47#define LV_NAME "loop-vectorize"
48#define DEBUG_TYPE LV_NAME
56 case VPInterleaveEVLSC:
59 case VPWidenStoreEVLSC:
67 ->getCalledScalarFunction()
69 case VPWidenIntrinsicSC:
71 case VPCanonicalIVPHISC:
72 case VPBranchOnMaskSC:
74 case VPFirstOrderRecurrencePHISC:
75 case VPReductionPHISC:
76 case VPScalarIVStepsSC:
80 case VPReductionEVLSC:
82 case VPVectorPointerSC:
83 case VPWidenCanonicalIVSC:
86 case VPWidenIntOrFpInductionSC:
87 case VPWidenLoadEVLSC:
90 case VPWidenPointerInductionSC:
92 case VPWidenSelectSC: {
96 assert((!
I || !
I->mayWriteToMemory()) &&
97 "underlying instruction may write to memory");
109 case VPInstructionSC:
111 case VPWidenLoadEVLSC:
116 ->mayReadFromMemory();
119 ->getCalledScalarFunction()
120 ->onlyWritesMemory();
121 case VPWidenIntrinsicSC:
123 case VPBranchOnMaskSC:
125 case VPFirstOrderRecurrencePHISC:
126 case VPPredInstPHISC:
127 case VPScalarIVStepsSC:
128 case VPWidenStoreEVLSC:
132 case VPReductionEVLSC:
134 case VPVectorPointerSC:
135 case VPWidenCanonicalIVSC:
138 case VPWidenIntOrFpInductionSC:
140 case VPWidenPointerInductionSC:
142 case VPWidenSelectSC: {
146 assert((!
I || !
I->mayReadFromMemory()) &&
147 "underlying instruction may read from memory");
161 case VPFirstOrderRecurrencePHISC:
162 case VPPredInstPHISC:
163 case VPVectorEndPointerSC:
165 case VPInstructionSC: {
171 case VPWidenCallSC: {
175 case VPWidenIntrinsicSC:
178 case VPReductionEVLSC:
179 case VPPartialReductionSC:
181 case VPScalarIVStepsSC:
182 case VPVectorPointerSC:
183 case VPWidenCanonicalIVSC:
186 case VPWidenIntOrFpInductionSC:
188 case VPWidenPointerInductionSC:
190 case VPWidenSelectSC: {
194 assert((!
I || !
I->mayHaveSideEffects()) &&
195 "underlying instruction has side-effects");
198 case VPInterleaveEVLSC:
201 case VPWidenLoadEVLSC:
203 case VPWidenStoreEVLSC:
208 "mayHaveSideffects result for ingredient differs from this "
211 case VPReplicateSC: {
213 return R->getUnderlyingInstr()->mayHaveSideEffects();
221 assert(!Parent &&
"Recipe already in some VPBasicBlock");
223 "Insertion position not in any VPBasicBlock");
229 assert(!Parent &&
"Recipe already in some VPBasicBlock");
235 assert(!Parent &&
"Recipe already in some VPBasicBlock");
237 "Insertion position not in any VPBasicBlock");
272 UI = IG->getInsertPos();
274 UI = &WidenMem->getIngredient();
277 if (UI && Ctx.skipCostComputation(UI, VF.
isVector())) {
287 dbgs() <<
"Cost of " << RecipeCost <<
" for VF " << VF <<
": ";
311 std::optional<unsigned> Opcode;
321 auto *PhiType = Ctx.Types.inferScalarType(
getChainOp());
322 auto *InputType = Ctx.Types.inferScalarType(
getVecOp());
323 return Ctx.TTI.getPartialReductionCost(
getOpcode(), InputType, InputType,
329 Type *InputTypeA =
nullptr, *InputTypeB =
nullptr;
339 if (WidenCastR->getOpcode() == Instruction::CastOps::ZExt)
341 if (WidenCastR->getOpcode() == Instruction::CastOps::SExt)
352 Opcode =
Widen->getOpcode();
355 InputTypeA = Ctx.Types.inferScalarType(ExtAR ? ExtAR->
getOperand(0)
356 :
Widen->getOperand(0));
357 InputTypeB = Ctx.Types.inferScalarType(ExtBR ? ExtBR->
getOperand(0)
358 :
Widen->getOperand(1));
359 ExtAType = GetExtendKind(ExtAR);
360 ExtBType = GetExtendKind(ExtBR);
366 InputTypeB = InputTypeA;
372 InputTypeA = Ctx.Types.inferScalarType(OpR->
getOperand(0));
373 ExtAType = GetExtendKind(OpR);
377 InputTypeA = Ctx.Types.inferScalarType(RedPhiOp1R->getOperand(0));
378 ExtAType = GetExtendKind(RedPhiOp1R);
384 return Reduction->computeCost(VF, Ctx);
386 auto *PhiType = Ctx.Types.inferScalarType(
getOperand(1));
387 return Ctx.TTI.getPartialReductionCost(
getOpcode(), InputTypeA, InputTypeB,
388 PhiType, VF, ExtAType, ExtBType,
389 Opcode, Ctx.CostKind);
393 auto &Builder = State.Builder;
396 "Unhandled partial reduction opcode");
400 assert(PhiVal && BinOpVal &&
"Phi and Mul must be set");
405 Builder.CreateIntrinsic(RetTy, Intrinsic::vector_partial_reduce_add,
406 {PhiVal, BinOpVal},
nullptr,
"partial.reduce");
411#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
414 O << Indent <<
"PARTIAL-REDUCE ";
422 assert(OpType == Other.OpType &&
"OpType must match");
424 case OperationType::OverflowingBinOp:
425 WrapFlags.HasNUW &= Other.WrapFlags.HasNUW;
426 WrapFlags.HasNSW &= Other.WrapFlags.HasNSW;
428 case OperationType::Trunc:
432 case OperationType::DisjointOp:
435 case OperationType::PossiblyExactOp:
436 ExactFlags.IsExact &= Other.ExactFlags.IsExact;
438 case OperationType::GEPOp:
441 case OperationType::FPMathOp:
442 FMFs.NoNaNs &= Other.FMFs.NoNaNs;
443 FMFs.NoInfs &= Other.FMFs.NoInfs;
445 case OperationType::NonNegOp:
448 case OperationType::Cmp:
451 case OperationType::Other:
458 assert(OpType == OperationType::FPMathOp &&
459 "recipe doesn't have fast math flags");
471#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
475template <
unsigned PartOpIdx>
478 if (U.getNumOperands() == PartOpIdx + 1)
479 return U.getOperand(PartOpIdx);
483template <
unsigned PartOpIdx>
502 "Set flags not supported for the provided opcode");
503 assert((getNumOperandsForOpcode(Opcode) == -1u ||
505 "number of operands does not match opcode");
509unsigned VPInstruction::getNumOperandsForOpcode(
unsigned Opcode) {
520 case Instruction::Alloca:
521 case Instruction::ExtractValue:
522 case Instruction::Freeze:
523 case Instruction::Load:
538 case Instruction::ICmp:
539 case Instruction::FCmp:
540 case Instruction::Store:
549 case Instruction::Select:
556 case Instruction::Call:
557 case Instruction::GetElementPtr:
558 case Instruction::PHI:
559 case Instruction::Switch:
571bool VPInstruction::canGenerateScalarForFirstLane()
const {
577 case Instruction::Freeze:
578 case Instruction::ICmp:
579 case Instruction::PHI:
580 case Instruction::Select:
606 BasicBlock *SecondIRSucc = State.CFG.VPBB2IRBB.lookup(SecondVPSucc);
608 BranchInst *CondBr = State.Builder.CreateCondBr(
Cond, IRBB, SecondIRSucc);
616 IRBuilderBase &Builder = State.
Builder;
635 case Instruction::ExtractElement: {
638 unsigned IdxToExtract =
646 case Instruction::Freeze: {
650 case Instruction::FCmp:
651 case Instruction::ICmp: {
657 case Instruction::PHI: {
660 case Instruction::Select: {
685 {VIVElem0, ScalarTC},
nullptr, Name);
701 if (!V1->getType()->isVectorTy())
721 "Requested vector length should be an integer.");
728 {AVL, VFArg, State.Builder.getTrue()});
734 assert(Part != 0 &&
"Must have a positive part");
765 for (
unsigned FieldIndex = 0; FieldIndex != StructTy->getNumElements();
789 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
819 RecurKind RK = PhiR->getRecurrenceKind();
821 "Unexpected reduction kind");
822 assert(!PhiR->isInLoop() &&
823 "In-loop FindLastIV reduction is not supported yet");
835 for (
unsigned Part = 1; Part <
UF; ++Part)
836 ReducedPartRdx =
createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
850 RecurKind RK = PhiR->getRecurrenceKind();
852 "should be handled by ComputeFindIVResult");
858 for (
unsigned Part = 0; Part <
UF; ++Part)
859 RdxParts[Part] = State.
get(
getOperand(1 + Part), PhiR->isInLoop());
861 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
866 Value *ReducedPartRdx = RdxParts[0];
867 if (PhiR->isOrdered()) {
868 ReducedPartRdx = RdxParts[
UF - 1];
871 for (
unsigned Part = 1; Part <
UF; ++Part) {
872 Value *RdxPart = RdxParts[Part];
874 ReducedPartRdx =
createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
880 Opcode = Instruction::Add;
885 Builder.
CreateBinOp(Opcode, RdxPart, ReducedPartRdx,
"bin.rdx");
892 if (State.
