LLVM 22.0.0git
TargetLowering.h
Go to the documentation of this file.
1//===- llvm/CodeGen/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file describes how to lower LLVM code to machine code. This has two
11/// main components:
12///
13/// 1. Which ValueTypes are natively supported by the target.
14/// 2. Which operations are supported for supported ValueTypes.
15/// 3. Cost thresholds for alternative implementations of certain operations.
16///
17/// In addition it has a few other components, like information about FP
18/// immediates.
19///
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_CODEGEN_TARGETLOWERING_H
23#define LLVM_CODEGEN_TARGETLOWERING_H
24
25#include "llvm/ADT/APInt.h"
26#include "llvm/ADT/ArrayRef.h"
27#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/StringRef.h"
41#include "llvm/IR/Attributes.h"
42#include "llvm/IR/CallingConv.h"
43#include "llvm/IR/DataLayout.h"
45#include "llvm/IR/Function.h"
46#include "llvm/IR/InlineAsm.h"
47#include "llvm/IR/Instruction.h"
50#include "llvm/IR/Type.h"
57#include <algorithm>
58#include <cassert>
59#include <climits>
60#include <cstdint>
61#include <map>
62#include <string>
63#include <utility>
64#include <vector>
65
66namespace llvm {
67
68class AssumptionCache;
69class CCState;
70class CCValAssign;
73class Constant;
74class FastISel;
76class GlobalValue;
77class Loop;
79class IntrinsicInst;
80class IRBuilderBase;
81struct KnownBits;
82class LLVMContext;
84class MachineFunction;
85class MachineInstr;
87class MachineLoop;
89class MCContext;
90class MCExpr;
91class Module;
94class TargetMachine;
98class Value;
99class VPIntrinsic;
100
101namespace Sched {
102
104 None, // No preference
105 Source, // Follow source order.
106 RegPressure, // Scheduling for lowest register pressure.
107 Hybrid, // Scheduling for both latency and register pressure.
108 ILP, // Scheduling for ILP in low register pressure mode.
109 VLIW, // Scheduling for VLIW targets.
110 Fast, // Fast suboptimal list scheduling
111 Linearize, // Linearize DAG, no scheduling
112 Last = Linearize // Marker for the last Sched::Preference
113};
114
115} // end namespace Sched
116
117// MemOp models a memory operation, either memset or memcpy/memmove.
118struct MemOp {
119private:
120 // Shared
121 uint64_t Size;
122 bool DstAlignCanChange; // true if destination alignment can satisfy any
123 // constraint.
124 Align DstAlign; // Specified alignment of the memory operation.
125
126 bool AllowOverlap;
127 // memset only
128 bool IsMemset; // If setthis memory operation is a memset.
129 bool ZeroMemset; // If set clears out memory with zeros.
130 // memcpy only
131 bool MemcpyStrSrc; // Indicates whether the memcpy source is an in-register
132 // constant so it does not need to be loaded.
133 Align SrcAlign; // Inferred alignment of the source or default value if the
134 // memory operation does not need to load the value.
135public:
136 static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign,
137 Align SrcAlign, bool IsVolatile,
138 bool MemcpyStrSrc = false) {
139 MemOp Op;
140 Op.Size = Size;
141 Op.DstAlignCanChange = DstAlignCanChange;
142 Op.DstAlign = DstAlign;
143 Op.AllowOverlap = !IsVolatile;
144 Op.IsMemset = false;
145 Op.ZeroMemset = false;
146 Op.MemcpyStrSrc = MemcpyStrSrc;
147 Op.SrcAlign = SrcAlign;
148 return Op;
149 }
150
151 static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign,
152 bool IsZeroMemset, bool IsVolatile) {
153 MemOp Op;
154 Op.Size = Size;
155 Op.DstAlignCanChange = DstAlignCanChange;
156 Op.DstAlign = DstAlign;
157 Op.AllowOverlap = !IsVolatile;
158 Op.IsMemset = true;
159 Op.ZeroMemset = IsZeroMemset;
160 Op.MemcpyStrSrc = false;
161 return Op;
162 }
163
164 uint64_t size() const { return Size; }
166 assert(!DstAlignCanChange);
167 return DstAlign;
168 }
169 bool isFixedDstAlign() const { return !DstAlignCanChange; }
170 bool allowOverlap() const { return AllowOverlap; }
171 bool isMemset() const { return IsMemset; }
172 bool isMemcpy() const { return !IsMemset; }
174 return isMemcpy() && !DstAlignCanChange;
175 }
176 bool isZeroMemset() const { return isMemset() && ZeroMemset; }
177 bool isMemcpyStrSrc() const {
178 assert(isMemcpy() && "Must be a memcpy");
179 return MemcpyStrSrc;
180 }
182 assert(isMemcpy() && "Must be a memcpy");
183 return SrcAlign;
184 }
185 bool isSrcAligned(Align AlignCheck) const {
186 return isMemset() || llvm::isAligned(AlignCheck, SrcAlign.value());
187 }
188 bool isDstAligned(Align AlignCheck) const {
189 return DstAlignCanChange || llvm::isAligned(AlignCheck, DstAlign.value());
190 }
191 bool isAligned(Align AlignCheck) const {
192 return isSrcAligned(AlignCheck) && isDstAligned(AlignCheck);
193 }
194};
195
196/// This base class for TargetLowering contains the SelectionDAG-independent
197/// parts that can be used from the rest of CodeGen.
199public:
200 /// This enum indicates whether operations are valid for a target, and if not,
201 /// what action should be used to make them valid.
203 Legal, // The target natively supports this operation.
204 Promote, // This operation should be executed in a larger type.
205 Expand, // Try to expand this to other ops, otherwise use a libcall.
206 LibCall, // Don't try to expand this to other ops, always use a libcall.
207 Custom // Use the LowerOperation hook to implement custom lowering.
208 };
209
210 /// This enum indicates whether a types are legal for a target, and if not,
211 /// what action should be used to make them valid.
213 TypeLegal, // The target natively supports this type.
214 TypePromoteInteger, // Replace this integer with a larger one.
215 TypeExpandInteger, // Split this integer into two of half the size.
216 TypeSoftenFloat, // Convert this float to a same size integer type.
217 TypeExpandFloat, // Split this float into two of half the size.
218 TypeScalarizeVector, // Replace this one-element vector with its element.
219 TypeSplitVector, // Split this vector into two of half the size.
220 TypeWidenVector, // This vector should be widened into a larger vector.
221 TypePromoteFloat, // Replace this float with a larger one.
222 TypeSoftPromoteHalf, // Soften half to i16 and use float to do arithmetic.
223 TypeScalarizeScalableVector, // This action is explicitly left unimplemented.
224 // While it is theoretically possible to
225 // legalize operations on scalable types with a
226 // loop that handles the vscale * #lanes of the
227 // vector, this is non-trivial at SelectionDAG
228 // level and these types are better to be
229 // widened or promoted.
230 };
231
232 /// LegalizeKind holds the legalization kind that needs to happen to EVT
233 /// in order to type-legalize it.
234 using LegalizeKind = std::pair<LegalizeTypeAction, EVT>;
235
236 /// Enum that describes how the target represents true/false values.
238 UndefinedBooleanContent, // Only bit 0 counts, the rest can hold garbage.
239 ZeroOrOneBooleanContent, // All bits zero except for bit 0.
240 ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
241 };
242
243 /// Enum that describes what type of support for selects the target has.
245 ScalarValSelect, // The target supports scalar selects (ex: cmov).
246 ScalarCondVectorVal, // The target supports selects with a scalar condition
247 // and vector values (ex: cmov).
248 VectorMaskSelect // The target supports vector selects with a vector
249 // mask (ex: x86 blends).
250 };
251
252 /// Enum that specifies what an atomic load/AtomicRMWInst is expanded
253 /// to, if at all. Exists because different targets have different levels of
254 /// support for these atomic instructions, and also have different options
255 /// w.r.t. what they should expand to.
257 None, // Don't expand the instruction.
258 CastToInteger, // Cast the atomic instruction to another type, e.g. from
259 // floating-point to integer type.
260 LLSC, // Expand the instruction into loadlinked/storeconditional; used
261 // by ARM/AArch64/PowerPC.
262 LLOnly, // Expand the (load) instruction into just a load-linked, which has
263 // greater atomic guarantees than a normal load.
264 CmpXChg, // Expand the instruction into cmpxchg; used by at least X86.
265 MaskedIntrinsic, // Use a target-specific intrinsic for the LL/SC loop.
266 BitTestIntrinsic, // Use a target-specific intrinsic for special bit
267 // operations; used by X86.
268 CmpArithIntrinsic, // Use a target-specific intrinsic for special compare
269 // operations; used by X86.
270 Expand, // Generic expansion in terms of other atomic operations.
271 CustomExpand, // Custom target-specific expansion using TLI hooks.
272
273 // Rewrite to a non-atomic form for use in a known non-preemptible
274 // environment.
276 };
277
278 /// Enum that specifies when a multiplication should be expanded.
279 enum class MulExpansionKind {
280 Always, // Always expand the instruction.
281 OnlyLegalOrCustom, // Only expand when the resulting instructions are legal
282 // or custom.
283 };
284
285 /// Enum that specifies when a float negation is beneficial.
286 enum class NegatibleCost {
287 Cheaper = 0, // Negated expression is cheaper.
288 Neutral = 1, // Negated expression has the same cost.
289 Expensive = 2 // Negated expression is more expensive.
290 };
291
292 /// Enum of different potentially desirable ways to fold (and/or (setcc ...),
293 /// (setcc ...)).
295 None = 0, // No fold is preferable.
296 AddAnd = 1, // Fold with `Add` op and `And` op is preferable.
297 NotAnd = 2, // Fold with `Not` op and `And` op is preferable.
298 ABS = 4, // Fold with `llvm.abs` op is preferable.
299 };
300
302 public:
305 /// Original unlegalized argument type.
307 /// Same as OrigTy, or partially legalized for soft float libcalls.
309 bool IsSExt : 1;
310 bool IsZExt : 1;
311 bool IsNoExt : 1;
312 bool IsInReg : 1;
313 bool IsSRet : 1;
314 bool IsNest : 1;
315 bool IsByVal : 1;
316 bool IsByRef : 1;
317 bool IsInAlloca : 1;
319 bool IsReturned : 1;
320 bool IsSwiftSelf : 1;
321 bool IsSwiftAsync : 1;
322 bool IsSwiftError : 1;
324 MaybeAlign Alignment = std::nullopt;
325 Type *IndirectType = nullptr;
326
333
336
338
339 LLVM_ABI void setAttributes(const CallBase *Call, unsigned ArgIdx);
340 };
341 using ArgListTy = std::vector<ArgListEntry>;
342
344 switch (Content) {
346 // Extend by adding rubbish bits.
347 return ISD::ANY_EXTEND;
349 // Extend by adding zero bits.
350 return ISD::ZERO_EXTEND;
352 // Extend by copying the sign bit.
353 return ISD::SIGN_EXTEND;
354 }
355 llvm_unreachable("Invalid content kind");
356 }
357
358 explicit TargetLoweringBase(const TargetMachine &TM,
359 const TargetSubtargetInfo &STI);
363
364 /// Return true if the target support strict float operation
365 bool isStrictFPEnabled() const {
366 return IsStrictFPEnabled;
367 }
368
369protected:
370 /// Initialize all of the actions to default values.
371 void initActions();
372
373public:
374 const TargetMachine &getTargetMachine() const { return TM; }
375
376 virtual bool useSoftFloat() const { return false; }
377
378 /// Return the pointer type for the given address space, defaults to
379 /// the pointer type from the data layout.
380 /// FIXME: The default needs to be removed once all the code is updated.
381 virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const {
382 return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
383 }
384
385 /// Return the in-memory pointer type for the given address space, defaults to
386 /// the pointer type from the data layout.
387 /// FIXME: The default needs to be removed once all the code is updated.
388 virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS = 0) const {
389 return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
390 }
391
392 /// Return the type for frame index, which is determined by
393 /// the alloca address space specified through the data layout.
395 return getPointerTy(DL, DL.getAllocaAddrSpace());
396 }
397
398 /// Return the type for code pointers, which is determined by the program
399 /// address space specified through the data layout.
401 return getPointerTy(DL, DL.getProgramAddressSpace());
402 }
403
404 /// Return the type for operands of fence.
405 /// TODO: Let fence operands be of i32 type and remove this.
406 virtual MVT getFenceOperandTy(const DataLayout &DL) const {
407 return getPointerTy(DL);
408 }
409
410 /// Return the type to use for a scalar shift opcode, given the shifted amount
411 /// type. Targets should return a legal type if the input type is legal.
412 /// Targets can return a type that is too small if the input type is illegal.
413 virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const;
414
415 /// Returns the type for the shift amount of a shift opcode. For vectors,
416 /// returns the input type. For scalars, calls getScalarShiftAmountTy.
417 /// If getScalarShiftAmountTy type cannot represent all possible shift
418 /// amounts, returns MVT::i32.
419 EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const;
420
421 /// Return the preferred type to use for a shift opcode, given the shifted
422 /// amount type is \p ShiftValueTy.
424 virtual LLT getPreferredShiftAmountTy(LLT ShiftValueTy) const {
425 return ShiftValueTy;
426 }
427
428 /// Returns the type to be used for the index operand vector operations. By
429 /// default we assume it will have the same size as an address space 0
430 /// pointer.
431 virtual unsigned getVectorIdxWidth(const DataLayout &DL) const {
432 return DL.getPointerSizeInBits(0);
433 }
434
435 /// Returns the type to be used for the index operand of:
436 /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
437 /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
441
442 /// Returns the type to be used for the index operand of:
443 /// G_INSERT_VECTOR_ELT, G_EXTRACT_VECTOR_ELT,
444 /// G_INSERT_SUBVECTOR, and G_EXTRACT_SUBVECTOR
447 }
448
449 /// Returns the type to be used for the EVL/AVL operand of VP nodes:
450 /// ISD::VP_ADD, ISD::VP_SUB, etc. It must be a legal scalar integer type,
451 /// and must be at least as large as i32. The EVL is implicitly zero-extended
452 /// to any larger type.
453 virtual MVT getVPExplicitVectorLengthTy() const { return MVT::i32; }
454
455 /// This callback is used to inspect load/store instructions and add
456 /// target-specific MachineMemOperand flags to them. The default
457 /// implementation does nothing.
461
462 /// This callback is used to inspect load/store SDNode.
463 /// The default implementation does nothing.
468
470 getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL,
471 AssumptionCache *AC = nullptr,
472 const TargetLibraryInfo *LibInfo = nullptr) const;
473 MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI,
474 const DataLayout &DL) const;
475 MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI,
476 const DataLayout &DL) const;
478 getVPIntrinsicMemOperandFlags(const VPIntrinsic &VPIntrin) const;
479
480 virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
481 return true;
482 }
483
484 /// Return true if the @llvm.get.active.lane.mask intrinsic should be expanded
485 /// using generic code in SelectionDAGBuilder.
486 virtual bool shouldExpandGetActiveLaneMask(EVT VT, EVT OpVT) const {
487 return true;
488 }
489
490 virtual bool shouldExpandGetVectorLength(EVT CountVT, unsigned VF,
491 bool IsScalable) const {
492 return true;
493 }
494
495 /// Return true if the @llvm.experimental.cttz.elts intrinsic should be
496 /// expanded using generic code in SelectionDAGBuilder.
497 virtual bool shouldExpandCttzElements(EVT VT) const { return true; }
498
499 /// Return the minimum number of bits required to hold the maximum possible
500 /// number of trailing zero vector elements.
501 unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC,
502 bool ZeroIsPoison,
503 const ConstantRange *VScaleRange) const;
504
505 /// Return true if the @llvm.experimental.vector.match intrinsic should be
506 /// expanded for vector type `VT' and search size `SearchSize' using generic
507 /// code in SelectionDAGBuilder.
508 virtual bool shouldExpandVectorMatch(EVT VT, unsigned SearchSize) const {
509 return true;
510 }
511
512 // Return true if op(vecreduce(x), vecreduce(y)) should be reassociated to
513 // vecreduce(op(x, y)) for the reduction opcode RedOpc.
514 virtual bool shouldReassociateReduction(unsigned RedOpc, EVT VT) const {
515 return true;
516 }
517
518 /// Return true if it is profitable to convert a select of FP constants into
519 /// a constant pool load whose address depends on the select condition. The
520 /// parameter may be used to differentiate a select with FP compare from
521 /// integer compare.
522 virtual bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const {
523 return true;
524 }
525
526 /// Does the target have multiple (allocatable) condition registers that
527 /// can be used to store the results of comparisons for use by selects
528 /// and conditional branches. With multiple condition registers, the code
529 /// generator will not aggressively sink comparisons into the blocks of their
530 /// users.
531 virtual bool hasMultipleConditionRegisters(EVT VT) const { return false; }
532
533 /// Return true if the target has BitExtract instructions.
534 bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
535
536 /// Return the preferred vector type legalization action.
539 // The default action for one element vectors is to scalarize
541 return TypeScalarizeVector;
542 // The default action for an odd-width vector is to widen.
543 if (!VT.isPow2VectorType())
544 return TypeWidenVector;
545 // The default action for other vectors is to promote
546 return TypePromoteInteger;
547 }
548
549 // Return true if the half type should be promoted using soft promotion rules
550 // where each operation is promoted to f32 individually, then converted to
551 // fp16. The default behavior is to promote chains of operations, keeping
552 // intermediate results in f32 precision and range.
553 virtual bool softPromoteHalfType() const { return false; }
554
555 // Return true if, for soft-promoted half, the half type should be passed to
556 // and returned from functions as f32. The default behavior is to pass as
557 // i16. If soft-promoted half is not used, this function is ignored and
558 // values are always passed and returned as f32.
559 virtual bool useFPRegsForHalfType() const { return false; }
560
561 // There are two general methods for expanding a BUILD_VECTOR node:
562 // 1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
563 // them together.
564 // 2. Build the vector on the stack and then load it.
565 // If this function returns true, then method (1) will be used, subject to
566 // the constraint that all of the necessary shuffles are legal (as determined
567 // by isShuffleMaskLegal). If this function returns false, then method (2) is
568 // always used. The vector type, and the number of defined values, are
569 // provided.
570 virtual bool
572 unsigned DefinedValues) const {
573 return DefinedValues < 3;
574 }
575
576 /// Return true if integer divide is usually cheaper than a sequence of
577 /// several shifts, adds, and multiplies for this target.
578 /// The definition of "cheaper" may depend on whether we're optimizing
579 /// for speed or for size.
580 virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const { return false; }
581
582 /// Return true if the target can handle a standalone remainder operation.
583 virtual bool hasStandaloneRem(EVT VT) const {
584 return true;
585 }
586
587 /// Return true if SQRT(X) shouldn't be replaced with X*RSQRT(X).
588 virtual bool isFsqrtCheap(SDValue X, SelectionDAG &DAG) const {
589 // Default behavior is to replace SQRT(X) with X*RSQRT(X).
590 return false;
591 }
592
593 /// Reciprocal estimate status values used by the functions below.
598 };
599
600 /// Return a ReciprocalEstimate enum value for a square root of the given type
601 /// based on the function's attributes. If the operation is not overridden by
602 /// the function's attributes, "Unspecified" is returned and target defaults
603 /// are expected to be used for instruction selection.
604 int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const;
605
606 /// Return a ReciprocalEstimate enum value for a division of the given type
607 /// based on the function's attributes. If the operation is not overridden by
608 /// the function's attributes, "Unspecified" is returned and target defaults
609 /// are expected to be used for instruction selection.
610 int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const;
611
612 /// Return the refinement step count for a square root of the given type based
613 /// on the function's attributes. If the operation is not overridden by
614 /// the function's attributes, "Unspecified" is returned and target defaults
615 /// are expected to be used for instruction selection.
616 int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const;
617
618 /// Return the refinement step count for a division of the given type based
619 /// on the function's attributes. If the operation is not overridden by
620 /// the function's attributes, "Unspecified" is returned and target defaults
621 /// are expected to be used for instruction selection.
622 int getDivRefinementSteps(EVT VT, MachineFunction &MF) const;
623
624 /// Returns true if target has indicated at least one type should be bypassed.
625 bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
626
627 /// Returns map of slow types for division or remainder with corresponding
628 /// fast types
630 return BypassSlowDivWidths;
631 }
632
633 /// Return true only if vscale must be a power of two.
634 virtual bool isVScaleKnownToBeAPowerOfTwo() const { return false; }
635
636 /// Return true if Flow Control is an expensive operation that should be
637 /// avoided.
638 bool isJumpExpensive() const { return JumpIsExpensive; }
639
640 // Costs parameters used by
641 // SelectionDAGBuilder::shouldKeepJumpConditionsTogether.
642 // shouldKeepJumpConditionsTogether will use these parameter value to
643 // determine if two conditions in the form `br (and/or cond1, cond2)` should
644 // be split into two branches or left as one.
645 //
646 // BaseCost is the cost threshold (in latency). If the estimated latency of
647 // computing both `cond1` and `cond2` is below the cost of just computing
648 // `cond1` + BaseCost, the two conditions will be kept together. Otherwise
649 // they will be split.
650 //
651 // LikelyBias increases BaseCost if branch probability info indicates that it
652 // is likely that both `cond1` and `cond2` will be computed.
653 //
654 // UnlikelyBias decreases BaseCost if branch probability info indicates that
655 // it is likely that both `cond1` and `cond2` will be computed.
656 //
657 // Set any field to -1 to make it ignored (setting BaseCost to -1 results in
658 // `shouldKeepJumpConditionsTogether` always returning false).
664 // Return params for deciding if we should keep two branch conditions merged
665 // or split them into two separate branches.
666 // Arg0: The binary op joining the two conditions (and/or).
667 // Arg1: The first condition (cond1)
668 // Arg2: The second condition (cond2)
669 virtual CondMergingParams
671 const Value *) const {
672 // -1 will always result in splitting.
673 return {-1, -1, -1};
674 }
675
676 /// Return true if selects are only cheaper than branches if the branch is
677 /// unlikely to be predicted right.
681
682 virtual bool fallBackToDAGISel(const Instruction &Inst) const {
683 return false;
684 }
685
686 /// Return true if the following transform is beneficial:
687 /// fold (conv (load x)) -> (load (conv*)x)
688 /// On architectures that don't natively support some vector loads
689 /// efficiently, casting the load to a smaller vector of larger types and
690 /// loading is more efficient, however, this can be undone by optimizations in
691 /// dag combiner.
692 virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
693 const SelectionDAG &DAG,
694 const MachineMemOperand &MMO) const;
695
696 /// Return true if the following transform is beneficial:
697 /// (store (y (conv x)), y*)) -> (store x, (x*))
698 virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT,
699 const SelectionDAG &DAG,
700 const MachineMemOperand &MMO) const {
701 // Default to the same logic as loads.
702 return isLoadBitCastBeneficial(StoreVT, BitcastVT, DAG, MMO);
703 }
704
705 /// Return true if it is expected to be cheaper to do a store of vector
706 /// constant with the given size and type for the address space than to
707 /// store the individual scalar element constants.
708 virtual bool storeOfVectorConstantIsCheap(bool IsZero, EVT MemVT,
709 unsigned NumElem,
710 unsigned AddrSpace) const {
711 return IsZero;
712 }
713
714 /// Allow store merging for the specified type after legalization in addition
715 /// to before legalization. This may transform stores that do not exist
716 /// earlier (for example, stores created from intrinsics).
717 virtual bool mergeStoresAfterLegalization(EVT MemVT) const {
718 return true;
719 }
720
721 /// Returns if it's reasonable to merge stores to MemVT size.
722 virtual bool canMergeStoresTo(unsigned AS, EVT MemVT,
723 const MachineFunction &MF) const {
724 return true;
725 }
726
727 /// Return true if it is cheap to speculate a call to intrinsic cttz.
728 virtual bool isCheapToSpeculateCttz(Type *Ty) const {
729 return false;
730 }
731
732 /// Return true if it is cheap to speculate a call to intrinsic ctlz.
733 virtual bool isCheapToSpeculateCtlz(Type *Ty) const {
734 return false;
735 }
736
737 /// Return true if ctlz instruction is fast.
738 virtual bool isCtlzFast() const {
739 return false;
740 }
741
742 /// Return true if ctpop instruction is fast.
743 virtual bool isCtpopFast(EVT VT) const {
744 return isOperationLegal(ISD::CTPOP, VT);
745 }
746
747 /// Return the maximum number of "x & (x - 1)" operations that can be done
748 /// instead of deferring to a custom CTPOP.
749 virtual unsigned getCustomCtpopCost(EVT VT, ISD::CondCode Cond) const {
750 return 1;
751 }
752
753 /// Return true if instruction generated for equality comparison is folded
754 /// with instruction generated for signed comparison.
755 virtual bool isEqualityCmpFoldedWithSignedCmp() const { return true; }
756
757 /// Return true if the heuristic to prefer icmp eq zero should be used in code
758 /// gen prepare.
759 virtual bool preferZeroCompareBranch() const { return false; }
760
761 /// Return true if it is cheaper to split the store of a merged int val
762 /// from a pair of smaller values into multiple stores.
763 virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const {
764 return false;
765 }
766
767 /// Return if the target supports combining a
768 /// chain like:
769 /// \code
770 /// %andResult = and %val1, #mask
771 /// %icmpResult = icmp %andResult, 0
772 /// \endcode
773 /// into a single machine instruction of a form like:
774 /// \code
775 /// cc = test %register, #mask
776 /// \endcode
777 virtual bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
778 return false;
779 }
780
781 /// Return true if it is valid to merge the TargetMMOFlags in two SDNodes.
782 virtual bool
784 const MemSDNode &NodeY) const {
785 return true;
786 }
787
788 /// Use bitwise logic to make pairs of compares more efficient. For example:
789 /// and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
790 /// This should be true when it takes more than one instruction to lower
791 /// setcc (cmp+set on x86 scalar), when bitwise ops are faster than logic on
792 /// condition bits (crand on PowerPC), and/or when reducing cmp+br is a win.
793 virtual bool convertSetCCLogicToBitwiseLogic(EVT VT) const {
794 return false;
795 }
796
797 /// Return the preferred operand type if the target has a quick way to compare
798 /// integer values of the given size. Assume that any legal integer type can
799 /// be compared efficiently. Targets may override this to allow illegal wide
800 /// types to return a vector type if there is support to compare that type.
801 virtual MVT hasFastEqualityCompare(unsigned NumBits) const {
802 MVT VT = MVT::getIntegerVT(NumBits);
804 }
805
806 /// Return true if the target should transform:
807 /// (X & Y) == Y ---> (~X & Y) == 0
808 /// (X & Y) != Y ---> (~X & Y) != 0
809 ///
810 /// This may be profitable if the target has a bitwise and-not operation that
811 /// sets comparison flags. A target may want to limit the transformation based
812 /// on the type of Y or if Y is a constant.
813 ///
814 /// Note that the transform will not occur if Y is known to be a power-of-2
815 /// because a mask and compare of a single bit can be handled by inverting the
816 /// predicate, for example:
817 /// (X & 8) == 8 ---> (X & 8) != 0
818 virtual bool hasAndNotCompare(SDValue Y) const {
819 return false;
820 }
821
822 /// Return true if the target has a bitwise and-not operation:
823 /// X = ~A & B
824 /// This can be used to simplify select or other instructions.
825 virtual bool hasAndNot(SDValue X) const {
826 // If the target has the more complex version of this operation, assume that
827 // it has this operation too.
828 return hasAndNotCompare(X);
829 }
830
831 /// Return true if the target has a bit-test instruction:
832 /// (X & (1 << Y)) ==/!= 0
833 /// This knowledge can be used to prevent breaking the pattern,
834 /// or creating it if it could be recognized.
835 virtual bool hasBitTest(SDValue X, SDValue Y) const { return false; }
836
837 /// There are two ways to clear extreme bits (either low or high):
838 /// Mask: x & (-1 << y) (the instcombine canonical form)
839 /// Shifts: x >> y << y
840 /// Return true if the variant with 2 variable shifts is preferred.
841 /// Return false if there is no preference.
843 // By default, let's assume that no one prefers shifts.
844 return false;
845 }
846
847 /// Return true if it is profitable to fold a pair of shifts into a mask.
848 /// This is usually true on most targets. But some targets, like Thumb1,
849 /// have immediate shift instructions, but no immediate "and" instruction;
850 /// this makes the fold unprofitable.
851 virtual bool shouldFoldConstantShiftPairToMask(const SDNode *N) const {
852 return true;
853 }
854
855 /// Should we tranform the IR-optimal check for whether given truncation
856 /// down into KeptBits would be truncating or not:
857 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
858 /// Into it's more traditional form:
859 /// ((%x << C) a>> C) dstcond %x
860 /// Return true if we should transform.
861 /// Return false if there is no preference.
863 unsigned KeptBits) const {
864 // By default, let's assume that no one prefers shifts.
865 return false;
866 }
867
868 /// Given the pattern
869 /// (X & (C l>>/<< Y)) ==/!= 0
870 /// return true if it should be transformed into:
871 /// ((X <</l>> Y) & C) ==/!= 0
872 /// WARNING: if 'X' is a constant, the fold may deadlock!
873 /// FIXME: we could avoid passing XC, but we can't use isConstOrConstSplat()
874 /// here because it can end up being not linked in.
877 unsigned OldShiftOpcode, unsigned NewShiftOpcode,
878 SelectionDAG &DAG) const {
879 if (hasBitTest(X, Y)) {
880 // One interesting pattern that we'd want to form is 'bit test':
881 // ((1 << Y) & C) ==/!= 0
882 // But we also need to be careful not to try to reverse that fold.
883
884 // Is this '1 << Y' ?
885 if (OldShiftOpcode == ISD::SHL && CC->isOne())
886 return false; // Keep the 'bit test' pattern.
887
888 // Will it be '1 << Y' after the transform ?
889 if (XC && NewShiftOpcode == ISD::SHL && XC->isOne())
890 return true; // Do form the 'bit test' pattern.
891 }
892
893 // If 'X' is a constant, and we transform, then we will immediately
894 // try to undo the fold, thus causing endless combine loop.
895 // So by default, let's assume everyone prefers the fold
896 // iff 'X' is not a constant.
897 return !XC;
898 }
899
900 // Return true if its desirable to perform the following transform:
901 // (fmul C, (uitofp Pow2))
902 // -> (bitcast_to_FP (add (bitcast_to_INT C), Log2(Pow2) << mantissa))
903 // (fdiv C, (uitofp Pow2))
904 // -> (bitcast_to_FP (sub (bitcast_to_INT C), Log2(Pow2) << mantissa))
905 //
906 // This is only queried after we have verified the transform will be bitwise
907 // equals.
908 //
909 // SDNode *N : The FDiv/FMul node we want to transform.
910 // SDValue FPConst: The Float constant operand in `N`.
911 // SDValue IntPow2: The Integer power of 2 operand in `N`.
913 SDValue IntPow2) const {
914 // Default to avoiding fdiv which is often very expensive.
915 return N->getOpcode() == ISD::FDIV;
916 }
917
918 // Given:
919 // (icmp eq/ne (and X, C0), (shift X, C1))
920 // or
921 // (icmp eq/ne X, (rotate X, CPow2))
922
923 // If C0 is a mask or shifted mask and the shift amt (C1) isolates the
924 // remaining bits (i.e something like `(x64 & UINT32_MAX) == (x64 >> 32)`)
925 // Do we prefer the shift to be shift-right, shift-left, or rotate.
926 // Note: Its only valid to convert the rotate version to the shift version iff
927 // the shift-amt (`C1`) is a power of 2 (including 0).
928 // If ShiftOpc (current Opcode) is returned, do nothing.
930 EVT VT, unsigned ShiftOpc, bool MayTransformRotate,
931 const APInt &ShiftOrRotateAmt,
932 const std::optional<APInt> &AndMask) const {
933 return ShiftOpc;
934 }
935
936 /// These two forms are equivalent:
937 /// sub %y, (xor %x, -1)
938 /// add (add %x, 1), %y
939 /// The variant with two add's is IR-canonical.
940 /// Some targets may prefer one to the other.
941 virtual bool preferIncOfAddToSubOfNot(EVT VT) const {
942 // By default, let's assume that everyone prefers the form with two add's.
943 return true;
944 }
945
946 // By default prefer folding (abs (sub nsw x, y)) -> abds(x, y). Some targets
947 // may want to avoid this to prevent loss of sub_nsw pattern.
948 virtual bool preferABDSToABSWithNSW(EVT VT) const {
949 return true;
950 }
951
952 // Return true if the target wants to transform Op(Splat(X)) -> Splat(Op(X))
953 virtual bool preferScalarizeSplat(SDNode *N) const { return true; }
954
955 // Return true if the target wants to transform:
956 // (TruncVT truncate(sext_in_reg(VT X, ExtVT))
957 // -> (TruncVT sext_in_reg(truncate(VT X), ExtVT))
958 // Some targets might prefer pre-sextinreg to improve truncation/saturation.
959 virtual bool preferSextInRegOfTruncate(EVT TruncVT, EVT VT, EVT ExtVT) const {
960 return true;
961 }
962
963 /// Return true if the target wants to use the optimization that
964 /// turns ext(promotableInst1(...(promotableInstN(load)))) into
965 /// promotedInst1(...(promotedInstN(ext(load)))).
967
968 /// Return true if the target can combine store(extractelement VectorTy,
969 /// Idx).
970 /// \p Cost[out] gives the cost of that transformation when this is true.
971 virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
972 unsigned &Cost) const {
973 return false;
974 }
975
976 /// Return true if the target shall perform extract vector element and store
977 /// given that the vector is known to be splat of constant.
978 /// \p Index[out] gives the index of the vector element to be extracted when
979 /// this is true.
981 Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const {
982 return false;
983 }
984
985 /// Return true if inserting a scalar into a variable element of an undef
986 /// vector is more efficiently handled by splatting the scalar instead.
987 virtual bool shouldSplatInsEltVarIndex(EVT) const {
988 return false;
989 }
990
991 /// Return true if target always benefits from combining into FMA for a
992 /// given value type. This must typically return false on targets where FMA
993 /// takes more cycles to execute than FADD.
994 virtual bool enableAggressiveFMAFusion(EVT VT) const { return false; }
995
996 /// Return true if target always benefits from combining into FMA for a
997 /// given value type. This must typically return false on targets where FMA
998 /// takes more cycles to execute than FADD.
999 virtual bool enableAggressiveFMAFusion(LLT Ty) const { return false; }
1000
1001 /// Return the ValueType of the result of SETCC operations.
1002 virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
1003 EVT VT) const;
1004
1005 /// Return the ValueType for comparison libcalls. Comparison libcalls include
1006 /// floating point comparison calls, and Ordered/Unordered check calls on
1007 /// floating point numbers.
1008 virtual
1009 MVT::SimpleValueType getCmpLibcallReturnType() const;
1010
1011 /// For targets without i1 registers, this gives the nature of the high-bits
1012 /// of boolean values held in types wider than i1.
1013 ///
1014 /// "Boolean values" are special true/false values produced by nodes like
1015 /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
1016 /// Not to be confused with general values promoted from i1. Some cpus
1017 /// distinguish between vectors of boolean and scalars; the isVec parameter
1018 /// selects between the two kinds. For example on X86 a scalar boolean should
1019 /// be zero extended from i1, while the elements of a vector of booleans
1020 /// should be sign extended from i1.
1021 ///
1022 /// Some cpus also treat floating point types the same way as they treat
1023 /// vectors instead of the way they treat scalars.
1024 BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
1025 if (isVec)
1026 return BooleanVectorContents;
1027 return isFloat ? BooleanFloatContents : BooleanContents;
1028 }
1029
1031 return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
1032 }
1033
1034 /// Promote the given target boolean to a target boolean of the given type.
