LLVM 22.0.0git
SPIRVInstructionSelector.cpp
Go to the documentation of this file.
1//===- SPIRVInstructionSelector.cpp ------------------------------*- C++ -*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the targeting of the InstructionSelector class for
10// SPIRV.
11// TODO: This should be generated by TableGen.
12//
13//===----------------------------------------------------------------------===//
14
17#include "SPIRV.h"
18#include "SPIRVGlobalRegistry.h"
19#include "SPIRVInstrInfo.h"
20#include "SPIRVRegisterInfo.h"
21#include "SPIRVTargetMachine.h"
22#include "SPIRVUtils.h"
23#include "llvm/ADT/APFloat.h"
32#include "llvm/IR/IntrinsicsSPIRV.h"
33#include "llvm/Support/Debug.h"
35
36#define DEBUG_TYPE "spirv-isel"
37
38using namespace llvm;
39namespace CL = SPIRV::OpenCLExtInst;
40namespace GL = SPIRV::GLSLExtInst;
41
43 std::vector<std::pair<SPIRV::InstructionSet::InstructionSet, uint32_t>>;
44
45namespace {
46
47llvm::SPIRV::SelectionControl::SelectionControl
48getSelectionOperandForImm(int Imm) {
49 if (Imm == 2)
50 return SPIRV::SelectionControl::Flatten;
51 if (Imm == 1)
52 return SPIRV::SelectionControl::DontFlatten;
53 if (Imm == 0)
54 return SPIRV::SelectionControl::None;
55 llvm_unreachable("Invalid immediate");
56}
57
58#define GET_GLOBALISEL_PREDICATE_BITSET
59#include "SPIRVGenGlobalISel.inc"
60#undef GET_GLOBALISEL_PREDICATE_BITSET
61
62class SPIRVInstructionSelector : public InstructionSelector {
63 const SPIRVSubtarget &STI;
64 const SPIRVInstrInfo &TII;
66 const RegisterBankInfo &RBI;
69 MachineFunction *HasVRegsReset = nullptr;
70
71 /// We need to keep track of the number we give to anonymous global values to
72 /// generate the same name every time when this is needed.
73 mutable DenseMap<const GlobalValue *, unsigned> UnnamedGlobalIDs;
75
76public:
77 SPIRVInstructionSelector(const SPIRVTargetMachine &TM,
78 const SPIRVSubtarget &ST,
79 const RegisterBankInfo &RBI);
80 void setupMF(MachineFunction &MF, GISelValueTracking *VT,
81 CodeGenCoverage *CoverageInfo, ProfileSummaryInfo *PSI,
82 BlockFrequencyInfo *BFI) override;
83 // Common selection code. Instruction-specific selection occurs in spvSelect.
84 bool select(MachineInstr &I) override;
85 static const char *getName() { return DEBUG_TYPE; }
86
87#define GET_GLOBALISEL_PREDICATES_DECL
88#include "SPIRVGenGlobalISel.inc"
89#undef GET_GLOBALISEL_PREDICATES_DECL
90
91#define GET_GLOBALISEL_TEMPORARIES_DECL
92#include "SPIRVGenGlobalISel.inc"
93#undef GET_GLOBALISEL_TEMPORARIES_DECL
94
95private:
96 void resetVRegsType(MachineFunction &MF);
97
98 // tblgen-erated 'select' implementation, used as the initial selector for
99 // the patterns that don't require complex C++.
100 bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const;
101
102 // All instruction-specific selection that didn't happen in "select()".
103 // Is basically a large Switch/Case delegating to all other select method.
104 bool spvSelect(Register ResVReg, const SPIRVType *ResType,
105 MachineInstr &I) const;
106
107 bool selectFirstBitHigh(Register ResVReg, const SPIRVType *ResType,
108 MachineInstr &I, bool IsSigned) const;
109
110 bool selectFirstBitLow(Register ResVReg, const SPIRVType *ResType,
111 MachineInstr &I) const;
112
113 bool selectFirstBitSet16(Register ResVReg, const SPIRVType *ResType,
114 MachineInstr &I, unsigned ExtendOpcode,
115 unsigned BitSetOpcode) const;
116
117 bool selectFirstBitSet32(Register ResVReg, const SPIRVType *ResType,
118 MachineInstr &I, Register SrcReg,
119 unsigned BitSetOpcode) const;
120
121 bool selectFirstBitSet64(Register ResVReg, const SPIRVType *ResType,
122 MachineInstr &I, Register SrcReg,
123 unsigned BitSetOpcode, bool SwapPrimarySide) const;
124
125 bool selectFirstBitSet64Overflow(Register ResVReg, const SPIRVType *ResType,
126 MachineInstr &I, Register SrcReg,
127 unsigned BitSetOpcode,
128 bool SwapPrimarySide) const;
129
130 bool selectGlobalValue(Register ResVReg, MachineInstr &I,
131 const MachineInstr *Init = nullptr) const;
132
133 bool selectOpWithSrcs(Register ResVReg, const SPIRVType *ResType,
134 MachineInstr &I, std::vector<Register> SrcRegs,
135 unsigned Opcode) const;
136
137 bool selectUnOp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
138 unsigned Opcode) const;
139
140 bool selectBitcast(Register ResVReg, const SPIRVType *ResType,
141 MachineInstr &I) const;
142
143 bool selectLoad(Register ResVReg, const SPIRVType *ResType,
144 MachineInstr &I) const;
145 bool selectStore(MachineInstr &I) const;
146
147 bool selectStackSave(Register ResVReg, const SPIRVType *ResType,
148 MachineInstr &I) const;
149 bool selectStackRestore(MachineInstr &I) const;
150
151 bool selectMemOperation(Register ResVReg, MachineInstr &I) const;
152
153 bool selectAtomicRMW(Register ResVReg, const SPIRVType *ResType,
154 MachineInstr &I, unsigned NewOpcode,
155 unsigned NegateOpcode = 0) const;
156
157 bool selectAtomicCmpXchg(Register ResVReg, const SPIRVType *ResType,
158 MachineInstr &I) const;
159
160 bool selectFence(MachineInstr &I) const;
161
162 bool selectAddrSpaceCast(Register ResVReg, const SPIRVType *ResType,
163 MachineInstr &I) const;
164
165 bool selectAnyOrAll(Register ResVReg, const SPIRVType *ResType,
166 MachineInstr &I, unsigned OpType) const;
167
168 bool selectAll(Register ResVReg, const SPIRVType *ResType,
169 MachineInstr &I) const;
170
171 bool selectAny(Register ResVReg, const SPIRVType *ResType,
172 MachineInstr &I) const;
173
174 bool selectBitreverse(Register ResVReg, const SPIRVType *ResType,
175 MachineInstr &I) const;
176
177 bool selectBuildVector(Register ResVReg, const SPIRVType *ResType,
178 MachineInstr &I) const;
179 bool selectSplatVector(Register ResVReg, const SPIRVType *ResType,
180 MachineInstr &I) const;
181
182 bool selectCmp(Register ResVReg, const SPIRVType *ResType,
183 unsigned comparisonOpcode, MachineInstr &I) const;
184 bool selectDiscard(Register ResVReg, const SPIRVType *ResType,
185 MachineInstr &I) const;
186
187 bool selectICmp(Register ResVReg, const SPIRVType *ResType,
188 MachineInstr &I) const;
189 bool selectFCmp(Register ResVReg, const SPIRVType *ResType,
190 MachineInstr &I) const;
191
192 bool selectSign(Register ResVReg, const SPIRVType *ResType,
193 MachineInstr &I) const;
194
195 bool selectFloatDot(Register ResVReg, const SPIRVType *ResType,
196 MachineInstr &I) const;
197
198 bool selectOverflowArith(Register ResVReg, const SPIRVType *ResType,
199 MachineInstr &I, unsigned Opcode) const;
200 bool selectDebugTrap(Register ResVReg, const SPIRVType *ResType,
201 MachineInstr &I) const;
202
203 bool selectIntegerDot(Register ResVReg, const SPIRVType *ResType,
204 MachineInstr &I, bool Signed) const;
205
206 bool selectIntegerDotExpansion(Register ResVReg, const SPIRVType *ResType,
207 MachineInstr &I) const;
208
209 bool selectOpIsInf(Register ResVReg, const SPIRVType *ResType,
210 MachineInstr &I) const;
211
212 bool selectOpIsNan(Register ResVReg, const SPIRVType *ResType,
213 MachineInstr &I) const;
214
215 template <bool Signed>
216 bool selectDot4AddPacked(Register ResVReg, const SPIRVType *ResType,
217 MachineInstr &I) const;
218 template <bool Signed>
219 bool selectDot4AddPackedExpansion(Register ResVReg, const SPIRVType *ResType,
220 MachineInstr &I) const;
221
222 bool selectWaveReduceMax(Register ResVReg, const SPIRVType *ResType,
223 MachineInstr &I, bool IsUnsigned) const;
224
225 bool selectWaveReduceSum(Register ResVReg, const SPIRVType *ResType,
226 MachineInstr &I) const;
227
228 bool selectConst(Register ResVReg, const SPIRVType *ResType,
229 MachineInstr &I) const;
230
231 bool selectSelect(Register ResVReg, const SPIRVType *ResType,
232 MachineInstr &I) const;
233 bool selectSelectDefaultArgs(Register ResVReg, const SPIRVType *ResType,
234 MachineInstr &I, bool IsSigned) const;
235 bool selectIToF(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
236 bool IsSigned, unsigned Opcode) const;
237 bool selectExt(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
238 bool IsSigned) const;
239
240 bool selectTrunc(Register ResVReg, const SPIRVType *ResType,
241 MachineInstr &I) const;
242
243 bool selectSUCmp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
244 bool IsSigned) const;
245
246 bool selectIntToBool(Register IntReg, Register ResVReg, MachineInstr &I,
247 const SPIRVType *intTy, const SPIRVType *boolTy) const;
248
249 bool selectOpUndef(Register ResVReg, const SPIRVType *ResType,
250 MachineInstr &I) const;
251 bool selectFreeze(Register ResVReg, const SPIRVType *ResType,
252 MachineInstr &I) const;
253 bool selectIntrinsic(Register ResVReg, const SPIRVType *ResType,
254 MachineInstr &I) const;
255 bool selectExtractVal(Register ResVReg, const SPIRVType *ResType,
256 MachineInstr &I) const;
257 bool selectInsertVal(Register ResVReg, const SPIRVType *ResType,
258 MachineInstr &I) const;
259 bool selectExtractElt(Register ResVReg, const SPIRVType *ResType,
260 MachineInstr &I) const;
261 bool selectInsertElt(Register ResVReg, const SPIRVType *ResType,
262 MachineInstr &I) const;
263 bool selectGEP(Register ResVReg, const SPIRVType *ResType,
264 MachineInstr &I) const;
265
266 bool selectFrameIndex(Register ResVReg, const SPIRVType *ResType,
267 MachineInstr &I) const;
268 bool selectAllocaArray(Register ResVReg, const SPIRVType *ResType,
269 MachineInstr &I) const;
270
271 bool selectBranch(MachineInstr &I) const;
272 bool selectBranchCond(MachineInstr &I) const;
273
274 bool selectPhi(Register ResVReg, const SPIRVType *ResType,
275 MachineInstr &I) const;
276
277 bool selectExtInst(Register ResVReg, const SPIRVType *RestType,
278 MachineInstr &I, GL::GLSLExtInst GLInst) const;
279 bool selectExtInst(Register ResVReg, const SPIRVType *ResType,
280 MachineInstr &I, CL::OpenCLExtInst CLInst) const;
281 bool selectExtInst(Register ResVReg, const SPIRVType *ResType,
282 MachineInstr &I, CL::OpenCLExtInst CLInst,
283 GL::GLSLExtInst GLInst) const;
284 bool selectExtInst(Register ResVReg, const SPIRVType *ResType,
285 MachineInstr &I, const ExtInstList &ExtInsts) const;
286 bool selectExtInstForLRound(Register ResVReg, const SPIRVType *ResType,
287 MachineInstr &I, CL::OpenCLExtInst CLInst,
288 GL::GLSLExtInst GLInst) const;
289 bool selectExtInstForLRound(Register ResVReg, const SPIRVType *ResType,
291 const ExtInstList &ExtInsts) const;
292
293 bool selectLog10(Register ResVReg, const SPIRVType *ResType,
294 MachineInstr &I) const;
295
296 bool selectSaturate(Register ResVReg, const SPIRVType *ResType,
297 MachineInstr &I) const;
298
299 bool selectWaveOpInst(Register ResVReg, const SPIRVType *ResType,
300 MachineInstr &I, unsigned Opcode) const;
301
302 bool selectWaveActiveCountBits(Register ResVReg, const SPIRVType *ResType,
303 MachineInstr &I) const;
304
306
307 bool selectHandleFromBinding(Register &ResVReg, const SPIRVType *ResType,
308 MachineInstr &I) const;
309
310 bool selectReadImageIntrinsic(Register &ResVReg, const SPIRVType *ResType,
311 MachineInstr &I) const;
312 bool selectImageWriteIntrinsic(MachineInstr &I) const;
313 bool selectResourceGetPointer(Register &ResVReg, const SPIRVType *ResType,
314 MachineInstr &I) const;
315 bool selectModf(Register ResVReg, const SPIRVType *ResType,
316 MachineInstr &I) const;
317 bool selectFrexp(Register ResVReg, const SPIRVType *ResType,
318 MachineInstr &I) const;
319 // Utilities
320 std::pair<Register, bool>
321 buildI32Constant(uint32_t Val, MachineInstr &I,
322 const SPIRVType *ResType = nullptr) const;
323
324 Register buildZerosVal(const SPIRVType *ResType, MachineInstr &I) const;
325 Register buildZerosValF(const SPIRVType *ResType, MachineInstr &I) const;
326 Register buildOnesVal(bool AllOnes, const SPIRVType *ResType,
327 MachineInstr &I) const;
328 Register buildOnesValF(const SPIRVType *ResType, MachineInstr &I) const;
329
330 bool wrapIntoSpecConstantOp(MachineInstr &I,
331 SmallVector<Register> &CompositeArgs) const;
332
333 Register getUcharPtrTypeReg(MachineInstr &I,
334 SPIRV::StorageClass::StorageClass SC) const;
335 MachineInstrBuilder buildSpecConstantOp(MachineInstr &I, Register Dest,
336 Register Src, Register DestType,
337 uint32_t Opcode) const;
338 MachineInstrBuilder buildConstGenericPtr(MachineInstr &I, Register SrcPtr,
339 SPIRVType *SrcPtrTy) const;
340 Register buildPointerToResource(const SPIRVType *ResType,
341 SPIRV::StorageClass::StorageClass SC,
343 uint32_t ArraySize, Register IndexReg,
344 bool IsNonUniform, StringRef Name,
345 MachineIRBuilder MIRBuilder) const;
346 SPIRVType *widenTypeToVec4(const SPIRVType *Type, MachineInstr &I) const;
347 bool extractSubvector(Register &ResVReg, const SPIRVType *ResType,
348 Register &ReadReg, MachineInstr &InsertionPoint) const;
349 bool generateImageRead(Register &ResVReg, const SPIRVType *ResType,
350 Register ImageReg, Register IdxReg, DebugLoc Loc,
351 MachineInstr &Pos) const;
352 bool BuildCOPY(Register DestReg, Register SrcReg, MachineInstr &I) const;
353 bool loadVec3BuiltinInputID(SPIRV::BuiltIn::BuiltIn BuiltInValue,
354 Register ResVReg, const SPIRVType *ResType,
355 MachineInstr &I) const;
356 bool loadBuiltinInputID(SPIRV::BuiltIn::BuiltIn BuiltInValue,
357 Register ResVReg, const SPIRVType *ResType,
358 MachineInstr &I) const;
359 bool loadHandleBeforePosition(Register &HandleReg, const SPIRVType *ResType,
360 GIntrinsic &HandleDef, MachineInstr &Pos) const;
361};
362
363bool sampledTypeIsSignedInteger(const llvm::Type *HandleType) {
364 const TargetExtType *TET = cast<TargetExtType>(HandleType);
365 if (TET->getTargetExtName() == "spirv.Image") {
366 return false;
367 }
368 assert(TET->getTargetExtName() == "spirv.SignedImage");
369 return TET->getTypeParameter(0)->isIntegerTy();
370}
371} // end anonymous namespace
372
373#define GET_GLOBALISEL_IMPL
374#include "SPIRVGenGlobalISel.inc"
375#undef GET_GLOBALISEL_IMPL
376
377SPIRVInstructionSelector::SPIRVInstructionSelector(const SPIRVTargetMachine &TM,
378 const SPIRVSubtarget &ST,
379 const RegisterBankInfo &RBI)
380 : InstructionSelector(), STI(ST), TII(*ST.getInstrInfo()),
381 TRI(*ST.getRegisterInfo()), RBI(RBI), GR(*ST.getSPIRVGlobalRegistry()),
382 MRI(nullptr),
384#include "SPIRVGenGlobalISel.inc"
387#include "SPIRVGenGlobalISel.inc"
389{
390}
391
392void SPIRVInstructionSelector::setupMF(MachineFunction &MF,
394 CodeGenCoverage *CoverageInfo,
396 BlockFrequencyInfo *BFI) {
397 MRI = &MF.getRegInfo();
398 GR.setCurrentFunc(MF);
399 InstructionSelector::setupMF(MF, VT, CoverageInfo, PSI, BFI);
400}
401
402// Ensure that register classes correspond to pattern matching rules.
403void SPIRVInstructionSelector::resetVRegsType(MachineFunction &MF) {
404 if (HasVRegsReset == &MF)
405 return;
406 HasVRegsReset = &MF;
407
408 MachineRegisterInfo &MRI = MF.getRegInfo();
409 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
410 Register Reg = Register::index2VirtReg(I);
411 LLT RegType = MRI.getType(Reg);
412 if (RegType.isScalar())
413 MRI.setType(Reg, LLT::scalar(64));
414 else if (RegType.isPointer())
415 MRI.setType(Reg, LLT::pointer(0, 64));
416 else if (RegType.isVector())
417 MRI.setType(Reg, LLT::fixed_vector(2, LLT::scalar(64)));
418 }
419 for (const auto &MBB : MF) {
420 for (const auto &MI : MBB) {
421 if (isPreISelGenericOpcode(MI.getOpcode()))
422 GR.erase(&MI);
423 if (MI.getOpcode() != SPIRV::ASSIGN_TYPE)
424 continue;
425
426 Register DstReg = MI.getOperand(0).getReg();
427 LLT DstType = MRI.getType(DstReg);
428 Register SrcReg = MI.getOperand(1).getReg();
429 LLT SrcType = MRI.getType(SrcReg);
430 if (DstType != SrcType)
431 MRI.setType(DstReg, MRI.getType(SrcReg));
432
433 const TargetRegisterClass *DstRC = MRI.getRegClassOrNull(DstReg);
434 const TargetRegisterClass *SrcRC = MRI.getRegClassOrNull(SrcReg);
435 if (DstRC != SrcRC && SrcRC)
436 MRI.setRegClass(DstReg, SrcRC);
437 }
438 }
439}
440
441// Return true if the type represents a constant register
444 OpDef = passCopy(OpDef, MRI);
445
446 if (Visited.contains(OpDef))
447 return true;
448 Visited.insert(OpDef);
449
450 unsigned Opcode = OpDef->getOpcode();
451 switch (Opcode) {
452 case TargetOpcode::G_CONSTANT:
453 case TargetOpcode::G_FCONSTANT:
454 return true;
455 case TargetOpcode::G_INTRINSIC:
456 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
457 case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS:
458 return cast<GIntrinsic>(*OpDef).getIntrinsicID() ==
459 Intrinsic::spv_const_composite;
460 case TargetOpcode::G_BUILD_VECTOR:
461 case TargetOpcode::G_SPLAT_VECTOR: {
462 for (unsigned i = OpDef->getNumExplicitDefs(); i < OpDef->getNumOperands();
463 i++) {
464 MachineInstr *OpNestedDef =
465 OpDef->getOperand(i).isReg()
466 ? MRI->getVRegDef(OpDef->getOperand(i).getReg())
467 : nullptr;
468 if (OpNestedDef && !isConstReg(MRI, OpNestedDef, Visited))
469 return false;
470 }
471 return true;
472 case SPIRV::OpConstantTrue:
473 case SPIRV::OpConstantFalse:
474 case SPIRV::OpConstantI:
475 case SPIRV::OpConstantF:
476 case SPIRV::OpConstantComposite:
477 case SPIRV::OpConstantCompositeContinuedINTEL:
478 case SPIRV::OpConstantSampler:
479 case SPIRV::OpConstantNull:
480 case SPIRV::OpUndef:
481 case SPIRV::OpConstantFunctionPointerINTEL:
482 return true;
483 }
484 }
485 return false;
486}
487
488// Return true if the virtual register represents a constant
491 if (MachineInstr *OpDef = MRI->getVRegDef(OpReg))
492 return isConstReg(MRI, OpDef, Visited);
493 return false;
494}
495
497 for (const auto &MO : MI.all_defs()) {
498 Register Reg = MO.getReg();
499 if (Reg.isPhysical() || !MRI.use_nodbg_empty(Reg))
500 return false;
501 }
502 if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE || MI.isFakeUse() ||
503 MI.isLifetimeMarker())
504 return false;
505 if (MI.isPHI())
506 return true;
507 if (MI.mayStore() || MI.isCall() ||
508 (MI.mayLoad() && MI.hasOrderedMemoryRef()) || MI.isPosition() ||
509 MI.isDebugInstr() || MI.isTerminator() || MI.isJumpTableDebugInfo())
510 return false;
511 return true;
512}
513
514bool SPIRVInstructionSelector::select(MachineInstr &I) {
515 resetVRegsType(*I.getParent()->getParent());
516
517 assert(I.getParent() && "Instruction should be in a basic block!");
518 assert(I.getParent()->getParent() && "Instruction should be in a function!");
519
520 Register Opcode = I.getOpcode();
521 // If it's not a GMIR instruction, we've selected it already.
522 if (!isPreISelGenericOpcode(Opcode)) {
523 if (Opcode == SPIRV::ASSIGN_TYPE) { // These pseudos aren't needed any more.
524 Register DstReg = I.getOperand(0).getReg();
525 Register SrcReg = I.getOperand(1).getReg();
526 auto *Def = MRI->getVRegDef(SrcReg);
527 if (isTypeFoldingSupported(Def->getOpcode()) &&
528 Def->getOpcode() != TargetOpcode::G_CONSTANT &&
529 Def->getOpcode() != TargetOpcode::G_FCONSTANT) {
530 bool Res = false;
531 if (Def->getOpcode() == TargetOpcode::G_SELECT) {
532 Register SelectDstReg = Def->getOperand(0).getReg();
533 Res = selectSelect(SelectDstReg, GR.getSPIRVTypeForVReg(SelectDstReg),
534 *Def);
536 Def->removeFromParent();
537 MRI->replaceRegWith(DstReg, SelectDstReg);
539 I.removeFromParent();
540 } else
541 Res = selectImpl(I, *CoverageInfo);
542 LLVM_DEBUG({
543 if (!Res && Def->getOpcode() != TargetOpcode::G_CONSTANT) {
544 dbgs() << "Unexpected pattern in ASSIGN_TYPE.\nInstruction: ";
545 I.print(dbgs());
546 }
547 });
548 assert(Res || Def->getOpcode() == TargetOpcode::G_CONSTANT);
549 if (Res) {
550 if (!isTriviallyDead(*Def, *MRI) && isDead(*Def, *MRI))
551 DeadMIs.insert(Def);
552 return Res;
553 }
554 }
555 MRI->setRegClass(SrcReg, MRI->getRegClass(DstReg));
556 MRI->replaceRegWith(SrcReg, DstReg);
558 I.removeFromParent();
559 return true;
560 } else if (I.getNumDefs() == 1) {
561 // Make all vregs 64 bits (for SPIR-V IDs).
562 MRI->setType(I.getOperand(0).getReg(), LLT::scalar(64));
563 }
565 }
566
567 if (DeadMIs.contains(&I)) {
568 // if the instruction has been already made dead by folding it away
569 // erase it
570 LLVM_DEBUG(dbgs() << "Instruction is folded and dead.\n");
573 I.eraseFromParent();
574 return true;
575 }
576
577 if (I.getNumOperands() != I.getNumExplicitOperands()) {
578 LLVM_DEBUG(errs() << "Generic instr has unexpected implicit operands\n");
579 return false;
580 }
581
582 // Common code for getting return reg+type, and removing selected instr
583 // from parent occurs here. Instr-specific selection happens in spvSelect().
584 bool HasDefs = I.getNumDefs() > 0;
585 Register ResVReg = HasDefs ? I.getOperand(0).getReg() : Register(0);
586 SPIRVType *ResType = HasDefs ? GR.getSPIRVTypeForVReg(ResVReg) : nullptr;
587 assert(!HasDefs || ResType || I.getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
588 I.getOpcode() == TargetOpcode::G_IMPLICIT_DEF);
589 if (spvSelect(ResVReg, ResType, I)) {
590 if (HasDefs) // Make all vregs 64 bits (for SPIR-V IDs).
