52 GetIntOrFpInductionDescriptor,
59 if (!VPBB->getParent())
62 auto EndIter = Term ? Term->getIterator() : VPBB->end();
67 VPValue *VPV = Ingredient.getVPSingleValue();
76 const auto *
II = GetIntOrFpInductionDescriptor(Phi);
90 Phi, Start, Step, &Plan.
getVF(), *
II, Flags,
91 Ingredient.getDebugLoc());
99 *Load, Ingredient.getOperand(0),
nullptr ,
100 false ,
false , *VPI,
101 Ingredient.getDebugLoc());
104 *Store, Ingredient.getOperand(1), Ingredient.getOperand(0),
105 nullptr ,
false ,
false , *VPI,
106 Ingredient.getDebugLoc());
109 Ingredient.getDebugLoc());
117 *VPI, CI->getDebugLoc());
120 *VPI, Ingredient.getDebugLoc());
123 CI->getOpcode(), Ingredient.getOperand(0), CI->getType(), CI,
127 *VPI, Ingredient.getDebugLoc());
136 "Only recpies with zero or one defined values expected");
137 Ingredient.eraseFromParent();
154 if (
A->getOpcode() != Instruction::Store ||
155 B->getOpcode() != Instruction::Store)
165 const APInt *Distance;
170 Type *TyA = TypeInfo.inferScalarType(
A->getOperand(0));
172 Type *TyB = TypeInfo.inferScalarType(
B->getOperand(0));
178 uint64_t MaxStoreSize = std::max(SizeA, SizeB);
180 auto VFs =
B->getParent()->getPlan()->vectorFactors();
182 return Distance->
abs().
uge(
190 : ExcludeRecipes(ExcludeRecipes), GroupLeader(GroupLeader), SE(SE), L(L),
191 TypeInfo(TypeInfo) {}
198 return ExcludeRecipes.contains(&R) ||
199 (Store && isNoAliasViaDistance(Store, &GroupLeader));
212 std::optional<SinkStoreInfo> SinkInfo = {}) {
213 bool CheckReads = SinkInfo.has_value();
222 "Expected at most one successor in block chain");
225 if (SinkInfo && SinkInfo->shouldSkip(R))
229 if (!
R.mayWriteToMemory() && !(CheckReads &&
R.mayReadFromMemory()))
240 if (CheckReads &&
R.mayReadFromMemory() &&
247 Loc->AATags.NoAlias))
267 if (R.mayHaveSideEffects() || R.mayReadFromMemory() || R.isPhi())
272 return RepR && RepR->getOpcode() == Instruction::Alloca;
281 auto InsertIfValidSinkCandidate = [ScalarVFOnly, &WorkList](
297 if (!ScalarVFOnly && RepR->isSingleScalar())
300 WorkList.
insert({SinkTo, Candidate});
312 for (
auto &Recipe : *VPBB)
314 InsertIfValidSinkCandidate(VPBB,
Op);
318 for (
unsigned I = 0;
I != WorkList.
size(); ++
I) {
321 std::tie(SinkTo, SinkCandidate) = WorkList[
I];
326 auto UsersOutsideSinkTo =
328 return cast<VPRecipeBase>(U)->getParent() != SinkTo;
330 if (
any_of(UsersOutsideSinkTo, [SinkCandidate](
VPUser *U) {
331 return !U->usesFirstLaneOnly(SinkCandidate);
334 bool NeedsDuplicating = !UsersOutsideSinkTo.empty();
336 if (NeedsDuplicating) {
340 if (
auto *SinkCandidateRepR =
346 nullptr , *SinkCandidateRepR,
350 Clone = SinkCandidate->
clone();
360 InsertIfValidSinkCandidate(SinkTo,
Op);
370 if (!EntryBB || EntryBB->size() != 1 ||
380 if (EntryBB->getNumSuccessors() != 2)
385 if (!Succ0 || !Succ1)
388 if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1)
390 if (Succ0->getSingleSuccessor() == Succ1)
392 if (Succ1->getSingleSuccessor() == Succ0)
409 if (!Region1->isReplicator())
411 auto *MiddleBasicBlock =
413 if (!MiddleBasicBlock || !MiddleBasicBlock->empty())
418 if (!Region2 || !Region2->isReplicator())
423 if (!Mask1 || Mask1 != Mask2)
426 assert(Mask1 && Mask2 &&
"both region must have conditions");
432 if (TransformedRegions.
contains(Region1))
439 if (!Then1 || !Then2)
459 VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue();
465 if (Phi1ToMove.getVPSingleValue()->getNumUsers() == 0) {
466 Phi1ToMove.eraseFromParent();
469 Phi1ToMove.moveBefore(*Merge2, Merge2->begin());
483 TransformedRegions.
insert(Region1);
486 return !TransformedRegions.
empty();
493 std::string RegionName = (
Twine(
"pred.") + Instr->getOpcodeName()).str();
494 assert(Instr->getParent() &&
"Predicated instruction not in any basic block");
495 auto *BlockInMask = PredRecipe->
getMask();
514 RecipeWithoutMask->getDebugLoc());
538 if (RepR->isPredicated())
557 if (ParentRegion && ParentRegion->
getExiting() == CurrentBlock)
571 if (!VPBB->getParent())
575 if (!PredVPBB || PredVPBB->getNumSuccessors() != 1 ||
584 R.moveBefore(*PredVPBB, PredVPBB->
end());
586 auto *ParentRegion = VPBB->getParent();
587 if (ParentRegion && ParentRegion->getExiting() == VPBB)
588 ParentRegion->setExiting(PredVPBB);
589 for (
auto *Succ :
to_vector(VPBB->successors())) {
595 return !WorkList.
empty();
602 bool ShouldSimplify =
true;
603 while (ShouldSimplify) {
619 if (!
IV ||
IV->getTruncInst())
634 for (
auto *U : FindMyCast->
users()) {
636 if (UserCast && UserCast->getUnderlyingValue() == IRCast) {
637 FoundUserCast = UserCast;
641 FindMyCast = FoundUserCast;
666 if (!WidenOriginalIV || !WidenOriginalIV->isCanonical())
679 WidenOriginalIV->dropPoisonGeneratingFlags();
692 bool IsConditionalAssume = RepR && RepR->isPredicated() &&
694 if (IsConditionalAssume)
697 if (R.mayHaveSideEffects())
701 return all_of(R.definedValues(),
702 [](
VPValue *V) { return V->getNumUsers() == 0; });
718 if (!PhiR || PhiR->getNumOperands() != 2)
720 VPUser *PhiUser = PhiR->getSingleUser();
724 if (PhiUser !=
Incoming->getDefiningRecipe() ||
727 PhiR->replaceAllUsesWith(PhiR->getOperand(0));
728 PhiR->eraseFromParent();
729 Incoming->getDefiningRecipe()->eraseFromParent();
744 Kind, FPBinOp, StartV, CanonicalIV, Step,
"offset.idx");
754 BaseIV = Builder.createScalarCast(Instruction::Trunc, BaseIV, TruncTy,
DL);
760 if (ResultTy != StepTy) {
767 Builder.setInsertPoint(VecPreheader);
768 Step = Builder.createScalarCast(Instruction::Trunc, Step, ResultTy,
DL);
770 return Builder.createScalarIVSteps(InductionOpcode, FPBinOp, BaseIV, Step,
776 for (
unsigned I = 0;
I !=
Users.size(); ++
I) {
781 Users.insert_range(V->users());
783 return Users.takeVector();
797 nullptr, StartV, StepV, PtrIV->
getDebugLoc(), Builder);
834 Def->getNumUsers() == 0 || !Def->getUnderlyingValue() ||
835 (RepR && (RepR->isSingleScalar() || RepR->isPredicated())))
843 Def->operands(),
true,
845 Clone->insertAfter(Def);
846 Def->replaceAllUsesWith(Clone);
857 PtrIV->replaceAllUsesWith(PtrAdd);
864 if (HasOnlyVectorVFs &&
none_of(WideIV->users(), [WideIV](
VPUser *U) {
865 return U->usesScalars(WideIV);
871 Plan,
ID.getKind(),
ID.getInductionOpcode(),
873 WideIV->getTruncInst(), WideIV->getStartValue(), WideIV->getStepValue(),
874 WideIV->getDebugLoc(), Builder);
877 if (!HasOnlyVectorVFs) {
879 "plans containing a scalar VF cannot also include scalable VFs");
880 WideIV->replaceAllUsesWith(Steps);
883 WideIV->replaceUsesWithIf(Steps,
884 [WideIV, HasScalableVF](
VPUser &U,
unsigned) {
886 return U.usesFirstLaneOnly(WideIV);
887 return U.usesScalars(WideIV);
903 return (IntOrFpIV && IntOrFpIV->getTruncInst()) ? nullptr : WideIV;
908 if (!Def || Def->getNumOperands() != 2)
916 auto IsWideIVInc = [&]() {
917 auto &
ID = WideIV->getInductionDescriptor();
920 VPValue *IVStep = WideIV->getStepValue();
921 switch (
ID.getInductionOpcode()) {
922 case Instruction::Add:
924 case Instruction::FAdd:
927 case Instruction::FSub:
930 case Instruction::Sub: {
949 return IsWideIVInc() ? WideIV :
nullptr;
969 if (WideIntOrFp && WideIntOrFp->getTruncInst())
982 FirstActiveLane =
B.createScalarZExtOrTrunc(FirstActiveLane, CanonicalIVType,
983 FirstActiveLaneType,
DL);
985 B.createNaryOp(Instruction::Add, {CanonicalIV, FirstActiveLane},
DL);
992 EndValue =
B.createNaryOp(Instruction::Add, {EndValue, One},
DL);
995 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
997 VPValue *Start = WideIV->getStartValue();
998 VPValue *Step = WideIV->getStepValue();
999 EndValue =
B.createDerivedIV(
1001 Start, EndValue, Step);
1021 assert(EndValue &&
"end value must have been pre-computed");
1031 VPValue *Step = WideIV->getStepValue();
1034 return B.createNaryOp(Instruction::Sub, {EndValue, Step},
1039 return B.createPtrAdd(EndValue,
1040 B.createNaryOp(Instruction::Sub, {Zero, Step}),
1044 const auto &
ID = WideIV->getInductionDescriptor();
1045 return B.createNaryOp(
1046 ID.getInductionBinOp()->getOpcode() == Instruction::FAdd
1048 : Instruction::FAdd,
1049 {EndValue, Step}, {ID.getInductionBinOp()->getFastMathFlags()});
1064 for (
auto [Idx, PredVPBB] :
enumerate(ExitVPBB->getPredecessors())) {
1066 if (PredVPBB == MiddleVPBB)
1068 ExitIRI->getOperand(Idx),
1072 ExitIRI->getOperand(Idx), SE);
1074 ExitIRI->setOperand(Idx, Escape);
1091 const auto &[V, Inserted] = SCEV2VPV.
