessly cast all values to a common type.
2994 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
2995 for (unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
2996 Instruction *Member = Group->getMember(Idx);
2997 if (!Member)
2998 continue;
2999 auto *MemberTy = getLoadStoreType(Member);
3000 bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
3001 // Don't coerce non-integral pointers to integers or vice versa.
3002 if (MemberNI != ScalarNI)
3003 // TODO: Consider adding special nullptr value case here
3004 return false;
3005 if (MemberNI && ScalarNI &&
3006 ScalarTy->getPointerAddressSpace() !=
3007 MemberTy->getPointerAddressSpace())
3008 return false;
3009 }
3010
3011 // Check if masking is required.
3012 // A Group may need masking for one of two reasons: it resides in a block that
3013 // needs predication, or it was decided to use masking to deal with gaps
3014 // (either a gap at the end of a load-access that may result in a speculative
3015 // load, or any gaps in a store-access).
3016 bool PredicatedAccessRequiresMasking =
3017 blockNeedsPredicationForAnyReason(I->getParent()) &&
3018 Legal->isMaskRequired(I);
3019 bool LoadAccessWithGapsRequiresEpilogMasking =
3020 isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
3022 bool StoreAccessWithGapsRequiresMasking =
3023 isa<StoreInst>(I) && !Group->isFull();
3024 if (!PredicatedAccessRequiresMasking &&
3025 !LoadAccessWithGapsRequiresEpilogMasking &&
3026 !StoreAccessWithGapsRequiresMasking)
3027 return true;
3028
3029 // If masked interleaving is required, we expect that the user/target had
3030 // enabled it, because otherwise it either wouldn't have been created or
3031 // it should have been invalidated by the CostModel.
3033 "Masked interleave-groups for predicated accesses are not enabled.");
3034
3035 if (Group->isReverse())
3036 return false;
3037
3038 // TODO: Support interleaved access that requires a gap mask for scalable VFs.
3039 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
3040 StoreAccessWithGapsRequiresMasking;
3041 if (VF.isScalable() && NeedsMaskForGaps)
3042 return false;
3043
3044 auto *Ty = getLoadStoreType(I);
3045 const Align Alignment = getLoadStoreAlignment(I);
3046 unsigned AS = getLoadStoreAddressSpace(I);
3047 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment, AS)
3048 : TTI.isLegalMaskedStore(Ty, Alignment, AS);
3049}
3050
3052 Instruction *I, ElementCount VF) {
3053 // Get and ensure we have a valid memory instruction.
3054 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
3055
3056 auto *Ptr = getLoadStorePointerOperand(I);
3057 auto *ScalarTy = getLoadStoreType(I);
3058
3059 // In order to be widened, the pointer should be consecutive, first of all.
3060 if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
3061 return false;
3062
3063 // If the instruction is a store located in a predicated block, it will be
3064 // scalarized.
3065 if (isScalarWithPredication(I, VF))
3066 return false;
3067
3068 // If the instruction's allocated size doesn't equal it's type size, it
3069 // requires padding and will be scalarized.
3070 auto &DL = I->getDataLayout();
3071 if (hasIrregularType(ScalarTy, DL))
3072 return false;
3073
3074 return true;
3075}
3076
3077void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
3078 // We should not collect Uniforms more than once per VF. Right now,
3079 // this function is called from collectUniformsAndScalars(), which
3080 // already does this check. Collecting Uniforms for VF=1 does not make any
3081 // sense.
3082
3083 assert(VF.isVector() && !Uniforms.contains(VF) &&
3084 "This function should not be visited twice for the same VF");
3085
3086 // Visit the list of Uniforms. If we find no uniform value, we won't
3087 // analyze again. Uniforms.count(VF) will return 1.
3088 Uniforms[VF].clear();
3089
3090 // Now we know that the loop is vectorizable!
3091 // Collect instructions inside the loop that will remain uniform after
3092 // vectorization.
3093
3094 // Global values, params and instructions outside of current loop are out of
3095 // scope.
3096 auto IsOutOfScope = [&](Value *V) -> bool {
3098 return (!I || !TheLoop->contains(I));
3099 };
3100
3101 // Worklist containing uniform instructions demanding lane 0.
3102 SetVector<Instruction *> Worklist;
3103
3104 // Add uniform instructions demanding lane 0 to the worklist. Instructions
3105 // that require predication must not be considered uniform after
3106 // vectorization, because that would create an erroneous replicating region
3107 // where only a single instance out of VF should be formed.
3108 auto AddToWorklistIfAllowed = [&](Instruction *I) -> void {
3109 if (IsOutOfScope(I)) {
3110 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
3111 << *I << "\n");
3112 return;
3113 }
3114 if (isPredicatedInst(I)) {
3115 LLVM_DEBUG(
3116 dbgs() << "LV: Found not uniform due to requiring predication: " << *I
3117 << "\n");
3118 return;
3119 }
3120 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
3121 Worklist.insert(I);
3122 };
3123
3124 // Start with the conditional branches exiting the loop. If the branch
3125 // condition is an instruction contained in the loop that is only used by the
3126 // branch, it is uniform. Note conditions from uncountable early exits are not
3127 // uniform.
3129 TheLoop->getExitingBlocks(Exiting);
3130 for (BasicBlock *E : Exiting) {
3131 if (Legal->hasUncountableEarlyExit() && TheLoop->getLoopLatch() != E)
3132 continue;
3133 auto *Cmp = dyn_cast<Instruction>(E->getTerminator()->getOperand(0));
3134 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
3135 AddToWorklistIfAllowed(Cmp);
3136 }
3137
3138 auto PrevVF = VF.divideCoefficientBy(2);
3139 // Return true if all lanes perform the same memory operation, and we can
3140 // thus choose to execute only one.
3141 auto IsUniformMemOpUse = [&](Instruction *I) {
3142 // If the value was already known to not be uniform for the previous
3143 // (smaller VF), it cannot be uniform for the larger VF.
3144 if (PrevVF.isVector()) {
3145 auto Iter = Uniforms.find(PrevVF);
3146 if (Iter != Uniforms.end() && !Iter->second.contains(I))
3147 return false;
3148 }
3149 if (!Legal->isUniformMemOp(*I, VF))
3150 return false;
3151 if (isa<LoadInst>(I))
3152 // Loading the same address always produces the same result - at least
3153 // assuming aliasing and ordering which have already been checked.
3154 return true;
3155 // Storing the same value on every iteration.
3156 return TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand());
3157 };
3158
3159 auto IsUniformDecision = [&](Instruction *I, ElementCount VF) {
3160 InstWidening WideningDecision = getWideningDecision(I, VF);
3161 assert(WideningDecision != CM_Unknown &&
3162 "Widening decision should be ready at this moment");
3163
3164 if (IsUniformMemOpUse(I))
3165 return true;
3166
3167 return (WideningDecision == CM_Widen ||
3168 WideningDecision == CM_Widen_Reverse ||
3169 WideningDecision == CM_Interleave);
3170 };
3171
3172 // Returns true if Ptr is the pointer operand of a memory access instruction
3173 // I, I is known to not require scalarization, and the pointer is not also
3174 // stored.
3175 auto IsVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
3176 if (isa<StoreInst>(I) && I->getOperand(0) == Ptr)
3177 return false;
3178 return getLoadStorePointerOperand(I) == Ptr &&
3179 (IsUniformDecision(I, VF) || Legal->isInvariant(Ptr));
3180 };
3181
3182 // Holds a list of values which are known to have at least one uniform use.
3183 // Note that there may be other uses which aren't uniform. A "uniform use"
3184 // here is something which only demands lane 0 of the unrolled iterations;
3185 // it does not imply that all lanes produce the same value (e.g. this is not
3186 // the usual meaning of uniform)
3187 SetVector<Value *> HasUniformUse;
3188
3189 // Scan the loop for instructions which are either a) known to have only
3190 // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
3191 for (auto *BB : TheLoop->blocks())
3192 for (auto &I : *BB) {
3193 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
3194 switch (II->getIntrinsicID()) {
3195 case Intrinsic::sideeffect:
3196 case Intrinsic::experimental_noalias_scope_decl:
3197 case Intrinsic::assume:
3198 case Intrinsic::lifetime_start:
3199 case Intrinsic::lifetime_end:
3200 if (TheLoop->hasLoopInvariantOperands(&I))
3201 AddToWorklistIfAllowed(&I);
3202 break;
3203 default:
3204 break;
3205 }
3206 }
3207
3208 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
3209 if (IsOutOfScope(EVI->getAggregateOperand())) {
3210 AddToWorklistIfAllowed(EVI);
3211 continue;
3212 }
3213 // Only ExtractValue instructions where the aggregate value comes from a
3214 // call are allowed to be non-uniform.
3215 assert(isa<CallInst>(EVI->getAggregateOperand()) &&
3216 "Expected aggregate value to be call return value");
3217 }
3218
3219 // If there's no pointer operand, there's nothing to do.
3220 auto *Ptr = getLoadStorePointerOperand(&I);
3221 if (!Ptr)
3222 continue;
3223
3224 // If the pointer can be proven to be uniform, always add it to the
3225 // worklist.
3226 if (isa<Instruction>(Ptr) && Legal->isUniform(Ptr, VF))
3227 AddToWorklistIfAllowed(cast<Instruction>(Ptr));
3228
3229 if (IsUniformMemOpUse(&I))
3230 AddToWorklistIfAllowed(&I);
3231
3232 if (IsVectorizedMemAccessUse(&I, Ptr))
3233 HasUniformUse.insert(Ptr);
3234 }
3235
3236 // Add to the worklist any operands which have *only* uniform (e.g. lane 0
3237 // demanding) users. Since loops are assumed to be in LCSSA form, this
3238 // disallows uses outside the loop as well.
3239 for (auto *V : HasUniformUse) {
3240 if (IsOutOfScope(V))
3241 continue;
3242 auto *I = cast<Instruction>(V);
3243 bool UsersAreMemAccesses = all_of(I->users(), [&](User *U) -> bool {
3244 auto *UI = cast<Instruction>(U);
3245 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3246 });
3247 if (UsersAreMemAccesses)
3248 AddToWorklistIfAllowed(I);
3249 }
3250
3251 // Expand Worklist in topological order: whenever a new instruction
3252 // is added , its users should be already inside Worklist. It ensures
3253 // a uniform instruction will only be used by uniform instructions.
3254 unsigned Idx = 0;
3255 while (Idx != Worklist.size()) {
3256 Instruction *I = Worklist[Idx++];
3257
3258 for (auto *OV : I->operand_values()) {
3259 // isOutOfScope operands cannot be uniform instructions.
3260 if (IsOutOfScope(OV))
3261 continue;
3262 // First order recurrence Phi's should typically be considered
3263 // non-uniform.
3264 auto *OP = dyn_cast<PHINode>(OV);
3265 if (OP && Legal->isFixedOrderRecurrence(OP))
3266 continue;
3267 // If all the users of the operand are uniform, then add the
3268 // operand into the uniform worklist.
3269 auto *OI = cast<Instruction>(OV);
3270 if (llvm::all_of(OI->users(), [&](User *U) -> bool {
3271 auto *J = cast<Instruction>(U);
3272 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3273 }))
3274 AddToWorklistIfAllowed(OI);
3275 }
3276 }
3277
3278 // For an instruction to be added into Worklist above, all its users inside
3279 // the loop should also be in Worklist. However, this condition cannot be
3280 // true for phi nodes that form a cyclic dependence. We must process phi
3281 // nodes separately. An induction variable will remain uniform if all users
3282 // of the induction variable and induction variable update remain uniform.
3283 // The code below handles both pointer and non-pointer induction variables.
3284 BasicBlock *Latch = TheLoop->getLoopLatch();
3285 for (const auto &Induction : Legal->getInductionVars()) {
3286 auto *Ind = Induction.first;
3287 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
3288
3289 // Determine if all users of the induction variable are uniform after
3290 // vectorization.
3291 bool UniformInd = all_of(Ind->users(), [&](User *U) -> bool {
3292 auto *I = cast<Instruction>(U);
3293 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3294 IsVectorizedMemAccessUse(I, Ind);
3295 });
3296 if (!UniformInd)
3297 continue;
3298
3299 // Determine if all users of the induction variable update instruction are
3300 // uniform after vectorization.
3301 bool UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
3302 auto *I = cast<Instruction>(U);
3303 return I == Ind || Worklist.count(I) ||
3304 IsVectorizedMemAccessUse(I, IndUpdate);
3305 });
3306 if (!UniformIndUpdate)
3307 continue;
3308
3309 // The induction variable and its update instruction will remain uniform.
3310 AddToWorklistIfAllowed(Ind);
3311 AddToWorklistIfAllowed(IndUpdate);
3312 }
3313
3314 Uniforms[VF].insert_range(Worklist);
3315}
3316
3318 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
3319
3320 if (Legal->getRuntimePointerChecking()->Need) {
3321 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
3322 "runtime pointer checks needed. Enable vectorization of this "
3323 "loop with '#pragma clang loop vectorize(enable)' when "
3324 "compiling with -Os/-Oz",
3325 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3326 return true;
3327 }
3328
3329 if (!PSE.getPredicate().isAlwaysTrue()) {
3330 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
3331 "runtime SCEV checks needed. Enable vectorization of this "
3332 "loop with '#pragma clang loop vectorize(enable)' when "
3333 "compiling with -Os/-Oz",
3334 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3335 return true;
3336 }
3337
3338 // FIXME: Avoid specializing for stride==1 instead of bailing out.
3339 if (!Legal->getLAI()->getSymbolicStrides().empty()) {
3340 reportVectorizationFailure("Runtime stride check for small trip count",
3341 "runtime stride == 1 checks needed. Enable vectorization of "
3342 "this loop without such check by compiling with -Os/-Oz",
3343 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3344 return true;
3345 }
3346
3347 return false;
3348}
3349
3350bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3351 if (IsScalableVectorizationAllowed)
3352 return *IsScalableVectorizationAllowed;
3353
3354 IsScalableVectorizationAllowed = false;
3355 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
3356 return false;
3357
3358 if (Hints->isScalableVectorizationDisabled()) {
3359 reportVectorizationInfo("Scalable vectorization is explicitly disabled",
3360 "ScalableVectorizationDisabled", ORE, TheLoop);
3361 return false;
3362 }
3363
3364 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
3365
3366 auto MaxScalableVF = ElementCount::getScalable(
3367 std::numeric_limits<ElementCount::ScalarTy>::max());
3368
3369 // Test that the loop-vectorizer can legalize all operations for this MaxVF.
3370 // FIXME: While for scalable vectors this is currently sufficient, this should
3371 // be replaced by a more detailed mechanism that filters out specific VFs,
3372 // instead of invalidating vectorization for a whole set of VFs based on the
3373 // MaxVF.
3374
3375 // Disable scalable vectorization if the loop contains unsupported reductions.
3376 if (!canVectorizeReductions(MaxScalableVF)) {
3378 "Scalable vectorization not supported for the reduction "
3379 "operations found in this loop.",
3380 "ScalableVFUnfeasible", ORE, TheLoop);
3381 return false;
3382 }
3383
3384 // Disable scalable vectorization if the loop contains any instructions
3385 // with element types not supported for scalable vectors.
3386 if (any_of(ElementTypesInLoop, [&](Type *Ty) {
3387 return !Ty->isVoidTy() &&
3389 })) {
3390 reportVectorizationInfo("Scalable vectorization is not supported "
3391 "for all element types found in this loop.",
3392 "ScalableVFUnfeasible", ORE, TheLoop);
3393 return false;
3394 }
3395
3396 if (!Legal->isSafeForAnyVectorWidth() && !getMaxVScale(*TheFunction, TTI)) {
3397 reportVectorizationInfo("The target does not provide maximum vscale value "
3398 "for safe distance analysis.",
3399 "ScalableVFUnfeasible", ORE, TheLoop);
3400 return false;
3401 }
3402
3403 IsScalableVectorizationAllowed = true;
3404 return true;
3405}
3406
3407ElementCount
3408LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
3409 if (!isScalableVectorizationAllowed())
3410 return ElementCount::getScalable(0);
3411
3412 auto MaxScalableVF = ElementCount::getScalable(
3413 std::numeric_limits<ElementCount::ScalarTy>::max());
3414 if (Legal->isSafeForAnyVectorWidth())
3415 return MaxScalableVF;
3416
3417 std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI);
3418 // Limit MaxScalableVF by the maximum safe dependence distance.
3419 MaxScalableVF = ElementCount::getScalable(MaxSafeElements / *MaxVScale);
3420
3421 if (!MaxScalableVF)
3423 "Max legal vector width too small, scalable vectorization "
3424 "unfeasible.",
3425 "ScalableVFUnfeasible", ORE, TheLoop);
3426
3427 return MaxScalableVF;
3428}
3429
3430FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3431 unsigned MaxTripCount, ElementCount UserVF, bool FoldTailByMasking) {
3432 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
3433 unsigned SmallestType, WidestType;
3434 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3435
3436 // Get the maximum safe dependence distance in bits computed by LAA.
3437 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
3438 // the memory accesses that is most restrictive (involved in the smallest
3439 // dependence distance).
3440 unsigned MaxSafeElementsPowerOf2 =
3441 bit_floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
3442 if (!Legal->isSafeForAnyStoreLoadForwardDistances()) {
3443 unsigned SLDist = Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3444 MaxSafeElementsPowerOf2 =
3445 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3446 }
3447 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElementsPowerOf2);
3448 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3449
3450 if (!Legal->isSafeForAnyVectorWidth())
3451 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3452
3453 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
3454 << ".\n");
3455 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
3456 << ".\n");
3457
3458 // First analyze the UserVF, fall back if the UserVF should be ignored.
3459 if (UserVF) {
3460 auto MaxSafeUserVF =
3461 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3462
3463 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
3464 // If `VF=vscale x N` is safe, then so is `VF=N`
3465 if (UserVF.isScalable())
3466 return FixedScalableVFPair(
3467 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
3468
3469 return UserVF;
3470 }
3471
3472 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
3473
3474 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
3475 // is better to ignore the hint and let the compiler choose a suitable VF.
3476 if (!UserVF.isScalable()) {
3477 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3478 << " is unsafe, clamping to max safe VF="
3479 << MaxSafeFixedVF << ".\n");
3480 ORE->emit([&]() {
3481 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3482 TheLoop->getStartLoc(),
3483 TheLoop->getHeader())
3484 << "User-specified vectorization factor "
3485 << ore::NV("UserVectorizationFactor", UserVF)
3486 << " is unsafe, clamping to maximum safe vectorization factor "
3487 << ore::NV("VectorizationFactor", MaxSafeFixedVF);
3488 });
3489 return MaxSafeFixedVF;
3490 }
3491
3493 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3494 << " is ignored because scalable vectors are not "
3495 "available.\n");
3496 ORE->emit([&]() {
3497 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3498 TheLoop->getStartLoc(),
3499 TheLoop->getHeader())
3500 << "User-specified vectorization factor "
3501 << ore::NV("UserVectorizationFactor", UserVF)
3502 << " is ignored because the target does not support scalable "
3503 "vectors. The compiler will pick a more suitable value.";
3504 });
3505 } else {
3506 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3507 << " is unsafe. Ignoring scalable UserVF.\n");
3508 ORE->emit([&]() {
3509 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3510 TheLoop->getStartLoc(),
3511 TheLoop->getHeader())
3512 << "User-specified vectorization factor "
3513 << ore::NV("UserVectorizationFactor", UserVF)
3514 << " is unsafe. Ignoring the hint to let the compiler pick a "
3515 "more suitable value.";
3516 });
3517 }
3518 }
3519
3520 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
3521 << " / " << WidestType << " bits.\n");
3522
3523 FixedScalableVFPair Result(ElementCount::getFixed(1),
3525 if (auto MaxVF =
3526 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3527 MaxSafeFixedVF, FoldTailByMasking))
3528 Result.FixedVF = MaxVF;
3529
3530 if (auto MaxVF =
3531 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3532 MaxSafeScalableVF, FoldTailByMasking))
3533 if (MaxVF.isScalable()) {
3534 Result.ScalableVF = MaxVF;
3535 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
3536 << "\n");
3537 }
3538
3539 return Result;
3540}
3541
3542FixedScalableVFPair
3544 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
3545 // TODO: It may be useful to do since it's still likely to be dynamically
3546 // uniform if the target can skip.
3548 "Not inserting runtime ptr check for divergent target",
3549 "runtime pointer checks needed. Not enabled for divergent target",
3550 "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
3552 }
3553
3554 ScalarEvolution *SE = PSE.getSE();
3556 unsigned MaxTC = PSE.getSmallConstantMaxTripCount();
3557 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
3558 if (TC != ElementCount::getFixed(MaxTC))
3559 LLVM_DEBUG(dbgs() << "LV: Found maximum trip count: " << MaxTC << '\n');
3560 if (TC.isScalar()) {
3561 reportVectorizationFailure("Single iteration (non) loop",
3562 "loop trip count is one, irrelevant for vectorization",
3563 "SingleIterationLoop", ORE, TheLoop);
3565 }
3566
3567 // If BTC matches the widest induction type and is -1 then the trip count
3568 // computation will wrap to 0 and the vector trip count will be 0. Do not try
3569 // to vectorize.
3570 const SCEV *BTC = SE->getBackedgeTakenCount(TheLoop);
3571 if (!isa<SCEVCouldNotCompute>(BTC) &&
3572 BTC->getType()->getScalarSizeInBits() >=
3573 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3575 SE->getMinusOne(BTC->getType()))) {
3577 "Trip count computation wrapped",
3578 "backedge-taken count is -1, loop trip count wrapped to 0",
3579 "TripCountWrapped", ORE, TheLoop);
3581 }
3582
3583 switch (ScalarEpilogueStatus) {
3585 return computeFeasibleMaxVF(MaxTC, UserVF, false);
3587 [[fallthrough]];
3589 LLVM_DEBUG(
3590 dbgs() << "LV: vector predicate hint/switch found.\n"
3591 << "LV: Not allowing scalar epilogue, creating predicated "
3592 << "vector loop.\n");
3593 break;
3595 // fallthrough as a special case of OptForSize
3597 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
3598 LLVM_DEBUG(
3599 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3600 else
3601 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
3602 << "count.\n");
3603
3604 // Bail if runtime checks are required, which are not good when optimising
3605 // for size.
3608
3609 break;
3610 }
3611
3612 // Now try the tail folding
3613
3614 // Invalidate interleave groups that require an epilogue if we can't mask
3615 // the interleave-group.
3617 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3618 "No decisions should have been taken at this point");
3619 // Note: There is no need to invalidate any cost modeling decisions here, as
3620 // none were taken so far.
3621 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
3622 }
3623
3624 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(MaxTC, UserVF, true);
3625
3626 // Avoid tail folding if the trip count is known to be a multiple of any VF
3627 // we choose.
3628 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3629 MaxFactors.FixedVF.getFixedValue();
3630 if (MaxFactors.ScalableVF) {
3631 std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI);
3632 if (MaxVScale && TTI.isVScaleKnownToBeAPowerOfTwo()) {
3633 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3634 *MaxPowerOf2RuntimeVF,
3635 *MaxVScale * MaxFactors.ScalableVF.getKnownMinValue());
3636 } else
3637 MaxPowerOf2RuntimeVF = std::nullopt; // Stick with tail-folding for now.
3638 }
3639
3640 auto NoScalarEpilogueNeeded = [this, &UserIC](unsigned MaxVF) {
3641 // Return false if the loop is neither a single-latch-exit loop nor an
3642 // early-exit loop as tail-folding is not supported in that case.
3643 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch() &&
3644 !Legal->hasUncountableEarlyExit())
3645 return false;
3646 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3647 ScalarEvolution *SE = PSE.getSE();
3648 // Calling getSymbolicMaxBackedgeTakenCount enables support for loops
3649 // with uncountable exits. For countable loops, the symbolic maximum must
3650 // remain identical to the known back-edge taken count.
3651 const SCEV *BackedgeTakenCount = PSE.getSymbolicMaxBackedgeTakenCount();
3652 assert((Legal->hasUncountableEarlyExit() ||
3653 BackedgeTakenCount == PSE.getBackedgeTakenCount()) &&
3654 "Invalid loop count");
3655 const SCEV *ExitCount = SE->getAddExpr(
3656 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3657 const SCEV *Rem = SE->getURemExpr(
3658 SE->applyLoopGuards(ExitCount, TheLoop),
3659 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
3660 return Rem->isZero();
3661 };
3662
3663 if (MaxPowerOf2RuntimeVF > 0u) {
3664 assert((UserVF.isNonZero() || isPowerOf2_32(*MaxPowerOf2RuntimeVF)) &&
3665 "MaxFixedVF must be a power of 2");
3666 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3667 // Accept MaxFixedVF if we do not have a tail.
3668 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
3669 return MaxFactors;
3670 }
3671 }
3672
3673 auto ExpectedTC = getSmallBestKnownTC(PSE, TheLoop);
3674 if (ExpectedTC && ExpectedTC->isFixed() &&
3675 ExpectedTC->getFixedValue() <=
3676 TTI.getMinTripCountTailFoldingThreshold()) {
3677 if (MaxPowerOf2RuntimeVF > 0u) {
3678 // If we have a low-trip-count, and the fixed-width VF is known to divide
3679 // the trip count but the scalable factor does not, use the fixed-width
3680 // factor in preference to allow the generation of a non-predicated loop.
3681 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedLowTripLoop &&
3682 NoScalarEpilogueNeeded(MaxFactors.FixedVF.getFixedValue())) {
3683 LLVM_DEBUG(dbgs() << "LV: Picking a fixed-width so that no tail will "
3684 "remain for any chosen VF.\n");
3685 MaxFactors.ScalableVF = ElementCount::getScalable(0);
3686 return MaxFactors;
3687 }
3688 }
3689
3691 "The trip count is below the minial threshold value.",
3692 "loop trip count is too low, avoiding vectorization", "LowTripCount",
3693 ORE, TheLoop);
3695 }
3696
3697 // If we don't know the precise trip count, or if the trip count that we
3698 // found modulo the vectorization factor is not zero, try to fold the tail
3699 // by masking.
3700 // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
3701 bool ContainsScalableVF = MaxFactors.ScalableVF.isNonZero();
3702 setTailFoldingStyles(ContainsScalableVF, UserIC);
3703 if (foldTailByMasking()) {
3704 if (foldTailWithEVL()) {
3705 LLVM_DEBUG(
3706 dbgs()
3707 << "LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3708 "try to generate VP Intrinsics with scalable vector "
3709 "factors only.\n");
3710 // Tail folded loop using VP intrinsics restricts the VF to be scalable
3711 // for now.
3712 // TODO: extend it for fixed vectors, if required.
3713 assert(ContainsScalableVF && "Expected scalable vector factor.");
3714
3715 MaxFactors.FixedVF = ElementCount::getFixed(1);
3716 }
3717 return MaxFactors;
3718 }
3719
3720 // If there was a tail-folding hint/switch, but we can't fold the tail by
3721 // masking, fallback to a vectorization with a scalar epilogue.
3722 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
3723 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
3724 "scalar epilogue instead.\n");
3725 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
3726 return MaxFactors;
3727 }
3728
3729 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
3730 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
3732 }
3733
3734 if (TC.isZero()) {
3736 "unable to calculate the loop count due to complex control flow",
3737 "UnknownLoopCountComplexCFG", ORE, TheLoop);
3739 }
3740
3742 "Cannot optimize for size and vectorize at the same time.",
3743 "cannot optimize for size and vectorize at the same time. "
3744 "Enable vectorization of this loop with '#pragma clang loop "
3745 "vectorize(enable)' when compiling with -Os/-Oz",
3746 "NoTailLoopWithOptForSize", ORE, TheLoop);
3748}
3749
3751 ElementCount VF) {
3752 if (ConsiderRegPressure.getNumOccurrences())
3753 return ConsiderRegPressure;
3754
3755 // TODO: We should eventually consider register pressure for all targets. The
3756 // TTI hook is temporary whilst target-specific issues are being fixed.
3757 if (TTI.shouldConsiderVectorizationRegPressure())
3758 return true;
3759
3760 if (!useMaxBandwidth(VF.isScalable()
3763 return false;
3764 // Only calculate register pressure for VFs enabled by MaxBandwidth.
3766 VF, VF.isScalable() ? MaxPermissibleVFWithoutMaxBW.ScalableVF
3768}
3769
3772 return MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 &&
3773 (TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3775 Legal->hasVectorCallVariants())));
3776}
3777
3778ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3779 ElementCount VF, unsigned MaxTripCount, bool FoldTailByMasking) const {
3780 unsigned EstimatedVF = VF.getKnownMinValue();
3781 if (VF.isScalable() && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
3782 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
3783 auto Min = Attr.getVScaleRangeMin();
3784 EstimatedVF *= Min;
3785 }
3786
3787 // When a scalar epilogue is required, at least one iteration of the scalar
3788 // loop has to execute. Adjust MaxTripCount accordingly to avoid picking a
3789 // max VF that results in a dead vector loop.
3790 if (MaxTripCount > 0 && requiresScalarEpilogue(true))
3791 MaxTripCount -= 1;
3792
3793 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3794 (!FoldTailByMasking || isPowerOf2_32(MaxTripCount))) {
3795 // If upper bound loop trip count (TC) is known at compile time there is no
3796 // point in choosing VF greater than TC (as done in the loop below). Select
3797 // maximum power of two which doesn't exceed TC. If VF is
3798 // scalable, we only fall back on a fixed VF when the TC is less than or
3799 // equal to the known number of lanes.
3800 auto ClampedUpperTripCount = llvm::bit_floor(MaxTripCount);
3801 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
3802 "exceeding the constant trip count: "
3803 << ClampedUpperTripCount << "\n");
3804 return ElementCount::get(ClampedUpperTripCount,
3805 FoldTailByMasking ? VF.isScalable() : false);
3806 }
3807 return VF;
3808}
3809
3810ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3811 unsigned MaxTripCount, unsigned SmallestType, unsigned WidestType,
3812 ElementCount MaxSafeVF, bool FoldTailByMasking) {
3813 bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
3814 const TypeSize WidestRegister = TTI.getRegisterBitWidth(
3815 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
3817
3818 // Convenience function to return the minimum of two ElementCounts.
3819 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
3820 assert((LHS.isScalable() == RHS.isScalable()) &&
3821 "Scalable flags must match");
3822 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
3823 };
3824
3825 // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
3826 // Note that both WidestRegister and WidestType may not be a powers of 2.
3827 auto MaxVectorElementCount = ElementCount::get(
3828 llvm::bit_floor(WidestRegister.getKnownMinValue() / WidestType),
3829 ComputeScalableMaxVF);
3830 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3831 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
3832 << (MaxVectorElementCount * WidestType) << " bits.\n");
3833
3834 if (!MaxVectorElementCount) {
3835 LLVM_DEBUG(dbgs() << "LV: The target has no "
3836 << (ComputeScalableMaxVF ? "scalable" : "fixed")
3837 << " vector registers.\n");
3838 return ElementCount::getFixed(1);
3839 }
3840
3841 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3842 MaxTripCount, FoldTailByMasking);
3843 // If the MaxVF was already clamped, there's no point in trying to pick a
3844 // larger one.
3845 if (MaxVF != MaxVectorElementCount)
3846 return MaxVF;
3847
3849 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
3851
3852 if (MaxVF.isScalable())
3853 MaxPermissibleVFWithoutMaxBW.ScalableVF = MaxVF;
3854 else
3855 MaxPermissibleVFWithoutMaxBW.FixedVF = MaxVF;
3856
3857 if (useMaxBandwidth(RegKind)) {
3858 auto MaxVectorElementCountMaxBW = ElementCount::get(
3859 llvm::bit_floor(WidestRegister.getKnownMinValue() / SmallestType),
3860 ComputeScalableMaxVF);
3861 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3862
3863 if (ElementCount MinVF =
3864 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
3865 if (ElementCount::isKnownLT(MaxVF, MinVF)) {
3866 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
3867 << ") with target's minimum: " << MinVF << '\n');
3868 MaxVF = MinVF;
3869 }
3870 }
3871
3872 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3873
3874 if (MaxVectorElementCount != MaxVF) {
3875 // Invalidate any widening decisions we might have made, in case the loop
3876 // requires prediction (decided later), but we have already made some
3877 // load/store widening decisions.
3878 invalidateCostModelingDecisions();
3879 }
3880 }
3881 return MaxVF;
3882}
3883
3884bool LoopVectorizationPlanner::isMoreProfitable(const VectorizationFactor &A,
3885 const VectorizationFactor &B,
3886 const unsigned MaxTripCount,
3887 bool HasTail,
3888 bool IsEpilogue) const {
3889 InstructionCost CostA = A.Cost;
3890 InstructionCost CostB = B.Cost;
3891
3892 // Improve estimate for the vector width if it is scalable.
3893 unsigned EstimatedWidthA = A.Width.getKnownMinValue();
3894 unsigned EstimatedWidthB = B.Width.getKnownMinValue();
3895 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3896 if (A.Width.isScalable())
3897 EstimatedWidthA *= *VScale;
3898 if (B.Width.isScalable())
3899 EstimatedWidthB *= *VScale;
3900 }
3901
3902 // When optimizing for size choose whichever is smallest, which will be the
3903 // one with the smallest cost for the whole loop. On a tie pick the larger
3904 // vector width, on the assumption that throughput will be greater.
3905 if (CM.CostKind == TTI::TCK_CodeSize)
3906 return CostA < CostB ||
3907 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3908
3909 // Assume vscale may be larger than 1 (or the value being tuned for),
3910 // so that scalable vectorization is slightly favorable over fixed-width
3911 // vectorization.
3912 bool PreferScalable = !TTI.preferFixedOverScalableIfEqualCost(IsEpilogue) &&
3913 A.Width.isScalable() && !B.Width.isScalable();
3914
3915 auto CmpFn = [PreferScalable](const InstructionCost &LHS,
3916 const InstructionCost &RHS) {
3917 return PreferScalable ? LHS <= RHS : LHS < RHS;
3918 };
3919
3920 // To avoid the need for FP division:
3921 // (CostA / EstimatedWidthA) < (CostB / EstimatedWidthB)
3922 // <=> (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA)
3923 if (!MaxTripCount)
3924 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3925
3926 auto GetCostForTC = [MaxTripCount, HasTail](unsigned VF,
3927 InstructionCost VectorCost,
3928 InstructionCost ScalarCost) {
3929 // If the trip count is a known (possibly small) constant, the trip count
3930 // will be rounded up to an integer number of iterations under
3931 // FoldTailByMasking. The total cost in that case will be
3932 // VecCost*ceil(TripCount/VF). When not folding the tail, the total
3933 // cost will be VecCost*floor(TC/VF) + ScalarCost*(TC%VF). There will be
3934 // some extra overheads, but for the purpose of comparing the costs of
3935 // different VFs we can use this to compare the total loop-body cost
3936 // expected after vectorization.
3937 if (HasTail)
3938 return VectorCost * (MaxTripCount / VF) +
3939 ScalarCost * (MaxTripCount % VF);
3940 return VectorCost * divideCeil(MaxTripCount, VF);
3941 };
3942
3943 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA, A.ScalarCost);
3944 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB, B.ScalarCost);
3945 return CmpFn(RTCostA, RTCostB);
3946}
3947
3948bool LoopVectorizationPlanner::isMoreProfitable(const VectorizationFactor &A,
3949 const VectorizationFactor &B,
3950 bool HasTail,
3951 bool IsEpilogue) const {
3952 const unsigned MaxTripCount = PSE.getSmallConstantMaxTripCount();
3953 return LoopVectorizationPlanner::isMoreProfitable(A, B, MaxTripCount, HasTail,
3954 IsEpilogue);
3955}
3956
3959 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3960 SmallVector<RecipeVFPair> InvalidCosts;
3961 for (const auto &Plan : VPlans) {
3962 for (ElementCount VF : Plan->vectorFactors()) {
3963 // The VPlan-based cost model is designed for computing vector cost.
3964 // Querying VPlan-based cost model with a scarlar VF will cause some
3965 // errors because we expect the VF is vector for most of the widen
3966 // recipes.
3967 if (VF.isScalar())
3968 continue;
3969
3970 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind,
3971 *CM.PSE.getSE(), OrigLoop);
3972 precomputeCosts(*Plan, VF, CostCtx);
3973 auto Iter = vp_depth_first_deep(Plan->getVectorLoopRegion()->getEntry());
3975 for (auto &R : *VPBB) {
3976 if (!R.cost(VF, CostCtx).isValid())
3977 InvalidCosts.emplace_back(&R, VF);
3978 }
3979 }
3980 }
3981 }
3982 if (InvalidCosts.empty())
3983 return;
3984
3985 // Emit a report of VFs with invalid costs in the loop.
3986
3987 // Group the remarks per recipe, keeping the recipe order from InvalidCosts.
3989 unsigned I = 0;
3990 for (auto &Pair : InvalidCosts)
3991 if (Numbering.try_emplace(Pair.first, I).second)
3992 ++I;
3993
3994 // Sort the list, first on recipe(number) then on VF.
3995 sort(InvalidCosts, [&Numbering](RecipeVFPair &A, RecipeVFPair &B) {
3996 unsigned NA = Numbering[A.first];
3997 unsigned NB = Numbering[B.first];
3998 if (NA != NB)
3999 return NA < NB;
4000 return ElementCount::isKnownLT(A.second, B.second);
4001 });
4002
4003 // For a list of ordered recipe-VF pairs:
4004 // [(load, VF1), (load, VF2), (store, VF1)]
4005 // group the recipes together to emit separate remarks for:
4006 // load (VF1, VF2)
4007 // store (VF1)
4008 auto Tail = ArrayRef<RecipeVFPair>(InvalidCosts);
4009 auto Subset = ArrayRef<RecipeVFPair>();
4010 do {
4011 if (Subset.empty())
4012 Subset = Tail.take_front(1);
4013
4014 VPRecipeBase *R = Subset.front().first;
4015
4016 unsigned Opcode =
4019 [](const auto *R) { return Instruction::PHI; })
4020 .Case<VPWidenSelectRecipe>(
4021 [](const auto *R) { return Instruction::Select; })
4022 .Case<VPWidenStoreRecipe>(
4023 [](const auto *R) { return Instruction::Store; })
4024 .Case<VPWidenLoadRecipe>(
4025 [](const auto *R) { return Instruction::Load; })
4026 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
4027 [](const auto *R) { return Instruction::Call; })
4030 [](const auto *R) { return R->getOpcode(); })
4031 .Case<VPInterleaveRecipe>([](const VPInterleaveRecipe *R) {
4032 return R->getStoredValues().empty() ? Instruction::Load
4033 : Instruction::Store;
4034 })
4035 .Case<VPReductionRecipe>([](const auto *R) {
4036 return RecurrenceDescriptor::getOpcode(R->getRecurrenceKind());
4037 });
4038
4039 // If the next recipe is different, or if there are no other pairs,
4040 // emit a remark for the collated subset. e.g.
4041 // [(load, VF1), (load, VF2))]
4042 // to emit:
4043 // remark: invalid costs for 'load' at VF=(VF1, VF2)
4044 if (Subset == Tail || Tail[Subset.size()].first != R) {
4045 std::string OutString;
4046 raw_string_ostream OS(OutString);
4047 assert(!Subset.empty() && "Unexpected empty range");
4048 OS << "Recipe with invalid costs prevented vectorization at VF=(";
4049 for (const auto &Pair : Subset)
4050 OS << (Pair.second == Subset.front().second ? "" : ", ") << Pair.second;
4051 OS << "):";
4052 if (Opcode == Instruction::Call) {
4053 StringRef Name = "";
4054 if (auto *Int = dyn_cast<VPWidenIntrinsicRecipe>(R)) {
4055 Name = Int->getIntrinsicName();
4056 } else {
4057 auto *WidenCall = dyn_cast<VPWidenCallRecipe>(R);
4058 Function *CalledFn =
4059 WidenCall ? WidenCall->getCalledScalarFunction()
4060 : cast<Function>(R->getOperand(R->getNumOperands() - 1)
4061 ->getLiveInIRValue());
4062 Name = CalledFn->getName();
4063 }
4064 OS << " call to " << Name;
4065 } else
4066 OS << " " << Instruction::getOpcodeName(Opcode);
4067 reportVectorizationInfo(OutString, "InvalidCost", ORE, OrigLoop, nullptr,
4068 R->getDebugLoc());
4069 Tail = Tail.drop_front(Subset.size());
4070 Subset = {};
4071 } else
4072 // Grow the subset by one element
4073 Subset = Tail.take_front(Subset.size() + 1);
4074 } while (!Tail.empty());
4075}
4076
4077/// Check if any recipe of \p Plan will generate a vector value, which will be
4078/// assigned a vector register.