591 for (unsigned i = 0; i < I.getNumDefs(); ++i)
592 MRI->setType(I.getOperand(i).getReg(), LLT::scalar(64));
594 I.removeFromParent();
595 return true;
596 }
597 return false;
598}
599
600static bool mayApplyGenericSelection(unsigned Opcode) {
601 switch (Opcode) {
602 case TargetOpcode::G_CONSTANT:
603 case TargetOpcode::G_FCONSTANT:
604 return false;
605 case TargetOpcode::G_SADDO:
606 case TargetOpcode::G_SSUBO:
607 return true;
608 }
609 return isTypeFoldingSupported(Opcode);
610}
611
612bool SPIRVInstructionSelector::BuildCOPY(Register DestReg, Register SrcReg,
613 MachineInstr &I) const {
614 const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(DestReg);
615 const TargetRegisterClass *SrcRC = MRI->getRegClassOrNull(SrcReg);
616 if (DstRC != SrcRC && SrcRC)
617 MRI->setRegClass(DestReg, SrcRC);
618 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
619 TII.get(TargetOpcode::COPY))
620 .addDef(DestReg)
621 .addUse(SrcReg)
622 .constrainAllUses(TII, TRI, RBI);
623}
624
625bool SPIRVInstructionSelector::spvSelect(Register ResVReg,
626 const SPIRVType *ResType,
627 MachineInstr &I) const {
628 const unsigned Opcode = I.getOpcode();
629 if (mayApplyGenericSelection(Opcode))
630 return selectImpl(I, *CoverageInfo);
631 switch (Opcode) {
632 case TargetOpcode::G_CONSTANT:
633 case TargetOpcode::G_FCONSTANT:
634 return selectConst(ResVReg, ResType, I);
635 case TargetOpcode::G_GLOBAL_VALUE:
636 return selectGlobalValue(ResVReg, I);
637 case TargetOpcode::G_IMPLICIT_DEF:
638 return selectOpUndef(ResVReg, ResType, I);
639 case TargetOpcode::G_FREEZE:
640 return selectFreeze(ResVReg, ResType, I);
641
642 case TargetOpcode::G_INTRINSIC:
643 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
644 case TargetOpcode::G_INTRINSIC_CONVERGENT:
645 case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS:
646 return selectIntrinsic(ResVReg, ResType, I);
647 case TargetOpcode::G_BITREVERSE:
648 return selectBitreverse(ResVReg, ResType, I);
649
650 case TargetOpcode::G_BUILD_VECTOR:
651 return selectBuildVector(ResVReg, ResType, I);
652 case TargetOpcode::G_SPLAT_VECTOR:
653 return selectSplatVector(ResVReg, ResType, I);
654
655 case TargetOpcode::G_SHUFFLE_VECTOR: {
656 MachineBasicBlock &BB = *I.getParent();
657 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorShuffle))
658 .addDef(ResVReg)
659 .addUse(GR.getSPIRVTypeID(ResType))
660 .addUse(I.getOperand(1).getReg())
661 .addUse(I.getOperand(2).getReg());
662 for (auto V : I.getOperand(3).getShuffleMask())
663 MIB.addImm(V);
664 return MIB.constrainAllUses(TII, TRI, RBI);
665 }
666 case TargetOpcode::G_MEMMOVE:
667 case TargetOpcode::G_MEMCPY:
668 case TargetOpcode::G_MEMSET:
669 return selectMemOperation(ResVReg, I);
670
671 case TargetOpcode::G_ICMP:
672 return selectICmp(ResVReg, ResType, I);
673 case TargetOpcode::G_FCMP:
674 return selectFCmp(ResVReg, ResType, I);
675
676 case TargetOpcode::G_FRAME_INDEX:
677 return selectFrameIndex(ResVReg, ResType, I);
678
679 case TargetOpcode::G_LOAD:
680 return selectLoad(ResVReg, ResType, I);
681 case TargetOpcode::G_STORE:
682 return selectStore(I);
683
684 case TargetOpcode::G_BR:
685 return selectBranch(I);
686 case TargetOpcode::G_BRCOND:
687 return selectBranchCond(I);
688
689 case TargetOpcode::G_PHI:
690 return selectPhi(ResVReg, ResType, I);
691
692 case TargetOpcode::G_FPTOSI:
693 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToS);
694 case TargetOpcode::G_FPTOUI:
695 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToU);
696
697 case TargetOpcode::G_FPTOSI_SAT:
698 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToS);
699 case TargetOpcode::G_FPTOUI_SAT:
700 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToU);
701
702 case TargetOpcode::G_SITOFP:
703 return selectIToF(ResVReg, ResType, I, true, SPIRV::OpConvertSToF);
704 case TargetOpcode::G_UITOFP:
705 return selectIToF(ResVReg, ResType, I, false, SPIRV::OpConvertUToF);
706
707 case TargetOpcode::G_CTPOP:
708 return selectUnOp(ResVReg, ResType, I, SPIRV::OpBitCount);
709 case TargetOpcode::G_SMIN:
710 return selectExtInst(ResVReg, ResType, I, CL::s_min, GL::SMin);
711 case TargetOpcode::G_UMIN:
712 return selectExtInst(ResVReg, ResType, I, CL::u_min, GL::UMin);
713
714 case TargetOpcode::G_SMAX:
715 return selectExtInst(ResVReg, ResType, I, CL::s_max, GL::SMax);
716 case TargetOpcode::G_UMAX:
717 return selectExtInst(ResVReg, ResType, I, CL::u_max, GL::UMax);
718
719 case TargetOpcode::G_SCMP:
720 return selectSUCmp(ResVReg, ResType, I, true);
721 case TargetOpcode::G_UCMP:
722 return selectSUCmp(ResVReg, ResType, I, false);
723 case TargetOpcode::G_LROUND:
724 case TargetOpcode::G_LLROUND: {
725 Register regForLround =
726 MRI->createVirtualRegister(MRI->getRegClass(ResVReg), "lround");
727 MRI->setRegClass(regForLround, &SPIRV::iIDRegClass);
728 GR.assignSPIRVTypeToVReg(GR.getSPIRVTypeForVReg(I.getOperand(1).getReg()),
729 regForLround, *(I.getParent()->getParent()));
730 selectExtInstForLRound(regForLround, GR.getSPIRVTypeForVReg(regForLround),
731 I, CL::round, GL::Round);
732 MachineBasicBlock &BB = *I.getParent();
733 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConvertFToS))
734 .addDef(ResVReg)
735 .addUse(GR.getSPIRVTypeID(ResType))
736 .addUse(regForLround);
737 return MIB.constrainAllUses(TII, TRI, RBI);
738 }
739 case TargetOpcode::G_STRICT_FMA:
740 case TargetOpcode::G_FMA:
741 return selectExtInst(ResVReg, ResType, I, CL::fma, GL::Fma);
742
743 case TargetOpcode::G_STRICT_FLDEXP:
744 return selectExtInst(ResVReg, ResType, I, CL::ldexp);
745
746 case TargetOpcode::G_FPOW:
747 return selectExtInst(ResVReg, ResType, I, CL::pow, GL::Pow);
748 case TargetOpcode::G_FPOWI:
749 return selectExtInst(ResVReg, ResType, I, CL::pown);
750
751 case TargetOpcode::G_FEXP:
752 return selectExtInst(ResVReg, ResType, I, CL::exp, GL::Exp);
753 case TargetOpcode::G_FEXP2:
754 return selectExtInst(ResVReg, ResType, I, CL::exp2, GL::Exp2);
755 case TargetOpcode::G_FMODF:
756 return selectModf(ResVReg, ResType, I);
757
758 case TargetOpcode::G_FLOG:
759 return selectExtInst(ResVReg, ResType, I, CL::log, GL::Log);
760 case TargetOpcode::G_FLOG2:
761 return selectExtInst(ResVReg, ResType, I, CL::log2, GL::Log2);
762 case TargetOpcode::G_FLOG10:
763 return selectLog10(ResVReg, ResType, I);
764
765 case TargetOpcode::G_FABS:
766 return selectExtInst(ResVReg, ResType, I, CL::fabs, GL::FAbs);
767 case TargetOpcode::G_ABS:
768 return selectExtInst(ResVReg, ResType, I, CL::s_abs, GL::SAbs);
769
770 case TargetOpcode::G_FMINNUM:
771 case TargetOpcode::G_FMINIMUM:
772 return selectExtInst(ResVReg, ResType, I, CL::fmin, GL::NMin);
773 case TargetOpcode::G_FMAXNUM:
774 case TargetOpcode::G_FMAXIMUM:
775 return selectExtInst(ResVReg, ResType, I, CL::fmax, GL::NMax);
776
777 case TargetOpcode::G_FCOPYSIGN:
778 return selectExtInst(ResVReg, ResType, I, CL::copysign);
779
780 case TargetOpcode::G_FCEIL:
781 return selectExtInst(ResVReg, ResType, I, CL::ceil, GL::Ceil);
782 case TargetOpcode::G_FFLOOR:
783 return selectExtInst(ResVReg, ResType, I, CL::floor, GL::Floor);
784
785 case TargetOpcode::G_FCOS:
786 return selectExtInst(ResVReg, ResType, I, CL::cos, GL::Cos);
787 case TargetOpcode::G_FSIN:
788 return selectExtInst(ResVReg, ResType, I, CL::sin, GL::Sin);
789 case TargetOpcode::G_FTAN:
790 return selectExtInst(ResVReg, ResType, I, CL::tan, GL::Tan);
791 case TargetOpcode::G_FACOS:
792 return selectExtInst(ResVReg, ResType, I, CL::acos, GL::Acos);
793 case TargetOpcode::G_FASIN:
794 return selectExtInst(ResVReg, ResType, I, CL::asin, GL::Asin);
795 case TargetOpcode::G_FATAN:
796 return selectExtInst(ResVReg, ResType, I, CL::atan, GL::Atan);
797 case TargetOpcode::G_FATAN2:
798 return selectExtInst(ResVReg, ResType, I, CL::atan2, GL::Atan2);
799 case TargetOpcode::G_FCOSH:
800 return selectExtInst(ResVReg, ResType, I, CL::cosh, GL::Cosh);
801 case TargetOpcode::G_FSINH:
802 return selectExtInst(ResVReg, ResType, I, CL::sinh, GL::Sinh);
803 case TargetOpcode::G_FTANH:
804 return selectExtInst(ResVReg, ResType, I, CL::tanh, GL::Tanh);
805
806 case TargetOpcode::G_STRICT_FSQRT:
807 case TargetOpcode::G_FSQRT:
808 return selectExtInst(ResVReg, ResType, I, CL::sqrt, GL::Sqrt);
809
810 case TargetOpcode::G_CTTZ:
811 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
812 return selectExtInst(ResVReg, ResType, I, CL::ctz);
813 case TargetOpcode::G_CTLZ:
814 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
815 return selectExtInst(ResVReg, ResType, I, CL::clz);
816
817 case TargetOpcode::G_INTRINSIC_ROUND:
818 return selectExtInst(ResVReg, ResType, I, CL::round, GL::Round);
819 case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
820 return selectExtInst(ResVReg, ResType, I, CL::rint, GL::RoundEven);
821 case TargetOpcode::G_INTRINSIC_TRUNC:
822 return selectExtInst(ResVReg, ResType, I, CL::trunc, GL::Trunc);
823 case TargetOpcode::G_FRINT:
824 case TargetOpcode::G_FNEARBYINT:
825 return selectExtInst(ResVReg, ResType, I, CL::rint, GL::RoundEven);
826
827 case TargetOpcode::G_SMULH:
828 return selectExtInst(ResVReg, ResType, I, CL::s_mul_hi);
829 case TargetOpcode::G_UMULH:
830 return selectExtInst(ResVReg, ResType, I, CL::u_mul_hi);
831
832 case TargetOpcode::G_SADDSAT:
833 return selectExtInst(ResVReg, ResType, I, CL::s_add_sat);
834 case TargetOpcode::G_UADDSAT:
835 return selectExtInst(ResVReg, ResType, I, CL::u_add_sat);
836 case TargetOpcode::G_SSUBSAT:
837 return selectExtInst(ResVReg, ResType, I, CL::s_sub_sat);
838 case TargetOpcode::G_USUBSAT:
839 return selectExtInst(ResVReg, ResType, I, CL::u_sub_sat);
840
841 case TargetOpcode::G_FFREXP:
842 return selectFrexp(ResVReg, ResType, I);
843
844 case TargetOpcode::G_UADDO:
845 return selectOverflowArith(ResVReg, ResType, I,
846 ResType->getOpcode() == SPIRV::OpTypeVector
847 ? SPIRV::OpIAddCarryV
848 : SPIRV::OpIAddCarryS);
849 case TargetOpcode::G_USUBO:
850 return selectOverflowArith(ResVReg, ResType, I,
851 ResType->getOpcode() == SPIRV::OpTypeVector
852 ? SPIRV::OpISubBorrowV
853 : SPIRV::OpISubBorrowS);
854 case TargetOpcode::G_UMULO:
855 return selectOverflowArith(ResVReg, ResType, I, SPIRV::OpUMulExtended);
856 case TargetOpcode::G_SMULO:
857 return selectOverflowArith(ResVReg, ResType, I, SPIRV::OpSMulExtended);
858
859 case TargetOpcode::G_SEXT:
860 return selectExt(ResVReg, ResType, I, true);
861 case TargetOpcode::G_ANYEXT:
862 case TargetOpcode::G_ZEXT:
863 return selectExt(ResVReg, ResType, I, false);
864 case TargetOpcode::G_TRUNC:
865 return selectTrunc(ResVReg, ResType, I);
866 case TargetOpcode::G_FPTRUNC:
867 case TargetOpcode::G_FPEXT:
868 return selectUnOp(ResVReg, ResType, I, SPIRV::OpFConvert);
869
870 case TargetOpcode::G_PTRTOINT:
871 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertPtrToU);
872 case TargetOpcode::G_INTTOPTR:
873 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertUToPtr);
874 case TargetOpcode::G_BITCAST:
875 return selectBitcast(ResVReg, ResType, I);
876 case TargetOpcode::G_ADDRSPACE_CAST:
877 return selectAddrSpaceCast(ResVReg, ResType, I);
878 case TargetOpcode::G_PTR_ADD: {
879 // Currently, we get G_PTR_ADD only applied to global variables.
880 assert(I.getOperand(1).isReg() && I.getOperand(2).isReg());
881 Register GV = I.getOperand(1).getReg();
882 MachineRegisterInfo::def_instr_iterator II = MRI->def_instr_begin(GV);
883 (void)II;
884 assert(((*II).getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
885 (*II).getOpcode() == TargetOpcode::COPY ||
886 (*II).getOpcode() == SPIRV::OpVariable) &&
887 getImm(I.getOperand(2), MRI));
888 // It may be the initialization of a global variable.
889 bool IsGVInit = false;
891 UseIt = MRI->use_instr_begin(I.getOperand(0).getReg()),
892 UseEnd = MRI->use_instr_end();
893 UseIt != UseEnd; UseIt = std::next(UseIt)) {
894 if ((*UseIt).getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
895 (*UseIt).getOpcode() == SPIRV::OpVariable) {
896 IsGVInit = true;
897 break;
898 }
899 }
900 MachineBasicBlock &BB = *I.getParent();
901 if (!IsGVInit) {
902 SPIRVType *GVType = GR.getSPIRVTypeForVReg(GV);
903 SPIRVType *GVPointeeType = GR.getPointeeType(GVType);
904 SPIRVType *ResPointeeType = GR.getPointeeType(ResType);
905 if (GVPointeeType && ResPointeeType && GVPointeeType != ResPointeeType) {
906 // Build a new virtual register that is associated with the required
907 // data type.
908 Register NewVReg = MRI->createGenericVirtualRegister(MRI->getType(GV));
909 MRI->setRegClass(NewVReg, MRI->getRegClass(GV));
910 // Having a correctly typed base we are ready to build the actually
911 // required GEP. It may not be a constant though, because all Operands
912 // of OpSpecConstantOp is to originate from other const instructions,
913 // and only the AccessChain named opcodes accept a global OpVariable
914 // instruction. We can't use an AccessChain opcode because of the type
915 // mismatch between result and base types.
916 if (!GR.isBitcastCompatible(ResType, GVType))
918 "incompatible result and operand types in a bitcast");
919 Register ResTypeReg = GR.getSPIRVTypeID(ResType);
920 MachineInstrBuilder MIB =
921 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpBitcast))
922 .addDef(NewVReg)
923 .addUse(ResTypeReg)
924 .addUse(GV);
925 return MIB.constrainAllUses(TII, TRI, RBI) &&
926 BuildMI(BB, I, I.getDebugLoc(),
927 TII.get(STI.isLogicalSPIRV()
928 ? SPIRV::OpInBoundsAccessChain
929 : SPIRV::OpInBoundsPtrAccessChain))
930 .addDef(ResVReg)
931 .addUse(ResTypeReg)
932 .addUse(NewVReg)
933 .addUse(I.getOperand(2).getReg())
934 .constrainAllUses(TII, TRI, RBI);
935 } else {
936 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSpecConstantOp))
937 .addDef(ResVReg)
938 .addUse(GR.getSPIRVTypeID(ResType))
939 .addImm(
940 static_cast<uint32_t>(SPIRV::Opcode::InBoundsPtrAccessChain))
941 .addUse(GV)
942 .addUse(I.getOperand(2).getReg())
943 .constrainAllUses(TII, TRI, RBI);
944 }
945 }
946 // It's possible to translate G_PTR_ADD to OpSpecConstantOp: either to
947 // initialize a global variable with a constant expression (e.g., the test
948 // case opencl/basic/progvar_prog_scope_init.ll), or for another use case
949 Register Idx = buildZerosVal(GR.getOrCreateSPIRVIntegerType(32, I, TII), I);
950 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSpecConstantOp))
951 .addDef(ResVReg)
952 .addUse(GR.getSPIRVTypeID(ResType))
953 .addImm(static_cast<uint32_t>(
954 SPIRV::Opcode::InBoundsPtrAccessChain))
955 .addUse(GV)
956 .addUse(Idx)
957 .addUse(I.getOperand(2).getReg());
958 return MIB.constrainAllUses(TII, TRI, RBI);
959 }
960
961 case TargetOpcode::G_ATOMICRMW_OR:
962 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicOr);
963 case TargetOpcode::G_ATOMICRMW_ADD:
964 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicIAdd);
965 case TargetOpcode::G_ATOMICRMW_AND:
966 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicAnd);
967 case TargetOpcode::G_ATOMICRMW_MAX:
968 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicSMax);
969 case TargetOpcode::G_ATOMICRMW_MIN:
970 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicSMin);
971 case TargetOpcode::G_ATOMICRMW_SUB:
972 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicISub);
973 case TargetOpcode::G_ATOMICRMW_XOR:
974 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicXor);
975 case TargetOpcode::G_ATOMICRMW_UMAX:
976 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicUMax);
977 case TargetOpcode::G_ATOMICRMW_UMIN:
978 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicUMin);
979 case TargetOpcode::G_ATOMICRMW_XCHG:
980 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicExchange);
981 case TargetOpcode::G_ATOMIC_CMPXCHG:
982 return selectAtomicCmpXchg(ResVReg, ResType, I);
983
984 case TargetOpcode::G_ATOMICRMW_FADD:
985 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFAddEXT);
986 case TargetOpcode::G_ATOMICRMW_FSUB:
987 // Translate G_ATOMICRMW_FSUB to OpAtomicFAddEXT with negative value operand
988 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFAddEXT,
989 SPIRV::OpFNegate);
990 case TargetOpcode::G_ATOMICRMW_FMIN:
991 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFMinEXT);
992 case TargetOpcode::G_ATOMICRMW_FMAX:
993 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFMaxEXT);
994
995 case TargetOpcode::G_FENCE:
996 return selectFence(I);
997
998 case TargetOpcode::G_STACKSAVE:
999 return selectStackSave(ResVReg, ResType, I);
1000 case TargetOpcode::G_STACKRESTORE:
1001 return selectStackRestore(I);
1002
1003 case TargetOpcode::G_UNMERGE_VALUES:
1004 return selectUnmergeValues(I);
1005
1006 // Discard gen opcodes for intrinsics which we do not expect to actually
1007 // represent code after lowering or intrinsics which are not implemented but
1008 // should not crash when found in a customer's LLVM IR input.
1009 case TargetOpcode::G_TRAP:
1010 case TargetOpcode::G_UBSANTRAP:
1011 case TargetOpcode::DBG_LABEL:
1012 return true;
1013 case TargetOpcode::G_DEBUGTRAP:
1014 return selectDebugTrap(ResVReg, ResType, I);
1015
1016 default:
1017 return false;
1018 }
1019}
1020
1021bool SPIRVInstructionSelector::selectDebugTrap(Register ResVReg,
1022 const SPIRVType *ResType,
1023 MachineInstr &I) const {
1024 unsigned Opcode = SPIRV::OpNop;
1025 MachineBasicBlock &BB = *I.getParent();
1026 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
1027 .constrainAllUses(TII, TRI, RBI);
1028}
1029
1030bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
1031 const SPIRVType *ResType,
1032 MachineInstr &I,
1033 GL::GLSLExtInst GLInst) const {
1034 if (!STI.canUseExtInstSet(
1035 SPIRV::InstructionSet::InstructionSet::GLSL_std_450)) {
1036 std::string DiagMsg;
1037 raw_string_ostream OS(DiagMsg);
1038 I.print(OS, true, false, false, false);
1039 DiagMsg += " is only supported with the GLSL extended instruction set.\n";
1040 report_fatal_error(DiagMsg.c_str(), false);
1041 }
1042 return selectExtInst(ResVReg, ResType, I,
1043 {{SPIRV::InstructionSet::GLSL_std_450, GLInst}});
1044}
1045
1046bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
1047 const SPIRVType *ResType,
1048 MachineInstr &I,
1049 CL::OpenCLExtInst CLInst) const {
1050 return selectExtInst(ResVReg, ResType, I,
1051 {{SPIRV::InstructionSet::OpenCL_std, CLInst}});
1052}
1053
1054bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
1055 const SPIRVType *ResType,
1056 MachineInstr &I,
1057 CL::OpenCLExtInst CLInst,
1058 GL::GLSLExtInst GLInst) const {
1059 ExtInstList ExtInsts = {{SPIRV::InstructionSet::OpenCL_std, CLInst},
1060 {SPIRV::InstructionSet::GLSL_std_450, GLInst}};
1061 return selectExtInst(ResVReg, ResType, I, ExtInsts);
1062}
1063
1064bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
1065 const SPIRVType *ResType,
1066 MachineInstr &I,
1067 const ExtInstList &Insts) const {
1068
1069 for (const auto &Ex : Insts) {
1070 SPIRV::InstructionSet::InstructionSet Set = Ex.first;
1071 uint32_t Opcode = Ex.second;
1072 if (STI.canUseExtInstSet(Set)) {
1073 MachineBasicBlock &BB = *I.getParent();
1074 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
1075 .addDef(ResVReg)
1076 .addUse(GR.getSPIRVTypeID(ResType))
1077 .addImm(static_cast<uint32_t>(Set))
1078 .addImm(Opcode)
1079 .setMIFlags(I.getFlags());
1080 const unsigned NumOps = I.getNumOperands();
1081 unsigned Index = 1;
1082 if (Index < NumOps &&
1083 I.getOperand(Index).getType() ==
1084 MachineOperand::MachineOperandType::MO_IntrinsicID)
1085 Index = 2;
1086 for (; Index < NumOps; ++Index)
1087 MIB.add(I.getOperand(Index));
1088 return MIB.constrainAllUses(TII, TRI, RBI);
1089 }
1090 }
1091 return false;
1092}
1093bool SPIRVInstructionSelector::selectExtInstForLRound(
1094 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
1095 CL::OpenCLExtInst CLInst, GL::GLSLExtInst GLInst) const {
1096 ExtInstList ExtInsts = {{SPIRV::InstructionSet::OpenCL_std, CLInst},
1097 {SPIRV::InstructionSet::GLSL_std_450, GLInst}};
1098 return selectExtInstForLRound(ResVReg, ResType, I, ExtInsts);
1099}
1100
1101bool SPIRVInstructionSelector::selectExtInstForLRound(
1102 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
1103 const ExtInstList &Insts) const {
1104 for (const auto &Ex : Insts) {
1105 SPIRV::InstructionSet::InstructionSet Set = Ex.first;
1106 uint32_t Opcode = Ex.second;
1107 if (STI.canUseExtInstSet(Set)) {
1108 MachineBasicBlock &BB = *I.getParent();
1109 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
1110 .addDef(ResVReg)
1111 .addUse(GR.getSPIRVTypeID(ResType))
1112 .addImm(static_cast<uint32_t>(Set))
1113 .addImm(Opcode);
1114 const unsigned NumOps = I.getNumOperands();
1115 unsigned Index = 1;
1116 if (Index < NumOps &&
1117 I.getOperand(Index).getType() ==
1118 MachineOperand::MachineOperandType::MO_IntrinsicID)
1119 Index = 2;
1120 for (; Index < NumOps; ++Index)
1121 MIB.add(I.getOperand(Index));
1122 MIB.constrainAllUses(TII, TRI, RBI);
1123 return true;
1124 }
1125 }
1126 return false;
1127}
1128
1129bool SPIRVInstructionSelector::selectFrexp(Register ResVReg,
1130 const SPIRVType *ResType,
1131 MachineInstr &I) const {
1132 ExtInstList ExtInsts = {{SPIRV::InstructionSet::OpenCL_std, CL::frexp},
1133 {SPIRV::InstructionSet::GLSL_std_450, GL::Frexp}};
1134 for (const auto &Ex : ExtInsts) {
1135 SPIRV::InstructionSet::InstructionSet Set = Ex.first;
1136 uint32_t Opcode = Ex.second;
1137 if (!STI.canUseExtInstSet(Set))
1138 continue;
1139
1140 MachineIRBuilder MIRBuilder(I);
1141 SPIRVType *PointeeTy = GR.getSPIRVTypeForVReg(I.getOperand(1).getReg());
1143 PointeeTy, MIRBuilder, SPIRV::StorageClass::Function);
1144 Register PointerVReg =
1145 createVirtualRegister(PointerType, &GR, MRI, MRI->getMF());
1146
1147 auto It = getOpVariableMBBIt(I);
1148 auto MIB = BuildMI(*It->getParent(), It, It->getDebugLoc(),
1149 TII.get(SPIRV::OpVariable))
1150 .addDef(PointerVReg)
1151 .addUse(GR.getSPIRVTypeID(PointerType))
1152 .addImm(static_cast<uint32_t>(SPIRV::StorageClass::Function))
1153 .constrainAllUses(TII, TRI, RBI);
1154
1155 MIB = MIB &
1156 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
1157 .addDef(ResVReg)
1158 .addUse(GR.getSPIRVTypeID(ResType))
1159 .addImm(static_cast<uint32_t>(Ex.first))
1160 .addImm(Opcode)
1161 .add(I.getOperand(2))
1162 .addUse(PointerVReg)
1163 .constrainAllUses(TII, TRI, RBI);
1164
1165 MIB = MIB &
1166 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
1167 .addDef(I.getOperand(1).getReg())
1168 .addUse(GR.getSPIRVTypeID(PointeeTy))
1169 .addUse(PointerVReg)
1170 .constrainAllUses(TII, TRI, RBI);
1171 return MIB;
1172 }
1173 return false;
1174}
1175
1176bool SPIRVInstructionSelector::selectOpWithSrcs(Register ResVReg,
1177 const SPIRVType *ResType,
1178 MachineInstr &I,
1179 std::vector<Register> Srcs,
1180 unsigned Opcode) const {
1181 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
1182 .addDef(ResVReg)
1183 .addUse(GR.getSPIRVTypeID(ResType));
1184 for (Register SReg : Srcs) {
1185 MIB.addUse(SReg);
1186 }
1187 return MIB.constrainAllUses(TII, TRI, RBI);
1188}
1189
1190bool SPIRVInstructionSelector::selectUnOp(Register ResVReg,
1191 const SPIRVType *ResType,
1192 MachineInstr &I,
1193 unsigned Opcode) const {
1194 if (STI.isPhysicalSPIRV() && I.getOperand(1).isReg()) {
1195 Register SrcReg = I.getOperand(1).getReg();
1196 bool IsGV = false;
1198 MRI->def_instr_begin(SrcReg);
1199 DefIt != MRI->def_instr_end(); DefIt = std::next(DefIt)) {
1200 if ((*DefIt).getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
1201 (*DefIt).getOpcode() == SPIRV::OpVariable) {
1202 IsGV = true;
1203 break;
1204 }
1205 }
1206 if (IsGV) {
1207 uint32_t SpecOpcode = 0;
1208 switch (Opcode) {
1209 case SPIRV::OpConvertPtrToU:
1210 SpecOpcode = static_cast<uint32_t>(SPIRV::Opcode::ConvertPtrToU);
1211 break;
1212 case SPIRV::OpConvertUToPtr:
1213 SpecOpcode = static_cast<uint32_t>(SPIRV::Opcode::ConvertUToPtr);
1214 break;
1215 }
1216 if (SpecOpcode)
1217 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
1218 TII.get(SPIRV::OpSpecConstantOp))
1219 .addDef(ResVReg)
1220 .addUse(GR.getSPIRVTypeID(ResType))
1221 .addImm(SpecOpcode)
1222 .addUse(SrcReg)
1223 .constrainAllUses(TII, TRI, RBI);
1224 }
1225 }
1226 return selectOpWithSrcs(ResVReg, ResType, I, {I.getOperand(1).getReg()},
1227 Opcode);
1228}
1229
1230bool SPIRVInstructionSelector::selectBitcast(Register ResVReg,
1231 const SPIRVType *ResType,
1232 MachineInstr &I) const {
1233 Register OpReg = I.getOperand(1).getReg();
1234 SPIRVType *OpType = OpReg.isValid() ? GR.getSPIRVTypeForVReg(OpReg) : nullptr;
1235 if (!GR.isBitcastCompatible(ResType, OpType))
1236 report_fatal_error("incompatible result and operand types in a bitcast");
1237 return selectUnOp(ResVReg, ResType, I, SPIRV::OpBitcast);
1238}
1239
1242 MachineIRBuilder &MIRBuilder,
1243 SPIRVGlobalRegistry &GR) {
1244 uint32_t SpvMemOp = static_cast<uint32_t>(SPIRV::MemoryOperand::None);
1245 if (MemOp->isVolatile())
1246 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Volatile);
1247 if (MemOp->isNonTemporal())
1248 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Nontemporal);
1249 if (MemOp->getAlign().value())
1250 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Aligned);
1251
1252 [[maybe_unused]] MachineInstr *AliasList = nullptr;
1253 [[maybe_unused]] MachineInstr *NoAliasList = nullptr;
1254 const SPIRVSubtarget *ST =
1255 static_cast<const SPIRVSubtarget *>(&MIRBuilder.getMF().getSubtarget());
1256 if (ST->canUseExtension(SPIRV::Extension::SPV_INTEL_memory_access_aliasing)) {
1257 if (auto *MD = MemOp->getAAInfo().Scope) {
1258 AliasList = GR.getOrAddMemAliasingINTELInst(MIRBuilder, MD);
1259 if (AliasList)
1260 SpvMemOp |=
1261 static_cast<uint32_t>(SPIRV::MemoryOperand::AliasScopeINTELMask);
1262 }
1263 if (auto *MD = MemOp->getAAInfo().NoAlias) {
1264 NoAliasList = GR.getOrAddMemAliasingINTELInst(MIRBuilder, MD);
1265 if (NoAliasList)
1266 SpvMemOp |=
1267 static_cast<uint32_t>(SPIRV::MemoryOperand::NoAliasINTELMask);
1268 }
1269 }
1270
1271 if (SpvMemOp != static_cast<uint32_t>(SPIRV::MemoryOperand::None)) {
1272 MIB.addImm(SpvMemOp);
1273 if (SpvMemOp & static_cast<uint32_t>(SPIRV::MemoryOperand::Aligned))
1274 MIB.addImm(MemOp->getAlign().value());
1275 if (AliasList)
1276 MIB.addUse(AliasList->getOperand(0).getReg());
1277 if (NoAliasList)
1278 MIB.addUse(NoAliasList->getOperand(0).getReg());
1279 }
1280}
1281
1283 uint32_t SpvMemOp = static_cast<uint32_t>(SPIRV::MemoryOperand::None);
1285 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Volatile);
1287 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Nontemporal);
1288
1289 if (SpvMemOp != static_cast<uint32_t>(SPIRV::MemoryOperand::None))
1290 MIB.addImm(SpvMemOp);
1291}
1292
1293bool SPIRVInstructionSelector::selectLoad(Register ResVReg,
1294 const SPIRVType *ResType,
1295 MachineInstr &I) const {
1296 unsigned OpOffset = isa<GIntrinsic>(I) ? 1 : 0;
1297 Register Ptr = I.getOperand(1 + OpOffset).getReg();
1298
1299 auto *PtrDef = getVRegDef(*MRI, Ptr);
1300 auto *IntPtrDef = dyn_cast<GIntrinsic>(PtrDef);
1301 if (IntPtrDef &&
1302 IntPtrDef->getIntrinsicID() == Intrinsic::spv_resource_getpointer) {
1303 Register HandleReg = IntPtrDef->getOperand(2).getReg();
1304 SPIRVType *HandleType = GR.getSPIRVTypeForVReg(HandleReg);
1305 if (HandleType->getOpcode() == SPIRV::OpTypeImage) {
1306 Register NewHandleReg =
1307 MRI->createVirtualRegister(MRI->getRegClass(HandleReg));
1308 auto *HandleDef = cast<GIntrinsic>(getVRegDef(*MRI, HandleReg));
1309 if (!loadHandleBeforePosition(NewHandleReg, HandleType, *HandleDef, I)) {
1310 return false;
1311 }
1312
1313 Register IdxReg = IntPtrDef->getOperand(3).getReg();
1314 return generateImageRead(ResVReg, ResType, NewHandleReg, IdxReg,
1315 I.getDebugLoc(), I);
1316 }
1317 }
1318
1319 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
1320 .addDef(ResVReg)
1321 .addUse(GR.getSPIRVTypeID(ResType))
1322 .addUse(Ptr);
1323 if (!I.getNumMemOperands()) {
1324 assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS ||
1325 I.getOpcode() ==
1326 TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS);
1327 addMemoryOperands(I.getOperand(2 + OpOffset).getImm(), MIB);
1328 } else {
1329 MachineIRBuilder MIRBuilder(I);
1330 addMemoryOperands(*I.memoperands_begin(), MIB, MIRBuilder, GR);
1331 }
1332 return MIB.constrainAllUses(TII, TRI, RBI);
1333}
1334
1335bool SPIRVInstructionSelector::selectStore(MachineInstr &I) const {
1336 unsigned OpOffset = isa<GIntrinsic>(I) ? 1 : 0;
1337 Register StoreVal = I.getOperand(0 + OpOffset).getReg();
1338 Register Ptr = I.getOperand(1 + OpOffset).getReg();
1339
1340 auto *PtrDef = getVRegDef(*MRI, Ptr);
1341 auto *IntPtrDef = dyn_cast<GIntrinsic>(PtrDef);
1342 if (IntPtrDef &&
1343 IntPtrDef->getIntrinsicID() == Intrinsic::spv_resource_getpointer) {
1344 Register HandleReg = IntPtrDef->getOperand(2).getReg();
1345 Register NewHandleReg =
1346 MRI->createVirtualRegister(MRI->getRegClass(HandleReg));
1347 auto *HandleDef = cast<GIntrinsic>(getVRegDef(*MRI, HandleReg));
1348 SPIRVType *HandleType = GR.getSPIRVTypeForVReg(HandleReg);
1349 if (!loadHandleBeforePosition(NewHandleReg, HandleType, *HandleDef, I)) {
1350 return false;
1351 }
1352
1353 Register IdxReg = IntPtrDef->getOperand(3).getReg();
1354 if (HandleType->getOpcode() == SPIRV::OpTypeImage) {
1355 auto BMI = BuildMI(*I.getParent(), I, I.getDebugLoc(),
1356 TII.get(SPIRV::OpImageWrite))
1357 .addUse(NewHandleReg)
1358 .addUse(IdxReg)
1359 .addUse(StoreVal);
1360
1361 const llvm::Type *LLVMHandleType = GR.getTypeForSPIRVType(HandleType);
1362 if (sampledTypeIsSignedInteger(LLVMHandleType))
1363 BMI.addImm(0x1000); // SignExtend
1364
1365 return BMI.constrainAllUses(TII, TRI, RBI);
1366 }
1367 }
1368
1369 MachineBasicBlock &BB = *I.getParent();
1370 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpStore))
1371 .addUse(Ptr)
1372 .addUse(StoreVal);
1373 if (!I.getNumMemOperands()) {
1374 assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS ||
1375 I.getOpcode() ==
1376 TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS);
1377 addMemoryOperands(I.getOperand(2 + OpOffset).getImm(), MIB);
1378 } else {
1379 MachineIRBuilder MIRBuilder(I);
1380 addMemoryOperands(*I.memoperands_begin(), MIB, MIRBuilder, GR);
1381 }
1382 return MIB.constrainAllUses(TII, TRI, RBI);
1383}
1384
1385bool SPIRVInstructionSelector::selectStackSave(Register ResVReg,
1386 const SPIRVType *ResType,
1387 MachineInstr &I) const {
1388 if (!STI.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array))
1390 "llvm.stacksave intrinsic: this instruction requires the following "
1391 "SPIR-V extension: SPV_INTEL_variable_length_array",
1392 false);
1393 MachineBasicBlock &BB = *I.getParent();
1394 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSaveMemoryINTEL))
1395 .addDef(ResVReg)
1396 .addUse(GR.getSPIRVTypeID(ResType))
1397 .constrainAllUses(TII, TRI, RBI);
1398}
1399
1400bool SPIRVInstructionSelector::selectStackRestore(MachineInstr &I) const {
1401 if (!STI.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array))
1403 "llvm.stackrestore intrinsic: this instruction requires the following "
1404 "SPIR-V extension: SPV_INTEL_variable_length_array",
1405 false);
1406 if (!I.getOperand(0).isReg())
1407 return false;
1408 MachineBasicBlock &BB = *I.getParent();
1409 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpRestoreMemoryINTEL))
1410 .addUse(I.getOperand(0).getReg())
1411 .constrainAllUses(TII, TRI, RBI);
1412}
1413
1414bool SPIRVInstructionSelector::selectMemOperation(Register ResVReg,
1415 MachineInstr &I) const {
1416 MachineBasicBlock &BB = *I.getParent();
1417 Register SrcReg = I.getOperand(1).getReg();
1418 bool Result = true;
1419 if (I.getOpcode() == TargetOpcode::G_MEMSET) {
1420 MachineIRBuilder MIRBuilder(I);
1421 assert(I.getOperand(1).isReg() && I.getOperand(2).isReg());
1422 unsigned Val = getIConstVal(I.getOperand(1).getReg(), MRI);
1423 unsigned Num = getIConstVal(I.getOperand(2).getReg(), MRI);
1424 Type *ValTy = Type::getInt8Ty(I.getMF()->getFunction().getContext());
1425 Type *ArrTy = ArrayType::get(ValTy, Num);
1427 ArrTy, MIRBuilder, SPIRV::StorageClass::UniformConstant);
1428
1429 SPIRVType *SpvArrTy = GR.getOrCreateSPIRVType(
1430 ArrTy, MIRBuilder, SPIRV::AccessQualifier::None, false);
1431 Register Const = GR.getOrCreateConstIntArray(Val, Num, I, SpvArrTy, TII);
1432 // TODO: check if we have such GV, add init, use buildGlobalVariable.