try_emplace(ExpR->getSCEV(), ExpR);
1094 ExpR->replaceAllUsesWith(V->second);
1095 ExpR->eraseFromParent();
1104 while (!WorkList.
empty()) {
1106 if (!Seen.
insert(Cur).second)
1114 R->eraseFromParent();
1121static std::optional<std::pair<bool, unsigned>>
1124 std::optional<std::pair<bool, unsigned>>>(R)
1127 [](
auto *
I) {
return std::make_pair(
false,
I->getOpcode()); })
1128 .Case<VPWidenIntrinsicRecipe>([](
auto *
I) {
1129 return std::make_pair(
true,
I->getVectorIntrinsicID());
1131 .Case<VPVectorPointerRecipe, VPPredInstPHIRecipe>([](
auto *
I) {
1135 return std::make_pair(
false,
1138 .
Default([](
auto *) {
return std::nullopt; });
1154 if (!
Op->isLiveIn() || !
Op->getLiveInIRValue())
1156 Ops.push_back(
Op->getLiveInIRValue());
1159 auto FoldToIRValue = [&]() ->
Value * {
1161 if (OpcodeOrIID->first) {
1162 if (R.getNumOperands() != 2)
1164 unsigned ID = OpcodeOrIID->second;
1165 return Folder.FoldBinaryIntrinsic(
ID,
Ops[0],
Ops[1],
1168 unsigned Opcode = OpcodeOrIID->second;
1177 return Folder.FoldSelect(
Ops[0],
Ops[1],
1180 return Folder.FoldBinOp(Instruction::BinaryOps::Xor,
Ops[0],
1182 case Instruction::Select:
1183 return Folder.FoldSelect(
Ops[0],
Ops[1],
Ops[2]);
1184 case Instruction::ICmp:
1185 case Instruction::FCmp:
1188 case Instruction::GetElementPtr: {
1191 return Folder.FoldGEP(
GEP->getSourceElementType(),
Ops[0],
1201 case Instruction::ExtractElement:
1208 if (
Value *V = FoldToIRValue())
1209 return R.getParent()->getPlan()->getOrAddLiveIn(V);
1215 VPlan *Plan = Def->getParent()->getPlan();
1222 return Def->replaceAllUsesWith(V);
1228 PredPHI->replaceAllUsesWith(
Op);
1236 if (TruncTy == ATy) {
1237 Def->replaceAllUsesWith(
A);
1246 : Instruction::ZExt;
1249 if (
auto *UnderlyingExt = Def->getOperand(0)->getUnderlyingValue()) {
1251 Ext->setUnderlyingValue(UnderlyingExt);
1253 Def->replaceAllUsesWith(Ext);
1255 auto *Trunc = Builder.createWidenCast(Instruction::Trunc,
A, TruncTy);
1256 Def->replaceAllUsesWith(Trunc);
1264 for (
VPUser *U :
A->users()) {
1266 for (
VPValue *VPV : R->definedValues())
1280 Def->replaceAllUsesWith(
X);
1281 Def->eraseFromParent();
1287 return Def->replaceAllUsesWith(Def->getOperand(Def->getOperand(0) ==
X));
1291 return Def->replaceAllUsesWith(
X);
1295 return Def->replaceAllUsesWith(Def->getOperand(Def->getOperand(0) ==
X));
1299 return Def->replaceAllUsesWith(Def->getOperand(1));
1306 (!Def->getOperand(0)->hasMoreThanOneUniqueUser() ||
1307 !Def->getOperand(1)->hasMoreThanOneUniqueUser()))
1308 return Def->replaceAllUsesWith(
1309 Builder.createLogicalAnd(
X, Builder.createOr(
Y, Z)));
1313 return Def->replaceAllUsesWith(Plan->
getFalse());
1316 return Def->replaceAllUsesWith(
X);
1321 Def->setOperand(0,
C);
1322 Def->setOperand(1,
Y);
1323 Def->setOperand(2,
X);
1332 X->hasMoreThanOneUniqueUser())
1333 return Def->replaceAllUsesWith(
1334 Builder.createLogicalAnd(
X, Builder.createLogicalAnd(
Y, Z)));
1337 return Def->replaceAllUsesWith(
A);
1340 return Def->replaceAllUsesWith(
A);
1343 return Def->replaceAllUsesWith(
1344 Def->getOperand(0) ==
A ? Def->getOperand(1) : Def->getOperand(0));
1348 return Def->replaceAllUsesWith(
A);
1363 R->setOperand(1,
Y);
1364 R->setOperand(2,
X);
1368 R->replaceAllUsesWith(Cmp);
1373 if (!Cmp->getDebugLoc() && Def->getDebugLoc())
1374 Cmp->setDebugLoc(Def->getDebugLoc());
1386 if (
Op->getNumUsers() > 1 ||
1390 }
else if (!UnpairedCmp) {
1391 UnpairedCmp =
Op->getDefiningRecipe();
1395 UnpairedCmp =
nullptr;
1402 if (NewOps.
size() < Def->getNumOperands()) {
1404 return Def->replaceAllUsesWith(NewAnyOf);
1416 return Def->replaceAllUsesWith(NewCmp);
1424 return Def->replaceAllUsesWith(Def->getOperand(1));
1430 X = Builder.createWidenCast(Instruction::Trunc,
X, WideStepTy);
1431 Def->replaceAllUsesWith(
X);
1441 Def->setOperand(1, Def->getOperand(0));
1442 Def->setOperand(0,
Y);
1447 if (Phi->getOperand(0) == Phi->getOperand(1))
1448 Phi->replaceAllUsesWith(Phi->getOperand(0));
1456 Def->replaceAllUsesWith(
1457 BuildVector->getOperand(BuildVector->getNumOperands() - 1));
1461 return Def->replaceAllUsesWith(
A);
1467 Def->replaceAllUsesWith(
1468 BuildVector->getOperand(BuildVector->getNumOperands() - 2));
1475 Def->replaceAllUsesWith(BuildVector->getOperand(Idx));
1480 Def->replaceAllUsesWith(
1490 "broadcast operand must be single-scalar");
1491 Def->setOperand(0,
C);
1496 if (Phi->getNumOperands() == 1)
1497 Phi->replaceAllUsesWith(Phi->getOperand(0));
1510 if (Phi->getOperand(1) != Def &&
match(Phi->getOperand(0),
m_ZeroInt()) &&
1511 Phi->getSingleUser() == Def) {
1512 Phi->setOperand(0,
Y);
1513 Def->replaceAllUsesWith(Phi);
1520 if (VecPtr->isFirstPart()) {
1521 VecPtr->replaceAllUsesWith(VecPtr->getOperand(0));
1530 Steps->replaceAllUsesWith(Steps->getOperand(0));
1538 Def->replaceUsesWithIf(StartV, [](
const VPUser &U,
unsigned Idx) {
1540 return PhiR && PhiR->isInLoop();
1546 Def->replaceAllUsesWith(
A);
1555 [Def,
A](
VPUser *U) { return U->usesScalars(A) || Def == U; })) {
1556 return Def->replaceAllUsesWith(
A);
1560 return Def->replaceAllUsesWith(
A);
1589 if (RepR && (RepR->isSingleScalar() || RepR->isPredicated()))
1596 RepOrWidenR->getUnderlyingInstr(), RepOrWidenR->operands(),
1597 true ,
nullptr , *RepR ,
1598 *RepR , RepR->getDebugLoc());
1599 Clone->insertBefore(RepOrWidenR);
1601 VPValue *ExtractOp = Clone->getOperand(0);
1607 Clone->setOperand(0, ExtractOp);
1608 RepR->eraseFromParent();
1621 if (!
all_of(RepOrWidenR->users(),
1622 [RepOrWidenR](
const VPUser *U) {
1623 if (auto *VPI = dyn_cast<VPInstruction>(U)) {
1624 unsigned Opcode = VPI->getOpcode();
1625 if (Opcode == VPInstruction::ExtractLastLane ||
1626 Opcode == VPInstruction::ExtractLastPart ||
1627 Opcode == VPInstruction::ExtractPenultimateElement)
1631 return U->usesScalars(RepOrWidenR);
1634 if (Op->getSingleUser() != RepOrWidenR)
1638 bool LiveInNeedsBroadcast =
1639 Op->isLiveIn() && !isa<Constant>(Op->getLiveInIRValue());
1640 auto *OpR = dyn_cast<VPReplicateRecipe>(Op);
1641 return LiveInNeedsBroadcast || (OpR && OpR->isSingleScalar());
1646 RepOrWidenR->getUnderlyingInstr(), RepOrWidenR->operands(),
1647 true ,
nullptr, *RepOrWidenR);
1648 Clone->insertBefore(RepOrWidenR);
1649 RepOrWidenR->replaceAllUsesWith(Clone);
1651 RepOrWidenR->eraseFromParent();
1687 if (Blend->isNormalized() || !