4080 const TargetTransformInfo &TTI) {
4081 assert(VF.isVector() && "Checking a scalar VF?");
4082 VPTypeAnalysis TypeInfo(Plan);
4083 DenseSet<VPRecipeBase *> EphemeralRecipes;
4084 collectEphemeralRecipesForVPlan(Plan, EphemeralRecipes);
4085 // Set of already visited types.
4086 DenseSet<Type *> Visited;
4089 for (VPRecipeBase &R : *VPBB) {
4090 if (EphemeralRecipes.contains(&R))
4091 continue;
4092 // Continue early if the recipe is considered to not produce a vector
4093 // result. Note that this includes VPInstruction where some opcodes may
4094 // produce a vector, to preserve existing behavior as VPInstructions model
4095 // aspects not directly mapped to existing IR instructions.
4096 switch (R.getVPDefID()) {
4097 case VPDef::VPDerivedIVSC:
4098 case VPDef::VPScalarIVStepsSC:
4099 case VPDef::VPReplicateSC:
4100 case VPDef::VPInstructionSC:
4101 case VPDef::VPCanonicalIVPHISC:
4102 case VPDef::VPVectorPointerSC:
4103 case VPDef::VPVectorEndPointerSC:
4104 case VPDef::VPExpandSCEVSC:
4105 case VPDef::VPEVLBasedIVPHISC:
4106 case VPDef::VPPredInstPHISC:
4107 case VPDef::VPBranchOnMaskSC:
4108 continue;
4109 case VPDef::VPReductionSC:
4110 case VPDef::VPActiveLaneMaskPHISC:
4111 case VPDef::VPWidenCallSC:
4112 case VPDef::VPWidenCanonicalIVSC:
4113 case VPDef::VPWidenCastSC:
4114 case VPDef::VPWidenGEPSC:
4115 case VPDef::VPWidenIntrinsicSC:
4116 case VPDef::VPWidenSC:
4117 case VPDef::VPWidenSelectSC:
4118 case VPDef::VPBlendSC:
4119 case VPDef::VPFirstOrderRecurrencePHISC:
4120 case VPDef::VPHistogramSC:
4121 case VPDef::VPWidenPHISC:
4122 case VPDef::VPWidenIntOrFpInductionSC:
4123 case VPDef::VPWidenPointerInductionSC:
4124 case VPDef::VPReductionPHISC:
4125 case VPDef::VPInterleaveEVLSC:
4126 case VPDef::VPInterleaveSC:
4127 case VPDef::VPWidenLoadEVLSC:
4128 case VPDef::VPWidenLoadSC:
4129 case VPDef::VPWidenStoreEVLSC:
4130 case VPDef::VPWidenStoreSC:
4131 break;
4132 default:
4133 llvm_unreachable("unhandled recipe");
4134 }
4135
4136 auto WillGenerateTargetVectors = [&TTI, VF](Type *VectorTy) {
4137 unsigned NumLegalParts = TTI.getNumberOfParts(VectorTy);
4138 if (!NumLegalParts)
4139 return false;
4140 if (VF.isScalable()) {
4141 // <vscale x 1 x iN> is assumed to be profitable over iN because
4142 // scalable registers are a distinct register class from scalar
4143 // ones. If we ever find a target which wants to lower scalable
4144 // vectors back to scalars, we'll need to update this code to
4145 // explicitly ask TTI about the register class uses for each part.
4146 return NumLegalParts <= VF.getKnownMinValue();
4147 }
4148 // Two or more elements that share a register - are vectorized.
4149 return NumLegalParts < VF.getFixedValue();
4150 };
4151
4152 // If no def nor is a store, e.g., branches, continue - no value to check.
4153 if (R.getNumDefinedValues() == 0 &&
4155 continue;
4156 // For multi-def recipes, currently only interleaved loads, suffice to
4157 // check first def only.
4158 // For stores check their stored value; for interleaved stores suffice
4159 // the check first stored value only. In all cases this is the second
4160 // operand.
4161 VPValue *ToCheck =
4162 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4163 Type *ScalarTy = TypeInfo.inferScalarType(ToCheck);
4164 if (!Visited.insert({ScalarTy}).second)
4165 continue;
4166 Type *WideTy = toVectorizedTy(ScalarTy, VF);
4167 if (any_of(getContainedTypes(WideTy), WillGenerateTargetVectors))
4168 return true;
4169 }
4170 }
4171
4172 return false;
4173}
4174
4175static bool hasReplicatorRegion(VPlan &Plan) {
4177 Plan.getVectorLoopRegion()->getEntry())),
4178 [](auto *VPRB) { return VPRB->isReplicator(); });
4179}
4180
4181#ifndef NDEBUG
4182VectorizationFactor LoopVectorizationPlanner::selectVectorizationFactor() {
4183 InstructionCost ExpectedCost = CM.expectedCost(ElementCount::getFixed(1));
4184 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
4185 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
4186 assert(
4187 any_of(VPlans,
4188 [](std::unique_ptr<VPlan> &P) { return P->hasScalarVFOnly(); }) &&
4189 "Expected Scalar VF to be a candidate");
4190
4191 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost,
4192 ExpectedCost);
4193 VectorizationFactor ChosenFactor = ScalarCost;
4194
4195 bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled;
4196 if (ForceVectorization &&
4197 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4198 // Ignore scalar width, because the user explicitly wants vectorization.
4199 // Initialize cost to max so that VF = 2 is, at least, chosen during cost
4200 // evaluation.
4201 ChosenFactor.Cost = InstructionCost::getMax();
4202 }
4203
4204 for (auto &P : VPlans) {
4205 ArrayRef<ElementCount> VFs(P->vectorFactors().begin(),
4206 P->vectorFactors().end());
4207
4209 if (any_of(VFs, [this](ElementCount VF) {
4210 return CM.shouldConsiderRegPressureForVF(VF);
4211 }))
4212 RUs = calculateRegisterUsageForPlan(*P, VFs, TTI, CM.ValuesToIgnore);
4213
4214 for (unsigned I = 0; I < VFs.size(); I++) {
4215 ElementCount VF = VFs[I];
4216 // The cost for scalar VF=1 is already calculated, so ignore it.
4217 if (VF.isScalar())
4218 continue;
4219
4220 /// If the register pressure needs to be considered for VF,
4221 /// don't consider the VF as valid if it exceeds the number
4222 /// of registers for the target.
4223 if (CM.shouldConsiderRegPressureForVF(VF) &&
4224 RUs[I].exceedsMaxNumRegs(TTI, ForceTargetNumVectorRegs))
4225 continue;
4226
4227 InstructionCost C = CM.expectedCost(VF);
4228
4229 // Add on other costs that are modelled in VPlan, but not in the legacy
4230 // cost model.
4231 VPCostContext CostCtx(CM.TTI, *CM.TLI, *P, CM, CM.CostKind,
4232 *CM.PSE.getSE(), OrigLoop);
4233 VPRegionBlock *VectorRegion = P->getVectorLoopRegion();
4234 assert(VectorRegion && "Expected to have a vector region!");
4235 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
4236 vp_depth_first_shallow(VectorRegion->getEntry()))) {
4237 for (VPRecipeBase &R : *VPBB) {
4238 auto *VPI = dyn_cast<VPInstruction>(&R);
4239 if (!VPI)
4240 continue;
4241 switch (VPI->getOpcode()) {
4242 // Selects are only modelled in the legacy cost model for safe
4243 // divisors.
4244 case Instruction::Select: {
4245 if (auto *WR =
4246 dyn_cast_or_null<VPWidenRecipe>(VPI->getSingleUser())) {
4247 switch (WR->getOpcode()) {
4248 case Instruction::UDiv:
4249 case Instruction::SDiv:
4250 case Instruction::URem:
4251 case Instruction::SRem:
4252 continue;
4253 default:
4254 break;
4255 }
4256 }
4257 C += VPI->cost(VF, CostCtx);
4258 break;
4259 }
4261 unsigned Multiplier =
4262 cast<ConstantInt>(VPI->getOperand(2)->getLiveInIRValue())
4263 ->getZExtValue();
4264 C += VPI->cost(VF * Multiplier, CostCtx);
4265 break;
4266 }
4268 C += VPI->cost(VF, CostCtx);
4269 break;
4270 default:
4271 break;
4272 }
4273 }
4274 }
4275
4276 VectorizationFactor Candidate(VF, C, ScalarCost.ScalarCost);
4277 unsigned Width =
4278 estimateElementCount(Candidate.Width, CM.getVScaleForTuning());
4279 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << VF
4280 << " costs: " << (Candidate.Cost / Width));
4281 if (VF.isScalable())
4282 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
4283 << CM.getVScaleForTuning().value_or(1) << ")");
4284 LLVM_DEBUG(dbgs() << ".\n");
4285
4286 if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) {
4287 LLVM_DEBUG(
4288 dbgs()
4289 << "LV: Not considering vector loop of width " << VF
4290 << " because it will not generate any vector instructions.\n");
4291 continue;
4292 }
4293
4294 if (CM.OptForSize && !ForceVectorization && hasReplicatorRegion(*P)) {
4295 LLVM_DEBUG(
4296 dbgs()
4297 << "LV: Not considering vector loop of width " << VF
4298 << " because it would cause replicated blocks to be generated,"
4299 << " which isn't allowed when optimizing for size.\n");
4300 continue;
4301 }
4302
4303 if (isMoreProfitable(Candidate, ChosenFactor, P->hasScalarTail()))
4304 ChosenFactor = Candidate;
4305 }
4306 }
4307
4308 if (!EnableCondStoresVectorization && CM.hasPredStores()) {
4310 "There are conditional stores.",
4311 "store that is conditionally executed prevents vectorization",
4312 "ConditionalStore", ORE, OrigLoop);
4313 ChosenFactor = ScalarCost;
4314 }
4315
4316 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
4317 !isMoreProfitable(ChosenFactor, ScalarCost,
4318 !CM.foldTailByMasking())) dbgs()
4319 << "LV: Vectorization seems to be not beneficial, "
4320 << "but was forced by a user.\n");
4321 return ChosenFactor;
4322}
4323#endif
4324
4325bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4326 ElementCount VF) const {
4327 // Cross iteration phis such as fixed-order recurrences and FMaxNum/FMinNum
4328 // reductions need special handling and are currently unsupported.
4329 if (any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4330 if (!Legal->isReductionVariable(&Phi))
4331 return Legal->isFixedOrderRecurrence(&Phi);
4332 return RecurrenceDescriptor::isFPMinMaxNumRecurrenceKind(
4333 Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind());
4334 }))
4335 return false;
4336
4337 // Phis with uses outside of the loop require special handling and are
4338 // currently unsupported.
4339 for (const auto &Entry : Legal->getInductionVars()) {
4340 // Look for uses of the value of the induction at the last iteration.
4341 Value *PostInc =
4342 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4343 for (User *U : PostInc->users())
4344 if (!OrigLoop->contains(cast<Instruction>(U)))
4345 return false;
4346 // Look for uses of penultimate value of the induction.
4347 for (User *U : Entry.first->users())
4348 if (!OrigLoop->contains(cast<Instruction>(U)))
4349 return false;
4350 }
4351
4352 // Epilogue vectorization code has not been auditted to ensure it handles
4353 // non-latch exits properly. It may be fine, but it needs auditted and
4354 // tested.
4355 // TODO: Add support for loops with an early exit.
4356 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4357 return false;
4358
4359 return true;
4360}
4361
4363 const ElementCount VF, const unsigned IC) const {
4364 // FIXME: We need a much better cost-model to take different parameters such
4365 // as register pressure, code size increase and cost of extra branches into
4366 // account. For now we apply a very crude heuristic and only consider loops
4367 // with vectorization factors larger than a certain value.
4368
4369 // Allow the target to opt out entirely.
4370 if (!TTI.preferEpilogueVectorization())
4371 return false;
4372
4373 // We also consider epilogue vectorization unprofitable for targets that don't
4374 // consider interleaving beneficial (eg. MVE).
4375 if (TTI.getMaxInterleaveFactor(VF) <= 1)
4376 return false;
4377
4378 unsigned MinVFThreshold = EpilogueVectorizationMinVF.getNumOccurrences() > 0
4380 : TTI.getEpilogueVectorizationMinVF();
4381 return estimateElementCount(VF * IC, VScaleForTuning) >= MinVFThreshold;
4382}
4383
4385 const ElementCount MainLoopVF, unsigned IC) {
4388 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n");
4389 return Result;
4390 }
4391
4392 if (!CM.isScalarEpilogueAllowed()) {
4393 LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because no "
4394 "epilogue is allowed.\n");
4395 return Result;
4396 }
4397
4398 // Not really a cost consideration, but check for unsupported cases here to
4399 // simplify the logic.
4400 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4401 LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because the loop "
4402 "is not a supported candidate.\n");
4403 return Result;
4404 }
4405
4407 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n");
4409 if (hasPlanWithVF(ForcedEC))
4410 return {ForcedEC, 0, 0};
4411
4412 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization forced factor is not "
4413 "viable.\n");
4414 return Result;
4415 }
4416
4417 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4418 LLVM_DEBUG(
4419 dbgs() << "LEV: Epilogue vectorization skipped due to opt for size.\n");
4420 return Result;
4421 }
4422
4423 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4424 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
4425 "this loop\n");
4426 return Result;
4427 }
4428
4429 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
4430 // the main loop handles 8 lanes per iteration. We could still benefit from
4431 // vectorizing the epilogue loop with VF=4.
4432 ElementCount EstimatedRuntimeVF = ElementCount::getFixed(
4433 estimateElementCount(MainLoopVF, CM.getVScaleForTuning()));
4434
4435 ScalarEvolution &SE = *PSE.getSE();
4436 Type *TCType = Legal->getWidestInductionType();
4437 const SCEV *RemainingIterations = nullptr;
4438 unsigned MaxTripCount = 0;
4439 const SCEV *TC =
4440 vputils::getSCEVExprForVPValue(getPlanFor(MainLoopVF).getTripCount(), SE);
4441 assert(!isa<SCEVCouldNotCompute>(TC) && "Trip count SCEV must be computable");
4442 const SCEV *KnownMinTC;
4443 bool ScalableTC = match(TC, m_scev_c_Mul(m_SCEV(KnownMinTC), m_SCEVVScale()));
4444 bool ScalableRemIter = false;
4445 // Use versions of TC and VF in which both are either scalable or fixed.
4446 if (ScalableTC == MainLoopVF.isScalable()) {
4447 ScalableRemIter = ScalableTC;
4448 RemainingIterations =
4449 SE.getURemExpr(TC, SE.getElementCount(TCType, MainLoopVF * IC));
4450 } else if (ScalableTC) {
4451 const SCEV *EstimatedTC = SE.getMulExpr(
4452 KnownMinTC,
4453 SE.getConstant(TCType, CM.getVScaleForTuning().value_or(1)));
4454 RemainingIterations = SE.getURemExpr(
4455 EstimatedTC, SE.getElementCount(TCType, MainLoopVF * IC));
4456 } else
4457 RemainingIterations =
4458 SE.getURemExpr(TC, SE.getElementCount(TCType, EstimatedRuntimeVF * IC));
4459
4460 // No iterations left to process in the epilogue.
4461 if (RemainingIterations->isZero())
4462 return Result;
4463
4464 if (MainLoopVF.isFixed()) {
4465 MaxTripCount = MainLoopVF.getFixedValue() * IC - 1;
4466 if (SE.isKnownPredicate(CmpInst::ICMP_ULT, RemainingIterations,
4467 SE.getConstant(TCType, MaxTripCount))) {
4468 MaxTripCount = SE.getUnsignedRangeMax(RemainingIterations).getZExtValue();
4469 }
4470 LLVM_DEBUG(dbgs() << "LEV: Maximum Trip Count for Epilogue: "
4471 << MaxTripCount << "\n");
4472 }
4473
4474 auto SkipVF = [&](const SCEV *VF, const SCEV *RemIter) -> bool {
4475 return SE.isKnownPredicate(CmpInst::ICMP_UGT, VF, RemIter);
4476 };
4477 for (auto &NextVF : ProfitableVFs) {
4478 // Skip candidate VFs without a corresponding VPlan.
4479 if (!hasPlanWithVF(NextVF.Width))
4480 continue;
4481
4482 // Skip candidate VFs with widths >= the (estimated) runtime VF (scalable
4483 // vectors) or > the VF of the main loop (fixed vectors).
4484 if ((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
4485 ElementCount::isKnownGE(NextVF.Width, EstimatedRuntimeVF)) ||
4486 (NextVF.Width.isScalable() &&
4487 ElementCount::isKnownGE(NextVF.Width, MainLoopVF)) ||
4488 (!NextVF.Width.isScalable() && !MainLoopVF.isScalable() &&
4489 ElementCount::isKnownGT(NextVF.Width, MainLoopVF)))
4490 continue;
4491
4492 // If NextVF is greater than the number of remaining iterations, the
4493 // epilogue loop would be dead. Skip such factors.
4494 // TODO: We should also consider comparing against a scalable
4495 // RemainingIterations when SCEV be able to evaluate non-canonical
4496 // vscale-based expressions.
4497 if (!ScalableRemIter) {
4498 // Handle the case where NextVF and RemainingIterations are in different
4499 // numerical spaces.
4500 ElementCount EC = NextVF.Width;
4501 if (NextVF.Width.isScalable())
4503 estimateElementCount(NextVF.Width, CM.getVScaleForTuning()));
4504 if (SkipVF(SE.getElementCount(TCType, EC), RemainingIterations))
4505 continue;
4506 }
4507
4508 if (Result.Width.isScalar() ||
4509 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4510 /*IsEpilogue*/ true))
4511 Result = NextVF;
4512 }
4513
4514 if (Result != VectorizationFactor::Disabled())
4515 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
4516 << Result.Width << "\n");
4517 return Result;
4518}
4519
4520std::pair<unsigned, unsigned>
4522 unsigned MinWidth = -1U;
4523 unsigned MaxWidth = 8;
4524 const DataLayout &DL = TheFunction->getDataLayout();
4525 // For in-loop reductions, no element types are added to ElementTypesInLoop
4526 // if there are no loads/stores in the loop. In this case, check through the
4527 // reduction variables to determine the maximum width.
4528 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
4529 for (const auto &PhiDescriptorPair : Legal->getReductionVars()) {
4530 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
4531 // When finding the min width used by the recurrence we need to account
4532 // for casts on the input operands of the recurrence.
4533 MinWidth = std::min(
4534 MinWidth,
4535 std::min(RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
4537 MaxWidth = std::max(MaxWidth,
4539 }
4540 } else {
4541 for (Type *T : ElementTypesInLoop) {
4542 MinWidth = std::min<unsigned>(
4543 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
4544 MaxWidth = std::max<unsigned>(
4545 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
4546 }
4547 }
4548 return {MinWidth, MaxWidth};
4549}
4550
4552 ElementTypesInLoop.clear();
4553 // For each block.
4554 for (BasicBlock *BB : TheLoop->blocks()) {
4555 // For each instruction in the loop.
4556 for (Instruction &I : BB->instructionsWithoutDebug()) {
4557 Type *T = I.getType();
4558
4559 // Skip ignored values.
4560 if (ValuesToIgnore.count(&I))
4561 continue;
4562
4563 // Only examine Loads, Stores and PHINodes.
4564 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
4565 continue;
4566
4567 // Examine PHI nodes that are reduction variables. Update the type to
4568 // account for the recurrence type.
4569 if (auto *PN = dyn_cast<PHINode>(&I)) {
4570 if (!Legal->isReductionVariable(PN))
4571 continue;
4572 const RecurrenceDescriptor &RdxDesc =
4573 Legal->getRecurrenceDescriptor(PN);
4575 TTI.preferInLoopReduction(RdxDesc.getRecurrenceKind(),
4576 RdxDesc.getRecurrenceType()))
4577 continue;
4578 T = RdxDesc.getRecurrenceType();
4579 }
4580
4581 // Examine the stored values.
4582 if (auto *ST = dyn_cast<StoreInst>(&I))
4583 T = ST->getValueOperand()->getType();
4584
4585 assert(T->isSized() &&
4586 "Expected the load/store/recurrence type to be sized");
4587
4588 ElementTypesInLoop.insert(T);
4589 }
4590 }
4591}
4592
4593unsigned
4595 InstructionCost LoopCost) {
4596 // -- The interleave heuristics --
4597 // We interleave the loop in order to expose ILP and reduce the loop overhead.
4598 // There are many micro-architectural considerations that we can't predict
4599 // at this level. For example, frontend pressure (on decode or fetch) due to
4600 // code size, or the number and capabilities of the execution ports.
4601 //
4602 // We use the following heuristics to select the interleave count:
4603 // 1. If the code has reductions, then we interleave to break the cross
4604 // iteration dependency.
4605 // 2. If the loop is really small, then we interleave to reduce the loop
4606 // overhead.
4607 // 3. We don't interleave if we think that we will spill registers to memory
4608 // due to the increased register pressure.
4609
4610 // Only interleave tail-folded loops if wide lane masks are requested, as the
4611 // overhead of multiple instructions to calculate the predicate is likely
4612 // not beneficial. If a scalar epilogue is not allowed for any other reason,
4613 // do not interleave.
4614 if (!CM.isScalarEpilogueAllowed() &&
4615 !(CM.preferPredicatedLoop() && CM.useWideActiveLaneMask()))
4616 return 1;
4617
4620 LLVM_DEBUG(dbgs() << "LV: Preference for VP intrinsics indicated. "
4621 "Unroll factor forced to be 1.\n");
4622 return 1;
4623 }
4624
4625 // We used the distance for the interleave count.
4626 if (!Legal->isSafeForAnyVectorWidth())
4627 return 1;
4628
4629 // We don't attempt to perform interleaving for loops with uncountable early
4630 // exits because the VPInstruction::AnyOf code cannot currently handle
4631 // multiple parts.
4632 if (Plan.hasEarlyExit())
4633 return 1;
4634
4635 const bool HasReductions =
4638
4639 // If we did not calculate the cost for VF (because the user selected the VF)
4640 // then we calculate the cost of VF here.
4641 if (LoopCost == 0) {
4642 if (VF.isScalar())
4643 LoopCost = CM.expectedCost(VF);
4644 else
4645 LoopCost = cost(Plan, VF);
4646 assert(LoopCost.isValid() && "Expected to have chosen a VF with valid cost");
4647
4648 // Loop body is free and there is no need for interleaving.
4649 if (LoopCost == 0)
4650 return 1;
4651 }
4652
4653 VPRegisterUsage R =
4654 calculateRegisterUsageForPlan(Plan, {VF}, TTI, CM.ValuesToIgnore)[0];
4655 // We divide by these constants so assume that we have at least one
4656 // instruction that uses at least one register.
4657 for (auto &Pair : R.MaxLocalUsers) {
4658 Pair.second = std::max(Pair.second, 1U);
4659 }
4660
4661 // We calculate the interleave count using the following formula.
4662 // Subtract the number of loop invariants from the number of available
4663 // registers. These registers are used by all of the interleaved instances.
4664 // Next, divide the remaining registers by the number of registers that is
4665 // required by the loop, in order to estimate how many parallel instances
4666 // fit without causing spills. All of this is rounded down if necessary to be
4667 // a power of two. We want power of two interleave count to simplify any
4668 // addressing operations or alignment considerations.
4669 // We also want power of two interleave counts to ensure that the induction
4670 // variable of the vector loop wraps to zero, when tail is folded by masking;
4671 // this currently happens when OptForSize, in which case IC is set to 1 above.
4672 unsigned IC = UINT_MAX;
4673
4674 for (const auto &Pair : R.MaxLocalUsers) {
4675 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4676 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
4677 << " registers of "
4678 << TTI.getRegisterClassName(Pair.first)
4679 << " register class\n");
4680 if (VF.isScalar()) {
4681 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
4682 TargetNumRegisters = ForceTargetNumScalarRegs;
4683 } else {
4684 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
4685 TargetNumRegisters = ForceTargetNumVectorRegs;
4686 }
4687 unsigned MaxLocalUsers = Pair.second;
4688 unsigned LoopInvariantRegs = 0;
4689 if (R.LoopInvariantRegs.contains(Pair.first))
4690 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4691
4692 unsigned TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4693 MaxLocalUsers);
4694 // Don't count the induction variable as interleaved.
4696 TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4697 std::max(1U, (MaxLocalUsers - 1)));
4698 }
4699
4700 IC = std::min(IC, TmpIC);
4701 }
4702
4703 // Clamp the interleave ranges to reasonable counts.
4704 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4705
4706 // Check if the user has overridden the max.
4707 if (VF.isScalar()) {
4708 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
4709 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
4710 } else {
4711 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
4712 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
4713 }
4714
4715 // Try to get the exact trip count, or an estimate based on profiling data or
4716 // ConstantMax from PSE, failing that.
4717 auto BestKnownTC = getSmallBestKnownTC(PSE, OrigLoop);
4718
4719 // For fixed length VFs treat a scalable trip count as unknown.
4720 if (BestKnownTC && (BestKnownTC->isFixed() || VF.isScalable())) {
4721 // Re-evaluate trip counts and VFs to be in the same numerical space.
4722 unsigned AvailableTC =
4723 estimateElementCount(*BestKnownTC, CM.getVScaleForTuning());
4724 unsigned EstimatedVF = estimateElementCount(VF, CM.getVScaleForTuning());
4725
4726 // At least one iteration must be scalar when this constraint holds. So the
4727 // maximum available iterations for interleaving is one less.
4728 if (CM.requiresScalarEpilogue(VF.isVector()))
4729 --AvailableTC;
4730
4731 unsigned InterleaveCountLB = bit_floor(std::max(
4732 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4733
4734 if (getSmallConstantTripCount(PSE.getSE(), OrigLoop).isNonZero()) {
4735 // If the best known trip count is exact, we select between two
4736 // prospective ICs, where
4737 //
4738 // 1) the aggressive IC is capped by the trip count divided by VF
4739 // 2) the conservative IC is capped by the trip count divided by (VF * 2)
4740 //
4741 // The final IC is selected in a way that the epilogue loop trip count is
4742 // minimized while maximizing the IC itself, so that we either run the
4743 // vector loop at least once if it generates a small epilogue loop, or
4744 // else we run the vector loop at least twice.
4745
4746 unsigned InterleaveCountUB = bit_floor(std::max(
4747 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4748 MaxInterleaveCount = InterleaveCountLB;
4749
4750 if (InterleaveCountUB != InterleaveCountLB) {
4751 unsigned TailTripCountUB =
4752 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4753 unsigned TailTripCountLB =
4754 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4755 // If both produce same scalar tail, maximize the IC to do the same work
4756 // in fewer vector loop iterations
4757 if (TailTripCountUB == TailTripCountLB)
4758 MaxInterleaveCount = InterleaveCountUB;
4759 }
4760 } else {
4761 // If trip count is an estimated compile time constant, limit the
4762 // IC to be capped by the trip count divided by VF * 2, such that the
4763 // vector loop runs at least twice to make interleaving seem profitable
4764 // when there is an epilogue loop present. Since exact Trip count is not
4765 // known we choose to be conservative in our IC estimate.
4766 MaxInterleaveCount = InterleaveCountLB;
4767 }
4768 }
4769
4770 assert(MaxInterleaveCount > 0 &&
4771 "Maximum interleave count must be greater than 0");
4772
4773 // Clamp the calculated IC to be between the 1 and the max interleave count
4774 // that the target and trip count allows.
4775 if (IC > MaxInterleaveCount)
4776 IC = MaxInterleaveCount;
4777 else
4778 // Make sure IC is greater than 0.
4779 IC = std::max(1u, IC);
4780
4781 assert(IC > 0 && "Interleave count must be greater than 0.");
4782
4783 // Interleave if we vectorized this loop and there is a reduction that could
4784 // benefit from interleaving.
4785 if (VF.isVector() && HasReductions) {
4786 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
4787 return IC;
4788 }
4789
4790 // For any scalar loop that either requires runtime checks or predication we
4791 // are better off leaving this to the unroller. Note that if we've already
4792 // vectorized the loop we will have done the runtime check and so interleaving
4793 // won't require further checks.
4794 bool ScalarInterleavingRequiresPredication =
4795 (VF.isScalar() && any_of(OrigLoop->blocks(), [this](BasicBlock *BB) {
4796 return Legal->blockNeedsPredication(BB);
4797 }));
4798 bool ScalarInterleavingRequiresRuntimePointerCheck =
4799 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
4800
4801 // We want to interleave small loops in order to reduce the loop overhead and
4802 // potentially expose ILP opportunities.
4803 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
4804 << "LV: IC is " << IC << '\n'
4805 << "LV: VF is " << VF << '\n');
4806 const bool AggressivelyInterleaveReductions =
4807 TTI.enableAggressiveInterleaving(HasReductions);
4808 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4809 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
4810 // We assume that the cost overhead is 1 and we use the cost model
4811 // to estimate the cost of the loop and interleave until the cost of the
4812 // loop overhead is about 5% of the cost of the loop.
4813 unsigned SmallIC = std::min(IC, (unsigned)llvm::bit_floor<uint64_t>(
4814 SmallLoopCost / LoopCost.getValue()));
4815
4816 // Interleave until store/load ports (estimated by max interleave count) are
4817 // saturated.
4818 unsigned NumStores = 0;
4819 unsigned NumLoads = 0;
4822 for (VPRecipeBase &R : *VPBB) {
4824 NumLoads++;
4825 continue;
4826 }
4828 NumStores++;
4829 continue;
4830 }
4831
4832 if (auto *InterleaveR = dyn_cast<VPInterleaveRecipe>(&R)) {
4833 if (unsigned StoreOps = InterleaveR->getNumStoreOperands())
4834 NumStores += StoreOps;
4835 else
4836 NumLoads += InterleaveR->getNumDefinedValues();
4837 continue;
4838 }
4839 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
4840 NumLoads += isa<LoadInst>(RepR->getUnderlyingInstr());
4841 NumStores += isa<StoreInst>(RepR->getUnderlyingInstr());
4842 continue;
4843 }
4844 if (isa<VPHistogramRecipe>(&R)) {
4845 NumLoads++;
4846 NumStores++;
4847 continue;
4848 }
4849 }
4850 }
4851 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4852 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4853
4854 // There is little point in interleaving for reductions containing selects
4855 // and compares when VF=1 since it may just create more overhead than it's
4856 // worth for loops with small trip counts. This is because we still have to
4857 // do the final reduction after the loop.
4858 bool HasSelectCmpReductions =
4859 HasReductions &&
4861 [](VPRecipeBase &R) {
4862 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4863 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4864 RedR->getRecurrenceKind()) ||
4865 RecurrenceDescriptor::isFindIVRecurrenceKind(
4866 RedR->getRecurrenceKind()));
4867 });
4868 if (HasSelectCmpReductions) {
4869 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
4870 return 1;
4871 }
4872
4873 // If we have a scalar reduction (vector reductions are already dealt with
4874 // by this point), we can increase the critical path length if the loop
4875 // we're interleaving is inside another loop. For tree-wise reductions
4876 // set the limit to 2, and for ordered reductions it's best to disable
4877 // interleaving entirely.
4878 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4879 bool HasOrderedReductions =
4881 [](VPRecipeBase &R) {
4882 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4883
4884 return RedR && RedR->isOrdered();
4885 });
4886 if (HasOrderedReductions) {
4887 LLVM_DEBUG(
4888 dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
4889 return 1;
4890 }
4891
4892 unsigned F = MaxNestedScalarReductionIC;
4893 SmallIC = std::min(SmallIC, F);
4894 StoresIC = std::min(StoresIC, F);
4895 LoadsIC = std::min(LoadsIC, F);
4896 }
4897
4899 std::max(StoresIC, LoadsIC) > SmallIC) {
4900 LLVM_DEBUG(
4901 dbgs() << "LV: Interleaving to saturate store or load ports.\n");
4902 return std::max(StoresIC, LoadsIC);
4903 }
4904
4905 // If there are scalar reductions and TTI has enabled aggressive
4906 // interleaving for reductions, we will interleave to expose ILP.
4907 if (VF.isScalar() && AggressivelyInterleaveReductions) {
4908 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
4909 // Interleave no less than SmallIC but not as aggressive as the normal IC
4910 // to satisfy the rare situation when resources are too limited.
4911 return std::max(IC / 2, SmallIC);
4912 }
4913
4914 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
4915 return SmallIC;
4916 }
4917
4918 // Interleave if this is a large loop (small loops are already dealt with by
4919 // this point) that could benefit from interleaving.
4920 if (AggressivelyInterleaveReductions) {
4921 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
4922 return IC;
4923 }
4924
4925 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
4926 return 1;
4927}
4928
4929bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
4930 ElementCount VF) {
4931 // TODO: Cost model for emulated masked load/store is completely
4932 // broken. This hack guides the cost model to use an artificially
4933 // high enough value to practically disable vectorization with such
4934 // operations, except where previously deployed legality hack allowed
4935 // using very low cost values. This is to avoid regressions coming simply
4936 // from moving "masked load/store" check from legality to cost model.
4937 // Masked Load/Gather emulation was previously never allowed.
4938 // Limited number of Masked Store/Scatter emulation was allowed.
4939 assert((isPredicatedInst(I)) &&
4940 "Expecting a scalar emulated instruction");
4941 return isa<LoadInst>(I) ||
4942 (isa<StoreInst>(I) &&
4943 NumPredStores > NumberOfStoresToPredicate);
4944}
4945
4947 assert(VF.isVector() && "Expected VF >= 2");
4948
4949 // If we've already collected the instructions to scalarize or the predicated
4950 // BBs after vectorization, there's nothing to do. Collection may already have
4951 // occurred if we have a user-selected VF and are now computing the expected
4952 // cost for interleaving.
4953 if (InstsToScalarize.contains(VF) ||
4954 PredicatedBBsAfterVectorization.contains(VF))
4955 return;
4956
4957 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
4958 // not profitable to scalarize any instructions, the presence of VF in the
4959 // map will indicate that we've analyzed it already.
4960 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
4961
4962 // Find all the instructions that are scalar with predication in the loop and
4963 // determine if it would be better to not if-convert the blocks they are in.
4964 // If so, we also record the instructions to scalarize.
4965 for (BasicBlock *BB : TheLoop->blocks()) {
4967 continue;
4968 for (Instruction &I : *BB)
4969 if (isScalarWithPredication(&I, VF)) {
4970 ScalarCostsTy ScalarCosts;
4971 // Do not apply discount logic for:
4972 // 1. Scalars after vectorization, as there will only be a single copy
4973 // of the instruction.
4974 // 2. Scalable VF, as that would lead to invalid scalarization costs.
4975 // 3. Emulated masked memrefs, if a hacked cost is needed.
4976 if (!isScalarAfterVectorization(&I, VF) && !VF.isScalable() &&
4977 !useEmulatedMaskMemRefHack(&I, VF) &&
4978 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) {
4979 for (const auto &[I, IC] : ScalarCosts)
4980 ScalarCostsVF.insert({I, IC});
4981 // Check if we decided to scalarize a call. If so, update the widening
4982 // decision of the call to CM_Scalarize with the computed scalar cost.
4983 for (const auto &[I, Cost] : ScalarCosts) {
4984 auto *CI = dyn_cast<CallInst>(I);
4985 if (!CI || !CallWideningDecisions.contains({CI, VF}))
4986 continue;
4987 CallWideningDecisions[{CI, VF}].Kind = CM_Scalarize;
4988 CallWideningDecisions[{CI, VF}].Cost = Cost;
4989 }
4990 }
4991 // Remember that BB will remain after vectorization.
4992 PredicatedBBsAfterVectorization[VF].insert(BB);
4993 for (auto *Pred : predecessors(BB)) {
4994 if (Pred->getSingleSuccessor() == BB)
4995 PredicatedBBsAfterVectorization[VF].insert(Pred);
4996 }
4997 }
4998 }
4999}
5000
5001InstructionCost LoopVectorizationCostModel::computePredInstDiscount(
5002 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
5003 assert(!isUniformAfterVectorization(PredInst, VF) &&
5004 "Instruction marked uniform-after-vectorization will be predicated");
5005
5006 // Initialize the discount to zero, meaning that the scalar version and the
5007 // vector version cost the same.
5008 InstructionCost Discount = 0;
5009
5010 // Holds instructions to analyze. The instructions we visit are mapped in
5011 // ScalarCosts. Those instructions are the ones that would be scalarized if
5012 // we find that the scalar version costs less.
5014
5015 // Returns true if the given instruction can be scalarized.
5016 auto CanBeScalarized = [&](Instruction *I) -> bool {
5017 // We only attempt to scalarize instructions forming a single-use chain
5018 // from the original predicated block that would otherwise be vectorized.
5019 // Although not strictly necessary, we give up on instructions we know will
5020 // already be scalar to avoid traversing chains that are unlikely to be
5021 // beneficial.
5022 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
5023 isScalarAfterVectorization(I, VF))
5024 return false;
5025
5026 // If the instruction is scalar with predication, it will be analyzed
5027 // separately. We ignore it within the context of PredInst.
5028 if (isScalarWithPredication(I, VF))
5029 return false;
5030
5031 // If any of the instruction's operands are uniform after vectorization,
5032 // the instruction cannot be scalarized. This prevents, for example, a
5033 // masked load from being scalarized.
5034 //
5035 // We assume we will only emit a value for lane zero of an instruction
5036 // marked uniform after vectorization, rather than VF identical values.
5037 // Thus, if we scalarize an instruction that uses a uniform, we would
5038 // create uses of values corresponding to the lanes we aren't emitting code
5039 // for. This behavior can be changed by allowing getScalarValue to clone
5040 // the lane zero values for uniforms rather than asserting.
5041 for (Use &U : I->operands())
5042 if (auto *J = dyn_cast<Instruction>(U.get()))
5043 if (isUniformAfterVectorization(J, VF))
5044 return false;
5045
5046 // Otherwise, we can scalarize the instruction.
5047 return true;
5048 };
5049
5050 // Compute the expected cost discount from scalarizing the entire expression
5051 // feeding the predicated instruction. We currently only consider expressions
5052 // that are single-use instruction chains.
5053 Worklist.push_back(PredInst);
5054 while (!Worklist.empty()) {
5055 Instruction *I = Worklist.pop_back_val();
5056
5057 // If we've already analyzed the instruction, there's nothing to do.
5058 if (ScalarCosts.contains(I))
5059 continue;
5060
5061 // Cannot scalarize fixed-order recurrence phis at the moment.
5062 if (isa<PHINode>(I) && Legal->isFixedOrderRecurrence(cast<PHINode>(I)))
5063 continue;
5064
5065 // Compute the cost of the vector instruction. Note that this cost already
5066 // includes the scalarization overhead of the predicated instruction.
5067 InstructionCost VectorCost = getInstructionCost(I, VF);
5068
5069 // Compute the cost of the scalarized instruction. This cost is the cost of
5070 // the instruction as if it wasn't if-converted and instead remained in the
5071 // predicated block. We will scale this cost by block probability after
5072 // computing the scalarization overhead.
5073 InstructionCost ScalarCost =
5074 VF.getFixedValue() * getInstructionCost(I, ElementCount::getFixed(1));
5075
5076 // Compute the scalarization overhead of needed insertelement instructions
5077 // and phi nodes.
5078 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
5079 Type *WideTy = toVectorizedTy(I->getType(), VF);
5080 for (Type *VectorTy : getContainedTypes(WideTy)) {
5081 ScalarCost += TTI.getScalarizationOverhead(
5083 /*Insert=*/true,
5084 /*Extract=*/false, CostKind);
5085 }
5086 ScalarCost +=
5087 VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind);
5088 }
5089
5090 // Compute the scalarization overhead of needed extractelement
5091 // instructions. For each of the instruction's operands, if the operand can
5092 // be scalarized, add it to the worklist; otherwise, account for the
5093 // overhead.