1433 Function &CurFunction = GR.CurMF->getFunction();
1434 Type *LLVMArrTy =
1435 ArrayType::get(IntegerType::get(CurFunction.getContext(), 8), Num);
1436 // Module takes ownership of the global var.
1437 GlobalVariable *GV = new GlobalVariable(*CurFunction.getParent(), LLVMArrTy,
1439 Constant::getNullValue(LLVMArrTy));
1440 Register VarReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1441 auto MIBVar =
1442 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpVariable))
1443 .addDef(VarReg)
1444 .addUse(GR.getSPIRVTypeID(VarTy))
1445 .addImm(SPIRV::StorageClass::UniformConstant)
1446 .addUse(Const);
1447 Result &= MIBVar.constrainAllUses(TII, TRI, RBI);
1448
1449 GR.add(GV, MIBVar);
1450 GR.addGlobalObject(GV, GR.CurMF, VarReg);
1451
1452 buildOpDecorate(VarReg, I, TII, SPIRV::Decoration::Constant, {});
1454 ValTy, I, SPIRV::StorageClass::UniformConstant);
1455 SrcReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1456 selectOpWithSrcs(SrcReg, SourceTy, I, {VarReg}, SPIRV::OpBitcast);
1457 }
1458 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCopyMemorySized))
1459 .addUse(I.getOperand(0).getReg())
1460 .addUse(SrcReg)
1461 .addUse(I.getOperand(2).getReg());
1462 if (I.getNumMemOperands()) {
1463 MachineIRBuilder MIRBuilder(I);
1464 addMemoryOperands(*I.memoperands_begin(), MIB, MIRBuilder, GR);
1465 }
1466 Result &= MIB.constrainAllUses(TII, TRI, RBI);
1467 if (ResVReg.isValid() && ResVReg != MIB->getOperand(0).getReg())
1468 Result &= BuildCOPY(ResVReg, MIB->getOperand(0).getReg(), I);
1469 return Result;
1470}
1471
1472bool SPIRVInstructionSelector::selectAtomicRMW(Register ResVReg,
1473 const SPIRVType *ResType,
1474 MachineInstr &I,
1475 unsigned NewOpcode,
1476 unsigned NegateOpcode) const {
1477 bool Result = true;
1478 assert(I.hasOneMemOperand());
1479 const MachineMemOperand *MemOp = *I.memoperands_begin();
1480 uint32_t Scope = static_cast<uint32_t>(getMemScope(
1481 GR.CurMF->getFunction().getContext(), MemOp->getSyncScopeID()));
1482 auto ScopeConstant = buildI32Constant(Scope, I);
1483 Register ScopeReg = ScopeConstant.first;
1484 Result &= ScopeConstant.second;
1485
1486 Register Ptr = I.getOperand(1).getReg();
1487 // TODO: Changed as it's implemented in the translator. See test/atomicrmw.ll
1488 // auto ScSem =
1489 // getMemSemanticsForStorageClass(GR.getPointerStorageClass(Ptr));
1490 AtomicOrdering AO = MemOp->getSuccessOrdering();
1491 uint32_t MemSem = static_cast<uint32_t>(getMemSemantics(AO));
1492 auto MemSemConstant = buildI32Constant(MemSem /*| ScSem*/, I);
1493 Register MemSemReg = MemSemConstant.first;
1494 Result &= MemSemConstant.second;
1495
1496 Register ValueReg = I.getOperand(2).getReg();
1497 if (NegateOpcode != 0) {
1498 // Translation with negative value operand is requested
1499 Register TmpReg = createVirtualRegister(ResType, &GR, MRI, MRI->getMF());
1500 Result &= selectOpWithSrcs(TmpReg, ResType, I, {ValueReg}, NegateOpcode);
1501 ValueReg = TmpReg;
1502 }
1503
1504 return Result &&
1505 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(NewOpcode))
1506 .addDef(ResVReg)
1507 .addUse(GR.getSPIRVTypeID(ResType))
1508 .addUse(Ptr)
1509 .addUse(ScopeReg)
1510 .addUse(MemSemReg)
1511 .addUse(ValueReg)
1512 .constrainAllUses(TII, TRI, RBI);
1513}
1514
1515bool SPIRVInstructionSelector::selectUnmergeValues(MachineInstr &I) const {
1516 unsigned ArgI = I.getNumOperands() - 1;
1517 Register SrcReg =
1518 I.getOperand(ArgI).isReg() ? I.getOperand(ArgI).getReg() : Register(0);
1519 SPIRVType *DefType =
1520 SrcReg.isValid() ? GR.getSPIRVTypeForVReg(SrcReg) : nullptr;
1521 if (!DefType || DefType->getOpcode() != SPIRV::OpTypeVector)
1523 "cannot select G_UNMERGE_VALUES with a non-vector argument");
1524
1525 SPIRVType *ScalarType =
1526 GR.getSPIRVTypeForVReg(DefType->getOperand(1).getReg());
1527 MachineBasicBlock &BB = *I.getParent();
1528 bool Res = false;
1529 for (unsigned i = 0; i < I.getNumDefs(); ++i) {
1530 Register ResVReg = I.getOperand(i).getReg();
1531 SPIRVType *ResType = GR.getSPIRVTypeForVReg(ResVReg);
1532 if (!ResType) {
1533 // There was no "assign type" actions, let's fix this now
1534 ResType = ScalarType;
1535 MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
1536 MRI->setType(ResVReg, LLT::scalar(GR.getScalarOrVectorBitWidth(ResType)));
1537 GR.assignSPIRVTypeToVReg(ResType, ResVReg, *GR.CurMF);
1538 }
1539 auto MIB =
1540 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
1541 .addDef(ResVReg)
1542 .addUse(GR.getSPIRVTypeID(ResType))
1543 .addUse(SrcReg)
1544 .addImm(static_cast<int64_t>(i));
1545 Res |= MIB.constrainAllUses(TII, TRI, RBI);
1546 }
1547 return Res;
1548}
1549
1550bool SPIRVInstructionSelector::selectFence(MachineInstr &I) const {
1551 AtomicOrdering AO = AtomicOrdering(I.getOperand(0).getImm());
1552 uint32_t MemSem = static_cast<uint32_t>(getMemSemantics(AO));
1553 auto MemSemConstant = buildI32Constant(MemSem, I);
1554 Register MemSemReg = MemSemConstant.first;
1555 bool Result = MemSemConstant.second;
1556 SyncScope::ID Ord = SyncScope::ID(I.getOperand(1).getImm());
1557 uint32_t Scope = static_cast<uint32_t>(
1558 getMemScope(GR.CurMF->getFunction().getContext(), Ord));
1559 auto ScopeConstant = buildI32Constant(Scope, I);
1560 Register ScopeReg = ScopeConstant.first;
1561 Result &= ScopeConstant.second;
1562 MachineBasicBlock &BB = *I.getParent();
1563 return Result &&
1564 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpMemoryBarrier))
1565 .addUse(ScopeReg)
1566 .addUse(MemSemReg)
1567 .constrainAllUses(TII, TRI, RBI);
1568}
1569
1570bool SPIRVInstructionSelector::selectOverflowArith(Register ResVReg,
1571 const SPIRVType *ResType,
1572 MachineInstr &I,
1573 unsigned Opcode) const {
1574 Type *ResTy = nullptr;
1575 StringRef ResName;
1576 if (!GR.findValueAttrs(&I, ResTy, ResName))
1578 "Not enough info to select the arithmetic with overflow instruction");
1579 if (!ResTy || !ResTy->isStructTy())
1580 report_fatal_error("Expect struct type result for the arithmetic "
1581 "with overflow instruction");
1582 // "Result Type must be from OpTypeStruct. The struct must have two members,
1583 // and the two members must be the same type."
1584 Type *ResElemTy = cast<StructType>(ResTy)->getElementType(0);
1585 ResTy = StructType::get(ResElemTy, ResElemTy);
1586 // Build SPIR-V types and constant(s) if needed.
1587 MachineIRBuilder MIRBuilder(I);
1588 SPIRVType *StructType = GR.getOrCreateSPIRVType(
1589 ResTy, MIRBuilder, SPIRV::AccessQualifier::ReadWrite, false);
1590 assert(I.getNumDefs() > 1 && "Not enought operands");
1591 SPIRVType *BoolType = GR.getOrCreateSPIRVBoolType(I, TII);
1592 unsigned N = GR.getScalarOrVectorComponentCount(ResType);
1593 if (N > 1)
1594 BoolType = GR.getOrCreateSPIRVVectorType(BoolType, N, I, TII);
1595 Register BoolTypeReg = GR.getSPIRVTypeID(BoolType);
1596 Register ZeroReg = buildZerosVal(ResType, I);
1597 // A new virtual register to store the result struct.
1598 Register StructVReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1599 MRI->setRegClass(StructVReg, &SPIRV::IDRegClass);
1600 // Build the result name if needed.
1601 if (ResName.size() > 0)
1602 buildOpName(StructVReg, ResName, MIRBuilder);
1603 // Build the arithmetic with overflow instruction.
1604 MachineBasicBlock &BB = *I.getParent();
1605 auto MIB =
1606 BuildMI(BB, MIRBuilder.getInsertPt(), I.getDebugLoc(), TII.get(Opcode))
1607 .addDef(StructVReg)
1608 .addUse(GR.getSPIRVTypeID(StructType));
1609 for (unsigned i = I.getNumDefs(); i < I.getNumOperands(); ++i)
1610 MIB.addUse(I.getOperand(i).getReg());
1611 bool Result = MIB.constrainAllUses(TII, TRI, RBI);
1612 // Build instructions to extract fields of the instruction's result.
1613 // A new virtual register to store the higher part of the result struct.
1614 Register HigherVReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1615 MRI->setRegClass(HigherVReg, &SPIRV::iIDRegClass);
1616 for (unsigned i = 0; i < I.getNumDefs(); ++i) {
1617 auto MIB =
1618 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
1619 .addDef(i == 1 ? HigherVReg : I.getOperand(i).getReg())
1620 .addUse(GR.getSPIRVTypeID(ResType))
1621 .addUse(StructVReg)
1622 .addImm(i);
1623 Result &= MIB.constrainAllUses(TII, TRI, RBI);
1624 }
1625 // Build boolean value from the higher part.
1626 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpINotEqual))
1627 .addDef(I.getOperand(1).getReg())
1628 .addUse(BoolTypeReg)
1629 .addUse(HigherVReg)
1630 .addUse(ZeroReg)
1631 .constrainAllUses(TII, TRI, RBI);
1632}
1633
1634bool SPIRVInstructionSelector::selectAtomicCmpXchg(Register ResVReg,
1635 const SPIRVType *ResType,
1636 MachineInstr &I) const {
1637 bool Result = true;
1638 Register ScopeReg;
1639 Register MemSemEqReg;
1640 Register MemSemNeqReg;
1641 Register Ptr = I.getOperand(2).getReg();
1642 if (!isa<GIntrinsic>(I)) {
1643 assert(I.hasOneMemOperand());
1644 const MachineMemOperand *MemOp = *I.memoperands_begin();
1645 unsigned Scope = static_cast<uint32_t>(getMemScope(
1646 GR.CurMF->getFunction().getContext(), MemOp->getSyncScopeID()));
1647 auto ScopeConstant = buildI32Constant(Scope, I);
1648 ScopeReg = ScopeConstant.first;
1649 Result &= ScopeConstant.second;
1650
1651 unsigned ScSem = static_cast<uint32_t>(
1653 AtomicOrdering AO = MemOp->getSuccessOrdering();
1654 unsigned MemSemEq = static_cast<uint32_t>(getMemSemantics(AO)) | ScSem;
1655 auto MemSemEqConstant = buildI32Constant(MemSemEq, I);
1656 MemSemEqReg = MemSemEqConstant.first;
1657 Result &= MemSemEqConstant.second;
1658 AtomicOrdering FO = MemOp->getFailureOrdering();
1659 unsigned MemSemNeq = static_cast<uint32_t>(getMemSemantics(FO)) | ScSem;
1660 if (MemSemEq == MemSemNeq)
1661 MemSemNeqReg = MemSemEqReg;
1662 else {
1663 auto MemSemNeqConstant = buildI32Constant(MemSemEq, I);
1664 MemSemNeqReg = MemSemNeqConstant.first;
1665 Result &= MemSemNeqConstant.second;
1666 }
1667 } else {
1668 ScopeReg = I.getOperand(5).getReg();
1669 MemSemEqReg = I.getOperand(6).getReg();
1670 MemSemNeqReg = I.getOperand(7).getReg();
1671 }
1672
1673 Register Cmp = I.getOperand(3).getReg();
1674 Register Val = I.getOperand(4).getReg();
1675 SPIRVType *SpvValTy = GR.getSPIRVTypeForVReg(Val);
1676 Register ACmpRes = createVirtualRegister(SpvValTy, &GR, MRI, *I.getMF());
1677 const DebugLoc &DL = I.getDebugLoc();
1678 Result &=
1679 BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpAtomicCompareExchange))
1680 .addDef(ACmpRes)
1681 .addUse(GR.getSPIRVTypeID(SpvValTy))
1682 .addUse(Ptr)
1683 .addUse(ScopeReg)
1684 .addUse(MemSemEqReg)
1685 .addUse(MemSemNeqReg)
1686 .addUse(Val)
1687 .addUse(Cmp)
1688 .constrainAllUses(TII, TRI, RBI);
1689 SPIRVType *BoolTy = GR.getOrCreateSPIRVBoolType(I, TII);
1690 Register CmpSuccReg = createVirtualRegister(BoolTy, &GR, MRI, *I.getMF());
1691 Result &= BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpIEqual))
1692 .addDef(CmpSuccReg)
1693 .addUse(GR.getSPIRVTypeID(BoolTy))
1694 .addUse(ACmpRes)
1695 .addUse(Cmp)
1696 .constrainAllUses(TII, TRI, RBI);
1697 Register TmpReg = createVirtualRegister(ResType, &GR, MRI, *I.getMF());
1698 Result &= BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpCompositeInsert))
1699 .addDef(TmpReg)
1700 .addUse(GR.getSPIRVTypeID(ResType))
1701 .addUse(ACmpRes)
1702 .addUse(GR.getOrCreateUndef(I, ResType, TII))
1703 .addImm(0)
1704 .constrainAllUses(TII, TRI, RBI);
1705 return Result &&
1706 BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpCompositeInsert))
1707 .addDef(ResVReg)
1708 .addUse(GR.getSPIRVTypeID(ResType))
1709 .addUse(CmpSuccReg)
1710 .addUse(TmpReg)
1711 .addImm(1)
1712 .constrainAllUses(TII, TRI, RBI);
1713}
1714
1715static bool isUSMStorageClass(SPIRV::StorageClass::StorageClass SC) {
1716 switch (SC) {
1717 case SPIRV::StorageClass::DeviceOnlyINTEL:
1718 case SPIRV::StorageClass::HostOnlyINTEL:
1719 return true;
1720 default:
1721 return false;
1722 }
1723}
1724
1725// Returns true ResVReg is referred only from global vars and OpName's.
1727 bool IsGRef = false;
1728 bool IsAllowedRefs =
1729 llvm::all_of(MRI->use_instructions(ResVReg), [&IsGRef](auto const &It) {
1730 unsigned Opcode = It.getOpcode();
1731 if (Opcode == SPIRV::OpConstantComposite ||
1732 Opcode == SPIRV::OpVariable ||
1733 isSpvIntrinsic(It, Intrinsic::spv_init_global))
1734 return IsGRef = true;
1735 return Opcode == SPIRV::OpName;
1736 });
1737 return IsAllowedRefs && IsGRef;
1738}
1739
1740Register SPIRVInstructionSelector::getUcharPtrTypeReg(
1741 MachineInstr &I, SPIRV::StorageClass::StorageClass SC) const {
1743 Type::getInt8Ty(I.getMF()->getFunction().getContext()), I, SC));
1744}
1745
1746MachineInstrBuilder
1747SPIRVInstructionSelector::buildSpecConstantOp(MachineInstr &I, Register Dest,
1748 Register Src, Register DestType,
1749 uint32_t Opcode) const {
1750 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
1751 TII.get(SPIRV::OpSpecConstantOp))
1752 .addDef(Dest)
1753 .addUse(DestType)
1754 .addImm(Opcode)
1755 .addUse(Src);
1756}
1757
1758MachineInstrBuilder
1759SPIRVInstructionSelector::buildConstGenericPtr(MachineInstr &I, Register SrcPtr,
1760 SPIRVType *SrcPtrTy) const {
1761 SPIRVType *GenericPtrTy =
1762 GR.changePointerStorageClass(SrcPtrTy, SPIRV::StorageClass::Generic, I);
1763 Register Tmp = MRI->createVirtualRegister(&SPIRV::pIDRegClass);
1765 SPIRV::StorageClass::Generic),
1766 GR.getPointerSize()));
1767 MachineFunction *MF = I.getParent()->getParent();
1768 GR.assignSPIRVTypeToVReg(GenericPtrTy, Tmp, *MF);
1769 MachineInstrBuilder MIB = buildSpecConstantOp(
1770 I, Tmp, SrcPtr, GR.getSPIRVTypeID(GenericPtrTy),
1771 static_cast<uint32_t>(SPIRV::Opcode::PtrCastToGeneric));
1772 GR.add(MIB.getInstr(), MIB);
1773 return MIB;
1774}
1775
1776// In SPIR-V address space casting can only happen to and from the Generic
1777// storage class. We can also only cast Workgroup, CrossWorkgroup, or Function
1778// pointers to and from Generic pointers. As such, we can convert e.g. from
1779// Workgroup to Function by going via a Generic pointer as an intermediary. All
1780// other combinations can only be done by a bitcast, and are probably not safe.
1781bool SPIRVInstructionSelector::selectAddrSpaceCast(Register ResVReg,
1782 const SPIRVType *ResType,
1783 MachineInstr &I) const {
1784 MachineBasicBlock &BB = *I.getParent();
1785 const DebugLoc &DL = I.getDebugLoc();
1786
1787 Register SrcPtr = I.getOperand(1).getReg();
1788 SPIRVType *SrcPtrTy = GR.getSPIRVTypeForVReg(SrcPtr);
1789
1790 // don't generate a cast for a null that may be represented by OpTypeInt
1791 if (SrcPtrTy->getOpcode() != SPIRV::OpTypePointer ||
1792 ResType->getOpcode() != SPIRV::OpTypePointer)
1793 return BuildCOPY(ResVReg, SrcPtr, I);
1794
1795 SPIRV::StorageClass::StorageClass SrcSC = GR.getPointerStorageClass(SrcPtrTy);
1796 SPIRV::StorageClass::StorageClass DstSC = GR.getPointerStorageClass(ResType);
1797
1798 if (isASCastInGVar(MRI, ResVReg)) {
1799 // AddrSpaceCast uses within OpVariable and OpConstantComposite instructions
1800 // are expressed by OpSpecConstantOp with an Opcode.
1801 // TODO: maybe insert a check whether the Kernel capability was declared and
1802 // so PtrCastToGeneric/GenericCastToPtr are available.
1803 unsigned SpecOpcode =
1804 DstSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(SrcSC)
1805 ? static_cast<uint32_t>(SPIRV::Opcode::PtrCastToGeneric)
1806 : (SrcSC == SPIRV::StorageClass::Generic &&
1808 ? static_cast<uint32_t>(SPIRV::Opcode::GenericCastToPtr)
1809 : 0);
1810 // TODO: OpConstantComposite expects i8*, so we are forced to forget a
1811 // correct value of ResType and use general i8* instead. Maybe this should
1812 // be addressed in the emit-intrinsic step to infer a correct
1813 // OpConstantComposite type.
1814 if (SpecOpcode) {
1815 return buildSpecConstantOp(I, ResVReg, SrcPtr,
1816 getUcharPtrTypeReg(I, DstSC), SpecOpcode)
1817 .constrainAllUses(TII, TRI, RBI);
1818 } else if (isGenericCastablePtr(SrcSC) && isGenericCastablePtr(DstSC)) {
1819 MachineInstrBuilder MIB = buildConstGenericPtr(I, SrcPtr, SrcPtrTy);
1820 return MIB.constrainAllUses(TII, TRI, RBI) &&
1821 buildSpecConstantOp(
1822 I, ResVReg, MIB->getOperand(0).getReg(),
1823 getUcharPtrTypeReg(I, DstSC),
1824 static_cast<uint32_t>(SPIRV::Opcode::GenericCastToPtr))
1825 .constrainAllUses(TII, TRI, RBI);
1826 }
1827 }
1828
1829 // don't generate a cast between identical storage classes
1830 if (SrcSC == DstSC)
1831 return BuildCOPY(ResVReg, SrcPtr, I);
1832
1833 if ((SrcSC == SPIRV::StorageClass::Function &&
1834 DstSC == SPIRV::StorageClass::Private) ||
1835 (DstSC == SPIRV::StorageClass::Function &&
1836 SrcSC == SPIRV::StorageClass::Private))
1837 return BuildCOPY(ResVReg, SrcPtr, I);
1838
1839 // Casting from an eligible pointer to Generic.
1840 if (DstSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(SrcSC))
1841 return selectUnOp(ResVReg, ResType, I, SPIRV::OpPtrCastToGeneric);
1842 // Casting from Generic to an eligible pointer.
1843 if (SrcSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(DstSC))
1844 return selectUnOp(ResVReg, ResType, I, SPIRV::OpGenericCastToPtr);
1845 // Casting between 2 eligible pointers using Generic as an intermediary.