1035 /// A target boolean is an integer value, not necessarily of type i1, the bits
1036 /// of which conform to getBooleanContents.
1037 ///
1038 /// ValVT is the type of values that produced the boolean.
1040 EVT ValVT) const {
1041 SDLoc dl(Bool);
1042 EVT BoolVT =
1043 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ValVT);
1045 return DAG.getNode(ExtendCode, dl, BoolVT, Bool);
1046 }
1047
1048 /// Return target scheduling preference.
1050 return SchedPreferenceInfo;
1051 }
1052
1053 /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
1054 /// for different nodes. This function returns the preference (or none) for
1055 /// the given node.
1057 return Sched::None;
1058 }
1059
1060 /// Return the register class that should be used for the specified value
1061 /// type.
1062 virtual const TargetRegisterClass *getRegClassFor(MVT VT, bool isDivergent = false) const {
1063 (void)isDivergent;
1064 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1065 assert(RC && "This value type is not natively supported!");
1066 return RC;
1067 }
1068
1069 /// Allows target to decide about the register class of the
1070 /// specific value that is live outside the defining block.
1071 /// Returns true if the value needs uniform register class.
1073 const Value *) const {
1074 return false;
1075 }
1076
1077 /// Return the 'representative' register class for the specified value
1078 /// type.
1079 ///
1080 /// The 'representative' register class is the largest legal super-reg
1081 /// register class for the register class of the value type. For example, on
1082 /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
1083 /// register class is GR64 on x86_64.
1084 virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
1085 const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
1086 return RC;
1087 }
1088
1089 /// Return the cost of the 'representative' register class for the specified
1090 /// value type.
1092 return RepRegClassCostForVT[VT.SimpleTy];
1093 }
1094
1095 /// Return the preferred strategy to legalize tihs SHIFT instruction, with
1096 /// \p ExpansionFactor being the recursion depth - how many expansion needed.
1102 virtual ShiftLegalizationStrategy
1104 unsigned ExpansionFactor) const {
1105 if (ExpansionFactor == 1)
1108 }
1109
1110 /// Return true if the target has native support for the specified value type.
1111 /// This means that it has a register that directly holds it without
1112 /// promotions or expansions.
1113 bool isTypeLegal(EVT VT) const {
1114 assert(!VT.isSimple() ||
1115 (unsigned)VT.getSimpleVT().SimpleTy < std::size(RegClassForVT));
1116 return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
1117 }
1118
1120 /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
1121 /// that indicates how instruction selection should deal with the type.
1122 LegalizeTypeAction ValueTypeActions[MVT::VALUETYPE_SIZE];
1123
1124 public:
1125 ValueTypeActionImpl() { llvm::fill(ValueTypeActions, TypeLegal); }
1126
1128 return ValueTypeActions[VT.SimpleTy];
1129 }
1130
1132 ValueTypeActions[VT.SimpleTy] = Action;
1133 }
1134 };
1135
1137 return ValueTypeActions;
1138 }
1139
1140 /// Return pair that represents the legalization kind (first) that needs to
1141 /// happen to EVT (second) in order to type-legalize it.
1142 ///
1143 /// First: how we should legalize values of this type, either it is already
1144 /// legal (return 'Legal') or we need to promote it to a larger type (return
1145 /// 'Promote'), or we need to expand it into multiple registers of smaller
1146 /// integer type (return 'Expand'). 'Custom' is not an option.
1147 ///
1148 /// Second: for types supported by the target, this is an identity function.
1149 /// For types that must be promoted to larger types, this returns the larger
1150 /// type to promote to. For integer types that are larger than the largest
1151 /// integer register, this contains one step in the expansion to get to the
1152 /// smaller register. For illegal floating point types, this returns the
1153 /// integer type to transform to.
1154 LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const;
1155
1156 /// Return how we should legalize values of this type, either it is already
1157 /// legal (return 'Legal') or we need to promote it to a larger type (return
1158 /// 'Promote'), or we need to expand it into multiple registers of smaller
1159 /// integer type (return 'Expand'). 'Custom' is not an option.
1161 return getTypeConversion(Context, VT).first;
1162 }
1164 return ValueTypeActions.getTypeAction(VT);
1165 }
1166
1167 /// For types supported by the target, this is an identity function. For
1168 /// types that must be promoted to larger types, this returns the larger type
1169 /// to promote to. For integer types that are larger than the largest integer
1170 /// register, this contains one step in the expansion to get to the smaller
1171 /// register. For illegal floating point types, this returns the integer type
1172 /// to transform to.
1173 virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
1174 return getTypeConversion(Context, VT).second;
1175 }
1176
1177 /// Perform getTypeToTransformTo repeatedly until a legal type is obtained.
1178 /// Useful for vector operations that might take multiple steps to legalize.
1180 EVT LegalVT = getTypeToTransformTo(Context, VT);
1181 while (LegalVT != VT) {
1182 VT = LegalVT;
1183 LegalVT = getTypeToTransformTo(Context, VT);
1184 }
1185 return LegalVT;
1186 }
1187
1188 /// For types supported by the target, this is an identity function. For
1189 /// types that must be expanded (i.e. integer types that are larger than the
1190 /// largest integer register or illegal floating point types), this returns
1191 /// the largest legal type it will be expanded to.
1192 EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
1193 assert(!VT.isVector());
1194 while (true) {
1195 switch (getTypeAction(Context, VT)) {
1196 case TypeLegal:
1197 return VT;
1198 case TypeExpandInteger:
1199 VT = getTypeToTransformTo(Context, VT);
1200 break;
1201 default:
1202 llvm_unreachable("Type is not legal nor is it to be expanded!");
1203 }
1204 }
1205 }
1206
1207 /// Vector types are broken down into some number of legal first class types.
1208 /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
1209 /// promoted EVT::f64 values with the X86 FP stack. Similarly, EVT::v2i64
1210 /// turns into 4 EVT::i32 values with both PPC and X86.
1211 ///
1212 /// This method returns the number of registers needed, and the VT for each
1213 /// register. It also returns the VT and quantity of the intermediate values
1214 /// before they are promoted/expanded.
1215 unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1216 EVT &IntermediateVT,
1217 unsigned &NumIntermediates,
1218 MVT &RegisterVT) const;
1219
1220 /// Certain targets such as MIPS require that some types such as vectors are
1221 /// always broken down into scalars in some contexts. This occurs even if the
1222 /// vector type is legal.
1224 LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
1225 unsigned &NumIntermediates, MVT &RegisterVT) const {
1226 return getVectorTypeBreakdown(Context, VT, IntermediateVT, NumIntermediates,
1227 RegisterVT);
1228 }
1229
1231 unsigned opc = 0; // target opcode
1232 EVT memVT; // memory VT
1233
1234 // value representing memory location
1236
1237 // Fallback address space for use if ptrVal is nullptr. std::nullopt means
1238 // unknown address space.
1239 std::optional<unsigned> fallbackAddressSpace;
1240
1241 int offset = 0; // offset off of ptrVal
1242 uint64_t size = 0; // the size of the memory location
1243 // (taken from memVT if zero)
1244 MaybeAlign align = Align(1); // alignment
1245
1250 IntrinsicInfo() = default;
1251 };
1252
1253 /// Given an intrinsic, checks if on the target the intrinsic will need to map
1254 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
1255 /// true and store the intrinsic information into the IntrinsicInfo that was
1256 /// passed to the function.
1259 unsigned /*Intrinsic*/) const {
1260 return false;
1261 }
1262
1263 /// Returns true if the target can instruction select the specified FP
1264 /// immediate natively. If false, the legalizer will materialize the FP
1265 /// immediate as a load from a constant pool.
1266 virtual bool isFPImmLegal(const APFloat & /*Imm*/, EVT /*VT*/,
1267 bool ForCodeSize = false) const {
1268 return false;
1269 }
1270
1271 /// Targets can use this to indicate that they only support *some*
1272 /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
1273 /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
1274 /// legal.
1275 virtual bool isShuffleMaskLegal(ArrayRef<int> /*Mask*/, EVT /*VT*/) const {
1276 return true;
1277 }
1278
1279 /// Returns true if the operation can trap for the value type.
1280 ///
1281 /// VT must be a legal type. By default, we optimistically assume most
1282 /// operations don't trap except for integer divide and remainder.
1283 virtual bool canOpTrap(unsigned Op, EVT VT) const;
1284
1285 /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
1286 /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
1287 /// constant pool entry.
1289 EVT /*VT*/) const {
1290 return false;
1291 }
1292
1293 /// How to legalize this custom operation?
1295 return Legal;
1296 }
1297
1298 /// Return how this operation should be treated: either it is legal, needs to
1299 /// be promoted to a larger size, needs to be expanded to some other code
1300 /// sequence, or the target has a custom expander for it.
1302 // If a target-specific SDNode requires legalization, require the target
1303 // to provide custom legalization for it.
1304 if (Op >= std::size(OpActions[0]))
1305 return Custom;
1306 if (VT.isExtended())
1307 return Expand;
1308 return OpActions[(unsigned)VT.getSimpleVT().SimpleTy][Op];
1309 }
1310
1311 /// Custom method defined by each target to indicate if an operation which
1312 /// may require a scale is supported natively by the target.
1313 /// If not, the operation is illegal.
1314 virtual bool isSupportedFixedPointOperation(unsigned Op, EVT VT,
1315 unsigned Scale) const {
1316 return false;
1317 }
1318
1319 /// Some fixed point operations may be natively supported by the target but
1320 /// only for specific scales. This method allows for checking
1321 /// if the width is supported by the target for a given operation that may
1322 /// depend on scale.
1324 unsigned Scale) const {
1325 auto Action = getOperationAction(Op, VT);
1326 if (Action != Legal)
1327 return Action;
1328
1329 // This operation is supported in this type but may only work on specific
1330 // scales.
1331 bool Supported;
1332 switch (Op) {
1333 default:
1334 llvm_unreachable("Unexpected fixed point operation.");
1335 case ISD::SMULFIX:
1336 case ISD::SMULFIXSAT:
1337 case ISD::UMULFIX:
1338 case ISD::UMULFIXSAT:
1339 case ISD::SDIVFIX:
1340 case ISD::SDIVFIXSAT:
1341 case ISD::UDIVFIX:
1342 case ISD::UDIVFIXSAT:
1343 Supported = isSupportedFixedPointOperation(Op, VT, Scale);
1344 break;
1345 }
1346
1347 return Supported ? Action : Expand;
1348 }
1349
1350 // If Op is a strict floating-point operation, return the result
1351 // of getOperationAction for the equivalent non-strict operation.
1353 unsigned EqOpc;
1354 switch (Op) {
1355 default: llvm_unreachable("Unexpected FP pseudo-opcode");
1356#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
1357 case ISD::STRICT_##DAGN: EqOpc = ISD::DAGN; break;
1358#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
1359 case ISD::STRICT_##DAGN: EqOpc = ISD::SETCC; break;
1360#include "llvm/IR/ConstrainedOps.def"
1361 }
1362
1363 return getOperationAction(EqOpc, VT);
1364 }
1365
1366 /// Return true if the specified operation is legal on this target or can be
1367 /// made legal with custom lowering. This is used to help guide high-level
1368 /// lowering decisions. LegalOnly is an optional convenience for code paths
1369 /// traversed pre and post legalisation.
1371 bool LegalOnly = false) const {
1372 if (LegalOnly)
1373 return isOperationLegal(Op, VT);
1374
1375 return (VT == MVT::Other || isTypeLegal(VT)) &&
1376 (getOperationAction(Op, VT) == Legal ||
1377 getOperationAction(Op, VT) == Custom);
1378 }
1379
1380 /// Return true if the specified operation is legal on this target or can be
1381 /// made legal using promotion. This is used to help guide high-level lowering
1382 /// decisions. LegalOnly is an optional convenience for code paths traversed
1383 /// pre and post legalisation.
1385 bool LegalOnly = false) const {
1386 if (LegalOnly)
1387 return isOperationLegal(Op, VT);
1388
1389 return (VT == MVT::Other || isTypeLegal(VT)) &&
1390 (getOperationAction(Op, VT) == Legal ||
1391 getOperationAction(Op, VT) == Promote);
1392 }
1393
1394 /// Return true if the specified operation is legal on this target or can be
1395 /// made legal with custom lowering or using promotion. This is used to help
1396 /// guide high-level lowering decisions. LegalOnly is an optional convenience
1397 /// for code paths traversed pre and post legalisation.
1399 bool LegalOnly = false) const {
1400 if (LegalOnly)
1401 return isOperationLegal(Op, VT);
1402
1403 return (VT == MVT::Other || isTypeLegal(VT)) &&
1404 (getOperationAction(Op, VT) == Legal ||
1405 getOperationAction(Op, VT) == Custom ||
1406 getOperationAction(Op, VT) == Promote);
1407 }
1408
1409 /// Return true if the operation uses custom lowering, regardless of whether
1410 /// the type is legal or not.
1411 bool isOperationCustom(unsigned Op, EVT VT) const {
1412 return getOperationAction(Op, VT) == Custom;
1413 }
1414
1415 /// Return true if lowering to a jump table is allowed.
1416 virtual bool areJTsAllowed(const Function *Fn) const {
1417 if (Fn->getFnAttribute("no-jump-tables").getValueAsBool())
1418 return false;
1419
1420 return isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1421 isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
1422 }
1423
1424 /// Check whether the range [Low,High] fits in a machine word.
1425 bool rangeFitsInWord(const APInt &Low, const APInt &High,
1426 const DataLayout &DL) const {
1427 // FIXME: Using the pointer type doesn't seem ideal.
1428 uint64_t BW = DL.getIndexSizeInBits(0u);
1429 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
1430 return Range <= BW;
1431 }
1432
1433 /// Return true if lowering to a jump table is suitable for a set of case
1434 /// clusters which may contain \p NumCases cases, \p Range range of values.
1435 virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases,
1437 BlockFrequencyInfo *BFI) const;
1438
1439 /// Returns preferred type for switch condition.
1440 virtual MVT getPreferredSwitchConditionType(LLVMContext &Context,
1441 EVT ConditionVT) const;
1442
1443 /// Return true if lowering to a bit test is suitable for a set of case
1444 /// clusters which contains \p NumDests unique destinations, \p Low and
1445 /// \p High as its lowest and highest case values, and expects \p NumCmps
1446 /// case value comparisons. Check if the number of destinations, comparison
1447 /// metric, and range are all suitable.
1450 const APInt &Low, const APInt &High, const DataLayout &DL) const {
1451 // FIXME: I don't think NumCmps is the correct metric: a single case and a
1452 // range of cases both require only one branch to lower. Just looking at the
1453 // number of clusters and destinations should be enough to decide whether to
1454 // build bit tests.
1455
1456 // To lower a range with bit tests, the range must fit the bitwidth of a
1457 // machine word.
1458 if (!rangeFitsInWord(Low, High, DL))
1459 return false;
1460
1461 unsigned NumDests = DestCmps.size();
1462 unsigned NumCmps = 0;
1463 unsigned int MaxBitTestEntry = 0;
1464 for (auto &DestCmp : DestCmps) {
1465 NumCmps += DestCmp.second;
1466 if (DestCmp.second > MaxBitTestEntry)
1467 MaxBitTestEntry = DestCmp.second;
1468 }
1469
1470 // Comparisons might be cheaper for small number of comparisons, which can
1471 // be Arch Target specific.
1472 if (MaxBitTestEntry < getMinimumBitTestCmps())
1473 return false;
1474
1475 // Decide whether it's profitable to lower this range with bit tests. Each
1476 // destination requires a bit test and branch, and there is an overall range
1477 // check branch. For a small number of clusters, separate comparisons might
1478 // be cheaper, and for many destinations, splitting the range might be
1479 // better.
1480 return (NumDests == 1 && NumCmps >= 3) || (NumDests == 2 && NumCmps >= 5) ||
1481 (NumDests == 3 && NumCmps >= 6);
1482 }
1483
1484 /// Return true if the specified operation is illegal on this target or
1485 /// unlikely to be made legal with custom lowering. This is used to help guide
1486 /// high-level lowering decisions.
1487 bool isOperationExpand(unsigned Op, EVT VT) const {
1488 return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
1489 }
1490
1491 /// Return true if the specified operation is legal on this target.
1492 bool isOperationLegal(unsigned Op, EVT VT) const {
1493 return (VT == MVT::Other || isTypeLegal(VT)) &&
1494 getOperationAction(Op, VT) == Legal;
1495 }
1496
1497 /// Return how this load with extension should be treated: either it is legal,
1498 /// needs to be promoted to a larger size, needs to be expanded to some other
1499 /// code sequence, or the target has a custom expander for it.
1500 LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT,
1501 EVT MemVT) const {
1502 if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1503 unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
1504 unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
1506 MemI < MVT::VALUETYPE_SIZE && "Table isn't big enough!");
1507 unsigned Shift = 4 * ExtType;
1508 return (LegalizeAction)((LoadExtActions[ValI][MemI] >> Shift) & 0xf);
1509 }
1510
1511 /// Return true if the specified load with extension is legal on this target.
1512 bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1513 return getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
1514 }
1515
1516 /// Return true if the specified load with extension is legal or custom
1517 /// on this target.
1518 bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1519 return getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
1520 getLoadExtAction(ExtType, ValVT, MemVT) == Custom;
1521 }
1522
1523 /// Same as getLoadExtAction, but for atomic loads.
1525 EVT MemVT) const {
1526 if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1527 unsigned ValI = (unsigned)ValVT.getSimpleVT().SimpleTy;
1528 unsigned MemI = (unsigned)MemVT.getSimpleVT().SimpleTy;
1530 MemI < MVT::VALUETYPE_SIZE && "Table isn't big enough!");
1531 unsigned Shift = 4 * ExtType;
1532 LegalizeAction Action =
1533 (LegalizeAction)((AtomicLoadExtActions[ValI][MemI] >> Shift) & 0xf);
1534 assert((Action == Legal || Action == Expand) &&
1535 "Unsupported atomic load extension action.");
1536 return Action;
1537 }
1538
1539 /// Return true if the specified atomic load with extension is legal on
1540 /// this target.
1541 bool isAtomicLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1542 return getAtomicLoadExtAction(ExtType, ValVT, MemVT) == Legal;
1543 }
1544
1545 /// Return how this store with truncation should be treated: either it is
1546 /// legal, needs to be promoted to a larger size, needs to be expanded to some
1547 /// other code sequence, or the target has a custom expander for it.
1549 if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1550 unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
1551 unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
1553 "Table isn't big enough!");
1554 return TruncStoreActions[ValI][MemI];
1555 }
1556
1557 /// Return true if the specified store with truncation is legal on this
1558 /// target.
1559 bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
1560 return isTypeLegal(ValVT) && getTruncStoreAction(ValVT, MemVT) == Legal;
1561 }
1562
1563 /// Return true if the specified store with truncation has solution on this
1564 /// target.
1565 bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const {
1566 return isTypeLegal(ValVT) &&
1567 (getTruncStoreAction(ValVT, MemVT) == Legal ||
1568 getTruncStoreAction(ValVT, MemVT) == Custom);
1569 }
1570
1571 virtual bool canCombineTruncStore(EVT ValVT, EVT MemVT,
1572 bool LegalOnly) const {
1573 if (LegalOnly)
1574 return isTruncStoreLegal(ValVT, MemVT);
1575
1576 return isTruncStoreLegalOrCustom(ValVT, MemVT);
1577 }
1578
1579 /// Return how the indexed load should be treated: either it is legal, needs
1580 /// to be promoted to a larger size, needs to be expanded to some other code
1581 /// sequence, or the target has a custom expander for it.
1582 LegalizeAction getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
1583 return getIndexedModeAction(IdxMode, VT, IMAB_Load);
1584 }
1585
1586 /// Return true if the specified indexed load is legal on this target.
1587 bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
1588 return VT.isSimple() &&
1589 (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
1590 getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
1591 }
1592
1593 /// Return how the indexed store should be treated: either it is legal, needs
1594 /// to be promoted to a larger size, needs to be expanded to some other code
1595 /// sequence, or the target has a custom expander for it.
1596 LegalizeAction getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
1597 return getIndexedModeAction(IdxMode, VT, IMAB_Store);
1598 }
1599
1600 /// Return true if the specified indexed load is legal on this target.
1601 bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
1602 return VT.isSimple() &&
1603 (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
1604 getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
1605 }
1606
1607 /// Return how the indexed load should be treated: either it is legal, needs
1608 /// to be promoted to a larger size, needs to be expanded to some other code
1609 /// sequence, or the target has a custom expander for it.
1610 LegalizeAction getIndexedMaskedLoadAction(unsigned IdxMode, MVT VT) const {
1611 return getIndexedModeAction(IdxMode, VT, IMAB_MaskedLoad);
1612 }
1613
1614 /// Return true if the specified indexed load is legal on this target.
1615 bool isIndexedMaskedLoadLegal(unsigned IdxMode, EVT VT) const {
1616 return VT.isSimple() &&
1617 (getIndexedMaskedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
1619 }
1620
1621 /// Return how the indexed store should be treated: either it is legal, needs
1622 /// to be promoted to a larger size, needs to be expanded to some other code
1623 /// sequence, or the target has a custom expander for it.
1624 LegalizeAction getIndexedMaskedStoreAction(unsigned IdxMode, MVT VT) const {
1625 return getIndexedModeAction(IdxMode, VT, IMAB_MaskedStore);
1626 }
1627
1628 /// Return true if the specified indexed load is legal on this target.
1629 bool isIndexedMaskedStoreLegal(unsigned IdxMode, EVT VT) const {
1630 return VT.isSimple() &&
1631 (getIndexedMaskedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
1633 }
1634
1635 /// Returns true if the index type for a masked gather/scatter requires
1636 /// extending
1637 virtual bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const { return false; }
1638
1639 // Returns true if Extend can be folded into the index of a masked gathers/scatters
1640 // on this target.
1641 virtual bool shouldRemoveExtendFromGSIndex(SDValue Extend, EVT DataVT) const {
1642 return false;
1643 }
1644
1645 // Return true if the target supports a scatter/gather instruction with
1646 // indices which are scaled by the particular value. Note that all targets
1647 // must by definition support scale of 1.
1649 uint64_t ElemSize) const {
1650 // MGATHER/MSCATTER are only required to support scaling by one or by the
1651 // element size.
1652 if (Scale != ElemSize && Scale != 1)
1653 return false;
1654 return true;
1655 }
1656
1657 /// Return how the condition code should be treated: either it is legal, needs
1658 /// to be expanded to some other code sequence, or the target has a custom
1659 /// expander for it.
1662 assert((unsigned)CC < std::size(CondCodeActions) &&
1663 ((unsigned)VT.SimpleTy >> 3) < std::size(CondCodeActions[0]) &&
1664 "Table isn't big enough!");
1665 // See setCondCodeAction for how this is encoded.
1666 uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
1667 uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 3];
1668 LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0xF);
1669 assert(Action != Promote && "Can't promote condition code!");
1670 return Action;
1671 }
1672
1673 /// Return true if the specified condition code is legal for a comparison of
1674 /// the specified types on this target.
1675 bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
1676 return getCondCodeAction(CC, VT) == Legal;
1677 }
1678
1679 /// Return true if the specified condition code is legal or custom for a
1680 /// comparison of the specified types on this target.
1682 return getCondCodeAction(CC, VT) == Legal ||
1683 getCondCodeAction(CC, VT) == Custom;
1684 }
1685
1686 /// Return how a PARTIAL_REDUCE_U/SMLA node with Acc type AccVT and Input type
1687 /// InputVT should be treated. Either it's legal, needs to be promoted to a
1688 /// larger size, needs to be expanded to some other code sequence, or the
1689 /// target has a custom expander for it.
1691 EVT InputVT) const {
1692 assert(Opc == ISD::PARTIAL_REDUCE_SMLA || Opc == ISD::PARTIAL_REDUCE_UMLA ||
1693 Opc == ISD::PARTIAL_REDUCE_SUMLA || Opc == ISD::PARTIAL_REDUCE_FMLA);
1694 PartialReduceActionTypes Key = {Opc, AccVT.getSimpleVT().SimpleTy,
1695 InputVT.getSimpleVT().SimpleTy};
1696 auto It = PartialReduceMLAActions.find(Key);
1697 return It != PartialReduceMLAActions.end() ? It->second : Expand;
1698 }
1699
1700 /// Return true if a PARTIAL_REDUCE_U/SMLA node with the specified types is
1701 /// legal or custom for this target.
1703 EVT InputVT) const {
1704 LegalizeAction Action = getPartialReduceMLAAction(Opc, AccVT, InputVT);
1705 return Action == Legal || Action == Custom;
1706 }
1707
1708 /// If the action for this operation is to promote, this method returns the
1709 /// ValueType to promote to.
1710 MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
1712 "This operation isn't promoted!");
1713
1714 // See if this has an explicit type specified.
1715 std::map<std::pair<unsigned, MVT::SimpleValueType>,
1717 PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
1718 if (PTTI != PromoteToType.end()) return PTTI->second;
1719
1720 assert((VT.isInteger() || VT.isFloatingPoint()) &&
1721 "Cannot autopromote this type, add it with AddPromotedToType.");
1722
1723 uint64_t VTBits = VT.getScalarSizeInBits();
1724 MVT NVT = VT;
1725 do {
1726 NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
1727 assert(NVT.isInteger() == VT.isInteger() &&
1728 NVT.isFloatingPoint() == VT.isFloatingPoint() &&
1729 "Didn't find type to promote to!");
1730 } while (VTBits >= NVT.getScalarSizeInBits() || !isTypeLegal(NVT) ||
1731 getOperationAction(Op, NVT) == Promote);
1732 return NVT;
1733 }
1734
1736 bool AllowUnknown = false) const {
1737 return getValueType(DL, Ty, AllowUnknown);
1738 }
1739
1740 /// Return the EVT corresponding to this LLVM type. This is fixed by the LLVM
1741 /// operations except for the pointer size. If AllowUnknown is true, this
1742 /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
1743 /// otherwise it will assert.
1745 bool AllowUnknown = false) const {
1746 // Lower scalar pointers to native pointer types.
1747 if (auto *PTy = dyn_cast<PointerType>(Ty))
1748 return getPointerTy(DL, PTy->getAddressSpace());
1749
1750 if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1751 Type *EltTy = VTy->getElementType();
1752 // Lower vectors of pointers to native pointer types.
1753 if (auto *PTy = dyn_cast<PointerType>(EltTy)) {
1754 EVT PointerTy(getPointerTy(DL, PTy->getAddressSpace()));
1755 EltTy = PointerTy.getTypeForEVT(Ty->getContext());
1756 }
1757 return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(EltTy, false),
1758 VTy->getElementCount());
1759 }
1760
1761 return EVT::getEVT(Ty, AllowUnknown);
1762 }
1763
1765 bool AllowUnknown = false) const {
1766 // Lower scalar pointers to native pointer types.
1767 if (auto *PTy = dyn_cast<PointerType>(Ty))
1768 return getPointerMemTy(DL, PTy->getAddressSpace());
1769
1770 if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1771 Type *EltTy = VTy->getElementType();
1772 if (auto *PTy = dyn_cast<PointerType>(EltTy)) {
1773 EVT PointerTy(getPointerMemTy(DL, PTy->getAddressSpace()));
1774 EltTy = PointerTy.getTypeForEVT(Ty->getContext());
1775 }
1776 return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(EltTy, false),
1777 VTy->getElementCount());
1778 }
1779
1780 return getValueType(DL, Ty, AllowUnknown);
1781 }
1782
1783
1784 /// Return the MVT corresponding to this LLVM type. See getValueType.
1786 bool AllowUnknown = false) const {
1787 return getValueType(DL, Ty, AllowUnknown).getSimpleVT();
1788 }
1789
1790 /// Returns the desired alignment for ByVal or InAlloca aggregate function
1791 /// arguments in the caller parameter area.
1792 virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const;
1793
1794 /// Return the type of registers that this ValueType will eventually require.
1796 assert((unsigned)VT.SimpleTy < std::size(RegisterTypeForVT));
1797 return RegisterTypeForVT[VT.SimpleTy];
1798 }
1799
1800 /// Return the type of registers that this ValueType will eventually require.
1801 MVT getRegisterType(LLVMContext &Context, EVT VT) const {
1802 if (VT.isSimple())
1803 return getRegisterType(VT.getSimpleVT());
1804 if (VT.isVector()) {
1805 EVT VT1;
1806 MVT RegisterVT;
1807 unsigned NumIntermediates;
1808 (void)getVectorTypeBreakdown(Context, VT, VT1,
1809 NumIntermediates, RegisterVT);
1810 return RegisterVT;
1811 }
1812 if (VT.isInteger()) {
1813 return getRegisterType(Context, getTypeToTransformTo(Context, VT));
1814 }
1815 llvm_unreachable("Unsupported extended type!");
1816 }
1817
1818 /// Return the number of registers that this ValueType will eventually
1819 /// require.
1820 ///
1821 /// This is one for any types promoted to live in larger registers, but may be
1822 /// more than one for types (like i64) that are split into pieces. For types
1823 /// like i140, which are first promoted then expanded, it is the number of
1824 /// registers needed to hold all the bits of the original type. For an i140
1825 /// on a 32 bit machine this means 5 registers.
1826 ///
1827 /// RegisterVT may be passed as a way to override the default settings, for
1828 /// instance with i128 inline assembly operands on SystemZ.
1829 virtual unsigned
1831 std::optional<MVT> RegisterVT = std::nullopt) const {
1832 if (VT.isSimple()) {
1833 assert((unsigned)VT.getSimpleVT().SimpleTy <
1834 std::size(NumRegistersForVT));
1835 return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
1836 }
1837 if (VT.isVector()) {
1838 EVT VT1;
1839 MVT VT2;
1840 unsigned NumIntermediates;
1841 return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
1842 }
1843 if (VT.isInteger()) {
1844 unsigned BitWidth = VT.getSizeInBits();
1845 unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
1846 return (BitWidth + RegWidth - 1) / RegWidth;
1847 }
1848 llvm_unreachable("Unsupported extended type!");
1849 }
1850
1851 /// Certain combinations of ABIs, Targets and features require that types
1852 /// are legal for some operations and not for other operations.
1853 /// For MIPS all vector types must be passed through the integer register set.
1855 CallingConv::ID CC, EVT VT) const {
1856 return getRegisterType(Context, VT);
1857 }
1858
1859 /// Certain targets require unusual breakdowns of certain types. For MIPS,
1860 /// this occurs when a vector type is used, as vector are passed through the
1861 /// integer register set.
1863 CallingConv::ID CC,
1864 EVT VT) const {
1865 return getNumRegisters(Context, VT);
1866 }
1867
1868 /// Certain targets have context sensitive alignment requirements, where one
1869 /// type has the alignment requirement of another type.
1871 const DataLayout &DL) const {
1872 return DL.getABITypeAlign(ArgTy);
1873 }
1874
1875 /// If true, then instruction selection should seek to shrink the FP constant
1876 /// of the specified type to a smaller type in order to save space and / or
1877 /// reduce runtime.
1878 virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
1879
1880 /// Return true if it is profitable to reduce a load to a smaller type.
1881 /// \p ByteOffset is only set if we know the pointer offset at compile time
1882 /// otherwise we should assume that additional pointer math is required.
1883 /// Example: (i16 (trunc (i32 (load x))) -> i16 load x
1884 /// Example: (i16 (trunc (srl (i32 (load x)), 16)) -> i16 load x+2
1886 SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT,
1887 std::optional<unsigned> ByteOffset = std::nullopt) const {
1888 // By default, assume that it is cheaper to extract a subvector from a wide
1889 // vector load rather than creating multiple narrow vector loads.
1890 if (NewVT.isVector() && !SDValue(Load, 0).hasOneUse())
1891 return false;
1892
1893 return true;
1894 }
1895
1896 /// Return true (the default) if it is profitable to remove a sext_inreg(x)
1897 /// where the sext is redundant, and use x directly.
1898 virtual bool shouldRemoveRedundantExtend(SDValue Op) const { return true; }
1899
1900 /// Indicates if any padding is guaranteed to go at the most significant bits
1901 /// when storing the type to memory and the type size isn't equal to the store
1902 /// size.
1904 return VT.isScalarInteger() && !VT.isByteSized();
1905 }
1906
1907 /// When splitting a value of the specified type into parts, does the Lo
1908 /// or Hi part come first? This usually follows the endianness, except
1909 /// for ppcf128, where the Hi part always comes first.
1911 return DL.isBigEndian() || VT == MVT::ppcf128;
1912 }
1913
1914 /// If true, the target has custom DAG combine transformations that it can
1915 /// perform for the specified node.
1917 assert(unsigned(NT >> 3) < std::size(TargetDAGCombineArray));
1918 return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
1919 }
1920
1923 }
1924
1925 /// Returns the size of the platform's va_list object.
1926 virtual unsigned getVaListSizeInBits(const DataLayout &DL) const {
1927 return getPointerTy(DL).getSizeInBits();
1928 }
1929
1930 /// Get maximum # of store operations permitted for llvm.memset
1931 ///
1932 /// This function returns the maximum number of store operations permitted
1933 /// to replace a call to llvm.memset. The value is set by the target at the
1934 /// performance threshold for such a replacement. If OptSize is true,
1935 /// return the limit for functions that have OptSize attribute.
1936 unsigned getMaxStoresPerMemset(bool OptSize) const {
1938 }
1939
1940 /// Get maximum # of store operations permitted for llvm.memcpy
1941 ///
1942 /// This function returns the maximum number of store operations permitted
1943 /// to replace a call to llvm.memcpy. The value is set by the target at the
1944 /// performance threshold for such a replacement. If OptSize is true,
1945 /// return the limit for functions that have OptSize attribute.
1946 unsigned getMaxStoresPerMemcpy(bool OptSize) const {
1948 }
1949
1950 /// \brief Get maximum # of store operations to be glued together
1951 ///
1952 /// This function returns the maximum number of store operations permitted
1953 /// to glue together during lowering of llvm.memcpy. The value is set by
1954 // the target at the performance threshold for such a replacement.
1955 virtual unsigned getMaxGluedStoresPerMemcpy() const {
1957 }
1958
1959 /// Get maximum # of load operations permitted for memcmp
1960 ///
1961 /// This function returns the maximum number of load operations permitted
1962 /// to replace a call to memcmp. The value is set by the target at the
1963 /// performance threshold for such a replacement. If OptSize is true,
1964 /// return the limit for functions that have OptSize attribute.
1965 unsigned getMaxExpandSizeMemcmp(bool OptSize) const {
1967 }
1968
1969 /// Get maximum # of store operations permitted for llvm.memmove
1970 ///
1971 /// This function returns the maximum number of store operations permitted
1972 /// to replace a call to llvm.memmove. The value is set by the target at the
1973 /// performance threshold for such a replacement. If OptSize is true,
1974 /// return the limit for functions that have OptSize attribute.
1975 unsigned getMaxStoresPerMemmove(bool OptSize) const {
1977 }
1978
1979 /// Determine if the target supports unaligned memory accesses.
1980 ///
1981 /// This function returns true if the target allows unaligned memory accesses
1982 /// of the specified type in the given address space. If true, it also returns
1983 /// a relative speed of the unaligned memory access in the last argument by
1984 /// reference. The higher the speed number the faster the operation comparing
1985 /// to a number returned by another such call. This is used, for example, in
1986 /// situations where an array copy/move/set is converted to a sequence of
1987 /// store operations. Its use helps to ensure that such replacements don't
1988 /// generate code that causes an alignment error (trap) on the target machine.
1990 EVT, unsigned AddrSpace = 0, Align Alignment = Align(1),
1992 unsigned * /*Fast*/ = nullptr) const {
1993 return false;
1994 }
1995
1996 /// LLT handling variant.