5094 for (Use &U : I->operands())
5095 if (auto *J = dyn_cast<Instruction>(U.get())) {
5096 assert(canVectorizeTy(J->getType()) &&
5097 "Instruction has non-scalar type");
5098 if (CanBeScalarized(J))
5099 Worklist.push_back(J);
5100 else if (needsExtract(J, VF)) {
5101 Type *WideTy = toVectorizedTy(J->getType(), VF);
5102 for (Type *VectorTy : getContainedTypes(WideTy)) {
5103 ScalarCost += TTI.getScalarizationOverhead(
5104 cast<VectorType>(VectorTy),
5105 APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ false,
5106 /*Extract*/ true, CostKind);
5107 }
5108 }
5109 }
5110
5111 // Scale the total scalar cost by block probability.
5112 ScalarCost /= getPredBlockCostDivisor(CostKind, I->getParent());
5113
5114 // Compute the discount. A non-negative discount means the vector version
5115 // of the instruction costs more, and scalarizing would be beneficial.
5116 Discount += VectorCost - ScalarCost;
5117 ScalarCosts[I] = ScalarCost;
5118 }
5119
5120 return Discount;
5121}
5122
5125
5126 // If the vector loop gets executed exactly once with the given VF, ignore the
5127 // costs of comparison and induction instructions, as they'll get simplified
5128 // away.
5129 SmallPtrSet<Instruction *, 2> ValuesToIgnoreForVF;
5130 auto TC = getSmallConstantTripCount(PSE.getSE(), TheLoop);
5131 if (TC == VF && !foldTailByMasking())
5133 ValuesToIgnoreForVF);
5134
5135 // For each block.
5136 for (BasicBlock *BB : TheLoop->blocks()) {
5137 InstructionCost BlockCost;
5138
5139 // For each instruction in the old loop.
5140 for (Instruction &I : BB->instructionsWithoutDebug()) {
5141 // Skip ignored values.
5142 if (ValuesToIgnore.count(&I) || ValuesToIgnoreForVF.count(&I) ||
5143 (VF.isVector() && VecValuesToIgnore.count(&I)))
5144 continue;
5145
5147
5148 // Check if we should override the cost.
5149 if (C.isValid() && ForceTargetInstructionCost.getNumOccurrences() > 0) {
5150 // For interleave groups, use ForceTargetInstructionCost once for the
5151 // whole group.
5152 if (VF.isVector() && getWideningDecision(&I, VF) == CM_Interleave) {
5153 if (getInterleavedAccessGroup(&I)->getInsertPos() == &I)
5155 else
5156 C = InstructionCost(0);
5157 } else {
5159 }
5160 }
5161
5162 BlockCost += C;
5163 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF "
5164 << VF << " For instruction: " << I << '\n');
5165 }
5166
5167 // If we are vectorizing a predicated block, it will have been
5168 // if-converted. This means that the block's instructions (aside from
5169 // stores and instructions that may divide by zero) will now be
5170 // unconditionally executed. For the scalar case, we may not always execute
5171 // the predicated block, if it is an if-else block. Thus, scale the block's
5172 // cost by the probability of executing it.
5173 // getPredBlockCostDivisor will return 1 for blocks that are only predicated
5174 // by the header mask when folding the tail.
5175 if (VF.isScalar())
5176 BlockCost /= getPredBlockCostDivisor(CostKind, BB);
5177
5178 Cost += BlockCost;
5179 }
5180
5181 return Cost;
5182}
5183
5184/// Gets Address Access SCEV after verifying that the access pattern
5185/// is loop invariant except the induction variable dependence.
5186///
5187/// This SCEV can be sent to the Target in order to estimate the address
5188/// calculation cost.
5190 Value *Ptr,
5193 const Loop *TheLoop) {
5194
5195 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5196 if (!Gep)
5197 return nullptr;
5198
5199 // We are looking for a gep with all loop invariant indices except for one
5200 // which should be an induction variable.
5201 auto *SE = PSE.getSE();
5202 unsigned NumOperands = Gep->getNumOperands();
5203 for (unsigned Idx = 1; Idx < NumOperands; ++Idx) {
5204 Value *Opd = Gep->getOperand(Idx);
5205 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
5206 !Legal->isInductionVariable(Opd))
5207 return nullptr;
5208 }
5209
5210 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
5211 return PSE.getSCEV(Ptr);
5212}
5213
5215LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
5216 ElementCount VF) {
5217 assert(VF.isVector() &&
5218 "Scalarization cost of instruction implies vectorization.");
5219 if (VF.isScalable())
5220 return InstructionCost::getInvalid();
5221
5222 Type *ValTy = getLoadStoreType(I);
5223 auto *SE = PSE.getSE();
5224
5225 unsigned AS = getLoadStoreAddressSpace(I);
5227 Type *PtrTy = toVectorTy(Ptr->getType(), VF);
5228 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
5229 // that it is being called from this specific place.
5230
5231 // Figure out whether the access is strided and get the stride value
5232 // if it's known in compile time
5233 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
5234
5235 // Get the cost of the scalar memory instruction and address computation.
5237 PtrTy, SE, PtrSCEV, CostKind);
5238
5239 // Don't pass *I here, since it is scalar but will actually be part of a
5240 // vectorized loop where the user of it is a vectorized instruction.
5241 const Align Alignment = getLoadStoreAlignment(I);
5242 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5243 Cost += VF.getFixedValue() *
5244 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
5245 AS, CostKind, OpInfo);
5246
5247 // Get the overhead of the extractelement and insertelement instructions
5248 // we might create due to scalarization.
5250
5251 // If we have a predicated load/store, it will need extra i1 extracts and
5252 // conditional branches, but may not be executed for each vector lane. Scale
5253 // the cost by the probability of executing the predicated block.
5254 if (isPredicatedInst(I)) {
5255 Cost /= getPredBlockCostDivisor(CostKind, I->getParent());
5256
5257 // Add the cost of an i1 extract and a branch
5258 auto *VecI1Ty =
5259 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
5261 VecI1Ty, APInt::getAllOnes(VF.getFixedValue()),
5262 /*Insert=*/false, /*Extract=*/true, CostKind);
5263 Cost += TTI.getCFInstrCost(Instruction::Br, CostKind);
5264
5265 if (useEmulatedMaskMemRefHack(I, VF))
5266 // Artificially setting to a high enough value to practically disable
5267 // vectorization with such operations.
5268 Cost = 3000000;
5269 }
5270
5271 return Cost;
5272}
5273
5275LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
5276 ElementCount VF) {
5277 Type *ValTy = getLoadStoreType(I);
5278 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5280 unsigned AS = getLoadStoreAddressSpace(I);
5281 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
5282
5283 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5284 "Stride should be 1 or -1 for consecutive memory access");
5285 const Align Alignment = getLoadStoreAlignment(I);
5287 if (Legal->isMaskRequired(I)) {
5288 unsigned IID = I->getOpcode() == Instruction::Load
5289 ? Intrinsic::masked_load
5290 : Intrinsic::masked_store;
5292 MemIntrinsicCostAttributes(IID, VectorTy, Alignment, AS), CostKind);
5293 } else {
5294 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5295 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
5296 CostKind, OpInfo, I);
5297 }
5298
5299 bool Reverse = ConsecutiveStride < 0;
5300 if (Reverse)
5302 VectorTy, {}, CostKind, 0);
5303 return Cost;
5304}
5305
5307LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
5308 ElementCount VF) {
5309 assert(Legal->isUniformMemOp(*I, VF));
5310
5311 Type *ValTy = getLoadStoreType(I);
5313 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5314 const Align Alignment = getLoadStoreAlignment(I);
5315 unsigned AS = getLoadStoreAddressSpace(I);
5316 if (isa<LoadInst>(I)) {
5317 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5318 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
5319 CostKind) +
5321 VectorTy, {}, CostKind);
5322 }
5323 StoreInst *SI = cast<StoreInst>(I);
5324
5325 bool IsLoopInvariantStoreValue = Legal->isInvariant(SI->getValueOperand());
5326 // TODO: We have existing tests that request the cost of extracting element
5327 // VF.getKnownMinValue() - 1 from a scalable vector. This does not represent
5328 // the actual generated code, which involves extracting the last element of
5329 // a scalable vector where the lane to extract is unknown at compile time.
5331 TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5332 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, CostKind);
5333 if (!IsLoopInvariantStoreValue)
5334 Cost += TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
5335 VectorTy, CostKind, 0);
5336 return Cost;
5337}
5338
5340LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
5341 ElementCount VF) {
5342 Type *ValTy = getLoadStoreType(I);
5343 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5344 const Align Alignment = getLoadStoreAlignment(I);
5346 Type *PtrTy = Ptr->getType();
5347
5348 if (!Legal->isUniform(Ptr, VF))
5349 PtrTy = toVectorTy(PtrTy, VF);
5350
5351 unsigned IID = I->getOpcode() == Instruction::Load
5352 ? Intrinsic::masked_gather
5353 : Intrinsic::masked_scatter;
5354 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5356 MemIntrinsicCostAttributes(IID, VectorTy, Ptr,
5357 Legal->isMaskRequired(I), Alignment, I),
5358 CostKind);
5359}
5360
5362LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
5363 ElementCount VF) {
5364 const auto *Group = getInterleavedAccessGroup(I);
5365 assert(Group && "Fail to get an interleaved access group.");
5366
5367 Instruction *InsertPos = Group->getInsertPos();
5368 Type *ValTy = getLoadStoreType(InsertPos);
5369 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5370 unsigned AS = getLoadStoreAddressSpace(InsertPos);
5371
5372 unsigned InterleaveFactor = Group->getFactor();
5373 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5374
5375 // Holds the indices of existing members in the interleaved group.
5376 SmallVector<unsigned, 4> Indices;
5377 for (unsigned IF = 0; IF < InterleaveFactor; IF++)
5378 if (Group->getMember(IF))
5379 Indices.push_back(IF);
5380
5381 // Calculate the cost of the whole interleaved group.
5382 bool UseMaskForGaps =
5383 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5384 (isa<StoreInst>(I) && !Group->isFull());
5386 InsertPos->getOpcode(), WideVecTy, Group->getFactor(), Indices,
5387 Group->getAlign(), AS, CostKind, Legal->isMaskRequired(I),
5388 UseMaskForGaps);
5389
5390 if (Group->isReverse()) {
5391 // TODO: Add support for reversed masked interleaved access.
5392 assert(!Legal->isMaskRequired(I) &&
5393 "Reverse masked interleaved access not supported.");
5394 Cost += Group->getNumMembers() *
5396 VectorTy, {}, CostKind, 0);
5397 }
5398 return Cost;
5399}
5400
5401std::optional<InstructionCost>
5403 ElementCount VF,
5404 Type *Ty) const {
5405 using namespace llvm::PatternMatch;
5406 // Early exit for no inloop reductions
5407 if (InLoopReductions.empty() || VF.isScalar() || !isa<VectorType>(Ty))
5408 return std::nullopt;
5409 auto *VectorTy = cast<VectorType>(Ty);
5410
5411 // We are looking for a pattern of, and finding the minimal acceptable cost:
5412 // reduce(mul(ext(A), ext(B))) or
5413 // reduce(mul(A, B)) or
5414 // reduce(ext(A)) or
5415 // reduce(A).
5416 // The basic idea is that we walk down the tree to do that, finding the root
5417 // reduction instruction in InLoopReductionImmediateChains. From there we find
5418 // the pattern of mul/ext and test the cost of the entire pattern vs the cost
5419 // of the components. If the reduction cost is lower then we return it for the
5420 // reduction instruction and 0 for the other instructions in the pattern. If
5421 // it is not we return an invalid cost specifying the orignal cost method
5422 // should be used.
5423 Instruction *RetI = I;
5424 if (match(RetI, m_ZExtOrSExt(m_Value()))) {
5425 if (!RetI->hasOneUser())
5426 return std::nullopt;
5427 RetI = RetI->user_back();
5428 }
5429
5430 if (match(RetI, m_OneUse(m_Mul(m_Value(), m_Value()))) &&
5431 RetI->user_back()->getOpcode() == Instruction::Add) {
5432 RetI = RetI->user_back();
5433 }
5434
5435 // Test if the found instruction is a reduction, and if not return an invalid
5436 // cost specifying the parent to use the original cost modelling.
5437 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5438 if (!LastChain)
5439 return std::nullopt;
5440
5441 // Find the reduction this chain is a part of and calculate the basic cost of
5442 // the reduction on its own.
5443 Instruction *ReductionPhi = LastChain;
5444 while (!isa<PHINode>(ReductionPhi))
5445 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5446
5447 const RecurrenceDescriptor &RdxDesc =
5448 Legal->getRecurrenceDescriptor(cast<PHINode>(ReductionPhi));
5449
5450 InstructionCost BaseCost;
5451 RecurKind RK = RdxDesc.getRecurrenceKind();
5454 BaseCost = TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5455 RdxDesc.getFastMathFlags(), CostKind);
5456 } else {
5457 BaseCost = TTI.getArithmeticReductionCost(
5458 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
5459 }
5460
5461 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
5462 // normal fmul instruction to the cost of the fadd reduction.
5463 if (RK == RecurKind::FMulAdd)
5464 BaseCost +=
5465 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
5466
5467 // If we're using ordered reductions then we can just return the base cost
5468 // here, since getArithmeticReductionCost calculates the full ordered
5469 // reduction cost when FP reassociation is not allowed.
5470 if (useOrderedReductions(RdxDesc))
5471 return BaseCost;
5472
5473 // Get the operand that was not the reduction chain and match it to one of the
5474 // patterns, returning the better cost if it is found.
5475 Instruction *RedOp = RetI->getOperand(1) == LastChain
5478
5479 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
5480
5481 Instruction *Op0, *Op1;
5482 if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
5483 match(RedOp,
5485 match(Op0, m_ZExtOrSExt(m_Value())) &&
5486 Op0->getOpcode() == Op1->getOpcode() &&
5487 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
5488 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
5489 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
5490
5491 // Matched reduce.add(ext(mul(ext(A), ext(B)))
5492 // Note that the extend opcodes need to all match, or if A==B they will have
5493 // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
5494 // which is equally fine.
5495 bool IsUnsigned = isa<ZExtInst>(Op0);
5496 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
5497 auto *MulType = VectorType::get(Op0->getType(), VectorTy);
5498
5499 InstructionCost ExtCost =
5500 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
5502 InstructionCost MulCost =
5503 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
5504 InstructionCost Ext2Cost =
5505 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
5507
5508 InstructionCost RedCost = TTI.getMulAccReductionCost(
5509 IsUnsigned, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), ExtType,
5510 CostKind);
5511
5512 if (RedCost.isValid() &&
5513 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5514 return I == RetI ? RedCost : 0;
5515 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
5516 !TheLoop->isLoopInvariant(RedOp)) {
5517 // Matched reduce(ext(A))
5518 bool IsUnsigned = isa<ZExtInst>(RedOp);
5519 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
5520 InstructionCost RedCost = TTI.getExtendedReductionCost(
5521 RdxDesc.getOpcode(), IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
5522 RdxDesc.getFastMathFlags(), CostKind);
5523
5524 InstructionCost ExtCost =
5525 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
5527 if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
5528 return I == RetI ? RedCost : 0;
5529 } else if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
5530 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
5531 if (match(Op0, m_ZExtOrSExt(m_Value())) &&
5532 Op0->getOpcode() == Op1->getOpcode() &&
5533 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
5534 bool IsUnsigned = isa<ZExtInst>(Op0);
5535 Type *Op0Ty = Op0->getOperand(0)->getType();
5536 Type *Op1Ty = Op1->getOperand(0)->getType();
5537 Type *LargestOpTy =
5538 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
5539 : Op0Ty;
5540 auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
5541
5542 // Matched reduce.add(mul(ext(A), ext(B))), where the two ext may be of
5543 // different sizes. We take the largest type as the ext to reduce, and add
5544 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
5545 InstructionCost ExtCost0 = TTI.getCastInstrCost(
5546 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
5548 InstructionCost ExtCost1 = TTI.getCastInstrCost(
5549 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
5551 InstructionCost MulCost =
5552 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
5553
5554 InstructionCost RedCost = TTI.getMulAccReductionCost(
5555 IsUnsigned, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), ExtType,
5556 CostKind);
5557 InstructionCost ExtraExtCost = 0;
5558 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5559 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5560 ExtraExtCost = TTI.getCastInstrCost(
5561 ExtraExtOp->getOpcode(), ExtType,
5562 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
5564 }
5565
5566 if (RedCost.isValid() &&
5567 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5568 return I == RetI ? RedCost : 0;
5569 } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
5570 // Matched reduce.add(mul())
5571 InstructionCost MulCost =
5572 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
5573
5574 InstructionCost RedCost = TTI.getMulAccReductionCost(
5575 true, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), VectorTy,
5576 CostKind);
5577
5578 if (RedCost.isValid() && RedCost < MulCost + BaseCost)
5579 return I == RetI ? RedCost : 0;
5580 }
5581 }
5582
5583 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5584}
5585
5587LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
5588 ElementCount VF) {
5589 // Calculate scalar cost only. Vectorization cost should be ready at this
5590 // moment.
5591 if (VF.isScalar()) {
5592 Type *ValTy = getLoadStoreType(I);
5594 const Align Alignment = getLoadStoreAlignment(I);
5595 unsigned AS = getLoadStoreAddressSpace(I);
5596
5597 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5598 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5599 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, CostKind,
5600 OpInfo, I);
5601 }
5602 return getWideningCost(I, VF);
5603}
5604
5606LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
5607 ElementCount VF) const {
5608
5609 // There is no mechanism yet to create a scalable scalarization loop,
5610 // so this is currently Invalid.
5611 if (VF.isScalable())
5612 return InstructionCost::getInvalid();
5613
5614 if (VF.isScalar())
5615 return 0;
5616
5618 Type *RetTy = toVectorizedTy(I->getType(), VF);
5619 if (!RetTy->isVoidTy() &&
5621
5622 for (Type *VectorTy : getContainedTypes(RetTy)) {
5625 /*Insert=*/true,
5626 /*Extract=*/false, CostKind);
5627 }
5628 }
5629
5630 // Some targets keep addresses scalar.
5632 return Cost;
5633
5634 // Some targets support efficient element stores.
5636 return Cost;
5637
5638 // Collect operands to consider.
5639 CallInst *CI = dyn_cast<CallInst>(I);
5640 Instruction::op_range Ops = CI ? CI->args() : I->operands();
5641
5642 // Skip operands that do not require extraction/scalarization and do not incur
5643 // any overhead.
5645 for (auto *V : filterExtractingOperands(Ops, VF))
5646 Tys.push_back(maybeVectorizeType(V->getType(), VF));
5648}
5649
5651 if (VF.isScalar())
5652 return;
5653 NumPredStores = 0;
5654 for (BasicBlock *BB : TheLoop->blocks()) {
5655 // For each instruction in the old loop.
5656 for (Instruction &I : *BB) {
5658 if (!Ptr)
5659 continue;
5660
5661 // TODO: We should generate better code and update the cost model for
5662 // predicated uniform stores. Today they are treated as any other
5663 // predicated store (see added test cases in
5664 // invariant-store-vectorization.ll).
5666 NumPredStores++;
5667
5668 if (Legal->isUniformMemOp(I, VF)) {
5669 auto IsLegalToScalarize = [&]() {
5670 if (!VF.isScalable())
5671 // Scalarization of fixed length vectors "just works".
5672 return true;
5673
5674 // We have dedicated lowering for unpredicated uniform loads and
5675 // stores. Note that even with tail folding we know that at least
5676 // one lane is active (i.e. generalized predication is not possible
5677 // here), and the logic below depends on this fact.
5678 if (!foldTailByMasking())
5679 return true;
5680
5681 // For scalable vectors, a uniform memop load is always
5682 // uniform-by-parts and we know how to scalarize that.
5683 if (isa<LoadInst>(I))
5684 return true;
5685
5686 // A uniform store isn't neccessarily uniform-by-part
5687 // and we can't assume scalarization.
5688 auto &SI = cast<StoreInst>(I);
5689 return TheLoop->isLoopInvariant(SI.getValueOperand());
5690 };
5691
5692 const InstructionCost GatherScatterCost =
5694 getGatherScatterCost(&I, VF) : InstructionCost::getInvalid();
5695
5696 // Load: Scalar load + broadcast
5697 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
5698 // FIXME: This cost is a significant under-estimate for tail folded
5699 // memory ops.
5700 const InstructionCost ScalarizationCost =
5701 IsLegalToScalarize() ? getUniformMemOpCost(&I, VF)
5703
5704 // Choose better solution for the current VF, Note that Invalid
5705 // costs compare as maximumal large. If both are invalid, we get
5706 // scalable invalid which signals a failure and a vectorization abort.
5707 if (GatherScatterCost < ScalarizationCost)
5708 setWideningDecision(&I, VF, CM_GatherScatter, GatherScatterCost);
5709 else
5710 setWideningDecision(&I, VF, CM_Scalarize, ScalarizationCost);
5711 continue;
5712 }
5713
5714 // We assume that widening is the best solution when possible.
5715 if (memoryInstructionCanBeWidened(&I, VF)) {
5716 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
5717 int ConsecutiveStride = Legal->isConsecutivePtr(
5719 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5720 "Expected consecutive stride.");
5721 InstWidening Decision =
5722 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
5723 setWideningDecision(&I, VF, Decision, Cost);
5724 continue;
5725 }
5726
5727 // Choose between Interleaving, Gather/Scatter or Scalarization.
5729 unsigned NumAccesses = 1;
5730 if (isAccessInterleaved(&I)) {
5731 const auto *Group = getInterleavedAccessGroup(&I);
5732 assert(Group && "Fail to get an interleaved access group.");
5733
5734 // Make one decision for the whole group.
5735 if (getWideningDecision(&I, VF) != CM_Unknown)
5736 continue;
5737
5738 NumAccesses = Group->getNumMembers();
5740 InterleaveCost = getInterleaveGroupCost(&I, VF);
5741 }
5742
5743 InstructionCost GatherScatterCost =
5745 ? getGatherScatterCost(&I, VF) * NumAccesses
5747
5748 InstructionCost ScalarizationCost =
5749 getMemInstScalarizationCost(&I, VF) * NumAccesses;
5750
5751 // Choose better solution for the current VF,
5752 // write down this decision and use it during vectorization.
5754 InstWidening Decision;
5755 if (InterleaveCost <= GatherScatterCost &&
5756 InterleaveCost < ScalarizationCost) {
5757 Decision = CM_Interleave;
5758 Cost = InterleaveCost;
5759 } else if (GatherScatterCost < ScalarizationCost) {
5760 Decision = CM_GatherScatter;
5761 Cost = GatherScatterCost;
5762 } else {
5763 Decision = CM_Scalarize;
5764 Cost = ScalarizationCost;
5765 }
5766 // If the instructions belongs to an interleave group, the whole group
5767 // receives the same decision. The whole group receives the cost, but
5768 // the cost will actually be assigned to one instruction.
5769 if (const auto *Group = getInterleavedAccessGroup(&I)) {
5770 if (Decision == CM_Scalarize) {
5771 for (unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5772 if (auto *I = Group->getMember(Idx)) {
5773 setWideningDecision(I, VF, Decision,
5774 getMemInstScalarizationCost(I, VF));
5775 }
5776 }
5777 } else {
5778 setWideningDecision(Group, VF, Decision, Cost);
5779 }
5780 } else
5781 setWideningDecision(&I, VF, Decision, Cost);
5782 }
5783 }
5784
5785 // Make sure that any load of address and any other address computation
5786 // remains scalar unless there is gather/scatter support. This avoids
5787 // inevitable extracts into address registers, and also has the benefit of
5788 // activating LSR more, since that pass can't optimize vectorized
5789 // addresses.
5790 if (TTI.prefersVectorizedAddressing())
5791 return;
5792
5793 // Start with all scalar pointer uses.
5795 for (BasicBlock *BB : TheLoop->blocks())
5796 for (Instruction &I : *BB) {
5797 Instruction *PtrDef =
5799 if (PtrDef && TheLoop->contains(PtrDef) &&
5801 AddrDefs.insert(PtrDef);
5802 }
5803
5804 // Add all instructions used to generate the addresses.
5806 append_range(Worklist, AddrDefs);
5807 while (!Worklist.empty()) {
5808 Instruction *I = Worklist.pop_back_val();
5809 for (auto &Op : I->operands())
5810 if (auto *InstOp = dyn_cast<Instruction>(Op))
5811 if (TheLoop->contains(InstOp) && !isa<PHINode>(InstOp) &&
5812 AddrDefs.insert(InstOp).second)
5813 Worklist.push_back(InstOp);
5814 }
5815
5816 auto UpdateMemOpUserCost = [this, VF](LoadInst *LI) {
5817 // If there are direct memory op users of the newly scalarized load,
5818 // their cost may have changed because there's no scalarization
5819 // overhead for the operand. Update it.
5820 for (User *U : LI->users()) {
5822 continue;
5824 continue;
5827 getMemInstScalarizationCost(cast<Instruction>(U), VF));
5828 }
5829 };
5830 for (auto *I : AddrDefs) {
5831 if (isa<LoadInst>(I)) {
5832 // Setting the desired widening decision should ideally be handled in
5833 // by cost functions, but since this involves the task of finding out
5834 // if the loaded register is involved in an address computation, it is
5835 // instead changed here when we know this is the case.
5836 InstWidening Decision = getWideningDecision(I, VF);
5837 if (Decision == CM_Widen || Decision == CM_Widen_Reverse ||
5838 (!isPredicatedInst(I) && !Legal->isUniformMemOp(*I, VF) &&
5839 Decision == CM_Scalarize)) {
5840 // Scalarize a widened load of address or update the cost of a scalar
5841 // load of an address.
5843 I, VF, CM_Scalarize,
5844 (VF.getKnownMinValue() *
5845 getMemoryInstructionCost(I, ElementCount::getFixed(1))));
5846 UpdateMemOpUserCost(cast<LoadInst>(I));
5847 } else if (const auto *Group = getInterleavedAccessGroup(I)) {
5848 // Scalarize all members of this interleaved group when any member
5849 // is used as an address. The address-used load skips scalarization
5850 // overhead, other members include it.
5851 for (unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5852 if (Instruction *Member = Group->getMember(Idx)) {
5854 AddrDefs.contains(Member)
5855 ? (VF.getKnownMinValue() *
5856 getMemoryInstructionCost(Member,
5858 : getMemInstScalarizationCost(Member, VF);
5860 UpdateMemOpUserCost(cast<LoadInst>(Member));
5861 }
5862 }
5863 }
5864 } else {
5865 // Cannot scalarize fixed-order recurrence phis at the moment.
5866 if (isa<PHINode>(I) && Legal->isFixedOrderRecurrence(cast<PHINode>(I)))
5867 continue;
5868
5869 // Make sure I gets scalarized and a cost estimate without
5870 // scalarization overhead.
5871 ForcedScalars[VF].insert(I);
5872 }
5873 }
5874}
5875
5877 assert(!VF.isScalar() &&
5878 "Trying to set a vectorization decision for a scalar VF");
5879
5880 auto ForcedScalar = ForcedScalars.find(VF);
5881 for (BasicBlock *BB : TheLoop->blocks()) {
5882 // For each instruction in the old loop.
5883 for (Instruction &I : *BB) {
5885
5886 if (!CI)
5887 continue;
5888
5892 Function *ScalarFunc = CI->getCalledFunction();
5893 Type *ScalarRetTy = CI->getType();
5894 SmallVector<Type *, 4> Tys, ScalarTys;
5895 for (auto &ArgOp : CI->args())
5896 ScalarTys.push_back(ArgOp->getType());
5897
5898 // Estimate cost of scalarized vector call. The source operands are
5899 // assumed to be vectors, so we need to extract individual elements from
5900 // there, execute VF scalar calls, and then gather the result into the
5901 // vector return value.
5902 if (VF.isFixed()) {
5903 InstructionCost ScalarCallCost =
5904 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys, CostKind);
5905
5906 // Compute costs of unpacking argument values for the scalar calls and
5907 // packing the return values to a vector.
5908 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
5909 ScalarCost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
5910 } else {
5911 // There is no point attempting to calculate the scalar cost for a
5912 // scalable VF as we know it will be Invalid.
5914 "Unexpected valid cost for scalarizing scalable vectors");
5915 ScalarCost = InstructionCost::getInvalid();
5916 }
5917
5918 // Honor ForcedScalars and UniformAfterVectorization decisions.
5919 // TODO: For calls, it might still be more profitable to widen. Use
5920 // VPlan-based cost model to compare different options.
5921 if (VF.isVector() && ((ForcedScalar != ForcedScalars.end() &&
5922 ForcedScalar->second.contains(CI)) ||
5923 isUniformAfterVectorization(CI, VF))) {
5924 setCallWideningDecision(CI, VF, CM_Scalarize, nullptr,
5925 Intrinsic::not_intrinsic, std::nullopt,
5926 ScalarCost);
5927 continue;
5928 }
5929
5930 bool MaskRequired = Legal->isMaskRequired(CI);
5931 // Compute corresponding vector type for return value and arguments.
5932 Type *RetTy = toVectorizedTy(ScalarRetTy, VF);
5933 for (Type *ScalarTy : ScalarTys)
5934 Tys.push_back(toVectorizedTy(ScalarTy, VF));
5935
5936 // An in-loop reduction using an fmuladd intrinsic is a special case;
5937 // we don't want the normal cost for that intrinsic.
5939 if (auto RedCost = getReductionPatternCost(CI, VF, RetTy)) {
5942 std::nullopt, *RedCost);
5943 continue;
5944 }
5945
5946 // Find the cost of vectorizing the call, if we can find a suitable
5947 // vector variant of the function.
5948 VFInfo FuncInfo;
5949 Function *VecFunc = nullptr;
5950 // Search through any available variants for one we can use at this VF.
5951 for (VFInfo &Info : VFDatabase::getMappings(*CI)) {
5952 // Must match requested VF.
5953 if (Info.Shape.VF != VF)
5954 continue;
5955
5956 // Must take a mask argument if one is required
5957 if (MaskRequired && !Info.isMasked())
5958 continue;
5959
5960 // Check that all parameter kinds are supported
5961 bool ParamsOk = true;
5962 for (VFParameter Param : Info.Shape.Parameters) {
5963 switch (Param.ParamKind) {
5965 break;
5967 Value *ScalarParam = CI->getArgOperand(Param.ParamPos);
5968 // Make sure the scalar parameter in the loop is invariant.
5969 if (!PSE.getSE()->isLoopInvariant(PSE.getSCEV(ScalarParam),
5970 TheLoop))
5971 ParamsOk = false;
5972 break;
5973 }
5975 Value *ScalarParam = CI->getArgOperand(Param.ParamPos);
5976 // Find the stride for the scalar parameter in this loop and see if
5977 // it matches the stride for the variant.
5978 // TODO: do we need to figure out the cost of an extract to get the
5979 // first lane? Or do we hope that it will be folded away?
5980 ScalarEvolution *SE = PSE.getSE();
5981 if (!match(SE->getSCEV(ScalarParam),
5983 m_SCEV(), m_scev_SpecificSInt(Param.LinearStepOrPos),
5985 ParamsOk = false;
5986 break;
5987 }
5989 break;
5990 default:
5991 ParamsOk = false;
5992 break;
5993 }
5994 }
5995
5996 if (!ParamsOk)
5997 continue;
5998
5999 // Found a suitable candidate, stop here.
6000 VecFunc = CI->getModule()->getFunction(Info.VectorName);
6001 FuncInfo = Info;
6002 break;
6003 }
6004
6005 if (TLI && VecFunc && !CI->isNoBuiltin())
6006 VectorCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, CostKind);
6007
6008 // Find the cost of an intrinsic; some targets may have instructions that
6009 // perform the operation without needing an actual call.
6011 if (IID != Intrinsic::not_intrinsic)
6013
6014 InstructionCost Cost = ScalarCost;
6015 InstWidening Decision = CM_Scalarize;
6016
6017 if (VectorCost <= Cost) {
6018 Cost = VectorCost;
6019 Decision = CM_VectorCall;
6020 }
6021
6022 if (IntrinsicCost <= Cost) {
6024 Decision = CM_IntrinsicCall;
6025 }
6026
6027 setCallWideningDecision(CI, VF, Decision, VecFunc, IID,
6029 }
6030 }
6031}
6032
6034 if (!Legal->isInvariant(Op))
6035 return false;
6036 // Consider Op invariant, if it or its operands aren't predicated
6037 // instruction in the loop. In that case, it is not trivially hoistable.
6038 auto *OpI = dyn_cast<Instruction>(Op);
6039 return !OpI || !TheLoop->contains(OpI) ||
6040 (!isPredicatedInst(OpI) &&
6041 (!isa<PHINode>(OpI) || OpI->getParent() != TheLoop->getHeader()) &&
6042 all_of(OpI->operands(),
6043 [this](Value *Op) { return shouldConsiderInvariant(Op); }));
6044}
6045
6048 ElementCount VF) {
6049 // If we know that this instruction will remain uniform, check the cost of
6050 // the scalar version.
6052 VF = ElementCount::getFixed(1);
6053
6054 if (VF.isVector() && isProfitableToScalarize(I, VF))
6055 return InstsToScalarize[VF][I];
6056
6057 // Forced scalars do not have any scalarization overhead.
6058 auto ForcedScalar = ForcedScalars.find(VF);
6059 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
6060 auto InstSet = ForcedScalar->second;
6061 if (InstSet.count(I))
6063 VF.getKnownMinValue();
6064 }
6065
6066 Type *RetTy = I->getType();
6068 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6069 auto *SE = PSE.getSE();
6070
6071 Type *VectorTy;
6072 if (isScalarAfterVectorization(I, VF)) {
6073 [[maybe_unused]] auto HasSingleCopyAfterVectorization =
6074 [this](Instruction *I, ElementCount VF) -> bool {
6075 if (VF.isScalar())
6076 return true;
6077
6078 auto Scalarized = InstsToScalarize.find(VF);
6079 assert(Scalarized != InstsToScalarize.end() &&
6080 "VF not yet analyzed for scalarization profitability");
6081 return !Scalarized->second.count(I) &&
6082 llvm::all_of(I->users(), [&](User *U) {
6083 auto *UI = cast<Instruction>(U);
6084 return !Scalarized->second.count(UI);
6085 });
6086 };
6087
6088 // With the exception of GEPs and PHIs, after scalarization there should
6089 // only be one copy of the instruction generated in the loop. This is
6090 // because the VF is either 1, or any instructions that need scalarizing
6091 // have already been dealt with by the time we get here. As a result,
6092 // it means we don't have to multiply the instruction cost by VF.
6093 assert(I->getOpcode() == Instruction::GetElementPtr ||
6094 I->getOpcode() == Instruction::PHI ||
6095 (I->getOpcode() == Instruction::BitCast &&
6096 I->getType()->isPointerTy()) ||
6097 HasSingleCopyAfterVectorization(I, VF));
6098 VectorTy = RetTy;
6099 } else
6100 VectorTy = toVectorizedTy(RetTy, VF);
6101
6102 if (VF.isVector() && VectorTy->isVectorTy() &&
6103 !TTI.getNumberOfParts(VectorTy))
6105
6106 // TODO: We need to estimate the cost of intrinsic calls.
6107 switch (I->getOpcode()) {
6108 case Instruction::GetElementPtr:
6109 // We mark this instruction as zero-cost because the cost of GEPs in
6110 // vectorized code depends on whether the corresponding memory instruction
6111 // is scalarized or not. Therefore, we handle GEPs with the memory
6112 // instruction cost.
6113 return 0;
6114 case Instruction::Br: {
6115 // In cases of scalarized and predicated instructions, there will be VF
6116 // predicated blocks in the vectorized loop. Each branch around these
6117 // blocks requires also an extract of its vector compare i1 element.
6118 // Note that the conditional branch from the loop latch will be replaced by
6119 // a single branch controlling the loop, so there is no extra overhead from
6120 // scalarization.
6121 bool ScalarPredicatedBB = false;
6123 if (VF.isVector() && BI->isConditional() &&
6124 (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) ||
6125 PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1))) &&
6126 BI->getParent() != TheLoop->getLoopLatch())
6127 ScalarPredicatedBB = true;
6128
6129 if (ScalarPredicatedBB) {
6130 // Not possible to scalarize scalable vector with predicated instructions.
6131 if (VF.isScalable())
6133 // Return cost for branches around scalarized and predicated blocks.
6134 auto *VecI1Ty =
6136 return (
6137 TTI.getScalarizationOverhead(
6138 VecI1Ty, APInt::getAllOnes(VF.getFixedValue()),
6139 /*Insert*/ false, /*Extract*/ true, CostKind) +
6140 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
6141 }
6142
6143 if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
6144 // The back-edge branch will remain, as will all scalar branches.
6145 return TTI.getCFInstrCost(Instruction::Br, CostKind);
6146
6147 // This branch will be eliminated by if-conversion.
6148 return 0;
6149 // Note: We currently assume zero cost for an unconditional branch inside
6150 // a predicated block since it will become a fall-through, although we
6151 // may decide in the future to call TTI for all branches.
6152 }
6153 case Instruction::Switch: {
6154 if (VF.isScalar())
6155 return TTI.getCFInstrCost(Instruction::Switch, CostKind);
6156 auto *Switch = cast<SwitchInst>(I);
6157 return Switch->getNumCases() *
6158 TTI.getCmpSelInstrCost(
6159 Instruction::ICmp,
6160 toVectorTy(Switch->getCondition()->getType(), VF),
6161 toVectorTy(Type::getInt1Ty(I->getContext()), VF),
6163 }
6164 case Instruction::PHI: {
6165 auto *Phi = cast<PHINode>(I);
6166
6167 // First-order recurrences are replaced by vector shuffles inside the loop.
6168 if (VF.isVector() && Legal->isFixedOrderRecurrence(Phi)) {
6170 std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1);
6171 return TTI.getShuffleCost(TargetTransformInfo::SK_Splice,
6172 cast<VectorType>(VectorTy),
6173 cast<VectorType>(VectorTy), Mask, CostKind,
6174 VF.getKnownMinValue() - 1);
6175 }
6176
6177 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
6178 // converted into select instructions. We require N - 1 selects per phi
6179 // node, where N is the number of incoming values.
6180 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) {
6181 Type *ResultTy = Phi->getType();
6182
6183 // All instructions in an Any-of reduction chain are narrowed to bool.
6184 // Check if that is the case for this phi node.
6185 auto *HeaderUser = cast_if_present<PHINode>(
6186 find_singleton<User>(Phi->users(), [this](User *U, bool) -> User * {
6187 auto *Phi = dyn_cast<PHINode>(U);
6188 if (Phi && Phi->getParent() == TheLoop->getHeader())
6189 return Phi;
6190 return nullptr;
6191 }));
6192 if (HeaderUser) {
6193 auto &ReductionVars = Legal->getReductionVars();
6194 auto Iter = ReductionVars.find(HeaderUser);
6195 if (Iter != ReductionVars.end() &&
6197 Iter->second.getRecurrenceKind()))
6198 ResultTy = Type::getInt1Ty(Phi->getContext());
6199 }
6200 return (Phi->getNumIncomingValues() - 1) *
6201 TTI.getCmpSelInstrCost(
6202 Instruction::Select, toVectorTy(ResultTy, VF),
6203 toVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
6205 }
6206
6207 // When tail folding with EVL, if the phi is part of an out of loop
6208 // reduction then it will be transformed into a wide vp_merge.
6209 if (VF.isVector() && foldTailWithEVL() &&
6210 Legal->getReductionVars().contains(Phi) && !isInLoopReduction(Phi)) {
6212 Intrinsic::vp_merge, toVectorTy(Phi->getType(), VF),
6213 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6214 return TTI.getIntrinsicInstrCost(ICA, CostKind);
6215 }
6216
6217 return TTI.getCFInstrCost(Instruction::PHI, CostKind);
6218 }
6219 case Instruction::UDiv:
6220 case Instruction::SDiv:
6221 case Instruction::URem:
6222 case Instruction::SRem:
6223 if (VF.isVector() && isPredicatedInst(I)) {
6224 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
6225 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost) ?
6226 ScalarCost : SafeDivisorCost;
6227 }
6228 // We've proven all lanes safe to speculate, fall through.
6229 [[fallthrough]];
6230 case Instruction::Add:
6231 case Instruction::Sub: {
6232 auto Info = Legal->getHistogramInfo(I);
6233 if (Info && VF.isVector()) {
6234 const HistogramInfo *HGram = Info.value();
6235 // Assume that a non-constant update value (or a constant != 1) requires
6236 // a multiply, and add that into the cost.