VF.
isVector() && !PhiR->isInLoop()) {
899 return ReducedPartRdx;
909 "invalid offset to extract from");
913 assert(
Offset <= 1 &&
"invalid offset to extract from");
927 "can only generate first lane for PtrAdd");
941 Res = Builder.CreateOr(Res, Builder.CreateFreeze(State.get(
Op)));
942 return State.VF.isScalar() ? Res : Builder.CreateOrReduce(Res);
947 Value *Res =
nullptr;
952 Builder.CreateMul(RuntimeVF, ConstantInt::get(IdxTy, Idx - 1));
953 Value *VectorIdx = Idx == 1
955 : Builder.CreateSub(LaneToExtract, VectorStart);
956 Value *Ext = State.VF.isScalar()
958 : Builder.CreateExtractElement(
961 Value *Cmp = Builder.CreateICmpUGE(LaneToExtract, VectorStart);
962 Res = Builder.CreateSelect(Cmp, Ext, Res);
981 Value *Res =
nullptr;
982 for (
int Idx = LastOpIdx; Idx >= 0; --Idx) {
983 Value *TrailingZeros =
1013 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
1016 case Instruction::FNeg:
1017 return Ctx.TTI.getArithmeticInstrCost(Opcode, ResultTy, Ctx.CostKind);
1018 case Instruction::UDiv:
1019 case Instruction::SDiv:
1020 case Instruction::SRem:
1021 case Instruction::URem:
1022 case Instruction::Add:
1023 case Instruction::FAdd:
1024 case Instruction::Sub:
1025 case Instruction::FSub:
1026 case Instruction::Mul:
1027 case Instruction::FMul:
1028 case Instruction::FDiv:
1029 case Instruction::FRem:
1030 case Instruction::Shl:
1031 case Instruction::LShr:
1032 case Instruction::AShr:
1033 case Instruction::And:
1034 case Instruction::Or:
1035 case Instruction::Xor: {
1043 RHSInfo = Ctx.getOperandInfo(RHS);
1054 return Ctx.TTI.getArithmeticInstrCost(
1055 Opcode, ResultTy, Ctx.CostKind,
1056 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
1057 RHSInfo, Operands, CtxI, &Ctx.TLI);
1059 case Instruction::Freeze:
1061 return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, ResultTy,
1063 case Instruction::ExtractValue:
1064 return Ctx.TTI.getInsertExtractValueCost(Instruction::ExtractValue,
1066 case Instruction::ICmp:
1067 case Instruction::FCmp: {
1071 return Ctx.TTI.getCmpSelInstrCost(
1073 Ctx.CostKind, {TTI::OK_AnyValue, TTI::OP_None},
1074 {TTI::OK_AnyValue, TTI::OP_None}, CtxI);
1090 "Should only generate a vector value or single scalar, not scalars "
1098 case Instruction::Select: {
1102 auto *CondTy = Ctx.Types.inferScalarType(
getOperand(0));
1103 auto *VecTy = Ctx.Types.inferScalarType(
getOperand(1));
1108 return Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VecTy, CondTy, Pred,
1111 case Instruction::ExtractElement:
1121 return Ctx.TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy,
1125 auto *VecTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1126 return Ctx.TTI.getArithmeticReductionCost(
1132 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1139 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1140 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1146 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1155 unsigned Multiplier =
1160 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1167 I32Ty, {Arg0Ty, I32Ty, I1Ty});
1168 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1173 return Ctx.TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
1174 VecTy, Ctx.CostKind, 0);
1184 "unexpected VPInstruction witht underlying value");
1193 getOpcode() == Instruction::ExtractElement ||
1204 case Instruction::PHI:
1215 assert(!State.Lane &&
"VPInstruction executing an Lane");
1218 "Set flags not supported for the provided opcode");
1221 Value *GeneratedValue = generate(State);
1224 assert(GeneratedValue &&
"generate must produce a value");
1225 bool GeneratesPerFirstLaneOnly = canGenerateScalarForFirstLane() &&
1230 !GeneratesPerFirstLaneOnly) ||
1231 State.VF.isScalar()) &&
1232 "scalar value but not only first lane defined");
1233 State.set(
this, GeneratedValue,
1234 GeneratesPerFirstLaneOnly);
1241 case Instruction::ExtractElement:
1242 case Instruction::Freeze:
1243 case Instruction::FCmp:
1244 case Instruction::ICmp:
1245 case Instruction::Select:
1246 case Instruction::PHI:
1285 case Instruction::ExtractElement:
1287 case Instruction::PHI:
1289 case Instruction::FCmp:
1290 case Instruction::ICmp:
1291 case Instruction::Select:
1292 case Instruction::Or:
1293 case Instruction::Freeze:
1334 case Instruction::FCmp:
1335 case Instruction::ICmp:
1336 case Instruction::Select:
1346#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1354 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1366 O <<
"combined load";
1369 O <<
"combined store";
1372 O <<
"active lane mask";
1375 O <<
"EXPLICIT-VECTOR-LENGTH";
1378 O <<
"first-order splice";
1381 O <<
"branch-on-cond";
1384 O <<
"TC > VF ? TC - VF : 0";
1390 O <<
"branch-on-count";
1396 O <<
"buildstructvector";
1402 O <<
"extract-lane";
1405 O <<
"extract-last-element";
1408 O <<
"extract-last-lane-per-part";
1411 O <<
"extract-penultimate-element";
1414 O <<
"compute-anyof-result";
1417 O <<
"compute-find-iv-result";
1420 O <<
"compute-reduction-result";
1435 O <<
"first-active-lane";
1438 O <<
"reduction-start-vector";
1441 O <<
"resume-for-epilogue";
1466 State.set(
this, Cast,
VPLane(0));
1477 Value *
VScale = State.Builder.CreateVScale(ResultTy);
1478 State.set(
this,
VScale,
true);
1487#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1490 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1496 O <<
"wide-iv-step ";
1500 O <<
"step-vector " << *ResultTy;
1503 O <<
"vscale " << *ResultTy;
1509 O <<
" to " << *ResultTy;
1516 PHINode *NewPhi = State.Builder.CreatePHI(
1517 State.TypeAnalysis.inferScalarType(
this), 2,
getName());
1524 for (
unsigned Idx = 0; Idx != NumIncoming; ++Idx) {
1529 State.set(
this, NewPhi,
VPLane(0));
1532#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1535 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1550 "PHINodes must be handled by VPIRPhi");
1553 State.Builder.SetInsertPoint(I.getParent(), std::next(I.getIterator()));
1565 "can only update exiting operands to phi nodes");
1575#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1578 O << Indent <<
"IR " << I;
1590 auto *PredVPBB = Pred->getExitingBasicBlock();
1591 BasicBlock *PredBB = State.CFG.VPBB2IRBB[PredVPBB];
1598 if (Phi->getBasicBlockIndex(PredBB) == -1)
1599 Phi->addIncoming(V, PredBB);
1601 Phi->setIncomingValueForBlock(PredBB, V);
1606 State.Builder.SetInsertPoint(Phi->getParent(), std::next(Phi->getIterator()));
1611 assert(R->getNumOperands() == R->getParent()->getNumPredecessors() &&
1612 "Number of phi operands must match number of predecessors");
1613 unsigned Position = R->getParent()->getIndexForPredecessor(IncomingBlock);
1614 R->removeOperand(Position);
1617#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1631#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1637 O <<
" (extra operand" << (
getNumOperands() > 1 ?