1998 LLT, unsigned AddrSpace = 0, Align Alignment = Align(1),
2000 unsigned * /*Fast*/ = nullptr) const {
2001 return false;
2002 }
2003
2004 /// This function returns true if the memory access is aligned or if the
2005 /// target allows this specific unaligned memory access. If the access is
2006 /// allowed, the optional final parameter returns a relative speed of the
2007 /// access (as defined by the target).
2008 bool allowsMemoryAccessForAlignment(
2009 LLVMContext &Context, const DataLayout &DL, EVT VT,
2010 unsigned AddrSpace = 0, Align Alignment = Align(1),
2012 unsigned *Fast = nullptr) const;
2013
2014 /// Return true if the memory access of this type is aligned or if the target
2015 /// allows this specific unaligned access for the given MachineMemOperand.
2016 /// If the access is allowed, the optional final parameter returns a relative
2017 /// speed of the access (as defined by the target).
2018 bool allowsMemoryAccessForAlignment(LLVMContext &Context,
2019 const DataLayout &DL, EVT VT,
2020 const MachineMemOperand &MMO,
2021 unsigned *Fast = nullptr) const;
2022
2023 /// Return true if the target supports a memory access of this type for the
2024 /// given address space and alignment. If the access is allowed, the optional
2025 /// final parameter returns the relative speed of the access (as defined by
2026 /// the target).
2027 virtual bool
2028 allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
2029 unsigned AddrSpace = 0, Align Alignment = Align(1),
2031 unsigned *Fast = nullptr) const;
2032
2033 /// Return true if the target supports a memory access of this type for the
2034 /// given MachineMemOperand. If the access is allowed, the optional
2035 /// final parameter returns the relative access speed (as defined by the
2036 /// target).
2037 bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
2038 const MachineMemOperand &MMO,
2039 unsigned *Fast = nullptr) const;
2040
2041 /// LLT handling variant.
2042 bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, LLT Ty,
2043 const MachineMemOperand &MMO,
2044 unsigned *Fast = nullptr) const;
2045
2046 /// Returns the target specific optimal type for load and store operations as
2047 /// a result of memset, memcpy, and memmove lowering.
2048 /// It returns EVT::Other if the type should be determined using generic
2049 /// target-independent logic.
2050 virtual EVT
2052 const AttributeList & /*FuncAttributes*/) const {
2053 return MVT::Other;
2054 }
2055
2056 /// LLT returning variant.
2057 virtual LLT
2059 const AttributeList & /*FuncAttributes*/) const {
2060 return LLT();
2061 }
2062
2063 /// Returns true if it's safe to use load / store of the specified type to
2064 /// expand memcpy / memset inline.
2065 ///
2066 /// This is mostly true for all types except for some special cases. For
2067 /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
2068 /// fstpl which also does type conversion. Note the specified type doesn't
2069 /// have to be legal as the hook is used before type legalization.
2070 virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
2071
2072 /// Return lower limit for number of blocks in a jump table.
2073 virtual unsigned getMinimumJumpTableEntries() const;
2074
2075 /// Return lower limit of the density in a jump table.
2076 unsigned getMinimumJumpTableDensity(bool OptForSize) const;
2077
2078 /// Return upper limit for number of entries in a jump table.
2079 /// Zero if no limit.
2080 unsigned getMaximumJumpTableSize() const;
2081
2082 virtual bool isJumpTableRelative() const;
2083
2084 /// Retuen the minimum of largest number of comparisons in BitTest.
2085 unsigned getMinimumBitTestCmps() const;
2086
2087 /// If a physical register, this specifies the register that
2088 /// llvm.savestack/llvm.restorestack should save and restore.
2090 return StackPointerRegisterToSaveRestore;
2091 }
2092
2093 /// If a physical register, this returns the register that receives the
2094 /// exception address on entry to an EH pad.
2095 virtual Register
2096 getExceptionPointerRegister(const Constant *PersonalityFn) const {
2097 return Register();
2098 }
2099
2100 /// If a physical register, this returns the register that receives the
2101 /// exception typeid on entry to a landing pad.
2102 virtual Register
2103 getExceptionSelectorRegister(const Constant *PersonalityFn) const {
2104 return Register();
2105 }
2106
2107 virtual bool needsFixedCatchObjects() const {
2108 report_fatal_error("Funclet EH is not implemented for this target");
2109 }
2110
2111 /// Return the minimum stack alignment of an argument.
2113 return MinStackArgumentAlignment;
2114 }
2115
2116 /// Return the minimum function alignment.
2117 Align getMinFunctionAlignment() const { return MinFunctionAlignment; }
2118
2119 /// Return the preferred function alignment.
2120 Align getPrefFunctionAlignment() const { return PrefFunctionAlignment; }
2121
2122 /// Return the preferred loop alignment.
2123 virtual Align getPrefLoopAlignment(MachineLoop *ML = nullptr) const;
2124
2125 /// Return the maximum amount of bytes allowed to be emitted when padding for
2126 /// alignment
2127 virtual unsigned
2128 getMaxPermittedBytesForAlignment(MachineBasicBlock *MBB) const;
2129
2130 /// Should loops be aligned even when the function is marked OptSize (but not
2131 /// MinSize).
2132 virtual bool alignLoopsWithOptSize() const { return false; }
2133
2134 /// If the target has a standard location for the stack protector guard,
2135 /// returns the address of that location. Otherwise, returns nullptr.
2136 /// DEPRECATED: please override useLoadStackGuardNode and customize
2137 /// LOAD_STACK_GUARD, or customize \@llvm.stackguard().
2138 virtual Value *getIRStackGuard(IRBuilderBase &IRB) const;
2139
2140 /// Inserts necessary declarations for SSP (stack protection) purpose.
2141 /// Should be used only when getIRStackGuard returns nullptr.
2142 virtual void insertSSPDeclarations(Module &M) const;
2143
2144 /// Return the variable that's previously inserted by insertSSPDeclarations,
2145 /// if any, otherwise return nullptr. Should be used only when
2146 /// getIRStackGuard returns nullptr.
2147 virtual Value *getSDagStackGuard(const Module &M) const;
2148
2149 /// If this function returns true, stack protection checks should XOR the
2150 /// frame pointer (or whichever pointer is used to address locals) into the
2151 /// stack guard value before checking it. getIRStackGuard must return nullptr
2152 /// if this returns true.
2153 virtual bool useStackGuardXorFP() const { return false; }
2154
2155 /// If the target has a standard stack protection check function that
2156 /// performs validation and error handling, returns the function. Otherwise,
2157 /// returns nullptr. Must be previously inserted by insertSSPDeclarations.
2158 /// Should be used only when getIRStackGuard returns nullptr.
2159 Function *getSSPStackGuardCheck(const Module &M) const;
2160
2161protected:
2162 Value *getDefaultSafeStackPointerLocation(IRBuilderBase &IRB,
2163 bool UseTLS) const;
2164
2165public:
2166 /// Returns the target-specific address of the unsafe stack pointer.
2167 virtual Value *getSafeStackPointerLocation(IRBuilderBase &IRB) const;
2168
2169 /// Returns the name of the symbol used to emit stack probes or the empty
2170 /// string if not applicable.
2171 virtual bool hasStackProbeSymbol(const MachineFunction &MF) const { return false; }
2172
2173 virtual bool hasInlineStackProbe(const MachineFunction &MF) const { return false; }
2174
2176 return "";
2177 }
2178
2179 /// Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g. we
2180 /// are happy to sink it into basic blocks. A cast may be free, but not
2181 /// necessarily a no-op. e.g. a free truncate from a 64-bit to 32-bit pointer.
2182 virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const;
2183
2184 /// Return true if the pointer arguments to CI should be aligned by aligning
2185 /// the object whose address is being passed. If so then MinSize is set to the
2186 /// minimum size the object must be to be aligned and PrefAlign is set to the
2187 /// preferred alignment.
2188 virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/,
2189 Align & /*PrefAlign*/) const {
2190 return false;
2191 }
2192
2193 //===--------------------------------------------------------------------===//
2194 /// \name Helpers for TargetTransformInfo implementations
2195 /// @{
2196
2197 /// Get the ISD node that corresponds to the Instruction class opcode.
2198 int InstructionOpcodeToISD(unsigned Opcode) const;
2199
2200 /// Get the ISD node that corresponds to the Intrinsic ID. Returns
2201 /// ISD::DELETED_NODE by default for an unsupported Intrinsic ID.
2202 int IntrinsicIDToISD(Intrinsic::ID ID) const;
2203
2204 /// @}
2205
2206 //===--------------------------------------------------------------------===//
2207 /// \name Helpers for atomic expansion.
2208 /// @{
2209
2210 /// Returns the maximum atomic operation size (in bits) supported by
2211 /// the backend. Atomic operations greater than this size (as well
2212 /// as ones that are not naturally aligned), will be expanded by
2213 /// AtomicExpandPass into an __atomic_* library call.
2215 return MaxAtomicSizeInBitsSupported;
2216 }
2217
2218 /// Returns the size in bits of the maximum div/rem the backend supports.
2219 /// Larger operations will be expanded by ExpandLargeDivRem.
2221 return MaxDivRemBitWidthSupported;
2222 }
2223
2224 /// Returns the size in bits of the maximum fp to/from int conversion the
2225 /// backend supports. Larger operations will be expanded by ExpandFp.
2227 return MaxLargeFPConvertBitWidthSupported;
2228 }
2229
2230 /// Returns the size of the smallest cmpxchg or ll/sc instruction
2231 /// the backend supports. Any smaller operations are widened in
2232 /// AtomicExpandPass.
2233 ///
2234 /// Note that *unlike* operations above the maximum size, atomic ops
2235 /// are still natively supported below the minimum; they just
2236 /// require a more complex expansion.
2237 unsigned getMinCmpXchgSizeInBits() const { return MinCmpXchgSizeInBits; }
2238
2239 /// Whether the target supports unaligned atomic operations.
2240 bool supportsUnalignedAtomics() const { return SupportsUnalignedAtomics; }
2241
2242 /// Whether AtomicExpandPass should automatically insert fences and reduce
2243 /// ordering for this atomic. This should be true for most architectures with
2244 /// weak memory ordering. Defaults to false.
2245 virtual bool shouldInsertFencesForAtomic(const Instruction *I) const {
2246 return false;
2247 }
2248
2249 // The memory ordering that AtomicExpandPass should assign to a atomic
2250 // instruction that it has lowered by adding fences. This can be used
2251 // to "fold" one of the fences into the atomic instruction.
2252 virtual AtomicOrdering
2256
2257 /// Whether AtomicExpandPass should automatically insert a trailing fence
2258 /// without reducing the ordering for this atomic. Defaults to false.
2259 virtual bool
2261 return false;
2262 }
2263
2264 /// Perform a load-linked operation on Addr, returning a "Value *" with the
2265 /// corresponding pointee type. This may entail some non-trivial operations to
2266 /// truncate or reconstruct types that will be illegal in the backend. See
2267 /// ARMISelLowering for an example implementation.
2268 virtual Value *emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy,
2269 Value *Addr, AtomicOrdering Ord) const {
2270 llvm_unreachable("Load linked unimplemented on this target");
2271 }
2272
2273 /// Perform a store-conditional operation to Addr. Return the status of the
2274 /// store. This should be 0 if the store succeeded, non-zero otherwise.
2276 Value *Addr, AtomicOrdering Ord) const {
2277 llvm_unreachable("Store conditional unimplemented on this target");
2278 }
2279
2280 /// Perform a masked atomicrmw using a target-specific intrinsic. This
2281 /// represents the core LL/SC loop which will be lowered at a late stage by
2282 /// the backend. The target-specific intrinsic returns the loaded value and
2283 /// is not responsible for masking and shifting the result.
2285 AtomicRMWInst *AI,
2286 Value *AlignedAddr, Value *Incr,
2287 Value *Mask, Value *ShiftAmt,
2288 AtomicOrdering Ord) const {
2289 llvm_unreachable("Masked atomicrmw expansion unimplemented on this target");
2290 }
2291
2292 /// Perform a atomicrmw expansion using a target-specific way. This is
2293 /// expected to be called when masked atomicrmw and bit test atomicrmw don't
2294 /// work, and the target supports another way to lower atomicrmw.
2295 virtual void emitExpandAtomicRMW(AtomicRMWInst *AI) const {
2297 "Generic atomicrmw expansion unimplemented on this target");
2298 }
2299
2300 /// Perform a atomic store using a target-specific way.
2301 virtual void emitExpandAtomicStore(StoreInst *SI) const {
2303 "Generic atomic store expansion unimplemented on this target");
2304 }
2305
2306 /// Perform a atomic load using a target-specific way.
2307 virtual void emitExpandAtomicLoad(LoadInst *LI) const {
2309 "Generic atomic load expansion unimplemented on this target");
2310 }
2311
2312 /// Perform a cmpxchg expansion using a target-specific method.
2314 llvm_unreachable("Generic cmpxchg expansion unimplemented on this target");
2315 }
2316
2317 /// Perform a bit test atomicrmw using a target-specific intrinsic. This
2318 /// represents the combined bit test intrinsic which will be lowered at a late
2319 /// stage by the backend.
2322 "Bit test atomicrmw expansion unimplemented on this target");
2323 }
2324
2325 /// Perform a atomicrmw which the result is only used by comparison, using a
2326 /// target-specific intrinsic. This represents the combined atomic and compare
2327 /// intrinsic which will be lowered at a late stage by the backend.
2330 "Compare arith atomicrmw expansion unimplemented on this target");
2331 }
2332
2333 /// Perform a masked cmpxchg using a target-specific intrinsic. This
2334 /// represents the core LL/SC loop which will be lowered at a late stage by
2335 /// the backend. The target-specific intrinsic returns the loaded value and
2336 /// is not responsible for masking and shifting the result.
2338 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
2339 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
2340 llvm_unreachable("Masked cmpxchg expansion unimplemented on this target");
2341 }
2342
2343 //===--------------------------------------------------------------------===//
2344 /// \name KCFI check lowering.
2345 /// @{
2346
2349 const TargetInstrInfo *TII) const {
2350 llvm_unreachable("KCFI is not supported on this target");
2351 }
2352
2353 /// @}
2354
2355 /// Inserts in the IR a target-specific intrinsic specifying a fence.
2356 /// It is called by AtomicExpandPass before expanding an
2357 /// AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad
2358 /// if shouldInsertFencesForAtomic returns true.
2359 ///
2360 /// Inst is the original atomic instruction, prior to other expansions that
2361 /// may be performed.
2362 ///
2363 /// This function should either return a nullptr, or a pointer to an IR-level
2364 /// Instruction*. Even complex fence sequences can be represented by a
2365 /// single Instruction* through an intrinsic to be lowered later.
2366 ///
2367 /// The default implementation emits an IR fence before any release (or
2368 /// stronger) operation that stores, and after any acquire (or stronger)
2369 /// operation. This is generally a correct implementation, but backends may
2370 /// override if they wish to use alternative schemes (e.g. the PowerPC
2371 /// standard ABI uses a fence before a seq_cst load instead of after a
2372 /// seq_cst store).
2373 /// @{
2374 virtual Instruction *emitLeadingFence(IRBuilderBase &Builder,
2375 Instruction *Inst,
2376 AtomicOrdering Ord) const;
2377
2378 virtual Instruction *emitTrailingFence(IRBuilderBase &Builder,
2379 Instruction *Inst,
2380 AtomicOrdering Ord) const;
2381 /// @}
2382
2383 // Emits code that executes when the comparison result in the ll/sc
2384 // expansion of a cmpxchg instruction is such that the store-conditional will
2385 // not execute. This makes it possible to balance out the load-linked with
2386 // a dedicated instruction, if desired.
2387 // E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would
2388 // be unnecessarily held, except if clrex, inserted by this hook, is executed.
2389 virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilderBase &Builder) const {}
2390
2391 /// Returns true if arguments should be sign-extended in lib calls.
2392 virtual bool shouldSignExtendTypeInLibCall(Type *Ty, bool IsSigned) const {
2393 return IsSigned;
2394 }
2395
2396 /// Returns true if arguments should be extended in lib calls.
2397 virtual bool shouldExtendTypeInLibCall(EVT Type) const {
2398 return true;
2399 }
2400
2401 /// Returns how the given (atomic) load should be expanded by the
2402 /// IR-level AtomicExpand pass.
2406
2407 /// Returns how the given (atomic) load should be cast by the IR-level
2408 /// AtomicExpand pass.
2414
2415 /// Returns how the given (atomic) store should be expanded by the IR-level
2416 /// AtomicExpand pass into. For instance AtomicExpansionKind::CustomExpand
2417 /// will try to use an atomicrmw xchg.
2421
2422 /// Returns how the given (atomic) store should be cast by the IR-level
2423 /// AtomicExpand pass into. For instance AtomicExpansionKind::CastToInteger
2424 /// will try to cast the operands to integer values.
2426 if (SI->getValueOperand()->getType()->isFloatingPointTy())
2429 }
2430
2431 /// Returns how the given atomic cmpxchg should be expanded by the IR-level
2432 /// AtomicExpand pass.
2433 virtual AtomicExpansionKind
2437
2438 /// Returns how the IR-level AtomicExpand pass should expand the given
2439 /// AtomicRMW, if at all. Default is to never expand.
2444
2445 /// Returns how the given atomic atomicrmw should be cast by the IR-level
2446 /// AtomicExpand pass.
2447 virtual AtomicExpansionKind
2456
2457 /// On some platforms, an AtomicRMW that never actually modifies the value
2458 /// (such as fetch_add of 0) can be turned into a fence followed by an
2459 /// atomic load. This may sound useless, but it makes it possible for the
2460 /// processor to keep the cacheline shared, dramatically improving
2461 /// performance. And such idempotent RMWs are useful for implementing some
2462 /// kinds of locks, see for example (justification + benchmarks):
2463 /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
2464 /// This method tries doing that transformation, returning the atomic load if
2465 /// it succeeds, and nullptr otherwise.
2466 /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
2467 /// another round of expansion.
2468 virtual LoadInst *
2470 return nullptr;
2471 }
2472
2473 /// Returns how the platform's atomic operations are extended (ZERO_EXTEND,
2474 /// SIGN_EXTEND, or ANY_EXTEND).
2476 return ISD::ZERO_EXTEND;
2477 }
2478
2479 /// Returns how the platform's atomic compare and swap expects its comparison
2480 /// value to be extended (ZERO_EXTEND, SIGN_EXTEND, or ANY_EXTEND). This is
2481 /// separate from getExtendForAtomicOps, which is concerned with the
2482 /// sign-extension of the instruction's output, whereas here we are concerned
2483 /// with the sign-extension of the input. For targets with compare-and-swap
2484 /// instructions (or sub-word comparisons in their LL/SC loop expansions),
2485 /// the input can be ANY_EXTEND, but the output will still have a specific
2486 /// extension.
2488 return ISD::ANY_EXTEND;
2489 }
2490
2491 /// Returns how the platform's atomic rmw operations expect their input
2492 /// argument to be extended (ZERO_EXTEND, SIGN_EXTEND, or ANY_EXTEND).
2494 return ISD::ANY_EXTEND;
2495 }
2496
2497 /// @}
2498
2499 /// Returns true if we should normalize
2500 /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
2501 /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
2502 /// that it saves us from materializing N0 and N1 in an integer register.
2503 /// Targets that are able to perform and/or on flags should return false here.
2505 EVT VT) const {
2506 // If a target has multiple condition registers, then it likely has logical
2507 // operations on those registers.
2509 return false;
2510 // Only do the transform if the value won't be split into multiple
2511 // registers.
2512 LegalizeTypeAction Action = getTypeAction(Context, VT);
2513 return Action != TypeExpandInteger && Action != TypeExpandFloat &&
2514 Action != TypeSplitVector;
2515 }
2516
2517 virtual bool isProfitableToCombineMinNumMaxNum(EVT VT) const { return true; }
2518
2519 /// Return true if a select of constants (select Cond, C1, C2) should be
2520 /// transformed into simple math ops with the condition value. For example:
2521 /// select Cond, C1, C1-1 --> add (zext Cond), C1-1
2522 virtual bool convertSelectOfConstantsToMath(EVT VT) const {
2523 return false;
2524 }
2525
2526 /// Return true if it is profitable to transform an integer
2527 /// multiplication-by-constant into simpler operations like shifts and adds.
2528 /// This may be true if the target does not directly support the
2529 /// multiplication operation for the specified type or the sequence of simpler
2530 /// ops is faster than the multiply.
2532 EVT VT, SDValue C) const {
2533 return false;
2534 }
2535
2536 /// Return true if it may be profitable to transform
2537 /// (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
2538 /// This may not be true if c1 and c2 can be represented as immediates but
2539 /// c1*c2 cannot, for example.
2540 /// The target should check if c1, c2 and c1*c2 can be represented as
2541 /// immediates, or have to be materialized into registers. If it is not sure
2542 /// about some cases, a default true can be returned to let the DAGCombiner
2543 /// decide.
2544 /// AddNode is (add x, c1), and ConstNode is c2.
2546 SDValue ConstNode) const {
2547 return true;
2548 }
2549
2550 /// Return true if it is more correct/profitable to use strict FP_TO_INT
2551 /// conversion operations - canonicalizing the FP source value instead of
2552 /// converting all cases and then selecting based on value.
2553 /// This may be true if the target throws exceptions for out of bounds
2554 /// conversions or has fast FP CMOV.
2555 virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT,
2556 bool IsSigned) const {
2557 return false;
2558 }
2559
2560 /// Return true if it is beneficial to expand an @llvm.powi.* intrinsic.
2561 /// If not optimizing for size, expanding @llvm.powi.* intrinsics is always
2562 /// considered beneficial.
2563 /// If optimizing for size, expansion is only considered beneficial for upto
2564 /// 5 multiplies and a divide (if the exponent is negative).
2565 bool isBeneficialToExpandPowI(int64_t Exponent, bool OptForSize) const {
2566 if (Exponent < 0)
2567 Exponent = -Exponent;
2568 uint64_t E = static_cast<uint64_t>(Exponent);
2569 return !OptForSize || (llvm::popcount(E) + Log2_64(E) < 7);
2570 }
2571
2572 //===--------------------------------------------------------------------===//
2573 // TargetLowering Configuration Methods - These methods should be invoked by
2574 // the derived class constructor to configure this object for the target.
2575 //
2576protected:
2577 /// Specify how the target extends the result of integer and floating point
2578 /// boolean values from i1 to a wider type. See getBooleanContents.
2580 BooleanContents = Ty;
2581 BooleanFloatContents = Ty;
2582 }
2583
2584 /// Specify how the target extends the result of integer and floating point
2585 /// boolean values from i1 to a wider type. See getBooleanContents.
2587 BooleanContents = IntTy;
2588 BooleanFloatContents = FloatTy;
2589 }
2590
2591 /// Specify how the target extends the result of a vector boolean value from a
2592 /// vector of i1 to a wider type. See getBooleanContents.
2594 BooleanVectorContents = Ty;
2595 }
2596
2597 /// Specify the target scheduling preference.
2599 SchedPreferenceInfo = Pref;
2600 }
2601
2602 /// Indicate the minimum number of blocks to generate jump tables.
2603 void setMinimumJumpTableEntries(unsigned Val);
2604
2605 /// Indicate the maximum number of entries in jump tables.
2606 /// Set to zero to generate unlimited jump tables.
2607 void setMaximumJumpTableSize(unsigned);
2608
2609 /// Set the minimum of largest of number of comparisons to generate BitTest.
2610 void setMinimumBitTestCmps(unsigned Val);
2611
2612 /// If set to a physical register, this specifies the register that
2613 /// llvm.savestack/llvm.restorestack should save and restore.
2615 StackPointerRegisterToSaveRestore = R;
2616 }
2617
2618 /// Tells the code generator that the target has BitExtract instructions.
2619 /// The code generator will aggressively sink "shift"s into the blocks of
2620 /// their users if the users will generate "and" instructions which can be
2621 /// combined with "shift" to BitExtract instructions.
2622 void setHasExtractBitsInsn(bool hasExtractInsn = true) {
2623 HasExtractBitsInsn = hasExtractInsn;
2624 }
2625
2626 /// Tells the code generator not to expand logic operations on comparison
2627 /// predicates into separate sequences that increase the amount of flow
2628 /// control.
2629 void setJumpIsExpensive(bool isExpensive = true);
2630
2631 /// Tells the code generator which bitwidths to bypass.
2632 void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
2633 BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
2634 }
2635
2636 /// Add the specified register class as an available regclass for the
2637 /// specified value type. This indicates the selector can handle values of
2638 /// that class natively.
2640 assert((unsigned)VT.SimpleTy < std::size(RegClassForVT));
2641 RegClassForVT[VT.SimpleTy] = RC;
2642 }
2643
2644 /// Return the largest legal super-reg register class of the register class
2645 /// for the specified type and its associated "cost".
2646 virtual std::pair<const TargetRegisterClass *, uint8_t>
2647 findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const;
2648
2649 /// Once all of the register classes are added, this allows us to compute
2650 /// derived properties we expose.
2651 void computeRegisterProperties(const TargetRegisterInfo *TRI);
2652
2653 /// Indicate that the specified operation does not work with the specified
2654 /// type and indicate what to do about it. Note that VT may refer to either
2655 /// the type of a result or that of an operand of Op.
2656 void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action) {
2657 assert(Op < std::size(OpActions[0]) && "Table isn't big enough!");
2658 OpActions[(unsigned)VT.SimpleTy][Op] = Action;
2659 }
2661 LegalizeAction Action) {
2662 for (auto Op : Ops)
2663 setOperationAction(Op, VT, Action);
2664 }
2666 LegalizeAction Action) {
2667 for (auto VT : VTs)
2668 setOperationAction(Ops, VT, Action);
2669 }
2670
2671 /// Indicate that the specified load with extension does not work with the
2672 /// specified type and indicate what to do about it.
2673 void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
2674 LegalizeAction Action) {
2675 assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
2676 MemVT.isValid() && "Table isn't big enough!");
2677 assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2678 unsigned Shift = 4 * ExtType;
2679 LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &= ~((uint16_t)0xF << Shift);
2680 LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |= (uint16_t)Action << Shift;
2681 }
2682 void setLoadExtAction(ArrayRef<unsigned> ExtTypes, MVT ValVT, MVT MemVT,
2683 LegalizeAction Action) {
2684 for (auto ExtType : ExtTypes)
2685 setLoadExtAction(ExtType, ValVT, MemVT, Action);
2686 }
2688 ArrayRef<MVT> MemVTs, LegalizeAction Action) {
2689 for (auto MemVT : MemVTs)
2690 setLoadExtAction(ExtTypes, ValVT, MemVT, Action);
2691 }
2692
2693 /// Let target indicate that an extending atomic load of the specified type
2694 /// is legal.
2695 void setAtomicLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
2696 LegalizeAction Action) {
2697 assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
2698 MemVT.isValid() && "Table isn't big enough!");
2699 assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2700 unsigned Shift = 4 * ExtType;
2701 AtomicLoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &=
2702 ~((uint16_t)0xF << Shift);
2703 AtomicLoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |=
2704 ((uint16_t)Action << Shift);
2705 }
2707 LegalizeAction Action) {
2708 for (auto ExtType : ExtTypes)
2709 setAtomicLoadExtAction(ExtType, ValVT, MemVT, Action);
2710 }
2712 ArrayRef<MVT> MemVTs, LegalizeAction Action) {
2713 for (auto MemVT : MemVTs)
2714 setAtomicLoadExtAction(ExtTypes, ValVT, MemVT, Action);
2715 }
2716
2717 /// Indicate that the specified truncating store does not work with the
2718 /// specified type and indicate what to do about it.
2719 void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action) {
2720 assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
2721 TruncStoreActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy] = Action;
2722 }
2723
2724 /// Indicate that the specified indexed load does or does not work with the
2725 /// specified type and indicate what to do abort it.
2726 ///
2727 /// NOTE: All indexed mode loads are initialized to Expand in
2728 /// TargetLowering.cpp
2730 LegalizeAction Action) {
2731 for (auto IdxMode : IdxModes)
2732 setIndexedModeAction(IdxMode, VT, IMAB_Load, Action);
2733 }
2734
2736 LegalizeAction Action) {
2737 for (auto VT : VTs)
2738 setIndexedLoadAction(IdxModes, VT, Action);
2739 }
2740
2741 /// Indicate that the specified indexed store does or does not work with the
2742 /// specified type and indicate what to do about it.
2743 ///
2744 /// NOTE: All indexed mode stores are initialized to Expand in
2745 /// TargetLowering.cpp
2747 LegalizeAction Action) {
2748 for (auto IdxMode : IdxModes)
2749 setIndexedModeAction(IdxMode, VT, IMAB_Store, Action);
2750 }
2751
2753 LegalizeAction Action) {
2754 for (auto VT : VTs)
2755 setIndexedStoreAction(IdxModes, VT, Action);
2756 }
2757
2758 /// Indicate that the specified indexed masked load does or does not work with
2759 /// the specified type and indicate what to do about it.
2760 ///
2761 /// NOTE: All indexed mode masked loads are initialized to Expand in
2762 /// TargetLowering.cpp
2763 void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT,
2764 LegalizeAction Action) {
2765 setIndexedModeAction(IdxMode, VT, IMAB_MaskedLoad, Action);
2766 }
2767
2768 /// Indicate that the specified indexed masked store does or does not work
2769 /// with the specified type and indicate what to do about it.
2770 ///
2771 /// NOTE: All indexed mode masked stores are initialized to Expand in
2772 /// TargetLowering.cpp
2773 void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT,
2774 LegalizeAction Action) {
2775 setIndexedModeAction(IdxMode, VT, IMAB_MaskedStore, Action);
2776 }
2777
2778 /// Indicate that the specified condition code is or isn't supported on the
2779 /// target and indicate what to do about it.
2781 LegalizeAction Action) {
2782 for (auto CC : CCs) {
2783 assert(VT.isValid() && (unsigned)CC < std::size(CondCodeActions) &&
2784 "Table isn't big enough!");
2785 assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2786 /// The lower 3 bits of the SimpleTy index into Nth 4bit set from the
2787 /// 32-bit value and the upper 29 bits index into the second dimension of
2788 /// the array to select what 32-bit value to use.
2789 uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
2790 CondCodeActions[CC][VT.SimpleTy >> 3] &= ~((uint32_t)0xF << Shift);
2791 CondCodeActions[CC][VT.SimpleTy >> 3] |= (uint32_t)Action << Shift;
2792 }
2793 }
2795 LegalizeAction Action) {
2796 for (auto VT : VTs)
2797 setCondCodeAction(CCs, VT, Action);
2798 }
2799
2800 /// Indicate how a PARTIAL_REDUCE_U/SMLA node with Acc type AccVT and Input
2801 /// type InputVT should be treated by the target. Either it's legal, needs to
2802 /// be promoted to a larger size, needs to be expanded to some other code
2803 /// sequence, or the target has a custom expander for it.
2804 void setPartialReduceMLAAction(unsigned Opc, MVT AccVT, MVT InputVT,
2805 LegalizeAction Action) {
2806 assert(Opc == ISD::PARTIAL_REDUCE_SMLA || Opc == ISD::PARTIAL_REDUCE_UMLA ||
2807 Opc == ISD::PARTIAL_REDUCE_SUMLA || Opc == ISD::PARTIAL_REDUCE_FMLA);
2808 assert(AccVT.isValid() && InputVT.isValid() &&
2809 "setPartialReduceMLAAction types aren't valid");
2810 PartialReduceActionTypes Key = {Opc, AccVT.SimpleTy, InputVT.SimpleTy};
2811 PartialReduceMLAActions[Key] = Action;
2812 }
2814 MVT InputVT, LegalizeAction Action) {
2815 for (unsigned Opc : Opcodes)
2816 setPartialReduceMLAAction(Opc, AccVT, InputVT, Action);
2817 }
2818
2819 /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
2820 /// to trying a larger integer/fp until it can find one that works. If that
2821 /// default is insufficient, this method can be used by the target to override
2822 /// the default.
2823 void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
2824 PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
2825 }
2826
2827 /// Convenience method to set an operation to Promote and specify the type
2828 /// in a single call.
2829 void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
2830 setOperationAction(Opc, OrigVT, Promote);
2831 AddPromotedToType(Opc, OrigVT, DestVT);
2832 }
2834 MVT DestVT) {
2835 for (auto Op : Ops) {
2836 setOperationAction(Op, OrigVT, Promote);
2837 AddPromotedToType(Op, OrigVT, DestVT);
2838 }
2839 }
2840
2841 /// Targets should invoke this method for each target independent node that
2842 /// they want to provide a custom DAG combiner for by implementing the
2843 /// PerformDAGCombine virtual method.
2845 for (auto NT : NTs) {
2846 assert(unsigned(NT >> 3) < std::size(TargetDAGCombineArray));
2847 TargetDAGCombineArray[NT >> 3] |= 1 << (NT & 7);
2848 }
2849 }
2850
2851 /// Set the target's minimum function alignment.
2853 MinFunctionAlignment = Alignment;
2854 }
2855
2856 /// Set the target's preferred function alignment. This should be set if
2857 /// there is a performance benefit to higher-than-minimum alignment
2859 PrefFunctionAlignment = Alignment;
2860 }
2861
2862 /// Set the target's preferred loop alignment. Default alignment is one, it
2863 /// means the target does not care about loop alignment. The target may also
2864 /// override getPrefLoopAlignment to provide per-loop values.
2865 void setPrefLoopAlignment(Align Alignment) { PrefLoopAlignment = Alignment; }
2866 void setMaxBytesForAlignment(unsigned MaxBytes) {
2867 MaxBytesForAlignment = MaxBytes;
2868 }
2869
2870 /// Set the minimum stack alignment of an argument.
2872 MinStackArgumentAlignment = Alignment;
2873 }
2874
2875 /// Set the maximum atomic operation size supported by the
2876 /// backend. Atomic operations greater than this size (as well as
2877 /// ones that are not naturally aligned), will be expanded by
2878 /// AtomicExpandPass into an __atomic_* library call.
2879 void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits) {
2880 MaxAtomicSizeInBitsSupported = SizeInBits;
2881 }
2882
2883 /// Set the size in bits of the maximum div/rem the backend supports.
2884 /// Larger operations will be expanded by ExpandLargeDivRem.
2885 void setMaxDivRemBitWidthSupported(unsigned SizeInBits) {
2886 MaxDivRemBitWidthSupported = SizeInBits;
2887 }
2888
2889 /// Set the size in bits of the maximum fp to/from int conversion the backend
2890 /// supports. Larger operations will be expanded by ExpandFp.
2891 void setMaxLargeFPConvertBitWidthSupported(unsigned SizeInBits) {
2892 MaxLargeFPConvertBitWidthSupported = SizeInBits;
2893 }
2894
2895 /// Sets the minimum cmpxchg or ll/sc size supported by the backend.
2896 void setMinCmpXchgSizeInBits(unsigned SizeInBits) {
2897 MinCmpXchgSizeInBits = SizeInBits;
2898 }
2899
2900 /// Sets whether unaligned atomic operations are supported.
2901 void setSupportsUnalignedAtomics(bool UnalignedSupported) {
2902 SupportsUnalignedAtomics = UnalignedSupported;
2903 }
2904
2905public:
2906 //===--------------------------------------------------------------------===//
2907 // Addressing mode description hooks (used by LSR etc).
2908 //
2909
2910 /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
2911 /// instructions reading the address. This allows as much computation as
2912 /// possible to be done in the address mode for that operand. This hook lets
2913 /// targets also pass back when this should be done on intrinsics which
2914 /// load/store.
2915 virtual bool getAddrModeArguments(const IntrinsicInst * /*I*/,
2916 SmallVectorImpl<Value *> & /*Ops*/,
2917 Type *& /*AccessTy*/) const {
2918 return false;
2919 }
2920
2921 /// This represents an addressing mode of:
2922 /// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*vscale
2923 /// If BaseGV is null, there is no BaseGV.