1846 if (isGenericCastablePtr(SrcSC) && isGenericCastablePtr(DstSC)) {
1847 SPIRVType *GenericPtrTy =
1848 GR.changePointerStorageClass(SrcPtrTy, SPIRV::StorageClass::Generic, I);
1849 Register Tmp = createVirtualRegister(GenericPtrTy, &GR, MRI, MRI->getMF());
1850 bool Result = BuildMI(BB, I, DL, TII.get(SPIRV::OpPtrCastToGeneric))
1851 .addDef(Tmp)
1852 .addUse(GR.getSPIRVTypeID(GenericPtrTy))
1853 .addUse(SrcPtr)
1854 .constrainAllUses(TII, TRI, RBI);
1855 return Result && BuildMI(BB, I, DL, TII.get(SPIRV::OpGenericCastToPtr))
1856 .addDef(ResVReg)
1857 .addUse(GR.getSPIRVTypeID(ResType))
1858 .addUse(Tmp)
1859 .constrainAllUses(TII, TRI, RBI);
1860 }
1861
1862 // Check if instructions from the SPV_INTEL_usm_storage_classes extension may
1863 // be applied
1864 if (isUSMStorageClass(SrcSC) && DstSC == SPIRV::StorageClass::CrossWorkgroup)
1865 return selectUnOp(ResVReg, ResType, I,
1866 SPIRV::OpPtrCastToCrossWorkgroupINTEL);
1867 if (SrcSC == SPIRV::StorageClass::CrossWorkgroup && isUSMStorageClass(DstSC))
1868 return selectUnOp(ResVReg, ResType, I,
1869 SPIRV::OpCrossWorkgroupCastToPtrINTEL);
1870 if (isUSMStorageClass(SrcSC) && DstSC == SPIRV::StorageClass::Generic)
1871 return selectUnOp(ResVReg, ResType, I, SPIRV::OpPtrCastToGeneric);
1872 if (SrcSC == SPIRV::StorageClass::Generic && isUSMStorageClass(DstSC))
1873 return selectUnOp(ResVReg, ResType, I, SPIRV::OpGenericCastToPtr);
1874
1875 // Bitcast for pointers requires that the address spaces must match
1876 return false;
1877}
1878
1879static unsigned getFCmpOpcode(unsigned PredNum) {
1880 auto Pred = static_cast<CmpInst::Predicate>(PredNum);
1881 switch (Pred) {
1882 case CmpInst::FCMP_OEQ:
1883 return SPIRV::OpFOrdEqual;
1884 case CmpInst::FCMP_OGE:
1885 return SPIRV::OpFOrdGreaterThanEqual;
1886 case CmpInst::FCMP_OGT:
1887 return SPIRV::OpFOrdGreaterThan;
1888 case CmpInst::FCMP_OLE:
1889 return SPIRV::OpFOrdLessThanEqual;
1890 case CmpInst::FCMP_OLT:
1891 return SPIRV::OpFOrdLessThan;
1892 case CmpInst::FCMP_ONE:
1893 return SPIRV::OpFOrdNotEqual;
1894 case CmpInst::FCMP_ORD:
1895 return SPIRV::OpOrdered;
1896 case CmpInst::FCMP_UEQ:
1897 return SPIRV::OpFUnordEqual;
1898 case CmpInst::FCMP_UGE:
1899 return SPIRV::OpFUnordGreaterThanEqual;
1900 case CmpInst::FCMP_UGT:
1901 return SPIRV::OpFUnordGreaterThan;
1902 case CmpInst::FCMP_ULE:
1903 return SPIRV::OpFUnordLessThanEqual;
1904 case CmpInst::FCMP_ULT:
1905 return SPIRV::OpFUnordLessThan;
1906 case CmpInst::FCMP_UNE:
1907 return SPIRV::OpFUnordNotEqual;
1908 case CmpInst::FCMP_UNO:
1909 return SPIRV::OpUnordered;
1910 default:
1911 llvm_unreachable("Unknown predicate type for FCmp");
1912 }
1913}
1914
1915static unsigned getICmpOpcode(unsigned PredNum) {
1916 auto Pred = static_cast<CmpInst::Predicate>(PredNum);
1917 switch (Pred) {
1918 case CmpInst::ICMP_EQ:
1919 return SPIRV::OpIEqual;
1920 case CmpInst::ICMP_NE:
1921 return SPIRV::OpINotEqual;
1922 case CmpInst::ICMP_SGE:
1923 return SPIRV::OpSGreaterThanEqual;
1924 case CmpInst::ICMP_SGT:
1925 return SPIRV::OpSGreaterThan;
1926 case CmpInst::ICMP_SLE:
1927 return SPIRV::OpSLessThanEqual;
1928 case CmpInst::ICMP_SLT:
1929 return SPIRV::OpSLessThan;
1930 case CmpInst::ICMP_UGE:
1931 return SPIRV::OpUGreaterThanEqual;
1932 case CmpInst::ICMP_UGT:
1933 return SPIRV::OpUGreaterThan;
1934 case CmpInst::ICMP_ULE:
1935 return SPIRV::OpULessThanEqual;
1936 case CmpInst::ICMP_ULT:
1937 return SPIRV::OpULessThan;
1938 default:
1939 llvm_unreachable("Unknown predicate type for ICmp");
1940 }
1941}
1942
1943static unsigned getPtrCmpOpcode(unsigned Pred) {
1944 switch (static_cast<CmpInst::Predicate>(Pred)) {
1945 case CmpInst::ICMP_EQ:
1946 return SPIRV::OpPtrEqual;
1947 case CmpInst::ICMP_NE:
1948 return SPIRV::OpPtrNotEqual;
1949 default:
1950 llvm_unreachable("Unknown predicate type for pointer comparison");
1951 }
1952}
1953
1954// Return the logical operation, or abort if none exists.
1955static unsigned getBoolCmpOpcode(unsigned PredNum) {
1956 auto Pred = static_cast<CmpInst::Predicate>(PredNum);
1957 switch (Pred) {
1958 case CmpInst::ICMP_EQ:
1959 return SPIRV::OpLogicalEqual;
1960 case CmpInst::ICMP_NE:
1961 return SPIRV::OpLogicalNotEqual;
1962 default:
1963 llvm_unreachable("Unknown predicate type for Bool comparison");
1964 }
1965}
1966
1967static APFloat getZeroFP(const Type *LLVMFloatTy) {
1968 if (!LLVMFloatTy)
1970 switch (LLVMFloatTy->getScalarType()->getTypeID()) {
1971 case Type::HalfTyID:
1973 default:
1974 case Type::FloatTyID:
1976 case Type::DoubleTyID:
1978 }
1979}
1980
1981static APFloat getOneFP(const Type *LLVMFloatTy) {
1982 if (!LLVMFloatTy)
1984 switch (LLVMFloatTy->getScalarType()->getTypeID()) {
1985 case Type::HalfTyID:
1987 default:
1988 case Type::FloatTyID:
1990 case Type::DoubleTyID:
1992 }
1993}
1994
1995bool SPIRVInstructionSelector::selectAnyOrAll(Register ResVReg,
1996 const SPIRVType *ResType,
1997 MachineInstr &I,
1998 unsigned OpAnyOrAll) const {
1999 assert(I.getNumOperands() == 3);
2000 assert(I.getOperand(2).isReg());
2001 MachineBasicBlock &BB = *I.getParent();
2002 Register InputRegister = I.getOperand(2).getReg();
2003 SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
2004
2005 if (!InputType)
2006 report_fatal_error("Input Type could not be determined.");
2007
2008 bool IsBoolTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeBool);
2009 bool IsVectorTy = InputType->getOpcode() == SPIRV::OpTypeVector;
2010 if (IsBoolTy && !IsVectorTy) {
2011 assert(ResVReg == I.getOperand(0).getReg());
2012 return BuildCOPY(ResVReg, InputRegister, I);
2013 }
2014
2015 bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
2016 unsigned SpirvNotEqualId =
2017 IsFloatTy ? SPIRV::OpFOrdNotEqual : SPIRV::OpINotEqual;
2018 SPIRVType *SpvBoolScalarTy = GR.getOrCreateSPIRVBoolType(I, TII);
2019 SPIRVType *SpvBoolTy = SpvBoolScalarTy;
2020 Register NotEqualReg = ResVReg;
2021
2022 if (IsVectorTy) {
2023 NotEqualReg =
2024 IsBoolTy ? InputRegister
2025 : createVirtualRegister(SpvBoolTy, &GR, MRI, MRI->getMF());
2026 const unsigned NumElts = InputType->getOperand(2).getImm();
2027 SpvBoolTy = GR.getOrCreateSPIRVVectorType(SpvBoolTy, NumElts, I, TII);
2028 }
2029
2030 bool Result = true;
2031 if (!IsBoolTy) {
2032 Register ConstZeroReg =
2033 IsFloatTy ? buildZerosValF(InputType, I) : buildZerosVal(InputType, I);
2034
2035 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SpirvNotEqualId))
2036 .addDef(NotEqualReg)
2037 .addUse(GR.getSPIRVTypeID(SpvBoolTy))
2038 .addUse(InputRegister)
2039 .addUse(ConstZeroReg)
2040 .constrainAllUses(TII, TRI, RBI);
2041 }
2042
2043 if (!IsVectorTy)
2044 return Result;
2045
2046 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(OpAnyOrAll))
2047 .addDef(ResVReg)
2048 .addUse(GR.getSPIRVTypeID(SpvBoolScalarTy))
2049 .addUse(NotEqualReg)
2050 .constrainAllUses(TII, TRI, RBI);
2051}
2052
2053bool SPIRVInstructionSelector::selectAll(Register ResVReg,
2054 const SPIRVType *ResType,
2055 MachineInstr &I) const {
2056 return selectAnyOrAll(ResVReg, ResType, I, SPIRV::OpAll);
2057}
2058
2059bool SPIRVInstructionSelector::selectAny(Register ResVReg,
2060 const SPIRVType *ResType,
2061 MachineInstr &I) const {
2062 return selectAnyOrAll(ResVReg, ResType, I, SPIRV::OpAny);
2063}
2064
2065// Select the OpDot instruction for the given float dot
2066bool SPIRVInstructionSelector::selectFloatDot(Register ResVReg,
2067 const SPIRVType *ResType,
2068 MachineInstr &I) const {
2069 assert(I.getNumOperands() == 4);
2070 assert(I.getOperand(2).isReg());
2071 assert(I.getOperand(3).isReg());
2072
2073 [[maybe_unused]] SPIRVType *VecType =
2074 GR.getSPIRVTypeForVReg(I.getOperand(2).getReg());
2075
2076 assert(VecType->getOpcode() == SPIRV::OpTypeVector &&
2077 GR.getScalarOrVectorComponentCount(VecType) > 1 &&
2078 "dot product requires a vector of at least 2 components");
2079
2080 [[maybe_unused]] SPIRVType *EltType =
2081 GR.getSPIRVTypeForVReg(VecType->getOperand(1).getReg());
2082
2083 assert(EltType->getOpcode() == SPIRV::OpTypeFloat);
2084
2085 MachineBasicBlock &BB = *I.getParent();
2086 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpDot))
2087 .addDef(ResVReg)
2088 .addUse(GR.getSPIRVTypeID(ResType))
2089 .addUse(I.getOperand(2).getReg())
2090 .addUse(I.getOperand(3).getReg())
2091 .constrainAllUses(TII, TRI, RBI);
2092}
2093
2094bool SPIRVInstructionSelector::selectIntegerDot(Register ResVReg,
2095 const SPIRVType *ResType,
2096 MachineInstr &I,
2097 bool Signed) const {
2098 assert(I.getNumOperands() == 4);
2099 assert(I.getOperand(2).isReg());
2100 assert(I.getOperand(3).isReg());
2101 MachineBasicBlock &BB = *I.getParent();
2102
2103 auto DotOp = Signed ? SPIRV::OpSDot : SPIRV::OpUDot;
2104 return BuildMI(BB, I, I.getDebugLoc(), TII.get(DotOp))
2105 .addDef(ResVReg)
2106 .addUse(GR.getSPIRVTypeID(ResType))
2107 .addUse(I.getOperand(2).getReg())
2108 .addUse(I.getOperand(3).getReg())
2109 .constrainAllUses(TII, TRI, RBI);
2110}
2111
2112// Since pre-1.6 SPIRV has no integer dot implementation,
2113// expand by piecewise multiplying and adding the results
2114bool SPIRVInstructionSelector::selectIntegerDotExpansion(
2115 Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
2116 assert(I.getNumOperands() == 4);
2117 assert(I.getOperand(2).isReg());
2118 assert(I.getOperand(3).isReg());
2119 MachineBasicBlock &BB = *I.getParent();
2120
2121 // Multiply the vectors, then sum the results
2122 Register Vec0 = I.getOperand(2).getReg();
2123 Register Vec1 = I.getOperand(3).getReg();
2124 Register TmpVec = MRI->createVirtualRegister(GR.getRegClass(ResType));
2125 SPIRVType *VecType = GR.getSPIRVTypeForVReg(Vec0);
2126
2127 bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIMulV))
2128 .addDef(TmpVec)
2129 .addUse(GR.getSPIRVTypeID(VecType))
2130 .addUse(Vec0)
2131 .addUse(Vec1)
2132 .constrainAllUses(TII, TRI, RBI);
2133
2134 assert(VecType->getOpcode() == SPIRV::OpTypeVector &&
2135 GR.getScalarOrVectorComponentCount(VecType) > 1 &&
2136 "dot product requires a vector of at least 2 components");
2137
2138 Register Res = MRI->createVirtualRegister(GR.getRegClass(ResType));
2139 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
2140 .addDef(Res)
2141 .addUse(GR.getSPIRVTypeID(ResType))
2142 .addUse(TmpVec)
2143 .addImm(0)
2144 .constrainAllUses(TII, TRI, RBI);
2145
2146 for (unsigned i = 1; i < GR.getScalarOrVectorComponentCount(VecType); i++) {
2147 Register Elt = MRI->createVirtualRegister(GR.getRegClass(ResType));
2148
2149 Result &=
2150 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
2151 .addDef(Elt)
2152 .addUse(GR.getSPIRVTypeID(ResType))
2153 .addUse(TmpVec)
2154 .addImm(i)
2155 .constrainAllUses(TII, TRI, RBI);
2156
2157 Register Sum = i < GR.getScalarOrVectorComponentCount(VecType) - 1
2158 ? MRI->createVirtualRegister(GR.getRegClass(ResType))
2159 : ResVReg;
2160
2161 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
2162 .addDef(Sum)
2163 .addUse(GR.getSPIRVTypeID(ResType))
2164 .addUse(Res)
2165 .addUse(Elt)
2166 .constrainAllUses(TII, TRI, RBI);
2167 Res = Sum;
2168 }
2169
2170 return Result;
2171}
2172
2173bool SPIRVInstructionSelector::selectOpIsInf(Register ResVReg,
2174 const SPIRVType *ResType,
2175 MachineInstr &I) const {
2176 MachineBasicBlock &BB = *I.getParent();
2177 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIsInf))
2178 .addDef(ResVReg)
2179 .addUse(GR.getSPIRVTypeID(ResType))
2180 .addUse(I.getOperand(2).getReg())
2181 .constrainAllUses(TII, TRI, RBI);
2182}
2183
2184bool SPIRVInstructionSelector::selectOpIsNan(Register ResVReg,
2185 const SPIRVType *ResType,
2186 MachineInstr &I) const {
2187 MachineBasicBlock &BB = *I.getParent();
2188 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIsNan))
2189 .addDef(ResVReg)
2190 .addUse(GR.getSPIRVTypeID(ResType))
2191 .addUse(I.getOperand(2).getReg())
2192 .constrainAllUses(TII, TRI, RBI);
2193}
2194
2195template <bool Signed>
2196bool SPIRVInstructionSelector::selectDot4AddPacked(Register ResVReg,
2197 const SPIRVType *ResType,
2198 MachineInstr &I) const {
2199 assert(I.getNumOperands() == 5);
2200 assert(I.getOperand(2).isReg());
2201 assert(I.getOperand(3).isReg());
2202 assert(I.getOperand(4).isReg());
2203 MachineBasicBlock &BB = *I.getParent();
2204
2205 Register Acc = I.getOperand(2).getReg();
2206 Register X = I.getOperand(3).getReg();
2207 Register Y = I.getOperand(4).getReg();
2208
2209 auto DotOp = Signed ? SPIRV::OpSDot : SPIRV::OpUDot;
2210 Register Dot = MRI->createVirtualRegister(GR.getRegClass(ResType));
2211 bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(DotOp))
2212 .addDef(Dot)
2213 .addUse(GR.getSPIRVTypeID(ResType))
2214 .addUse(X)
2215 .addUse(Y)
2216 .constrainAllUses(TII, TRI, RBI);
2217
2218 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
2219 .addDef(ResVReg)
2220 .addUse(GR.getSPIRVTypeID(ResType))
2221 .addUse(Dot)
2222 .addUse(Acc)
2223 .constrainAllUses(TII, TRI, RBI);
2224}
2225
2226// Since pre-1.6 SPIRV has no DotProductInput4x8BitPacked implementation,
2227// extract the elements of the packed inputs, multiply them and add the result
2228// to the accumulator.
2229template <bool Signed>
2230bool SPIRVInstructionSelector::selectDot4AddPackedExpansion(
2231 Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
2232 assert(I.getNumOperands() == 5);
2233 assert(I.getOperand(2).isReg());
2234 assert(I.getOperand(3).isReg());
2235 assert(I.getOperand(4).isReg());
2236 MachineBasicBlock &BB = *I.getParent();
2237
2238 bool Result = true;
2239
2240 Register Acc = I.getOperand(2).getReg();
2241 Register X = I.getOperand(3).getReg();
2242 Register Y = I.getOperand(4).getReg();
2243
2244 SPIRVType *EltType = GR.getOrCreateSPIRVIntegerType(8, I, TII);
2245 auto ExtractOp =
2246 Signed ? SPIRV::OpBitFieldSExtract : SPIRV::OpBitFieldUExtract;
2247
2248 bool ZeroAsNull = !STI.isShader();
2249 // Extract the i8 element, multiply and add it to the accumulator
2250 for (unsigned i = 0; i < 4; i++) {
2251 // A[i]
2252 Register AElt = MRI->createVirtualRegister(&SPIRV::IDRegClass);
2253 Result &=
2254 BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp))
2255 .addDef(AElt)
2256 .addUse(GR.getSPIRVTypeID(ResType))
2257 .addUse(X)
2258 .addUse(GR.getOrCreateConstInt(i * 8, I, EltType, TII, ZeroAsNull))
2259 .addUse(GR.getOrCreateConstInt(8, I, EltType, TII, ZeroAsNull))
2260 .constrainAllUses(TII, TRI, RBI);
2261
2262 // B[i]
2263 Register BElt = MRI->createVirtualRegister(&SPIRV::IDRegClass);
2264 Result &=
2265 BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp))
2266 .addDef(BElt)
2267 .addUse(GR.getSPIRVTypeID(ResType))
2268 .addUse(Y)
2269 .addUse(GR.getOrCreateConstInt(i * 8, I, EltType, TII, ZeroAsNull))
2270 .addUse(GR.getOrCreateConstInt(8, I, EltType, TII, ZeroAsNull))
2271 .constrainAllUses(TII, TRI, RBI);
2272
2273 // A[i] * B[i]
2274 Register Mul = MRI->createVirtualRegister(&SPIRV::IDRegClass);
2275 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIMulS))
2276 .addDef(Mul)
2277 .addUse(GR.getSPIRVTypeID(ResType))
2278 .addUse(AElt)
2279 .addUse(BElt)
2280 .constrainAllUses(TII, TRI, RBI);
2281
2282 // Discard 24 highest-bits so that stored i32 register is i8 equivalent
2283 Register MaskMul = MRI->createVirtualRegister(&SPIRV::IDRegClass);
2284 Result &=
2285 BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp))
2286 .addDef(MaskMul)
2287 .addUse(GR.getSPIRVTypeID(ResType))
2288 .addUse(Mul)
2289 .addUse(GR.getOrCreateConstInt(0, I, EltType, TII, ZeroAsNull))
2290 .addUse(GR.getOrCreateConstInt(8, I, EltType, TII, ZeroAsNull))
2291 .constrainAllUses(TII, TRI, RBI);
2292
2293 // Acc = Acc + A[i] * B[i]
2294 Register Sum =
2295 i < 3 ? MRI->createVirtualRegister(&SPIRV::IDRegClass) : ResVReg;
2296 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
2297 .addDef(Sum)
2298 .addUse(GR.getSPIRVTypeID(ResType))
2299 .addUse(Acc)
2300 .addUse(MaskMul)
2301 .constrainAllUses(TII, TRI, RBI);
2302
2303 Acc = Sum;
2304 }
2305
2306 return Result;
2307}
2308
2309/// Transform saturate(x) to clamp(x, 0.0f, 1.0f) as SPIRV
2310/// does not have a saturate builtin.
2311bool SPIRVInstructionSelector::selectSaturate(Register ResVReg,
2312 const SPIRVType *ResType,
2313 MachineInstr &I) const {
2314 assert(I.getNumOperands() == 3);
2315 assert(I.getOperand(2).isReg());
2316 MachineBasicBlock &BB = *I.getParent();
2317 Register VZero = buildZerosValF(ResType, I);
2318 Register VOne = buildOnesValF(ResType, I);
2319
2320 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
2321 .addDef(ResVReg)
2322 .addUse(GR.getSPIRVTypeID(ResType))
2323 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
2324 .addImm(GL::FClamp)
2325 .addUse(I.getOperand(2).getReg())
2326 .addUse(VZero)
2327 .addUse(VOne)
2328 .constrainAllUses(TII, TRI, RBI);
2329}
2330
2331bool SPIRVInstructionSelector::selectSign(Register ResVReg,
2332 const SPIRVType *ResType,
2333 MachineInstr &I) const {
2334 assert(I.getNumOperands() == 3);
2335 assert(I.getOperand(2).isReg());
2336 MachineBasicBlock &BB = *I.getParent();
2337 Register InputRegister = I.getOperand(2).getReg();
2338 SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
2339 auto &DL = I.getDebugLoc();
2340
2341 if (!InputType)
2342 report_fatal_error("Input Type could not be determined.");
2343
2344 bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
2345
2346 unsigned SignBitWidth = GR.getScalarOrVectorBitWidth(InputType);
2347 unsigned ResBitWidth = GR.getScalarOrVectorBitWidth(ResType);
2348
2349 bool NeedsConversion = IsFloatTy || SignBitWidth != ResBitWidth;
2350
2351 auto SignOpcode = IsFloatTy ? GL::FSign : GL::SSign;
2352 Register SignReg = NeedsConversion
2353 ? MRI->createVirtualRegister(&SPIRV::IDRegClass)
2354 : ResVReg;
2355
2356 bool Result =
2357 BuildMI(BB, I, DL, TII.get(SPIRV::OpExtInst))
2358 .addDef(SignReg)
2359 .addUse(GR.getSPIRVTypeID(InputType))
2360 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
2361 .addImm(SignOpcode)
2362 .addUse(InputRegister)
2363 .constrainAllUses(TII, TRI, RBI);
2364
2365 if (NeedsConversion) {
2366 auto ConvertOpcode = IsFloatTy ? SPIRV::OpConvertFToS : SPIRV::OpSConvert;
2367 Result &= BuildMI(*I.getParent(), I, DL, TII.get(ConvertOpcode))
2368 .addDef(ResVReg)
2369 .addUse(GR.getSPIRVTypeID(ResType))
2370 .addUse(SignReg)
2371 .constrainAllUses(TII, TRI, RBI);
2372 }
2373
2374 return Result;
2375}
2376
2377bool SPIRVInstructionSelector::selectWaveOpInst(Register ResVReg,
2378 const SPIRVType *ResType,
2379 MachineInstr &I,
2380 unsigned Opcode) const {
2381 MachineBasicBlock &BB = *I.getParent();
2382 SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
2383
2384 auto BMI = BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2385 .addDef(ResVReg)
2386 .addUse(GR.getSPIRVTypeID(ResType))
2387 .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I,
2388 IntTy, TII, !STI.isShader()));
2389
2390 for (unsigned J = 2; J < I.getNumOperands(); J++) {
2391 BMI.addUse(I.getOperand(J).getReg());
2392 }
2393
2394 return BMI.constrainAllUses(TII, TRI, RBI);
2395}
2396
2397bool SPIRVInstructionSelector::selectWaveActiveCountBits(
2398 Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
2399
2400 SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
2401 SPIRVType *BallotType = GR.getOrCreateSPIRVVectorType(IntTy, 4, I, TII);
2402 Register BallotReg = MRI->createVirtualRegister(GR.getRegClass(BallotType));
2403 bool Result = selectWaveOpInst(BallotReg, BallotType, I,
2404 SPIRV::OpGroupNonUniformBallot);
2405
2406 MachineBasicBlock &BB = *I.getParent();
2407 Result &= BuildMI(BB, I, I.getDebugLoc(),
2408 TII.get(SPIRV::OpGroupNonUniformBallotBitCount))
2409 .addDef(ResVReg)
2410 .addUse(GR.getSPIRVTypeID(ResType))
2411 .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy,
2412 TII, !STI.isShader()))
2413 .addImm(SPIRV::GroupOperation::Reduce)
2414 .addUse(BallotReg)
2415 .constrainAllUses(TII, TRI, RBI);
2416
2417 return Result;
2418}
2419
2420bool SPIRVInstructionSelector::selectWaveReduceMax(Register ResVReg,
2421 const SPIRVType *ResType,
2422 MachineInstr &I,
2423 bool IsUnsigned) const {
2424 assert(I.getNumOperands() == 3);
2425 assert(I.getOperand(2).isReg());
2426 MachineBasicBlock &BB = *I.getParent();
2427 Register InputRegister = I.getOperand(2).getReg();
2428 SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
2429
2430 if (!InputType)
2431 report_fatal_error("Input Type could not be determined.");
2432
2433 SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
2434 // Retreive the operation to use based on input type
2435 bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
2436 auto IntegerOpcodeType =
2437 IsUnsigned ? SPIRV::OpGroupNonUniformUMax : SPIRV::OpGroupNonUniformSMax;
2438 auto Opcode = IsFloatTy ? SPIRV::OpGroupNonUniformFMax : IntegerOpcodeType;
2439 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2440 .addDef(ResVReg)
2441 .addUse(GR.getSPIRVTypeID(ResType))
2442 .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy, TII,
2443 !STI.isShader()))
2444 .addImm(SPIRV::GroupOperation::Reduce)
2445 .addUse(I.getOperand(2).getReg())
2446 .constrainAllUses(TII, TRI, RBI);
2447}
2448
2449bool SPIRVInstructionSelector::selectWaveReduceSum(Register ResVReg,
2450 const SPIRVType *ResType,
2451 MachineInstr &I) const {
2452 assert(I.getNumOperands() == 3);
2453 assert(I.getOperand(2).isReg());
2454 MachineBasicBlock &BB = *I.getParent();
2455 Register InputRegister = I.getOperand(2).getReg();
2456 SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
2457
2458 if (!InputType)
2459 report_fatal_error("Input Type could not be determined.");
2460
2461 SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
2462 // Retreive the operation to use based on input type
2463 bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
2464 auto Opcode =
2465 IsFloatTy ? SPIRV::OpGroupNonUniformFAdd : SPIRV::OpGroupNonUniformIAdd;
2466 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2467 .addDef(ResVReg)
2468 .addUse(GR.getSPIRVTypeID(ResType))
2469 .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy, TII,
2470 !STI.isShader()))
2471 .addImm(SPIRV::GroupOperation::Reduce)
2472 .addUse(I.getOperand(2).getReg());
2473}
2474
2475bool SPIRVInstructionSelector::selectBitreverse(Register ResVReg,
2476 const SPIRVType *ResType,
2477 MachineInstr &I) const {
2478 MachineBasicBlock &BB = *I.getParent();
2479 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpBitReverse))
2480 .addDef(ResVReg)
2481 .addUse(GR.getSPIRVTypeID(ResType))
2482 .addUse(I.getOperand(1).getReg())
2483 .constrainAllUses(TII, TRI, RBI);
2484}
2485
2486bool SPIRVInstructionSelector::selectFreeze(Register ResVReg,
2487 const SPIRVType *ResType,
2488 MachineInstr &I) const {
2489 // There is no way to implement `freeze` correctly without support on SPIR-V
2490 // standard side, but we may at least address a simple (static) case when
2491 // undef/poison value presence is obvious. The main benefit of even
2492 // incomplete `freeze` support is preventing of translation from crashing due
2493 // to lack of support on legalization and instruction selection steps.