"s" :
"") <<
": ";
1642 std::get<1>(
Op)->printAsOperand(O);
1655 Metadata.emplace_back(LLVMContext::MD_alias_scope, AliasScopeMD);
1657 Metadata.emplace_back(LLVMContext::MD_noalias, NoAliasMD);
1661 for (
const auto &[Kind,
Node] : Metadata)
1662 I.setMetadata(Kind,
Node);
1667 for (
const auto &[KindA, MDA] : Metadata) {
1668 for (
const auto &[KindB, MDB] :
Other.Metadata) {
1669 if (KindA == KindB && MDA == MDB) {
1675 Metadata = std::move(MetadataIntersection);
1679 assert(State.VF.isVector() &&
"not widening");
1680 assert(Variant !=
nullptr &&
"Can't create vector function.");
1691 Arg = State.get(
I.value(),
VPLane(0));
1694 Args.push_back(Arg);
1700 CI->getOperandBundlesAsDefs(OpBundles);
1702 CallInst *V = State.Builder.CreateCall(Variant, Args, OpBundles);
1705 V->setCallingConv(Variant->getCallingConv());
1707 if (!V->getType()->isVoidTy())
1713 return Ctx.TTI.getCallInstrCost(
nullptr, Variant->getReturnType(),
1714 Variant->getFunctionType()->params(),
1718#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1721 O << Indent <<
"WIDEN-CALL ";
1733 O <<
" @" << CalledFn->
getName() <<
"(";
1739 O <<
" (using library function";
1740 if (Variant->hasName())
1741 O <<
": " << Variant->getName();
1747 assert(State.VF.isVector() &&
"not widening");
1760 Arg = State.get(
I.value(),
VPLane(0));
1766 Args.push_back(Arg);
1770 Module *M = State.Builder.GetInsertBlock()->getModule();
1774 "Can't retrieve vector intrinsic or vector-predication intrinsics.");
1779 CI->getOperandBundlesAsDefs(OpBundles);
1781 CallInst *V = State.Builder.CreateCall(VectorF, Args, OpBundles);
1786 if (!V->getType()->isVoidTy())
1802 for (
const auto &[Idx,
Op] :
enumerate(Operands)) {
1803 auto *V =
Op->getUnderlyingValue();
1806 Arguments.push_back(UI->getArgOperand(Idx));
1815 Type *ScalarRetTy = Ctx.Types.inferScalarType(&R);
1821 : Ctx.Types.inferScalarType(
Op));
1826 R.hasFastMathFlags() ? R.getFastMathFlags() :
FastMathFlags();
1831 return Ctx.TTI.getIntrinsicInstrCost(CostAttrs, Ctx.CostKind);
1853#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1856 O << Indent <<
"WIDEN-INTRINSIC ";
1857 if (ResultTy->isVoidTy()) {
1885 Value *Mask =
nullptr;
1887 Mask = State.get(VPMask);
1890 Builder.CreateVectorSplat(VTy->
getElementCount(), Builder.getInt1(1));
1894 if (Opcode == Instruction::Sub)
1895 IncAmt = Builder.CreateNeg(IncAmt);
1897 assert(Opcode == Instruction::Add &&
"only add or sub supported for now");
1899 State.Builder.CreateIntrinsic(Intrinsic::experimental_vector_histogram_add,
1914 Type *IncTy = Ctx.Types.inferScalarType(IncAmt);
1920 Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VTy, Ctx.CostKind);
1933 {PtrTy, IncTy, MaskTy});
1936 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind) + MulCost +
1937 Ctx.TTI.getArithmeticInstrCost(Opcode, VTy, Ctx.CostKind);
1940#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1943 O << Indent <<
"WIDEN-HISTOGRAM buckets: ";
1946 if (Opcode == Instruction::Sub)
1949 assert(Opcode == Instruction::Add);
1962 O << Indent <<
"WIDEN-SELECT ";
1984 Value *Sel = State.Builder.CreateSelect(
Cond, Op0, Op1);
1985 State.set(
this, Sel);
1997 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
1998 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
2006 const auto [Op1VK, Op1VP] = Ctx.getOperandInfo(Op0);
2007 const auto [Op2VK, Op2VP] = Ctx.getOperandInfo(Op1);
2011 [](
VPValue *
Op) {
return Op->getUnderlyingValue(); }))
2012 Operands.
append(
SI->op_begin(),
SI->op_end());
2014 return Ctx.TTI.getArithmeticInstrCost(
2015 IsLogicalOr ? Instruction::Or : Instruction::And, VectorTy,
2016 Ctx.CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands,
SI);
2025 Pred = Cmp->getPredicate();
2026 return Ctx.TTI.getCmpSelInstrCost(
2027 Instruction::Select, VectorTy, CondTy, Pred, Ctx.CostKind,
2028 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
SI);
2031VPIRFlags::FastMathFlagsTy::FastMathFlagsTy(
const FastMathFlags &FMF) {
2044 case OperationType::OverflowingBinOp:
2045 return Opcode == Instruction::Add || Opcode == Instruction::Sub ||
2046 Opcode == Instruction::Mul ||
2047 Opcode == VPInstruction::VPInstruction::CanonicalIVIncrementForPart;
2048 case OperationType::Trunc:
2049 return Opcode == Instruction::Trunc;
2050 case OperationType::DisjointOp:
2051 return Opcode == Instruction::Or;
2052 case OperationType::PossiblyExactOp:
2053 return Opcode == Instruction::AShr;
2054 case OperationType::GEPOp:
2055 return Opcode == Instruction::GetElementPtr ||
2058 case OperationType::FPMathOp:
2059 return Opcode == Instruction::FAdd || Opcode == Instruction::FMul ||
2060 Opcode == Instruction::FSub || Opcode == Instruction::FNeg ||
2061 Opcode == Instruction::FDiv || Opcode == Instruction::FRem ||
2062 Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc ||
2063 Opcode == Instruction::FCmp || Opcode == Instruction::Select ||
2067 case OperationType::NonNegOp:
2068 return Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP;
2069 case OperationType::Cmp:
2070 return Opcode == Instruction::FCmp || Opcode == Instruction::ICmp;
2071 case OperationType::Other:
2078#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2081 case OperationType::Cmp:
2084 case OperationType::DisjointOp:
2088 case OperationType::PossiblyExactOp:
2092 case OperationType::OverflowingBinOp:
2098 case OperationType::Trunc:
2104 case OperationType::FPMathOp:
2107 case OperationType::GEPOp:
2110 else if (
GEPFlags.hasNoUnsignedSignedWrap())
2115 case OperationType::NonNegOp:
2119 case OperationType::Other:
2127 auto &Builder = State.Builder;
2129 case Instruction::Call:
2130 case Instruction::Br:
2131 case Instruction::PHI:
2132 case Instruction::GetElementPtr:
2133 case Instruction::Select:
2135 case Instruction::UDiv:
2136 case Instruction::SDiv:
2137 case Instruction::SRem:
2138 case Instruction::URem:
2139 case Instruction::Add:
2140 case Instruction::FAdd:
2141 case Instruction::Sub:
2142 case Instruction::FSub:
2143 case Instruction::FNeg:
2144 case Instruction::Mul:
2145 case Instruction::FMul:
2146 case Instruction::FDiv:
2147 case Instruction::FRem:
2148 case Instruction::Shl:
2149 case Instruction::LShr:
2150 case Instruction::AShr:
2151 case Instruction::And:
2152 case Instruction::Or:
2153 case Instruction::Xor: {
2157 Ops.push_back(State.get(VPOp));
2159 Value *V = Builder.CreateNAryOp(Opcode,
Ops);
2170 case Instruction::ExtractValue: {
2174 Value *Extract = Builder.CreateExtractValue(
Op, CI->getZExtValue());
2175 State.set(
this, Extract);
2178 case Instruction::Freeze: {
2180 Value *Freeze = Builder.CreateFreeze(
Op);
2181 State.set(
this, Freeze);
2184 case Instruction::ICmp:
2185 case Instruction::FCmp: {
2187 bool FCmp = Opcode == Instruction::FCmp;
2193 C = Builder.CreateFCmpFMF(
2215 State.get(
this)->getType() &&
2216 "inferred type and type from generated instructions do not match");
2223 case Instruction::UDiv:
2224 case Instruction::SDiv:
2225 case Instruction::SRem:
2226 case Instruction::URem:
2231 case Instruction::FNeg:
2232 case Instruction::Add:
2233 case Instruction::FAdd:
2234 case Instruction::Sub:
2235 case Instruction::FSub:
2236 case Instruction::Mul:
2237 case Instruction::FMul:
2238 case Instruction::FDiv:
2239 case Instruction::FRem:
2240 case Instruction::Shl:
2241 case Instruction::LShr:
2242 case Instruction::AShr:
2243 case Instruction::And:
2244 case Instruction::Or:
2245 case Instruction::Xor:
2246 case Instruction::Freeze:
2247 case Instruction::ExtractValue:
2248 case Instruction::ICmp:
2249 case Instruction::FCmp:
2256#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2259 O << Indent <<
"WIDEN ";
2268 auto &Builder = State.Builder;
2270 assert(State.VF.isVector() &&
"Not vectorizing?");
2275 State.set(
this, Cast);
2299 if (WidenMemoryRecipe ==
nullptr)
2301 if (!WidenMemoryRecipe->isConsecutive())
2303 if (WidenMemoryRecipe->isReverse())
2305 if (WidenMemoryRecipe->isMasked())
2313 if ((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
2316 CCH = ComputeCCH(StoreRecipe);
2319 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
2320 Opcode == Instruction::FPExt) {
2331 return Ctx.TTI.getCastInstrCost(
2332 Opcode, DestTy, SrcTy, CCH, Ctx.CostKind,
2336#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2339 O << Indent <<
"WIDEN-CAST ";
2350 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2357 : ConstantFP::get(Ty,
C);
2360#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2365 O <<
" = WIDEN-INDUCTION ";
2369 O <<
" (truncated to " << *TI->getType() <<
")";
2381 return StartC && StartC->isZero() && StepC && StepC->isOne() &&
2385#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2390 O <<
" = DERIVED-IV ";
2414 assert(BaseIVTy == Step->
getType() &&
"Types of BaseIV and Step must match!");
2421 AddOp = Instruction::Add;
2422 MulOp = Instruction::Mul;
2424 AddOp = InductionOpcode;
2425 MulOp = Instruction::FMul;
2434 Type *VecIVTy =
nullptr;
2435 Value *UnitStepVec =
nullptr, *SplatStep =
nullptr, *SplatIV =
nullptr;
2436 if (!FirstLaneOnly && State.VF.isScalable()) {
2440 SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2441 SplatIV = Builder.CreateVectorSplat(State.VF, BaseIV);
2444 unsigned StartLane = 0;
2445 unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2447 StartLane = State.Lane->getKnownLane();
2448 EndLane = StartLane + 1;
2452 StartIdx0 = ConstantInt::get(IntStepTy, 0);
2457 Builder.CreateMul(StartIdx0, ConstantInt::get(StartIdx0->
getType(),
2460 StartIdx0 = Builder.CreateSExtOrTrunc(StartIdx0, IntStepTy);
2463 if (!FirstLaneOnly && State.VF.isScalable()) {
2464 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2465 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2467 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2468 auto *
Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2469 auto *
Add = Builder.CreateBinOp(AddOp, SplatIV,
Mul);
2470 State.set(
this,
Add);
2477 StartIdx0 = Builder.CreateSIToFP(StartIdx0, BaseIVTy);
2479 for (
unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
2480 Value *StartIdx = Builder.CreateBinOp(
2485 "Expected StartIdx to be folded to a constant when VF is not "
2487 auto *
Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2488 auto *
Add = Builder.CreateBinOp(AddOp, BaseIV,
Mul);
2493#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2498 O <<
" = SCALAR-STEPS ";
2504 assert(State.VF.isVector() &&
"not widening");
2511 if (areAllOperandsInvariant()) {
2531 Value *
Splat = State.Builder.CreateVectorSplat(State.VF, NewGEP);
2532 State.set(
this,
Splat);
2538 auto *
Ptr = State.get(
getOperand(0), isPointerLoopInvariant());
2545 Indices.
push_back(State.get(Operand, isIndexLoopInvariant(
I - 1)));
2552 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
2553 "NewGEP is not a pointer vector");
2554 State.set(
this, NewGEP);
2558#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2561 O << Indent <<
"WIDEN-GEP ";
2562 O << (isPointerLoopInvariant() ?
"Inv" :
"Var");
2564 O <<
"[" << (isIndexLoopInvariant(
I) ?
"Inv" :
"Var") <<
"]";
2568 O <<
" = getelementptr";
2578 const DataLayout &
DL = Builder.GetInsertBlock()->getDataLayout();
2579 return !IsUnitStride || (IsScalable && (IsReverse || CurrentPart > 0))
2580 ?
DL.getIndexType(Builder.getPtrTy(0))
2581 : Builder.getInt32Ty();
2585 auto &Builder = State.Builder;
2587 bool IsUnitStride = Stride == 1 || Stride == -1;
2589 IsUnitStride, CurrentPart, Builder);
2593 if (IndexTy != RunTimeVF->
getType())
2594 RunTimeVF = Builder.CreateZExtOrTrunc(RunTimeVF, IndexTy);
2596 Value *NumElt = Builder.CreateMul(
2597 ConstantInt::get(IndexTy, Stride * (int64_t)CurrentPart), RunTimeVF);
2599 Value *LastLane = Builder.CreateSub(RunTimeVF, ConstantInt::get(IndexTy, 1));
2601 LastLane = Builder.CreateMul(ConstantInt::get(IndexTy, Stride), LastLane);
2605 ResultPtr = Builder.CreateGEP(IndexedTy, ResultPtr, LastLane,
"",
2608 State.set(
this, ResultPtr,
true);
2611#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2616 O <<
" = vector-end-pointer";
2623 auto &Builder = State.Builder;
2626 true, CurrentPart, Builder);
2633 State.set(
this, ResultPtr,
true);
2636#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2641 O <<
" = vector-pointer ";
2652 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2654 Type *ResultTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
2657 Ctx.TTI.getCmpSelInstrCost(Instruction::Select, ResultTy, CmpTy,
2661#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2664 O << Indent <<
"BLEND ";
2686 assert(!State.Lane &&
"Reduction being replicated.");
2690 "In-loop AnyOf reductions aren't currently supported");
2696 Value *NewCond = State.get(
Cond, State.VF.isScalar());
2701 if (State.VF.isVector())
2702 Start = State.Builder.CreateVectorSplat(VecTy->
getElementCount(), Start);
2704 Value *
Select = State.Builder.CreateSelect(NewCond, NewVecOp, Start);
2710 if (State.VF.isVector())
2714 NewRed = State.Builder.CreateBinOp(
2716 PrevInChain, NewVecOp);
2717 PrevInChain = NewRed;
2718 NextInChain = NewRed;
2723 NextInChain =
createMinMaxOp(State.Builder, Kind, NewRed, PrevInChain);
2725 NextInChain = State.Builder.CreateBinOp(
2727 PrevInChain, NewRed);
2729 State.set(
this, NextInChain,
true);
2733 assert(!State.Lane &&
"Reduction being replicated.");
2735 auto &Builder = State.Builder;
2747 Mask = State.get(CondOp);
2749 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
2759 NewRed = Builder.CreateBinOp(
2763 State.set(
this, NewRed,
true);
2769 Type *ElementTy = Ctx.Types.inferScalarType(
this);
2773 std::optional<FastMathFlags> OptionalFMF =
2780 "Any-of reduction not implemented in VPlan-based cost model currently.");
2786 return Ctx.TTI.getMinMaxReductionCost(Id, VectorTy,
FMFs, Ctx.CostKind);
2791 return Ctx.TTI.getArithmeticReductionCost(Opcode, VectorTy, OptionalFMF,
2796 ExpressionTypes ExpressionType,
2799 ExpressionRecipes(ExpressionRecipes),
ExpressionType(ExpressionType) {
2800 assert(!ExpressionRecipes.empty() &&
"Nothing to combine?");
2804 "expression cannot contain recipes with side-effects");
2808 for (
auto *R : ExpressionRecipes)
2809 ExpressionRecipesAsSetOfUsers.
insert(R);
2815 if (R != ExpressionRecipes.back() &&
2816 any_of(
R->users(), [&ExpressionRecipesAsSetOfUsers](
VPUser *U) {
2817 return !ExpressionRecipesAsSetOfUsers.contains(U);
2822 R->replaceUsesWithIf(CopyForExtUsers, [&ExpressionRecipesAsSetOfUsers](
2824 return !ExpressionRecipesAsSetOfUsers.contains(&U);
2829 R->removeFromParent();
2836 for (
auto *R : ExpressionRecipes) {
2837 for (
const auto &[Idx,
Op] :
enumerate(
R->operands())) {
2838 auto *
Def =
Op->getDefiningRecipe();
2839 if (Def && ExpressionRecipesAsSetOfUsers.contains(Def))
2842 LiveInPlaceholders.push_back(
new VPValue());
2848 for (
auto *R : ExpressionRecipes)
2849 for (
auto const &[LiveIn, Tmp] :
zip(operands(), LiveInPlaceholders))
2850 R->replaceUsesOfWith(LiveIn, Tmp);
2854 for (
auto *R : ExpressionRecipes)
2857 if (!R->getParent())
2858 R->insertBefore(
this);
2861 LiveInPlaceholders[Idx]->replaceAllUsesWith(
Op);
2864 ExpressionRecipes.clear();
2869 Type *RedTy = Ctx.Types.inferScalarType(
this);
2873 "VPExpressionRecipe only supports integer types currently.");
2876 switch (ExpressionType) {
2877 case ExpressionTypes::ExtendedReduction: {
2882 ? Ctx.TTI.getPartialReductionCost(
2883 Opcode, Ctx.Types.inferScalarType(
getOperand(0)),
nullptr,
2888 : Ctx.TTI.getExtendedReductionCost(
2889 Opcode, ExtR->getOpcode() == Instruction::ZExt, RedTy,
2890 SrcVecTy, std::nullopt, Ctx.CostKind);
2892 case ExpressionTypes::MulAccReduction:
2893 return Ctx.TTI.getMulAccReductionCost(
false, Opcode, RedTy, SrcVecTy,
2896 case ExpressionTypes::ExtNegatedMulAccReduction:
2897 assert(Opcode == Instruction::Add &&
"Unexpected opcode");
2898 Opcode = Instruction::Sub;
2900 case ExpressionTypes::ExtMulAccReduction: {
2905 return Ctx.TTI.getPartialReductionCost(
2906 Opcode, Ctx.Types.inferScalarType(
getOperand(0)),
2907 Ctx.Types.inferScalarType(
getOperand(1)), RedTy, VF,
2909 Ext0R->getOpcode()),
2911 Ext1R->getOpcode()),
2912 Mul->getOpcode(), Ctx.CostKind);
2914 return Ctx.TTI.getMulAccReductionCost(
2917 Opcode, RedTy, SrcVecTy, Ctx.CostKind);
2925 return R->mayReadFromMemory() || R->mayWriteToMemory();
2933 "expression cannot contain recipes with side-effects");
2944#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2948 O << Indent <<
"EXPRESSION ";
2955 switch (ExpressionType) {
2956 case ExpressionTypes::ExtendedReduction: {
2958 O <<
" + " << (IsPartialReduction ?
"partial." :
"") <<
"reduce.";
2965 << *Ext0->getResultType();
2966 if (Red->isConditional()) {
2973 case ExpressionTypes::ExtNegatedMulAccReduction: {
2975 O <<
" + " << (IsPartialReduction ?
"partial." :
"") <<
"reduce.";
2985 << *Ext0->getResultType() <<
"), (";
2989 << *Ext1->getResultType() <<
")";
2990 if (Red->isConditional()) {
2997 case ExpressionTypes::MulAccReduction:
2998 case ExpressionTypes::ExtMulAccReduction: {
3000 O <<
" + " << (IsPartialReduction ?
"partial." :
"") <<
"reduce.";
3005 bool IsExtended = ExpressionType == ExpressionTypes::ExtMulAccReduction;
3007 : ExpressionRecipes[0]);
3015 << *Ext0->getResultType() <<
"), (";
3023 << *Ext1->getResultType() <<
")";
3025 if (Red->isConditional()) {
3037 O << Indent <<
"REDUCE ";
3057 O << Indent <<
"REDUCE ";
3085 assert((!Instr->getType()->isAggregateType() ||
3087 "Expected vectorizable or non-aggregate type.");
3090 bool IsVoidRetTy = Instr->getType()->isVoidTy();
3094 Cloned->
setName(Instr->getName() +
".cloned");
3095 Type *ResultTy = State.TypeAnalysis.inferScalarType(RepRecipe);
3099 if (ResultTy != Cloned->
getType())
3110 State.setDebugLocFrom(
DL);
3115 auto InputLane = Lane;
3119 Cloned->
setOperand(
I.index(), State.get(Operand, InputLane));
3123 State.Builder.Insert(Cloned);
3125 State.set(RepRecipe, Cloned, Lane);
3129 State.AC->registerAssumption(
II);
3135 [](
VPValue *
Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
3136 "Expected a recipe is either within a region or all of its operands "
3137 "are defined outside the vectorized region.");
3144 assert(IsSingleScalar &&
"VPReplicateRecipes outside replicate regions "
3145 "must have already been unrolled");
3151 "uniform recipe shouldn't be predicated");
3152 assert(!State.VF.isScalable() &&
"Can't scalarize a scalable vector");
3157 State.Lane->isFirstLane()
3160 State.set(
this, State.packScalarIntoVectorizedValue(
this, WideValue,
3182 auto *PtrR =
Ptr->getDefiningRecipe();
3185 Instruction::GetElementPtr) ||
3193 if (!Opd->isDefinedOutsideLoopRegions() &&
3207 while (!WorkList.
empty()) {
3209 if (!Cur || !Seen.
insert(Cur).second)
3217 return Seen.contains(
3218 Blend->getIncomingValue(I)->getDefiningRecipe());
3222 for (
VPUser *U : Cur->users()) {
3224 if (InterleaveR->getAddr() == Cur)
3227 if (RepR->getOpcode() == Instruction::Load &&
3228 RepR->getOperand(0) == Cur)
3230 if (RepR->getOpcode() == Instruction::Store &&
3231 RepR->getOperand(1) == Cur)
3235 if (MemR->getAddr() == Cur && MemR->isConsecutive())
3256 Ctx.SkipCostComputation.insert(UI);
3262 case Instruction::GetElementPtr:
3268 case Instruction::Call: {
3274 for (
const VPValue *ArgOp : ArgOps)
3275 Tys.
push_back(Ctx.Types.inferScalarType(ArgOp));
3277 if (CalledFn->isIntrinsic())
3280 switch (CalledFn->getIntrinsicID()) {
3281 case Intrinsic::assume:
3282 case Intrinsic::lifetime_end:
3283 case Intrinsic::lifetime_start:
3284 case Intrinsic::sideeffect:
3285 case Intrinsic::pseudoprobe:
3286 case Intrinsic::experimental_noalias_scope_decl: {
3289 "scalarizing intrinsic should be free");
3296 Type *ResultTy = Ctx.Types.inferScalarType(
this);
3298 Ctx.TTI.getCallInstrCost(CalledFn, ResultTy, Tys, Ctx.CostKind);
3300 if (CalledFn->isIntrinsic())
3301 ScalarCallCost = std::min(
3305 return ScalarCallCost;
3309 Ctx.getScalarizationOverhead(ResultTy, ArgOps, VF);
3311 case Instruction::Add:
3312 case Instruction::Sub:
3313 case Instruction::FAdd:
3314 case Instruction::FSub:
3315 case Instruction::Mul:
3316 case Instruction::FMul:
3317 case Instruction::FDiv:
3318 case Instruction::FRem:
3319 case Instruction::Shl:
3320 case Instruction::LShr:
3321 case Instruction::AShr:
3322 case Instruction::And:
3323 case Instruction::Or:
3324 case Instruction::Xor:
3325 case Instruction::ICmp:
3326 case Instruction::FCmp:
3330 case Instruction::SDiv:
3331 case Instruction::UDiv:
3332 case Instruction::SRem:
3333 case Instruction::URem: {
3340 Ctx.getScalarizationOverhead(Ctx.Types.inferScalarType(
this),
3349 Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
3356 case Instruction::Load:
3357 case Instruction::Store: {
3364 bool IsLoad = UI->
getOpcode() == Instruction::Load;
3370 Type *ValTy = Ctx.Types.inferScalarType(IsLoad ?
this :
getOperand(0));
3371 Type *ScalarPtrTy = Ctx.Types.inferScalarType(PtrOp);
3376 UI->
getOpcode(), ValTy, Alignment, AS, Ctx.CostKind, OpInfo);
3379 bool PreferVectorizedAddressing = Ctx.TTI.prefersVectorizedAddressing();
3380 bool UsedByLoadStoreAddress =
3383 ScalarMemOpCost + Ctx.TTI.getAddressComputationCost(
3384 PtrTy, UsedByLoadStoreAddress ?
nullptr : &Ctx.SE,
3385 PtrSCEV, Ctx.CostKind);
3395 if (!UsedByLoadStoreAddress) {
3396 bool EfficientVectorLoadStore =
3397 Ctx.TTI.supportsEfficientVectorElementLoadStore();
3398 if (!(IsLoad && !PreferVectorizedAddressing) &&
3399 !(!IsLoad && EfficientVectorLoadStore))
3402 if (!EfficientVectorLoadStore)
3403 ResultTy = Ctx.Types.inferScalarType(
this);
3407 Ctx.getScalarizationOverhead(ResultTy, OpsToScalarize, VF,
true);
3411 return Ctx.getLegacyCost(UI, VF);
3414#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3417 O << Indent << (IsSingleScalar ?
"CLONE " :
"REPLICATE ");
3426 O <<
"@" << CB->getCalledFunction()->getName() <<
"(";
3444 assert(State.Lane &&
"Branch on Mask works only on single instance.");
3447 Value *ConditionBit = State.get(BlockInMask, *State.Lane);
3451 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
3453 "Expected to replace unreachable terminator with conditional branch.");
3455 State.Builder.CreateCondBr(ConditionBit, State.CFG.PrevBB,
nullptr);
3456 CondBr->setSuccessor(0,
nullptr);
3457 CurrentTerminator->eraseFromParent();
3469 assert(State.Lane &&
"Predicated instruction PHI works per instance.");
3474 assert(PredicatingBB &&
"Predicated block has no single predecessor.");
3476 "operand must be VPReplicateRecipe");
3487 "Packed operands must generate an insertelement or insertvalue");
3495 for (
unsigned I = 0;
I < StructTy->getNumContainedTypes() - 1;
I++)
3498 PHINode *VPhi = State.Builder.CreatePHI(VecI->getType(), 2);
3499 VPhi->
addIncoming(VecI->getOperand(0), PredicatingBB);
3501 if (State.hasVectorValue(
this))
3502 State.reset(
this, VPhi);
3504 State.set(
this, VPhi);
3512 Type *PredInstType = State.TypeAnalysis.inferScalarType(
getOperand(0));
3513 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
3516 Phi->addIncoming(ScalarPredInst, PredicatedBB);
3517 if (State.hasScalarValue(
this, *State.Lane))
3518 State.reset(
this, Phi, *State.Lane);
3520 State.set(
this, Phi, *State.Lane);
3523 State.reset(
getOperand(0), Phi, *State.Lane);
3527#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3530 O << Indent <<
"PHI-PREDICATED-INSTRUCTION ";
3541 ->getAddressSpace();
3544 : Instruction::Store;
3551 "Inconsecutive memory access should not have the order.");
3561 return Ctx.TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
3570 Ctx.TTI.getMaskedMemoryOpCost(Opcode, Ty,
Alignment, AS, Ctx.CostKind);
3575 Cost += Ctx.TTI.getMemoryOpCost(Opcode, Ty,
Alignment, AS, Ctx.CostKind,
3581 return Cost += Ctx.TTI.getShuffleCost(
3591 auto &Builder = State.Builder;
3592 Value *Mask =
nullptr;
3593 if (
auto *VPMask =
getMask()) {
3596 Mask = State.get(VPMask);
3598 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3604 NewLI = Builder.CreateMaskedGather(DataTy, Addr,
Alignment, Mask,
nullptr,
3605 "wide.masked.gather");
3608 Builder.CreateMaskedLoad(DataTy, Addr,
Alignment, Mask,
3611 NewLI = Builder.CreateAlignedLoad(DataTy, Addr,
Alignment,
"wide.load");
3615 NewLI = Builder.CreateVectorReverse(NewLI,
"reverse");
3616 State.set(
this, NewLI);
3619#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3622 O << Indent <<
"WIDEN ";
3634 Value *AllTrueMask =
3635 Builder.CreateVectorSplat(ValTy->getElementCount(), Builder.getTrue());
3636 return Builder.CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse,
3637 {Operand, AllTrueMask, EVL},
nullptr, Name);
3645 auto &Builder = State.Builder;
3649 Value *Mask =
nullptr;
3651 Mask = State.get(VPMask);
3655 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3660 Builder.CreateIntrinsic(DataTy, Intrinsic::vp_gather, {Addr, Mask, EVL},
3661 nullptr,
"wide.masked.gather");
3663 NewLI = Builder.CreateIntrinsic(DataTy, Intrinsic::vp_load,
3664 {Addr, Mask, EVL},
nullptr,
"vp.op.load");
3672 State.set(
this, Res);
3687 ->getAddressSpace();
3689 Instruction::Load, Ty,
Alignment, AS, Ctx.CostKind);
3693 return Cost + Ctx.TTI.getShuffleCost(
3698#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3701 O << Indent <<
"WIDEN ";
3712 auto &Builder = State.Builder;
3714 Value *Mask =
nullptr;
3715 if (
auto *VPMask =
getMask()) {
3718 Mask = State.get(VPMask);
3720 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3723 Value *StoredVal = State.get(StoredVPValue);
3727 StoredVal = Builder.CreateVectorReverse(StoredVal,
"reverse");
3734 NewSI = Builder.CreateMaskedScatter(StoredVal, Addr,
Alignment, Mask);
3736 NewSI = Builder.CreateMaskedStore(StoredVal, Addr,
Alignment, Mask);
3738 NewSI = Builder.CreateAlignedStore(StoredVal, Addr,
Alignment);
3742#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3745 O << Indent <<
"WIDEN store ";
3754 auto &Builder = State.Builder;
3757 Value *StoredVal = State.get(StoredValue);
3761 Value *Mask =
nullptr;
3763 Mask = State.get(VPMask);
3767 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3770 if (CreateScatter) {
3772 Intrinsic::vp_scatter,
3773 {StoredVal, Addr, Mask, EVL});
3776 Intrinsic::vp_store,
3777 {StoredVal, Addr, Mask, EVL});
3796 ->getAddressSpace();
3798 Instruction::Store, Ty,
Alignment, AS, Ctx.CostKind);
3802 return Cost + Ctx.TTI.getShuffleCost(
3807#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3810 O << Indent <<
"WIDEN vp.store ";
3818 auto VF = DstVTy->getElementCount();
3820 assert(VF == SrcVecTy->getElementCount() &&
"Vector dimensions do not match");
3821 Type *SrcElemTy = SrcVecTy->getElementType();
3822 Type *DstElemTy = DstVTy->getElementType();
3823 assert((
DL.getTypeSizeInBits(SrcElemTy) ==
DL.getTypeSizeInBits(DstElemTy)) &&
3824 "Vector elements must have same size");
3828 return Builder.CreateBitOrPointerCast(V, DstVTy);
3835 "Only one type should be a pointer type");
3837 "Only one type should be a floating point type");
3841 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3842 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3848 const Twine &Name) {
3849 unsigned Factor = Vals.
size();
3850 assert(Factor > 1 &&
"Tried to interleave invalid number of vectors");
3854 for (
Value *Val : Vals)
3855 assert(Val->getType() == VecTy &&
"Tried to interleave mismatched types");
3860 if (VecTy->isScalableTy()) {
3861 assert(Factor <= 8 &&
"Unsupported interleave factor for scalable vectors");
3862 return Builder.CreateVectorInterleave(Vals, Name);
3869 const unsigned NumElts = VecTy->getElementCount().getFixedValue();
3870 return Builder.CreateShuffleVector(
3903 assert(!State.Lane &&
"Interleave group being replicated.");
3905 "Masking gaps for scalable vectors is not yet supported.");
3911 unsigned InterleaveFactor = Group->
getFactor();
3918 auto CreateGroupMask = [&BlockInMask, &State,
3919 &InterleaveFactor](
Value *MaskForGaps) ->
Value * {
3920 if (State.VF.isScalable()) {
3921 assert(!MaskForGaps &&
"Interleaved groups with gaps are not supported.");
3922 assert(InterleaveFactor <= 8 &&
3923 "Unsupported deinterleave factor for scalable vectors");
3924 auto *ResBlockInMask = State.get(BlockInMask);
3932 Value *ResBlockInMask = State.get(BlockInMask);
3933 Value *ShuffledMask = State.Builder.CreateShuffleVector(
3936 "interleaved.mask");
3937 return MaskForGaps ? State.Builder.CreateBinOp(Instruction::And,
3938 ShuffledMask, MaskForGaps)
3942 const DataLayout &DL = Instr->getDataLayout();
3945 Value *MaskForGaps =
nullptr;
3949 assert(MaskForGaps &&
"Mask for Gaps is required but it is null");
3953 if (BlockInMask || MaskForGaps) {
3954 Value *GroupMask = CreateGroupMask(MaskForGaps);
3956 NewLoad = State.Builder.CreateMaskedLoad(VecTy, ResAddr,
3958 PoisonVec,
"wide.masked.vec");
3960 NewLoad = State.Builder.CreateAlignedLoad(VecTy, ResAddr,
3967 if (VecTy->isScalableTy()) {
3970 assert(InterleaveFactor <= 8 &&
3971 "Unsupported deinterleave factor for scalable vectors");
3972 NewLoad = State.Builder.CreateIntrinsic(
3975 nullptr,
"strided.vec");
3978 auto CreateStridedVector = [&InterleaveFactor, &State,
3979 &NewLoad](
unsigned Index) ->
Value * {
3980 assert(Index < InterleaveFactor &&
"Illegal group index");
3981 if (State.VF.isScalable())
3982 return State.Builder.CreateExtractValue(NewLoad, Index);
3988 return State.Builder.CreateShuffleVector(NewLoad, StrideMask,
3992 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
3999 Value *StridedVec = CreateStridedVector(
I);
4002 if (Member->getType() != ScalarTy) {
4009 StridedVec = State.Builder.CreateVectorReverse(StridedVec,
"reverse");
4011 State.set(VPDefs[J], StridedVec);
4021 Value *MaskForGaps =
4024 "Mismatch between NeedsMaskForGaps and MaskForGaps");
4028 unsigned StoredIdx = 0;
4029 for (
unsigned i = 0; i < InterleaveFactor; i++) {
4031 "Fail to get a member from an interleaved store group");
4041 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4045 StoredVec = State.Builder.CreateVectorReverse(StoredVec,
"reverse");
4049 if (StoredVec->
getType() != SubVT)
4058 if (BlockInMask || MaskForGaps) {
4059 Value *GroupMask = CreateGroupMask(MaskForGaps);
4060 NewStoreInstr = State.Builder.CreateMaskedStore(
4061 IVec, ResAddr, Group->
getAlign(), GroupMask);
4064 State.Builder.CreateAlignedStore(IVec, ResAddr, Group->
getAlign());
4071#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4075 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4076 IG->getInsertPos()->printAsOperand(O,
false);
4086 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4087 if (!IG->getMember(i))
4090 O <<
"\n" << Indent <<
" store ";
4092 O <<
" to index " << i;
4094 O <<
"\n" << Indent <<
" ";
4096 O <<
" = load from index " << i;
4104 assert(!State.Lane &&
"Interleave group being replicated.");
4105 assert(State.VF.isScalable() &&
4106 "Only support scalable VF for EVL tail-folding.");
4108 "Masking gaps for scalable vectors is not yet supported.");
4114 unsigned InterleaveFactor = Group->
getFactor();
4115 assert(InterleaveFactor <= 8 &&
4116 "Unsupported deinterleave/interleave factor for scalable vectors");
4123 Value *InterleaveEVL = State.Builder.CreateMul(
4124 EVL, ConstantInt::get(EVL->
getType(), InterleaveFactor),
"interleave.evl",
4128 Value *GroupMask =
nullptr;
4134 State.Builder.CreateVectorSplat(WideVF, State.Builder.getTrue());
4139 CallInst *NewLoad = State.Builder.CreateIntrinsic(
4140 VecTy, Intrinsic::vp_load, {ResAddr, GroupMask, InterleaveEVL},
nullptr,
4151 NewLoad = State.Builder.CreateIntrinsic(
4154 nullptr,
"strided.vec");
4156 const DataLayout &DL = Instr->getDataLayout();
4157 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
4163 Value *StridedVec = State.Builder.CreateExtractValue(NewLoad,
I);
4165 if (Member->getType() != ScalarTy) {
4183 const DataLayout &DL = Instr->getDataLayout();
4184 for (
unsigned I = 0, StoredIdx = 0;
I < InterleaveFactor;
I++) {
4192 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4194 if (StoredVec->
getType() != SubVT)
4204 State.Builder.CreateIntrinsic(
Type::getVoidTy(Ctx), Intrinsic::vp_store,
4205 {IVec, ResAddr, GroupMask, InterleaveEVL});
4214#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4218 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4219 IG->getInsertPos()->printAsOperand(O,
false);
4230 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4231 if (!IG->getMember(i))
4234 O <<
"\n" << Indent <<
" vp.store ";
4236 O <<
" to index " << i;
4238 O <<
"\n" << Indent <<
" ";
4240 O <<
" = vp.load from index " << i;
4251 unsigned InsertPosIdx = 0;
4252 for (
unsigned Idx = 0; IG->getFactor(); ++Idx)
4253 if (
auto *Member = IG->getMember(Idx)) {
4254 if (Member == InsertPos)
4258 Type *ValTy = Ctx.Types.inferScalarType(
4263 ->getAddressSpace();
4265 unsigned InterleaveFactor = IG->getFactor();
4270 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
4271 if (IG->getMember(IF))
4276 InsertPos->
getOpcode(), WideVecTy, IG->getFactor(), Indices,
4277 IG->getAlign(), AS, Ctx.CostKind,
getMask(), NeedsMaskForGaps);
4279 if (!IG->isReverse())
4282 return Cost + IG->getNumMembers() *
4284 VectorTy, VectorTy, {}, Ctx.CostKind,
4288#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4291 O << Indent <<
"EMIT ";
4293 O <<
" = CANONICAL-INDUCTION ";
4299 return IsScalarAfterVectorization &&
4303#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4307 "unexpected number of operands");
4308 O << Indent <<
"EMIT ";
4310 O <<
" = WIDEN-POINTER-INDUCTION ";
4326 O << Indent <<
"EMIT ";
4328 O <<
" = EXPAND SCEV " << *Expr;
4335 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
4339 : Builder.CreateVectorSplat(VF, CanonicalIV,
"broadcast");
4342 VStep = Builder.CreateVectorSplat(VF, VStep);
4344 Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->
getType()));
4346 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep,
"vec.iv");
4347 State.set(
this, CanonicalVectorIV);
4350#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4353 O << Indent <<
"EMIT ";
4355 O <<
" = WIDEN-CANONICAL-INDUCTION ";
4361 auto &Builder = State.Builder;
4365 Type *VecTy = State.VF.isScalar()
4366 ? VectorInit->getType()
4370 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4371 if (State.VF.isVector()) {
4373 auto *One = ConstantInt::get(IdxTy, 1);
4376 auto *RuntimeVF =
getRuntimeVF(Builder, IdxTy, State.VF);
4377 auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4378 VectorInit = Builder.CreateInsertElement(
4384 Phi->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
4385 Phi->addIncoming(VectorInit, VectorPH);
4386 State.set(
this, Phi);
4393 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4398#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4401 O << Indent <<
"FIRST-ORDER-RECURRENCE-PHI ";
4418 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4419 bool ScalarPHI = State.VF.isScalar() || IsInLoop;
4420 Value *StartV = State.get(StartVPV, ScalarPHI);
4424 assert(State.CurrentParentLoop->getHeader() == HeaderBB &&
4425 "recipe must be in the vector loop header");
4428 State.set(
this, Phi, IsInLoop);
4430 Phi->addIncoming(StartV, VectorPH);
4433#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4436 O << Indent <<
"WIDEN-REDUCTION-PHI ";
4441 if (VFScaleFactor != 1)
4442 O <<
" (VF scaled by 1/" << VFScaleFactor <<
")";
4449 Instruction *VecPhi = State.Builder.CreatePHI(VecTy, 2, Name);
4450 State.set(
this, VecPhi);
4453#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4456 O << Indent <<
"WIDEN-PHI ";
4468 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4471 State.Builder.CreatePHI(StartMask->
getType(), 2,
"active.lane.mask");
4472 Phi->addIncoming(StartMask, VectorPH);
4473 State.set(
this, Phi);
4476#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4479 O << Indent <<
"ACTIVE-LANE-MASK-PHI ";
4487#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4490 O << Indent <<
"EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI ";
static SDValue Widen(SelectionDAG *CurDAG, SDValue N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand &Opnd)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file provides a LoopVectorizationPlanner class.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static bool isOrdered(const Instruction *I)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
This file contains the declarations of different VPlan-related auxiliary helpers.
static Instruction * createReverseEVL(IRBuilderBase &Builder, Value *Operand, Value *EVL, const Twine &Name)
Use all-true mask for reverse rather than actual mask, as it avoids a dependence w/o affecting the re...
static Value * interleaveVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vals, const Twine &Name)
Return a vector containing interleaved elements from multiple smaller input vectors.
static InstructionCost getCostForIntrinsics(Intrinsic::ID ID, ArrayRef< const VPValue * > Operands, const VPRecipeWithIRFlags &R, ElementCount VF, VPCostContext &Ctx)
Compute the cost for the intrinsic ID with Operands, produced by R.
static Value * createBitOrPointerCast(IRBuilderBase &Builder, Value *V, VectorType *DstVTy, const DataLayout &DL)
static Type * getGEPIndexTy(bool IsScalable, bool IsReverse, bool IsUnitStride, unsigned CurrentPart, IRBuilderBase &Builder)
SmallVector< Value *, 2 > VectorParts
static bool isUsedByLoadStoreAddress(const VPUser *V)
Returns true if V is used as part of the address of another load or store.
static void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
static Constant * getSignedIntOrFpConstant(Type *Ty, int64_t C)
A helper function that returns an integer or floating-point constant with value C.
static BranchInst * createCondBranch(Value *Cond, VPBasicBlock *VPBB, VPTransformState &State)
Create a conditional branch using Cond branching to the successors of VPBB.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
Class for arbitrary precision integers.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Conditional or Unconditional Branch instruction.
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
static LLVM_ABI StringRef getPredicateName(Predicate P)
This is the shared class of boolean and integer constants.
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This is an important base class in LLVM.
A parsed version of the target data layout string in and methods for querying it.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
Convenience struct for specifying and reasoning about fast-math flags.
void setAllowContract(bool B=true)
bool noSignedZeros() const
void setAllowReciprocal(bool B=true)
bool allowReciprocal() const
LLVM_ABI void print(raw_ostream &O) const
Print fast-math flags to O.
void setNoSignedZeros(bool B=true)
bool allowReassoc() const
Flag queries.
void setNoNaNs(bool B=true)
void setAllowReassoc(bool B=true)
Flag setters.
void setApproxFunc(bool B=true)
void setNoInfs(bool B=true)
bool allowContract() const
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
bool willReturn() const
Determine if the function will return.
bool doesNotThrow() const
Determine if the function cannot unwind.
Type * getReturnType() const
Returns the type of the ret val.
Common base class shared among various IRBuilders.
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
LLVM_ABI Value * CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, const Twine &Name="")
Return a vector splice intrinsic if using scalable vectors, otherwise return a shufflevector.
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="", Instruction *MDFrom=nullptr)
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateCountTrailingZeroElems(Type *ResTy, Value *Mask, bool ZeroIsPoison=true, const Twine &Name="")
Create a call to llvm.experimental_cttz_elts.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
LLVMContext & getContext() const
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
static InstructionCost getInvalid(CostType Val=0)
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
This is an important class for using LLVM in a threaded context.
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
std::pair< MDNode *, MDNode * > getNoAliasMetadataFor(const Instruction *OrigInst) const
Returns a pair containing the alias_scope and noalias metadata nodes for OrigInst,...
Represents a single loop in the control flow graph.
A Module instance is used to store all the information related to an LLVM module.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This class represents an analyzed expression in the program.
The main scalar evolution driver.
This class represents the LLVM 'select' instruction.
This class provides computation of slot numbers for LLVM Assembly writing.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isStructTy() const
True if this is an instance of StructType.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isVoidTy() const
Return true if this is 'void'.
value_op_iterator value_op_end()
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
value_op_iterator value_op_begin()
void execute(VPTransformState &State) override
Generate the active lane mask phi of the vector loop.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
VPValue * getIncomingValue(unsigned Idx) const
Return incoming value number Idx.
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
const VPBlocksTy & getPredecessors() const
void printAsOperand(raw_ostream &OS, bool PrintType=false) const
const VPBlocksTy & getSuccessors() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPBranchOnMaskRecipe.
void execute(VPTransformState &State) override
Generate the extraction of the appropriate bit from the block mask and the conditional branch.
VPlan-based builder utility analogous to IRBuilder.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
This class augments a recipe with a set of VPValues defined by the recipe.
void dump() const
Dump the VPDef to stderr (for debugging).
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
unsigned getVPDefID() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStepValue() const
VPValue * getStartValue() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void decompose()
Insert the recipes of the expression back into the VPlan, directly before the current recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool isSingleScalar() const
Returns true if the result of this VPExpressionRecipe is a single-scalar.
bool mayHaveSideEffects() const
Returns true if this expression contains recipes that may have side effects.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
bool mayReadOrWriteMemory() const
Returns true if this expression contains recipes that may read from or write to memory.
void execute(VPTransformState &State) override
Produce a vectorized histogram operation.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPHistogramRecipe.
VPValue * getMask() const
Return the mask operand if one was provided, or a null pointer if all lanes should be executed uncond...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Class to record and manage LLVM IR flags.
bool flagsValidForOpcode(unsigned Opcode) const
Returns true if the set flags are valid for Opcode.
CmpInst::Predicate CmpPredicate
void printFlags(raw_ostream &O) const
bool hasFastMathFlags() const
Returns true if the recipe has fast-math flags.
LLVM_ABI_FOR_TEST FastMathFlags getFastMathFlags() const
CmpInst::Predicate getPredicate() const
bool hasNoSignedWrap() const
void intersectFlags(const VPIRFlags &Other)
Only keep flags also present in Other.
GEPNoWrapFlags getGEPNoWrapFlags() const
bool hasPredicate() const
Returns true if the recipe has a comparison predicate.
DisjointFlagsTy DisjointFlags
bool hasNoUnsignedWrap() const
NonNegFlagsTy NonNegFlags
void applyFlags(Instruction &I) const
Apply the IR flags to I.
Instruction & getInstruction() const
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void extractLastLaneOfFirstOperand(VPBuilder &Builder)
Update the recipes first operand to the last lane of the operand using Builder.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPIRInstruction.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPIRInstruction(Instruction &I)
VPIRInstruction::create() should be used to create VPIRInstructions, as subclasses may need to be cre...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPInstruction.
VPInstruction(unsigned Opcode, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
bool doesGeneratePerAllLanes() const
Returns true if this VPInstruction generates scalar values for all lanes.
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ WideIVStep
Scale the first operand (vector step) by the second operand (scalar-step).
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ Unpack
Extracts all lanes from its (non-scalable) vector operand.
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
@ BuildVector
Creates a fixed-width vector containing all operands.
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
@ VScale
Returns the value for vscale.
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
bool opcodeMayReadOrWriteFromMemory() const
Returns true if the underlying opcode may read from or write to memory.
LLVM_DUMP_METHOD void dump() const
Print the VPInstruction to dbgs() (for debugging).
StringRef getName() const
Returns the symbolic name assigned to the VPInstruction.
unsigned getOpcode() const
bool onlyFirstPartUsed(const VPValue *Op) const override
Returns true if the recipe only uses the first part of operand Op.
bool isVectorToScalar() const
Returns true if this VPInstruction produces a scalar value from a vector, e.g.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the VPInstruction to O.
bool onlyFirstLaneUsed(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
bool isSingleScalar() const
Returns true if this VPInstruction's operands are single scalars and the result is also a single scal...
void execute(VPTransformState &State) override
Generate the instruction.
bool needsMaskForGaps() const
Return true if the access needs a mask because of the gaps.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this recipe.
Instruction * getInsertPos() const
const InterleaveGroup< Instruction > * getInterleaveGroup() const
VPValue * getMask() const
Return the mask used by this recipe.
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
VPValue * getAddr() const
Return the address accessed by this recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset)
static VPLane getFirstLane()
void execute(VPTransformState &State) override
Generate the reduction in the loop.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPPartialReductionRecipe.
unsigned getOpcode() const
Get the binary op's opcode.
virtual const VPRecipeBase * getAsRecipe() const =0
Return a VPRecipeBase* to the current object.
virtual unsigned getNumIncoming() const
Returns the number of incoming values, also number of incoming blocks.
void removeIncomingValueFor(VPBlockBase *IncomingBlock) const
Removes the incoming value for IncomingBlock, which must be a predecessor.
const VPBasicBlock * getIncomingBlock(unsigned Idx) const
Returns the incoming block with index Idx.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPValue * getIncomingValue(unsigned Idx) const
Returns the incoming VPValue with index Idx.
void printPhiOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the recipe.
void execute(VPTransformState &State) override
Generates phi nodes for live-outs (from a replicate region) as needed to retain SSA form.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
VPRegionBlock * getRegion()
bool isPhi() const
Returns true for PHI-like recipes.
bool mayWriteToMemory() const
Returns true if the recipe may write to memory.
virtual InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this recipe, taking into account if the cost computation should be skipped and the...
bool isScalarCast() const
Return true if the recipe is a scalar cast.
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
void moveAfter(VPRecipeBase *MovePos)
Unlink this recipe from its current VPBasicBlock and insert it into the VPBasicBlock that MovePos liv...
VPRecipeBase(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool isConditional() const
Return true if the in-loop reduction is conditional.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of VPReductionRecipe.
VPValue * getVecOp() const
The VPValue of the vector value to be reduced.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getCondOp() const
The VPValue of the condition for the block.
RecurKind getRecurrenceKind() const
Return the recurrence kind for the in-loop reduction.
VPValue * getChainOp() const
The VPValue of the scalar Chain being accumulated.
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool isSingleScalar() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPReplicateRecipe.
unsigned getOpcode() const
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStepValue() const
void execute(VPTransformState &State) override
Generate the scalarized versions of the phi node as needed by their users.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
LLVM_DUMP_METHOD void dump() const
Print this VPSingleDefRecipe to dbgs() (for debugging).
VPSingleDefRecipe(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
This class can be used to assign names to VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
Helper to access the operand that contains the unroll part for this recipe after unrolling.
VPValue * getUnrollPartOperand(const VPUser &U) const
Return the VPValue operand containing the unroll part or null if there is no such operand.
unsigned getUnrollPart(const VPUser &U) const
Return the unroll part.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
virtual bool onlyFirstLaneUsed(const VPValue *Op) const
Returns true if the VPUser only uses the first lane of operand Op.
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
friend class VPExpressionRecipe
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
bool hasMoreThanOneUniqueUser() const
Returns true if the value has more than one unique user.
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
VPValue(const unsigned char SC, Value *UV=nullptr, VPDef *Def=nullptr)
void replaceAllUsesWith(VPValue *New)
user_iterator user_begin()
unsigned getNumUsers() const
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getSourceElementType() const
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Function * getCalledScalarFunction() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCallRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the call instruction.
void execute(VPTransformState &State) override
Generate a canonical vector induction variable of the vector loop, with start = {<Part*VF,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Returns the result type of the cast.
void execute(VPTransformState &State) override
Produce widened copies of the cast.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCastRecipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the gep nodes.
Type * getSourceElementType() const
VPValue * getStepValue()
Returns the step value of the induction.
TruncInst * getTruncInst()
Returns the first defined value as TruncInst, if it is one or nullptr otherwise.
Type * getScalarType() const
Returns the scalar type of the induction.
bool isCanonical() const
Returns true if the induction is canonical, i.e.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool onlyFirstLaneUsed(const VPValue *Op) const override
Returns true if the VPUser only uses the first lane of operand Op.
Intrinsic::ID getVectorIntrinsicID() const
Return the ID of the intrinsic.
StringRef getIntrinsicName() const
Return to name of the intrinsic as string.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Return the scalar return type of the intrinsic.
void execute(VPTransformState &State) override
Produce a widened version of the vector intrinsic.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this vector intrinsic.
bool IsMasked
Whether the memory access is masked.
bool Reverse
Whether the consecutive accessed addresses are in reverse order.
bool isConsecutive() const
Return whether the loaded-from / stored-to addresses are consecutive.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
bool Consecutive
Whether the accessed addresses are consecutive.
VPValue * getMask() const
Return the mask used by this recipe.
Align Alignment
Alignment information for this memory access.
VPValue * getAddr() const
Return the address accessed by this recipe.
bool isReverse() const
Return whether the consecutive loaded/stored addresses are in reverse order.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool onlyScalarsGenerated(bool IsScalable)
Returns true if only scalar values will be generated.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenRecipe.
void execute(VPTransformState &State) override
Produce a widened instruction using the opcode and operands of the recipe, processing State....
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
const ParentTy * getParent() const
self_iterator getIterator()
typename base_list_type::iterator iterator
iterator erase(iterator where)
pointer remove(iterator &IT)
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI Intrinsic::ID getDeinterleaveIntrinsicID(unsigned Factor)
Returns the corresponding llvm.vector.deinterleaveN intrinsic for factor N.
LLVM_ABI StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
bool match(Val *V, const Pattern &P)
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
GEPLikeRecipe_match< Op0_t, Op1_t > m_GetElementPtr(const Op0_t &Op0, const Op1_t &Op1)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
NodeAddr< DefNode * > Def
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
bool onlyFirstPartUsed(const VPValue *Def)
Returns true if only the first part of Def is used.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
const SCEV * getSCEVExprForVPValue(const VPValue *V, ScalarEvolution &SE, const Loop *L=nullptr)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * createFindLastIVReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind, Value *Start, Value *Sentinel)
Create a reduction of the given vector Src for a reduction of the kind RecurKind::FindLastIV.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
auto cast_or_null(const Y &Val)
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
bool isa_and_nonnull(const Y &Val)
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
auto reverse(ContainerTy &&C)
LLVM_ABI llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
bool canConstantBeExtended(const APInt *C, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Mul
Product of integers.
@ AnyOf
AnyOf reduction with select(cmp(),x,y) where one of (x,y) is loop invariant, and both x and y are int...
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
DWARFExpression::Operation Op
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind)
A helper function that returns how much we should divide the cost of a predicated block by.
@ Increment
Incrementally increasing token ID.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
LLVM_ABI bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Struct to hold various analysis needed for cost computations.
void execute(VPTransformState &State) override
Generate the phi nodes.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this first-order recurrence phi recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use cast/dyn_cast/isa and exec...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
A pure-virtual common base class for recipes defining a single VPValue and using IR flags.
InstructionCost getCostForRecipeWithOpcode(unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const
Compute the cost for this recipe for VF, using Opcode and Ctx.
VPRecipeWithIRFlags(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the wide load or gather.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenLoadEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a wide load or gather.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool isInvariantCond() const
VPValue * getCond() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenSelectRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the select instruction.
VPValue * getStoredValue() const
Return the address accessed by this recipe.
void execute(VPTransformState &State) override
Generate the wide store or scatter.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenStoreEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void execute(VPTransformState &State) override
Generate a wide store or scatter.
VPValue * getStoredValue() const
Return the value stored by this recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.