6238 ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1));
6239 if (!RHS || RHS->getZExtValue() != 1)
6240 MulCost =
6241 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6242
6243 // Find the cost of the histogram operation itself.
6244 Type *PtrTy = VectorType::get(HGram->Load->getPointerOperandType(), VF);
6245 Type *ScalarTy = I->getType();
6246 Type *MaskTy = VectorType::get(Type::getInt1Ty(I->getContext()), VF);
6247 IntrinsicCostAttributes ICA(Intrinsic::experimental_vector_histogram_add,
6248 Type::getVoidTy(I->getContext()),
6249 {PtrTy, ScalarTy, MaskTy});
6250
6251 // Add the costs together with the add/sub operation.
6252 return TTI.getIntrinsicInstrCost(ICA, CostKind) + MulCost +
6253 TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, CostKind);
6254 }
6255 [[fallthrough]];
6256 }
6257 case Instruction::FAdd:
6258 case Instruction::FSub:
6259 case Instruction::Mul:
6260 case Instruction::FMul:
6261 case Instruction::FDiv:
6262 case Instruction::FRem:
6263 case Instruction::Shl:
6264 case Instruction::LShr:
6265 case Instruction::AShr:
6266 case Instruction::And:
6267 case Instruction::Or:
6268 case Instruction::Xor: {
6269 // If we're speculating on the stride being 1, the multiplication may
6270 // fold away. We can generalize this for all operations using the notion
6271 // of neutral elements. (TODO)
6272 if (I->getOpcode() == Instruction::Mul &&
6273 ((TheLoop->isLoopInvariant(I->getOperand(0)) &&
6274 PSE.getSCEV(I->getOperand(0))->isOne()) ||
6275 (TheLoop->isLoopInvariant(I->getOperand(1)) &&
6276 PSE.getSCEV(I->getOperand(1))->isOne())))
6277 return 0;
6278
6279 // Detect reduction patterns
6280 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy))
6281 return *RedCost;
6282
6283 // Certain instructions can be cheaper to vectorize if they have a constant
6284 // second vector operand. One example of this are shifts on x86.
6285 Value *Op2 = I->getOperand(1);
6286 if (!isa<Constant>(Op2) && TheLoop->isLoopInvariant(Op2) &&
6287 PSE.getSE()->isSCEVable(Op2->getType()) &&
6288 isa<SCEVConstant>(PSE.getSCEV(Op2))) {
6289 Op2 = cast<SCEVConstant>(PSE.getSCEV(Op2))->getValue();
6290 }
6291 auto Op2Info = TTI.getOperandInfo(Op2);
6292 if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue &&
6295
6296 SmallVector<const Value *, 4> Operands(I->operand_values());
6297 return TTI.getArithmeticInstrCost(
6298 I->getOpcode(), VectorTy, CostKind,
6299 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6300 Op2Info, Operands, I, TLI);
6301 }
6302 case Instruction::FNeg: {
6303 return TTI.getArithmeticInstrCost(
6304 I->getOpcode(), VectorTy, CostKind,
6305 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6306 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6307 I->getOperand(0), I);
6308 }
6309 case Instruction::Select: {
6311 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
6312 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
6313
6314 const Value *Op0, *Op1;
6315 using namespace llvm::PatternMatch;
6316 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
6317 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
6318 // select x, y, false --> x & y
6319 // select x, true, y --> x | y
6320 const auto [Op1VK, Op1VP] = TTI::getOperandInfo(Op0);
6321 const auto [Op2VK, Op2VP] = TTI::getOperandInfo(Op1);
6322 assert(Op0->getType()->getScalarSizeInBits() == 1 &&
6323 Op1->getType()->getScalarSizeInBits() == 1);
6324
6325 return TTI.getArithmeticInstrCost(
6326 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And,
6327 VectorTy, CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1}, I);
6328 }
6329
6330 Type *CondTy = SI->getCondition()->getType();
6331 if (!ScalarCond)
6332 CondTy = VectorType::get(CondTy, VF);
6333
6335 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
6336 Pred = Cmp->getPredicate();
6337 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
6338 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6339 {TTI::OK_AnyValue, TTI::OP_None}, I);
6340 }
6341 case Instruction::ICmp:
6342 case Instruction::FCmp: {
6343 Type *ValTy = I->getOperand(0)->getType();
6344
6346 [[maybe_unused]] Instruction *Op0AsInstruction =
6347 dyn_cast<Instruction>(I->getOperand(0));
6348 assert((!canTruncateToMinimalBitwidth(Op0AsInstruction, VF) ||
6349 MinBWs[I] == MinBWs[Op0AsInstruction]) &&
6350 "if both the operand and the compare are marked for "
6351 "truncation, they must have the same bitwidth");
6352 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[I]);
6353 }
6354
6355 VectorTy = toVectorTy(ValTy, VF);
6356 return TTI.getCmpSelInstrCost(
6357 I->getOpcode(), VectorTy, CmpInst::makeCmpResultType(VectorTy),
6358 cast<CmpInst>(I)->getPredicate(), CostKind,
6359 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None}, I);
6360 }
6361 case Instruction::Store:
6362 case Instruction::Load: {
6363 ElementCount Width = VF;
6364 if (Width.isVector()) {
6365 InstWidening Decision = getWideningDecision(I, Width);
6366 assert(Decision != CM_Unknown &&
6367 "CM decision should be taken at this point");
6370 if (Decision == CM_Scalarize)
6371 Width = ElementCount::getFixed(1);
6372 }
6373 VectorTy = toVectorTy(getLoadStoreType(I), Width);
6374 return getMemoryInstructionCost(I, VF);
6375 }
6376 case Instruction::BitCast:
6377 if (I->getType()->isPointerTy())
6378 return 0;
6379 [[fallthrough]];
6380 case Instruction::ZExt:
6381 case Instruction::SExt:
6382 case Instruction::FPToUI:
6383 case Instruction::FPToSI:
6384 case Instruction::FPExt:
6385 case Instruction::PtrToInt:
6386 case Instruction::IntToPtr:
6387 case Instruction::SIToFP:
6388 case Instruction::UIToFP:
6389 case Instruction::Trunc:
6390 case Instruction::FPTrunc: {
6391 // Computes the CastContextHint from a Load/Store instruction.
6392 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
6394 "Expected a load or a store!");
6395
6396 if (VF.isScalar() || !TheLoop->contains(I))
6398
6399 switch (getWideningDecision(I, VF)) {
6411 llvm_unreachable("Instr did not go through cost modelling?");
6414 llvm_unreachable_internal("Instr has invalid widening decision");
6415 }
6416
6417 llvm_unreachable("Unhandled case!");
6418 };
6419
6420 unsigned Opcode = I->getOpcode();
6422 // For Trunc, the context is the only user, which must be a StoreInst.
6423 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6424 if (I->hasOneUse())
6425 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
6426 CCH = ComputeCCH(Store);
6427 }
6428 // For Z/Sext, the context is the operand, which must be a LoadInst.
6429 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6430 Opcode == Instruction::FPExt) {
6431 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
6432 CCH = ComputeCCH(Load);
6433 }
6434
6435 // We optimize the truncation of induction variables having constant
6436 // integer steps. The cost of these truncations is the same as the scalar
6437 // operation.
6438 if (isOptimizableIVTruncate(I, VF)) {
6439 auto *Trunc = cast<TruncInst>(I);
6440 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6441 Trunc->getSrcTy(), CCH, CostKind, Trunc);
6442 }
6443
6444 // Detect reduction patterns
6445 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy))
6446 return *RedCost;
6447
6448 Type *SrcScalarTy = I->getOperand(0)->getType();
6449 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
6450 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
6451 SrcScalarTy =
6452 IntegerType::get(SrcScalarTy->getContext(), MinBWs[Op0AsInstruction]);
6453 Type *SrcVecTy =
6454 VectorTy->isVectorTy() ? toVectorTy(SrcScalarTy, VF) : SrcScalarTy;
6455
6457 // If the result type is <= the source type, there will be no extend
6458 // after truncating the users to the minimal required bitwidth.
6459 if (VectorTy->getScalarSizeInBits() <= SrcVecTy->getScalarSizeInBits() &&
6460 (I->getOpcode() == Instruction::ZExt ||
6461 I->getOpcode() == Instruction::SExt))
6462 return 0;
6463 }
6464
6465 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
6466 }
6467 case Instruction::Call:
6468 return getVectorCallCost(cast<CallInst>(I), VF);
6469 case Instruction::ExtractValue:
6470 return TTI.getInstructionCost(I, CostKind);
6471 case Instruction::Alloca:
6472 // We cannot easily widen alloca to a scalable alloca, as
6473 // the result would need to be a vector of pointers.
6474 if (VF.isScalable())
6476 [[fallthrough]];
6477 default:
6478 // This opcode is unknown. Assume that it is the same as 'mul'.
6479 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6480 } // end of switch.
6481}
6482
6484 // Ignore ephemeral values.
6486
6487 SmallVector<Value *, 4> DeadInterleavePointerOps;
6489
6490 // If a scalar epilogue is required, users outside the loop won't use
6491 // live-outs from the vector loop but from the scalar epilogue. Ignore them if
6492 // that is the case.
6493 bool RequiresScalarEpilogue = requiresScalarEpilogue(true);
6494 auto IsLiveOutDead = [this, RequiresScalarEpilogue](User *U) {
6495 return RequiresScalarEpilogue &&
6496 !TheLoop->contains(cast<Instruction>(U)->getParent());
6497 };
6498
6500 DFS.perform(LI);
6501 for (BasicBlock *BB : reverse(make_range(DFS.beginRPO(), DFS.endRPO())))
6502 for (Instruction &I : reverse(*BB)) {
6503 if (VecValuesToIgnore.contains(&I) || ValuesToIgnore.contains(&I))
6504 continue;
6505
6506 // Add instructions that would be trivially dead and are only used by
6507 // values already ignored to DeadOps to seed worklist.
6509 all_of(I.users(), [this, IsLiveOutDead](User *U) {
6510 return VecValuesToIgnore.contains(U) ||
6511 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6512 }))
6513 DeadOps.push_back(&I);
6514
6515 // For interleave groups, we only create a pointer for the start of the
6516 // interleave group. Queue up addresses of group members except the insert
6517 // position for further processing.
6518 if (isAccessInterleaved(&I)) {
6519 auto *Group = getInterleavedAccessGroup(&I);
6520 if (Group->getInsertPos() == &I)
6521 continue;
6522 Value *PointerOp = getLoadStorePointerOperand(&I);
6523 DeadInterleavePointerOps.push_back(PointerOp);
6524 }
6525
6526 // Queue branches for analysis. They are dead, if their successors only
6527 // contain dead instructions.
6528 if (auto *Br = dyn_cast<BranchInst>(&I)) {
6529 if (Br->isConditional())
6530 DeadOps.push_back(&I);
6531 }
6532 }
6533
6534 // Mark ops feeding interleave group members as free, if they are only used
6535 // by other dead computations.
6536 for (unsigned I = 0; I != DeadInterleavePointerOps.size(); ++I) {
6537 auto *Op = dyn_cast<Instruction>(DeadInterleavePointerOps[I]);
6538 if (!Op || !TheLoop->contains(Op) || any_of(Op->users(), [this](User *U) {
6539 Instruction *UI = cast<Instruction>(U);
6540 return !VecValuesToIgnore.contains(U) &&
6541 (!isAccessInterleaved(UI) ||
6542 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6543 }))
6544 continue;
6545 VecValuesToIgnore.insert(Op);
6546 append_range(DeadInterleavePointerOps, Op->operands());
6547 }
6548
6549 // Mark ops that would be trivially dead and are only used by ignored
6550 // instructions as free.
6551 BasicBlock *Header = TheLoop->getHeader();
6552
6553 // Returns true if the block contains only dead instructions. Such blocks will
6554 // be removed by VPlan-to-VPlan transforms and won't be considered by the
6555 // VPlan-based cost model, so skip them in the legacy cost-model as well.
6556 auto IsEmptyBlock = [this](BasicBlock *BB) {
6557 return all_of(*BB, [this](Instruction &I) {
6558 return ValuesToIgnore.contains(&I) || VecValuesToIgnore.contains(&I) ||
6559 (isa<BranchInst>(&I) && !cast<BranchInst>(&I)->isConditional());
6560 });
6561 };
6562 for (unsigned I = 0; I != DeadOps.size(); ++I) {
6563 auto *Op = dyn_cast<Instruction>(DeadOps[I]);
6564
6565 // Check if the branch should be considered dead.
6566 if (auto *Br = dyn_cast_or_null<BranchInst>(Op)) {
6567 BasicBlock *ThenBB = Br->getSuccessor(0);
6568 BasicBlock *ElseBB = Br->getSuccessor(1);
6569 // Don't considers branches leaving the loop for simplification.
6570 if (!TheLoop->contains(ThenBB) || !TheLoop->contains(ElseBB))
6571 continue;
6572 bool ThenEmpty = IsEmptyBlock(ThenBB);
6573 bool ElseEmpty = IsEmptyBlock(ElseBB);
6574 if ((ThenEmpty && ElseEmpty) ||
6575 (ThenEmpty && ThenBB->getSingleSuccessor() == ElseBB &&
6576 ElseBB->phis().empty()) ||
6577 (ElseEmpty && ElseBB->getSingleSuccessor() == ThenBB &&
6578 ThenBB->phis().empty())) {
6579 VecValuesToIgnore.insert(Br);
6580 DeadOps.push_back(Br->getCondition());
6581 }
6582 continue;
6583 }
6584
6585 // Skip any op that shouldn't be considered dead.
6586 if (!Op || !TheLoop->contains(Op) ||
6587 (isa<PHINode>(Op) && Op->getParent() == Header) ||
6589 any_of(Op->users(), [this, IsLiveOutDead](User *U) {
6590 return !VecValuesToIgnore.contains(U) &&
6591 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6592 }))
6593 continue;
6594
6595 // If all of Op's users are in ValuesToIgnore, add it to ValuesToIgnore
6596 // which applies for both scalar and vector versions. Otherwise it is only
6597 // dead in vector versions, so only add it to VecValuesToIgnore.
6598 if (all_of(Op->users(),
6599 [this](User *U) { return ValuesToIgnore.contains(U); }))
6600 ValuesToIgnore.insert(Op);
6601
6602 VecValuesToIgnore.insert(Op);
6603 append_range(DeadOps, Op->operands());
6604 }
6605
6606 // Ignore type-promoting instructions we identified during reduction
6607 // detection.
6608 for (const auto &Reduction : Legal->getReductionVars()) {
6609 const RecurrenceDescriptor &RedDes = Reduction.second;
6610 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
6611 VecValuesToIgnore.insert_range(Casts);
6612 }
6613 // Ignore type-casting instructions we identified during induction
6614 // detection.
6615 for (const auto &Induction : Legal->getInductionVars()) {
6616 const InductionDescriptor &IndDes = Induction.second;
6617 VecValuesToIgnore.insert_range(IndDes.getCastInsts());
6618 }
6619}
6620
6622 // Avoid duplicating work finding in-loop reductions.
6623 if (!InLoopReductions.empty())
6624 return;
6625
6626 for (const auto &Reduction : Legal->getReductionVars()) {
6627 PHINode *Phi = Reduction.first;
6628 const RecurrenceDescriptor &RdxDesc = Reduction.second;
6629
6630 // Multi-use reductions (e.g., used in FindLastIV patterns) are handled
6631 // separately and should not be considered for in-loop reductions.
6632 if (RdxDesc.hasUsesOutsideReductionChain())
6633 continue;
6634
6635 // We don't collect reductions that are type promoted (yet).
6636 if (RdxDesc.getRecurrenceType() != Phi->getType())
6637 continue;
6638
6639 // In-loop AnyOf and FindIV reductions are not yet supported.
6640 RecurKind Kind = RdxDesc.getRecurrenceKind();
6643 continue;
6644
6645 // If the target would prefer this reduction to happen "in-loop", then we
6646 // want to record it as such.
6647 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
6648 !TTI.preferInLoopReduction(Kind, Phi->getType()))
6649 continue;
6650
6651 // Check that we can correctly put the reductions into the loop, by
6652 // finding the chain of operations that leads from the phi to the loop
6653 // exit value.
6654 SmallVector<Instruction *, 4> ReductionOperations =
6655 RdxDesc.getReductionOpChain(Phi, TheLoop);
6656 bool InLoop = !ReductionOperations.empty();
6657
6658 if (InLoop) {
6659 InLoopReductions.insert(Phi);
6660 // Add the elements to InLoopReductionImmediateChains for cost modelling.
6661 Instruction *LastChain = Phi;
6662 for (auto *I : ReductionOperations) {
6663 InLoopReductionImmediateChains[I] = LastChain;
6664 LastChain = I;
6665 }
6666 }
6667 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
6668 << " reduction for phi: " << *Phi << "\n");
6669 }
6670}
6671
6672// This function will select a scalable VF if the target supports scalable
6673// vectors and a fixed one otherwise.
6674// TODO: we could return a pair of values that specify the max VF and
6675// min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
6676// `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
6677// doesn't have a cost model that can choose which plan to execute if
6678// more than one is generated.
6681 unsigned WidestType;
6682 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
6683
6685 TTI.enableScalableVectorization()
6688
6689 TypeSize RegSize = TTI.getRegisterBitWidth(RegKind);
6690 unsigned N = RegSize.getKnownMinValue() / WidestType;
6691 return ElementCount::get(N, RegSize.isScalable());
6692}
6693
6696 ElementCount VF = UserVF;
6697 // Outer loop handling: They may require CFG and instruction level
6698 // transformations before even evaluating whether vectorization is profitable.
6699 // Since we cannot modify the incoming IR, we need to build VPlan upfront in
6700 // the vectorization pipeline.
6701 if (!OrigLoop->isInnermost()) {
6702 // If the user doesn't provide a vectorization factor, determine a
6703 // reasonable one.
6704 if (UserVF.isZero()) {
6705 VF = determineVPlanVF(TTI, CM);
6706 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
6707
6708 // Make sure we have a VF > 1 for stress testing.
6709 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
6710 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
6711 << "overriding computed VF.\n");
6712 VF = ElementCount::getFixed(4);
6713 }
6714 } else if (UserVF.isScalable() && !TTI.supportsScalableVectors() &&
6716 LLVM_DEBUG(dbgs() << "LV: Not vectorizing. Scalable VF requested, but "
6717 << "not supported by the target.\n");
6719 "Scalable vectorization requested but not supported by the target",
6720 "the scalable user-specified vectorization width for outer-loop "
6721 "vectorization cannot be used because the target does not support "
6722 "scalable vectors.",
6723 "ScalableVFUnfeasible", ORE, OrigLoop);
6725 }
6726 assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
6728 "VF needs to be a power of two");
6729 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
6730 << "VF " << VF << " to build VPlans.\n");
6731 buildVPlans(VF, VF);
6732
6733 if (VPlans.empty())
6735
6736 // For VPlan build stress testing, we bail out after VPlan construction.
6739
6740 return {VF, 0 /*Cost*/, 0 /* ScalarCost */};
6741 }
6742
6743 LLVM_DEBUG(
6744 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
6745 "VPlan-native path.\n");
6747}
6748
6749void LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
6750 assert(OrigLoop->isInnermost() && "Inner loop expected.");
6751 CM.collectValuesToIgnore();
6752 CM.collectElementTypesForWidening();
6753
6754 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
6755 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
6756 return;
6757
6758 // Invalidate interleave groups if all blocks of loop will be predicated.
6759 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6761 LLVM_DEBUG(
6762 dbgs()
6763 << "LV: Invalidate all interleaved groups due to fold-tail by masking "
6764 "which requires masked-interleaved support.\n");
6765 if (CM.InterleaveInfo.invalidateGroups())
6766 // Invalidating interleave groups also requires invalidating all decisions
6767 // based on them, which includes widening decisions and uniform and scalar
6768 // values.
6769 CM.invalidateCostModelingDecisions();
6770 }
6771
6772 if (CM.foldTailByMasking())
6773 Legal->prepareToFoldTailByMasking();
6774
6775 ElementCount MaxUserVF =
6776 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
6777 if (UserVF) {
6778 if (!ElementCount::isKnownLE(UserVF, MaxUserVF)) {
6780 "UserVF ignored because it may be larger than the maximal safe VF",
6781 "InvalidUserVF", ORE, OrigLoop);
6782 } else {
6784 "VF needs to be a power of two");
6785 // Collect the instructions (and their associated costs) that will be more
6786 // profitable to scalarize.
6787 CM.collectInLoopReductions();
6788 if (CM.selectUserVectorizationFactor(UserVF)) {
6789 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
6790 buildVPlansWithVPRecipes(UserVF, UserVF);
6792 return;
6793 }
6794 reportVectorizationInfo("UserVF ignored because of invalid costs.",
6795 "InvalidCost", ORE, OrigLoop);
6796 }
6797 }
6798
6799 // Collect the Vectorization Factor Candidates.
6800 SmallVector<ElementCount> VFCandidates;
6801 for (auto VF = ElementCount::getFixed(1);
6802 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
6803 VFCandidates.push_back(VF);
6804 for (auto VF = ElementCount::getScalable(1);
6805 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
6806 VFCandidates.push_back(VF);
6807
6808 CM.collectInLoopReductions();
6809 for (const auto &VF : VFCandidates) {
6810 // Collect Uniform and Scalar instructions after vectorization with VF.
6811 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6812 }
6813
6814 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
6815 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
6816
6818}
6819
6821 ElementCount VF) const {
6822 InstructionCost Cost = CM.getInstructionCost(UI, VF);
6823 if (Cost.isValid() && ForceTargetInstructionCost.getNumOccurrences())
6825 return Cost;
6826}
6827
6829 ElementCount VF) const {
6830 return CM.isUniformAfterVectorization(I, VF);
6831}
6832
6833bool VPCostContext::skipCostComputation(Instruction *UI, bool IsVector) const {
6834 return CM.ValuesToIgnore.contains(UI) ||
6835 (IsVector && CM.VecValuesToIgnore.contains(UI)) ||
6836 SkipCostComputation.contains(UI);
6837}
6838
6840 return CM.getPredBlockCostDivisor(CostKind, BB);
6841}
6842
6844LoopVectorizationPlanner::precomputeCosts(VPlan &Plan, ElementCount VF,
6845 VPCostContext &CostCtx) const {
6847 // Cost modeling for inductions is inaccurate in the legacy cost model
6848 // compared to the recipes that are generated. To match here initially during
6849 // VPlan cost model bring up directly use the induction costs from the legacy
6850 // cost model. Note that we do this as pre-processing; the VPlan may not have
6851 // any recipes associated with the original induction increment instruction
6852 // and may replace truncates with VPWidenIntOrFpInductionRecipe. We precompute
6853 // the cost of induction phis and increments (both that are represented by
6854 // recipes and those that are not), to avoid distinguishing between them here,
6855 // and skip all recipes that represent induction phis and increments (the
6856 // former case) later on, if they exist, to avoid counting them twice.
6857 // Similarly we pre-compute the cost of any optimized truncates.
6858 // TODO: Switch to more accurate costing based on VPlan.
6859 for (const auto &[IV, IndDesc] : Legal->getInductionVars()) {
6861 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
6862 SmallVector<Instruction *> IVInsts = {IVInc};
6863 for (unsigned I = 0; I != IVInsts.size(); I++) {
6864 for (Value *Op : IVInsts[I]->operands()) {
6865 auto *OpI = dyn_cast<Instruction>(Op);
6866 if (Op == IV || !OpI || !OrigLoop->contains(OpI) || !Op->hasOneUse())
6867 continue;
6868 IVInsts.push_back(OpI);
6869 }
6870 }
6871 IVInsts.push_back(IV);
6872 for (User *U : IV->users()) {
6873 auto *CI = cast<Instruction>(U);
6874 if (!CostCtx.CM.isOptimizableIVTruncate(CI, VF))
6875 continue;
6876 IVInsts.push_back(CI);
6877 }
6878
6879 // If the vector loop gets executed exactly once with the given VF, ignore
6880 // the costs of comparison and induction instructions, as they'll get
6881 // simplified away.
6882 // TODO: Remove this code after stepping away from the legacy cost model and
6883 // adding code to simplify VPlans before calculating their costs.
6884 auto TC = getSmallConstantTripCount(PSE.getSE(), OrigLoop);
6885 if (TC == VF && !CM.foldTailByMasking())
6886 addFullyUnrolledInstructionsToIgnore(OrigLoop, Legal->getInductionVars(),
6887 CostCtx.SkipCostComputation);
6888
6889 for (Instruction *IVInst : IVInsts) {
6890 if (CostCtx.skipCostComputation(IVInst, VF.isVector()))
6891 continue;
6892 InstructionCost InductionCost = CostCtx.getLegacyCost(IVInst, VF);
6893 LLVM_DEBUG({
6894 dbgs() << "Cost of " << InductionCost << " for VF " << VF
6895 << ": induction instruction " << *IVInst << "\n";
6896 });
6897 Cost += InductionCost;
6898 CostCtx.SkipCostComputation.insert(IVInst);
6899 }
6900 }
6901
6902 /// Compute the cost of all exiting conditions of the loop using the legacy
6903 /// cost model. This is to match the legacy behavior, which adds the cost of
6904 /// all exit conditions. Note that this over-estimates the cost, as there will
6905 /// be a single condition to control the vector loop.
6907 CM.TheLoop->getExitingBlocks(Exiting);
6908 SetVector<Instruction *> ExitInstrs;
6909 // Collect all exit conditions.
6910 for (BasicBlock *EB : Exiting) {
6911 auto *Term = dyn_cast<BranchInst>(EB->getTerminator());
6912 if (!Term || CostCtx.skipCostComputation(Term, VF.isVector()))
6913 continue;
6914 if (auto *CondI = dyn_cast<Instruction>(Term->getOperand(0))) {
6915 ExitInstrs.insert(CondI);
6916 }
6917 }
6918 // Compute the cost of all instructions only feeding the exit conditions.
6919 for (unsigned I = 0; I != ExitInstrs.size(); ++I) {
6920 Instruction *CondI = ExitInstrs[I];
6921 if (!OrigLoop->contains(CondI) ||
6922 !CostCtx.SkipCostComputation.insert(CondI).second)
6923 continue;
6924 InstructionCost CondICost = CostCtx.getLegacyCost(CondI, VF);
6925 LLVM_DEBUG({
6926 dbgs() << "Cost of " << CondICost << " for VF " << VF
6927 << ": exit condition instruction " << *CondI << "\n";
6928 });
6929 Cost += CondICost;
6930 for (Value *Op : CondI->operands()) {
6931 auto *OpI = dyn_cast<Instruction>(Op);
6932 if (!OpI || CostCtx.skipCostComputation(OpI, VF.isVector()) ||
6933 any_of(OpI->users(), [&ExitInstrs, this](User *U) {
6934 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
6935 !ExitInstrs.contains(cast<Instruction>(U));
6936 }))
6937 continue;
6938 ExitInstrs.insert(OpI);
6939 }
6940 }
6941
6942 // Pre-compute the costs for branches except for the backedge, as the number
6943 // of replicate regions in a VPlan may not directly match the number of
6944 // branches, which would lead to different decisions.
6945 // TODO: Compute cost of branches for each replicate region in the VPlan,
6946 // which is more accurate than the legacy cost model.
6947 for (BasicBlock *BB : OrigLoop->blocks()) {
6948 if (CostCtx.skipCostComputation(BB->getTerminator(), VF.isVector()))
6949 continue;
6950 CostCtx.SkipCostComputation.insert(BB->getTerminator());
6951 if (BB == OrigLoop->getLoopLatch())
6952 continue;
6953 auto BranchCost = CostCtx.getLegacyCost(BB->getTerminator(), VF);
6954 Cost += BranchCost;
6955 }
6956
6957 // Pre-compute costs for instructions that are forced-scalar or profitable to
6958 // scalarize. Their costs will be computed separately in the legacy cost
6959 // model.
6960 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6961 if (CostCtx.skipCostComputation(ForcedScalar, VF.isVector()))
6962 continue;
6963 CostCtx.SkipCostComputation.insert(ForcedScalar);
6964 InstructionCost ForcedCost = CostCtx.getLegacyCost(ForcedScalar, VF);
6965 LLVM_DEBUG({
6966 dbgs() << "Cost of " << ForcedCost << " for VF " << VF
6967 << ": forced scalar " << *ForcedScalar << "\n";
6968 });
6969 Cost += ForcedCost;
6970 }
6971 for (const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6972 if (CostCtx.skipCostComputation(Scalarized, VF.isVector()))
6973 continue;
6974 CostCtx.SkipCostComputation.insert(Scalarized);
6975 LLVM_DEBUG({
6976 dbgs() << "Cost of " << ScalarCost << " for VF " << VF
6977 << ": profitable to scalarize " << *Scalarized << "\n";
6978 });
6979 Cost += ScalarCost;
6980 }
6981
6982 return Cost;
6983}
6984
6985InstructionCost LoopVectorizationPlanner::cost(VPlan &Plan,
6986 ElementCount VF) const {
6987 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind, *PSE.getSE(),
6988 OrigLoop);
6989 InstructionCost Cost = precomputeCosts(Plan, VF, CostCtx);
6990
6991 // Now compute and add the VPlan-based cost.
6992 Cost += Plan.cost(VF, CostCtx);
6993#ifndef NDEBUG
6994 unsigned EstimatedWidth = estimateElementCount(VF, CM.getVScaleForTuning());
6995 LLVM_DEBUG(dbgs() << "Cost for VF " << VF << ": " << Cost
6996 << " (Estimated cost per lane: ");
6997 if (Cost.isValid()) {
6998 double CostPerLane = double(Cost.getValue()) / EstimatedWidth;
6999 LLVM_DEBUG(dbgs() << format("%.1f", CostPerLane));
7000 } else /* No point dividing an invalid cost - it will still be invalid */
7001 LLVM_DEBUG(dbgs() << "Invalid");
7002 LLVM_DEBUG(dbgs() << ")\n");
7003#endif
7004 return Cost;
7005}
7006
7007#ifndef NDEBUG
7008/// Return true if the original loop \ TheLoop contains any instructions that do
7009/// not have corresponding recipes in \p Plan and are not marked to be ignored
7010/// in \p CostCtx. This means the VPlan contains simplification that the legacy
7011/// cost-model did not account for.
7013 VPCostContext &CostCtx,
7014 Loop *TheLoop,
7015 ElementCount VF) {
7016 // First collect all instructions for the recipes in Plan.
7017 auto GetInstructionForCost = [](const VPRecipeBase *R) -> Instruction * {
7018 if (auto *S = dyn_cast<VPSingleDefRecipe>(R))
7019 return dyn_cast_or_null<Instruction>(S->getUnderlyingValue());
7020 if (auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(R))
7021 return &WidenMem->getIngredient();
7022 return nullptr;
7023 };
7024
7025 // Check if a select for a safe divisor was hoisted to the pre-header. If so,
7026 // the select doesn't need to be considered for the vector loop cost; go with
7027 // the more accurate VPlan-based cost model.
7028 for (VPRecipeBase &R : *Plan.getVectorPreheader()) {
7029 auto *VPI = dyn_cast<VPInstruction>(&R);
7030 if (!VPI || VPI->getOpcode() != Instruction::Select)
7031 continue;
7032
7033 if (auto *WR = dyn_cast_or_null<VPWidenRecipe>(VPI->getSingleUser())) {
7034 switch (WR->getOpcode()) {
7035 case Instruction::UDiv:
7036 case Instruction::SDiv:
7037 case Instruction::URem:
7038 case Instruction::SRem:
7039 return true;
7040 default:
7041 break;
7042 }
7043 }
7044 }
7045
7046 DenseSet<Instruction *> SeenInstrs;
7047 auto Iter = vp_depth_first_deep(Plan.getVectorLoopRegion()->getEntry());
7049 for (VPRecipeBase &R : *VPBB) {
7050 if (auto *IR = dyn_cast<VPInterleaveRecipe>(&R)) {
7051 auto *IG = IR->getInterleaveGroup();
7052 unsigned NumMembers = IG->getNumMembers();
7053 for (unsigned I = 0; I != NumMembers; ++I) {
7054 if (Instruction *M = IG->getMember(I))
7055 SeenInstrs.insert(M);
7056 }
7057 continue;
7058 }
7059 // Unused FOR splices are removed by VPlan transforms, so the VPlan-based
7060 // cost model won't cost it whilst the legacy will.
7061 if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) {
7062 using namespace VPlanPatternMatch;
7063 if (none_of(FOR->users(),
7064 match_fn(m_VPInstruction<
7066 return true;
7067 }
7068 // The VPlan-based cost model is more accurate for partial reductions and
7069 // comparing against the legacy cost isn't desirable.
7070 if (auto *VPR = dyn_cast<VPReductionRecipe>(&R))
7071 if (VPR->isPartialReduction())
7072 return true;
7073
7074 // The VPlan-based cost model can analyze if recipes are scalar
7075 // recursively, but the legacy cost model cannot.
7076 if (auto *WidenMemR = dyn_cast<VPWidenMemoryRecipe>(&R)) {
7077 auto *AddrI = dyn_cast<Instruction>(
7078 getLoadStorePointerOperand(&WidenMemR->getIngredient()));
7079 if (AddrI && vputils::isSingleScalar(WidenMemR->getAddr()) !=
7080 CostCtx.isLegacyUniformAfterVectorization(AddrI, VF))
7081 return true;
7082 }
7083
7084 /// If a VPlan transform folded a recipe to one producing a single-scalar,
7085 /// but the original instruction wasn't uniform-after-vectorization in the
7086 /// legacy cost model, the legacy cost overestimates the actual cost.
7087 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
7088 if (RepR->isSingleScalar() &&
7090 RepR->getUnderlyingInstr(), VF))
7091 return true;
7092 }
7093 if (Instruction *UI = GetInstructionForCost(&R)) {
7094 // If we adjusted the predicate of the recipe, the cost in the legacy
7095 // cost model may be different.
7096 using namespace VPlanPatternMatch;
7097 CmpPredicate Pred;
7098 if (match(&R, m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
7099 cast<VPRecipeWithIRFlags>(R).getPredicate() !=
7100 cast<CmpInst>(UI)->getPredicate())
7101 return true;
7102 SeenInstrs.insert(UI);
7103 }
7104 }
7105 }
7106
7107 // Return true if the loop contains any instructions that are not also part of
7108 // the VPlan or are skipped for VPlan-based cost computations. This indicates
7109 // that the VPlan contains extra simplifications.
7110 return any_of(TheLoop->blocks(), [&SeenInstrs, &CostCtx,
7111 TheLoop](BasicBlock *BB) {
7112 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
7113 // Skip induction phis when checking for simplifications, as they may not
7114 // be lowered directly be lowered to a corresponding PHI recipe.
7115 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
7116 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
7117 return false;
7118 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
7119 });
7120 });
7121}
7122#endif
7123
7125 if (VPlans.empty())
7127 // If there is a single VPlan with a single VF, return it directly.
7128 VPlan &FirstPlan = *VPlans[0];
7129 if (VPlans.size() == 1 && size(FirstPlan.vectorFactors()) == 1)
7130 return {*FirstPlan.vectorFactors().begin(), 0, 0};
7131
7132 LLVM_DEBUG(dbgs() << "LV: Computing best VF using cost kind: "
7133 << (CM.CostKind == TTI::TCK_RecipThroughput
7134 ? "Reciprocal Throughput\n"
7135 : CM.CostKind == TTI::TCK_Latency
7136 ? "Instruction Latency\n"
7137 : CM.CostKind == TTI::TCK_CodeSize ? "Code Size\n"
7138 : CM.CostKind == TTI::TCK_SizeAndLatency
7139 ? "Code Size and Latency\n"
7140 : "Unknown\n"));
7141
7143 assert(hasPlanWithVF(ScalarVF) &&
7144 "More than a single plan/VF w/o any plan having scalar VF");
7145
7146 // TODO: Compute scalar cost using VPlan-based cost model.
7147 InstructionCost ScalarCost = CM.expectedCost(ScalarVF);
7148 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ScalarCost << ".\n");
7149 VectorizationFactor ScalarFactor(ScalarVF, ScalarCost, ScalarCost);
7150 VectorizationFactor BestFactor = ScalarFactor;
7151
7152 bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled;
7153 if (ForceVectorization) {
7154 // Ignore scalar width, because the user explicitly wants vectorization.
7155 // Initialize cost to max so that VF = 2 is, at least, chosen during cost
7156 // evaluation.
7157 BestFactor.Cost = InstructionCost::getMax();
7158 }
7159
7160 for (auto &P : VPlans) {
7161 ArrayRef<ElementCount> VFs(P->vectorFactors().begin(),
7162 P->vectorFactors().end());
7163
7165 if (any_of(VFs, [this](ElementCount VF) {
7166 return CM.shouldConsiderRegPressureForVF(VF);
7167 }))
7168 RUs = calculateRegisterUsageForPlan(*P, VFs, TTI, CM.ValuesToIgnore);
7169
7170 for (unsigned I = 0; I < VFs.size(); I++) {
7171 ElementCount VF = VFs[I];
7172 if (VF.isScalar())
7173 continue;
7174 if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) {
7175 LLVM_DEBUG(
7176 dbgs()
7177 << "LV: Not considering vector loop of width " << VF
7178 << " because it will not generate any vector instructions.\n");
7179 continue;
7180 }
7181 if (CM.OptForSize && !ForceVectorization && hasReplicatorRegion(*P)) {
7182 LLVM_DEBUG(
7183 dbgs()
7184 << "LV: Not considering vector loop of width " << VF
7185 << " because it would cause replicated blocks to be generated,"
7186 << " which isn't allowed when optimizing for size.\n");
7187 continue;
7188 }
7189
7190 InstructionCost Cost = cost(*P, VF);
7191 VectorizationFactor CurrentFactor(VF, Cost, ScalarCost);
7192
7193 if (CM.shouldConsiderRegPressureForVF(VF) &&
7194 RUs[I].exceedsMaxNumRegs(TTI, ForceTargetNumVectorRegs)) {
7195 LLVM_DEBUG(dbgs() << "LV(REG): Not considering vector loop of width "
7196 << VF << " because it uses too many registers\n");
7197 continue;
7198 }
7199
7200 if (isMoreProfitable(CurrentFactor, BestFactor, P->hasScalarTail()))
7201 BestFactor = CurrentFactor;
7202
7203 // If profitable add it to ProfitableVF list.
7204 if (isMoreProfitable(CurrentFactor, ScalarFactor, P->hasScalarTail()))
7205 ProfitableVFs.push_back(CurrentFactor);
7206 }
7207 }
7208
7209#ifndef NDEBUG
7210 // Select the optimal vectorization factor according to the legacy cost-model.
7211 // This is now only used to verify the decisions by the new VPlan-based
7212 // cost-model and will be retired once the VPlan-based cost-model is
7213 // stabilized.
7214 VectorizationFactor LegacyVF = selectVectorizationFactor();
7215 VPlan &BestPlan = getPlanFor(BestFactor.Width);
7216
7217 // Pre-compute the cost and use it to check if BestPlan contains any
7218 // simplifications not accounted for in the legacy cost model. If that's the
7219 // case, don't trigger the assertion, as the extra simplifications may cause a
7220 // different VF to be picked by the VPlan-based cost model.
7221 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind,
7222 *CM.PSE.getSE(), OrigLoop);
7223 precomputeCosts(BestPlan, BestFactor.Width, CostCtx);
7224 // Verify that the VPlan-based and legacy cost models agree, except for
7225 // * VPlans with early exits,
7226 // * VPlans with additional VPlan simplifications,
7227 // * EVL-based VPlans with gather/scatters (the VPlan-based cost model uses
7228 // vp_scatter/vp_gather).
7229 // The legacy cost model doesn't properly model costs for such loops.