2924 /// If BaseOffs is zero, there is no base offset.
2925 /// If HasBaseReg is false, there is no base register.
2926 /// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with
2927 /// no scale.
2928 /// If ScalableOffset is zero, there is no scalable offset.
2929 struct AddrMode {
2931 int64_t BaseOffs = 0;
2932 bool HasBaseReg = false;
2933 int64_t Scale = 0;
2934 int64_t ScalableOffset = 0;
2935 AddrMode() = default;
2936 };
2937
2938 /// Return true if the addressing mode represented by AM is legal for this
2939 /// target, for a load/store of the specified type.
2940 ///
2941 /// The type may be VoidTy, in which case only return true if the addressing
2942 /// mode is legal for a load/store of any legal type. TODO: Handle
2943 /// pre/postinc as well.
2944 ///
2945 /// If the address space cannot be determined, it will be -1.
2946 ///
2947 /// TODO: Remove default argument
2948 virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
2949 Type *Ty, unsigned AddrSpace,
2950 Instruction *I = nullptr) const;
2951
2952 /// Returns true if the targets addressing mode can target thread local
2953 /// storage (TLS).
2954 virtual bool addressingModeSupportsTLS(const GlobalValue &) const {
2955 return false;
2956 }
2957
2958 /// Return the prefered common base offset.
2959 virtual int64_t getPreferredLargeGEPBaseOffset(int64_t MinOffset,
2960 int64_t MaxOffset) const {
2961 return 0;
2962 }
2963
2964 /// Return true if the specified immediate is legal icmp immediate, that is
2965 /// the target has icmp instructions which can compare a register against the
2966 /// immediate without having to materialize the immediate into a register.
2967 virtual bool isLegalICmpImmediate(int64_t) const {
2968 return true;
2969 }
2970
2971 /// Return true if the specified immediate is legal add immediate, that is the
2972 /// target has add instructions which can add a register with the immediate
2973 /// without having to materialize the immediate into a register.
2974 virtual bool isLegalAddImmediate(int64_t) const {
2975 return true;
2976 }
2977
2978 /// Return true if adding the specified scalable immediate is legal, that is
2979 /// the target has add instructions which can add a register with the
2980 /// immediate (multiplied by vscale) without having to materialize the
2981 /// immediate into a register.
2982 virtual bool isLegalAddScalableImmediate(int64_t) const { return false; }
2983
2984 /// Return true if the specified immediate is legal for the value input of a
2985 /// store instruction.
2986 virtual bool isLegalStoreImmediate(int64_t Value) const {
2987 // Default implementation assumes that at least 0 works since it is likely
2988 // that a zero register exists or a zero immediate is allowed.
2989 return Value == 0;
2990 }
2991
2992 /// Given a shuffle vector SVI representing a vector splat, return a new
2993 /// scalar type of size equal to SVI's scalar type if the new type is more
2994 /// profitable. Returns nullptr otherwise. For example under MVE float splats
2995 /// are converted to integer to prevent the need to move from SPR to GPR
2996 /// registers.
2998 return nullptr;
2999 }
3000
3001 /// Given a set in interconnected phis of type 'From' that are loaded/stored
3002 /// or bitcast to type 'To', return true if the set should be converted to
3003 /// 'To'.
3004 virtual bool shouldConvertPhiType(Type *From, Type *To) const {
3005 return (From->isIntegerTy() || From->isFloatingPointTy()) &&
3006 (To->isIntegerTy() || To->isFloatingPointTy());
3007 }
3008
3009 /// Returns true if the opcode is a commutative binary operation.
3010 virtual bool isCommutativeBinOp(unsigned Opcode) const {
3011 // FIXME: This should get its info from the td file.
3012 switch (Opcode) {
3013 case ISD::ADD:
3014 case ISD::SMIN:
3015 case ISD::SMAX:
3016 case ISD::UMIN:
3017 case ISD::UMAX:
3018 case ISD::MUL:
3019 case ISD::MULHU:
3020 case ISD::MULHS:
3021 case ISD::SMUL_LOHI:
3022 case ISD::UMUL_LOHI:
3023 case ISD::FADD:
3024 case ISD::FMUL:
3025 case ISD::AND:
3026 case ISD::OR:
3027 case ISD::XOR:
3028 case ISD::SADDO:
3029 case ISD::UADDO:
3030 case ISD::ADDC:
3031 case ISD::ADDE:
3032 case ISD::SADDSAT:
3033 case ISD::UADDSAT:
3034 case ISD::FMINNUM:
3035 case ISD::FMAXNUM:
3036 case ISD::FMINNUM_IEEE:
3037 case ISD::FMAXNUM_IEEE:
3038 case ISD::FMINIMUM:
3039 case ISD::FMAXIMUM:
3040 case ISD::FMINIMUMNUM:
3041 case ISD::FMAXIMUMNUM:
3042 case ISD::AVGFLOORS:
3043 case ISD::AVGFLOORU:
3044 case ISD::AVGCEILS:
3045 case ISD::AVGCEILU:
3046 case ISD::ABDS:
3047 case ISD::ABDU:
3048 return true;
3049 default: return false;
3050 }
3051 }
3052
3053 /// Return true if the node is a math/logic binary operator.
3054 virtual bool isBinOp(unsigned Opcode) const {
3055 // A commutative binop must be a binop.
3056 if (isCommutativeBinOp(Opcode))
3057 return true;
3058 // These are non-commutative binops.
3059 switch (Opcode) {
3060 case ISD::SUB:
3061 case ISD::SHL:
3062 case ISD::SRL:
3063 case ISD::SRA:
3064 case ISD::ROTL:
3065 case ISD::ROTR:
3066 case ISD::SDIV:
3067 case ISD::UDIV:
3068 case ISD::SREM:
3069 case ISD::UREM:
3070 case ISD::SSUBSAT:
3071 case ISD::USUBSAT:
3072 case ISD::FSUB:
3073 case ISD::FDIV:
3074 case ISD::FREM:
3075 return true;
3076 default:
3077 return false;
3078 }
3079 }
3080
3081 /// Return true if it's free to truncate a value of type FromTy to type
3082 /// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
3083 /// by referencing its sub-register AX.
3084 /// Targets must return false when FromTy <= ToTy.
3085 virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const {
3086 return false;
3087 }
3088
3089 /// Return true if a truncation from FromTy to ToTy is permitted when deciding
3090 /// whether a call is in tail position. Typically this means that both results
3091 /// would be assigned to the same register or stack slot, but it could mean
3092 /// the target performs adequate checks of its own before proceeding with the
3093 /// tail call. Targets must return false when FromTy <= ToTy.
3094 virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const {
3095 return false;
3096 }
3097
3098 virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const { return false; }
3099 virtual bool isTruncateFree(LLT FromTy, LLT ToTy, LLVMContext &Ctx) const {
3100 return isTruncateFree(getApproximateEVTForLLT(FromTy, Ctx),
3101 getApproximateEVTForLLT(ToTy, Ctx));
3102 }
3103
3104 /// Return true if truncating the specific node Val to type VT2 is free.
3105 virtual bool isTruncateFree(SDValue Val, EVT VT2) const {
3106 // Fallback to type matching.
3107 return isTruncateFree(Val.getValueType(), VT2);
3108 }
3109
3110 virtual bool isProfitableToHoist(Instruction *I) const { return true; }
3111
3112 /// Return true if the extension represented by \p I is free.
3113 /// Unlikely the is[Z|FP]ExtFree family which is based on types,
3114 /// this method can use the context provided by \p I to decide
3115 /// whether or not \p I is free.
3116 /// This method extends the behavior of the is[Z|FP]ExtFree family.
3117 /// In other words, if is[Z|FP]Free returns true, then this method
3118 /// returns true as well. The converse is not true.
3119 /// The target can perform the adequate checks by overriding isExtFreeImpl.
3120 /// \pre \p I must be a sign, zero, or fp extension.
3121 bool isExtFree(const Instruction *I) const {
3122 switch (I->getOpcode()) {
3123 case Instruction::FPExt:
3124 if (isFPExtFree(EVT::getEVT(I->getType()),
3125 EVT::getEVT(I->getOperand(0)->getType())))
3126 return true;
3127 break;
3128 case Instruction::ZExt:
3129 if (isZExtFree(I->getOperand(0)->getType(), I->getType()))
3130 return true;
3131 break;
3132 case Instruction::SExt:
3133 break;
3134 default:
3135 llvm_unreachable("Instruction is not an extension");
3136 }
3137 return isExtFreeImpl(I);
3138 }
3139
3140 /// Return true if \p Load and \p Ext can form an ExtLoad.
3141 /// For example, in AArch64
3142 /// %L = load i8, i8* %ptr
3143 /// %E = zext i8 %L to i32
3144 /// can be lowered into one load instruction
3145 /// ldrb w0, [x0]
3146 bool isExtLoad(const LoadInst *Load, const Instruction *Ext,
3147 const DataLayout &DL) const {
3148 EVT VT = getValueType(DL, Ext->getType());
3149 EVT LoadVT = getValueType(DL, Load->getType());
3150
3151 // If the load has other users and the truncate is not free, the ext
3152 // probably isn't free.
3153 if (!Load->hasOneUse() && (isTypeLegal(LoadVT) || !isTypeLegal(VT)) &&
3154 !isTruncateFree(Ext->getType(), Load->getType()))
3155 return false;
3156
3157 // Check whether the target supports casts folded into loads.
3158 unsigned LType;
3159 if (isa<ZExtInst>(Ext))
3160 LType = ISD::ZEXTLOAD;
3161 else {
3162 assert(isa<SExtInst>(Ext) && "Unexpected ext type!");
3163 LType = ISD::SEXTLOAD;
3164 }
3165
3166 return isLoadExtLegal(LType, VT, LoadVT);
3167 }
3168
3169 /// Return true if any actual instruction that defines a value of type FromTy
3170 /// implicitly zero-extends the value to ToTy in the result register.
3171 ///
3172 /// The function should return true when it is likely that the truncate can
3173 /// be freely folded with an instruction defining a value of FromTy. If
3174 /// the defining instruction is unknown (because you're looking at a
3175 /// function argument, PHI, etc.) then the target may require an
3176 /// explicit truncate, which is not necessarily free, but this function
3177 /// does not deal with those cases.
3178 /// Targets must return false when FromTy >= ToTy.
3179 virtual bool isZExtFree(Type *FromTy, Type *ToTy) const {
3180 return false;
3181 }
3182
3183 virtual bool isZExtFree(EVT FromTy, EVT ToTy) const { return false; }
3184 virtual bool isZExtFree(LLT FromTy, LLT ToTy, LLVMContext &Ctx) const {
3185 return isZExtFree(getApproximateEVTForLLT(FromTy, Ctx),
3186 getApproximateEVTForLLT(ToTy, Ctx));
3187 }
3188
3189 /// Return true if zero-extending the specific node Val to type VT2 is free
3190 /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
3191 /// because it's folded such as X86 zero-extending loads).
3192 virtual bool isZExtFree(SDValue Val, EVT VT2) const {
3193 return isZExtFree(Val.getValueType(), VT2);
3194 }
3195
3196 /// Return true if sign-extension from FromTy to ToTy is cheaper than
3197 /// zero-extension.
3198 virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const {
3199 return false;
3200 }
3201
3202 /// Return true if this constant should be sign extended when promoting to
3203 /// a larger type.
3204 virtual bool signExtendConstant(const ConstantInt *C) const { return false; }
3205
3206 /// Try to optimize extending or truncating conversion instructions (like
3207 /// zext, trunc, fptoui, uitofp) for the target.
3208 virtual bool
3210 const TargetTransformInfo &TTI) const {
3211 return false;
3212 }
3213
3214 /// Return true if the target supplies and combines to a paired load
3215 /// two loaded values of type LoadedType next to each other in memory.
3216 /// RequiredAlignment gives the minimal alignment constraints that must be met
3217 /// to be able to select this paired load.
3218 ///
3219 /// This information is *not* used to generate actual paired loads, but it is
3220 /// used to generate a sequence of loads that is easier to combine into a
3221 /// paired load.
3222 /// For instance, something like this:
3223 /// a = load i64* addr
3224 /// b = trunc i64 a to i32
3225 /// c = lshr i64 a, 32
3226 /// d = trunc i64 c to i32
3227 /// will be optimized into:
3228 /// b = load i32* addr1
3229 /// d = load i32* addr2
3230 /// Where addr1 = addr2 +/- sizeof(i32).
3231 ///
3232 /// In other words, unless the target performs a post-isel load combining,
3233 /// this information should not be provided because it will generate more
3234 /// loads.
3235 virtual bool hasPairedLoad(EVT /*LoadedType*/,
3236 Align & /*RequiredAlignment*/) const {
3237 return false;
3238 }
3239
3240 /// Return true if the target has a vector blend instruction.
3241 virtual bool hasVectorBlend() const { return false; }
3242
3243 /// Get the maximum supported factor for interleaved memory accesses.
3244 /// Default to be the minimum interleave factor: 2.
3245 virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; }
3246
3247 /// Lower an interleaved load to target specific intrinsics. Return
3248 /// true on success.
3249 ///
3250 /// \p Load is the vector load instruction. Can be either a plain load
3251 /// instruction or a vp.load intrinsic.
3252 /// \p Mask is a per-segment (i.e. number of lanes equal to that of one
3253 /// component being interwoven) mask. Can be nullptr, in which case the
3254 /// result is uncondiitional.
3255 /// \p Shuffles is the shufflevector list to DE-interleave the loaded vector.
3256 /// \p Indices is the corresponding indices for each shufflevector.
3257 /// \p Factor is the interleave factor.
3258 /// \p GapMask is a mask with zeros for components / fields that may not be
3259 /// accessed.
3260 virtual bool lowerInterleavedLoad(Instruction *Load, Value *Mask,
3262 ArrayRef<unsigned> Indices, unsigned Factor,
3263 const APInt &GapMask) const {
3264 return false;
3265 }
3266
3267 /// Lower an interleaved store to target specific intrinsics. Return
3268 /// true on success.
3269 ///
3270 /// \p SI is the vector store instruction. Can be either a plain store
3271 /// or a vp.store.
3272 /// \p Mask is a per-segment (i.e. number of lanes equal to that of one
3273 /// component being interwoven) mask. Can be nullptr, in which case the
3274 /// result is unconditional.
3275 /// \p SVI is the shufflevector to RE-interleave the stored vector.
3276 /// \p Factor is the interleave factor.
3277 /// \p GapMask is a mask with zeros for components / fields that may not be
3278 /// accessed.
3279 virtual bool lowerInterleavedStore(Instruction *Store, Value *Mask,
3280 ShuffleVectorInst *SVI, unsigned Factor,
3281 const APInt &GapMask) const {
3282 return false;
3283 }
3284
3285 /// Lower a deinterleave intrinsic to a target specific load intrinsic.
3286 /// Return true on success. Currently only supports
3287 /// llvm.vector.deinterleave{2,3,5,7}
3288 ///
3289 /// \p Load is the accompanying load instruction. Can be either a plain load
3290 /// instruction or a vp.load intrinsic.
3291 /// \p DI represents the deinterleaveN intrinsic.
3293 IntrinsicInst *DI) const {
3294 return false;
3295 }
3296
3297 /// Lower an interleave intrinsic to a target specific store intrinsic.
3298 /// Return true on success. Currently only supports
3299 /// llvm.vector.interleave{2,3,5,7}
3300 ///
3301 /// \p Store is the accompanying store instruction. Can be either a plain
3302 /// store or a vp.store intrinsic.
3303 /// \p Mask is a per-segment (i.e. number of lanes equal to that of one
3304 /// component being interwoven) mask. Can be nullptr, in which case the
3305 /// result is uncondiitional.
3306 /// \p InterleaveValues contains the interleaved values.
3307 virtual bool
3309 ArrayRef<Value *> InterleaveValues) const {
3310 return false;
3311 }
3312
3313 /// Return true if an fpext operation is free (for instance, because
3314 /// single-precision floating-point numbers are implicitly extended to
3315 /// double-precision).
3316 virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const {
3317 assert(SrcVT.isFloatingPoint() && DestVT.isFloatingPoint() &&
3318 "invalid fpext types");
3319 return false;
3320 }
3321
3322 /// Return true if an fpext operation input to an \p Opcode operation is free
3323 /// (for instance, because half-precision floating-point numbers are
3324 /// implicitly extended to float-precision) for an FMA instruction.
3325 virtual bool isFPExtFoldable(const MachineInstr &MI, unsigned Opcode,
3326 LLT DestTy, LLT SrcTy) const {
3327 return false;
3328 }
3329
3330 /// Return true if an fpext operation input to an \p Opcode operation is free
3331 /// (for instance, because half-precision floating-point numbers are
3332 /// implicitly extended to float-precision) for an FMA instruction.
3333 virtual bool isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
3334 EVT DestVT, EVT SrcVT) const {
3335 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
3336 "invalid fpext types");
3337 return isFPExtFree(DestVT, SrcVT);
3338 }
3339
3340 /// Return true if folding a vector load into ExtVal (a sign, zero, or any
3341 /// extend node) is profitable.
3342 virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
3343
3344 /// Return true if an fneg operation is free to the point where it is never
3345 /// worthwhile to replace it with a bitwise operation.
3346 virtual bool isFNegFree(EVT VT) const {
3347 assert(VT.isFloatingPoint());
3348 return false;
3349 }
3350
3351 /// Return true if an fabs operation is free to the point where it is never
3352 /// worthwhile to replace it with a bitwise operation.
3353 virtual bool isFAbsFree(EVT VT) const {
3354 assert(VT.isFloatingPoint());
3355 return false;
3356 }
3357
3358 /// Return true if an FMA operation is faster than a pair of fmul and fadd
3359 /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
3360 /// returns true, otherwise fmuladd is expanded to fmul + fadd.
3361 ///
3362 /// NOTE: This may be called before legalization on types for which FMAs are
3363 /// not legal, but should return true if those types will eventually legalize
3364 /// to types that support FMAs. After legalization, it will only be called on
3365 /// types that support FMAs (via Legal or Custom actions)
3366 ///
3367 /// Targets that care about soft float support should return false when soft
3368 /// float code is being generated (i.e. use-soft-float).
3370 EVT) const {
3371 return false;
3372 }
3373
3374 /// Return true if an FMA operation is faster than a pair of fmul and fadd
3375 /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
3376 /// returns true, otherwise fmuladd is expanded to fmul + fadd.
3377 ///
3378 /// NOTE: This may be called before legalization on types for which FMAs are
3379 /// not legal, but should return true if those types will eventually legalize
3380 /// to types that support FMAs. After legalization, it will only be called on
3381 /// types that support FMAs (via Legal or Custom actions)
3383 LLT) const {
3384 return false;
3385 }
3386
3387 /// IR version
3388 virtual bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *) const {
3389 return false;
3390 }
3391
3392 /// Returns true if \p MI can be combined with another instruction to
3393 /// form TargetOpcode::G_FMAD. \p N may be an TargetOpcode::G_FADD,
3394 /// TargetOpcode::G_FSUB, or an TargetOpcode::G_FMUL which will be
3395 /// distributed into an fadd/fsub.
3396 virtual bool isFMADLegal(const MachineInstr &MI, LLT Ty) const {
3397 assert((MI.getOpcode() == TargetOpcode::G_FADD ||
3398 MI.getOpcode() == TargetOpcode::G_FSUB ||
3399 MI.getOpcode() == TargetOpcode::G_FMUL) &&
3400 "unexpected node in FMAD forming combine");
3401 switch (Ty.getScalarSizeInBits()) {
3402 case 16:
3403 return isOperationLegal(TargetOpcode::G_FMAD, MVT::f16);
3404 case 32:
3405 return isOperationLegal(TargetOpcode::G_FMAD, MVT::f32);
3406 case 64:
3407 return isOperationLegal(TargetOpcode::G_FMAD, MVT::f64);
3408 default:
3409 break;
3410 }
3411
3412 return false;
3413 }
3414
3415 /// Returns true if be combined with to form an ISD::FMAD. \p N may be an
3416 /// ISD::FADD, ISD::FSUB, or an ISD::FMUL which will be distributed into an
3417 /// fadd/fsub.
3418 virtual bool isFMADLegal(const SelectionDAG &DAG, const SDNode *N) const {
3419 assert((N->getOpcode() == ISD::FADD || N->getOpcode() == ISD::FSUB ||
3420 N->getOpcode() == ISD::FMUL) &&
3421 "unexpected node in FMAD forming combine");
3422 return isOperationLegal(ISD::FMAD, N->getValueType(0));
3423 }
3424
3425 // Return true when the decision to generate FMA's (or FMS, FMLA etc) rather
3426 // than FMUL and ADD is delegated to the machine combiner.
3428 CodeGenOptLevel OptLevel) const {
3429 return false;
3430 }
3431
3432 /// Return true if it's profitable to narrow operations of type SrcVT to
3433 /// DestVT. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
3434 /// i32 to i16.
3435 virtual bool isNarrowingProfitable(SDNode *N, EVT SrcVT, EVT DestVT) const {
3436 return false;
3437 }
3438
3439 /// Return true if pulling a binary operation into a select with an identity
3440 /// constant is profitable. This is the inverse of an IR transform.
3441 /// Example: X + (Cond ? Y : 0) --> Cond ? (X + Y) : X
3442 virtual bool shouldFoldSelectWithIdentityConstant(unsigned BinOpcode, EVT VT,
3443 unsigned SelectOpcode,
3444 SDValue X,
3445 SDValue Y) const {
3446 return false;
3447 }
3448
3449 /// Return true if it is beneficial to convert a load of a constant to
3450 /// just the constant itself.
3451 /// On some targets it might be more efficient to use a combination of
3452 /// arithmetic instructions to materialize the constant instead of loading it
3453 /// from a constant pool.
3455 Type *Ty) const {
3456 return false;
3457 }
3458
3459 /// Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type
3460 /// from this source type with this index. This is needed because
3461 /// EXTRACT_SUBVECTOR usually has custom lowering that depends on the index of
3462 /// the first element, and only the target knows which lowering is cheap.
3463 virtual bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
3464 unsigned Index) const {
3465 return false;
3466 }
3467
3468 /// Try to convert an extract element of a vector binary operation into an
3469 /// extract element followed by a scalar operation.
3470 virtual bool shouldScalarizeBinop(SDValue VecOp) const {
3471 return false;
3472 }
3473
3474 /// Return true if extraction of a scalar element from the given vector type
3475 /// at the given index is cheap. For example, if scalar operations occur on
3476 /// the same register file as vector operations, then an extract element may
3477 /// be a sub-register rename rather than an actual instruction.
3478 virtual bool isExtractVecEltCheap(EVT VT, unsigned Index) const {
3479 return false;
3480 }
3481
3482 /// Try to convert math with an overflow comparison into the corresponding DAG
3483 /// node operation. Targets may want to override this independently of whether
3484 /// the operation is legal/custom for the given type because it may obscure
3485 /// matching of other patterns.
3486 virtual bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
3487 bool MathUsed) const {
3488 // Form it if it is legal.
3489 if (isOperationLegal(Opcode, VT))
3490 return true;
3491
3492 // TODO: The default logic is inherited from code in CodeGenPrepare.
3493 // The opcode should not make a difference by default?
3494 if (Opcode != ISD::UADDO)
3495 return false;
3496
3497 // Allow the transform as long as we have an integer type that is not
3498 // obviously illegal and unsupported and if the math result is used
3499 // besides the overflow check. On some targets (e.g. SPARC), it is
3500 // not profitable to form on overflow op if the math result has no
3501 // concrete users.
3502 if (VT.isVector())
3503 return false;
3504 return MathUsed && (VT.isSimple() || !isOperationExpand(Opcode, VT));
3505 }
3506
3507 // Return true if the target wants to optimize the mul overflow intrinsic
3508 // for the given \p VT.
3510 EVT VT) const {
3511 return false;
3512 }
3513
3514 // Return true if it is profitable to use a scalar input to a BUILD_VECTOR
3515 // even if the vector itself has multiple uses.
3516 virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const {
3517 return false;
3518 }
3519
3520 // Return true if CodeGenPrepare should consider splitting large offset of a
3521 // GEP to make the GEP fit into the addressing mode and can be sunk into the
3522 // same blocks of its users.
3523 virtual bool shouldConsiderGEPOffsetSplit() const { return false; }
3524
3525 /// Return true if creating a shift of the type by the given
3526 /// amount is not profitable.
3527 virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const {
3528 return false;
3529 }
3530
3531 // Should we fold (select_cc seteq (and x, y), 0, 0, A) -> (and (sra (shl x))
3532 // A) where y has a single bit set?
3534 const APInt &AndMask) const {
3535 unsigned ShCt = AndMask.getBitWidth() - 1;
3536 return !shouldAvoidTransformToShift(VT, ShCt);
3537 }
3538
3539 /// Does this target require the clearing of high-order bits in a register
3540 /// passed to the fp16 to fp conversion library function.
3541 virtual bool shouldKeepZExtForFP16Conv() const { return false; }
3542
3543 /// Should we generate fp_to_si_sat and fp_to_ui_sat from type FPVT to type VT
3544 /// from min(max(fptoi)) saturation patterns.
3545 virtual bool shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const {
3546 return isOperationLegalOrCustom(Op, VT);
3547 }
3548
3549 /// Should we prefer selects to doing arithmetic on boolean types
3551 return false;
3552 }
3553
3554 /// True if target has some particular form of dealing with pointer arithmetic
3555 /// semantics for pointers with the given value type. False if pointer
3556 /// arithmetic should not be preserved for passes such as instruction
3557 /// selection, and can fallback to regular arithmetic.
3558 /// This should be removed when PTRADD nodes are widely supported by backends.
3559 virtual bool shouldPreservePtrArith(const Function &F, EVT PtrVT) const {
3560 return false;
3561 }
3562
3563 /// True if the target allows transformations of in-bounds pointer
3564 /// arithmetic that cause out-of-bounds intermediate results.
3566 EVT PtrVT) const {
3567 return false;
3568 }
3569
3570 /// Does this target support complex deinterleaving
3571 virtual bool isComplexDeinterleavingSupported() const { return false; }
3572
3573 /// Does this target support complex deinterleaving with the given operation
3574 /// and type
3577 return false;
3578 }
3579
3580 // Get the preferred opcode for FP_TO_XINT nodes.
3581 // By default, this checks if the provded operation is an illegal FP_TO_UINT
3582 // and if so, checks if FP_TO_SINT is legal or custom for use as a
3583 // replacement. If both UINT and SINT conversions are Custom, we choose SINT
3584 // by default because that's the right thing on PPC.
3585 virtual unsigned getPreferredFPToIntOpcode(unsigned Op, EVT FromVT,
3586 EVT ToVT) const {
3587 if (isOperationLegal(Op, ToVT))
3588 return Op;
3589 switch (Op) {
3590 case ISD::FP_TO_UINT:
3592 return ISD::FP_TO_SINT;
3593 break;
3597 break;
3598 case ISD::VP_FP_TO_UINT:
3599 if (isOperationLegalOrCustom(ISD::VP_FP_TO_SINT, ToVT))
3600 return ISD::VP_FP_TO_SINT;
3601 break;
3602 default:
3603 break;
3604 }
3605 return Op;
3606 }
3607
3608 /// Create the IR node for the given complex deinterleaving operation.
3609 /// If one cannot be created using all the given inputs, nullptr should be
3610 /// returned.
3613 ComplexDeinterleavingRotation Rotation, Value *InputA, Value *InputB,
3614 Value *Accumulator = nullptr) const {
3615 return nullptr;
3616 }
3617
3619 return RuntimeLibcallInfo;
3620 }
3621
3622 void setLibcallImpl(RTLIB::Libcall Call, RTLIB::LibcallImpl Impl) {
3623 Libcalls.setLibcallImpl(Call, Impl);
3624 }
3625
3626 /// Get the libcall impl routine name for the specified libcall.
3627 RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const {
3628 return Libcalls.getLibcallImpl(Call);
3629 }
3630
3631 /// Get the libcall routine name for the specified libcall.
3632 // FIXME: This should be removed. Only LibcallImpl should have a name.
3633 const char *getLibcallName(RTLIB::Libcall Call) const {
3634 return Libcalls.getLibcallName(Call);
3635 }
3636
3637 /// Get the libcall routine name for the specified libcall implementation
3641
3642 RTLIB::LibcallImpl getMemcpyImpl() const { return Libcalls.getMemcpyImpl(); }
3643
3644 /// Check if this is valid libcall for the current module, otherwise
3645 /// RTLIB::Unsupported.
3646 RTLIB::LibcallImpl getSupportedLibcallImpl(StringRef FuncName) const {
3647 return RuntimeLibcallInfo.getSupportedLibcallImpl(FuncName);
3648 }
3649
3650 /// Get the comparison predicate that's to be used to test the result of the
3651 /// comparison libcall against zero. This should only be used with
3652 /// floating-point compare libcalls.
3653 ISD::CondCode getSoftFloatCmpLibcallPredicate(RTLIB::LibcallImpl Call) const;
3654
3655 /// Get the CallingConv that should be used for the specified libcall
3656 /// implementation.
3658 return Libcalls.getLibcallImplCallingConv(Call);
3659 }
3660
3661 /// Get the CallingConv that should be used for the specified libcall.
3662 // FIXME: Remove this wrapper and directly use the used LibcallImpl
3664 return Libcalls.getLibcallCallingConv(Call);
3665 }
3666
3667 /// Execute target specific actions to finalize target lowering.
3668 /// This is used to set extra flags in MachineFrameInformation and freezing
3669 /// the set of reserved registers.
3670 /// The default implementation just freezes the set of reserved registers.
3671 virtual void finalizeLowering(MachineFunction &MF) const;
3672
3673 /// Returns true if it's profitable to allow merging store of loads when there
3674 /// are functions calls between the load and the store.
3675 virtual bool shouldMergeStoreOfLoadsOverCall(EVT, EVT) const { return true; }
3676
3677 //===----------------------------------------------------------------------===//
3678 // GlobalISel Hooks
3679 //===----------------------------------------------------------------------===//
3680 /// Check whether or not \p MI needs to be moved close to its uses.
3681 virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const;
3682
3683
3684private:
3685 const TargetMachine &TM;
3686
3687 /// Tells the code generator that the target has BitExtract instructions.
3688 /// The code generator will aggressively sink "shift"s into the blocks of
3689 /// their users if the users will generate "and" instructions which can be
3690 /// combined with "shift" to BitExtract instructions.
3691 bool HasExtractBitsInsn;
3692
3693 /// Tells the code generator to bypass slow divide or remainder
3694 /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
3695 /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
3696 /// div/rem when the operands are positive and less than 256.
3697 DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
3698
3699 /// Tells the code generator that it shouldn't generate extra flow control
3700 /// instructions and should attempt to combine flow control instructions via
3701 /// predication.
3702 bool JumpIsExpensive;
3703
3704 /// Information about the contents of the high-bits in boolean values held in
3705 /// a type wider than i1. See getBooleanContents.
3706 BooleanContent BooleanContents;
3707
3708 /// Information about the contents of the high-bits in boolean values held in
3709 /// a type wider than i1. See getBooleanContents.
3710 BooleanContent BooleanFloatContents;
3711
3712 /// Information about the contents of the high-bits in boolean vector values
3713 /// when the element type is wider than i1. See getBooleanContents.
3714 BooleanContent BooleanVectorContents;
3715
3716 /// The target scheduling preference: shortest possible total cycles or lowest
3717 /// register usage.
3718 Sched::Preference SchedPreferenceInfo;
3719
3720 /// The minimum alignment that any argument on the stack needs to have.
3721 Align MinStackArgumentAlignment;
3722
3723 /// The minimum function alignment (used when optimizing for size, and to
3724 /// prevent explicitly provided alignment from leading to incorrect code).
3725 Align MinFunctionAlignment;
3726
3727 /// The preferred function alignment (used when alignment unspecified and
3728 /// optimizing for speed).
3729 Align PrefFunctionAlignment;
3730
3731 /// The preferred loop alignment (in log2 bot in bytes).
3732 Align PrefLoopAlignment;
3733 /// The maximum amount of bytes permitted to be emitted for alignment.
3734 unsigned MaxBytesForAlignment;
3735
3736 /// Size in bits of the maximum atomics size the backend supports.
3737 /// Accesses larger than this will be expanded by AtomicExpandPass.
3738 unsigned MaxAtomicSizeInBitsSupported;
3739
3740 /// Size in bits of the maximum div/rem size the backend supports.
3741 /// Larger operations will be expanded by ExpandLargeDivRem.
3742 unsigned MaxDivRemBitWidthSupported;
3743
3744 /// Size in bits of the maximum fp to/from int conversion size the
3745 /// backend supports. Larger operations will be expanded by
3746 /// ExpandFp.
3747 unsigned MaxLargeFPConvertBitWidthSupported;
3748
3749 /// Size in bits of the minimum cmpxchg or ll/sc operation the
3750 /// backend supports.
3751 unsigned MinCmpXchgSizeInBits;
3752
3753 /// The minimum of largest number of comparisons to use bit test for switch.
3754 unsigned MinimumBitTestCmps;
3755
3756 /// This indicates if the target supports unaligned atomic operations.
3757 bool SupportsUnalignedAtomics;
3758
3759 /// If set to a physical register, this specifies the register that
3760 /// llvm.savestack/llvm.restorestack should save and restore.
3761 Register StackPointerRegisterToSaveRestore;
3762
3763 /// This indicates the default register class to use for each ValueType the
3764 /// target supports natively.
3765 const TargetRegisterClass *RegClassForVT[MVT::VALUETYPE_SIZE];
3766 uint16_t NumRegistersForVT[MVT::VALUETYPE_SIZE];
3767 MVT RegisterTypeForVT[MVT::VALUETYPE_SIZE];
3768
3769 /// This indicates the "representative" register class to use for each
3770 /// ValueType the target supports natively. This information is used by the
3771 /// scheduler to track register pressure. By default, the representative
3772 /// register class is the largest legal super-reg register class of the
3773 /// register class of the specified type. e.g. On x86, i8, i16, and i32's
3774 /// representative class would be GR32.
3775 const TargetRegisterClass *RepRegClassForVT[MVT::VALUETYPE_SIZE] = {nullptr};
3776
3777 /// This indicates the "cost" of the "representative" register class for each
3778 /// ValueType. The cost is used by the scheduler to approximate register
3779 /// pressure.
3780 uint8_t RepRegClassCostForVT[MVT::VALUETYPE_SIZE];
3781
3782 /// For any value types we are promoting or expanding, this contains the value
3783 /// type that we are changing to. For Expanded types, this contains one step
3784 /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
3785 /// (e.g. i64 -> i16). For types natively supported by the system, this holds
3786 /// the same type (e.g. i32 -> i32).
3787 MVT TransformToType[MVT::VALUETYPE_SIZE];
3788
3789 /// For each operation and each value type, keep a LegalizeAction that
3790 /// indicates how instruction selection should deal with the operation. Most
3791 /// operations are Legal (aka, supported natively by the target), but
3792 /// operations that are not should be described. Note that operations on
3793 /// non-legal value types are not described here.
3794 LegalizeAction OpActions[MVT::VALUETYPE_SIZE][ISD::BUILTIN_OP_END];
3795
3796 /// For each load extension type and each value type, keep a LegalizeAction
3797 /// that indicates how instruction selection should deal with a load of a
3798 /// specific value type and extension type. Uses 4-bits to store the action
3799 /// for each of the 4 load ext types.
3800 uint16_t LoadExtActions[MVT::VALUETYPE_SIZE][MVT::VALUETYPE_SIZE];
3801
3802 /// Similar to LoadExtActions, but for atomic loads. Only Legal or Expand
3803 /// (default) values are supported.
3804 uint16_t AtomicLoadExtActions[MVT::VALUETYPE_SIZE][MVT::VALUETYPE_SIZE];
3805
3806 /// For each value type pair keep a LegalizeAction that indicates whether a
3807 /// truncating store of a specific value type and truncating type is legal.
3808 LegalizeAction TruncStoreActions[MVT::VALUETYPE_SIZE][MVT::VALUETYPE_SIZE];
3809
3810 /// For each indexed mode and each value type, keep a quad of LegalizeAction
3811 /// that indicates how instruction selection should deal with the load /
3812 /// store / maskedload / maskedstore.
3813 ///
3814 /// The first dimension is the value_type for the reference. The second
3815 /// dimension represents the various modes for load store.
3816 uint16_t IndexedModeActions[MVT::VALUETYPE_SIZE][ISD::LAST_INDEXED_MODE];
3817
3818 /// For each condition code (ISD::CondCode) keep a LegalizeAction that
3819 /// indicates how instruction selection should deal with the condition code.
3820 ///
3821 /// Because each CC action takes up 4 bits, we need to have the array size be
3822 /// large enough to fit all of the value types. This can be done by rounding
3823 /// up the MVT::VALUETYPE_SIZE value to the next multiple of 8.
3824 uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::VALUETYPE_SIZE + 7) / 8];
3825
3826 using PartialReduceActionTypes =
3827 std::tuple<unsigned, MVT::SimpleValueType, MVT::SimpleValueType>;
3828 /// For each partial reduce opcode, result type and input type combination,
3829 /// keep a LegalizeAction which indicates how instruction selection should
3830 /// deal with this operation.
3831 DenseMap<PartialReduceActionTypes, LegalizeAction> PartialReduceMLAActions;
3832
3833 ValueTypeActionImpl ValueTypeActions;
3834
3835private:
3836 /// Targets can specify ISD nodes that they would like PerformDAGCombine
3837 /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
3838 /// array.
3839 unsigned char
3840 TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
3841
3842 /// For operations that must be promoted to a specific type, this holds the
3843 /// destination type. This map should be sparse, so don't hold it as an
3844 /// array.
3845 ///
3846 /// Targets add entries to this map with AddPromotedToType(..), clients access
3847 /// this with getTypeToPromoteTo(..).
3848 std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
3849 PromoteToType;
3850
3851 /// FIXME: This should not live here; it should come from an analysis.
3852 const RTLIB::RuntimeLibcallsInfo RuntimeLibcallInfo;
3853
3854 /// The list of libcalls that the target will use.
3855 LibcallLoweringInfo Libcalls;
3856
3857 /// The bits of IndexedModeActions used to store the legalisation actions
3858 /// We store the data as | ML | MS | L | S | each taking 4 bits.
3859 enum IndexedModeActionsBits {
3860 IMAB_Store = 0,
3861 IMAB_Load = 4,
3862 IMAB_MaskedStore = 8,
3863 IMAB_MaskedLoad = 12
3864 };
3865
3866 void setIndexedModeAction(unsigned IdxMode, MVT VT, unsigned Shift,
3867 LegalizeAction Action) {
3868 assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
3869 (unsigned)Action < 0xf && "Table isn't big enough!");
3870 unsigned Ty = (unsigned)VT.SimpleTy;
3871 IndexedModeActions[Ty][IdxMode] &= ~(0xf << Shift);
3872 IndexedModeActions[Ty][IdxMode] |= ((uint16_t)Action) << Shift;
3873 }
3874
3875 LegalizeAction getIndexedModeAction(unsigned IdxMode, MVT VT,
3876 unsigned Shift) const {
3877 assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
3878 "Table isn't big enough!");
3879 unsigned Ty = (unsigned)VT.SimpleTy;
3880 return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] >> Shift) & 0xf);
3881 }
3882
3883protected:
3884 /// Return true if the extension represented by \p I is free.
3885 /// \pre \p I is a sign, zero, or fp extension and
3886 /// is[Z|FP]ExtFree of the related types is not true.
3887 virtual bool isExtFreeImpl(const Instruction *I) const { return false; }
3888
3889 /// Depth that GatherAllAliases should continue looking for chain
3890 /// dependencies when trying to find a more preferable chain. As an
3891 /// approximation, this should be more than the number of consecutive stores
3892 /// expected to be merged.
3894
3895 /// \brief Specify maximum number of store instructions per memset call.
3896 ///
3897 /// When lowering \@llvm.memset this field specifies the maximum number of
3898 /// store operations that may be substituted for the call to memset. Targets
3899 /// must set this value based on the cost threshold for that target. Targets
3900 /// should assume that the memset will be done using as many of the largest
3901 /// store operations first, followed by smaller ones, if necessary, per
3902 /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
3903 /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
3904 /// store. This only applies to setting a constant array of a constant size.
3906 /// Likewise for functions with the OptSize attribute.
3908
3909 /// \brief Specify maximum number of store instructions per memcpy call.
3910 ///
3911 /// When lowering \@llvm.memcpy this field specifies the maximum number of
3912 /// store operations that may be substituted for a call to memcpy. Targets
3913 /// must set this value based on the cost threshold for that target. Targets
3914 /// should assume that the memcpy will be done using as many of the largest
3915 /// store operations first, followed by smaller ones, if necessary, per
3916 /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
3917 /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
3918 /// and one 1-byte store. This only applies to copying a constant array of
3919 /// constant size.
3921 /// Likewise for functions with the OptSize attribute.
3923 /// \brief Specify max number of store instructions to glue in inlined memcpy.
3924 ///
3925 /// When memcpy is inlined based on MaxStoresPerMemcpy, specify maximum number
3926 /// of store instructions to keep together. This helps in pairing and
3927 // vectorization later on.
3929
3930 /// \brief Specify maximum number of load instructions per memcmp call.
3931 ///
3932 /// When lowering \@llvm.memcmp this field specifies the maximum number of
3933 /// pairs of load operations that may be substituted for a call to memcmp.
3934 /// Targets must set this value based on the cost threshold for that target.
3935 /// Targets should assume that the memcmp will be done using as many of the
3936 /// largest load operations first, followed by smaller ones, if necessary, per
3937 /// alignment restrictions. For example, loading 7 bytes on a 32-bit machine
3938 /// with 32-bit alignment would result in one 4-byte load, a one 2-byte load
3939 /// and one 1-byte load. This only applies to copying a constant array of
3940 /// constant size.
3942 /// Likewise for functions with the OptSize attribute.
3944
3945 /// \brief Specify maximum number of store instructions per memmove call.
3946 ///
3947 /// When lowering \@llvm.memmove this field specifies the maximum number of
3948 /// store instructions that may be substituted for a call to memmove. Targets
3949 /// must set this value based on the cost threshold for that target. Targets
3950 /// should assume that the memmove will be done using as many of the largest
3951 /// store operations first, followed by smaller ones, if necessary, per
3952 /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
3953 /// with 8-bit alignment would result in nine 1-byte stores. This only
3954 /// applies to copying a constant array of constant size.
3956 /// Likewise for functions with the OptSize attribute.
3958
3959 /// Tells the code generator that select is more expensive than a branch if
3960 /// the branch is usually predicted right.
3962
3963 /// \see enableExtLdPromotion.
3965
3966 /// Return true if the value types that can be represented by the specified
3967 /// register class are all legal.
3968 bool isLegalRC(const TargetRegisterInfo &TRI,
3969 const TargetRegisterClass &RC) const;
3970
3971 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
3972 /// sequence of memory operands that is recognized by PrologEpilogInserter.
3974 MachineBasicBlock *MBB) const;
3975
3977};
3978
3979/// This class defines information used to lower LLVM code to legal SelectionDAG
3980/// operators that the target instruction selector can accept natively.
3981///
3982/// This class also defines callbacks that targets must implement to lower
3983/// target-specific constructs to SelectionDAG operators.
3985public:
3986 struct DAGCombinerInfo;
3987 struct MakeLibCallOptions;
3988
3991
3992 explicit TargetLowering(const TargetMachine &TM,
3993 const TargetSubtargetInfo &STI);
3995
3996 bool isPositionIndependent() const;
3997
4000 UniformityInfo *UA) const {
4001 return false;
4002 }
4003
4004 // Lets target to control the following reassociation of operands: (op (op x,
4005 // c1), y) -> (op (op x, y), c1) where N0 is (op x, c1) and N1 is y. By
4006 // default consider profitable any case where N0 has single use. This
4007 // behavior reflects the condition replaced by this target hook call in the
4008 // DAGCombiner. Any particular target can implement its own heuristic to
4009 // restrict common combiner.
4011 SDValue N1) const {
4012 return N0.hasOneUse();
4013 }
4014
4015 // Lets target to control the following reassociation of operands: (op (op x,
4016 // c1), y) -> (op (op x, y), c1) where N0 is (op x, c1) and N1 is y. By
4017 // default consider profitable any case where N0 has single use. This
4018 // behavior reflects the condition replaced by this target hook call in the
4019 // combiner. Any particular target can implement its own heuristic to
4020 // restrict common combiner.
4022 Register N1) const {
4023 return MRI.hasOneNonDBGUse(N0);
4024 }
4025
4026 virtual bool isSDNodeAlwaysUniform(const SDNode * N) const {
4027 return false;
4028 }
4029
4030 /// Returns true by value, base pointer and offset pointer and addressing mode
4031 /// by reference if the node's address can be legally represented as
4032 /// pre-indexed load / store address.
4033 virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
4034 SDValue &/*Offset*/,
4035 ISD::MemIndexedMode &/*AM*/,
4036 SelectionDAG &/*DAG*/) const {
4037 return false;
4038 }
4039
4040 /// Returns true by value, base pointer and offset pointer and addressing mode
4041 /// by reference if this node can be combined with a load / store to form a
4042 /// post-indexed load / store.
4043 virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
4044 SDValue &/*Base*/,
4045 SDValue &/*Offset*/,
4046 ISD::MemIndexedMode &/*AM*/,
4047 SelectionDAG &/*DAG*/) const {
4048 return false;
4049 }
4050
4051 /// Returns true if the specified base+offset is a legal indexed addressing
4052 /// mode for this target. \p MI is the load or store instruction that is being
4053 /// considered for transformation.
4055 bool IsPre, MachineRegisterInfo &MRI) const {
4056 return false;
4057 }
4058
4059 /// Return the entry encoding for a jump table in the current function. The
4060 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
4061 virtual unsigned getJumpTableEncoding() const;
4062
4063 virtual MVT getJumpTableRegTy(const DataLayout &DL) const {
4064 return getPointerTy(DL);
4065 }
4066
4067 virtual const MCExpr *
4069 const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
4070 MCContext &/*Ctx*/) const {
4071 llvm_unreachable("Need to implement this hook if target has custom JTIs");
4072 }
4073
4074 /// Returns relocation base for the given PIC jumptable.
4075 virtual SDValue getPICJumpTableRelocBase(SDValue Table,
4076 SelectionDAG &DAG) const;
4077
4078 /// This returns the relocation base for the given PIC jumptable, the same as
4079 /// getPICJumpTableRelocBase, but as an MCExpr.
4080 virtual const MCExpr *
4081 getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
4082 unsigned JTI, MCContext &Ctx) const;
4083
4084 /// Return true if folding a constant offset with the given GlobalAddress is
4085 /// legal. It is frequently not legal in PIC relocation models.
4086 virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
4087
4088 /// On x86, return true if the operand with index OpNo is a CALL or JUMP
4089 /// instruction, which can use either a memory constraint or an address
4090 /// constraint. -fasm-blocks "__asm call foo" lowers to
4091 /// call void asm sideeffect inteldialect "call ${0:P}", "*m..."
4092 ///
4093 /// This function is used by a hack to choose the address constraint,
4094 /// lowering to a direct call.
4095 virtual bool
4097 unsigned OpNo) const {
4098 return false;
4099 }
4100
4102 SDValue &Chain) const;
4103
4104 void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
4105 SDValue &NewRHS, ISD::CondCode &CCCode,
4106 const SDLoc &DL, const SDValue OldLHS,
4107 const SDValue OldRHS) const;
4108
4109 void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
4110 SDValue &NewRHS, ISD::CondCode &CCCode,
4111 const SDLoc &DL, const SDValue OldLHS,
4112 const SDValue OldRHS, SDValue &Chain,
4113 bool IsSignaling = false) const;
4114
4116 SDValue Chain, MachineMemOperand *MMO,
4117 SDValue &NewLoad, SDValue Ptr,
4118 SDValue PassThru, SDValue Mask) const {
4119 llvm_unreachable("Not Implemented");
4120 }
4121
4123 SDValue Chain, MachineMemOperand *MMO,
4124 SDValue Ptr, SDValue Val,
4125 SDValue Mask) const {
4126 llvm_unreachable("Not Implemented");
4127 }
4128
4129 /// Returns a pair of (return value, chain).
4130 /// It is an error to pass RTLIB::Unsupported as \p LibcallImpl
4131 std::pair<SDValue, SDValue>
4132 makeLibCall(SelectionDAG &DAG, RTLIB::LibcallImpl LibcallImpl, EVT RetVT,
4133 ArrayRef<SDValue> Ops, MakeLibCallOptions CallOptions,
4134 const SDLoc &dl, SDValue Chain = SDValue()) const;
4135
4136 /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
4137 std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
4138 EVT RetVT, ArrayRef<SDValue> Ops,
4139 MakeLibCallOptions CallOptions,
4140 const SDLoc &dl,
4141 SDValue Chain = SDValue()) const {
4142 return makeLibCall(DAG, getLibcallImpl(LC), RetVT, Ops, CallOptions, dl,
4143 Chain);
4144 }
4145
4146 /// Check whether parameters to a call that are passed in callee saved
4147 /// registers are the same as from the calling function. This needs to be
4148 /// checked for tail call eligibility.
4149 bool parametersInCSRMatch(const MachineRegisterInfo &MRI,
4150 const uint32_t *CallerPreservedMask,
4151 const SmallVectorImpl<CCValAssign> &ArgLocs,
4152 const SmallVectorImpl<SDValue> &OutVals) const;
4153
4154 //===--------------------------------------------------------------------===//
4155 // TargetLowering Optimization Methods
4156 //
4157
4158 /// A convenience struct that encapsulates a DAG, and two SDValues for
4159 /// returning information from TargetLowering to its clients that want to
4160 /// combine.
4167
4169 bool LT, bool LO) :
4170 DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
4171
4172 bool LegalTypes() const { return LegalTys; }
4173 bool LegalOperations() const { return LegalOps; }
4174
4176 Old = O;
4177 New = N;
4178 return true;
4179 }
4180 };
4181
4182 /// Determines the optimal series of memory ops to replace the memset / memcpy.
4183 /// Return true if the number of memory ops is below the threshold (Limit).
4184 /// Note that this is always the case when Limit is ~0.
4185 /// It returns the types of the sequence of memory ops to perform
4186 /// memset / memcpy by reference.
4187 virtual bool
4188 findOptimalMemOpLowering(LLVMContext &Context, std::vector<EVT> &MemOps,
4189 unsigned Limit, const MemOp &Op, unsigned DstAS,
4190 unsigned SrcAS,
4191 const AttributeList &FuncAttributes) const;
4192
4193 /// Check to see if the specified operand of the specified instruction is a
4194 /// constant integer. If so, check to see if there are any bits set in the
4195 /// constant that are not demanded. If so, shrink the constant and return
4196 /// true.
4198 const APInt &DemandedElts,
4199 TargetLoweringOpt &TLO) const;
4200
4201 /// Helper wrapper around ShrinkDemandedConstant, demanding all elements.
4203 TargetLoweringOpt &TLO) const;
4204
4205 // Target hook to do target-specific const optimization, which is called by
4206 // ShrinkDemandedConstant. This function should return true if the target
4207 // doesn't want ShrinkDemandedConstant to further optimize the constant.
4209 const APInt &DemandedBits,
4210 const APInt &DemandedElts,
4211 TargetLoweringOpt &TLO) const {
4212 return false;
4213 }
4214
4215 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
4216 /// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast,
4217 /// but it could be generalized for targets with other types of implicit
4218 /// widening casts.
4219 bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
4220 const APInt &DemandedBits,
4221 TargetLoweringOpt &TLO) const;
4222
4223 /// Look at Op. At this point, we know that only the DemandedBits bits of the
4224 /// result of Op are ever used downstream. If we can use this information to
4225 /// simplify Op, create a new simplified DAG node and return true, returning
4226 /// the original and new nodes in Old and New. Otherwise, analyze the
4227 /// expression and return a mask of KnownOne and KnownZero bits for the
4228 /// expression (used to simplify the caller). The KnownZero/One bits may only
4229 /// be accurate for those bits in the Demanded masks.
4230 /// \p AssumeSingleUse When this parameter is true, this function will
4231 /// attempt to simplify \p Op even if there are multiple uses.
4232 /// Callers are responsible for correctly updating the DAG based on the
4233 /// results of this function, because simply replacing TLO.Old
4234 /// with TLO.New will be incorrect when this parameter is true and TLO.Old
4235 /// has multiple uses.
4236 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
4237 const APInt &DemandedElts, KnownBits &Known,
4238 TargetLoweringOpt &TLO, unsigned Depth = 0,
4239 bool AssumeSingleUse = false) const;
4240
4241 /// Helper wrapper around SimplifyDemandedBits, demanding all elements.
4242 /// Adds Op back to the worklist upon success.
4243 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
4244 KnownBits &Known, TargetLoweringOpt &TLO,
4245 unsigned Depth = 0,
4246 bool AssumeSingleUse = false) const;
4247
4248 /// Helper wrapper around SimplifyDemandedBits.
4249 /// Adds Op back to the worklist upon success.
4250 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
4251 DAGCombinerInfo &DCI) const;
4252
4253 /// Helper wrapper around SimplifyDemandedBits.
4254 /// Adds Op back to the worklist upon success.
4255 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
4256 const APInt &DemandedElts,
4257 DAGCombinerInfo &DCI) const;
4258
4259 /// More limited version of SimplifyDemandedBits that can be used to "look
4260 /// through" ops that don't contribute to the DemandedBits/DemandedElts -
4261 /// bitwise ops etc.
4262 SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits,
4263 const APInt &DemandedElts,
4264 SelectionDAG &DAG,
4265 unsigned Depth = 0) const;
4266
4267 /// Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all
4268 /// elements.
4269 SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits,
4270 SelectionDAG &DAG,
4271 unsigned Depth = 0) const;
4272
4273 /// Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all
4274 /// bits from only some vector elements.
4275 SDValue SimplifyMultipleUseDemandedVectorElts(SDValue Op,
4276 const APInt &DemandedElts,
4277 SelectionDAG &DAG,
4278 unsigned Depth = 0) const;
4279
4280 /// Look at Vector Op. At this point, we know that only the DemandedElts
4281 /// elements of the result of Op are ever used downstream. If we can use
4282 /// this information to simplify Op, create a new simplified DAG node and
4283 /// return true, storing the original and new nodes in TLO.
4284 /// Otherwise, analyze the expression and return a mask of KnownUndef and
4285 /// KnownZero elements for the expression (used to simplify the caller).
4286 /// The KnownUndef/Zero elements may only be accurate for those bits
4287 /// in the DemandedMask.
4288 /// \p AssumeSingleUse When this parameter is true, this function will
4289 /// attempt to simplify \p Op even if there are multiple uses.
4290 /// Callers are responsible for correctly updating the DAG based on the
4291 /// results of this function, because simply replacing TLO.Old
4292 /// with TLO.New will be incorrect when this parameter is true and TLO.Old
4293 /// has multiple uses.
4294 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask,
4295 APInt &KnownUndef, APInt &KnownZero,
4296 TargetLoweringOpt &TLO, unsigned Depth = 0,
4297 bool AssumeSingleUse = false) const;
4298
4299 /// Helper wrapper around SimplifyDemandedVectorElts.
4300 /// Adds Op back to the worklist upon success.
4301 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
4302 DAGCombinerInfo &DCI) const;
4303
4304 /// Return true if the target supports simplifying demanded vector elements by
4305 /// converting them to undefs.
4306 virtual bool
4308 const TargetLoweringOpt &TLO) const {
4309 return true;
4310 }
4311
4312 /// Determine which of the bits specified in Mask are known to be either zero
4313 /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
4314 /// argument allows us to only collect the known bits that are shared by the
4315 /// requested vector elements.
4316 virtual void computeKnownBitsForTargetNode(const SDValue Op,
4317 KnownBits &Known,
4318 const APInt &DemandedElts,
4319 const SelectionDAG &DAG,
4320 unsigned Depth = 0) const;
4321
4322 /// Determine which of the bits specified in Mask are known to be either zero
4323 /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
4324 /// argument allows us to only collect the known bits that are shared by the
4325 /// requested vector elements. This is for GISel.
4326 virtual void computeKnownBitsForTargetInstr(GISelValueTracking &Analysis,
4327 Register R, KnownBits &Known,
4328 const APInt &DemandedElts,
4329 const MachineRegisterInfo &MRI,
4330 unsigned Depth = 0) const;
4331
4332 virtual void computeKnownFPClassForTargetInstr(GISelValueTracking &Analysis,
4333 Register R,
4334 KnownFPClass &Known,
4335 const APInt &DemandedElts,
4336 const MachineRegisterInfo &MRI,
4337 unsigned Depth = 0) const;
4338
4339 /// Determine the known alignment for the pointer value \p R. This is can
4340 /// typically be inferred from the number of low known 0 bits. However, for a
4341 /// pointer with a non-integral address space, the alignment value may be
4342 /// independent from the known low bits.
4343 virtual Align computeKnownAlignForTargetInstr(GISelValueTracking &Analysis,
4344 Register R,
4345 const MachineRegisterInfo &MRI,
4346 unsigned Depth = 0) const;
4347
4348 /// Determine which of the bits of FrameIndex \p FIOp are known to be 0.
4349 /// Default implementation computes low bits based on alignment
4350 /// information. This should preserve known bits passed into it.
4351 virtual void computeKnownBitsForFrameIndex(int FIOp,
4352 KnownBits &Known,
4353 const MachineFunction &MF) const;
4354
4355 /// This method can be implemented by targets that want to expose additional
4356 /// information about sign bits to the DAG Combiner. The DemandedElts
4357 /// argument allows us to only collect the minimum sign bits that are shared
4358 /// by the requested vector elements.
4359 virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
4360 const APInt &DemandedElts,
4361 const SelectionDAG &DAG,
4362 unsigned Depth = 0) const;
4363
4364 /// This method can be implemented by targets that want to expose additional
4365 /// information about sign bits to GlobalISel combiners. The DemandedElts
4366 /// argument allows us to only collect the minimum sign bits that are shared
4367 /// by the requested vector elements.
4368 virtual unsigned computeNumSignBitsForTargetInstr(
4369 GISelValueTracking &Analysis, Register R, const APInt &DemandedElts,
4370 const MachineRegisterInfo &MRI, unsigned Depth = 0) const;
4371
4372 /// Attempt to simplify any target nodes based on the demanded vector
4373 /// elements, returning true on success. Otherwise, analyze the expression and
4374 /// return a mask of KnownUndef and KnownZero elements for the expression
4375 /// (used to simplify the caller). The KnownUndef/Zero elements may only be
4376 /// accurate for those bits in the DemandedMask.
4377 virtual bool SimplifyDemandedVectorEltsForTargetNode(
4378 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef,
4379 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth = 0) const;
4380
4381 /// Attempt to simplify any target nodes based on the demanded bits/elts,
4382 /// returning true on success. Otherwise, analyze the
4383 /// expression and return a mask of KnownOne and KnownZero bits for the
4384 /// expression (used to simplify the caller). The KnownZero/One bits may only
4385 /// be accurate for those bits in the Demanded masks.
4386 virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op,
4387 const APInt &DemandedBits,
4388 const APInt &DemandedElts,
4389 KnownBits &Known,
4390 TargetLoweringOpt &TLO,
4391 unsigned Depth = 0) const;
4392
4393 /// More limited version of SimplifyDemandedBits that can be used to "look
4394 /// through" ops that don't contribute to the DemandedBits/DemandedElts -
4395 /// bitwise ops etc.
4396 virtual SDValue SimplifyMultipleUseDemandedBitsForTargetNode(
4397 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
4398 SelectionDAG &DAG, unsigned Depth) const;
4399
4400 /// Return true if this function can prove that \p Op is never poison
4401 /// and, if \p PoisonOnly is false, does not have undef bits. The DemandedElts
4402 /// argument limits the check to the requested vector elements.
4403 virtual bool isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4404 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4405 bool PoisonOnly, unsigned Depth) const;
4406
4407 /// Return true if Op can create undef or poison from non-undef & non-poison
4408 /// operands. The DemandedElts argument limits the check to the requested
4409 /// vector elements.
4410 virtual bool
4411 canCreateUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts,
4412 const SelectionDAG &DAG, bool PoisonOnly,
4413 bool ConsiderFlags, unsigned Depth) const;
4414
4415 /// Tries to build a legal vector shuffle using the provided parameters
4416 /// or equivalent variations. The Mask argument maybe be modified as the
4417 /// function tries different variations.
4418 /// Returns an empty SDValue if the operation fails.
4419 SDValue buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
4421 SelectionDAG &DAG) const;
4422
4423 /// This method returns the constant pool value that will be loaded by LD.
4424 /// NOTE: You must check for implicit extensions of the constant by LD.
4425 virtual const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const;
4426
4427 /// If \p SNaN is false, \returns true if \p Op is known to never be any
4428 /// NaN. If \p sNaN is true, returns if \p Op is known to never be a signaling
4429 /// NaN.
4430 virtual bool isKnownNeverNaNForTargetNode(SDValue Op,
4431 const APInt &DemandedElts,
4432 const SelectionDAG &DAG,
4433 bool SNaN = false,
4434 unsigned Depth = 0) const;
4435
4436 /// Return true if vector \p Op has the same value across all \p DemandedElts,
4437 /// indicating any elements which may be undef in the output \p UndefElts.
4438 virtual bool isSplatValueForTargetNode(SDValue Op, const APInt &DemandedElts,
4439 APInt &UndefElts,
4440 const SelectionDAG &DAG,
4441 unsigned Depth = 0) const;
4442
4443 /// Returns true if the given Opc is considered a canonical constant for the
4444 /// target, which should not be transformed back into a BUILD_VECTOR.
4446 return Op.getOpcode() == ISD::SPLAT_VECTOR ||
4447 Op.getOpcode() == ISD::SPLAT_VECTOR_PARTS;
4448 }
4449
4450 /// Return true if the given select/vselect should be considered canonical and
4451 /// not be transformed. Currently only used for "vselect (not Cond), N1, N2 ->
4452 /// vselect Cond, N2, N1".
4453 virtual bool isTargetCanonicalSelect(SDNode *N) const { return false; }
4454
4456 void *DC; // The DAG Combiner object.
4459
4460 public:
4462
4463 DAGCombinerInfo(SelectionDAG &dag, CombineLevel level, bool cl, void *dc)
4464 : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
4465
4466 bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
4468 bool isAfterLegalizeDAG() const { return Level >= AfterLegalizeDAG; }
4471
4472 LLVM_ABI void AddToWorklist(SDNode *N);
4473 LLVM_ABI SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To,
4474 bool AddTo = true);
4475 LLVM_ABI SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
4476 LLVM_ABI SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
4477 bool AddTo = true);
4478
4479 LLVM_ABI bool recursivelyDeleteUnusedNodes(SDNode *N);
4480
4481 LLVM_ABI void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
4482 };
4483
4484 /// Return if the N is a constant or constant vector equal to the true value
4485 /// from getBooleanContents().
4486 bool isConstTrueVal(SDValue N) const;
4487
4488 /// Return if the N is a constant or constant vector equal to the false value
4489 /// from getBooleanContents().
4490 bool isConstFalseVal(SDValue N) const;
4491
4492 /// Return if \p N is a True value when extended to \p VT.
4493 bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const;
4494
4495 /// Try to simplify a setcc built with the specified operands and cc. If it is
4496 /// unable to simplify it, return a null SDValue.
4497 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
4498 bool foldBooleans, DAGCombinerInfo &DCI,
4499 const SDLoc &dl) const;
4500
4501 // For targets which wrap address, unwrap for analysis.
4502 virtual SDValue unwrapAddress(SDValue N) const { return N; }
4503
4504 /// Returns true (and the GlobalValue and the offset) if the node is a
4505 /// GlobalAddress + offset.
4506 virtual bool
4507 isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
4508
4509 /// This method will be invoked for all target nodes and for any
4510 /// target-independent nodes that the target has registered with invoke it
4511 /// for.
4512 ///
4513 /// The semantics are as follows:
4514 /// Return Value:
4515 /// SDValue.Val == 0 - No change was made
4516 /// SDValue.Val == N - N was replaced, is dead, and is already handled.
4517 /// otherwise - N should be replaced by the returned Operand.
4518 ///
4519 /// In addition, methods provided by DAGCombinerInfo may be used to perform
4520 /// more complex transformations.
4521 ///
4522 virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
4523
4524 /// Return true if it is profitable to move this shift by a constant amount
4525 /// through its operand, adjusting any immediate operands as necessary to
4526 /// preserve semantics. This transformation may not be desirable if it
4527 /// disrupts a particularly auspicious target-specific tree (e.g. bitfield
4528 /// extraction in AArch64). By default, it returns true.
4529 ///
4530 /// @param N the shift node
4531 /// @param Level the current DAGCombine legalization level.
4533 CombineLevel Level) const {
4534 SDValue ShiftLHS = N->getOperand(0);
4535 if (!ShiftLHS->hasOneUse())
4536 return false;
4537 if (ShiftLHS.getOpcode() == ISD::SIGN_EXTEND &&
4538 !ShiftLHS.getOperand(0)->hasOneUse())
4539 return false;
4540 return true;
4541 }
4542
4543 /// GlobalISel - return true if it is profitable to move this shift by a
4544 /// constant amount through its operand, adjusting any immediate operands as
4545 /// necessary to preserve semantics. This transformation may not be desirable
4546 /// if it disrupts a particularly auspicious target-specific tree (e.g.
4547 /// bitfield extraction in AArch64). By default, it returns true.
4548 ///
4549 /// @param MI the shift instruction
4550 /// @param IsAfterLegal true if running after legalization.
4552 bool IsAfterLegal) const {
4553 return true;
4554 }
4555
4556 /// GlobalISel - return true if it's profitable to perform the combine:
4557 /// shl ([sza]ext x), y => zext (shl x, y)
4558 virtual bool isDesirableToPullExtFromShl(const MachineInstr &MI) const {
4559 return true;
4560 }
4561
4562 // Return AndOrSETCCFoldKind::{AddAnd, ABS} if its desirable to try and
4563 // optimize LogicOp(SETCC0, SETCC1). An example (what is implemented as of
4564 // writing this) is:
4565 // With C as a power of 2 and C != 0 and C != INT_MIN:
4566 // AddAnd:
4567 // (icmp eq A, C) | (icmp eq A, -C)
4568 // -> (icmp eq and(add(A, C), ~(C + C)), 0)
4569 // (icmp ne A, C) & (icmp ne A, -C)w
4570 // -> (icmp ne and(add(A, C), ~(C + C)), 0)
4571 // ABS:
4572 // (icmp eq A, C) | (icmp eq A, -C)
4573 // -> (icmp eq Abs(A), C)
4574 // (icmp ne A, C) & (icmp ne A, -C)w
4575 // -> (icmp ne Abs(A), C)
4576 //
4577 // @param LogicOp the logic op
4578 // @param SETCC0 the first of the SETCC nodes
4579 // @param SETCC0 the second of the SETCC nodes
4581 const SDNode *LogicOp, const SDNode *SETCC0, const SDNode *SETCC1) const {
4583 }
4584
4585 /// Return true if it is profitable to combine an XOR of a logical shift
4586 /// to create a logical shift of NOT. This transformation may not be desirable
4587 /// if it disrupts a particularly auspicious target-specific tree (e.g.
4588 /// BIC on ARM/AArch64). By default, it returns true.
4589 virtual bool isDesirableToCommuteXorWithShift(const SDNode *N) const {
4590 return true;
4591 }
4592
4593 /// Return true if the target has native support for the specified value type
4594 /// and it is 'desirable' to use the type for the given node type. e.g. On x86
4595 /// i16 is legal, but undesirable since i16 instruction encodings are longer
4596 /// and some i16 instructions are slow.
4597 virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
4598 // By default, assume all legal types are desirable.
4599 return isTypeLegal(VT);
4600 }
4601
4602 /// Return true if it is profitable for dag combiner to transform a floating
4603 /// point op of specified opcode to a equivalent op of an integer
4604 /// type. e.g. f32 load -> i32 load can be profitable on ARM.
4605 virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
4606 EVT /*VT*/) const {
4607 return false;
4608 }
4609
4610 /// This method query the target whether it is beneficial for dag combiner to
4611 /// promote the specified node. If true, it should return the desired
4612 /// promotion type by reference.
4613 virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
4614 return false;
4615 }
4616
4617 /// Return true if the target supports swifterror attribute. It optimizes
4618 /// loads and stores to reading and writing a specific register.
4619 virtual bool supportSwiftError() const {
4620 return false;
4621 }
4622
4623 /// Return true if the target supports that a subset of CSRs for the given
4624 /// machine function is handled explicitly via copies.
4625 virtual bool supportSplitCSR(MachineFunction *MF) const {
4626 return false;
4627 }
4628
4629 /// Return true if the target supports kcfi operand bundles.
4630 virtual bool supportKCFIBundles() const { return false; }
4631
4632 /// Return true if the target supports ptrauth operand bundles.
4633 virtual bool supportPtrAuthBundles() const { return false; }
4634
4635 /// Perform necessary initialization to handle a subset of CSRs explicitly
4636 /// via copies. This function is called at the beginning of instruction
4637 /// selection.
4638 virtual void initializeSplitCSR(MachineBasicBlock *Entry) const {
4639 llvm_unreachable("Not Implemented");
4640 }
4641
4642 /// Insert explicit copies in entry and exit blocks. We copy a subset of
4643 /// CSRs to virtual registers in the entry block, and copy them back to
4644 /// physical registers in the exit blocks. This function is called at the end
4645 /// of instruction selection.
4647 MachineBasicBlock *Entry,
4648 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
4649 llvm_unreachable("Not Implemented");
4650 }
4651
4652 /// Return the newly negated expression if the cost is not expensive and
4653 /// set the cost in \p Cost to indicate that if it is cheaper or neutral to
4654 /// do the negation.
4655 virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG,
4656 bool LegalOps, bool OptForSize,
4657 NegatibleCost &Cost,
4658 unsigned Depth = 0) const;
4659
4661 SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize,
4663 unsigned Depth = 0) const {
4665 SDValue Neg =
4666 getNegatedExpression(Op, DAG, LegalOps, OptForSize, Cost, Depth);
4667 if (!Neg)
4668 return SDValue();
4669
4670 if (Cost <= CostThreshold)
4671 return Neg;
4672
4673 // Remove the new created node to avoid the side effect to the DAG.
4674 if (Neg->use_empty())
4675 DAG.RemoveDeadNode(Neg.getNode());
4676 return SDValue();
4677 }
4678
4679 /// This is the helper function to return the newly negated expression only
4680 /// when the cost is cheaper.
4682 bool LegalOps, bool OptForSize,
4683 unsigned Depth = 0) const {
4684 return getCheaperOrNeutralNegatedExpression(Op, DAG, LegalOps, OptForSize,
4686 }
4687
4688 /// This is the helper function to return the newly negated expression if
4689 /// the cost is not expensive.
4691 bool OptForSize, unsigned Depth = 0) const {
4693 return getNegatedExpression(Op, DAG, LegalOps, OptForSize, Cost, Depth);
4694 }
4695
4696 //===--------------------------------------------------------------------===//
4697 // Lowering methods - These methods must be implemented by targets so that
4698 // the SelectionDAGBuilder code knows how to lower these.
4699 //
4700
4701 /// Target-specific splitting of values into parts that fit a register
4702 /// storing a legal type
4704 SelectionDAG & DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
4705 unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
4706 return false;
4707 }
4708
4709 /// Target-specific combining of register parts into its original value
4710 virtual SDValue
4712 const SDValue *Parts, unsigned NumParts,
4713 MVT PartVT, EVT ValueVT,
4714 std::optional<CallingConv::ID> CC) const {
4715 return SDValue();
4716 }
4717
4718 /// This hook must be implemented to lower the incoming (formal) arguments,
4719 /// described by the Ins array, into the specified DAG. The implementation
4720 /// should fill in the InVals array with legal-type argument values, and
4721 /// return the resulting token chain value.
4723 SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/,
4724 const SmallVectorImpl<ISD::InputArg> & /*Ins*/, const SDLoc & /*dl*/,
4725 SelectionDAG & /*DAG*/, SmallVectorImpl<SDValue> & /*InVals*/) const {
4726 llvm_unreachable("Not Implemented");
4727 }
4728
4729 /// Optional target hook to add target-specific actions when entering EH pad
4730 /// blocks. The implementation should return the resulting token chain value.
4731 virtual SDValue lowerEHPadEntry(SDValue Chain, const SDLoc &DL,
4732 SelectionDAG &DAG) const {
4733 return SDValue();
4734 }
4735
4736 virtual void markLibCallAttributes(MachineFunction *MF, unsigned CC,
4737 ArgListTy &Args) const {}
4738
4739 /// This structure contains the information necessary for lowering
4740 /// pointer-authenticating indirect calls. It is equivalent to the "ptrauth"
4741 /// operand bundle found on the call instruction, if any.
4746
4747 /// This structure contains all information that is necessary for lowering
4748 /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
4749 /// needs to lower a call, and targets will see this struct in their LowerCall
4750 /// implementation.
4753 /// Original unlegalized return type.
4754 Type *OrigRetTy = nullptr;
4755 /// Same as OrigRetTy, or partially legalized for soft float libcalls.
4756 Type *RetTy = nullptr;
4757 bool RetSExt : 1;
4758 bool RetZExt : 1;
4759 bool IsVarArg : 1;
4760 bool IsInReg : 1;
4766 bool NoMerge : 1;
4767
4768 // IsTailCall should be modified by implementations of
4769 // TargetLowering::LowerCall that perform tail call conversions.
4770 bool IsTailCall = false;
4771
4772 // Is Call lowering done post SelectionDAG type legalization.
4774
4775 unsigned NumFixedArgs = -1;
4781 const CallBase *CB = nullptr;
4786 const ConstantInt *CFIType = nullptr;
4789
4790 std::optional<PtrAuthInfo> PAI;
4791
4797
4799 DL = dl;
4800 return *this;
4801 }
4802
4804 Chain = InChain;
4805 return *this;
4806 }
4807
4808 // setCallee with target/module-specific attributes
4810 SDValue Target, ArgListTy &&ArgsList) {
4811 return setLibCallee(CC, ResultType, ResultType, Target,
4812 std::move(ArgsList));
4813 }
4814
4816 Type *OrigResultType, SDValue Target,
4817 ArgListTy &&ArgsList) {
4818 OrigRetTy = OrigResultType;
4819 RetTy = ResultType;
4820 Callee = Target;
4821 CallConv = CC;
4822 NumFixedArgs = ArgsList.size();
4823 Args = std::move(ArgsList);
4824
4825 DAG.getTargetLoweringInfo().markLibCallAttributes(
4826 &(DAG.getMachineFunction()), CC, Args);
4827 return *this;
4828 }
4829
4831 SDValue Target, ArgListTy &&ArgsList,
4832 AttributeSet ResultAttrs = {}) {
4833 RetTy = OrigRetTy = ResultType;
4834 IsInReg = ResultAttrs.hasAttribute(Attribute::InReg);
4835 RetSExt = ResultAttrs.hasAttribute(Attribute::SExt);
4836 RetZExt = ResultAttrs.hasAttribute(Attribute::ZExt);
4837 NoMerge = ResultAttrs.hasAttribute(Attribute::NoMerge);
4838
4839 Callee = Target;
4840 CallConv = CC;
4841 NumFixedArgs = ArgsList.size();
4842 Args = std::move(ArgsList);
4843 return *this;
4844 }
4845
4847 SDValue Target, ArgListTy &&ArgsList,
4848 const CallBase &Call) {
4849 RetTy = OrigRetTy = ResultType;
4850
4851 IsInReg = Call.hasRetAttr(Attribute::InReg);
4853 Call.doesNotReturn() ||
4854 (!isa<InvokeInst>(Call) && isa<UnreachableInst>(Call.getNextNode()));
4855 IsVarArg = FTy->isVarArg();
4856 IsReturnValueUsed = !Call.use_empty();
4857 RetSExt = Call.hasRetAttr(Attribute::SExt);
4858 RetZExt = Call.hasRetAttr(Attribute::ZExt);
4859 NoMerge = Call.hasFnAttr(Attribute::NoMerge);
4860
4861 Callee = Target;
4862
4863 CallConv = Call.getCallingConv();
4864 NumFixedArgs = FTy->getNumParams();
4865 Args = std::move(ArgsList);
4866
4867 CB = &Call;
4868
4869 return *this;
4870 }
4871
4873 IsInReg = Value;
4874 return *this;
4875 }
4876
4879 return *this;
4880 }
4881
4883 IsVarArg = Value;
4884 return *this;
4885 }
4886
4888 IsTailCall = Value;
4889 return *this;
4890 }
4891
4894 return *this;
4895 }
4896
4899 return *this;
4900 }
4901
4903 RetSExt = Value;
4904 return *this;
4905 }
4906
4908 RetZExt = Value;
4909 return *this;
4910 }
4911
4914 return *this;
4915 }
4916
4919 return *this;
4920 }
4921
4923 PAI = Value;
4924 return *this;
4925 }
4926
4929 return *this;
4930 }
4931
4933 CFIType = Type;
4934 return *this;
4935 }
4936
4939 return *this;
4940 }
4941
4943 DeactivationSymbol = Sym;
4944 return *this;
4945 }
4946
4948 return Args;
4949 }
4950 };
4951
4952 /// This structure is used to pass arguments to makeLibCall function.
4954 // By passing type list before soften to makeLibCall, the target hook
4955 // shouldExtendTypeInLibCall can get the original type before soften.
4959
4960 bool IsSigned : 1;
4964 bool IsSoften : 1;
4965
4969
4971 IsSigned = Value;
4972 return *this;
4973 }
4974
4977 return *this;
4978 }
4979
4982 return *this;
4983 }
4984
4987 return *this;
4988 }
4989
4991 OpsVTBeforeSoften = OpsVT;
4992 RetVTBeforeSoften = RetVT;
4993 IsSoften = true;
4994 return *this;
4995 }
4996
4997 /// Override the argument type for an operand. Leave the type as null to use
4998 /// the type from the operand's node.
5000 OpsTypeOverrides = OpsTypes;
5001 return *this;
5002 }
5003 };
5004
5005 /// This function lowers an abstract call to a function into an actual call.
5006 /// This returns a pair of operands. The first element is the return value
5007 /// for the function (if RetTy is not VoidTy). The second element is the
5008 /// outgoing token chain. It calls LowerCall to do the actual lowering.
5009 std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
5010
5011 /// This hook must be implemented to lower calls into the specified
5012 /// DAG. The outgoing arguments to the call are described by the Outs array,
5013 /// and the values to be returned by the call are described by the Ins
5014 /// array. The implementation should fill in the InVals array with legal-type
5015 /// return values from the call, and return the resulting token chain value.
5016 virtual SDValue
5018 SmallVectorImpl<SDValue> &/*InVals*/) const {
5019 llvm_unreachable("Not Implemented");
5020 }
5021
5022 /// Target-specific cleanup for formal ByVal parameters.
5023 virtual void HandleByVal(CCState *, unsigned &, Align) const {}
5024
5025 /// This hook should be implemented to check whether the return values
5026 /// described by the Outs array can fit into the return registers. If false
5027 /// is returned, an sret-demotion is performed.
5028 virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
5029 MachineFunction &/*MF*/, bool /*isVarArg*/,
5030 const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
5031 LLVMContext &/*Context*/, const Type *RetTy) const
5032 {
5033 // Return true by default to get preexisting behavior.
5034 return true;
5035 }
5036
5037 /// This hook must be implemented to lower outgoing return values, described
5038 /// by the Outs array, into the specified DAG. The implementation should
5039 /// return the resulting token chain value.
5040 virtual SDValue LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
5041 bool /*isVarArg*/,
5042 const SmallVectorImpl<ISD::OutputArg> & /*Outs*/,
5043 const SmallVectorImpl<SDValue> & /*OutVals*/,
5044 const SDLoc & /*dl*/,
5045 SelectionDAG & /*DAG*/) const {
5046 llvm_unreachable("Not Implemented");
5047 }
5048
5049 /// Return true if result of the specified node is used by a return node
5050 /// only. It also compute and return the input chain for the tail call.
5051 ///
5052 /// This is used to determine whether it is possible to codegen a libcall as
5053 /// tail call at legalization time.
5054 virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
5055 return false;
5056 }
5057
5058 /// Return true if the target may be able emit the call instruction as a tail
5059 /// call. This is used by optimization passes to determine if it's profitable
5060 /// to duplicate return instructions to enable tailcall optimization.
5061 virtual bool mayBeEmittedAsTailCall(const CallInst *) const {
5062 return false;
5063 }
5064
5065 /// Return the register ID of the name passed in. Used by named register
5066 /// global variables extension. There is no target-independent behaviour
5067 /// so the default action is to bail.
5068 virtual Register getRegisterByName(const char* RegName, LLT Ty,
5069 const MachineFunction &MF) const {
5070 report_fatal_error("Named registers not implemented for this target");
5071 }
5072
5073 /// Return the type that should be used to zero or sign extend a
5074 /// zeroext/signext integer return value. FIXME: Some C calling conventions
5075 /// require the return type to be promoted, but this is not true all the time,
5076 /// e.g. i1/i8/i16 on x86/x86_64. It is also not necessary for non-C calling
5077 /// conventions. The frontend should handle this and include all of the
5078 /// necessary information.
5080 ISD::NodeType /*ExtendKind*/) const {
5081 EVT MinVT = getRegisterType(MVT::i32);
5082 return VT.bitsLT(MinVT) ? MinVT : VT;
5083 }
5084
5085 /// For some targets, an LLVM struct type must be broken down into multiple
5086 /// simple types, but the calling convention specifies that the entire struct
5087 /// must be passed in a block of consecutive registers.
5088 virtual bool
5090 bool isVarArg,
5091 const DataLayout &DL) const {
5092 return false;
5093 }
5094
5095 /// For most targets, an LLVM type must be broken down into multiple
5096 /// smaller types. Usually the halves are ordered according to the endianness
5097 /// but for some platform that would break. So this method will default to
5098 /// matching the endianness but can be overridden.
5099 virtual bool
5101 return DL.isLittleEndian();
5102 }
5103
5104 /// Returns a 0 terminated array of registers that can be safely used as
5105 /// scratch registers.
5107 return nullptr;
5108 }
5109
5110 /// Returns a 0 terminated array of rounding control registers that can be
5111 /// attached into strict FP call.
5115
5116 /// This callback is used to prepare for a volatile or atomic load.
5117 /// It takes a chain node as input and returns the chain for the load itself.
5118 ///
5119 /// Having a callback like this is necessary for targets like SystemZ,
5120 /// which allows a CPU to reuse the result of a previous load indefinitely,
5121 /// even if a cache-coherent store is performed by another CPU. The default
5122 /// implementation does nothing.
5124 SelectionDAG &DAG) const {
5125 return Chain;
5126 }
5127
5128 /// This callback is invoked by the type legalizer to legalize nodes with an
5129 /// illegal operand type but legal result types. It replaces the
5130 /// LowerOperation callback in the type Legalizer. The reason we can not do
5131 /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
5132 /// use this callback.
5133 ///
5134 /// TODO: Consider merging with ReplaceNodeResults.
5135 ///
5136 /// The target places new result values for the node in Results (their number
5137 /// and types must exactly match those of the original return values of
5138 /// the node), or leaves Results empty, which indicates that the node is not
5139 /// to be custom lowered after all.
5140 /// The default implementation calls LowerOperation.
5141 virtual void LowerOperationWrapper(SDNode *N,
5143 SelectionDAG &DAG) const;
5144
5145 /// This callback is invoked for operations that are unsupported by the
5146 /// target, which are registered to use 'custom' lowering, and whose defined
5147 /// values are all legal. If the target has no operations that require custom
5148 /// lowering, it need not implement this. The default implementation of this
5149 /// aborts.
5150 virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
5151
5152 /// This callback is invoked when a node result type is illegal for the
5153 /// target, and the operation was registered to use 'custom' lowering for that
5154 /// result type. The target places new result values for the node in Results
5155 /// (their number and types must exactly match those of the original return
5156 /// values of the node), or leaves Results empty, which indicates that the
5157 /// node is not to be custom lowered after all.
5158 ///
5159 /// If the target has no operations that require custom lowering, it need not
5160 /// implement this. The default implementation aborts.
5161 virtual void ReplaceNodeResults(SDNode * /*N*/,
5162 SmallVectorImpl<SDValue> &/*Results*/,
5163 SelectionDAG &/*DAG*/) const {
5164 llvm_unreachable("ReplaceNodeResults not implemented for this target!");
5165 }
5166
5167 /// This method returns the name of a target specific DAG node.
5168 virtual const char *getTargetNodeName(unsigned Opcode) const;
5169
5170 /// This method returns a target specific FastISel object, or null if the
5171 /// target does not support "fast" ISel.
5173 const TargetLibraryInfo *) const {
5174 return nullptr;
5175 }
5176
5177 //===--------------------------------------------------------------------===//
5178 // Inline Asm Support hooks
5179 //
5180
5182 C_Register, // Constraint represents specific register(s).
5183 C_RegisterClass, // Constraint represents any of register(s) in class.
5184 C_Memory, // Memory constraint.
5185 C_Address, // Address constraint.
5186 C_Immediate, // Requires an immediate.
5187 C_Other, // Something else.
5188 C_Unknown // Unsupported constraint.
5189 };
5190
5192 // Generic weights.
5193 CW_Invalid = -1, // No match.
5194 CW_Okay = 0, // Acceptable.
5195 CW_Good = 1, // Good weight.
5196 CW_Better = 2, // Better weight.
5197 CW_Best = 3, // Best weight.
5198
5199 // Well-known weights.
5200 CW_SpecificReg = CW_Okay, // Specific register operands.
5201 CW_Register = CW_Good, // Register operands.
5202 CW_Memory = CW_Better, // Memory operands.
5203 CW_Constant = CW_Best, // Constant operand.
5204 CW_Default = CW_Okay // Default or don't know type.
5205 };
5206
5207 /// This contains information for each constraint that we are lowering.
5209 /// This contains the actual string for the code, like "m". TargetLowering
5210 /// picks the 'best' code from ConstraintInfo::Codes that most closely
5211 /// matches the operand.
5212 std::string ConstraintCode;
5213
5214 /// Information about the constraint code, e.g. Register, RegisterClass,
5215 /// Memory, Other, Unknown.
5217
5218 /// If this is the result output operand or a clobber, this is null,
5219 /// otherwise it is the incoming operand to the CallInst. This gets
5220 /// modified as the asm is processed.
5222
5223 /// The ValueType for the operand value.
5224 MVT ConstraintVT = MVT::Other;
5225
5226 /// Copy constructor for copying from a ConstraintInfo.
5229
5230 /// Return true of this is an input operand that is a matching constraint
5231 /// like "4".
5232 LLVM_ABI bool isMatchingInputConstraint() const;
5233
5234 /// If this is an input matching constraint, this method returns the output
5235 /// operand it matches.
5236 LLVM_ABI unsigned getMatchedOperand() const;
5237 };
5238
5239 using AsmOperandInfoVector = std::vector<AsmOperandInfo>;
5240
5241 /// Split up the constraint string from the inline assembly value into the
5242 /// specific constraints and their prefixes, and also tie in the associated
5243 /// operand values. If this returns an empty vector, and if the constraint
5244 /// string itself isn't empty, there was an error parsing.
5246 const TargetRegisterInfo *TRI,
5247 const CallBase &Call) const;
5248
5249 /// Examine constraint type and operand type and determine a weight value.
5250 /// The operand object must already have been set up with the operand type.
5252 AsmOperandInfo &info, int maIndex) const;
5253
5254 /// Examine constraint string and operand type and determine a weight value.
5255 /// The operand object must already have been set up with the operand type.
5257 AsmOperandInfo &info, const char *constraint) const;
5258
5259 /// Determines the constraint code and constraint type to use for the specific
5260 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5261 /// If the actual operand being passed in is available, it can be passed in as
5262 /// Op, otherwise an empty SDValue can be passed.
5263 virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5264 SDValue Op,
5265 SelectionDAG *DAG = nullptr) const;
5266
5267 /// Given a constraint, return the type of constraint it is for this target.
5268 virtual ConstraintType getConstraintType(StringRef Constraint) const;
5269
5270 using ConstraintPair = std::pair<StringRef, TargetLowering::ConstraintType>;
5272 /// Given an OpInfo with list of constraints codes as strings, return a
5273 /// sorted Vector of pairs of constraint codes and their types in priority of
5274 /// what we'd prefer to lower them as. This may contain immediates that
5275 /// cannot be lowered, but it is meant to be a machine agnostic order of
5276 /// preferences.
5278
5279 /// Given a physical register constraint (e.g. {edx}), return the register
5280 /// number and the register class for the register.
5281 ///
5282 /// Given a register class constraint, like 'r', if this corresponds directly
5283 /// to an LLVM register class, return a register of 0 and the register class
5284 /// pointer.
5285 ///
5286 /// This should only be used for C_Register constraints. On error, this
5287 /// returns a register number of 0 and a null register class pointer.
5288 virtual std::pair<unsigned, const TargetRegisterClass *>
5290 StringRef Constraint, MVT VT) const;
5291
5293 getInlineAsmMemConstraint(StringRef ConstraintCode) const {
5294 if (ConstraintCode == "m")
5296 if (ConstraintCode == "o")
5298 if (ConstraintCode == "X")
5300 if (ConstraintCode == "p")
5303 }
5304
5305 /// Try to replace an X constraint, which matches anything, with another that
5306 /// has more specific requirements based on the type of the corresponding
5307 /// operand. This returns null if there is no replacement to make.
5308 virtual const char *LowerXConstraint(EVT ConstraintVT) const;
5309
5310 /// Lower the specified operand into the Ops vector. If it is invalid, don't
5311 /// add anything to Ops.
5312 virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint,
5313 std::vector<SDValue> &Ops,
5314 SelectionDAG &DAG) const;
5315
5316 // Lower custom output constraints. If invalid, return SDValue().
5317 virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue,
5318 const SDLoc &DL,
5319 const AsmOperandInfo &OpInfo,
5320 SelectionDAG &DAG) const;
5321
5322 // Targets may override this function to collect operands from the CallInst
5323 // and for example, lower them into the SelectionDAG operands.
5324 virtual void CollectTargetIntrinsicOperands(const CallInst &I,
5326 SelectionDAG &DAG) const;
5327
5328 //===--------------------------------------------------------------------===//
5329 // Div utility functions
5330 //
5331
5332 SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
5333 bool IsAfterLegalTypes,
5334 SmallVectorImpl<SDNode *> &Created) const;
5335 SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
5336 bool IsAfterLegalTypes,
5337 SmallVectorImpl<SDNode *> &Created) const;
5338 // Build sdiv by power-of-2 with conditional move instructions
5339 SDValue buildSDIVPow2WithCMov(SDNode *N, const APInt &Divisor,
5340 SelectionDAG &DAG,
5341 SmallVectorImpl<SDNode *> &Created) const;
5342
5343 /// Targets may override this function to provide custom SDIV lowering for
5344 /// power-of-2 denominators. If the target returns an empty SDValue, LLVM
5345 /// assumes SDIV is expensive and replaces it with a series of other integer
5346 /// operations.
5347 virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5348 SelectionDAG &DAG,
5349 SmallVectorImpl<SDNode *> &Created) const;
5350
5351 /// Targets may override this function to provide custom SREM lowering for
5352 /// power-of-2 denominators. If the target returns an empty SDValue, LLVM
5353 /// assumes SREM is expensive and replaces it with a series of other integer
5354 /// operations.
5355 virtual SDValue BuildSREMPow2(SDNode *N, const APInt &Divisor,
5356 SelectionDAG &DAG,
5357 SmallVectorImpl<SDNode *> &Created) const;
5358
5359 /// Indicate whether this target prefers to combine FDIVs with the same
5360 /// divisor. If the transform should never be done, return zero. If the
5361 /// transform should be done, return the minimum number of divisor uses
5362 /// that must exist.
5363 virtual unsigned combineRepeatedFPDivisors() const {
5364 return 0;
5365 }
5366
5367 /// Hooks for building estimates in place of slower divisions and square
5368 /// roots.
5369
5370 /// Return either a square root or its reciprocal estimate value for the input
5371 /// operand.
5372 /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
5373 /// 'Enabled' as set by a potential default override attribute.
5374 /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
5375 /// refinement iterations required to generate a sufficient (though not
5376 /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
5377 /// The boolean UseOneConstNR output is used to select a Newton-Raphson
5378 /// algorithm implementation that uses either one or two constants.
5379 /// The boolean Reciprocal is used to select whether the estimate is for the
5380 /// square root of the input operand or the reciprocal of its square root.
5381 /// A target may choose to implement its own refinement within this function.
5382 /// If that's true, then return '0' as the number of RefinementSteps to avoid
5383 /// any further refinement of the estimate.
5384 /// An empty SDValue return means no estimate sequence can be created.
5386 int Enabled, int &RefinementSteps,
5387 bool &UseOneConstNR, bool Reciprocal) const {
5388 return SDValue();
5389 }
5390
5391 /// Try to convert the fminnum/fmaxnum to a compare/select sequence. This is
5392 /// required for correctness since InstCombine might have canonicalized a
5393 /// fcmp+select sequence to a FMINNUM/FMAXNUM intrinsic. If we were to fall
5394 /// through to the default expansion/soften to libcall, we might introduce a
5395 /// link-time dependency on libm into a file that originally did not have one.
5396 SDValue createSelectForFMINNUM_FMAXNUM(SDNode *Node, SelectionDAG &DAG) const;
5397
5398 /// Return a reciprocal estimate value for the input operand.
5399 /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
5400 /// 'Enabled' as set by a potential default override attribute.
5401 /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
5402 /// refinement iterations required to generate a sufficient (though not
5403 /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
5404 /// A target may choose to implement its own refinement within this function.
5405 /// If that's true, then return '0' as the number of RefinementSteps to avoid
5406 /// any further refinement of the estimate.
5407 /// An empty SDValue return means no estimate sequence can be created.
5409 int Enabled, int &RefinementSteps) const {
5410 return SDValue();
5411 }
5412
5413 /// Return a target-dependent comparison result if the input operand is
5414 /// suitable for use with a square root estimate calculation. For example, the
5415 /// comparison may check if the operand is NAN, INF, zero, normal, etc. The
5416 /// result should be used as the condition operand for a select or branch.
5417 virtual SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG,
5418 const DenormalMode &Mode) const;
5419
5420 /// Return a target-dependent result if the input operand is not suitable for
5421 /// use with a square root estimate calculation.
5423 SelectionDAG &DAG) const {
5424 return DAG.getConstantFP(0.0, SDLoc(Operand), Operand.getValueType());
5425 }
5426
5427 //===--------------------------------------------------------------------===//
5428 // Legalization utility functions
5429 //
5430
5431 /// Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes,
5432 /// respectively, each computing an n/2-bit part of the result.
5433 /// \param Result A vector that will be filled with the parts of the result
5434 /// in little-endian order.
5435 /// \param LL Low bits of the LHS of the MUL. You can use this parameter
5436 /// if you want to control how low bits are extracted from the LHS.
5437 /// \param LH High bits of the LHS of the MUL. See LL for meaning.
5438 /// \param RL Low bits of the RHS of the MUL. See LL for meaning
5439 /// \param RH High bits of the RHS of the MUL. See LL for meaning.
5440 /// \returns true if the node has been expanded, false if it has not
5441 bool expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, SDValue LHS,
5442 SDValue RHS, SmallVectorImpl<SDValue> &Result, EVT HiLoVT,
5443 SelectionDAG &DAG, MulExpansionKind Kind,
5444 SDValue LL = SDValue(), SDValue LH = SDValue(),
5445 SDValue RL = SDValue(), SDValue RH = SDValue()) const;
5446
5447 /// Expand a MUL into two nodes. One that computes the high bits of
5448 /// the result and one that computes the low bits.
5449 /// \param HiLoVT The value type to use for the Lo and Hi nodes.
5450 /// \param LL Low bits of the LHS of the MUL. You can use this parameter
5451 /// if you want to control how low bits are extracted from the LHS.
5452 /// \param LH High bits of the LHS of the MUL. See LL for meaning.
5453 /// \param RL Low bits of the RHS of the MUL. See LL for meaning
5454 /// \param RH High bits of the RHS of the MUL. See LL for meaning.
5455 /// \returns true if the node has been expanded. false if it has not
5456 bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5457 SelectionDAG &DAG, MulExpansionKind Kind,
5458 SDValue LL = SDValue(), SDValue LH = SDValue(),
5459 SDValue RL = SDValue(), SDValue RH = SDValue()) const;
5460
5461 /// Attempt to expand an n-bit div/rem/divrem by constant using a n/2-bit
5462 /// urem by constant and other arithmetic ops. The n/2-bit urem by constant
5463 /// will be expanded by DAGCombiner. This is not possible for all constant
5464 /// divisors.
5465 /// \param N Node to expand
5466 /// \param Result A vector that will be filled with the lo and high parts of
5467 /// the results. For *DIVREM, this will be the quotient parts followed
5468 /// by the remainder parts.
5469 /// \param HiLoVT The value type to use for the Lo and Hi parts. Should be
5470 /// half of VT.
5471 /// \param LL Low bits of the LHS of the operation. You can use this
5472 /// parameter if you want to control how low bits are extracted from
5473 /// the LHS.
5474 /// \param LH High bits of the LHS of the operation. See LL for meaning.
5475 /// \returns true if the node has been expanded, false if it has not.
5476 bool expandDIVREMByConstant(SDNode *N, SmallVectorImpl<SDValue> &Result,
5477 EVT HiLoVT, SelectionDAG &DAG,
5478 SDValue LL = SDValue(),
5479 SDValue LH = SDValue()) const;
5480
5481 /// Expand funnel shift.
5482 /// \param N Node to expand
5483 /// \returns The expansion if successful, SDValue() otherwise
5484 SDValue expandFunnelShift(SDNode *N, SelectionDAG &DAG) const;
5485
5486 /// Expand rotations.
5487 /// \param N Node to expand
5488 /// \param AllowVectorOps expand vector rotate, this should only be performed
5489 /// if the legalization is happening outside of LegalizeVectorOps
5490 /// \returns The expansion if successful, SDValue() otherwise
5491 SDValue expandROT(SDNode *N, bool AllowVectorOps, SelectionDAG &DAG) const;
5492
5493 /// Expand shift-by-parts.
5494 /// \param N Node to expand
5495 /// \param Lo lower-output-part after conversion
5496 /// \param Hi upper-output-part after conversion
5497 void expandShiftParts(SDNode *N, SDValue &Lo, SDValue &Hi,
5498 SelectionDAG &DAG) const;
5499
5500 /// Expand float(f32) to SINT(i64) conversion
5501 /// \param N Node to expand
5502 /// \param Result output after conversion
5503 /// \returns True, if the expansion was successful, false otherwise
5504 bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
5505
5506 /// Expand float to UINT conversion
5507 /// \param N Node to expand
5508 /// \param Result output after conversion
5509 /// \param Chain output chain after conversion
5510 /// \returns True, if the expansion was successful, false otherwise
5511 bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain,
5512 SelectionDAG &DAG) const;
5513
5514 /// Expand UINT(i64) to double(f64) conversion
5515 /// \param N Node to expand
5516 /// \param Result output after conversion
5517 /// \param Chain output chain after conversion
5518 /// \returns True, if the expansion was successful, false otherwise
5519 bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain,
5520 SelectionDAG &DAG) const;
5521
5522 /// Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
5523 SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const;
5524
5525 /// Expand fminimum/fmaximum into multiple comparison with selects.
5526 SDValue expandFMINIMUM_FMAXIMUM(SDNode *N, SelectionDAG &DAG) const;
5527
5528 /// Expand fminimumnum/fmaximumnum into multiple comparison with selects.
5529 SDValue expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *N, SelectionDAG &DAG) const;
5530
5531 /// Expand FP_TO_[US]INT_SAT into FP_TO_[US]INT and selects or min/max.
5532 /// \param N Node to expand
5533 /// \returns The expansion result
5534 SDValue expandFP_TO_INT_SAT(SDNode *N, SelectionDAG &DAG) const;
5535
5536 /// Truncate Op to ResultVT. If the result is exact, leave it alone. If it is
5537 /// not exact, force the result to be odd.
5538 /// \param ResultVT The type of result.
5539 /// \param Op The value to round.
5540 /// \returns The expansion result
5541 SDValue expandRoundInexactToOdd(EVT ResultVT, SDValue Op, const SDLoc &DL,
5542 SelectionDAG &DAG) const;
5543
5544 /// Expand round(fp) to fp conversion
5545 /// \param N Node to expand
5546 /// \returns The expansion result
5547 SDValue expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const;
5548
5549 /// Expand check for floating point class.
5550 /// \param ResultVT The type of intrinsic call result.
5551 /// \param Op The tested value.
5552 /// \param Test The test to perform.
5553 /// \param Flags The optimization flags.
5554 /// \returns The expansion result or SDValue() if it fails.
5555 SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test,
5556 SDNodeFlags Flags, const SDLoc &DL,
5557 SelectionDAG &DAG) const;
5558
5559 /// Expand CTPOP nodes. Expands vector/scalar CTPOP nodes,
5560 /// vector nodes can only succeed if all operations are legal/custom.
5561 /// \param N Node to expand
5562 /// \returns The expansion result or SDValue() if it fails.
5563 SDValue expandCTPOP(SDNode *N, SelectionDAG &DAG) const;
5564
5565 /// Expand VP_CTPOP nodes.
5566 /// \returns The expansion result or SDValue() if it fails.
5567 SDValue expandVPCTPOP(SDNode *N, SelectionDAG &DAG) const;
5568
5569 /// Expand CTLZ/CTLZ_ZERO_UNDEF nodes. Expands vector/scalar CTLZ nodes,
5570 /// vector nodes can only succeed if all operations are legal/custom.
5571 /// \param N Node to expand
5572 /// \returns The expansion result or SDValue() if it fails.
5573 SDValue expandCTLZ(SDNode *N, SelectionDAG &DAG) const;
5574
5575 /// Expand VP_CTLZ/VP_CTLZ_ZERO_UNDEF nodes.
5576 /// \param N Node to expand
5577 /// \returns The expansion result or SDValue() if it fails.
5578 SDValue expandVPCTLZ(SDNode *N, SelectionDAG &DAG) const;
5579
5580 /// Expand CTTZ via Table Lookup.
5581 /// \param N Node to expand
5582 /// \returns The expansion result or SDValue() if it fails.
5583 SDValue CTTZTableLookup(SDNode *N, SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5584 SDValue Op, unsigned NumBitsPerElt) const;
5585
5586 /// Expand CTTZ/CTTZ_ZERO_UNDEF nodes. Expands vector/scalar CTTZ nodes,
5587 /// vector nodes can only succeed if all operations are legal/custom.
5588 /// \param N Node to expand
5589 /// \returns The expansion result or SDValue() if it fails.
5590 SDValue expandCTTZ(SDNode *N, SelectionDAG &DAG) const;
5591
5592 /// Expand VP_CTTZ/VP_CTTZ_ZERO_UNDEF nodes.
5593 /// \param N Node to expand
5594 /// \returns The expansion result or SDValue() if it fails.
5595 SDValue expandVPCTTZ(SDNode *N, SelectionDAG &DAG) const;
5596
5597 /// Expand VP_CTTZ_ELTS/VP_CTTZ_ELTS_ZERO_UNDEF nodes.
5598 /// \param N Node to expand
5599 /// \returns The expansion result or SDValue() if it fails.
5600 SDValue expandVPCTTZElements(SDNode *N, SelectionDAG &DAG) const;
5601
5602 /// Expand VECTOR_FIND_LAST_ACTIVE nodes
5603 /// \param N Node to expand
5604 /// \returns The expansion result or SDValue() if it fails.
5605 SDValue expandVectorFindLastActive(SDNode *N, SelectionDAG &DAG) const;
5606
5607 /// Expand ABS nodes. Expands vector/scalar ABS nodes,
5608 /// vector nodes can only succeed if all operations are legal/custom.
5609 /// (ABS x) -> (XOR (ADD x, (SRA x, type_size)), (SRA x, type_size))
5610 /// \param N Node to expand
5611 /// \param IsNegative indicate negated abs
5612 /// \returns The expansion result or SDValue() if it fails.
5613 SDValue expandABS(SDNode *N, SelectionDAG &DAG,
5614 bool IsNegative = false) const;
5615
5616 /// Expand ABDS/ABDU nodes. Expands vector/scalar ABDS/ABDU nodes.
5617 /// \param N Node to expand
5618 /// \returns The expansion result or SDValue() if it fails.
5619 SDValue expandABD(SDNode *N, SelectionDAG &DAG) const;
5620
5621 /// Expand vector/scalar AVGCEILS/AVGCEILU/AVGFLOORS/AVGFLOORU nodes.
5622 /// \param N Node to expand
5623 /// \returns The expansion result or SDValue() if it fails.
5624 SDValue expandAVG(SDNode *N, SelectionDAG &DAG) const;
5625
5626 /// Expand BSWAP nodes. Expands scalar/vector BSWAP nodes with i16/i32/i64
5627 /// scalar types. Returns SDValue() if expand fails.
5628 /// \param N Node to expand
5629 /// \returns The expansion result or SDValue() if it fails.
5630 SDValue expandBSWAP(SDNode *N, SelectionDAG &DAG) const;
5631
5632 /// Expand VP_BSWAP nodes. Expands VP_BSWAP nodes with
5633 /// i16/i32/i64 scalar types. Returns SDValue() if expand fails. \param N Node
5634 /// to expand \returns The expansion result or SDValue() if it fails.
5635 SDValue expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const;
5636
5637 /// Expand BITREVERSE nodes. Expands scalar/vector BITREVERSE nodes.
5638 /// Returns SDValue() if expand fails.
5639 /// \param N Node to expand
5640 /// \returns The expansion result or SDValue() if it fails.
5641 SDValue expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const;
5642
5643 /// Expand VP_BITREVERSE nodes. Expands VP_BITREVERSE nodes with
5644 /// i8/i16/i32/i64 scalar types. \param N Node to expand \returns The
5645 /// expansion result or SDValue() if it fails.
5646 SDValue expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const;
5647
5648 /// Turn load of vector type into a load of the individual elements.
5649 /// \param LD load to expand
5650 /// \returns BUILD_VECTOR and TokenFactor nodes.
5651 std::pair<SDValue, SDValue> scalarizeVectorLoad(LoadSDNode *LD,
5652 SelectionDAG &DAG) const;
5653
5654 // Turn a store of a vector type into stores of the individual elements.
5655 /// \param ST Store with a vector value type
5656 /// \returns TokenFactor of the individual store chains.
5658
5659 /// Expands an unaligned load to 2 half-size loads for an integer, and
5660 /// possibly more for vectors.
5661 std::pair<SDValue, SDValue> expandUnalignedLoad(LoadSDNode *LD,
5662 SelectionDAG &DAG) const;
5663
5664 /// Expands an unaligned store to 2 half-size stores for integer values, and
5665 /// possibly more for vectors.
5666 SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const;
5667
5668 /// Increments memory address \p Addr according to the type of the value
5669 /// \p DataVT that should be stored. If the data is stored in compressed
5670 /// form, the memory address should be incremented according to the number of
5671 /// the stored elements. This number is equal to the number of '1's bits
5672 /// in the \p Mask.
5673 /// \p DataVT is a vector type. \p Mask is a vector value.
5674 /// \p DataVT and \p Mask have the same number of vector elements.
5675 SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL,
5676 EVT DataVT, SelectionDAG &DAG,
5677 bool IsCompressedMemory) const;
5678
5679 /// Get a pointer to vector element \p Idx located in memory for a vector of
5680 /// type \p VecVT starting at a base address of \p VecPtr. If \p Idx is out of
5681 /// bounds the returned pointer is unspecified, but will be within the vector
5682 /// bounds. \p PtrArithFlags can be used to mark that arithmetic within the
5683 /// vector in memory is known to not wrap or to be inbounds.
5684 SDValue getVectorElementPointer(
5685 SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, SDValue Index,
5686 const SDNodeFlags PtrArithFlags = SDNodeFlags()) const;
5687
5688 /// Get a pointer to vector element \p Idx located in memory for a vector of
5689 /// type \p VecVT starting at a base address of \p VecPtr. If \p Idx is out of
5690 /// bounds the returned pointer is unspecified, but will be within the vector
5691 /// bounds. \p VecPtr is guaranteed to point to the beginning of a memory
5692 /// location large enough for the vector.
5694 EVT VecVT, SDValue Index) const {
5695 return getVectorElementPointer(DAG, VecPtr, VecVT, Index,
5698 }
5699
5700 /// Get a pointer to a sub-vector of type \p SubVecVT at index \p Idx located
5701 /// in memory for a vector of type \p VecVT starting at a base address of
5702 /// \p VecPtr. If \p Idx plus the size of \p SubVecVT is out of bounds the
5703 /// returned pointer is unspecified, but the value returned will be such that
5704 /// the entire subvector would be within the vector bounds. \p PtrArithFlags
5705 /// can be used to mark that arithmetic within the vector in memory is known
5706 /// to not wrap or to be inbounds.
5707 SDValue
5708 getVectorSubVecPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT,
5709 EVT SubVecVT, SDValue Index,
5710 const SDNodeFlags PtrArithFlags = SDNodeFlags()) const;
5711
5712 /// Method for building the DAG expansion of ISD::[US][MIN|MAX]. This
5713 /// method accepts integers as its arguments.
5714 SDValue expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const;
5715
5716 /// Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT. This
5717 /// method accepts integers as its arguments.
5718 SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const;
5719
5720 /// Method for building the DAG expansion of ISD::[US]CMP. This
5721 /// method accepts integers as its arguments
5722 SDValue expandCMP(SDNode *Node, SelectionDAG &DAG) const;
5723
5724 /// Method for building the DAG expansion of ISD::[US]SHLSAT. This
5725 /// method accepts integers as its arguments.
5726 SDValue expandShlSat(SDNode *Node, SelectionDAG &DAG) const;
5727
5728 /// Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT]. This
5729 /// method accepts integers as its arguments.
5730 SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const;
5731
5732 /// Method for building the DAG expansion of ISD::[US]DIVFIX[SAT]. This
5733 /// method accepts integers as its arguments.
5734 /// Note: This method may fail if the division could not be performed
5735 /// within the type. Clients must retry with a wider type if this happens.
5736 SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
5738 unsigned Scale, SelectionDAG &DAG) const;
5739
5740 /// Method for building the DAG expansion of ISD::U(ADD|SUB)O. Expansion
5741 /// always suceeds and populates the Result and Overflow arguments.
5742 void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
5743 SelectionDAG &DAG) const;
5744
5745 /// Method for building the DAG expansion of ISD::S(ADD|SUB)O. Expansion
5746 /// always suceeds and populates the Result and Overflow arguments.
5747 void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
5748 SelectionDAG &DAG) const;
5749
5750 /// Method for building the DAG expansion of ISD::[US]MULO. Returns whether
5751 /// expansion was successful and populates the Result and Overflow arguments.
5752 bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow,
5753 SelectionDAG &DAG) const;
5754
5755 /// Calculate the product twice the width of LHS and RHS. If HiLHS/HiRHS are
5756 /// non-null they will be included in the multiplication. The expansion works
5757 /// by splitting the 2 inputs into 4 pieces that we can multiply and add
5758 /// together without neding MULH or MUL_LOHI.
5759 void forceExpandMultiply(SelectionDAG &DAG, const SDLoc &dl, bool Signed,
5761 SDValue HiLHS = SDValue(),
5762 SDValue HiRHS = SDValue()) const;
5763
5764 /// Calculate full product of LHS and RHS either via a libcall or through
5765 /// brute force expansion of the multiplication. The expansion works by
5766 /// splitting the 2 inputs into 4 pieces that we can multiply and add together
5767 /// without needing MULH or MUL_LOHI.
5768 void forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, bool Signed,
5769 const SDValue LHS, const SDValue RHS, SDValue &Lo,
5770 SDValue &Hi) const;
5771
5772 /// Expand a VECREDUCE_* into an explicit calculation. If Count is specified,
5773 /// only the first Count elements of the vector are used.
5774 SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const;
5775
5776 /// Expand a VECREDUCE_SEQ_* into an explicit ordered calculation.
5777 SDValue expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const;
5778
5779 /// Expand an SREM or UREM using SDIV/UDIV or SDIVREM/UDIVREM, if legal.
5780 /// Returns true if the expansion was successful.
5781 bool expandREM(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const;
5782
5783 /// Method for building the DAG expansion of ISD::VECTOR_SPLICE. This
5784 /// method accepts vectors as its arguments.
5785 SDValue expandVectorSplice(SDNode *Node, SelectionDAG &DAG) const;
5786
5787 /// Expand a vector VECTOR_COMPRESS into a sequence of extract element, store
5788 /// temporarily, advance store position, before re-loading the final vector.
5789 SDValue expandVECTOR_COMPRESS(SDNode *Node, SelectionDAG &DAG) const;
5790
5791 /// Expands PARTIAL_REDUCE_S/UMLA nodes to a series of simpler operations,
5792 /// consisting of zext/sext, extract_subvector, mul and add operations.
5793 SDValue expandPartialReduceMLA(SDNode *Node, SelectionDAG &DAG) const;
5794
5795 /// Expands a node with multiple results to an FP or vector libcall. The
5796 /// libcall is expected to take all the operands of the \p Node followed by
5797 /// output pointers for each of the results. \p CallRetResNo can be optionally
5798 /// set to indicate that one of the results comes from the libcall's return
5799 /// value.
5800 bool expandMultipleResultFPLibCall(
5801 SelectionDAG &DAG, RTLIB::Libcall LC, SDNode *Node,
5803 std::optional<unsigned> CallRetResNo = {}) const;
5804
5805 /// Legalize a SETCC or VP_SETCC with given LHS and RHS and condition code CC
5806 /// on the current target. A VP_SETCC will additionally be given a Mask
5807 /// and/or EVL not equal to SDValue().
5808 ///
5809 /// If the SETCC has been legalized using AND / OR, then the legalized node
5810 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
5811 /// will be set to false. This will also hold if the VP_SETCC has been
5812 /// legalized using VP_AND / VP_OR.
5813 ///
5814 /// If the SETCC / VP_SETCC has been legalized by using
5815 /// getSetCCSwappedOperands(), then the values of LHS and RHS will be
5816 /// swapped, CC will be set to the new condition, and NeedInvert will be set
5817 /// to false.
5818 ///
5819 /// If the SETCC / VP_SETCC has been legalized using the inverse condcode,
5820 /// then LHS and RHS will be unchanged, CC will set to the inverted condcode,
5821 /// and NeedInvert will be set to true. The caller must invert the result of
5822 /// the SETCC with SelectionDAG::getLogicalNOT() or take equivalent action to
5823 /// swap the effect of a true/false result.
5824 ///
5825 /// \returns true if the SETCC / VP_SETCC has been legalized, false if it
5826 /// hasn't.
5827 bool LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, SDValue &LHS,
5828 SDValue &RHS, SDValue &CC, SDValue Mask,
5829 SDValue EVL, bool &NeedInvert, const SDLoc &dl,
5830 SDValue &Chain, bool IsSignaling = false) const;
5831
5832 //===--------------------------------------------------------------------===//
5833 // Instruction Emitting Hooks
5834 //
5835
5836 /// This method should be implemented by targets that mark instructions with
5837 /// the 'usesCustomInserter' flag. These instructions are special in various
5838 /// ways, which require special support to insert. The specified MachineInstr
5839 /// is created but not inserted into any basic blocks, and this method is
5840 /// called to expand it into a sequence of instructions, potentially also
5841 /// creating new basic blocks and control flow.
5842 /// As long as the returned basic block is different (i.e., we created a new
5843 /// one), the custom inserter is free to modify the rest of \p MBB.
5844 virtual MachineBasicBlock *
5845 EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const;
5846
5847 /// This method should be implemented by targets that mark instructions with
5848 /// the 'hasPostISelHook' flag. These instructions must be adjusted after
5849 /// instruction selection by target hooks. e.g. To fill in optional defs for
5850 /// ARM 's' setting instructions.
5851 virtual void AdjustInstrPostInstrSelection(MachineInstr &MI,
5852 SDNode *Node) const;
5853
5854 /// If this function returns true, SelectionDAGBuilder emits a
5855 /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
5856 virtual bool useLoadStackGuardNode(const Module &M) const { return false; }
5857
5859 const SDLoc &DL) const {
5860 llvm_unreachable("not implemented for this target");
5861 }
5862
5863 /// Lower TLS global address SDNode for target independent emulated TLS model.
5864 virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
5865 SelectionDAG &DAG) const;
5866
5867 /// Expands target specific indirect branch for the case of JumpTable
5868 /// expansion.
5869 virtual SDValue expandIndirectJTBranch(const SDLoc &dl, SDValue Value,
5870 SDValue Addr, int JTI,
5871 SelectionDAG &DAG) const;
5872
5873 // seteq(x, 0) -> truncate(srl(ctlz(zext(x)), log2(#bits)))
5874 // If we're comparing for equality to zero and isCtlzFast is true, expose the
5875 // fact that this can be implemented as a ctlz/srl pair, so that the dag
5876 // combiner can fold the new nodes.
5877 SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const;
5878
5879 // Return true if `X & Y eq/ne 0` is preferable to `X & Y ne/eq Y`
5881 return true;
5882 }
5883
5884 // Expand vector operation by dividing it into smaller length operations and
5885 // joining their results. SDValue() is returned when expansion did not happen.
5886 SDValue expandVectorNaryOpBySplitting(SDNode *Node, SelectionDAG &DAG) const;
5887
5888 /// Replace an extraction of a load with a narrowed load.
5889 ///
5890 /// \param ResultVT type of the result extraction.
5891 /// \param InVecVT type of the input vector to with bitcasts resolved.
5892 /// \param EltNo index of the vector element to load.
5893 /// \param OriginalLoad vector load that to be replaced.
5894 /// \returns \p ResultVT Load on success SDValue() on failure.
5895 SDValue scalarizeExtractedVectorLoad(EVT ResultVT, const SDLoc &DL,
5896 EVT InVecVT, SDValue EltNo,
5897 LoadSDNode *OriginalLoad,
5898 SelectionDAG &DAG) const;
5899
5900private:
5901 SDValue foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
5902 const SDLoc &DL, DAGCombinerInfo &DCI) const;
5903 SDValue foldSetCCWithOr(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
5904 const SDLoc &DL, DAGCombinerInfo &DCI) const;
5905 SDValue foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
5906 const SDLoc &DL, DAGCombinerInfo &DCI) const;
5907
5908 SDValue optimizeSetCCOfSignedTruncationCheck(EVT SCCVT, SDValue N0,
5910 DAGCombinerInfo &DCI,
5911 const SDLoc &DL) const;
5912
5913 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
5914 SDValue optimizeSetCCByHoistingAndByConstFromLogicalShift(
5915 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
5916 DAGCombinerInfo &DCI, const SDLoc &DL) const;
5917
5918 SDValue prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5919 SDValue CompTargetNode, ISD::CondCode Cond,
5920 DAGCombinerInfo &DCI, const SDLoc &DL,
5921 SmallVectorImpl<SDNode *> &Created) const;
5922 SDValue buildUREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
5923 ISD::CondCode Cond, DAGCombinerInfo &DCI,
5924 const SDLoc &DL) const;
5925
5926 SDValue prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5927 SDValue CompTargetNode, ISD::CondCode Cond,
5928 DAGCombinerInfo &DCI, const SDLoc &DL,
5929 SmallVectorImpl<SDNode *> &Created) const;
5930 SDValue buildSREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
5931 ISD::CondCode Cond, DAGCombinerInfo &DCI,
5932 const SDLoc &DL) const;
5933};
5934
5935/// Given an LLVM IR type and return type attributes, compute the return value
5936/// EVTs and flags, and optionally also the offsets, if the return value is
5937/// being lowered to memory.
5938LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
5939 AttributeList attr,
5940 SmallVectorImpl<ISD::OutputArg> &Outs,
5941 const TargetLowering &TLI, const DataLayout &DL);
5942
5943} // end namespace llvm
5944
5945#endif // LLVM_CODEGEN_TARGETLOWERING_H
unsigned const MachineRegisterInfo * MRI
return SDValue()
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
Function Alias Analysis Results
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
block Block Frequency Analysis
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
Definition CSEInfo.cpp:27
#define LLVM_ABI
Definition Compiler.h:213
#define LLVM_READONLY
Definition Compiler.h:322
This file defines the DenseMap class.
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, const APInt &Demanded)
Check to see if the specified operand of the specified instruction is a constant integer.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define RegName(no)
lazy value info
Implement a low-level type suitable for MachineInstr level instruction selection.
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t High
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
static SDValue scalarizeVectorStore(StoreSDNode *Store, MVT StoreVT, SelectionDAG &DAG)
Scalarize a vector store, bitcasting to TargetVT to determine the scalar type.
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition APInt.h:78
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1489
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
bool isFloatingPointOperation() const
BinOp getOperation() const
This class holds the attributes for a particular argument, parameter, function, or return value.
Definition Attributes.h:361
LLVM_ABI bool getValueAsBool() const
Return the attribute's value as a boolean.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
CCState - This class holds information needed while lowering arguments and return values.
CCValAssign - Represent assignment of one arg/retval to a location.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
This class represents a function call, abstracting a target machine's calling convention.
This is the shared class of boolean and integer constants.
Definition Constants.h:87
This class represents a range of values.
This is an important base class in LLVM.
Definition Constant.h:43
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
unsigned size() const
Definition DenseMap.h:110
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
Definition FastISel.h:66
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
Class to represent function types.
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
bool isVarArg() const
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
Definition Function.cpp:765
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
A wrapper class for inspecting calls to intrinsic functions.
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
An instruction for reading from memory.
This class is used to represent ISD::LOAD nodes.
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
Context object for machine code objects.
Definition MCContext.h:83
Base class for the full range of assembler expressions which are needed for parsing.
Definition MCExpr.h:34
Machine Value Type.
@ INVALID_SIMPLE_VALUE_TYPE
SimpleValueType SimpleTy
uint64_t getScalarSizeInBits() const
bool isInteger() const
Return true if this is an integer or a vector integer type.
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
ElementCount getVectorElementCount() const
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
bool isValid() const
Return true if this is a valid simple valuetype.
static MVT getIntegerVT(unsigned BitWidth)
Instructions::iterator instr_iterator
Representation of each machine instruction.
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
This is an abstract virtual class for memory operations.
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition ArrayRef.h:298
A discriminated union of two or more pointer types, with the discriminator in the low bit of the poin...
Analysis providing profile information.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
bool hasOneUse() const
Return true if there is exactly one use of this node.
bool use_empty() const
Return true if there are no uses of this node.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
EVT getValueType() const
Return the ValueType of the referenced return value.
const SDValue & getOperand(unsigned i) const
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
const DataLayout & getDataLayout() const
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVMContext * getContext() const
This instruction constructs a fixed permutation of two input vectors.
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Multiway switch.
TargetInstrInfo - Interface to description of machine instruction set.
Provides information about what library functions are available for the current target.
ArgListEntry(Value *Val, SDValue Node=SDValue())
ArgListEntry(Value *Val, SDValue Node, Type *Ty)
Type * Ty
Same as OrigTy, or partially legalized for soft float libcalls.
Type * OrigTy
Original unlegalized argument type.
LegalizeTypeAction getTypeAction(MVT VT) const
void setTypeAction(MVT VT, LegalizeTypeAction Action)
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
virtual Value * emitStoreConditional(IRBuilderBase &Builder, Value *Val, Value *Addr, AtomicOrdering Ord) const
Perform a store-conditional operation to Addr.
virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT) const
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
bool isOperationExpand(unsigned Op, EVT VT) const
Return true if the specified operation is illegal on this target or unlikely to be made legal with cu...
EVT getMemValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
virtual bool enableAggressiveFMAFusion(LLT Ty) const
Return true if target always benefits from combining into FMA for a given value type.
virtual void emitBitTestAtomicRMWIntrinsic(AtomicRMWInst *AI) const
Perform a bit test atomicrmw using a target-specific intrinsic.
void setOperationAction(ArrayRef< unsigned > Ops, ArrayRef< MVT > VTs, LegalizeAction Action)
virtual bool requiresUniformRegister(MachineFunction &MF, const Value *) const
Allows target to decide about the register class of the specific value that is live outside the defin...
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
virtual unsigned getVaListSizeInBits(const DataLayout &DL) const
Returns the size of the platform's va_list object.
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual bool preferSextInRegOfTruncate(EVT TruncVT, EVT VT, EVT ExtVT) const
virtual bool decomposeMulByConstant(LLVMContext &Context, EVT VT, SDValue C) const
Return true if it is profitable to transform an integer multiplication-by-constant into simpler opera...
void setMaxDivRemBitWidthSupported(unsigned SizeInBits)
Set the size in bits of the maximum div/rem the backend supports.
virtual bool hasAndNot(SDValue X) const
Return true if the target has a bitwise and-not operation: X = ~A & B This can be used to simplify se...
ReciprocalEstimate
Reciprocal estimate status values used by the functions below.
bool PredictableSelectIsExpensive
Tells the code generator that select is more expensive than a branch if the branch is usually predict...
virtual bool isShuffleMaskLegal(ArrayRef< int >, EVT) const
Targets can use this to indicate that they only support some VECTOR_SHUFFLE operations,...
virtual bool enableAggressiveFMAFusion(EVT VT) const
Return true if target always benefits from combining into FMA for a given value type.
virtual bool isComplexDeinterleavingOperationSupported(ComplexDeinterleavingOperation Operation, Type *Ty) const
Does this target support complex deinterleaving with the given operation and type.
virtual bool shouldRemoveRedundantExtend(SDValue Op) const
Return true (the default) if it is profitable to remove a sext_inreg(x) where the sext is redundant,...
bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const
Return true if the specified indexed load is legal on this target.
SDValue promoteTargetBoolean(SelectionDAG &DAG, SDValue Bool, EVT ValVT) const
Promote the given target boolean to a target boolean of the given type.
virtual bool isFMADLegal(const SelectionDAG &DAG, const SDNode *N) const
Returns true if be combined with to form an ISD::FMAD.
virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT, std::optional< unsigned > ByteOffset=std::nullopt) const
Return true if it is profitable to reduce a load to a smaller type.
virtual bool hasStandaloneRem(EVT VT) const
Return true if the target can handle a standalone remainder operation.
virtual bool isExtFreeImpl(const Instruction *I) const
Return true if the extension represented by I is free.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
LegalizeAction
This enum indicates whether operations are valid for a target, and if not, what action should be used...
virtual bool shouldExpandBuildVectorWithShuffles(EVT, unsigned DefinedValues) const
LegalizeAction getIndexedMaskedStoreAction(unsigned IdxMode, MVT VT) const
Return how the indexed store should be treated: either it is legal, needs to be promoted to a larger ...
virtual bool canCombineTruncStore(EVT ValVT, EVT MemVT, bool LegalOnly) const
virtual bool isSelectSupported(SelectSupportKind) const
CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const
Get the CallingConv that should be used for the specified libcall.
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual bool isEqualityCmpFoldedWithSignedCmp() const
Return true if instruction generated for equality comparison is folded with instruction generated for...
virtual bool preferSelectsOverBooleanArithmetic(EVT VT) const
Should we prefer selects to doing arithmetic on boolean types.
virtual bool useStackGuardXorFP() const
If this function returns true, stack protection checks should XOR the frame pointer (or whichever poi...
virtual bool isLegalICmpImmediate(int64_t) const
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
virtual bool convertSetCCLogicToBitwiseLogic(EVT VT) const
Use bitwise logic to make pairs of compares more efficient.
void setAtomicLoadExtAction(ArrayRef< unsigned > ExtTypes, MVT ValVT, ArrayRef< MVT > MemVTs, LegalizeAction Action)
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
virtual bool shouldFormOverflowOp(unsigned Opcode, EVT VT, bool MathUsed) const
Try to convert math with an overflow comparison into the corresponding DAG node operation.
ShiftLegalizationStrategy
Return the preferred strategy to legalize tihs SHIFT instruction, with ExpansionFactor being the recu...
virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const
Return true if folding a vector load into ExtVal (a sign, zero, or any extend node) is profitable.
virtual bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const
Return if the target supports combining a chain like:
virtual Value * createComplexDeinterleavingIR(IRBuilderBase &B, ComplexDeinterleavingOperation OperationType, ComplexDeinterleavingRotation Rotation, Value *InputA, Value *InputB, Value *Accumulator=nullptr) const
Create the IR node for the given complex deinterleaving operation.
virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const
Return true if it is beneficial to convert a load of a constant to just the constant itself.
virtual bool isSupportedFixedPointOperation(unsigned Op, EVT VT, unsigned Scale) const
Custom method defined by each target to indicate if an operation which may require a scale is support...
void setLoadExtAction(ArrayRef< unsigned > ExtTypes, MVT ValVT, MVT MemVT, LegalizeAction Action)
virtual bool shouldOptimizeMulOverflowWithZeroHighBits(LLVMContext &Context, EVT VT) const
virtual Sched::Preference getSchedulingPreference(SDNode *) const
Some scheduler, e.g.
virtual MachineInstr * EmitKCFICheck(MachineBasicBlock &MBB, MachineBasicBlock::instr_iterator &MBBI, const TargetInstrInfo *TII) const
void setMinStackArgumentAlignment(Align Alignment)
Set the minimum stack alignment of an argument.
bool isExtLoad(const LoadInst *Load, const Instruction *Ext, const DataLayout &DL) const
Return true if Load and Ext can form an ExtLoad.
LegalizeTypeAction getTypeAction(MVT VT) const
virtual bool isLegalScaleForGatherScatter(uint64_t Scale, uint64_t ElemSize) const
EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
virtual bool shouldInsertFencesForAtomic(const Instruction *I) const
Whether AtomicExpandPass should automatically insert fences and reduce ordering for this atomic.
virtual AtomicOrdering atomicOperationOrderAfterFenceSplit(const Instruction *I) const
MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
virtual bool allowsMisalignedMemoryAccesses(LLT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
LLT handling variant.
virtual bool isSafeMemOpType(MVT) const
Returns true if it's safe to use load / store of the specified type to expand memcpy / memset inline.
virtual void emitExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) const
Perform a cmpxchg expansion using a target-specific method.
virtual CondMergingParams getJumpConditionMergingParams(Instruction::BinaryOps, const Value *, const Value *) const
virtual ISD::NodeType getExtendForAtomicRMWArg(unsigned Op) const
Returns how the platform's atomic rmw operations expect their input argument to be extended (ZERO_EXT...
const TargetMachine & getTargetMachine() const
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
bool rangeFitsInWord(const APInt &Low, const APInt &High, const DataLayout &DL) const
Check whether the range [Low,High] fits in a machine word.
virtual bool isCtpopFast(EVT VT) const
Return true if ctpop instruction is fast.
virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
unsigned MaxGluedStoresPerMemcpy
Specify max number of store instructions to glue in inlined memcpy.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
bool isPaddedAtMostSignificantBitsWhenStored(EVT VT) const
Indicates if any padding is guaranteed to go at the most significant bits when storing the type to me...
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
Convenience method to set an operation to Promote and specify the type in a single call.
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
unsigned getMinCmpXchgSizeInBits() const
Returns the size of the smallest cmpxchg or ll/sc instruction the backend supports.
virtual Value * emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const
Perform a masked atomicrmw using a target-specific intrinsic.
virtual bool areJTsAllowed(const Function *Fn) const
Return true if lowering to a jump table is allowed.
bool enableExtLdPromotion() const
Return true if the target wants to use the optimization that turns ext(promotableInst1(....
virtual bool isFPExtFoldable(const MachineInstr &MI, unsigned Opcode, LLT DestTy, LLT SrcTy) const
Return true if an fpext operation input to an Opcode operation is free (for instance,...
void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked load does or does not work with the specified type and ind...
void setMaxBytesForAlignment(unsigned MaxBytes)
bool isOperationLegalOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal using promotion.
void setHasExtractBitsInsn(bool hasExtractInsn=true)
Tells the code generator that the target has BitExtract instructions.
void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth)
Tells the code generator which bitwidths to bypass.
virtual bool hasBitTest(SDValue X, SDValue Y) const
Return true if the target has a bit-test instruction: (X & (1 << Y)) ==/!= 0 This knowledge can be us...
MVT getRegisterType(LLVMContext &Context, EVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual bool needsFixedCatchObjects() const
EVT getLegalTypeToTransformTo(LLVMContext &Context, EVT VT) const
Perform getTypeToTransformTo repeatedly until a legal type is obtained.
virtual Value * emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy, Value *Addr, AtomicOrdering Ord) const
Perform a load-linked operation on Addr, returning a "Value *" with the corresponding pointee type.
void setMaxLargeFPConvertBitWidthSupported(unsigned SizeInBits)
Set the size in bits of the maximum fp to/from int conversion the backend supports.
virtual unsigned getNumRegisters(LLVMContext &Context, EVT VT, std::optional< MVT > RegisterVT=std::nullopt) const
Return the number of registers that this ValueType will eventually require.
virtual bool isCheapToSpeculateCttz(Type *Ty) const
Return true if it is cheap to speculate a call to intrinsic cttz.
unsigned getMinimumBitTestCmps() const
Retuen the minimum of largest number of comparisons in BitTest.
bool isJumpExpensive() const
Return true if Flow Control is an expensive operation that should be avoided.
virtual bool useFPRegsForHalfType() const
LegalizeAction getCondCodeAction(ISD::CondCode CC, MVT VT) const
Return how the condition code should be treated: either it is legal, needs to be expanded to some oth...
bool hasExtractBitsInsn() const
Return true if the target has BitExtract instructions.
bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const
Return true if the specified store with truncation is legal on this target.
virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: fold (conv (load x)) -> (load (conv*)x) On arch...
LegalizeAction getIndexedStoreAction(unsigned IdxMode, MVT VT) const
Return how the indexed store should be treated: either it is legal, needs to be promoted to a larger ...
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed load does or does not work with the specified type and indicate w...
CallingConv::ID getLibcallImplCallingConv(RTLIB::LibcallImpl Call) const
Get the CallingConv that should be used for the specified libcall implementation.
unsigned getMaxStoresPerMemcpy(bool OptSize) const
Get maximum # of store operations permitted for llvm.memcpy.
void setPrefLoopAlignment(Align Alignment)
Set the target's preferred loop alignment.
virtual bool softPromoteHalfType() const
virtual bool areTwoSDNodeTargetMMOFlagsMergeable(const MemSDNode &NodeX, const MemSDNode &NodeY) const
Return true if it is valid to merge the TargetMMOFlags in two SDNodes.
virtual bool isCommutativeBinOp(unsigned Opcode) const
Returns true if the opcode is a commutative binary operation.
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
virtual bool isFPImmLegal(const APFloat &, EVT, bool ForCodeSize=false) const
Returns true if the target can instruction select the specified FP immediate natively.
virtual unsigned getPreferredFPToIntOpcode(unsigned Op, EVT FromVT, EVT ToVT) const
virtual bool isExtractVecEltCheap(EVT VT, unsigned Index) const
Return true if extraction of a scalar element from the given vector type at the given index is cheap.
void setOperationAction(ArrayRef< unsigned > Ops, MVT VT, LegalizeAction Action)
virtual bool optimizeFMulOrFDivAsShiftAddBitcast(SDNode *N, SDValue FPConst, SDValue IntPow2) const
SelectSupportKind
Enum that describes what type of support for selects the target has.
RTLIB::LibcallImpl getMemcpyImpl() const
LegalizeAction getIndexedLoadAction(unsigned IdxMode, MVT VT) const
Return how the indexed load should be treated: either it is legal, needs to be promoted to a larger s...
virtual bool shouldTransformSignedTruncationCheck(EVT XVT, unsigned KeptBits) const
Should we tranform the IR-optimal check for whether given truncation down into KeptBits would be trun...
virtual bool isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode, EVT DestVT, EVT SrcVT) const
Return true if an fpext operation input to an Opcode operation is free (for instance,...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const
Return true if a truncation from FromTy to ToTy is permitted when deciding whether a call is in tail ...
void setAtomicLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Let target indicate that an extending atomic load of the specified type is legal.
virtual bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const
Returns true if the index type for a masked gather/scatter requires extending.
virtual unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Certain targets such as MIPS require that some types such as vectors are always broken down into scal...
virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context, EVT VT) const
Returns true if we should normalize select(N0&N1, X, Y) => select(N0, select(N1, X,...
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
virtual StringRef getStackProbeSymbolName(const MachineFunction &MF) const
LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT, unsigned Scale) const
Some fixed point operations may be natively supported by the target but only for specific scales.
virtual bool preferScalarizeSplat(SDNode *N) const
bool isIndexedMaskedLoadLegal(unsigned IdxMode, EVT VT) const
Return true if the specified indexed load is legal on this target.
virtual ISD::NodeType getExtendForAtomicOps() const
Returns how the platform's atomic operations are extended (ZERO_EXTEND, SIGN_EXTEND,...
Sched::Preference getSchedulingPreference() const
Return target scheduling preference.
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
virtual LLT getOptimalMemOpLLT(const MemOp &Op, const AttributeList &) const
LLT returning variant.
void setMinFunctionAlignment(Align Alignment)
Set the target's minimum function alignment.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
virtual void emitExpandAtomicRMW(AtomicRMWInst *AI) const
Perform a atomicrmw expansion using a target-specific way.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
virtual bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const
Return true if it is profitable to convert a select of FP constants into a constant pool load whose a...
bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const
When splitting a value of the specified type into parts, does the Lo or Hi part come first?
virtual bool hasStackProbeSymbol(const MachineFunction &MF) const
Returns the name of the symbol used to emit stack probes or the empty string if not applicable.
bool isSlowDivBypassed() const
Returns true if target has indicated at least one type should be bypassed.
virtual Align getABIAlignmentForCallingConv(Type *ArgTy, const DataLayout &DL) const
Certain targets have context sensitive alignment requirements, where one type has the alignment requi...
virtual bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, unsigned Index) const
Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type from this source type with ...
virtual bool isMulAddWithConstProfitable(SDValue AddNode, SDValue ConstNode) const
Return true if it may be profitable to transform (mul (add x, c1), c2) -> (add (mul x,...
virtual bool shouldExtendTypeInLibCall(EVT Type) const
Returns true if arguments should be extended in lib calls.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
bool isPartialReduceMLALegalOrCustom(unsigned Opc, EVT AccVT, EVT InputVT) const
Return true if a PARTIAL_REDUCE_U/SMLA node with the specified types is legal or custom for this targ...
virtual bool isFsqrtCheap(SDValue X, SelectionDAG &DAG) const
Return true if SQRT(X) shouldn't be replaced with X*RSQRT(X).
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
bool isSuitableForBitTests(const DenseMap< const BasicBlock *, unsigned int > &DestCmps, const APInt &Low, const APInt &High, const DataLayout &DL) const
Return true if lowering to a bit test is suitable for a set of case clusters which contains NumDests ...
virtual bool shouldExpandGetActiveLaneMask(EVT VT, EVT OpVT) const
Return true if the @llvm.get.active.lane.mask intrinsic should be expanded using generic code in Sele...
virtual bool shallExtractConstSplatVectorElementToStore(Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const
Return true if the target shall perform extract vector element and store given that the vector is kno...
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual bool hasMultipleConditionRegisters(EVT VT) const
Does the target have multiple (allocatable) condition registers that can be used to store the results...
virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallBase &, MachineFunction &, unsigned) const
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
unsigned getMaxExpandSizeMemcmp(bool OptSize) const
Get maximum # of load operations permitted for memcmp.
bool isStrictFPEnabled() const
Return true if the target support strict float operation.
virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const
Return true if creating a shift of the type by the given amount is not profitable.
virtual bool shouldPreservePtrArith(const Function &F, EVT PtrVT) const
True if target has some particular form of dealing with pointer arithmetic semantics for pointers wit...
virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const
Return true if an fpext operation is free (for instance, because single-precision floating-point numb...
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
virtual bool lowerInterleavedStore(Instruction *Store, Value *Mask, ShuffleVectorInst *SVI, unsigned Factor, const APInt &GapMask) const
Lower an interleaved store to target specific intrinsics.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
virtual bool shouldFoldSelectWithSingleBitTest(EVT VT, const APInt &AndMask) const
MVT getSimpleValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the MVT corresponding to this LLVM type. See getValueType.
BooleanContent getBooleanContents(bool isVec, bool isFloat) const
For targets without i1 registers, this gives the nature of the high-bits of boolean values held in ty...
virtual bool shouldReassociateReduction(unsigned RedOpc, EVT VT) const
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal for a comparison of the specified types on this ...
virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx, unsigned &Cost) const
Return true if the target can combine store(extractelement VectorTy,Idx).
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
LegalizeAction getAtomicLoadExtAction(unsigned ExtType, EVT ValVT, EVT MemVT) const
Same as getLoadExtAction, but for atomic loads.
virtual bool shouldFoldConstantShiftPairToMask(const SDNode *N) const
Return true if it is profitable to fold a pair of shifts into a mask.
MVT getProgramPointerTy(const DataLayout &DL) const
Return the type for code pointers, which is determined by the program address space specified through...
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed store does or does not work with the specified type and indicate ...
virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilderBase &Builder) const
void setSupportsUnalignedAtomics(bool UnalignedSupported)
Sets whether unaligned atomic operations are supported.
void setLoadExtAction(ArrayRef< unsigned > ExtTypes, MVT ValVT, ArrayRef< MVT > MemVTs, LegalizeAction Action)
virtual void emitExpandAtomicStore(StoreInst *SI) const
Perform a atomic store using a target-specific way.
virtual bool preferIncOfAddToSubOfNot(EVT VT) const
These two forms are equivalent: sub y, (xor x, -1) add (add x, 1), y The variant with two add's is IR...
virtual bool ShouldShrinkFPConstant(EVT) const
If true, then instruction selection should seek to shrink the FP constant of the specified type to a ...
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
void setPrefFunctionAlignment(Align Alignment)
Set the target's preferred function alignment.
unsigned getMaxDivRemBitWidthSupported() const
Returns the size in bits of the maximum div/rem the backend supports.
virtual bool isLegalAddImmediate(int64_t) const
Return true if the specified immediate is legal add immediate, that is the target has add instruction...
virtual unsigned getMaxSupportedInterleaveFactor() const
Get the maximum supported factor for interleaved memory accesses.
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const
Return how this store with truncation should be treated: either it is legal, needs to be promoted to ...
virtual bool shouldKeepZExtForFP16Conv() const
Does this target require the clearing of high-order bits in a register passed to the fp16 to fp conve...
virtual AtomicExpansionKind shouldCastAtomicRMWIInIR(AtomicRMWInst *RMWI) const
Returns how the given atomic atomicrmw should be cast by the IR-level AtomicExpand pass.
void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked store does or does not work with the specified type and in...
virtual bool canTransformPtrArithOutOfBounds(const Function &F, EVT PtrVT) const
True if the target allows transformations of in-bounds pointer arithmetic that cause out-of-bounds in...
virtual bool shouldConsiderGEPOffsetSplit() const
const ValueTypeActionImpl & getValueTypeActions() const
virtual AtomicExpansionKind shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const
Returns how the given atomic cmpxchg should be expanded by the IR-level AtomicExpand pass.
TargetLoweringBase(const TargetMachine &TM, const TargetSubtargetInfo &STI)
NOTE: The TargetMachine owns TLOF.
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
virtual bool isTruncateFree(SDValue Val, EVT VT2) const
Return true if truncating the specific node Val to type VT2 is free.
virtual bool shouldExpandVectorMatch(EVT VT, unsigned SearchSize) const
Return true if the @llvm.experimental.vector.match intrinsic should be expanded for vector type ‘VT’ ...
virtual bool isProfitableToCombineMinNumMaxNum(EVT VT) const
virtual unsigned getCustomCtpopCost(EVT VT, ISD::CondCode Cond) const
Return the maximum number of "x & (x - 1)" operations that can be done instead of deferring to a cust...
virtual bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, unsigned OldShiftOpcode, unsigned NewShiftOpcode, SelectionDAG &DAG) const
Given the pattern (X & (C l>>/<< Y)) ==/!= 0 return true if it should be transformed into: ((X <</l>>...
virtual bool isFNegFree(EVT VT) const
Return true if an fneg operation is free to the point where it is never worthwhile to replace it with...
void setPartialReduceMLAAction(unsigned Opc, MVT AccVT, MVT InputVT, LegalizeAction Action)
Indicate how a PARTIAL_REDUCE_U/SMLA node with Acc type AccVT and Input type InputVT should be treate...
LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return how this load with extension should be treated: either it is legal, needs to be promoted to a ...
virtual bool shouldInsertTrailingFenceForAtomicStore(const Instruction *I) const
Whether AtomicExpandPass should automatically insert a trailing fence without reducing the ordering f...
virtual AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const
Returns how the given (atomic) load should be expanded by the IR-level AtomicExpand pass.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
bool isExtFree(const Instruction *I) const
Return true if the extension represented by I is free.
virtual MVT getFenceOperandTy(const DataLayout &DL) const
Return the type for operands of fence.
virtual Value * emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const
Perform a masked cmpxchg using a target-specific intrinsic.
virtual bool isZExtFree(EVT FromTy, EVT ToTy) const
virtual ISD::NodeType getExtendForAtomicCmpSwapArg() const
Returns how the platform's atomic compare and swap expects its comparison value to be extended (ZERO_...
virtual bool shouldFoldSelectWithIdentityConstant(unsigned BinOpcode, EVT VT, unsigned SelectOpcode, SDValue X, SDValue Y) const
Return true if pulling a binary operation into a select with an identity constant is profitable.
BooleanContent
Enum that describes how the target represents true/false values.
virtual bool shouldExpandGetVectorLength(EVT CountVT, unsigned VF, bool IsScalable) const
virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const
Return true if integer divide is usually cheaper than a sequence of several shifts,...
virtual ShiftLegalizationStrategy preferredShiftLegalizationStrategy(SelectionDAG &DAG, SDNode *N, unsigned ExpansionFactor) const
virtual uint8_t getRepRegClassCostFor(MVT VT) const
Return the cost of the 'representative' register class for the specified value type.
virtual bool isZExtFree(LLT FromTy, LLT ToTy, LLVMContext &Ctx) const
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
LegalizeAction getPartialReduceMLAAction(unsigned Opc, EVT AccVT, EVT InputVT) const
Return how a PARTIAL_REDUCE_U/SMLA node with Acc type AccVT and Input type InputVT should be treated.
bool isPredictableSelectExpensive() const
Return true if selects are only cheaper than branches if the branch is unlikely to be predicted right...
virtual bool mergeStoresAfterLegalization(EVT MemVT) const
Allow store merging for the specified type after legalization in addition to before legalization.
virtual bool shouldMergeStoreOfLoadsOverCall(EVT, EVT) const
Returns true if it's profitable to allow merging store of loads when there are functions calls betwee...
RTLIB::LibcallImpl getSupportedLibcallImpl(StringRef FuncName) const
Check if this is valid libcall for the current module, otherwise RTLIB::Unsupported.
unsigned getMaxStoresPerMemmove(bool OptSize) const
Get maximum # of store operations permitted for llvm.memmove.
virtual bool isProfitableToHoist(Instruction *I) const
unsigned getGatherAllAliasesMaxDepth() const
virtual LegalizeAction getCustomOperationAction(SDNode &Op) const
How to legalize this custom operation?
virtual bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *) const
IR version.
virtual bool hasAndNotCompare(SDValue Y) const
Return true if the target should transform: (X & Y) == Y ---> (~X & Y) == 0 (X & Y) !...
virtual bool storeOfVectorConstantIsCheap(bool IsZero, EVT MemVT, unsigned NumElem, unsigned AddrSpace) const
Return true if it is expected to be cheaper to do a store of vector constant with the given size and ...
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
virtual MVT hasFastEqualityCompare(unsigned NumBits) const
Return the preferred operand type if the target has a quick way to compare integer values of the give...
virtual const TargetRegisterClass * getRepRegClassFor(MVT VT) const
Return the 'representative' register class for the specified value type.
virtual bool isNarrowingProfitable(SDNode *N, EVT SrcVT, EVT DestVT) const
Return true if it's profitable to narrow operations of type SrcVT to DestVT.
virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const
Return true if it is cheaper to split the store of a merged int val from a pair of smaller values int...
bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal or custom on this target.
TargetLoweringBase(const TargetLoweringBase &)=delete
virtual unsigned getMaxGluedStoresPerMemcpy() const
Get maximum # of store operations to be glued together.
bool isAtomicLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified atomic load with extension is legal on this target.
virtual bool isBinOp(unsigned Opcode) const
Return true if the node is a math/logic binary operator.
virtual bool shouldFoldMaskToVariableShiftPair(SDValue X) const
There are two ways to clear extreme bits (either low or high): Mask: x & (-1 << y) (the instcombine c...
virtual bool alignLoopsWithOptSize() const
Should loops be aligned even when the function is marked OptSize (but not MinSize).
unsigned getMaxAtomicSizeInBitsSupported() const
Returns the maximum atomic operation size (in bits) supported by the backend.
bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const
Return true if the specified indexed load is legal on this target.
void setMinCmpXchgSizeInBits(unsigned SizeInBits)
Sets the minimum cmpxchg or ll/sc size supported by the backend.
virtual bool canMergeStoresTo(unsigned AS, EVT MemVT, const MachineFunction &MF) const
Returns if it's reasonable to merge stores to MemVT size.
void setPartialReduceMLAAction(ArrayRef< unsigned > Opcodes, MVT AccVT, MVT InputVT, LegalizeAction Action)
LegalizeAction getStrictFPOperationAction(unsigned Op, EVT VT) const
void setStackPointerRegisterToSaveRestore(Register R)
If set to a physical register, this specifies the register that llvm.savestack/llvm....
virtual bool preferABDSToABSWithNSW(EVT VT) const
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
virtual bool getAddrModeArguments(const IntrinsicInst *, SmallVectorImpl< Value * > &, Type *&) const
CodeGenPrepare sinks address calculations into the same BB as Load/Store instructions reading the add...
bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal on this target.
virtual bool hasInlineStackProbe(const MachineFunction &MF) const
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, MVT VT, LegalizeAction Action)
Indicate that the specified condition code is or isn't supported on the target and indicate what to d...
void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
const DenseMap< unsigned int, unsigned int > & getBypassSlowDivWidths() const
Returns map of slow types for division or remainder with corresponding fast types.
void setOperationPromotedToType(ArrayRef< unsigned > Ops, MVT OrigVT, MVT DestVT)
unsigned getMaxLargeFPConvertBitWidthSupported() const
Returns the size in bits of the maximum fp to/from int conversion the backend supports.
virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, LLT) const
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const
virtual bool isCheapToSpeculateCtlz(Type *Ty) const
Return true if it is cheap to speculate a call to intrinsic ctlz.
virtual bool shouldExpandCttzElements(EVT VT) const
Return true if the @llvm.experimental.cttz.elts intrinsic should be expanded using generic code in Se...
virtual bool signExtendConstant(const ConstantInt *C) const
Return true if this constant should be sign extended when promoting to a larger type.
virtual bool lowerInterleaveIntrinsicToStore(Instruction *Store, Value *Mask, ArrayRef< Value * > InterleaveValues) const
Lower an interleave intrinsic to a target specific store intrinsic.
virtual bool isTruncateFree(LLT FromTy, LLT ToTy, LLVMContext &Ctx) const
AndOrSETCCFoldKind
Enum of different potentially desirable ways to fold (and/or (setcc ...), (setcc ....
virtual bool shouldScalarizeBinop(SDValue VecOp) const
Try to convert an extract element of a vector binary operation into an extract element followed by a ...
Align getPrefFunctionAlignment() const
Return the preferred function alignment.
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
virtual void emitExpandAtomicLoad(LoadInst *LI) const
Perform a atomic load using a target-specific way.
Align getMinFunctionAlignment() const
Return the minimum function alignment.
virtual AtomicExpansionKind shouldExpandAtomicStoreInIR(StoreInst *SI) const
Returns how the given (atomic) store should be expanded by the IR-level AtomicExpand pass into.
static StringRef getLibcallImplName(RTLIB::LibcallImpl Call)
Get the libcall routine name for the specified libcall implementation.
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
virtual bool isCtlzFast() const
Return true if ctlz instruction is fast.
virtual bool useSoftFloat() const
virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: (store (y (conv x)), y*)) -> (store x,...
BooleanContent getBooleanContents(EVT Type) const
virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
bool isIndexedMaskedStoreLegal(unsigned IdxMode, EVT VT) const
Return true if the specified indexed load is legal on this target.
virtual int64_t getPreferredLargeGEPBaseOffset(int64_t MinOffset, int64_t MaxOffset) const
Return the prefered common base offset.
virtual bool isVectorClearMaskLegal(ArrayRef< int >, EVT) const
Similar to isShuffleMaskLegal.
LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const
Return pair that represents the legalization kind (first) that needs to happen to EVT (second) in ord...
Align getMinStackArgumentAlignment() const
Return the minimum stack alignment of an argument.
virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT, bool IsSigned) const
Return true if it is more correct/profitable to use strict FP_TO_INT conversion operations - canonica...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
bool hasTargetDAGCombine(ISD::NodeType NT) const
If true, the target has custom DAG combine transformations that it can perform for the specified node...
void setLibcallImpl(RTLIB::Libcall Call, RTLIB::LibcallImpl Impl)
virtual bool fallBackToDAGISel(const Instruction &Inst) const
unsigned GatherAllAliasesMaxDepth
Depth that GatherAllAliases should continue looking for chain dependencies when trying to find a more...
virtual bool shouldSplatInsEltVarIndex(EVT) const
Return true if inserting a scalar into a variable element of an undef vector is more efficiently hand...
LegalizeAction getIndexedMaskedLoadAction(unsigned IdxMode, MVT VT) const
Return how the indexed load should be treated: either it is legal, needs to be promoted to a larger s...
NegatibleCost
Enum that specifies when a float negation is beneficial.
bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const
Return true if the specified store with truncation has solution on this target.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
virtual unsigned preferedOpcodeForCmpEqPiecesOfOperand(EVT VT, unsigned ShiftOpc, bool MayTransformRotate, const APInt &ShiftOrRotateAmt, const std::optional< APInt > &AndMask) const
virtual void emitCmpArithAtomicRMWIntrinsic(AtomicRMWInst *AI) const
Perform a atomicrmw which the result is only used by comparison, using a target-specific intrinsic.
virtual bool shouldSignExtendTypeInLibCall(Type *Ty, bool IsSigned) const
Returns true if arguments should be sign-extended in lib calls.
virtual Register getExceptionPointerRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception address on entry to an ...
virtual bool isFMADLegal(const MachineInstr &MI, LLT Ty) const
Returns true if MI can be combined with another instruction to form TargetOpcode::G_FMAD.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, ArrayRef< MVT > VTs, LegalizeAction Action)
bool supportsUnalignedAtomics() const
Whether the target supports unaligned atomic operations.
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
virtual bool isLegalAddScalableImmediate(int64_t) const
Return true if adding the specified scalable immediate is legal, that is the target has add instructi...
std::vector< ArgListEntry > ArgListTy
virtual bool shouldAlignPointerArgs(CallInst *, unsigned &, Align &) const
Return true if the pointer arguments to CI should be aligned by aligning the object whose address is ...
virtual bool hasVectorBlend() const
Return true if the target has a vector blend instruction.
virtual AtomicExpansionKind shouldCastAtomicStoreInIR(StoreInst *SI) const
Returns how the given (atomic) store should be cast by the IR-level AtomicExpand pass into.
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, ArrayRef< MVT > VTs, LegalizeAction Action)
virtual bool isVScaleKnownToBeAPowerOfTwo() const
Return true only if vscale must be a power of two.
virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const
virtual MachineMemOperand::Flags getTargetMMOFlags(const MemSDNode &Node) const
This callback is used to inspect load/store SDNode.
virtual EVT getOptimalMemOpType(LLVMContext &Context, const MemOp &Op, const AttributeList &) const
Returns the target specific optimal type for load and store operations as a result of memset,...
virtual Type * shouldConvertSplatType(ShuffleVectorInst *SVI) const
Given a shuffle vector SVI representing a vector splat, return a new scalar type of size equal to SVI...
virtual bool isZExtFree(SDValue Val, EVT VT2) const
Return true if zero-extending the specific node Val to type VT2 is free (either because it's implicit...
void setAtomicLoadExtAction(ArrayRef< unsigned > ExtTypes, MVT ValVT, MVT MemVT, LegalizeAction Action)
virtual bool shouldRemoveExtendFromGSIndex(SDValue Extend, EVT DataVT) const
unsigned getMaxStoresPerMemset(bool OptSize) const
Get maximum # of store operations permitted for llvm.memset.
virtual LLVM_READONLY LLT getPreferredShiftAmountTy(LLT ShiftValueTy) const
Return the preferred type to use for a shift opcode, given the shifted amount type is ShiftValueTy.
bool isBeneficialToExpandPowI(int64_t Exponent, bool OptForSize) const
Return true if it is beneficial to expand an @llvm.powi.
LLT getVectorIdxLLT(const DataLayout &DL) const
Returns the type to be used for the index operand of: G_INSERT_VECTOR_ELT, G_EXTRACT_VECTOR_ELT,...
virtual EVT getAsmOperandValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, ArrayRef< MVT > VTs, LegalizeAction Action)
virtual AtomicExpansionKind shouldCastAtomicLoadInIR(LoadInst *LI) const
Returns how the given (atomic) load should be cast by the IR-level AtomicExpand pass.
bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal or custom for a comparison of the specified type...
virtual bool isComplexDeinterleavingSupported() const
Does this target support complex deinterleaving.
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
MVT getFrameIndexTy(const DataLayout &DL) const
Return the type for frame index, which is determined by the alloca address space specified through th...
virtual Register getExceptionSelectorRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception typeid on entry to a la...
virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
void setSchedulingPreference(Sched::Preference Pref)
Specify the target scheduling preference.
virtual bool addressingModeSupportsTLS(const GlobalValue &) const
Returns true if the targets addressing mode can target thread local storage (TLS).
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual bool shouldConvertPhiType(Type *From, Type *To) const
Given a set in interconnected phis of type 'From' that are loaded/stored or bitcast to type 'To',...
virtual bool isFAbsFree(EVT VT) const
Return true if an fabs operation is free to the point where it is never worthwhile to replace it with...
virtual bool isLegalStoreImmediate(int64_t Value) const
Return true if the specified immediate is legal for the value input of a store instruction.
virtual bool preferZeroCompareBranch() const
Return true if the heuristic to prefer icmp eq zero should be used in code gen prepare.
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
virtual bool lowerInterleavedLoad(Instruction *Load, Value *Mask, ArrayRef< ShuffleVectorInst * > Shuffles, ArrayRef< unsigned > Indices, unsigned Factor, const APInt &GapMask) const
Lower an interleaved load to target specific intrinsics.
virtual unsigned getVectorIdxWidth(const DataLayout &DL) const
Returns the type to be used for the index operand vector operations.
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const
If the action for this operation is to promote, this method returns the ValueType to promote to.
virtual bool generateFMAsInMachineCombiner(EVT VT, CodeGenOptLevel OptLevel) const
virtual LoadInst * lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const
On some platforms, an AtomicRMW that never actually modifies the value (such as fetch_add of 0) can b...
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AddrSpace, Instruction *I=nullptr) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
virtual bool hasPairedLoad(EVT, Align &) const
Return true if the target supplies and combines to a paired load two loaded values of type LoadedType...
virtual bool convertSelectOfConstantsToMath(EVT VT) const
Return true if a select of constants (select Cond, C1, C2) should be transformed into simple math ops...
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
virtual bool optimizeExtendOrTruncateConversion(Instruction *I, Loop *L, const TargetTransformInfo &TTI) const
Try to optimize extending or truncating conversion instructions (like zext, trunc,...
virtual MVT getVPExplicitVectorLengthTy() const
Returns the type to be used for the EVL/AVL operand of VP nodes: ISD::VP_ADD, ISD::VP_SUB,...
std::pair< LegalizeTypeAction, EVT > LegalizeKind
LegalizeKind holds the legalization kind that needs to happen to EVT in order to type-legalize it.
TargetLoweringBase & operator=(const TargetLoweringBase &)=delete
MulExpansionKind
Enum that specifies when a multiplication should be expanded.
static ISD::NodeType getExtendForContent(BooleanContent Content)
const RTLIB::RuntimeLibcallsInfo & getRuntimeLibcallsInfo() const
virtual bool shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const
Should we generate fp_to_si_sat and fp_to_ui_sat from type FPVT to type VT from min(max(fptoi)) satur...
virtual bool lowerDeinterleaveIntrinsicToLoad(Instruction *Load, Value *Mask, IntrinsicInst *DI) const
Lower a deinterleave intrinsic to a target specific load intrinsic.
virtual bool supportKCFIBundles() const
Return true if the target supports kcfi operand bundles.
virtual ConstraintWeight getMultipleConstraintMatchWeight(AsmOperandInfo &info, int maIndex) const
Examine constraint type and operand type and determine a weight value.
SmallVector< ConstraintPair > ConstraintGroup
virtual SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps, bool &UseOneConstNR, bool Reciprocal) const
Hooks for building estimates in place of slower divisions and square roots.
virtual bool isDesirableToCommuteWithShift(const MachineInstr &MI, bool IsAfterLegal) const
GlobalISel - return true if it is profitable to move this shift by a constant amount through its oper...
virtual bool supportPtrAuthBundles() const
Return true if the target supports ptrauth operand bundles.
virtual void ReplaceNodeResults(SDNode *, SmallVectorImpl< SDValue > &, SelectionDAG &) const
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
virtual bool isUsedByReturnOnly(SDNode *, SDValue &) const
Return true if result of the specified node is used by a return node only.
virtual bool supportSwiftError() const
Return true if the target supports swifterror attribute.
virtual SDValue visitMaskedLoad(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue &NewLoad, SDValue Ptr, SDValue PassThru, SDValue Mask) const
virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val, const SDLoc &DL) const
SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, unsigned Depth=0) const
This is the helper function to return the newly negated expression if the cost is not expensive.
virtual bool isReassocProfitable(SelectionDAG &DAG, SDValue N0, SDValue N1) const
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
SDValue getCheaperOrNeutralNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, const NegatibleCost CostThreshold=NegatibleCost::Neutral, unsigned Depth=0) const
virtual Register getRegisterByName(const char *RegName, LLT Ty, const MachineFunction &MF) const
Return the register ID of the name passed in.
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
virtual bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const
std::vector< AsmOperandInfo > AsmOperandInfoVector
virtual bool isTargetCanonicalConstantNode(SDValue Op) const
Returns true if the given Opc is considered a canonical constant for the target, which should not be ...
virtual bool isTargetCanonicalSelect(SDNode *N) const
Return true if the given select/vselect should be considered canonical and not be transformed.
SDValue getCheaperNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, unsigned Depth=0) const
This is the helper function to return the newly negated expression only when the cost is cheaper.
virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const
This callback is used to prepare for a volatile or atomic load.
virtual SDValue lowerEHPadEntry(SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const
Optional target hook to add target-specific actions when entering EH pad blocks.
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual SDValue unwrapAddress(SDValue N) const
virtual bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, std::optional< CallingConv::ID > CC) const
Target-specific splitting of values into parts that fit a register storing a legal type.
virtual bool IsDesirableToPromoteOp(SDValue, EVT &) const
This method query the target whether it is beneficial for dag combiner to promote the specified node.
virtual SDValue joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, std::optional< CallingConv::ID > CC) const
Target-specific combining of register parts into its original value.
virtual void insertCopiesSplitCSR(MachineBasicBlock *Entry, const SmallVectorImpl< MachineBasicBlock * > &Exits) const
Insert explicit copies in entry and exit blocks.
virtual SDValue LowerCall(CallLoweringInfo &, SmallVectorImpl< SDValue > &) const
This hook must be implemented to lower calls into the specified DAG.
virtual bool isTypeDesirableForOp(unsigned, EVT VT) const
Return true if the target has native support for the specified value type and it is 'desirable' to us...
~TargetLowering() override
TargetLowering & operator=(const TargetLowering &)=delete
virtual bool isDesirableToPullExtFromShl(const MachineInstr &MI) const
GlobalISel - return true if it's profitable to perform the combine: shl ([sza]ext x),...
bool isPositionIndependent() const
std::pair< StringRef, TargetLowering::ConstraintType > ConstraintPair
virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, NegatibleCost &Cost, unsigned Depth=0) const
Return the newly negated expression if the cost is not expensive and set the cost in Cost to indicate...
virtual ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const
Examine constraint string and operand type and determine a weight value.
virtual bool isIndexingLegal(MachineInstr &MI, Register Base, Register Offset, bool IsPre, MachineRegisterInfo &MRI) const
Returns true if the specified base+offset is a legal indexed addressing mode for this target.
ConstraintGroup getConstraintPreferences(AsmOperandInfo &OpInfo) const
Given an OpInfo with list of constraints codes as strings, return a sorted Vector of pairs of constra...
virtual void initializeSplitCSR(MachineBasicBlock *Entry) const
Perform necessary initialization to handle a subset of CSRs explicitly via copies.
virtual bool isSDNodeSourceOfDivergence(const SDNode *N, FunctionLoweringInfo *FLI, UniformityInfo *UA) const
virtual SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps) const
Return a reciprocal estimate value for the input operand.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
virtual bool isSDNodeAlwaysUniform(const SDNode *N) const
virtual bool isDesirableToCommuteXorWithShift(const SDNode *N) const
Return true if it is profitable to combine an XOR of a logical shift to create a logical shift of NOT...
TargetLowering(const TargetLowering &)=delete
virtual bool shouldSimplifyDemandedVectorElts(SDValue Op, const TargetLoweringOpt &TLO) const
Return true if the target supports simplifying demanded vector elements by converting them to undefs.
virtual SDValue LowerFormalArguments(SDValue, CallingConv::ID, bool, const SmallVectorImpl< ISD::InputArg > &, const SDLoc &, SelectionDAG &, SmallVectorImpl< SDValue > &) const
This hook must be implemented to lower the incoming (formal) arguments, described by the Ins array,...
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual SDValue getSqrtResultForDenormInput(SDValue Operand, SelectionDAG &DAG) const
Return a target-dependent result if the input operand is not suitable for use with a square root esti...
virtual bool getPostIndexedAddressParts(SDNode *, SDNode *, SDValue &, SDValue &, ISD::MemIndexedMode &, SelectionDAG &) const
Returns true by value, base pointer and offset pointer and addressing mode by reference if this node ...
virtual bool shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout &DL) const
For most targets, an LLVM type must be broken down into multiple smaller types.
virtual ArrayRef< MCPhysReg > getRoundingControlRegisters() const
Returns a 0 terminated array of rounding control registers that can be attached into strict FP call.
virtual SDValue LowerReturn(SDValue, CallingConv::ID, bool, const SmallVectorImpl< ISD::OutputArg > &, const SmallVectorImpl< SDValue > &, const SDLoc &, SelectionDAG &) const
This hook must be implemented to lower outgoing return values, described by the Outs array,...
virtual bool functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, bool isVarArg, const DataLayout &DL) const
For some targets, an LLVM struct type must be broken down into multiple simple types,...
virtual bool isDesirableToCommuteWithShift(const SDNode *N, CombineLevel Level) const
Return true if it is profitable to move this shift by a constant amount through its operand,...
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual SDValue visitMaskedStore(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue Ptr, SDValue Val, SDValue Mask) const
virtual const MCExpr * LowerCustomJumpTableEntry(const MachineJumpTableInfo *, const MachineBasicBlock *, unsigned, MCContext &) const
virtual bool useLoadStackGuardNode(const Module &M) const
If this function returns true, SelectionDAGBuilder emits a LOAD_STACK_GUARD node when it is lowering ...
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
It is an error to pass RTLIB::UNKNOWN_LIBCALL as LC.
virtual unsigned combineRepeatedFPDivisors() const
Indicate whether this target prefers to combine FDIVs with the same divisor.
virtual AndOrSETCCFoldKind isDesirableToCombineLogicOpOfSETCC(const SDNode *LogicOp, const SDNode *SETCC0, const SDNode *SETCC1) const
virtual void HandleByVal(CCState *, unsigned &, Align) const
Target-specific cleanup for formal ByVal parameters.
virtual const MCPhysReg * getScratchRegisters(CallingConv::ID CC) const
Returns a 0 terminated array of registers that can be safely used as scratch registers.
virtual bool getPreIndexedAddressParts(SDNode *, SDValue &, SDValue &, ISD::MemIndexedMode &, SelectionDAG &) const
Returns true by value, base pointer and offset pointer and addressing mode by reference if the node's...
SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, SDValue Index, const SDNodeFlags PtrArithFlags=SDNodeFlags()) const
Get a pointer to vector element Idx located in memory for a vector of type VecVT starting at a base a...
virtual FastISel * createFastISel(FunctionLoweringInfo &, const TargetLibraryInfo *) const
This method returns a target specific FastISel object, or null if the target does not support "fast" ...
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::LibcallImpl LibcallImpl, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
virtual bool supportSplitCSR(MachineFunction *MF) const
Return true if the target supports that a subset of CSRs for the given machine function is handled ex...
virtual bool isReassocProfitable(MachineRegisterInfo &MRI, Register N0, Register N1) const
virtual bool mayBeEmittedAsTailCall(const CallInst *) const
Return true if the target may be able emit the call instruction as a tail call.
virtual bool isInlineAsmTargetBranch(const SmallVectorImpl< StringRef > &AsmStrs, unsigned OpNo) const
On x86, return true if the operand with index OpNo is a CALL or JUMP instruction, which can use eithe...
SDValue getInboundsVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, SDValue Index) const
Get a pointer to vector element Idx located in memory for a vector of type VecVT starting at a base a...
virtual MVT getJumpTableRegTy(const DataLayout &DL) const
virtual void markLibCallAttributes(MachineFunction *MF, unsigned CC, ArgListTy &Args) const
virtual bool CanLowerReturn(CallingConv::ID, MachineFunction &, bool, const SmallVectorImpl< ISD::OutputArg > &, LLVMContext &, const Type *RetTy) const
This hook should be implemented to check whether the return values described by the Outs array can fi...
virtual bool isXAndYEqZeroPreferableToXAndYEqY(ISD::CondCode, EVT) const
virtual bool isDesirableToTransformToIntegerOp(unsigned, EVT) const
Return true if it is profitable for dag combiner to transform a floating point op of specified opcode...
Primary interface to the complete machine description for the target machine.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Target - Wrapper for Target specific information.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
CallInst * Call
#define UINT64_MAX
Definition DataTypes.h:77
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
Definition ISDOpcodes.h:270
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
Definition ISDOpcodes.h:387
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:289
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition ISDOpcodes.h:515
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:393
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:841
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:410
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
Definition ISDOpcodes.h:400
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:832
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
Definition ISDOpcodes.h:712
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:669
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
Definition ISDOpcodes.h:701
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:762
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:838
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:724
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:406
@ STRICT_FP_TO_UINT
Definition ISDOpcodes.h:471
@ STRICT_FP_TO_SINT
STRICT_FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:470
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:914
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:736
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
Definition ISDOpcodes.h:707
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:299
@ SPLAT_VECTOR_PARTS
SPLAT_VECTOR_PARTS(SCALAR1, SCALAR2, ...) - Returns a vector with the scalar values joined together a...
Definition ISDOpcodes.h:678
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
Definition ISDOpcodes.h:719
static const int LAST_LOADEXT_TYPE
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
@ System
Synchronized with respect to all concurrently executing threads.
Definition LLVMContext.h:58
This namespace contains all of the command line option processing machinery.
Definition CommandLine.h:53
This is an optimization pass for GlobalISel generic memory operations.
GenericUniformityInfo< SSAContext > UniformityInfo
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
Definition Threading.h:280
@ Offset
Definition DWP.cpp:532
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1757
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
InstructionCost Cost
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
bool isAligned(Align Lhs, uint64_t SizeInBytes)
Checks that SizeInBytes is a multiple of the alignment.
Definition Alignment.h:134
void * PointerTy
constexpr int popcount(T Value) noexcept
Count the number of set bits in a value.
Definition bit.h:154
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:337
LLVM_ABI bool isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector, bool IsFP)
Returns true if given the TargetLowering's boolean contents information, the value Val contains a tru...
Definition Utils.cpp:1658
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
CodeGenOptLevel
Code generation optimization level.
Definition CodeGen.h:82
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
AtomicOrdering
Atomic ordering for LLVM's memory model.
LLVM_ABI EVT getApproximateEVTForLLT(LLT Ty, LLVMContext &Ctx)
TargetTransformInfo TTI
CombineLevel
Definition DAGCombine.h:15
@ AfterLegalizeDAG
Definition DAGCombine.h:19
@ AfterLegalizeVectorOps
Definition DAGCombine.h:18
@ BeforeLegalizeTypes
Definition DAGCombine.h:16
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
Definition MCRegister.h:21
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
Definition Analysis.cpp:543
DWARFExpression::Operation Op
LLVM_ABI bool isConstFalseVal(const TargetLowering &TLI, int64_t Val, bool IsVector, bool IsFP)
Definition Utils.cpp:1671
constexpr unsigned BitWidth
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1879
static cl::opt< unsigned > CostThreshold("dfa-cost-threshold", cl::desc("Maximum cost accepted for the transformation"), cl::Hidden, cl::init(50))
Implement std::hash so that hash_code can be used in STL containers.
Definition BitVector.h:870
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
Definition Alignment.h:77
Represent subnormal handling kind for floating point instruction inputs and outputs.
Extended Value Type.
Definition ValueTypes.h:35
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition ValueTypes.h:147
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
bool isByteSized() const
Return true if the bit size is a multiple of 8.
Definition ValueTypes.h:243
static LLVM_ABI EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
bool isExtended() const
Test if the given EVT is extended (as opposed to being simple).
Definition ValueTypes.h:142
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
Definition ValueTypes.h:157
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
ConstraintInfo()=default
Default constructor.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition Alignment.h:106
bool isDstAligned(Align AlignCheck) const
bool allowOverlap() const
bool isFixedDstAlign() const
uint64_t size() const
static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign, bool IsZeroMemset, bool IsVolatile)
Align getDstAlign() const
bool isMemcpyStrSrc() const
bool isAligned(Align AlignCheck) const
static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign, Align SrcAlign, bool IsVolatile, bool MemcpyStrSrc=false)
bool isSrcAligned(Align AlignCheck) const
bool isMemset() const
bool isMemcpy() const
bool isMemcpyWithFixedDstAlign() const
bool isZeroMemset() const
Align getSrcAlign() const
A simple container for information about the supported runtime calls.
static StringRef getLibcallImplName(RTLIB::LibcallImpl CallImpl)
Get the libcall routine name for the specified libcall implementation.
These are IR-level optimization flags that may be propagated to SDNodes.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
std::optional< unsigned > fallbackAddressSpace
PointerUnion< const Value *, const PseudoSourceValue * > ptrVal
This contains information for each constraint that we are lowering.
AsmOperandInfo(InlineAsm::ConstraintInfo Info)
Copy constructor for copying from a ConstraintInfo.
MVT ConstraintVT
The ValueType for the operand value.
TargetLowering::ConstraintType ConstraintType
Information about the constraint code, e.g.
std::string ConstraintCode
This contains the actual string for the code, like "m".
Value * CallOperandVal
If this is the result output operand or a clobber, this is null, otherwise it is the incoming operand...
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setConvergent(bool Value=true)
CallLoweringInfo & setIsPostTypeLegalization(bool Value=true)
CallLoweringInfo & setDeactivationSymbol(GlobalValue *Sym)
CallLoweringInfo & setCallee(Type *ResultType, FunctionType *FTy, SDValue Target, ArgListTy &&ArgsList, const CallBase &Call)
CallLoweringInfo & setCFIType(const ConstantInt *Type)
CallLoweringInfo & setInRegister(bool Value=true)
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
SmallVector< ISD::InputArg, 32 > Ins
CallLoweringInfo & setVarArg(bool Value=true)
Type * OrigRetTy
Original unlegalized return type.
std::optional< PtrAuthInfo > PAI
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setZExtResult(bool Value=true)
CallLoweringInfo & setIsPatchPoint(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, Type *OrigResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setIsPreallocated(bool Value=true)
CallLoweringInfo & setSExtResult(bool Value=true)
CallLoweringInfo & setNoReturn(bool Value=true)
CallLoweringInfo & setConvergenceControlToken(SDValue Token)
SmallVector< ISD::OutputArg, 32 > Outs
Type * RetTy
Same as OrigRetTy, or partially legalized for soft float libcalls.
CallLoweringInfo & setChain(SDValue InChain)
CallLoweringInfo & setPtrAuth(PtrAuthInfo Value)
CallLoweringInfo & setCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList, AttributeSet ResultAttrs={})
DAGCombinerInfo(SelectionDAG &dag, CombineLevel level, bool cl, void *dc)
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setIsPostTypeLegalization(bool Value=true)
MakeLibCallOptions & setDiscardResult(bool Value=true)
MakeLibCallOptions & setTypeListBeforeSoften(ArrayRef< EVT > OpsVT, EVT RetVT)
MakeLibCallOptions & setIsSigned(bool Value=true)
MakeLibCallOptions & setNoReturn(bool Value=true)
MakeLibCallOptions & setOpsTypeOverrides(ArrayRef< Type * > OpsTypes)
Override the argument type for an operand.
This structure contains the information necessary for lowering pointer-authenticating indirect calls.
A convenience struct that encapsulates a DAG, and two SDValues for returning information from TargetL...
TargetLoweringOpt(SelectionDAG &InDAG, bool LT, bool LO)