match(Blend->getMask(0),
m_False()))
1688 UniqueValues.
insert(Blend->getIncomingValue(0));
1689 for (
unsigned I = 1;
I != Blend->getNumIncomingValues(); ++
I)
1691 UniqueValues.
insert(Blend->getIncomingValue(
I));
1693 if (UniqueValues.
size() == 1) {
1694 Blend->replaceAllUsesWith(*UniqueValues.
begin());
1695 Blend->eraseFromParent();
1699 if (Blend->isNormalized())
1705 unsigned StartIndex = 0;
1706 for (
unsigned I = 0;
I != Blend->getNumIncomingValues(); ++
I) {
1711 if (Mask->getNumUsers() == 1 && !
match(Mask,
m_False())) {
1718 OperandsWithMask.
push_back(Blend->getIncomingValue(StartIndex));
1720 for (
unsigned I = 0;
I != Blend->getNumIncomingValues(); ++
I) {
1721 if (
I == StartIndex)
1723 OperandsWithMask.
push_back(Blend->getIncomingValue(
I));
1724 OperandsWithMask.
push_back(Blend->getMask(
I));
1729 OperandsWithMask, Blend->getDebugLoc());
1730 NewBlend->insertBefore(&R);
1732 VPValue *DeadMask = Blend->getMask(StartIndex);
1734 Blend->eraseFromParent();
1739 if (NewBlend->getNumOperands() == 3 &&
1741 VPValue *Inc0 = NewBlend->getOperand(0);
1742 VPValue *Inc1 = NewBlend->getOperand(1);
1743 VPValue *OldMask = NewBlend->getOperand(2);
1744 NewBlend->setOperand(0, Inc1);
1745 NewBlend->setOperand(1, Inc0);
1746 NewBlend->setOperand(2, NewMask);
1773 APInt MaxVal = AlignedTC - 1;
1776 unsigned NewBitWidth =
1782 bool MadeChange =
false;
1791 if (!WideIV || !WideIV->isCanonical() ||
1792 WideIV->hasMoreThanOneUniqueUser() ||
1793 NewIVTy == WideIV->getScalarType())
1798 VPUser *SingleUser = WideIV->getSingleUser();
1807 WideIV->setStartValue(NewStart);
1809 WideIV->setStepValue(NewStep);
1815 Cmp->setOperand(1, NewBTC);
1829 return any_of(
Cond->getDefiningRecipe()->operands(), [&Plan, BestVF, BestUF,
1831 return isConditionTrueViaVFAndUF(C, Plan, BestVF, BestUF, SE);
1844 const SCEV *VectorTripCount =
1849 "Trip count SCEV must be computable");
1869 auto *Term = &ExitingVPBB->
back();
1882 for (
unsigned Part = 0; Part < UF; ++Part) {
1890 Extracts[Part] = Ext;
1902 match(Phi->getBackedgeValue(),
1904 assert(Index &&
"Expected index from ActiveLaneMask instruction");
1917 "Expected one VPActiveLaneMaskPHIRecipe for each unroll part");
1924 "Expected incoming values of Phi to be ActiveLaneMasks");
1929 EntryALM->setOperand(2, ALMMultiplier);
1930 LoopALM->setOperand(2, ALMMultiplier);
1934 ExtractFromALM(EntryALM, EntryExtracts);
1939 ExtractFromALM(LoopALM, LoopExtracts);
1941 Not->setOperand(0, LoopExtracts[0]);
1944 for (
unsigned Part = 0; Part < UF; ++Part) {
1945 Phis[Part]->setStartValue(EntryExtracts[Part]);
1946 Phis[Part]->setBackedgeValue(LoopExtracts[Part]);
1959 auto *Term = &ExitingVPBB->
back();
1967 const SCEV *VectorTripCount =
1972 "Trip count SCEV must be computable");
1994 if (auto *R = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi))
1995 return R->isCanonical();
1996 return isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe,
1997 VPFirstOrderRecurrencePHIRecipe, VPPhi>(&Phi);
2003 R->getScalarType());
2005 HeaderR.eraseFromParent();
2009 HeaderR.getVPSingleValue()->replaceAllUsesWith(Phi->getIncomingValue(0));
2010 HeaderR.eraseFromParent();
2019 B->setParent(
nullptr);
2028 {}, {}, Term->getDebugLoc());
2032 Term->eraseFromParent();
2059 R.getVPSingleValue()->replaceAllUsesWith(Trunc);
2069 assert(Plan.
hasVF(BestVF) &&
"BestVF is not available in Plan");
2070 assert(Plan.
hasUF(BestUF) &&
"BestUF is not available in Plan");
2079 assert(Plan.
getUF() == BestUF &&
"BestUF must match the Plan's UF");
2094 auto TryToPushSinkCandidate = [&](
VPRecipeBase *SinkCandidate) {
2097 if (SinkCandidate == Previous)
2101 !Seen.
insert(SinkCandidate).second ||
2114 for (
unsigned I = 0;
I != WorkList.
size(); ++
I) {
2117 "only recipes with a single defined value expected");
2132 if (SinkCandidate == FOR)
2135 SinkCandidate->moveAfter(Previous);
2136 Previous = SinkCandidate;
2154 for (
VPUser *U : FOR->users()) {
2160 [&VPDT, HoistPoint](
VPUser *U) {
2161 auto *R = cast<VPRecipeBase>(U);
2162 return HoistPoint == R ||
2163 VPDT.properlyDominates(HoistPoint, R);
2165 "HoistPoint must dominate all users of FOR");
2167 auto NeedsHoisting = [HoistPoint, &VPDT,
2169 VPRecipeBase *HoistCandidate = HoistCandidateV->getDefiningRecipe();
2170 if (!HoistCandidate)
2175 HoistCandidate->
getRegion() == EnclosingLoopRegion) &&
2176 "CFG in VPlan should still be flat, without replicate regions");
2178 if (!Visited.
insert(HoistCandidate).second)
2190 return HoistCandidate;
2199 for (
unsigned I = 0;
I != HoistCandidates.
size(); ++
I) {
2202 "only recipes with a single defined value expected");
2214 if (
auto *R = NeedsHoisting(
Op)) {
2217 if (R->getNumDefinedValues() != 1)
2231 HoistCandidate->moveBefore(*HoistPoint->
getParent(),
2250 VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe();
2253 while (
auto *PrevPhi =
2255 assert(PrevPhi->getParent() == FOR->getParent());
2257 Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe();
2275 {FOR, FOR->getBackedgeValue()});
2277 FOR->replaceAllUsesWith(RecurSplice);
2280 RecurSplice->setOperand(0, FOR);
2286 for (
VPUser *U : RecurSplice->users()) {
2297 B.createNaryOp(Instruction::Sub, {LastActiveLane, One});
2298 VPValue *PenultimateLastIter =
2300 {PenultimateIndex, FOR->getBackedgeValue()});
2305 VPValue *Sel =
B.createSelect(Cmp, LastPrevIter, PenultimateLastIter);
2318 RecurKind RK = PhiR->getRecurrenceKind();
2325 RecWithFlags->dropPoisonGeneratingFlags();
2331struct VPCSEDenseMapInfo :
public DenseMapInfo<VPSingleDefRecipe *> {
2333 return Def == getEmptyKey() || Def == getTombstoneKey();
2344 return GEP->getSourceElementType();
2347 .Case<VPVectorPointerRecipe, VPWidenGEPRecipe>(
2348 [](
auto *
I) {
return I->getSourceElementType(); })
2349 .
Default([](
auto *) {
return nullptr; });
2353 static bool canHandle(
const VPSingleDefRecipe *Def) {
2362 if (!
C || (!
C->first && (
C->second == Instruction::InsertValue ||
2363 C->second == Instruction::ExtractValue)))
2369 return !
Def->mayReadFromMemory();
2373 static unsigned getHashValue(
const VPSingleDefRecipe *Def) {
2374 const VPlan *Plan =
Def->getParent()->getPlan();
2375 VPTypeAnalysis TypeInfo(*Plan);
2378 getGEPSourceElementType(Def), TypeInfo.inferScalarType(Def),
2381 if (RFlags->hasPredicate())
2387 static bool isEqual(
const VPSingleDefRecipe *L,
const VPSingleDefRecipe *R) {
2390 if (
L->getVPDefID() !=
R->getVPDefID() ||
2392 getGEPSourceElementType(L) != getGEPSourceElementType(R) ||
2394 !
equal(
L->operands(),
R->operands()))
2397 "must have valid opcode info for both recipes");
2399 if (LFlags->hasPredicate() &&
2400 LFlags->getPredicate() !=
2406 const VPRegionBlock *RegionL =
L->getRegion();
2407 const VPRegionBlock *RegionR =
R->getRegion();
2410 L->getParent() !=
R->getParent())
2412 const VPlan *Plan =
L->getParent()->getPlan();
2413 VPTypeAnalysis TypeInfo(*Plan);
2414 return TypeInfo.inferScalarType(L) == TypeInfo.inferScalarType(R);
2429 if (!Def || !VPCSEDenseMapInfo::canHandle(Def))
2433 if (!VPDT.
dominates(V->getParent(), VPBB))
2438 Def->replaceAllUsesWith(V);
2457 "Expected vector prehader's successor to be the vector loop region");
2464 return !Op->isDefinedOutsideLoopRegions();
2467 R.moveBefore(*Preheader, Preheader->
end());
2491 VPValue *ResultVPV = R.getVPSingleValue();
2493 unsigned NewResSizeInBits = MinBWs.
lookup(UI);
2494 if (!NewResSizeInBits)
2507 (void)OldResSizeInBits;
2515 VPW->dropPoisonGeneratingFlags();
2517 if (OldResSizeInBits != NewResSizeInBits &&
2522 Ext->insertAfter(&R);
2524 Ext->setOperand(0, ResultVPV);
2525 assert(OldResSizeInBits > NewResSizeInBits &&
"Nothing to shrink?");
2528 "Only ICmps should not need extending the result.");
2537 for (
unsigned Idx = StartIdx; Idx != R.getNumOperands(); ++Idx) {
2538 auto *
Op = R.getOperand(Idx);
2539 unsigned OpSizeInBits =
2541 if (OpSizeInBits == NewResSizeInBits)
2543 assert(OpSizeInBits > NewResSizeInBits &&
"nothing to truncate");
2544 auto [ProcessedIter, IterIsEmpty] = ProcessedTruncs.
try_emplace(
Op);
2546 R.setOperand(Idx, ProcessedIter->second);
2554 Builder.setInsertPoint(&R);
2556 Builder.createWidenCast(Instruction::Trunc,
Op, NewResTy);
2557 ProcessedIter->second = NewOp;
2558 R.setOperand(Idx, NewOp);
2573 assert(VPBB->getNumSuccessors() == 2 &&
2574 "Two successors expected for BranchOnCond");
2575 unsigned RemovedIdx;
2586 "There must be a single edge between VPBB and its successor");
2595 VPBB->back().eraseFromParent();
2657 VPValue *StartV = CanonicalIVPHI->getStartValue();
2659 auto *CanonicalIVIncrement =
2663 CanonicalIVIncrement->dropPoisonGeneratingFlags();
2664 DebugLoc DL = CanonicalIVIncrement->getDebugLoc();
2674 VPValue *TripCount, *IncrementValue;
2679 IncrementValue = CanonicalIVIncrement;
2685 IncrementValue = CanonicalIVPHI;
2689 auto *EntryIncrement = Builder.createOverflowingOp(
2697 {EntryIncrement, TC, ALMMultiplier},
DL,
2698 "active.lane.mask.entry");
2704 LaneMaskPhi->insertAfter(CanonicalIVPHI);
2709 Builder.setInsertPoint(OriginalTerminator);
2710 auto *InLoopIncrement =
2712 {IncrementValue}, {
false,
false},
DL);
2714 {InLoopIncrement, TripCount, ALMMultiplier},
2715 DL,
"active.lane.mask.next");
2720 auto *NotMask = Builder.createNot(ALM,
DL);
2733 auto *FoundWidenCanonicalIVUser =
find_if(
2737 "Must have at most one VPWideCanonicalIVRecipe");
2738 if (FoundWidenCanonicalIVUser !=
2740 auto *WideCanonicalIV =
2742 WideCanonicalIVs.
push_back(WideCanonicalIV);
2750 if (WidenOriginalIV && WidenOriginalIV->isCanonical())
2751 WideCanonicalIVs.
push_back(WidenOriginalIV);
2757 for (
auto *Wide : WideCanonicalIVs) {
2763 assert(VPI->getOperand(0) == Wide &&
2764 "WidenCanonicalIV must be the first operand of the compare");
2765 assert(!HeaderMask &&
"Multiple header masks found?");
2773 VPlan &Plan,
bool UseActiveLaneMaskForControlFlow,
2776 UseActiveLaneMaskForControlFlow) &&
2777 "DataAndControlFlowWithoutRuntimeCheck implies "
2778 "UseActiveLaneMaskForControlFlow");
2781 auto *FoundWidenCanonicalIVUser =
find_if(
2783 assert(FoundWidenCanonicalIVUser &&
2784 "Must have widened canonical IV when tail folding!");
2786 auto *WideCanonicalIV =
2789 if (UseActiveLaneMaskForControlFlow) {
2799 nullptr,
"active.lane.mask");
2815 template <
typename OpTy>
bool match(OpTy *V)
const {
2826template <
typename Op0_t,
typename Op1_t>
2845 VPValue *Addr, *Mask, *EndPtr;
2848 auto AdjustEndPtr = [&CurRecipe, &EVL](
VPValue *EndPtr) {
2850 EVLEndPtr->insertBefore(&CurRecipe);
2851 EVLEndPtr->setOperand(1, &EVL);
2855 if (
match(&CurRecipe,
2861 if (
match(&CurRecipe,
2866 AdjustEndPtr(EndPtr), EVL, Mask);
2879 AdjustEndPtr(EndPtr), EVL, Mask);
2882 if (Rdx->isConditional() &&
2887 if (Interleave->getMask() &&
2892 if (
match(&CurRecipe,
2901 Intrinsic::vp_merge, {Mask,
LHS,
RHS, &EVL},
2924 "User of VF that we can't transform to EVL.");
2930 [&LoopRegion, &Plan](
VPUser *U) {
2932 m_c_Add(m_Specific(LoopRegion->getCanonicalIV()),
2933 m_Specific(&Plan.getVFxUF()))) ||
2934 isa<VPWidenPointerInductionRecipe>(U);
2936 "Only users of VFxUF should be VPWidenPointerInductionRecipe and the "
2937 "increment of the canonical induction.");
2957 MaxEVL = Builder.createScalarZExtOrTrunc(
2961 Builder.setInsertPoint(Header, Header->getFirstNonPhi());
2962 VPValue *PrevEVL = Builder.createScalarPhi(
2976 Intrinsic::experimental_vp_splice,
2977 {V1, V2, Imm, Plan.
getTrue(), PrevEVL, &EVL},
2981 R.getVPSingleValue()->replaceAllUsesWith(VPSplice);
2999 VPValue *EVLMask = Builder.createICmp(
3017 assert(NumDefVal == CurRecipe->getNumDefinedValues() &&
3018 "New recipe must define the same number of values as the "
3023 for (
unsigned I = 0;
I < NumDefVal; ++
I) {
3024 VPValue *CurVPV = CurRecipe->getVPValue(
I);
3036 R->eraseFromParent();
3086 VPlan &Plan,
const std::optional<unsigned> &MaxSafeElements) {
3094 VPValue *StartV = CanonicalIVPHI->getStartValue();
3098 EVLPhi->insertAfter(CanonicalIVPHI);
3099 VPBuilder Builder(Header, Header->getFirstNonPhi());
3102 VPPhi *AVLPhi = Builder.createScalarPhi(
3106 if (MaxSafeElements) {
3116 auto *CanonicalIVIncrement =
3118 Builder.setInsertPoint(CanonicalIVIncrement);
3122 OpVPEVL = Builder.createScalarZExtOrTrunc(
3123 OpVPEVL, CanIVTy, I32Ty, CanonicalIVIncrement->getDebugLoc());
3125 auto *NextEVLIV = Builder.createOverflowingOp(
3126 Instruction::Add, {OpVPEVL, EVLPhi},
3127 {CanonicalIVIncrement->hasNoUnsignedWrap(),
3128 CanonicalIVIncrement->hasNoSignedWrap()},
3129 CanonicalIVIncrement->getDebugLoc(),
"index.evl.next");
3130 EVLPhi->addOperand(NextEVLIV);
3132 VPValue *NextAVL = Builder.createOverflowingOp(
3133 Instruction::Sub, {AVLPhi, OpVPEVL}, {
true,
false},
3141 CanonicalIVPHI->replaceAllUsesWith(EVLPhi);
3142 CanonicalIVIncrement->setOperand(0, CanonicalIVPHI);
3156 assert(!EVLPhi &&
"Found multiple EVL PHIs. Only one expected");
3167 [[maybe_unused]]
bool FoundAVL =
3170 assert(FoundAVL &&
"Didn't find AVL?");
3178 [[maybe_unused]]
bool FoundAVLNext =
3181 assert(FoundAVLNext &&
"Didn't find AVL backedge?");
3192 VPValue *Backedge = CanonicalIV->getIncomingValue(1);
3195 "Unexpected canonical iv");
3201 CanonicalIV->eraseFromParent();
3214 match(LatchExitingBr,
3217 "Unexpected terminator in EVL loop");
3224 LatchExitingBr->eraseFromParent();
3234 return R->getRegion() ||
3238 for (
const SCEV *Stride : StridesMap.
values()) {
3241 const APInt *StrideConst;
3258 unsigned BW = U->getType()->getScalarSizeInBits();
3264 RewriteMap[StrideV] = PSE.
getSCEV(StrideV);
3271 const SCEV *ScevExpr = ExpSCEV->getSCEV();
3274 if (NewSCEV != ScevExpr) {
3276 ExpSCEV->replaceAllUsesWith(NewExp);
3285 const std::function<
bool(
BasicBlock *)> &BlockNeedsPredication) {
3289 auto CollectPoisonGeneratingInstrsInBackwardSlice([&](
VPRecipeBase *Root) {
3294 while (!Worklist.
empty()) {
3297 if (!Visited.
insert(CurRec).second)
3319 RecWithFlags->isDisjoint()) {
3322 Instruction::Add, {
A,
B}, {
false,
false},
3323 RecWithFlags->getDebugLoc());
3324 New->setUnderlyingValue(RecWithFlags->getUnderlyingValue());
3325 RecWithFlags->replaceAllUsesWith(New);
3326 RecWithFlags->eraseFromParent();
3329 RecWithFlags->dropPoisonGeneratingFlags();
3334 assert((!Instr || !Instr->hasPoisonGeneratingFlags()) &&
3335 "found instruction with poison generating flags not covered by "
3336 "VPRecipeWithIRFlags");
3341 if (
VPRecipeBase *OpDef = Operand->getDefiningRecipe())
3353 Instruction &UnderlyingInstr = WidenRec->getIngredient();
3354 VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe();
3355 if (AddrDef && WidenRec->isConsecutive() &&
3356 BlockNeedsPredication(UnderlyingInstr.
getParent()))
3357 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
3359 VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe();
3363 InterleaveRec->getInterleaveGroup();
3364 bool NeedPredication =
false;
3366 I < NumMembers; ++
I) {
3369 NeedPredication |= BlockNeedsPredication(Member->getParent());
3372 if (NeedPredication)
3373 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
3385 if (InterleaveGroups.empty())
3392 for (
const auto *IG : InterleaveGroups) {
3398 StoredValues.
push_back(StoreR->getStoredValue());
3399 for (
unsigned I = 1;
I < IG->getFactor(); ++
I) {
3406 StoredValues.
push_back(StoreR->getStoredValue());
3410 bool NeedsMaskForGaps =
3411 (IG->requiresScalarEpilogue() && !ScalarEpilogueAllowed) ||
3412 (!StoredValues.
empty() && !IG->isFull());
3424 VPValue *Addr = Start->getAddr();
3433 assert(IG->getIndex(IRInsertPos) != 0 &&
3434 "index of insert position shouldn't be zero");
3438 IG->getIndex(IRInsertPos),
3442 Addr =
B.createNoWrapPtrAdd(InsertPos->getAddr(), OffsetVPV, NW);
3448 if (IG->isReverse()) {
3451 -(int64_t)IG->getFactor(), NW, InsertPos->getDebugLoc());
3452 ReversePtr->insertBefore(InsertPos);
3456 InsertPos->getMask(), NeedsMaskForGaps,
3457 InterleaveMD, InsertPos->getDebugLoc());
3458 VPIG->insertBefore(InsertPos);
3461 for (
unsigned i = 0; i < IG->getFactor(); ++i)
3464 if (!Member->getType()->isVoidTy()) {
3523 AddOp = Instruction::Add;
3524 MulOp = Instruction::Mul;
3526 AddOp =
ID.getInductionOpcode();
3527 MulOp = Instruction::FMul;
3535 Step = Builder.createScalarCast(Instruction::Trunc, Step, Ty,
DL);
3536 Start = Builder.createScalarCast(Instruction::Trunc, Start, Ty,
DL);
3538 Flags.dropPoisonGeneratingFlags();
3547 Init = Builder.createWidenCast(Instruction::UIToFP,
Init, StepTy);
3552 Init = Builder.createNaryOp(MulOp, {
Init, SplatStep}, Flags);
3553 Init = Builder.createNaryOp(AddOp, {SplatStart,
Init}, Flags,
3559 WidePHI->insertBefore(WidenIVR);
3570 Builder.setInsertPoint(R->getParent(), std::next(R->getIterator()));
3574 VF = Builder.createScalarCast(Instruction::CastOps::UIToFP, VF, StepTy,
3577 VF = Builder.createScalarZExtOrTrunc(VF, StepTy,
3580 Inc = Builder.createNaryOp(MulOp, {Step, VF}, Flags);
3587 auto *
Next = Builder.createNaryOp(AddOp, {Prev, Inc}, Flags,
3590 WidePHI->addOperand(
Next);
3618 VPlan *Plan = R->getParent()->getPlan();
3619 VPValue *Start = R->getStartValue();
3620 VPValue *Step = R->getStepValue();
3621 VPValue *VF = R->getVFValue();
3623 assert(R->getInductionDescriptor().getKind() ==
3625 "Not a pointer induction according to InductionDescriptor!");
3628 "Recipe should have been replaced");
3634 VPPhi *ScalarPtrPhi = Builder.createScalarPhi(Start,
DL,
"pointer.phi");
3638 Builder.setInsertPoint(R->getParent(), R->getParent()->getFirstNonPhi());
3641 Offset = Builder.createOverflowingOp(Instruction::Mul, {
Offset, Step});
3642 VPValue *PtrAdd = Builder.createNaryOp(
3644 R->replaceAllUsesWith(PtrAdd);
3649 VF = Builder.createScalarZExtOrTrunc(VF, StepTy, TypeInfo.
inferScalarType(VF),
3651 VPValue *Inc = Builder.createOverflowingOp(Instruction::Mul, {Step, VF});
3654 Builder.createPtrAdd(ScalarPtrPhi, Inc,
DL,
"ptr.ind");
3663 if (!R->isReplicator())
3667 R->dissolveToCFGLoop();
3689 WidenIVR->replaceAllUsesWith(PtrAdd);
3702 for (
unsigned I = 1;
I != Blend->getNumIncomingValues(); ++
I)
3703 Select = Builder.createSelect(Blend->getMask(
I),
3704 Blend->getIncomingValue(
I),
Select,
3705 R.getDebugLoc(),
"predphi");
3706 Blend->replaceAllUsesWith(
Select);
3721 for (
VPValue *
Op : LastActiveL->operands()) {
3722 VPValue *NotMask = Builder.createNot(
Op, LastActiveL->getDebugLoc());
3727 VPValue *FirstInactiveLane = Builder.createNaryOp(
3729 LastActiveL->getDebugLoc(),
"first.inactive.lane");
3734 VPValue *LastLane = Builder.createNaryOp(
3735 Instruction::Sub, {FirstInactiveLane, One},
3736 LastActiveL->getDebugLoc(),
"last.active.lane");
3754 ? Instruction::UIToFP
3755 : Instruction::Trunc;
3756 VectorStep = Builder.createWidenCast(CastOp, VectorStep, IVTy);
3762 Builder.createWidenCast(Instruction::Trunc, ScalarStep, IVTy);
3767 Flags = {VPI->getFastMathFlags()};
3772 MulOpc, {VectorStep, ScalarStep}, Flags, R.getDebugLoc());
3774 VPI->replaceAllUsesWith(VectorStep);
3780 R->eraseFromParent();
3793 "unsupported early exit VPBB");
3804 "Terminator must be be BranchOnCond");
3805 VPValue *CondOfEarlyExitingVPBB =
3807 auto *CondToEarlyExit = TrueSucc == EarlyExitVPBB
3808 ? CondOfEarlyExitingVPBB
3809 : Builder.createNot(CondOfEarlyExitingVPBB);
3826 VPBuilder EarlyExitB(VectorEarlyExitVPBB);
3831 unsigned EarlyExitIdx = ExitIRI->getNumOperands() - 1;
3832 if (ExitIRI->getNumOperands() != 1) {
3835 ExitIRI->extractLastLaneOfLastPartOfFirstOperand(MiddleBuilder);
3838 VPValue *IncomingFromEarlyExit = ExitIRI->getOperand(EarlyExitIdx);
3839 if (!IncomingFromEarlyExit->
isLiveIn()) {
3847 ExitIRI->
setOperand(EarlyExitIdx, IncomingFromEarlyExit);
3857 "Unexpected terminator");
3858 auto *IsLatchExitTaken =
3860 LatchExitingBranch->getOperand(1));
3861 auto *AnyExitTaken = Builder.createNaryOp(
3862 Instruction::Or, {IsEarlyExitTaken, IsLatchExitTaken});
3864 LatchExitingBranch->eraseFromParent();
3874 Type *RedTy = Ctx.Types.inferScalarType(Red);
3875 VPValue *VecOp = Red->getVecOp();
3878 auto IsExtendedRedValidAndClampRange =
3890 if (Red->isPartialReduction()) {
3895 ExtRedCost = Ctx.TTI.getPartialReductionCost(
3896 Opcode, SrcTy,
nullptr, RedTy, VF, ExtKind,
3899 ExtRedCost = Ctx.TTI.getExtendedReductionCost(
3900 Opcode, ExtOpc == Instruction::CastOps::ZExt, RedTy, SrcVecTy,
3901 Red->getFastMathFlags(),
CostKind);
3903 return ExtRedCost.
isValid() && ExtRedCost < ExtCost + RedCost;
3911 IsExtendedRedValidAndClampRange(
3914 Ctx.Types.inferScalarType(
A)))
3932 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3935 Type *RedTy = Ctx.Types.inferScalarType(Red);
3938 auto IsMulAccValidAndClampRange =
3945 Ext0 ? Ctx.Types.inferScalarType(Ext0->getOperand(0)) : RedTy;
3948 if (Red->isPartialReduction()) {
3950 Ext1 ? Ctx.Types.inferScalarType(Ext1->getOperand(0)) :
nullptr;
3953 MulAccCost = Ctx.TTI.getPartialReductionCost(
3954 Opcode, SrcTy, SrcTy2, RedTy, VF,
3964 if (Ext0 && Ext1 && Ext0->getOpcode() != Ext1->getOpcode())
3968 !Ext0 || Ext0->getOpcode() == Instruction::CastOps::ZExt;
3970 MulAccCost = Ctx.TTI.getMulAccReductionCost(IsZExt, Opcode, RedTy,
3978 ExtCost += Ext0->computeCost(VF, Ctx);
3980 ExtCost += Ext1->computeCost(VF, Ctx);
3982 ExtCost += OuterExt->computeCost(VF, Ctx);
3984 return MulAccCost.
isValid() &&
3985 MulAccCost < ExtCost + MulCost + RedCost;
3990 VPValue *VecOp = Red->getVecOp();
4008 if (!ExtA || ExtB || !ValB->
isLiveIn())
4024 Builder.createWidenCast(Instruction::CastOps::Trunc, ValB, NarrowTy);
4025 Type *WideTy = Ctx.Types.inferScalarType(ExtA);
4026 ValB = ExtB = Builder.createWidenCast(ExtOpc, Trunc, WideTy);
4027 Mul->setOperand(1, ExtB);
4037 ExtendAndReplaceConstantOp(RecipeA, RecipeB,
B,
Mul);
4042 IsMulAccValidAndClampRange(
Mul, RecipeA, RecipeB,
nullptr)) {
4049 if (!