7230 bool UsesEVLGatherScatter =
7232 BestPlan.getVectorLoopRegion()->getEntry())),
7233 [](VPBasicBlock *VPBB) {
7234 return any_of(*VPBB, [](VPRecipeBase &R) {
7235 return isa<VPWidenLoadEVLRecipe, VPWidenStoreEVLRecipe>(&R) &&
7236 !cast<VPWidenMemoryRecipe>(&R)->isConsecutive();
7237 });
7238 });
7239 assert(
7240 (BestFactor.Width == LegacyVF.Width || BestPlan.hasEarlyExit() ||
7241 !Legal->getLAI()->getSymbolicStrides().empty() || UsesEVLGatherScatter ||
7243 getPlanFor(BestFactor.Width), CostCtx, OrigLoop, BestFactor.Width) ||
7245 getPlanFor(LegacyVF.Width), CostCtx, OrigLoop, LegacyVF.Width)) &&
7246 " VPlan cost model and legacy cost model disagreed");
7247 assert((BestFactor.Width.isScalar() || BestFactor.ScalarCost > 0) &&
7248 "when vectorizing, the scalar cost must be computed.");
7249#endif
7250
7251 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << BestFactor.Width << ".\n");
7252 return BestFactor;
7253}
7254
7256 using namespace VPlanPatternMatch;
7258 "RdxResult must be ComputeFindIVResult");
7259 VPValue *StartVPV = RdxResult->getOperand(1);
7260 match(StartVPV, m_Freeze(m_VPValue(StartVPV)));
7261 return StartVPV->getLiveInIRValue();
7262}
7263
7264// If \p EpiResumePhiR is resume VPPhi for a reduction when vectorizing the
7265// epilog loop, fix the reduction's scalar PHI node by adding the incoming value
7266// from the main vector loop.
7268 VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock) {
7269 // Get the VPInstruction computing the reduction result in the middle block.
7270 // The first operand may not be from the middle block if it is not connected
7271 // to the scalar preheader. In that case, there's nothing to fix.
7272 VPValue *Incoming = EpiResumePhiR->getOperand(0);
7275 auto *EpiRedResult = dyn_cast<VPInstruction>(Incoming);
7276 if (!EpiRedResult ||
7277 (EpiRedResult->getOpcode() != VPInstruction::ComputeAnyOfResult &&
7278 EpiRedResult->getOpcode() != VPInstruction::ComputeReductionResult &&
7279 EpiRedResult->getOpcode() != VPInstruction::ComputeFindIVResult))
7280 return;
7281
7282 auto *EpiRedHeaderPhi =
7283 cast<VPReductionPHIRecipe>(EpiRedResult->getOperand(0));
7284 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7285 Value *MainResumeValue;
7286 if (auto *VPI = dyn_cast<VPInstruction>(EpiRedHeaderPhi->getStartValue())) {
7287 assert((VPI->getOpcode() == VPInstruction::Broadcast ||
7288 VPI->getOpcode() == VPInstruction::ReductionStartVector) &&
7289 "unexpected start recipe");
7290 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7291 } else
7292 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7294 [[maybe_unused]] Value *StartV =
7295 EpiRedResult->getOperand(1)->getLiveInIRValue();
7296 auto *Cmp = cast<ICmpInst>(MainResumeValue);
7297 assert(Cmp->getPredicate() == CmpInst::ICMP_NE &&
7298 "AnyOf expected to start with ICMP_NE");
7299 assert(Cmp->getOperand(1) == StartV &&
7300 "AnyOf expected to start by comparing main resume value to original "
7301 "start value");
7302 MainResumeValue = Cmp->getOperand(0);
7304 Value *StartV = getStartValueFromReductionResult(EpiRedResult);
7305 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7306 using namespace llvm::PatternMatch;
7307 Value *Cmp, *OrigResumeV, *CmpOp;
7308 [[maybe_unused]] bool IsExpectedPattern =
7309 match(MainResumeValue,
7310 m_Select(m_OneUse(m_Value(Cmp)), m_Specific(SentinelV),
7311 m_Value(OrigResumeV))) &&
7313 m_Value(CmpOp))) &&
7314 ((CmpOp == StartV && isGuaranteedNotToBeUndefOrPoison(CmpOp))));
7315 assert(IsExpectedPattern && "Unexpected reduction resume pattern");
7316 MainResumeValue = OrigResumeV;
7317 }
7318 PHINode *MainResumePhi = cast<PHINode>(MainResumeValue);
7319
7320 // When fixing reductions in the epilogue loop we should already have
7321 // created a bc.merge.rdx Phi after the main vector body. Ensure that we carry
7322 // over the incoming values correctly.
7323 EpiResumePhi.setIncomingValueForBlock(
7324 BypassBlock, MainResumePhi->getIncomingValueForBlock(BypassBlock));
7325}
7326
7328 ElementCount BestVF, unsigned BestUF, VPlan &BestVPlan,
7329 InnerLoopVectorizer &ILV, DominatorTree *DT, bool VectorizingEpilogue) {
7330 assert(BestVPlan.hasVF(BestVF) &&
7331 "Trying to execute plan with unsupported VF");
7332 assert(BestVPlan.hasUF(BestUF) &&
7333 "Trying to execute plan with unsupported UF");
7334 if (BestVPlan.hasEarlyExit())
7335 ++LoopsEarlyExitVectorized;
7336 // TODO: Move to VPlan transform stage once the transition to the VPlan-based
7337 // cost model is complete for better cost estimates.
7340 BestVPlan);
7343 bool HasBranchWeights =
7344 hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator());
7345 if (HasBranchWeights) {
7346 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7348 BestVPlan, BestVF, VScale);
7349 }
7350
7351 // Checks are the same for all VPlans, added to BestVPlan only for
7352 // compactness.
7353 attachRuntimeChecks(BestVPlan, ILV.RTChecks, HasBranchWeights);
7354
7355 // Retrieving VectorPH now when it's easier while VPlan still has Regions.
7356 VPBasicBlock *VectorPH = cast<VPBasicBlock>(BestVPlan.getVectorPreheader());
7357
7358 VPlanTransforms::optimizeForVFAndUF(BestVPlan, BestVF, BestUF, PSE);
7361 if (BestVPlan.getEntry()->getSingleSuccessor() ==
7362 BestVPlan.getScalarPreheader()) {
7363 // TODO: The vector loop would be dead, should not even try to vectorize.
7364 ORE->emit([&]() {
7365 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationDead",
7366 OrigLoop->getStartLoc(),
7367 OrigLoop->getHeader())
7368 << "Created vector loop never executes due to insufficient trip "
7369 "count.";
7370 });
7372 }
7373
7375 BestVPlan, BestVF,
7376 TTI.getRegisterBitWidth(BestVF.isScalable()
7380
7382 // Regions are dissolved after optimizing for VF and UF, which completely
7383 // removes unneeded loop regions first.
7385 // Canonicalize EVL loops after regions are dissolved.
7389 BestVPlan, VectorPH, CM.foldTailByMasking(),
7390 CM.requiresScalarEpilogue(BestVF.isVector()));
7391 VPlanTransforms::materializeVFAndVFxUF(BestVPlan, VectorPH, BestVF);
7392 VPlanTransforms::cse(BestVPlan);
7394
7395 // 0. Generate SCEV-dependent code in the entry, including TripCount, before
7396 // making any changes to the CFG.
7397 DenseMap<const SCEV *, Value *> ExpandedSCEVs =
7398 VPlanTransforms::expandSCEVs(BestVPlan, *PSE.getSE());
7399 if (!ILV.getTripCount())
7400 ILV.setTripCount(BestVPlan.getTripCount()->getLiveInIRValue());
7401 else
7402 assert(VectorizingEpilogue && "should only re-use the existing trip "
7403 "count during epilogue vectorization");
7404
7405 // Perform the actual loop transformation.
7406 VPTransformState State(&TTI, BestVF, LI, DT, ILV.AC, ILV.Builder, &BestVPlan,
7407 OrigLoop->getParentLoop(),
7408 Legal->getWidestInductionType());
7409
7410#ifdef EXPENSIVE_CHECKS
7411 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7412#endif
7413
7414 // 1. Set up the skeleton for vectorization, including vector pre-header and
7415 // middle block. The vector loop is created during VPlan execution.
7416 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
7418 State.CFG.PrevBB->getSingleSuccessor(), &BestVPlan);
7420
7421 assert(verifyVPlanIsValid(BestVPlan, true /*VerifyLate*/) &&
7422 "final VPlan is invalid");
7423
7424 // After vectorization, the exit blocks of the original loop will have
7425 // additional predecessors. Invalidate SCEVs for the exit phis in case SE
7426 // looked through single-entry phis.
7427 ScalarEvolution &SE = *PSE.getSE();
7428 for (VPIRBasicBlock *Exit : BestVPlan.getExitBlocks()) {
7429 if (!Exit->hasPredecessors())
7430 continue;
7431 for (VPRecipeBase &PhiR : Exit->phis())
7433 &cast<VPIRPhi>(PhiR).getIRPhi());
7434 }
7435 // Forget the original loop and block dispositions.
7436 SE.forgetLoop(OrigLoop);
7438
7440
7441 //===------------------------------------------------===//
7442 //
7443 // Notice: any optimization or new instruction that go
7444 // into the code below should also be implemented in
7445 // the cost-model.
7446 //
7447 //===------------------------------------------------===//
7448
7449 // Retrieve loop information before executing the plan, which may remove the
7450 // original loop, if it becomes unreachable.
7451 MDNode *LID = OrigLoop->getLoopID();
7452 unsigned OrigLoopInvocationWeight = 0;
7453 std::optional<unsigned> OrigAverageTripCount =
7454 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
7455
7456 BestVPlan.execute(&State);
7457
7458 // 2.6. Maintain Loop Hints
7459 // Keep all loop hints from the original loop on the vector loop (we'll
7460 // replace the vectorizer-specific hints below).
7461 VPBasicBlock *HeaderVPBB = vputils::getFirstLoopHeader(BestVPlan, State.VPDT);
7462 // Add metadata to disable runtime unrolling a scalar loop when there
7463 // are no runtime checks about strides and memory. A scalar loop that is
7464 // rarely used is not worth unrolling.
7465 bool DisableRuntimeUnroll = !ILV.RTChecks.hasChecks() && !BestVF.isScalar();
7467 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7468 : nullptr,
7469 HeaderVPBB, BestVPlan, VectorizingEpilogue, LID, OrigAverageTripCount,
7470 OrigLoopInvocationWeight,
7471 estimateElementCount(BestVF * BestUF, CM.getVScaleForTuning()),
7472 DisableRuntimeUnroll);
7473
7474 // 3. Fix the vectorized code: take care of header phi's, live-outs,
7475 // predication, updating analyses.
7476 ILV.fixVectorizedLoop(State);
7477
7479
7480 return ExpandedSCEVs;
7481}
7482
7483//===--------------------------------------------------------------------===//
7484// EpilogueVectorizerMainLoop
7485//===--------------------------------------------------------------------===//
7486
7487/// This function is partially responsible for generating the control flow
7488/// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7490 BasicBlock *ScalarPH = createScalarPreheader("");
7491 BasicBlock *VectorPH = ScalarPH->getSinglePredecessor();
7492
7493 // Generate the code to check the minimum iteration count of the vector
7494 // epilogue (see below).
7495 EPI.EpilogueIterationCountCheck =
7496 emitIterationCountCheck(VectorPH, ScalarPH, true);
7497 EPI.EpilogueIterationCountCheck->setName("iter.check");
7498
7499 VectorPH = cast<BranchInst>(EPI.EpilogueIterationCountCheck->getTerminator())
7500 ->getSuccessor(1);
7501 // Generate the iteration count check for the main loop, *after* the check
7502 // for the epilogue loop, so that the path-length is shorter for the case
7503 // that goes directly through the vector epilogue. The longer-path length for
7504 // the main loop is compensated for, by the gain from vectorizing the larger
7505 // trip count. Note: the branch will get updated later on when we vectorize
7506 // the epilogue.
7507 EPI.MainLoopIterationCountCheck =
7508 emitIterationCountCheck(VectorPH, ScalarPH, false);
7509
7510 return cast<BranchInst>(EPI.MainLoopIterationCountCheck->getTerminator())
7511 ->getSuccessor(1);
7512}
7513
7515 LLVM_DEBUG({
7516 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
7517 << "Main Loop VF:" << EPI.MainLoopVF
7518 << ", Main Loop UF:" << EPI.MainLoopUF
7519 << ", Epilogue Loop VF:" << EPI.EpilogueVF
7520 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7521 });
7522}
7523
7526 dbgs() << "intermediate fn:\n"
7527 << *OrigLoop->getHeader()->getParent() << "\n";
7528 });
7529}
7530
7532 BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue) {
7533 assert(Bypass && "Expected valid bypass basic block.");
7536 Value *CheckMinIters = createIterationCountCheck(
7537 VectorPH, ForEpilogue ? EPI.EpilogueVF : EPI.MainLoopVF,
7538 ForEpilogue ? EPI.EpilogueUF : EPI.MainLoopUF);
7539
7540 BasicBlock *const TCCheckBlock = VectorPH;
7541 if (!ForEpilogue)
7542 TCCheckBlock->setName("vector.main.loop.iter.check");
7543
7544 // Create new preheader for vector loop.
7545 VectorPH = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
7546 static_cast<DominatorTree *>(nullptr), LI, nullptr,
7547 "vector.ph");
7548 if (ForEpilogue) {
7549 // Save the trip count so we don't have to regenerate it in the
7550 // vec.epilog.iter.check. This is safe to do because the trip count
7551 // generated here dominates the vector epilog iter check.
7552 EPI.TripCount = Count;
7553 } else {
7555 }
7556
7557 BranchInst &BI = *BranchInst::Create(Bypass, VectorPH, CheckMinIters);
7558 if (hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator()))
7559 setBranchWeights(BI, MinItersBypassWeights, /*IsExpected=*/false);
7560 ReplaceInstWithInst(TCCheckBlock->getTerminator(), &BI);
7561
7562 // When vectorizing the main loop, its trip-count check is placed in a new
7563 // block, whereas the overall trip-count check is placed in the VPlan entry
7564 // block. When vectorizing the epilogue loop, its trip-count check is placed
7565 // in the VPlan entry block.
7566 if (!ForEpilogue)
7567 introduceCheckBlockInVPlan(TCCheckBlock);
7568 return TCCheckBlock;
7569}
7570
7571//===--------------------------------------------------------------------===//
7572// EpilogueVectorizerEpilogueLoop
7573//===--------------------------------------------------------------------===//
7574
7575/// This function creates a new scalar preheader, using the previous one as
7576/// entry block to the epilogue VPlan. The minimum iteration check is being
7577/// represented in VPlan.
7579 BasicBlock *NewScalarPH = createScalarPreheader("vec.epilog.");
7580 BasicBlock *OriginalScalarPH = NewScalarPH->getSinglePredecessor();
7581 OriginalScalarPH->setName("vec.epilog.iter.check");
7582 VPIRBasicBlock *NewEntry = Plan.createVPIRBasicBlock(OriginalScalarPH);
7583 VPBasicBlock *OldEntry = Plan.getEntry();
7584 for (auto &R : make_early_inc_range(*OldEntry)) {
7585 // Skip moving VPIRInstructions (including VPIRPhis), which are unmovable by
7586 // defining.
7587 if (isa<VPIRInstruction>(&R))
7588 continue;
7589 R.moveBefore(*NewEntry, NewEntry->end());
7590 }
7591
7592 VPBlockUtils::reassociateBlocks(OldEntry, NewEntry);
7593 Plan.setEntry(NewEntry);
7594 // OldEntry is now dead and will be cleaned up when the plan gets destroyed.
7595
7596 return OriginalScalarPH;
7597}
7598
7600 LLVM_DEBUG({
7601 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
7602 << "Epilogue Loop VF:" << EPI.EpilogueVF
7603 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7604 });
7605}
7606
7609 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
7610 });
7611}
7612
7613VPWidenMemoryRecipe *VPRecipeBuilder::tryToWidenMemory(VPInstruction *VPI,
7614 VFRange &Range) {
7615 assert((VPI->getOpcode() == Instruction::Load ||
7616 VPI->getOpcode() == Instruction::Store) &&
7617 "Must be called with either a load or store");
7619
7620 auto WillWiden = [&](ElementCount VF) -> bool {
7622 CM.getWideningDecision(I, VF);
7624 "CM decision should be taken at this point.");
7626 return true;
7627 if (CM.isScalarAfterVectorization(I, VF) ||
7628 CM.isProfitableToScalarize(I, VF))
7629 return false;
7631 };
7632
7634 return nullptr;
7635
7636 VPValue *Mask = nullptr;
7637 if (Legal->isMaskRequired(I))
7638 Mask = getBlockInMask(Builder.getInsertBlock());
7639
7640 // Determine if the pointer operand of the access is either consecutive or
7641 // reverse consecutive.
7643 CM.getWideningDecision(I, Range.Start);
7645 bool Consecutive =
7647
7648 VPValue *Ptr = VPI->getOpcode() == Instruction::Load ? VPI->getOperand(0)
7649 : VPI->getOperand(1);
7650 if (Consecutive) {
7653 VPSingleDefRecipe *VectorPtr;
7654 if (Reverse) {
7655 // When folding the tail, we may compute an address that we don't in the
7656 // original scalar loop: drop the GEP no-wrap flags in this case.
7657 // Otherwise preserve existing flags without no-unsigned-wrap, as we will
7658 // emit negative indices.
7659 GEPNoWrapFlags Flags =
7660 CM.foldTailByMasking() || !GEP
7662 : GEP->getNoWrapFlags().withoutNoUnsignedWrap();
7663 VectorPtr = new VPVectorEndPointerRecipe(
7664 Ptr, &Plan.getVF(), getLoadStoreType(I),
7665 /*Stride*/ -1, Flags, VPI->getDebugLoc());
7666 } else {
7667 VectorPtr = new VPVectorPointerRecipe(Ptr, getLoadStoreType(I),
7668 GEP ? GEP->getNoWrapFlags()
7670 VPI->getDebugLoc());
7671 }
7672 Builder.insert(VectorPtr);
7673 Ptr = VectorPtr;
7674 }
7675 if (VPI->getOpcode() == Instruction::Load) {
7676 auto *Load = cast<LoadInst>(I);
7677 return new VPWidenLoadRecipe(*Load, Ptr, Mask, Consecutive, Reverse, *VPI,
7678 VPI->getDebugLoc());
7679 }
7680
7681 StoreInst *Store = cast<StoreInst>(I);
7682 return new VPWidenStoreRecipe(*Store, Ptr, VPI->getOperand(0), Mask,
7683 Consecutive, Reverse, *VPI, VPI->getDebugLoc());
7684}
7685
7686/// Creates a VPWidenIntOrFpInductionRecipe for \p PhiR. If needed, it will
7687/// also insert a recipe to expand the step for the induction recipe.
7690 const InductionDescriptor &IndDesc, VPlan &Plan,
7691 ScalarEvolution &SE, Loop &OrigLoop) {
7692 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) &&
7693 "step must be loop invariant");
7694
7695 VPValue *Start = PhiR->getOperand(0);
7696 assert((Plan.getLiveIn(IndDesc.getStartValue()) == Start ||
7697 (SE.isSCEVable(IndDesc.getStartValue()->getType()) &&
7698 SE.getSCEV(IndDesc.getStartValue()) ==
7699 vputils::getSCEVExprForVPValue(Start, SE))) &&
7700 "Start VPValue must match IndDesc's start value");
7701
7702 // It is always safe to copy over the NoWrap and FastMath flags. In
7703 // particular, when folding tail by masking, the masked-off lanes are never
7704 // used, so it is safe.
7705 VPIRFlags Flags = vputils::getFlagsFromIndDesc(IndDesc);
7706 VPValue *Step =
7708
7709 // Update wide induction increments to use the same step as the corresponding
7710 // wide induction. This enables detecting induction increments directly in
7711 // VPlan and removes redundant splats.
7712 using namespace llvm::VPlanPatternMatch;
7713 if (match(PhiR->getOperand(1), m_Add(m_Specific(PhiR), m_VPValue())))
7714 PhiR->getOperand(1)->getDefiningRecipe()->setOperand(1, Step);
7715
7717 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, &Plan.getVF(),
7718 IndDesc, Flags, PhiR->getDebugLoc());
7719}
7720
7722VPRecipeBuilder::tryToOptimizeInductionPHI(VPInstruction *VPI) {
7723 auto *Phi = cast<PHINode>(VPI->getUnderlyingInstr());
7724
7725 // Check if this is an integer or fp induction. If so, build the recipe that
7726 // produces its scalar and vector values.
7727 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
7728 return createWidenInductionRecipes(VPI, *II, Plan, *PSE.getSE(), *OrigLoop);
7729
7730 // Check if this is pointer induction. If so, build the recipe for it.
7731 if (auto *II = Legal->getPointerInductionDescriptor(Phi)) {
7732 VPValue *Step = vputils::getOrCreateVPValueForSCEVExpr(Plan, II->getStep());
7733 return new VPWidenPointerInductionRecipe(Phi, VPI->getOperand(0), Step,
7734 &Plan.getVFxUF(), *II,
7735 VPI->getDebugLoc());
7736 }
7737 return nullptr;
7738}
7739
7741VPRecipeBuilder::tryToOptimizeInductionTruncate(VPInstruction *VPI,
7742 VFRange &Range) {
7743 auto *I = cast<TruncInst>(VPI->getUnderlyingInstr());
7744 // Optimize the special case where the source is a constant integer
7745 // induction variable. Notice that we can only optimize the 'trunc' case
7746 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
7747 // (c) other casts depend on pointer size.
7748
7749 // Determine whether \p K is a truncation based on an induction variable that
7750 // can be optimized.
7751 auto IsOptimizableIVTruncate =
7752 [&](Instruction *K) -> std::function<bool(ElementCount)> {
7753 return [=](ElementCount VF) -> bool {
7754 return CM.isOptimizableIVTruncate(K, VF);
7755 };
7756 };
7757
7759 IsOptimizableIVTruncate(I), Range))
7760 return nullptr;
7761
7763 VPI->getOperand(0)->getDefiningRecipe());
7764 PHINode *Phi = WidenIV->getPHINode();
7765 VPValue *Start = WidenIV->getStartValue();
7766 const InductionDescriptor &IndDesc = WidenIV->getInductionDescriptor();
7767
7768 // It is always safe to copy over the NoWrap and FastMath flags. In
7769 // particular, when folding tail by masking, the masked-off lanes are never
7770 // used, so it is safe.
7771 VPIRFlags Flags = vputils::getFlagsFromIndDesc(IndDesc);
7772 VPValue *Step =
7774 return new VPWidenIntOrFpInductionRecipe(
7775 Phi, Start, Step, &Plan.getVF(), IndDesc, I, Flags, VPI->getDebugLoc());
7776}
7777
7778VPSingleDefRecipe *VPRecipeBuilder::tryToWidenCall(VPInstruction *VPI,
7779 VFRange &Range) {
7780 CallInst *CI = cast<CallInst>(VPI->getUnderlyingInstr());
7782 [this, CI](ElementCount VF) {
7783 return CM.isScalarWithPredication(CI, VF);
7784 },
7785 Range);
7786
7787 if (IsPredicated)
7788 return nullptr;
7789
7791 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
7792 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
7793 ID == Intrinsic::pseudoprobe ||
7794 ID == Intrinsic::experimental_noalias_scope_decl))
7795 return nullptr;
7796
7798 VPI->op_begin() + CI->arg_size());
7799
7800 // Is it beneficial to perform intrinsic call compared to lib call?
7801 bool ShouldUseVectorIntrinsic =
7803 [&](ElementCount VF) -> bool {
7804 return CM.getCallWideningDecision(CI, VF).Kind ==
7806 },
7807 Range);
7808 if (ShouldUseVectorIntrinsic)
7809 return new VPWidenIntrinsicRecipe(*CI, ID, Ops, CI->getType(), *VPI, *VPI,
7810 VPI->getDebugLoc());
7811
7812 Function *Variant = nullptr;
7813 std::optional<unsigned> MaskPos;
7814 // Is better to call a vectorized version of the function than to to scalarize
7815 // the call?
7816 auto ShouldUseVectorCall = LoopVectorizationPlanner::getDecisionAndClampRange(
7817 [&](ElementCount VF) -> bool {
7818 // The following case may be scalarized depending on the VF.
7819 // The flag shows whether we can use a usual Call for vectorized
7820 // version of the instruction.
7821
7822 // If we've found a variant at a previous VF, then stop looking. A
7823 // vectorized variant of a function expects input in a certain shape
7824 // -- basically the number of input registers, the number of lanes
7825 // per register, and whether there's a mask required.
7826 // We store a pointer to the variant in the VPWidenCallRecipe, so
7827 // once we have an appropriate variant it's only valid for that VF.
7828 // This will force a different vplan to be generated for each VF that
7829 // finds a valid variant.
7830 if (Variant)
7831 return false;
7832 LoopVectorizationCostModel::CallWideningDecision Decision =
7833 CM.getCallWideningDecision(CI, VF);
7835 Variant = Decision.Variant;
7836 MaskPos = Decision.MaskPos;
7837 return true;
7838 }
7839
7840 return false;
7841 },
7842 Range);
7843 if (ShouldUseVectorCall) {
7844 if (MaskPos.has_value()) {
7845 // We have 2 cases that would require a mask:
7846 // 1) The block needs to be predicated, either due to a conditional
7847 // in the scalar loop or use of an active lane mask with
7848 // tail-folding, and we use the appropriate mask for the block.
7849 // 2) No mask is required for the block, but the only available
7850 // vector variant at this VF requires a mask, so we synthesize an
7851 // all-true mask.
7852 VPValue *Mask = nullptr;
7853 if (Legal->isMaskRequired(CI))
7854 Mask = getBlockInMask(Builder.getInsertBlock());
7855 else
7856 Mask = Plan.getOrAddLiveIn(
7857 ConstantInt::getTrue(IntegerType::getInt1Ty(Plan.getContext())));
7858
7859 Ops.insert(Ops.begin() + *MaskPos, Mask);
7860 }
7861
7862 Ops.push_back(VPI->getOperand(VPI->getNumOperands() - 1));
7863 return new VPWidenCallRecipe(CI, Variant, Ops, *VPI, *VPI,
7864 VPI->getDebugLoc());
7865 }
7866
7867 return nullptr;
7868}
7869
7870bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
7872 !isa<StoreInst>(I) && "Instruction should have been handled earlier");
7873 // Instruction should be widened, unless it is scalar after vectorization,
7874 // scalarization is profitable or it is predicated.
7875 auto WillScalarize = [this, I](ElementCount VF) -> bool {
7876 return CM.isScalarAfterVectorization(I, VF) ||
7877 CM.isProfitableToScalarize(I, VF) ||
7878 CM.isScalarWithPredication(I, VF);
7879 };
7881 Range);
7882}
7883
7884VPWidenRecipe *VPRecipeBuilder::tryToWiden(VPInstruction *VPI) {
7885 auto *I = VPI->getUnderlyingInstr();
7886 switch (VPI->getOpcode()) {
7887 default:
7888 return nullptr;
7889 case Instruction::SDiv:
7890 case Instruction::UDiv:
7891 case Instruction::SRem:
7892 case Instruction::URem: {
7893 // If not provably safe, use a select to form a safe divisor before widening the
7894 // div/rem operation itself. Otherwise fall through to general handling below.
7895 if (CM.isPredicatedInst(I)) {
7897 VPValue *Mask = getBlockInMask(Builder.getInsertBlock());
7898 VPValue *One = Plan.getConstantInt(I->getType(), 1u);
7899 auto *SafeRHS =
7900 Builder.createSelect(Mask, Ops[1], One, VPI->getDebugLoc());
7901 Ops[1] = SafeRHS;
7902 return new VPWidenRecipe(*I, Ops, *VPI, *VPI, VPI->getDebugLoc());
7903 }
7904 [[fallthrough]];
7905 }
7906 case Instruction::Add:
7907 case Instruction::And:
7908 case Instruction::AShr:
7909 case Instruction::FAdd:
7910 case Instruction::FCmp:
7911 case Instruction::FDiv:
7912 case Instruction::FMul:
7913 case Instruction::FNeg:
7914 case Instruction::FRem:
7915 case Instruction::FSub:
7916 case Instruction::ICmp:
7917 case Instruction::LShr:
7918 case Instruction::Mul:
7919 case Instruction::Or:
7920 case Instruction::Select:
7921 case Instruction::Shl:
7922 case Instruction::Sub:
7923 case Instruction::Xor:
7924 case Instruction::Freeze: {
7925 SmallVector<VPValue *> NewOps(VPI->operands());
7926 if (Instruction::isBinaryOp(VPI->getOpcode())) {
7927 // The legacy cost model uses SCEV to check if some of the operands are
7928 // constants. To match the legacy cost model's behavior, use SCEV to try
7929 // to replace operands with constants.
7930 ScalarEvolution &SE = *PSE.getSE();
7931 auto GetConstantViaSCEV = [this, &SE](VPValue *Op) {
7932 if (!Op->isLiveIn())
7933 return Op;
7934 Value *V = Op->getUnderlyingValue();
7935 if (isa<Constant>(V) || !SE.isSCEVable(V->getType()))
7936 return Op;
7937 auto *C = dyn_cast<SCEVConstant>(SE.getSCEV(V));
7938 if (!C)
7939 return Op;
7940 return Plan.getOrAddLiveIn(C->getValue());
7941 };
7942 // For Mul, the legacy cost model checks both operands.
7943 if (VPI->getOpcode() == Instruction::Mul)
7944 NewOps[0] = GetConstantViaSCEV(NewOps[0]);
7945 // For other binops, the legacy cost model only checks the second operand.
7946 NewOps[1] = GetConstantViaSCEV(NewOps[1]);
7947 }
7948 return new VPWidenRecipe(*I, NewOps, *VPI, *VPI, VPI->getDebugLoc());
7949 }
7950 case Instruction::ExtractValue: {
7951 SmallVector<VPValue *> NewOps(VPI->operands());
7952 auto *EVI = cast<ExtractValueInst>(I);
7953 assert(EVI->getNumIndices() == 1 && "Expected one extractvalue index");
7954 unsigned Idx = EVI->getIndices()[0];
7955 NewOps.push_back(Plan.getConstantInt(32, Idx));
7956 return new VPWidenRecipe(*I, NewOps, *VPI, *VPI, VPI->getDebugLoc());
7957 }
7958 };
7959}
7960
7961VPHistogramRecipe *VPRecipeBuilder::tryToWidenHistogram(const HistogramInfo *HI,
7962 VPInstruction *VPI) {
7963 // FIXME: Support other operations.
7964 unsigned Opcode = HI->Update->getOpcode();
7965 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7966 "Histogram update operation must be an Add or Sub");
7967
7969 // Bucket address.
7970 HGramOps.push_back(VPI->getOperand(1));
7971 // Increment value.
7972 HGramOps.push_back(getVPValueOrAddLiveIn(HI->Update->getOperand(1)));
7973
7974 // In case of predicated execution (due to tail-folding, or conditional
7975 // execution, or both), pass the relevant mask.
7976 if (Legal->isMaskRequired(HI->Store))
7977 HGramOps.push_back(getBlockInMask(Builder.getInsertBlock()));
7978
7979 return new VPHistogramRecipe(Opcode, HGramOps, VPI->getDebugLoc());
7980}
7981
7983 VFRange &Range) {
7984 auto *I = VPI->getUnderlyingInstr();
7986 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
7987 Range);
7988
7989 bool IsPredicated = CM.isPredicatedInst(I);
7990
7991 // Even if the instruction is not marked as uniform, there are certain
7992 // intrinsic calls that can be effectively treated as such, so we check for
7993 // them here. Conservatively, we only do this for scalable vectors, since
7994 // for fixed-width VFs we can always fall back on full scalarization.
7995 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
7996 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
7997 case Intrinsic::assume:
7998 case Intrinsic::lifetime_start:
7999 case Intrinsic::lifetime_end:
8000 // For scalable vectors if one of the operands is variant then we still
8001 // want to mark as uniform, which will generate one instruction for just
8002 // the first lane of the vector. We can't scalarize the call in the same
8003 // way as for fixed-width vectors because we don't know how many lanes
8004 // there are.
8005 //
8006 // The reasons for doing it this way for scalable vectors are:
8007 // 1. For the assume intrinsic generating the instruction for the first
8008 // lane is still be better than not generating any at all. For
8009 // example, the input may be a splat across all lanes.
8010 // 2. For the lifetime start/end intrinsics the pointer operand only
8011 // does anything useful when the input comes from a stack object,
8012 // which suggests it should always be uniform. For non-stack objects
8013 // the effect is to poison the object, which still allows us to
8014 // remove the call.
8015 IsUniform = true;
8016 break;
8017 default:
8018 break;
8019 }
8020 }
8021 VPValue *BlockInMask = nullptr;
8022 if (!IsPredicated) {
8023 // Finalize the recipe for Instr, first if it is not predicated.
8024 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8025 } else {
8026 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8027 // Instructions marked for predication are replicated and a mask operand is
8028 // added initially. Masked replicate recipes will later be placed under an
8029 // if-then construct to prevent side-effects. Generate recipes to compute
8030 // the block mask for this region.
8031 BlockInMask = getBlockInMask(Builder.getInsertBlock());
8032 }
8033
8034 // Note that there is some custom logic to mark some intrinsics as uniform
8035 // manually above for scalable vectors, which this assert needs to account for
8036 // as well.
8037 assert((Range.Start.isScalar() || !IsUniform || !IsPredicated ||
8038 (Range.Start.isScalable() && isa<IntrinsicInst>(I))) &&
8039 "Should not predicate a uniform recipe");
8040 auto *Recipe =
8041 new VPReplicateRecipe(I, VPI->operands(), IsUniform, BlockInMask, *VPI,
8042 *VPI, VPI->getDebugLoc());
8043 return Recipe;
8044}
8045
8046/// Find all possible partial reductions in the loop and track all of those that
8047/// are valid so recipes can be formed later.
8049 // Find all possible partial reductions, grouping chains by their PHI. This
8050 // grouping allows invalidating the whole chain, if any link is not a valid
8051 // partial reduction.
8054 ChainsByPhi;
8055 for (const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
8056 if (Instruction *RdxExitInstr = RdxDesc.getLoopExitInstr())
8057 getScaledReductions(Phi, RdxExitInstr, Range, ChainsByPhi[Phi]);
8058 }
8059
8060 // A partial reduction is invalid if any of its extends are used by
8061 // something that isn't another partial reduction. This is because the
8062 // extends are intended to be lowered along with the reduction itself.
8063
8064 // Build up a set of partial reduction ops for efficient use checking.
8065 SmallPtrSet<User *, 4> PartialReductionOps;
8066 for (const auto &[_, Chains] : ChainsByPhi)
8067 for (const auto &[PartialRdx, _] : Chains)
8068 PartialReductionOps.insert(PartialRdx.ExtendUser);
8069
8070 auto ExtendIsOnlyUsedByPartialReductions =
8071 [&PartialReductionOps](Instruction *Extend) {
8072 return all_of(Extend->users(), [&](const User *U) {
8073 return PartialReductionOps.contains(U);
8074 });
8075 };
8076
8077 // Check if each use of a chain's two extends is a partial reduction
8078 // and only add those that don't have non-partial reduction users.
8079 for (const auto &[_, Chains] : ChainsByPhi) {
8080 for (const auto &[Chain, Scale] : Chains) {
8081 if (ExtendIsOnlyUsedByPartialReductions(Chain.ExtendA) &&
8082 (!Chain.ExtendB ||
8083 ExtendIsOnlyUsedByPartialReductions(Chain.ExtendB)))
8084 ScaledReductionMap.try_emplace(Chain.Reduction, Scale);
8085 }
8086 }
8087
8088 // Check that all partial reductions in a chain are only used by other
8089 // partial reductions with the same scale factor. Otherwise we end up creating
8090 // users of scaled reductions where the types of the other operands don't
8091 // match.
8092 for (const auto &[Phi, Chains] : ChainsByPhi) {
8093 for (const auto &[Chain, Scale] : Chains) {
8094 auto AllUsersPartialRdx = [ScaleVal = Scale, RdxPhi = Phi,
8095 this](const User *U) {
8096 auto *UI = cast<Instruction>(U);
8097 if (isa<PHINode>(UI) && UI->getParent() == OrigLoop->getHeader())
8098 return UI == RdxPhi;
8099 return ScaledReductionMap.lookup_or(UI, 0) == ScaleVal ||
8100 !OrigLoop->contains(UI->getParent());
8101 };
8102
8103 // If any partial reduction entry for the phi is invalid, invalidate the
8104 // whole chain.
8105 if (!all_of(Chain.Reduction->users(), AllUsersPartialRdx)) {
8106 for (const auto &[Chain, _] : Chains)
8107 ScaledReductionMap.erase(Chain.Reduction);
8108 break;
8109 }
8110 }
8111 }
8112}
8113
8114bool VPRecipeBuilder::getScaledReductions(
8115 Instruction *PHI, Instruction *RdxExitInstr, VFRange &Range,
8116 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
8117 if (!CM.TheLoop->contains(RdxExitInstr))
8118 return false;
8119
8120 auto *Update = dyn_cast<BinaryOperator>(RdxExitInstr);
8121 if (!Update)
8122 return false;
8123
8124 Value *Op = Update->getOperand(0);
8125 Value *PhiOp = Update->getOperand(1);
8126 if (Op == PHI)
8127 std::swap(Op, PhiOp);
8128
8129 using namespace llvm::PatternMatch;
8130 // If Op is an extend, then it's still a valid partial reduction if the
8131 // extended mul fulfills the other requirements.
8132 // For example, reduce.add(ext(mul(ext(A), ext(B)))) is still a valid partial
8133 // reduction since the inner extends will be widened. We already have oneUse
8134 // checks on the inner extends so widening them is safe.
8135 std::optional<TTI::PartialReductionExtendKind> OuterExtKind = std::nullopt;
8136 if (match(Op, m_ZExtOrSExt(m_Mul(m_Value(), m_Value())))) {
8137 auto *Cast = cast<CastInst>(Op);
8138 OuterExtKind = TTI::getPartialReductionExtendKind(Cast->getOpcode());
8139 Op = Cast->getOperand(0);
8140 }
8141
8142 // Try and get a scaled reduction from the first non-phi operand.
8143 // If one is found, we use the discovered reduction instruction in
8144 // place of the accumulator for costing.
8145 if (auto *OpInst = dyn_cast<Instruction>(Op)) {
8146 if (getScaledReductions(PHI, OpInst, Range, Chains)) {
8147 PHI = Chains.rbegin()->first.Reduction;
8148
8149 Op = Update->getOperand(0);
8150 PhiOp = Update->getOperand(1);
8151 if (Op == PHI)
8152 std::swap(Op, PhiOp);
8153 }
8154 }
8155 if (PhiOp != PHI)
8156 return false;
8157
8158 // If the update is a binary operator, check both of its operands to see if
8159 // they are extends. Otherwise, see if the update comes directly from an
8160 // extend.
8161 Instruction *Exts[2] = {nullptr};
8162 BinaryOperator *ExtendUser = dyn_cast<BinaryOperator>(Op);
8163 std::optional<unsigned> BinOpc;
8164 Type *ExtOpTypes[2] = {nullptr};
8166
8167 auto CollectExtInfo = [this, OuterExtKind, &Exts, &ExtOpTypes,
8168 &ExtKinds](SmallVectorImpl<Value *> &Ops) -> bool {
8169 for (const auto &[I, OpI] : enumerate(Ops)) {
8170 const APInt *C;
8171 if (I > 0 && match(OpI, m_APInt(C)) &&
8172 canConstantBeExtended(C, ExtOpTypes[0], ExtKinds[0])) {
8173 ExtOpTypes[I] = ExtOpTypes[0];
8174 ExtKinds[I] = ExtKinds[0];
8175 continue;
8176 }
8177 Value *ExtOp;
8178 if (!match(OpI, m_ZExtOrSExt(m_Value(ExtOp))))
8179 return false;
8180 Exts[I] = cast<Instruction>(OpI);
8181
8182 // TODO: We should be able to support live-ins.
8183 if (!CM.TheLoop->contains(Exts[I]))
8184 return false;
8185
8186 ExtOpTypes[I] = ExtOp->getType();
8187 ExtKinds[I] = TTI::getPartialReductionExtendKind(Exts[I]);
8188 // The outer extend kind must be the same as the inner extends, so that
8189 // they can be folded together.
