LLVM 22.0.0git
X86CompressEVEX.cpp
Go to the documentation of this file.
1//===- X86CompressEVEX.cpp ------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass compresses instructions from EVEX space to legacy/VEX/EVEX space
10// when possible in order to reduce code size or facilitate HW decoding.
11//
12// Possible compression:
13// a. AVX512 instruction (EVEX) -> AVX instruction (VEX)
14// b. Promoted instruction (EVEX) -> pre-promotion instruction (legacy/VEX)
15// c. NDD (EVEX) -> non-NDD (legacy)
16// d. NF_ND (EVEX) -> NF (EVEX)
17// e. NonNF (EVEX) -> NF (EVEX)
18// f. SETZUCCm (EVEX) -> SETCCm (legacy)
19//
20// Compression a, b and c can always reduce code size, with some exceptions
21// such as promoted 16-bit CRC32 which is as long as the legacy version.
22//
23// legacy:
24// crc32w %si, %eax ## encoding: [0x66,0xf2,0x0f,0x38,0xf1,0xc6]
25// promoted:
26// crc32w %si, %eax ## encoding: [0x62,0xf4,0x7d,0x08,0xf1,0xc6]
27//
28// From performance perspective, these should be same (same uops and same EXE
29// ports). From a FMV perspective, an older legacy encoding is preferred b/c it
30// can execute in more places (broader HW install base). So we will still do
31// the compression.
32//
33// Compression d can help hardware decode (HW may skip reading the NDD
34// register) although the instruction length remains unchanged.
35//
36// Compression e can help hardware skip updating EFLAGS although the instruction
37// length remains unchanged.
38//===----------------------------------------------------------------------===//
39
41#include "X86.h"
42#include "X86InstrInfo.h"
43#include "X86Subtarget.h"
44#include "llvm/ADT/StringRef.h"
49#include "llvm/MC/MCInstrDesc.h"
50#include "llvm/Pass.h"
51#include <atomic>
52#include <cassert>
53#include <cstdint>
54
55using namespace llvm;
56
57#define COMP_EVEX_DESC "Compressing EVEX instrs when possible"
58#define COMP_EVEX_NAME "x86-compress-evex"
59
60#define DEBUG_TYPE COMP_EVEX_NAME
61
63
64namespace {
65// Including the generated EVEX compression tables.
66#define GET_X86_COMPRESS_EVEX_TABLE
67#include "X86GenInstrMapping.inc"
68
69class CompressEVEXPass : public MachineFunctionPass {
70public:
71 static char ID;
72 CompressEVEXPass() : MachineFunctionPass(ID) {}
73 StringRef getPassName() const override { return COMP_EVEX_DESC; }
74
75 bool runOnMachineFunction(MachineFunction &MF) override;
76
77 // This pass runs after regalloc and doesn't support VReg operands.
78 MachineFunctionProperties getRequiredProperties() const override {
79 return MachineFunctionProperties().setNoVRegs();
80 }
81};
82
83} // end anonymous namespace
84
85char CompressEVEXPass::ID = 0;
86
88 auto isHiRegIdx = [](MCRegister Reg) {
89 // Check for XMM register with indexes between 16 - 31.
90 if (Reg >= X86::XMM16 && Reg <= X86::XMM31)
91 return true;
92 // Check for YMM register with indexes between 16 - 31.
93 if (Reg >= X86::YMM16 && Reg <= X86::YMM31)
94 return true;
95 // Check for GPR with indexes between 16 - 31.
97 return true;
98 return false;
99 };
100
101 // Check that operands are not ZMM regs or
102 // XMM/YMM regs with hi indexes between 16 - 31.
103 for (const MachineOperand &MO : MI.explicit_operands()) {
104 if (!MO.isReg())
105 continue;
106
107 MCRegister Reg = MO.getReg().asMCReg();
109 "ZMM instructions should not be in the EVEX->VEX tables");
110 if (isHiRegIdx(Reg))
111 return true;
112 }
113
114 return false;
115}
116
117// Do any custom cleanup needed to finalize the conversion.