2494 if (!I.getOperand(0).isReg() || !I.getOperand(1).isReg())
2495 return false;
2496 Register OpReg = I.getOperand(1).getReg();
2497 if (MachineInstr *Def = MRI->getVRegDef(OpReg)) {
2498 if (Def->getOpcode() == TargetOpcode::COPY)
2499 Def = MRI->getVRegDef(Def->getOperand(1).getReg());
2500 Register Reg;
2501 switch (Def->getOpcode()) {
2502 case SPIRV::ASSIGN_TYPE:
2503 if (MachineInstr *AssignToDef =
2504 MRI->getVRegDef(Def->getOperand(1).getReg())) {
2505 if (AssignToDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF)
2506 Reg = Def->getOperand(2).getReg();
2507 }
2508 break;
2509 case SPIRV::OpUndef:
2510 Reg = Def->getOperand(1).getReg();
2511 break;
2512 }
2513 unsigned DestOpCode;
2514 if (Reg.isValid()) {
2515 DestOpCode = SPIRV::OpConstantNull;
2516 } else {
2517 DestOpCode = TargetOpcode::COPY;
2518 Reg = OpReg;
2519 }
2520 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(DestOpCode))
2521 .addDef(I.getOperand(0).getReg())
2522 .addUse(Reg)
2523 .constrainAllUses(TII, TRI, RBI);
2524 }
2525 return false;
2526}
2527
2528bool SPIRVInstructionSelector::selectBuildVector(Register ResVReg,
2529 const SPIRVType *ResType,
2530 MachineInstr &I) const {
2531 unsigned N = 0;
2532 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2533 N = GR.getScalarOrVectorComponentCount(ResType);
2534 else if (ResType->getOpcode() == SPIRV::OpTypeArray)
2535 N = getArrayComponentCount(MRI, ResType);
2536 else
2537 report_fatal_error("Cannot select G_BUILD_VECTOR with a non-vector result");
2538 if (I.getNumExplicitOperands() - I.getNumExplicitDefs() != N)
2539 report_fatal_error("G_BUILD_VECTOR and the result type are inconsistent");
2540
2541 // check if we may construct a constant vector
2542 bool IsConst = true;
2543 for (unsigned i = I.getNumExplicitDefs();
2544 i < I.getNumExplicitOperands() && IsConst; ++i)
2545 if (!isConstReg(MRI, I.getOperand(i).getReg()))
2546 IsConst = false;
2547
2548 if (!IsConst && N < 2)
2550 "There must be at least two constituent operands in a vector");
2551
2552 MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
2553 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
2554 TII.get(IsConst ? SPIRV::OpConstantComposite
2555 : SPIRV::OpCompositeConstruct))
2556 .addDef(ResVReg)
2557 .addUse(GR.getSPIRVTypeID(ResType));
2558 for (unsigned i = I.getNumExplicitDefs(); i < I.getNumExplicitOperands(); ++i)
2559 MIB.addUse(I.getOperand(i).getReg());
2560 return MIB.constrainAllUses(TII, TRI, RBI);
2561}
2562
2563bool SPIRVInstructionSelector::selectSplatVector(Register ResVReg,
2564 const SPIRVType *ResType,
2565 MachineInstr &I) const {
2566 unsigned N = 0;
2567 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2568 N = GR.getScalarOrVectorComponentCount(ResType);
2569 else if (ResType->getOpcode() == SPIRV::OpTypeArray)
2570 N = getArrayComponentCount(MRI, ResType);
2571 else
2572 report_fatal_error("Cannot select G_SPLAT_VECTOR with a non-vector result");
2573
2574 unsigned OpIdx = I.getNumExplicitDefs();
2575 if (!I.getOperand(OpIdx).isReg())
2576 report_fatal_error("Unexpected argument in G_SPLAT_VECTOR");
2577
2578 // check if we may construct a constant vector
2579 Register OpReg = I.getOperand(OpIdx).getReg();
2580 bool IsConst = isConstReg(MRI, OpReg);
2581
2582 if (!IsConst && N < 2)
2584 "There must be at least two constituent operands in a vector");
2585
2586 MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
2587 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
2588 TII.get(IsConst ? SPIRV::OpConstantComposite
2589 : SPIRV::OpCompositeConstruct))
2590 .addDef(ResVReg)
2591 .addUse(GR.getSPIRVTypeID(ResType));
2592 for (unsigned i = 0; i < N; ++i)
2593 MIB.addUse(OpReg);
2594 return MIB.constrainAllUses(TII, TRI, RBI);
2595}
2596
2597bool SPIRVInstructionSelector::selectDiscard(Register ResVReg,
2598 const SPIRVType *ResType,
2599 MachineInstr &I) const {
2600
2601 unsigned Opcode;
2602
2603 if (STI.canUseExtension(
2604 SPIRV::Extension::SPV_EXT_demote_to_helper_invocation) ||
2605 STI.isAtLeastSPIRVVer(llvm::VersionTuple(1, 6))) {
2606 Opcode = SPIRV::OpDemoteToHelperInvocation;
2607 } else {
2608 Opcode = SPIRV::OpKill;
2609 // OpKill must be the last operation of any basic block.
2610 if (MachineInstr *NextI = I.getNextNode()) {
2611 GR.invalidateMachineInstr(NextI);
2612 NextI->removeFromParent();
2613 }
2614 }
2615
2616 MachineBasicBlock &BB = *I.getParent();
2617 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2618 .constrainAllUses(TII, TRI, RBI);
2619}
2620
2621bool SPIRVInstructionSelector::selectCmp(Register ResVReg,
2622 const SPIRVType *ResType,
2623 unsigned CmpOpc,
2624 MachineInstr &I) const {
2625 Register Cmp0 = I.getOperand(2).getReg();
2626 Register Cmp1 = I.getOperand(3).getReg();
2627 assert(GR.getSPIRVTypeForVReg(Cmp0)->getOpcode() ==
2628 GR.getSPIRVTypeForVReg(Cmp1)->getOpcode() &&
2629 "CMP operands should have the same type");
2630 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(CmpOpc))
2631 .addDef(ResVReg)
2632 .addUse(GR.getSPIRVTypeID(ResType))
2633 .addUse(Cmp0)
2634 .addUse(Cmp1)
2635 .setMIFlags(I.getFlags())
2636 .constrainAllUses(TII, TRI, RBI);
2637}
2638
2639bool SPIRVInstructionSelector::selectICmp(Register ResVReg,
2640 const SPIRVType *ResType,
2641 MachineInstr &I) const {
2642 auto Pred = I.getOperand(1).getPredicate();
2643 unsigned CmpOpc;
2644
2645 Register CmpOperand = I.getOperand(2).getReg();
2646 if (GR.isScalarOfType(CmpOperand, SPIRV::OpTypePointer))
2647 CmpOpc = getPtrCmpOpcode(Pred);
2648 else if (GR.isScalarOrVectorOfType(CmpOperand, SPIRV::OpTypeBool))
2649 CmpOpc = getBoolCmpOpcode(Pred);
2650 else
2651 CmpOpc = getICmpOpcode(Pred);
2652 return selectCmp(ResVReg, ResType, CmpOpc, I);
2653}
2654
2655std::pair<Register, bool>
2656SPIRVInstructionSelector::buildI32Constant(uint32_t Val, MachineInstr &I,
2657 const SPIRVType *ResType) const {
2658 Type *LLVMTy = IntegerType::get(GR.CurMF->getFunction().getContext(), 32);
2659 const SPIRVType *SpvI32Ty =
2660 ResType ? ResType : GR.getOrCreateSPIRVIntegerType(32, I, TII);
2661 // Find a constant in DT or build a new one.
2662 auto ConstInt = ConstantInt::get(LLVMTy, Val);
2663 Register NewReg = GR.find(ConstInt, GR.CurMF);
2664 bool Result = true;
2665 if (!NewReg.isValid()) {
2666 NewReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
2667 MachineBasicBlock &BB = *I.getParent();
2668 MachineInstr *MI =
2669 Val == 0
2670 ? BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull))
2671 .addDef(NewReg)
2672 .addUse(GR.getSPIRVTypeID(SpvI32Ty))
2673 : BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantI))
2674 .addDef(NewReg)
2675 .addUse(GR.getSPIRVTypeID(SpvI32Ty))
2676 .addImm(APInt(32, Val).getZExtValue());
2678 GR.add(ConstInt, MI);
2679 }
2680 return {NewReg, Result};
2681}
2682
2683bool SPIRVInstructionSelector::selectFCmp(Register ResVReg,
2684 const SPIRVType *ResType,
2685 MachineInstr &I) const {
2686 unsigned CmpOp = getFCmpOpcode(I.getOperand(1).getPredicate());
2687 return selectCmp(ResVReg, ResType, CmpOp, I);
2688}
2689
2690Register SPIRVInstructionSelector::buildZerosVal(const SPIRVType *ResType,
2691 MachineInstr &I) const {
2692 // OpenCL uses nulls for Zero. In HLSL we don't use null constants.
2693 bool ZeroAsNull = !STI.isShader();
2694 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2695 return GR.getOrCreateConstVector(0UL, I, ResType, TII, ZeroAsNull);
2696 return GR.getOrCreateConstInt(0, I, ResType, TII, ZeroAsNull);
2697}
2698
2699Register SPIRVInstructionSelector::buildZerosValF(const SPIRVType *ResType,
2700 MachineInstr &I) const {
2701 // OpenCL uses nulls for Zero. In HLSL we don't use null constants.
2702 bool ZeroAsNull = !STI.isShader();
2703 APFloat VZero = getZeroFP(GR.getTypeForSPIRVType(ResType));
2704 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2705 return GR.getOrCreateConstVector(VZero, I, ResType, TII, ZeroAsNull);
2706 return GR.getOrCreateConstFP(VZero, I, ResType, TII, ZeroAsNull);
2707}
2708
2709Register SPIRVInstructionSelector::buildOnesValF(const SPIRVType *ResType,
2710 MachineInstr &I) const {
2711 // OpenCL uses nulls for Zero. In HLSL we don't use null constants.
2712 bool ZeroAsNull = !STI.isShader();
2713 APFloat VOne = getOneFP(GR.getTypeForSPIRVType(ResType));
2714 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2715 return GR.getOrCreateConstVector(VOne, I, ResType, TII, ZeroAsNull);
2716 return GR.getOrCreateConstFP(VOne, I, ResType, TII, ZeroAsNull);
2717}
2718
2719Register SPIRVInstructionSelector::buildOnesVal(bool AllOnes,
2720 const SPIRVType *ResType,
2721 MachineInstr &I) const {
2722 unsigned BitWidth = GR.getScalarOrVectorBitWidth(ResType);
2723 APInt One =
2724 AllOnes ? APInt::getAllOnes(BitWidth) : APInt::getOneBitSet(BitWidth, 0);
2725 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2726 return GR.getOrCreateConstVector(One.getZExtValue(), I, ResType, TII);
2727 return GR.getOrCreateConstInt(One.getZExtValue(), I, ResType, TII);
2728}
2729
2730bool SPIRVInstructionSelector::selectSelect(Register ResVReg,
2731 const SPIRVType *ResType,
2732 MachineInstr &I) const {
2733 Register SelectFirstArg = I.getOperand(2).getReg();
2734 Register SelectSecondArg = I.getOperand(3).getReg();
2735 assert(ResType == GR.getSPIRVTypeForVReg(SelectFirstArg) &&
2736 ResType == GR.getSPIRVTypeForVReg(SelectSecondArg));
2737
2738 bool IsFloatTy =
2739 GR.isScalarOrVectorOfType(SelectFirstArg, SPIRV::OpTypeFloat);
2740 bool IsPtrTy =
2741 GR.isScalarOrVectorOfType(SelectFirstArg, SPIRV::OpTypePointer);
2742 bool IsVectorTy = GR.getSPIRVTypeForVReg(SelectFirstArg)->getOpcode() ==
2743 SPIRV::OpTypeVector;
2744
2745 bool IsScalarBool =
2746 GR.isScalarOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool);
2747 unsigned Opcode;
2748 if (IsVectorTy) {
2749 if (IsFloatTy) {
2750 Opcode = IsScalarBool ? SPIRV::OpSelectVFSCond : SPIRV::OpSelectVFVCond;
2751 } else if (IsPtrTy) {
2752 Opcode = IsScalarBool ? SPIRV::OpSelectVPSCond : SPIRV::OpSelectVPVCond;
2753 } else {
2754 Opcode = IsScalarBool ? SPIRV::OpSelectVISCond : SPIRV::OpSelectVIVCond;
2755 }
2756 } else {
2757 if (IsFloatTy) {
2758 Opcode = IsScalarBool ? SPIRV::OpSelectSFSCond : SPIRV::OpSelectVFVCond;
2759 } else if (IsPtrTy) {
2760 Opcode = IsScalarBool ? SPIRV::OpSelectSPSCond : SPIRV::OpSelectVPVCond;
2761 } else {
2762 Opcode = IsScalarBool ? SPIRV::OpSelectSISCond : SPIRV::OpSelectVIVCond;
2763 }
2764 }
2765 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
2766 .addDef(ResVReg)
2767 .addUse(GR.getSPIRVTypeID(ResType))
2768 .addUse(I.getOperand(1).getReg())
2769 .addUse(SelectFirstArg)
2770 .addUse(SelectSecondArg)
2771 .constrainAllUses(TII, TRI, RBI);
2772}
2773
2774bool SPIRVInstructionSelector::selectSelectDefaultArgs(Register ResVReg,
2775 const SPIRVType *ResType,
2776 MachineInstr &I,
2777 bool IsSigned) const {
2778 // To extend a bool, we need to use OpSelect between constants.
2779 Register ZeroReg = buildZerosVal(ResType, I);
2780 Register OneReg = buildOnesVal(IsSigned, ResType, I);
2781 bool IsScalarBool =
2782 GR.isScalarOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool);
2783 unsigned Opcode =
2784 IsScalarBool ? SPIRV::OpSelectSISCond : SPIRV::OpSelectVIVCond;
2785 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
2786 .addDef(ResVReg)
2787 .addUse(GR.getSPIRVTypeID(ResType))
2788 .addUse(I.getOperand(1).getReg())
2789 .addUse(OneReg)
2790 .addUse(ZeroReg)
2791 .constrainAllUses(TII, TRI, RBI);
2792}
2793
2794bool SPIRVInstructionSelector::selectIToF(Register ResVReg,
2795 const SPIRVType *ResType,
2796 MachineInstr &I, bool IsSigned,
2797 unsigned Opcode) const {
2798 Register SrcReg = I.getOperand(1).getReg();
2799 // We can convert bool value directly to float type without OpConvert*ToF,
2800 // however the translator generates OpSelect+OpConvert*ToF, so we do the same.
2801 if (GR.isScalarOrVectorOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool)) {
2802 unsigned BitWidth = GR.getScalarOrVectorBitWidth(ResType);
2804 if (ResType->getOpcode() == SPIRV::OpTypeVector) {
2805 const unsigned NumElts = ResType->getOperand(2).getImm();
2806 TmpType = GR.getOrCreateSPIRVVectorType(TmpType, NumElts, I, TII);
2807 }
2808 SrcReg = createVirtualRegister(TmpType, &GR, MRI, MRI->getMF());
2809 selectSelectDefaultArgs(SrcReg, TmpType, I, false);
2810 }
2811 return selectOpWithSrcs(ResVReg, ResType, I, {SrcReg}, Opcode);
2812}
2813
2814bool SPIRVInstructionSelector::selectExt(Register ResVReg,
2815 const SPIRVType *ResType,
2816 MachineInstr &I, bool IsSigned) const {
2817 Register SrcReg = I.getOperand(1).getReg();
2818 if (GR.isScalarOrVectorOfType(SrcReg, SPIRV::OpTypeBool))
2819 return selectSelectDefaultArgs(ResVReg, ResType, I, IsSigned);
2820
2821 SPIRVType *SrcType = GR.getSPIRVTypeForVReg(SrcReg);
2822 if (SrcType == ResType)
2823 return BuildCOPY(ResVReg, SrcReg, I);
2824
2825 unsigned Opcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert;
2826 return selectUnOp(ResVReg, ResType, I, Opcode);
2827}
2828
2829bool SPIRVInstructionSelector::selectSUCmp(Register ResVReg,
2830 const SPIRVType *ResType,
2831 MachineInstr &I,
2832 bool IsSigned) const {
2833 MachineIRBuilder MIRBuilder(I);
2834 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
2835 MachineBasicBlock &BB = *I.getParent();
2836 // Ensure we have bool.
2837 SPIRVType *BoolType = GR.getOrCreateSPIRVBoolType(I, TII);
2838 unsigned N = GR.getScalarOrVectorComponentCount(ResType);
2839 if (N > 1)
2840 BoolType = GR.getOrCreateSPIRVVectorType(BoolType, N, I, TII);
2841 Register BoolTypeReg = GR.getSPIRVTypeID(BoolType);
2842 // Build less-than-equal and less-than.
2843 // TODO: replace with one-liner createVirtualRegister() from
2844 // llvm/lib/Target/SPIRV/SPIRVUtils.cpp when PR #116609 is merged.
2845 Register IsLessEqReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
2846 MRI->setType(IsLessEqReg, LLT::scalar(64));
2847 GR.assignSPIRVTypeToVReg(ResType, IsLessEqReg, MIRBuilder.getMF());
2848 bool Result = BuildMI(BB, I, I.getDebugLoc(),
2849 TII.get(IsSigned ? SPIRV::OpSLessThanEqual
2850 : SPIRV::OpULessThanEqual))
2851 .addDef(IsLessEqReg)
2852 .addUse(BoolTypeReg)
2853 .addUse(I.getOperand(1).getReg())
2854 .addUse(I.getOperand(2).getReg())
2855 .constrainAllUses(TII, TRI, RBI);
2856 Register IsLessReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
2857 MRI->setType(IsLessReg, LLT::scalar(64));
2858 GR.assignSPIRVTypeToVReg(ResType, IsLessReg, MIRBuilder.getMF());
2859 Result &= BuildMI(BB, I, I.getDebugLoc(),
2860 TII.get(IsSigned ? SPIRV::OpSLessThan : SPIRV::OpULessThan))
2861 .addDef(IsLessReg)
2862 .addUse(BoolTypeReg)
2863 .addUse(I.getOperand(1).getReg())
2864 .addUse(I.getOperand(2).getReg())
2865 .constrainAllUses(TII, TRI, RBI);
2866 // Build selects.
2867 Register ResTypeReg = GR.getSPIRVTypeID(ResType);
2868 Register NegOneOrZeroReg =
2869 MRI->createVirtualRegister(GR.getRegClass(ResType));
2870 MRI->setType(NegOneOrZeroReg, LLT::scalar(64));
2871 GR.assignSPIRVTypeToVReg(ResType, NegOneOrZeroReg, MIRBuilder.getMF());
2872 unsigned SelectOpcode =
2873 N > 1 ? SPIRV::OpSelectVIVCond : SPIRV::OpSelectSISCond;
2874 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SelectOpcode))
2875 .addDef(NegOneOrZeroReg)
2876 .addUse(ResTypeReg)
2877 .addUse(IsLessReg)
2878 .addUse(buildOnesVal(true, ResType, I)) // -1
2879 .addUse(buildZerosVal(ResType, I))
2880 .constrainAllUses(TII, TRI, RBI);
2881 return Result & BuildMI(BB, I, I.getDebugLoc(), TII.get(SelectOpcode))
2882 .addDef(ResVReg)
2883 .addUse(ResTypeReg)
2884 .addUse(IsLessEqReg)
2885 .addUse(NegOneOrZeroReg) // -1 or 0
2886 .addUse(buildOnesVal(false, ResType, I))
2887 .constrainAllUses(TII, TRI, RBI);
2888}
2889
2890bool SPIRVInstructionSelector::selectIntToBool(Register IntReg,
2891 Register ResVReg,
2892 MachineInstr &I,
2893 const SPIRVType *IntTy,
2894 const SPIRVType *BoolTy) const {
2895 // To truncate to a bool, we use OpBitwiseAnd 1 and OpINotEqual to zero.
2896 Register BitIntReg = createVirtualRegister(IntTy, &GR, MRI, MRI->getMF());
2897 bool IsVectorTy = IntTy->getOpcode() == SPIRV::OpTypeVector;
2898 unsigned Opcode = IsVectorTy ? SPIRV::OpBitwiseAndV : SPIRV::OpBitwiseAndS;
2899 Register Zero = buildZerosVal(IntTy, I);
2900 Register One = buildOnesVal(false, IntTy, I);
2901 MachineBasicBlock &BB = *I.getParent();
2902 bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2903 .addDef(BitIntReg)
2904 .addUse(GR.getSPIRVTypeID(IntTy))
2905 .addUse(IntReg)
2906 .addUse(One)
2907 .constrainAllUses(TII, TRI, RBI);
2908 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpINotEqual))
2909 .addDef(ResVReg)
2910 .addUse(GR.getSPIRVTypeID(BoolTy))
2911 .addUse(BitIntReg)
2912 .addUse(Zero)
2913 .constrainAllUses(TII, TRI, RBI);
2914}
2915
2916bool SPIRVInstructionSelector::selectTrunc(Register ResVReg,
2917 const SPIRVType *ResType,
2918 MachineInstr &I) const {
2919 Register IntReg = I.getOperand(1).getReg();
2920 const SPIRVType *ArgType = GR.getSPIRVTypeForVReg(IntReg);
2921 if (GR.isScalarOrVectorOfType(ResVReg, SPIRV::OpTypeBool))
2922 return selectIntToBool(IntReg, ResVReg, I, ArgType, ResType);
2923 if (ArgType == ResType)
2924 return BuildCOPY(ResVReg, IntReg, I);
2925 bool IsSigned = GR.isScalarOrVectorSigned(ResType);
2926 unsigned Opcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert;
2927 return selectUnOp(ResVReg, ResType, I, Opcode);
2928}
2929
2930bool SPIRVInstructionSelector::selectConst(Register ResVReg,
2931 const SPIRVType *ResType,
2932 MachineInstr &I) const {
2933 unsigned Opcode = I.getOpcode();
2934 unsigned TpOpcode = ResType->getOpcode();
2935 Register Reg;
2936 if (TpOpcode == SPIRV::OpTypePointer || TpOpcode == SPIRV::OpTypeEvent) {
2937 assert(Opcode == TargetOpcode::G_CONSTANT &&
2938 I.getOperand(1).getCImm()->isZero());
2939 MachineBasicBlock &DepMBB = I.getMF()->front();
2940 MachineIRBuilder MIRBuilder(DepMBB, DepMBB.getFirstNonPHI());
2941 Reg = GR.getOrCreateConstNullPtr(MIRBuilder, ResType);
2942 } else if (Opcode == TargetOpcode::G_FCONSTANT) {
2943 Reg = GR.getOrCreateConstFP(I.getOperand(1).getFPImm()->getValue(), I,
2944 ResType, TII, !STI.isShader());
2945 } else {
2946 Reg = GR.getOrCreateConstInt(I.getOperand(1).getCImm()->getZExtValue(), I,
2947 ResType, TII, !STI.isShader());
2948 }
2949 return Reg == ResVReg ? true : BuildCOPY(ResVReg, Reg, I);
2950}
2951
2952bool SPIRVInstructionSelector::selectOpUndef(Register ResVReg,
2953 const SPIRVType *ResType,
2954 MachineInstr &I) const {
2955 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpUndef))
2956 .addDef(ResVReg)
2957 .addUse(GR.getSPIRVTypeID(ResType))
2958 .constrainAllUses(TII, TRI, RBI);
2959}
2960
2961bool SPIRVInstructionSelector::selectInsertVal(Register ResVReg,
2962 const SPIRVType *ResType,
2963 MachineInstr &I) const {
2964 MachineBasicBlock &BB = *I.getParent();
2965 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeInsert))
2966 .addDef(ResVReg)
2967 .addUse(GR.getSPIRVTypeID(ResType))
2968 // object to insert
2969 .addUse(I.getOperand(3).getReg())
2970 // composite to insert into
2971 .addUse(I.getOperand(2).getReg());
2972 for (unsigned i = 4; i < I.getNumOperands(); i++)
2973 MIB.addImm(foldImm(I.getOperand(i), MRI));
2974 return MIB.constrainAllUses(TII, TRI, RBI);
2975}
2976
2977bool SPIRVInstructionSelector::selectExtractVal(Register ResVReg,
2978 const SPIRVType *ResType,
2979 MachineInstr &I) const {
2980 MachineBasicBlock &BB = *I.getParent();
2981 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
2982 .addDef(ResVReg)
2983 .addUse(GR.getSPIRVTypeID(ResType))
2984 .addUse(I.getOperand(2).getReg());
2985 for (unsigned i = 3; i < I.getNumOperands(); i++)
2986 MIB.addImm(foldImm(I.getOperand(i), MRI));
2987 return MIB.constrainAllUses(TII, TRI, RBI);
2988}
2989
2990bool SPIRVInstructionSelector::selectInsertElt(Register ResVReg,
2991 const SPIRVType *ResType,
2992 MachineInstr &I) const {
2993 if (getImm(I.getOperand(4), MRI))
2994 return selectInsertVal(ResVReg, ResType, I);
2995 MachineBasicBlock &BB = *I.getParent();
2996 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorInsertDynamic))
2997 .addDef(ResVReg)
2998 .addUse(GR.getSPIRVTypeID(ResType))
2999 .addUse(I.getOperand(2).getReg())
3000 .addUse(I.getOperand(3).getReg())
3001 .addUse(I.getOperand(4).getReg())
3002 .constrainAllUses(TII, TRI, RBI);
3003}
3004
3005bool SPIRVInstructionSelector::selectExtractElt(Register ResVReg,
3006 const SPIRVType *ResType,
3007 MachineInstr &I) const {
3008 if (getImm(I.getOperand(3), MRI))
3009 return selectExtractVal(ResVReg, ResType, I);
3010 MachineBasicBlock &BB = *I.getParent();
3011 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorExtractDynamic))
3012 .addDef(ResVReg)
3013 .addUse(GR.getSPIRVTypeID(ResType))
3014 .addUse(I.getOperand(2).getReg())
3015 .addUse(I.getOperand(3).getReg())
3016 .constrainAllUses(TII, TRI, RBI);
3017}
3018
3019bool SPIRVInstructionSelector::selectGEP(Register ResVReg,
3020 const SPIRVType *ResType,
3021 MachineInstr &I) const {
3022 const bool IsGEPInBounds = I.getOperand(2).getImm();
3023
3024 // OpAccessChain could be used for OpenCL, but the SPIRV-LLVM Translator only
3025 // relies on PtrAccessChain, so we'll try not to deviate. For Vulkan however,
3026 // we have to use Op[InBounds]AccessChain.
3027 const unsigned Opcode = STI.isLogicalSPIRV()
3028 ? (IsGEPInBounds ? SPIRV::OpInBoundsAccessChain
3029 : SPIRV::OpAccessChain)
3030 : (IsGEPInBounds ? SPIRV::OpInBoundsPtrAccessChain
3031 : SPIRV::OpPtrAccessChain);
3032
3033 auto Res = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
3034 .addDef(ResVReg)
3035 .addUse(GR.getSPIRVTypeID(ResType))
3036 // Object to get a pointer to.
3037 .addUse(I.getOperand(3).getReg());
3038 // Adding indices.
3039 const unsigned StartingIndex =
3040 (Opcode == SPIRV::OpAccessChain || Opcode == SPIRV::OpInBoundsAccessChain)
3041 ? 5
3042 : 4;
3043 for (unsigned i = StartingIndex; i < I.getNumExplicitOperands(); ++i)
3044 Res.addUse(I.getOperand(i).getReg());
3045 return Res.constrainAllUses(TII, TRI, RBI);
3046}
3047
3048// Maybe wrap a value into OpSpecConstantOp
3049bool SPIRVInstructionSelector::wrapIntoSpecConstantOp(
3050 MachineInstr &I, SmallVector<Register> &CompositeArgs) const {
3051 bool Result = true;
3052 unsigned Lim = I.getNumExplicitOperands();
3053 for (unsigned i = I.getNumExplicitDefs() + 1; i < Lim; ++i) {
3054 Register OpReg = I.getOperand(i).getReg();
3055 MachineInstr *OpDefine = MRI->getVRegDef(OpReg);
3056 SPIRVType *OpType = GR.getSPIRVTypeForVReg(OpReg);
3057 SmallPtrSet<SPIRVType *, 4> Visited;
3058 if (!OpDefine || !OpType || isConstReg(MRI, OpDefine, Visited) ||
3059 OpDefine->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST ||
3060 GR.isAggregateType(OpType)) {
3061 // The case of G_ADDRSPACE_CAST inside spv_const_composite() is processed
3062 // by selectAddrSpaceCast()
3063 CompositeArgs.push_back(OpReg);
3064 continue;
3065 }
3066 MachineFunction *MF = I.getMF();
3067 Register WrapReg = GR.find(OpDefine, MF);
3068 if (WrapReg.isValid()) {
3069 CompositeArgs.push_back(WrapReg);
3070 continue;
3071 }
3072 // Create a new register for the wrapper
3073 WrapReg = MRI->createVirtualRegister(GR.getRegClass(OpType));
3074 CompositeArgs.push_back(WrapReg);
3075 // Decorate the wrapper register and generate a new instruction
3076 MRI->setType(WrapReg, LLT::pointer(0, 64));
3077 GR.assignSPIRVTypeToVReg(OpType, WrapReg, *MF);
3078 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
3079 TII.get(SPIRV::OpSpecConstantOp))
3080 .addDef(WrapReg)
3081 .addUse(GR.getSPIRVTypeID(OpType))
3082 .addImm(static_cast<uint32_t>(SPIRV::Opcode::Bitcast))
3083 .addUse(OpReg);
3084 GR.add(OpDefine, MIB);
3085 Result = MIB.constrainAllUses(TII, TRI, RBI);
3086 if (!Result)
3087 break;
3088 }
3089 return Result;
3090}
3091
3092bool SPIRVInstructionSelector::selectIntrinsic(Register ResVReg,
3093 const SPIRVType *ResType,
3094 MachineInstr &I) const {
3095 MachineBasicBlock &BB = *I.getParent();
3096 Intrinsic::ID IID = cast<GIntrinsic>(I).getIntrinsicID();
3097 switch (IID) {
3098 case Intrinsic::spv_load:
3099 return selectLoad(ResVReg, ResType, I);
3100 case Intrinsic::spv_store:
3101 return selectStore(I);
3102 case Intrinsic::spv_extractv:
3103 return selectExtractVal(ResVReg, ResType, I);
3104 case Intrinsic::spv_insertv:
3105 return selectInsertVal(ResVReg, ResType, I);
3106 case Intrinsic::spv_extractelt:
3107 return selectExtractElt(ResVReg, ResType, I);
3108 case Intrinsic::spv_insertelt:
3109 return selectInsertElt(ResVReg, ResType, I);
3110 case Intrinsic::spv_gep:
3111 return selectGEP(ResVReg, ResType, I);
3112 case Intrinsic::spv_unref_global:
3113 case Intrinsic::spv_init_global: {
3114 MachineInstr *MI = MRI->getVRegDef(I.getOperand(1).getReg());
3115 MachineInstr *Init = I.getNumExplicitOperands() > 2
3116 ? MRI->getVRegDef(I.getOperand(2).getReg())
3117 : nullptr;
3118 assert(MI);
3119 Register GVarVReg = MI->getOperand(0).getReg();
3120 bool Res = selectGlobalValue(GVarVReg, *MI, Init);
3121 // We violate SSA form by inserting OpVariable and still having a gMIR
3122 // instruction %vreg = G_GLOBAL_VALUE @gvar. We need to fix this by erasing
3123 // the duplicated definition.
3124 if (MI->getOpcode() == TargetOpcode::G_GLOBAL_VALUE) {
3126 MI->removeFromParent();
3127 }
3128 return Res;
3129 }
3130 case Intrinsic::spv_undef: {
3131 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpUndef))
3132 .addDef(ResVReg)
3133 .addUse(GR.getSPIRVTypeID(ResType));
3134 return MIB.constrainAllUses(TII, TRI, RBI);
3135 }
3136 case Intrinsic::spv_const_composite: {
3137 // If no values are attached, the composite is null constant.
3138 bool IsNull = I.getNumExplicitDefs() + 1 == I.getNumExplicitOperands();
3139 SmallVector<Register> CompositeArgs;
3140 MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
3141
3142 // skip type MD node we already used when generated assign.type for this
3143 if (!IsNull) {
3144 if (!wrapIntoSpecConstantOp(I, CompositeArgs))
3145 return false;
3146 MachineIRBuilder MIR(I);
3147 SmallVector<MachineInstr *, 4> Instructions = createContinuedInstructions(
3148 MIR, SPIRV::OpConstantComposite, 3,
3149 SPIRV::OpConstantCompositeContinuedINTEL, CompositeArgs, ResVReg,
3150 GR.getSPIRVTypeID(ResType));
3151 for (auto *Instr : Instructions) {
3152 Instr->setDebugLoc(I.getDebugLoc());
3153 if (!constrainSelectedInstRegOperands(*Instr, TII, TRI, RBI))
3154 return false;
3155 }
3156 return true;
3157 } else {
3158 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull))
3159 .addDef(ResVReg)
3160 .addUse(GR.getSPIRVTypeID(ResType));
3161 return MIB.constrainAllUses(TII, TRI, RBI);
3162 }
3163 }
3164 case Intrinsic::spv_assign_name: {
3165 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpName));
3166 MIB.addUse(I.getOperand(I.getNumExplicitDefs() + 1).getReg());
3167 for (unsigned i = I.getNumExplicitDefs() + 2;
3168 i < I.getNumExplicitOperands(); ++i) {
3169 MIB.addImm(I.getOperand(i).getImm());
3170 }
3171 return MIB.constrainAllUses(TII, TRI, RBI);
3172 }
3173 case Intrinsic::spv_switch: {
3174 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSwitch));
3175 for (unsigned i = 1; i < I.getNumExplicitOperands(); ++i) {
3176 if (I.getOperand(i).isReg())
3177 MIB.addReg(I.getOperand(i).getReg());
3178 else if (I.getOperand(i).isCImm())
3179 addNumImm(I.getOperand(i).getCImm()->getValue(), MIB);
3180 else if (I.getOperand(i).isMBB())
3181 MIB.addMBB(I.getOperand(i).getMBB());
3182 else
3183 llvm_unreachable("Unexpected OpSwitch operand");
3184 }
3185 return MIB.constrainAllUses(TII, TRI, RBI);
3186 }
3187 case Intrinsic::spv_loop_merge: {
3188 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpLoopMerge));
3189 for (unsigned i = 1; i < I.getNumExplicitOperands(); ++i) {
3190 if (I.getOperand(i).isMBB())
3191 MIB.addMBB(I.getOperand(i).getMBB());
3192 else
3193 MIB.addImm(foldImm(I.getOperand(i), MRI));
3194 }
3195 return MIB.constrainAllUses(TII, TRI, RBI);
3196 }
3197 case Intrinsic::spv_selection_merge: {
3198 auto MIB =
3199 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSelectionMerge));
3200 assert(I.getOperand(1).isMBB() &&
3201 "operand 1 to spv_selection_merge must be a basic block");
3202 MIB.addMBB(I.getOperand(1).getMBB());
3203 MIB.addImm(getSelectionOperandForImm(I.getOperand(2).getImm()));
3204 return MIB.constrainAllUses(TII, TRI, RBI);
3205 }
3206 case Intrinsic::spv_cmpxchg:
3207 return selectAtomicCmpXchg(ResVReg, ResType, I);
3208 case Intrinsic::spv_unreachable:
3209 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpUnreachable))
3210 .constrainAllUses(TII, TRI, RBI);
3211 case Intrinsic::spv_alloca:
3212 return selectFrameIndex(ResVReg, ResType, I);
3213 case Intrinsic::spv_alloca_array:
3214 return selectAllocaArray(ResVReg, ResType, I);
3215 case Intrinsic::spv_assume:
3216 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume))
3217 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpAssumeTrueKHR))
3218 .addUse(I.getOperand(1).getReg())
3219 .constrainAllUses(TII, TRI, RBI);
3220 break;
3221 case Intrinsic::spv_expect:
3222 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume))
3223 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExpectKHR))
3224 .addDef(ResVReg)
3225 .addUse(GR.getSPIRVTypeID(ResType))
3226 .addUse(I.getOperand(2).getReg())
3227 .addUse(I.getOperand(3).getReg())
3228 .constrainAllUses(TII, TRI, RBI);
3229 break;
3230 case Intrinsic::arithmetic_fence:
3231 if (STI.canUseExtension(SPIRV::Extension::SPV_EXT_arithmetic_fence))
3232 return BuildMI(BB, I, I.getDebugLoc(),
3233 TII.get(SPIRV::OpArithmeticFenceEXT))
3234 .addDef(ResVReg)
3235 .addUse(GR.getSPIRVTypeID(ResType))
3236 .addUse(I.getOperand(2).getReg())
3237 .constrainAllUses(TII, TRI, RBI);
3238 else
3239 return BuildCOPY(ResVReg, I.getOperand(2).getReg(), I);
3240 break;
3241 case Intrinsic::spv_thread_id:
3242 // The HLSL SV_DispatchThreadID semantic is lowered to llvm.spv.thread.id
3243 // intrinsic in LLVM IR for SPIR-V backend.
3244 //
3245 // In SPIR-V backend, llvm.spv.thread.id is now correctly translated to a
3246 // `GlobalInvocationId` builtin variable
3247 return loadVec3BuiltinInputID(SPIRV::BuiltIn::GlobalInvocationId, ResVReg,
3248 ResType, I);
3249 case Intrinsic::spv_thread_id_in_group:
3250 // The HLSL SV_GroupThreadId semantic is lowered to
3251 // llvm.spv.thread.id.in.group intrinsic in LLVM IR for SPIR-V backend.
3252 //
3253 // In SPIR-V backend, llvm.spv.thread.id.in.group is now correctly
3254 // translated to a `LocalInvocationId` builtin variable
3255 return loadVec3BuiltinInputID(SPIRV::BuiltIn::LocalInvocationId, ResVReg,
3256 ResType, I);
3257 case Intrinsic::spv_group_id:
3258 // The HLSL SV_GroupId semantic is lowered to
3259 // llvm.spv.group.id intrinsic in LLVM IR for SPIR-V backend.
3260 //
3261 // In SPIR-V backend, llvm.spv.group.id is now translated to a `WorkgroupId`
3262 // builtin variable
3263 return loadVec3BuiltinInputID(SPIRV::BuiltIn::WorkgroupId, ResVReg, ResType,
3264 I);
3265 case Intrinsic::spv_flattened_thread_id_in_group:
3266 // The HLSL SV_GroupIndex semantic is lowered to
3267 // llvm.spv.flattened.thread.id.in.group() intrinsic in LLVM IR for SPIR-V
3268 // backend.
3269 //
3270 // In SPIR-V backend, llvm.spv.flattened.thread.id.in.group is translated to
3271 // a `LocalInvocationIndex` builtin variable
3272 return loadBuiltinInputID(SPIRV::BuiltIn::LocalInvocationIndex, ResVReg,
3273 ResType, I);
3274 case Intrinsic::spv_workgroup_size:
3275 return loadVec3BuiltinInputID(SPIRV::BuiltIn::WorkgroupSize, ResVReg,
3276 ResType, I);
3277 case Intrinsic::spv_global_size:
3278 return loadVec3BuiltinInputID(SPIRV::BuiltIn::GlobalSize, ResVReg, ResType,
3279 I);
3280 case Intrinsic::spv_global_offset:
3281 return loadVec3BuiltinInputID(SPIRV::BuiltIn::GlobalOffset, ResVReg,
3282 ResType, I);
3283 case Intrinsic::spv_num_workgroups:
3284 return loadVec3BuiltinInputID(SPIRV::BuiltIn::NumWorkgroups, ResVReg,
3285 ResType, I);
3286 case Intrinsic::spv_subgroup_size:
3287 return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupSize, ResVReg, ResType,
3288 I);
3289 case Intrinsic::spv_num_subgroups:
3290 return loadBuiltinInputID(SPIRV::BuiltIn::NumSubgroups, ResVReg, ResType,
3291 I);
3292 case Intrinsic::spv_subgroup_id:
3293 return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupId, ResVReg, ResType, I);
3294 case Intrinsic::spv_subgroup_local_invocation_id:
3295 return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupLocalInvocationId,
3296 ResVReg, ResType, I);
3297 case Intrinsic::spv_subgroup_max_size:
3298 return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupMaxSize, ResVReg, ResType,
3299 I);
3300 case Intrinsic::spv_fdot:
3301 return selectFloatDot(ResVReg, ResType, I);
3302 case Intrinsic::spv_udot:
3303 case Intrinsic::spv_sdot:
3304 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) ||
3305 STI.isAtLeastSPIRVVer(VersionTuple(1, 6)))
3306 return selectIntegerDot(ResVReg, ResType, I,
3307 /*Signed=*/IID == Intrinsic::spv_sdot);
3308 return selectIntegerDotExpansion(ResVReg, ResType, I);
3309 case Intrinsic::spv_dot4add_i8packed:
3310 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) ||
3311 STI.isAtLeastSPIRVVer(VersionTuple(1, 6)))
3312 return selectDot4AddPacked<true>(ResVReg, ResType, I);
3313 return selectDot4AddPackedExpansion<true>(ResVReg, ResType, I);
3314 case Intrinsic::spv_dot4add_u8packed:
3315 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) ||
3316 STI.isAtLeastSPIRVVer(VersionTuple(1, 6)))
3317 return selectDot4AddPacked<false>(ResVReg, ResType, I);
3318 return selectDot4AddPackedExpansion<false>(ResVReg, ResType, I);
3319 case Intrinsic::spv_all:
3320 return selectAll(ResVReg, ResType, I);
3321 case Intrinsic::spv_any:
3322 return selectAny(ResVReg, ResType, I);
3323 case Intrinsic::spv_cross:
3324 return selectExtInst(ResVReg, ResType, I, CL::cross, GL::Cross);
3325 case Intrinsic::spv_distance:
3326 return selectExtInst(ResVReg, ResType, I, CL::distance, GL::Distance);
3327 case Intrinsic::spv_lerp:
3328 return selectExtInst(ResVReg, ResType, I, CL::mix, GL::FMix);
3329 case Intrinsic::spv_length:
3330 return selectExtInst(ResVReg, ResType, I, CL::length, GL::Length);
3331 case Intrinsic::spv_degrees:
3332 return selectExtInst(ResVReg, ResType, I, CL::degrees, GL::Degrees);
3333 case Intrinsic::spv_faceforward:
3334 return selectExtInst(ResVReg, ResType, I, GL::FaceForward);
3335 case Intrinsic::spv_frac:
3336 return selectExtInst(ResVReg, ResType, I, CL::fract, GL::Fract);
3337 case Intrinsic::spv_isinf:
3338 return selectOpIsInf(ResVReg, ResType, I);
3339 case Intrinsic::spv_isnan:
3340 return selectOpIsNan(ResVReg, ResType, I);
3341 case Intrinsic::spv_normalize:
3342 return selectExtInst(ResVReg, ResType, I, CL::normalize, GL::Normalize);
3343 case Intrinsic::spv_refract:
3344 return selectExtInst(ResVReg, ResType, I, GL::Refract);
3345 case Intrinsic::spv_reflect:
3346 return selectExtInst(ResVReg, ResType, I, GL::Reflect);
3347 case Intrinsic::spv_rsqrt:
3348 return selectExtInst(ResVReg, ResType, I, CL::rsqrt, GL::InverseSqrt);
3349 case Intrinsic::spv_sign:
3350 return selectSign(ResVReg, ResType, I);
3351 case Intrinsic::spv_smoothstep:
3352 return selectExtInst(ResVReg, ResType, I, CL::smoothstep, GL::SmoothStep);
3353 case Intrinsic::spv_firstbituhigh: // There is no CL equivalent of FindUMsb
3354 return selectFirstBitHigh(ResVReg, ResType, I, /*IsSigned=*/false);
3355 case Intrinsic::spv_firstbitshigh: // There is no CL equivalent of FindSMsb
3356 return selectFirstBitHigh(ResVReg, ResType, I, /*IsSigned=*/true);
3357 case Intrinsic::spv_firstbitlow: // There is no CL equivlent of FindILsb
3358 return selectFirstBitLow(ResVReg, ResType, I);
3359 case Intrinsic::spv_group_memory_barrier_with_group_sync: {
3360 bool Result = true;
3361 auto MemSemConstant =
3362 buildI32Constant(SPIRV::MemorySemantics::SequentiallyConsistent, I);
3363 Register MemSemReg = MemSemConstant.first;
3364 Result &= MemSemConstant.second;
3365 auto ScopeConstant = buildI32Constant(SPIRV::Scope::Workgroup, I);
3366 Register ScopeReg = ScopeConstant.first;
3367 Result &= ScopeConstant.second;
3368 MachineBasicBlock &BB = *I.getParent();
3369 return Result &&
3370 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpControlBarrier))
3371 .addUse(ScopeReg)
3372 .addUse(ScopeReg)
3373 .addUse(MemSemReg)
3374 .constrainAllUses(TII, TRI, RBI);
3375 }
3376 case Intrinsic::spv_generic_cast_to_ptr_explicit: {
3377 Register PtrReg = I.getOperand(I.getNumExplicitDefs() + 1).getReg();
3378 SPIRV::StorageClass::StorageClass ResSC =
3379 GR.getPointerStorageClass(ResType);
3380 if (!isGenericCastablePtr(ResSC))
3381 report_fatal_error("The target storage class is not castable from the "
3382 "Generic storage class");
3383 return BuildMI(BB, I, I.getDebugLoc(),
3384 TII.get(SPIRV::OpGenericCastToPtrExplicit))
3385 .addDef(ResVReg)
3386 .addUse(GR.getSPIRVTypeID(ResType))
3387 .addUse(PtrReg)
3388 .addImm(ResSC)
3389 .constrainAllUses(TII, TRI, RBI);
3390 }
3391 case Intrinsic::spv_lifetime_start:
3392 case Intrinsic::spv_lifetime_end: {
3393 unsigned Op = IID == Intrinsic::spv_lifetime_start ? SPIRV::OpLifetimeStart
3394 : SPIRV::OpLifetimeStop;
3395 int64_t Size = I.getOperand(I.getNumExplicitDefs() + 1).getImm();
3396 Register PtrReg = I.getOperand(I.getNumExplicitDefs() + 2).getReg();
3397 if (Size == -1)
3398 Size = 0;
3399 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Op))
3400 .addUse(PtrReg)
3401 .addImm(Size)
3402 .constrainAllUses(TII, TRI, RBI);
3403 }
3404 case Intrinsic::spv_saturate:
3405 return selectSaturate(ResVReg, ResType, I);
3406 case Intrinsic::spv_nclamp:
3407 return selectExtInst(ResVReg, ResType, I, CL::fclamp, GL::NClamp);
3408 case Intrinsic::spv_uclamp:
3409 return selectExtInst(ResVReg, ResType, I, CL::u_clamp, GL::UClamp);
3410 case Intrinsic::spv_sclamp:
3411 return selectExtInst(ResVReg, ResType, I, CL::s_clamp, GL::SClamp);
3412 case Intrinsic::spv_wave_active_countbits:
3413 return selectWaveActiveCountBits(ResVReg, ResType, I);
3414 case Intrinsic::spv_wave_all:
3415 return selectWaveOpInst(ResVReg, ResType, I, SPIRV::OpGroupNonUniformAll);
3416 case Intrinsic::spv_wave_any:
3417 return selectWaveOpInst(ResVReg, ResType, I, SPIRV::OpGroupNonUniformAny);
3418 case Intrinsic::spv_wave_is_first_lane:
3419 return selectWaveOpInst(ResVReg, ResType, I, SPIRV::OpGroupNonUniformElect);
3420 case Intrinsic::spv_wave_reduce_umax:
3421 return selectWaveReduceMax(ResVReg, ResType, I, /*IsUnsigned*/ true);
3422 case Intrinsic::spv_wave_reduce_max:
3423 return selectWaveReduceMax(ResVReg, ResType, I, /*IsUnsigned*/ false);
3424 case Intrinsic::spv_wave_reduce_sum:
3425 return selectWaveReduceSum(ResVReg, ResType, I);
3426 case Intrinsic::spv_wave_readlane:
3427 return selectWaveOpInst(ResVReg, ResType, I,
3428 SPIRV::OpGroupNonUniformShuffle);
3429 case Intrinsic::spv_step:
3430 return selectExtInst(ResVReg, ResType, I, CL::step, GL::Step);
3431 case Intrinsic::spv_radians:
3432 return selectExtInst(ResVReg, ResType, I, CL::radians, GL::Radians);
3433 // Discard intrinsics which we do not expect to actually represent code after
3434 // lowering or intrinsics which are not implemented but should not crash when
3435 // found in a customer's LLVM IR input.
3436 case Intrinsic::instrprof_increment:
3437 case Intrinsic::instrprof_increment_step:
3438 case Intrinsic::instrprof_value_profile:
3439 break;
3440 // Discard internal intrinsics.
3441 case Intrinsic::spv_value_md:
3442 break;
3443 case Intrinsic::spv_resource_handlefrombinding: {
3444 return selectHandleFromBinding(ResVReg, ResType, I);
3445 }
3446 case Intrinsic::spv_resource_store_typedbuffer: {
3447 return selectImageWriteIntrinsic(I);
3448 }
3449 case Intrinsic::spv_resource_load_typedbuffer: {
3450 return selectReadImageIntrinsic(ResVReg, ResType, I);
3451 }
3452 case Intrinsic::spv_resource_getpointer: {
3453 return selectResourceGetPointer(ResVReg, ResType, I);
3454 }
3455 case Intrinsic::spv_discard: {
3456 return selectDiscard(ResVReg, ResType, I);
3457 }
3458 default: {
3459 std::string DiagMsg;
3460 raw_string_ostream OS(DiagMsg);
3461 I.print(OS);
3462 DiagMsg = "Intrinsic selection not implemented: " + DiagMsg;
3463 report_fatal_error(DiagMsg.c_str(), false);
3464 }
3465 }
3466 return true;
3467}
3468
3469bool SPIRVInstructionSelector::selectHandleFromBinding(Register &ResVReg,
3470 const SPIRVType *ResType,
3471 MachineInstr &I) const {
3472 // The images need to be loaded in the same basic block as their use. We defer
3473 // loading the image to the intrinsic that uses it.
3474 if (ResType->getOpcode() == SPIRV::OpTypeImage)
3475 return true;
3476
3477 return loadHandleBeforePosition(ResVReg, GR.getSPIRVTypeForVReg(ResVReg),
3478 *cast<GIntrinsic>(&I), I);
3479}
3480
3481bool SPIRVInstructionSelector::selectReadImageIntrinsic(
3482 Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
3483
3484 // If the load of the image is in a different basic block, then
3485 // this will generate invalid code. A proper solution is to move
3486 // the OpLoad from selectHandleFromBinding here. However, to do
3487 // that we will need to change the return type of the intrinsic.
3488 // We will do that when we can, but for now trying to move forward with other
3489 // issues.
3490 Register ImageReg = I.getOperand(2).getReg();
3491 auto *ImageDef = cast<GIntrinsic>(getVRegDef(*MRI, ImageReg));
3492 Register NewImageReg = MRI->createVirtualRegister(MRI->getRegClass(ImageReg));
3493 if (!loadHandleBeforePosition(NewImageReg, GR.getSPIRVTypeForVReg(ImageReg),
3494 *ImageDef, I)) {
3495 return false;
3496 }
3497
3498 Register IdxReg = I.getOperand(3).getReg();
3499 DebugLoc Loc = I.getDebugLoc();
3500 MachineInstr &Pos = I;
3501
3502 return generateImageRead(ResVReg, ResType, NewImageReg, IdxReg, Loc, Pos);
3503}
3504
3505bool SPIRVInstructionSelector::generateImageRead(Register &ResVReg,
3506 const SPIRVType *ResType,
3507 Register ImageReg,
3508 Register IdxReg, DebugLoc Loc,
3509 MachineInstr &Pos) const {
3510 SPIRVType *ImageType = GR.getSPIRVTypeForVReg(ImageReg);
3511 assert(ImageType && ImageType->getOpcode() == SPIRV::OpTypeImage &&
3512 "ImageReg is not an image type.");
3513 bool IsSignedInteger =
3514 sampledTypeIsSignedInteger(GR.getTypeForSPIRVType(ImageType));
3515
3516 uint64_t ResultSize = GR.getScalarOrVectorComponentCount(ResType);
3517 if (ResultSize == 4) {
3518 auto BMI = BuildMI(*Pos.getParent(), Pos, Loc, TII.get(SPIRV::OpImageRead))
3519 .addDef(ResVReg)
3520 .addUse(GR.getSPIRVTypeID(ResType))
3521 .addUse(ImageReg)
3522 .addUse(IdxReg);
3523
3524 if (IsSignedInteger)
3525 BMI.addImm(0x1000); // SignExtend
3526 return BMI.constrainAllUses(TII, TRI, RBI);
3527 }
3528
3529 SPIRVType *ReadType = widenTypeToVec4(ResType, Pos);
3530 Register ReadReg = MRI->createVirtualRegister(GR.getRegClass(ReadType));
3531 auto BMI = BuildMI(*Pos.getParent(), Pos, Loc, TII.get(SPIRV::OpImageRead))
3532 .addDef(ReadReg)
3533 .addUse(GR.getSPIRVTypeID(ReadType))
3534 .addUse(ImageReg)
3535 .addUse(IdxReg);
3536 if (IsSignedInteger)
3537 BMI.addImm(0x1000); // SignExtend
3538 bool Succeed = BMI.constrainAllUses(TII, TRI, RBI);
3539 if (!Succeed)
3540 return false;
3541
3542 if (ResultSize == 1) {
3543 return BuildMI(*Pos.getParent(), Pos, Loc,
3544 TII.get(SPIRV::OpCompositeExtract))
3545 .addDef(ResVReg)
3546 .addUse(GR.getSPIRVTypeID(ResType))
3547 .addUse(ReadReg)
3548 .addImm(0)
3549 .constrainAllUses(TII, TRI, RBI);
3550 }
3551 return extractSubvector(ResVReg, ResType, ReadReg, Pos);
3552}
3553
3554bool SPIRVInstructionSelector::selectResourceGetPointer(
3555 Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
3556 Register ResourcePtr = I.getOperand(2).getReg();
3557 SPIRVType *RegType = GR.getSPIRVTypeForVReg(ResourcePtr, I.getMF());
3558 if (RegType->getOpcode() == SPIRV::OpTypeImage) {
3559 // For texel buffers, the index into the image is part of the OpImageRead or
3560 // OpImageWrite instructions. So we will do nothing in this case. This
3561 // intrinsic will be combined with the load or store when selecting the load
3562 // or store.
3563 return true;
3564 }
3565
3566 assert(ResType->getOpcode() == SPIRV::OpTypePointer);
3567 MachineIRBuilder MIRBuilder(I);
3568
3569 Register IndexReg = I.getOperand(3).getReg();
3570 Register ZeroReg =
3571 buildZerosVal(GR.getOrCreateSPIRVIntegerType(32, I, TII), I);
3572 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
3573 TII.get(SPIRV::OpAccessChain))
3574 .addDef(ResVReg)
3575 .addUse(GR.getSPIRVTypeID(ResType))
3576 .addUse(ResourcePtr)
3577 .addUse(ZeroReg)
3578 .addUse(IndexReg)
3579 .constrainAllUses(TII, TRI, RBI);
3580}
3581
3582bool SPIRVInstructionSelector::extractSubvector(
3583 Register &ResVReg, const SPIRVType *ResType, Register &ReadReg,
3584 MachineInstr &InsertionPoint) const {
3585 SPIRVType *InputType = GR.getResultType(ReadReg);
3586 [[maybe_unused]] uint64_t InputSize =
3587 GR.getScalarOrVectorComponentCount(InputType);
3588 uint64_t ResultSize = GR.getScalarOrVectorComponentCount(ResType);
3589 assert(InputSize > 1 && "The input must be a vector.");
3590 assert(ResultSize > 1 && "The result must be a vector.");
3591 assert(ResultSize < InputSize &&
3592 "Cannot extract more element than there are in the input.");
3593 SmallVector<Register> ComponentRegisters;
3594 SPIRVType *ScalarType = GR.getScalarOrVectorComponentType(ResType);
3595 const TargetRegisterClass *ScalarRegClass = GR.getRegClass(ScalarType);
3596 for (uint64_t I = 0; I < ResultSize; I++) {
3597 Register ComponentReg = MRI->createVirtualRegister(ScalarRegClass);
3598 bool Succeed = BuildMI(*InsertionPoint.getParent(), InsertionPoint,
3599 InsertionPoint.getDebugLoc(),
3600 TII.get(SPIRV::OpCompositeExtract))
3601 .addDef(ComponentReg)
3602 .addUse(ScalarType->getOperand(0).getReg())
3603 .addUse(ReadReg)
3604 .addImm(I)
3605 .constrainAllUses(TII, TRI, RBI);
3606 if (!Succeed)
3607 return false;
3608 ComponentRegisters.emplace_back(ComponentReg);
3609 }
3610
3611 MachineInstrBuilder MIB = BuildMI(*InsertionPoint.getParent(), InsertionPoint,
3612 InsertionPoint.getDebugLoc(),
3613 TII.get(SPIRV::OpCompositeConstruct))
3614 .addDef(ResVReg)
3615 .addUse(GR.getSPIRVTypeID(ResType));
3616
3617 for (Register ComponentReg : ComponentRegisters)
3618 MIB.addUse(ComponentReg);
3619 return MIB.constrainAllUses(TII, TRI, RBI);
3620}
3621
3622bool SPIRVInstructionSelector::selectImageWriteIntrinsic(
3623 MachineInstr &I) const {
3624 // If the load of the image is in a different basic block, then
3625 // this will generate invalid code. A proper solution is to move
3626 // the OpLoad from selectHandleFromBinding here. However, to do
3627 // that we will need to change the return type of the intrinsic.
3628 // We will do that when we can, but for now trying to move forward with other
3629 // issues.
3630 Register ImageReg = I.getOperand(1).getReg();
3631 auto *ImageDef = cast<GIntrinsic>(getVRegDef(*MRI, ImageReg));
3632 Register NewImageReg = MRI->createVirtualRegister(MRI->getRegClass(ImageReg));
3633 if (!loadHandleBeforePosition(NewImageReg, GR.getSPIRVTypeForVReg(ImageReg),
3634 *ImageDef, I)) {
3635 return false;
3636 }
3637
3638 Register CoordinateReg = I.getOperand(2).getReg();
3639 Register DataReg = I.getOperand(3).getReg();
3640 assert(GR.getResultType(DataReg)->getOpcode() == SPIRV::OpTypeVector);
3642 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
3643 TII.get(SPIRV::OpImageWrite))
3644 .addUse(NewImageReg)
3645 .addUse(CoordinateReg)
3646 .addUse(DataReg)
3647 .constrainAllUses(TII, TRI, RBI);
3648}
3649
3650Register SPIRVInstructionSelector::buildPointerToResource(
3651 const SPIRVType *SpirvResType, SPIRV::StorageClass::StorageClass SC,
3652 uint32_t Set, uint32_t Binding, uint32_t ArraySize, Register IndexReg,
3653 bool IsNonUniform, StringRef Name, MachineIRBuilder MIRBuilder) const {
3654 const Type *ResType = GR.getTypeForSPIRVType(SpirvResType);
3655 if (ArraySize == 1) {
3656 SPIRVType *PtrType =
3657 GR.getOrCreateSPIRVPointerType(ResType, MIRBuilder, SC);
3658 assert(GR.getPointeeType(PtrType) == SpirvResType &&
3659 "SpirvResType did not have an explicit layout.");
3660 return GR.getOrCreateGlobalVariableWithBinding(PtrType, Set, Binding, Name,
3661 MIRBuilder);
3662 }
3663
3664 const Type *VarType = ArrayType::get(const_cast<Type *>(ResType), ArraySize);
3665 SPIRVType *VarPointerType =
3666 GR.getOrCreateSPIRVPointerType(VarType, MIRBuilder, SC);
3668 VarPointerType, Set, Binding, Name, MIRBuilder);
3669
3670 SPIRVType *ResPointerType =
3671 GR.getOrCreateSPIRVPointerType(ResType, MIRBuilder, SC);
3672
3673 Register AcReg = MRI->createVirtualRegister(GR.getRegClass(ResPointerType));
3674 if (IsNonUniform) {
3675 // It is unclear which value needs to be marked an non-uniform, so both
3676 // the index and the access changed are decorated as non-uniform.
3677 buildOpDecorate(IndexReg, MIRBuilder, SPIRV::Decoration::NonUniformEXT, {});
3678 buildOpDecorate(AcReg, MIRBuilder, SPIRV::Decoration::NonUniformEXT, {});
3679 }
3680
3681 MIRBuilder.buildInstr(SPIRV::OpAccessChain)
3682 .addDef(AcReg)
3683 .addUse(GR.getSPIRVTypeID(ResPointerType))
3684 .addUse(VarReg)
3685 .addUse(IndexReg);
3686
3687 return AcReg;
3688}
3689
3690bool SPIRVInstructionSelector::selectFirstBitSet16(
3691 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
3692 unsigned ExtendOpcode, unsigned BitSetOpcode) const {
3693 Register ExtReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
3694 bool Result = selectOpWithSrcs(ExtReg, ResType, I, {I.getOperand(2).getReg()},
3695 ExtendOpcode);
3696
3697 return Result &&
3698 selectFirstBitSet32(ResVReg, ResType, I, ExtReg, BitSetOpcode);
3699}
3700
3701bool SPIRVInstructionSelector::selectFirstBitSet32(
3702 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
3703 Register SrcReg, unsigned BitSetOpcode) const {
3704 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
3705 .addDef(ResVReg)
3706 .addUse(GR.getSPIRVTypeID(ResType))
3707 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
3708 .addImm(BitSetOpcode)
3709 .addUse(SrcReg)
3710 .constrainAllUses(TII, TRI, RBI);
3711}
3712
3713bool SPIRVInstructionSelector::selectFirstBitSet64Overflow(
3714 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
3715 Register SrcReg, unsigned BitSetOpcode, bool SwapPrimarySide) const {
3716
3717 // SPIR-V allow vectors of size 2,3,4 only. Calling with a larger vectors
3718 // requires creating a param register and return register with an invalid
3719 // vector size. If that is resolved, then this function can be used for
3720 // vectors of any component size.
3721 unsigned ComponentCount = GR.getScalarOrVectorComponentCount(ResType);
3722 assert(ComponentCount < 5 && "Vec 5+ will generate invalid SPIR-V ops");
3723
3724 MachineIRBuilder MIRBuilder(I);
3726 SPIRVType *I64Type = GR.getOrCreateSPIRVIntegerType(64, MIRBuilder);
3727 SPIRVType *I64x2Type =
3728 GR.getOrCreateSPIRVVectorType(I64Type, 2, MIRBuilder, false);
3729 SPIRVType *Vec2ResType =
3730 GR.getOrCreateSPIRVVectorType(BaseType, 2, MIRBuilder, false);
3731
3732 std::vector<Register> PartialRegs;
3733
3734 // Loops 0, 2, 4, ... but stops one loop early when ComponentCount is odd
3735 unsigned CurrentComponent = 0;
3736 for (; CurrentComponent + 1 < ComponentCount; CurrentComponent += 2) {
3737 // This register holds the firstbitX result for each of the i64x2 vectors
3738 // extracted from SrcReg
3739 Register BitSetResult =
3740 MRI->createVirtualRegister(GR.getRegClass(I64x2Type));
3741
3742 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
3743 TII.get(SPIRV::OpVectorShuffle))
3744 .addDef(BitSetResult)
3745 .addUse(GR.getSPIRVTypeID(I64x2Type))
3746 .addUse(SrcReg)
3747 .addUse(SrcReg)
3748 .addImm(CurrentComponent)
3749 .addImm(CurrentComponent + 1);
3750
3751 if (!MIB.constrainAllUses(TII, TRI, RBI))
3752 return false;
3753
3754 Register SubVecBitSetReg =
3755 MRI->createVirtualRegister(GR.getRegClass(Vec2ResType));
3756
3757 if (!selectFirstBitSet64(SubVecBitSetReg, Vec2ResType, I, BitSetResult,
3758 BitSetOpcode, SwapPrimarySide))
3759 return false;
3760
3761 PartialRegs.push_back(SubVecBitSetReg);
3762 }
3763
3764 // On odd component counts we need to handle one more component
3765 if (CurrentComponent != ComponentCount) {
3766 bool ZeroAsNull = !STI.isShader();
3767 Register FinalElemReg = MRI->createVirtualRegister(GR.getRegClass(I64Type));
3768 Register ConstIntLastIdx = GR.getOrCreateConstInt(
3769 ComponentCount - 1, I, BaseType, TII, ZeroAsNull);
3770
3771 if (!selectOpWithSrcs(FinalElemReg, I64Type, I, {SrcReg, ConstIntLastIdx},
3772 SPIRV::OpVectorExtractDynamic))
3773 return false;
3774
3775 Register FinalElemBitSetReg =
3776 MRI->createVirtualRegister(GR.getRegClass(BaseType));
3777
3778 if (!selectFirstBitSet64(FinalElemBitSetReg, BaseType, I, FinalElemReg,
3779 BitSetOpcode, SwapPrimarySide))
3780 return false;
3781
3782 PartialRegs.push_back(FinalElemBitSetReg);
3783 }
3784
3785 // Join all the resulting registers back into the return type in order
3786 // (ie i32x2, i32x2, i32x1 -> i32x5)
3787 return selectOpWithSrcs(ResVReg, ResType, I, std::move(PartialRegs),
3788 SPIRV::OpCompositeConstruct);
3789}
3790
3791bool SPIRVInstructionSelector::selectFirstBitSet64(
3792 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
3793 Register SrcReg, unsigned BitSetOpcode, bool SwapPrimarySide) const {
3794 unsigned ComponentCount = GR.getScalarOrVectorComponentCount(ResType);
3796 bool ZeroAsNull = !STI.isShader();
3797 Register ConstIntZero =
3798 GR.getOrCreateConstInt(0, I, BaseType, TII, ZeroAsNull);
3799 Register ConstIntOne =
3800 GR.getOrCreateConstInt(1, I, BaseType, TII, ZeroAsNull);
3801
3802 // SPIRV doesn't support vectors with more than 4 components. Since the
3803 // algoritm below converts i64 -> i32x2 and i64x4 -> i32x8 it can only
3804 // operate on vectors with 2 or less components. When largers vectors are
3805 // seen. Split them, recurse, then recombine them.
3806 if (ComponentCount > 2) {
3807 return selectFirstBitSet64Overflow(ResVReg, ResType, I, SrcReg,
3808 BitSetOpcode, SwapPrimarySide);
3809 }
3810
3811 // 1. Split int64 into 2 pieces using a bitcast
3812 MachineIRBuilder MIRBuilder(I);
3813 SPIRVType *PostCastType = GR.getOrCreateSPIRVVectorType(
3814 BaseType, 2 * ComponentCount, MIRBuilder, false);
3815 Register BitcastReg =
3816 MRI->createVirtualRegister(GR.getRegClass(PostCastType));
3817
3818 if (!selectOpWithSrcs(BitcastReg, PostCastType, I, {SrcReg},
3819 SPIRV::OpBitcast))
3820 return false;
3821
3822 // 2. Find the first set bit from the primary side for all the pieces in #1
3823 Register FBSReg = MRI->createVirtualRegister(GR.getRegClass(PostCastType));
3824 if (!selectFirstBitSet32(FBSReg, PostCastType, I, BitcastReg, BitSetOpcode))
3825 return false;
3826
3827 // 3. Split result vector into high bits and low bits
3828 Register HighReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
3829 Register LowReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
3830
3831 bool IsScalarRes = ResType->getOpcode() != SPIRV::OpTypeVector;
3832 if (IsScalarRes) {
3833 // if scalar do a vector extract
3834 if (!selectOpWithSrcs(HighReg, ResType, I, {FBSReg, ConstIntZero},
3835 SPIRV::OpVectorExtractDynamic))
3836 return false;
3837 if (!selectOpWithSrcs(LowReg, ResType, I, {FBSReg, ConstIntOne},
3838 SPIRV::OpVectorExtractDynamic))
3839 return false;
3840 } else {
3841 // if vector do a shufflevector
3842 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
3843 TII.get(SPIRV::OpVectorShuffle))
3844 .addDef(HighReg)
3845 .addUse(GR.getSPIRVTypeID(ResType))
3846 .addUse(FBSReg)
3847 // Per the spec, repeat the vector if only one vec is needed
3848 .addUse(FBSReg);
3849
3850 // high bits are stored in even indexes. Extract them from FBSReg
3851 for (unsigned J = 0; J < ComponentCount * 2; J += 2) {
3852 MIB.addImm(J);
3853 }
3854
3855 if (!MIB.constrainAllUses(TII, TRI, RBI))
3856 return false;
3857
3858 MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
3859 TII.get(SPIRV::OpVectorShuffle))
3860 .addDef(LowReg)
3861 .addUse(GR.getSPIRVTypeID(ResType))
3862 .addUse(FBSReg)
3863 // Per the spec, repeat the vector if only one vec is needed
3864 .addUse(FBSReg);
3865
3866 // low bits are stored in odd indexes. Extract them from FBSReg
3867 for (unsigned J = 1; J < ComponentCount * 2; J += 2) {
3868 MIB.addImm(J);
3869 }
3870 if (!MIB.constrainAllUses(TII, TRI, RBI))
3871 return false;
3872 }
3873
3874 // 4. Check the result. When primary bits == -1 use secondary, otherwise use
3875 // primary
3876 SPIRVType *BoolType = GR.getOrCreateSPIRVBoolType(I, TII);
3877 Register NegOneReg;
3878 Register Reg0;
3879 Register Reg32;
3880 unsigned SelectOp;
3881 unsigned AddOp;
3882
3883 if (IsScalarRes) {
3884 NegOneReg =
3885 GR.getOrCreateConstInt((unsigned)-1, I, ResType, TII, ZeroAsNull);
3886 Reg0 = GR.getOrCreateConstInt(0, I, ResType, TII, ZeroAsNull);
3887 Reg32 = GR.getOrCreateConstInt(32, I, ResType, TII, ZeroAsNull);
3888 SelectOp = SPIRV::OpSelectSISCond;
3889 AddOp = SPIRV::OpIAddS;
3890 } else {
3891 BoolType = GR.getOrCreateSPIRVVectorType(BoolType, ComponentCount,
3892 MIRBuilder, false);
3893 NegOneReg =
3894 GR.getOrCreateConstVector((unsigned)-1, I, ResType, TII, ZeroAsNull);
3895 Reg0 = GR.getOrCreateConstVector(0, I, ResType, TII, ZeroAsNull);
3896 Reg32 = GR.getOrCreateConstVector(32, I, ResType, TII, ZeroAsNull);
3897 SelectOp = SPIRV::OpSelectVIVCond;
3898 AddOp = SPIRV::OpIAddV;
3899 }
3900
3901 Register PrimaryReg = HighReg;
3902 Register SecondaryReg = LowReg;
3903 Register PrimaryShiftReg = Reg32;
3904 Register SecondaryShiftReg = Reg0;
3905
3906 // By default the emitted opcodes check for the set bit from the MSB side.
3907 // Setting SwapPrimarySide checks the set bit from the LSB side
3908 if (SwapPrimarySide) {
3909 PrimaryReg = LowReg;
3910 SecondaryReg = HighReg;
3911 PrimaryShiftReg = Reg0;
3912 SecondaryShiftReg = Reg32;
3913 }
3914
3915 // Check if the primary bits are == -1
3916 Register BReg = MRI->createVirtualRegister(GR.getRegClass(BoolType));
3917 if (!selectOpWithSrcs(BReg, BoolType, I, {PrimaryReg, NegOneReg},
3918 SPIRV::OpIEqual))
3919 return false;
3920
3921 // Select secondary bits if true in BReg, otherwise primary bits
3922 Register TmpReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
3923 if (!selectOpWithSrcs(TmpReg, ResType, I, {BReg, SecondaryReg, PrimaryReg},
3924 SelectOp))
3925 return false;
3926
3927 // 5. Add 32 when high bits are used, otherwise 0 for low bits
3928 Register ValReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
3929 if (!selectOpWithSrcs(ValReg, ResType, I,
3930 {BReg, SecondaryShiftReg, PrimaryShiftReg}, SelectOp))
3931 return false;
3932
3933 return selectOpWithSrcs(ResVReg, ResType, I, {ValReg, TmpReg}, AddOp);
3934}
3935
3936bool SPIRVInstructionSelector::selectFirstBitHigh(Register ResVReg,
3937 const SPIRVType *ResType,
3938 MachineInstr &I,
3939 bool IsSigned) const {
3940 // FindUMsb and FindSMsb intrinsics only support 32 bit integers
3941 Register OpReg = I.getOperand(2).getReg();
3942 SPIRVType *OpType = GR.getSPIRVTypeForVReg(OpReg);
3943 // zero or sign extend
3944 unsigned ExtendOpcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert;
3945 unsigned BitSetOpcode = IsSigned ? GL::FindSMsb : GL::FindUMsb;
3946
3947 switch (GR.getScalarOrVectorBitWidth(OpType)) {
3948 case 16:
3949 return selectFirstBitSet16(ResVReg, ResType, I, ExtendOpcode, BitSetOpcode);
3950 case 32:
3951 return selectFirstBitSet32(ResVReg, ResType, I, OpReg, BitSetOpcode);
3952 case 64:
3953 return selectFirstBitSet64(ResVReg, ResType, I, OpReg, BitSetOpcode,
3954 /*SwapPrimarySide=*/false);
3955 default:
3957 "spv_firstbituhigh and spv_firstbitshigh only support 16,32,64 bits.");
3958 }
3959}
3960
3961bool SPIRVInstructionSelector::selectFirstBitLow(Register ResVReg,
3962 const SPIRVType *ResType,
3963 MachineInstr &I) const {
3964 // FindILsb intrinsic only supports 32 bit integers
3965 Register OpReg = I.getOperand(2).getReg();
3966 SPIRVType *OpType = GR.getSPIRVTypeForVReg(OpReg);
3967 // OpUConvert treats the operand bits as an unsigned i16 and zero extends it
3968 // to an unsigned i32. As this leaves all the least significant bits unchanged
3969 // so the first set bit from the LSB side doesn't change.
3970 unsigned ExtendOpcode = SPIRV::OpUConvert;
3971 unsigned BitSetOpcode = GL::FindILsb;
3972
3973 switch (GR.getScalarOrVectorBitWidth(OpType)) {
3974 case 16:
3975 return selectFirstBitSet16(ResVReg, ResType, I, ExtendOpcode, BitSetOpcode);
3976 case 32:
3977 return selectFirstBitSet32(ResVReg, ResType, I, OpReg, BitSetOpcode);
3978 case 64:
3979 return selectFirstBitSet64(ResVReg, ResType, I, OpReg, BitSetOpcode,
3980 /*SwapPrimarySide=*/true);
3981 default:
3982 report_fatal_error("spv_firstbitlow only supports 16,32,64 bits.");
3983 }
3984}
3985
3986bool SPIRVInstructionSelector::selectAllocaArray(Register ResVReg,
3987 const SPIRVType *ResType,
3988 MachineInstr &I) const {
3989 // there was an allocation size parameter to the allocation instruction
3990 // that is not 1
3991 MachineBasicBlock &BB = *I.getParent();
3992 bool Res = BuildMI(BB, I, I.getDebugLoc(),
3993 TII.get(SPIRV::OpVariableLengthArrayINTEL))
3994 .addDef(ResVReg)
3995 .addUse(GR.getSPIRVTypeID(ResType))
3996 .addUse(I.getOperand(2).getReg())
3997 .constrainAllUses(TII, TRI, RBI);
3998 if (!STI.isShader()) {
3999 unsigned Alignment = I.getOperand(3).getImm();
4000 buildOpDecorate(ResVReg, I, TII, SPIRV::Decoration::Alignment, {Alignment});
4001 }
4002 return Res;
4003}
4004
4005bool SPIRVInstructionSelector::selectFrameIndex(Register ResVReg,
4006 const SPIRVType *ResType,
4007 MachineInstr &I) const {
4008 // Change order of instructions if needed: all OpVariable instructions in a
4009 // function must be the first instructions in the first block
4010 auto It = getOpVariableMBBIt(I);
4011 bool Res = BuildMI(*It->getParent(), It, It->getDebugLoc(),
4012 TII.get(SPIRV::OpVariable))
4013 .addDef(ResVReg)
4014 .addUse(GR.getSPIRVTypeID(ResType))
4015 .addImm(static_cast<uint32_t>(SPIRV::StorageClass::Function))
4016 .constrainAllUses(TII, TRI, RBI);
4017 if (!STI.isShader()) {
4018 unsigned Alignment = I.getOperand(2).getImm();
4019 buildOpDecorate(ResVReg, *It, TII, SPIRV::Decoration::Alignment,
4020 {Alignment});
4021 }
4022 return Res;
4023}
4024
4025bool SPIRVInstructionSelector::selectBranch(MachineInstr &I) const {
4026 // InstructionSelector walks backwards through the instructions. We can use
4027 // both a G_BR and a G_BRCOND to create an OpBranchConditional. We hit G_BR
4028 // first, so can generate an OpBranchConditional here. If there is no
4029 // G_BRCOND, we just use OpBranch for a regular unconditional branch.
4030 const MachineInstr *PrevI = I.getPrevNode();
4031 MachineBasicBlock &MBB = *I.getParent();
4032 if (PrevI != nullptr && PrevI->getOpcode() == TargetOpcode::G_BRCOND) {
4033 return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranchConditional))
4034 .addUse(PrevI->getOperand(0).getReg())
4035 .addMBB(PrevI->getOperand(1).getMBB())
4036 .addMBB(I.getOperand(0).getMBB())
4037 .constrainAllUses(TII, TRI, RBI);
4038 }
4039 return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranch))
4040 .addMBB(I.getOperand(0).getMBB())
4041 .constrainAllUses(TII, TRI, RBI);
4042}
4043
4044bool SPIRVInstructionSelector::selectBranchCond(MachineInstr &I) const {
4045 // InstructionSelector walks backwards through the instructions. For an
4046 // explicit conditional branch with no fallthrough, we use both a G_BR and a
4047 // G_BRCOND to create an OpBranchConditional. We should hit G_BR first, and
4048 // generate the OpBranchConditional in selectBranch above.
4049 //
4050 // If an OpBranchConditional has been generated, we simply return, as the work
4051 // is alread done. If there is no OpBranchConditional, LLVM must be relying on
4052 // implicit fallthrough to the next basic block, so we need to create an
4053 // OpBranchConditional with an explicit "false" argument pointing to the next
4054 // basic block that LLVM would fall through to.
4055 const MachineInstr *NextI = I.getNextNode();
4056 // Check if this has already been successfully selected.
4057 if (NextI != nullptr && NextI->getOpcode() == SPIRV::OpBranchConditional)
4058 return true;
4059 // Must be relying on implicit block fallthrough, so generate an
4060 // OpBranchConditional with the "next" basic block as the "false" target.
4061 MachineBasicBlock &MBB = *I.getParent();
4062 unsigned NextMBBNum = MBB.getNextNode()->getNumber();
4063 MachineBasicBlock *NextMBB = I.getMF()->getBlockNumbered(NextMBBNum);
4064 return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranchConditional))
4065 .addUse(I.getOperand(0).getReg())
4066 .addMBB(I.getOperand(1).getMBB())
4067 .addMBB(NextMBB)
4068 .constrainAllUses(TII, TRI, RBI);
4069}
4070
4071bool SPIRVInstructionSelector::selectPhi(Register ResVReg,
4072 const SPIRVType *ResType,
4073 MachineInstr &I) const {
4074 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpPhi))
4075 .addDef(ResVReg)
4076 .addUse(GR.getSPIRVTypeID(ResType));
4077 const unsigned NumOps = I.getNumOperands();
4078 for (unsigned i = 1; i < NumOps; i += 2) {
4079 MIB.addUse(I.getOperand(i + 0).getReg());
4080 MIB.addMBB(I.getOperand(i + 1).getMBB());
4081 }
4082 bool Res = MIB.constrainAllUses(TII, TRI, RBI);
4083 MIB->setDesc(TII.get(TargetOpcode::PHI));
4084 MIB->removeOperand(1);
4085 return Res;
4086}
4087
4088bool SPIRVInstructionSelector::selectGlobalValue(
4089 Register ResVReg, MachineInstr &I, const MachineInstr *Init) const {
4090 // FIXME: don't use MachineIRBuilder here, replace it with BuildMI.
4091 MachineIRBuilder MIRBuilder(I);
4092 const GlobalValue *GV = I.getOperand(1).getGlobal();
4094
4095 std::string GlobalIdent;
4096 if (!GV->hasName()) {
4097 unsigned &ID = UnnamedGlobalIDs[GV];
4098 if (ID == 0)
4099 ID = UnnamedGlobalIDs.size();
4100 GlobalIdent = "__unnamed_" + Twine(ID).str();
4101 } else {
4102 GlobalIdent = GV->getName();
4103 }
4104
4105 // Behaviour of functions as operands depends on availability of the
4106 // corresponding extension (SPV_INTEL_function_pointers):
4107 // - If there is an extension to operate with functions as operands:
4108 // We create a proper constant operand and evaluate a correct type for a
4109 // function pointer.
4110 // - Without the required extension:
4111 // We have functions as operands in tests with blocks of instruction e.g. in
4112 // transcoding/global_block.ll. These operands are not used and should be
4113 // substituted by zero constants. Their type is expected to be always
4114 // OpTypePointer Function %uchar.
4115 if (isa<Function>(GV)) {
4116 const Constant *ConstVal = GV;
4117 MachineBasicBlock &BB = *I.getParent();
4118 Register NewReg = GR.find(ConstVal, GR.CurMF);
4119 if (!NewReg.isValid()) {
4120 Register NewReg = ResVReg;
4121 const Function *GVFun =
4122 STI.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)
4123 ? dyn_cast<Function>(GV)
4124 : nullptr;
4126 GVType, I,
4127 GVFun ? SPIRV::StorageClass::CodeSectionINTEL
4129 if (GVFun) {
4130 // References to a function via function pointers generate virtual
4131 // registers without a definition. We will resolve it later, during
4132 // module analysis stage.
4133 Register ResTypeReg = GR.getSPIRVTypeID(ResType);
4134 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
4135 Register FuncVReg =
4136 MRI->createGenericVirtualRegister(GR.getRegType(ResType));
4137 MRI->setRegClass(FuncVReg, &SPIRV::pIDRegClass);
4138 MachineInstrBuilder MIB1 =
4139 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpUndef))
4140 .addDef(FuncVReg)
4141 .addUse(ResTypeReg);
4142 MachineInstrBuilder MIB2 =
4143 BuildMI(BB, I, I.getDebugLoc(),
4144 TII.get(SPIRV::OpConstantFunctionPointerINTEL))
4145 .addDef(NewReg)
4146 .addUse(ResTypeReg)
4147 .addUse(FuncVReg);
4148 GR.add(ConstVal, MIB2);
4149 // mapping the function pointer to the used Function
4150 GR.recordFunctionPointer(&MIB2.getInstr()->getOperand(2), GVFun);
4151 return MIB1.constrainAllUses(TII, TRI, RBI) &&
4152 MIB2.constrainAllUses(TII, TRI, RBI);
4153 }
4154 MachineInstrBuilder MIB3 =
4155 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull))
4156 .addDef(NewReg)
4157 .addUse(GR.getSPIRVTypeID(ResType));
4158 GR.add(ConstVal, MIB3);
4159 return MIB3.constrainAllUses(TII, TRI, RBI);
4160 }
4161 assert(NewReg != ResVReg);
4162 return BuildCOPY(ResVReg, NewReg, I);
4163 }
4165 assert(GlobalVar->getName() != "llvm.global.annotations");
4166
4167 // Skip empty declaration for GVs with initializers till we get the decl with
4168 // passed initializer.
4169 if (hasInitializer(GlobalVar) && !Init)
4170 return true;
4171
4172 bool HasLnkTy = !GV->hasInternalLinkage() && !GV->hasPrivateLinkage() &&
4173 !GV->hasHiddenVisibility();
4174 SPIRV::LinkageType::LinkageType LnkType =
4176 ? SPIRV::LinkageType::Import
4177 : (GV->hasLinkOnceODRLinkage() &&
4178 STI.canUseExtension(SPIRV::Extension::SPV_KHR_linkonce_odr)
4179 ? SPIRV::LinkageType::LinkOnceODR
4180 : SPIRV::LinkageType::Export);
4181
4182 const unsigned AddrSpace = GV->getAddressSpace();
4183 SPIRV::StorageClass::StorageClass StorageClass =
4184 addressSpaceToStorageClass(AddrSpace, STI);
4185 SPIRVType *ResType = GR.getOrCreateSPIRVPointerType(GVType, I, StorageClass);
4187 ResVReg, ResType, GlobalIdent, GV, StorageClass, Init,
4188 GlobalVar->isConstant(), HasLnkTy, LnkType, MIRBuilder, true);
4189 return Reg.isValid();
4190}
4191
4192bool SPIRVInstructionSelector::selectLog10(Register ResVReg,
4193 const SPIRVType *ResType,
4194 MachineInstr &I) const {
4195 if (STI.canUseExtInstSet(SPIRV::InstructionSet::OpenCL_std)) {
4196 return selectExtInst(ResVReg, ResType, I, CL::log10);
4197 }
4198
4199 // There is no log10 instruction in the GLSL Extended Instruction set, so it
4200 // is implemented as:
4201 // log10(x) = log2(x) * (1 / log2(10))
4202 // = log2(x) * 0.30103
4203
4204 MachineIRBuilder MIRBuilder(I);
4205 MachineBasicBlock &BB = *I.getParent();
4206
4207 // Build log2(x).
4208 Register VarReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
4209 bool Result =
4210 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
4211 .addDef(VarReg)
4212 .addUse(GR.getSPIRVTypeID(ResType))
4213 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
4214 .addImm(GL::Log2)
4215 .add(I.getOperand(1))
4216 .constrainAllUses(TII, TRI, RBI);
4217
4218 // Build 0.30103.
4219 assert(ResType->getOpcode() == SPIRV::OpTypeVector ||
4220 ResType->getOpcode() == SPIRV::OpTypeFloat);
4221 // TODO: Add matrix implementation once supported by the HLSL frontend.
4222 const SPIRVType *SpirvScalarType =
4223 ResType->getOpcode() == SPIRV::OpTypeVector
4224 ? GR.getSPIRVTypeForVReg(ResType->getOperand(1).getReg())
4225 : ResType;
4226 Register ScaleReg =
4227 GR.buildConstantFP(APFloat(0.30103f), MIRBuilder, SpirvScalarType);
4228
4229 // Multiply log2(x) by 0.30103 to get log10(x) result.
4230 auto Opcode = ResType->getOpcode() == SPIRV::OpTypeVector
4231 ? SPIRV::OpVectorTimesScalar
4232 : SPIRV::OpFMulS;
4233 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
4234 .addDef(ResVReg)
4235 .addUse(GR.getSPIRVTypeID(ResType))
4236 .addUse(VarReg)
4237 .addUse(ScaleReg)
4238 .constrainAllUses(TII, TRI, RBI);
4239}
4240
4241bool SPIRVInstructionSelector::selectModf(Register ResVReg,
4242 const SPIRVType *ResType,
4243 MachineInstr &I) const {
4244 // llvm.modf has a single arg --the number to be decomposed-- and returns a
4245 // struct { restype, restype }, while OpenCLLIB::modf has two args --the
4246 // number to be decomposed and a pointer--, returns the fractional part and
4247 // the integral part is stored in the pointer argument. Therefore, we can't
4248 // use directly the OpenCLLIB::modf intrinsic. However, we can do some
4249 // scaffolding to make it work. The idea is to create an alloca instruction
4250 // to get a ptr, pass this ptr to OpenCL::modf, and then load the value
4251 // from this ptr to place it in the struct. llvm.modf returns the fractional
4252 // part as the first element of the result, and the integral part as the
4253 // second element of the result.
4254
4255 // At this point, the return type is not a struct anymore, but rather two
4256 // independent elements of SPIRVResType. We can get each independent element
4257 // from I.getDefs() or I.getOperands().
4258 if (STI.canUseExtInstSet(SPIRV::InstructionSet::OpenCL_std)) {
4259 MachineIRBuilder MIRBuilder(I);
4260 // Get pointer type for alloca variable.
4261 const SPIRVType *PtrType = GR.getOrCreateSPIRVPointerType(
4262 ResType, MIRBuilder, SPIRV::StorageClass::Function);
4263 // Create new register for the pointer type of alloca variable.
4264 Register PtrTyReg =
4265 MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::iIDRegClass);
4266 MIRBuilder.getMRI()->setType(
4267 PtrTyReg,
4268 LLT::pointer(storageClassToAddressSpace(SPIRV::StorageClass::Function),
4269 GR.getPointerSize()));
4270
4271 // Assign SPIR-V type of the pointer type of the alloca variable to the
4272 // new register.
4273 GR.assignSPIRVTypeToVReg(PtrType, PtrTyReg, MIRBuilder.getMF());
4274 MachineBasicBlock &EntryBB = I.getMF()->front();
4277 auto AllocaMIB =
4278 BuildMI(EntryBB, VarPos, I.getDebugLoc(), TII.get(SPIRV::OpVariable))
4279 .addDef(PtrTyReg)
4280 .addUse(GR.getSPIRVTypeID(PtrType))
4281 .addImm(static_cast<uint32_t>(SPIRV::StorageClass::Function));
4282 Register Variable = AllocaMIB->getOperand(0).getReg();
4283
4284 MachineBasicBlock &BB = *I.getParent();
4285 // Create the OpenCLLIB::modf instruction.
4286 auto MIB =
4287 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
4288 .addDef(ResVReg)
4289 .addUse(GR.getSPIRVTypeID(ResType))
4290 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::OpenCL_std))
4291 .addImm(CL::modf)
4292 .setMIFlags(I.getFlags())
4293 .add(I.getOperand(I.getNumExplicitDefs())) // Floating point value.
4294 .addUse(Variable); // Pointer to integral part.
4295 // Assign the integral part stored in the ptr to the second element of the
4296 // result.
4297 Register IntegralPartReg = I.getOperand(1).getReg();
4298 if (IntegralPartReg.isValid()) {
4299 // Load the value from the pointer to integral part.
4300 auto LoadMIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
4301 .addDef(IntegralPartReg)
4302 .addUse(GR.getSPIRVTypeID(ResType))
4303 .addUse(Variable);
4304 return LoadMIB.constrainAllUses(TII, TRI, RBI);
4305 }
4306
4307 return MIB.constrainAllUses(TII, TRI, RBI);
4308 } else if (STI.canUseExtInstSet(SPIRV::InstructionSet::GLSL_std_450)) {
4309 assert(false && "GLSL::Modf is deprecated.");
4310 // FIXME: GL::Modf is deprecated, use Modfstruct instead.
4311 return false;
4312 }
4313 return false;
4314}
4315
4316// Generate the instructions to load 3-element vector builtin input
4317// IDs/Indices.
4318// Like: GlobalInvocationId, LocalInvocationId, etc....
4319
4320bool SPIRVInstructionSelector::loadVec3BuiltinInputID(
4321 SPIRV::BuiltIn::BuiltIn BuiltInValue, Register ResVReg,
4322 const SPIRVType *ResType, MachineInstr &I) const {
4323 MachineIRBuilder MIRBuilder(I);
4324 const SPIRVType *Vec3Ty =
4325 GR.getOrCreateSPIRVVectorType(ResType, 3, MIRBuilder, false);
4326 const SPIRVType *PtrType = GR.getOrCreateSPIRVPointerType(
4327 Vec3Ty, MIRBuilder, SPIRV::StorageClass::Input);
4328
4329 // Create new register for the input ID builtin variable.
4330 Register NewRegister =
4331 MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::iIDRegClass);
4332 MIRBuilder.getMRI()->setType(NewRegister, LLT::pointer(0, 64));
4333 GR.assignSPIRVTypeToVReg(PtrType, NewRegister, MIRBuilder.getMF());
4334
4335 // Build global variable with the necessary decorations for the input ID
4336 // builtin variable.
4338 NewRegister, PtrType, getLinkStringForBuiltIn(BuiltInValue), nullptr,
4339 SPIRV::StorageClass::Input, nullptr, true, false,
4340 SPIRV::LinkageType::Import, MIRBuilder, false);
4341
4342 // Create new register for loading value.
4343 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
4344 Register LoadedRegister = MRI->createVirtualRegister(&SPIRV::iIDRegClass);
4345 MIRBuilder.getMRI()->setType(LoadedRegister, LLT::pointer(0, 64));
4346 GR.assignSPIRVTypeToVReg(Vec3Ty, LoadedRegister, MIRBuilder.getMF());
4347
4348 // Load v3uint value from the global variable.
4349 bool Result =
4350 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
4351 .addDef(LoadedRegister)
4352 .addUse(GR.getSPIRVTypeID(Vec3Ty))
4353 .addUse(Variable);
4354
4355 // Get the input ID index. Expecting operand is a constant immediate value,
4356 // wrapped in a type assignment.
4357 assert(I.getOperand(2).isReg());
4358 const uint32_t ThreadId = foldImm(I.getOperand(2), MRI);
4359
4360 // Extract the input ID from the loaded vector value.
4361 MachineBasicBlock &BB = *I.getParent();
4362 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
4363 .addDef(ResVReg)
4364 .addUse(GR.getSPIRVTypeID(ResType))
4365 .addUse(LoadedRegister)
4366 .addImm(ThreadId);
4367 return Result && MIB.constrainAllUses(TII, TRI, RBI);
4368}
4369
4370// Generate the instructions to load 32-bit integer builtin input IDs/Indices.
4371// Like LocalInvocationIndex
4372bool SPIRVInstructionSelector::loadBuiltinInputID(
4373 SPIRV::BuiltIn::BuiltIn BuiltInValue, Register ResVReg,
4374 const SPIRVType *ResType, MachineInstr &I) const {
4375 MachineIRBuilder MIRBuilder(I);
4376 const SPIRVType *PtrType = GR.getOrCreateSPIRVPointerType(
4377 ResType, MIRBuilder, SPIRV::StorageClass::Input);
4378
4379 // Create new register for the input ID builtin variable.
4380 Register NewRegister =
4381 MIRBuilder.getMRI()->createVirtualRegister(GR.getRegClass(PtrType));
4382 MIRBuilder.getMRI()->setType(
4383 NewRegister,
4384 LLT::pointer(storageClassToAddressSpace(SPIRV::StorageClass::Input),
4385 GR.getPointerSize()));
4386 GR.assignSPIRVTypeToVReg(PtrType, NewRegister, MIRBuilder.getMF());
4387
4388 // Build global variable with the necessary decorations for the input ID
4389 // builtin variable.
4391 NewRegister, PtrType, getLinkStringForBuiltIn(BuiltInValue), nullptr,
4392 SPIRV::StorageClass::Input, nullptr, true, false,
4393 SPIRV::LinkageType::Import, MIRBuilder, false);
4394
4395 // Load uint value from the global variable.
4396 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
4397 .addDef(ResVReg)
4398 .addUse(GR.getSPIRVTypeID(ResType))
4399 .addUse(Variable);
4400
4401 return MIB.constrainAllUses(TII, TRI, RBI);
4402}
4403
4404SPIRVType *SPIRVInstructionSelector::widenTypeToVec4(const SPIRVType *Type,
4405 MachineInstr &I) const {
4406 MachineIRBuilder MIRBuilder(I);
4407 if (Type->getOpcode() != SPIRV::OpTypeVector)
4408 return GR.getOrCreateSPIRVVectorType(Type, 4, MIRBuilder, false);
4409
4410 uint64_t VectorSize = Type->getOperand(2).getImm();
4411 if (VectorSize == 4)
4412 return Type;
4413
4414 Register ScalarTypeReg = Type->getOperand(1).getReg();
4415 const SPIRVType *ScalarType = GR.getSPIRVTypeForVReg(ScalarTypeReg);
4416 return GR.getOrCreateSPIRVVectorType(ScalarType, 4, MIRBuilder, false);
4417}
4418
4419bool SPIRVInstructionSelector::loadHandleBeforePosition(
4420 Register &HandleReg, const SPIRVType *ResType, GIntrinsic &HandleDef,
4421 MachineInstr &Pos) const {
4422
4423 assert(HandleDef.getIntrinsicID() ==
4424 Intrinsic::spv_resource_handlefrombinding);
4425 uint32_t Set = foldImm(HandleDef.getOperand(2), MRI);
4426 uint32_t Binding = foldImm(HandleDef.getOperand(3), MRI);
4427 uint32_t ArraySize = foldImm(HandleDef.getOperand(4), MRI);
4428 Register IndexReg = HandleDef.getOperand(5).getReg();
4429 // FIXME: The IsNonUniform flag needs to be set based on resource analysis.
4430 // https://github.com/llvm/llvm-project/issues/155701
4431 bool IsNonUniform = false;
4432 std::string Name =
4433 getStringValueFromReg(HandleDef.getOperand(6).getReg(), *MRI);
4434
4435 bool IsStructuredBuffer = ResType->getOpcode() == SPIRV::OpTypePointer;
4436 MachineIRBuilder MIRBuilder(HandleDef);
4437 SPIRVType *VarType = ResType;
4438 SPIRV::StorageClass::StorageClass SC = SPIRV::StorageClass::UniformConstant;
4439
4440 if (IsStructuredBuffer) {
4441 VarType = GR.getPointeeType(ResType);
4442 SC = GR.getPointerStorageClass(ResType);
4443 }
4444
4445 Register VarReg =
4446 buildPointerToResource(VarType, SC, Set, Binding, ArraySize, IndexReg,
4447 IsNonUniform, Name, MIRBuilder);
4448
4449 if (IsNonUniform)
4450 buildOpDecorate(HandleReg, HandleDef, TII, SPIRV::Decoration::NonUniformEXT,
4451 {});
4452
4453 // The handle for the buffer is the pointer to the resource. For an image, the
4454 // handle is the image object. So images get an extra load.
4455 uint32_t LoadOpcode =
4456 IsStructuredBuffer ? SPIRV::OpCopyObject : SPIRV::OpLoad;
4457 GR.assignSPIRVTypeToVReg(ResType, HandleReg, *Pos.getMF());
4458 return BuildMI(*Pos.getParent(), Pos, HandleDef.getDebugLoc(),
4459 TII.get(LoadOpcode))
4460 .addDef(HandleReg)
4461 .addUse(GR.getSPIRVTypeID(ResType))
4462 .addUse(VarReg)
4463 .constrainAllUses(TII, TRI, RBI);
4464}
4465
4466namespace llvm {
4467InstructionSelector *
4469 const SPIRVSubtarget &Subtarget,
4470 const RegisterBankInfo &RBI) {
4471 return new SPIRVInstructionSelector(TM, Subtarget, RBI);
4472}
4473} // namespace llvm
unsigned const MachineRegisterInfo * MRI
#define GET_GLOBALISEL_PREDICATES_INIT
#define GET_GLOBALISEL_TEMPORARIES_INIT
@ Generic
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file declares a class to represent arbitrary precision floating point values and provide a varie...
static bool selectUnmergeValues(MachineInstrBuilder &MIB, const ARMBaseInstrInfo &TII, MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI)
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
basic Basic Alias true
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
DXIL Resource Implicit Binding
#define DEBUG_TYPE
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
#define I(x, y, z)
Definition MD5.cpp:58
Register Reg
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
static StringRef getName(Value *V)
static unsigned getFCmpOpcode(CmpInst::Predicate Pred, unsigned Size)
static APFloat getOneFP(const Type *LLVMFloatTy)
static bool isUSMStorageClass(SPIRV::StorageClass::StorageClass SC)
static bool isASCastInGVar(MachineRegisterInfo *MRI, Register ResVReg)
static bool mayApplyGenericSelection(unsigned Opcode)
static APFloat getZeroFP(const Type *LLVMFloatTy)
std::vector< std::pair< SPIRV::InstructionSet::InstructionSet, uint32_t > > ExtInstList
static unsigned getBoolCmpOpcode(unsigned PredNum)
static unsigned getICmpOpcode(unsigned PredNum)
static void addMemoryOperands(MachineMemOperand *MemOp, MachineInstrBuilder &MIB, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry &GR)
static bool isConstReg(MachineRegisterInfo *MRI, MachineInstr *OpDef, SmallPtrSet< SPIRVType *, 4 > &Visited)
static unsigned getPtrCmpOpcode(unsigned Pred)
bool isDead(const MachineInstr &MI, const MachineRegisterInfo &MRI)
spirv structurize SPIRV
BaseType
A given derived pointer can have multiple base pointers through phi/selects.
This file contains some functions that are useful when dealing with strings.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
BinaryOperator * Mul
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
Definition APFloat.h:1088
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Definition APFloat.h:1079
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:234
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1540
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:678
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition InstrTypes.h:681
@ ICMP_SLT
signed less than
Definition InstrTypes.h:707
@ ICMP_SLE
signed less or equal
Definition InstrTypes.h:708
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition InstrTypes.h:684
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
Definition InstrTypes.h:693
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition InstrTypes.h:682
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
Definition InstrTypes.h:683
@ ICMP_UGE
unsigned greater or equal
Definition InstrTypes.h:702
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:701
@ ICMP_SGT
signed greater than
Definition InstrTypes.h:705
@ FCMP_ULT
1 1 0 0 True if unordered or less than
Definition InstrTypes.h:692
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
Definition InstrTypes.h:686
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
Definition InstrTypes.h:689
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:703
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
Definition InstrTypes.h:690
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition InstrTypes.h:685
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
Definition InstrTypes.h:687
@ ICMP_NE
not equal
Definition InstrTypes.h:700
@ ICMP_SGE
signed greater or equal
Definition InstrTypes.h:706
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Definition InstrTypes.h:694
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:704
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Definition InstrTypes.h:691
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition InstrTypes.h:688
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A debug info location.
Definition DebugLoc.h:124
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Definition Function.cpp:359
Represents a call to an intrinsic.
Intrinsic::ID getIntrinsicID() const
bool hasPrivateLinkage() const
bool hasHiddenVisibility() const
bool isDeclarationForLinker() const
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
bool hasInternalLinkage() const
bool hasLinkOnceODRLinkage() const
@ InternalLinkage
Rename collisions when linking (static functions).
Definition GlobalValue.h:60
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:319
constexpr bool isScalar() const
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
constexpr bool isVector() const
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
constexpr bool isPointer() const
static constexpr LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits)
Get a low-level fixed-width vector of some number of elements and element width.
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they're not in a MachineFuncti...
LLVM_ABI iterator getFirstNonPHI()
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
MachineInstrBundleIterator< MachineInstr > iterator
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Helper class to build MachineInstr.
MachineInstrBuilder buildInstr(unsigned Opcode)
Build and insert <empty> = Opcode <empty>.
MachineFunction & getMF()
Getter for the function we currently build.
MachineRegisterInfo * getMRI()
Getter for MRI.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
bool constrainAllUses(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI) const
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
const MachineInstrBuilder & addUse(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register use operand.
const MachineInstrBuilder & setMIFlags(unsigned Flags) const
MachineInstr * getInstr() const
If conversion operators fail, use this method to get the MachineInstr explicitly.
const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register definition operand.
Representation of each machine instruction.
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
const MachineBasicBlock * getParent() const
LLVM_ABI void setDesc(const MCInstrDesc &TID)
Replace the instruction descriptor (thus opcode) of the current instruction with a new one.
LLVM_ABI unsigned getNumExplicitDefs() const
Returns the number of non-implicit definitions.
LLVM_ABI const MachineFunction * getMF() const
Return the function that contains the basic block that this instruction belongs to.
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
LLVM_ABI void removeOperand(unsigned OpNo)
Erase an operand from an instruction, leaving it with one fewer operand than it started with.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
@ MOVolatile
The memory access is volatile.
@ MONonTemporal
The memory access is non-temporal.
int64_t getImm() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineBasicBlock * getMBB() const
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
defusechain_instr_iterator< true, false, false, true > use_instr_iterator
use_instr_iterator/use_instr_begin/use_instr_end - Walk all uses of the specified register,...
defusechain_instr_iterator< false, true, false, true > def_instr_iterator
def_instr_iterator/def_instr_begin/def_instr_end - Walk all defs of the specified register,...
LLVM_ABI Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
LLVM_ABI void setType(Register VReg, LLT Ty)
Set the low-level type of VReg to Ty.
Analysis providing profile information.
Holds all the information related to register banks.
Wrapper class representing virtual and physical registers.
Definition Register.h:19
constexpr bool isValid() const
Definition Register.h:107
SPIRVType * getSPIRVTypeForVReg(Register VReg, const MachineFunction *MF=nullptr) const
Register getOrCreateConstInt(uint64_t Val, MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII, bool ZeroAsNull=true)
SPIRVType * getResultType(Register VReg, MachineFunction *MF=nullptr)
SPIRVType * getOrCreateSPIRVBoolType(MachineIRBuilder &MIRBuilder, bool EmitIR)
MachineInstr * getOrAddMemAliasingINTELInst(MachineIRBuilder &MIRBuilder, const MDNode *AliasingListMD)
void assignSPIRVTypeToVReg(SPIRVType *Type, Register VReg, const MachineFunction &MF)
Register getOrCreateUndef(MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII)
SPIRVType * changePointerStorageClass(SPIRVType *PtrType, SPIRV::StorageClass::StorageClass SC, MachineInstr &I)
const Type * getTypeForSPIRVType(const SPIRVType *Ty) const
bool isBitcastCompatible(const SPIRVType *Type1, const SPIRVType *Type2) const
unsigned getScalarOrVectorComponentCount(Register VReg) const
bool isScalarOrVectorSigned(const SPIRVType *Type) const
Register getOrCreateGlobalVariableWithBinding(const SPIRVType *VarType, uint32_t Set, uint32_t Binding, StringRef Name, MachineIRBuilder &MIRBuilder)
SPIRVType * getOrCreateSPIRVType(const Type *Type, MachineInstr &I, SPIRV::AccessQualifier::AccessQualifier AQ, bool EmitIR)
SPIRVType * getOrCreateSPIRVPointerType(const Type *BaseType, MachineIRBuilder &MIRBuilder, SPIRV::StorageClass::StorageClass SC)
Register buildConstantFP(APFloat Val, MachineIRBuilder &MIRBuilder, SPIRVType *SpvType=nullptr)
SPIRVType * getPointeeType(SPIRVType *PtrType)
void invalidateMachineInstr(MachineInstr *MI)
Register getSPIRVTypeID(const SPIRVType *SpirvType) const
bool isScalarOfType(Register VReg, unsigned TypeOpcode) const
Register buildGlobalVariable(Register Reg, SPIRVType *BaseType, StringRef Name, const GlobalValue *GV, SPIRV::StorageClass::StorageClass Storage, const MachineInstr *Init, bool IsConst, bool HasLinkageTy, SPIRV::LinkageType::LinkageType LinkageType, MachineIRBuilder &MIRBuilder, bool IsInstSelector)
bool findValueAttrs(const MachineInstr *Key, Type *&Ty, StringRef &Name)
void addGlobalObject(const Value *V, const MachineFunction *MF, Register R)
SPIRVType * getScalarOrVectorComponentType(Register VReg) const
void recordFunctionPointer(const MachineOperand *MO, const Function *F)
bool isAggregateType(SPIRVType *Type) const
const TargetRegisterClass * getRegClass(SPIRVType *SpvType) const
SPIRVType * getOrCreateSPIRVVectorType(SPIRVType *BaseType, unsigned NumElements, MachineIRBuilder &MIRBuilder, bool EmitIR)
bool isScalarOrVectorOfType(Register VReg, unsigned TypeOpcode) const
Register getOrCreateConstIntArray(uint64_t Val, size_t Num, MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII)
MachineFunction * setCurrentFunc(MachineFunction &MF)
Register getOrCreateConstVector(uint64_t Val, MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII, bool ZeroAsNull=true)
SPIRVType * getOrCreateSPIRVIntegerType(unsigned BitWidth, MachineIRBuilder &MIRBuilder)
Type * getDeducedGlobalValueType(const GlobalValue *Global)
LLT getRegType(SPIRVType *SpvType) const
SPIRV::StorageClass::StorageClass getPointerStorageClass(Register VReg) const
Register getOrCreateConstFP(APFloat Val, MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII, bool ZeroAsNull=true)
Register getOrCreateConstNullPtr(MachineIRBuilder &MIRBuilder, SPIRVType *SpvType)
unsigned getScalarOrVectorBitWidth(const SPIRVType *Type) const
const SPIRVType * retrieveScalarOrVectorIntType(const SPIRVType *Type) const
bool erase(const MachineInstr *MI)
bool add(SPIRV::IRHandle Handle, const MachineInstr *MI)
Register find(SPIRV::IRHandle Handle, const MachineFunction *MF)
bool isPhysicalSPIRV() const
bool isAtLeastSPIRVVer(VersionTuple VerToCompareTo) const
bool canUseExtInstSet(SPIRV::InstructionSet::InstructionSet E) const
bool isLogicalSPIRV() const
bool canUseExtension(SPIRV::Extension::Extension E) const
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:146
static LLVM_ABI StructType * get(LLVMContext &Context, ArrayRef< Type * > Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
Definition Type.cpp:414
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
@ HalfTyID
16-bit floating point type
Definition Type.h:56
@ FloatTyID
32-bit floating point type
Definition Type.h:58
@ DoubleTyID
64-bit floating point type
Definition Type.h:59
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
bool isStructTy() const
True if this is an instance of StructType.
Definition Type.h:261
TypeID getTypeID() const
Return the type id for the type.
Definition Type.h:136
Value * getOperand(unsigned i) const
Definition User.h:232
bool hasName() const
Definition Value.h:262
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition ilist_node.h:348
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char IsConst[]
Key for Kernel::Arg::Metadata::mIsConst.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
NodeAddr< DefNode * > Def
Definition RDFGraph.h:384
NodeAddr< InstrNode * > Instr
Definition RDFGraph.h:389
This is an optimization pass for GlobalISel generic memory operations.
void buildOpName(Register Target, const StringRef &Name, MachineIRBuilder &MIRBuilder)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1705
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
bool isTypeFoldingSupported(unsigned Opcode)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:644
void addNumImm(const APInt &Imm, MachineInstrBuilder &MIB)
LLVM_ABI void salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI)
Assuming the instruction MI is going to be deleted, attempt to salvage debug users of MI by writing t...
Definition Utils.cpp:1725
LLVM_ABI bool constrainSelectedInstRegOperands(MachineInstr &I, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI)
Mutate the newly-selected instruction I to constrain its (possibly generic) virtual register operands...
Definition Utils.cpp:155
bool isPreISelGenericOpcode(unsigned Opcode)
Check whether the given Opcode is a generic opcode that is not supposed to appear after ISel.
unsigned getArrayComponentCount(const MachineRegisterInfo *MRI, const MachineInstr *ResType)
uint64_t getIConstVal(Register ConstReg, const MachineRegisterInfo *MRI)
SmallVector< MachineInstr *, 4 > createContinuedInstructions(MachineIRBuilder &MIRBuilder, unsigned Opcode, unsigned MinWC, unsigned ContinuedOpcode, ArrayRef< Register > Args, Register ReturnRegister, Register TypeID)
SPIRV::MemorySemantics::MemorySemantics getMemSemanticsForStorageClass(SPIRV::StorageClass::StorageClass SC)
constexpr unsigned storageClassToAddressSpace(SPIRV::StorageClass::StorageClass SC)
Definition SPIRVUtils.h:239
MachineBasicBlock::iterator getFirstValidInstructionInsertPoint(MachineBasicBlock &BB)
void buildOpDecorate(Register Reg, MachineIRBuilder &MIRBuilder, SPIRV::Decoration::Decoration Dec, const std::vector< uint32_t > &DecArgs, StringRef StrImm)
MachineBasicBlock::iterator getOpVariableMBBIt(MachineInstr &I)
Register createVirtualRegister(SPIRVType *SpvType, SPIRVGlobalRegistry *GR, MachineRegisterInfo *MRI, const MachineFunction &MF)
MachineInstr * getImm(const MachineOperand &MO, const MachineRegisterInfo *MRI)
Type * toTypedPointer(Type *Ty)
Definition SPIRVUtils.h:433
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
const MachineInstr SPIRVType
constexpr bool isGenericCastablePtr(SPIRV::StorageClass::StorageClass SC)
Definition SPIRVUtils.h:224
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
MachineInstr * passCopy(MachineInstr *Def, const MachineRegisterInfo *MRI)
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
SPIRV::StorageClass::StorageClass addressSpaceToStorageClass(unsigned AddrSpace, const SPIRVSubtarget &STI)
AtomicOrdering
Atomic ordering for LLVM's memory model.
SPIRV::Scope::Scope getMemScope(LLVMContext &Ctx, SyncScope::ID Id)
InstructionSelector * createSPIRVInstructionSelector(const SPIRVTargetMachine &TM, const SPIRVSubtarget &Subtarget, const RegisterBankInfo &RBI)
std::string getStringValueFromReg(Register Reg, MachineRegisterInfo &MRI)
int64_t foldImm(const MachineOperand &MO, const MachineRegisterInfo *MRI)
DWARFExpression::Operation Op
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:560
bool hasInitializer(const GlobalVariable *GV)
Definition SPIRVUtils.h:321
MachineInstr * getVRegDef(MachineRegisterInfo &MRI, Register Reg)
SPIRV::MemorySemantics::MemorySemantics getMemSemantics(AtomicOrdering Ord)
std::string getLinkStringForBuiltIn(SPIRV::BuiltIn::BuiltIn BuiltInValue)
LLVM_ABI bool isTriviallyDead(const MachineInstr &MI, const MachineRegisterInfo &MRI)
Check whether an instruction MI is dead: it only defines dead virtual registers, and doesn't have oth...
Definition Utils.cpp:222
#define N
static LLVM_ABI const fltSemantics & IEEEsingle() LLVM_READNONE
Definition APFloat.cpp:266
static LLVM_ABI const fltSemantics & IEEEdouble() LLVM_READNONE
Definition APFloat.cpp:267
static LLVM_ABI const fltSemantics & IEEEhalf() LLVM_READNONE
Definition APFloat.cpp:264