8190 if (OuterExtKind.has_value() && OuterExtKind.value() != ExtKinds[I])
8191 return false;
8192 }
8193 return true;
8194 };
8195
8196 if (ExtendUser) {
8197 if (!ExtendUser->hasOneUse())
8198 return false;
8199
8200 // Use the side-effect of match to replace BinOp only if the pattern is
8201 // matched, we don't care at this point whether it actually matched.
8202 match(ExtendUser, m_Neg(m_BinOp(ExtendUser)));
8203
8204 SmallVector<Value *> Ops(ExtendUser->operands());
8205 if (!CollectExtInfo(Ops))
8206 return false;
8207
8208 BinOpc = std::make_optional(ExtendUser->getOpcode());
8209 } else if (match(Update, m_Add(m_Value(), m_Value()))) {
8210 // We already know the operands for Update are Op and PhiOp.
8212 if (!CollectExtInfo(Ops))
8213 return false;
8214
8215 ExtendUser = Update;
8216 BinOpc = std::nullopt;
8217 } else
8218 return false;
8219
8220 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
8221
8222 TypeSize PHISize = PHI->getType()->getPrimitiveSizeInBits();
8223 TypeSize ASize = ExtOpTypes[0]->getPrimitiveSizeInBits();
8224 if (!PHISize.hasKnownScalarFactor(ASize))
8225 return false;
8226 unsigned TargetScaleFactor = PHISize.getKnownScalarFactor(ASize);
8227
8229 [&](ElementCount VF) {
8230 InstructionCost Cost = TTI->getPartialReductionCost(
8231 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
8232 PHI->getType(), VF, ExtKinds[0], ExtKinds[1], BinOpc,
8233 CM.CostKind);
8234 return Cost.isValid();
8235 },
8236 Range)) {
8237 Chains.emplace_back(Chain, TargetScaleFactor);
8238 return true;
8239 }
8240
8241 return false;
8242}
8243
8245 VFRange &Range) {
8246 // First, check for specific widening recipes that deal with inductions, Phi
8247 // nodes, calls and memory operations.
8248 VPRecipeBase *Recipe;
8249 if (auto *PhiR = dyn_cast<VPPhi>(R)) {
8250 VPBasicBlock *Parent = PhiR->getParent();
8251 [[maybe_unused]] VPRegionBlock *LoopRegionOf =
8252 Parent->getEnclosingLoopRegion();
8253 assert(LoopRegionOf && LoopRegionOf->getEntry() == Parent &&
8254 "Non-header phis should have been handled during predication");
8255 auto *Phi = cast<PHINode>(R->getUnderlyingInstr());
8256 assert(R->getNumOperands() == 2 && "Must have 2 operands for header phis");
8257 if ((Recipe = tryToOptimizeInductionPHI(PhiR)))
8258 return Recipe;
8259
8260 VPHeaderPHIRecipe *PhiRecipe = nullptr;
8261 assert((Legal->isReductionVariable(Phi) ||
8262 Legal->isFixedOrderRecurrence(Phi)) &&
8263 "can only widen reductions and fixed-order recurrences here");
8264 VPValue *StartV = R->getOperand(0);
8265 if (Legal->isReductionVariable(Phi)) {
8266 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(Phi);
8267 assert(RdxDesc.getRecurrenceStartValue() ==
8268 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8269
8270 // If the PHI is used by a partial reduction, set the scale factor.
8271 bool UseInLoopReduction = CM.isInLoopReduction(Phi);
8272 bool UseOrderedReductions = CM.useOrderedReductions(RdxDesc);
8273 unsigned ScaleFactor =
8274 getScalingForReduction(RdxDesc.getLoopExitInstr()).value_or(1);
8275
8276 PhiRecipe = new VPReductionPHIRecipe(
8277 Phi, RdxDesc.getRecurrenceKind(), *StartV,
8278 getReductionStyle(UseInLoopReduction, UseOrderedReductions,
8279 ScaleFactor),
8281 } else {
8282 // TODO: Currently fixed-order recurrences are modeled as chains of
8283 // first-order recurrences. If there are no users of the intermediate
8284 // recurrences in the chain, the fixed order recurrence should be modeled
8285 // directly, enabling more efficient codegen.
8286 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8287 }
8288 // Add backedge value.
8289 PhiRecipe->addOperand(R->getOperand(1));
8290 return PhiRecipe;
8291 }
8292 assert(!R->isPhi() && "only VPPhi nodes expected at this point");
8293
8294 auto *VPI = cast<VPInstruction>(R);
8295 Instruction *Instr = R->getUnderlyingInstr();
8296 if (VPI->getOpcode() == Instruction::Trunc &&
8297 (Recipe = tryToOptimizeInductionTruncate(VPI, Range)))
8298 return Recipe;
8299
8300 // All widen recipes below deal only with VF > 1.
8302 [&](ElementCount VF) { return VF.isScalar(); }, Range))
8303 return nullptr;
8304
8305 if (VPI->getOpcode() == Instruction::Call)
8306 return tryToWidenCall(VPI, Range);
8307
8308 if (VPI->getOpcode() == Instruction::Store)
8309 if (auto HistInfo = Legal->getHistogramInfo(cast<StoreInst>(Instr)))
8310 return tryToWidenHistogram(*HistInfo, VPI);
8311
8312 if (VPI->getOpcode() == Instruction::Load ||
8313 VPI->getOpcode() == Instruction::Store)
8314 return tryToWidenMemory(VPI, Range);
8315
8316 if (std::optional<unsigned> ScaleFactor = getScalingForReduction(Instr))
8317 return tryToCreatePartialReduction(VPI, ScaleFactor.value());
8318
8319 if (!shouldWiden(Instr, Range))
8320 return nullptr;
8321
8322 if (VPI->getOpcode() == Instruction::GetElementPtr)
8323 return new VPWidenGEPRecipe(cast<GetElementPtrInst>(Instr), R->operands(),
8324 *VPI, VPI->getDebugLoc());
8325
8326 if (VPI->getOpcode() == Instruction::Select)
8327 return new VPWidenSelectRecipe(cast<SelectInst>(Instr), R->operands(), *VPI,
8328 *VPI, VPI->getDebugLoc());
8329
8330 if (Instruction::isCast(VPI->getOpcode())) {
8331 auto *CI = cast<CastInst>(Instr);
8332 auto *CastR = cast<VPInstructionWithType>(VPI);
8333 return new VPWidenCastRecipe(CI->getOpcode(), VPI->getOperand(0),
8334 CastR->getResultType(), CI, *VPI, *VPI,
8335 VPI->getDebugLoc());
8336 }
8337
8338 return tryToWiden(VPI);
8339}
8340
8343 unsigned ScaleFactor) {
8344 assert(Reduction->getNumOperands() == 2 &&
8345 "Unexpected number of operands for partial reduction");
8346
8347 VPValue *BinOp = Reduction->getOperand(0);
8348 VPValue *Accumulator = Reduction->getOperand(1);
8349 VPRecipeBase *BinOpRecipe = BinOp->getDefiningRecipe();
8350 if (isa<VPReductionPHIRecipe>(BinOpRecipe) ||
8351 (isa<VPReductionRecipe>(BinOpRecipe) &&
8352 cast<VPReductionRecipe>(BinOpRecipe)->isPartialReduction()))
8353 std::swap(BinOp, Accumulator);
8354
8355 assert(ScaleFactor ==
8356 vputils::getVFScaleFactor(Accumulator->getDefiningRecipe()) &&
8357 "all accumulators in chain must have same scale factor");
8358
8359 auto *ReductionI = Reduction->getUnderlyingInstr();
8360 if (Reduction->getOpcode() == Instruction::Sub) {
8361 auto *const Zero = ConstantInt::get(ReductionI->getType(), 0);
8363 Ops.push_back(Plan.getOrAddLiveIn(Zero));
8364 Ops.push_back(BinOp);
8365 BinOp = new VPWidenRecipe(*ReductionI, Ops, VPIRFlags(*ReductionI),
8366 VPIRMetadata(), ReductionI->getDebugLoc());
8367 Builder.insert(BinOp->getDefiningRecipe());
8368 }
8369
8370 VPValue *Cond = nullptr;
8371 if (CM.blockNeedsPredicationForAnyReason(ReductionI->getParent()))
8372 Cond = getBlockInMask(Builder.getInsertBlock());
8373
8374 return new VPReductionRecipe(
8375 RecurKind::Add, FastMathFlags(), ReductionI, Accumulator, BinOp, Cond,
8376 RdxUnordered{/*VFScaleFactor=*/ScaleFactor}, ReductionI->getDebugLoc());
8377}
8378
8379void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8380 ElementCount MaxVF) {
8381 if (ElementCount::isKnownGT(MinVF, MaxVF))
8382 return;
8383
8384 assert(OrigLoop->isInnermost() && "Inner loop expected.");
8385
8386 const LoopAccessInfo *LAI = Legal->getLAI();
8388 OrigLoop, LI, DT, PSE.getSE());
8389 if (!LAI->getRuntimePointerChecking()->getChecks().empty() &&
8391 // Only use noalias metadata when using memory checks guaranteeing no
8392 // overlap across all iterations.
8393 LVer.prepareNoAliasMetadata();
8394 }
8395
8396 // Create initial base VPlan0, to serve as common starting point for all
8397 // candidates built later for specific VF ranges.
8398 auto VPlan0 = VPlanTransforms::buildVPlan0(
8399 OrigLoop, *LI, Legal->getWidestInductionType(),
8400 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()), PSE, &LVer);
8401
8402 auto MaxVFTimes2 = MaxVF * 2;
8403 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
8404 VFRange SubRange = {VF, MaxVFTimes2};
8405 if (auto Plan = tryToBuildVPlanWithVPRecipes(
8406 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8407 // Now optimize the initial VPlan.
8408 VPlanTransforms::hoistPredicatedLoads(*Plan, *PSE.getSE(), OrigLoop);
8409 VPlanTransforms::sinkPredicatedStores(*Plan, *PSE.getSE(), OrigLoop);
8411 *Plan, CM.getMinimalBitwidths());
8413 // TODO: try to put it close to addActiveLaneMask().
8414 if (CM.foldTailWithEVL())
8416 *Plan, CM.getMaxSafeElements());
8417 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8418 VPlans.push_back(std::move(Plan));
8419 }
8420 VF = SubRange.End;
8421 }
8422}
8423
8424VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8425 VPlanPtr Plan, VFRange &Range, LoopVersioning *LVer) {
8426
8427 using namespace llvm::VPlanPatternMatch;
8428 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8429
8430 // ---------------------------------------------------------------------------
8431 // Build initial VPlan: Scan the body of the loop in a topological order to
8432 // visit each basic block after having visited its predecessor basic blocks.
8433 // ---------------------------------------------------------------------------
8434
8435 bool RequiresScalarEpilogueCheck =
8437 [this](ElementCount VF) {
8438 return !CM.requiresScalarEpilogue(VF.isVector());
8439 },
8440 Range);
8441 VPlanTransforms::handleEarlyExits(*Plan, Legal->hasUncountableEarlyExit());
8442 VPlanTransforms::addMiddleCheck(*Plan, RequiresScalarEpilogueCheck,
8443 CM.foldTailByMasking());
8444
8446
8447 // Don't use getDecisionAndClampRange here, because we don't know the UF
8448 // so this function is better to be conservative, rather than to split
8449 // it up into different VPlans.
8450 // TODO: Consider using getDecisionAndClampRange here to split up VPlans.
8451 bool IVUpdateMayOverflow = false;
8452 for (ElementCount VF : Range)
8453 IVUpdateMayOverflow |= !isIndvarOverflowCheckKnownFalse(&CM, VF);
8454
8455 TailFoldingStyle Style = CM.getTailFoldingStyle(IVUpdateMayOverflow);
8456 // Use NUW for the induction increment if we proved that it won't overflow in
8457 // the vector loop or when not folding the tail. In the later case, we know
8458 // that the canonical induction increment will not overflow as the vector trip
8459 // count is >= increment and a multiple of the increment.
8460 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8461 bool HasNUW = !IVUpdateMayOverflow || Style == TailFoldingStyle::None;
8462 if (!HasNUW) {
8463 auto *IVInc =
8464 LoopRegion->getExitingBasicBlock()->getTerminator()->getOperand(0);
8465 assert(match(IVInc,
8466 m_VPInstruction<Instruction::Add>(
8467 m_Specific(LoopRegion->getCanonicalIV()), m_VPValue())) &&
8468 "Did not find the canonical IV increment");
8469 cast<VPRecipeWithIRFlags>(IVInc)->dropPoisonGeneratingFlags();
8470 }
8471
8472 // ---------------------------------------------------------------------------
8473 // Pre-construction: record ingredients whose recipes we'll need to further
8474 // process after constructing the initial VPlan.
8475 // ---------------------------------------------------------------------------
8476
8477 // For each interleave group which is relevant for this (possibly trimmed)
8478 // Range, add it to the set of groups to be later applied to the VPlan and add
8479 // placeholders for its members' Recipes which we'll be replacing with a
8480 // single VPInterleaveRecipe.
8481 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8482 auto ApplyIG = [IG, this](ElementCount VF) -> bool {
8483 bool Result = (VF.isVector() && // Query is illegal for VF == 1
8484 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8486 // For scalable vectors, the interleave factors must be <= 8 since we
8487 // require the (de)interleaveN intrinsics instead of shufflevectors.
8488 assert((!Result || !VF.isScalable() || IG->getFactor() <= 8) &&
8489 "Unsupported interleave factor for scalable vectors");
8490 return Result;
8491 };
8492 if (!getDecisionAndClampRange(ApplyIG, Range))
8493 continue;
8494 InterleaveGroups.insert(IG);
8495 }
8496
8497 // ---------------------------------------------------------------------------
8498 // Predicate and linearize the top-level loop region.
8499 // ---------------------------------------------------------------------------
8500 auto BlockMaskCache = VPlanTransforms::introduceMasksAndLinearize(
8501 *Plan, CM.foldTailByMasking());
8502
8503 // ---------------------------------------------------------------------------
8504 // Construct wide recipes and apply predication for original scalar
8505 // VPInstructions in the loop.
8506 // ---------------------------------------------------------------------------
8507 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, PSE,
8508 Builder, BlockMaskCache);
8509 // TODO: Handle partial reductions with EVL tail folding.
8510 if (!CM.foldTailWithEVL())
8511 RecipeBuilder.collectScaledReductions(Range);
8512
8513 // Scan the body of the loop in a topological order to visit each basic block
8514 // after having visited its predecessor basic blocks.
8515 VPBasicBlock *HeaderVPBB = LoopRegion->getEntryBasicBlock();
8516 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8517 HeaderVPBB);
8518
8519 auto *MiddleVPBB = Plan->getMiddleBlock();
8520 VPBasicBlock::iterator MBIP = MiddleVPBB->getFirstNonPhi();
8521 // Mapping from VPValues in the initial plan to their widened VPValues. Needed
8522 // temporarily to update created block masks.
8523 DenseMap<VPValue *, VPValue *> Old2New;
8524 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
8525 // Convert input VPInstructions to widened recipes.
8526 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
8527 auto *SingleDef = cast<VPSingleDefRecipe>(&R);
8528 auto *UnderlyingValue = SingleDef->getUnderlyingValue();
8529 // Skip recipes that do not need transforming, including canonical IV,
8530 // wide canonical IV and VPInstructions without underlying values. The
8531 // latter are added above for masking.
8532 // FIXME: Migrate code relying on the underlying instruction from VPlan0
8533 // to construct recipes below to not use the underlying instruction.
8535 &R) ||
8536 (isa<VPInstruction>(&R) && !UnderlyingValue))
8537 continue;
8538 assert(isa<VPInstruction>(&R) && UnderlyingValue && "unsupported recipe");
8539
8540 // TODO: Gradually replace uses of underlying instruction by analyses on
8541 // VPlan.
8542 Instruction *Instr = cast<Instruction>(UnderlyingValue);
8543 Builder.setInsertPoint(SingleDef);
8544
8545 // The stores with invariant address inside the loop will be deleted, and
8546 // in the exit block, a uniform store recipe will be created for the final
8547 // invariant store of the reduction.
8548 StoreInst *SI;
8549 if ((SI = dyn_cast<StoreInst>(Instr)) &&
8550 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) {
8551 // Only create recipe for the final invariant store of the reduction.
8552 if (Legal->isInvariantStoreOfReduction(SI)) {
8553 auto *VPI = cast<VPInstruction>(SingleDef);
8554 auto *Recipe = new VPReplicateRecipe(
8555 SI, R.operands(), true /* IsUniform */, nullptr /*Mask*/, *VPI,
8556 *VPI, VPI->getDebugLoc());
8557 Recipe->insertBefore(*MiddleVPBB, MBIP);
8558 }
8559 R.eraseFromParent();
8560 continue;
8561 }
8562
8563 VPRecipeBase *Recipe =
8564 RecipeBuilder.tryToCreateWidenRecipe(SingleDef, Range);
8565 if (!Recipe)
8566 Recipe = RecipeBuilder.handleReplication(cast<VPInstruction>(SingleDef),
8567 Range);
8568
8569 RecipeBuilder.setRecipe(Instr, Recipe);
8570 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && isa<TruncInst>(Instr)) {
8571 // Optimized a truncate to VPWidenIntOrFpInductionRecipe. It needs to be
8572 // moved to the phi section in the header.
8573 Recipe->insertBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
8574 } else {
8575 Builder.insert(Recipe);
8576 }
8577 if (Recipe->getNumDefinedValues() == 1) {
8578 SingleDef->replaceAllUsesWith(Recipe->getVPSingleValue());
8579 Old2New[SingleDef] = Recipe->getVPSingleValue();
8580 } else {
8581 assert(Recipe->getNumDefinedValues() == 0 &&
8582 "Unexpected multidef recipe");
8583 R.eraseFromParent();
8584 }
8585 }
8586 }
8587
8588 // replaceAllUsesWith above may invalidate the block masks. Update them here.
8589 // TODO: Include the masks as operands in the predicated VPlan directly
8590 // to remove the need to keep a map of masks beyond the predication
8591 // transform.
8592 RecipeBuilder.updateBlockMaskCache(Old2New);
8593 for (VPValue *Old : Old2New.keys())
8594 Old->getDefiningRecipe()->eraseFromParent();
8595
8596 assert(isa<VPRegionBlock>(LoopRegion) &&
8597 !LoopRegion->getEntryBasicBlock()->empty() &&
8598 "entry block must be set to a VPRegionBlock having a non-empty entry "
8599 "VPBasicBlock");
8600
8601 // TODO: We can't call runPass on these transforms yet, due to verifier
8602 // failures.
8604 DenseMap<VPValue *, VPValue *> IVEndValues;
8605 VPlanTransforms::updateScalarResumePhis(*Plan, IVEndValues);
8606
8607 // ---------------------------------------------------------------------------
8608 // Transform initial VPlan: Apply previously taken decisions, in order, to
8609 // bring the VPlan to its final state.
8610 // ---------------------------------------------------------------------------
8611
8612 // Adjust the recipes for any inloop reductions.
8613 adjustRecipesForReductions(Plan, RecipeBuilder, Range.Start);
8614
8615 // Apply mandatory transformation to handle reductions with multiple in-loop
8616 // uses if possible, bail out otherwise.
8618 *Plan))
8619 return nullptr;
8620 // Apply mandatory transformation to handle FP maxnum/minnum reduction with
8621 // NaNs if possible, bail out otherwise.
8623 *Plan))
8624 return nullptr;
8625
8626 // Transform recipes to abstract recipes if it is legal and beneficial and
8627 // clamp the range for better cost estimation.
8628 // TODO: Enable following transform when the EVL-version of extended-reduction
8629 // and mulacc-reduction are implemented.
8630 if (!CM.foldTailWithEVL()) {
8631 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind,
8632 *CM.PSE.getSE(), OrigLoop);
8634 CostCtx, Range);
8635 }
8636
8637 for (ElementCount VF : Range)
8638 Plan->addVF(VF);
8639 Plan->setName("Initial VPlan");
8640
8641 // Interleave memory: for each Interleave Group we marked earlier as relevant
8642 // for this VPlan, replace the Recipes widening its memory instructions with a
8643 // single VPInterleaveRecipe at its insertion point.
8645 InterleaveGroups, RecipeBuilder,
8646 CM.isScalarEpilogueAllowed());
8647
8648 // Replace VPValues for known constant strides.
8650 Legal->getLAI()->getSymbolicStrides());
8651
8652 auto BlockNeedsPredication = [this](BasicBlock *BB) {
8653 return Legal->blockNeedsPredication(BB);
8654 };
8656 BlockNeedsPredication);
8657
8658 // Sink users of fixed-order recurrence past the recipe defining the previous
8659 // value and introduce FirstOrderRecurrenceSplice VPInstructions.
8661 *Plan, Builder))
8662 return nullptr;
8663
8664 if (useActiveLaneMask(Style)) {
8665 // TODO: Move checks to VPlanTransforms::addActiveLaneMask once
8666 // TailFoldingStyle is visible there.
8667 bool ForControlFlow = useActiveLaneMaskForControlFlow(Style);
8668 bool WithoutRuntimeCheck =
8670 VPlanTransforms::addActiveLaneMask(*Plan, ForControlFlow,
8671 WithoutRuntimeCheck);
8672 }
8673 VPlanTransforms::optimizeInductionExitUsers(*Plan, IVEndValues, *PSE.getSE());
8674
8675 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8676 return Plan;
8677}
8678
8679VPlanPtr LoopVectorizationPlanner::tryToBuildVPlan(VFRange &Range) {
8680 // Outer loop handling: They may require CFG and instruction level
8681 // transformations before even evaluating whether vectorization is profitable.
8682 // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8683 // the vectorization pipeline.
8684 assert(!OrigLoop->isInnermost());
8685 assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8686
8687 auto Plan = VPlanTransforms::buildVPlan0(
8688 OrigLoop, *LI, Legal->getWidestInductionType(),
8689 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()), PSE);
8691 /*HasUncountableExit*/ false);
8692 VPlanTransforms::addMiddleCheck(*Plan, /*RequiresScalarEpilogue*/ true,
8693 /*TailFolded*/ false);
8694
8696
8697 for (ElementCount VF : Range)
8698 Plan->addVF(VF);
8699
8701 *Plan,
8702 [this](PHINode *P) {
8703 return Legal->getIntOrFpInductionDescriptor(P);
8704 },
8705 *TLI))
8706 return nullptr;
8707
8708 // TODO: IVEndValues are not used yet in the native path, to optimize exit
8709 // values.
8710 // TODO: We can't call runPass on the transform yet, due to verifier
8711 // failures.
8712 DenseMap<VPValue *, VPValue *> IVEndValues;
8713 VPlanTransforms::updateScalarResumePhis(*Plan, IVEndValues);
8714
8715 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8716 return Plan;
8717}
8718
8719// Adjust the recipes for reductions. For in-loop reductions the chain of
8720// instructions leading from the loop exit instr to the phi need to be converted
8721// to reductions, with one operand being vector and the other being the scalar
8722// reduction chain. For other reductions, a select is introduced between the phi
8723// and users outside the vector region when folding the tail.
8724//
8725// A ComputeReductionResult recipe is added to the middle block, also for
8726// in-loop reductions which compute their result in-loop, because generating
8727// the subsequent bc.merge.rdx phi is driven by ComputeReductionResult recipes.
8728//
8729// Adjust AnyOf reductions; replace the reduction phi for the selected value
8730// with a boolean reduction phi node to check if the condition is true in any
8731// iteration. The final value is selected by the final ComputeReductionResult.
8732void LoopVectorizationPlanner::adjustRecipesForReductions(
8733 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) {
8734 using namespace VPlanPatternMatch;
8735 VPTypeAnalysis TypeInfo(*Plan);
8736 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8737 VPBasicBlock *Header = VectorLoopRegion->getEntryBasicBlock();
8738 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8740
8741 for (VPRecipeBase &R : Header->phis()) {
8742 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
8743 if (!PhiR || !PhiR->isInLoop() || (MinVF.isScalar() && !PhiR->isOrdered()))
8744 continue;
8745
8746 RecurKind Kind = PhiR->getRecurrenceKind();
8747 assert(
8750 "AnyOf and FindIV reductions are not allowed for in-loop reductions");
8751
8752 bool IsFPRecurrence =
8754 FastMathFlags FMFs =
8755 IsFPRecurrence ? FastMathFlags::getFast() : FastMathFlags();
8756
8757 // Collect the chain of "link" recipes for the reduction starting at PhiR.
8758 SetVector<VPSingleDefRecipe *> Worklist;
8759 Worklist.insert(PhiR);
8760 for (unsigned I = 0; I != Worklist.size(); ++I) {
8761 VPSingleDefRecipe *Cur = Worklist[I];
8762 for (VPUser *U : Cur->users()) {
8763 auto *UserRecipe = cast<VPSingleDefRecipe>(U);
8764 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
8765 assert((UserRecipe->getParent() == MiddleVPBB ||
8766 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
8767 "U must be either in the loop region, the middle block or the "
8768 "scalar preheader.");
8769 continue;
8770 }
8771 Worklist.insert(UserRecipe);
8772 }
8773 }
8774
8775 // Visit operation "Links" along the reduction chain top-down starting from
8776 // the phi until LoopExitValue. We keep track of the previous item
8777 // (PreviousLink) to tell which of the two operands of a Link will remain
8778 // scalar and which will be reduced. For minmax by select(cmp), Link will be
8779 // the select instructions. Blend recipes of in-loop reduction phi's will
8780 // get folded to their non-phi operand, as the reduction recipe handles the
8781 // condition directly.
8782 VPSingleDefRecipe *PreviousLink = PhiR; // Aka Worklist[0].
8783 for (VPSingleDefRecipe *CurrentLink : drop_begin(Worklist)) {
8784 if (auto *Blend = dyn_cast<VPBlendRecipe>(CurrentLink)) {
8785 assert(Blend->getNumIncomingValues() == 2 &&
8786 "Blend must have 2 incoming values");
8787 if (Blend->getIncomingValue(0) == PhiR) {
8788 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
8789 } else {
8790 assert(Blend->getIncomingValue(1) == PhiR &&
8791 "PhiR must be an operand of the blend");
8792 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
8793 }
8794 continue;
8795 }
8796
8797 if (IsFPRecurrence) {
8798 FastMathFlags CurFMF =
8799 cast<VPRecipeWithIRFlags>(CurrentLink)->getFastMathFlags();
8800 if (match(CurrentLink, m_Select(m_VPValue(), m_VPValue(), m_VPValue())))
8801 CurFMF |= cast<VPRecipeWithIRFlags>(CurrentLink->getOperand(0))
8802 ->getFastMathFlags();
8803 FMFs &= CurFMF;
8804 }
8805
8806 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
8807
8808 // Index of the first operand which holds a non-mask vector operand.
8809 unsigned IndexOfFirstOperand;
8810 // Recognize a call to the llvm.fmuladd intrinsic.
8811 bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
8812 VPValue *VecOp;
8813 VPBasicBlock *LinkVPBB = CurrentLink->getParent();
8814 if (IsFMulAdd) {
8815 assert(
8817 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
8818 assert(((MinVF.isScalar() && isa<VPReplicateRecipe>(CurrentLink)) ||
8819 isa<VPWidenIntrinsicRecipe>(CurrentLink)) &&
8820 CurrentLink->getOperand(2) == PreviousLink &&
8821 "expected a call where the previous link is the added operand");
8822
8823 // If the instruction is a call to the llvm.fmuladd intrinsic then we
8824 // need to create an fmul recipe (multiplying the first two operands of
8825 // the fmuladd together) to use as the vector operand for the fadd
8826 // reduction.
8827 VPInstruction *FMulRecipe = new VPInstruction(
8828 Instruction::FMul,
8829 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
8830 CurrentLinkI->getFastMathFlags());
8831 LinkVPBB->insert(FMulRecipe, CurrentLink->getIterator());
8832 VecOp = FMulRecipe;
8833 } else if (PhiR->isInLoop() && Kind == RecurKind::AddChainWithSubs &&
8834 match(CurrentLink, m_Sub(m_VPValue(), m_VPValue()))) {
8835 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8836 auto *Zero = Plan->getConstantInt(PhiTy, 0);
8837 auto *Sub = new VPInstruction(Instruction::Sub,
8838 {Zero, CurrentLink->getOperand(1)}, {},
8839 {}, CurrentLinkI->getDebugLoc());
8840 Sub->setUnderlyingValue(CurrentLinkI);
8841 LinkVPBB->insert(Sub, CurrentLink->getIterator());
8842 VecOp = Sub;
8843 } else {
8845 if (match(CurrentLink, m_Cmp(m_VPValue(), m_VPValue())))
8846 continue;
8847 assert(isa<VPWidenSelectRecipe>(CurrentLink) &&
8848 "must be a select recipe");
8849 IndexOfFirstOperand = 1;
8850 } else {
8851 assert((MinVF.isScalar() || isa<VPWidenRecipe>(CurrentLink)) &&
8852 "Expected to replace a VPWidenSC");
8853 IndexOfFirstOperand = 0;
8854 }
8855 // Note that for non-commutable operands (cmp-selects), the semantics of
8856 // the cmp-select are captured in the recurrence kind.
8857 unsigned VecOpId =
8858 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
8859 ? IndexOfFirstOperand + 1
8860 : IndexOfFirstOperand;
8861 VecOp = CurrentLink->getOperand(VecOpId);
8862 assert(VecOp != PreviousLink &&
8863 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
8864 (VecOpId - IndexOfFirstOperand)) ==
8865 PreviousLink &&
8866 "PreviousLink must be the operand other than VecOp");
8867 }
8868
8869 VPValue *CondOp = nullptr;
8870 if (CM.blockNeedsPredicationForAnyReason(CurrentLinkI->getParent()))
8871 CondOp = RecipeBuilder.getBlockInMask(CurrentLink->getParent());
8872
8873 ReductionStyle Style = getReductionStyle(true, PhiR->isOrdered(), 1);
8874 auto *RedRecipe =
8875 new VPReductionRecipe(Kind, FMFs, CurrentLinkI, PreviousLink, VecOp,
8876 CondOp, Style, CurrentLinkI->getDebugLoc());
8877 // Append the recipe to the end of the VPBasicBlock because we need to
8878 // ensure that it comes after all of it's inputs, including CondOp.
8879 // Delete CurrentLink as it will be invalid if its operand is replaced
8880 // with a reduction defined at the bottom of the block in the next link.
8881 if (LinkVPBB->getNumSuccessors() == 0)
8882 RedRecipe->insertBefore(&*std::prev(std::prev(LinkVPBB->end())));
8883 else
8884 LinkVPBB->appendRecipe(RedRecipe);
8885
8886 CurrentLink->replaceAllUsesWith(RedRecipe);
8887 ToDelete.push_back(CurrentLink);
8888 PreviousLink = RedRecipe;
8889 }
8890 }
8891 VPBasicBlock *LatchVPBB = VectorLoopRegion->getExitingBasicBlock();
8892 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->end())));
8893 VPBasicBlock::iterator IP = MiddleVPBB->getFirstNonPhi();
8894 for (VPRecipeBase &R :
8895 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8896 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
8897 if (!PhiR)
8898 continue;
8899
8900 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(
8902 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8903 // If tail is folded by masking, introduce selects between the phi
8904 // and the users outside the vector region of each reduction, at the
8905 // beginning of the dedicated latch block.
8906 auto *OrigExitingVPV = PhiR->getBackedgeValue();
8907 auto *NewExitingVPV = PhiR->getBackedgeValue();
8908 // Don't output selects for partial reductions because they have an output
8909 // with fewer lanes than the VF. So the operands of the select would have
8910 // different numbers of lanes. Partial reductions mask the input instead.
8911 auto *RR = dyn_cast<VPReductionRecipe>(OrigExitingVPV->getDefiningRecipe());
8912 if (!PhiR->isInLoop() && CM.foldTailByMasking() &&
8913 (!RR || !RR->isPartialReduction())) {
8914 VPValue *Cond = RecipeBuilder.getBlockInMask(PhiR->getParent());
8915 std::optional<FastMathFlags> FMFs =
8916 PhiTy->isFloatingPointTy()
8917 ? std::make_optional(RdxDesc.getFastMathFlags())
8918 : std::nullopt;
8919 NewExitingVPV =
8920 Builder.createSelect(Cond, OrigExitingVPV, PhiR, {}, "", FMFs);
8921 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U, unsigned) {
8922 return isa<VPInstruction>(&U) &&
8923 (cast<VPInstruction>(&U)->getOpcode() ==
8925 cast<VPInstruction>(&U)->getOpcode() ==
8927 cast<VPInstruction>(&U)->getOpcode() ==
8929 });
8930 if (CM.usePredicatedReductionSelect())
8931 PhiR->setOperand(1, NewExitingVPV);
8932 }
8933
8934 // We want code in the middle block to appear to execute on the location of
8935 // the scalar loop's latch terminator because: (a) it is all compiler
8936 // generated, (b) these instructions are always executed after evaluating
8937 // the latch conditional branch, and (c) other passes may add new
8938 // predecessors which terminate on this line. This is the easiest way to
8939 // ensure we don't accidentally cause an extra step back into the loop while
8940 // debugging.
8941 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8942
8943 // TODO: At the moment ComputeReductionResult also drives creation of the
8944 // bc.merge.rdx phi nodes, hence it needs to be created unconditionally here
8945 // even for in-loop reductions, until the reduction resume value handling is
8946 // also modeled in VPlan.
8947 VPInstruction *FinalReductionResult;
8948 VPBuilder::InsertPointGuard Guard(Builder);
8949 Builder.setInsertPoint(MiddleVPBB, IP);
8950 RecurKind RecurrenceKind = PhiR->getRecurrenceKind();
8952 VPValue *Start = PhiR->getStartValue();
8953 VPValue *Sentinel = Plan->getOrAddLiveIn(RdxDesc.getSentinelValue());
8954 FinalReductionResult =
8955 Builder.createNaryOp(VPInstruction::ComputeFindIVResult,
8956 {PhiR, Start, Sentinel, NewExitingVPV}, ExitDL);
8957 } else if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RecurrenceKind)) {
8958 VPValue *Start = PhiR->getStartValue();
8959 FinalReductionResult =
8960 Builder.createNaryOp(VPInstruction::ComputeAnyOfResult,
8961 {PhiR, Start, NewExitingVPV}, ExitDL);
8962 } else {
8963 VPIRFlags Flags =
8965 ? VPIRFlags(RdxDesc.getFastMathFlags())
8966 : VPIRFlags();
8967 FinalReductionResult =
8968 Builder.createNaryOp(VPInstruction::ComputeReductionResult,
8969 {PhiR, NewExitingVPV}, Flags, ExitDL);
8970 }
8971 // If the vector reduction can be performed in a smaller type, we truncate
8972 // then extend the loop exit value to enable InstCombine to evaluate the
8973 // entire expression in the smaller type.
8974 if (MinVF.isVector() && PhiTy != RdxDesc.getRecurrenceType() &&
8976 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
8978 "Unexpected truncated min-max recurrence!");
8979 Type *RdxTy = RdxDesc.getRecurrenceType();
8980 VPWidenCastRecipe *Trunc;
8981 Instruction::CastOps ExtendOpc =
8982 RdxDesc.isSigned() ? Instruction::SExt : Instruction::ZExt;
8983 VPWidenCastRecipe *Extnd;
8984 {
8985 VPBuilder::InsertPointGuard Guard(Builder);
8986 Builder.setInsertPoint(
8987 NewExitingVPV->getDefiningRecipe()->getParent(),
8988 std::next(NewExitingVPV->getDefiningRecipe()->getIterator()));
8989 Trunc =
8990 Builder.createWidenCast(Instruction::Trunc, NewExitingVPV, RdxTy);
8991 Extnd = Builder.createWidenCast(ExtendOpc, Trunc, PhiTy);
8992 }
8993 if (PhiR->getOperand(1) == NewExitingVPV)
8994 PhiR->setOperand(1, Extnd->getVPSingleValue());
8995
8996 // Update ComputeReductionResult with the truncated exiting value and
8997 // extend its result.
8998 FinalReductionResult->setOperand(1, Trunc);
8999 FinalReductionResult =
9000 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
9001 }
9002
9003 // Update all users outside the vector region. Also replace redundant
9004 // extracts.
9005 for (auto *U : to_vector(OrigExitingVPV->users())) {
9006 auto *Parent = cast<VPRecipeBase>(U)->getParent();
9007 if (FinalReductionResult == U || Parent->getParent())
9008 continue;
9009 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
9010
9011 // Look through ExtractLastPart.
9013 U = cast<VPInstruction>(U)->getSingleUser();
9014
9017 cast<VPInstruction>(U)->replaceAllUsesWith(FinalReductionResult);
9018 }
9019
9020 // Adjust AnyOf reductions; replace the reduction phi for the selected value
9021 // with a boolean reduction phi node to check if the condition is true in
9022 // any iteration. The final value is selected by the final
9023 // ComputeReductionResult.
9024 if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RecurrenceKind)) {
9025 auto *Select = cast<VPRecipeBase>(*find_if(PhiR->users(), [](VPUser *U) {
9026 return isa<VPWidenSelectRecipe>(U) ||
9027 (isa<VPReplicateRecipe>(U) &&
9028 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
9029 Instruction::Select);
9030 }));
9031 VPValue *Cmp = Select->getOperand(0);
9032 // If the compare is checking the reduction PHI node, adjust it to check
9033 // the start value.
9034 if (VPRecipeBase *CmpR = Cmp->getDefiningRecipe())
9035 CmpR->replaceUsesOfWith(PhiR, PhiR->getStartValue());
9036 Builder.setInsertPoint(Select);
9037
9038 // If the true value of the select is the reduction phi, the new value is
9039 // selected if the negated condition is true in any iteration.
9040 if (Select->getOperand(1) == PhiR)
9041 Cmp = Builder.createNot(Cmp);
9042 VPValue *Or = Builder.createOr(PhiR, Cmp);
9043 Select->getVPSingleValue()->replaceAllUsesWith(Or);
9044 // Delete Select now that it has invalid types.
9045 ToDelete.push_back(Select);
9046
9047 // Convert the reduction phi to operate on bools.
9048 PhiR->setOperand(0, Plan->getFalse());
9049 continue;
9050 }
9051
9053 RdxDesc.getRecurrenceKind())) {
9054 // Adjust the start value for FindFirstIV/FindLastIV recurrences to use
9055 // the sentinel value after generating the ResumePhi recipe, which uses
9056 // the original start value.
9057 PhiR->setOperand(0, Plan->getOrAddLiveIn(RdxDesc.getSentinelValue()));
9058 }
9059 RecurKind RK = RdxDesc.getRecurrenceKind();
9063 VPBuilder PHBuilder(Plan->getVectorPreheader());
9064 VPValue *Iden = Plan->getOrAddLiveIn(
9065 getRecurrenceIdentity(RK, PhiTy, RdxDesc.getFastMathFlags()));
9066 // If the PHI is used by a partial reduction, set the scale factor.
9067 unsigned ScaleFactor =
9068 RecipeBuilder.getScalingForReduction(RdxDesc.getLoopExitInstr())
9069 .value_or(1);
9070 auto *ScaleFactorVPV = Plan->getConstantInt(32, ScaleFactor);
9071 VPValue *StartV = PHBuilder.createNaryOp(
9073 {PhiR->getStartValue(), Iden, ScaleFactorVPV},
9074 PhiTy->isFloatingPointTy() ? RdxDesc.getFastMathFlags()
9075 : FastMathFlags());
9076 PhiR->setOperand(0, StartV);
9077 }
9078 }
9079 for (VPRecipeBase *R : ToDelete)
9080 R->eraseFromParent();
9081
9083}
9084
9085void LoopVectorizationPlanner::attachRuntimeChecks(
9086 VPlan &Plan, GeneratedRTChecks &RTChecks, bool HasBranchWeights) const {
9087 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
9088 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
9089 assert((!CM.OptForSize ||
9090 CM.Hints->getForce() == LoopVectorizeHints::FK_Enabled) &&
9091 "Cannot SCEV check stride or overflow when optimizing for size");
9092 VPlanTransforms::attachCheckBlock(Plan, SCEVCheckCond, SCEVCheckBlock,
9093 HasBranchWeights);
9094 }
9095 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
9096 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
9097 // VPlan-native path does not do any analysis for runtime checks
9098 // currently.