118static bool performCustomAdjustments(MachineInstr &MI, unsigned NewOpc) {
119 (void)NewOpc;
120 unsigned Opc = MI.getOpcode();
121 switch (Opc) {
122 case X86::VALIGNDZ128rri:
123 case X86::VALIGNDZ128rmi:
124 case X86::VALIGNQZ128rri:
125 case X86::VALIGNQZ128rmi: {
126 assert((NewOpc == X86::VPALIGNRrri || NewOpc == X86::VPALIGNRrmi) &&
127 "Unexpected new opcode!");
128 unsigned Scale =
129 (Opc == X86::VALIGNQZ128rri || Opc == X86::VALIGNQZ128rmi) ? 8 : 4;
130 MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
131 Imm.setImm(Imm.getImm() * Scale);
132 break;
133 }
134 case X86::VSHUFF32X4Z256rmi:
135 case X86::VSHUFF32X4Z256rri:
136 case X86::VSHUFF64X2Z256rmi:
137 case X86::VSHUFF64X2Z256rri:
138 case X86::VSHUFI32X4Z256rmi:
139 case X86::VSHUFI32X4Z256rri:
140 case X86::VSHUFI64X2Z256rmi:
141 case X86::VSHUFI64X2Z256rri: {
142 assert((NewOpc == X86::VPERM2F128rri || NewOpc == X86::VPERM2I128rri ||
143 NewOpc == X86::VPERM2F128rmi || NewOpc == X86::VPERM2I128rmi) &&
144 "Unexpected new opcode!");
145 MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
146 int64_t ImmVal = Imm.getImm();
147 // Set bit 5, move bit 1 to bit 4, copy bit 0.
148 Imm.setImm(0x20 | ((ImmVal & 2) << 3) | (ImmVal & 1));
149 break;
150 }
151 case X86::VRNDSCALEPDZ128rri:
152 case X86::VRNDSCALEPDZ128rmi:
153 case X86::VRNDSCALEPSZ128rri:
154 case X86::VRNDSCALEPSZ128rmi:
155 case X86::VRNDSCALEPDZ256rri:
156 case X86::VRNDSCALEPDZ256rmi:
157 case X86::VRNDSCALEPSZ256rri:
158 case X86::VRNDSCALEPSZ256rmi:
159 case X86::VRNDSCALESDZrri:
160 case X86::VRNDSCALESDZrmi:
161 case X86::VRNDSCALESSZrri:
162 case X86::VRNDSCALESSZrmi:
163 case X86::VRNDSCALESDZrri_Int:
164 case X86::VRNDSCALESDZrmi_Int:
165 case X86::VRNDSCALESSZrri_Int:
166 case X86::VRNDSCALESSZrmi_Int:
167 const MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
168 int64_t ImmVal = Imm.getImm();
169 // Ensure that only bits 3:0 of the immediate are used.
170 if ((ImmVal & 0xf) != ImmVal)
171 return false;
172 break;
173 }
174
175 return true;
176}
177
179 const X86Subtarget &ST) {
180 uint64_t TSFlags = MI.getDesc().TSFlags;
181
182 // Check for EVEX instructions only.
183 if ((TSFlags & X86II::EncodingMask) != X86II::EVEX)
184 return false;
185
186 // Instructions with mask or 512-bit vector can't be converted to VEX.
187 if (TSFlags & (X86II::EVEX_K | X86II::EVEX_L2))
188 return false;
189
190 auto IsRedundantNewDataDest = [&](unsigned &Opc) {
191 // $rbx = ADD64rr_ND $rbx, $rax / $rbx = ADD64rr_ND $rax, $rbx
192 // ->
193 // $rbx = ADD64rr $rbx, $rax
194 const MCInstrDesc &Desc = MI.getDesc();
195 Register Reg0 = MI.getOperand(0).getReg();
196 const MachineOperand &Op1 = MI.getOperand(1);
197 if (!Op1.isReg() || X86::getFirstAddrOperandIdx(MI) == 1 ||
198 X86::isCFCMOVCC(MI.getOpcode()))
199 return false;
200 Register Reg1 = Op1.getReg();
201 if (Reg1 == Reg0)
202 return true;
203
204 // Op1 and Op2 may be commutable for ND instructions.
205 if (!Desc.isCommutable() || Desc.getNumOperands() < 3 ||
206 !MI.getOperand(2).isReg() || MI.getOperand(2).getReg() != Reg0)
207 return false;
208 // Opcode may change after commute, e.g. SHRD -> SHLD
209 ST.getInstrInfo()->commuteInstruction(MI, false, 1, 2);
210 Opc = MI.getOpcode();
211 return true;
212 };
213
214 // EVEX_B has several meanings.
215 // AVX512:
216 // register form: rounding control or SAE
217 // memory form: broadcast
218 //
219 // APX:
220 // MAP4: NDD, ZU
221 //
222 // For AVX512 cases, EVEX prefix is needed in order to carry this information
223 // thus preventing the transformation to VEX encoding.
224 bool IsND = X86II::hasNewDataDest(TSFlags);
225 unsigned Opc = MI.getOpcode();
226 bool IsSetZUCCm = Opc == X86::SETZUCCm;
227 if (TSFlags & X86II::EVEX_B && !IsND && !IsSetZUCCm)
228 return false;
229 // MOVBE*rr is special because it has semantic of NDD but not set EVEX_B.
230 bool IsNDLike = IsND || Opc == X86::MOVBE32rr || Opc == X86::MOVBE64rr;
231 bool IsRedundantNDD = IsNDLike ? IsRedundantNewDataDest(Opc) : false;
232
233 auto GetCompressedOpc = [&](unsigned Opc) -> unsigned {
234 ArrayRef<X86TableEntry> Table = ArrayRef(X86CompressEVEXTable);
235 const auto I = llvm::lower_bound(Table, Opc);
236 if (I == Table.end() || I->OldOpc != Opc)
237 return 0;
238
239 if (usesExtendedRegister(MI) || !checkPredicate(I->NewOpc, &ST) ||
240 !performCustomAdjustments(MI, I->NewOpc))
241 return 0;
242 return I->NewOpc;
243 };
244
245 Register Dst = MI.getOperand(0).getReg();
246 if (IsRedundantNDD) {
247 // Redundant NDD ops cannot be safely compressed if either:
248 // - the legacy op would introduce a partial write that BreakFalseDeps
249 // identified as a potential stall, or
250 // - the op is writing to a subregister of a live register, i.e. the
251 // full (zeroed) result is used.
252 // Both cases are indicated by an implicit def of the superregister.
253 if (Dst &&
254 (X86::GR16RegClass.contains(Dst) || X86::GR8RegClass.contains(Dst))) {
255 Register Super = getX86SubSuperRegister(Dst, 64);
256 if (MI.definesRegister(Super, /*TRI=*/nullptr))
257 IsRedundantNDD = false;
258 }
259
260 // ADDrm/mr instructions with NDD + relocation had been transformed to the
261 // instructions without NDD in X86SuppressAPXForRelocation pass. That is to
262 // keep backward compatibility with linkers without APX support.
265 "Unexpected NDD instruction with relocation!");
266 } else if (Opc == X86::ADD32ri_ND || Opc == X86::ADD64ri32_ND ||
267 Opc == X86::ADD32rr_ND || Opc == X86::ADD64rr_ND) {
268 // Non-redundant NDD ADD can be compressed to LEA when:
269 // - No EGPR register used and
270 // - EFLAGS is dead.
271 if (!usesExtendedRegister(MI) &&
272 MI.registerDefIsDead(X86::EFLAGS, /*TRI=*/nullptr)) {
273 Register Src1 = MI.getOperand(1).getReg();
274 const MachineOperand &Src2 = MI.getOperand(2);
275 bool Is32BitReg = Opc == X86::ADD32ri_ND || Opc == X86::ADD32rr_ND;
276 const MCInstrDesc &NewDesc =
277 ST.getInstrInfo()->get(Is32BitReg ? X86::LEA64_32r : X86::LEA64r);
278 if (Is32BitReg)
279 Src1 = getX86SubSuperRegister(Src1, 64);
280 MachineInstrBuilder MIB = BuildMI(MBB, MI, MI.getDebugLoc(), NewDesc, Dst)
281 .addReg(Src1)
282 .addImm(1);
283 if (Opc == X86::ADD32ri_ND || Opc == X86::ADD64ri32_ND)
284 MIB.addReg(0).add(Src2);
285 else if (Is32BitReg)
286 MIB.addReg(getX86SubSuperRegister(Src2.getReg(), 64)).addImm(0);
287 else
288 MIB.add(Src2).addImm(0);
289 MIB.addReg(0);
290 MI.removeFromParent();
291 return true;
292 }
293 }
294
295 // NonNF -> NF only if it's not a compressible NDD instruction and eflags is
296 // dead.
297 unsigned NewOpc = IsRedundantNDD
299 : ((IsNDLike && ST.hasNF() &&
300 MI.registerDefIsDead(X86::EFLAGS, /*TRI=*/nullptr))
302 : GetCompressedOpc(Opc));
303
304 if (!NewOpc)
305 return false;
306
307 const MCInstrDesc &NewDesc = ST.getInstrInfo()->get(NewOpc);
308 MI.setDesc(NewDesc);
309 unsigned AsmComment;
310 switch (NewDesc.TSFlags & X86II::EncodingMask) {
311 case X86II::LEGACY:
312 AsmComment = X86::AC_EVEX_2_LEGACY;
313 break;
314 case X86II::VEX:
315 AsmComment = X86::AC_EVEX_2_VEX;
316 break;
317 case X86II::EVEX:
318 AsmComment = X86::AC_EVEX_2_EVEX;
319 assert(IsND && (NewDesc.TSFlags & X86II::EVEX_NF) &&
320 "Unknown EVEX2EVEX compression");
321 break;
322 default:
323 llvm_unreachable("Unknown EVEX compression");
324 }
325 MI.setAsmPrinterFlag(AsmComment);
326 if (IsRedundantNDD)
327 MI.tieOperands(0, 1);
328
329 return true;
330}
331
332bool CompressEVEXPass::runOnMachineFunction(MachineFunction &MF) {
333 LLVM_DEBUG(dbgs() << "Start X86CompressEVEXPass\n";);
334#ifndef NDEBUG
335 // Make sure the tables are sorted.
336 static std::atomic<bool> TableChecked(false);
337 if (!TableChecked.load(std::memory_order_relaxed)) {
338 assert(llvm::is_sorted(X86CompressEVEXTable) &&
339 "X86CompressEVEXTable is not sorted!");
340 TableChecked.store(true, std::memory_order_relaxed);
341 }
342#endif
343 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
344 if (!ST.hasAVX512() && !ST.hasEGPR() && !ST.hasNDD() && !ST.hasZU())
345 return false;
346
347 bool Changed = false;
348
349 for (MachineBasicBlock &MBB : MF) {
350 // Traverse the basic block.
351 for (MachineInstr &MI : llvm::make_early_inc_range(MBB))
353 }
354 LLVM_DEBUG(dbgs() << "End X86CompressEVEXPass\n";);
355 return Changed;
356}
357
358INITIALIZE_PASS(CompressEVEXPass, COMP_EVEX_NAME, COMP_EVEX_DESC, false, false)
359
361 return new CompressEVEXPass();
362}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock & MBB
IRTranslator LLVM IR MI
#define I(x, y, z)
Definition MD5.cpp:57
Register Reg
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition PassSupport.h:56
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition Value.cpp:480
#define LLVM_DEBUG(...)
Definition Debug.h:114
#define COMP_EVEX_DESC
static bool performCustomAdjustments(MachineInstr &MI, unsigned NewOpc)
#define COMP_EVEX_NAME
cl::opt< bool > X86EnableAPXForRelocation
static bool CompressEVEXImpl(MachineInstr &MI, MachineBasicBlock &MBB, const X86Subtarget &ST)
static bool usesExtendedRegister(const MachineInstr &MI)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
iterator end() const
Definition ArrayRef.h:131
FunctionPass class - This class is used to implement most global optimizations.
Definition Pass.h:314
Describe properties that are true of each instruction in the target description file.
Wrapper class representing physical registers. Should be passed by value.
Definition MCRegister.h:41
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
Properties which a MachineFunction may have at a given point in time.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
Representation of each machine instruction.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
Register getReg() const
getReg - Returns the register number.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
bool isZMMReg(MCRegister Reg)
bool hasNewDataDest(uint64_t TSFlags)
@ EVEX
EVEX - Specifies that this instruction use EVEX form which provides syntax support up to 32 512-bit r...
@ VEX
VEX - encoding using 0xC4/0xC5.
@ LEGACY
LEGACY - encoding using REX/REX2 or w/o opcode prefix.
bool isApxExtendedReg(MCRegister Reg)
int getFirstAddrOperandIdx(const MachineInstr &MI)
Return the index of the instruction's first address operand, if it has a memory reference,...
unsigned getNonNDVariant(unsigned Opc)
unsigned getNFVariant(unsigned Opc)
This is an optimization pass for GlobalISel generic memory operations.
static bool isAddMemInstrWithRelocation(const MachineInstr &MI)
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
MCRegister getX86SubSuperRegister(MCRegister Reg, unsigned Size, bool High=false)
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:632
Op::Description Desc
FunctionPass * createX86CompressEVEXPass()
This pass compress instructions from EVEX space to legacy/VEX/EVEX space when possible in order to re...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool is_sorted(R &&Range, Compare C)
Wrapper function around std::is_sorted to check if elements in a range R are sorted with respect to a...
Definition STLExtras.h:1932
auto lower_bound(R &&Range, T &&Value)
Provide wrappers to std::lower_bound which take ranges instead of having to pass begin/end explicitly...
Definition STLExtras.h:2006
ArrayRef(const T &OneElt) -> ArrayRef< T >