Sub && IsMulAccValidAndClampRange(
Mul,
nullptr,
nullptr,
nullptr))
4066 ExtendAndReplaceConstantOp(Ext0, Ext1,
B,
Mul);
4075 (Ext->getOpcode() == Ext0->getOpcode() || Ext0 == Ext1) &&
4076 Ext0->getOpcode() == Ext1->getOpcode() &&
4077 IsMulAccValidAndClampRange(
Mul, Ext0, Ext1, Ext) &&
Mul->hasOneUse()) {
4079 Ext0->getOpcode(), Ext0->getOperand(0), Ext->getResultType(),
nullptr,
4080 *Ext0, *Ext0, Ext0->getDebugLoc());
4081 NewExt0->insertBefore(Ext0);
4086 Ext->getResultType(),
nullptr, *Ext1,
4087 *Ext1, Ext1->getDebugLoc());
4090 Mul->setOperand(0, NewExt0);
4091 Mul->setOperand(1, NewExt1);
4092 Red->setOperand(1,
Mul);
4105 auto IP = std::next(Red->getIterator());
4106 auto *VPBB = Red->getParent();
4116 Red->replaceAllUsesWith(AbstractR);
4146 for (
VPValue *VPV : VPValues) {
4148 (VPV->isLiveIn() && VPV->getLiveInIRValue() &&
4156 if (
User->usesScalars(VPV))
4159 HoistPoint = HoistBlock->
begin();
4163 "All users must be in the vector preheader or dominated by it");
4168 VPV->replaceUsesWithIf(Broadcast,
4169 [VPV, Broadcast](
VPUser &U,
unsigned Idx) {
4170 return Broadcast != &U && !U.usesScalars(VPV);
4187 if (RepR->isPredicated() || !RepR->isSingleScalar() ||
4188 RepR->getOpcode() != Instruction::Load)
4191 VPValue *Addr = RepR->getOperand(0);
4194 if (!
Loc.AATags.Scope)
4199 if (R.mayWriteToMemory()) {
4201 if (!
Loc || !
Loc->AATags.Scope || !
Loc->AATags.NoAlias)
4209 for (
auto &[LoadRecipe, LoadLoc] : CandidateLoads) {
4213 const AAMDNodes &LoadAA = LoadLoc.AATags;
4229 return CommonMetadata;
4232template <
unsigned Opcode>
4236 static_assert(Opcode == Instruction::Load || Opcode == Instruction::Store,
4237 "Only Load and Store opcodes supported");
4238 constexpr bool IsLoad = (Opcode == Instruction::Load);
4248 if (!RepR || RepR->getOpcode() != Opcode || !RepR->isPredicated())
4252 VPValue *Addr = RepR->getOperand(IsLoad ? 0 : 1);
4255 RecipesByAddress[AddrSCEV].push_back(RepR);
4262 return TypeInfo.
inferScalarType(IsLoad ? Recipe : Recipe->getOperand(0));
4264 for (
auto &[Addr, Recipes] : RecipesByAddress) {
4265 if (Recipes.size() < 2)
4273 VPValue *MaskI = RecipeI->getMask();
4274 Type *TypeI = GetLoadStoreValueType(RecipeI);
4280 bool HasComplementaryMask =
false;
4285 VPValue *MaskJ = RecipeJ->getMask();
4286 Type *TypeJ = GetLoadStoreValueType(RecipeJ);
4287 if (TypeI == TypeJ) {
4297 if (HasComplementaryMask) {
4298 assert(Group.
size() >= 2 &&
"must have at least 2 entries");
4308template <
typename InstType>
4327 for (
auto &Group :
Groups) {
4352 LoadWithMinAlign->getUnderlyingInstr(), {EarliestLoad->getOperand(0)},
4353 false,
nullptr, *EarliestLoad,
4356 UnpredicatedLoad->insertBefore(EarliestLoad);
4360 Load->replaceAllUsesWith(UnpredicatedLoad);
4361 Load->eraseFromParent();
4371 if (!StoreLoc || !StoreLoc->AATags.Scope)
4377 StoresToSink.
end());
4381 SinkStoreInfo SinkInfo(StoresToSinkSet, *StoresToSink[0], SE, L, TypeInfo);
4395 for (
auto &Group :
Groups) {
4412 VPValue *SelectedValue = Group[0]->getOperand(0);
4415 for (
unsigned I = 1;
I < Group.size(); ++
I) {
4416 VPValue *Mask = Group[
I]->getMask();
4418 SelectedValue = Builder.createSelect(Mask,
Value, SelectedValue,
4426 auto *UnpredicatedStore =
4428 {SelectedValue, LastStore->getOperand(1)},
4430 nullptr, *LastStore, CommonMetadata);
4431 UnpredicatedStore->insertBefore(*InsertBB, LastStore->
getIterator());
4435 Store->eraseFromParent();
4442 assert(Plan.
hasVF(BestVF) &&
"BestVF is not available in Plan");
4443 assert(Plan.
hasUF(BestUF) &&
"BestUF is not available in Plan");
4477 auto *TCMO = Builder.createNaryOp(
4505 auto UsesVectorOrInsideReplicateRegion = [DefR, LoopRegion](
VPUser *U) {
4507 return !U->usesScalars(DefR) || ParentRegion != LoopRegion;
4514 none_of(DefR->users(), UsesVectorOrInsideReplicateRegion))
4524 DefR->replaceUsesWithIf(
4525 BuildVector, [BuildVector, &UsesVectorOrInsideReplicateRegion](
4527 return &U != BuildVector && UsesVectorOrInsideReplicateRegion(&U);
4541 for (
VPValue *Def : R.definedValues()) {
4554 auto IsCandidateUnpackUser = [Def](
VPUser *U) {
4556 return U->usesScalars(Def) &&
4559 if (
none_of(Def->users(), IsCandidateUnpackUser))
4566 Unpack->insertAfter(&R);
4567 Def->replaceUsesWithIf(Unpack,
4568 [&IsCandidateUnpackUser](
VPUser &U,
unsigned) {
4569 return IsCandidateUnpackUser(&U);
4579 bool RequiresScalarEpilogue) {
4581 assert(VectorTC.
isLiveIn() &&
"vector-trip-count must be a live-in");
4600 if (TailByMasking) {
4601 TC = Builder.createNaryOp(
4603 {TC, Builder.createNaryOp(Instruction::Sub,
4614 Builder.createNaryOp(Instruction::URem, {TC, Step},
4623 if (RequiresScalarEpilogue) {
4625 "requiring scalar epilogue is not supported with fail folding");
4628 R = Builder.createSelect(IsZero, Step, R);
4631 VPValue *Res = Builder.createNaryOp(
4650 Builder.createElementCount(TCTy, VFEC * Plan.
getUF());
4657 VPValue *RuntimeVF = Builder.createElementCount(TCTy, VFEC);
4661 BC, [&VF](
VPUser &U,
unsigned) {
return !U.usesScalars(&VF); });
4666 VPValue *MulByUF = Builder.createOverflowingOp(
4667 Instruction::Mul, {RuntimeVF, UF}, {
true,
false});
4677 BasicBlock *EntryBB = Entry->getIRBasicBlock();
4685 const SCEV *Expr = ExpSCEV->getSCEV();
4688 ExpandedSCEVs[ExpSCEV->getSCEV()] = Res;
4693 ExpSCEV->eraseFromParent();
4696 "VPExpandSCEVRecipes must be at the beginning of the entry block, "
4697 "after any VPIRInstructions");
4700 auto EI = Entry->begin();
4710 return ExpandedSCEVs;
4726 return Member0Op == OpV;
4728 return !W->getMask() && Member0Op == OpV;
4730 return IR->getInterleaveGroup()->isFull() &&
IR->getVPValue(Idx) == OpV;
4741 if (!InterleaveR || InterleaveR->
getMask())
4744 Type *GroupElementTy =
nullptr;
4748 [&TypeInfo, GroupElementTy](
VPValue *
Op) {
4749 return TypeInfo.inferScalarType(Op) == GroupElementTy;
4756 [&TypeInfo, GroupElementTy](
VPValue *
Op) {
4757 return TypeInfo.inferScalarType(Op) == GroupElementTy;
4766 return IG->getFactor() == VFMin && IG->getNumMembers() == VFMin &&
4767 GroupSize == VectorRegWidth;
4775 return RepR && RepR->isSingleScalar();
4782 auto *R = V->getDefiningRecipe();
4790 for (
unsigned Idx = 0,
E = WideMember0->getNumOperands(); Idx !=
E; ++Idx)
4791 WideMember0->setOperand(
4800 auto *LI =
cast<LoadInst>(LoadGroup->getInterleaveGroup()->getInsertPos());
4802 *LI, LoadGroup->getAddr(), LoadGroup->getMask(),
true,
4803 false, {}, LoadGroup->getDebugLoc());
4804 L->insertBefore(LoadGroup);
4810 assert(RepR->isSingleScalar() &&
4812 "must be a single scalar load");
4813 NarrowedOps.
insert(RepR);
4818 VPValue *PtrOp = WideLoad->getAddr();
4820 PtrOp = VecPtr->getOperand(0);
4825 nullptr, {}, *WideLoad);
4826 N->insertBefore(WideLoad);
4856 if (R.mayWriteToMemory() && !InterleaveR)
4878 if (InterleaveR->getStoredValues().empty())
4883 auto *Member0 = InterleaveR->getStoredValues()[0];
4885 all_of(InterleaveR->getStoredValues(),
4886 [Member0](
VPValue *VPV) { return Member0 == VPV; })) {
4894 VPRecipeBase *DefR = Op.value()->getDefiningRecipe();
4897 auto *IR = dyn_cast<VPInterleaveRecipe>(DefR);
4898 return IR && IR->getInterleaveGroup()->isFull() &&
4899 IR->getVPValue(Op.index()) == Op.value();
4911 for (
const auto &[
I, V] :
enumerate(InterleaveR->getStoredValues())) {
4913 if (!R || R->getOpcode() != WideMember0->getOpcode() ||
4914 R->getNumOperands() > 2)
4917 [WideMember0, Idx =
I](
const auto &
P) {
4918 const auto &[OpIdx, OpV] = P;
4919 return !canNarrowLoad(WideMember0, OpIdx, OpV, Idx);
4926 if (StoreGroups.
empty())
4932 for (
auto *StoreGroup : StoreGroups) {
4938 *
SI, StoreGroup->getAddr(), Res,
nullptr,
true,
4939 false, {}, StoreGroup->getDebugLoc());
4940 S->insertBefore(StoreGroup);
4941 StoreGroup->eraseFromParent();
4956 Instruction::Mul, {VScale, UF}, {
true,
false});
4960 Inc->setOperand(1, UF);
4979 "must have a BranchOnCond");
4982 if (VF.
isScalable() && VScaleForTuning.has_value())
4983 VectorStep *= *VScaleForTuning;
4984 assert(VectorStep > 0 &&
"trip count should not be zero");
4988 MiddleTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
5001 if (WideIntOrFp && WideIntOrFp->getTruncInst())
5008 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
5011 Start, VectorTC, Step);
5034 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
5044 IVEndValues[WideIVR] = EndValue;
5045 ResumePhiR->setOperand(0, EndValue);
5046 ResumePhiR->setName(
"bc.resume.val");
5053 "should only skip truncated wide inductions");
5061 auto *ResumeFromVectorLoop = VectorPhiR->getBackedgeValue();
5063 "Cannot handle loops with uncountable early exits");
5069 "vector.recur.extract");
5071 ResumePhiR->setName(IsFOR ?
"scalar.recur.init" :
"bc.merge.rdx");
5072 ResumePhiR->setOperand(0, ResumeFromVectorLoop);
5081 VPBuilder ScalarPHBuilder(ScalarPHVPBB);
5082 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
5094 "Cannot handle loops with uncountable early exits");
5167 make_range(MiddleVPBB->getFirstNonPhi(), MiddleVPBB->end()))) {
5181 "vector.recur.extract.for.phi");
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
ReachingDefInfo InstSet & ToRemove
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static bool isSentinel(const DWARFDebugNames::AttributeEncoding &AE)
iv Induction Variable Users
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, ScalarEvolution &SE)
static DebugLoc getDebugLoc(MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI)
Return the first DebugLoc that has line number information, given a range of instructions.
This file provides utility analysis objects describing memory locations.
MachineInstr unsigned OpIdx
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
const SmallVectorImpl< MachineOperand > & Cond
This is the interface for a metadata-based scoped no-alias analysis.
This file defines generic set operations that may be used on set's of different types,...
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file implements dominator tree analysis for a single level of a VPlan's H-CFG.
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const X86InstrFMA3Group Groups[]
static const uint32_t IV[8]
Helper for extra no-alias checks via known-safe recipe and SCEV.
SinkStoreInfo(const SmallPtrSetImpl< VPRecipeBase * > &ExcludeRecipes, VPReplicateRecipe &GroupLeader, ScalarEvolution &SE, const Loop &L, VPTypeAnalysis &TypeInfo)
bool shouldSkip(VPRecipeBase &R) const
Return true if R should be skipped during alias checking, either because it's in the exclude set or b...
Class for arbitrary precision integers.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
APInt abs() const
Get the absolute value.
unsigned getBitWidth() const
Return the number of bits in the APInt.
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
const T & back() const
back - Get the last element.
const T & front() const
front - Get the first element.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
This class represents a function call, abstracting a target machine's calling convention.
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getCompilerGenerated()
static DebugLoc getUnknown()
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
bool dominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
dominates - Returns true iff A dominates B.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
Utility class for floating point operations which can have information about relaxed accuracy require...
Represents flags for the getelementptr instruction/expression.
GEPNoWrapFlags withoutNoUnsignedWrap() const
static GEPNoWrapFlags none()
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
A struct for saving information about induction variables.
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
uint32_t getNumMembers() const
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
Represents a single loop in the control flow graph.
LLVM_ABI MDNode * createBranchWeights(uint32_t TrueWeight, uint32_t FalseWeight, bool IsExpected=false)
Return metadata containing two branch weights.
This class implements a map that also provides access to all stored values in a deterministic order.
ValueT lookup(const KeyT &Key) const
Representation for a specific memory location.
AAMDNodes AATags
The metadata nodes which describes the aliasing of the location (each member is null if that kind of ...
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
RegionT * getParent() const
Get the parent of the Region.
This class uses information about analyze scalars to rewrite expressions in canonical form.
LLVM_ABI Value * expandCodeFor(const SCEV *SH, Type *Ty, BasicBlock::iterator I)
Insert code to directly compute the specified SCEV expression into the program.
static const SCEV * rewrite(const SCEV *Scev, ScalarEvolution &SE, ValueToSCEVMapTy &Map)
This class represents an analyzed expression in the program.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
const DataLayout & getDataLayout() const
Return the DataLayout associated with the module this SCEV instance is operating on.
LLVM_ABI const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getUDivExpr(const SCEV *LHS, const SCEV *RHS)
Get a canonical unsigned division expression, or something simpler if possible.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
static LLVM_ABI bool mayAliasInScopes(const MDNode *Scopes, const MDNode *NoAlias)
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize get(ScalarTy Quantity, bool Scalable)
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
bool isStructTy() const
True if this is an instance of StructType.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
A recipe for generating the active lane mask for the vector loop that is used to predicate the vector...
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRegionBlock * getEnclosingLoopRegion()
VPBasicBlock * splitAt(iterator SplitAt)
Split current block at SplitAt by inserting a new block between the current block and its successors ...
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
const VPRecipeBase & back() const
A recipe for vectorizing a phi-node as a sequence of mask-based select instructions.
VPValue * getMask(unsigned Idx) const
Return mask number Idx.
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
void setMask(unsigned Idx, VPValue *V)
Set mask number Idx to V.
bool isNormalized() const
A normalized blend is one that has an odd number of operands, whereby the first operand does not have...
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
size_t getNumPredecessors() const
const VPBlocksTy & getPredecessors() const
VPBlockBase * getSinglePredecessor() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleHierarchicalPredecessor()
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBases IfTrue and IfFalse after BlockPtr.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To)
Disconnect VPBlockBases From and To bi-directionally.
A recipe for generating conditional branches on the bits of a mask.
RAII object that stores the current insertion point and restores it when the object is destroyed.
VPlan-based builder utility analogous to IRBuilder.
VPValue * createScalarZExtOrTrunc(VPValue *Op, Type *ResultTy, Type *SrcTy, DebugLoc DL)
VPValue * createElementCount(Type *Ty, ElementCount EC)
VPInstruction * createScalarCast(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy, DebugLoc DL, const VPIRFlags &Flags={}, const VPIRMetadata &Metadata={})
VPDerivedIVRecipe * createDerivedIV(InductionDescriptor::InductionKind Kind, FPMathOperator *FPBinOp, VPValue *Start, VPValue *Current, VPValue *Step, const Twine &Name="")
Convert the input value Current to the corresponding value of an induction with Start and Step values...
static VPBuilder getToInsertAfter(VPRecipeBase *R)
Create a VPBuilder to insert after R.
VPInstruction * createOverflowingOp(unsigned Opcode, ArrayRef< VPValue * > Operands, VPRecipeWithIRFlags::WrapFlagsTy WrapFlags={false, false}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
void setInsertPoint(VPBasicBlock *TheBB)
This specifies that created VPInstructions should be appended to the end of the specified block.
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
Canonical scalar induction phi of the vector loop.
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
A recipe for converting the input value IV value to the corresponding value of an IV with different s...
Template specialization of the standard LLVM dominator tree utility for VPBlockBases.
bool properlyDominates(const VPRecipeBase *A, const VPRecipeBase *B)
A recipe for generating the phi node for the current index of elements, adjusted in accordance with E...
A recipe to combine multiple recipes into a single 'expression' recipe, which should be considered a ...
A special type of VPBasicBlock that wraps an existing IR basic block.
BasicBlock * getIRBasicBlock() const
Class to record and manage LLVM IR flags.
static LLVM_ABI_FOR_TEST VPIRInstruction * create(Instruction &I)
Create a new VPIRPhi for \I , if it is a PHINode, otherwise create a VPIRInstruction.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
@ ExtractPenultimateElement
@ Unpack
Extracts all lanes from its (non-scalable) vector operand.
@ FirstOrderRecurrenceSplice
@ BuildVector
Creates a fixed-width vector containing all operands.
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
const InterleaveGroup< Instruction > * getInterleaveGroup() const
VPValue * getMask() const
Return the mask used by this recipe.
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
A recipe for interleaved memory operations with vector-predication intrinsics.
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when control converges back from ...
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPRegionBlock * getRegion()
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPRecipeBase * getRecipe(Instruction *I)
Return the recipe created for given ingredient.
A recipe to represent inloop reduction operations with vector-predication intrinsics,...
A recipe to represent inloop, ordered or partial reduction operations.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
Type * getCanonicalIVType()
Return the type of the canonical IV for loop regions.
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
void setExiting(VPBlockBase *ExitingBlock)
Set ExitingBlock as the exiting VPBlockBase of this VPRegionBlock.
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the region.
const VPBlockBase * getExiting() const
VPBasicBlock * getPreheaderVPBB()
Returns the pre-header VPBasicBlock of the loop region.
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
bool isSingleScalar() const
VPValue * getMask()
Return the mask of a predicated VPReplicateRecipe.
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
VPSingleDefRecipe * clone() override=0
Clone the current recipe.
An analysis for type-inference for VPValues.
LLVMContext & getContext()
Return the LLVMContext used by the analysis.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
VPValue * getOperand(unsigned N) const
void addOperand(VPValue *Operand)
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void setUnderlyingValue(Value *Val)
void replaceAllUsesWith(VPValue *New)
unsigned getNumUsers() const
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
A Recipe for widening the canonical induction variable of the vector loop.
VPWidenCastRecipe is a recipe to create vector cast instructions.
Instruction::CastOps getOpcode() const
A recipe for handling GEP instructions.
Base class for widened induction (VPWidenIntOrFpInductionRecipe and VPWidenPointerInductionRecipe),...
PHINode * getPHINode() const
VPValue * getStepValue()
Returns the step value of the induction.
const InductionDescriptor & getInductionDescriptor() const
Returns the induction descriptor for the recipe.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
VPValue * getLastUnrolledPartOperand()
Returns the VPValue representing the value of this induction at the last unrolled part,...
VPValue * getSplatVFValue()
A recipe for widening vector intrinsics.
A common base class for widening memory operations.
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
bool hasVF(ElementCount VF) const
LLVMContext & getContext() const
VPBasicBlock * getEntry()
VPValue & getVectorTripCount()
The vector trip count.
bool hasScalableVF() const
VPValue & getVFxUF()
Returns VF * UF of the vector loop region.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
VPValue * getTrue()
Return a VPValue wrapping i1 true.
VPValue * getOrCreateBackedgeTakenCount()
The backedge taken count of the original loop.
VPRegionBlock * createReplicateRegion(VPBlockBase *Entry, VPBlockBase *Exiting, const std::string &Name="")
Create a new replicate region with Entry, Exiting and Name.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
VPValue * getConstantInt(Type *Ty, uint64_t Val, bool IsSigned=false)
Return a VPValue wrapping a ConstantInt with the given type and value.
void setVF(ElementCount VF)
bool isUnrolled() const
Returns true if the VPlan already has been unrolled, i.e.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
VPBasicBlock * createVPBasicBlock(const Twine &Name, VPRecipeBase *Recipe=nullptr)
Create a new VPBasicBlock with Name and containing Recipe if present.
VPValue * getFalse()
Return a VPValue wrapping i1 false.
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
bool hasScalarVFOnly() const
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
ArrayRef< VPValue * > getLiveIns() const
Return the list of live-in VPValues available in the VPlan.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPValue * getLiveIn(Value *V) const
Return the live-in VPValue for V, if there is one or nullptr otherwise.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
bool hasScalarTail() const
Returns true if the scalar tail may execute after the vector loop.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
iterator_range< user_iterator > users()
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM)
Return A unsign-divided by B, rounded by the given rounding mode.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_MaskedStore(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
Matches MaskedStore Intrinsic.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
LogicalOp_match< LHS, RHS, Instruction::And > m_LogicalAnd(const LHS &L, const RHS &R)
Matches L && R either in the form of L & R or L ?
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
Matches MaskedLoad Intrinsic.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
SpecificCmpClass_match< LHS, RHS, CmpInst > m_SpecificCmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
bool match(const SCEV *S, const Pattern &P)
VPInstruction_match< VPInstruction::ExtractLastLane, VPInstruction_match< VPInstruction::ExtractLastPart, Op0_t > > m_ExtractLastLaneOfLastPart(const Op0_t &Op0)
AllRecipe_commutative_match< Instruction::And, Op0_t, Op1_t > m_c_BinaryAnd(const Op0_t &Op0, const Op1_t &Op1)
Match a binary AND operation.
AllRecipe_match< Instruction::Or, Op0_t, Op1_t > m_BinaryOr(const Op0_t &Op0, const Op1_t &Op1)
Match a binary OR operation.
VPInstruction_match< VPInstruction::AnyOf > m_AnyOf()
AllRecipe_commutative_match< Opcode, Op0_t, Op1_t > m_c_Binary(const Op0_t &Op0, const Op1_t &Op1)
AllRecipe_commutative_match< Instruction::Or, Op0_t, Op1_t > m_c_BinaryOr(const Op0_t &Op0, const Op1_t &Op1)
GEPLikeRecipe_match< Op0_t, Op1_t > m_GetElementPtr(const Op0_t &Op0, const Op1_t &Op1)
AllRecipe_match< Opcode, Op0_t, Op1_t > m_Binary(const Op0_t &Op0, const Op1_t &Op1)
VPInstruction_match< VPInstruction::LastActiveLane, Op0_t > m_LastActiveLane(const Op0_t &Op0)
VPInstruction_match< Instruction::ExtractElement, Op0_t, Op1_t > m_ExtractElement(const Op0_t &Op0, const Op1_t &Op1)
specific_intval< 1 > m_False()
VPDerivedIV_match< Op0_t, Op1_t, Op2_t > m_DerivedIV(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
VPInstruction_match< VPInstruction::ExtractLastLane, Op0_t > m_ExtractLastLane(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ActiveLaneMask, Op0_t, Op1_t, Op2_t > m_ActiveLaneMask(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
VPInstruction_match< VPInstruction::BranchOnCount > m_BranchOnCount()
specific_intval< 1 > m_True()
VectorEndPointerRecipe_match< Op0_t, Op1_t > m_VecEndPtr(const Op0_t &Op0, const Op1_t &Op1)
VPInstruction_match< VPInstruction::ExtractLastPart, Op0_t > m_ExtractLastPart(const Op0_t &Op0)
VPInstruction_match< VPInstruction::Broadcast, Op0_t > m_Broadcast(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::ExplicitVectorLength, Op0_t > m_EVL(const Op0_t &Op0)
VPInstruction_match< VPInstruction::BuildVector > m_BuildVector()
BuildVector is matches only its opcode, w/o matching its operands as the number of operands is not fi...
VPInstruction_match< VPInstruction::ExtractPenultimateElement, Op0_t > m_ExtractPenultimateElement(const Op0_t &Op0)
VPInstruction_match< VPInstruction::FirstActiveLane, Op0_t > m_FirstActiveLane(const Op0_t &Op0)
bind_ty< VPInstruction > m_VPInstruction(VPInstruction *&V)
Match a VPInstruction, capturing if we match.
VPInstruction_match< VPInstruction::BranchOnCond > m_BranchOnCond()
VPInstruction_match< VPInstruction::ExtractLane, Op0_t, Op1_t > m_ExtractLane(const Op0_t &Op0, const Op1_t &Op1)
NodeAddr< DefNode * > Def
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
bool isUniformAcrossVFsAndUFs(VPValue *V)
Checks if V is uniform across all VF lanes and UF parts.
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
std::optional< MemoryLocation > getMemoryLocation(const VPRecipeBase &R)
Return a MemoryLocation for R with noalias metadata populated from R, if the recipe is supported and ...
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
VPIRFlags getFlagsFromIndDesc(const InductionDescriptor &ID)
Extracts and returns NoWrap and FastMath flags from the induction binop in ID.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
bool isHeaderMask(const VPValue *V, const VPlan &Plan)
Return true if V is a header mask in Plan.
const SCEV * getSCEVExprForVPValue(const VPValue *V, ScalarEvolution &SE, const Loop *L=nullptr)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
auto min_element(R &&Range)
Provide wrappers to std::min_element which take ranges instead of having to pass begin/end explicitly...
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
DenseMap< const Value *, const SCEV * > ValueToSCEVMapTy
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
constexpr from_range_t from_range
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
auto cast_or_null(const Y &Val)
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&...Ranges)
Returns a concatenated range across two or more ranges.
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
auto reverse(ContainerTy &&C)
iterator_range< po_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_post_order_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in post order while traversing through ...
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI_FOR_TEST cl::opt< bool > EnableWideActiveLaneMask
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
iterator_range< filter_iterator< detail::IterOfRange< RangeT >, PredicateT > > make_filter_range(RangeT &&Range, PredicateT Pred)
Convenience function that takes a range of elements and a predicate, and return a new filter_iterator...
bool canConstantBeExtended(const APInt *C, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
RecurKind
These are the kinds of recurrences that we support.
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
@ AddChainWithSubs
A chain of adds and subs.
FunctionAddr VTableAddr Next
auto count(R &&Range, const E &Element)
Wrapper function around std::count to count the number of times an element Element occurs in the give...
DWARFExpression::Operation Op
auto max_element(R &&Range)
Provide wrappers to std::max_element which take ranges instead of having to pass begin/end explicitly...
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
bool equal(L &&LRange, R &&RRange)
Wrapper function around std::equal to detect if pair-wise elements between two ranges are the same.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
@ Default
The result values are uniform if and only if all operands are uniform.
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
RemoveMask_match(const Op0_t &In, Op1_t &Out)
bool match(OpTy *V) const
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
MDNode * Scope
The tag for alias scope specification (used with noalias).
MDNode * NoAlias
The tag specifying the noalias scope.
This struct is a compact representation of a valid (non-zero power of two) alignment.
An information struct used to provide DenseMap with the various necessary components for a given valu...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
A recipe for handling first-order recurrence phis.
A recipe for widening load operations with vector-predication intrinsics, using the address to load f...
A recipe for widening load operations, using the address to load from and an optional mask.
A recipe for widening select instructions.
A recipe for widening store operations with vector-predication intrinsics, using the value to store,...
A recipe for widening store operations, using the stored value, the address to store to and an option...