9099 assert((!EnableVPlanNativePath || OrigLoop->isInnermost()) &&
9100 "Runtime checks are not supported for outer loops yet");
9101
9102 if (CM.OptForSize) {
9103 assert(
9104 CM.Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
9105 "Cannot emit memory checks when optimizing for size, unless forced "
9106 "to vectorize.");
9107 ORE->emit([&]() {
9108 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
9109 OrigLoop->getStartLoc(),
9110 OrigLoop->getHeader())
9111 << "Code-size may be reduced by not forcing "
9112 "vectorization, or by source-code modifications "
9113 "eliminating the need for runtime checks "
9114 "(e.g., adding 'restrict').";
9115 });
9116 }
9117 VPlanTransforms::attachCheckBlock(Plan, MemCheckCond, MemCheckBlock,
9118 HasBranchWeights);
9119 }
9120}
9121
9123 VPlan &Plan, ElementCount VF, unsigned UF,
9124 ElementCount MinProfitableTripCount) const {
9125 // vscale is not necessarily a power-of-2, which means we cannot guarantee
9126 // an overflow to zero when updating induction variables and so an
9127 // additional overflow check is required before entering the vector loop.
9128 bool IsIndvarOverflowCheckNeededForVF =
9129 VF.isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
9130 !isIndvarOverflowCheckKnownFalse(&CM, VF, UF) &&
9131 CM.getTailFoldingStyle() !=
9133 const uint32_t *BranchWeigths =
9134 hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator())
9136 : nullptr;
9138 Plan, VF, UF, MinProfitableTripCount,
9139 CM.requiresScalarEpilogue(VF.isVector()), CM.foldTailByMasking(),
9140 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
9141 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(),
9142 *PSE.getSE());
9143}
9144
9146 assert(!State.Lane && "VPDerivedIVRecipe being replicated.");
9147
9148 // Fast-math-flags propagate from the original induction instruction.
9149 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
9150 if (FPBinOp)
9151 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
9152
9153 Value *Step = State.get(getStepValue(), VPLane(0));
9154 Value *Index = State.get(getOperand(1), VPLane(0));
9155 Value *DerivedIV = emitTransformedIndex(
9156 State.Builder, Index, getStartValue()->getLiveInIRValue(), Step, Kind,
9158 DerivedIV->setName(Name);
9159 State.set(this, DerivedIV, VPLane(0));
9160}
9161
9162// Determine how to lower the scalar epilogue, which depends on 1) optimising
9163// for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9164// predication, and 4) a TTI hook that analyses whether the loop is suitable
9165// for predication.
9167 Function *F, Loop *L, LoopVectorizeHints &Hints, bool OptForSize,
9170 // 1) OptSize takes precedence over all other options, i.e. if this is set,
9171 // don't look at hints or options, and don't request a scalar epilogue.
9172 if (F->hasOptSize() ||
9173 (OptForSize && Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9175
9176 // 2) If set, obey the directives
9177 if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9185 };
9186 }
9187
9188 // 3) If set, obey the hints
9189 switch (Hints.getPredicate()) {
9194 };
9195
9196 // 4) if the TTI hook indicates this is profitable, request predication.
9197 TailFoldingInfo TFI(TLI, &LVL, IAI);
9198 if (TTI->preferPredicateOverEpilogue(&TFI))
9200
9202}
9203
9204// Process the loop in the VPlan-native vectorization path. This path builds
9205// VPlan upfront in the vectorization pipeline, which allows to apply
9206// VPlan-to-VPlan transformations from the very beginning without modifying the
9207// input LLVM IR.
9213 std::function<BlockFrequencyInfo &()> GetBFI, bool OptForSize,
9214 LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements) {
9215
9217 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9218 return false;
9219 }
9220 assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9221 Function *F = L->getHeader()->getParent();
9222 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9223
9225 getScalarEpilogueLowering(F, L, Hints, OptForSize, TTI, TLI, *LVL, &IAI);
9226
9227 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE,
9228 GetBFI, F, &Hints, IAI, OptForSize);
9229 // Use the planner for outer loop vectorization.
9230 // TODO: CM is not used at this point inside the planner. Turn CM into an
9231 // optional argument if we don't need it in the future.
9232 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, LVL, CM, IAI, PSE, Hints,
9233 ORE);
9234
9235 // Get user vectorization factor.
9236 ElementCount UserVF = Hints.getWidth();
9237
9239
9240 // Plan how to best vectorize, return the best VF and its cost.
9241 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9242
9243 // If we are stress testing VPlan builds, do not attempt to generate vector
9244 // code. Masked vector code generation support will follow soon.
9245 // Also, do not attempt to vectorize if no vector code will be produced.
9247 return false;
9248
9249 VPlan &BestPlan = LVP.getPlanFor(VF.Width);
9250
9251 {
9252 GeneratedRTChecks Checks(PSE, DT, LI, TTI, F->getDataLayout(), CM.CostKind);
9253 InnerLoopVectorizer LB(L, PSE, LI, DT, TTI, AC, VF.Width, /*UF=*/1, &CM,
9254 Checks, BestPlan);
9255 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9256 << L->getHeader()->getParent()->getName() << "\"\n");
9257 LVP.addMinimumIterationCheck(BestPlan, VF.Width, /*UF=*/1,
9259
9260 LVP.executePlan(VF.Width, /*UF=*/1, BestPlan, LB, DT, false);
9261 }
9262
9263 reportVectorization(ORE, L, VF, 1);
9264
9265 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9266 return true;
9267}
9268
9269// Emit a remark if there are stores to floats that required a floating point
9270// extension. If the vectorized loop was generated with floating point there
9271// will be a performance penalty from the conversion overhead and the change in
9272// the vector width.
9275 for (BasicBlock *BB : L->getBlocks()) {
9276 for (Instruction &Inst : *BB) {
9277 if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9278 if (S->getValueOperand()->getType()->isFloatTy())
9279 Worklist.push_back(S);
9280 }
9281 }
9282 }
9283
9284 // Traverse the floating point stores upwards searching, for floating point
9285 // conversions.
9288 while (!Worklist.empty()) {
9289 auto *I = Worklist.pop_back_val();
9290 if (!L->contains(I))
9291 continue;
9292 if (!Visited.insert(I).second)
9293 continue;
9294
9295 // Emit a remark if the floating point store required a floating
9296 // point conversion.
9297 // TODO: More work could be done to identify the root cause such as a
9298 // constant or a function return type and point the user to it.
9299 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
9300 ORE->emit([&]() {
9301 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
9302 I->getDebugLoc(), L->getHeader())
9303 << "floating point conversion changes vector width. "
9304 << "Mixed floating point precision requires an up/down "
9305 << "cast that will negatively impact performance.";
9306 });
9307
9308 for (Use &Op : I->operands())
9309 if (auto *OpI = dyn_cast<Instruction>(Op))
9310 Worklist.push_back(OpI);
9311 }
9312}
9313
9314/// For loops with uncountable early exits, find the cost of doing work when
9315/// exiting the loop early, such as calculating the final exit values of
9316/// variables used outside the loop.
9317/// TODO: This is currently overly pessimistic because the loop may not take
9318/// the early exit, but better to keep this conservative for now. In future,
9319/// it might be possible to relax this by using branch probabilities.
9321 VPlan &Plan, ElementCount VF) {
9322 InstructionCost Cost = 0;
9323 for (auto *ExitVPBB : Plan.getExitBlocks()) {
9324 for (auto *PredVPBB : ExitVPBB->getPredecessors()) {
9325 // If the predecessor is not the middle.block, then it must be the
9326 // vector.early.exit block, which may contain work to calculate the exit
9327 // values of variables used outside the loop.
9328 if (PredVPBB != Plan.getMiddleBlock()) {
9329 LLVM_DEBUG(dbgs() << "Calculating cost of work in exit block "
9330 << PredVPBB->getName() << ":\n");
9331 Cost += PredVPBB->cost(VF, CostCtx);
9332 }
9333 }
9334 }
9335 return Cost;
9336}
9337
9338/// This function determines whether or not it's still profitable to vectorize
9339/// the loop given the extra work we have to do outside of the loop:
9340/// 1. Perform the runtime checks before entering the loop to ensure it's safe
9341/// to vectorize.
9342/// 2. In the case of loops with uncountable early exits, we may have to do
9343/// extra work when exiting the loop early, such as calculating the final
9344/// exit values of variables used outside the loop.
9345/// 3. The middle block, if expected TC <= VF.Width.
9346static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks,
9347 VectorizationFactor &VF, Loop *L,
9349 VPCostContext &CostCtx, VPlan &Plan,
9351 std::optional<unsigned> VScale) {
9352 InstructionCost TotalCost = Checks.getCost();
9353 if (!TotalCost.isValid())
9354 return false;
9355
9356 // Add on the cost of any work required in the vector early exit block, if
9357 // one exists.
9358 TotalCost += calculateEarlyExitCost(CostCtx, Plan, VF.Width);
9359
9360 // If the expected trip count is less than the VF, the vector loop will only
9361 // execute a single iteration. Then the middle block is executed the same
9362 // number of times as the vector region.
9363 // TODO: Extend logic to always account for the cost of the middle block.
9364 auto ExpectedTC = getSmallBestKnownTC(PSE, L);
9365 if (ExpectedTC && ElementCount::isKnownLE(*ExpectedTC, VF.Width))
9366 TotalCost += Plan.getMiddleBlock()->cost(VF.Width, CostCtx);
9367
9368 // When interleaving only scalar and vector cost will be equal, which in turn
9369 // would lead to a divide by 0. Fall back to hard threshold.
9370 if (VF.Width.isScalar()) {
9371 // TODO: Should we rename VectorizeMemoryCheckThreshold?
9372 if (TotalCost > VectorizeMemoryCheckThreshold) {
9373 LLVM_DEBUG(
9374 dbgs()
9375 << "LV: Interleaving only is not profitable due to runtime checks\n");
9376 return false;
9377 }
9378 return true;
9379 }
9380
9381 // The scalar cost should only be 0 when vectorizing with a user specified
9382 // VF/IC. In those cases, runtime checks should always be generated.
9383 uint64_t ScalarC = VF.ScalarCost.getValue();
9384 if (ScalarC == 0)
9385 return true;
9386
9387 // First, compute the minimum iteration count required so that the vector
9388 // loop outperforms the scalar loop.
9389 // The total cost of the scalar loop is
9390 // ScalarC * TC
9391 // where
9392 // * TC is the actual trip count of the loop.
9393 // * ScalarC is the cost of a single scalar iteration.
9394 //
9395 // The total cost of the vector loop is
9396 // RtC + VecC * (TC / VF) + EpiC
9397 // where
9398 // * RtC is the sum of the costs cost of
9399 // - the generated runtime checks
9400 // - performing any additional work in the vector.early.exit block for
9401 // loops with uncountable early exits.
9402 // - the middle block, if ExpectedTC <= VF.Width.
9403 // * VecC is the cost of a single vector iteration.
9404 // * TC is the actual trip count of the loop
9405 // * VF is the vectorization factor
9406 // * EpiCost is the cost of the generated epilogue, including the cost
9407 // of the remaining scalar operations.
9408 //
9409 // Vectorization is profitable once the total vector cost is less than the
9410 // total scalar cost:
9411 // RtC + VecC * (TC / VF) + EpiC < ScalarC * TC
9412 //
9413 // Now we can compute the minimum required trip count TC as
9414 // VF * (RtC + EpiC) / (ScalarC * VF - VecC) < TC
9415 //
9416 // For now we assume the epilogue cost EpiC = 0 for simplicity. Note that
9417 // the computations are performed on doubles, not integers and the result
9418 // is rounded up, hence we get an upper estimate of the TC.
9419 unsigned IntVF = estimateElementCount(VF.Width, VScale);
9420 uint64_t RtC = TotalCost.getValue();
9421 uint64_t Div = ScalarC * IntVF - VF.Cost.getValue();
9422 uint64_t MinTC1 = Div == 0 ? 0 : divideCeil(RtC * IntVF, Div);
9423
9424 // Second, compute a minimum iteration count so that the cost of the
9425 // runtime checks is only a fraction of the total scalar loop cost. This
9426 // adds a loop-dependent bound on the overhead incurred if the runtime
9427 // checks fail. In case the runtime checks fail, the cost is RtC + ScalarC
9428 // * TC. To bound the runtime check to be a fraction 1/X of the scalar
9429 // cost, compute
9430 // RtC < ScalarC * TC * (1 / X) ==> RtC * X / ScalarC < TC
9431 uint64_t MinTC2 = divideCeil(RtC * 10, ScalarC);
9432
9433 // Now pick the larger minimum. If it is not a multiple of VF and a scalar
9434 // epilogue is allowed, choose the next closest multiple of VF. This should
9435 // partly compensate for ignoring the epilogue cost.
9436 uint64_t MinTC = std::max(MinTC1, MinTC2);
9437 if (SEL == CM_ScalarEpilogueAllowed)
9438 MinTC = alignTo(MinTC, IntVF);
9440
9441 LLVM_DEBUG(
9442 dbgs() << "LV: Minimum required TC for runtime checks to be profitable:"
9443 << VF.MinProfitableTripCount << "\n");
9444
9445 // Skip vectorization if the expected trip count is less than the minimum
9446 // required trip count.
9447 if (auto ExpectedTC = getSmallBestKnownTC(PSE, L)) {
9448 if (ElementCount::isKnownLT(*ExpectedTC, VF.MinProfitableTripCount)) {
9449 LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected "
9450 "trip count < minimum profitable VF ("
9451 << *ExpectedTC << " < " << VF.MinProfitableTripCount
9452 << ")\n");
9453
9454 return false;
9455 }
9456 }
9457 return true;
9458}
9459
9461 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9463 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9465
9466/// Prepare \p MainPlan for vectorizing the main vector loop during epilogue
9467/// vectorization. Remove ResumePhis from \p MainPlan for inductions that
9468/// don't have a corresponding wide induction in \p EpiPlan.
9469static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan) {
9470 // Collect PHI nodes of widened phis in the VPlan for the epilogue. Those
9471 // will need their resume-values computed in the main vector loop. Others
9472 // can be removed from the main VPlan.
9473 SmallPtrSet<PHINode *, 2> EpiWidenedPhis;
9474 for (VPRecipeBase &R :
9477 continue;
9478 EpiWidenedPhis.insert(
9479 cast<PHINode>(R.getVPSingleValue()->getUnderlyingValue()));
9480 }
9481 for (VPRecipeBase &R :
9482 make_early_inc_range(MainPlan.getScalarHeader()->phis())) {
9483 auto *VPIRInst = cast<VPIRPhi>(&R);
9484 if (EpiWidenedPhis.contains(&VPIRInst->getIRPhi()))
9485 continue;
9486 // There is no corresponding wide induction in the epilogue plan that would
9487 // need a resume value. Remove the VPIRInst wrapping the scalar header phi
9488 // together with the corresponding ResumePhi. The resume values for the
9489 // scalar loop will be created during execution of EpiPlan.
9490 VPRecipeBase *ResumePhi = VPIRInst->getOperand(0)->getDefiningRecipe();
9491 VPIRInst->eraseFromParent();
9492 ResumePhi->eraseFromParent();
9493 }
9495
9496 using namespace VPlanPatternMatch;
9497 // When vectorizing the epilogue, FindFirstIV & FindLastIV reductions can
9498 // introduce multiple uses of undef/poison. If the reduction start value may
9499 // be undef or poison it needs to be frozen and the frozen start has to be
9500 // used when computing the reduction result. We also need to use the frozen
9501 // value in the resume phi generated by the main vector loop, as this is also
9502 // used to compute the reduction result after the epilogue vector loop.
9503 auto AddFreezeForFindLastIVReductions = [](VPlan &Plan,
9504 bool UpdateResumePhis) {
9505 VPBuilder Builder(Plan.getEntry());
9506 for (VPRecipeBase &R : *Plan.getMiddleBlock()) {
9507 auto *VPI = dyn_cast<VPInstruction>(&R);
9508 if (!VPI || VPI->getOpcode() != VPInstruction::ComputeFindIVResult)
9509 continue;
9510 VPValue *OrigStart = VPI->getOperand(1);
9512 continue;
9513 VPInstruction *Freeze =
9514 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {}, "fr");
9515 VPI->setOperand(1, Freeze);
9516 if (UpdateResumePhis)
9517 OrigStart->replaceUsesWithIf(Freeze, [Freeze](VPUser &U, unsigned) {
9518 return Freeze != &U && isa<VPPhi>(&U);
9519 });
9520 }
9521 };
9522 AddFreezeForFindLastIVReductions(MainPlan, true);
9523 AddFreezeForFindLastIVReductions(EpiPlan, false);
9524
9525 VPBasicBlock *MainScalarPH = MainPlan.getScalarPreheader();
9526 VPValue *VectorTC = &MainPlan.getVectorTripCount();
9527 // If there is a suitable resume value for the canonical induction in the
9528 // scalar (which will become vector) epilogue loop, use it and move it to the
9529 // beginning of the scalar preheader. Otherwise create it below.
9530 auto ResumePhiIter =
9531 find_if(MainScalarPH->phis(), [VectorTC](VPRecipeBase &R) {
9532 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9533 m_ZeroInt()));
9534 });
9535 VPPhi *ResumePhi = nullptr;
9536 if (ResumePhiIter == MainScalarPH->phis().end()) {
9537 VPBuilder ScalarPHBuilder(MainScalarPH, MainScalarPH->begin());
9538 ResumePhi = ScalarPHBuilder.createScalarPhi(
9539 {VectorTC,
9541 {}, "vec.epilog.resume.val");
9542 } else {
9543 ResumePhi = cast<VPPhi>(&*ResumePhiIter);
9544 if (MainScalarPH->begin() == MainScalarPH->end())
9545 ResumePhi->moveBefore(*MainScalarPH, MainScalarPH->end());
9546 else if (&*MainScalarPH->begin() != ResumePhi)
9547 ResumePhi->moveBefore(*MainScalarPH, MainScalarPH->begin());
9548 }
9549 // Add a user to to make sure the resume phi won't get removed.
9550 VPBuilder(MainScalarPH)
9552}
9553
9554/// Prepare \p Plan for vectorizing the epilogue loop. That is, re-use expanded
9555/// SCEVs from \p ExpandedSCEVs and set resume values for header recipes. Some
9556/// reductions require creating new instructions to compute the resume values.
9557/// They are collected in a vector and returned. They must be moved to the
9558/// preheader of the vector epilogue loop, after created by the execution of \p
9559/// Plan.
9561 VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs,
9563 ScalarEvolution &SE) {
9564 VPRegionBlock *VectorLoop = Plan.getVectorLoopRegion();
9565 VPBasicBlock *Header = VectorLoop->getEntryBasicBlock();
9566 Header->setName("vec.epilog.vector.body");
9567
9568 VPCanonicalIVPHIRecipe *IV = VectorLoop->getCanonicalIV();
9569 // When vectorizing the epilogue loop, the canonical induction needs to be
9570 // adjusted by the value after the main vector loop. Find the resume value
9571 // created during execution of the main VPlan. It must be the first phi in the
9572 // loop preheader. Use the value to increment the canonical IV, and update all
9573 // users in the loop region to use the adjusted value.
9574 // FIXME: Improve modeling for canonical IV start values in the epilogue
9575 // loop.
9576 using namespace llvm::PatternMatch;
9577 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9578 for (Value *Inc : EPResumeVal->incoming_values()) {
9579 if (match(Inc, m_SpecificInt(0)))
9580 continue;
9581 assert(!EPI.VectorTripCount &&
9582 "Must only have a single non-zero incoming value");
9583 EPI.VectorTripCount = Inc;
9584 }
9585 // If we didn't find a non-zero vector trip count, all incoming values
9586 // must be zero, which also means the vector trip count is zero. Pick the
9587 // first zero as vector trip count.
9588 // TODO: We should not choose VF * UF so the main vector loop is known to
9589 // be dead.
9590 if (!EPI.VectorTripCount) {
9591 assert(EPResumeVal->getNumIncomingValues() > 0 &&
9592 all_of(EPResumeVal->incoming_values(),
9593 [](Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9594 "all incoming values must be 0");
9595 EPI.VectorTripCount = EPResumeVal->getOperand(0);
9596 }
9597 VPValue *VPV = Plan.getOrAddLiveIn(EPResumeVal);
9598 assert(all_of(IV->users(),
9599 [](const VPUser *U) {
9600 return isa<VPScalarIVStepsRecipe>(U) ||
9601 isa<VPDerivedIVRecipe>(U) ||
9602 cast<VPRecipeBase>(U)->isScalarCast() ||
9603 cast<VPInstruction>(U)->getOpcode() ==
9604 Instruction::Add;
9605 }) &&
9606 "the canonical IV should only be used by its increment or "
9607 "ScalarIVSteps when resetting the start value");
9608 VPBuilder Builder(Header, Header->getFirstNonPhi());
9609 VPInstruction *Add = Builder.createNaryOp(Instruction::Add, {IV, VPV});
9610 IV->replaceAllUsesWith(Add);
9611 Add->setOperand(0, IV);
9612
9614 SmallVector<Instruction *> InstsToMove;
9615 // Ensure that the start values for all header phi recipes are updated before
9616 // vectorizing the epilogue loop. Skip the canonical IV, which has been
9617 // handled above.
9618 for (VPRecipeBase &R : drop_begin(Header->phis())) {
9619 Value *ResumeV = nullptr;
9620 // TODO: Move setting of resume values to prepareToExecute.
9621 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
9622 auto *RdxResult =
9623 cast<VPInstruction>(*find_if(ReductionPhi->users(), [](VPUser *U) {
9624 auto *VPI = dyn_cast<VPInstruction>(U);
9625 return VPI &&
9626 (VPI->getOpcode() == VPInstruction::ComputeAnyOfResult ||
9627 VPI->getOpcode() == VPInstruction::ComputeReductionResult ||
9628 VPI->getOpcode() == VPInstruction::ComputeFindIVResult);
9629 }));
9630 ResumeV = cast<PHINode>(ReductionPhi->getUnderlyingInstr())
9631 ->getIncomingValueForBlock(L->getLoopPreheader());
9632 RecurKind RK = ReductionPhi->getRecurrenceKind();
9634 Value *StartV = RdxResult->getOperand(1)->getLiveInIRValue();
9635 // VPReductionPHIRecipes for AnyOf reductions expect a boolean as
9636 // start value; compare the final value from the main vector loop
9637 // to the start value.
9638 BasicBlock *PBB = cast<Instruction>(ResumeV)->getParent();
9639 IRBuilder<> Builder(PBB, PBB->getFirstNonPHIIt());
9640 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9641 if (auto *I = dyn_cast<Instruction>(ResumeV))
9642 InstsToMove.push_back(I);
9644 Value *StartV = getStartValueFromReductionResult(RdxResult);
9645 ToFrozen[StartV] = cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9647
9648 // VPReductionPHIRecipe for FindFirstIV/FindLastIV reductions requires
9649 // an adjustment to the resume value. The resume value is adjusted to
9650 // the sentinel value when the final value from the main vector loop
9651 // equals the start value. This ensures correctness when the start value
9652 // might not be less than the minimum value of a monotonically
9653 // increasing induction variable.
9654 BasicBlock *ResumeBB = cast<Instruction>(ResumeV)->getParent();
9655 IRBuilder<> Builder(ResumeBB, ResumeBB->getFirstNonPHIIt());
9656 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9657 if (auto *I = dyn_cast<Instruction>(Cmp))
9658 InstsToMove.push_back(I);
9659 Value *Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9660 ResumeV = Builder.CreateSelect(Cmp, Sentinel, ResumeV);
9661 if (auto *I = dyn_cast<Instruction>(ResumeV))
9662 InstsToMove.push_back(I);
9663 } else {
9664 VPValue *StartVal = Plan.getOrAddLiveIn(ResumeV);
9665 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9666 if (auto *VPI = dyn_cast<VPInstruction>(PhiR->getStartValue())) {
9668 "unexpected start value");
9669 VPI->setOperand(0, StartVal);
9670 continue;
9671 }
9672 }
9673 } else {
9674 // Retrieve the induction resume values for wide inductions from
9675 // their original phi nodes in the scalar loop.
9676 PHINode *IndPhi = cast<VPWidenInductionRecipe>(&R)->getPHINode();
9677 // Hook up to the PHINode generated by a ResumePhi recipe of main
9678 // loop VPlan, which feeds the scalar loop.
9679 ResumeV = IndPhi->getIncomingValueForBlock(L->getLoopPreheader());
9680 }
9681 assert(ResumeV && "Must have a resume value");
9682 VPValue *StartVal = Plan.getOrAddLiveIn(ResumeV);
9683 cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal);
9684 }
9685
9686 // For some VPValues in the epilogue plan we must re-use the generated IR
9687 // values from the main plan. Replace them with live-in VPValues.
9688 // TODO: This is a workaround needed for epilogue vectorization and it
9689 // should be removed once induction resume value creation is done
9690 // directly in VPlan.
9691 for (auto &R : make_early_inc_range(*Plan.getEntry())) {
9692 // Re-use frozen values from the main plan for Freeze VPInstructions in the
9693 // epilogue plan. This ensures all users use the same frozen value.
9694 auto *VPI = dyn_cast<VPInstruction>(&R);
9695 if (VPI && VPI->getOpcode() == Instruction::Freeze) {
9697 ToFrozen.lookup(VPI->getOperand(0)->getLiveInIRValue())));
9698 continue;
9699 }
9700
9701 // Re-use the trip count and steps expanded for the main loop, as
9702 // skeleton creation needs it as a value that dominates both the scalar
9703 // and vector epilogue loops
9704 auto *ExpandR = dyn_cast<VPExpandSCEVRecipe>(&R);
9705 if (!ExpandR)
9706 continue;
9707 VPValue *ExpandedVal =
9708 Plan.getOrAddLiveIn(ExpandedSCEVs.lookup(ExpandR->getSCEV()));
9709 ExpandR->replaceAllUsesWith(ExpandedVal);
9710 if (Plan.getTripCount() == ExpandR)
9711 Plan.resetTripCount(ExpandedVal);
9712 ExpandR->eraseFromParent();
9713 }
9714
9715 auto VScale = CM.getVScaleForTuning();
9716 unsigned MainLoopStep =
9717 estimateElementCount(EPI.MainLoopVF * EPI.MainLoopUF, VScale);
9718 unsigned EpilogueLoopStep =
9719 estimateElementCount(EPI.EpilogueVF * EPI.EpilogueUF, VScale);
9721 Plan, EPI.TripCount, EPI.VectorTripCount,
9723 EPI.EpilogueUF, MainLoopStep, EpilogueLoopStep, SE);
9724
9725 return InstsToMove;
9726}
9727
9728// Generate bypass values from the additional bypass block. Note that when the
9729// vectorized epilogue is skipped due to iteration count check, then the
9730// resume value for the induction variable comes from the trip count of the
9731// main vector loop, passed as the second argument.
9733 PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder,
9734 const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount,
9735 Instruction *OldInduction) {
9736 Value *Step = getExpandedStep(II, ExpandedSCEVs);
9737 // For the primary induction the additional bypass end value is known.
9738 // Otherwise it is computed.
9739 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9740 if (OrigPhi != OldInduction) {
9741 auto *BinOp = II.getInductionBinOp();
9742 // Fast-math-flags propagate from the original induction instruction.
9744 BypassBuilder.setFastMathFlags(BinOp->getFastMathFlags());
9745
9746 // Compute the end value for the additional bypass.
9747 EndValueFromAdditionalBypass =
9748 emitTransformedIndex(BypassBuilder, MainVectorTripCount,
9749 II.getStartValue(), Step, II.getKind(), BinOp);
9750 EndValueFromAdditionalBypass->setName("ind.end");
9751 }
9752 return EndValueFromAdditionalBypass;
9753}
9754
9756 VPlan &BestEpiPlan,
9758 const SCEV2ValueTy &ExpandedSCEVs,
9759 Value *MainVectorTripCount) {
9760 // Fix reduction resume values from the additional bypass block.
9761 BasicBlock *PH = L->getLoopPreheader();
9762 for (auto *Pred : predecessors(PH)) {
9763 for (PHINode &Phi : PH->phis()) {
9764 if (Phi.getBasicBlockIndex(Pred) != -1)
9765 continue;
9766 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9767 }
9768 }
9769 auto *ScalarPH = cast<VPIRBasicBlock>(BestEpiPlan.getScalarPreheader());
9770 if (ScalarPH->hasPredecessors()) {
9771 // If ScalarPH has predecessors, we may need to update its reduction
9772 // resume values.
9773 for (const auto &[R, IRPhi] :
9774 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9776 BypassBlock);
9777 }
9778 }
9779
9780 // Fix induction resume values from the additional bypass block.
9781 IRBuilder<> BypassBuilder(BypassBlock, BypassBlock->getFirstInsertionPt());
9782 for (const auto &[IVPhi, II] : LVL.getInductionVars()) {
9783 auto *Inc = cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9785 IVPhi, II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9786 LVL.getPrimaryInduction());
9787 // TODO: Directly add as extra operand to the VPResumePHI recipe.
9788 Inc->setIncomingValueForBlock(BypassBlock, V);
9789 }
9790}
9791
9792/// Connect the epilogue vector loop generated for \p EpiPlan to the main vector
9793// loop, after both plans have executed, updating branches from the iteration
9794// and runtime checks of the main loop, as well as updating various phis. \p
9795// InstsToMove contains instructions that need to be moved to the preheader of
9796// the epilogue vector loop.
9798 VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI,
9800 DenseMap<const SCEV *, Value *> &ExpandedSCEVs, GeneratedRTChecks &Checks,
9801 ArrayRef<Instruction *> InstsToMove) {
9802 BasicBlock *VecEpilogueIterationCountCheck =
9803 cast<VPIRBasicBlock>(EpiPlan.getEntry())->getIRBasicBlock();
9804
9805 BasicBlock *VecEpiloguePreHeader =
9806 cast<BranchInst>(VecEpilogueIterationCountCheck->getTerminator())
9807 ->getSuccessor(1);
9808 // Adjust the control flow taking the state info from the main loop
9809 // vectorization into account.
9811 "expected this to be saved from the previous pass.");
9812 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
9814 VecEpilogueIterationCountCheck, VecEpiloguePreHeader);
9815
9817 VecEpilogueIterationCountCheck},
9819 VecEpiloguePreHeader}});
9820
9821 BasicBlock *ScalarPH =
9822 cast<VPIRBasicBlock>(EpiPlan.getScalarPreheader())->getIRBasicBlock();
9824 VecEpilogueIterationCountCheck, ScalarPH);
9825 DTU.applyUpdates(
9827 VecEpilogueIterationCountCheck},
9829
9830 // Adjust the terminators of runtime check blocks and phis using them.
9831 BasicBlock *SCEVCheckBlock = Checks.getSCEVChecks().second;
9832 BasicBlock *MemCheckBlock = Checks.getMemRuntimeChecks().second;
9833 if (SCEVCheckBlock) {
9834 SCEVCheckBlock->getTerminator()->replaceUsesOfWith(
9835 VecEpilogueIterationCountCheck, ScalarPH);
9836 DTU.applyUpdates({{DominatorTree::Delete, SCEVCheckBlock,
9837 VecEpilogueIterationCountCheck},
9838 {DominatorTree::Insert, SCEVCheckBlock, ScalarPH}});
9839 }
9840 if (MemCheckBlock) {
9841 MemCheckBlock->getTerminator()->replaceUsesOfWith(
9842 VecEpilogueIterationCountCheck, ScalarPH);
9843 DTU.applyUpdates(
9844 {{DominatorTree::Delete, MemCheckBlock, VecEpilogueIterationCountCheck},
9845 {DominatorTree::Insert, MemCheckBlock, ScalarPH}});
9846 }
9847
9848 // The vec.epilog.iter.check block may contain Phi nodes from inductions
9849 // or reductions which merge control-flow from the latch block and the
9850 // middle block. Update the incoming values here and move the Phi into the
9851 // preheader.
9852 SmallVector<PHINode *, 4> PhisInBlock(
9853 llvm::make_pointer_range(VecEpilogueIterationCountCheck->phis()));
9854
9855 for (PHINode *Phi : PhisInBlock) {
9856 Phi->moveBefore(VecEpiloguePreHeader->getFirstNonPHIIt());
9857 Phi->replaceIncomingBlockWith(
9858 VecEpilogueIterationCountCheck->getSinglePredecessor(),
9859 VecEpilogueIterationCountCheck);
9860
9861 // If the phi doesn't have an incoming value from the
9862 // EpilogueIterationCountCheck, we are done. Otherwise remove the
9863 // incoming value and also those from other check blocks. This is needed
9864 // for reduction phis only.
9865 if (none_of(Phi->blocks(), [&](BasicBlock *IncB) {
9866 return EPI.EpilogueIterationCountCheck == IncB;
9867 }))
9868 continue;
9869 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
9870 if (SCEVCheckBlock)
9871 Phi->removeIncomingValue(SCEVCheckBlock);
9872 if (MemCheckBlock)
9873 Phi->removeIncomingValue(MemCheckBlock);
9874 }
9875
9876 auto IP = VecEpiloguePreHeader->getFirstNonPHIIt();
9877 for (auto *I : InstsToMove)
9878 I->moveBefore(IP);
9879
9880 // VecEpilogueIterationCountCheck conditionally skips over the epilogue loop
9881 // after executing the main loop. We need to update the resume values of
9882 // inductions and reductions during epilogue vectorization.
9883 fixScalarResumeValuesFromBypass(VecEpilogueIterationCountCheck, L, EpiPlan,
9884 LVL, ExpandedSCEVs, EPI.VectorTripCount);
9885}
9886
9888 assert((EnableVPlanNativePath || L->isInnermost()) &&
9889 "VPlan-native path is not enabled. Only process inner loops.");
9890
9891 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
9892 << L->getHeader()->getParent()->getName() << "' from "
9893 << L->getLocStr() << "\n");
9894
9895 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
9896
9897 LLVM_DEBUG(
9898 dbgs() << "LV: Loop hints:"
9899 << " force="
9901 ? "disabled"
9903 ? "enabled"
9904 : "?"))
9905 << " width=" << Hints.getWidth()
9906 << " interleave=" << Hints.getInterleave() << "\n");
9907
9908 // Function containing loop
9909 Function *F = L->getHeader()->getParent();
9910
9911 // Looking at the diagnostic output is the only way to determine if a loop
9912 // was vectorized (other than looking at the IR or machine code), so it
9913 // is important to generate an optimization remark for each loop. Most of
9914 // these messages are generated as OptimizationRemarkAnalysis. Remarks
9915 // generated as OptimizationRemark and OptimizationRemarkMissed are
9916 // less verbose reporting vectorized loops and unvectorized loops that may
9917 // benefit from vectorization, respectively.
9918
9919 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
9920 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
9921 return false;
9922 }
9923
9924 PredicatedScalarEvolution PSE(*SE, *L);
9925
9926 // Query this against the original loop and save it here because the profile
9927 // of the original loop header may change as the transformation happens.
9928 bool OptForSize = llvm::shouldOptimizeForSize(
9929 L->getHeader(), PSI,
9930 PSI && PSI->hasProfileSummary() ? &GetBFI() : nullptr,
9932
9933 // Check if it is legal to vectorize the loop.
9934 LoopVectorizationRequirements Requirements;
9935 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, F, *LAIs, LI, ORE,
9936 &Requirements, &Hints, DB, AC,
9937 /*AllowRuntimeSCEVChecks=*/!OptForSize, AA);
9939 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
9940 Hints.emitRemarkWithHints();
9941 return false;
9942 }
9943
9945 reportVectorizationFailure("Auto-vectorization of loops with uncountable "
9946 "early exit is not enabled",
9947 "UncountableEarlyExitLoopsDisabled", ORE, L);
9948 return false;
9949 }
9950
9951 if (!LVL.getPotentiallyFaultingLoads().empty()) {
9952 reportVectorizationFailure("Auto-vectorization of loops with potentially "
9953 "faulting load is not supported",
9954 "PotentiallyFaultingLoadsNotSupported", ORE, L);
9955 return false;
9956 }
9957
9958 // Entrance to the VPlan-native vectorization path. Outer loops are processed
9959 // here. They may require CFG and instruction level transformations before
9960 // even evaluating whether vectorization is profitable. Since we cannot modify
9961 // the incoming IR, we need to build VPlan upfront in the vectorization
9962 // pipeline.
9963 if (!L->isInnermost())
9964 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
9965 ORE, GetBFI, OptForSize, Hints,
9966 Requirements);
9967
9968 assert(L->isInnermost() && "Inner loop expected.");
9969
9970 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
9971 bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
9972
9973 // If an override option has been passed in for interleaved accesses, use it.
9974 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
9975 UseInterleaved = EnableInterleavedMemAccesses;
9976
9977 // Analyze interleaved memory accesses.
9978 if (UseInterleaved)
9980
9981 if (LVL.hasUncountableEarlyExit()) {
9982 BasicBlock *LoopLatch = L->getLoopLatch();
9983 if (IAI.requiresScalarEpilogue() ||
9985 [LoopLatch](BasicBlock *BB) { return BB != LoopLatch; })) {
9986 reportVectorizationFailure("Auto-vectorization of early exit loops "
9987 "requiring a scalar epilogue is unsupported",
9988 "UncountableEarlyExitUnsupported", ORE, L);
9989 return false;
9990 }
9991 }
9992
9993 // Check the function attributes and profiles to find out if this function
9994 // should be optimized for size.
9996 getScalarEpilogueLowering(F, L, Hints, OptForSize, TTI, TLI, LVL, &IAI);
9997
9998 // Check the loop for a trip count threshold: vectorize loops with a tiny trip
9999 // count by optimizing for size, to minimize overheads.
10000 auto ExpectedTC = getSmallBestKnownTC(PSE, L);
10001 if (ExpectedTC && ExpectedTC->isFixed() &&
10002 ExpectedTC->getFixedValue() < TinyTripCountVectorThreshold) {
10003 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10004 << "This loop is worth vectorizing only if no scalar "
10005 << "iteration overheads are incurred.");
10007 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10008 else {
10009 LLVM_DEBUG(dbgs() << "\n");
10010 // Predicate tail-folded loops are efficient even when the loop
10011 // iteration count is low. However, setting the epilogue policy to
10012 // `CM_ScalarEpilogueNotAllowedLowTripLoop` prevents vectorizing loops
10013 // with runtime checks. It's more effective to let
10014 // `isOutsideLoopWorkProfitable` determine if vectorization is
10015 // beneficial for the loop.
10018 }
10019 }
10020
10021 // Check the function attributes to see if implicit floats or vectors are
10022 // allowed.
10023 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10025 "Can't vectorize when the NoImplicitFloat attribute is used",
10026 "loop not vectorized due to NoImplicitFloat attribute",
10027 "NoImplicitFloat", ORE, L);
10028 Hints.emitRemarkWithHints();
10029 return false;
10030 }
10031
10032 // Check if the target supports potentially unsafe FP vectorization.
10033 // FIXME: Add a check for the type of safety issue (denormal, signaling)
10034 // for the target we're vectorizing for, to make sure none of the
10035 // additional fp-math flags can help.
10036 if (Hints.isPotentiallyUnsafe() &&
10037 TTI->isFPVectorizationPotentiallyUnsafe()) {
10039 "Potentially unsafe FP op prevents vectorization",
10040 "loop not vectorized due to unsafe FP support.",
10041 "UnsafeFP", ORE, L);
10042 Hints.emitRemarkWithHints();
10043 return false;
10044 }
10045
10046 bool AllowOrderedReductions;
10047 // If the flag is set, use that instead and override the TTI behaviour.
10048 if (ForceOrderedReductions.getNumOccurrences() > 0)
10049 AllowOrderedReductions = ForceOrderedReductions;
10050 else
10051 AllowOrderedReductions = TTI->enableOrderedReductions();
10052 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10053 ORE->emit([&]() {
10054 auto *ExactFPMathInst = Requirements.getExactFPInst();
10055 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10056 ExactFPMathInst->getDebugLoc(),
10057 ExactFPMathInst->getParent())
10058 << "loop not vectorized: cannot prove it is safe to reorder "
10059 "floating-point operations";
10060 });
10061 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10062 "reorder floating-point operations\n");
10063 Hints.emitRemarkWithHints();
10064 return false;
10065 }
10066
10067 // Use the cost model.
10068 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10069 GetBFI, F, &Hints, IAI, OptForSize);
10070 // Use the planner for vectorization.
