LLVM 22.0.0git
VPlanRecipes.cpp
Go to the documentation of this file.
1//===- VPlanRecipes.cpp - Implementations for VPlan recipes ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file contains implementations for different VPlan recipes.
11///
12//===----------------------------------------------------------------------===//
13
15#include "VPlan.h"
16#include "VPlanAnalysis.h"
17#include "VPlanHelpers.h"
18#include "VPlanPatternMatch.h"
19#include "VPlanUtils.h"
20#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/Twine.h"
26#include "llvm/IR/BasicBlock.h"
27#include "llvm/IR/IRBuilder.h"
28#include "llvm/IR/Instruction.h"
30#include "llvm/IR/Intrinsics.h"
31#include "llvm/IR/Type.h"
32#include "llvm/IR/Value.h"
35#include "llvm/Support/Debug.h"
39#include <cassert>
40
41using namespace llvm;
42using namespace llvm::VPlanPatternMatch;
43
45
46#define LV_NAME "loop-vectorize"
47#define DEBUG_TYPE LV_NAME
48
50 switch (getVPDefID()) {
51 case VPExpressionSC:
52 return cast<VPExpressionRecipe>(this)->mayReadOrWriteMemory();
53 case VPInstructionSC: {
54 auto *VPI = cast<VPInstruction>(this);
55 // Loads read from memory but don't write to memory.
56 if (VPI->getOpcode() == Instruction::Load)
57 return false;
58 return VPI->opcodeMayReadOrWriteFromMemory();
59 }
60 case VPInterleaveEVLSC:
61 case VPInterleaveSC:
62 return cast<VPInterleaveBase>(this)->getNumStoreOperands() > 0;
63 case VPWidenStoreEVLSC:
64 case VPWidenStoreSC:
65 return true;
66 case VPReplicateSC:
67 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
68 ->mayWriteToMemory();
69 case VPWidenCallSC:
70 return !cast<VPWidenCallRecipe>(this)
71 ->getCalledScalarFunction()
72 ->onlyReadsMemory();
73 case VPWidenIntrinsicSC:
74 return cast<VPWidenIntrinsicRecipe>(this)->mayWriteToMemory();
75 case VPCanonicalIVPHISC:
76 case VPBranchOnMaskSC:
77 case VPDerivedIVSC:
78 case VPFirstOrderRecurrencePHISC:
79 case VPReductionPHISC:
80 case VPScalarIVStepsSC:
81 case VPPredInstPHISC:
82 return false;
83 case VPBlendSC:
84 case VPReductionEVLSC:
85 case VPReductionSC:
86 case VPVectorPointerSC:
87 case VPWidenCanonicalIVSC:
88 case VPWidenCastSC:
89 case VPWidenGEPSC:
90 case VPWidenIntOrFpInductionSC:
91 case VPWidenLoadEVLSC:
92 case VPWidenLoadSC:
93 case VPWidenPHISC:
94 case VPWidenPointerInductionSC:
95 case VPWidenSC:
96 case VPWidenSelectSC: {
97 const Instruction *I =
98 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
99 (void)I;
100 assert((!I || !I->mayWriteToMemory()) &&
101 "underlying instruction may write to memory");
102 return false;
103 }
104 default:
105 return true;
106 }
107}
108
110 switch (getVPDefID()) {
111 case VPExpressionSC:
112 return cast<VPExpressionRecipe>(this)->mayReadOrWriteMemory();
113 case VPInstructionSC:
114 return cast<VPInstruction>(this)->opcodeMayReadOrWriteFromMemory();
115 case VPWidenLoadEVLSC:
116 case VPWidenLoadSC:
117 return true;
118 case VPReplicateSC:
119 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
120 ->mayReadFromMemory();
121 case VPWidenCallSC:
122 return !cast<VPWidenCallRecipe>(this)
123 ->getCalledScalarFunction()
124 ->onlyWritesMemory();
125 case VPWidenIntrinsicSC:
126 return cast<VPWidenIntrinsicRecipe>(this)->mayReadFromMemory();
127 case VPBranchOnMaskSC:
128 case VPDerivedIVSC:
129 case VPFirstOrderRecurrencePHISC:
130 case VPPredInstPHISC:
131 case VPScalarIVStepsSC:
132 case VPWidenStoreEVLSC:
133 case VPWidenStoreSC:
134 return false;
135 case VPBlendSC:
136 case VPReductionEVLSC:
137 case VPReductionSC:
138 case VPVectorPointerSC:
139 case VPWidenCanonicalIVSC:
140 case VPWidenCastSC:
141 case VPWidenGEPSC:
142 case VPWidenIntOrFpInductionSC:
143 case VPWidenPHISC:
144 case VPWidenPointerInductionSC:
145 case VPWidenSC:
146 case VPWidenSelectSC: {
147 const Instruction *I =
148 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
149 (void)I;
150 assert((!I || !I->mayReadFromMemory()) &&
151 "underlying instruction may read from memory");
152 return false;
153 }
154 default:
155 // FIXME: Return false if the recipe represents an interleaved store.
156 return true;
157 }
158}
159
161 switch (getVPDefID()) {
162 case VPExpressionSC:
163 return cast<VPExpressionRecipe>(this)->mayHaveSideEffects();
164 case VPDerivedIVSC:
165 case VPFirstOrderRecurrencePHISC:
166 case VPPredInstPHISC:
167 case VPVectorEndPointerSC:
168 return false;
169 case VPInstructionSC: {
170 auto *VPI = cast<VPInstruction>(this);
171 return mayWriteToMemory() ||
172 VPI->getOpcode() == VPInstruction::BranchOnCount ||
173 VPI->getOpcode() == VPInstruction::BranchOnCond;
174 }
175 case VPWidenCallSC: {
176 Function *Fn = cast<VPWidenCallRecipe>(this)->getCalledScalarFunction();
177 return mayWriteToMemory() || !Fn->doesNotThrow() || !Fn->willReturn();
178 }
179 case VPWidenIntrinsicSC:
180 return cast<VPWidenIntrinsicRecipe>(this)->mayHaveSideEffects();
181 case VPBlendSC:
182 case VPReductionEVLSC:
183 case VPReductionSC:
184 case VPScalarIVStepsSC:
185 case VPVectorPointerSC:
186 case VPWidenCanonicalIVSC:
187 case VPWidenCastSC:
188 case VPWidenGEPSC:
189 case VPWidenIntOrFpInductionSC:
190 case VPWidenPHISC:
191 case VPWidenPointerInductionSC:
192 case VPWidenSC:
193 case VPWidenSelectSC: {
194 const Instruction *I =
195 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
196 (void)I;
197 assert((!I || !I->mayHaveSideEffects()) &&
198 "underlying instruction has side-effects");
199 return false;
200 }
201 case VPInterleaveEVLSC:
202 case VPInterleaveSC:
203 return mayWriteToMemory();
204 case VPWidenLoadEVLSC:
205 case VPWidenLoadSC:
206 case VPWidenStoreEVLSC:
207 case VPWidenStoreSC:
208 assert(
209 cast<VPWidenMemoryRecipe>(this)->getIngredient().mayHaveSideEffects() ==
211 "mayHaveSideffects result for ingredient differs from this "
212 "implementation");
213 return mayWriteToMemory();
214 case VPReplicateSC: {
215 auto *R = cast<VPReplicateRecipe>(this);
216 return R->getUnderlyingInstr()->mayHaveSideEffects();
217 }
218 default:
219 return true;
220 }
221}
222
224 assert(!Parent && "Recipe already in some VPBasicBlock");
225 assert(InsertPos->getParent() &&
226 "Insertion position not in any VPBasicBlock");
227 InsertPos->getParent()->insert(this, InsertPos->getIterator());
228}
229
230void VPRecipeBase::insertBefore(VPBasicBlock &BB,
232 assert(!Parent && "Recipe already in some VPBasicBlock");
233 assert(I == BB.end() || I->getParent() == &BB);
234 BB.insert(this, I);
235}
236
238 assert(!Parent && "Recipe already in some VPBasicBlock");
239 assert(InsertPos->getParent() &&
240 "Insertion position not in any VPBasicBlock");
241 InsertPos->getParent()->insert(this, std::next(InsertPos->getIterator()));
242}
243
245 assert(getParent() && "Recipe not in any VPBasicBlock");
247 Parent = nullptr;
248}
249
251 assert(getParent() && "Recipe not in any VPBasicBlock");
253}
254
257 insertAfter(InsertPos);
258}
259
265
267 // Get the underlying instruction for the recipe, if there is one. It is used
268 // to
269 // * decide if cost computation should be skipped for this recipe,
270 // * apply forced target instruction cost.
271 Instruction *UI = nullptr;
272 if (auto *S = dyn_cast<VPSingleDefRecipe>(this))
273 UI = dyn_cast_or_null<Instruction>(S->getUnderlyingValue());
274 else if (auto *IG = dyn_cast<VPInterleaveBase>(this))
275 UI = IG->getInsertPos();
276 else if (auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(this))
277 UI = &WidenMem->getIngredient();
278
279 InstructionCost RecipeCost;
280 if (UI && Ctx.skipCostComputation(UI, VF.isVector())) {
281 RecipeCost = 0;
282 } else {
283 RecipeCost = computeCost(VF, Ctx);
284 if (ForceTargetInstructionCost.getNumOccurrences() > 0 &&
285 RecipeCost.isValid()) {
286 if (UI)
288 else
289 RecipeCost = InstructionCost(0);
290 }
291 }
292
293 LLVM_DEBUG({
294 dbgs() << "Cost of " << RecipeCost << " for VF " << VF << ": ";
295 dump();
296 });
297 return RecipeCost;
298}
299
301 VPCostContext &Ctx) const {
302 llvm_unreachable("subclasses should implement computeCost");
303}
304
306 return (getVPDefID() >= VPFirstPHISC && getVPDefID() <= VPLastPHISC) ||
308}
309
311 auto *VPI = dyn_cast<VPInstruction>(this);
312 return VPI && Instruction::isCast(VPI->getOpcode());
313}
314
316 assert(OpType == Other.OpType && "OpType must match");
317 switch (OpType) {
318 case OperationType::OverflowingBinOp:
319 WrapFlags.HasNUW &= Other.WrapFlags.HasNUW;
320 WrapFlags.HasNSW &= Other.WrapFlags.HasNSW;
321 break;
322 case OperationType::Trunc:
323 TruncFlags.HasNUW &= Other.TruncFlags.HasNUW;
324 TruncFlags.HasNSW &= Other.TruncFlags.HasNSW;
325 break;
326 case OperationType::DisjointOp:
327 DisjointFlags.IsDisjoint &= Other.DisjointFlags.IsDisjoint;
328 break;
329 case OperationType::PossiblyExactOp:
330 ExactFlags.IsExact &= Other.ExactFlags.IsExact;
331 break;
332 case OperationType::GEPOp:
333 GEPFlags &= Other.GEPFlags;
334 break;
335 case OperationType::FPMathOp:
336 case OperationType::FCmp:
337 assert((OpType != OperationType::FCmp ||
338 FCmpFlags.Pred == Other.FCmpFlags.Pred) &&
339 "Cannot drop CmpPredicate");
340 getFMFsRef().NoNaNs &= Other.getFMFsRef().NoNaNs;
341 getFMFsRef().NoInfs &= Other.getFMFsRef().NoInfs;
342 break;
343 case OperationType::NonNegOp:
344 NonNegFlags.NonNeg &= Other.NonNegFlags.NonNeg;
345 break;
346 case OperationType::Cmp:
347 assert(CmpPredicate == Other.CmpPredicate && "Cannot drop CmpPredicate");
348 break;
349 case OperationType::Other:
350 assert(AllFlags == Other.AllFlags && "Cannot drop other flags");
351 break;
352 }
353}
354
356 assert((OpType == OperationType::FPMathOp || OpType == OperationType::FCmp) &&
357 "recipe doesn't have fast math flags");
358 const FastMathFlagsTy &F = getFMFsRef();
359 FastMathFlags Res;
360 Res.setAllowReassoc(F.AllowReassoc);
361 Res.setNoNaNs(F.NoNaNs);
362 Res.setNoInfs(F.NoInfs);
363 Res.setNoSignedZeros(F.NoSignedZeros);
364 Res.setAllowReciprocal(F.AllowReciprocal);
365 Res.setAllowContract(F.AllowContract);
366 Res.setApproxFunc(F.ApproxFunc);
367 return Res;
368}
369
370#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
372
373void VPRecipeBase::print(raw_ostream &O, const Twine &Indent,
374 VPSlotTracker &SlotTracker) const {
375 printRecipe(O, Indent, SlotTracker);
376 if (auto DL = getDebugLoc()) {
377 O << ", !dbg ";
378 DL.print(O);
379 }
380
381 if (auto *Metadata = dyn_cast<VPIRMetadata>(this))
383}
384#endif
385
386template <unsigned PartOpIdx>
387VPValue *
389 if (U.getNumOperands() == PartOpIdx + 1)
390 return U.getOperand(PartOpIdx);
391 return nullptr;
392}
393
394template <unsigned PartOpIdx>
396 if (auto *UnrollPartOp = getUnrollPartOperand(U))
397 return cast<ConstantInt>(UnrollPartOp->getLiveInIRValue())->getZExtValue();
398 return 0;
399}
400
401namespace llvm {
402template class VPUnrollPartAccessor<1>;
403template class VPUnrollPartAccessor<2>;
404template class VPUnrollPartAccessor<3>;
405}
406
408 const VPIRFlags &Flags, const VPIRMetadata &MD,
409 DebugLoc DL, const Twine &Name)
410 : VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, Flags, DL),
411 VPIRMetadata(MD), Opcode(Opcode), Name(Name.str()) {
413 "Set flags not supported for the provided opcode");
414 assert((getNumOperandsForOpcode(Opcode) == -1u ||
415 getNumOperandsForOpcode(Opcode) == getNumOperands()) &&
416 "number of operands does not match opcode");
417}
418
419#ifndef NDEBUG
420unsigned VPInstruction::getNumOperandsForOpcode(unsigned Opcode) {
421 if (Instruction::isUnaryOp(Opcode) || Instruction::isCast(Opcode))
422 return 1;
423
424 if (Instruction::isBinaryOp(Opcode))
425 return 2;
426
427 switch (Opcode) {
430 return 0;
431 case Instruction::Alloca:
432 case Instruction::ExtractValue:
433 case Instruction::Freeze:
434 case Instruction::Load:
448 return 1;
449 case Instruction::ICmp:
450 case Instruction::FCmp:
451 case Instruction::ExtractElement:
452 case Instruction::Store:
461 return 2;
462 case Instruction::Select:
466 return 3;
468 return 4;
469 case Instruction::Call:
470 case Instruction::GetElementPtr:
471 case Instruction::PHI:
472 case Instruction::Switch:
478 // Cannot determine the number of operands from the opcode.
479 return -1u;
480 }
481 llvm_unreachable("all cases should be handled above");
482}
483#endif
484
488
489bool VPInstruction::canGenerateScalarForFirstLane() const {
491 return true;
493 return true;
494 switch (Opcode) {
495 case Instruction::Freeze:
496 case Instruction::ICmp:
497 case Instruction::PHI:
498 case Instruction::Select:
507 return true;
508 default:
509 return false;
510 }
511}
512
513/// Create a conditional branch using \p Cond branching to the successors of \p
514/// VPBB. Note that the first successor is always forward (i.e. not created yet)
515/// while the second successor may already have been created (if it is a header
516/// block and VPBB is a latch).
518 VPTransformState &State) {
519 // Replace the temporary unreachable terminator with a new conditional
520 // branch, hooking it up to backward destination (header) for latch blocks
521 // now, and to forward destination(s) later when they are created.
522 // Second successor may be backwards - iff it is already in VPBB2IRBB.
523 VPBasicBlock *SecondVPSucc = cast<VPBasicBlock>(VPBB->getSuccessors()[1]);
524 BasicBlock *SecondIRSucc = State.CFG.VPBB2IRBB.lookup(SecondVPSucc);
525 BasicBlock *IRBB = State.CFG.VPBB2IRBB[VPBB];
526 BranchInst *CondBr = State.Builder.CreateCondBr(Cond, IRBB, SecondIRSucc);
527 // First successor is always forward, reset it to nullptr
528 CondBr->setSuccessor(0, nullptr);
530 return CondBr;
531}
532
533Value *VPInstruction::generate(VPTransformState &State) {
534 IRBuilderBase &Builder = State.Builder;
535
537 bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
538 Value *A = State.get(getOperand(0), OnlyFirstLaneUsed);
539 Value *B = State.get(getOperand(1), OnlyFirstLaneUsed);
540 auto *Res =
541 Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B, Name);
542 if (auto *I = dyn_cast<Instruction>(Res))
543 applyFlags(*I);
544 return Res;
545 }
546
547 switch (getOpcode()) {
548 case VPInstruction::Not: {
549 bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
550 Value *A = State.get(getOperand(0), OnlyFirstLaneUsed);
551 return Builder.CreateNot(A, Name);
552 }
553 case Instruction::ExtractElement: {
554 assert(State.VF.isVector() && "Only extract elements from vectors");
555 if (getOperand(1)->isLiveIn()) {
556 unsigned IdxToExtract =
557 cast<ConstantInt>(getOperand(1)->getLiveInIRValue())->getZExtValue();
558 return State.get(getOperand(0), VPLane(IdxToExtract));
559 }
560 Value *Vec = State.get(getOperand(0));
561 Value *Idx = State.get(getOperand(1), /*IsScalar=*/true);
562 return Builder.CreateExtractElement(Vec, Idx, Name);
563 }
564 case Instruction::Freeze: {
566 return Builder.CreateFreeze(Op, Name);
567 }
568 case Instruction::FCmp:
569 case Instruction::ICmp: {
570 bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
571 Value *A = State.get(getOperand(0), OnlyFirstLaneUsed);
572 Value *B = State.get(getOperand(1), OnlyFirstLaneUsed);
573 return Builder.CreateCmp(getPredicate(), A, B, Name);
574 }
575 case Instruction::PHI: {
576 llvm_unreachable("should be handled by VPPhi::execute");
577 }
578 case Instruction::Select: {
579 bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
580 Value *Cond =
581 State.get(getOperand(0),
582 OnlyFirstLaneUsed || vputils::isSingleScalar(getOperand(0)));
583 Value *Op1 = State.get(getOperand(1), OnlyFirstLaneUsed);
584 Value *Op2 = State.get(getOperand(2), OnlyFirstLaneUsed);
585 return Builder.CreateSelect(Cond, Op1, Op2, Name);
586 }
588 // Get first lane of vector induction variable.
589 Value *VIVElem0 = State.get(getOperand(0), VPLane(0));
590 // Get the original loop tripcount.
591 Value *ScalarTC = State.get(getOperand(1), VPLane(0));
592
593 // If this part of the active lane mask is scalar, generate the CMP directly
594 // to avoid unnecessary extracts.
595 if (State.VF.isScalar())
596 return Builder.CreateCmp(CmpInst::Predicate::ICMP_ULT, VIVElem0, ScalarTC,
597 Name);
598
599 ElementCount EC = State.VF.multiplyCoefficientBy(
600 cast<ConstantInt>(getOperand(2)->getLiveInIRValue())->getZExtValue());
601 auto *PredTy = VectorType::get(Builder.getInt1Ty(), EC);
602 return Builder.CreateIntrinsic(Intrinsic::get_active_lane_mask,
603 {PredTy, ScalarTC->getType()},
604 {VIVElem0, ScalarTC}, nullptr, Name);
605 }
607 // Generate code to combine the previous and current values in vector v3.
608 //
609 // vector.ph:
610 // v_init = vector(..., ..., ..., a[-1])
611 // br vector.body
612 //
613 // vector.body
614 // i = phi [0, vector.ph], [i+4, vector.body]
615 // v1 = phi [v_init, vector.ph], [v2, vector.body]
616 // v2 = a[i, i+1, i+2, i+3];
617 // v3 = vector(v1(3), v2(0, 1, 2))
618
619 auto *V1 = State.get(getOperand(0));
620 if (!V1->getType()->isVectorTy())
621 return V1;
622 Value *V2 = State.get(getOperand(1));
623 return Builder.CreateVectorSplice(V1, V2, -1, Name);
624 }
626 unsigned UF = getParent()->getPlan()->getUF();
627 Value *ScalarTC = State.get(getOperand(0), VPLane(0));
628 Value *Step = createStepForVF(Builder, ScalarTC->getType(), State.VF, UF);
629 Value *Sub = Builder.CreateSub(ScalarTC, Step);
630 Value *Cmp = Builder.CreateICmp(CmpInst::Predicate::ICMP_UGT, ScalarTC, Step);
632 return Builder.CreateSelect(Cmp, Sub, Zero);
633 }
635 // TODO: Restructure this code with an explicit remainder loop, vsetvli can
636 // be outside of the main loop.
637 Value *AVL = State.get(getOperand(0), /*IsScalar*/ true);
638 // Compute EVL
639 assert(AVL->getType()->isIntegerTy() &&
640 "Requested vector length should be an integer.");
641
642 assert(State.VF.isScalable() && "Expected scalable vector factor.");
643 Value *VFArg = Builder.getInt32(State.VF.getKnownMinValue());
644
645 Value *EVL = Builder.CreateIntrinsic(
646 Builder.getInt32Ty(), Intrinsic::experimental_get_vector_length,
647 {AVL, VFArg, Builder.getTrue()});
648 return EVL;
649 }
651 unsigned Part = getUnrollPart(*this);
652 auto *IV = State.get(getOperand(0), VPLane(0));
653 assert(Part != 0 && "Must have a positive part");
654 // The canonical IV is incremented by the vectorization factor (num of
655 // SIMD elements) times the unroll part.
656 Value *Step = createStepForVF(Builder, IV->getType(), State.VF, Part);
657 return Builder.CreateAdd(IV, Step, Name, hasNoUnsignedWrap(),
659 }
661 Value *Cond = State.get(getOperand(0), VPLane(0));
662 auto *Br = createCondBranch(Cond, getParent(), State);
663 applyMetadata(*Br);
664 return Br;
665 }
667 // First create the compare.
668 Value *IV = State.get(getOperand(0), /*IsScalar*/ true);
669 Value *TC = State.get(getOperand(1), /*IsScalar*/ true);
670 Value *Cond = Builder.CreateICmpEQ(IV, TC);
671 return createCondBranch(Cond, getParent(), State);
672 }
674 return Builder.CreateVectorSplat(
675 State.VF, State.get(getOperand(0), /*IsScalar*/ true), "broadcast");
676 }
678 // For struct types, we need to build a new 'wide' struct type, where each
679 // element is widened, i.e., we create a struct of vectors.
680 auto *StructTy =
682 Value *Res = PoisonValue::get(toVectorizedTy(StructTy, State.VF));
683 for (const auto &[LaneIndex, Op] : enumerate(operands())) {
684 for (unsigned FieldIndex = 0; FieldIndex != StructTy->getNumElements();
685 FieldIndex++) {
686 Value *ScalarValue =
687 Builder.CreateExtractValue(State.get(Op, true), FieldIndex);
688 Value *VectorValue = Builder.CreateExtractValue(Res, FieldIndex);
689 VectorValue =
690 Builder.CreateInsertElement(VectorValue, ScalarValue, LaneIndex);
691 Res = Builder.CreateInsertValue(Res, VectorValue, FieldIndex);
692 }
693 }
694 return Res;
695 }
697 auto *ScalarTy = State.TypeAnalysis.inferScalarType(getOperand(0));
698 auto NumOfElements = ElementCount::getFixed(getNumOperands());
699 Value *Res = PoisonValue::get(toVectorizedTy(ScalarTy, NumOfElements));
700 for (const auto &[Idx, Op] : enumerate(operands()))
701 Res = Builder.CreateInsertElement(Res, State.get(Op, true),
702 Builder.getInt32(Idx));
703 return Res;
704 }
706 if (State.VF.isScalar())
707 return State.get(getOperand(0), true);
708 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
710 // If this start vector is scaled then it should produce a vector with fewer
711 // elements than the VF.
712 ElementCount VF = State.VF.divideCoefficientBy(
713 cast<ConstantInt>(getOperand(2)->getLiveInIRValue())->getZExtValue());
714 auto *Iden = Builder.CreateVectorSplat(VF, State.get(getOperand(1), true));
715 return Builder.CreateInsertElement(Iden, State.get(getOperand(0), true),
716 Builder.getInt32(0));
717 }
719 // FIXME: The cross-recipe dependency on VPReductionPHIRecipe is temporary
720 // and will be removed by breaking up the recipe further.
721 auto *PhiR = cast<VPReductionPHIRecipe>(getOperand(0));
722 auto *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
723 Value *ReducedPartRdx = State.get(getOperand(2));
724 for (unsigned Idx = 3; Idx < getNumOperands(); ++Idx)
725 ReducedPartRdx =
726 Builder.CreateBinOp(Instruction::Or, State.get(getOperand(Idx)),
727 ReducedPartRdx, "bin.rdx");
728 return createAnyOfReduction(Builder, ReducedPartRdx,
729 State.get(getOperand(1), VPLane(0)), OrigPhi);
730 }
732 // FIXME: The cross-recipe dependency on VPReductionPHIRecipe is temporary
733 // and will be removed by breaking up the recipe further.
734 auto *PhiR = cast<VPReductionPHIRecipe>(getOperand(0));
735 // Get its reduction variable descriptor.
736 RecurKind RK = PhiR->getRecurrenceKind();
738 "Unexpected reduction kind");
739 assert(!PhiR->isInLoop() &&
740 "In-loop FindLastIV reduction is not supported yet");
741
742 // The recipe's operands are the reduction phi, the start value, the
743 // sentinel value, followed by one operand for each part of the reduction.
744 unsigned UF = getNumOperands() - 3;
745 Value *ReducedPartRdx = State.get(getOperand(3));
746 RecurKind MinMaxKind;
749 MinMaxKind = IsSigned ? RecurKind::SMax : RecurKind::UMax;
750 else
751 MinMaxKind = IsSigned ? RecurKind::SMin : RecurKind::UMin;
752 for (unsigned Part = 1; Part < UF; ++Part)
753 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
754 State.get(getOperand(3 + Part)));
755
756 Value *Start = State.get(getOperand(1), true);
758 return createFindLastIVReduction(Builder, ReducedPartRdx, RK, Start,
759 Sentinel);
760 }
762 // FIXME: The cross-recipe dependency on VPReductionPHIRecipe is temporary
763 // and will be removed by breaking up the recipe further.
764 auto *PhiR = cast<VPReductionPHIRecipe>(getOperand(0));
765 // Get its reduction variable descriptor.
766
767 RecurKind RK = PhiR->getRecurrenceKind();
769 "should be handled by ComputeFindIVResult");
770
771 // The recipe's operands are the reduction phi, followed by one operand for
772 // each part of the reduction.
773 unsigned UF = getNumOperands() - 1;
774 VectorParts RdxParts(UF);
775 for (unsigned Part = 0; Part < UF; ++Part)
776 RdxParts[Part] = State.get(getOperand(1 + Part), PhiR->isInLoop());
777
778 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
779 if (hasFastMathFlags())
781
782 // Reduce all of the unrolled parts into a single vector.
783 Value *ReducedPartRdx = RdxParts[0];
784 if (PhiR->isOrdered()) {
785 ReducedPartRdx = RdxParts[UF - 1];
786 } else {
787 // Floating-point operations should have some FMF to enable the reduction.
788 for (unsigned Part = 1; Part < UF; ++Part) {
789 Value *RdxPart = RdxParts[Part];
791 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
792 else {
793 // For sub-recurrences, each UF's reduction variable is already
794 // negative, we need to do: reduce.add(-acc_uf0 + -acc_uf1)
796 RK == RecurKind::Sub
797 ? Instruction::Add
799 ReducedPartRdx =
800 Builder.CreateBinOp(Opcode, RdxPart, ReducedPartRdx, "bin.rdx");
801 }
802 }
803 }
804
805 // Create the reduction after the loop. Note that inloop reductions create
806 // the target reduction in the loop using a Reduction recipe.
807 if (State.VF.isVector() && !PhiR->isInLoop()) {
808 // TODO: Support in-order reductions based on the recurrence descriptor.
809 // All ops in the reduction inherit fast-math-flags from the recurrence
810 // descriptor.
811 ReducedPartRdx = createSimpleReduction(Builder, ReducedPartRdx, RK);
812 }
813
814 return ReducedPartRdx;
815 }
818 unsigned Offset =
820 Value *Res;
821 if (State.VF.isVector()) {
822 assert(Offset <= State.VF.getKnownMinValue() &&
823 "invalid offset to extract from");
824 // Extract lane VF - Offset from the operand.
825 Res = State.get(getOperand(0), VPLane::getLaneFromEnd(State.VF, Offset));
826 } else {
827 // TODO: Remove ExtractLastLane for scalar VFs.
828 assert(Offset <= 1 && "invalid offset to extract from");
829 Res = State.get(getOperand(0));
830 }
832 Res->setName(Name);
833 return Res;
834 }
836 Value *A = State.get(getOperand(0));
837 Value *B = State.get(getOperand(1));
838 return Builder.CreateLogicalAnd(A, B, Name);
839 }
842 "can only generate first lane for PtrAdd");
843 Value *Ptr = State.get(getOperand(0), VPLane(0));
844 Value *Addend = State.get(getOperand(1), VPLane(0));
845 return Builder.CreatePtrAdd(Ptr, Addend, Name, getGEPNoWrapFlags());
846 }
848 Value *Ptr =
850 Value *Addend = State.get(getOperand(1));
851 return Builder.CreatePtrAdd(Ptr, Addend, Name, getGEPNoWrapFlags());
852 }
854 Value *Res = Builder.CreateFreeze(State.get(getOperand(0)));
855 for (VPValue *Op : drop_begin(operands()))
856 Res = Builder.CreateOr(Res, Builder.CreateFreeze(State.get(Op)));
857 return State.VF.isScalar() ? Res : Builder.CreateOrReduce(Res);
858 }
860 Value *LaneToExtract = State.get(getOperand(0), true);
861 Type *IdxTy = State.TypeAnalysis.inferScalarType(getOperand(0));
862 Value *Res = nullptr;
863 Value *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF);
864
865 for (unsigned Idx = 1; Idx != getNumOperands(); ++Idx) {
866 Value *VectorStart =
867 Builder.CreateMul(RuntimeVF, ConstantInt::get(IdxTy, Idx - 1));
868 Value *VectorIdx = Idx == 1
869 ? LaneToExtract
870 : Builder.CreateSub(LaneToExtract, VectorStart);
871 Value *Ext = State.VF.isScalar()
872 ? State.get(getOperand(Idx))
873 : Builder.CreateExtractElement(
874 State.get(getOperand(Idx)), VectorIdx);
875 if (Res) {
876 Value *Cmp = Builder.CreateICmpUGE(LaneToExtract, VectorStart);
877 Res = Builder.CreateSelect(Cmp, Ext, Res);
878 } else {
879 Res = Ext;
880 }
881 }
882 return Res;
883 }
885 if (getNumOperands() == 1) {
886 Value *Mask = State.get(getOperand(0));
887 return Builder.CreateCountTrailingZeroElems(Builder.getInt64Ty(), Mask,
888 /*ZeroIsPoison=*/false, Name);
889 }
890 // If there are multiple operands, create a chain of selects to pick the
891 // first operand with an active lane and add the number of lanes of the
892 // preceding operands.
893 Value *RuntimeVF = getRuntimeVF(Builder, Builder.getInt64Ty(), State.VF);
894 unsigned LastOpIdx = getNumOperands() - 1;
895 Value *Res = nullptr;
896 for (int Idx = LastOpIdx; Idx >= 0; --Idx) {
897 Value *TrailingZeros =
898 State.VF.isScalar()
899 ? Builder.CreateZExt(
900 Builder.CreateICmpEQ(State.get(getOperand(Idx)),
901 Builder.getFalse()),
902 Builder.getInt64Ty())
904 Builder.getInt64Ty(), State.get(getOperand(Idx)),
905 /*ZeroIsPoison=*/false, Name);
906 Value *Current = Builder.CreateAdd(
907 Builder.CreateMul(RuntimeVF, Builder.getInt64(Idx)), TrailingZeros);
908 if (Res) {
909 Value *Cmp = Builder.CreateICmpNE(TrailingZeros, RuntimeVF);
910 Res = Builder.CreateSelect(Cmp, Current, Res);
911 } else {
912 Res = Current;
913 }
914 }
915
916 return Res;
917 }
919 return State.get(getOperand(0), true);
920 default:
921 llvm_unreachable("Unsupported opcode for instruction");
922 }
923}
924
926 unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const {
927 Type *ScalarTy = Ctx.Types.inferScalarType(this);
928 Type *ResultTy = VF.isVector() ? toVectorTy(ScalarTy, VF) : ScalarTy;
929 switch (Opcode) {
930 case Instruction::FNeg:
931 return Ctx.TTI.getArithmeticInstrCost(Opcode, ResultTy, Ctx.CostKind);
932 case Instruction::UDiv:
933 case Instruction::SDiv:
934 case Instruction::SRem:
935 case Instruction::URem:
936 case Instruction::Add:
937 case Instruction::FAdd:
938 case Instruction::Sub:
939 case Instruction::FSub:
940 case Instruction::Mul:
941 case Instruction::FMul:
942 case Instruction::FDiv:
943 case Instruction::FRem:
944 case Instruction::Shl:
945 case Instruction::LShr:
946 case Instruction::AShr:
947 case Instruction::And:
948 case Instruction::Or:
949 case Instruction::Xor: {
952
953 if (VF.isVector()) {
954 // Certain instructions can be cheaper to vectorize if they have a
955 // constant second vector operand. One example of this are shifts on x86.
956 VPValue *RHS = getOperand(1);
957 RHSInfo = Ctx.getOperandInfo(RHS);
958
959 if (RHSInfo.Kind == TargetTransformInfo::OK_AnyValue &&
962 }
963
966 if (CtxI)
967 Operands.append(CtxI->value_op_begin(), CtxI->value_op_end());
968 return Ctx.TTI.getArithmeticInstrCost(
969 Opcode, ResultTy, Ctx.CostKind,
970 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
971 RHSInfo, Operands, CtxI, &Ctx.TLI);
972 }
973 case Instruction::Freeze:
974 // This opcode is unknown. Assume that it is the same as 'mul'.
975 return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, ResultTy,
976 Ctx.CostKind);
977 case Instruction::ExtractValue:
978 return Ctx.TTI.getInsertExtractValueCost(Instruction::ExtractValue,
979 Ctx.CostKind);
980 case Instruction::ICmp:
981 case Instruction::FCmp: {
982 Type *ScalarOpTy = Ctx.Types.inferScalarType(getOperand(0));
983 Type *OpTy = VF.isVector() ? toVectorTy(ScalarOpTy, VF) : ScalarOpTy;
985 return Ctx.TTI.getCmpSelInstrCost(
986 Opcode, OpTy, CmpInst::makeCmpResultType(OpTy), getPredicate(),
987 Ctx.CostKind, {TTI::OK_AnyValue, TTI::OP_None},
988 {TTI::OK_AnyValue, TTI::OP_None}, CtxI);
989 }
990 }
991 llvm_unreachable("called for unsupported opcode");
992}
993
995 VPCostContext &Ctx) const {
997 if (!getUnderlyingValue() && getOpcode() != Instruction::FMul) {
998 // TODO: Compute cost for VPInstructions without underlying values once
999 // the legacy cost model has been retired.
1000 return 0;
1001 }
1002
1004 "Should only generate a vector value or single scalar, not scalars "
1005 "for all lanes.");
1007 getOpcode(),
1009 }
1010
1011 switch (getOpcode()) {
1012 case Instruction::Select: {
1014 match(getOperand(0), m_Cmp(Pred, m_VPValue(), m_VPValue()));
1015 auto *CondTy = Ctx.Types.inferScalarType(getOperand(0));
1016 auto *VecTy = Ctx.Types.inferScalarType(getOperand(1));
1017 if (!vputils::onlyFirstLaneUsed(this)) {
1018 CondTy = toVectorTy(CondTy, VF);
1019 VecTy = toVectorTy(VecTy, VF);
1020 }
1021 return Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VecTy, CondTy, Pred,
1022 Ctx.CostKind);
1023 }
1024 case Instruction::ExtractElement:
1026 if (VF.isScalar()) {
1027 // ExtractLane with VF=1 takes care of handling extracting across multiple
1028 // parts.
1029 return 0;
1030 }
1031
1032 // Add on the cost of extracting the element.
1033 auto *VecTy = toVectorTy(Ctx.Types.inferScalarType(getOperand(0)), VF);
1034 return Ctx.TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy,
1035 Ctx.CostKind);
1036 }
1037 case VPInstruction::AnyOf: {
1038 auto *VecTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
1039 return Ctx.TTI.getArithmeticReductionCost(
1040 Instruction::Or, cast<VectorType>(VecTy), std::nullopt, Ctx.CostKind);
1041 }
1043 Type *ScalarTy = Ctx.Types.inferScalarType(getOperand(0));
1044 if (VF.isScalar())
1045 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1047 CmpInst::ICMP_EQ, Ctx.CostKind);
1048 // Calculate the cost of determining the lane index.
1049 auto *PredTy = toVectorTy(ScalarTy, VF);
1050 IntrinsicCostAttributes Attrs(Intrinsic::experimental_cttz_elts,
1051 Type::getInt64Ty(Ctx.LLVMCtx),
1052 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1053 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1054 }
1056 Type *ScalarTy = Ctx.Types.inferScalarType(getOperand(0));
1057 if (VF.isScalar())
1058 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1060 CmpInst::ICMP_EQ, Ctx.CostKind);
1061 // Calculate the cost of determining the lane index: NOT + cttz_elts + SUB.
1062 auto *PredTy = toVectorTy(ScalarTy, VF);
1063 IntrinsicCostAttributes Attrs(Intrinsic::experimental_cttz_elts,
1064 Type::getInt64Ty(Ctx.LLVMCtx),
1065 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1066 InstructionCost Cost = Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1067 // Add cost of NOT operation on the predicate.
1068 Cost += Ctx.TTI.getArithmeticInstrCost(
1069 Instruction::Xor, PredTy, Ctx.CostKind,
1070 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
1071 {TargetTransformInfo::OK_UniformConstantValue,
1072 TargetTransformInfo::OP_None});
1073 // Add cost of SUB operation on the index.
1074 Cost += Ctx.TTI.getArithmeticInstrCost(
1075 Instruction::Sub, Type::getInt64Ty(Ctx.LLVMCtx), Ctx.CostKind);
1076 return Cost;
1077 }
1079 assert(VF.isVector() && "Scalar FirstOrderRecurrenceSplice?");
1081 std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1);
1082 Type *VectorTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
1083
1084 return Ctx.TTI.getShuffleCost(TargetTransformInfo::SK_Splice,
1085 cast<VectorType>(VectorTy),
1086 cast<VectorType>(VectorTy), Mask,
1087 Ctx.CostKind, VF.getKnownMinValue() - 1);
1088 }
1090 Type *ArgTy = Ctx.Types.inferScalarType(getOperand(0));
1091 unsigned Multiplier =
1092 cast<ConstantInt>(getOperand(2)->getLiveInIRValue())->getZExtValue();
1093 Type *RetTy = toVectorTy(Type::getInt1Ty(Ctx.LLVMCtx), VF * Multiplier);
1094 IntrinsicCostAttributes Attrs(Intrinsic::get_active_lane_mask, RetTy,
1095 {ArgTy, ArgTy});
1096 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1097 }
1099 Type *Arg0Ty = Ctx.Types.inferScalarType(getOperand(0));
1100 Type *I32Ty = Type::getInt32Ty(Ctx.LLVMCtx);
1101 Type *I1Ty = Type::getInt1Ty(Ctx.LLVMCtx);
1102 IntrinsicCostAttributes Attrs(Intrinsic::experimental_get_vector_length,
1103 I32Ty, {Arg0Ty, I32Ty, I1Ty});
1104 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1105 }
1107 // Add on the cost of extracting the element.
1108 auto *VecTy = toVectorTy(Ctx.Types.inferScalarType(getOperand(0)), VF);
1109 return Ctx.TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
1110 VecTy, Ctx.CostKind, 0);
1111 }
1113 if (VF == ElementCount::getScalable(1))
1115 [[fallthrough]];
1116 default:
1117 // TODO: Compute cost other VPInstructions once the legacy cost model has
1118 // been retired.
1120 "unexpected VPInstruction witht underlying value");
1121 return 0;
1122 }
1123}
1124
1137
1139 switch (getOpcode()) {
1140 case Instruction::PHI:
1144 return true;
1145 default:
1146 return isScalarCast();
1147 }
1148}
1149
1151 assert(!State.Lane && "VPInstruction executing an Lane");
1152 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
1154 "Set flags not supported for the provided opcode");
1155 if (hasFastMathFlags())
1156 State.Builder.setFastMathFlags(getFastMathFlags());
1157 Value *GeneratedValue = generate(State);
1158 if (!hasResult())
1159 return;
1160 assert(GeneratedValue && "generate must produce a value");
1161 bool GeneratesPerFirstLaneOnly = canGenerateScalarForFirstLane() &&
1164 assert((((GeneratedValue->getType()->isVectorTy() ||
1165 GeneratedValue->getType()->isStructTy()) ==
1166 !GeneratesPerFirstLaneOnly) ||
1167 State.VF.isScalar()) &&
1168 "scalar value but not only first lane defined");
1169 State.set(this, GeneratedValue,
1170 /*IsScalar*/ GeneratesPerFirstLaneOnly);
1171}
1172
1175 return false;
1176 switch (getOpcode()) {
1177 case Instruction::GetElementPtr:
1178 case Instruction::ExtractElement:
1179 case Instruction::Freeze:
1180 case Instruction::FCmp:
1181 case Instruction::ICmp:
1182 case Instruction::Select:
1183 case Instruction::PHI:
1202 case VPInstruction::Not:
1210 return false;
1211 default:
1212 return true;
1213 }
1214}
1215
1217 assert(is_contained(operands(), Op) && "Op must be an operand of the recipe");
1219 return vputils::onlyFirstLaneUsed(this);
1220
1221 switch (getOpcode()) {
1222 default:
1223 return false;
1224 case Instruction::ExtractElement:
1225 return Op == getOperand(1);
1226 case Instruction::PHI:
1227 return true;
1228 case Instruction::FCmp:
1229 case Instruction::ICmp:
1230 case Instruction::Select:
1231 case Instruction::Or:
1232 case Instruction::Freeze:
1233 case VPInstruction::Not:
1234 // TODO: Cover additional opcodes.
1235 return vputils::onlyFirstLaneUsed(this);
1244 return true;
1247 // Before replicating by VF, Build(Struct)Vector uses all lanes of the
1248 // operand, after replicating its operands only the first lane is used.
1249 // Before replicating, it will have only a single operand.
1250 return getNumOperands() > 1;
1252 return Op == getOperand(0) || vputils::onlyFirstLaneUsed(this);
1254 // WidePtrAdd supports scalar and vector base addresses.
1255 return false;
1258 return Op == getOperand(1);
1260 return Op == getOperand(0);
1261 };
1262 llvm_unreachable("switch should return");
1263}
1264
1266 assert(is_contained(operands(), Op) && "Op must be an operand of the recipe");
1268 return vputils::onlyFirstPartUsed(this);
1269
1270 switch (getOpcode()) {
1271 default:
1272 return false;
1273 case Instruction::FCmp:
1274 case Instruction::ICmp:
1275 case Instruction::Select:
1276 return vputils::onlyFirstPartUsed(this);
1280 return true;
1281 };
1282 llvm_unreachable("switch should return");
1283}
1284
1285#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1287 VPSlotTracker SlotTracker(getParent()->getPlan());
1289}
1290
1292 VPSlotTracker &SlotTracker) const {
1293 O << Indent << "EMIT" << (isSingleScalar() ? "-SCALAR" : "") << " ";
1294
1295 if (hasResult()) {
1297 O << " = ";
1298 }
1299
1300 switch (getOpcode()) {
1301 case VPInstruction::Not:
1302 O << "not";
1303 break;
1305 O << "combined load";
1306 break;
1308 O << "combined store";
1309 break;
1311 O << "active lane mask";
1312 break;
1314 O << "EXPLICIT-VECTOR-LENGTH";
1315 break;
1317 O << "first-order splice";
1318 break;
1320 O << "branch-on-cond";
1321 break;
1323 O << "TC > VF ? TC - VF : 0";
1324 break;
1326 O << "VF * Part +";
1327 break;
1329 O << "branch-on-count";
1330 break;
1332 O << "broadcast";
1333 break;
1335 O << "buildstructvector";
1336 break;
1338 O << "buildvector";
1339 break;
1341 O << "extract-lane";
1342 break;
1344 O << "extract-last-lane";
1345 break;
1347 O << "extract-last-part";
1348 break;
1350 O << "extract-penultimate-element";
1351 break;
1353 O << "compute-anyof-result";
1354 break;
1356 O << "compute-find-iv-result";
1357 break;
1359 O << "compute-reduction-result";
1360 break;
1362 O << "logical-and";
1363 break;
1365 O << "ptradd";
1366 break;
1368 O << "wide-ptradd";
1369 break;
1371 O << "any-of";
1372 break;
1374 O << "first-active-lane";
1375 break;
1377 O << "last-active-lane";
1378 break;
1380 O << "reduction-start-vector";
1381 break;
1383 O << "resume-for-epilogue";
1384 break;
1386 O << "unpack";
1387 break;
1388 default:
1390 }
1391
1392 printFlags(O);
1394}
1395#endif
1396
1398 State.setDebugLocFrom(getDebugLoc());
1399 if (isScalarCast()) {
1400 Value *Op = State.get(getOperand(0), VPLane(0));
1401 Value *Cast = State.Builder.CreateCast(Instruction::CastOps(getOpcode()),
1402 Op, ResultTy);
1403 State.set(this, Cast, VPLane(0));
1404 return;
1405 }
1406 switch (getOpcode()) {
1408 Value *StepVector =
1409 State.Builder.CreateStepVector(VectorType::get(ResultTy, State.VF));
1410 State.set(this, StepVector);
1411 break;
1412 }
1413 case VPInstruction::VScale: {
1414 Value *VScale = State.Builder.CreateVScale(ResultTy);
1415 State.set(this, VScale, true);
1416 break;
1417 }
1418
1419 default:
1420 llvm_unreachable("opcode not implemented yet");
1421 }
1422}
1423
1424#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1426 VPSlotTracker &SlotTracker) const {
1427 O << Indent << "EMIT" << (isSingleScalar() ? "-SCALAR" : "") << " ";
1429 O << " = ";
1430
1431 switch (getOpcode()) {
1433 O << "wide-iv-step ";
1435 break;
1437 O << "step-vector " << *ResultTy;
1438 break;
1440 O << "vscale " << *ResultTy;
1441 break;
1442 default:
1443 assert(Instruction::isCast(getOpcode()) && "unhandled opcode");
1446 O << " to " << *ResultTy;
1447 }
1448}
1449#endif
1450
1452 State.setDebugLocFrom(getDebugLoc());
1453 PHINode *NewPhi = State.Builder.CreatePHI(
1454 State.TypeAnalysis.inferScalarType(this), 2, getName());
1455 unsigned NumIncoming = getNumIncoming();
1456 if (getParent() != getParent()->getPlan()->getScalarPreheader()) {
1457 // TODO: Fixup all incoming values of header phis once recipes defining them
1458 // are introduced.
1459 NumIncoming = 1;
1460 }
1461 for (unsigned Idx = 0; Idx != NumIncoming; ++Idx) {
1462 Value *IncV = State.get(getIncomingValue(Idx), VPLane(0));
1463 BasicBlock *PredBB = State.CFG.VPBB2IRBB.at(getIncomingBlock(Idx));
1464 NewPhi->addIncoming(IncV, PredBB);
1465 }
1466 State.set(this, NewPhi, VPLane(0));
1467}
1468
1469#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1470void VPPhi::printRecipe(raw_ostream &O, const Twine &Indent,
1471 VPSlotTracker &SlotTracker) const {
1472 O << Indent << "EMIT" << (isSingleScalar() ? "-SCALAR" : "") << " ";
1474 O << " = phi ";
1476}
1477#endif
1478
1479VPIRInstruction *VPIRInstruction ::create(Instruction &I) {
1480 if (auto *Phi = dyn_cast<PHINode>(&I))
1481 return new VPIRPhi(*Phi);
1482 return new VPIRInstruction(I);
1483}
1484
1486 assert(!isa<VPIRPhi>(this) && getNumOperands() == 0 &&
1487 "PHINodes must be handled by VPIRPhi");
1488 // Advance the insert point after the wrapped IR instruction. This allows
1489 // interleaving VPIRInstructions and other recipes.
1490 State.Builder.SetInsertPoint(I.getParent(), std::next(I.getIterator()));
1491}
1492
1494 VPCostContext &Ctx) const {
1495 // The recipe wraps an existing IR instruction on the border of VPlan's scope,
1496 // hence it does not contribute to the cost-modeling for the VPlan.
1497 return 0;
1498}
1499
1501 VPBuilder &Builder) {
1503 "can only update exiting operands to phi nodes");
1504 assert(getNumOperands() > 0 && "must have at least one operand");
1505 VPValue *Exiting = getOperand(0);
1506 if (Exiting->isLiveIn())
1507 return;
1508
1509 Exiting = Builder.createNaryOp(VPInstruction::ExtractLastPart, Exiting);
1510 Exiting = Builder.createNaryOp(VPInstruction::ExtractLastLane, Exiting);
1511 setOperand(0, Exiting);
1512}
1513
1514#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1516 VPSlotTracker &SlotTracker) const {
1517 O << Indent << "IR " << I;
1518}
1519#endif
1520
1522 PHINode *Phi = &getIRPhi();
1523 for (const auto &[Idx, Op] : enumerate(operands())) {
1524 VPValue *ExitValue = Op;
1525 auto Lane = vputils::isSingleScalar(ExitValue)
1527 : VPLane::getLastLaneForVF(State.VF);
1528 VPBlockBase *Pred = getParent()->getPredecessors()[Idx];
1529 auto *PredVPBB = Pred->getExitingBasicBlock();
1530 BasicBlock *PredBB = State.CFG.VPBB2IRBB[PredVPBB];
1531 // Set insertion point in PredBB in case an extract needs to be generated.
1532 // TODO: Model extracts explicitly.
1533 State.Builder.SetInsertPoint(PredBB, PredBB->getFirstNonPHIIt());
1534 Value *V = State.get(ExitValue, VPLane(Lane));
1535 // If there is no existing block for PredBB in the phi, add a new incoming
1536 // value. Otherwise update the existing incoming value for PredBB.
1537 if (Phi->getBasicBlockIndex(PredBB) == -1)
1538 Phi->addIncoming(V, PredBB);
1539 else
1540 Phi->setIncomingValueForBlock(PredBB, V);
1541 }
1542
1543 // Advance the insert point after the wrapped IR instruction. This allows
1544 // interleaving VPIRInstructions and other recipes.
1545 State.Builder.SetInsertPoint(Phi->getParent(), std::next(Phi->getIterator()));
1546}
1547
1549 VPRecipeBase *R = const_cast<VPRecipeBase *>(getAsRecipe());
1550 assert(R->getNumOperands() == R->getParent()->getNumPredecessors() &&
1551 "Number of phi operands must match number of predecessors");
1552 unsigned Position = R->getParent()->getIndexForPredecessor(IncomingBlock);
1553 R->removeOperand(Position);
1554}
1555
1556#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1558 VPSlotTracker &SlotTracker) const {
1559 interleaveComma(enumerate(getAsRecipe()->operands()), O,
1560 [this, &O, &SlotTracker](auto Op) {
1561 O << "[ ";
1562 Op.value()->printAsOperand(O, SlotTracker);
1563 O << ", ";
1564 getIncomingBlock(Op.index())->printAsOperand(O);
1565 O << " ]";
1566 });
1567}
1568#endif
1569
1570#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1572 VPSlotTracker &SlotTracker) const {
1574
1575 if (getNumOperands() != 0) {
1576 O << " (extra operand" << (getNumOperands() > 1 ? "s" : "") << ": ";
1578 [&O, &SlotTracker](auto Op) {
1579 std::get<0>(Op)->printAsOperand(O, SlotTracker);
1580 O << " from ";
1581 std::get<1>(Op)->printAsOperand(O);
1582 });
1583 O << ")";
1584 }
1585}
1586#endif
1587
1589 for (const auto &[Kind, Node] : Metadata)
1590 I.setMetadata(Kind, Node);
1591}
1592
1594 SmallVector<std::pair<unsigned, MDNode *>> MetadataIntersection;
1595 for (const auto &[KindA, MDA] : Metadata) {
1596 for (const auto &[KindB, MDB] : Other.Metadata) {
1597 if (KindA == KindB && MDA == MDB) {
1598 MetadataIntersection.emplace_back(KindA, MDA);
1599 break;
1600 }
1601 }
1602 }
1603 Metadata = std::move(MetadataIntersection);
1604}
1605
1606#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1608 const Module *M = SlotTracker.getModule();
1609 if (Metadata.empty() || !M)
1610 return;
1611
1612 ArrayRef<StringRef> MDNames = SlotTracker.getMDNames();
1613 O << " (";
1614 interleaveComma(Metadata, O, [&](const auto &KindNodePair) {
1615 auto [Kind, Node] = KindNodePair;
1616 assert(Kind < MDNames.size() && !MDNames[Kind].empty() &&
1617 "Unexpected unnamed metadata kind");
1618 O << "!" << MDNames[Kind] << " ";
1619 Node->printAsOperand(O, M);
1620 });
1621 O << ")";
1622}
1623#endif
1624
1626 assert(State.VF.isVector() && "not widening");
1627 assert(Variant != nullptr && "Can't create vector function.");
1628
1629 FunctionType *VFTy = Variant->getFunctionType();
1630 // Add return type if intrinsic is overloaded on it.
1632 for (const auto &I : enumerate(args())) {
1633 Value *Arg;
1634 // Some vectorized function variants may also take a scalar argument,
1635 // e.g. linear parameters for pointers. This needs to be the scalar value
1636 // from the start of the respective part when interleaving.
1637 if (!VFTy->getParamType(I.index())->isVectorTy())
1638 Arg = State.get(I.value(), VPLane(0));
1639 else
1640 Arg = State.get(I.value(), usesFirstLaneOnly(I.value()));
1641 Args.push_back(Arg);
1642 }
1643
1646 if (CI)
1647 CI->getOperandBundlesAsDefs(OpBundles);
1648
1649 CallInst *V = State.Builder.CreateCall(Variant, Args, OpBundles);
1650 applyFlags(*V);
1651 applyMetadata(*V);
1652 V->setCallingConv(Variant->getCallingConv());
1653
1654 if (!V->getType()->isVoidTy())
1655 State.set(this, V);
1656}
1657
1659 VPCostContext &Ctx) const {
1660 return Ctx.TTI.getCallInstrCost(nullptr, Variant->getReturnType(),
1661 Variant->getFunctionType()->params(),
1662 Ctx.CostKind);
1663}
1664
1665#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1667 VPSlotTracker &SlotTracker) const {
1668 O << Indent << "WIDEN-CALL ";
1669
1670 Function *CalledFn = getCalledScalarFunction();
1671 if (CalledFn->getReturnType()->isVoidTy())
1672 O << "void ";
1673 else {
1675 O << " = ";
1676 }
1677
1678 O << "call";
1679 printFlags(O);
1680 O << " @" << CalledFn->getName() << "(";
1681 interleaveComma(args(), O, [&O, &SlotTracker](VPValue *Op) {
1682 Op->printAsOperand(O, SlotTracker);
1683 });
1684 O << ")";
1685
1686 O << " (using library function";
1687 if (Variant->hasName())
1688 O << ": " << Variant->getName();
1689 O << ")";
1690}
1691#endif
1692
1694 assert(State.VF.isVector() && "not widening");
1695
1696 SmallVector<Type *, 2> TysForDecl;
1697 // Add return type if intrinsic is overloaded on it.
1698 if (isVectorIntrinsicWithOverloadTypeAtArg(VectorIntrinsicID, -1, State.TTI))
1699 TysForDecl.push_back(VectorType::get(getResultType(), State.VF));
1701 for (const auto &I : enumerate(operands())) {
1702 // Some intrinsics have a scalar argument - don't replace it with a
1703 // vector.
1704 Value *Arg;
1705 if (isVectorIntrinsicWithScalarOpAtArg(VectorIntrinsicID, I.index(),
1706 State.TTI))
1707 Arg = State.get(I.value(), VPLane(0));
1708 else
1709 Arg = State.get(I.value(), usesFirstLaneOnly(I.value()));
1710 if (isVectorIntrinsicWithOverloadTypeAtArg(VectorIntrinsicID, I.index(),
1711 State.TTI))
1712 TysForDecl.push_back(Arg->getType());
1713 Args.push_back(Arg);
1714 }
1715
1716 // Use vector version of the intrinsic.
1717 Module *M = State.Builder.GetInsertBlock()->getModule();
1718 Function *VectorF =
1719 Intrinsic::getOrInsertDeclaration(M, VectorIntrinsicID, TysForDecl);
1720 assert(VectorF &&
1721 "Can't retrieve vector intrinsic or vector-predication intrinsics.");
1722
1725 if (CI)
1726 CI->getOperandBundlesAsDefs(OpBundles);
1727
1728 CallInst *V = State.Builder.CreateCall(VectorF, Args, OpBundles);
1729
1730 applyFlags(*V);
1731 applyMetadata(*V);
1732
1733 if (!V->getType()->isVoidTy())
1734 State.set(this, V);
1735}
1736
1737/// Compute the cost for the intrinsic \p ID with \p Operands, produced by \p R.
1740 const VPRecipeWithIRFlags &R,
1741 ElementCount VF,
1742 VPCostContext &Ctx) {
1743 // Some backends analyze intrinsic arguments to determine cost. Use the
1744 // underlying value for the operand if it has one. Otherwise try to use the
1745 // operand of the underlying call instruction, if there is one. Otherwise
1746 // clear Arguments.
1747 // TODO: Rework TTI interface to be independent of concrete IR values.
1749 for (const auto &[Idx, Op] : enumerate(Operands)) {
1750 auto *V = Op->getUnderlyingValue();
1751 if (!V) {
1752 if (auto *UI = dyn_cast_or_null<CallBase>(R.getUnderlyingValue())) {
1753 Arguments.push_back(UI->getArgOperand(Idx));
1754 continue;
1755 }
1756 Arguments.clear();
1757 break;
1758 }
1759 Arguments.push_back(V);
1760 }
1761
1762 Type *ScalarRetTy = Ctx.Types.inferScalarType(&R);
1763 Type *RetTy = VF.isVector() ? toVectorizedTy(ScalarRetTy, VF) : ScalarRetTy;
1764 SmallVector<Type *> ParamTys;
1765 for (const VPValue *Op : Operands) {
1766 ParamTys.push_back(VF.isVector()
1767 ? toVectorTy(Ctx.Types.inferScalarType(Op), VF)
1768 : Ctx.Types.inferScalarType(Op));
1769 }
1770
1771 // TODO: Rework TTI interface to avoid reliance on underlying IntrinsicInst.
1772 FastMathFlags FMF =
1773 R.hasFastMathFlags() ? R.getFastMathFlags() : FastMathFlags();
1774 IntrinsicCostAttributes CostAttrs(
1775 ID, RetTy, Arguments, ParamTys, FMF,
1776 dyn_cast_or_null<IntrinsicInst>(R.getUnderlyingValue()),
1777 InstructionCost::getInvalid(), &Ctx.TLI);
1778 return Ctx.TTI.getIntrinsicInstrCost(CostAttrs, Ctx.CostKind);
1779}
1780
1782 VPCostContext &Ctx) const {
1784 return getCostForIntrinsics(VectorIntrinsicID, ArgOps, *this, VF, Ctx);
1785}
1786
1788 return Intrinsic::getBaseName(VectorIntrinsicID);
1789}
1790
1792 assert(is_contained(operands(), Op) && "Op must be an operand of the recipe");
1793 return all_of(enumerate(operands()), [this, &Op](const auto &X) {
1794 auto [Idx, V] = X;
1796 Idx, nullptr);
1797 });
1798}
1799
1800#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1802 VPSlotTracker &SlotTracker) const {
1803 O << Indent << "WIDEN-INTRINSIC ";
1804 if (ResultTy->isVoidTy()) {
1805 O << "void ";
1806 } else {
1808 O << " = ";
1809 }
1810
1811 O << "call";
1812 printFlags(O);
1813 O << getIntrinsicName() << "(";
1814
1816 Op->printAsOperand(O, SlotTracker);
1817 });
1818 O << ")";
1819}
1820#endif
1821
1823 IRBuilderBase &Builder = State.Builder;
1824
1825 Value *Address = State.get(getOperand(0));
1826 Value *IncAmt = State.get(getOperand(1), /*IsScalar=*/true);
1827 VectorType *VTy = cast<VectorType>(Address->getType());
1828
1829 // The histogram intrinsic requires a mask even if the recipe doesn't;
1830 // if the mask operand was omitted then all lanes should be executed and
1831 // we just need to synthesize an all-true mask.
1832 Value *Mask = nullptr;
1833 if (VPValue *VPMask = getMask())
1834 Mask = State.get(VPMask);
1835 else
1836 Mask =
1837 Builder.CreateVectorSplat(VTy->getElementCount(), Builder.getInt1(1));
1838
1839 // If this is a subtract, we want to invert the increment amount. We may
1840 // add a separate intrinsic in future, but for now we'll try this.
1841 if (Opcode == Instruction::Sub)
1842 IncAmt = Builder.CreateNeg(IncAmt);
1843 else
1844 assert(Opcode == Instruction::Add && "only add or sub supported for now");
1845
1846 State.Builder.CreateIntrinsic(Intrinsic::experimental_vector_histogram_add,
1847 {VTy, IncAmt->getType()},
1848 {Address, IncAmt, Mask});
1849}
1850
1852 VPCostContext &Ctx) const {
1853 // FIXME: Take the gather and scatter into account as well. For now we're
1854 // generating the same cost as the fallback path, but we'll likely
1855 // need to create a new TTI method for determining the cost, including
1856 // whether we can use base + vec-of-smaller-indices or just
1857 // vec-of-pointers.
1858 assert(VF.isVector() && "Invalid VF for histogram cost");
1859 Type *AddressTy = Ctx.Types.inferScalarType(getOperand(0));
1860 VPValue *IncAmt = getOperand(1);
1861 Type *IncTy = Ctx.Types.inferScalarType(IncAmt);
1862 VectorType *VTy = VectorType::get(IncTy, VF);
1863
1864 // Assume that a non-constant update value (or a constant != 1) requires
1865 // a multiply, and add that into the cost.
1866 InstructionCost MulCost =
1867 Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VTy, Ctx.CostKind);
1868 if (IncAmt->isLiveIn()) {
1870
1871 if (CI && CI->getZExtValue() == 1)
1872 MulCost = TTI::TCC_Free;
1873 }
1874
1875 // Find the cost of the histogram operation itself.
1876 Type *PtrTy = VectorType::get(AddressTy, VF);
1877 Type *MaskTy = VectorType::get(Type::getInt1Ty(Ctx.LLVMCtx), VF);
1878 IntrinsicCostAttributes ICA(Intrinsic::experimental_vector_histogram_add,
1879 Type::getVoidTy(Ctx.LLVMCtx),
1880 {PtrTy, IncTy, MaskTy});
1881
1882 // Add the costs together with the add/sub operation.
1883 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind) + MulCost +
1884 Ctx.TTI.getArithmeticInstrCost(Opcode, VTy, Ctx.CostKind);
1885}
1886
1887#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1889 VPSlotTracker &SlotTracker) const {
1890 O << Indent << "WIDEN-HISTOGRAM buckets: ";
1892
1893 if (Opcode == Instruction::Sub)
1894 O << ", dec: ";
1895 else {
1896 assert(Opcode == Instruction::Add);
1897 O << ", inc: ";
1898 }
1900
1901 if (VPValue *Mask = getMask()) {
1902 O << ", mask: ";
1903 Mask->printAsOperand(O, SlotTracker);
1904 }
1905}
1906
1908 VPSlotTracker &SlotTracker) const {
1909 O << Indent << "WIDEN-SELECT ";
1911 O << " = select ";
1912 printFlags(O);
1914 O << ", ";
1916 O << ", ";
1918 O << (vputils::isSingleScalar(getCond()) ? " (condition is single-scalar)"
1919 : "");
1920}
1921#endif
1922
1924 Value *Cond = State.get(getCond(), vputils::isSingleScalar(getCond()));
1925
1926 Value *Op0 = State.get(getOperand(1));
1927 Value *Op1 = State.get(getOperand(2));
1928 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
1929 State.set(this, Sel);
1930 if (auto *I = dyn_cast<Instruction>(Sel)) {
1932 applyFlags(*I);
1933 applyMetadata(*I);
1934 }
1935}
1936
1938 VPCostContext &Ctx) const {
1940 bool ScalarCond = getOperand(0)->isDefinedOutsideLoopRegions();
1941 Type *ScalarTy = Ctx.Types.inferScalarType(this);
1942 Type *VectorTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
1943
1944 VPValue *Op0, *Op1;
1945 if (!ScalarCond && ScalarTy->getScalarSizeInBits() == 1 &&
1946 (match(this, m_LogicalAnd(m_VPValue(Op0), m_VPValue(Op1))) ||
1947 match(this, m_LogicalOr(m_VPValue(Op0), m_VPValue(Op1))))) {
1948 // select x, y, false --> x & y
1949 // select x, true, y --> x | y
1950 const auto [Op1VK, Op1VP] = Ctx.getOperandInfo(Op0);
1951 const auto [Op2VK, Op2VP] = Ctx.getOperandInfo(Op1);
1952
1954 if (all_of(operands(),
1955 [](VPValue *Op) { return Op->getUnderlyingValue(); }))
1956 Operands.append(SI->op_begin(), SI->op_end());
1957 bool IsLogicalOr = match(this, m_LogicalOr(m_VPValue(Op0), m_VPValue(Op1)));
1958 return Ctx.TTI.getArithmeticInstrCost(
1959 IsLogicalOr ? Instruction::Or : Instruction::And, VectorTy,
1960 Ctx.CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands, SI);
1961 }
1962
1963 Type *CondTy = Ctx.Types.inferScalarType(getOperand(0));
1964 if (!ScalarCond)
1965 CondTy = VectorType::get(CondTy, VF);
1966
1968 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
1969 Pred = Cmp->getPredicate();
1970 return Ctx.TTI.getCmpSelInstrCost(
1971 Instruction::Select, VectorTy, CondTy, Pred, Ctx.CostKind,
1972 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None}, SI);
1973}
1974
1975VPIRFlags::FastMathFlagsTy::FastMathFlagsTy(const FastMathFlags &FMF) {
1976 AllowReassoc = FMF.allowReassoc();
1977 NoNaNs = FMF.noNaNs();
1978 NoInfs = FMF.noInfs();
1979 NoSignedZeros = FMF.noSignedZeros();
1980 AllowReciprocal = FMF.allowReciprocal();
1981 AllowContract = FMF.allowContract();
1982 ApproxFunc = FMF.approxFunc();
1983}
1984
1985#if !defined(NDEBUG)
1986bool VPIRFlags::flagsValidForOpcode(unsigned Opcode) const {
1987 switch (OpType) {
1988 case OperationType::OverflowingBinOp:
1989 return Opcode == Instruction::Add || Opcode == Instruction::Sub ||
1990 Opcode == Instruction::Mul || Opcode == Instruction::Shl ||
1991 Opcode == VPInstruction::VPInstruction::CanonicalIVIncrementForPart;
1992 case OperationType::Trunc:
1993 return Opcode == Instruction::Trunc;
1994 case OperationType::DisjointOp:
1995 return Opcode == Instruction::Or;
1996 case OperationType::PossiblyExactOp:
1997 return Opcode == Instruction::AShr || Opcode == Instruction::LShr ||
1998 Opcode == Instruction::UDiv || Opcode == Instruction::SDiv;
1999 case OperationType::GEPOp:
2000 return Opcode == Instruction::GetElementPtr ||
2001 Opcode == VPInstruction::PtrAdd ||
2002 Opcode == VPInstruction::WidePtrAdd;
2003 case OperationType::FPMathOp:
2004 return Opcode == Instruction::Call || Opcode == Instruction::FAdd ||
2005 Opcode == Instruction::FMul || Opcode == Instruction::FSub ||
2006 Opcode == Instruction::FNeg || Opcode == Instruction::FDiv ||
2007 Opcode == Instruction::FRem || Opcode == Instruction::FPExt ||
2008 Opcode == Instruction::FPTrunc || Opcode == Instruction::Select ||
2009 Opcode == VPInstruction::WideIVStep ||
2012 case OperationType::FCmp:
2013 return Opcode == Instruction::FCmp;
2014 case OperationType::NonNegOp:
2015 return Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP;
2016 case OperationType::Cmp:
2017 return Opcode == Instruction::FCmp || Opcode == Instruction::ICmp;
2018 case OperationType::Other:
2019 return true;
2020 }
2021 llvm_unreachable("Unknown OperationType enum");
2022}
2023#endif
2024
2025#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2027 switch (OpType) {
2028 case OperationType::Cmp:
2030 break;
2031 case OperationType::FCmp:
2034 break;
2035 case OperationType::DisjointOp:
2036 if (DisjointFlags.IsDisjoint)
2037 O << " disjoint";
2038 break;
2039 case OperationType::PossiblyExactOp:
2040 if (ExactFlags.IsExact)
2041 O << " exact";
2042 break;
2043 case OperationType::OverflowingBinOp:
2044 if (WrapFlags.HasNUW)
2045 O << " nuw";
2046 if (WrapFlags.HasNSW)
2047 O << " nsw";
2048 break;
2049 case OperationType::Trunc:
2050 if (TruncFlags.HasNUW)
2051 O << " nuw";
2052 if (TruncFlags.HasNSW)
2053 O << " nsw";
2054 break;
2055 case OperationType::FPMathOp:
2057 break;
2058 case OperationType::GEPOp:
2059 if (GEPFlags.isInBounds())
2060 O << " inbounds";
2061 else if (GEPFlags.hasNoUnsignedSignedWrap())
2062 O << " nusw";
2063 if (GEPFlags.hasNoUnsignedWrap())
2064 O << " nuw";
2065 break;
2066 case OperationType::NonNegOp:
2067 if (NonNegFlags.NonNeg)
2068 O << " nneg";
2069 break;
2070 case OperationType::Other:
2071 break;
2072 }
2073 O << " ";
2074}
2075#endif
2076
2078 auto &Builder = State.Builder;
2079 switch (Opcode) {
2080 case Instruction::Call:
2081 case Instruction::Br:
2082 case Instruction::PHI:
2083 case Instruction::GetElementPtr:
2084 case Instruction::Select:
2085 llvm_unreachable("This instruction is handled by a different recipe.");
2086 case Instruction::UDiv:
2087 case Instruction::SDiv:
2088 case Instruction::SRem:
2089 case Instruction::URem:
2090 case Instruction::Add:
2091 case Instruction::FAdd:
2092 case Instruction::Sub:
2093 case Instruction::FSub:
2094 case Instruction::FNeg:
2095 case Instruction::Mul:
2096 case Instruction::FMul:
2097 case Instruction::FDiv:
2098 case Instruction::FRem:
2099 case Instruction::Shl:
2100 case Instruction::LShr:
2101 case Instruction::AShr:
2102 case Instruction::And:
2103 case Instruction::Or:
2104 case Instruction::Xor: {
2105 // Just widen unops and binops.
2107 for (VPValue *VPOp : operands())
2108 Ops.push_back(State.get(VPOp));
2109
2110 Value *V = Builder.CreateNAryOp(Opcode, Ops);
2111
2112 if (auto *VecOp = dyn_cast<Instruction>(V)) {
2113 applyFlags(*VecOp);
2114 applyMetadata(*VecOp);
2115 }
2116
2117 // Use this vector value for all users of the original instruction.
2118 State.set(this, V);
2119 break;
2120 }
2121 case Instruction::ExtractValue: {
2122 assert(getNumOperands() == 2 && "expected single level extractvalue");
2123 Value *Op = State.get(getOperand(0));
2125 Value *Extract = Builder.CreateExtractValue(Op, CI->getZExtValue());
2126 State.set(this, Extract);
2127 break;
2128 }
2129 case Instruction::Freeze: {
2130 Value *Op = State.get(getOperand(0));
2131 Value *Freeze = Builder.CreateFreeze(Op);
2132 State.set(this, Freeze);
2133 break;
2134 }
2135 case Instruction::ICmp:
2136 case Instruction::FCmp: {
2137 // Widen compares. Generate vector compares.
2138 bool FCmp = Opcode == Instruction::FCmp;
2139 Value *A = State.get(getOperand(0));
2140 Value *B = State.get(getOperand(1));
2141 Value *C = nullptr;
2142 if (FCmp) {
2143 C = Builder.CreateFCmp(getPredicate(), A, B);
2144 } else {
2145 C = Builder.CreateICmp(getPredicate(), A, B);
2146 }
2147 if (auto *I = dyn_cast<Instruction>(C)) {
2148 applyFlags(*I);
2149 applyMetadata(*I);
2150 }
2151 State.set(this, C);
2152 break;
2153 }
2154 default:
2155 // This instruction is not vectorized by simple widening.
2156 LLVM_DEBUG(dbgs() << "LV: Found an unhandled opcode : "
2157 << Instruction::getOpcodeName(Opcode));
2158 llvm_unreachable("Unhandled instruction!");
2159 } // end of switch.
2160
2161#if !defined(NDEBUG)
2162 // Verify that VPlan type inference results agree with the type of the
2163 // generated values.
2164 assert(VectorType::get(State.TypeAnalysis.inferScalarType(this), State.VF) ==
2165 State.get(this)->getType() &&
2166 "inferred type and type from generated instructions do not match");
2167#endif
2168}
2169
2171 VPCostContext &Ctx) const {
2172 switch (Opcode) {
2173 case Instruction::UDiv:
2174 case Instruction::SDiv:
2175 case Instruction::SRem:
2176 case Instruction::URem:
2177 // If the div/rem operation isn't safe to speculate and requires
2178 // predication, then the only way we can even create a vplan is to insert
2179 // a select on the second input operand to ensure we use the value of 1
2180 // for the inactive lanes. The select will be costed separately.
2181 case Instruction::FNeg:
2182 case Instruction::Add:
2183 case Instruction::FAdd:
2184 case Instruction::Sub:
2185 case Instruction::FSub:
2186 case Instruction::Mul:
2187 case Instruction::FMul:
2188 case Instruction::FDiv:
2189 case Instruction::FRem:
2190 case Instruction::Shl:
2191 case Instruction::LShr:
2192 case Instruction::AShr:
2193 case Instruction::And:
2194 case Instruction::Or:
2195 case Instruction::Xor:
2196 case Instruction::Freeze:
2197 case Instruction::ExtractValue:
2198 case Instruction::ICmp:
2199 case Instruction::FCmp:
2200 return getCostForRecipeWithOpcode(getOpcode(), VF, Ctx);
2201 default:
2202 llvm_unreachable("Unsupported opcode for instruction");
2203 }
2204}
2205
2206#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2208 VPSlotTracker &SlotTracker) const {
2209 O << Indent << "WIDEN ";
2211 O << " = " << Instruction::getOpcodeName(Opcode);
2212 printFlags(O);
2214}
2215#endif
2216
2218 auto &Builder = State.Builder;
2219 /// Vectorize casts.
2220 assert(State.VF.isVector() && "Not vectorizing?");
2221 Type *DestTy = VectorType::get(getResultType(), State.VF);
2222 VPValue *Op = getOperand(0);
2223 Value *A = State.get(Op);
2224 Value *Cast = Builder.CreateCast(Instruction::CastOps(Opcode), A, DestTy);
2225 State.set(this, Cast);
2226 if (auto *CastOp = dyn_cast<Instruction>(Cast)) {
2227 applyFlags(*CastOp);
2228 applyMetadata(*CastOp);
2229 }
2230}
2231
2233 VPCostContext &Ctx) const {
2234 // TODO: In some cases, VPWidenCastRecipes are created but not considered in
2235 // the legacy cost model, including truncates/extends when evaluating a
2236 // reduction in a smaller type.
2237 if (!getUnderlyingValue())
2238 return 0;
2239 // Computes the CastContextHint from a recipes that may access memory.
2240 auto ComputeCCH = [&](const VPRecipeBase *R) -> TTI::CastContextHint {
2241 if (VF.isScalar())
2243 if (isa<VPInterleaveBase>(R))
2245 if (const auto *ReplicateRecipe = dyn_cast<VPReplicateRecipe>(R))
2246 return ReplicateRecipe->isPredicated() ? TTI::CastContextHint::Masked
2248 const auto *WidenMemoryRecipe = dyn_cast<VPWidenMemoryRecipe>(R);
2249 if (WidenMemoryRecipe == nullptr)
2251 if (!WidenMemoryRecipe->isConsecutive())
2253 if (WidenMemoryRecipe->isReverse())
2255 if (WidenMemoryRecipe->isMasked())
2258 };
2259
2260 VPValue *Operand = getOperand(0);
2262 // For Trunc/FPTrunc, get the context from the only user.
2263 if ((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
2265 if (auto *StoreRecipe = dyn_cast<VPRecipeBase>(*user_begin()))
2266 CCH = ComputeCCH(StoreRecipe);
2267 }
2268 // For Z/Sext, get the context from the operand.
2269 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
2270 Opcode == Instruction::FPExt) {
2271 if (Operand->isLiveIn())
2273 else if (Operand->getDefiningRecipe())
2274 CCH = ComputeCCH(Operand->getDefiningRecipe());
2275 }
2276
2277 auto *SrcTy =
2278 cast<VectorType>(toVectorTy(Ctx.Types.inferScalarType(Operand), VF));
2279 auto *DestTy = cast<VectorType>(toVectorTy(getResultType(), VF));
2280 // Arm TTI will use the underlying instruction to determine the cost.
2281 return Ctx.TTI.getCastInstrCost(
2282 Opcode, DestTy, SrcTy, CCH, Ctx.CostKind,
2284}
2285
2286#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2288 VPSlotTracker &SlotTracker) const {
2289 O << Indent << "WIDEN-CAST ";
2291 O << " = " << Instruction::getOpcodeName(Opcode);
2292 printFlags(O);
2294 O << " to " << *getResultType();
2295}
2296#endif
2297
2299 VPCostContext &Ctx) const {
2300 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2301}
2302
2303/// A helper function that returns an integer or floating-point constant with
2304/// value C.
2306 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
2307 : ConstantFP::get(Ty, C);
2308}
2309
2310#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2312 raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const {
2313 O << Indent;
2315 O << " = WIDEN-INDUCTION";
2316 printFlags(O);
2317 O << " ";
2319
2320 if (auto *TI = getTruncInst())
2321 O << " (truncated to " << *TI->getType() << ")";
2322}
2323#endif
2324
2326 // The step may be defined by a recipe in the preheader (e.g. if it requires
2327 // SCEV expansion), but for the canonical induction the step is required to be
2328 // 1, which is represented as live-in.
2330 return false;
2333 return StartC && StartC->isZero() && StepC && StepC->isOne() &&
2334 getScalarType() == getRegion()->getCanonicalIVType();
2335}
2336
2337#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2339 VPSlotTracker &SlotTracker) const {
2340 O << Indent;
2342 O << " = DERIVED-IV ";
2343 getStartValue()->printAsOperand(O, SlotTracker);
2344 O << " + ";
2345 getOperand(1)->printAsOperand(O, SlotTracker);
2346 O << " * ";
2347 getStepValue()->printAsOperand(O, SlotTracker);
2348}
2349#endif
2350
2352 // Fast-math-flags propagate from the original induction instruction.
2353 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
2354 if (hasFastMathFlags())
2355 State.Builder.setFastMathFlags(getFastMathFlags());
2356
2357 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
2358 /// variable on which to base the steps, \p Step is the size of the step.
2359
2360 Value *BaseIV = State.get(getOperand(0), VPLane(0));
2361 Value *Step = State.get(getStepValue(), VPLane(0));
2362 IRBuilderBase &Builder = State.Builder;
2363
2364 // Ensure step has the same type as that of scalar IV.
2365 Type *BaseIVTy = BaseIV->getType()->getScalarType();
2366 assert(BaseIVTy == Step->getType() && "Types of BaseIV and Step must match!");
2367
2368 // We build scalar steps for both integer and floating-point induction
2369 // variables. Here, we determine the kind of arithmetic we will perform.
2372 if (BaseIVTy->isIntegerTy()) {
2373 AddOp = Instruction::Add;
2374 MulOp = Instruction::Mul;
2375 } else {
2376 AddOp = InductionOpcode;
2377 MulOp = Instruction::FMul;
2378 }
2379
2380 // Determine the number of scalars we need to generate for each unroll
2381 // iteration.
2382 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(this);
2383 // Compute the scalar steps and save the results in State.
2384 Type *IntStepTy =
2385 IntegerType::get(BaseIVTy->getContext(), BaseIVTy->getScalarSizeInBits());
2386
2387 unsigned StartLane = 0;
2388 unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2389 if (State.Lane) {
2390 StartLane = State.Lane->getKnownLane();
2391 EndLane = StartLane + 1;
2392 }
2393 Value *StartIdx0;
2394 if (getUnrollPart(*this) == 0)
2395 StartIdx0 = ConstantInt::get(IntStepTy, 0);
2396 else {
2397 StartIdx0 = State.get(getOperand(2), true);
2398 if (getUnrollPart(*this) != 1) {
2399 StartIdx0 =
2400 Builder.CreateMul(StartIdx0, ConstantInt::get(StartIdx0->getType(),
2401 getUnrollPart(*this)));
2402 }
2403 StartIdx0 = Builder.CreateSExtOrTrunc(StartIdx0, IntStepTy);
2404 }
2405
2406 if (BaseIVTy->isFloatingPointTy())
2407 StartIdx0 = Builder.CreateSIToFP(StartIdx0, BaseIVTy);
2408
2409 for (unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
2410 Value *StartIdx = Builder.CreateBinOp(
2411 AddOp, StartIdx0, getSignedIntOrFpConstant(BaseIVTy, Lane));
2412 // The step returned by `createStepForVF` is a runtime-evaluated value
2413 // when VF is scalable. Otherwise, it should be folded into a Constant.
2414 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2415 "Expected StartIdx to be folded to a constant when VF is not "
2416 "scalable");
2417 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2418 auto *Add = Builder.CreateBinOp(AddOp, BaseIV, Mul);
2419 State.set(this, Add, VPLane(Lane));
2420 }
2421}
2422
2423#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2425 VPSlotTracker &SlotTracker) const {
2426 O << Indent;
2428 O << " = SCALAR-STEPS ";
2430}
2431#endif
2432
2434 assert(is_contained(operands(), Op) && "Op must be an operand of the recipe");
2436}
2437
2439 assert(State.VF.isVector() && "not widening");
2440 // Construct a vector GEP by widening the operands of the scalar GEP as
2441 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
2442 // results in a vector of pointers when at least one operand of the GEP
2443 // is vector-typed. Thus, to keep the representation compact, we only use
2444 // vector-typed operands for loop-varying values.
2445
2446 assert(
2447 any_of(operands(),
2448 [](VPValue *Op) { return !Op->isDefinedOutsideLoopRegions(); }) &&
2449 "Expected at least one loop-variant operand");
2450
2451 // If the GEP has at least one loop-varying operand, we are sure to
2452 // produce a vector of pointers unless VF is scalar.
2453 // The pointer operand of the new GEP. If it's loop-invariant, we
2454 // won't broadcast it.
2455 auto *Ptr = State.get(getOperand(0), isPointerLoopInvariant());
2456
2457 // Collect all the indices for the new GEP. If any index is
2458 // loop-invariant, we won't broadcast it.
2460 for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
2461 VPValue *Operand = getOperand(I);
2462 Indices.push_back(State.get(Operand, isIndexLoopInvariant(I - 1)));
2463 }
2464
2465 // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
2466 // but it should be a vector, otherwise.
2467 auto *NewGEP = State.Builder.CreateGEP(getSourceElementType(), Ptr, Indices,
2468 "", getGEPNoWrapFlags());
2469 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
2470 "NewGEP is not a pointer vector");
2471 State.set(this, NewGEP);
2472}
2473
2474#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2476 VPSlotTracker &SlotTracker) const {
2477 O << Indent << "WIDEN-GEP ";
2478 O << (isPointerLoopInvariant() ? "Inv" : "Var");
2479 for (size_t I = 0; I < getNumOperands() - 1; ++I)
2480 O << "[" << (isIndexLoopInvariant(I) ? "Inv" : "Var") << "]";
2481
2482 O << " ";
2484 O << " = getelementptr";
2485 printFlags(O);
2487}
2488#endif
2489
2491 auto &Builder = State.Builder;
2492 unsigned CurrentPart = getUnrollPart(*this);
2493 const DataLayout &DL = Builder.GetInsertBlock()->getDataLayout();
2494 Type *IndexTy = DL.getIndexType(State.TypeAnalysis.inferScalarType(this));
2495
2496 // The wide store needs to start at the last vector element.
2497 Value *RunTimeVF = State.get(getVFValue(), VPLane(0));
2498 if (IndexTy != RunTimeVF->getType())
2499 RunTimeVF = Builder.CreateZExtOrTrunc(RunTimeVF, IndexTy);
2500 // NumElt = Stride * CurrentPart * RunTimeVF
2501 Value *NumElt = Builder.CreateMul(
2502 ConstantInt::get(IndexTy, Stride * (int64_t)CurrentPart), RunTimeVF);
2503 // LastLane = Stride * (RunTimeVF - 1)
2504 Value *LastLane = Builder.CreateSub(RunTimeVF, ConstantInt::get(IndexTy, 1));
2505 if (Stride != 1)
2506 LastLane = Builder.CreateMul(ConstantInt::get(IndexTy, Stride), LastLane);
2507 Value *Ptr = State.get(getOperand(0), VPLane(0));
2508 Value *ResultPtr =
2509 Builder.CreateGEP(IndexedTy, Ptr, NumElt, "", getGEPNoWrapFlags());
2510 ResultPtr = Builder.CreateGEP(IndexedTy, ResultPtr, LastLane, "",
2512
2513 State.set(this, ResultPtr, /*IsScalar*/ true);
2514}
2515
2516#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2518 VPSlotTracker &SlotTracker) const {
2519 O << Indent;
2521 O << " = vector-end-pointer";
2522 printFlags(O);
2524}
2525#endif
2526
2528 auto &Builder = State.Builder;
2529 unsigned CurrentPart = getUnrollPart(*this);
2530 const DataLayout &DL = Builder.GetInsertBlock()->getDataLayout();
2531 Type *IndexTy = DL.getIndexType(State.TypeAnalysis.inferScalarType(this));
2532 Value *Ptr = State.get(getOperand(0), VPLane(0));
2533
2534 Value *Increment = createStepForVF(Builder, IndexTy, State.VF, CurrentPart);
2535 Value *ResultPtr = Builder.CreateGEP(getSourceElementType(), Ptr, Increment,
2536 "", getGEPNoWrapFlags());
2537
2538 State.set(this, ResultPtr, /*IsScalar*/ true);
2539}
2540
2541#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2543 VPSlotTracker &SlotTracker) const {
2544 O << Indent;
2546 O << " = vector-pointer";
2547 printFlags(O);
2549}
2550#endif
2551
2553 VPCostContext &Ctx) const {
2554 // Handle cases where only the first lane is used the same way as the legacy
2555 // cost model.
2557 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2558
2559 Type *ResultTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
2560 Type *CmpTy = toVectorTy(Type::getInt1Ty(Ctx.Types.getContext()), VF);
2561 return (getNumIncomingValues() - 1) *
2562 Ctx.TTI.getCmpSelInstrCost(Instruction::Select, ResultTy, CmpTy,
2563 CmpInst::BAD_ICMP_PREDICATE, Ctx.CostKind);
2564}
2565
2566#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2568 VPSlotTracker &SlotTracker) const {
2569 O << Indent << "BLEND ";
2571 O << " =";
2572 if (getNumIncomingValues() == 1) {
2573 // Not a User of any mask: not really blending, this is a
2574 // single-predecessor phi.
2575 O << " ";
2576 getIncomingValue(0)->printAsOperand(O, SlotTracker);
2577 } else {
2578 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
2579 O << " ";
2580 getIncomingValue(I)->printAsOperand(O, SlotTracker);
2581 if (I == 0)
2582 continue;
2583 O << "/";
2584 getMask(I)->printAsOperand(O, SlotTracker);
2585 }
2586 }
2587}
2588#endif
2589
2591 assert(!State.Lane && "Reduction being replicated.");
2594 "In-loop AnyOf reductions aren't currently supported");
2595 // Propagate the fast-math flags carried by the underlying instruction.
2596 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
2597 State.Builder.setFastMathFlags(getFastMathFlags());
2598 Value *NewVecOp = State.get(getVecOp());
2599 if (VPValue *Cond = getCondOp()) {
2600 Value *NewCond = State.get(Cond, State.VF.isScalar());
2601 VectorType *VecTy = dyn_cast<VectorType>(NewVecOp->getType());
2602 Type *ElementTy = VecTy ? VecTy->getElementType() : NewVecOp->getType();
2603
2604 Value *Start = getRecurrenceIdentity(Kind, ElementTy, getFastMathFlags());
2605 if (State.VF.isVector())
2606 Start = State.Builder.CreateVectorSplat(VecTy->getElementCount(), Start);
2607
2608 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, Start);
2609 NewVecOp = Select;
2610 }
2611 Value *NewRed;
2612 Value *NextInChain;
2613 if (isOrdered()) {
2614 Value *PrevInChain = State.get(getChainOp(), /*IsScalar*/ true);
2615 if (State.VF.isVector())
2616 NewRed =
2617 createOrderedReduction(State.Builder, Kind, NewVecOp, PrevInChain);
2618 else
2619 NewRed = State.Builder.CreateBinOp(
2621 PrevInChain, NewVecOp);
2622 PrevInChain = NewRed;
2623 NextInChain = NewRed;
2624 } else if (isPartialReduction()) {
2625 assert(Kind == RecurKind::Add && "Unexpected partial reduction kind");
2626 Value *PrevInChain = State.get(getChainOp(), /*IsScalar*/ false);
2627 NewRed = State.Builder.CreateIntrinsic(
2628 PrevInChain->getType(), Intrinsic::vector_partial_reduce_add,
2629 {PrevInChain, NewVecOp}, nullptr, "partial.reduce");
2630 PrevInChain = NewRed;
2631 NextInChain = NewRed;
2632 } else {
2633 assert(isInLoop() &&
2634 "The reduction must either be ordered, partial or in-loop");
2635 Value *PrevInChain = State.get(getChainOp(), /*IsScalar*/ true);
2636 NewRed = createSimpleReduction(State.Builder, NewVecOp, Kind);
2638 NextInChain = createMinMaxOp(State.Builder, Kind, NewRed, PrevInChain);
2639 else
2640 NextInChain = State.Builder.CreateBinOp(
2642 PrevInChain, NewRed);
2643 }
2644 State.set(this, NextInChain, /*IsScalar*/ !isPartialReduction());
2645}
2646
2648 assert(!State.Lane && "Reduction being replicated.");
2649
2650 auto &Builder = State.Builder;
2651 // Propagate the fast-math flags carried by the underlying instruction.
2652 IRBuilderBase::FastMathFlagGuard FMFGuard(Builder);
2653 Builder.setFastMathFlags(getFastMathFlags());
2654
2656 Value *Prev = State.get(getChainOp(), /*IsScalar*/ true);
2657 Value *VecOp = State.get(getVecOp());
2658 Value *EVL = State.get(getEVL(), VPLane(0));
2659
2660 Value *Mask;
2661 if (VPValue *CondOp = getCondOp())
2662 Mask = State.get(CondOp);
2663 else
2664 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
2665
2666 Value *NewRed;
2667 if (isOrdered()) {
2668 NewRed = createOrderedReduction(Builder, Kind, VecOp, Prev, Mask, EVL);
2669 } else {
2670 NewRed = createSimpleReduction(Builder, VecOp, Kind, Mask, EVL);
2672 NewRed = createMinMaxOp(Builder, Kind, NewRed, Prev);
2673 else
2674 NewRed = Builder.CreateBinOp(
2676 Prev);
2677 }
2678 State.set(this, NewRed, /*IsScalar*/ true);
2679}
2680
2682 VPCostContext &Ctx) const {
2683 RecurKind RdxKind = getRecurrenceKind();
2684 Type *ElementTy = Ctx.Types.inferScalarType(this);
2685 auto *VectorTy = cast<VectorType>(toVectorTy(ElementTy, VF));
2686 unsigned Opcode = RecurrenceDescriptor::getOpcode(RdxKind);
2688 std::optional<FastMathFlags> OptionalFMF =
2689 ElementTy->isFloatingPointTy() ? std::make_optional(FMFs) : std::nullopt;
2690
2691 if (isPartialReduction()) {
2692 InstructionCost CondCost = 0;
2693 if (isConditional()) {
2695 auto *CondTy = cast<VectorType>(
2696 toVectorTy(Ctx.Types.inferScalarType(getCondOp()), VF));
2697 CondCost = Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VectorTy,
2698 CondTy, Pred, Ctx.CostKind);
2699 }
2700 return CondCost + Ctx.TTI.getPartialReductionCost(
2701 Opcode, ElementTy, ElementTy, ElementTy, VF,
2703 TargetTransformInfo::PR_None, std::nullopt,
2704 Ctx.CostKind);
2705 }
2706
2707 // TODO: Support any-of reductions.
2708 assert(
2710 ForceTargetInstructionCost.getNumOccurrences() > 0) &&
2711 "Any-of reduction not implemented in VPlan-based cost model currently.");
2712
2713 // Note that TTI should model the cost of moving result to the scalar register
2714 // and the BinOp cost in the getMinMaxReductionCost().
2717 return Ctx.TTI.getMinMaxReductionCost(Id, VectorTy, FMFs, Ctx.CostKind);
2718 }
2719
2720 // Note that TTI should model the cost of moving result to the scalar register
2721 // and the BinOp cost in the getArithmeticReductionCost().
2722 return Ctx.TTI.getArithmeticReductionCost(Opcode, VectorTy, OptionalFMF,
2723 Ctx.CostKind);
2724}
2725
2727 ExpressionTypes ExpressionType,
2728 ArrayRef<VPSingleDefRecipe *> ExpressionRecipes)
2729 : VPSingleDefRecipe(VPDef::VPExpressionSC, {}, {}),
2730 ExpressionRecipes(ExpressionRecipes), ExpressionType(ExpressionType) {
2731 assert(!ExpressionRecipes.empty() && "Nothing to combine?");
2732 assert(
2733 none_of(ExpressionRecipes,
2734 [](VPSingleDefRecipe *R) { return R->mayHaveSideEffects(); }) &&
2735 "expression cannot contain recipes with side-effects");
2736
2737 // Maintain a copy of the expression recipes as a set of users.
2738 SmallPtrSet<VPUser *, 4> ExpressionRecipesAsSetOfUsers;
2739 for (auto *R : ExpressionRecipes)
2740 ExpressionRecipesAsSetOfUsers.insert(R);
2741
2742 // Recipes in the expression, except the last one, must only be used by
2743 // (other) recipes inside the expression. If there are other users, external
2744 // to the expression, use a clone of the recipe for external users.
2745 for (VPSingleDefRecipe *R : reverse(ExpressionRecipes)) {
2746 if (R != ExpressionRecipes.back() &&
2747 any_of(R->users(), [&ExpressionRecipesAsSetOfUsers](VPUser *U) {
2748 return !ExpressionRecipesAsSetOfUsers.contains(U);
2749 })) {
2750 // There are users outside of the expression. Clone the recipe and use the
2751 // clone those external users.
2752 VPSingleDefRecipe *CopyForExtUsers = R->clone();
2753 R->replaceUsesWithIf(CopyForExtUsers, [&ExpressionRecipesAsSetOfUsers](
2754 VPUser &U, unsigned) {
2755 return !ExpressionRecipesAsSetOfUsers.contains(&U);
2756 });
2757 CopyForExtUsers->insertBefore(R);
2758 }
2759 if (R->getParent())
2760 R->removeFromParent();
2761 }
2762
2763 // Internalize all external operands to the expression recipes. To do so,
2764 // create new temporary VPValues for all operands defined by a recipe outside
2765 // the expression. The original operands are added as operands of the
2766 // VPExpressionRecipe itself.
2767 for (auto *R : ExpressionRecipes) {
2768 for (const auto &[Idx, Op] : enumerate(R->operands())) {
2769 auto *Def = Op->getDefiningRecipe();
2770 if (Def && ExpressionRecipesAsSetOfUsers.contains(Def))
2771 continue;
2772 addOperand(Op);
2773 LiveInPlaceholders.push_back(new VPValue());
2774 }
2775 }
2776
2777 // Replace each external operand with the first one created for it in
2778 // LiveInPlaceholders.
2779 for (auto *R : ExpressionRecipes)
2780 for (auto const &[LiveIn, Tmp] : zip(operands(), LiveInPlaceholders))
2781 R->replaceUsesOfWith(LiveIn, Tmp);
2782}
2783
2785 for (auto *R : ExpressionRecipes)
2786 // Since the list could contain duplicates, make sure the recipe hasn't
2787 // already been inserted.
2788 if (!R->getParent())
2789 R->insertBefore(this);
2790
2791 for (const auto &[Idx, Op] : enumerate(operands()))
2792 LiveInPlaceholders[Idx]->replaceAllUsesWith(Op);
2793
2794 replaceAllUsesWith(ExpressionRecipes.back());
2795 ExpressionRecipes.clear();
2796}
2797
2799 VPCostContext &Ctx) const {
2800 Type *RedTy = Ctx.Types.inferScalarType(this);
2801 auto *SrcVecTy = cast<VectorType>(
2802 toVectorTy(Ctx.Types.inferScalarType(getOperand(0)), VF));
2803 assert(RedTy->isIntegerTy() &&
2804 "VPExpressionRecipe only supports integer types currently.");
2805 unsigned Opcode = RecurrenceDescriptor::getOpcode(
2806 cast<VPReductionRecipe>(ExpressionRecipes.back())->getRecurrenceKind());
2807 switch (ExpressionType) {
2808 case ExpressionTypes::ExtendedReduction: {
2809 unsigned Opcode = RecurrenceDescriptor::getOpcode(
2810 cast<VPReductionRecipe>(ExpressionRecipes[1])->getRecurrenceKind());
2811 auto *ExtR = cast<VPWidenCastRecipe>(ExpressionRecipes[0]);
2812
2813 return cast<VPReductionRecipe>(ExpressionRecipes.back())
2814 ->isPartialReduction()
2815 ? Ctx.TTI.getPartialReductionCost(
2816 Opcode, Ctx.Types.inferScalarType(getOperand(0)), nullptr,
2817 RedTy, VF,
2819 ExtR->getOpcode()),
2820 TargetTransformInfo::PR_None, std::nullopt, Ctx.CostKind)
2821 : Ctx.TTI.getExtendedReductionCost(
2822 Opcode, ExtR->getOpcode() == Instruction::ZExt, RedTy,
2823 SrcVecTy, std::nullopt, Ctx.CostKind);
2824 }
2825 case ExpressionTypes::MulAccReduction:
2826 return Ctx.TTI.getMulAccReductionCost(false, Opcode, RedTy, SrcVecTy,
2827 Ctx.CostKind);
2828
2829 case ExpressionTypes::ExtNegatedMulAccReduction:
2830 assert(Opcode == Instruction::Add && "Unexpected opcode");
2831 Opcode = Instruction::Sub;
2832 [[fallthrough]];
2833 case ExpressionTypes::ExtMulAccReduction: {
2834 auto *RedR = cast<VPReductionRecipe>(ExpressionRecipes.back());
2835 if (RedR->isPartialReduction()) {
2836 auto *Ext0R = cast<VPWidenCastRecipe>(ExpressionRecipes[0]);
2837 auto *Ext1R = cast<VPWidenCastRecipe>(ExpressionRecipes[1]);
2838 auto *Mul = cast<VPWidenRecipe>(ExpressionRecipes[2]);
2839 return Ctx.TTI.getPartialReductionCost(
2840 Opcode, Ctx.Types.inferScalarType(getOperand(0)),
2841 Ctx.Types.inferScalarType(getOperand(1)), RedTy, VF,
2843 Ext0R->getOpcode()),
2845 Ext1R->getOpcode()),
2846 Mul->getOpcode(), Ctx.CostKind);
2847 }
2848 return Ctx.TTI.getMulAccReductionCost(
2849 cast<VPWidenCastRecipe>(ExpressionRecipes.front())->getOpcode() ==
2850 Instruction::ZExt,
2851 Opcode, RedTy, SrcVecTy, Ctx.CostKind);
2852 }
2853 }
2854 llvm_unreachable("Unknown VPExpressionRecipe::ExpressionTypes enum");
2855}
2856
2858 return any_of(ExpressionRecipes, [](VPSingleDefRecipe *R) {
2859 return R->mayReadFromMemory() || R->mayWriteToMemory();
2860 });
2861}
2862
2864 assert(
2865 none_of(ExpressionRecipes,
2866 [](VPSingleDefRecipe *R) { return R->mayHaveSideEffects(); }) &&
2867 "expression cannot contain recipes with side-effects");
2868 return false;
2869}
2870
2872 // Cannot use vputils::isSingleScalar(), because all external operands
2873 // of the expression will be live-ins while bundled.
2874 auto *RR = dyn_cast<VPReductionRecipe>(ExpressionRecipes.back());
2875 return RR && !RR->isPartialReduction();
2876}
2877
2878#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2879
2881 VPSlotTracker &SlotTracker) const {
2882 O << Indent << "EXPRESSION ";
2884 O << " = ";
2885 auto *Red = cast<VPReductionRecipe>(ExpressionRecipes.back());
2886 unsigned Opcode = RecurrenceDescriptor::getOpcode(Red->getRecurrenceKind());
2887
2888 switch (ExpressionType) {
2889 case ExpressionTypes::ExtendedReduction: {
2891 O << " + " << (Red->isPartialReduction() ? "partial." : "") << "reduce.";
2892 O << Instruction::getOpcodeName(Opcode) << " (";
2894 Red->printFlags(O);
2895
2896 auto *Ext0 = cast<VPWidenCastRecipe>(ExpressionRecipes[0]);
2897 O << Instruction::getOpcodeName(Ext0->getOpcode()) << " to "
2898 << *Ext0->getResultType();
2899 if (Red->isConditional()) {
2900 O << ", ";
2901 Red->getCondOp()->printAsOperand(O, SlotTracker);
2902 }
2903 O << ")";
2904 break;
2905 }
2906 case ExpressionTypes::ExtNegatedMulAccReduction: {
2908 O << " + " << (Red->isPartialReduction() ? "partial." : "") << "reduce.";
2910 RecurrenceDescriptor::getOpcode(Red->getRecurrenceKind()))
2911 << " (sub (0, mul";
2912 auto *Mul = cast<VPWidenRecipe>(ExpressionRecipes[2]);
2913 Mul->printFlags(O);
2914 O << "(";
2916 auto *Ext0 = cast<VPWidenCastRecipe>(ExpressionRecipes[0]);
2917 O << " " << Instruction::getOpcodeName(Ext0->getOpcode()) << " to "
2918 << *Ext0->getResultType() << "), (";
2920 auto *Ext1 = cast<VPWidenCastRecipe>(ExpressionRecipes[1]);
2921 O << " " << Instruction::getOpcodeName(Ext1->getOpcode()) << " to "
2922 << *Ext1->getResultType() << ")";
2923 if (Red->isConditional()) {
2924 O << ", ";
2925 Red->getCondOp()->printAsOperand(O, SlotTracker);
2926 }
2927 O << "))";
2928 break;
2929 }
2930 case ExpressionTypes::MulAccReduction:
2931 case ExpressionTypes::ExtMulAccReduction: {
2933 O << " + " << (Red->isPartialReduction() ? "partial." : "") << "reduce.";
2935 RecurrenceDescriptor::getOpcode(Red->getRecurrenceKind()))
2936 << " (";
2937 O << "mul";
2938 bool IsExtended = ExpressionType == ExpressionTypes::ExtMulAccReduction;
2939 auto *Mul = cast<VPWidenRecipe>(IsExtended ? ExpressionRecipes[2]
2940 : ExpressionRecipes[0]);
2941 Mul->printFlags(O);
2942 if (IsExtended)
2943 O << "(";
2945 if (IsExtended) {
2946 auto *Ext0 = cast<VPWidenCastRecipe>(ExpressionRecipes[0]);
2947 O << " " << Instruction::getOpcodeName(Ext0->getOpcode()) << " to "
2948 << *Ext0->getResultType() << "), (";
2949 } else {
2950 O << ", ";
2951 }
2953 if (IsExtended) {
2954 auto *Ext1 = cast<VPWidenCastRecipe>(ExpressionRecipes[1]);
2955 O << " " << Instruction::getOpcodeName(Ext1->getOpcode()) << " to "
2956 << *Ext1->getResultType() << ")";
2957 }
2958 if (Red->isConditional()) {
2959 O << ", ";
2960 Red->getCondOp()->printAsOperand(O, SlotTracker);
2961 }
2962 O << ")";
2963 break;
2964 }
2965 }
2966}
2967
2969 VPSlotTracker &SlotTracker) const {
2970 if (isPartialReduction())
2971 O << Indent << "PARTIAL-REDUCE ";
2972 else
2973 O << Indent << "REDUCE ";
2975 O << " = ";
2977 O << " +";
2978 printFlags(O);
2979 O << " reduce."
2982 << " (";
2984 if (isConditional()) {
2985 O << ", ";
2987 }
2988 O << ")";
2989}
2990
2992 VPSlotTracker &SlotTracker) const {
2993 O << Indent << "REDUCE ";
2995 O << " = ";
2997 O << " +";
2998 printFlags(O);
2999 O << " vp.reduce."
3002 << " (";
3004 O << ", ";
3006 if (isConditional()) {
3007 O << ", ";
3009 }
3010 O << ")";
3011}
3012
3013#endif
3014
3015/// A helper function to scalarize a single Instruction in the innermost loop.
3016/// Generates a sequence of scalar instances for lane \p Lane. Uses the VPValue
3017/// operands from \p RepRecipe instead of \p Instr's operands.
3018static void scalarizeInstruction(const Instruction *Instr,
3019 VPReplicateRecipe *RepRecipe,
3020 const VPLane &Lane, VPTransformState &State) {
3021 assert((!Instr->getType()->isAggregateType() ||
3022 canVectorizeTy(Instr->getType())) &&
3023 "Expected vectorizable or non-aggregate type.");
3024
3025 // Does this instruction return a value ?
3026 bool IsVoidRetTy = Instr->getType()->isVoidTy();
3027
3028 Instruction *Cloned = Instr->clone();
3029 if (!IsVoidRetTy) {
3030 Cloned->setName(Instr->getName() + ".cloned");
3031 Type *ResultTy = State.TypeAnalysis.inferScalarType(RepRecipe);
3032 // The operands of the replicate recipe may have been narrowed, resulting in
3033 // a narrower result type. Update the type of the cloned instruction to the
3034 // correct type.
3035 if (ResultTy != Cloned->getType())
3036 Cloned->mutateType(ResultTy);
3037 }
3038
3039 RepRecipe->applyFlags(*Cloned);
3040 RepRecipe->applyMetadata(*Cloned);
3041
3042 if (RepRecipe->hasPredicate())
3043 cast<CmpInst>(Cloned)->setPredicate(RepRecipe->getPredicate());
3044
3045 if (auto DL = RepRecipe->getDebugLoc())
3046 State.setDebugLocFrom(DL);
3047
3048 // Replace the operands of the cloned instructions with their scalar
3049 // equivalents in the new loop.
3050 for (const auto &I : enumerate(RepRecipe->operands())) {
3051 auto InputLane = Lane;
3052 VPValue *Operand = I.value();
3053 if (vputils::isSingleScalar(Operand))
3054 InputLane = VPLane::getFirstLane();
3055 Cloned->setOperand(I.index(), State.get(Operand, InputLane));
3056 }
3057
3058 // Place the cloned scalar in the new loop.
3059 State.Builder.Insert(Cloned);
3060
3061 State.set(RepRecipe, Cloned, Lane);
3062
3063 // If we just cloned a new assumption, add it the assumption cache.
3064 if (auto *II = dyn_cast<AssumeInst>(Cloned))
3065 State.AC->registerAssumption(II);
3066
3067 assert(
3068 (RepRecipe->getRegion() ||
3069 !RepRecipe->getParent()->getPlan()->getVectorLoopRegion() ||
3070 all_of(RepRecipe->operands(),
3071 [](VPValue *Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
3072 "Expected a recipe is either within a region or all of its operands "
3073 "are defined outside the vectorized region.");
3074}
3075
3078
3079 if (!State.Lane) {
3080 assert(IsSingleScalar && "VPReplicateRecipes outside replicate regions "
3081 "must have already been unrolled");
3082 scalarizeInstruction(UI, this, VPLane(0), State);
3083 return;
3084 }
3085
3086 assert((State.VF.isScalar() || !isSingleScalar()) &&
3087 "uniform recipe shouldn't be predicated");
3088 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
3089 scalarizeInstruction(UI, this, *State.Lane, State);
3090 // Insert scalar instance packing it into a vector.
3091 if (State.VF.isVector() && shouldPack()) {
3092 Value *WideValue =
3093 State.Lane->isFirstLane()
3094 ? PoisonValue::get(toVectorizedTy(UI->getType(), State.VF))
3095 : State.get(this);
3096 State.set(this, State.packScalarIntoVectorizedValue(this, WideValue,
3097 *State.Lane));
3098 }
3099}
3100
3102 // Find if the recipe is used by a widened recipe via an intervening
3103 // VPPredInstPHIRecipe. In this case, also pack the scalar values in a vector.
3104 return any_of(users(), [](const VPUser *U) {
3105 if (auto *PredR = dyn_cast<VPPredInstPHIRecipe>(U))
3106 return !vputils::onlyScalarValuesUsed(PredR);
3107 return false;
3108 });
3109}
3110
3111/// Returns a SCEV expression for \p Ptr if it is a pointer computation for
3112/// which the legacy cost model computes a SCEV expression when computing the
3113/// address cost. Computing SCEVs for VPValues is incomplete and returns
3114/// SCEVCouldNotCompute in cases the legacy cost model can compute SCEVs. In
3115/// those cases we fall back to the legacy cost model. Otherwise return nullptr.
3116static const SCEV *getAddressAccessSCEV(const VPValue *Ptr, ScalarEvolution &SE,
3117 const Loop *L) {
3118 auto *PtrR = Ptr->getDefiningRecipe();
3119 if (!PtrR || !((isa<VPReplicateRecipe>(Ptr) &&
3121 Instruction::GetElementPtr) ||
3122 isa<VPWidenGEPRecipe>(Ptr) ||
3124 return nullptr;
3125
3126 // We are looking for a GEP where all indices are either loop invariant or
3127 // inductions.
3128 for (VPValue *Opd : drop_begin(PtrR->operands())) {
3129 if (!Opd->isDefinedOutsideLoopRegions() &&
3131 return nullptr;
3132 }
3133
3134 return vputils::getSCEVExprForVPValue(Ptr, SE, L);
3135}
3136
3137/// Returns true if \p V is used as part of the address of another load or
3138/// store.
3139static bool isUsedByLoadStoreAddress(const VPUser *V) {
3141 SmallVector<const VPUser *> WorkList = {V};
3142
3143 while (!WorkList.empty()) {
3144 auto *Cur = dyn_cast<VPSingleDefRecipe>(WorkList.pop_back_val());
3145 if (!Cur || !Seen.insert(Cur).second)
3146 continue;
3147
3148 auto *Blend = dyn_cast<VPBlendRecipe>(Cur);
3149 // Skip blends that use V only through a compare by checking if any incoming
3150 // value was already visited.
3151 if (Blend && none_of(seq<unsigned>(0, Blend->getNumIncomingValues()),
3152 [&](unsigned I) {
3153 return Seen.contains(
3154 Blend->getIncomingValue(I)->getDefiningRecipe());
3155 }))
3156 continue;
3157
3158 for (VPUser *U : Cur->users()) {
3159 if (auto *InterleaveR = dyn_cast<VPInterleaveBase>(U))
3160 if (InterleaveR->getAddr() == Cur)
3161 return true;
3162 if (auto *RepR = dyn_cast<VPReplicateRecipe>(U)) {
3163 if (RepR->getOpcode() == Instruction::Load &&
3164 RepR->getOperand(0) == Cur)
3165 return true;
3166 if (RepR->getOpcode() == Instruction::Store &&
3167 RepR->getOperand(1) == Cur)
3168 return true;
3169 }
3170 if (auto *MemR = dyn_cast<VPWidenMemoryRecipe>(U)) {
3171 if (MemR->getAddr() == Cur && MemR->isConsecutive())
3172 return true;
3173 }
3174 }
3175
3176 // The legacy cost model only supports scalarization loads/stores with phi
3177 // addresses, if the phi is directly used as load/store address. Don't
3178 // traverse further for Blends.
3179 if (Blend)
3180 continue;
3181
3182 append_range(WorkList, Cur->users());
3183 }
3184 return false;
3185}
3186
3188 VPCostContext &Ctx) const {
3190 // VPReplicateRecipe may be cloned as part of an existing VPlan-to-VPlan
3191 // transform, avoid computing their cost multiple times for now.
3192 Ctx.SkipCostComputation.insert(UI);
3193
3194 if (VF.isScalable() && !isSingleScalar())
3196
3197 switch (UI->getOpcode()) {
3198 case Instruction::GetElementPtr:
3199 // We mark this instruction as zero-cost because the cost of GEPs in
3200 // vectorized code depends on whether the corresponding memory instruction
3201 // is scalarized or not. Therefore, we handle GEPs with the memory
3202 // instruction cost.
3203 return 0;
3204 case Instruction::Call: {
3205 auto *CalledFn =
3207
3210 for (const VPValue *ArgOp : ArgOps)
3211 Tys.push_back(Ctx.Types.inferScalarType(ArgOp));
3212
3213 if (CalledFn->isIntrinsic())
3214 // Various pseudo-intrinsics with costs of 0 are scalarized instead of
3215 // vectorized via VPWidenIntrinsicRecipe. Return 0 for them early.
3216 switch (CalledFn->getIntrinsicID()) {
3217 case Intrinsic::assume:
3218 case Intrinsic::lifetime_end:
3219 case Intrinsic::lifetime_start:
3220 case Intrinsic::sideeffect:
3221 case Intrinsic::pseudoprobe:
3222 case Intrinsic::experimental_noalias_scope_decl: {
3223 assert(getCostForIntrinsics(CalledFn->getIntrinsicID(), ArgOps, *this,
3224 ElementCount::getFixed(1), Ctx) == 0 &&
3225 "scalarizing intrinsic should be free");
3226 return InstructionCost(0);
3227 }
3228 default:
3229 break;
3230 }
3231
3232 Type *ResultTy = Ctx.Types.inferScalarType(this);
3233 InstructionCost ScalarCallCost =
3234 Ctx.TTI.getCallInstrCost(CalledFn, ResultTy, Tys, Ctx.CostKind);
3235 if (isSingleScalar()) {
3236 if (CalledFn->isIntrinsic())
3237 ScalarCallCost = std::min(
3238 ScalarCallCost,
3239 getCostForIntrinsics(CalledFn->getIntrinsicID(), ArgOps, *this,
3240 ElementCount::getFixed(1), Ctx));
3241 return ScalarCallCost;
3242 }
3243
3244 return ScalarCallCost * VF.getFixedValue() +
3245 Ctx.getScalarizationOverhead(ResultTy, ArgOps, VF);
3246 }
3247 case Instruction::Add:
3248 case Instruction::Sub:
3249 case Instruction::FAdd:
3250 case Instruction::FSub:
3251 case Instruction::Mul:
3252 case Instruction::FMul:
3253 case Instruction::FDiv:
3254 case Instruction::FRem:
3255 case Instruction::Shl:
3256 case Instruction::LShr:
3257 case Instruction::AShr:
3258 case Instruction::And:
3259 case Instruction::Or:
3260 case Instruction::Xor:
3261 case Instruction::ICmp:
3262 case Instruction::FCmp:
3264 Ctx) *
3265 (isSingleScalar() ? 1 : VF.getFixedValue());
3266 case Instruction::SDiv:
3267 case Instruction::UDiv:
3268 case Instruction::SRem:
3269 case Instruction::URem: {
3270 InstructionCost ScalarCost =
3272 if (isSingleScalar())
3273 return ScalarCost;
3274
3275 ScalarCost = ScalarCost * VF.getFixedValue() +
3276 Ctx.getScalarizationOverhead(Ctx.Types.inferScalarType(this),
3277 to_vector(operands()), VF);
3278 // If the recipe is not predicated (i.e. not in a replicate region), return
3279 // the scalar cost. Otherwise handle predicated cost.
3280 if (!getRegion()->isReplicator())
3281 return ScalarCost;
3282
3283 // Account for the phi nodes that we will create.
3284 ScalarCost += VF.getFixedValue() *
3285 Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
3286 // Scale the cost by the probability of executing the predicated blocks.
3287 // This assumes the predicated block for each vector lane is equally
3288 // likely.
3289 ScalarCost /= Ctx.getPredBlockCostDivisor(UI->getParent());
3290 return ScalarCost;
3291 }
3292 case Instruction::Load:
3293 case Instruction::Store: {
3294 // TODO: See getMemInstScalarizationCost for how to handle replicating and
3295 // predicated cases.
3296 const VPRegionBlock *ParentRegion = getRegion();
3297 if (ParentRegion && ParentRegion->isReplicator())
3298 break;
3299
3300 bool IsLoad = UI->getOpcode() == Instruction::Load;
3301 const VPValue *PtrOp = getOperand(!IsLoad);
3302 const SCEV *PtrSCEV = getAddressAccessSCEV(PtrOp, Ctx.SE, Ctx.L);
3304 break;
3305
3306 Type *ValTy = Ctx.Types.inferScalarType(IsLoad ? this : getOperand(0));
3307 Type *ScalarPtrTy = Ctx.Types.inferScalarType(PtrOp);
3308 const Align Alignment = getLoadStoreAlignment(UI);
3309 unsigned AS = cast<PointerType>(ScalarPtrTy)->getAddressSpace();
3311 InstructionCost ScalarMemOpCost = Ctx.TTI.getMemoryOpCost(
3312 UI->getOpcode(), ValTy, Alignment, AS, Ctx.CostKind, OpInfo);
3313
3314 Type *PtrTy = isSingleScalar() ? ScalarPtrTy : toVectorTy(ScalarPtrTy, VF);
3315 bool PreferVectorizedAddressing = Ctx.TTI.prefersVectorizedAddressing();
3316 bool UsedByLoadStoreAddress =
3317 !PreferVectorizedAddressing && isUsedByLoadStoreAddress(this);
3318 InstructionCost ScalarCost =
3319 ScalarMemOpCost + Ctx.TTI.getAddressComputationCost(
3320 PtrTy, UsedByLoadStoreAddress ? nullptr : &Ctx.SE,
3321 PtrSCEV, Ctx.CostKind);
3322 if (isSingleScalar())
3323 return ScalarCost;
3324
3325 SmallVector<const VPValue *> OpsToScalarize;
3326 Type *ResultTy = Type::getVoidTy(PtrTy->getContext());
3327 // Set ResultTy and OpsToScalarize, if scalarization is needed. Currently we
3328 // don't assign scalarization overhead in general, if the target prefers
3329 // vectorized addressing or the loaded value is used as part of an address
3330 // of another load or store.
3331 if (!UsedByLoadStoreAddress) {
3332 bool EfficientVectorLoadStore =
3333 Ctx.TTI.supportsEfficientVectorElementLoadStore();
3334 if (!(IsLoad && !PreferVectorizedAddressing) &&
3335 !(!IsLoad && EfficientVectorLoadStore))
3336 append_range(OpsToScalarize, operands());
3337
3338 if (!EfficientVectorLoadStore)
3339 ResultTy = Ctx.Types.inferScalarType(this);
3340 }
3341
3342 return (ScalarCost * VF.getFixedValue()) +
3343 Ctx.getScalarizationOverhead(ResultTy, OpsToScalarize, VF, true);
3344 }
3345 }
3346
3347 return Ctx.getLegacyCost(UI, VF);
3348}
3349
3350#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3352 VPSlotTracker &SlotTracker) const {
3353 O << Indent << (IsSingleScalar ? "CLONE " : "REPLICATE ");
3354
3355 if (!getUnderlyingInstr()->getType()->isVoidTy()) {
3357 O << " = ";
3358 }
3359 if (auto *CB = dyn_cast<CallBase>(getUnderlyingInstr())) {
3360 O << "call";
3361 printFlags(O);
3362 O << "@" << CB->getCalledFunction()->getName() << "(";
3364 O, [&O, &SlotTracker](VPValue *Op) {
3365 Op->printAsOperand(O, SlotTracker);
3366 });
3367 O << ")";
3368 } else {
3370 printFlags(O);
3372 }
3373
3374 if (shouldPack())
3375 O << " (S->V)";
3376}
3377#endif
3378
3380 assert(State.Lane && "Branch on Mask works only on single instance.");
3381
3382 VPValue *BlockInMask = getOperand(0);
3383 Value *ConditionBit = State.get(BlockInMask, *State.Lane);
3384
3385 // Replace the temporary unreachable terminator with a new conditional branch,
3386 // whose two destinations will be set later when they are created.
3387 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
3388 assert(isa<UnreachableInst>(CurrentTerminator) &&
3389 "Expected to replace unreachable terminator with conditional branch.");
3390 auto CondBr =
3391 State.Builder.CreateCondBr(ConditionBit, State.CFG.PrevBB, nullptr);
3392 CondBr->setSuccessor(0, nullptr);
3393 CurrentTerminator->eraseFromParent();
3394}
3395
3397 VPCostContext &Ctx) const {
3398 // The legacy cost model doesn't assign costs to branches for individual
3399 // replicate regions. Match the current behavior in the VPlan cost model for
3400 // now.
3401 return 0;
3402}
3403
3405 assert(State.Lane && "Predicated instruction PHI works per instance.");
3406 Instruction *ScalarPredInst =
3407 cast<Instruction>(State.get(getOperand(0), *State.Lane));
3408 BasicBlock *PredicatedBB = ScalarPredInst->getParent();
3409 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
3410 assert(PredicatingBB && "Predicated block has no single predecessor.");
3412 "operand must be VPReplicateRecipe");
3413
3414 // By current pack/unpack logic we need to generate only a single phi node: if
3415 // a vector value for the predicated instruction exists at this point it means
3416 // the instruction has vector users only, and a phi for the vector value is
3417 // needed. In this case the recipe of the predicated instruction is marked to
3418 // also do that packing, thereby "hoisting" the insert-element sequence.
3419 // Otherwise, a phi node for the scalar value is needed.
3420 if (State.hasVectorValue(getOperand(0))) {
3421 auto *VecI = cast<Instruction>(State.get(getOperand(0)));
3423 "Packed operands must generate an insertelement or insertvalue");
3424
3425 // If VectorI is a struct, it will be a sequence like:
3426 // %1 = insertvalue %unmodified, %x, 0
3427 // %2 = insertvalue %1, %y, 1
3428 // %VectorI = insertvalue %2, %z, 2
3429 // To get the unmodified vector we need to look through the chain.
3430 if (auto *StructTy = dyn_cast<StructType>(VecI->getType()))
3431 for (unsigned I = 0; I < StructTy->getNumContainedTypes() - 1; I++)
3432 VecI = cast<InsertValueInst>(VecI->getOperand(0));
3433
3434 PHINode *VPhi = State.Builder.CreatePHI(VecI->getType(), 2);
3435 VPhi->addIncoming(VecI->getOperand(0), PredicatingBB); // Unmodified vector.
3436 VPhi->addIncoming(VecI, PredicatedBB); // New vector with inserted element.
3437 if (State.hasVectorValue(this))
3438 State.reset(this, VPhi);
3439 else
3440 State.set(this, VPhi);
3441 // NOTE: Currently we need to update the value of the operand, so the next
3442 // predicated iteration inserts its generated value in the correct vector.
3443 State.reset(getOperand(0), VPhi);
3444 } else {
3445 if (vputils::onlyFirstLaneUsed(this) && !State.Lane->isFirstLane())
3446 return;
3447
3448 Type *PredInstType = State.TypeAnalysis.inferScalarType(getOperand(0));
3449 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
3450 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
3451 PredicatingBB);
3452 Phi->addIncoming(ScalarPredInst, PredicatedBB);
3453 if (State.hasScalarValue(this, *State.Lane))
3454 State.reset(this, Phi, *State.Lane);
3455 else
3456 State.set(this, Phi, *State.Lane);
3457 // NOTE: Currently we need to update the value of the operand, so the next
3458 // predicated iteration inserts its generated value in the correct vector.
3459 State.reset(getOperand(0), Phi, *State.Lane);
3460 }
3461}
3462
3463#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3465 VPSlotTracker &SlotTracker) const {
3466 O << Indent << "PHI-PREDICATED-INSTRUCTION ";
3468 O << " = ";
3470}
3471#endif
3472
3474 VPCostContext &Ctx) const {
3476 unsigned AS = cast<PointerType>(Ctx.Types.inferScalarType(getAddr()))
3477 ->getAddressSpace();
3478 unsigned Opcode = isa<VPWidenLoadRecipe, VPWidenLoadEVLRecipe>(this)
3479 ? Instruction::Load
3480 : Instruction::Store;
3481
3482 if (!Consecutive) {
3483 // TODO: Using the original IR may not be accurate.
3484 // Currently, ARM will use the underlying IR to calculate gather/scatter
3485 // instruction cost.
3486 assert(!Reverse &&
3487 "Inconsecutive memory access should not have the order.");
3488
3490 Type *PtrTy = Ptr->getType();
3491
3492 // If the address value is uniform across all lanes, then the address can be
3493 // calculated with scalar type and broadcast.
3495 PtrTy = toVectorTy(PtrTy, VF);
3496
3497 unsigned IID = isa<VPWidenLoadRecipe>(this) ? Intrinsic::masked_gather
3498 : isa<VPWidenStoreRecipe>(this) ? Intrinsic::masked_scatter
3499 : isa<VPWidenLoadEVLRecipe>(this) ? Intrinsic::vp_gather
3500 : Intrinsic::vp_scatter;
3501 return Ctx.TTI.getAddressComputationCost(PtrTy, nullptr, nullptr,
3502 Ctx.CostKind) +
3503 Ctx.TTI.getMemIntrinsicInstrCost(
3505 &Ingredient),
3506 Ctx.CostKind);
3507 }
3508
3510 if (IsMasked) {
3511 unsigned IID = isa<VPWidenLoadRecipe>(this) ? Intrinsic::masked_load
3512 : Intrinsic::masked_store;
3513 Cost += Ctx.TTI.getMemIntrinsicInstrCost(
3514 MemIntrinsicCostAttributes(IID, Ty, Alignment, AS), Ctx.CostKind);
3515 } else {
3516 TTI::OperandValueInfo OpInfo = Ctx.getOperandInfo(
3518 : getOperand(1));
3519 Cost += Ctx.TTI.getMemoryOpCost(Opcode, Ty, Alignment, AS, Ctx.CostKind,
3520 OpInfo, &Ingredient);
3521 }
3522 if (!Reverse)
3523 return Cost;
3524
3525 return Cost += Ctx.TTI.getShuffleCost(
3527 cast<VectorType>(Ty), {}, Ctx.CostKind, 0);
3528}
3529
3531 Type *ScalarDataTy = getLoadStoreType(&Ingredient);
3532 auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
3533 bool CreateGather = !isConsecutive();
3534
3535 auto &Builder = State.Builder;
3536 Value *Mask = nullptr;
3537 if (auto *VPMask = getMask()) {
3538 // Mask reversal is only needed for non-all-one (null) masks, as reverse
3539 // of a null all-one mask is a null mask.
3540 Mask = State.get(VPMask);
3541 if (isReverse())
3542 Mask = Builder.CreateVectorReverse(Mask, "reverse");
3543 }
3544
3545 Value *Addr = State.get(getAddr(), /*IsScalar*/ !CreateGather);
3546 Value *NewLI;
3547 if (CreateGather) {
3548 NewLI = Builder.CreateMaskedGather(DataTy, Addr, Alignment, Mask, nullptr,
3549 "wide.masked.gather");
3550 } else if (Mask) {
3551 NewLI =
3552 Builder.CreateMaskedLoad(DataTy, Addr, Alignment, Mask,
3553 PoisonValue::get(DataTy), "wide.masked.load");
3554 } else {
3555 NewLI = Builder.CreateAlignedLoad(DataTy, Addr, Alignment, "wide.load");
3556 }
3558 if (Reverse)
3559 NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
3560 State.set(this, NewLI);
3561}
3562
3563#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3565 VPSlotTracker &SlotTracker) const {
3566 O << Indent << "WIDEN ";
3568 O << " = load ";
3570}
3571#endif
3572
3573/// Use all-true mask for reverse rather than actual mask, as it avoids a
3574/// dependence w/o affecting the result.
3576 Value *EVL, const Twine &Name) {
3577 VectorType *ValTy = cast<VectorType>(Operand->getType());
3578 Value *AllTrueMask =
3579 Builder.CreateVectorSplat(ValTy->getElementCount(), Builder.getTrue());
3580 return Builder.CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse,
3581 {Operand, AllTrueMask, EVL}, nullptr, Name);
3582}
3583
3585 Type *ScalarDataTy = getLoadStoreType(&Ingredient);
3586 auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
3587 bool CreateGather = !isConsecutive();
3588
3589 auto &Builder = State.Builder;
3590 CallInst *NewLI;
3591 Value *EVL = State.get(getEVL(), VPLane(0));
3592 Value *Addr = State.get(getAddr(), !CreateGather);
3593 Value *Mask = nullptr;
3594 if (VPValue *VPMask = getMask()) {
3595 Mask = State.get(VPMask);
3596 if (isReverse())
3597 Mask = createReverseEVL(Builder, Mask, EVL, "vp.reverse.mask");
3598 } else {
3599 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3600 }
3601
3602 if (CreateGather) {
3603 NewLI =
3604 Builder.CreateIntrinsic(DataTy, Intrinsic::vp_gather, {Addr, Mask, EVL},
3605 nullptr, "wide.masked.gather");
3606 } else {
3607 NewLI = Builder.CreateIntrinsic(DataTy, Intrinsic::vp_load,
3608 {Addr, Mask, EVL}, nullptr, "vp.op.load");
3609 }
3610 NewLI->addParamAttr(
3612 applyMetadata(*NewLI);
3613 Instruction *Res = NewLI;
3614 if (isReverse())
3615 Res = createReverseEVL(Builder, Res, EVL, "vp.reverse");
3616 State.set(this, Res);
3617}
3618
3620 VPCostContext &Ctx) const {
3621 if (!Consecutive || IsMasked)
3622 return VPWidenMemoryRecipe::computeCost(VF, Ctx);
3623
3624 // We need to use the getMemIntrinsicInstrCost() instead of getMemoryOpCost()
3625 // here because the EVL recipes using EVL to replace the tail mask. But in the
3626 // legacy model, it will always calculate the cost of mask.
3627 // TODO: Using getMemoryOpCost() instead of getMemIntrinsicInstrCost when we
3628 // don't need to compare to the legacy cost model.
3630 unsigned AS = cast<PointerType>(Ctx.Types.inferScalarType(getAddr()))
3631 ->getAddressSpace();
3632 InstructionCost Cost = Ctx.TTI.getMemIntrinsicInstrCost(
3633 MemIntrinsicCostAttributes(Intrinsic::vp_load, Ty, Alignment, AS),
3634 Ctx.CostKind);
3635 if (!Reverse)
3636 return Cost;
3637
3638 return Cost + Ctx.TTI.getShuffleCost(
3640 cast<VectorType>(Ty), {}, Ctx.CostKind, 0);
3641}
3642
3643#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3645 VPSlotTracker &SlotTracker) const {
3646 O << Indent << "WIDEN ";
3648 O << " = vp.load ";
3650}
3651#endif
3652
3654 VPValue *StoredVPValue = getStoredValue();
3655 bool CreateScatter = !isConsecutive();
3656
3657 auto &Builder = State.Builder;
3658
3659 Value *Mask = nullptr;
3660 if (auto *VPMask = getMask()) {
3661 // Mask reversal is only needed for non-all-one (null) masks, as reverse
3662 // of a null all-one mask is a null mask.
3663 Mask = State.get(VPMask);
3664 if (isReverse())
3665 Mask = Builder.CreateVectorReverse(Mask, "reverse");
3666 }
3667
3668 Value *StoredVal = State.get(StoredVPValue);
3669 if (isReverse()) {
3670 // If we store to reverse consecutive memory locations, then we need
3671 // to reverse the order of elements in the stored value.
3672 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
3673 // We don't want to update the value in the map as it might be used in
3674 // another expression. So don't call resetVectorValue(StoredVal).
3675 }
3676 Value *Addr = State.get(getAddr(), /*IsScalar*/ !CreateScatter);
3677 Instruction *NewSI = nullptr;
3678 if (CreateScatter)
3679 NewSI = Builder.CreateMaskedScatter(StoredVal, Addr, Alignment, Mask);
3680 else if (Mask)
3681 NewSI = Builder.CreateMaskedStore(StoredVal, Addr, Alignment, Mask);
3682 else
3683 NewSI = Builder.CreateAlignedStore(StoredVal, Addr, Alignment);
3684 applyMetadata(*NewSI);
3685}
3686
3687#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3689 VPSlotTracker &SlotTracker) const {
3690 O << Indent << "WIDEN store ";
3692}
3693#endif
3694
3696 VPValue *StoredValue = getStoredValue();
3697 bool CreateScatter = !isConsecutive();
3698
3699 auto &Builder = State.Builder;
3700
3701 CallInst *NewSI = nullptr;
3702 Value *StoredVal = State.get(StoredValue);
3703 Value *EVL = State.get(getEVL(), VPLane(0));
3704 if (isReverse())
3705 StoredVal = createReverseEVL(Builder, StoredVal, EVL, "vp.reverse");
3706 Value *Mask = nullptr;
3707 if (VPValue *VPMask = getMask()) {
3708 Mask = State.get(VPMask);
3709 if (isReverse())
3710 Mask = createReverseEVL(Builder, Mask, EVL, "vp.reverse.mask");
3711 } else {
3712 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3713 }
3714 Value *Addr = State.get(getAddr(), !CreateScatter);
3715 if (CreateScatter) {
3716 NewSI = Builder.CreateIntrinsic(Type::getVoidTy(EVL->getContext()),
3717 Intrinsic::vp_scatter,
3718 {StoredVal, Addr, Mask, EVL});
3719 } else {
3720 NewSI = Builder.CreateIntrinsic(Type::getVoidTy(EVL->getContext()),
3721 Intrinsic::vp_store,
3722 {StoredVal, Addr, Mask, EVL});
3723 }
3724 NewSI->addParamAttr(
3726 applyMetadata(*NewSI);
3727}
3728
3730 VPCostContext &Ctx) const {
3731 if (!Consecutive || IsMasked)
3732 return VPWidenMemoryRecipe::computeCost(VF, Ctx);
3733
3734 // We need to use the getMemIntrinsicInstrCost() instead of getMemoryOpCost()
3735 // here because the EVL recipes using EVL to replace the tail mask. But in the
3736 // legacy model, it will always calculate the cost of mask.
3737 // TODO: Using getMemoryOpCost() instead of getMemIntrinsicInstrCost when we
3738 // don't need to compare to the legacy cost model.
3740 unsigned AS = cast<PointerType>(Ctx.Types.inferScalarType(getAddr()))
3741 ->getAddressSpace();
3742 InstructionCost Cost = Ctx.TTI.getMemIntrinsicInstrCost(
3743 MemIntrinsicCostAttributes(Intrinsic::vp_store, Ty, Alignment, AS),
3744 Ctx.CostKind);
3745 if (!Reverse)
3746 return Cost;
3747
3748 return Cost + Ctx.TTI.getShuffleCost(
3750 cast<VectorType>(Ty), {}, Ctx.CostKind, 0);
3751}
3752
3753#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3755 VPSlotTracker &SlotTracker) const {
3756 O << Indent << "WIDEN vp.store ";
3758}
3759#endif
3760
3762 VectorType *DstVTy, const DataLayout &DL) {
3763 // Verify that V is a vector type with same number of elements as DstVTy.
3764 auto VF = DstVTy->getElementCount();
3765 auto *SrcVecTy = cast<VectorType>(V->getType());
3766 assert(VF == SrcVecTy->getElementCount() && "Vector dimensions do not match");
3767 Type *SrcElemTy = SrcVecTy->getElementType();
3768 Type *DstElemTy = DstVTy->getElementType();
3769 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3770 "Vector elements must have same size");
3771
3772 // Do a direct cast if element types are castable.
3773 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3774 return Builder.CreateBitOrPointerCast(V, DstVTy);
3775 }
3776 // V cannot be directly casted to desired vector type.
3777 // May happen when V is a floating point vector but DstVTy is a vector of
3778 // pointers or vice-versa. Handle this using a two-step bitcast using an
3779 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3780 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3781 "Only one type should be a pointer type");
3782 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3783 "Only one type should be a floating point type");
3784 Type *IntTy =
3785 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3786 auto *VecIntTy = VectorType::get(IntTy, VF);
3787 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3788 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3789}
3790
3791/// Return a vector containing interleaved elements from multiple
3792/// smaller input vectors.
3794 const Twine &Name) {
3795 unsigned Factor = Vals.size();
3796 assert(Factor > 1 && "Tried to interleave invalid number of vectors");
3797
3798 VectorType *VecTy = cast<VectorType>(Vals[0]->getType());
3799#ifndef NDEBUG
3800 for (Value *Val : Vals)
3801 assert(Val->getType() == VecTy && "Tried to interleave mismatched types");
3802#endif
3803
3804 // Scalable vectors cannot use arbitrary shufflevectors (only splats), so
3805 // must use intrinsics to interleave.
3806 if (VecTy->isScalableTy()) {
3807 assert(Factor <= 8 && "Unsupported interleave factor for scalable vectors");
3808 return Builder.CreateVectorInterleave(Vals, Name);
3809 }
3810
3811 // Fixed length. Start by concatenating all vectors into a wide vector.
3812 Value *WideVec = concatenateVectors(Builder, Vals);
3813
3814 // Interleave the elements into the wide vector.
3815 const unsigned NumElts = VecTy->getElementCount().getFixedValue();
3816 return Builder.CreateShuffleVector(
3817 WideVec, createInterleaveMask(NumElts, Factor), Name);
3818}
3819
3820// Try to vectorize the interleave group that \p Instr belongs to.
3821//
3822// E.g. Translate following interleaved load group (factor = 3):
3823// for (i = 0; i < N; i+=3) {
3824// R = Pic[i]; // Member of index 0
3825// G = Pic[i+1]; // Member of index 1
3826// B = Pic[i+2]; // Member of index 2
3827// ... // do something to R, G, B
3828// }
3829// To:
3830// %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B
3831// %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements
3832// %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements
3833// %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements
3834//
3835// Or translate following interleaved store group (factor = 3):
3836// for (i = 0; i < N; i+=3) {
3837// ... do something to R, G, B
3838// Pic[i] = R; // Member of index 0
3839// Pic[i+1] = G; // Member of index 1
3840// Pic[i+2] = B; // Member of index 2
3841// }
3842// To:
3843// %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
3844// %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
3845// %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
3846// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements
3847// store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B
3849 assert(!State.Lane && "Interleave group being replicated.");
3850 assert((!needsMaskForGaps() || !State.VF.isScalable()) &&
3851 "Masking gaps for scalable vectors is not yet supported.");
3853 Instruction *Instr = Group->getInsertPos();
3854
3855 // Prepare for the vector type of the interleaved load/store.
3856 Type *ScalarTy = getLoadStoreType(Instr);
3857 unsigned InterleaveFactor = Group->getFactor();
3858 auto *VecTy = VectorType::get(ScalarTy, State.VF * InterleaveFactor);
3859
3860 VPValue *BlockInMask = getMask();
3861 VPValue *Addr = getAddr();
3862 Value *ResAddr = State.get(Addr, VPLane(0));
3863
3864 auto CreateGroupMask = [&BlockInMask, &State,
3865 &InterleaveFactor](Value *MaskForGaps) -> Value * {
3866 if (State.VF.isScalable()) {
3867 assert(!MaskForGaps && "Interleaved groups with gaps are not supported.");
3868 assert(InterleaveFactor <= 8 &&
3869 "Unsupported deinterleave factor for scalable vectors");
3870 auto *ResBlockInMask = State.get(BlockInMask);
3871 SmallVector<Value *> Ops(InterleaveFactor, ResBlockInMask);
3872 return interleaveVectors(State.Builder, Ops, "interleaved.mask");
3873 }
3874
3875 if (!BlockInMask)
3876 return MaskForGaps;
3877
3878 Value *ResBlockInMask = State.get(BlockInMask);
3879 Value *ShuffledMask = State.Builder.CreateShuffleVector(
3880 ResBlockInMask,
3881 createReplicatedMask(InterleaveFactor, State.VF.getFixedValue()),
3882 "interleaved.mask");
3883 return MaskForGaps ? State.Builder.CreateBinOp(Instruction::And,
3884 ShuffledMask, MaskForGaps)
3885 : ShuffledMask;
3886 };
3887
3888 const DataLayout &DL = Instr->getDataLayout();
3889 // Vectorize the interleaved load group.
3890 if (isa<LoadInst>(Instr)) {
3891 Value *MaskForGaps = nullptr;
3892 if (needsMaskForGaps()) {
3893 MaskForGaps =
3894 createBitMaskForGaps(State.Builder, State.VF.getFixedValue(), *Group);
3895 assert(MaskForGaps && "Mask for Gaps is required but it is null");
3896 }
3897
3898 Instruction *NewLoad;
3899 if (BlockInMask || MaskForGaps) {
3900 Value *GroupMask = CreateGroupMask(MaskForGaps);
3901 Value *PoisonVec = PoisonValue::get(VecTy);
3902 NewLoad = State.Builder.CreateMaskedLoad(VecTy, ResAddr,
3903 Group->getAlign(), GroupMask,
3904 PoisonVec, "wide.masked.vec");
3905 } else
3906 NewLoad = State.Builder.CreateAlignedLoad(VecTy, ResAddr,
3907 Group->getAlign(), "wide.vec");
3908 applyMetadata(*NewLoad);
3909 // TODO: Also manage existing metadata using VPIRMetadata.
3910 Group->addMetadata(NewLoad);
3911
3913 if (VecTy->isScalableTy()) {
3914 // Scalable vectors cannot use arbitrary shufflevectors (only splats),
3915 // so must use intrinsics to deinterleave.
3916 assert(InterleaveFactor <= 8 &&
3917 "Unsupported deinterleave factor for scalable vectors");
3918 NewLoad = State.Builder.CreateIntrinsic(
3919 Intrinsic::getDeinterleaveIntrinsicID(InterleaveFactor),
3920 NewLoad->getType(), NewLoad,
3921 /*FMFSource=*/nullptr, "strided.vec");
3922 }
3923
3924 auto CreateStridedVector = [&InterleaveFactor, &State,
3925 &NewLoad](unsigned Index) -> Value * {
3926 assert(Index < InterleaveFactor && "Illegal group index");
3927 if (State.VF.isScalable())
3928 return State.Builder.CreateExtractValue(NewLoad, Index);
3929
3930 // For fixed length VF, use shuffle to extract the sub-vectors from the
3931 // wide load.
3932 auto StrideMask =
3933 createStrideMask(Index, InterleaveFactor, State.VF.getFixedValue());
3934 return State.Builder.CreateShuffleVector(NewLoad, StrideMask,
3935 "strided.vec");
3936 };
3937
3938 for (unsigned I = 0, J = 0; I < InterleaveFactor; ++I) {
3939 Instruction *Member = Group->getMember(I);
3940
3941 // Skip the gaps in the group.
3942 if (!Member)
3943 continue;
3944
3945 Value *StridedVec = CreateStridedVector(I);
3946
3947 // If this member has different type, cast the result type.
3948 if (Member->getType() != ScalarTy) {
3949 VectorType *OtherVTy = VectorType::get(Member->getType(), State.VF);
3950 StridedVec =
3951 createBitOrPointerCast(State.Builder, StridedVec, OtherVTy, DL);
3952 }
3953
3954 if (Group->isReverse())
3955 StridedVec = State.Builder.CreateVectorReverse(StridedVec, "reverse");
3956
3957 State.set(VPDefs[J], StridedVec);
3958 ++J;
3959 }
3960 return;
3961 }
3962
3963 // The sub vector type for current instruction.
3964 auto *SubVT = VectorType::get(ScalarTy, State.VF);
3965
3966 // Vectorize the interleaved store group.
3967 Value *MaskForGaps =
3968 createBitMaskForGaps(State.Builder, State.VF.getKnownMinValue(), *Group);
3969 assert(((MaskForGaps != nullptr) == needsMaskForGaps()) &&
3970 "Mismatch between NeedsMaskForGaps and MaskForGaps");
3971 ArrayRef<VPValue *> StoredValues = getStoredValues();
3972 // Collect the stored vector from each member.
3973 SmallVector<Value *, 4> StoredVecs;
3974 unsigned StoredIdx = 0;
3975 for (unsigned i = 0; i < InterleaveFactor; i++) {
3976 assert((Group->getMember(i) || MaskForGaps) &&
3977 "Fail to get a member from an interleaved store group");
3978 Instruction *Member = Group->getMember(i);
3979
3980 // Skip the gaps in the group.
3981 if (!Member) {
3982 Value *Undef = PoisonValue::get(SubVT);
3983 StoredVecs.push_back(Undef);
3984 continue;
3985 }
3986
3987 Value *StoredVec = State.get(StoredValues[StoredIdx]);
3988 ++StoredIdx;
3989
3990 if (Group->isReverse())
3991 StoredVec = State.Builder.CreateVectorReverse(StoredVec, "reverse");
3992
3993 // If this member has different type, cast it to a unified type.
3994
3995 if (StoredVec->getType() != SubVT)
3996 StoredVec = createBitOrPointerCast(State.Builder, StoredVec, SubVT, DL);
3997
3998 StoredVecs.push_back(StoredVec);
3999 }
4000
4001 // Interleave all the smaller vectors into one wider vector.
4002 Value *IVec = interleaveVectors(State.Builder, StoredVecs, "interleaved.vec");
4003 Instruction *NewStoreInstr;
4004 if (BlockInMask || MaskForGaps) {
4005 Value *GroupMask = CreateGroupMask(MaskForGaps);
4006 NewStoreInstr = State.Builder.CreateMaskedStore(
4007 IVec, ResAddr, Group->getAlign(), GroupMask);
4008 } else
4009 NewStoreInstr =
4010 State.Builder.CreateAlignedStore(IVec, ResAddr, Group->getAlign());
4011
4012 applyMetadata(*NewStoreInstr);
4013 // TODO: Also manage existing metadata using VPIRMetadata.
4014 Group->addMetadata(NewStoreInstr);
4015}
4016
4017#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4019 VPSlotTracker &SlotTracker) const {
4021 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
4022 IG->getInsertPos()->printAsOperand(O, false);
4023 O << ", ";
4025 VPValue *Mask = getMask();
4026 if (Mask) {
4027 O << ", ";
4028 Mask->printAsOperand(O, SlotTracker);
4029 }
4030
4031 unsigned OpIdx = 0;
4032 for (unsigned i = 0; i < IG->getFactor(); ++i) {
4033 if (!IG->getMember(i))
4034 continue;
4035 if (getNumStoreOperands() > 0) {
4036 O << "\n" << Indent << " store ";
4038 O << " to index " << i;
4039 } else {
4040 O << "\n" << Indent << " ";
4042 O << " = load from index " << i;
4043 }
4044 ++OpIdx;
4045 }
4046}
4047#endif
4048
4050 assert(!State.Lane && "Interleave group being replicated.");
4051 assert(State.VF.isScalable() &&
4052 "Only support scalable VF for EVL tail-folding.");
4054 "Masking gaps for scalable vectors is not yet supported.");
4056 Instruction *Instr = Group->getInsertPos();
4057
4058 // Prepare for the vector type of the interleaved load/store.
4059 Type *ScalarTy = getLoadStoreType(Instr);
4060 unsigned InterleaveFactor = Group->getFactor();
4061 assert(InterleaveFactor <= 8 &&
4062 "Unsupported deinterleave/interleave factor for scalable vectors");
4063 ElementCount WideVF = State.VF * InterleaveFactor;
4064 auto *VecTy = VectorType::get(ScalarTy, WideVF);
4065
4066 VPValue *Addr = getAddr();
4067 Value *ResAddr = State.get(Addr, VPLane(0));
4068 Value *EVL = State.get(getEVL(), VPLane(0));
4069 Value *InterleaveEVL = State.Builder.CreateMul(
4070 EVL, ConstantInt::get(EVL->getType(), InterleaveFactor), "interleave.evl",
4071 /* NUW= */ true, /* NSW= */ true);
4072 LLVMContext &Ctx = State.Builder.getContext();
4073
4074 Value *GroupMask = nullptr;
4075 if (VPValue *BlockInMask = getMask()) {
4076 SmallVector<Value *> Ops(InterleaveFactor, State.get(BlockInMask));
4077 GroupMask = interleaveVectors(State.Builder, Ops, "interleaved.mask");
4078 } else {
4079 GroupMask =
4080 State.Builder.CreateVectorSplat(WideVF, State.Builder.getTrue());
4081 }
4082
4083 // Vectorize the interleaved load group.
4084 if (isa<LoadInst>(Instr)) {
4085 CallInst *NewLoad = State.Builder.CreateIntrinsic(
4086 VecTy, Intrinsic::vp_load, {ResAddr, GroupMask, InterleaveEVL}, nullptr,
4087 "wide.vp.load");
4088 NewLoad->addParamAttr(0,
4089 Attribute::getWithAlignment(Ctx, Group->getAlign()));
4090
4091 applyMetadata(*NewLoad);
4092 // TODO: Also manage existing metadata using VPIRMetadata.
4093 Group->addMetadata(NewLoad);
4094
4095 // Scalable vectors cannot use arbitrary shufflevectors (only splats),
4096 // so must use intrinsics to deinterleave.
4097 NewLoad = State.Builder.CreateIntrinsic(
4098 Intrinsic::getDeinterleaveIntrinsicID(InterleaveFactor),
4099 NewLoad->getType(), NewLoad,
4100 /*FMFSource=*/nullptr, "strided.vec");
4101
4102 const DataLayout &DL = Instr->getDataLayout();
4103 for (unsigned I = 0, J = 0; I < InterleaveFactor; ++I) {
4104 Instruction *Member = Group->getMember(I);
4105 // Skip the gaps in the group.
4106 if (!Member)
4107 continue;
4108
4109 Value *StridedVec = State.Builder.CreateExtractValue(NewLoad, I);
4110 // If this member has different type, cast the result type.
4111 if (Member->getType() != ScalarTy) {
4112 VectorType *OtherVTy = VectorType::get(Member->getType(), State.VF);
4113 StridedVec =
4114 createBitOrPointerCast(State.Builder, StridedVec, OtherVTy, DL);
4115 }
4116
4117 State.set(getVPValue(J), StridedVec);
4118 ++J;
4119 }
4120 return;
4121 } // End for interleaved load.
4122
4123 // The sub vector type for current instruction.
4124 auto *SubVT = VectorType::get(ScalarTy, State.VF);
4125 // Vectorize the interleaved store group.
4126 ArrayRef<VPValue *> StoredValues = getStoredValues();
4127 // Collect the stored vector from each member.
4128 SmallVector<Value *, 4> StoredVecs;
4129 const DataLayout &DL = Instr->getDataLayout();
4130 for (unsigned I = 0, StoredIdx = 0; I < InterleaveFactor; I++) {
4131 Instruction *Member = Group->getMember(I);
4132 // Skip the gaps in the group.
4133 if (!Member) {
4134 StoredVecs.push_back(PoisonValue::get(SubVT));
4135 continue;
4136 }
4137
4138 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4139 // If this member has different type, cast it to a unified type.
4140 if (StoredVec->getType() != SubVT)
4141 StoredVec = createBitOrPointerCast(State.Builder, StoredVec, SubVT, DL);
4142
4143 StoredVecs.push_back(StoredVec);
4144 ++StoredIdx;
4145 }
4146
4147 // Interleave all the smaller vectors into one wider vector.
4148 Value *IVec = interleaveVectors(State.Builder, StoredVecs, "interleaved.vec");
4149 CallInst *NewStore =
4150 State.Builder.CreateIntrinsic(Type::getVoidTy(Ctx), Intrinsic::vp_store,
4151 {IVec, ResAddr, GroupMask, InterleaveEVL});
4152 NewStore->addParamAttr(1,
4153 Attribute::getWithAlignment(Ctx, Group->getAlign()));
4154
4155 applyMetadata(*NewStore);
4156 // TODO: Also manage existing metadata using VPIRMetadata.
4157 Group->addMetadata(NewStore);
4158}
4159
4160#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4162 VPSlotTracker &SlotTracker) const {
4164 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
4165 IG->getInsertPos()->printAsOperand(O, false);
4166 O << ", ";
4168 O << ", ";
4170 if (VPValue *Mask = getMask()) {
4171 O << ", ";
4172 Mask->printAsOperand(O, SlotTracker);
4173 }
4174
4175 unsigned OpIdx = 0;
4176 for (unsigned i = 0; i < IG->getFactor(); ++i) {
4177 if (!IG->getMember(i))
4178 continue;
4179 if (getNumStoreOperands() > 0) {
4180 O << "\n" << Indent << " vp.store ";
4182 O << " to index " << i;
4183 } else {
4184 O << "\n" << Indent << " ";
4186 O << " = vp.load from index " << i;
4187 }
4188 ++OpIdx;
4189 }
4190}
4191#endif
4192
4194 VPCostContext &Ctx) const {
4195 Instruction *InsertPos = getInsertPos();
4196 // Find the VPValue index of the interleave group. We need to skip gaps.
4197 unsigned InsertPosIdx = 0;
4198 for (unsigned Idx = 0; IG->getFactor(); ++Idx)
4199 if (auto *Member = IG->getMember(Idx)) {
4200 if (Member == InsertPos)
4201 break;
4202 InsertPosIdx++;
4203 }
4204 Type *ValTy = Ctx.Types.inferScalarType(
4205 getNumDefinedValues() > 0 ? getVPValue(InsertPosIdx)
4206 : getStoredValues()[InsertPosIdx]);
4207 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
4208 unsigned AS = cast<PointerType>(Ctx.Types.inferScalarType(getAddr()))
4209 ->getAddressSpace();
4210
4211 unsigned InterleaveFactor = IG->getFactor();
4212 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
4213
4214 // Holds the indices of existing members in the interleaved group.
4216 for (unsigned IF = 0; IF < InterleaveFactor; IF++)
4217 if (IG->getMember(IF))
4218 Indices.push_back(IF);
4219
4220 // Calculate the cost of the whole interleaved group.
4221 InstructionCost Cost = Ctx.TTI.getInterleavedMemoryOpCost(
4222 InsertPos->getOpcode(), WideVecTy, IG->getFactor(), Indices,
4223 IG->getAlign(), AS, Ctx.CostKind, getMask(), NeedsMaskForGaps);
4224
4225 if (!IG->isReverse())
4226 return Cost;
4227
4228 return Cost + IG->getNumMembers() *
4229 Ctx.TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
4230 VectorTy, VectorTy, {}, Ctx.CostKind,
4231 0);
4232}
4233
4234#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4236 VPSlotTracker &SlotTracker) const {
4237 O << Indent << "EMIT ";
4239 O << " = CANONICAL-INDUCTION ";
4241}
4242#endif
4243
4245 return vputils::onlyScalarValuesUsed(this) &&
4246 (!IsScalable || vputils::onlyFirstLaneUsed(this));
4247}
4248
4249#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4251 raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const {
4252 assert((getNumOperands() == 3 || getNumOperands() == 5) &&
4253 "unexpected number of operands");
4254 O << Indent << "EMIT ";
4256 O << " = WIDEN-POINTER-INDUCTION ";
4258 O << ", ";
4260 O << ", ";
4262 if (getNumOperands() == 5) {
4263 O << ", ";
4265 O << ", ";
4267 }
4268}
4269
4271 VPSlotTracker &SlotTracker) const {
4272 O << Indent << "EMIT ";
4274 O << " = EXPAND SCEV " << *Expr;
4275}
4276#endif
4277
4279 Value *CanonicalIV = State.get(getOperand(0), /*IsScalar*/ true);
4280 Type *STy = CanonicalIV->getType();
4281 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
4282 ElementCount VF = State.VF;
4283 Value *VStart = VF.isScalar()
4284 ? CanonicalIV
4285 : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast");
4286 Value *VStep = createStepForVF(Builder, STy, VF, getUnrollPart(*this));
4287 if (VF.isVector()) {
4288 VStep = Builder.CreateVectorSplat(VF, VStep);
4289 VStep =
4290 Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->getType()));
4291 }
4292 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
4293 State.set(this, CanonicalVectorIV);
4294}
4295
4296#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4298 VPSlotTracker &SlotTracker) const {
4299 O << Indent << "EMIT ";
4301 O << " = WIDEN-CANONICAL-INDUCTION ";
4303}
4304#endif
4305
4307 auto &Builder = State.Builder;
4308 // Create a vector from the initial value.
4309 auto *VectorInit = getStartValue()->getLiveInIRValue();
4310
4311 Type *VecTy = State.VF.isScalar()
4312 ? VectorInit->getType()
4313 : VectorType::get(VectorInit->getType(), State.VF);
4314
4315 BasicBlock *VectorPH =
4316 State.CFG.VPBB2IRBB.at(getParent()->getCFGPredecessor(0));
4317 if (State.VF.isVector()) {
4318 auto *IdxTy = Builder.getInt32Ty();
4319 auto *One = ConstantInt::get(IdxTy, 1);
4320 IRBuilder<>::InsertPointGuard Guard(Builder);
4321 Builder.SetInsertPoint(VectorPH->getTerminator());
4322 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF);
4323 auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4324 VectorInit = Builder.CreateInsertElement(
4325 PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init");
4326 }
4327
4328 // Create a phi node for the new recurrence.
4329 PHINode *Phi = PHINode::Create(VecTy, 2, "vector.recur");
4330 Phi->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
4331 Phi->addIncoming(VectorInit, VectorPH);
4332 State.set(this, Phi);
4333}
4334
4337 VPCostContext &Ctx) const {
4338 if (VF.isScalar())
4339 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4340
4341 return 0;
4342}
4343
4344#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4346 raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const {
4347 O << Indent << "FIRST-ORDER-RECURRENCE-PHI ";
4349 O << " = phi ";
4351}
4352#endif
4353
4355 // Reductions do not have to start at zero. They can start with
4356 // any loop invariant values.
4357 VPValue *StartVPV = getStartValue();
4358
4359 // In order to support recurrences we need to be able to vectorize Phi nodes.
4360 // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4361 // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4362 // this value when we vectorize all of the instructions that use the PHI.
4363 BasicBlock *VectorPH =
4364 State.CFG.VPBB2IRBB.at(getParent()->getCFGPredecessor(0));
4365 bool ScalarPHI = State.VF.isScalar() || isInLoop();
4366 Value *StartV = State.get(StartVPV, ScalarPHI);
4367 Type *VecTy = StartV->getType();
4368
4369 BasicBlock *HeaderBB = State.CFG.PrevBB;
4370 assert(State.CurrentParentLoop->getHeader() == HeaderBB &&
4371 "recipe must be in the vector loop header");
4372 auto *Phi = PHINode::Create(VecTy, 2, "vec.phi");
4373 Phi->insertBefore(HeaderBB->getFirstInsertionPt());
4374 State.set(this, Phi, isInLoop());
4375
4376 Phi->addIncoming(StartV, VectorPH);
4377}
4378
4379#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4381 VPSlotTracker &SlotTracker) const {
4382 O << Indent << "WIDEN-REDUCTION-PHI ";
4383
4385 O << " = phi ";
4387 if (getVFScaleFactor() > 1)
4388 O << " (VF scaled by 1/" << getVFScaleFactor() << ")";
4389}
4390#endif
4391
4393 Value *Op0 = State.get(getOperand(0));
4394 Type *VecTy = Op0->getType();
4395 Instruction *VecPhi = State.Builder.CreatePHI(VecTy, 2, Name);
4396 State.set(this, VecPhi);
4397}
4398
4399#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4401 VPSlotTracker &SlotTracker) const {
4402 O << Indent << "WIDEN-PHI ";
4403
4405 O << " = phi ";
4407}
4408#endif
4409
4410// TODO: It would be good to use the existing VPWidenPHIRecipe instead and
4411// remove VPActiveLaneMaskPHIRecipe.
4413 BasicBlock *VectorPH =
4414 State.CFG.VPBB2IRBB.at(getParent()->getCFGPredecessor(0));
4415 Value *StartMask = State.get(getOperand(0));
4416 PHINode *Phi =
4417 State.Builder.CreatePHI(StartMask->getType(), 2, "active.lane.mask");
4418 Phi->addIncoming(StartMask, VectorPH);
4419 State.set(this, Phi);
4420}
4421
4422#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4424 VPSlotTracker &SlotTracker) const {
4425 O << Indent << "ACTIVE-LANE-MASK-PHI ";
4426
4428 O << " = phi ";
4430}
4431#endif
4432
4433#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4435 VPSlotTracker &SlotTracker) const {
4436 O << Indent << "EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI ";
4437
4439 O << " = phi ";
4441}
4442#endif
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand &Opnd)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file provides a LoopVectorizationPlanner class.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
static bool isOrdered(const Instruction *I)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
This file contains the declarations of different VPlan-related auxiliary helpers.
static Instruction * createReverseEVL(IRBuilderBase &Builder, Value *Operand, Value *EVL, const Twine &Name)
Use all-true mask for reverse rather than actual mask, as it avoids a dependence w/o affecting the re...
static Value * interleaveVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vals, const Twine &Name)
Return a vector containing interleaved elements from multiple smaller input vectors.
static InstructionCost getCostForIntrinsics(Intrinsic::ID ID, ArrayRef< const VPValue * > Operands, const VPRecipeWithIRFlags &R, ElementCount VF, VPCostContext &Ctx)
Compute the cost for the intrinsic ID with Operands, produced by R.
static Value * createBitOrPointerCast(IRBuilderBase &Builder, Value *V, VectorType *DstVTy, const DataLayout &DL)
SmallVector< Value *, 2 > VectorParts
static bool isUsedByLoadStoreAddress(const VPUser *V)
Returns true if V is used as part of the address of another load or store.
static void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
static Constant * getSignedIntOrFpConstant(Type *Ty, int64_t C)
A helper function that returns an integer or floating-point constant with value C.
static BranchInst * createCondBranch(Value *Cond, VPBasicBlock *VPBB, VPTransformState &State)
Create a conditional branch using Cond branching to the successors of VPBB.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
Definition blake3_impl.h:83
void printAsOperand(OutputBuffer &OB, Prec P=Prec::Default, bool StrictlyWorse=false) const
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:137
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
Conditional or Unconditional Branch instruction.
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition InstrTypes.h:982
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
static LLVM_ABI StringRef getPredicateName(Predicate P)
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition Constants.h:136
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition Constants.h:168
This is an important base class in LLVM.
Definition Constant.h:43
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
A debug info location.
Definition DebugLoc.h:123
constexpr bool isVector() const
One or more elements.
Definition TypeSize.h:324
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:312
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
LLVM_ABI void print(raw_ostream &O) const
Print fast-math flags to O.
Definition Operator.cpp:272
void setAllowContract(bool B=true)
Definition FMF.h:90
bool noSignedZeros() const
Definition FMF.h:67
bool noInfs() const
Definition FMF.h:66
void setAllowReciprocal(bool B=true)
Definition FMF.h:87
bool allowReciprocal() const
Definition FMF.h:68
void setNoSignedZeros(bool B=true)
Definition FMF.h:84
bool allowReassoc() const
Flag queries.
Definition FMF.h:64
bool approxFunc() const
Definition FMF.h:70
void setNoNaNs(bool B=true)
Definition FMF.h:78
void setAllowReassoc(bool B=true)
Flag setters.
Definition FMF.h:75
bool noNaNs() const
Definition FMF.h:65
void setApproxFunc(bool B=true)
Definition FMF.h:93
void setNoInfs(bool B=true)
Definition FMF.h:81
bool allowContract() const
Definition FMF.h:69
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
bool willReturn() const
Determine if the function will return.
Definition Function.h:661
bool doesNotThrow() const
Determine if the function cannot unwind.
Definition Function.h:594
Type * getReturnType() const
Returns the type of the ret val.
Definition Function.h:214
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Definition IRBuilder.h:2579
IntegerType * getInt1Ty()
Fetch the type representing a single bit.
Definition IRBuilder.h:547
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Definition IRBuilder.h:2633
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
Definition IRBuilder.h:2567
LLVM_ABI Value * CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, const Twine &Name="")
Return a vector splice intrinsic if using scalable vectors, otherwise return a shufflevector.
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
Definition IRBuilder.h:2626
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
Definition IRBuilder.h:2645
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Definition IRBuilder.h:562
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
Definition IRBuilder.h:2039
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition IRBuilder.h:345
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
Definition IRBuilder.h:567
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2336
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
Definition IRBuilder.h:527
LLVM_ABI CallInst * CreateOrReduce(Value *Src)
Create a vector int OR reduction intrinsic of the source vector.
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="", Instruction *MDFrom=nullptr)
Definition IRBuilder.h:1725
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition IRBuilder.h:522
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition IRBuilder.h:2466
Value * CreateNot(Value *V, const Twine &Name="")
Definition IRBuilder.h:1808
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2332
Value * CreateCountTrailingZeroElems(Type *ResTy, Value *Mask, bool ZeroIsPoison=true, const Twine &Name="")
Create a call to llvm.experimental_cttz_elts.
Definition IRBuilder.h:1134
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1420
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Definition IRBuilder.h:2085
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1403
ConstantInt * getFalse()
Get the constant value for i1 false.
Definition IRBuilder.h:507
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition IRBuilder.h:1708
Value * CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2344
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2442
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Definition IRBuilder.h:1573
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1437
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2788
static InstructionCost getInvalid(CostType Val=0)
bool isCast() const
bool isBinaryOp() const
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
bool isUnaryOp() const
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
bool isReverse() const
InstTy * getInsertPos() const
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
Align getAlign() const
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
Information for memory intrinsic cost model.
Root of the metadata hierarchy.
Definition Metadata.h:64
LLVM_ABI void print(raw_ostream &OS, const Module *M=nullptr, bool IsForDebug=false) const
Print.
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This class represents an analyzed expression in the program.
The main scalar evolution driver.
This class represents the LLVM 'select' instruction.
This class provides computation of slot numbers for LLVM Assembly writing.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
static LLVM_ABI PartialReductionExtendKind getPartialReductionExtendKind(Instruction *I)
Get the kind of extension that an instruction represents.
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
@ TCC_Free
Expected to fold away in lowering.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Reverse
Reverse the order of the vector.
CastContextHint
Represents a hint about the context in which a cast is used.
@ Reversed
The cast is used with a reversed load/store.
@ Masked
The cast is used with a masked load/store.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
@ Interleave
The cast is used with an interleaved load/store.
@ GatherScatter
The cast is used with a gather/scatter.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
Definition Type.cpp:297
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:296
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:280
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
bool isStructTy() const
True if this is an instance of StructType.
Definition Type.h:261
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:293
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:300
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
value_op_iterator value_op_end()
Definition User.h:313
void setOperand(unsigned i, Value *Val)
Definition User.h:237
Value * getOperand(unsigned i) const
Definition User.h:232
value_op_iterator value_op_begin()
Definition User.h:310
void execute(VPTransformState &State) override
Generate the active lane mask phi of the vector loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition VPlan.h:3966
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
Definition VPlan.h:4019
iterator end()
Definition VPlan.h:4003
void insert(VPRecipeBase *Recipe, iterator InsertPt)
Definition VPlan.h:4032
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
VPValue * getIncomingValue(unsigned Idx) const
Return incoming value number Idx.
Definition VPlan.h:2541
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
Definition VPlan.h:2536
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition VPlan.h:81
const VPBlocksTy & getPredecessors() const
Definition VPlan.h:204
VPlan * getPlan()
Definition VPlan.cpp:161
void printAsOperand(raw_ostream &OS, bool PrintType=false) const
Definition VPlan.h:349
const VPBlocksTy & getSuccessors() const
Definition VPlan.h:198
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPBranchOnMaskRecipe.
void execute(VPTransformState &State) override
Generate the extraction of the appropriate bit from the block mask and the conditional branch.
VPlan-based builder utility analogous to IRBuilder.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
This class augments a recipe with a set of VPValues defined by the recipe.
Definition VPlanValue.h:310
LLVM_ABI_FOR_TEST void dump() const
Dump the VPDef to stderr (for debugging).
Definition VPlan.cpp:122
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
Definition VPlanValue.h:431
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
Definition VPlanValue.h:426
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
Definition VPlanValue.h:404
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
Definition VPlanValue.h:416
friend class VPValue
Definition VPlanValue.h:311
unsigned getVPDefID() const
Definition VPlanValue.h:436
VPValue * getStepValue() const
Definition VPlan.h:3766
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStartValue() const
Definition VPlan.h:3765
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void decompose()
Insert the recipes of the expression back into the VPlan, directly before the current recipe.
bool isSingleScalar() const
Returns true if the result of this VPExpressionRecipe is a single-scalar.
bool mayHaveSideEffects() const
Returns true if this expression contains recipes that may have side effects.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
bool mayReadOrWriteMemory() const
Returns true if this expression contains recipes that may read from or write to memory.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this header phi recipe.
VPValue * getStartValue()
Returns the start value of the phi, if one is set.
Definition VPlan.h:2081
void execute(VPTransformState &State) override
Produce a vectorized histogram operation.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPHistogramRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getMask() const
Return the mask operand if one was provided, or a null pointer if all lanes should be executed uncond...
Definition VPlan.h:1785
Class to record and manage LLVM IR flags.
Definition VPlan.h:609
FastMathFlagsTy FMFs
Definition VPlan.h:680
LLVM_ABI_FOR_TEST bool flagsValidForOpcode(unsigned Opcode) const
Returns true if the set flags are valid for Opcode.
WrapFlagsTy WrapFlags
Definition VPlan.h:674
CmpInst::Predicate CmpPredicate
Definition VPlan.h:673
void printFlags(raw_ostream &O) const
GEPNoWrapFlags GEPFlags
Definition VPlan.h:678
bool hasFastMathFlags() const
Returns true if the recipe has fast-math flags.
Definition VPlan.h:858
LLVM_ABI_FOR_TEST FastMathFlags getFastMathFlags() const
TruncFlagsTy TruncFlags
Definition VPlan.h:675
CmpInst::Predicate getPredicate() const
Definition VPlan.h:835
ExactFlagsTy ExactFlags
Definition VPlan.h:677
bool hasNoSignedWrap() const
Definition VPlan.h:884
void intersectFlags(const VPIRFlags &Other)
Only keep flags also present in Other.
GEPNoWrapFlags getGEPNoWrapFlags() const
Definition VPlan.h:850
bool hasPredicate() const
Returns true if the recipe has a comparison predicate.
Definition VPlan.h:853
DisjointFlagsTy DisjointFlags
Definition VPlan.h:676
unsigned AllFlags
Definition VPlan.h:682
bool hasNoUnsignedWrap() const
Definition VPlan.h:873
FCmpFlagsTy FCmpFlags
Definition VPlan.h:681
NonNegFlagsTy NonNegFlags
Definition VPlan.h:679
void applyFlags(Instruction &I) const
Apply the IR flags to I.
Definition VPlan.h:795
Instruction & getInstruction() const
Definition VPlan.h:1447
void extractLastLaneOfLastPartOfFirstOperand(VPBuilder &Builder)
Update the recipe's first operand to the last lane of the last part of the operand using Builder.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPIRInstruction.
VPIRInstruction(Instruction &I)
VPIRInstruction::create() should be used to create VPIRInstructions, as subclasses may need to be cre...
Definition VPlan.h:1422
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void intersect(const VPIRMetadata &MD)
Intersect this VPIRMetadata object with MD, keeping only metadata nodes that are common to both.
VPIRMetadata()=default
void print(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print metadata with node IDs.
void applyMetadata(Instruction &I) const
Add all metadata to I.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPInstruction.
bool doesGeneratePerAllLanes() const
Returns true if this VPInstruction generates scalar values for all lanes.
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
Definition VPlan.h:1127
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
Definition VPlan.h:1074
@ WideIVStep
Scale the first operand (vector step) by the second operand (scalar-step).
Definition VPlan.h:1117
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
Definition VPlan.h:1130
@ Unpack
Extracts all lanes from its (non-scalable) vector operand.
Definition VPlan.h:1071
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
Definition VPlan.h:1121
@ BuildVector
Creates a fixed-width vector containing all operands.
Definition VPlan.h:1066
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
Definition VPlan.h:1063
@ VScale
Returns the value for vscale.
Definition VPlan.h:1132
@ CanonicalIVIncrementForPart
Definition VPlan.h:1056
bool hasResult() const
Definition VPlan.h:1198
bool opcodeMayReadOrWriteFromMemory() const
Returns true if the underlying opcode may read from or write to memory.
LLVM_DUMP_METHOD void dump() const
Print the VPInstruction to dbgs() (for debugging).
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the VPInstruction to O.
StringRef getName() const
Returns the symbolic name assigned to the VPInstruction.
Definition VPlan.h:1238
unsigned getOpcode() const
Definition VPlan.h:1182
VPInstruction(unsigned Opcode, ArrayRef< VPValue * > Operands, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
bool isVectorToScalar() const
Returns true if this VPInstruction produces a scalar value from a vector, e.g.
bool isSingleScalar() const
Returns true if this VPInstruction's operands are single scalars and the result is also a single scal...
void execute(VPTransformState &State) override
Generate the instruction.
bool usesFirstPartOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first part of operand Op.
bool needsMaskForGaps() const
Return true if the access needs a mask because of the gaps.
Definition VPlan.h:2652
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this recipe.
Instruction * getInsertPos() const
Definition VPlan.h:2656
const InterleaveGroup< Instruction > * getInterleaveGroup() const
Definition VPlan.h:2654
VPValue * getMask() const
Return the mask used by this recipe.
Definition VPlan.h:2646
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
Definition VPlan.h:2675
VPValue * getAddr() const
Return the address accessed by this recipe.
Definition VPlan.h:2640
VPValue * getEVL() const
The VPValue of the explicit vector length.
Definition VPlan.h:2750
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
Definition VPlan.h:2763
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
Definition VPlan.h:2713
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset)
static VPLane getFirstLane()
virtual const VPRecipeBase * getAsRecipe() const =0
Return a VPRecipeBase* to the current object.
virtual unsigned getNumIncoming() const
Returns the number of incoming values, also number of incoming blocks.
Definition VPlan.h:1337
void removeIncomingValueFor(VPBlockBase *IncomingBlock) const
Removes the incoming value for IncomingBlock, which must be a predecessor.
const VPBasicBlock * getIncomingBlock(unsigned Idx) const
Returns the incoming block with index Idx.
Definition VPlan.h:4110
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
Definition VPlan.h:1362
VPValue * getIncomingValue(unsigned Idx) const
Returns the incoming VPValue with index Idx.
Definition VPlan.h:1329
void printPhiOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the recipe.
void execute(VPTransformState &State) override
Generates phi nodes for live-outs (from a replicate region) as needed to retain SSA form.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition VPlan.h:387
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
virtual void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const =0
Each concrete VPRecipe prints itself, without printing common information, like debug info or metadat...
VPRegionBlock * getRegion()
Definition VPlan.h:4271
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override final
Print the recipe, delegating to printRecipe().
bool isPhi() const
Returns true for PHI-like recipes.
bool mayWriteToMemory() const
Returns true if the recipe may write to memory.
virtual InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
VPBasicBlock * getParent()
Definition VPlan.h:408
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
Definition VPlan.h:479
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this recipe, taking into account if the cost computation should be skipped and the...
bool isScalarCast() const
Return true if the recipe is a scalar cast.
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
void moveAfter(VPRecipeBase *MovePos)
Unlink this recipe from its current VPBasicBlock and insert it into the VPBasicBlock that MovePos liv...
VPRecipeBase(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
Definition VPlan.h:398
void execute(VPTransformState &State) override
Generate the reduction in the loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
Definition VPlan.h:2913
unsigned getVFScaleFactor() const
Get the factor that the VF of this recipe's output should be scaled by, or 1 if it isn't scaled.
Definition VPlan.h:2465
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
Definition VPlan.h:2482
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool isConditional() const
Return true if the in-loop reduction is conditional.
Definition VPlan.h:2855
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of VPReductionRecipe.
VPValue * getVecOp() const
The VPValue of the vector value to be reduced.
Definition VPlan.h:2866
VPValue * getCondOp() const
The VPValue of the condition for the block.
Definition VPlan.h:2868
RecurKind getRecurrenceKind() const
Return the recurrence kind for the in-loop reduction.
Definition VPlan.h:2851
bool isPartialReduction() const
Returns true if the reduction outputs a vector with a scaled down VF.
Definition VPlan.h:2857
VPValue * getChainOp() const
The VPValue of the scalar Chain being accumulated.
Definition VPlan.h:2864
bool isInLoop() const
Returns true if the reduction is in-loop.
Definition VPlan.h:2859
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition VPlan.h:4154
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
Definition VPlan.h:4222
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition VPlan.h:2935
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool isSingleScalar() const
Definition VPlan.h:2976
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPReplicateRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getOpcode() const
Definition VPlan.h:3005
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
VPValue * getStepValue() const
Definition VPlan.h:3832
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the scalarized versions of the phi node as needed by their users.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Definition VPlan.h:531
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
Definition VPlan.h:595
LLVM_ABI_FOR_TEST LLVM_DUMP_METHOD void dump() const
Print this VPSingleDefRecipe to dbgs() (for debugging).
VPSingleDefRecipe(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
Definition VPlan.h:533
This class can be used to assign names to VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
Helper to access the operand that contains the unroll part for this recipe after unrolling.
Definition VPlan.h:970
VPValue * getUnrollPartOperand(const VPUser &U) const
Return the VPValue operand containing the unroll part or null if there is no such operand.
unsigned getUnrollPart(const VPUser &U) const
Return the unroll part.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition VPlanValue.h:207
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
Definition VPlan.cpp:1420
operand_range operands()
Definition VPlanValue.h:275
void setOperand(unsigned I, VPValue *New)
Definition VPlanValue.h:251
unsigned getNumOperands() const
Definition VPlanValue.h:245
operand_iterator op_begin()
Definition VPlanValue.h:271
VPValue * getOperand(unsigned N) const
Definition VPlanValue.h:246
virtual bool usesFirstLaneOnly(const VPValue *Op) const
Returns true if the VPUser only uses the first lane of operand Op.
Definition VPlanValue.h:290
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
Definition VPlanValue.h:48
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
Definition VPlan.cpp:1374
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition VPlan.cpp:131
friend class VPExpressionRecipe
Definition VPlanValue.h:53
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
Definition VPlan.cpp:1416
bool hasMoreThanOneUniqueUser() const
Returns true if the value has more than one unique user.
Definition VPlanValue.h:140
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Definition VPlanValue.h:183
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
Definition VPlanValue.h:85
VPValue(const unsigned char SC, Value *UV=nullptr, VPDef *Def=nullptr)
Definition VPlan.cpp:94
void replaceAllUsesWith(VPValue *New)
Definition VPlan.cpp:1377
user_iterator user_begin()
Definition VPlanValue.h:130
unsigned getNumUsers() const
Definition VPlanValue.h:113
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
Definition VPlanValue.h:178
user_range users()
Definition VPlanValue.h:134
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getSourceElementType() const
Definition VPlan.h:1985
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
operand_range args()
Definition VPlan.h:1741
Function * getCalledScalarFunction() const
Definition VPlan.h:1737
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCallRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the call instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a canonical vector induction variable of the vector loop, with start = {<Part*VF,...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Returns the result type of the cast.
Definition VPlan.h:1591
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Produce widened copies of the cast.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCastRecipe.
void execute(VPTransformState &State) override
Generate the gep nodes.
Type * getSourceElementType() const
Definition VPlan.h:1887
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
VPValue * getStepValue()
Returns the step value of the induction.
Definition VPlan.h:2144
TruncInst * getTruncInst()
Returns the first defined value as TruncInst, if it is one or nullptr otherwise.
Definition VPlan.h:2251
Type * getScalarType() const
Returns the scalar type of the induction.
Definition VPlan.h:2260
bool isCanonical() const
Returns true if the induction is canonical, i.e.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Intrinsic::ID getVectorIntrinsicID() const
Return the ID of the intrinsic.
Definition VPlan.h:1673
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
StringRef getIntrinsicName() const
Return to name of the intrinsic as string.
LLVM_ABI_FOR_TEST bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the VPUser only uses the first lane of operand Op.
Type * getResultType() const
Return the scalar return type of the intrinsic.
Definition VPlan.h:1676
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Produce a widened version of the vector intrinsic.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this vector intrinsic.
bool IsMasked
Whether the memory access is masked.
Definition VPlan.h:3260
bool Reverse
Whether the consecutive accessed addresses are in reverse order.
Definition VPlan.h:3257
bool isConsecutive() const
Return whether the loaded-from / stored-to addresses are consecutive.
Definition VPlan.h:3300
Instruction & Ingredient
Definition VPlan.h:3248
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
bool Consecutive
Whether the accessed addresses are consecutive.
Definition VPlan.h:3254
VPValue * getMask() const
Return the mask used by this recipe.
Definition VPlan.h:3314
Align Alignment
Alignment information for this memory access.
Definition VPlan.h:3251
VPValue * getAddr() const
Return the address accessed by this recipe.
Definition VPlan.h:3307
bool isReverse() const
Return whether the consecutive loaded/stored addresses are in reverse order.
Definition VPlan.h:3304
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool onlyScalarsGenerated(bool IsScalable)
Returns true if only scalar values will be generated.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenRecipe.
void execute(VPTransformState &State) override
Produce a widened instruction using the opcode and operands of the recipe, processing State....
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getUF() const
Definition VPlan.h:4509
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition VPlan.cpp:1011
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
Definition Value.cpp:390
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1099
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
Definition Value.h:838
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
Definition TypeSize.h:256
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:165
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:123
iterator erase(iterator where)
Definition ilist.h:204
pointer remove(iterator &IT)
Definition ilist.h:188
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI Intrinsic::ID getDeinterleaveIntrinsicID(unsigned Factor)
Returns the corresponding llvm.vector.deinterleaveN intrinsic for factor N.
LLVM_ABI StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
bool match(Val *V, const Pattern &P)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
GEPLikeRecipe_match< Op0_t, Op1_t > m_GetElementPtr(const Op0_t &Op0, const Op1_t &Op1)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
NodeAddr< DefNode * > Def
Definition RDFGraph.h:384
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
bool onlyFirstPartUsed(const VPValue *Def)
Returns true if only the first part of Def is used.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
const SCEV * getSCEVExprForVPValue(const VPValue *V, ScalarEvolution &SE, const Loop *L=nullptr)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
@ Offset
Definition DWP.cpp:532
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition STLExtras.h:829
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
LLVM_ABI Value * createFindLastIVReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind, Value *Start, Value *Sentinel)
Create a reduction of the given vector Src for a reduction of the kind RecurKind::FindLastIV.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
InstructionCost Cost
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2484
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:732
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2148
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
Definition STLExtras.h:2243
auto cast_or_null(const Y &Val)
Definition Casting.h:714
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
bool isa_and_nonnull(const Y &Val)
Definition Casting.h:676
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
LLVM_ABI Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
LLVM_ABI llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1751
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
Definition STLExtras.h:323
@ Other
Any other memory.
Definition ModRef.h:68
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Mul
Product of integers.
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
DWARFExpression::Operation Op
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1909
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
Definition Sequence.h:305
@ Increment
Incrementally increasing token ID.
Definition AllocToken.h:26
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
LLVM_ABI bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Struct to hold various analysis needed for cost computations.
void execute(VPTransformState &State) override
Generate the phi nodes.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this first-order recurrence phi recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use cast/dyn_cast/isa and exec...
Definition VPlan.h:1485
PHINode & getIRPhi()
Definition VPlan.h:1493
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void execute(VPTransformState &State) override
Generate the instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
A pure-virtual common base class for recipes defining a single VPValue and using IR flags.
Definition VPlan.h:923
InstructionCost getCostForRecipeWithOpcode(unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const
Compute the cost for this recipe for VF, using Opcode and Ctx.
VPRecipeWithIRFlags(const unsigned char SC, ArrayRef< VPValue * > Operands, const VPIRFlags &Flags, DebugLoc DL=DebugLoc::getUnknown())
Definition VPlan.h:924
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
VPTypeAnalysis TypeAnalysis
VPlan-based type analysis.
Value * get(const VPValue *Def, bool IsScalar=false)
Get the generated vector Value for a given VPValue Def if IsScalar is false, otherwise return the gen...
Definition VPlan.cpp:263
IRBuilderBase & Builder
Hold a reference to the IRBuilder used to generate output IR code.
ElementCount VF
The chosen Vectorization Factor of the loop being vectorized.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Generate the wide load or gather.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenLoadEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
Definition VPlan.h:3391
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a wide load or gather.
VPValue * getCond() const
Definition VPlan.h:1828
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenSelectRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the select instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStoredValue() const
Return the address accessed by this recipe.
Definition VPlan.h:3474
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Generate the wide store or scatter.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenStoreEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
Definition VPlan.h:3477
void execute(VPTransformState &State) override
Generate a wide store or scatter.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStoredValue() const
Return the value stored by this recipe.
Definition VPlan.h:3437