10071 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, &LVL, CM, IAI, PSE, Hints,
10072 ORE);
10073
10074 // Get user vectorization factor and interleave count.
10075 ElementCount UserVF = Hints.getWidth();
10076 unsigned UserIC = Hints.getInterleave();
10077 if (UserIC > 1 && !LVL.isSafeForAnyVectorWidth())
10078 UserIC = 1;
10079
10080 // Plan how to best vectorize.
10081 LVP.plan(UserVF, UserIC);
10083 unsigned IC = 1;
10084
10085 if (ORE->allowExtraAnalysis(LV_NAME))
10087
10088 GeneratedRTChecks Checks(PSE, DT, LI, TTI, F->getDataLayout(), CM.CostKind);
10089 if (LVP.hasPlanWithVF(VF.Width)) {
10090 // Select the interleave count.
10091 IC = LVP.selectInterleaveCount(LVP.getPlanFor(VF.Width), VF.Width, VF.Cost);
10092
10093 unsigned SelectedIC = std::max(IC, UserIC);
10094 // Optimistically generate runtime checks if they are needed. Drop them if
10095 // they turn out to not be profitable.
10096 if (VF.Width.isVector() || SelectedIC > 1) {
10097 Checks.create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC);
10098
10099 // Bail out early if either the SCEV or memory runtime checks are known to
10100 // fail. In that case, the vector loop would never execute.
10101 using namespace llvm::PatternMatch;
10102 if (Checks.getSCEVChecks().first &&
10103 match(Checks.getSCEVChecks().first, m_One()))
10104 return false;
10105 if (Checks.getMemRuntimeChecks().first &&
10106 match(Checks.getMemRuntimeChecks().first, m_One()))
10107 return false;
10108 }
10109
10110 // Check if it is profitable to vectorize with runtime checks.
10111 bool ForceVectorization =
10113 VPCostContext CostCtx(CM.TTI, *CM.TLI, LVP.getPlanFor(VF.Width), CM,
10114 CM.CostKind, *CM.PSE.getSE(), L);
10115 if (!ForceVectorization &&
10116 !isOutsideLoopWorkProfitable(Checks, VF, L, PSE, CostCtx,
10117 LVP.getPlanFor(VF.Width), SEL,
10118 CM.getVScaleForTuning())) {
10119 ORE->emit([&]() {
10121 DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(),
10122 L->getHeader())
10123 << "loop not vectorized: cannot prove it is safe to reorder "
10124 "memory operations";
10125 });
10126 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
10127 Hints.emitRemarkWithHints();
10128 return false;
10129 }
10130 }
10131
10132 // Identify the diagnostic messages that should be produced.
10133 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10134 bool VectorizeLoop = true, InterleaveLoop = true;
10135 if (VF.Width.isScalar()) {
10136 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10137 VecDiagMsg = {
10138 "VectorizationNotBeneficial",
10139 "the cost-model indicates that vectorization is not beneficial"};
10140 VectorizeLoop = false;
10141 }
10142
10143 if (UserIC == 1 && Hints.getInterleave() > 1) {
10145 "UserIC should only be ignored due to unsafe dependencies");
10146 LLVM_DEBUG(dbgs() << "LV: Ignoring user-specified interleave count.\n");
10147 IntDiagMsg = {"InterleavingUnsafe",
10148 "Ignoring user-specified interleave count due to possibly "
10149 "unsafe dependencies in the loop."};
10150 InterleaveLoop = false;
10151 } else if (!LVP.hasPlanWithVF(VF.Width) && UserIC > 1) {
10152 // Tell the user interleaving was avoided up-front, despite being explicitly
10153 // requested.
10154 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10155 "interleaving should be avoided up front\n");
10156 IntDiagMsg = {"InterleavingAvoided",
10157 "Ignoring UserIC, because interleaving was avoided up front"};
10158 InterleaveLoop = false;
10159 } else if (IC == 1 && UserIC <= 1) {
10160 // Tell the user interleaving is not beneficial.
10161 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10162 IntDiagMsg = {
10163 "InterleavingNotBeneficial",
10164 "the cost-model indicates that interleaving is not beneficial"};
10165 InterleaveLoop = false;
10166 if (UserIC == 1) {
10167 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10168 IntDiagMsg.second +=
10169 " and is explicitly disabled or interleave count is set to 1";
10170 }
10171 } else if (IC > 1 && UserIC == 1) {
10172 // Tell the user interleaving is beneficial, but it explicitly disabled.
10173 LLVM_DEBUG(dbgs() << "LV: Interleaving is beneficial but is explicitly "
10174 "disabled.\n");
10175 IntDiagMsg = {"InterleavingBeneficialButDisabled",
10176 "the cost-model indicates that interleaving is beneficial "
10177 "but is explicitly disabled or interleave count is set to 1"};
10178 InterleaveLoop = false;
10179 }
10180
10181 // If there is a histogram in the loop, do not just interleave without
10182 // vectorizing. The order of operations will be incorrect without the
10183 // histogram intrinsics, which are only used for recipes with VF > 1.
10184 if (!VectorizeLoop && InterleaveLoop && LVL.hasHistograms()) {
10185 LLVM_DEBUG(dbgs() << "LV: Not interleaving without vectorization due "
10186 << "to histogram operations.\n");
10187 IntDiagMsg = {
10188 "HistogramPreventsScalarInterleaving",
10189 "Unable to interleave without vectorization due to constraints on "
10190 "the order of histogram operations"};
10191 InterleaveLoop = false;
10192 }
10193
10194 // Override IC if user provided an interleave count.
10195 IC = UserIC > 0 ? UserIC : IC;
10196
10197 // Emit diagnostic messages, if any.
10198 const char *VAPassName = Hints.vectorizeAnalysisPassName();
10199 if (!VectorizeLoop && !InterleaveLoop) {
10200 // Do not vectorize or interleaving the loop.
10201 ORE->emit([&]() {
10202 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10203 L->getStartLoc(), L->getHeader())
10204 << VecDiagMsg.second;
10205 });
10206 ORE->emit([&]() {
10207 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10208 L->getStartLoc(), L->getHeader())
10209 << IntDiagMsg.second;
10210 });
10211 return false;
10212 }
10213
10214 if (!VectorizeLoop && InterleaveLoop) {
10215 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10216 ORE->emit([&]() {
10217 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10218 L->getStartLoc(), L->getHeader())
10219 << VecDiagMsg.second;
10220 });
10221 } else if (VectorizeLoop && !InterleaveLoop) {
10222 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10223 << ") in " << L->getLocStr() << '\n');
10224 ORE->emit([&]() {
10225 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10226 L->getStartLoc(), L->getHeader())
10227 << IntDiagMsg.second;
10228 });
10229 } else if (VectorizeLoop && InterleaveLoop) {
10230 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10231 << ") in " << L->getLocStr() << '\n');
10232 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10233 }
10234
10235 // Report the vectorization decision.
10236 if (VF.Width.isScalar()) {
10237 using namespace ore;
10238 assert(IC > 1);
10239 ORE->emit([&]() {
10240 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10241 L->getHeader())
10242 << "interleaved loop (interleaved count: "
10243 << NV("InterleaveCount", IC) << ")";
10244 });
10245 } else {
10246 // Report the vectorization decision.
10247 reportVectorization(ORE, L, VF, IC);
10248 }
10249 if (ORE->allowExtraAnalysis(LV_NAME))
10251
10252 // If we decided that it is *legal* to interleave or vectorize the loop, then
10253 // do it.
10254
10255 VPlan &BestPlan = LVP.getPlanFor(VF.Width);
10256 // Consider vectorizing the epilogue too if it's profitable.
10257 VectorizationFactor EpilogueVF =
10259 if (EpilogueVF.Width.isVector()) {
10260 std::unique_ptr<VPlan> BestMainPlan(BestPlan.duplicate());
10261
10262 // The first pass vectorizes the main loop and creates a scalar epilogue
10263 // to be vectorized by executing the plan (potentially with a different
10264 // factor) again shortly afterwards.
10265 VPlan &BestEpiPlan = LVP.getPlanFor(EpilogueVF.Width);
10266 BestEpiPlan.getMiddleBlock()->setName("vec.epilog.middle.block");
10267 BestEpiPlan.getVectorPreheader()->setName("vec.epilog.ph");
10268 preparePlanForMainVectorLoop(*BestMainPlan, BestEpiPlan);
10269 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1,
10270 BestEpiPlan);
10271 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TTI, AC, EPI, &CM,
10272 Checks, *BestMainPlan);
10273 auto ExpandedSCEVs = LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF,
10274 *BestMainPlan, MainILV, DT, false);
10275 ++LoopsVectorized;
10276
10277 // Second pass vectorizes the epilogue and adjusts the control flow
10278 // edges from the first pass.
10279 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TTI, AC, EPI, &CM,
10280 Checks, BestEpiPlan);
10282 BestEpiPlan, L, ExpandedSCEVs, EPI, CM, *PSE.getSE());
10283 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, DT,
10284 true);
10285 connectEpilogueVectorLoop(BestEpiPlan, L, EPI, DT, LVL, ExpandedSCEVs,
10286 Checks, InstsToMove);
10287 ++LoopsEpilogueVectorized;
10288 } else {
10289 InnerLoopVectorizer LB(L, PSE, LI, DT, TTI, AC, VF.Width, IC, &CM, Checks,
10290 BestPlan);
10291 // TODO: Move to general VPlan pipeline once epilogue loops are also
10292 // supported.
10295 IC, PSE);
10296 LVP.addMinimumIterationCheck(BestPlan, VF.Width, IC,
10298
10299 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false);
10300 ++LoopsVectorized;
10301 }
10302
10303 assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
10304 "DT not preserved correctly");
10305 assert(!verifyFunction(*F, &dbgs()));
10306
10307 return true;
10308}
10309
10311
10312 // Don't attempt if
10313 // 1. the target claims to have no vector registers, and
10314 // 2. interleaving won't help ILP.
10315 //
10316 // The second condition is necessary because, even if the target has no
10317 // vector registers, loop vectorization may still enable scalar
10318 // interleaving.
10319 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10320 TTI->getMaxInterleaveFactor(ElementCount::getFixed(1)) < 2)
10321 return LoopVectorizeResult(false, false);
10322
10323 bool Changed = false, CFGChanged = false;
10324
10325 // The vectorizer requires loops to be in simplified form.
10326 // Since simplification may add new inner loops, it has to run before the
10327 // legality and profitability checks. This means running the loop vectorizer
10328 // will simplify all loops, regardless of whether anything end up being
10329 // vectorized.
10330 for (const auto &L : *LI)
10331 Changed |= CFGChanged |=
10332 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10333
10334 // Build up a worklist of inner-loops to vectorize. This is necessary as
10335 // the act of vectorizing or partially unrolling a loop creates new loops
10336 // and can invalidate iterators across the loops.
10337 SmallVector<Loop *, 8> Worklist;
10338
10339 for (Loop *L : *LI)
10340 collectSupportedLoops(*L, LI, ORE, Worklist);
10341
10342 LoopsAnalyzed += Worklist.size();
10343
10344 // Now walk the identified inner loops.
10345 while (!Worklist.empty()) {
10346 Loop *L = Worklist.pop_back_val();
10347
10348 // For the inner loops we actually process, form LCSSA to simplify the
10349 // transform.
10350 Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10351
10352 Changed |= CFGChanged |= processLoop(L);
10353
10354 if (Changed) {
10355 LAIs->clear();
10356
10357#ifndef NDEBUG
10358 if (VerifySCEV)
10359 SE->verify();
10360#endif
10361 }
10362 }
10363
10364 // Process each loop nest in the function.
10365 return LoopVectorizeResult(Changed, CFGChanged);
10366}
10367
10370 LI = &AM.getResult<LoopAnalysis>(F);
10371 // There are no loops in the function. Return before computing other
10372 // expensive analyses.
10373 if (LI->empty())
10374 return PreservedAnalyses::all();
10383 AA = &AM.getResult<AAManager>(F);
10384
10385 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10386 PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10387 GetBFI = [&AM, &F]() -> BlockFrequencyInfo & {
10389 };
10390 LoopVectorizeResult Result = runImpl(F);
10391 if (!Result.MadeAnyChange)
10392 return PreservedAnalyses::all();
10394
10395 if (isAssignmentTrackingEnabled(*F.getParent())) {
10396 for (auto &BB : F)
10398 }
10399
10400 PA.preserve<LoopAnalysis>();
10404
10405 if (Result.MadeCFGChange) {
10406 // Making CFG changes likely means a loop got vectorized. Indicate that
10407 // extra simplification passes should be run.
10408 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10409 // be run if runtime checks have been added.
10412 } else {
10414 }
10415 return PA;
10416}
10417
10419 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10420 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10421 OS, MapClassName2PassName);
10422
10423 OS << '<';
10424 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10425 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10426 OS << '>';
10427}
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
static unsigned getIntrinsicID(const SDNode *N)
unsigned RegSize
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
aarch64 promote const
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
Rewrite undef for PHI
This file implements a class to represent arbitrary precision integral constant values and operations...
@ PostInc
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
Definition CostModel.cpp:74
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
#define DEBUG_TYPE
This is the interface for a simple mod/ref and alias analysis over globals.
Hexagon Common GEP
#define _
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
Definition Legalizer.cpp:80
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static cl::opt< bool > WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), cl::desc("Widen the loop induction variables, if possible, so " "overflow checks won't reject flattening"))
static const char * VerboseDebug
#define LV_NAME
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static void legacyCSE(BasicBlock *BB)
FIXME: This legacy common-subexpression-elimination routine is scheduled for removal,...
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB, VPlan *Plan=nullptr)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static VPWidenIntOrFpInductionRecipe * createWidenInductionRecipes(VPInstruction *PhiR, const InductionDescriptor &IndDesc, VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop)
Creates a VPWidenIntOrFpInductionRecipe for PhiR.
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, bool OptForSize, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static void connectEpilogueVectorLoop(VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI, DominatorTree *DT, LoopVectorizationLegality &LVL, DenseMap< const SCEV *, Value * > &ExpandedSCEVs, GeneratedRTChecks &Checks, ArrayRef< Instruction * > InstsToMove)
Connect the epilogue vector loop generated for EpiPlan to the main vector.
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, bool OptForSize, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static SmallVector< Instruction * > preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel &CM, ScalarEvolution &SE)
Prepare Plan for vectorizing the epilogue loop.
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
This file implements a map that provides insertion order iteration.
This file contains the declarations for metadata subclasses.
#define T
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
#define P(N)
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static InstructionCost getScalarizationOverhead(const TargetTransformInfo &TTI, Type *ScalarTy, VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={})
This is similar to TargetTransformInfo::getScalarizationOverhead, but if ScalarTy is a FixedVectorTyp...
This file contains some templates that are useful if you are working with the STL at all.
#define OP(OPC)
Definition Instruction.h:46
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
Definition Debug.h:72
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This pass exposes codegen information to IR-level passes.
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file provides utility VPlan to VPlan transformations.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition blake3_impl.h:83
A manager for alias analyses.
Class for arbitrary precision integers.
Definition APInt.h:78
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:235
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1541
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1513
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition BasicBlock.h:528
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
BinaryOps getOpcode() const
Definition InstrTypes.h:374
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
Definition Analysis.h:73
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition InstrTypes.h:982
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
@ ICMP_NE
not equal
Definition InstrTypes.h:698
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:702
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition InstrTypes.h:789
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
A debug info location.
Definition DebugLoc.h:123
static DebugLoc getTemporary()
Definition DebugLoc.h:160
static DebugLoc getUnknown()
Definition DebugLoc.h:161
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:205
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition DenseMap.h:256
iterator end()
Definition DenseMap.h:81
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition DenseMap.h:169
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Definition DenseMap.h:294
Implements a dense probed hash-table based set.
Definition DenseSet.h:279
Analysis pass which computes a DominatorTree.
Definition Dominators.h:283
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:164
constexpr bool isVector() const
One or more elements.
Definition TypeSize.h:324
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:312
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Definition TypeSize.h:315
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Check, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
static FastMathFlags getFast()
Definition FMF.h:50
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition Function.h:209
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
Definition Function.cpp:765
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition Function.cpp:730
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition IRBuilder.h:345
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2788
A struct for saving information about induction variables.
const SCEV * getStep() const
ArrayRef< Instruction * > getCastInsts() const
Returns an ArrayRef to the type cast instructions in the induction update chain, that are redundant w...
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
Value * getStartValue() const
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, GeneratedRTChecks &RTChecks, VPlan &Plan)
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
LoopInfo * LI
Loop Info.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
bool isCast() const
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
bool isBinaryOp() const
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
Definition Type.cpp:342
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
Definition LoopInfo.h:569
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool useWideActiveLaneMask() const
Returns true if the use of wide lane masks is requested and the loop is using tail-folding with a lan...
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
BlockFrequencyInfo * BFI
The BlockFrequencyInfo returned from GetBFI.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
BlockFrequencyInfo & getBFI()
Returns the BlockFrequencyInfo for the function if cached, otherwise fetches it via GetBFI.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
LoopVectorizationLegality * Legal
Vectorization legality.
uint64_t getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind, const BasicBlock *BB)
A helper function that returns how much we should divide the cost of a predicated block by.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
bool preferPredicatedLoop() const
Returns true if tail-folding is preferred over a scalar epilogue.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF)
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool isScalarWithPredication(Instruction *I, ElementCount VF)
Returns true if I is an instruction which requires predication and for which our chosen predication s...
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
std::function< BlockFrequencyInfo &()> GetBFI
A function to lazily fetch BlockFrequencyInfo.
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, bool OptForSize)
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
Definition VPlan.cpp:1576
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan, bool VectorizingEpilogue, MDNode *OrigLoopID, std::optional< unsigned > OrigAverageTripCount, unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
Definition VPlan.cpp:1627
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
Definition VPlan.cpp:1560
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
Definition VPlan.cpp:1541
void printPlans(raw_ostream &O)
Definition VPlan.cpp:1705
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
void emitRemarkWithHints() const
Dumps all the hint information.
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
Definition LoopInfo.cpp:67
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
Definition LoopInfo.cpp:632
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
Definition LoopInfo.cpp:61
Metadata node.
Definition Metadata.h:1078
This class implements a map that also provides access to all stored values in a deterministic order.
Definition MapVector.h:36
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition MapVector.h:124
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
Definition Module.cpp:230
Diagnostic information for optimization analysis remarks related to pointer aliasing.
Diagnostic information for optimization analysis remarks related to floating-point non-commutativity.
Diagnostic information for optimization analysis remarks.
The optimization diagnostic interface.
LLVM_ABI void emit(DiagnosticInfoOptimizationBase &OptDiag)
Output the remark via the diagnostic handler and to the optimization record file.
Diagnostic information for missed-optimization remarks.
Diagnostic information for applied optimization remarks.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
Definition Analysis.h:151
PreservedAnalyses & preserve()
Mark an analysis as preserved.
Definition Analysis.h:132
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
bool hasUsesOutsideReductionChain() const
Returns true if the reduction PHI has any uses outside the reduction chain.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
TrackingVH< Value > getRecurrenceStartValue() const
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
Definition SetVector.h:57
size_type size() const
Determine the number of elements in the SetVector.
Definition SetVector.h:103
void insert_range(Range &&R)
Definition SetVector.h:176
size_type count(const_arg_type key) const
Count the number of elements of a given key in the SetVector.
Definition SetVector.h:262
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:151
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:339
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
LLVM_ABI std::optional< unsigned > getVScaleForTuning() const
LLVM_ABI InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}) const
Estimate the overhead of scalarizing an instruction.
LLVM_ABI bool supportsEfficientVectorElementLoadStore() const
If target has efficient vector element load/store instructions, it can return true here so that inser...
LLVM_ABI bool prefersVectorizedAddressing() const
Return true if target doesn't mind addresses in vectors.
LLVM_ABI TypeSize getRegisterBitWidth(RegisterKind K) const
LLVM_ABI bool preferFixedOverScalableIfEqualCost(bool IsEpilogue) const
LLVM_ABI InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, OperandValueInfo OpdInfo={OK_AnyValue, OP_None}, const Instruction *I=nullptr) const
LLVM_ABI InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, bool UseMaskForCond=false, bool UseMaskForGaps=false) const
LLVM_ABI InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask={}, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, int Index=0, VectorType *SubTp=nullptr, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const
static LLVM_ABI PartialReductionExtendKind getPartialReductionExtendKind(Instruction *I)
Get the kind of extension that an instruction represents.
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
LLVM_ABI bool isElementTypeLegalForScalableVector(Type *Ty) const
LLVM_ABI ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
@ TCK_CodeSize
Instruction code size.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
@ TCK_Latency
The latency of instruction.
LLVM_ABI InstructionCost getMemIntrinsicInstrCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const
LLVM_ABI InstructionCost getAddressComputationCost(Type *PtrTy, ScalarEvolution *SE, const SCEV *Ptr, TTI::TargetCostKind CostKind) const
LLVM_ABI bool supportsScalableVectors() const
@ TCC_Free
Expected to fold away in lowering.
LLVM_ABI InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TargetCostKind CostKind) const
Estimate the cost of a given IR user when lowered.
LLVM_ABI InstructionCost getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const
LLVM_ABI InstructionCost getOperandsScalarizationOverhead(ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const
Estimate the overhead of scalarizing operands with the given types.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_Reverse
Reverse the order of the vector.
LLVM_ABI InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
CastContextHint
Represents a hint about the context in which a cast is used.
@ Reversed
The cast is used with a reversed load/store.
@ Masked
The cast is used with a masked load/store.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
@ Interleave
The cast is used with an interleaved load/store.
@ GatherScatter
The cast is used with a gather/scatter.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
Definition TypeSwitch.h:88
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
Definition TypeSwitch.h:97
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:280
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:197
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:293
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
op_range operands()
Definition User.h:292
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Definition User.cpp:24
Value * getOperand(unsigned i) const
Definition User.h:232
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
Definition VectorUtils.h:74
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition VPlan.h:3966
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
Definition VPlan.h:4041
RecipeListTy::iterator iterator
Instruction iterators...
Definition VPlan.h:3993
iterator end()
Definition VPlan.h:4003
iterator begin()
Recipe iterator methods.
Definition VPlan.h:4001
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
Definition VPlan.h:4054
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of this VPBasicBlock.
Definition VPlan.cpp:763
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
Definition VPlan.cpp:216
VPRegionBlock * getEnclosingLoopRegion()
Definition VPlan.cpp:578
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
Definition VPlan.cpp:623
void insert(VPRecipeBase *Recipe, iterator InsertPt)
Definition VPlan.h:4032
bool empty() const
Definition VPlan.h:4012
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition VPlan.h:81
VPRegionBlock * getParent()
Definition VPlan.h:173
const VPBasicBlock * getExitingBasicBlock() const
Definition VPlan.cpp:186
void setName(const Twine &newName)
Definition VPlan.h:166
size_t getNumSuccessors() const
Definition VPlan.h:219
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
Definition VPlan.h:322
size_t getNumPredecessors() const
Definition VPlan.h:220
VPlan * getPlan()
Definition VPlan.cpp:161
const VPBasicBlock * getEntryBasicBlock() const
Definition VPlan.cpp:166
VPBlockBase * getSingleSuccessor() const
Definition VPlan.h:209
const VPBlocksTy & getSuccessors() const
Definition VPlan.h:198
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
Definition VPlanUtils.h:211
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
Definition VPlanUtils.h:232
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
Definition VPlanUtils.h:170
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
Definition VPlanUtils.h:197
VPlan-based builder utility analogous to IRBuilder.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
Canonical scalar induction phi of the vector loop.
Definition VPlan.h:3547
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
Definition VPlanValue.h:431
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
Definition VPlanValue.h:404
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
Definition VPlan.h:3766
VPValue * getStartValue() const
Definition VPlan.h:3765
A pure virtual base class for all recipes modeling header phis, including phis for first order recurr...
Definition VPlan.h:2049
virtual VPValue * getBackedgeValue()
Returns the incoming value from the loop backedge.
Definition VPlan.h:2092
VPValue * getStartValue()
Returns the start value of the phi, if one is set.
Definition VPlan.h:2081
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
Definition VPlan.h:1757
A special type of VPBasicBlock that wraps an existing IR basic block.
Definition VPlan.h:4119
Class to record and manage LLVM IR flags.
Definition VPlan.h:609
Helper to manage IR metadata for recipes.
Definition VPlan.h:982
This is a concrete Recipe that models a single VPlan-level instruction.
Definition VPlan.h:1036
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
Definition VPlan.h:1074
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
Definition VPlan.h:1130
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
Definition VPlan.h:1121
unsigned getOpcode() const
Definition VPlan.h:1182
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
Definition VPlan.h:2686
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
Definition VPlan.h:1362
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition VPlan.h:387
VPBasicBlock * getParent()
Definition VPlan.h:408
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
Definition VPlan.h:479
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPRecipeBase * tryToCreateWidenRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for R if one can be created within the given VF Range.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
VPValue * getVPValueOrAddLiveIn(Value *V)
VPRecipeBase * tryToCreatePartialReduction(VPInstruction *Reduction, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(VPInstruction *VPI, VFRange &Range)
Build a VPReplicationRecipe for VPI.
A recipe for handling reduction phis.
Definition VPlan.h:2427
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
Definition VPlan.h:2482
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
Definition VPlan.h:2476
A recipe to represent inloop, ordered or partial reduction operations.
Definition VPlan.h:2779
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition VPlan.h:4154
const VPBlockBase * getEntry() const
Definition VPlan.h:4190
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the region.
Definition VPlan.h:4252
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition VPlan.h:2935
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Definition VPlan.h:531
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
Definition VPlan.h:595
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition VPlanValue.h:207
operand_range operands()
Definition VPlanValue.h:275
void setOperand(unsigned I, VPValue *New)
Definition VPlanValue.h:251
unsigned getNumOperands() const
Definition VPlanValue.h:245
operand_iterator op_begin()
Definition VPlanValue.h:271
VPValue * getOperand(unsigned N) const
Definition VPlanValue.h:246
void addOperand(VPValue *Operand)
Definition VPlanValue.h:240
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
Definition VPlanValue.h:48
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition VPlan.cpp:131
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Definition VPlanValue.h:183
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
Definition VPlanValue.h:85
void replaceAllUsesWith(VPValue *New)
Definition VPlan.cpp:1377
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
Definition VPlan.cpp:1381
user_range users()
Definition VPlanValue.h:134
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
Definition VPlan.h:1911
VPWidenCastRecipe is a recipe to create vector cast instructions.
Definition VPlan.h:1552
A recipe for handling GEP instructions.
Definition VPlan.h:1848
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
Definition VPlan.h:2192
A common base class for widening memory operations.
Definition VPlan.h:3246
A recipe for widened phis.
Definition VPlan.h:2326
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Definition VPlan.h:1512
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition VPlan.h:4284
bool hasVF(ElementCount VF) const
Definition VPlan.h:4489
VPBasicBlock * getEntry()
Definition VPlan.h:4377
VPValue & getVectorTripCount()
The vector trip count.
Definition VPlan.h:4468
VPValue & getVF()
Returns the VF of the vector loop region.
Definition VPlan.h:4471
VPValue * getTripCount() const
The trip count of the original loop.
Definition VPlan.h:4439
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
Definition VPlan.h:4496
bool hasUF(unsigned UF) const
Definition VPlan.h:4507
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
Definition VPlan.h:4429
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition VPlan.cpp:1011
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
Definition VPlan.h:4645
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
Definition VPlan.cpp:993
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
Definition VPlan.h:4453
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
Definition VPlan.h:4402
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
Definition VPlan.h:4531
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
Definition VPlan.h:4420
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
Definition VPlan.cpp:905
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
Definition VPlan.h:4425
VPValue * getLiveIn(Value *V) const
Return the live-in VPValue for V, if there is one or nullptr otherwise.
Definition VPlan.h:4568
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
Definition VPlan.h:4382
LLVM_ABI_FOR_TEST VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
Definition VPlan.cpp:1153
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
Definition Value.cpp:166
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
Definition Value.cpp:390
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:546
iterator_range< user_iterator > users()
Definition Value.h:426
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:701
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:202
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:175
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
Definition TypeSize.h:269
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:230
constexpr bool isNonZero() const
Definition TypeSize.h:155
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
Definition TypeSize.h:277
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:216
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
Definition TypeSize.h:256
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
Definition TypeSize.h:171
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:165
constexpr bool isZero() const
Definition TypeSize.h:153
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:223
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:237
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:123
IteratorT end() const
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
A raw_ostream that writes to an std::string.
Changed
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Entry
Definition COFF.h:862
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
Definition DwarfDebug.h:189
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
bind_ty< const SCEVMulExpr > m_scev_Mul(const SCEVMulExpr *&V)
bool match(const SCEV *S, const Pattern &P)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t, SCEV::FlagAnyWrap, true > m_scev_c_Mul(const Op0_t &Op0, const Op1_t &Op1)
class_match< const SCEV > m_SCEV()
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastLane, Op0_t > m_ExtractLastLane(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastPart, Op0_t > m_ExtractLastPart(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::ExtractLane, Op0_t, Op1_t > m_ExtractLane(const Op0_t &Op0, const Op1_t &Op1)
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
Definition RDFGraph.h:389
NodeAddr< PhiNode * > Phi
Definition RDFGraph.h:390
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
VPIRFlags getFlagsFromIndDesc(const InductionDescriptor &ID)
Extracts and returns NoWrap and FastMath flags from the induction binop in ID.
Definition VPlanUtils.h:85
unsigned getVFScaleFactor(VPRecipeBase *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
const SCEV * getSCEVExprForVPValue(const VPValue *V, ScalarEvolution &SE, const Loop *L=nullptr)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
@ Offset
Definition DWP.cpp:532
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition STLExtras.h:829
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
Definition Casting.h:683
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
LLVM_ABI_FOR_TEST cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1667
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
InstructionCost Cost
ReductionStyle getReductionStyle(bool InLoop, bool Ordered, unsigned ScaleFactor)
Definition VPlan.h:2413
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2484
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
Definition LCSSA.cpp:449
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2148
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:632
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition MathExtras.h:284
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
Definition VPlanCFG.h:216
LLVM_ABI bool VerifySCEV
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
Definition Casting.h:676
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
Definition VPlanCFG.h:243
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:337
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
Definition CFG.h:149
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1634
LLVM_ABI_FOR_TEST cl::opt< bool > EnableWideActiveLaneMask
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1751
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
Definition Local.cpp:421
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
bool canConstantBeExtended(const APInt *C, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
Definition VPlan.cpp:1718
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
Definition STLExtras.h:1799
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition Format.h:129
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition MathExtras.h:394
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
TargetTransformInfo TTI
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ AddChainWithSubs
A chain of adds and subs.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
ScalarEpilogueLowering
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1770
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
Definition iterator.h:363
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
std::variant< RdxOrdered, RdxInLoop, RdxUnordered > ReductionStyle
Definition VPlan.h:2411
bool pred_empty(const BasicBlock *BB)
Definition CFG.h:119
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
Definition Hashing.h:592
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Definition bit.h:330
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
Definition VPlan.h:77
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
Definition Casting.h:866
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
Definition Hashing.h:466
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition Analysis.h:29
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
TargetLibraryInfo * TLI
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
ProfileSummaryInfo * PSI
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
ScalarEvolution * SE
AssumptionCache * AC
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
std::function< BlockFrequencyInfo &()> GetBFI
TargetTransformInfo * TTI
Storage for information about made changes.
A CRTP mix-in to automatically provide informational APIs needed for passes.
Definition PassManager.h:69
This reduction is unordered with the partial result scaled down by some factor.
Definition VPlan.h:2408
A marker analysis to determine if extra passes should be run after loop vectorization.
static LLVM_ABI AnalysisKey Key
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
ElementCount End
Struct to hold various analysis needed for cost computations.
unsigned getPredBlockCostDivisor(BasicBlock *BB) const
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
TargetTransformInfo::TargetCostKind CostKind
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A recipe for handling first-order recurrence phis.
Definition VPlan.h:2368
A struct that represents some properties of the register usage of a loop.
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
A recipe for widening select instructions.
Definition VPlan.h:1801
static void hoistPredicatedLoads(VPlan &Plan, ScalarEvolution &SE, const Loop *L)
Hoist predicated loads from the same address to the loop entry block, if they are guaranteed to execu...
static void sinkPredicatedStores(VPlan &Plan, ScalarEvolution &SE, const Loop *L)
Sink predicated stores to the same address with complementary predicates (P and NOT P) to an uncondit...
static void materializeBroadcasts(VPlan &Plan)
Add explicit broadcasts for live-ins and VPValues defined in Plan's entry block if they are used as v...
static void materializePacksAndUnpacks(VPlan &Plan)
Add explicit Build[Struct]Vector recipes to Pack multiple scalar values into vectors and Unpack recip...
static bool handleMultiUseReductions(VPlan &Plan)
Try to legalize reductions with multiple in-loop uses.
static LLVM_ABI_FOR_TEST std::unique_ptr< VPlan > buildVPlan0(Loop *TheLoop, LoopInfo &LI, Type *InductionTy, DebugLoc IVDL, PredicatedScalarEvolution &PSE, LoopVersioning *LVer=nullptr)
Create a base VPlan0, serving as the common starting point for all later candidates.
static void materializeBackedgeTakenCount(VPlan &Plan, VPBasicBlock *VectorPH)
Materialize the backedge-taken count to be computed explicitly using VPInstructions.
static void optimizeInductionExitUsers(VPlan &Plan, DenseMap< VPValue *, VPValue * > &EndValues, ScalarEvolution &SE)
If there's a single exit block, optimize its phi recipes that use exiting IV values by feeding them p...
static LLVM_ABI_FOR_TEST void handleEarlyExits(VPlan &Plan, bool HasUncountableExit)
Update Plan to account for all early exits.
static void canonicalizeEVLLoops(VPlan &Plan)
Transform EVL loops to use variable-length stepping after region dissolution.
static void dropPoisonGeneratingRecipes(VPlan &Plan, const std::function< bool(BasicBlock *)> &BlockNeedsPredication)
Drop poison flags from recipes that may generate a poison value that is used after vectorization,...
static void createInterleaveGroups(VPlan &Plan, const SmallPtrSetImpl< const InterleaveGroup< Instruction > * > &InterleaveGroups, VPRecipeBuilder &RecipeBuilder, const bool &ScalarEpilogueAllowed)
static bool runPass(bool(*Transform)(VPlan &, ArgsTy...), VPlan &Plan, typename std::remove_reference< ArgsTy >::type &...Args)
Helper to run a VPlan transform Transform on VPlan, forwarding extra arguments to the transform.
static void addBranchWeightToMiddleTerminator(VPlan &Plan, ElementCount VF, std::optional< unsigned > VScaleForTuning)
Add branch weight metadata, if the Plan's middle block is terminated by a BranchOnCond recipe.
static void narrowInterleaveGroups(VPlan &Plan, ElementCount VF, TypeSize VectorRegWidth)
Try to convert a plan with interleave groups with VF elements to a plan with the interleave groups re...
static void unrollByUF(VPlan &Plan, unsigned UF)
Explicitly unroll Plan by UF.
static DenseMap< const SCEV *, Value * > expandSCEVs(VPlan &Plan, ScalarEvolution &SE)
Expand VPExpandSCEVRecipes in Plan's entry block.
static void convertToConcreteRecipes(VPlan &Plan)
Lower abstract recipes to concrete ones, that can be codegen'd.
static void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount, bool RequiresScalarEpilogue, bool TailFolded, bool CheckNeededWithTailFolding, Loop *OrigLoop, const uint32_t *MinItersBypassWeights, DebugLoc DL, ScalarEvolution &SE)
static void convertToAbstractRecipes(VPlan &Plan, VPCostContext &Ctx, VFRange &Range)
This function converts initial recipes to the abstract recipes and clamps Range based on cost model f...
static void materializeConstantVectorTripCount(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
static LLVM_ABI_FOR_TEST bool tryToConvertVPInstructionsToVPRecipes(VPlan &Plan, function_ref< const InductionDescriptor *(PHINode *)> GetIntOrFpInductionDescriptor, const TargetLibraryInfo &TLI)
Replaces the VPInstructions in Plan with corresponding widen recipes.
static void addExitUsersForFirstOrderRecurrences(VPlan &Plan, VFRange &Range)
Handle users in the exit block for first order reductions in the original exit block.
static DenseMap< VPBasicBlock *, VPValue * > introduceMasksAndLinearize(VPlan &Plan, bool FoldTail)
Predicate and linearize the control-flow in the only loop region of Plan.
static void addExplicitVectorLength(VPlan &Plan, const std::optional< unsigned > &MaxEVLSafeElements)
Add a VPEVLBasedIVPHIRecipe and related recipes to Plan and replaces all uses except the canonical IV...
static void replaceSymbolicStrides(VPlan &Plan, PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &StridesMap)
Replace symbolic strides from StridesMap in Plan with constants when possible.
static bool handleMaxMinNumReductions(VPlan &Plan)
Check if Plan contains any FMaxNum or FMinNum reductions.
static void removeBranchOnConst(VPlan &Plan)
Remove BranchOnCond recipes with true or false conditions together with removing dead edges to their ...
static LLVM_ABI_FOR_TEST void createLoopRegions(VPlan &Plan)
Replace loops in Plan's flat CFG with VPRegionBlocks, turning Plan's flat CFG into a hierarchical CFG...
static void removeDeadRecipes(VPlan &Plan)
Remove dead recipes from Plan.
static void attachCheckBlock(VPlan &Plan, Value *Cond, BasicBlock *CheckBlock, bool AddBranchWeights)
Wrap runtime check block CheckBlock in a VPIRBB and Cond in a VPValue and connect the block to Plan,...
static void materializeVectorTripCount(VPlan &Plan, VPBasicBlock *VectorPHVPBB, bool TailByMasking, bool RequiresScalarEpilogue)
Materialize vector trip count computations to a set of VPInstructions.
static void simplifyRecipes(VPlan &Plan)
Perform instcombine-like simplifications on recipes in Plan.
static void replicateByVF(VPlan &Plan, ElementCount VF)
Replace each replicating VPReplicateRecipe and VPInstruction outside of any replicate region in Plan ...
static void clearReductionWrapFlags(VPlan &Plan)
Clear NSW/NUW flags from reduction instructions if necessary.
static void cse(VPlan &Plan)
Perform common-subexpression-elimination on Plan.
static void addActiveLaneMask(VPlan &Plan, bool UseActiveLaneMaskForControlFlow, bool DataAndControlFlowWithoutRuntimeCheck)
Replace (ICMP_ULE, wide canonical IV, backedge-taken-count) checks with an (active-lane-mask recipe,...
static LLVM_ABI_FOR_TEST void optimize(VPlan &Plan)
Apply VPlan-to-VPlan optimizations to Plan, including induction recipe optimizations,...
static void dissolveLoopRegions(VPlan &Plan)
Replace loop regions with explicit CFG.
static void truncateToMinimalBitwidths(VPlan &Plan, const MapVector< Instruction *, uint64_t > &MinBWs)
Insert truncates and extends for any truncated recipe.
static bool adjustFixedOrderRecurrences(VPlan &Plan, VPBuilder &Builder)
Try to have all users of fixed-order recurrences appear after the recipe defining their previous valu...
static void optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
Optimize Plan based on BestVF and BestUF.
static void materializeVFAndVFxUF(VPlan &Plan, VPBasicBlock *VectorPH, ElementCount VF)
Materialize VF and VFxUF to be computed explicitly using VPInstructions.
static void addMinimumVectorEpilogueIterationCheck(VPlan &Plan, Value *TripCount, Value *VectorTripCount, bool RequiresScalarEpilogue, ElementCount EpilogueVF, unsigned EpilogueUF, unsigned MainLoopStep, unsigned EpilogueLoopStep, ScalarEvolution &SE)
Add a check to Plan to see if the epilogue vector loop should be executed.
static void updateScalarResumePhis(VPlan &Plan, DenseMap< VPValue *, VPValue * > &IVEndValues)
Update the resume phis in the scalar preheader after creating wide recipes for first-order recurrence...
static LLVM_ABI_FOR_TEST void addMiddleCheck(VPlan &Plan, bool RequiresScalarEpilogueCheck, bool TailFolded)
If a check is needed to guard executing the scalar epilogue loop, it will be added to the middle bloc...
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks