LLVM 22.0.0git
X86InstrInfo.cpp
Go to the documentation of this file.
1//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the X86 implementation of the TargetInstrInfo class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "X86InstrInfo.h"
14#include "X86.h"
15#include "X86InstrBuilder.h"
16#include "X86InstrFoldTables.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/Sequence.h"
36#include "llvm/IR/Function.h"
37#include "llvm/IR/InstrTypes.h"
38#include "llvm/IR/Module.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCInst.h"
43#include "llvm/Support/Debug.h"
47#include <atomic>
48#include <optional>
49
50using namespace llvm;
51
52#define DEBUG_TYPE "x86-instr-info"
53
54#define GET_INSTRINFO_CTOR_DTOR
55#include "X86GenInstrInfo.inc"
56
58
59static cl::opt<bool>
60 NoFusing("disable-spill-fusing",
61 cl::desc("Disable fusing of spill code into instructions"),
63static cl::opt<bool>
64 PrintFailedFusing("print-failed-fuse-candidates",
65 cl::desc("Print instructions that the allocator wants to"
66 " fuse, but the X86 backend currently can't"),
68static cl::opt<bool>
69 ReMatPICStubLoad("remat-pic-stub-load",
70 cl::desc("Re-materialize load from stub in PIC mode"),
71 cl::init(false), cl::Hidden);
73 PartialRegUpdateClearance("partial-reg-update-clearance",
74 cl::desc("Clearance between two register writes "
75 "for inserting XOR to avoid partial "
76 "register update"),
77 cl::init(64), cl::Hidden);
79 "undef-reg-clearance",
80 cl::desc("How many idle instructions we would like before "
81 "certain undef register reads"),
82 cl::init(128), cl::Hidden);
83
84// Pin the vtable to this file.
85void X86InstrInfo::anchor() {}
86
88 : X86GenInstrInfo(STI,
89 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
90 : X86::ADJCALLSTACKDOWN32),
91 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
92 : X86::ADJCALLSTACKUP32),
93 X86::CATCHRET, (STI.is64Bit() ? X86::RET64 : X86::RET32)),
94 Subtarget(STI), RI(STI.getTargetTriple()) {}
95
98 const TargetRegisterInfo *TRI) const {
99 auto *RC = TargetInstrInfo::getRegClass(MCID, OpNum, TRI);
100 // If the target does not have egpr, then r16-r31 will be resereved for all
101 // instructions.
102 if (!RC || !Subtarget.hasEGPR())
103 return RC;
104
106 return RC;
107
108 const X86RegisterInfo *RI = Subtarget.getRegisterInfo();
109 return RI->constrainRegClassToNonRex2(RC);
110}
111
113 Register &SrcReg, Register &DstReg,
114 unsigned &SubIdx) const {
115 switch (MI.getOpcode()) {
116 default:
117 break;
118 case X86::MOVSX16rr8:
119 case X86::MOVZX16rr8:
120 case X86::MOVSX32rr8:
121 case X86::MOVZX32rr8:
122 case X86::MOVSX64rr8:
123 if (!Subtarget.is64Bit())
124 // It's not always legal to reference the low 8-bit of the larger
125 // register in 32-bit mode.
126 return false;
127 [[fallthrough]];
128 case X86::MOVSX32rr16:
129 case X86::MOVZX32rr16:
130 case X86::MOVSX64rr16:
131 case X86::MOVSX64rr32: {
132 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
133 // Be conservative.
134 return false;
135 SrcReg = MI.getOperand(1).getReg();
136 DstReg = MI.getOperand(0).getReg();
137 switch (MI.getOpcode()) {
138 default:
139 llvm_unreachable("Unreachable!");
140 case X86::MOVSX16rr8:
141 case X86::MOVZX16rr8:
142 case X86::MOVSX32rr8:
143 case X86::MOVZX32rr8:
144 case X86::MOVSX64rr8:
145 SubIdx = X86::sub_8bit;
146 break;
147 case X86::MOVSX32rr16:
148 case X86::MOVZX32rr16:
149 case X86::MOVSX64rr16:
150 SubIdx = X86::sub_16bit;
151 break;
152 case X86::MOVSX64rr32:
153 SubIdx = X86::sub_32bit;
154 break;
155 }
156 return true;
157 }
158 }
159 return false;
160}
161
163 if (MI.mayLoad() || MI.mayStore())
164 return false;
165
166 // Some target-independent operations that trivially lower to data-invariant
167 // instructions.
168 if (MI.isCopyLike() || MI.isInsertSubreg())
169 return true;
170
171 unsigned Opcode = MI.getOpcode();
172 using namespace X86;
173 // On x86 it is believed that imul is constant time w.r.t. the loaded data.
174 // However, they set flags and are perhaps the most surprisingly constant
175 // time operations so we call them out here separately.
176 if (isIMUL(Opcode))
177 return true;
178 // Bit scanning and counting instructions that are somewhat surprisingly
179 // constant time as they scan across bits and do other fairly complex
180 // operations like popcnt, but are believed to be constant time on x86.
181 // However, these set flags.
182 if (isBSF(Opcode) || isBSR(Opcode) || isLZCNT(Opcode) || isPOPCNT(Opcode) ||
183 isTZCNT(Opcode))
184 return true;
185 // Bit manipulation instructions are effectively combinations of basic
186 // arithmetic ops, and should still execute in constant time. These also
187 // set flags.
188 if (isBLCFILL(Opcode) || isBLCI(Opcode) || isBLCIC(Opcode) ||
189 isBLCMSK(Opcode) || isBLCS(Opcode) || isBLSFILL(Opcode) ||
190 isBLSI(Opcode) || isBLSIC(Opcode) || isBLSMSK(Opcode) || isBLSR(Opcode) ||
191 isTZMSK(Opcode))
192 return true;
193 // Bit extracting and clearing instructions should execute in constant time,
194 // and set flags.
195 if (isBEXTR(Opcode) || isBZHI(Opcode))
196 return true;
197 // Shift and rotate.
198 if (isROL(Opcode) || isROR(Opcode) || isSAR(Opcode) || isSHL(Opcode) ||
199 isSHR(Opcode) || isSHLD(Opcode) || isSHRD(Opcode))
200 return true;
201 // Basic arithmetic is constant time on the input but does set flags.
202 if (isADC(Opcode) || isADD(Opcode) || isAND(Opcode) || isOR(Opcode) ||
203 isSBB(Opcode) || isSUB(Opcode) || isXOR(Opcode))
204 return true;
205 // Arithmetic with just 32-bit and 64-bit variants and no immediates.
206 if (isANDN(Opcode))
207 return true;
208 // Unary arithmetic operations.
209 if (isDEC(Opcode) || isINC(Opcode) || isNEG(Opcode))
210 return true;
211 // Unlike other arithmetic, NOT doesn't set EFLAGS.
212 if (isNOT(Opcode))
213 return true;
214 // Various move instructions used to zero or sign extend things. Note that we
215 // intentionally don't support the _NOREX variants as we can't handle that
216 // register constraint anyways.
217 if (isMOVSX(Opcode) || isMOVZX(Opcode) || isMOVSXD(Opcode) || isMOV(Opcode))
218 return true;
219 // Arithmetic instructions that are both constant time and don't set flags.
220 if (isRORX(Opcode) || isSARX(Opcode) || isSHLX(Opcode) || isSHRX(Opcode))
221 return true;
222 // LEA doesn't actually access memory, and its arithmetic is constant time.
223 if (isLEA(Opcode))
224 return true;
225 // By default, assume that the instruction is not data invariant.
226 return false;
227}
228
230 switch (MI.getOpcode()) {
231 default:
232 // By default, assume that the load will immediately leak.
233 return false;
234
235 // On x86 it is believed that imul is constant time w.r.t. the loaded data.
236 // However, they set flags and are perhaps the most surprisingly constant
237 // time operations so we call them out here separately.
238 case X86::IMUL16rm:
239 case X86::IMUL16rmi:
240 case X86::IMUL32rm:
241 case X86::IMUL32rmi:
242 case X86::IMUL64rm:
243 case X86::IMUL64rmi32:
244
245 // Bit scanning and counting instructions that are somewhat surprisingly
246 // constant time as they scan across bits and do other fairly complex
247 // operations like popcnt, but are believed to be constant time on x86.
248 // However, these set flags.
249 case X86::BSF16rm:
250 case X86::BSF32rm:
251 case X86::BSF64rm:
252 case X86::BSR16rm:
253 case X86::BSR32rm:
254 case X86::BSR64rm:
255 case X86::LZCNT16rm:
256 case X86::LZCNT32rm:
257 case X86::LZCNT64rm:
258 case X86::POPCNT16rm:
259 case X86::POPCNT32rm:
260 case X86::POPCNT64rm:
261 case X86::TZCNT16rm:
262 case X86::TZCNT32rm:
263 case X86::TZCNT64rm:
264
265 // Bit manipulation instructions are effectively combinations of basic
266 // arithmetic ops, and should still execute in constant time. These also
267 // set flags.
268 case X86::BLCFILL32rm:
269 case X86::BLCFILL64rm:
270 case X86::BLCI32rm:
271 case X86::BLCI64rm:
272 case X86::BLCIC32rm:
273 case X86::BLCIC64rm:
274 case X86::BLCMSK32rm:
275 case X86::BLCMSK64rm:
276 case X86::BLCS32rm:
277 case X86::BLCS64rm:
278 case X86::BLSFILL32rm:
279 case X86::BLSFILL64rm:
280 case X86::BLSI32rm:
281 case X86::BLSI64rm:
282 case X86::BLSIC32rm:
283 case X86::BLSIC64rm:
284 case X86::BLSMSK32rm:
285 case X86::BLSMSK64rm:
286 case X86::BLSR32rm:
287 case X86::BLSR64rm:
288 case X86::TZMSK32rm:
289 case X86::TZMSK64rm:
290
291 // Bit extracting and clearing instructions should execute in constant time,
292 // and set flags.
293 case X86::BEXTR32rm:
294 case X86::BEXTR64rm:
295 case X86::BEXTRI32mi:
296 case X86::BEXTRI64mi:
297 case X86::BZHI32rm:
298 case X86::BZHI64rm:
299
300 // Basic arithmetic is constant time on the input but does set flags.
301 case X86::ADC8rm:
302 case X86::ADC16rm:
303 case X86::ADC32rm:
304 case X86::ADC64rm:
305 case X86::ADD8rm:
306 case X86::ADD16rm:
307 case X86::ADD32rm:
308 case X86::ADD64rm:
309 case X86::AND8rm:
310 case X86::AND16rm:
311 case X86::AND32rm:
312 case X86::AND64rm:
313 case X86::ANDN32rm:
314 case X86::ANDN64rm:
315 case X86::OR8rm:
316 case X86::OR16rm:
317 case X86::OR32rm:
318 case X86::OR64rm:
319 case X86::SBB8rm:
320 case X86::SBB16rm:
321 case X86::SBB32rm:
322 case X86::SBB64rm:
323 case X86::SUB8rm:
324 case X86::SUB16rm:
325 case X86::SUB32rm:
326 case X86::SUB64rm:
327 case X86::XOR8rm:
328 case X86::XOR16rm:
329 case X86::XOR32rm:
330 case X86::XOR64rm:
331
332 // Integer multiply w/o affecting flags is still believed to be constant
333 // time on x86. Called out separately as this is among the most surprising
334 // instructions to exhibit that behavior.
335 case X86::MULX32rm:
336 case X86::MULX64rm:
337
338 // Arithmetic instructions that are both constant time and don't set flags.
339 case X86::RORX32mi:
340 case X86::RORX64mi:
341 case X86::SARX32rm:
342 case X86::SARX64rm:
343 case X86::SHLX32rm:
344 case X86::SHLX64rm:
345 case X86::SHRX32rm:
346 case X86::SHRX64rm:
347
348 // Conversions are believed to be constant time and don't set flags.
349 case X86::CVTTSD2SI64rm:
350 case X86::VCVTTSD2SI64rm:
351 case X86::VCVTTSD2SI64Zrm:
352 case X86::CVTTSD2SIrm:
353 case X86::VCVTTSD2SIrm:
354 case X86::VCVTTSD2SIZrm:
355 case X86::CVTTSS2SI64rm:
356 case X86::VCVTTSS2SI64rm:
357 case X86::VCVTTSS2SI64Zrm:
358 case X86::CVTTSS2SIrm:
359 case X86::VCVTTSS2SIrm:
360 case X86::VCVTTSS2SIZrm:
361 case X86::CVTSI2SDrm:
362 case X86::VCVTSI2SDrm:
363 case X86::VCVTSI2SDZrm:
364 case X86::CVTSI2SSrm:
365 case X86::VCVTSI2SSrm:
366 case X86::VCVTSI2SSZrm:
367 case X86::CVTSI642SDrm:
368 case X86::VCVTSI642SDrm:
369 case X86::VCVTSI642SDZrm:
370 case X86::CVTSI642SSrm:
371 case X86::VCVTSI642SSrm:
372 case X86::VCVTSI642SSZrm:
373 case X86::CVTSS2SDrm:
374 case X86::VCVTSS2SDrm:
375 case X86::VCVTSS2SDZrm:
376 case X86::CVTSD2SSrm:
377 case X86::VCVTSD2SSrm:
378 case X86::VCVTSD2SSZrm:
379 // AVX512 added unsigned integer conversions.
380 case X86::VCVTTSD2USI64Zrm:
381 case X86::VCVTTSD2USIZrm:
382 case X86::VCVTTSS2USI64Zrm:
383 case X86::VCVTTSS2USIZrm:
384 case X86::VCVTUSI2SDZrm:
385 case X86::VCVTUSI642SDZrm:
386 case X86::VCVTUSI2SSZrm:
387 case X86::VCVTUSI642SSZrm:
388
389 // Loads to register don't set flags.
390 case X86::MOV8rm:
391 case X86::MOV8rm_NOREX:
392 case X86::MOV16rm:
393 case X86::MOV32rm:
394 case X86::MOV64rm:
395 case X86::MOVSX16rm8:
396 case X86::MOVSX32rm16:
397 case X86::MOVSX32rm8:
398 case X86::MOVSX32rm8_NOREX:
399 case X86::MOVSX64rm16:
400 case X86::MOVSX64rm32:
401 case X86::MOVSX64rm8:
402 case X86::MOVZX16rm8:
403 case X86::MOVZX32rm16:
404 case X86::MOVZX32rm8:
405 case X86::MOVZX32rm8_NOREX:
406 case X86::MOVZX64rm16:
407 case X86::MOVZX64rm8:
408 return true;
409 }
410}
411
413 const MachineFunction *MF = MI.getParent()->getParent();
415
416 if (isFrameInstr(MI)) {
417 int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign());
418 SPAdj -= getFrameAdjustment(MI);
419 if (!isFrameSetup(MI))
420 SPAdj = -SPAdj;
421 return SPAdj;
422 }
423
424 // To know whether a call adjusts the stack, we need information
425 // that is bound to the following ADJCALLSTACKUP pseudo.
426 // Look for the next ADJCALLSTACKUP that follows the call.
427 if (MI.isCall()) {
428 const MachineBasicBlock *MBB = MI.getParent();
430 for (auto E = MBB->end(); I != E; ++I) {
431 if (I->getOpcode() == getCallFrameDestroyOpcode() || I->isCall())
432 break;
433 }
434
435 // If we could not find a frame destroy opcode, then it has already
436 // been simplified, so we don't care.
437 if (I->getOpcode() != getCallFrameDestroyOpcode())
438 return 0;
439
440 return -(I->getOperand(1).getImm());
441 }
442
443 // Currently handle only PUSHes we can reasonably expect to see
444 // in call sequences
445 switch (MI.getOpcode()) {
446 default:
447 return 0;
448 case X86::PUSH32r:
449 case X86::PUSH32rmm:
450 case X86::PUSH32rmr:
451 case X86::PUSH32i:
452 return 4;
453 case X86::PUSH64r:
454 case X86::PUSH64rmm:
455 case X86::PUSH64rmr:
456 case X86::PUSH64i32:
457 return 8;
458 }
459}
460
461/// Return true and the FrameIndex if the specified
462/// operand and follow operands form a reference to the stack frame.
463bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
464 int &FrameIndex) const {
465 if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
466 MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
467 MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
468 MI.getOperand(Op + X86::AddrDisp).isImm() &&
469 MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
470 MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
471 MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
472 FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
473 return true;
474 }
475 return false;
476}
477
478static bool isFrameLoadOpcode(int Opcode, TypeSize &MemBytes) {
479 switch (Opcode) {
480 default:
481 return false;
482 case X86::MOV8rm:
483 case X86::KMOVBkm:
484 case X86::KMOVBkm_EVEX:
485 MemBytes = TypeSize::getFixed(1);
486 return true;
487 case X86::MOV16rm:
488 case X86::KMOVWkm:
489 case X86::KMOVWkm_EVEX:
490 case X86::VMOVSHZrm:
491 case X86::VMOVSHZrm_alt:
492 MemBytes = TypeSize::getFixed(2);
493 return true;
494 case X86::MOV32rm:
495 case X86::MOVSSrm:
496 case X86::MOVSSrm_alt:
497 case X86::VMOVSSrm:
498 case X86::VMOVSSrm_alt:
499 case X86::VMOVSSZrm:
500 case X86::VMOVSSZrm_alt:
501 case X86::KMOVDkm:
502 case X86::KMOVDkm_EVEX:
503 MemBytes = TypeSize::getFixed(4);
504 return true;
505 case X86::MOV64rm:
506 case X86::LD_Fp64m:
507 case X86::MOVSDrm:
508 case X86::MOVSDrm_alt:
509 case X86::VMOVSDrm:
510 case X86::VMOVSDrm_alt:
511 case X86::VMOVSDZrm:
512 case X86::VMOVSDZrm_alt:
513 case X86::MMX_MOVD64rm:
514 case X86::MMX_MOVQ64rm:
515 case X86::KMOVQkm:
516 case X86::KMOVQkm_EVEX:
517 MemBytes = TypeSize::getFixed(8);
518 return true;
519 case X86::MOVAPSrm:
520 case X86::MOVUPSrm:
521 case X86::MOVAPDrm:
522 case X86::MOVUPDrm:
523 case X86::MOVDQArm:
524 case X86::MOVDQUrm:
525 case X86::VMOVAPSrm:
526 case X86::VMOVUPSrm:
527 case X86::VMOVAPDrm:
528 case X86::VMOVUPDrm:
529 case X86::VMOVDQArm:
530 case X86::VMOVDQUrm:
531 case X86::VMOVAPSZ128rm:
532 case X86::VMOVUPSZ128rm:
533 case X86::VMOVAPSZ128rm_NOVLX:
534 case X86::VMOVUPSZ128rm_NOVLX:
535 case X86::VMOVAPDZ128rm:
536 case X86::VMOVUPDZ128rm:
537 case X86::VMOVDQU8Z128rm:
538 case X86::VMOVDQU16Z128rm:
539 case X86::VMOVDQA32Z128rm:
540 case X86::VMOVDQU32Z128rm:
541 case X86::VMOVDQA64Z128rm:
542 case X86::VMOVDQU64Z128rm:
543 MemBytes = TypeSize::getFixed(16);
544 return true;
545 case X86::VMOVAPSYrm:
546 case X86::VMOVUPSYrm:
547 case X86::VMOVAPDYrm:
548 case X86::VMOVUPDYrm:
549 case X86::VMOVDQAYrm:
550 case X86::VMOVDQUYrm:
551 case X86::VMOVAPSZ256rm:
552 case X86::VMOVUPSZ256rm:
553 case X86::VMOVAPSZ256rm_NOVLX:
554 case X86::VMOVUPSZ256rm_NOVLX:
555 case X86::VMOVAPDZ256rm:
556 case X86::VMOVUPDZ256rm:
557 case X86::VMOVDQU8Z256rm:
558 case X86::VMOVDQU16Z256rm:
559 case X86::VMOVDQA32Z256rm:
560 case X86::VMOVDQU32Z256rm:
561 case X86::VMOVDQA64Z256rm:
562 case X86::VMOVDQU64Z256rm:
563 MemBytes = TypeSize::getFixed(32);
564 return true;
565 case X86::VMOVAPSZrm:
566 case X86::VMOVUPSZrm:
567 case X86::VMOVAPDZrm:
568 case X86::VMOVUPDZrm:
569 case X86::VMOVDQU8Zrm:
570 case X86::VMOVDQU16Zrm:
571 case X86::VMOVDQA32Zrm:
572 case X86::VMOVDQU32Zrm:
573 case X86::VMOVDQA64Zrm:
574 case X86::VMOVDQU64Zrm:
575 MemBytes = TypeSize::getFixed(64);
576 return true;
577 }
578}
579
580static bool isFrameStoreOpcode(int Opcode, TypeSize &MemBytes) {
581 switch (Opcode) {
582 default:
583 return false;
584 case X86::MOV8mr:
585 case X86::KMOVBmk:
586 case X86::KMOVBmk_EVEX:
587 MemBytes = TypeSize::getFixed(1);
588 return true;
589 case X86::MOV16mr:
590 case X86::KMOVWmk:
591 case X86::KMOVWmk_EVEX:
592 case X86::VMOVSHZmr:
593 MemBytes = TypeSize::getFixed(2);
594 return true;
595 case X86::MOV32mr:
596 case X86::MOVSSmr:
597 case X86::VMOVSSmr:
598 case X86::VMOVSSZmr:
599 case X86::KMOVDmk:
600 case X86::KMOVDmk_EVEX:
601 MemBytes = TypeSize::getFixed(4);
602 return true;
603 case X86::MOV64mr:
604 case X86::ST_FpP64m:
605 case X86::MOVSDmr:
606 case X86::VMOVSDmr:
607 case X86::VMOVSDZmr:
608 case X86::MMX_MOVD64mr:
609 case X86::MMX_MOVQ64mr:
610 case X86::MMX_MOVNTQmr:
611 case X86::KMOVQmk:
612 case X86::KMOVQmk_EVEX:
613 MemBytes = TypeSize::getFixed(8);
614 return true;
615 case X86::MOVAPSmr:
616 case X86::MOVUPSmr:
617 case X86::MOVAPDmr:
618 case X86::MOVUPDmr:
619 case X86::MOVDQAmr:
620 case X86::MOVDQUmr:
621 case X86::VMOVAPSmr:
622 case X86::VMOVUPSmr:
623 case X86::VMOVAPDmr:
624 case X86::VMOVUPDmr:
625 case X86::VMOVDQAmr:
626 case X86::VMOVDQUmr:
627 case X86::VMOVUPSZ128mr:
628 case X86::VMOVAPSZ128mr:
629 case X86::VMOVUPSZ128mr_NOVLX:
630 case X86::VMOVAPSZ128mr_NOVLX:
631 case X86::VMOVUPDZ128mr:
632 case X86::VMOVAPDZ128mr:
633 case X86::VMOVDQA32Z128mr:
634 case X86::VMOVDQU32Z128mr:
635 case X86::VMOVDQA64Z128mr:
636 case X86::VMOVDQU64Z128mr:
637 case X86::VMOVDQU8Z128mr:
638 case X86::VMOVDQU16Z128mr:
639 MemBytes = TypeSize::getFixed(16);
640 return true;
641 case X86::VMOVUPSYmr:
642 case X86::VMOVAPSYmr:
643 case X86::VMOVUPDYmr:
644 case X86::VMOVAPDYmr:
645 case X86::VMOVDQUYmr:
646 case X86::VMOVDQAYmr:
647 case X86::VMOVUPSZ256mr:
648 case X86::VMOVAPSZ256mr:
649 case X86::VMOVUPSZ256mr_NOVLX:
650 case X86::VMOVAPSZ256mr_NOVLX:
651 case X86::VMOVUPDZ256mr:
652 case X86::VMOVAPDZ256mr:
653 case X86::VMOVDQU8Z256mr:
654 case X86::VMOVDQU16Z256mr:
655 case X86::VMOVDQA32Z256mr:
656 case X86::VMOVDQU32Z256mr:
657 case X86::VMOVDQA64Z256mr:
658 case X86::VMOVDQU64Z256mr:
659 MemBytes = TypeSize::getFixed(32);
660 return true;
661 case X86::VMOVUPSZmr:
662 case X86::VMOVAPSZmr:
663 case X86::VMOVUPDZmr:
664 case X86::VMOVAPDZmr:
665 case X86::VMOVDQU8Zmr:
666 case X86::VMOVDQU16Zmr:
667 case X86::VMOVDQA32Zmr:
668 case X86::VMOVDQU32Zmr:
669 case X86::VMOVDQA64Zmr:
670 case X86::VMOVDQU64Zmr:
671 MemBytes = TypeSize::getFixed(64);
672 return true;
673 }
674 return false;
675}
676
678 int &FrameIndex) const {
679 TypeSize Dummy = TypeSize::getZero();
680 return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
681}
682
684 int &FrameIndex,
685 TypeSize &MemBytes) const {
686 if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
687 if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
688 return MI.getOperand(0).getReg();
689 return Register();
690}
691
693 int &FrameIndex) const {
694 TypeSize Dummy = TypeSize::getZero();
695 if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
696 if (Register Reg = isLoadFromStackSlot(MI, FrameIndex))
697 return Reg;
698 // Check for post-frame index elimination operations
700 if (hasLoadFromStackSlot(MI, Accesses)) {
701 FrameIndex =
702 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
703 ->getFrameIndex();
704 return MI.getOperand(0).getReg();
705 }
706 }
707 return Register();
708}
709
711 int &FrameIndex) const {
712 TypeSize Dummy = TypeSize::getZero();
713 return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
714}
715
717 int &FrameIndex,
718 TypeSize &MemBytes) const {
719 if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
720 if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
721 isFrameOperand(MI, 0, FrameIndex))
722 return MI.getOperand(X86::AddrNumOperands).getReg();
723 return Register();
724}
725
727 int &FrameIndex) const {
728 TypeSize Dummy = TypeSize::getZero();
729 if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
730 if (Register Reg = isStoreToStackSlot(MI, FrameIndex))
731 return Reg;
732 // Check for post-frame index elimination operations
734 if (hasStoreToStackSlot(MI, Accesses)) {
735 FrameIndex =
736 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
737 ->getFrameIndex();
738 return MI.getOperand(X86::AddrNumOperands).getReg();
739 }
740 }
741 return Register();
742}
743
744/// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
745static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) {
746 // Don't waste compile time scanning use-def chains of physregs.
747 if (!BaseReg.isVirtual())
748 return false;
749 bool isPICBase = false;
750 for (const MachineInstr &DefMI : MRI.def_instructions(BaseReg)) {
751 if (DefMI.getOpcode() != X86::MOVPC32r)
752 return false;
753 assert(!isPICBase && "More than one PIC base?");
754 isPICBase = true;
755 }
756 return isPICBase;
757}
758
760 const MachineInstr &MI) const {
761 switch (MI.getOpcode()) {
762 default:
763 // This function should only be called for opcodes with the ReMaterializable
764 // flag set.
765 llvm_unreachable("Unknown rematerializable operation!");
766 break;
767 case X86::IMPLICIT_DEF:
768 // Defer to generic logic.
769 break;
770 case X86::LOAD_STACK_GUARD:
771 case X86::LD_Fp032:
772 case X86::LD_Fp064:
773 case X86::LD_Fp080:
774 case X86::LD_Fp132:
775 case X86::LD_Fp164:
776 case X86::LD_Fp180:
777 case X86::AVX1_SETALLONES:
778 case X86::AVX2_SETALLONES:
779 case X86::AVX512_128_SET0:
780 case X86::AVX512_256_SET0:
781 case X86::AVX512_512_SET0:
782 case X86::AVX512_512_SETALLONES:
783 case X86::AVX512_FsFLD0SD:
784 case X86::AVX512_FsFLD0SH:
785 case X86::AVX512_FsFLD0SS:
786 case X86::AVX512_FsFLD0F128:
787 case X86::AVX_SET0:
788 case X86::FsFLD0SD:
789 case X86::FsFLD0SS:
790 case X86::FsFLD0SH:
791 case X86::FsFLD0F128:
792 case X86::KSET0D:
793 case X86::KSET0Q:
794 case X86::KSET0W:
795 case X86::KSET1D:
796 case X86::KSET1Q:
797 case X86::KSET1W:
798 case X86::MMX_SET0:
799 case X86::MOV32ImmSExti8:
800 case X86::MOV32r0:
801 case X86::MOV32r1:
802 case X86::MOV32r_1:
803 case X86::MOV32ri64:
804 case X86::MOV64ImmSExti8:
805 case X86::V_SET0:
806 case X86::V_SETALLONES:
807 case X86::MOV16ri:
808 case X86::MOV32ri:
809 case X86::MOV64ri:
810 case X86::MOV64ri32:
811 case X86::MOV8ri:
812 case X86::PTILEZEROV:
813 return true;
814
815 case X86::MOV8rm:
816 case X86::MOV8rm_NOREX:
817 case X86::MOV16rm:
818 case X86::MOV32rm:
819 case X86::MOV64rm:
820 case X86::MOVSSrm:
821 case X86::MOVSSrm_alt:
822 case X86::MOVSDrm:
823 case X86::MOVSDrm_alt:
824 case X86::MOVAPSrm:
825 case X86::MOVUPSrm:
826 case X86::MOVAPDrm:
827 case X86::MOVUPDrm:
828 case X86::MOVDQArm:
829 case X86::MOVDQUrm:
830 case X86::VMOVSSrm:
831 case X86::VMOVSSrm_alt:
832 case X86::VMOVSDrm:
833 case X86::VMOVSDrm_alt:
834 case X86::VMOVAPSrm:
835 case X86::VMOVUPSrm:
836 case X86::VMOVAPDrm:
837 case X86::VMOVUPDrm:
838 case X86::VMOVDQArm:
839 case X86::VMOVDQUrm:
840 case X86::VMOVAPSYrm:
841 case X86::VMOVUPSYrm:
842 case X86::VMOVAPDYrm:
843 case X86::VMOVUPDYrm:
844 case X86::VMOVDQAYrm:
845 case X86::VMOVDQUYrm:
846 case X86::MMX_MOVD64rm:
847 case X86::MMX_MOVQ64rm:
848 case X86::VBROADCASTSSrm:
849 case X86::VBROADCASTSSYrm:
850 case X86::VBROADCASTSDYrm:
851 // AVX-512
852 case X86::VPBROADCASTBZ128rm:
853 case X86::VPBROADCASTBZ256rm:
854 case X86::VPBROADCASTBZrm:
855 case X86::VBROADCASTF32X2Z256rm:
856 case X86::VBROADCASTF32X2Zrm:
857 case X86::VBROADCASTI32X2Z128rm:
858 case X86::VBROADCASTI32X2Z256rm:
859 case X86::VBROADCASTI32X2Zrm:
860 case X86::VPBROADCASTWZ128rm:
861 case X86::VPBROADCASTWZ256rm:
862 case X86::VPBROADCASTWZrm:
863 case X86::VPBROADCASTDZ128rm:
864 case X86::VPBROADCASTDZ256rm:
865 case X86::VPBROADCASTDZrm:
866 case X86::VBROADCASTSSZ128rm:
867 case X86::VBROADCASTSSZ256rm:
868 case X86::VBROADCASTSSZrm:
869 case X86::VPBROADCASTQZ128rm:
870 case X86::VPBROADCASTQZ256rm:
871 case X86::VPBROADCASTQZrm:
872 case X86::VBROADCASTSDZ256rm:
873 case X86::VBROADCASTSDZrm:
874 case X86::VMOVSSZrm:
875 case X86::VMOVSSZrm_alt:
876 case X86::VMOVSDZrm:
877 case X86::VMOVSDZrm_alt:
878 case X86::VMOVSHZrm:
879 case X86::VMOVSHZrm_alt:
880 case X86::VMOVAPDZ128rm:
881 case X86::VMOVAPDZ256rm:
882 case X86::VMOVAPDZrm:
883 case X86::VMOVAPSZ128rm:
884 case X86::VMOVAPSZ256rm:
885 case X86::VMOVAPSZ128rm_NOVLX:
886 case X86::VMOVAPSZ256rm_NOVLX:
887 case X86::VMOVAPSZrm:
888 case X86::VMOVDQA32Z128rm:
889 case X86::VMOVDQA32Z256rm:
890 case X86::VMOVDQA32Zrm:
891 case X86::VMOVDQA64Z128rm:
892 case X86::VMOVDQA64Z256rm:
893 case X86::VMOVDQA64Zrm:
894 case X86::VMOVDQU16Z128rm:
895 case X86::VMOVDQU16Z256rm:
896 case X86::VMOVDQU16Zrm:
897 case X86::VMOVDQU32Z128rm:
898 case X86::VMOVDQU32Z256rm:
899 case X86::VMOVDQU32Zrm:
900 case X86::VMOVDQU64Z128rm:
901 case X86::VMOVDQU64Z256rm:
902 case X86::VMOVDQU64Zrm:
903 case X86::VMOVDQU8Z128rm:
904 case X86::VMOVDQU8Z256rm:
905 case X86::VMOVDQU8Zrm:
906 case X86::VMOVUPDZ128rm:
907 case X86::VMOVUPDZ256rm:
908 case X86::VMOVUPDZrm:
909 case X86::VMOVUPSZ128rm:
910 case X86::VMOVUPSZ256rm:
911 case X86::VMOVUPSZ128rm_NOVLX:
912 case X86::VMOVUPSZ256rm_NOVLX:
913 case X86::VMOVUPSZrm: {
914 // Loads from constant pools are trivially rematerializable.
915 if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
916 MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
917 MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
918 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
919 MI.isDereferenceableInvariantLoad()) {
920 Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
921 if (BaseReg == 0 || BaseReg == X86::RIP)
922 return true;
923 // Allow re-materialization of PIC load.
924 if (!(!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())) {
925 const MachineFunction &MF = *MI.getParent()->getParent();
926 const MachineRegisterInfo &MRI = MF.getRegInfo();
927 if (regIsPICBase(BaseReg, MRI))
928 return true;
929 }
930 }
931 break;
932 }
933
934 case X86::LEA32r:
935 case X86::LEA64r: {
936 if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
937 MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
938 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
939 !MI.getOperand(1 + X86::AddrDisp).isReg()) {
940 // lea fi#, lea GV, etc. are all rematerializable.
941 if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
942 return true;
943 Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
944 if (BaseReg == 0)
945 return true;
946 // Allow re-materialization of lea PICBase + x.
947 const MachineFunction &MF = *MI.getParent()->getParent();
948 const MachineRegisterInfo &MRI = MF.getRegInfo();
949 if (regIsPICBase(BaseReg, MRI))
950 return true;
951 }
952 break;
953 }
954 }
956}
957
960 Register DestReg, unsigned SubIdx,
961 const MachineInstr &Orig,
962 const TargetRegisterInfo &TRI) const {
963 bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
964 if (ClobbersEFLAGS && MBB.computeRegisterLiveness(&TRI, X86::EFLAGS, I) !=
966 // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
967 // effects.
968 int Value;
969 switch (Orig.getOpcode()) {
970 case X86::MOV32r0:
971 Value = 0;
972 break;
973 case X86::MOV32r1:
974 Value = 1;
975 break;
976 case X86::MOV32r_1:
977 Value = -1;
978 break;
979 default:
980 llvm_unreachable("Unexpected instruction!");
981 }
982
983 const DebugLoc &DL = Orig.getDebugLoc();
984 BuildMI(MBB, I, DL, get(X86::MOV32ri))
985 .add(Orig.getOperand(0))
986 .addImm(Value);
987 } else {
988 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
989 MBB.insert(I, MI);
990 }
991
992 MachineInstr &NewMI = *std::prev(I);
993 NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
994}
995
996/// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
998 for (const MachineOperand &MO : MI.operands()) {
999 if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS &&
1000 !MO.isDead()) {
1001 return true;
1002 }
1003 }
1004 return false;
1005}
1006
1007/// Check whether the shift count for a machine operand is non-zero.
1008inline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
1009 unsigned ShiftAmtOperandIdx) {
1010 // The shift count is six bits with the REX.W prefix and five bits without.
1011 unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
1012 unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
1013 return Imm & ShiftCountMask;
1014}
1015
1016/// Check whether the given shift count is appropriate
1017/// can be represented by a LEA instruction.
1018inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
1019 // Left shift instructions can be transformed into load-effective-address
1020 // instructions if we can encode them appropriately.
1021 // A LEA instruction utilizes a SIB byte to encode its scale factor.
1022 // The SIB.scale field is two bits wide which means that we can encode any
1023 // shift amount less than 4.
1024 return ShAmt < 4 && ShAmt > 0;
1025}
1026
1027static bool
1029 const MachineRegisterInfo *MRI, MachineInstr **AndInstr,
1030 const TargetRegisterInfo *TRI, const X86Subtarget &ST,
1031 bool &NoSignFlag, bool &ClearsOverflowFlag) {
1032 if (!(CmpValDefInstr.getOpcode() == X86::SUBREG_TO_REG &&
1033 CmpInstr.getOpcode() == X86::TEST64rr) &&
1034 !(CmpValDefInstr.getOpcode() == X86::COPY &&
1035 CmpInstr.getOpcode() == X86::TEST16rr))
1036 return false;
1037
1038 // CmpInstr is a TEST16rr/TEST64rr instruction, and
1039 // `X86InstrInfo::analyzeCompare` guarantees that it's analyzable only if two
1040 // registers are identical.
1041 assert((CmpInstr.getOperand(0).getReg() == CmpInstr.getOperand(1).getReg()) &&
1042 "CmpInstr is an analyzable TEST16rr/TEST64rr, and "
1043 "`X86InstrInfo::analyzeCompare` requires two reg operands are the"
1044 "same.");
1045
1046 // Caller (`X86InstrInfo::optimizeCompareInstr`) guarantees that
1047 // `CmpValDefInstr` defines the value that's used by `CmpInstr`; in this case
1048 // if `CmpValDefInstr` sets the EFLAGS, it is likely that `CmpInstr` is
1049 // redundant.
1050 assert(
1051 (MRI->getVRegDef(CmpInstr.getOperand(0).getReg()) == &CmpValDefInstr) &&
1052 "Caller guarantees that TEST64rr is a user of SUBREG_TO_REG or TEST16rr "
1053 "is a user of COPY sub16bit.");
1054 MachineInstr *VregDefInstr = nullptr;
1055 if (CmpInstr.getOpcode() == X86::TEST16rr) {
1056 if (!CmpValDefInstr.getOperand(1).getReg().isVirtual())
1057 return false;
1058 VregDefInstr = MRI->getVRegDef(CmpValDefInstr.getOperand(1).getReg());
1059 if (!VregDefInstr)
1060 return false;
1061 // We can only remove test when AND32ri or AND64ri32 whose imm can fit 16bit
1062 // size, others 32/64 bit ops would test higher bits which test16rr don't
1063 // want to.
1064 if (!((VregDefInstr->getOpcode() == X86::AND32ri ||
1065 VregDefInstr->getOpcode() == X86::AND64ri32) &&
1066 isUInt<16>(VregDefInstr->getOperand(2).getImm())))
1067 return false;
1068 }
1069
1070 if (CmpInstr.getOpcode() == X86::TEST64rr) {
1071 // As seen in X86 td files, CmpValDefInstr.getOperand(1).getImm() is
1072 // typically 0.
1073 if (CmpValDefInstr.getOperand(1).getImm() != 0)
1074 return false;
1075
1076 // As seen in X86 td files, CmpValDefInstr.getOperand(3) is typically
1077 // sub_32bit or sub_xmm.
1078 if (CmpValDefInstr.getOperand(3).getImm() != X86::sub_32bit)
1079 return false;
1080
1081 VregDefInstr = MRI->getVRegDef(CmpValDefInstr.getOperand(2).getReg());
1082 }
1083
1084 assert(VregDefInstr && "Must have a definition (SSA)");
1085
1086 // Requires `CmpValDefInstr` and `VregDefInstr` are from the same MBB
1087 // to simplify the subsequent analysis.
1088 //
1089 // FIXME: If `VregDefInstr->getParent()` is the only predecessor of
1090 // `CmpValDefInstr.getParent()`, this could be handled.
1091 if (VregDefInstr->getParent() != CmpValDefInstr.getParent())
1092 return false;
1093
1094 if (X86::isAND(VregDefInstr->getOpcode()) &&
1095 (!ST.hasNF() || VregDefInstr->modifiesRegister(X86::EFLAGS, TRI))) {
1096 // Get a sequence of instructions like
1097 // %reg = and* ... // Set EFLAGS
1098 // ... // EFLAGS not changed
1099 // %extended_reg = subreg_to_reg 0, %reg, %subreg.sub_32bit
1100 // test64rr %extended_reg, %extended_reg, implicit-def $eflags
1101 // or
1102 // %reg = and32* ...
1103 // ... // EFLAGS not changed.
1104 // %src_reg = copy %reg.sub_16bit:gr32
1105 // test16rr %src_reg, %src_reg, implicit-def $eflags
1106 //
1107 // If subsequent readers use a subset of bits that don't change
1108 // after `and*` instructions, it's likely that the test64rr could
1109 // be optimized away.
1110 for (const MachineInstr &Instr :
1111 make_range(std::next(MachineBasicBlock::iterator(VregDefInstr)),
1112 MachineBasicBlock::iterator(CmpValDefInstr))) {
1113 // There are instructions between 'VregDefInstr' and
1114 // 'CmpValDefInstr' that modifies EFLAGS.
1115 if (Instr.modifiesRegister(X86::EFLAGS, TRI))
1116 return false;
1117 }
1118
1119 *AndInstr = VregDefInstr;
1120
1121 // AND instruction will essentially update SF and clear OF, so
1122 // NoSignFlag should be false in the sense that SF is modified by `AND`.
1123 //
1124 // However, the implementation artifically sets `NoSignFlag` to true
1125 // to poison the SF bit; that is to say, if SF is looked at later, the
1126 // optimization (to erase TEST64rr) will be disabled.
1127 //
1128 // The reason to poison SF bit is that SF bit value could be different
1129 // in the `AND` and `TEST` operation; signed bit is not known for `AND`,
1130 // and is known to be 0 as a result of `TEST64rr`.
1131 //
1132 // FIXME: As opposed to poisoning the SF bit directly, consider peeking into
1133 // the AND instruction and using the static information to guide peephole
1134 // optimization if possible. For example, it's possible to fold a
1135 // conditional move into a copy if the relevant EFLAG bits could be deduced
1136 // from an immediate operand of and operation.
1137 //
1138 NoSignFlag = true;
1139 // ClearsOverflowFlag is true for AND operation (no surprise).
1140 ClearsOverflowFlag = true;
1141 return true;
1142 }
1143 return false;
1144}
1145
1147 unsigned Opc, bool AllowSP, Register &NewSrc,
1148 unsigned &NewSrcSubReg, bool &isKill,
1149 MachineOperand &ImplicitOp, LiveVariables *LV,
1150 LiveIntervals *LIS) const {
1151 MachineFunction &MF = *MI.getParent()->getParent();
1152 const TargetRegisterClass *RC;
1153 if (AllowSP) {
1154 RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
1155 } else {
1156 RC = Opc != X86::LEA32r ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
1157 }
1158 Register SrcReg = Src.getReg();
1159 unsigned SubReg = Src.getSubReg();
1160 isKill = MI.killsRegister(SrcReg, /*TRI=*/nullptr);
1161
1162 NewSrcSubReg = X86::NoSubRegister;
1163
1164 // For both LEA64 and LEA32 the register already has essentially the right
1165 // type (32-bit or 64-bit) we may just need to forbid SP.
1166 if (Opc != X86::LEA64_32r) {
1167 NewSrc = SrcReg;
1168 NewSrcSubReg = SubReg;
1169 assert(!Src.isUndef() && "Undef op doesn't need optimization");
1170
1171 if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(NewSrc, RC))
1172 return false;
1173
1174 return true;
1175 }
1176
1177 // This is for an LEA64_32r and incoming registers are 32-bit. One way or
1178 // another we need to add 64-bit registers to the final MI.
1179 if (SrcReg.isPhysical()) {
1180 ImplicitOp = Src;
1181 ImplicitOp.setImplicit();
1182
1183 NewSrc = getX86SubSuperRegister(SrcReg, 64);
1184 assert(!SubReg && "no superregister for source");
1185 assert(NewSrc.isValid() && "Invalid Operand");
1186 assert(!Src.isUndef() && "Undef op doesn't need optimization");
1187 } else {
1188 // Virtual register of the wrong class, we have to create a temporary 64-bit
1189 // vreg to feed into the LEA.
1190 NewSrc = MF.getRegInfo().createVirtualRegister(RC);
1191 NewSrcSubReg = X86::NoSubRegister;
1192 MachineInstr *Copy =
1193 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1194 .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
1195 .addReg(SrcReg, getKillRegState(isKill), SubReg);
1196
1197 // Which is obviously going to be dead after we're done with it.
1198 isKill = true;
1199
1200 if (LV)
1201 LV->replaceKillInstruction(SrcReg, MI, *Copy);
1202
1203 if (LIS) {
1204 SlotIndex CopyIdx = LIS->InsertMachineInstrInMaps(*Copy);
1205 SlotIndex Idx = LIS->getInstructionIndex(MI);
1206 LiveInterval &LI = LIS->getInterval(SrcReg);
1208 if (S->end.getBaseIndex() == Idx)
1209 S->end = CopyIdx.getRegSlot();
1210 }
1211 }
1212
1213 // We've set all the parameters without issue.
1214 return true;
1215}
1216
1217MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1219 LiveVariables *LV,
1220 LiveIntervals *LIS,
1221 bool Is8BitOp) const {
1222 // We handle 8-bit adds and various 16-bit opcodes in the switch below.
1223 MachineBasicBlock &MBB = *MI.getParent();
1224 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
1225 assert((Is8BitOp ||
1226 RegInfo.getTargetRegisterInfo()->getRegSizeInBits(
1227 *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
1228 "Unexpected type for LEA transform");
1229
1230 // TODO: For a 32-bit target, we need to adjust the LEA variables with
1231 // something like this:
1232 // Opcode = X86::LEA32r;
1233 // InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1234 // OutRegLEA =
1235 // Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
1236 // : RegInfo.createVirtualRegister(&X86::GR32RegClass);
1237 if (!Subtarget.is64Bit())
1238 return nullptr;
1239
1240 unsigned Opcode = X86::LEA64_32r;
1241 Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1242 Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1243 Register InRegLEA2;
1244
1245 // Build and insert into an implicit UNDEF value. This is OK because
1246 // we will be shifting and then extracting the lower 8/16-bits.
1247 // This has the potential to cause partial register stall. e.g.
1248 // movw (%rbp,%rcx,2), %dx
1249 // leal -65(%rdx), %esi
1250 // But testing has shown this *does* help performance in 64-bit mode (at
1251 // least on modern x86 machines).
1252 MachineBasicBlock::iterator MBBI = MI.getIterator();
1253 Register Dest = MI.getOperand(0).getReg();
1254 Register Src = MI.getOperand(1).getReg();
1255 unsigned SrcSubReg = MI.getOperand(1).getSubReg();
1256 Register Src2;
1257 unsigned Src2SubReg;
1258 bool IsDead = MI.getOperand(0).isDead();
1259 bool IsKill = MI.getOperand(1).isKill();
1260 unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
1261 assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization");
1262 MachineInstr *ImpDef =
1263 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
1264 MachineInstr *InsMI =
1265 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1266 .addReg(InRegLEA, RegState::Define, SubReg)
1267 .addReg(Src, getKillRegState(IsKill), SrcSubReg);
1268 MachineInstr *ImpDef2 = nullptr;
1269 MachineInstr *InsMI2 = nullptr;
1270
1272 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
1273#define CASE_NF(OP) \
1274 case X86::OP: \
1275 case X86::OP##_NF:
1276 switch (MIOpc) {
1277 default:
1278 llvm_unreachable("Unreachable!");
1279 CASE_NF(SHL8ri)
1280 CASE_NF(SHL16ri) {
1281 unsigned ShAmt = MI.getOperand(2).getImm();
1282 MIB.addReg(0)
1283 .addImm(1LL << ShAmt)
1284 .addReg(InRegLEA, RegState::Kill)
1285 .addImm(0)
1286 .addReg(0);
1287 break;
1288 }
1289 CASE_NF(INC8r)
1290 CASE_NF(INC16r)
1291 addRegOffset(MIB, InRegLEA, true, 1);
1292 break;
1293 CASE_NF(DEC8r)
1294 CASE_NF(DEC16r)
1295 addRegOffset(MIB, InRegLEA, true, -1);
1296 break;
1297 CASE_NF(ADD8ri)
1298 CASE_NF(ADD16ri)
1299 case X86::ADD8ri_DB:
1300 case X86::ADD16ri_DB:
1301 addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
1302 break;
1303 CASE_NF(ADD8rr)
1304 CASE_NF(ADD16rr)
1305 case X86::ADD8rr_DB:
1306 case X86::ADD16rr_DB: {
1307 Src2 = MI.getOperand(2).getReg();
1308 Src2SubReg = MI.getOperand(2).getSubReg();
1309 bool IsKill2 = MI.getOperand(2).isKill();
1310 assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization");
1311 if (Src == Src2) {
1312 // ADD8rr/ADD16rr killed %reg1028, %reg1028
1313 // just a single insert_subreg.
1314 addRegReg(MIB, InRegLEA, true, X86::NoSubRegister, InRegLEA, false,
1315 X86::NoSubRegister);
1316 } else {
1317 if (Subtarget.is64Bit())
1318 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1319 else
1320 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1321 // Build and insert into an implicit UNDEF value. This is OK because
1322 // we will be shifting and then extracting the lower 8/16-bits.
1323 ImpDef2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF),
1324 InRegLEA2);
1325 InsMI2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
1326 .addReg(InRegLEA2, RegState::Define, SubReg)
1327 .addReg(Src2, getKillRegState(IsKill2), Src2SubReg);
1328 addRegReg(MIB, InRegLEA, true, X86::NoSubRegister, InRegLEA2, true,
1329 X86::NoSubRegister);
1330 }
1331 if (LV && IsKill2 && InsMI2)
1332 LV->replaceKillInstruction(Src2, MI, *InsMI2);
1333 break;
1334 }
1335 }
1336
1337 MachineInstr *NewMI = MIB;
1338 MachineInstr *ExtMI =
1339 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1341 .addReg(OutRegLEA, RegState::Kill, SubReg);
1342
1343 if (LV) {
1344 // Update live variables.
1345 LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
1346 if (InRegLEA2)
1347 LV->getVarInfo(InRegLEA2).Kills.push_back(NewMI);
1348 LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
1349 if (IsKill)
1350 LV->replaceKillInstruction(Src, MI, *InsMI);
1351 if (IsDead)
1352 LV->replaceKillInstruction(Dest, MI, *ExtMI);
1353 }
1354
1355 if (LIS) {
1356 LIS->InsertMachineInstrInMaps(*ImpDef);
1357 SlotIndex InsIdx = LIS->InsertMachineInstrInMaps(*InsMI);
1358 if (ImpDef2)
1359 LIS->InsertMachineInstrInMaps(*ImpDef2);
1360 SlotIndex Ins2Idx;
1361 if (InsMI2)
1362 Ins2Idx = LIS->InsertMachineInstrInMaps(*InsMI2);
1363 SlotIndex NewIdx = LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
1364 SlotIndex ExtIdx = LIS->InsertMachineInstrInMaps(*ExtMI);
1365 LIS->getInterval(InRegLEA);
1366 LIS->getInterval(OutRegLEA);
1367 if (InRegLEA2)
1368 LIS->getInterval(InRegLEA2);
1369
1370 // Move the use of Src up to InsMI.
1371 LiveInterval &SrcLI = LIS->getInterval(Src);
1372 LiveRange::Segment *SrcSeg = SrcLI.getSegmentContaining(NewIdx);
1373 if (SrcSeg->end == NewIdx.getRegSlot())
1374 SrcSeg->end = InsIdx.getRegSlot();
1375
1376 if (InsMI2) {
1377 // Move the use of Src2 up to InsMI2.
1378 LiveInterval &Src2LI = LIS->getInterval(Src2);
1379 LiveRange::Segment *Src2Seg = Src2LI.getSegmentContaining(NewIdx);
1380 if (Src2Seg->end == NewIdx.getRegSlot())
1381 Src2Seg->end = Ins2Idx.getRegSlot();
1382 }
1383
1384 // Move the definition of Dest down to ExtMI.
1385 LiveInterval &DestLI = LIS->getInterval(Dest);
1386 LiveRange::Segment *DestSeg =
1387 DestLI.getSegmentContaining(NewIdx.getRegSlot());
1388 assert(DestSeg->start == NewIdx.getRegSlot() &&
1389 DestSeg->valno->def == NewIdx.getRegSlot());
1390 DestSeg->start = ExtIdx.getRegSlot();
1391 DestSeg->valno->def = ExtIdx.getRegSlot();
1392 }
1393
1394 return ExtMI;
1395}
1396
1397/// This method must be implemented by targets that
1398/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
1399/// may be able to convert a two-address instruction into a true
1400/// three-address instruction on demand. This allows the X86 target (for
1401/// example) to convert ADD and SHL instructions into LEA instructions if they
1402/// would require register copies due to two-addressness.
1403///
1404/// This method returns a null pointer if the transformation cannot be
1405/// performed, otherwise it returns the new instruction.
1406///
1408 LiveVariables *LV,
1409 LiveIntervals *LIS) const {
1410 // The following opcodes also sets the condition code register(s). Only
1411 // convert them to equivalent lea if the condition code register def's
1412 // are dead!
1414 return nullptr;
1415
1416 MachineFunction &MF = *MI.getParent()->getParent();
1417 // All instructions input are two-addr instructions. Get the known operands.
1418 const MachineOperand &Dest = MI.getOperand(0);
1419 const MachineOperand &Src = MI.getOperand(1);
1420
1421 // Ideally, operations with undef should be folded before we get here, but we
1422 // can't guarantee it. Bail out because optimizing undefs is a waste of time.
1423 // Without this, we have to forward undef state to new register operands to
1424 // avoid machine verifier errors.
1425 if (Src.isUndef())
1426 return nullptr;
1427 if (MI.getNumOperands() > 2)
1428 if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
1429 return nullptr;
1430
1431 MachineInstr *NewMI = nullptr;
1432 Register SrcReg, SrcReg2;
1433 unsigned SrcSubReg, SrcSubReg2;
1434 bool Is64Bit = Subtarget.is64Bit();
1435
1436 bool Is8BitOp = false;
1437 unsigned NumRegOperands = 2;
1438 unsigned MIOpc = MI.getOpcode();
1439 switch (MIOpc) {
1440 default:
1441 llvm_unreachable("Unreachable!");
1442 CASE_NF(SHL64ri) {
1443 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1444 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1445 if (!isTruncatedShiftCountForLEA(ShAmt))
1446 return nullptr;
1447
1448 // LEA can't handle RSP.
1449 if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass(
1450 Src.getReg(), &X86::GR64_NOSPRegClass))
1451 return nullptr;
1452
1453 NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
1454 .add(Dest)
1455 .addReg(0)
1456 .addImm(1LL << ShAmt)
1457 .add(Src)
1458 .addImm(0)
1459 .addReg(0);
1460 break;
1461 }
1462 CASE_NF(SHL32ri) {
1463 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1464 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1465 if (!isTruncatedShiftCountForLEA(ShAmt))
1466 return nullptr;
1467
1468 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1469
1470 // LEA can't handle ESP.
1471 bool isKill;
1472 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1473 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, SrcSubReg,
1474 isKill, ImplicitOp, LV, LIS))
1475 return nullptr;
1476
1478 BuildMI(MF, MI.getDebugLoc(), get(Opc))
1479 .add(Dest)
1480 .addReg(0)
1481 .addImm(1LL << ShAmt)
1482 .addReg(SrcReg, getKillRegState(isKill), SrcSubReg)
1483 .addImm(0)
1484 .addReg(0);
1485 if (ImplicitOp.getReg() != 0)
1486 MIB.add(ImplicitOp);
1487 NewMI = MIB;
1488
1489 // Add kills if classifyLEAReg created a new register.
1490 if (LV && SrcReg != Src.getReg())
1491 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1492 break;
1493 }
1494 CASE_NF(SHL8ri)
1495 Is8BitOp = true;
1496 [[fallthrough]];
1497 CASE_NF(SHL16ri) {
1498 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1499 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1500 if (!isTruncatedShiftCountForLEA(ShAmt))
1501 return nullptr;
1502 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1503 }
1504 CASE_NF(INC64r)
1505 CASE_NF(INC32r) {
1506 assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
1507 unsigned Opc = (MIOpc == X86::INC64r || MIOpc == X86::INC64r_NF)
1508 ? X86::LEA64r
1509 : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1510 bool isKill;
1511 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1512 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, SrcSubReg,
1513 isKill, ImplicitOp, LV, LIS))
1514 return nullptr;
1515
1516 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1517 .add(Dest)
1518 .addReg(SrcReg, getKillRegState(isKill));
1519 if (ImplicitOp.getReg() != 0)
1520 MIB.add(ImplicitOp);
1521
1522 NewMI = addOffset(MIB, 1);
1523
1524 // Add kills if classifyLEAReg created a new register.
1525 if (LV && SrcReg != Src.getReg())
1526 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1527 break;
1528 }
1529 CASE_NF(DEC64r)
1530 CASE_NF(DEC32r) {
1531 assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
1532 unsigned Opc = (MIOpc == X86::DEC64r || MIOpc == X86::DEC64r_NF)
1533 ? X86::LEA64r
1534 : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1535
1536 bool isKill;
1537 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1538 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, SrcSubReg,
1539 isKill, ImplicitOp, LV, LIS))
1540 return nullptr;
1541
1542 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1543 .add(Dest)
1544 .addReg(SrcReg, getKillRegState(isKill));
1545 if (ImplicitOp.getReg() != 0)
1546 MIB.add(ImplicitOp);
1547
1548 NewMI = addOffset(MIB, -1);
1549
1550 // Add kills if classifyLEAReg created a new register.
1551 if (LV && SrcReg != Src.getReg())
1552 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1553 break;
1554 }
1555 CASE_NF(DEC8r)
1556 CASE_NF(INC8r)
1557 Is8BitOp = true;
1558 [[fallthrough]];
1559 CASE_NF(DEC16r)
1560 CASE_NF(INC16r)
1561 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1562 CASE_NF(ADD64rr)
1563 CASE_NF(ADD32rr)
1564 case X86::ADD64rr_DB:
1565 case X86::ADD32rr_DB: {
1566 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1567 unsigned Opc;
1568 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_NF ||
1569 MIOpc == X86::ADD64rr_DB)
1570 Opc = X86::LEA64r;
1571 else
1572 Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1573
1574 const MachineOperand &Src2 = MI.getOperand(2);
1575 bool isKill2;
1576 MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
1577 if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/false, SrcReg2, SrcSubReg2,
1578 isKill2, ImplicitOp2, LV, LIS))
1579 return nullptr;
1580
1581 bool isKill;
1582 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1583 if (Src.getReg() == Src2.getReg()) {
1584 // Don't call classify LEAReg a second time on the same register, in case
1585 // the first call inserted a COPY from Src2 and marked it as killed.
1586 isKill = isKill2;
1587 SrcReg = SrcReg2;
1588 SrcSubReg = SrcSubReg2;
1589 } else {
1590 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, SrcSubReg,
1591 isKill, ImplicitOp, LV, LIS))
1592 return nullptr;
1593 }
1594
1595 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
1596 if (ImplicitOp.getReg() != 0)
1597 MIB.add(ImplicitOp);
1598 if (ImplicitOp2.getReg() != 0)
1599 MIB.add(ImplicitOp2);
1600
1601 NewMI =
1602 addRegReg(MIB, SrcReg, isKill, SrcSubReg, SrcReg2, isKill2, SrcSubReg2);
1603
1604 // Add kills if classifyLEAReg created a new register.
1605 if (LV) {
1606 if (SrcReg2 != Src2.getReg())
1607 LV->getVarInfo(SrcReg2).Kills.push_back(NewMI);
1608 if (SrcReg != SrcReg2 && SrcReg != Src.getReg())
1609 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1610 }
1611 NumRegOperands = 3;
1612 break;
1613 }
1614 CASE_NF(ADD8rr)
1615 case X86::ADD8rr_DB:
1616 Is8BitOp = true;
1617 [[fallthrough]];
1618 CASE_NF(ADD16rr)
1619 case X86::ADD16rr_DB:
1620 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1621 CASE_NF(ADD64ri32)
1622 case X86::ADD64ri32_DB:
1623 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1624 NewMI = addOffset(
1625 BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
1626 MI.getOperand(2));
1627 break;
1628 CASE_NF(ADD32ri)
1629 case X86::ADD32ri_DB: {
1630 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1631 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1632
1633 bool isKill;
1634 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1635 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, SrcSubReg,
1636 isKill, ImplicitOp, LV, LIS))
1637 return nullptr;
1638
1640 BuildMI(MF, MI.getDebugLoc(), get(Opc))
1641 .add(Dest)
1642 .addReg(SrcReg, getKillRegState(isKill), SrcSubReg);
1643 if (ImplicitOp.getReg() != 0)
1644 MIB.add(ImplicitOp);
1645
1646 NewMI = addOffset(MIB, MI.getOperand(2));
1647
1648 // Add kills if classifyLEAReg created a new register.
1649 if (LV && SrcReg != Src.getReg())
1650 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1651 break;
1652 }
1653 CASE_NF(ADD8ri)
1654 case X86::ADD8ri_DB:
1655 Is8BitOp = true;
1656 [[fallthrough]];
1657 CASE_NF(ADD16ri)
1658 case X86::ADD16ri_DB:
1659 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1660 CASE_NF(SUB8ri)
1661 CASE_NF(SUB16ri)
1662 /// FIXME: Support these similar to ADD8ri/ADD16ri*.
1663 return nullptr;
1664 CASE_NF(SUB32ri) {
1665 if (!MI.getOperand(2).isImm())
1666 return nullptr;
1667 int64_t Imm = MI.getOperand(2).getImm();
1668 if (!isInt<32>(-Imm))
1669 return nullptr;
1670
1671 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1672 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1673
1674 bool isKill;
1675 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1676 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, SrcSubReg,
1677 isKill, ImplicitOp, LV, LIS))
1678 return nullptr;
1679
1681 BuildMI(MF, MI.getDebugLoc(), get(Opc))
1682 .add(Dest)
1683 .addReg(SrcReg, getKillRegState(isKill), SrcSubReg);
1684 if (ImplicitOp.getReg() != 0)
1685 MIB.add(ImplicitOp);
1686
1687 NewMI = addOffset(MIB, -Imm);
1688
1689 // Add kills if classifyLEAReg created a new register.
1690 if (LV && SrcReg != Src.getReg())
1691 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1692 break;
1693 }
1694
1695 CASE_NF(SUB64ri32) {
1696 if (!MI.getOperand(2).isImm())
1697 return nullptr;
1698 int64_t Imm = MI.getOperand(2).getImm();
1699 if (!isInt<32>(-Imm))
1700 return nullptr;
1701
1702 assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!");
1703
1705 BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src);
1706 NewMI = addOffset(MIB, -Imm);
1707 break;
1708 }
1709
1710 case X86::VMOVDQU8Z128rmk:
1711 case X86::VMOVDQU8Z256rmk:
1712 case X86::VMOVDQU8Zrmk:
1713 case X86::VMOVDQU16Z128rmk:
1714 case X86::VMOVDQU16Z256rmk:
1715 case X86::VMOVDQU16Zrmk:
1716 case X86::VMOVDQU32Z128rmk:
1717 case X86::VMOVDQA32Z128rmk:
1718 case X86::VMOVDQU32Z256rmk:
1719 case X86::VMOVDQA32Z256rmk:
1720 case X86::VMOVDQU32Zrmk:
1721 case X86::VMOVDQA32Zrmk:
1722 case X86::VMOVDQU64Z128rmk:
1723 case X86::VMOVDQA64Z128rmk:
1724 case X86::VMOVDQU64Z256rmk:
1725 case X86::VMOVDQA64Z256rmk:
1726 case X86::VMOVDQU64Zrmk:
1727 case X86::VMOVDQA64Zrmk:
1728 case X86::VMOVUPDZ128rmk:
1729 case X86::VMOVAPDZ128rmk:
1730 case X86::VMOVUPDZ256rmk:
1731 case X86::VMOVAPDZ256rmk:
1732 case X86::VMOVUPDZrmk:
1733 case X86::VMOVAPDZrmk:
1734 case X86::VMOVUPSZ128rmk:
1735 case X86::VMOVAPSZ128rmk:
1736 case X86::VMOVUPSZ256rmk:
1737 case X86::VMOVAPSZ256rmk:
1738 case X86::VMOVUPSZrmk:
1739 case X86::VMOVAPSZrmk:
1740 case X86::VBROADCASTSDZ256rmk:
1741 case X86::VBROADCASTSDZrmk:
1742 case X86::VBROADCASTSSZ128rmk:
1743 case X86::VBROADCASTSSZ256rmk:
1744 case X86::VBROADCASTSSZrmk:
1745 case X86::VPBROADCASTDZ128rmk:
1746 case X86::VPBROADCASTDZ256rmk:
1747 case X86::VPBROADCASTDZrmk:
1748 case X86::VPBROADCASTQZ128rmk:
1749 case X86::VPBROADCASTQZ256rmk:
1750 case X86::VPBROADCASTQZrmk: {
1751 unsigned Opc;
1752 switch (MIOpc) {
1753 default:
1754 llvm_unreachable("Unreachable!");
1755 case X86::VMOVDQU8Z128rmk:
1756 Opc = X86::VPBLENDMBZ128rmk;
1757 break;
1758 case X86::VMOVDQU8Z256rmk:
1759 Opc = X86::VPBLENDMBZ256rmk;
1760 break;
1761 case X86::VMOVDQU8Zrmk:
1762 Opc = X86::VPBLENDMBZrmk;
1763 break;
1764 case X86::VMOVDQU16Z128rmk:
1765 Opc = X86::VPBLENDMWZ128rmk;
1766 break;
1767 case X86::VMOVDQU16Z256rmk:
1768 Opc = X86::VPBLENDMWZ256rmk;
1769 break;
1770 case X86::VMOVDQU16Zrmk:
1771 Opc = X86::VPBLENDMWZrmk;
1772 break;
1773 case X86::VMOVDQU32Z128rmk:
1774 Opc = X86::VPBLENDMDZ128rmk;
1775 break;
1776 case X86::VMOVDQU32Z256rmk:
1777 Opc = X86::VPBLENDMDZ256rmk;
1778 break;
1779 case X86::VMOVDQU32Zrmk:
1780 Opc = X86::VPBLENDMDZrmk;
1781 break;
1782 case X86::VMOVDQU64Z128rmk:
1783 Opc = X86::VPBLENDMQZ128rmk;
1784 break;
1785 case X86::VMOVDQU64Z256rmk:
1786 Opc = X86::VPBLENDMQZ256rmk;
1787 break;
1788 case X86::VMOVDQU64Zrmk:
1789 Opc = X86::VPBLENDMQZrmk;
1790 break;
1791 case X86::VMOVUPDZ128rmk:
1792 Opc = X86::VBLENDMPDZ128rmk;
1793 break;
1794 case X86::VMOVUPDZ256rmk:
1795 Opc = X86::VBLENDMPDZ256rmk;
1796 break;
1797 case X86::VMOVUPDZrmk:
1798 Opc = X86::VBLENDMPDZrmk;
1799 break;
1800 case X86::VMOVUPSZ128rmk:
1801 Opc = X86::VBLENDMPSZ128rmk;
1802 break;
1803 case X86::VMOVUPSZ256rmk:
1804 Opc = X86::VBLENDMPSZ256rmk;
1805 break;
1806 case X86::VMOVUPSZrmk:
1807 Opc = X86::VBLENDMPSZrmk;
1808 break;
1809 case X86::VMOVDQA32Z128rmk:
1810 Opc = X86::VPBLENDMDZ128rmk;
1811 break;
1812 case X86::VMOVDQA32Z256rmk:
1813 Opc = X86::VPBLENDMDZ256rmk;
1814 break;
1815 case X86::VMOVDQA32Zrmk:
1816 Opc = X86::VPBLENDMDZrmk;
1817 break;
1818 case X86::VMOVDQA64Z128rmk:
1819 Opc = X86::VPBLENDMQZ128rmk;
1820 break;
1821 case X86::VMOVDQA64Z256rmk:
1822 Opc = X86::VPBLENDMQZ256rmk;
1823 break;
1824 case X86::VMOVDQA64Zrmk:
1825 Opc = X86::VPBLENDMQZrmk;
1826 break;
1827 case X86::VMOVAPDZ128rmk:
1828 Opc = X86::VBLENDMPDZ128rmk;
1829 break;
1830 case X86::VMOVAPDZ256rmk:
1831 Opc = X86::VBLENDMPDZ256rmk;
1832 break;
1833 case X86::VMOVAPDZrmk:
1834 Opc = X86::VBLENDMPDZrmk;
1835 break;
1836 case X86::VMOVAPSZ128rmk:
1837 Opc = X86::VBLENDMPSZ128rmk;
1838 break;
1839 case X86::VMOVAPSZ256rmk:
1840 Opc = X86::VBLENDMPSZ256rmk;
1841 break;
1842 case X86::VMOVAPSZrmk:
1843 Opc = X86::VBLENDMPSZrmk;
1844 break;
1845 case X86::VBROADCASTSDZ256rmk:
1846 Opc = X86::VBLENDMPDZ256rmbk;
1847 break;
1848 case X86::VBROADCASTSDZrmk:
1849 Opc = X86::VBLENDMPDZrmbk;
1850 break;
1851 case X86::VBROADCASTSSZ128rmk:
1852 Opc = X86::VBLENDMPSZ128rmbk;
1853 break;
1854 case X86::VBROADCASTSSZ256rmk:
1855 Opc = X86::VBLENDMPSZ256rmbk;
1856 break;
1857 case X86::VBROADCASTSSZrmk:
1858 Opc = X86::VBLENDMPSZrmbk;
1859 break;
1860 case X86::VPBROADCASTDZ128rmk:
1861 Opc = X86::VPBLENDMDZ128rmbk;
1862 break;
1863 case X86::VPBROADCASTDZ256rmk:
1864 Opc = X86::VPBLENDMDZ256rmbk;
1865 break;
1866 case X86::VPBROADCASTDZrmk:
1867 Opc = X86::VPBLENDMDZrmbk;
1868 break;
1869 case X86::VPBROADCASTQZ128rmk:
1870 Opc = X86::VPBLENDMQZ128rmbk;
1871 break;
1872 case X86::VPBROADCASTQZ256rmk:
1873 Opc = X86::VPBLENDMQZ256rmbk;
1874 break;
1875 case X86::VPBROADCASTQZrmk:
1876 Opc = X86::VPBLENDMQZrmbk;
1877 break;
1878 }
1879
1880 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1881 .add(Dest)
1882 .add(MI.getOperand(2))
1883 .add(Src)
1884 .add(MI.getOperand(3))
1885 .add(MI.getOperand(4))
1886 .add(MI.getOperand(5))
1887 .add(MI.getOperand(6))
1888 .add(MI.getOperand(7));
1889 NumRegOperands = 4;
1890 break;
1891 }
1892
1893 case X86::VMOVDQU8Z128rrk:
1894 case X86::VMOVDQU8Z256rrk:
1895 case X86::VMOVDQU8Zrrk:
1896 case X86::VMOVDQU16Z128rrk:
1897 case X86::VMOVDQU16Z256rrk:
1898 case X86::VMOVDQU16Zrrk:
1899 case X86::VMOVDQU32Z128rrk:
1900 case X86::VMOVDQA32Z128rrk:
1901 case X86::VMOVDQU32Z256rrk:
1902 case X86::VMOVDQA32Z256rrk:
1903 case X86::VMOVDQU32Zrrk:
1904 case X86::VMOVDQA32Zrrk:
1905 case X86::VMOVDQU64Z128rrk:
1906 case X86::VMOVDQA64Z128rrk:
1907 case X86::VMOVDQU64Z256rrk:
1908 case X86::VMOVDQA64Z256rrk:
1909 case X86::VMOVDQU64Zrrk:
1910 case X86::VMOVDQA64Zrrk:
1911 case X86::VMOVUPDZ128rrk:
1912 case X86::VMOVAPDZ128rrk:
1913 case X86::VMOVUPDZ256rrk:
1914 case X86::VMOVAPDZ256rrk:
1915 case X86::VMOVUPDZrrk:
1916 case X86::VMOVAPDZrrk:
1917 case X86::VMOVUPSZ128rrk:
1918 case X86::VMOVAPSZ128rrk:
1919 case X86::VMOVUPSZ256rrk:
1920 case X86::VMOVAPSZ256rrk:
1921 case X86::VMOVUPSZrrk:
1922 case X86::VMOVAPSZrrk: {
1923 unsigned Opc;
1924 switch (MIOpc) {
1925 default:
1926 llvm_unreachable("Unreachable!");
1927 case X86::VMOVDQU8Z128rrk:
1928 Opc = X86::VPBLENDMBZ128rrk;
1929 break;
1930 case X86::VMOVDQU8Z256rrk:
1931 Opc = X86::VPBLENDMBZ256rrk;
1932 break;
1933 case X86::VMOVDQU8Zrrk:
1934 Opc = X86::VPBLENDMBZrrk;
1935 break;
1936 case X86::VMOVDQU16Z128rrk:
1937 Opc = X86::VPBLENDMWZ128rrk;
1938 break;
1939 case X86::VMOVDQU16Z256rrk:
1940 Opc = X86::VPBLENDMWZ256rrk;
1941 break;
1942 case X86::VMOVDQU16Zrrk:
1943 Opc = X86::VPBLENDMWZrrk;
1944 break;
1945 case X86::VMOVDQU32Z128rrk:
1946 Opc = X86::VPBLENDMDZ128rrk;
1947 break;
1948 case X86::VMOVDQU32Z256rrk:
1949 Opc = X86::VPBLENDMDZ256rrk;
1950 break;
1951 case X86::VMOVDQU32Zrrk:
1952 Opc = X86::VPBLENDMDZrrk;
1953 break;
1954 case X86::VMOVDQU64Z128rrk:
1955 Opc = X86::VPBLENDMQZ128rrk;
1956 break;
1957 case X86::VMOVDQU64Z256rrk:
1958 Opc = X86::VPBLENDMQZ256rrk;
1959 break;
1960 case X86::VMOVDQU64Zrrk:
1961 Opc = X86::VPBLENDMQZrrk;
1962 break;
1963 case X86::VMOVUPDZ128rrk:
1964 Opc = X86::VBLENDMPDZ128rrk;
1965 break;
1966 case X86::VMOVUPDZ256rrk:
1967 Opc = X86::VBLENDMPDZ256rrk;
1968 break;
1969 case X86::VMOVUPDZrrk:
1970 Opc = X86::VBLENDMPDZrrk;
1971 break;
1972 case X86::VMOVUPSZ128rrk:
1973 Opc = X86::VBLENDMPSZ128rrk;
1974 break;
1975 case X86::VMOVUPSZ256rrk:
1976 Opc = X86::VBLENDMPSZ256rrk;
1977 break;
1978 case X86::VMOVUPSZrrk:
1979 Opc = X86::VBLENDMPSZrrk;
1980 break;
1981 case X86::VMOVDQA32Z128rrk:
1982 Opc = X86::VPBLENDMDZ128rrk;
1983 break;
1984 case X86::VMOVDQA32Z256rrk:
1985 Opc = X86::VPBLENDMDZ256rrk;
1986 break;
1987 case X86::VMOVDQA32Zrrk:
1988 Opc = X86::VPBLENDMDZrrk;
1989 break;
1990 case X86::VMOVDQA64Z128rrk:
1991 Opc = X86::VPBLENDMQZ128rrk;
1992 break;
1993 case X86::VMOVDQA64Z256rrk:
1994 Opc = X86::VPBLENDMQZ256rrk;
1995 break;
1996 case X86::VMOVDQA64Zrrk:
1997 Opc = X86::VPBLENDMQZrrk;
1998 break;
1999 case X86::VMOVAPDZ128rrk:
2000 Opc = X86::VBLENDMPDZ128rrk;
2001 break;
2002 case X86::VMOVAPDZ256rrk:
2003 Opc = X86::VBLENDMPDZ256rrk;
2004 break;
2005 case X86::VMOVAPDZrrk:
2006 Opc = X86::VBLENDMPDZrrk;
2007 break;
2008 case X86::VMOVAPSZ128rrk:
2009 Opc = X86::VBLENDMPSZ128rrk;
2010 break;
2011 case X86::VMOVAPSZ256rrk:
2012 Opc = X86::VBLENDMPSZ256rrk;
2013 break;
2014 case X86::VMOVAPSZrrk:
2015 Opc = X86::VBLENDMPSZrrk;
2016 break;
2017 }
2018
2019 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
2020 .add(Dest)
2021 .add(MI.getOperand(2))
2022 .add(Src)
2023 .add(MI.getOperand(3));
2024 NumRegOperands = 4;
2025 break;
2026 }
2027 }
2028#undef CASE_NF
2029
2030 if (!NewMI)
2031 return nullptr;
2032
2033 if (LV) { // Update live variables
2034 for (unsigned I = 0; I < NumRegOperands; ++I) {
2035 MachineOperand &Op = MI.getOperand(I);
2036 if (Op.isReg() && (Op.isDead() || Op.isKill()))
2037 LV->replaceKillInstruction(Op.getReg(), MI, *NewMI);
2038 }
2039 }
2040
2041 MachineBasicBlock &MBB = *MI.getParent();
2042 MBB.insert(MI.getIterator(), NewMI); // Insert the new inst
2043
2044 if (LIS) {
2045 LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
2046 if (SrcReg)
2047 LIS->getInterval(SrcReg);
2048 if (SrcReg2)
2049 LIS->getInterval(SrcReg2);
2050 }
2051
2052 return NewMI;
2053}
2054
2055/// This determines which of three possible cases of a three source commute
2056/// the source indexes correspond to taking into account any mask operands.
2057/// All prevents commuting a passthru operand. Returns -1 if the commute isn't
2058/// possible.
2059/// Case 0 - Possible to commute the first and second operands.
2060/// Case 1 - Possible to commute the first and third operands.
2061/// Case 2 - Possible to commute the second and third operands.
2062static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
2063 unsigned SrcOpIdx2) {
2064 // Put the lowest index to SrcOpIdx1 to simplify the checks below.
2065 if (SrcOpIdx1 > SrcOpIdx2)
2066 std::swap(SrcOpIdx1, SrcOpIdx2);
2067
2068 unsigned Op1 = 1, Op2 = 2, Op3 = 3;
2069 if (X86II::isKMasked(TSFlags)) {
2070 Op2++;
2071 Op3++;
2072 }
2073
2074 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
2075 return 0;
2076 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
2077 return 1;
2078 if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
2079 return 2;
2080 llvm_unreachable("Unknown three src commute case.");
2081}
2082
2084 const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
2085 const X86InstrFMA3Group &FMA3Group) const {
2086
2087 unsigned Opc = MI.getOpcode();
2088
2089 // TODO: Commuting the 1st operand of FMA*_Int requires some additional
2090 // analysis. The commute optimization is legal only if all users of FMA*_Int
2091 // use only the lowest element of the FMA*_Int instruction. Such analysis are
2092 // not implemented yet. So, just return 0 in that case.
2093 // When such analysis are available this place will be the right place for
2094 // calling it.
2095 assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&
2096 "Intrinsic instructions can't commute operand 1");
2097
2098 // Determine which case this commute is or if it can't be done.
2099 unsigned Case =
2100 getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, SrcOpIdx2);
2101 assert(Case < 3 && "Unexpected case number!");
2102
2103 // Define the FMA forms mapping array that helps to map input FMA form
2104 // to output FMA form to preserve the operation semantics after
2105 // commuting the operands.
2106 const unsigned Form132Index = 0;
2107 const unsigned Form213Index = 1;
2108 const unsigned Form231Index = 2;
2109 static const unsigned FormMapping[][3] = {
2110 // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
2111 // FMA132 A, C, b; ==> FMA231 C, A, b;
2112 // FMA213 B, A, c; ==> FMA213 A, B, c;
2113 // FMA231 C, A, b; ==> FMA132 A, C, b;
2114 {Form231Index, Form213Index, Form132Index},
2115 // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
2116 // FMA132 A, c, B; ==> FMA132 B, c, A;
2117 // FMA213 B, a, C; ==> FMA231 C, a, B;
2118 // FMA231 C, a, B; ==> FMA213 B, a, C;
2119 {Form132Index, Form231Index, Form213Index},
2120 // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
2121 // FMA132 a, C, B; ==> FMA213 a, B, C;
2122 // FMA213 b, A, C; ==> FMA132 b, C, A;
2123 // FMA231 c, A, B; ==> FMA231 c, B, A;
2124 {Form213Index, Form132Index, Form231Index}};
2125
2126 unsigned FMAForms[3];
2127 FMAForms[0] = FMA3Group.get132Opcode();
2128 FMAForms[1] = FMA3Group.get213Opcode();
2129 FMAForms[2] = FMA3Group.get231Opcode();
2130
2131 // Everything is ready, just adjust the FMA opcode and return it.
2132 for (unsigned FormIndex = 0; FormIndex < 3; FormIndex++)
2133 if (Opc == FMAForms[FormIndex])
2134 return FMAForms[FormMapping[Case][FormIndex]];
2135
2136 llvm_unreachable("Illegal FMA3 format");
2137}
2138
2139static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
2140 unsigned SrcOpIdx2) {
2141 // Determine which case this commute is or if it can't be done.
2142 unsigned Case =
2143 getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, SrcOpIdx2);
2144 assert(Case < 3 && "Unexpected case value!");
2145
2146 // For each case we need to swap two pairs of bits in the final immediate.
2147 static const uint8_t SwapMasks[3][4] = {
2148 {0x04, 0x10, 0x08, 0x20}, // Swap bits 2/4 and 3/5.
2149 {0x02, 0x10, 0x08, 0x40}, // Swap bits 1/4 and 3/6.
2150 {0x02, 0x04, 0x20, 0x40}, // Swap bits 1/2 and 5/6.
2151 };
2152
2153 uint8_t Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
2154 // Clear out the bits we are swapping.
2155 uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
2156 SwapMasks[Case][2] | SwapMasks[Case][3]);
2157 // If the immediate had a bit of the pair set, then set the opposite bit.
2158 if (Imm & SwapMasks[Case][0])
2159 NewImm |= SwapMasks[Case][1];
2160 if (Imm & SwapMasks[Case][1])
2161 NewImm |= SwapMasks[Case][0];
2162 if (Imm & SwapMasks[Case][2])
2163 NewImm |= SwapMasks[Case][3];
2164 if (Imm & SwapMasks[Case][3])
2165 NewImm |= SwapMasks[Case][2];
2166 MI.getOperand(MI.getNumOperands() - 1).setImm(NewImm);
2167}
2168
2169// Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
2170// commuted.
2171static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
2172#define VPERM_CASES(Suffix) \
2173 case X86::VPERMI2##Suffix##Z128rr: \
2174 case X86::VPERMT2##Suffix##Z128rr: \
2175 case X86::VPERMI2##Suffix##Z256rr: \
2176 case X86::VPERMT2##Suffix##Z256rr: \
2177 case X86::VPERMI2##Suffix##Zrr: \
2178 case X86::VPERMT2##Suffix##Zrr: \
2179 case X86::VPERMI2##Suffix##Z128rm: \
2180 case X86::VPERMT2##Suffix##Z128rm: \
2181 case X86::VPERMI2##Suffix##Z256rm: \
2182 case X86::VPERMT2##Suffix##Z256rm: \
2183 case X86::VPERMI2##Suffix##Zrm: \
2184 case X86::VPERMT2##Suffix##Zrm: \
2185 case X86::VPERMI2##Suffix##Z128rrkz: \
2186 case X86::VPERMT2##Suffix##Z128rrkz: \
2187 case X86::VPERMI2##Suffix##Z256rrkz: \
2188 case X86::VPERMT2##Suffix##Z256rrkz: \
2189 case X86::VPERMI2##Suffix##Zrrkz: \
2190 case X86::VPERMT2##Suffix##Zrrkz: \
2191 case X86::VPERMI2##Suffix##Z128rmkz: \
2192 case X86::VPERMT2##Suffix##Z128rmkz: \
2193 case X86::VPERMI2##Suffix##Z256rmkz: \
2194 case X86::VPERMT2##Suffix##Z256rmkz: \
2195 case X86::VPERMI2##Suffix##Zrmkz: \
2196 case X86::VPERMT2##Suffix##Zrmkz:
2197
2198#define VPERM_CASES_BROADCAST(Suffix) \
2199 VPERM_CASES(Suffix) \
2200 case X86::VPERMI2##Suffix##Z128rmb: \
2201 case X86::VPERMT2##Suffix##Z128rmb: \
2202 case X86::VPERMI2##Suffix##Z256rmb: \
2203 case X86::VPERMT2##Suffix##Z256rmb: \
2204 case X86::VPERMI2##Suffix##Zrmb: \
2205 case X86::VPERMT2##Suffix##Zrmb: \
2206 case X86::VPERMI2##Suffix##Z128rmbkz: \
2207 case X86::VPERMT2##Suffix##Z128rmbkz: \
2208 case X86::VPERMI2##Suffix##Z256rmbkz: \
2209 case X86::VPERMT2##Suffix##Z256rmbkz: \
2210 case X86::VPERMI2##Suffix##Zrmbkz: \
2211 case X86::VPERMT2##Suffix##Zrmbkz:
2212
2213 switch (Opcode) {
2214 default:
2215 return false;
2216 VPERM_CASES(B)
2221 VPERM_CASES(W)
2222 return true;
2223 }
2224#undef VPERM_CASES_BROADCAST
2225#undef VPERM_CASES
2226}
2227
2228// Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
2229// from the I opcode to the T opcode and vice versa.
2230static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
2231#define VPERM_CASES(Orig, New) \
2232 case X86::Orig##Z128rr: \
2233 return X86::New##Z128rr; \
2234 case X86::Orig##Z128rrkz: \
2235 return X86::New##Z128rrkz; \
2236 case X86::Orig##Z128rm: \
2237 return X86::New##Z128rm; \
2238 case X86::Orig##Z128rmkz: \
2239 return X86::New##Z128rmkz; \
2240 case X86::Orig##Z256rr: \
2241 return X86::New##Z256rr; \
2242 case X86::Orig##Z256rrkz: \
2243 return X86::New##Z256rrkz; \
2244 case X86::Orig##Z256rm: \
2245 return X86::New##Z256rm; \
2246 case X86::Orig##Z256rmkz: \
2247 return X86::New##Z256rmkz; \
2248 case X86::Orig##Zrr: \
2249 return X86::New##Zrr; \
2250 case X86::Orig##Zrrkz: \
2251 return X86::New##Zrrkz; \
2252 case X86::Orig##Zrm: \
2253 return X86::New##Zrm; \
2254 case X86::Orig##Zrmkz: \
2255 return X86::New##Zrmkz;
2256
2257#define VPERM_CASES_BROADCAST(Orig, New) \
2258 VPERM_CASES(Orig, New) \
2259 case X86::Orig##Z128rmb: \
2260 return X86::New##Z128rmb; \
2261 case X86::Orig##Z128rmbkz: \
2262 return X86::New##Z128rmbkz; \
2263 case X86::Orig##Z256rmb: \
2264 return X86::New##Z256rmb; \
2265 case X86::Orig##Z256rmbkz: \
2266 return X86::New##Z256rmbkz; \
2267 case X86::Orig##Zrmb: \
2268 return X86::New##Zrmb; \
2269 case X86::Orig##Zrmbkz: \
2270 return X86::New##Zrmbkz;
2271
2272 switch (Opcode) {
2273 VPERM_CASES(VPERMI2B, VPERMT2B)
2274 VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D)
2275 VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
2276 VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
2277 VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q)
2278 VPERM_CASES(VPERMI2W, VPERMT2W)
2279 VPERM_CASES(VPERMT2B, VPERMI2B)
2280 VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D)
2281 VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
2282 VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
2283 VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q)
2284 VPERM_CASES(VPERMT2W, VPERMI2W)
2285 }
2286
2287 llvm_unreachable("Unreachable!");
2288#undef VPERM_CASES_BROADCAST
2289#undef VPERM_CASES
2290}
2291
2293 unsigned OpIdx1,
2294 unsigned OpIdx2) const {
2295 auto CloneIfNew = [&](MachineInstr &MI) {
2296 return std::exchange(NewMI, false)
2297 ? MI.getParent()->getParent()->CloneMachineInstr(&MI)
2298 : &MI;
2299 };
2300 MachineInstr *WorkingMI = nullptr;
2301 unsigned Opc = MI.getOpcode();
2302
2303#define CASE_ND(OP) \
2304 case X86::OP: \
2305 case X86::OP##_ND:
2306
2307 switch (Opc) {
2308 // SHLD B, C, I <-> SHRD C, B, (BitWidth - I)
2309 CASE_ND(SHRD16rri8)
2310 CASE_ND(SHLD16rri8)
2311 CASE_ND(SHRD32rri8)
2312 CASE_ND(SHLD32rri8)
2313 CASE_ND(SHRD64rri8)
2314 CASE_ND(SHLD64rri8) {
2315 unsigned Size;
2316 switch (Opc) {
2317 default:
2318 llvm_unreachable("Unreachable!");
2319#define FROM_TO_SIZE(A, B, S) \
2320 case X86::A: \
2321 Opc = X86::B; \
2322 Size = S; \
2323 break; \
2324 case X86::A##_ND: \
2325 Opc = X86::B##_ND; \
2326 Size = S; \
2327 break; \
2328 case X86::B: \
2329 Opc = X86::A; \
2330 Size = S; \
2331 break; \
2332 case X86::B##_ND: \
2333 Opc = X86::A##_ND; \
2334 Size = S; \
2335 break;
2336
2337 FROM_TO_SIZE(SHRD16rri8, SHLD16rri8, 16)
2338 FROM_TO_SIZE(SHRD32rri8, SHLD32rri8, 32)
2339 FROM_TO_SIZE(SHRD64rri8, SHLD64rri8, 64)
2340#undef FROM_TO_SIZE
2341 }
2342 WorkingMI = CloneIfNew(MI);
2343 WorkingMI->setDesc(get(Opc));
2344 WorkingMI->getOperand(3).setImm(Size - MI.getOperand(3).getImm());
2345 break;
2346 }
2347 case X86::PFSUBrr:
2348 case X86::PFSUBRrr:
2349 // PFSUB x, y: x = x - y
2350 // PFSUBR x, y: x = y - x
2351 WorkingMI = CloneIfNew(MI);
2352 WorkingMI->setDesc(
2353 get(X86::PFSUBRrr == Opc ? X86::PFSUBrr : X86::PFSUBRrr));
2354 break;
2355 case X86::BLENDPDrri:
2356 case X86::BLENDPSrri:
2357 case X86::PBLENDWrri:
2358 case X86::VBLENDPDrri:
2359 case X86::VBLENDPSrri:
2360 case X86::VBLENDPDYrri:
2361 case X86::VBLENDPSYrri:
2362 case X86::VPBLENDDrri:
2363 case X86::VPBLENDWrri:
2364 case X86::VPBLENDDYrri:
2365 case X86::VPBLENDWYrri: {
2366 int8_t Mask;
2367 switch (Opc) {
2368 default:
2369 llvm_unreachable("Unreachable!");
2370 case X86::BLENDPDrri:
2371 Mask = (int8_t)0x03;
2372 break;
2373 case X86::BLENDPSrri:
2374 Mask = (int8_t)0x0F;
2375 break;
2376 case X86::PBLENDWrri:
2377 Mask = (int8_t)0xFF;
2378 break;
2379 case X86::VBLENDPDrri:
2380 Mask = (int8_t)0x03;
2381 break;
2382 case X86::VBLENDPSrri:
2383 Mask = (int8_t)0x0F;
2384 break;
2385 case X86::VBLENDPDYrri:
2386 Mask = (int8_t)0x0F;
2387 break;
2388 case X86::VBLENDPSYrri:
2389 Mask = (int8_t)0xFF;
2390 break;
2391 case X86::VPBLENDDrri:
2392 Mask = (int8_t)0x0F;
2393 break;
2394 case X86::VPBLENDWrri:
2395 Mask = (int8_t)0xFF;
2396 break;
2397 case X86::VPBLENDDYrri:
2398 Mask = (int8_t)0xFF;
2399 break;
2400 case X86::VPBLENDWYrri:
2401 Mask = (int8_t)0xFF;
2402 break;
2403 }
2404 // Only the least significant bits of Imm are used.
2405 // Using int8_t to ensure it will be sign extended to the int64_t that
2406 // setImm takes in order to match isel behavior.
2407 int8_t Imm = MI.getOperand(3).getImm() & Mask;
2408 WorkingMI = CloneIfNew(MI);
2409 WorkingMI->getOperand(3).setImm(Mask ^ Imm);
2410 break;
2411 }
2412 case X86::INSERTPSrri:
2413 case X86::VINSERTPSrri:
2414 case X86::VINSERTPSZrri: {
2415 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
2416 unsigned ZMask = Imm & 15;
2417 unsigned DstIdx = (Imm >> 4) & 3;
2418 unsigned SrcIdx = (Imm >> 6) & 3;
2419
2420 // We can commute insertps if we zero 2 of the elements, the insertion is
2421 // "inline" and we don't override the insertion with a zero.
2422 if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
2423 llvm::popcount(ZMask) == 2) {
2424 unsigned AltIdx = llvm::countr_zero((ZMask | (1 << DstIdx)) ^ 15);
2425 assert(AltIdx < 4 && "Illegal insertion index");
2426 unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
2427 WorkingMI = CloneIfNew(MI);
2428 WorkingMI->getOperand(MI.getNumOperands() - 1).setImm(AltImm);
2429 break;
2430 }
2431 return nullptr;
2432 }
2433 case X86::MOVSDrr:
2434 case X86::MOVSSrr:
2435 case X86::VMOVSDrr:
2436 case X86::VMOVSSrr: {
2437 // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
2438 if (Subtarget.hasSSE41()) {
2439 unsigned Mask;
2440 switch (Opc) {
2441 default:
2442 llvm_unreachable("Unreachable!");
2443 case X86::MOVSDrr:
2444 Opc = X86::BLENDPDrri;
2445 Mask = 0x02;
2446 break;
2447 case X86::MOVSSrr:
2448 Opc = X86::BLENDPSrri;
2449 Mask = 0x0E;
2450 break;
2451 case X86::VMOVSDrr:
2452 Opc = X86::VBLENDPDrri;
2453 Mask = 0x02;
2454 break;
2455 case X86::VMOVSSrr:
2456 Opc = X86::VBLENDPSrri;
2457 Mask = 0x0E;
2458 break;
2459 }
2460
2461 WorkingMI = CloneIfNew(MI);
2462 WorkingMI->setDesc(get(Opc));
2463 WorkingMI->addOperand(MachineOperand::CreateImm(Mask));
2464 break;
2465 }
2466
2467 assert(Opc == X86::MOVSDrr && "Only MOVSD can commute to SHUFPD");
2468 WorkingMI = CloneIfNew(MI);
2469 WorkingMI->setDesc(get(X86::SHUFPDrri));
2470 WorkingMI->addOperand(MachineOperand::CreateImm(0x02));
2471 break;
2472 }
2473 case X86::SHUFPDrri: {
2474 // Commute to MOVSD.
2475 assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
2476 WorkingMI = CloneIfNew(MI);
2477 WorkingMI->setDesc(get(X86::MOVSDrr));
2478 WorkingMI->removeOperand(3);
2479 break;
2480 }
2481 case X86::PCLMULQDQrri:
2482 case X86::VPCLMULQDQrri:
2483 case X86::VPCLMULQDQYrri:
2484 case X86::VPCLMULQDQZrri:
2485 case X86::VPCLMULQDQZ128rri:
2486 case X86::VPCLMULQDQZ256rri: {
2487 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
2488 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
2489 unsigned Imm = MI.getOperand(3).getImm();
2490 unsigned Src1Hi = Imm & 0x01;
2491 unsigned Src2Hi = Imm & 0x10;
2492 WorkingMI = CloneIfNew(MI);
2493 WorkingMI->getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
2494 break;
2495 }
2496 case X86::VPCMPBZ128rri:
2497 case X86::VPCMPUBZ128rri:
2498 case X86::VPCMPBZ256rri:
2499 case X86::VPCMPUBZ256rri:
2500 case X86::VPCMPBZrri:
2501 case X86::VPCMPUBZrri:
2502 case X86::VPCMPDZ128rri:
2503 case X86::VPCMPUDZ128rri:
2504 case X86::VPCMPDZ256rri:
2505 case X86::VPCMPUDZ256rri:
2506 case X86::VPCMPDZrri:
2507 case X86::VPCMPUDZrri:
2508 case X86::VPCMPQZ128rri:
2509 case X86::VPCMPUQZ128rri:
2510 case X86::VPCMPQZ256rri:
2511 case X86::VPCMPUQZ256rri:
2512 case X86::VPCMPQZrri:
2513 case X86::VPCMPUQZrri:
2514 case X86::VPCMPWZ128rri:
2515 case X86::VPCMPUWZ128rri:
2516 case X86::VPCMPWZ256rri:
2517 case X86::VPCMPUWZ256rri:
2518 case X86::VPCMPWZrri:
2519 case X86::VPCMPUWZrri:
2520 case X86::VPCMPBZ128rrik:
2521 case X86::VPCMPUBZ128rrik:
2522 case X86::VPCMPBZ256rrik:
2523 case X86::VPCMPUBZ256rrik:
2524 case X86::VPCMPBZrrik:
2525 case X86::VPCMPUBZrrik:
2526 case X86::VPCMPDZ128rrik:
2527 case X86::VPCMPUDZ128rrik:
2528 case X86::VPCMPDZ256rrik:
2529 case X86::VPCMPUDZ256rrik:
2530 case X86::VPCMPDZrrik:
2531 case X86::VPCMPUDZrrik:
2532 case X86::VPCMPQZ128rrik:
2533 case X86::VPCMPUQZ128rrik:
2534 case X86::VPCMPQZ256rrik:
2535 case X86::VPCMPUQZ256rrik:
2536 case X86::VPCMPQZrrik:
2537 case X86::VPCMPUQZrrik:
2538 case X86::VPCMPWZ128rrik:
2539 case X86::VPCMPUWZ128rrik:
2540 case X86::VPCMPWZ256rrik:
2541 case X86::VPCMPUWZ256rrik:
2542 case X86::VPCMPWZrrik:
2543 case X86::VPCMPUWZrrik:
2544 WorkingMI = CloneIfNew(MI);
2545 // Flip comparison mode immediate (if necessary).
2546 WorkingMI->getOperand(MI.getNumOperands() - 1)
2548 MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7));
2549 break;
2550 case X86::VPCOMBri:
2551 case X86::VPCOMUBri:
2552 case X86::VPCOMDri:
2553 case X86::VPCOMUDri:
2554 case X86::VPCOMQri:
2555 case X86::VPCOMUQri:
2556 case X86::VPCOMWri:
2557 case X86::VPCOMUWri:
2558 WorkingMI = CloneIfNew(MI);
2559 // Flip comparison mode immediate (if necessary).
2560 WorkingMI->getOperand(3).setImm(
2561 X86::getSwappedVPCOMImm(MI.getOperand(3).getImm() & 0x7));
2562 break;
2563 case X86::VCMPSDZrri:
2564 case X86::VCMPSSZrri:
2565 case X86::VCMPPDZrri:
2566 case X86::VCMPPSZrri:
2567 case X86::VCMPSHZrri:
2568 case X86::VCMPPHZrri:
2569 case X86::VCMPPHZ128rri:
2570 case X86::VCMPPHZ256rri:
2571 case X86::VCMPPDZ128rri:
2572 case X86::VCMPPSZ128rri:
2573 case X86::VCMPPDZ256rri:
2574 case X86::VCMPPSZ256rri:
2575 case X86::VCMPPDZrrik:
2576 case X86::VCMPPSZrrik:
2577 case X86::VCMPPHZrrik:
2578 case X86::VCMPPDZ128rrik:
2579 case X86::VCMPPSZ128rrik:
2580 case X86::VCMPPHZ128rrik:
2581 case X86::VCMPPDZ256rrik:
2582 case X86::VCMPPSZ256rrik:
2583 case X86::VCMPPHZ256rrik:
2584 WorkingMI = CloneIfNew(MI);
2585 WorkingMI->getOperand(MI.getNumExplicitOperands() - 1)
2587 MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f));
2588 break;
2589 case X86::VPERM2F128rri:
2590 case X86::VPERM2I128rri:
2591 // Flip permute source immediate.
2592 // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
2593 // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
2594 WorkingMI = CloneIfNew(MI);
2595 WorkingMI->getOperand(3).setImm((MI.getOperand(3).getImm() & 0xFF) ^ 0x22);
2596 break;
2597 case X86::MOVHLPSrr:
2598 case X86::UNPCKHPDrr:
2599 case X86::VMOVHLPSrr:
2600 case X86::VUNPCKHPDrr:
2601 case X86::VMOVHLPSZrr:
2602 case X86::VUNPCKHPDZ128rr:
2603 assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
2604
2605 switch (Opc) {
2606 default:
2607 llvm_unreachable("Unreachable!");
2608 case X86::MOVHLPSrr:
2609 Opc = X86::UNPCKHPDrr;
2610 break;
2611 case X86::UNPCKHPDrr:
2612 Opc = X86::MOVHLPSrr;
2613 break;
2614 case X86::VMOVHLPSrr:
2615 Opc = X86::VUNPCKHPDrr;
2616 break;
2617 case X86::VUNPCKHPDrr:
2618 Opc = X86::VMOVHLPSrr;
2619 break;
2620 case X86::VMOVHLPSZrr:
2621 Opc = X86::VUNPCKHPDZ128rr;
2622 break;
2623 case X86::VUNPCKHPDZ128rr:
2624 Opc = X86::VMOVHLPSZrr;
2625 break;
2626 }
2627 WorkingMI = CloneIfNew(MI);
2628 WorkingMI->setDesc(get(Opc));
2629 break;
2630 CASE_ND(CMOV16rr)
2631 CASE_ND(CMOV32rr)
2632 CASE_ND(CMOV64rr) {
2633 WorkingMI = CloneIfNew(MI);
2634 unsigned OpNo = MI.getDesc().getNumOperands() - 1;
2635 X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
2637 break;
2638 }
2639 case X86::VPTERNLOGDZrri:
2640 case X86::VPTERNLOGDZrmi:
2641 case X86::VPTERNLOGDZ128rri:
2642 case X86::VPTERNLOGDZ128rmi:
2643 case X86::VPTERNLOGDZ256rri:
2644 case X86::VPTERNLOGDZ256rmi:
2645 case X86::VPTERNLOGQZrri:
2646 case X86::VPTERNLOGQZrmi:
2647 case X86::VPTERNLOGQZ128rri:
2648 case X86::VPTERNLOGQZ128rmi:
2649 case X86::VPTERNLOGQZ256rri:
2650 case X86::VPTERNLOGQZ256rmi:
2651 case X86::VPTERNLOGDZrrik:
2652 case X86::VPTERNLOGDZ128rrik:
2653 case X86::VPTERNLOGDZ256rrik:
2654 case X86::VPTERNLOGQZrrik:
2655 case X86::VPTERNLOGQZ128rrik:
2656 case X86::VPTERNLOGQZ256rrik:
2657 case X86::VPTERNLOGDZrrikz:
2658 case X86::VPTERNLOGDZrmikz:
2659 case X86::VPTERNLOGDZ128rrikz:
2660 case X86::VPTERNLOGDZ128rmikz:
2661 case X86::VPTERNLOGDZ256rrikz:
2662 case X86::VPTERNLOGDZ256rmikz:
2663 case X86::VPTERNLOGQZrrikz:
2664 case X86::VPTERNLOGQZrmikz:
2665 case X86::VPTERNLOGQZ128rrikz:
2666 case X86::VPTERNLOGQZ128rmikz:
2667 case X86::VPTERNLOGQZ256rrikz:
2668 case X86::VPTERNLOGQZ256rmikz:
2669 case X86::VPTERNLOGDZ128rmbi:
2670 case X86::VPTERNLOGDZ256rmbi:
2671 case X86::VPTERNLOGDZrmbi:
2672 case X86::VPTERNLOGQZ128rmbi:
2673 case X86::VPTERNLOGQZ256rmbi:
2674 case X86::VPTERNLOGQZrmbi:
2675 case X86::VPTERNLOGDZ128rmbikz:
2676 case X86::VPTERNLOGDZ256rmbikz:
2677 case X86::VPTERNLOGDZrmbikz:
2678 case X86::VPTERNLOGQZ128rmbikz:
2679 case X86::VPTERNLOGQZ256rmbikz:
2680 case X86::VPTERNLOGQZrmbikz: {
2681 WorkingMI = CloneIfNew(MI);
2682 commuteVPTERNLOG(*WorkingMI, OpIdx1, OpIdx2);
2683 break;
2684 }
2685 default:
2687 WorkingMI = CloneIfNew(MI);
2689 break;
2690 }
2691
2692 if (auto *FMA3Group = getFMA3Group(Opc, MI.getDesc().TSFlags)) {
2693 WorkingMI = CloneIfNew(MI);
2694 WorkingMI->setDesc(
2695 get(getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group)));
2696 break;
2697 }
2698 }
2699 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2700}
2701
2702bool X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
2703 unsigned &SrcOpIdx1,
2704 unsigned &SrcOpIdx2,
2705 bool IsIntrinsic) const {
2706 uint64_t TSFlags = MI.getDesc().TSFlags;
2707
2708 unsigned FirstCommutableVecOp = 1;
2709 unsigned LastCommutableVecOp = 3;
2710 unsigned KMaskOp = -1U;
2711 if (X86II::isKMasked(TSFlags)) {
2712 // For k-zero-masked operations it is Ok to commute the first vector
2713 // operand. Unless this is an intrinsic instruction.
2714 // For regular k-masked operations a conservative choice is done as the
2715 // elements of the first vector operand, for which the corresponding bit
2716 // in the k-mask operand is set to 0, are copied to the result of the
2717 // instruction.
2718 // TODO/FIXME: The commute still may be legal if it is known that the
2719 // k-mask operand is set to either all ones or all zeroes.
2720 // It is also Ok to commute the 1st operand if all users of MI use only
2721 // the elements enabled by the k-mask operand. For example,
2722 // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
2723 // : v1[i];
2724 // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
2725 // // Ok, to commute v1 in FMADD213PSZrk.
2726
2727 // The k-mask operand has index = 2 for masked and zero-masked operations.
2728 KMaskOp = 2;
2729
2730 // The operand with index = 1 is used as a source for those elements for
2731 // which the corresponding bit in the k-mask is set to 0.
2732 if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic)
2733 FirstCommutableVecOp = 3;
2734
2735 LastCommutableVecOp++;
2736 } else if (IsIntrinsic) {
2737 // Commuting the first operand of an intrinsic instruction isn't possible
2738 // unless we can prove that only the lowest element of the result is used.
2739 FirstCommutableVecOp = 2;
2740 }
2741
2742 if (isMem(MI, LastCommutableVecOp))
2743 LastCommutableVecOp--;
2744
2745 // Only the first RegOpsNum operands are commutable.
2746 // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
2747 // that the operand is not specified/fixed.
2748 if (SrcOpIdx1 != CommuteAnyOperandIndex &&
2749 (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
2750 SrcOpIdx1 == KMaskOp))
2751 return false;
2752 if (SrcOpIdx2 != CommuteAnyOperandIndex &&
2753 (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
2754 SrcOpIdx2 == KMaskOp))
2755 return false;
2756
2757 // Look for two different register operands assumed to be commutable
2758 // regardless of the FMA opcode. The FMA opcode is adjusted later.
2759 if (SrcOpIdx1 == CommuteAnyOperandIndex ||
2760 SrcOpIdx2 == CommuteAnyOperandIndex) {
2761 unsigned CommutableOpIdx2 = SrcOpIdx2;
2762
2763 // At least one of operands to be commuted is not specified and
2764 // this method is free to choose appropriate commutable operands.
2765 if (SrcOpIdx1 == SrcOpIdx2)
2766 // Both of operands are not fixed. By default set one of commutable
2767 // operands to the last register operand of the instruction.
2768 CommutableOpIdx2 = LastCommutableVecOp;
2769 else if (SrcOpIdx2 == CommuteAnyOperandIndex)
2770 // Only one of operands is not fixed.
2771 CommutableOpIdx2 = SrcOpIdx1;
2772
2773 // CommutableOpIdx2 is well defined now. Let's choose another commutable
2774 // operand and assign its index to CommutableOpIdx1.
2775 Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
2776
2777 unsigned CommutableOpIdx1;
2778 for (CommutableOpIdx1 = LastCommutableVecOp;
2779 CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
2780 // Just ignore and skip the k-mask operand.
2781 if (CommutableOpIdx1 == KMaskOp)
2782 continue;
2783
2784 // The commuted operands must have different registers.
2785 // Otherwise, the commute transformation does not change anything and
2786 // is useless then.
2787 if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
2788 break;
2789 }
2790
2791 // No appropriate commutable operands were found.
2792 if (CommutableOpIdx1 < FirstCommutableVecOp)
2793 return false;
2794
2795 // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
2796 // to return those values.
2797 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
2798 CommutableOpIdx2))
2799 return false;
2800 }
2801
2802 return true;
2803}
2804
2806 unsigned &SrcOpIdx1,
2807 unsigned &SrcOpIdx2) const {
2808 const MCInstrDesc &Desc = MI.getDesc();
2809 if (!Desc.isCommutable())
2810 return false;
2811
2812 switch (MI.getOpcode()) {
2813 case X86::CMPSDrri:
2814 case X86::CMPSSrri:
2815 case X86::CMPPDrri:
2816 case X86::CMPPSrri:
2817 case X86::VCMPSDrri:
2818 case X86::VCMPSSrri:
2819 case X86::VCMPPDrri:
2820 case X86::VCMPPSrri:
2821 case X86::VCMPPDYrri:
2822 case X86::VCMPPSYrri:
2823 case X86::VCMPSDZrri:
2824 case X86::VCMPSSZrri:
2825 case X86::VCMPPDZrri:
2826 case X86::VCMPPSZrri:
2827 case X86::VCMPSHZrri:
2828 case X86::VCMPPHZrri:
2829 case X86::VCMPPHZ128rri:
2830 case X86::VCMPPHZ256rri:
2831 case X86::VCMPPDZ128rri:
2832 case X86::VCMPPSZ128rri:
2833 case X86::VCMPPDZ256rri:
2834 case X86::VCMPPSZ256rri:
2835 case X86::VCMPPDZrrik:
2836 case X86::VCMPPSZrrik:
2837 case X86::VCMPPHZrrik:
2838 case X86::VCMPPDZ128rrik:
2839 case X86::VCMPPSZ128rrik:
2840 case X86::VCMPPHZ128rrik:
2841 case X86::VCMPPDZ256rrik:
2842 case X86::VCMPPSZ256rrik:
2843 case X86::VCMPPHZ256rrik: {
2844 unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0;
2845
2846 // Float comparison can be safely commuted for
2847 // Ordered/Unordered/Equal/NotEqual tests
2848 unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7;
2849 switch (Imm) {
2850 default:
2851 // EVEX versions can be commuted.
2852 if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX)
2853 break;
2854 return false;
2855 case 0x00: // EQUAL
2856 case 0x03: // UNORDERED
2857 case 0x04: // NOT EQUAL
2858 case 0x07: // ORDERED
2859 break;
2860 }
2861
2862 // The indices of the commutable operands are 1 and 2 (or 2 and 3
2863 // when masked).
2864 // Assign them to the returned operand indices here.
2865 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
2866 2 + OpOffset);
2867 }
2868 case X86::MOVSSrr:
2869 // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
2870 // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
2871 // AVX implies sse4.1.
2872 if (Subtarget.hasSSE41())
2873 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2874 return false;
2875 case X86::SHUFPDrri:
2876 // We can commute this to MOVSD.
2877 if (MI.getOperand(3).getImm() == 0x02)
2878 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2879 return false;
2880 case X86::MOVHLPSrr:
2881 case X86::UNPCKHPDrr:
2882 case X86::VMOVHLPSrr:
2883 case X86::VUNPCKHPDrr:
2884 case X86::VMOVHLPSZrr:
2885 case X86::VUNPCKHPDZ128rr:
2886 if (Subtarget.hasSSE2())
2887 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2888 return false;
2889 case X86::VPTERNLOGDZrri:
2890 case X86::VPTERNLOGDZrmi:
2891 case X86::VPTERNLOGDZ128rri:
2892 case X86::VPTERNLOGDZ128rmi:
2893 case X86::VPTERNLOGDZ256rri:
2894 case X86::VPTERNLOGDZ256rmi:
2895 case X86::VPTERNLOGQZrri:
2896 case X86::VPTERNLOGQZrmi:
2897 case X86::VPTERNLOGQZ128rri:
2898 case X86::VPTERNLOGQZ128rmi:
2899 case X86::VPTERNLOGQZ256rri:
2900 case X86::VPTERNLOGQZ256rmi:
2901 case X86::VPTERNLOGDZrrik:
2902 case X86::VPTERNLOGDZ128rrik:
2903 case X86::VPTERNLOGDZ256rrik:
2904 case X86::VPTERNLOGQZrrik:
2905 case X86::VPTERNLOGQZ128rrik:
2906 case X86::VPTERNLOGQZ256rrik:
2907 case X86::VPTERNLOGDZrrikz:
2908 case X86::VPTERNLOGDZrmikz:
2909 case X86::VPTERNLOGDZ128rrikz:
2910 case X86::VPTERNLOGDZ128rmikz:
2911 case X86::VPTERNLOGDZ256rrikz:
2912 case X86::VPTERNLOGDZ256rmikz:
2913 case X86::VPTERNLOGQZrrikz:
2914 case X86::VPTERNLOGQZrmikz:
2915 case X86::VPTERNLOGQZ128rrikz:
2916 case X86::VPTERNLOGQZ128rmikz:
2917 case X86::VPTERNLOGQZ256rrikz:
2918 case X86::VPTERNLOGQZ256rmikz:
2919 case X86::VPTERNLOGDZ128rmbi:
2920 case X86::VPTERNLOGDZ256rmbi:
2921 case X86::VPTERNLOGDZrmbi:
2922 case X86::VPTERNLOGQZ128rmbi:
2923 case X86::VPTERNLOGQZ256rmbi:
2924 case X86::VPTERNLOGQZrmbi:
2925 case X86::VPTERNLOGDZ128rmbikz:
2926 case X86::VPTERNLOGDZ256rmbikz:
2927 case X86::VPTERNLOGDZrmbikz:
2928 case X86::VPTERNLOGQZ128rmbikz:
2929 case X86::VPTERNLOGQZ256rmbikz:
2930 case X86::VPTERNLOGQZrmbikz:
2931 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2932 case X86::VPDPWSSDYrr:
2933 case X86::VPDPWSSDrr:
2934 case X86::VPDPWSSDSYrr:
2935 case X86::VPDPWSSDSrr:
2936 case X86::VPDPWUUDrr:
2937 case X86::VPDPWUUDYrr:
2938 case X86::VPDPWUUDSrr:
2939 case X86::VPDPWUUDSYrr:
2940 case X86::VPDPBSSDSrr:
2941 case X86::VPDPBSSDSYrr:
2942 case X86::VPDPBSSDrr:
2943 case X86::VPDPBSSDYrr:
2944 case X86::VPDPBUUDSrr:
2945 case X86::VPDPBUUDSYrr:
2946 case X86::VPDPBUUDrr:
2947 case X86::VPDPBUUDYrr:
2948 case X86::VPDPBSSDSZ128rr:
2949 case X86::VPDPBSSDSZ128rrk:
2950 case X86::VPDPBSSDSZ128rrkz:
2951 case X86::VPDPBSSDSZ256rr:
2952 case X86::VPDPBSSDSZ256rrk:
2953 case X86::VPDPBSSDSZ256rrkz:
2954 case X86::VPDPBSSDSZrr:
2955 case X86::VPDPBSSDSZrrk:
2956 case X86::VPDPBSSDSZrrkz:
2957 case X86::VPDPBSSDZ128rr:
2958 case X86::VPDPBSSDZ128rrk:
2959 case X86::VPDPBSSDZ128rrkz:
2960 case X86::VPDPBSSDZ256rr:
2961 case X86::VPDPBSSDZ256rrk:
2962 case X86::VPDPBSSDZ256rrkz:
2963 case X86::VPDPBSSDZrr:
2964 case X86::VPDPBSSDZrrk:
2965 case X86::VPDPBSSDZrrkz:
2966 case X86::VPDPBUUDSZ128rr:
2967 case X86::VPDPBUUDSZ128rrk:
2968 case X86::VPDPBUUDSZ128rrkz:
2969 case X86::VPDPBUUDSZ256rr:
2970 case X86::VPDPBUUDSZ256rrk:
2971 case X86::VPDPBUUDSZ256rrkz:
2972 case X86::VPDPBUUDSZrr:
2973 case X86::VPDPBUUDSZrrk:
2974 case X86::VPDPBUUDSZrrkz:
2975 case X86::VPDPBUUDZ128rr:
2976 case X86::VPDPBUUDZ128rrk:
2977 case X86::VPDPBUUDZ128rrkz:
2978 case X86::VPDPBUUDZ256rr:
2979 case X86::VPDPBUUDZ256rrk:
2980 case X86::VPDPBUUDZ256rrkz:
2981 case X86::VPDPBUUDZrr:
2982 case X86::VPDPBUUDZrrk:
2983 case X86::VPDPBUUDZrrkz:
2984 case X86::VPDPWSSDZ128rr:
2985 case X86::VPDPWSSDZ128rrk:
2986 case X86::VPDPWSSDZ128rrkz:
2987 case X86::VPDPWSSDZ256rr:
2988 case X86::VPDPWSSDZ256rrk:
2989 case X86::VPDPWSSDZ256rrkz:
2990 case X86::VPDPWSSDZrr:
2991 case X86::VPDPWSSDZrrk:
2992 case X86::VPDPWSSDZrrkz:
2993 case X86::VPDPWSSDSZ128rr:
2994 case X86::VPDPWSSDSZ128rrk:
2995 case X86::VPDPWSSDSZ128rrkz:
2996 case X86::VPDPWSSDSZ256rr:
2997 case X86::VPDPWSSDSZ256rrk:
2998 case X86::VPDPWSSDSZ256rrkz:
2999 case X86::VPDPWSSDSZrr:
3000 case X86::VPDPWSSDSZrrk:
3001 case X86::VPDPWSSDSZrrkz:
3002 case X86::VPDPWUUDZ128rr:
3003 case X86::VPDPWUUDZ128rrk:
3004 case X86::VPDPWUUDZ128rrkz:
3005 case X86::VPDPWUUDZ256rr:
3006 case X86::VPDPWUUDZ256rrk:
3007 case X86::VPDPWUUDZ256rrkz:
3008 case X86::VPDPWUUDZrr:
3009 case X86::VPDPWUUDZrrk:
3010 case X86::VPDPWUUDZrrkz:
3011 case X86::VPDPWUUDSZ128rr:
3012 case X86::VPDPWUUDSZ128rrk:
3013 case X86::VPDPWUUDSZ128rrkz:
3014 case X86::VPDPWUUDSZ256rr:
3015 case X86::VPDPWUUDSZ256rrk:
3016 case X86::VPDPWUUDSZ256rrkz:
3017 case X86::VPDPWUUDSZrr:
3018 case X86::VPDPWUUDSZrrk:
3019 case X86::VPDPWUUDSZrrkz:
3020 case X86::VPMADD52HUQrr:
3021 case X86::VPMADD52HUQYrr:
3022 case X86::VPMADD52HUQZ128r:
3023 case X86::VPMADD52HUQZ128rk:
3024 case X86::VPMADD52HUQZ128rkz:
3025 case X86::VPMADD52HUQZ256r:
3026 case X86::VPMADD52HUQZ256rk:
3027 case X86::VPMADD52HUQZ256rkz:
3028 case X86::VPMADD52HUQZr:
3029 case X86::VPMADD52HUQZrk:
3030 case X86::VPMADD52HUQZrkz:
3031 case X86::VPMADD52LUQrr:
3032 case X86::VPMADD52LUQYrr:
3033 case X86::VPMADD52LUQZ128r:
3034 case X86::VPMADD52LUQZ128rk:
3035 case X86::VPMADD52LUQZ128rkz:
3036 case X86::VPMADD52LUQZ256r:
3037 case X86::VPMADD52LUQZ256rk:
3038 case X86::VPMADD52LUQZ256rkz:
3039 case X86::VPMADD52LUQZr:
3040 case X86::VPMADD52LUQZrk:
3041 case X86::VPMADD52LUQZrkz:
3042 case X86::VFMADDCPHZr:
3043 case X86::VFMADDCPHZrk:
3044 case X86::VFMADDCPHZrkz:
3045 case X86::VFMADDCPHZ128r:
3046 case X86::VFMADDCPHZ128rk:
3047 case X86::VFMADDCPHZ128rkz:
3048 case X86::VFMADDCPHZ256r:
3049 case X86::VFMADDCPHZ256rk:
3050 case X86::VFMADDCPHZ256rkz:
3051 case X86::VFMADDCSHZr:
3052 case X86::VFMADDCSHZrk:
3053 case X86::VFMADDCSHZrkz: {
3054 unsigned CommutableOpIdx1 = 2;
3055 unsigned CommutableOpIdx2 = 3;
3056 if (X86II::isKMasked(Desc.TSFlags)) {
3057 // Skip the mask register.
3058 ++CommutableOpIdx1;
3059 ++CommutableOpIdx2;
3060 }
3061 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
3062 CommutableOpIdx2))
3063 return false;
3064 if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
3065 // No idea.
3066 return false;
3067 return true;
3068 }
3069
3070 default:
3071 const X86InstrFMA3Group *FMA3Group =
3072 getFMA3Group(MI.getOpcode(), MI.getDesc().TSFlags);
3073 if (FMA3Group)
3074 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
3075 FMA3Group->isIntrinsic());
3076
3077 // Handled masked instructions since we need to skip over the mask input
3078 // and the preserved input.
3079 if (X86II::isKMasked(Desc.TSFlags)) {
3080 // First assume that the first input is the mask operand and skip past it.
3081 unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
3082 unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
3083 // Check if the first input is tied. If there isn't one then we only
3084 // need to skip the mask operand which we did above.
3085 if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
3086 MCOI::TIED_TO) != -1)) {
3087 // If this is zero masking instruction with a tied operand, we need to
3088 // move the first index back to the first input since this must
3089 // be a 3 input instruction and we want the first two non-mask inputs.
3090 // Otherwise this is a 2 input instruction with a preserved input and
3091 // mask, so we need to move the indices to skip one more input.
3092 if (X86II::isKMergeMasked(Desc.TSFlags)) {
3093 ++CommutableOpIdx1;
3094 ++CommutableOpIdx2;
3095 } else {
3096 --CommutableOpIdx1;
3097 }
3098 }
3099
3100 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
3101 CommutableOpIdx2))
3102 return false;
3103
3104 if (!MI.getOperand(SrcOpIdx1).isReg() ||
3105 !MI.getOperand(SrcOpIdx2).isReg())
3106 // No idea.
3107 return false;
3108 return true;
3109 }
3110
3111 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
3112 }
3113 return false;
3114}
3115
3117 unsigned Opcode = MI->getOpcode();
3118 if (Opcode != X86::LEA32r && Opcode != X86::LEA64r &&
3119 Opcode != X86::LEA64_32r)
3120 return false;
3121
3122 const MachineOperand &Scale = MI->getOperand(1 + X86::AddrScaleAmt);
3123 const MachineOperand &Disp = MI->getOperand(1 + X86::AddrDisp);
3124 const MachineOperand &Segment = MI->getOperand(1 + X86::AddrSegmentReg);
3125
3126 if (Segment.getReg() != 0 || !Disp.isImm() || Disp.getImm() != 0 ||
3127 Scale.getImm() > 1)
3128 return false;
3129
3130 return true;
3131}
3132
3134 // Currently we're interested in following sequence only.
3135 // r3 = lea r1, r2
3136 // r5 = add r3, r4
3137 // Both r3 and r4 are killed in add, we hope the add instruction has the
3138 // operand order
3139 // r5 = add r4, r3
3140 // So later in X86FixupLEAs the lea instruction can be rewritten as add.
3141 unsigned Opcode = MI.getOpcode();
3142 if (Opcode != X86::ADD32rr && Opcode != X86::ADD64rr)
3143 return false;
3144
3145 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3146 Register Reg1 = MI.getOperand(1).getReg();
3147 Register Reg2 = MI.getOperand(2).getReg();
3148
3149 // Check if Reg1 comes from LEA in the same MBB.
3150 if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg1)) {
3151 if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
3152 Commute = true;
3153 return true;
3154 }
3155 }
3156
3157 // Check if Reg2 comes from LEA in the same MBB.
3158 if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg2)) {
3159 if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
3160 Commute = false;
3161 return true;
3162 }
3163 }
3164
3165 return false;
3166}
3167
3169 unsigned Opcode = MCID.getOpcode();
3170 if (!(X86::isJCC(Opcode) || X86::isSETCC(Opcode) || X86::isSETZUCC(Opcode) ||
3171 X86::isCMOVCC(Opcode) || X86::isCFCMOVCC(Opcode) ||
3172 X86::isCCMPCC(Opcode) || X86::isCTESTCC(Opcode)))
3173 return -1;
3174 // Assume that condition code is always the last use operand.
3175 unsigned NumUses = MCID.getNumOperands() - MCID.getNumDefs();
3176 return NumUses - 1;
3177}
3178
3180 const MCInstrDesc &MCID = MI.getDesc();
3181 int CondNo = getCondSrcNoFromDesc(MCID);
3182 if (CondNo < 0)
3183 return X86::COND_INVALID;
3184 CondNo += MCID.getNumDefs();
3185 return static_cast<X86::CondCode>(MI.getOperand(CondNo).getImm());
3186}
3187
3189 return X86::isJCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
3191}
3192
3194 return X86::isSETCC(MI.getOpcode()) || X86::isSETZUCC(MI.getOpcode())
3197}
3198
3200 return X86::isCMOVCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
3202}
3203
3205 return X86::isCFCMOVCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
3207}
3208
3210 return X86::isCCMPCC(MI.getOpcode()) || X86::isCTESTCC(MI.getOpcode())
3213}
3214
3216 // CCMP/CTEST has two conditional operands:
3217 // - SCC: source conditonal code (same as CMOV)
3218 // - DCF: destination conditional flags, which has 4 valid bits
3219 //
3220 // +----+----+----+----+
3221 // | OF | SF | ZF | CF |
3222 // +----+----+----+----+
3223 //
3224 // If SCC(source conditional code) evaluates to false, CCMP/CTEST will updates
3225 // the conditional flags by as follows:
3226 //
3227 // OF = DCF.OF
3228 // SF = DCF.SF
3229 // ZF = DCF.ZF
3230 // CF = DCF.CF
3231 // PF = DCF.CF
3232 // AF = 0 (Auxiliary Carry Flag)
3233 //
3234 // Otherwise, the CMP or TEST is executed and it updates the
3235 // CSPAZO flags normally.
3236 //
3237 // NOTE:
3238 // If SCC = P, then SCC evaluates to true regardless of the CSPAZO value.
3239 // If SCC = NP, then SCC evaluates to false regardless of the CSPAZO value.
3240
3241 enum { CF = 1, ZF = 2, SF = 4, OF = 8, PF = CF };
3242
3243 switch (CC) {
3244 default:
3245 llvm_unreachable("Illegal condition code!");
3246 case X86::COND_NO:
3247 case X86::COND_NE:
3248 case X86::COND_GE:
3249 case X86::COND_G:
3250 case X86::COND_AE:
3251 case X86::COND_A:
3252 case X86::COND_NS:
3253 case X86::COND_NP:
3254 return 0;
3255 case X86::COND_O:
3256 return OF;
3257 case X86::COND_B:
3258 case X86::COND_BE:
3259 return CF;
3260 break;
3261 case X86::COND_E:
3262 case X86::COND_LE:
3263 return ZF;
3264 case X86::COND_S:
3265 case X86::COND_L:
3266 return SF;
3267 case X86::COND_P:
3268 return PF;
3269 }
3270}
3271
3272#define GET_X86_NF_TRANSFORM_TABLE
3273#define GET_X86_ND2NONND_TABLE
3274#include "X86GenInstrMapping.inc"
3275
3277 unsigned Opc) {
3278 const auto I = llvm::lower_bound(Table, Opc);
3279 return (I == Table.end() || I->OldOpc != Opc) ? 0U : I->NewOpc;
3280}
3281unsigned X86::getNFVariant(unsigned Opc) {
3282#if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
3283 // Make sure the tables are sorted.
3284 static std::atomic<bool> NFTableChecked(false);
3285 if (!NFTableChecked.load(std::memory_order_relaxed)) {
3286 assert(llvm::is_sorted(X86NFTransformTable) &&
3287 "X86NFTransformTable is not sorted!");
3288 NFTableChecked.store(true, std::memory_order_relaxed);
3289 }
3290#endif
3291 return getNewOpcFromTable(X86NFTransformTable, Opc);
3292}
3293
3294unsigned X86::getNonNDVariant(unsigned Opc) {
3295#if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
3296 // Make sure the tables are sorted.
3297 static std::atomic<bool> NDTableChecked(false);
3298 if (!NDTableChecked.load(std::memory_order_relaxed)) {
3299 assert(llvm::is_sorted(X86ND2NonNDTable) &&
3300 "X86ND2NonNDTableis not sorted!");
3301 NDTableChecked.store(true, std::memory_order_relaxed);
3302 }
3303#endif
3304 return getNewOpcFromTable(X86ND2NonNDTable, Opc);
3305}
3306
3307/// Return the inverse of the specified condition,
3308/// e.g. turning COND_E to COND_NE.
3310 switch (CC) {
3311 default:
3312 llvm_unreachable("Illegal condition code!");
3313 case X86::COND_E:
3314 return X86::COND_NE;
3315 case X86::COND_NE:
3316 return X86::COND_E;
3317 case X86::COND_L:
3318 return X86::COND_GE;
3319 case X86::COND_LE:
3320 return X86::COND_G;
3321 case X86::COND_G:
3322 return X86::COND_LE;
3323 case X86::COND_GE:
3324 return X86::COND_L;
3325 case X86::COND_B:
3326 return X86::COND_AE;
3327 case X86::COND_BE:
3328 return X86::COND_A;
3329 case X86::COND_A:
3330 return X86::COND_BE;
3331 case X86::COND_AE:
3332 return X86::COND_B;
3333 case X86::COND_S:
3334 return X86::COND_NS;
3335 case X86::COND_NS:
3336 return X86::COND_S;
3337 case X86::COND_P:
3338 return X86::COND_NP;
3339 case X86::COND_NP:
3340 return X86::COND_P;
3341 case X86::COND_O:
3342 return X86::COND_NO;
3343 case X86::COND_NO:
3344 return X86::COND_O;
3345 case X86::COND_NE_OR_P:
3346 return X86::COND_E_AND_NP;
3347 case X86::COND_E_AND_NP:
3348 return X86::COND_NE_OR_P;
3349 }
3350}
3351
3352/// Assuming the flags are set by MI(a,b), return the condition code if we
3353/// modify the instructions such that flags are set by MI(b,a).
3355 switch (CC) {
3356 default:
3357 return X86::COND_INVALID;
3358 case X86::COND_E:
3359 return X86::COND_E;
3360 case X86::COND_NE:
3361 return X86::COND_NE;
3362 case X86::COND_L:
3363 return X86::COND_G;
3364 case X86::COND_LE:
3365 return X86::COND_GE;
3366 case X86::COND_G:
3367 return X86::COND_L;
3368 case X86::COND_GE:
3369 return X86::COND_LE;
3370 case X86::COND_B:
3371 return X86::COND_A;
3372 case X86::COND_BE:
3373 return X86::COND_AE;
3374 case X86::COND_A:
3375 return X86::COND_B;
3376 case X86::COND_AE:
3377 return X86::COND_BE;
3378 }
3379}
3380
3381std::pair<X86::CondCode, bool>
3384 bool NeedSwap = false;
3385 switch (Predicate) {
3386 default:
3387 break;
3388 // Floating-point Predicates
3389 case CmpInst::FCMP_UEQ:
3390 CC = X86::COND_E;
3391 break;
3392 case CmpInst::FCMP_OLT:
3393 NeedSwap = true;
3394 [[fallthrough]];
3395 case CmpInst::FCMP_OGT:
3396 CC = X86::COND_A;
3397 break;
3398 case CmpInst::FCMP_OLE:
3399 NeedSwap = true;
3400 [[fallthrough]];
3401 case CmpInst::FCMP_OGE:
3402 CC = X86::COND_AE;
3403 break;
3404 case CmpInst::FCMP_UGT:
3405 NeedSwap = true;
3406 [[fallthrough]];
3407 case CmpInst::FCMP_ULT:
3408 CC = X86::COND_B;
3409 break;
3410 case CmpInst::FCMP_UGE:
3411 NeedSwap = true;
3412 [[fallthrough]];
3413 case CmpInst::FCMP_ULE:
3414 CC = X86::COND_BE;
3415 break;
3416 case CmpInst::FCMP_ONE:
3417 CC = X86::COND_NE;
3418 break;
3419 case CmpInst::FCMP_UNO:
3420 CC = X86::COND_P;
3421 break;
3422 case CmpInst::FCMP_ORD:
3423 CC = X86::COND_NP;
3424 break;
3425 case CmpInst::FCMP_OEQ:
3426 [[fallthrough]];
3427 case CmpInst::FCMP_UNE:
3428 CC = X86::COND_INVALID;
3429 break;
3430
3431 // Integer Predicates
3432 case CmpInst::ICMP_EQ:
3433 CC = X86::COND_E;
3434 break;
3435 case CmpInst::ICMP_NE:
3436 CC = X86::COND_NE;
3437 break;
3438 case CmpInst::ICMP_UGT:
3439 CC = X86::COND_A;
3440 break;
3441 case CmpInst::ICMP_UGE:
3442 CC = X86::COND_AE;
3443 break;
3444 case CmpInst::ICMP_ULT:
3445 CC = X86::COND_B;
3446 break;
3447 case CmpInst::ICMP_ULE:
3448 CC = X86::COND_BE;
3449 break;
3450 case CmpInst::ICMP_SGT:
3451 CC = X86::COND_G;
3452 break;
3453 case CmpInst::ICMP_SGE:
3454 CC = X86::COND_GE;
3455 break;
3456 case CmpInst::ICMP_SLT:
3457 CC = X86::COND_L;
3458 break;
3459 case CmpInst::ICMP_SLE:
3460 CC = X86::COND_LE;
3461 break;
3462 }
3463
3464 return std::make_pair(CC, NeedSwap);
3465}
3466
3467/// Return a cmov opcode for the given register size in bytes, and operand type.
3468unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand,
3469 bool HasNDD) {
3470 switch (RegBytes) {
3471 default:
3472 llvm_unreachable("Illegal register size!");
3473#define GET_ND_IF_ENABLED(OPC) (HasNDD ? OPC##_ND : OPC)
3474 case 2:
3475 return HasMemoryOperand ? GET_ND_IF_ENABLED(X86::CMOV16rm)
3476 : GET_ND_IF_ENABLED(X86::CMOV16rr);
3477 case 4:
3478 return HasMemoryOperand ? GET_ND_IF_ENABLED(X86::CMOV32rm)
3479 : GET_ND_IF_ENABLED(X86::CMOV32rr);
3480 case 8:
3481 return HasMemoryOperand ? GET_ND_IF_ENABLED(X86::CMOV64rm)
3482 : GET_ND_IF_ENABLED(X86::CMOV64rr);
3483 }
3484}
3485
3486/// Get the VPCMP immediate for the given condition.
3488 switch (CC) {
3489 default:
3490 llvm_unreachable("Unexpected SETCC condition");
3491 case ISD::SETNE:
3492 return 4;
3493 case ISD::SETEQ:
3494 return 0;
3495 case ISD::SETULT:
3496 case ISD::SETLT:
3497 return 1;
3498 case ISD::SETUGT:
3499 case ISD::SETGT:
3500 return 6;
3501 case ISD::SETUGE:
3502 case ISD::SETGE:
3503 return 5;
3504 case ISD::SETULE:
3505 case ISD::SETLE:
3506 return 2;
3507 }
3508}
3509
3510/// Get the VPCMP immediate if the operands are swapped.
3511unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
3512 switch (Imm) {
3513 default:
3514 llvm_unreachable("Unreachable!");
3515 case 0x01:
3516 Imm = 0x06;
3517 break; // LT -> NLE
3518 case 0x02:
3519 Imm = 0x05;
3520 break; // LE -> NLT
3521 case 0x05:
3522 Imm = 0x02;
3523 break; // NLT -> LE
3524 case 0x06:
3525 Imm = 0x01;
3526 break; // NLE -> LT
3527 case 0x00: // EQ
3528 case 0x03: // FALSE
3529 case 0x04: // NE
3530 case 0x07: // TRUE
3531 break;
3532 }
3533
3534 return Imm;
3535}
3536
3537/// Get the VPCOM immediate if the operands are swapped.
3538unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
3539 switch (Imm) {
3540 default:
3541 llvm_unreachable("Unreachable!");
3542 case 0x00:
3543 Imm = 0x02;
3544 break; // LT -> GT
3545 case 0x01:
3546 Imm = 0x03;
3547 break; // LE -> GE
3548 case 0x02:
3549 Imm = 0x00;
3550 break; // GT -> LT
3551 case 0x03:
3552 Imm = 0x01;
3553 break; // GE -> LE
3554 case 0x04: // EQ
3555 case 0x05: // NE
3556 case 0x06: // FALSE
3557 case 0x07: // TRUE
3558 break;
3559 }
3560
3561 return Imm;
3562}
3563
3564/// Get the VCMP immediate if the operands are swapped.
3565unsigned X86::getSwappedVCMPImm(unsigned Imm) {
3566 // Only need the lower 2 bits to distinquish.
3567 switch (Imm & 0x3) {
3568 default:
3569 llvm_unreachable("Unreachable!");
3570 case 0x00:
3571 case 0x03:
3572 // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
3573 break;
3574 case 0x01:
3575 case 0x02:
3576 // Need to toggle bits 3:0. Bit 4 stays the same.
3577 Imm ^= 0xf;
3578 break;
3579 }
3580
3581 return Imm;
3582}
3583
3585 if (Info.RegClass == X86::VR128RegClassID ||
3586 Info.RegClass == X86::VR128XRegClassID)
3587 return 128;
3588 if (Info.RegClass == X86::VR256RegClassID ||
3589 Info.RegClass == X86::VR256XRegClassID)
3590 return 256;
3591 if (Info.RegClass == X86::VR512RegClassID)
3592 return 512;
3593 llvm_unreachable("Unknown register class!");
3594}
3595
3596/// Return true if the Reg is X87 register.
3597static bool isX87Reg(Register Reg) {
3598 return (Reg == X86::FPCW || Reg == X86::FPSW ||
3599 (Reg >= X86::ST0 && Reg <= X86::ST7));
3600}
3601
3602/// check if the instruction is X87 instruction
3604 // Call and inlineasm defs X87 register, so we special case it here because
3605 // otherwise calls are incorrectly flagged as x87 instructions
3606 // as a result.
3607 if (MI.isCall() || MI.isInlineAsm())
3608 return false;
3609 for (const MachineOperand &MO : MI.operands()) {
3610 if (!MO.isReg())
3611 continue;
3612 if (isX87Reg(MO.getReg()))
3613 return true;
3614 }
3615 return false;
3616}
3617
3619 auto IsMemOp = [](const MCOperandInfo &OpInfo) {
3620 return OpInfo.OperandType == MCOI::OPERAND_MEMORY;
3621 };
3622
3623 const MCInstrDesc &Desc = MI.getDesc();
3624
3625 // Directly invoke the MC-layer routine for real (i.e., non-pseudo)
3626 // instructions (fast case).
3627 if (!X86II::isPseudo(Desc.TSFlags)) {
3628 int MemRefIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
3629 if (MemRefIdx >= 0)
3630 return MemRefIdx + X86II::getOperandBias(Desc);
3631#ifdef EXPENSIVE_CHECKS
3632 assert(none_of(Desc.operands(), IsMemOp) &&
3633 "Got false negative from X86II::getMemoryOperandNo()!");
3634#endif
3635 return -1;
3636 }
3637
3638 // Otherwise, handle pseudo instructions by examining the type of their
3639 // operands (slow case). An instruction cannot have a memory reference if it
3640 // has fewer than AddrNumOperands (= 5) explicit operands.
3641 unsigned NumOps = Desc.getNumOperands();
3643#ifdef EXPENSIVE_CHECKS
3644 assert(none_of(Desc.operands(), IsMemOp) &&
3645 "Expected no operands to have OPERAND_MEMORY type!");
3646#endif
3647 return -1;
3648 }
3649
3650 // The first operand with type OPERAND_MEMORY indicates the start of a memory
3651 // reference. We expect the following AddrNumOperand-1 operands to also have
3652 // OPERAND_MEMORY type.
3653 for (unsigned I = 0, E = NumOps - X86::AddrNumOperands; I != E; ++I) {
3654 if (IsMemOp(Desc.operands()[I])) {
3655#ifdef EXPENSIVE_CHECKS
3656 assert(std::all_of(Desc.operands().begin() + I,
3657 Desc.operands().begin() + I + X86::AddrNumOperands,
3658 IsMemOp) &&
3659 "Expected all five operands in the memory reference to have "
3660 "OPERAND_MEMORY type!");
3661#endif
3662 return I;
3663 }
3664 }
3665
3666 return -1;
3667}
3668
3670 unsigned OpNo) {
3671 assert(MI.getNumOperands() >= (OpNo + X86::AddrNumOperands) &&
3672 "Unexpected number of operands!");
3673
3674 const MachineOperand &Index = MI.getOperand(OpNo + X86::AddrIndexReg);
3675 if (!Index.isReg() || Index.getReg() != X86::NoRegister)
3676 return nullptr;
3677
3678 const MachineOperand &Disp = MI.getOperand(OpNo + X86::AddrDisp);
3679 if (!Disp.isCPI() || Disp.getOffset() != 0)
3680 return nullptr;
3681
3683 MI.getParent()->getParent()->getConstantPool()->getConstants();
3684 const MachineConstantPoolEntry &ConstantEntry = Constants[Disp.getIndex()];
3685
3686 // Bail if this is a machine constant pool entry, we won't be able to dig out
3687 // anything useful.
3688 if (ConstantEntry.isMachineConstantPoolEntry())
3689 return nullptr;
3690
3691 return ConstantEntry.Val.ConstVal;
3692}
3693
3695 switch (MI.getOpcode()) {
3696 case X86::TCRETURNdi:
3697 case X86::TCRETURNri:
3698 case X86::TCRETURNmi:
3699 case X86::TCRETURNdi64:
3700 case X86::TCRETURNri64:
3701 case X86::TCRETURNri64_ImpCall:
3702 case X86::TCRETURNmi64:
3703 return true;
3704 default:
3705 return false;
3706 }
3707}
3708
3711 const MachineInstr &TailCall) const {
3712
3713 const MachineFunction *MF = TailCall.getMF();
3714
3715 if (MF->getTarget().getCodeModel() == CodeModel::Kernel) {
3716 // Kernel patches thunk calls in runtime, these should never be conditional.
3717 const MachineOperand &Target = TailCall.getOperand(0);
3718 if (Target.isSymbol()) {
3719 StringRef Symbol(Target.getSymbolName());
3720 // this is currently only relevant to r11/kernel indirect thunk.
3721 if (Symbol == "__x86_indirect_thunk_r11")
3722 return false;
3723 }
3724 }
3725
3726 if (TailCall.getOpcode() != X86::TCRETURNdi &&
3727 TailCall.getOpcode() != X86::TCRETURNdi64) {
3728 // Only direct calls can be done with a conditional branch.
3729 return false;
3730 }
3731
3732 if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
3733 // Conditional tail calls confuse the Win64 unwinder.
3734 return false;
3735 }
3736
3737 assert(BranchCond.size() == 1);
3738 if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
3739 // Can't make a conditional tail call with this condition.
3740 return false;
3741 }
3742
3744 if (X86FI->getTCReturnAddrDelta() != 0 ||
3745 TailCall.getOperand(1).getImm() != 0) {
3746 // A conditional tail call cannot do any stack adjustment.
3747 return false;
3748 }
3749
3750 return true;
3751}
3752
3755 const MachineInstr &TailCall) const {
3756 assert(canMakeTailCallConditional(BranchCond, TailCall));
3757
3759 while (I != MBB.begin()) {
3760 --I;
3761 if (I->isDebugInstr())
3762 continue;
3763 if (!I->isBranch())
3764 assert(0 && "Can't find the branch to replace!");
3765
3767 assert(BranchCond.size() == 1);
3768 if (CC != BranchCond[0].getImm())
3769 continue;
3770
3771 break;
3772 }
3773
3774 unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
3775 : X86::TCRETURNdi64cc;
3776
3777 auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
3778 MIB->addOperand(TailCall.getOperand(0)); // Destination.
3779 MIB.addImm(0); // Stack offset (not used).
3780 MIB->addOperand(BranchCond[0]); // Condition.
3781 MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
3782
3783 // Add implicit uses and defs of all live regs potentially clobbered by the
3784 // call. This way they still appear live across the call.
3786 LiveRegs.addLiveOuts(MBB);
3788 LiveRegs.stepForward(*MIB, Clobbers);
3789 for (const auto &C : Clobbers) {
3790 MIB.addReg(C.first, RegState::Implicit);
3792 }
3793
3794 I->eraseFromParent();
3795}
3796
3797// Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
3798// not be a fallthrough MBB now due to layout changes). Return nullptr if the
3799// fallthrough MBB cannot be identified.
3802 // Look for non-EHPad successors other than TBB. If we find exactly one, it
3803 // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
3804 // and fallthrough MBB. If we find more than one, we cannot identify the
3805 // fallthrough MBB and should return nullptr.
3806 MachineBasicBlock *FallthroughBB = nullptr;
3807 for (MachineBasicBlock *Succ : MBB->successors()) {
3808 if (Succ->isEHPad() || (Succ == TBB && FallthroughBB))
3809 continue;
3810 // Return a nullptr if we found more than one fallthrough successor.
3811 if (FallthroughBB && FallthroughBB != TBB)
3812 return nullptr;
3813 FallthroughBB = Succ;
3814 }
3815 return FallthroughBB;
3816}
3817
3818bool X86InstrInfo::analyzeBranchImpl(
3821 SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
3822
3823 // Start from the bottom of the block and work up, examining the
3824 // terminator instructions.
3826 MachineBasicBlock::iterator UnCondBrIter = MBB.end();
3827 while (I != MBB.begin()) {
3828 --I;
3829 if (I->isDebugInstr())
3830 continue;
3831
3832 // Working from the bottom, when we see a non-terminator instruction, we're
3833 // done.
3834 if (!isUnpredicatedTerminator(*I))
3835 break;
3836
3837 // A terminator that isn't a branch can't easily be handled by this
3838 // analysis.
3839 if (!I->isBranch())
3840 return true;
3841
3842 // Handle unconditional branches.
3843 if (I->getOpcode() == X86::JMP_1) {
3844 UnCondBrIter = I;
3845
3846 if (!AllowModify) {
3847 TBB = I->getOperand(0).getMBB();
3848 continue;
3849 }
3850
3851 // If the block has any instructions after a JMP, delete them.
3852 MBB.erase(std::next(I), MBB.end());
3853
3854 Cond.clear();
3855 FBB = nullptr;
3856
3857 // Delete the JMP if it's equivalent to a fall-through.
3858 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
3859 TBB = nullptr;
3860 I->eraseFromParent();
3861 I = MBB.end();
3862 UnCondBrIter = MBB.end();
3863 continue;
3864 }
3865
3866 // TBB is used to indicate the unconditional destination.
3867 TBB = I->getOperand(0).getMBB();
3868 continue;
3869 }
3870
3871 // Handle conditional branches.
3872 X86::CondCode BranchCode = X86::getCondFromBranch(*I);
3873 if (BranchCode == X86::COND_INVALID)
3874 return true; // Can't handle indirect branch.
3875
3876 // In practice we should never have an undef eflags operand, if we do
3877 // abort here as we are not prepared to preserve the flag.
3878 if (I->findRegisterUseOperand(X86::EFLAGS, /*TRI=*/nullptr)->isUndef())
3879 return true;
3880
3881 // Working from the bottom, handle the first conditional branch.
3882 if (Cond.empty()) {
3883 FBB = TBB;
3884 TBB = I->getOperand(0).getMBB();
3886 CondBranches.push_back(&*I);
3887 continue;
3888 }
3889
3890 // Handle subsequent conditional branches. Only handle the case where all
3891 // conditional branches branch to the same destination and their condition
3892 // opcodes fit one of the special multi-branch idioms.
3893 assert(Cond.size() == 1);
3894 assert(TBB);
3895
3896 // If the conditions are the same, we can leave them alone.
3897 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
3898 auto NewTBB = I->getOperand(0).getMBB();
3899 if (OldBranchCode == BranchCode && TBB == NewTBB)
3900 continue;
3901
3902 // If they differ, see if they fit one of the known patterns. Theoretically,
3903 // we could handle more patterns here, but we shouldn't expect to see them
3904 // if instruction selection has done a reasonable job.
3905 if (TBB == NewTBB &&
3906 ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
3907 (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
3908 BranchCode = X86::COND_NE_OR_P;
3909 } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
3910 (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
3911 if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
3912 return true;
3913
3914 // X86::COND_E_AND_NP usually has two different branch destinations.
3915 //
3916 // JP B1
3917 // JE B2
3918 // JMP B1
3919 // B1:
3920 // B2:
3921 //
3922 // Here this condition branches to B2 only if NP && E. It has another
3923 // equivalent form:
3924 //
3925 // JNE B1
3926 // JNP B2
3927 // JMP B1
3928 // B1:
3929 // B2:
3930 //
3931 // Similarly it branches to B2 only if E && NP. That is why this condition
3932 // is named with COND_E_AND_NP.
3933 BranchCode = X86::COND_E_AND_NP;
3934 } else
3935 return true;
3936
3937 // Update the MachineOperand.
3938 Cond[0].setImm(BranchCode);
3939 CondBranches.push_back(&*I);
3940 }
3941
3942 return false;
3943}
3944
3947 MachineBasicBlock *&FBB,
3949 bool AllowModify) const {
3950 SmallVector<MachineInstr *, 4> CondBranches;
3951 return analyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
3952}
3953
3955 const MCInstrDesc &Desc = MI.getDesc();
3956 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3957 assert(MemRefBegin >= 0 && "instr should have memory operand");
3958 MemRefBegin += X86II::getOperandBias(Desc);
3959
3960 const MachineOperand &MO = MI.getOperand(MemRefBegin + X86::AddrDisp);
3961 if (!MO.isJTI())
3962 return -1;
3963
3964 return MO.getIndex();
3965}
3966
3968 Register Reg) {
3969 if (!Reg.isVirtual())
3970 return -1;
3971 MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
3972 if (MI == nullptr)
3973 return -1;
3974 unsigned Opcode = MI->getOpcode();
3975 if (Opcode != X86::LEA64r && Opcode != X86::LEA32r)
3976 return -1;
3978}
3979
3981 unsigned Opcode = MI.getOpcode();
3982 // Switch-jump pattern for non-PIC code looks like:
3983 // JMP64m $noreg, 8, %X, %jump-table.X, $noreg
3984 if (Opcode == X86::JMP64m || Opcode == X86::JMP32m) {
3986 }
3987 // The pattern for PIC code looks like:
3988 // %0 = LEA64r $rip, 1, $noreg, %jump-table.X
3989 // %1 = MOVSX64rm32 %0, 4, XX, 0, $noreg
3990 // %2 = ADD64rr %1, %0
3991 // JMP64r %2
3992 if (Opcode == X86::JMP64r || Opcode == X86::JMP32r) {
3993 Register Reg = MI.getOperand(0).getReg();
3994 if (!Reg.isVirtual())
3995 return -1;
3996 const MachineFunction &MF = *MI.getParent()->getParent();
3997 const MachineRegisterInfo &MRI = MF.getRegInfo();
3998 MachineInstr *Add = MRI.getUniqueVRegDef(Reg);
3999 if (Add == nullptr)
4000 return -1;
4001 if (Add->getOpcode() != X86::ADD64rr && Add->getOpcode() != X86::ADD32rr)
4002 return -1;
4003 int JTI1 = getJumpTableIndexFromReg(MRI, Add->getOperand(1).getReg());
4004 if (JTI1 >= 0)
4005 return JTI1;
4006 int JTI2 = getJumpTableIndexFromReg(MRI, Add->getOperand(2).getReg());
4007 if (JTI2 >= 0)
4008 return JTI2;
4009 }
4010 return -1;
4011}
4012
4014 MachineBranchPredicate &MBP,
4015 bool AllowModify) const {
4016 using namespace std::placeholders;
4017
4019 SmallVector<MachineInstr *, 4> CondBranches;
4020 if (analyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
4021 AllowModify))
4022 return true;
4023
4024 if (Cond.size() != 1)
4025 return true;
4026
4027 assert(MBP.TrueDest && "expected!");
4028
4029 if (!MBP.FalseDest)
4030 MBP.FalseDest = MBB.getNextNode();
4031
4033
4034 MachineInstr *ConditionDef = nullptr;
4035 bool SingleUseCondition = true;
4036
4038 if (MI.modifiesRegister(X86::EFLAGS, TRI)) {
4039 ConditionDef = &MI;
4040 break;
4041 }
4042
4043 if (MI.readsRegister(X86::EFLAGS, TRI))
4044 SingleUseCondition = false;
4045 }
4046
4047 if (!ConditionDef)
4048 return true;
4049
4050 if (SingleUseCondition) {
4051 for (auto *Succ : MBB.successors())
4052 if (Succ->isLiveIn(X86::EFLAGS))
4053 SingleUseCondition = false;
4054 }
4055
4056 MBP.ConditionDef = ConditionDef;
4057 MBP.SingleUseCondition = SingleUseCondition;
4058
4059 // Currently we only recognize the simple pattern:
4060 //
4061 // test %reg, %reg
4062 // je %label
4063 //
4064 const unsigned TestOpcode =
4065 Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
4066
4067 if (ConditionDef->getOpcode() == TestOpcode &&
4068 ConditionDef->getNumOperands() == 3 &&
4069 ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
4070 (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
4071 MBP.LHS = ConditionDef->getOperand(0);
4072 MBP.RHS = MachineOperand::CreateImm(0);
4073 MBP.Predicate = Cond[0].getImm() == X86::COND_NE
4074 ? MachineBranchPredicate::PRED_NE
4075 : MachineBranchPredicate::PRED_EQ;
4076 return false;
4077 }
4078
4079 return true;
4080}
4081
4083 int *BytesRemoved) const {
4084 assert(!BytesRemoved && "code size not handled");
4085
4087 unsigned Count = 0;
4088
4089 while (I != MBB.begin()) {
4090 --I;
4091 if (I->isDebugInstr())
4092 continue;
4093 if (I->getOpcode() != X86::JMP_1 &&
4095 break;
4096 // Remove the branch.
4097 I->eraseFromParent();
4098 I = MBB.end();
4099 ++Count;
4100 }
4101
4102 return Count;
4103}
4104
4107 MachineBasicBlock *FBB,
4109 const DebugLoc &DL, int *BytesAdded) const {
4110 // Shouldn't be a fall through.
4111 assert(TBB && "insertBranch must not be told to insert a fallthrough");
4112 assert((Cond.size() == 1 || Cond.size() == 0) &&
4113 "X86 branch conditions have one component!");
4114 assert(!BytesAdded && "code size not handled");
4115
4116 if (Cond.empty()) {
4117 // Unconditional branch?
4118 assert(!FBB && "Unconditional branch with multiple successors!");
4119 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
4120 return 1;
4121 }
4122
4123 // If FBB is null, it is implied to be a fall-through block.
4124 bool FallThru = FBB == nullptr;
4125
4126 // Conditional branch.
4127 unsigned Count = 0;
4129 switch (CC) {
4130 case X86::COND_NE_OR_P:
4131 // Synthesize NE_OR_P with two branches.
4132 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
4133 ++Count;
4134 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
4135 ++Count;
4136 break;
4137 case X86::COND_E_AND_NP:
4138 // Use the next block of MBB as FBB if it is null.
4139 if (FBB == nullptr) {
4140 FBB = getFallThroughMBB(&MBB, TBB);
4141 assert(FBB && "MBB cannot be the last block in function when the false "
4142 "body is a fall-through.");
4143 }
4144 // Synthesize COND_E_AND_NP with two branches.
4145 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
4146 ++Count;
4147 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
4148 ++Count;
4149 break;
4150 default: {
4151 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
4152 ++Count;
4153 }
4154 }
4155 if (!FallThru) {
4156 // Two-way Conditional branch. Insert the second branch.
4157 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
4158 ++Count;
4159 }
4160 return Count;
4161}
4162
4165 Register DstReg, Register TrueReg,
4166 Register FalseReg, int &CondCycles,
4167 int &TrueCycles, int &FalseCycles) const {
4168 // Not all subtargets have cmov instructions.
4169 if (!Subtarget.canUseCMOV())
4170 return false;
4171 if (Cond.size() != 1)
4172 return false;
4173 // We cannot do the composite conditions, at least not in SSA form.
4175 return false;
4176
4177 // Check register classes.
4178 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
4179 const TargetRegisterClass *RC =
4180 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
4181 if (!RC)
4182 return false;
4183
4184 // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
4185 if (X86::GR16RegClass.hasSubClassEq(RC) ||
4186 X86::GR32RegClass.hasSubClassEq(RC) ||
4187 X86::GR64RegClass.hasSubClassEq(RC)) {
4188 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
4189 // Bridge. Probably Ivy Bridge as well.
4190 CondCycles = 2;
4191 TrueCycles = 2;
4192 FalseCycles = 2;
4193 return true;
4194 }
4195
4196 // Can't do vectors.
4197 return false;
4198}
4199
4202 const DebugLoc &DL, Register DstReg,
4204 Register FalseReg) const {
4205 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
4206 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
4207 const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
4208 assert(Cond.size() == 1 && "Invalid Cond array");
4209 unsigned Opc =
4210 X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
4211 false /*HasMemoryOperand*/, Subtarget.hasNDD());
4212 BuildMI(MBB, I, DL, get(Opc), DstReg)
4213 .addReg(FalseReg)
4214 .addReg(TrueReg)
4215 .addImm(Cond[0].getImm());
4216}
4217
4218/// Test if the given register is a physical h register.
4219static bool isHReg(Register Reg) {
4220 return X86::GR8_ABCD_HRegClass.contains(Reg);
4221}
4222
4223// Try and copy between VR128/VR64 and GR64 registers.
4224static unsigned CopyToFromAsymmetricReg(Register DestReg, Register SrcReg,
4225 const X86Subtarget &Subtarget) {
4226 bool HasAVX = Subtarget.hasAVX();
4227 bool HasAVX512 = Subtarget.hasAVX512();
4228 bool HasEGPR = Subtarget.hasEGPR();
4229
4230 // SrcReg(MaskReg) -> DestReg(GR64)
4231 // SrcReg(MaskReg) -> DestReg(GR32)
4232
4233 // All KMASK RegClasses hold the same k registers, can be tested against
4234 // anyone.
4235 if (X86::VK16RegClass.contains(SrcReg)) {
4236 if (X86::GR64RegClass.contains(DestReg)) {
4237 assert(Subtarget.hasBWI());
4238 return HasEGPR ? X86::KMOVQrk_EVEX : X86::KMOVQrk;
4239 }
4240 if (X86::GR32RegClass.contains(DestReg))
4241 return Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVDrk_EVEX : X86::KMOVDrk)
4242 : (HasEGPR ? X86::KMOVWrk_EVEX : X86::KMOVWrk);
4243 }
4244
4245 // SrcReg(GR64) -> DestReg(MaskReg)
4246 // SrcReg(GR32) -> DestReg(MaskReg)
4247
4248 // All KMASK RegClasses hold the same k registers, can be tested against
4249 // anyone.
4250 if (X86::VK16RegClass.contains(DestReg)) {
4251 if (X86::GR64RegClass.contains(SrcReg)) {
4252 assert(Subtarget.hasBWI());
4253 return HasEGPR ? X86::KMOVQkr_EVEX : X86::KMOVQkr;
4254 }
4255 if (X86::GR32RegClass.contains(SrcReg))
4256 return Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVDkr_EVEX : X86::KMOVDkr)
4257 : (HasEGPR ? X86::KMOVWkr_EVEX : X86::KMOVWkr);
4258 }
4259
4260 // SrcReg(VR128) -> DestReg(GR64)
4261 // SrcReg(VR64) -> DestReg(GR64)
4262 // SrcReg(GR64) -> DestReg(VR128)
4263 // SrcReg(GR64) -> DestReg(VR64)
4264
4265 if (X86::GR64RegClass.contains(DestReg)) {
4266 if (X86::VR128XRegClass.contains(SrcReg))
4267 // Copy from a VR128 register to a GR64 register.
4268 return HasAVX512 ? X86::VMOVPQIto64Zrr
4269 : HasAVX ? X86::VMOVPQIto64rr
4270 : X86::MOVPQIto64rr;
4271 if (X86::VR64RegClass.contains(SrcReg))
4272 // Copy from a VR64 register to a GR64 register.
4273 return X86::MMX_MOVD64from64rr;
4274 } else if (X86::GR64RegClass.contains(SrcReg)) {
4275 // Copy from a GR64 register to a VR128 register.
4276 if (X86::VR128XRegClass.contains(DestReg))
4277 return HasAVX512 ? X86::VMOV64toPQIZrr
4278 : HasAVX ? X86::VMOV64toPQIrr
4279 : X86::MOV64toPQIrr;
4280 // Copy from a GR64 register to a VR64 register.
4281 if (X86::VR64RegClass.contains(DestReg))
4282 return X86::MMX_MOVD64to64rr;
4283 }
4284
4285 // SrcReg(VR128) -> DestReg(GR32)
4286 // SrcReg(GR32) -> DestReg(VR128)
4287
4288 if (X86::GR32RegClass.contains(DestReg) &&
4289 X86::VR128XRegClass.contains(SrcReg))
4290 // Copy from a VR128 register to a GR32 register.
4291 return HasAVX512 ? X86::VMOVPDI2DIZrr
4292 : HasAVX ? X86::VMOVPDI2DIrr
4293 : X86::MOVPDI2DIrr;
4294
4295 if (X86::VR128XRegClass.contains(DestReg) &&
4296 X86::GR32RegClass.contains(SrcReg))
4297 // Copy from a VR128 register to a VR128 register.
4298 return HasAVX512 ? X86::VMOVDI2PDIZrr
4299 : HasAVX ? X86::VMOVDI2PDIrr
4300 : X86::MOVDI2PDIrr;
4301 return 0;
4302}
4303
4306 const DebugLoc &DL, Register DestReg,
4307 Register SrcReg, bool KillSrc,
4308 bool RenamableDest, bool RenamableSrc) const {
4309 // First deal with the normal symmetric copies.
4310 bool HasAVX = Subtarget.hasAVX();
4311 bool HasVLX = Subtarget.hasVLX();
4312 bool HasEGPR = Subtarget.hasEGPR();
4313 unsigned Opc = 0;
4314 if (X86::GR64RegClass.contains(DestReg, SrcReg))
4315 Opc = X86::MOV64rr;
4316 else if (X86::GR32RegClass.contains(DestReg, SrcReg))
4317 Opc = X86::MOV32rr;
4318 else if (X86::GR16RegClass.contains(DestReg, SrcReg))
4319 Opc = X86::MOV16rr;
4320 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
4321 // Copying to or from a physical H register on x86-64 requires a NOREX
4322 // move. Otherwise use a normal move.
4323 if ((isHReg(DestReg) || isHReg(SrcReg)) && Subtarget.is64Bit()) {
4324 Opc = X86::MOV8rr_NOREX;
4325 // Both operands must be encodable without an REX prefix.
4326 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
4327 "8-bit H register can not be copied outside GR8_NOREX");
4328 } else
4329 Opc = X86::MOV8rr;
4330 } else if (X86::VR64RegClass.contains(DestReg, SrcReg))
4331 Opc = X86::MMX_MOVQ64rr;
4332 else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
4333 if (HasVLX)
4334 Opc = X86::VMOVAPSZ128rr;
4335 else if (X86::VR128RegClass.contains(DestReg, SrcReg))
4336 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
4337 else {
4338 // If this an extended register and we don't have VLX we need to use a
4339 // 512-bit move.
4340 Opc = X86::VMOVAPSZrr;
4342 DestReg =
4343 TRI->getMatchingSuperReg(DestReg, X86::sub_xmm, &X86::VR512RegClass);
4344 SrcReg =
4345 TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
4346 }
4347 } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
4348 if (HasVLX)
4349 Opc = X86::VMOVAPSZ256rr;
4350 else if (X86::VR256RegClass.contains(DestReg, SrcReg))
4351 Opc = X86::VMOVAPSYrr;
4352 else {
4353 // If this an extended register and we don't have VLX we need to use a
4354 // 512-bit move.
4355 Opc = X86::VMOVAPSZrr;
4357 DestReg =
4358 TRI->getMatchingSuperReg(DestReg, X86::sub_ymm, &X86::VR512RegClass);
4359 SrcReg =
4360 TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
4361 }
4362 } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
4363 Opc = X86::VMOVAPSZrr;
4364 // All KMASK RegClasses hold the same k registers, can be tested against
4365 // anyone.
4366 else if (X86::VK16RegClass.contains(DestReg, SrcReg))
4367 Opc = Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVQkk_EVEX : X86::KMOVQkk)
4368 : (HasEGPR ? X86::KMOVQkk_EVEX : X86::KMOVWkk);
4369 if (!Opc)
4370 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
4371
4372 if (Opc) {
4373 BuildMI(MBB, MI, DL, get(Opc), DestReg)
4374 .addReg(SrcReg, getKillRegState(KillSrc));
4375 return;
4376 }
4377
4378 if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
4379 // FIXME: We use a fatal error here because historically LLVM has tried
4380 // lower some of these physreg copies and we want to ensure we get
4381 // reasonable bug reports if someone encounters a case no other testing
4382 // found. This path should be removed after the LLVM 7 release.
4383 report_fatal_error("Unable to copy EFLAGS physical register!");
4384 }
4385
4386 LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
4387 << RI.getName(DestReg) << '\n');
4388 report_fatal_error("Cannot emit physreg copy instruction");
4389}
4390
4391std::optional<DestSourcePair>
4393 if (MI.isMoveReg()) {
4394 // FIXME: Dirty hack for apparent invariant that doesn't hold when
4395 // subreg_to_reg is coalesced with ordinary copies, such that the bits that
4396 // were asserted as 0 are now undef.
4397 if (MI.getOperand(0).isUndef() && MI.getOperand(0).getSubReg())
4398 return std::nullopt;
4399
4400 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
4401 }
4402 return std::nullopt;
4403}
4404
4405static unsigned getLoadStoreOpcodeForFP16(bool Load, const X86Subtarget &STI) {
4406 if (STI.hasFP16())
4407 return Load ? X86::VMOVSHZrm_alt : X86::VMOVSHZmr;
4408 if (Load)
4409 return X86::MOVSHPrm;
4410 return X86::MOVSHPmr;
4411}
4412
4414 const TargetRegisterClass *RC,
4415 bool IsStackAligned,
4416 const X86Subtarget &STI, bool Load) {
4417 bool HasAVX = STI.hasAVX();
4418 bool HasAVX512 = STI.hasAVX512();
4419 bool HasVLX = STI.hasVLX();
4420 bool HasEGPR = STI.hasEGPR();
4421
4422 assert(RC != nullptr && "Invalid target register class");
4423 switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
4424 default:
4425 llvm_unreachable("Unknown spill size");
4426 case 1:
4427 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
4428 if (STI.is64Bit())
4429 // Copying to or from a physical H register on x86-64 requires a NOREX
4430 // move. Otherwise use a normal move.
4431 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
4432 return Load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
4433 return Load ? X86::MOV8rm : X86::MOV8mr;
4434 case 2:
4435 if (X86::VK16RegClass.hasSubClassEq(RC))
4436 return Load ? (HasEGPR ? X86::KMOVWkm_EVEX : X86::KMOVWkm)
4437 : (HasEGPR ? X86::KMOVWmk_EVEX : X86::KMOVWmk);
4438 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
4439 return Load ? X86::MOV16rm : X86::MOV16mr;
4440 case 4:
4441 if (X86::GR32RegClass.hasSubClassEq(RC))
4442 return Load ? X86::MOV32rm : X86::MOV32mr;
4443 if (X86::FR32XRegClass.hasSubClassEq(RC))
4444 return Load ? (HasAVX512 ? X86::VMOVSSZrm_alt
4445 : HasAVX ? X86::VMOVSSrm_alt
4446 : X86::MOVSSrm_alt)
4447 : (HasAVX512 ? X86::VMOVSSZmr
4448 : HasAVX ? X86::VMOVSSmr
4449 : X86::MOVSSmr);
4450 if (X86::RFP32RegClass.hasSubClassEq(RC))
4451 return Load ? X86::LD_Fp32m : X86::ST_Fp32m;
4452 if (X86::VK32RegClass.hasSubClassEq(RC)) {
4453 assert(STI.hasBWI() && "KMOVD requires BWI");
4454 return Load ? (HasEGPR ? X86::KMOVDkm_EVEX : X86::KMOVDkm)
4455 : (HasEGPR ? X86::KMOVDmk_EVEX : X86::KMOVDmk);
4456 }
4457 // All of these mask pair classes have the same spill size, the same kind
4458 // of kmov instructions can be used with all of them.
4459 if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
4460 X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
4461 X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
4462 X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
4463 X86::VK16PAIRRegClass.hasSubClassEq(RC))
4464 return Load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
4465 if (X86::FR16RegClass.hasSubClassEq(RC) ||
4466 X86::FR16XRegClass.hasSubClassEq(RC))
4467 return getLoadStoreOpcodeForFP16(Load, STI);
4468 llvm_unreachable("Unknown 4-byte regclass");
4469 case 8:
4470 if (X86::GR64RegClass.hasSubClassEq(RC))
4471 return Load ? X86::MOV64rm : X86::MOV64mr;
4472 if (X86::FR64XRegClass.hasSubClassEq(RC))
4473 return Load ? (HasAVX512 ? X86::VMOVSDZrm_alt
4474 : HasAVX ? X86::VMOVSDrm_alt
4475 : X86::MOVSDrm_alt)
4476 : (HasAVX512 ? X86::VMOVSDZmr
4477 : HasAVX ? X86::VMOVSDmr
4478 : X86::MOVSDmr);
4479 if (X86::VR64RegClass.hasSubClassEq(RC))
4480 return Load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
4481 if (X86::RFP64RegClass.hasSubClassEq(RC))
4482 return Load ? X86::LD_Fp64m : X86::ST_Fp64m;
4483 if (X86::VK64RegClass.hasSubClassEq(RC)) {
4484 assert(STI.hasBWI() && "KMOVQ requires BWI");
4485 return Load ? (HasEGPR ? X86::KMOVQkm_EVEX : X86::KMOVQkm)
4486 : (HasEGPR ? X86::KMOVQmk_EVEX : X86::KMOVQmk);
4487 }
4488 llvm_unreachable("Unknown 8-byte regclass");
4489 case 10:
4490 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
4491 return Load ? X86::LD_Fp80m : X86::ST_FpP80m;
4492 case 16: {
4493 if (X86::VR128XRegClass.hasSubClassEq(RC)) {
4494 // If stack is realigned we can use aligned stores.
4495 if (IsStackAligned)
4496 return Load ? (HasVLX ? X86::VMOVAPSZ128rm
4497 : HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX
4498 : HasAVX ? X86::VMOVAPSrm
4499 : X86::MOVAPSrm)
4500 : (HasVLX ? X86::VMOVAPSZ128mr
4501 : HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX
4502 : HasAVX ? X86::VMOVAPSmr
4503 : X86::MOVAPSmr);
4504 else
4505 return Load ? (HasVLX ? X86::VMOVUPSZ128rm
4506 : HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX
4507 : HasAVX ? X86::VMOVUPSrm
4508 : X86::MOVUPSrm)
4509 : (HasVLX ? X86::VMOVUPSZ128mr
4510 : HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX
4511 : HasAVX ? X86::VMOVUPSmr
4512 : X86::MOVUPSmr);
4513 }
4514 llvm_unreachable("Unknown 16-byte regclass");
4515 }
4516 case 32:
4517 assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
4518 // If stack is realigned we can use aligned stores.
4519 if (IsStackAligned)
4520 return Load ? (HasVLX ? X86::VMOVAPSZ256rm
4521 : HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX
4522 : X86::VMOVAPSYrm)
4523 : (HasVLX ? X86::VMOVAPSZ256mr
4524 : HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX
4525 : X86::VMOVAPSYmr);
4526 else
4527 return Load ? (HasVLX ? X86::VMOVUPSZ256rm
4528 : HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX
4529 : X86::VMOVUPSYrm)
4530 : (HasVLX ? X86::VMOVUPSZ256mr
4531 : HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX
4532 : X86::VMOVUPSYmr);
4533 case 64:
4534 assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
4535 assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
4536 if (IsStackAligned)
4537 return Load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
4538 else
4539 return Load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
4540 case 1024:
4541 assert(X86::TILERegClass.hasSubClassEq(RC) && "Unknown 1024-byte regclass");
4542 assert(STI.hasAMXTILE() && "Using 8*1024-bit register requires AMX-TILE");
4543#define GET_EGPR_IF_ENABLED(OPC) (STI.hasEGPR() ? OPC##_EVEX : OPC)
4544 return Load ? GET_EGPR_IF_ENABLED(X86::TILELOADD)
4545 : GET_EGPR_IF_ENABLED(X86::TILESTORED);
4546#undef GET_EGPR_IF_ENABLED
4547 }
4548}
4549
4550std::optional<ExtAddrMode>
4552 const TargetRegisterInfo *TRI) const {
4553 const MCInstrDesc &Desc = MemI.getDesc();
4554 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
4555 if (MemRefBegin < 0)
4556 return std::nullopt;
4557
4558 MemRefBegin += X86II::getOperandBias(Desc);
4559
4560 auto &BaseOp = MemI.getOperand(MemRefBegin + X86::AddrBaseReg);
4561 if (!BaseOp.isReg()) // Can be an MO_FrameIndex
4562 return std::nullopt;
4563
4564 const MachineOperand &DispMO = MemI.getOperand(MemRefBegin + X86::AddrDisp);
4565 // Displacement can be symbolic
4566 if (!DispMO.isImm())
4567 return std::nullopt;
4568
4569 ExtAddrMode AM;
4570 AM.BaseReg = BaseOp.getReg();
4571 AM.ScaledReg = MemI.getOperand(MemRefBegin + X86::AddrIndexReg).getReg();
4572 AM.Scale = MemI.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm();
4573 AM.Displacement = DispMO.getImm();
4574 return AM;
4575}
4576
4578 StringRef &ErrInfo) const {
4579 std::optional<ExtAddrMode> AMOrNone = getAddrModeFromMemoryOp(MI, nullptr);
4580 if (!AMOrNone)
4581 return true;
4582
4583 ExtAddrMode AM = *AMOrNone;
4585 if (AM.ScaledReg != X86::NoRegister) {
4586 switch (AM.Scale) {
4587 case 1:
4588 case 2:
4589 case 4:
4590 case 8:
4591 break;
4592 default:
4593 ErrInfo = "Scale factor in address must be 1, 2, 4 or 8";
4594 return false;
4595 }
4596 }
4597 if (!isInt<32>(AM.Displacement)) {
4598 ErrInfo = "Displacement in address must fit into 32-bit signed "
4599 "integer";
4600 return false;
4601 }
4602
4603 return true;
4604}
4605
4607 const Register Reg,
4608 int64_t &ImmVal) const {
4609 Register MovReg = Reg;
4610 const MachineInstr *MovMI = &MI;
4611
4612 // Follow use-def for SUBREG_TO_REG to find the real move immediate
4613 // instruction. It is quite common for x86-64.
4614 if (MI.isSubregToReg()) {
4615 // We use following pattern to setup 64b immediate.
4616 // %8:gr32 = MOV32r0 implicit-def dead $eflags
4617 // %6:gr64 = SUBREG_TO_REG 0, killed %8:gr32, %subreg.sub_32bit
4618 if (!MI.getOperand(1).isImm())
4619 return false;
4620 unsigned FillBits = MI.getOperand(1).getImm();
4621 unsigned SubIdx = MI.getOperand(3).getImm();
4622 MovReg = MI.getOperand(2).getReg();
4623 if (SubIdx != X86::sub_32bit || FillBits != 0)
4624 return false;
4625 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4626 MovMI = MRI.getUniqueVRegDef(MovReg);
4627 if (!MovMI)
4628 return false;
4629 }
4630
4631 if (MovMI->getOpcode() == X86::MOV32r0 &&
4632 MovMI->getOperand(0).getReg() == MovReg) {
4633 ImmVal = 0;
4634 return true;
4635 }
4636
4637 if (MovMI->getOpcode() != X86::MOV32ri &&
4638 MovMI->getOpcode() != X86::MOV64ri &&
4639 MovMI->getOpcode() != X86::MOV32ri64 && MovMI->getOpcode() != X86::MOV8ri)
4640 return false;
4641 // Mov Src can be a global address.
4642 if (!MovMI->getOperand(1).isImm() || MovMI->getOperand(0).getReg() != MovReg)
4643 return false;
4644 ImmVal = MovMI->getOperand(1).getImm();
4645 return true;
4646}
4647
4649 const MachineInstr *MI, const Register NullValueReg,
4650 const TargetRegisterInfo *TRI) const {
4651 if (!MI->modifiesRegister(NullValueReg, TRI))
4652 return true;
4653 switch (MI->getOpcode()) {
4654 // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax
4655 // X.
4656 case X86::SHR64ri:
4657 case X86::SHR32ri:
4658 case X86::SHL64ri:
4659 case X86::SHL32ri:
4660 assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() &&
4661 "expected for shift opcode!");
4662 return MI->getOperand(0).getReg() == NullValueReg &&
4663 MI->getOperand(1).getReg() == NullValueReg;
4664 // Zero extend of a sub-reg of NullValueReg into itself does not change the
4665 // null value.
4666 case X86::MOV32rr:
4667 return llvm::all_of(MI->operands(), [&](const MachineOperand &MO) {
4668 return TRI->isSubRegisterEq(NullValueReg, MO.getReg());
4669 });
4670 default:
4671 return false;
4672 }
4673 llvm_unreachable("Should be handled above!");
4674}
4675
4678 int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width,
4679 const TargetRegisterInfo *TRI) const {
4680 const MCInstrDesc &Desc = MemOp.getDesc();
4681 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
4682 if (MemRefBegin < 0)
4683 return false;
4684
4685 MemRefBegin += X86II::getOperandBias(Desc);
4686
4687 const MachineOperand *BaseOp =
4688 &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
4689 if (!BaseOp->isReg()) // Can be an MO_FrameIndex
4690 return false;
4691
4692 if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
4693 return false;
4694
4695 if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
4696 X86::NoRegister)
4697 return false;
4698
4699 const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
4700
4701 // Displacement can be symbolic
4702 if (!DispMO.isImm())
4703 return false;
4704
4705 Offset = DispMO.getImm();
4706
4707 if (!BaseOp->isReg())
4708 return false;
4709
4710 OffsetIsScalable = false;
4711 // FIXME: Relying on memoperands() may not be right thing to do here. Check
4712 // with X86 maintainers, and fix it accordingly. For now, it is ok, since
4713 // there is no use of `Width` for X86 back-end at the moment.
4714 Width = !MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize()
4716 BaseOps.push_back(BaseOp);
4717 return true;
4718}
4719
4720static unsigned getStoreRegOpcode(Register SrcReg,
4721 const TargetRegisterClass *RC,
4722 bool IsStackAligned,
4723 const X86Subtarget &STI) {
4724 return getLoadStoreRegOpcode(SrcReg, RC, IsStackAligned, STI, false);
4725}
4726
4727static unsigned getLoadRegOpcode(Register DestReg,
4728 const TargetRegisterClass *RC,
4729 bool IsStackAligned, const X86Subtarget &STI) {
4730 return getLoadStoreRegOpcode(DestReg, RC, IsStackAligned, STI, true);
4731}
4732
4733static bool isAMXOpcode(unsigned Opc) {
4734 switch (Opc) {
4735 default:
4736 return false;
4737 case X86::TILELOADD:
4738 case X86::TILESTORED:
4739 case X86::TILELOADD_EVEX:
4740 case X86::TILESTORED_EVEX:
4741 return true;
4742 }
4743}
4744
4747 unsigned Opc, Register Reg, int FrameIdx,
4748 bool isKill) const {
4749 switch (Opc) {
4750 default:
4751 llvm_unreachable("Unexpected special opcode!");
4752 case X86::TILESTORED:
4753 case X86::TILESTORED_EVEX: {
4754 // tilestored %tmm, (%sp, %idx)
4755 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
4756 Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
4757 BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
4758 MachineInstr *NewMI =
4759 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
4760 .addReg(Reg, getKillRegState(isKill));
4762 MO.setReg(VirtReg);
4763 MO.setIsKill(true);
4764 break;
4765 }
4766 case X86::TILELOADD:
4767 case X86::TILELOADD_EVEX: {
4768 // tileloadd (%sp, %idx), %tmm
4769 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
4770 Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
4771 BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
4773 BuildMI(MBB, MI, DebugLoc(), get(Opc), Reg), FrameIdx);
4775 MO.setReg(VirtReg);
4776 MO.setIsKill(true);
4777 break;
4778 }
4779 }
4780}
4781
4784 bool isKill, int FrameIdx, const TargetRegisterClass *RC,
4785 const TargetRegisterInfo *TRI, Register VReg,
4786 MachineInstr::MIFlag Flags) const {
4787 const MachineFunction &MF = *MBB.getParent();
4788 const MachineFrameInfo &MFI = MF.getFrameInfo();
4789 assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
4790 "Stack slot too small for store");
4791
4792 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
4793 bool isAligned =
4794 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
4795 (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
4796
4797 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
4798 if (isAMXOpcode(Opc))
4799 loadStoreTileReg(MBB, MI, Opc, SrcReg, FrameIdx, isKill);
4800 else
4801 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
4802 .addReg(SrcReg, getKillRegState(isKill))
4803 .setMIFlag(Flags);
4804}
4805
4808 int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI,
4809 Register VReg, MachineInstr::MIFlag Flags) const {
4810 const MachineFunction &MF = *MBB.getParent();
4811 const MachineFrameInfo &MFI = MF.getFrameInfo();
4812 assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
4813 "Load size exceeds stack slot");
4814 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
4815 bool isAligned =
4816 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
4817 (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
4818
4819 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
4820 if (isAMXOpcode(Opc))
4821 loadStoreTileReg(MBB, MI, Opc, DestReg, FrameIdx);
4822 else
4823 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg), FrameIdx)
4824 .setMIFlag(Flags);
4825}
4826
4828 Register &SrcReg2, int64_t &CmpMask,
4829 int64_t &CmpValue) const {
4830 switch (MI.getOpcode()) {
4831 default:
4832 break;
4833 case X86::CMP64ri32:
4834 case X86::CMP32ri:
4835 case X86::CMP16ri:
4836 case X86::CMP8ri:
4837 SrcReg = MI.getOperand(0).getReg();
4838 SrcReg2 = 0;
4839 if (MI.getOperand(1).isImm()) {
4840 CmpMask = ~0;
4841 CmpValue = MI.getOperand(1).getImm();
4842 } else {
4843 CmpMask = CmpValue = 0;
4844 }
4845 return true;
4846 // A SUB can be used to perform comparison.
4847 CASE_ND(SUB64rm)
4848 CASE_ND(SUB32rm)
4849 CASE_ND(SUB16rm)
4850 CASE_ND(SUB8rm)
4851 SrcReg = MI.getOperand(1).getReg();
4852 SrcReg2 = 0;
4853 CmpMask = 0;
4854 CmpValue = 0;
4855 return true;
4856 CASE_ND(SUB64rr)
4857 CASE_ND(SUB32rr)
4858 CASE_ND(SUB16rr)
4859 CASE_ND(SUB8rr)
4860 SrcReg = MI.getOperand(1).getReg();
4861 SrcReg2 = MI.getOperand(2).getReg();
4862 CmpMask = 0;
4863 CmpValue = 0;
4864 return true;
4865 CASE_ND(SUB64ri32)
4866 CASE_ND(SUB32ri)
4867 CASE_ND(SUB16ri)
4868 CASE_ND(SUB8ri)
4869 SrcReg = MI.getOperand(1).getReg();
4870 SrcReg2 = 0;
4871 if (MI.getOperand(2).isImm()) {
4872 CmpMask = ~0;
4873 CmpValue = MI.getOperand(2).getImm();
4874 } else {
4875 CmpMask = CmpValue = 0;
4876 }
4877 return true;
4878 case X86::CMP64rr:
4879 case X86::CMP32rr:
4880 case X86::CMP16rr:
4881 case X86::CMP8rr:
4882 SrcReg = MI.getOperand(0).getReg();
4883 SrcReg2 = MI.getOperand(1).getReg();
4884 CmpMask = 0;
4885 CmpValue = 0;
4886 return true;
4887 case X86::TEST8rr:
4888 case X86::TEST16rr:
4889 case X86::TEST32rr:
4890 case X86::TEST64rr:
4891 SrcReg = MI.getOperand(0).getReg();
4892 if (MI.getOperand(1).getReg() != SrcReg)
4893 return false;
4894 // Compare against zero.
4895 SrcReg2 = 0;
4896 CmpMask = ~0;
4897 CmpValue = 0;
4898 return true;
4899 case X86::TEST64ri32:
4900 case X86::TEST32ri:
4901 case X86::TEST16ri:
4902 case X86::TEST8ri:
4903 SrcReg = MI.getOperand(0).getReg();
4904 SrcReg2 = 0;
4905 // Force identical compare.
4906 CmpMask = 0;
4907 CmpValue = 0;
4908 return true;
4909 }
4910 return false;
4911}
4912
4913bool X86InstrInfo::isRedundantFlagInstr(const MachineInstr &FlagI,
4914 Register SrcReg, Register SrcReg2,
4915 int64_t ImmMask, int64_t ImmValue,
4916 const MachineInstr &OI, bool *IsSwapped,
4917 int64_t *ImmDelta) const {
4918 switch (OI.getOpcode()) {
4919 case X86::CMP64rr:
4920 case X86::CMP32rr:
4921 case X86::CMP16rr:
4922 case X86::CMP8rr:
4923 CASE_ND(SUB64rr)
4924 CASE_ND(SUB32rr)
4925 CASE_ND(SUB16rr)
4926 CASE_ND(SUB8rr) {
4927 Register OISrcReg;
4928 Register OISrcReg2;
4929 int64_t OIMask;
4930 int64_t OIValue;
4931 if (!analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) ||
4932 OIMask != ImmMask || OIValue != ImmValue)
4933 return false;
4934 if (SrcReg == OISrcReg && SrcReg2 == OISrcReg2) {
4935 *IsSwapped = false;
4936 return true;
4937 }
4938 if (SrcReg == OISrcReg2 && SrcReg2 == OISrcReg) {
4939 *IsSwapped = true;
4940 return true;
4941 }
4942 return false;
4943 }
4944 case X86::CMP64ri32:
4945 case X86::CMP32ri:
4946 case X86::CMP16ri:
4947 case X86::CMP8ri:
4948 case X86::TEST64ri32:
4949 case X86::TEST32ri:
4950 case X86::TEST16ri:
4951 case X86::TEST8ri:
4952 CASE_ND(SUB64ri32)
4953 CASE_ND(SUB32ri)
4954 CASE_ND(SUB16ri)
4955 CASE_ND(SUB8ri)
4956 case X86::TEST64rr:
4957 case X86::TEST32rr:
4958 case X86::TEST16rr:
4959 case X86::TEST8rr: {
4960 if (ImmMask != 0) {
4961 Register OISrcReg;
4962 Register OISrcReg2;
4963 int64_t OIMask;
4964 int64_t OIValue;
4965 if (analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) &&
4966 SrcReg == OISrcReg && ImmMask == OIMask) {
4967 if (OIValue == ImmValue) {
4968 *ImmDelta = 0;
4969 return true;
4970 } else if (static_cast<uint64_t>(ImmValue) ==
4971 static_cast<uint64_t>(OIValue) - 1) {
4972 *ImmDelta = -1;
4973 return true;
4974 } else if (static_cast<uint64_t>(ImmValue) ==
4975 static_cast<uint64_t>(OIValue) + 1) {
4976 *ImmDelta = 1;
4977 return true;
4978 } else {
4979 return false;
4980 }
4981 }
4982 }
4983 return FlagI.isIdenticalTo(OI);
4984 }
4985 default:
4986 return false;
4987 }
4988}
4989
4990/// Check whether the definition can be converted
4991/// to remove a comparison against zero.
4992inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag,
4993 bool &ClearsOverflowFlag) {
4994 NoSignFlag = false;
4995 ClearsOverflowFlag = false;
4996
4997 // "ELF Handling for Thread-Local Storage" specifies that x86-64 GOTTPOFF, and
4998 // i386 GOTNTPOFF/INDNTPOFF relocations can convert an ADD to a LEA during
4999 // Initial Exec to Local Exec relaxation. In these cases, we must not depend
5000 // on the EFLAGS modification of ADD actually happening in the final binary.
5001 if (MI.getOpcode() == X86::ADD64rm || MI.getOpcode() == X86::ADD32rm) {
5002 unsigned Flags = MI.getOperand(5).getTargetFlags();
5003 if (Flags == X86II::MO_GOTTPOFF || Flags == X86II::MO_INDNTPOFF ||
5004 Flags == X86II::MO_GOTNTPOFF)
5005 return false;
5006 }
5007
5008 switch (MI.getOpcode()) {
5009 default:
5010 return false;
5011
5012 // The shift instructions only modify ZF if their shift count is non-zero.
5013 // N.B.: The processor truncates the shift count depending on the encoding.
5014 CASE_ND(SAR8ri)
5015 CASE_ND(SAR16ri)
5016 CASE_ND(SAR32ri)
5017 CASE_ND(SAR64ri)
5018 CASE_ND(SHR8ri)
5019 CASE_ND(SHR16ri)
5020 CASE_ND(SHR32ri)
5021 CASE_ND(SHR64ri)
5022 return getTruncatedShiftCount(MI, 2) != 0;
5023
5024 // Some left shift instructions can be turned into LEA instructions but only
5025 // if their flags aren't used. Avoid transforming such instructions.
5026 CASE_ND(SHL8ri)
5027 CASE_ND(SHL16ri)
5028 CASE_ND(SHL32ri)
5029 CASE_ND(SHL64ri) {
5030 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
5031 if (isTruncatedShiftCountForLEA(ShAmt))
5032 return false;
5033 return ShAmt != 0;
5034 }
5035
5036 CASE_ND(SHRD16rri8)
5037 CASE_ND(SHRD32rri8)
5038 CASE_ND(SHRD64rri8)
5039 CASE_ND(SHLD16rri8)
5040 CASE_ND(SHLD32rri8)
5041 CASE_ND(SHLD64rri8)
5042 return getTruncatedShiftCount(MI, 3) != 0;
5043
5044 CASE_ND(SUB64ri32)
5045 CASE_ND(SUB32ri)
5046 CASE_ND(SUB16ri)
5047 CASE_ND(SUB8ri)
5048 CASE_ND(SUB64rr)
5049 CASE_ND(SUB32rr)
5050 CASE_ND(SUB16rr)
5051 CASE_ND(SUB8rr)
5052 CASE_ND(SUB64rm)
5053 CASE_ND(SUB32rm)
5054 CASE_ND(SUB16rm)
5055 CASE_ND(SUB8rm)
5056 CASE_ND(DEC64r)
5057 CASE_ND(DEC32r)
5058 CASE_ND(DEC16r)
5059 CASE_ND(DEC8r)
5060 CASE_ND(ADD64ri32)
5061 CASE_ND(ADD32ri)
5062 CASE_ND(ADD16ri)
5063 CASE_ND(ADD8ri)
5064 CASE_ND(ADD64rr)
5065 CASE_ND(ADD32rr)
5066 CASE_ND(ADD16rr)
5067 CASE_ND(ADD8rr)
5068 CASE_ND(ADD64rm)
5069 CASE_ND(ADD32rm)
5070 CASE_ND(ADD16rm)
5071 CASE_ND(ADD8rm)
5072 CASE_ND(INC64r)
5073 CASE_ND(INC32r)
5074 CASE_ND(INC16r)
5075 CASE_ND(INC8r)
5076 CASE_ND(ADC64ri32)
5077 CASE_ND(ADC32ri)
5078 CASE_ND(ADC16ri)
5079 CASE_ND(ADC8ri)
5080 CASE_ND(ADC64rr)
5081 CASE_ND(ADC32rr)
5082 CASE_ND(ADC16rr)
5083 CASE_ND(ADC8rr)
5084 CASE_ND(ADC64rm)
5085 CASE_ND(ADC32rm)
5086 CASE_ND(ADC16rm)
5087 CASE_ND(ADC8rm)
5088 CASE_ND(SBB64ri32)
5089 CASE_ND(SBB32ri)
5090 CASE_ND(SBB16ri)
5091 CASE_ND(SBB8ri)
5092 CASE_ND(SBB64rr)
5093 CASE_ND(SBB32rr)
5094 CASE_ND(SBB16rr)
5095 CASE_ND(SBB8rr)
5096 CASE_ND(SBB64rm)
5097 CASE_ND(SBB32rm)
5098 CASE_ND(SBB16rm)
5099 CASE_ND(SBB8rm)
5100 CASE_ND(NEG8r)
5101 CASE_ND(NEG16r)
5102 CASE_ND(NEG32r)
5103 CASE_ND(NEG64r)
5104 case X86::LZCNT16rr:
5105 case X86::LZCNT16rm:
5106 case X86::LZCNT32rr:
5107 case X86::LZCNT32rm:
5108 case X86::LZCNT64rr:
5109 case X86::LZCNT64rm:
5110 case X86::POPCNT16rr:
5111 case X86::POPCNT16rm:
5112 case X86::POPCNT32rr:
5113 case X86::POPCNT32rm:
5114 case X86::POPCNT64rr:
5115 case X86::POPCNT64rm:
5116 case X86::TZCNT16rr:
5117 case X86::TZCNT16rm:
5118 case X86::TZCNT32rr:
5119 case X86::TZCNT32rm:
5120 case X86::TZCNT64rr:
5121 case X86::TZCNT64rm:
5122 return true;
5123 CASE_ND(AND64ri32)
5124 CASE_ND(AND32ri)
5125 CASE_ND(AND16ri)
5126 CASE_ND(AND8ri)
5127 CASE_ND(AND64rr)
5128 CASE_ND(AND32rr)
5129 CASE_ND(AND16rr)
5130 CASE_ND(AND8rr)
5131 CASE_ND(AND64rm)
5132 CASE_ND(AND32rm)
5133 CASE_ND(AND16rm)
5134 CASE_ND(AND8rm)
5135 CASE_ND(XOR64ri32)
5136 CASE_ND(XOR32ri)
5137 CASE_ND(XOR16ri)
5138 CASE_ND(XOR8ri)
5139 CASE_ND(XOR64rr)
5140 CASE_ND(XOR32rr)
5141 CASE_ND(XOR16rr)
5142 CASE_ND(XOR8rr)
5143 CASE_ND(XOR64rm)
5144 CASE_ND(XOR32rm)
5145 CASE_ND(XOR16rm)
5146 CASE_ND(XOR8rm)
5147 CASE_ND(OR64ri32)
5148 CASE_ND(OR32ri)
5149 CASE_ND(OR16ri)
5150 CASE_ND(OR8ri)
5151 CASE_ND(OR64rr)
5152 CASE_ND(OR32rr)
5153 CASE_ND(OR16rr)
5154 CASE_ND(OR8rr)
5155 CASE_ND(OR64rm)
5156 CASE_ND(OR32rm)
5157 CASE_ND(OR16rm)
5158 CASE_ND(OR8rm)
5159 case X86::ANDN32rr:
5160 case X86::ANDN32rm:
5161 case X86::ANDN64rr:
5162 case X86::ANDN64rm:
5163 case X86::BLSI32rr:
5164 case X86::BLSI32rm:
5165 case X86::BLSI64rr:
5166 case X86::BLSI64rm:
5167 case X86::BLSMSK32rr:
5168 case X86::BLSMSK32rm:
5169 case X86::BLSMSK64rr:
5170 case X86::BLSMSK64rm:
5171 case X86::BLSR32rr:
5172 case X86::BLSR32rm:
5173 case X86::BLSR64rr:
5174 case X86::BLSR64rm:
5175 case X86::BLCFILL32rr:
5176 case X86::BLCFILL32rm:
5177 case X86::BLCFILL64rr:
5178 case X86::BLCFILL64rm:
5179 case X86::BLCI32rr:
5180 case X86::BLCI32rm:
5181 case X86::BLCI64rr:
5182 case X86::BLCI64rm:
5183 case X86::BLCIC32rr:
5184 case X86::BLCIC32rm:
5185 case X86::BLCIC64rr:
5186 case X86::BLCIC64rm:
5187 case X86::BLCMSK32rr:
5188 case X86::BLCMSK32rm:
5189 case X86::BLCMSK64rr:
5190 case X86::BLCMSK64rm:
5191 case X86::BLCS32rr:
5192 case X86::BLCS32rm:
5193 case X86::BLCS64rr:
5194 case X86::BLCS64rm:
5195 case X86::BLSFILL32rr:
5196 case X86::BLSFILL32rm:
5197 case X86::BLSFILL64rr:
5198 case X86::BLSFILL64rm:
5199 case X86::BLSIC32rr:
5200 case X86::BLSIC32rm:
5201 case X86::BLSIC64rr:
5202 case X86::BLSIC64rm:
5203 case X86::BZHI32rr:
5204 case X86::BZHI32rm:
5205 case X86::BZHI64rr:
5206 case X86::BZHI64rm:
5207 case X86::T1MSKC32rr:
5208 case X86::T1MSKC32rm:
5209 case X86::T1MSKC64rr:
5210 case X86::T1MSKC64rm:
5211 case X86::TZMSK32rr:
5212 case X86::TZMSK32rm:
5213 case X86::TZMSK64rr:
5214 case X86::TZMSK64rm:
5215 // These instructions clear the overflow flag just like TEST.
5216 // FIXME: These are not the only instructions in this switch that clear the
5217 // overflow flag.
5218 ClearsOverflowFlag = true;
5219 return true;
5220 case X86::BEXTR32rr:
5221 case X86::BEXTR64rr:
5222 case X86::BEXTR32rm:
5223 case X86::BEXTR64rm:
5224 case X86::BEXTRI32ri:
5225 case X86::BEXTRI32mi:
5226 case X86::BEXTRI64ri:
5227 case X86::BEXTRI64mi:
5228 // BEXTR doesn't update the sign flag so we can't use it. It does clear
5229 // the overflow flag, but that's not useful without the sign flag.
5230 NoSignFlag = true;
5231 return true;
5232 }
5233}
5234
5235/// Check whether the use can be converted to remove a comparison against zero.
5236/// Returns the EFLAGS condition and the operand that we are comparing against zero.
5237static std::pair<X86::CondCode, unsigned> isUseDefConvertible(const MachineInstr &MI) {
5238 switch (MI.getOpcode()) {
5239 default:
5240 return std::make_pair(X86::COND_INVALID, ~0U);
5241 CASE_ND(NEG8r)
5242 CASE_ND(NEG16r)
5243 CASE_ND(NEG32r)
5244 CASE_ND(NEG64r)
5245 return std::make_pair(X86::COND_AE, 1U);
5246 case X86::LZCNT16rr:
5247 case X86::LZCNT32rr:
5248 case X86::LZCNT64rr:
5249 return std::make_pair(X86::COND_B, 1U);
5250 case X86::POPCNT16rr:
5251 case X86::POPCNT32rr:
5252 case X86::POPCNT64rr:
5253 return std::make_pair(X86::COND_E, 1U);
5254 case X86::TZCNT16rr:
5255 case X86::TZCNT32rr:
5256 case X86::TZCNT64rr:
5257 return std::make_pair(X86::COND_B, 1U);
5258 case X86::BSF16rr:
5259 case X86::BSF32rr:
5260 case X86::BSF64rr:
5261 case X86::BSR16rr:
5262 case X86::BSR32rr:
5263 case X86::BSR64rr:
5264 return std::make_pair(X86::COND_E, 2U);
5265 case X86::BLSI32rr:
5266 case X86::BLSI64rr:
5267 return std::make_pair(X86::COND_AE, 1U);
5268 case X86::BLSR32rr:
5269 case X86::BLSR64rr:
5270 case X86::BLSMSK32rr:
5271 case X86::BLSMSK64rr:
5272 return std::make_pair(X86::COND_B, 1U);
5273 // TODO: TBM instructions.
5274 }
5275}
5276
5277/// Check if there exists an earlier instruction that
5278/// operates on the same source operands and sets flags in the same way as
5279/// Compare; remove Compare if possible.
5281 Register SrcReg2, int64_t CmpMask,
5282 int64_t CmpValue,
5283 const MachineRegisterInfo *MRI) const {
5284 // Check whether we can replace SUB with CMP.
5285 switch (CmpInstr.getOpcode()) {
5286 default:
5287 break;
5288 CASE_ND(SUB64ri32)
5289 CASE_ND(SUB32ri)
5290 CASE_ND(SUB16ri)
5291 CASE_ND(SUB8ri)
5292 CASE_ND(SUB64rm)
5293 CASE_ND(SUB32rm)
5294 CASE_ND(SUB16rm)
5295 CASE_ND(SUB8rm)
5296 CASE_ND(SUB64rr)
5297 CASE_ND(SUB32rr)
5298 CASE_ND(SUB16rr)
5299 CASE_ND(SUB8rr) {
5300 if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
5301 return false;
5302 // There is no use of the destination register, we can replace SUB with CMP.
5303 unsigned NewOpcode = 0;
5304#define FROM_TO(A, B) \
5305 CASE_ND(A) NewOpcode = X86::B; \
5306 break;
5307 switch (CmpInstr.getOpcode()) {
5308 default:
5309 llvm_unreachable("Unreachable!");
5310 FROM_TO(SUB64rm, CMP64rm)
5311 FROM_TO(SUB32rm, CMP32rm)
5312 FROM_TO(SUB16rm, CMP16rm)
5313 FROM_TO(SUB8rm, CMP8rm)
5314 FROM_TO(SUB64rr, CMP64rr)
5315 FROM_TO(SUB32rr, CMP32rr)
5316 FROM_TO(SUB16rr, CMP16rr)
5317 FROM_TO(SUB8rr, CMP8rr)
5318 FROM_TO(SUB64ri32, CMP64ri32)
5319 FROM_TO(SUB32ri, CMP32ri)
5320 FROM_TO(SUB16ri, CMP16ri)
5321 FROM_TO(SUB8ri, CMP8ri)
5322 }
5323#undef FROM_TO
5324 CmpInstr.setDesc(get(NewOpcode));
5325 CmpInstr.removeOperand(0);
5326 // Mutating this instruction invalidates any debug data associated with it.
5327 CmpInstr.dropDebugNumber();
5328 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
5329 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
5330 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
5331 return false;
5332 }
5333 }
5334
5335 // The following code tries to remove the comparison by re-using EFLAGS
5336 // from earlier instructions.
5337
5338 bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
5339
5340 // Transformation currently requires SSA values.
5341 if (SrcReg2.isPhysical())
5342 return false;
5343 MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
5344 assert(SrcRegDef && "Must have a definition (SSA)");
5345
5346 MachineInstr *MI = nullptr;
5347 MachineInstr *Sub = nullptr;
5348 MachineInstr *Movr0Inst = nullptr;
5350 bool NoSignFlag = false;
5351 bool ClearsOverflowFlag = false;
5352 bool ShouldUpdateCC = false;
5353 bool IsSwapped = false;
5354 bool HasNF = Subtarget.hasNF();
5355 unsigned OpNo = 0;
5357 int64_t ImmDelta = 0;
5358
5359 // Search backward from CmpInstr for the next instruction defining EFLAGS.
5361 MachineBasicBlock &CmpMBB = *CmpInstr.getParent();
5363 std::next(MachineBasicBlock::reverse_iterator(CmpInstr));
5364 for (MachineBasicBlock *MBB = &CmpMBB;;) {
5365 for (MachineInstr &Inst : make_range(From, MBB->rend())) {
5366 // Try to use EFLAGS from the instruction defining %SrcReg. Example:
5367 // %eax = addl ...
5368 // ... // EFLAGS not changed
5369 // testl %eax, %eax // <-- can be removed
5370 if (&Inst == SrcRegDef) {
5371 if (IsCmpZero &&
5372 isDefConvertible(Inst, NoSignFlag, ClearsOverflowFlag)) {
5373 MI = &Inst;
5374 break;
5375 }
5376
5377 // Look back for the following pattern, in which case the
5378 // test16rr/test64rr instruction could be erased.
5379 //
5380 // Example for test16rr:
5381 // %reg = and32ri %in_reg, 5
5382 // ... // EFLAGS not changed.
5383 // %src_reg = copy %reg.sub_16bit:gr32
5384 // test16rr %src_reg, %src_reg, implicit-def $eflags
5385 // Example for test64rr:
5386 // %reg = and32ri %in_reg, 5
5387 // ... // EFLAGS not changed.
5388 // %src_reg = subreg_to_reg 0, %reg, %subreg.sub_index
5389 // test64rr %src_reg, %src_reg, implicit-def $eflags
5390 MachineInstr *AndInstr = nullptr;
5391 if (IsCmpZero &&
5392 findRedundantFlagInstr(CmpInstr, Inst, MRI, &AndInstr, TRI,
5393 Subtarget, NoSignFlag, ClearsOverflowFlag)) {
5394 assert(AndInstr != nullptr && X86::isAND(AndInstr->getOpcode()));
5395 MI = AndInstr;
5396 break;
5397 }
5398 // Cannot find other candidates before definition of SrcReg.
5399 return false;
5400 }
5401
5402 if (Inst.modifiesRegister(X86::EFLAGS, TRI)) {
5403 // Try to use EFLAGS produced by an instruction reading %SrcReg.
5404 // Example:
5405 // %eax = ...
5406 // ...
5407 // popcntl %eax
5408 // ... // EFLAGS not changed
5409 // testl %eax, %eax // <-- can be removed
5410 if (IsCmpZero) {
5411 std::tie(NewCC, OpNo) = isUseDefConvertible(Inst);
5412 if (NewCC != X86::COND_INVALID && Inst.getOperand(OpNo).isReg() &&
5413 Inst.getOperand(OpNo).getReg() == SrcReg) {
5414 ShouldUpdateCC = true;
5415 MI = &Inst;
5416 break;
5417 }
5418 }
5419
5420 // Try to use EFLAGS from an instruction with similar flag results.
5421 // Example:
5422 // sub x, y or cmp x, y
5423 // ... // EFLAGS not changed
5424 // cmp x, y // <-- can be removed
5425 if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, CmpValue,
5426 Inst, &IsSwapped, &ImmDelta)) {
5427 Sub = &Inst;
5428 break;
5429 }
5430
5431 // MOV32r0 is implemented with xor which clobbers condition code. It is
5432 // safe to move up, if the definition to EFLAGS is dead and earlier
5433 // instructions do not read or write EFLAGS.
5434 if (!Movr0Inst && Inst.getOpcode() == X86::MOV32r0 &&
5435 Inst.registerDefIsDead(X86::EFLAGS, TRI)) {
5436 Movr0Inst = &Inst;
5437 continue;
5438 }
5439
5440 // For the instructions are ADDrm/ADDmr with relocation, we'll skip the
5441 // optimization for replacing non-NF with NF. This is to keep backward
5442 // compatiblity with old version of linkers without APX relocation type
5443 // support on Linux OS.
5444 bool IsWithReloc = X86EnableAPXForRelocation
5445 ? false
5447
5448 // Try to replace non-NF with NF instructions.
5449 if (HasNF && Inst.registerDefIsDead(X86::EFLAGS, TRI) && !IsWithReloc) {
5450 unsigned NewOp = X86::getNFVariant(Inst.getOpcode());
5451 if (!NewOp)
5452 return false;
5453
5454 InstsToUpdate.push_back(std::make_pair(&Inst, NewOp));
5455 continue;
5456 }
5457
5458 // Cannot do anything for any other EFLAG changes.
5459 return false;
5460 }
5461 }
5462
5463 if (MI || Sub)
5464 break;
5465
5466 // Reached begin of basic block. Continue in predecessor if there is
5467 // exactly one.
5468 if (MBB->pred_size() != 1)
5469 return false;
5470 MBB = *MBB->pred_begin();
5471 From = MBB->rbegin();
5472 }
5473
5474 // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
5475 // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
5476 // If we are done with the basic block, we need to check whether EFLAGS is
5477 // live-out.
5478 bool FlagsMayLiveOut = true;
5480 MachineBasicBlock::iterator AfterCmpInstr =
5481 std::next(MachineBasicBlock::iterator(CmpInstr));
5482 for (MachineInstr &Instr : make_range(AfterCmpInstr, CmpMBB.end())) {
5483 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
5484 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
5485 // We should check the usage if this instruction uses and updates EFLAGS.
5486 if (!UseEFLAGS && ModifyEFLAGS) {
5487 // It is safe to remove CmpInstr if EFLAGS is updated again.
5488 FlagsMayLiveOut = false;
5489 break;
5490 }
5491 if (!UseEFLAGS && !ModifyEFLAGS)
5492 continue;
5493
5494 // EFLAGS is used by this instruction.
5495 X86::CondCode OldCC = X86::getCondFromMI(Instr);
5496 if ((MI || IsSwapped || ImmDelta != 0) && OldCC == X86::COND_INVALID)
5497 return false;
5498
5499 X86::CondCode ReplacementCC = X86::COND_INVALID;
5500 if (MI) {
5501 switch (OldCC) {
5502 default:
5503 break;
5504 case X86::COND_A:
5505 case X86::COND_AE:
5506 case X86::COND_B:
5507 case X86::COND_BE:
5508 // CF is used, we can't perform this optimization.
5509 return false;
5510 case X86::COND_G:
5511 case X86::COND_GE:
5512 case X86::COND_L:
5513 case X86::COND_LE:
5514 // If SF is used, but the instruction doesn't update the SF, then we
5515 // can't do the optimization.
5516 if (NoSignFlag)
5517 return false;
5518 [[fallthrough]];
5519 case X86::COND_O:
5520 case X86::COND_NO:
5521 // If OF is used, the instruction needs to clear it like CmpZero does.
5522 if (!ClearsOverflowFlag)
5523 return false;
5524 break;
5525 case X86::COND_S:
5526 case X86::COND_NS:
5527 // If SF is used, but the instruction doesn't update the SF, then we
5528 // can't do the optimization.
5529 if (NoSignFlag)
5530 return false;
5531 break;
5532 }
5533
5534 // If we're updating the condition code check if we have to reverse the
5535 // condition.
5536 if (ShouldUpdateCC)
5537 switch (OldCC) {
5538 default:
5539 return false;
5540 case X86::COND_E:
5541 ReplacementCC = NewCC;
5542 break;
5543 case X86::COND_NE:
5544 ReplacementCC = GetOppositeBranchCondition(NewCC);
5545 break;
5546 }
5547 } else if (IsSwapped) {
5548 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
5549 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
5550 // We swap the condition code and synthesize the new opcode.
5551 ReplacementCC = getSwappedCondition(OldCC);
5552 if (ReplacementCC == X86::COND_INVALID)
5553 return false;
5554 ShouldUpdateCC = true;
5555 } else if (ImmDelta != 0) {
5556 unsigned BitWidth = TRI->getRegSizeInBits(*MRI->getRegClass(SrcReg));
5557 // Shift amount for min/max constants to adjust for 8/16/32 instruction
5558 // sizes.
5559 switch (OldCC) {
5560 case X86::COND_L: // x <s (C + 1) --> x <=s C
5561 if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
5562 return false;
5563 ReplacementCC = X86::COND_LE;
5564 break;
5565 case X86::COND_B: // x <u (C + 1) --> x <=u C
5566 if (ImmDelta != 1 || CmpValue == 0)
5567 return false;
5568 ReplacementCC = X86::COND_BE;
5569 break;
5570 case X86::COND_GE: // x >=s (C + 1) --> x >s C
5571 if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
5572 return false;
5573 ReplacementCC = X86::COND_G;
5574 break;
5575 case X86::COND_AE: // x >=u (C + 1) --> x >u C
5576 if (ImmDelta != 1 || CmpValue == 0)
5577 return false;
5578 ReplacementCC = X86::COND_A;
5579 break;
5580 case X86::COND_G: // x >s (C - 1) --> x >=s C
5581 if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
5582 return false;
5583 ReplacementCC = X86::COND_GE;
5584 break;
5585 case X86::COND_A: // x >u (C - 1) --> x >=u C
5586 if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
5587 return false;
5588 ReplacementCC = X86::COND_AE;
5589 break;
5590 case X86::COND_LE: // x <=s (C - 1) --> x <s C
5591 if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
5592 return false;
5593 ReplacementCC = X86::COND_L;
5594 break;
5595 case X86::COND_BE: // x <=u (C - 1) --> x <u C
5596 if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
5597 return false;
5598 ReplacementCC = X86::COND_B;
5599 break;
5600 default:
5601 return false;
5602 }
5603 ShouldUpdateCC = true;
5604 }
5605
5606 if (ShouldUpdateCC && ReplacementCC != OldCC) {
5607 // Push the MachineInstr to OpsToUpdate.
5608 // If it is safe to remove CmpInstr, the condition code of these
5609 // instructions will be modified.
5610 OpsToUpdate.push_back(std::make_pair(&Instr, ReplacementCC));
5611 }
5612 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
5613 // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
5614 FlagsMayLiveOut = false;
5615 break;
5616 }
5617 }
5618
5619 // If we have to update users but EFLAGS is live-out abort, since we cannot
5620 // easily find all of the users.
5621 if ((MI != nullptr || ShouldUpdateCC) && FlagsMayLiveOut) {
5622 for (MachineBasicBlock *Successor : CmpMBB.successors())
5623 if (Successor->isLiveIn(X86::EFLAGS))
5624 return false;
5625 }
5626
5627 // The instruction to be updated is either Sub or MI.
5628 assert((MI == nullptr || Sub == nullptr) && "Should not have Sub and MI set");
5629 Sub = MI != nullptr ? MI : Sub;
5630 MachineBasicBlock *SubBB = Sub->getParent();
5631 // Move Movr0Inst to the appropriate place before Sub.
5632 if (Movr0Inst) {
5633 // Only move within the same block so we don't accidentally move to a
5634 // block with higher execution frequency.
5635 if (&CmpMBB != SubBB)
5636 return false;
5637 // Look backwards until we find a def that doesn't use the current EFLAGS.
5639 InsertE = Sub->getParent()->rend();
5640 for (; InsertI != InsertE; ++InsertI) {
5641 MachineInstr *Instr = &*InsertI;
5642 if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
5643 Instr->modifiesRegister(X86::EFLAGS, TRI)) {
5644 Movr0Inst->getParent()->remove(Movr0Inst);
5645 Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
5646 Movr0Inst);
5647 break;
5648 }
5649 }
5650 if (InsertI == InsertE)
5651 return false;
5652 }
5653
5654 // Replace non-NF with NF instructions.
5655 for (auto &Inst : InstsToUpdate) {
5656 Inst.first->setDesc(get(Inst.second));
5657 Inst.first->removeOperand(
5658 Inst.first->findRegisterDefOperandIdx(X86::EFLAGS, /*TRI=*/nullptr));
5659 }
5660
5661 // Make sure Sub instruction defines EFLAGS and mark the def live.
5662 MachineOperand *FlagDef =
5663 Sub->findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
5664 assert(FlagDef && "Unable to locate a def EFLAGS operand");
5665 FlagDef->setIsDead(false);
5666
5667 CmpInstr.eraseFromParent();
5668
5669 // Modify the condition code of instructions in OpsToUpdate.
5670 for (auto &Op : OpsToUpdate) {
5671 Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
5672 .setImm(Op.second);
5673 }
5674 // Add EFLAGS to block live-ins between CmpBB and block of flags producer.
5675 for (MachineBasicBlock *MBB = &CmpMBB; MBB != SubBB;
5676 MBB = *MBB->pred_begin()) {
5677 assert(MBB->pred_size() == 1 && "Expected exactly one predecessor");
5678 if (!MBB->isLiveIn(X86::EFLAGS))
5679 MBB->addLiveIn(X86::EFLAGS);
5680 }
5681 return true;
5682}
5683
5684/// \returns true if the instruction can be changed to COPY when imm is 0.
5685static bool canConvert2Copy(unsigned Opc) {
5686 switch (Opc) {
5687 default:
5688 return false;
5689 CASE_ND(ADD64ri32)
5690 CASE_ND(SUB64ri32)
5691 CASE_ND(OR64ri32)
5692 CASE_ND(XOR64ri32)
5693 CASE_ND(ADD32ri)
5694 CASE_ND(SUB32ri)
5695 CASE_ND(OR32ri)
5696 CASE_ND(XOR32ri)
5697 return true;
5698 }
5699}
5700
5701/// Convert an ALUrr opcode to corresponding ALUri opcode. Such as
5702/// ADD32rr ==> ADD32ri
5703static unsigned convertALUrr2ALUri(unsigned Opc) {
5704 switch (Opc) {
5705 default:
5706 return 0;
5707#define FROM_TO(FROM, TO) \
5708 case X86::FROM: \
5709 return X86::TO; \
5710 case X86::FROM##_ND: \
5711 return X86::TO##_ND;
5712 FROM_TO(ADD64rr, ADD64ri32)
5713 FROM_TO(ADC64rr, ADC64ri32)
5714 FROM_TO(SUB64rr, SUB64ri32)
5715 FROM_TO(SBB64rr, SBB64ri32)
5716 FROM_TO(AND64rr, AND64ri32)
5717 FROM_TO(OR64rr, OR64ri32)
5718 FROM_TO(XOR64rr, XOR64ri32)
5719 FROM_TO(SHR64rCL, SHR64ri)
5720 FROM_TO(SHL64rCL, SHL64ri)
5721 FROM_TO(SAR64rCL, SAR64ri)
5722 FROM_TO(ROL64rCL, ROL64ri)
5723 FROM_TO(ROR64rCL, ROR64ri)
5724 FROM_TO(RCL64rCL, RCL64ri)
5725 FROM_TO(RCR64rCL, RCR64ri)
5726 FROM_TO(ADD32rr, ADD32ri)
5727 FROM_TO(ADC32rr, ADC32ri)
5728 FROM_TO(SUB32rr, SUB32ri)
5729 FROM_TO(SBB32rr, SBB32ri)
5730 FROM_TO(AND32rr, AND32ri)
5731 FROM_TO(OR32rr, OR32ri)
5732 FROM_TO(XOR32rr, XOR32ri)
5733 FROM_TO(SHR32rCL, SHR32ri)
5734 FROM_TO(SHL32rCL, SHL32ri)
5735 FROM_TO(SAR32rCL, SAR32ri)
5736 FROM_TO(ROL32rCL, ROL32ri)
5737 FROM_TO(ROR32rCL, ROR32ri)
5738 FROM_TO(RCL32rCL, RCL32ri)
5739 FROM_TO(RCR32rCL, RCR32ri)
5740#undef FROM_TO
5741#define FROM_TO(FROM, TO) \
5742 case X86::FROM: \
5743 return X86::TO;
5744 FROM_TO(TEST64rr, TEST64ri32)
5745 FROM_TO(CTEST64rr, CTEST64ri32)
5746 FROM_TO(CMP64rr, CMP64ri32)
5747 FROM_TO(CCMP64rr, CCMP64ri32)
5748 FROM_TO(TEST32rr, TEST32ri)
5749 FROM_TO(CTEST32rr, CTEST32ri)
5750 FROM_TO(CMP32rr, CMP32ri)
5751 FROM_TO(CCMP32rr, CCMP32ri)
5752#undef FROM_TO
5753 }
5754}
5755
5756/// Reg is assigned ImmVal in DefMI, and is used in UseMI.
5757/// If MakeChange is true, this function tries to replace Reg by ImmVal in
5758/// UseMI. If MakeChange is false, just check if folding is possible.
5759//
5760/// \returns true if folding is successful or possible.
5761bool X86InstrInfo::foldImmediateImpl(MachineInstr &UseMI, MachineInstr *DefMI,
5762 Register Reg, int64_t ImmVal,
5764 bool MakeChange) const {
5765 bool Modified = false;
5766
5767 // 64 bit operations accept sign extended 32 bit immediates.
5768 // 32 bit operations accept all 32 bit immediates, so we don't need to check
5769 // them.
5770 const TargetRegisterClass *RC = nullptr;
5771 if (Reg.isVirtual())
5772 RC = MRI->getRegClass(Reg);
5773 if ((Reg.isPhysical() && X86::GR64RegClass.contains(Reg)) ||
5774 (Reg.isVirtual() && X86::GR64RegClass.hasSubClassEq(RC))) {
5775 if (!isInt<32>(ImmVal))
5776 return false;
5777 }
5778
5779 if (UseMI.findRegisterUseOperand(Reg, /*TRI=*/nullptr)->getSubReg())
5780 return false;
5781 // Immediate has larger code size than register. So avoid folding the
5782 // immediate if it has more than 1 use and we are optimizing for size.
5783 if (UseMI.getMF()->getFunction().hasOptSize() && Reg.isVirtual() &&
5784 !MRI->hasOneNonDBGUse(Reg))
5785 return false;
5786
5787 unsigned Opc = UseMI.getOpcode();
5788 unsigned NewOpc;
5789 if (Opc == TargetOpcode::COPY) {
5790 Register ToReg = UseMI.getOperand(0).getReg();
5791 const TargetRegisterClass *RC = nullptr;
5792 if (ToReg.isVirtual())
5793 RC = MRI->getRegClass(ToReg);
5794 bool GR32Reg = (ToReg.isVirtual() && X86::GR32RegClass.hasSubClassEq(RC)) ||
5795 (ToReg.isPhysical() && X86::GR32RegClass.contains(ToReg));
5796 bool GR64Reg = (ToReg.isVirtual() && X86::GR64RegClass.hasSubClassEq(RC)) ||
5797 (ToReg.isPhysical() && X86::GR64RegClass.contains(ToReg));
5798 bool GR8Reg = (ToReg.isVirtual() && X86::GR8RegClass.hasSubClassEq(RC)) ||
5799 (ToReg.isPhysical() && X86::GR8RegClass.contains(ToReg));
5800
5801 if (ImmVal == 0) {
5802 // We have MOV32r0 only.
5803 if (!GR32Reg)
5804 return false;
5805 }
5806
5807 if (GR64Reg) {
5808 if (isUInt<32>(ImmVal))
5809 NewOpc = X86::MOV32ri64;
5810 else
5811 NewOpc = X86::MOV64ri;
5812 } else if (GR32Reg) {
5813 NewOpc = X86::MOV32ri;
5814 if (ImmVal == 0) {
5815 // MOV32r0 clobbers EFLAGS.
5816 const TargetRegisterInfo *TRI = &getRegisterInfo();
5817 if (UseMI.getParent()->computeRegisterLiveness(
5818 TRI, X86::EFLAGS, UseMI) != MachineBasicBlock::LQR_Dead)
5819 return false;
5820
5821 // MOV32r0 is different than other cases because it doesn't encode the
5822 // immediate in the instruction. So we directly modify it here.
5823 if (!MakeChange)
5824 return true;
5825 UseMI.setDesc(get(X86::MOV32r0));
5826 UseMI.removeOperand(
5827 UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr));
5828 UseMI.addOperand(MachineOperand::CreateReg(X86::EFLAGS, /*isDef=*/true,
5829 /*isImp=*/true,
5830 /*isKill=*/false,
5831 /*isDead=*/true));
5832 Modified = true;
5833 }
5834 } else if (GR8Reg)
5835 NewOpc = X86::MOV8ri;
5836 else
5837 return false;
5838 } else
5839 NewOpc = convertALUrr2ALUri(Opc);
5840
5841 if (!NewOpc)
5842 return false;
5843
5844 // For SUB instructions the immediate can only be the second source operand.
5845 if ((NewOpc == X86::SUB64ri32 || NewOpc == X86::SUB32ri ||
5846 NewOpc == X86::SBB64ri32 || NewOpc == X86::SBB32ri ||
5847 NewOpc == X86::SUB64ri32_ND || NewOpc == X86::SUB32ri_ND ||
5848 NewOpc == X86::SBB64ri32_ND || NewOpc == X86::SBB32ri_ND) &&
5849 UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr) != 2)
5850 return false;
5851 // For CMP instructions the immediate can only be at index 1.
5852 if (((NewOpc == X86::CMP64ri32 || NewOpc == X86::CMP32ri) ||
5853 (NewOpc == X86::CCMP64ri32 || NewOpc == X86::CCMP32ri)) &&
5854 UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr) != 1)
5855 return false;
5856
5857 using namespace X86;
5858 if (isSHL(Opc) || isSHR(Opc) || isSAR(Opc) || isROL(Opc) || isROR(Opc) ||
5859 isRCL(Opc) || isRCR(Opc)) {
5860 unsigned RegIdx = UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr);
5861 if (RegIdx < 2)
5862 return false;
5863 if (!isInt<8>(ImmVal))
5864 return false;
5865 assert(Reg == X86::CL);
5866
5867 if (!MakeChange)
5868 return true;
5869 UseMI.setDesc(get(NewOpc));
5870 UseMI.removeOperand(RegIdx);
5871 UseMI.addOperand(MachineOperand::CreateImm(ImmVal));
5872 // Reg is physical register $cl, so we don't know if DefMI is dead through
5873 // MRI. Let the caller handle it, or pass dead-mi-elimination can delete
5874 // the dead physical register define instruction.
5875 return true;
5876 }
5877
5878 if (!MakeChange)
5879 return true;
5880
5881 if (!Modified) {
5882 // Modify the instruction.
5883 if (ImmVal == 0 && canConvert2Copy(NewOpc) &&
5884 UseMI.registerDefIsDead(X86::EFLAGS, /*TRI=*/nullptr)) {
5885 // %100 = add %101, 0
5886 // ==>
5887 // %100 = COPY %101
5888 UseMI.setDesc(get(TargetOpcode::COPY));
5889 UseMI.removeOperand(
5890 UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr));
5891 UseMI.removeOperand(
5892 UseMI.findRegisterDefOperandIdx(X86::EFLAGS, /*TRI=*/nullptr));
5893 UseMI.untieRegOperand(0);
5896 } else {
5897 unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
5898 unsigned ImmOpNum = 2;
5899 if (!UseMI.getOperand(0).isDef()) {
5900 Op1 = 0; // TEST, CMP, CTEST, CCMP
5901 ImmOpNum = 1;
5902 }
5903 if (Opc == TargetOpcode::COPY)
5904 ImmOpNum = 1;
5905 if (findCommutedOpIndices(UseMI, Op1, Op2) &&
5906 UseMI.getOperand(Op1).getReg() == Reg)
5907 commuteInstruction(UseMI);
5908
5909 assert(UseMI.getOperand(ImmOpNum).getReg() == Reg);
5910 UseMI.setDesc(get(NewOpc));
5911 UseMI.getOperand(ImmOpNum).ChangeToImmediate(ImmVal);
5912 }
5913 }
5914
5915 if (Reg.isVirtual() && MRI->use_nodbg_empty(Reg))
5917
5918 return true;
5919}
5920
5921/// foldImmediate - 'Reg' is known to be defined by a move immediate
5922/// instruction, try to fold the immediate into the use instruction.
5924 Register Reg, MachineRegisterInfo *MRI) const {
5925 int64_t ImmVal;
5926 if (!getConstValDefinedInReg(DefMI, Reg, ImmVal))
5927 return false;
5928
5929 return foldImmediateImpl(UseMI, &DefMI, Reg, ImmVal, MRI, true);
5930}
5931
5932/// Expand a single-def pseudo instruction to a two-addr
5933/// instruction with two undef reads of the register being defined.
5934/// This is used for mapping:
5935/// %xmm4 = V_SET0
5936/// to:
5937/// %xmm4 = PXORrr undef %xmm4, undef %xmm4
5938///
5940 const MCInstrDesc &Desc) {
5941 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
5942 Register Reg = MIB.getReg(0);
5943 MIB->setDesc(Desc);
5944
5945 // MachineInstr::addOperand() will insert explicit operands before any
5946 // implicit operands.
5948 // But we don't trust that.
5949 assert(MIB.getReg(1) == Reg && MIB.getReg(2) == Reg && "Misplaced operand");
5950 return true;
5951}
5952
5953/// Expand a single-def pseudo instruction to a two-addr
5954/// instruction with two %k0 reads.
5955/// This is used for mapping:
5956/// %k4 = K_SET1
5957/// to:
5958/// %k4 = KXNORrr %k0, %k0
5960 Register Reg) {
5961 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
5962 MIB->setDesc(Desc);
5964 return true;
5965}
5966
5968 bool MinusOne) {
5969 MachineBasicBlock &MBB = *MIB->getParent();
5970 const DebugLoc &DL = MIB->getDebugLoc();
5971 Register Reg = MIB.getReg(0);
5972
5973 // Insert the XOR.
5974 BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
5977
5978 // Turn the pseudo into an INC or DEC.
5979 MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
5980 MIB.addReg(Reg);
5981
5982 return true;
5983}
5984
5986 const TargetInstrInfo &TII,
5987 const X86Subtarget &Subtarget) {
5988 MachineBasicBlock &MBB = *MIB->getParent();
5989 const DebugLoc &DL = MIB->getDebugLoc();
5990 int64_t Imm = MIB->getOperand(1).getImm();
5991 assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
5993
5994 int StackAdjustment;
5995
5996 if (Subtarget.is64Bit()) {
5997 assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
5998 MIB->getOpcode() == X86::MOV32ImmSExti8);
5999
6000 // Can't use push/pop lowering if the function might write to the red zone.
6001 X86MachineFunctionInfo *X86FI =
6002 MBB.getParent()->getInfo<X86MachineFunctionInfo>();
6003 if (X86FI->getUsesRedZone()) {
6004 MIB->setDesc(TII.get(MIB->getOpcode() == X86::MOV32ImmSExti8
6005 ? X86::MOV32ri
6006 : X86::MOV64ri));
6007 return true;
6008 }
6009
6010 // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
6011 // widen the register if necessary.
6012 StackAdjustment = 8;
6013 BuildMI(MBB, I, DL, TII.get(X86::PUSH64i32)).addImm(Imm);
6014 MIB->setDesc(TII.get(X86::POP64r));
6015 MIB->getOperand(0).setReg(getX86SubSuperRegister(MIB.getReg(0), 64));
6016 } else {
6017 assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
6018 StackAdjustment = 4;
6019 BuildMI(MBB, I, DL, TII.get(X86::PUSH32i)).addImm(Imm);
6020 MIB->setDesc(TII.get(X86::POP32r));
6021 }
6022 MIB->removeOperand(1);
6023 MIB->addImplicitDefUseOperands(*MBB.getParent());
6024
6025 // Build CFI if necessary.
6026 MachineFunction &MF = *MBB.getParent();
6027 const X86FrameLowering *TFL = Subtarget.getFrameLowering();
6028 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
6029 bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
6030 bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
6031 if (EmitCFI) {
6032 TFL->BuildCFI(
6033 MBB, I, DL,
6034 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
6035 TFL->BuildCFI(
6036 MBB, std::next(I), DL,
6037 MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
6038 }
6039
6040 return true;
6041}
6042
6043// LoadStackGuard has so far only been implemented for 64-bit MachO. Different
6044// code sequence is needed for other targets.
6046 const TargetInstrInfo &TII) {
6047 MachineBasicBlock &MBB = *MIB->getParent();
6048 const DebugLoc &DL = MIB->getDebugLoc();
6049 Register Reg = MIB.getReg(0);
6050 const GlobalValue *GV =
6051 cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
6052 auto Flags = MachineMemOperand::MOLoad |
6055 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
6056 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, Align(8));
6058
6059 BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg)
6060 .addReg(X86::RIP)
6061 .addImm(1)
6062 .addReg(0)
6064 .addReg(0)
6065 .addMemOperand(MMO);
6066 MIB->setDebugLoc(DL);
6067 MIB->setDesc(TII.get(X86::MOV64rm));
6069}
6070
6072 MachineBasicBlock &MBB = *MIB->getParent();
6073 MachineFunction &MF = *MBB.getParent();
6074 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
6075 const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
6076 unsigned XorOp =
6077 MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
6078 MIB->setDesc(TII.get(XorOp));
6079 MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
6080 return true;
6081}
6082
6083// This is used to handle spills for 128/256-bit registers when we have AVX512,
6084// but not VLX. If it uses an extended register we need to use an instruction
6085// that loads the lower 128/256-bit, but is available with only AVX512F.
6087 const TargetRegisterInfo *TRI,
6088 const MCInstrDesc &LoadDesc,
6089 const MCInstrDesc &BroadcastDesc, unsigned SubIdx) {
6090 Register DestReg = MIB.getReg(0);
6091 // Check if DestReg is XMM16-31 or YMM16-31.
6092 if (TRI->getEncodingValue(DestReg) < 16) {
6093 // We can use a normal VEX encoded load.
6094 MIB->setDesc(LoadDesc);
6095 } else {
6096 // Use a 128/256-bit VBROADCAST instruction.
6097 MIB->setDesc(BroadcastDesc);
6098 // Change the destination to a 512-bit register.
6099 DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
6100 MIB->getOperand(0).setReg(DestReg);
6101 }
6102 return true;
6103}
6104
6105// This is used to handle spills for 128/256-bit registers when we have AVX512,
6106// but not VLX. If it uses an extended register we need to use an instruction
6107// that stores the lower 128/256-bit, but is available with only AVX512F.
6109 const TargetRegisterInfo *TRI,
6110 const MCInstrDesc &StoreDesc,
6111 const MCInstrDesc &ExtractDesc, unsigned SubIdx) {
6112 Register SrcReg = MIB.getReg(X86::AddrNumOperands);
6113 // Check if DestReg is XMM16-31 or YMM16-31.
6114 if (TRI->getEncodingValue(SrcReg) < 16) {
6115 // We can use a normal VEX encoded store.
6116 MIB->setDesc(StoreDesc);
6117 } else {
6118 // Use a VEXTRACTF instruction.
6119 MIB->setDesc(ExtractDesc);
6120 // Change the destination to a 512-bit register.
6121 SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
6123 MIB.addImm(0x0); // Append immediate to extract from the lower bits.
6124 }
6125
6126 return true;
6127}
6128
6130 MIB->setDesc(Desc);
6131 int64_t ShiftAmt = MIB->getOperand(2).getImm();
6132 // Temporarily remove the immediate so we can add another source register.
6133 MIB->removeOperand(2);
6134 // Add the register. Don't copy the kill flag if there is one.
6135 MIB.addReg(MIB.getReg(1), getUndefRegState(MIB->getOperand(1).isUndef()));
6136 // Add back the immediate.
6137 MIB.addImm(ShiftAmt);
6138 return true;
6139}
6140
6142 const TargetInstrInfo &TII, bool HasAVX) {
6143 unsigned NewOpc;
6144 if (MI.getOpcode() == X86::MOVSHPrm) {
6145 NewOpc = HasAVX ? X86::VMOVSSrm : X86::MOVSSrm;
6146 Register Reg = MI.getOperand(0).getReg();
6147 if (Reg > X86::XMM15)
6148 NewOpc = X86::VMOVSSZrm;
6149 } else {
6150 NewOpc = HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
6151 Register Reg = MI.getOperand(5).getReg();
6152 if (Reg > X86::XMM15)
6153 NewOpc = X86::VMOVSSZmr;
6154 }
6155
6156 MIB->setDesc(TII.get(NewOpc));
6157 return true;
6158}
6159
6161 bool HasAVX = Subtarget.hasAVX();
6162 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
6163 switch (MI.getOpcode()) {
6164 case X86::MOV32r0:
6165 return Expand2AddrUndef(MIB, get(X86::XOR32rr));
6166 case X86::MOV32r1:
6167 return expandMOV32r1(MIB, *this, /*MinusOne=*/false);
6168 case X86::MOV32r_1:
6169 return expandMOV32r1(MIB, *this, /*MinusOne=*/true);
6170 case X86::MOV32ImmSExti8:
6171 case X86::MOV64ImmSExti8:
6172 return ExpandMOVImmSExti8(MIB, *this, Subtarget);
6173 case X86::SETB_C32r:
6174 return Expand2AddrUndef(MIB, get(X86::SBB32rr));
6175 case X86::SETB_C64r:
6176 return Expand2AddrUndef(MIB, get(X86::SBB64rr));
6177 case X86::MMX_SET0:
6178 return Expand2AddrUndef(MIB, get(X86::MMX_PXORrr));
6179 case X86::V_SET0:
6180 case X86::FsFLD0SS:
6181 case X86::FsFLD0SD:
6182 case X86::FsFLD0SH:
6183 case X86::FsFLD0F128:
6184 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
6185 case X86::AVX_SET0: {
6186 assert(HasAVX && "AVX not supported");
6188 Register SrcReg = MIB.getReg(0);
6189 Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
6190 MIB->getOperand(0).setReg(XReg);
6191 Expand2AddrUndef(MIB, get(X86::VXORPSrr));
6192 MIB.addReg(SrcReg, RegState::ImplicitDefine);
6193 return true;
6194 }
6195 case X86::AVX512_128_SET0:
6196 case X86::AVX512_FsFLD0SH:
6197 case X86::AVX512_FsFLD0SS:
6198 case X86::AVX512_FsFLD0SD:
6199 case X86::AVX512_FsFLD0F128: {
6200 bool HasVLX = Subtarget.hasVLX();
6201 Register SrcReg = MIB.getReg(0);
6203 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
6204 return Expand2AddrUndef(MIB,
6205 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
6206 // Extended register without VLX. Use a larger XOR.
6207 SrcReg =
6208 TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
6209 MIB->getOperand(0).setReg(SrcReg);
6210 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
6211 }
6212 case X86::AVX512_256_SET0:
6213 case X86::AVX512_512_SET0: {
6214 bool HasVLX = Subtarget.hasVLX();
6215 Register SrcReg = MIB.getReg(0);
6217 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
6218 Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
6219 MIB->getOperand(0).setReg(XReg);
6220 Expand2AddrUndef(MIB, get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
6221 MIB.addReg(SrcReg, RegState::ImplicitDefine);
6222 return true;
6223 }
6224 if (MI.getOpcode() == X86::AVX512_256_SET0) {
6225 // No VLX so we must reference a zmm.
6226 MCRegister ZReg =
6227 TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
6228 MIB->getOperand(0).setReg(ZReg);
6229 }
6230 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
6231 }
6232 case X86::MOVSHPmr:
6233 case X86::MOVSHPrm:
6234 return expandMOVSHP(MIB, MI, *this, Subtarget.hasAVX());
6235 case X86::V_SETALLONES:
6236 return Expand2AddrUndef(MIB,
6237 get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
6238 case X86::AVX2_SETALLONES:
6239 return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
6240 case X86::AVX1_SETALLONES: {
6241 Register Reg = MIB.getReg(0);
6242 // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
6243 MIB->setDesc(get(X86::VCMPPSYrri));
6244 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
6245 return true;
6246 }
6247 case X86::AVX512_512_SETALLONES: {
6248 Register Reg = MIB.getReg(0);
6249 MIB->setDesc(get(X86::VPTERNLOGDZrri));
6250 // VPTERNLOGD needs 3 register inputs and an immediate.
6251 // 0xff will return 1s for any input.
6252 MIB.addReg(Reg, RegState::Undef)
6253 .addReg(Reg, RegState::Undef)
6254 .addReg(Reg, RegState::Undef)
6255 .addImm(0xff);
6256 return true;
6257 }
6258 case X86::AVX512_512_SEXT_MASK_32:
6259 case X86::AVX512_512_SEXT_MASK_64: {
6260 Register Reg = MIB.getReg(0);
6261 Register MaskReg = MIB.getReg(1);
6262 unsigned MaskState = getRegState(MIB->getOperand(1));
6263 unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64)
6264 ? X86::VPTERNLOGQZrrikz
6265 : X86::VPTERNLOGDZrrikz;
6266 MI.removeOperand(1);
6267 MIB->setDesc(get(Opc));
6268 // VPTERNLOG needs 3 register inputs and an immediate.
6269 // 0xff will return 1s for any input.
6270 MIB.addReg(Reg, RegState::Undef)
6271 .addReg(MaskReg, MaskState)
6272 .addReg(Reg, RegState::Undef)
6273 .addReg(Reg, RegState::Undef)
6274 .addImm(0xff);
6275 return true;
6276 }
6277 case X86::VMOVAPSZ128rm_NOVLX:
6278 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
6279 get(X86::VBROADCASTF32X4Zrm), X86::sub_xmm);
6280 case X86::VMOVUPSZ128rm_NOVLX:
6281 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
6282 get(X86::VBROADCASTF32X4Zrm), X86::sub_xmm);
6283 case X86::VMOVAPSZ256rm_NOVLX:
6284 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
6285 get(X86::VBROADCASTF64X4Zrm), X86::sub_ymm);
6286 case X86::VMOVUPSZ256rm_NOVLX:
6287 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
6288 get(X86::VBROADCASTF64X4Zrm), X86::sub_ymm);
6289 case X86::VMOVAPSZ128mr_NOVLX:
6290 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
6291 get(X86::VEXTRACTF32X4Zmri), X86::sub_xmm);
6292 case X86::VMOVUPSZ128mr_NOVLX:
6293 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
6294 get(X86::VEXTRACTF32X4Zmri), X86::sub_xmm);
6295 case X86::VMOVAPSZ256mr_NOVLX:
6296 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
6297 get(X86::VEXTRACTF64X4Zmri), X86::sub_ymm);
6298 case X86::VMOVUPSZ256mr_NOVLX:
6299 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
6300 get(X86::VEXTRACTF64X4Zmri), X86::sub_ymm);
6301 case X86::MOV32ri64: {
6302 Register Reg = MIB.getReg(0);
6303 Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
6304 MI.setDesc(get(X86::MOV32ri));
6305 MIB->getOperand(0).setReg(Reg32);
6307 return true;
6308 }
6309
6310 case X86::RDFLAGS32:
6311 case X86::RDFLAGS64: {
6312 unsigned Is64Bit = MI.getOpcode() == X86::RDFLAGS64;
6313 MachineBasicBlock &MBB = *MIB->getParent();
6314
6315 MachineInstr *NewMI = BuildMI(MBB, MI, MIB->getDebugLoc(),
6316 get(Is64Bit ? X86::PUSHF64 : X86::PUSHF32))
6317 .getInstr();
6318
6319 // Permit reads of the EFLAGS and DF registers without them being defined.
6320 // This intrinsic exists to read external processor state in flags, such as
6321 // the trap flag, interrupt flag, and direction flag, none of which are
6322 // modeled by the backend.
6323 assert(NewMI->getOperand(2).getReg() == X86::EFLAGS &&
6324 "Unexpected register in operand! Should be EFLAGS.");
6325 NewMI->getOperand(2).setIsUndef();
6326 assert(NewMI->getOperand(3).getReg() == X86::DF &&
6327 "Unexpected register in operand! Should be DF.");
6328 NewMI->getOperand(3).setIsUndef();
6329
6330 MIB->setDesc(get(Is64Bit ? X86::POP64r : X86::POP32r));
6331 return true;
6332 }
6333
6334 case X86::WRFLAGS32:
6335 case X86::WRFLAGS64: {
6336 unsigned Is64Bit = MI.getOpcode() == X86::WRFLAGS64;
6337 MachineBasicBlock &MBB = *MIB->getParent();
6338
6339 BuildMI(MBB, MI, MIB->getDebugLoc(),
6340 get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
6341 .addReg(MI.getOperand(0).getReg());
6342 BuildMI(MBB, MI, MIB->getDebugLoc(),
6343 get(Is64Bit ? X86::POPF64 : X86::POPF32));
6344 MI.eraseFromParent();
6345 return true;
6346 }
6347
6348 // KNL does not recognize dependency-breaking idioms for mask registers,
6349 // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
6350 // Using %k0 as the undef input register is a performance heuristic based
6351 // on the assumption that %k0 is used less frequently than the other mask
6352 // registers, since it is not usable as a write mask.
6353 // FIXME: A more advanced approach would be to choose the best input mask
6354 // register based on context.
6355 case X86::KSET0W:
6356 return Expand2AddrKreg(MIB, get(X86::KXORWkk), X86::K0);
6357 case X86::KSET0D:
6358 return Expand2AddrKreg(MIB, get(X86::KXORDkk), X86::K0);
6359 case X86::KSET0Q:
6360 return Expand2AddrKreg(MIB, get(X86::KXORQkk), X86::K0);
6361 case X86::KSET1W:
6362 return Expand2AddrKreg(MIB, get(X86::KXNORWkk), X86::K0);
6363 case X86::KSET1D:
6364 return Expand2AddrKreg(MIB, get(X86::KXNORDkk), X86::K0);
6365 case X86::KSET1Q:
6366 return Expand2AddrKreg(MIB, get(X86::KXNORQkk), X86::K0);
6367 case TargetOpcode::LOAD_STACK_GUARD:
6368 expandLoadStackGuard(MIB, *this);
6369 return true;
6370 case X86::XOR64_FP:
6371 case X86::XOR32_FP:
6372 return expandXorFP(MIB, *this);
6373 case X86::SHLDROT32ri:
6374 return expandSHXDROT(MIB, get(X86::SHLD32rri8));
6375 case X86::SHLDROT64ri:
6376 return expandSHXDROT(MIB, get(X86::SHLD64rri8));
6377 case X86::SHRDROT32ri:
6378 return expandSHXDROT(MIB, get(X86::SHRD32rri8));
6379 case X86::SHRDROT64ri:
6380 return expandSHXDROT(MIB, get(X86::SHRD64rri8));
6381 case X86::ADD8rr_DB:
6382 MIB->setDesc(get(X86::OR8rr));
6383 break;
6384 case X86::ADD16rr_DB:
6385 MIB->setDesc(get(X86::OR16rr));
6386 break;
6387 case X86::ADD32rr_DB:
6388 MIB->setDesc(get(X86::OR32rr));
6389 break;
6390 case X86::ADD64rr_DB:
6391 MIB->setDesc(get(X86::OR64rr));
6392 break;
6393 case X86::ADD8ri_DB:
6394 MIB->setDesc(get(X86::OR8ri));
6395 break;
6396 case X86::ADD16ri_DB:
6397 MIB->setDesc(get(X86::OR16ri));
6398 break;
6399 case X86::ADD32ri_DB:
6400 MIB->setDesc(get(X86::OR32ri));
6401 break;
6402 case X86::ADD64ri32_DB:
6403 MIB->setDesc(get(X86::OR64ri32));
6404 break;
6405 }
6406 return false;
6407}
6408
6409/// Return true for all instructions that only update
6410/// the first 32 or 64-bits of the destination register and leave the rest
6411/// unmodified. This can be used to avoid folding loads if the instructions
6412/// only update part of the destination register, and the non-updated part is
6413/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
6414/// instructions breaks the partial register dependency and it can improve
6415/// performance. e.g.:
6416///
6417/// movss (%rdi), %xmm0
6418/// cvtss2sd %xmm0, %xmm0
6419///
6420/// Instead of
6421/// cvtss2sd (%rdi), %xmm0
6422///
6423/// FIXME: This should be turned into a TSFlags.
6424///
6425static bool hasPartialRegUpdate(unsigned Opcode, const X86Subtarget &Subtarget,
6426 bool ForLoadFold = false) {
6427 switch (Opcode) {
6428 case X86::CVTSI2SSrr:
6429 case X86::CVTSI2SSrm:
6430 case X86::CVTSI642SSrr:
6431 case X86::CVTSI642SSrm:
6432 case X86::CVTSI2SDrr:
6433 case X86::CVTSI2SDrm:
6434 case X86::CVTSI642SDrr:
6435 case X86::CVTSI642SDrm:
6436 // Load folding won't effect the undef register update since the input is
6437 // a GPR.
6438 return !ForLoadFold;
6439 case X86::CVTSD2SSrr:
6440 case X86::CVTSD2SSrm:
6441 case X86::CVTSS2SDrr:
6442 case X86::CVTSS2SDrm:
6443 case X86::MOVHPDrm:
6444 case X86::MOVHPSrm:
6445 case X86::MOVLPDrm:
6446 case X86::MOVLPSrm:
6447 case X86::RCPSSr:
6448 case X86::RCPSSm:
6449 case X86::RCPSSr_Int:
6450 case X86::RCPSSm_Int:
6451 case X86::ROUNDSDri:
6452 case X86::ROUNDSDmi:
6453 case X86::ROUNDSSri:
6454 case X86::ROUNDSSmi:
6455 case X86::RSQRTSSr:
6456 case X86::RSQRTSSm:
6457 case X86::RSQRTSSr_Int:
6458 case X86::RSQRTSSm_Int:
6459 case X86::SQRTSSr:
6460 case X86::SQRTSSm:
6461 case X86::SQRTSSr_Int:
6462 case X86::SQRTSSm_Int:
6463 case X86::SQRTSDr:
6464 case X86::SQRTSDm:
6465 case X86::SQRTSDr_Int:
6466 case X86::SQRTSDm_Int:
6467 return true;
6468 case X86::VFCMULCPHZ128rm:
6469 case X86::VFCMULCPHZ128rmb:
6470 case X86::VFCMULCPHZ128rmbkz:
6471 case X86::VFCMULCPHZ128rmkz:
6472 case X86::VFCMULCPHZ128rr:
6473 case X86::VFCMULCPHZ128rrkz:
6474 case X86::VFCMULCPHZ256rm:
6475 case X86::VFCMULCPHZ256rmb:
6476 case X86::VFCMULCPHZ256rmbkz:
6477 case X86::VFCMULCPHZ256rmkz:
6478 case X86::VFCMULCPHZ256rr:
6479 case X86::VFCMULCPHZ256rrkz:
6480 case X86::VFCMULCPHZrm:
6481 case X86::VFCMULCPHZrmb:
6482 case X86::VFCMULCPHZrmbkz:
6483 case X86::VFCMULCPHZrmkz:
6484 case X86::VFCMULCPHZrr:
6485 case X86::VFCMULCPHZrrb:
6486 case X86::VFCMULCPHZrrbkz:
6487 case X86::VFCMULCPHZrrkz:
6488 case X86::VFMULCPHZ128rm:
6489 case X86::VFMULCPHZ128rmb:
6490 case X86::VFMULCPHZ128rmbkz:
6491 case X86::VFMULCPHZ128rmkz:
6492 case X86::VFMULCPHZ128rr:
6493 case X86::VFMULCPHZ128rrkz:
6494 case X86::VFMULCPHZ256rm:
6495 case X86::VFMULCPHZ256rmb:
6496 case X86::VFMULCPHZ256rmbkz:
6497 case X86::VFMULCPHZ256rmkz:
6498 case X86::VFMULCPHZ256rr:
6499 case X86::VFMULCPHZ256rrkz:
6500 case X86::VFMULCPHZrm:
6501 case X86::VFMULCPHZrmb:
6502 case X86::VFMULCPHZrmbkz:
6503 case X86::VFMULCPHZrmkz:
6504 case X86::VFMULCPHZrr:
6505 case X86::VFMULCPHZrrb:
6506 case X86::VFMULCPHZrrbkz:
6507 case X86::VFMULCPHZrrkz:
6508 case X86::VFCMULCSHZrm:
6509 case X86::VFCMULCSHZrmkz:
6510 case X86::VFCMULCSHZrr:
6511 case X86::VFCMULCSHZrrb:
6512 case X86::VFCMULCSHZrrbkz:
6513 case X86::VFCMULCSHZrrkz:
6514 case X86::VFMULCSHZrm:
6515 case X86::VFMULCSHZrmkz:
6516 case X86::VFMULCSHZrr:
6517 case X86::VFMULCSHZrrb:
6518 case X86::VFMULCSHZrrbkz:
6519 case X86::VFMULCSHZrrkz:
6520 return Subtarget.hasMULCFalseDeps();
6521 case X86::VPERMDYrm:
6522 case X86::VPERMDYrr:
6523 case X86::VPERMQYmi:
6524 case X86::VPERMQYri:
6525 case X86::VPERMPSYrm:
6526 case X86::VPERMPSYrr:
6527 case X86::VPERMPDYmi:
6528 case X86::VPERMPDYri:
6529 case X86::VPERMDZ256rm:
6530 case X86::VPERMDZ256rmb:
6531 case X86::VPERMDZ256rmbkz:
6532 case X86::VPERMDZ256rmkz:
6533 case X86::VPERMDZ256rr:
6534 case X86::VPERMDZ256rrkz:
6535 case X86::VPERMDZrm:
6536 case X86::VPERMDZrmb:
6537 case X86::VPERMDZrmbkz:
6538 case X86::VPERMDZrmkz:
6539 case X86::VPERMDZrr:
6540 case X86::VPERMDZrrkz:
6541 case X86::VPERMQZ256mbi:
6542 case X86::VPERMQZ256mbikz:
6543 case X86::VPERMQZ256mi:
6544 case X86::VPERMQZ256mikz:
6545 case X86::VPERMQZ256ri:
6546 case X86::VPERMQZ256rikz:
6547 case X86::VPERMQZ256rm:
6548 case X86::VPERMQZ256rmb:
6549 case X86::VPERMQZ256rmbkz:
6550 case X86::VPERMQZ256rmkz:
6551 case X86::VPERMQZ256rr:
6552 case X86::VPERMQZ256rrkz:
6553 case X86::VPERMQZmbi:
6554 case X86::VPERMQZmbikz:
6555 case X86::VPERMQZmi:
6556 case X86::VPERMQZmikz:
6557 case X86::VPERMQZri:
6558 case X86::VPERMQZrikz:
6559 case X86::VPERMQZrm:
6560 case X86::VPERMQZrmb:
6561 case X86::VPERMQZrmbkz:
6562 case X86::VPERMQZrmkz:
6563 case X86::VPERMQZrr:
6564 case X86::VPERMQZrrkz:
6565 case X86::VPERMPSZ256rm:
6566 case X86::VPERMPSZ256rmb:
6567 case X86::VPERMPSZ256rmbkz:
6568 case X86::VPERMPSZ256rmkz:
6569 case X86::VPERMPSZ256rr:
6570 case X86::VPERMPSZ256rrkz:
6571 case X86::VPERMPSZrm:
6572 case X86::VPERMPSZrmb:
6573 case X86::VPERMPSZrmbkz:
6574 case X86::VPERMPSZrmkz:
6575 case X86::VPERMPSZrr:
6576 case X86::VPERMPSZrrkz:
6577 case X86::VPERMPDZ256mbi:
6578 case X86::VPERMPDZ256mbikz:
6579 case X86::VPERMPDZ256mi:
6580 case X86::VPERMPDZ256mikz:
6581 case X86::VPERMPDZ256ri:
6582 case X86::VPERMPDZ256rikz:
6583 case X86::VPERMPDZ256rm:
6584 case X86::VPERMPDZ256rmb:
6585 case X86::VPERMPDZ256rmbkz:
6586 case X86::VPERMPDZ256rmkz:
6587 case X86::VPERMPDZ256rr:
6588 case X86::VPERMPDZ256rrkz:
6589 case X86::VPERMPDZmbi:
6590 case X86::VPERMPDZmbikz:
6591 case X86::VPERMPDZmi:
6592 case X86::VPERMPDZmikz:
6593 case X86::VPERMPDZri:
6594 case X86::VPERMPDZrikz:
6595 case X86::VPERMPDZrm:
6596 case X86::VPERMPDZrmb:
6597 case X86::VPERMPDZrmbkz:
6598 case X86::VPERMPDZrmkz:
6599 case X86::VPERMPDZrr:
6600 case X86::VPERMPDZrrkz:
6601 return Subtarget.hasPERMFalseDeps();
6602 case X86::VRANGEPDZ128rmbi:
6603 case X86::VRANGEPDZ128rmbikz:
6604 case X86::VRANGEPDZ128rmi:
6605 case X86::VRANGEPDZ128rmikz:
6606 case X86::VRANGEPDZ128rri:
6607 case X86::VRANGEPDZ128rrikz:
6608 case X86::VRANGEPDZ256rmbi:
6609 case X86::VRANGEPDZ256rmbikz:
6610 case X86::VRANGEPDZ256rmi:
6611 case X86::VRANGEPDZ256rmikz:
6612 case X86::VRANGEPDZ256rri:
6613 case X86::VRANGEPDZ256rrikz:
6614 case X86::VRANGEPDZrmbi:
6615 case X86::VRANGEPDZrmbikz:
6616 case X86::VRANGEPDZrmi:
6617 case X86::VRANGEPDZrmikz:
6618 case X86::VRANGEPDZrri:
6619 case X86::VRANGEPDZrrib:
6620 case X86::VRANGEPDZrribkz:
6621 case X86::VRANGEPDZrrikz:
6622 case X86::VRANGEPSZ128rmbi:
6623 case X86::VRANGEPSZ128rmbikz:
6624 case X86::VRANGEPSZ128rmi:
6625 case X86::VRANGEPSZ128rmikz:
6626 case X86::VRANGEPSZ128rri:
6627 case X86::VRANGEPSZ128rrikz:
6628 case X86::VRANGEPSZ256rmbi:
6629 case X86::VRANGEPSZ256rmbikz:
6630 case X86::VRANGEPSZ256rmi:
6631 case X86::VRANGEPSZ256rmikz:
6632 case X86::VRANGEPSZ256rri:
6633 case X86::VRANGEPSZ256rrikz:
6634 case X86::VRANGEPSZrmbi:
6635 case X86::VRANGEPSZrmbikz:
6636 case X86::VRANGEPSZrmi:
6637 case X86::VRANGEPSZrmikz:
6638 case X86::VRANGEPSZrri:
6639 case X86::VRANGEPSZrrib:
6640 case X86::VRANGEPSZrribkz:
6641 case X86::VRANGEPSZrrikz:
6642 case X86::VRANGESDZrmi:
6643 case X86::VRANGESDZrmikz:
6644 case X86::VRANGESDZrri:
6645 case X86::VRANGESDZrrib:
6646 case X86::VRANGESDZrribkz:
6647 case X86::VRANGESDZrrikz:
6648 case X86::VRANGESSZrmi:
6649 case X86::VRANGESSZrmikz:
6650 case X86::VRANGESSZrri:
6651 case X86::VRANGESSZrrib:
6652 case X86::VRANGESSZrribkz:
6653 case X86::VRANGESSZrrikz:
6654 return Subtarget.hasRANGEFalseDeps();
6655 case X86::VGETMANTSSZrmi:
6656 case X86::VGETMANTSSZrmikz:
6657 case X86::VGETMANTSSZrri:
6658 case X86::VGETMANTSSZrrib:
6659 case X86::VGETMANTSSZrribkz:
6660 case X86::VGETMANTSSZrrikz:
6661 case X86::VGETMANTSDZrmi:
6662 case X86::VGETMANTSDZrmikz:
6663 case X86::VGETMANTSDZrri:
6664 case X86::VGETMANTSDZrrib:
6665 case X86::VGETMANTSDZrribkz:
6666 case X86::VGETMANTSDZrrikz:
6667 case X86::VGETMANTSHZrmi:
6668 case X86::VGETMANTSHZrmikz:
6669 case X86::VGETMANTSHZrri:
6670 case X86::VGETMANTSHZrrib:
6671 case X86::VGETMANTSHZrribkz:
6672 case X86::VGETMANTSHZrrikz:
6673 case X86::VGETMANTPSZ128rmbi:
6674 case X86::VGETMANTPSZ128rmbikz:
6675 case X86::VGETMANTPSZ128rmi:
6676 case X86::VGETMANTPSZ128rmikz:
6677 case X86::VGETMANTPSZ256rmbi:
6678 case X86::VGETMANTPSZ256rmbikz:
6679 case X86::VGETMANTPSZ256rmi:
6680 case X86::VGETMANTPSZ256rmikz:
6681 case X86::VGETMANTPSZrmbi:
6682 case X86::VGETMANTPSZrmbikz:
6683 case X86::VGETMANTPSZrmi:
6684 case X86::VGETMANTPSZrmikz:
6685 case X86::VGETMANTPDZ128rmbi:
6686 case X86::VGETMANTPDZ128rmbikz:
6687 case X86::VGETMANTPDZ128rmi:
6688 case X86::VGETMANTPDZ128rmikz:
6689 case X86::VGETMANTPDZ256rmbi:
6690 case X86::VGETMANTPDZ256rmbikz:
6691 case X86::VGETMANTPDZ256rmi:
6692 case X86::VGETMANTPDZ256rmikz:
6693 case X86::VGETMANTPDZrmbi:
6694 case X86::VGETMANTPDZrmbikz:
6695 case X86::VGETMANTPDZrmi:
6696 case X86::VGETMANTPDZrmikz:
6697 return Subtarget.hasGETMANTFalseDeps();
6698 case X86::VPMULLQZ128rm:
6699 case X86::VPMULLQZ128rmb:
6700 case X86::VPMULLQZ128rmbkz:
6701 case X86::VPMULLQZ128rmkz:
6702 case X86::VPMULLQZ128rr:
6703 case X86::VPMULLQZ128rrkz:
6704 case X86::VPMULLQZ256rm:
6705 case X86::VPMULLQZ256rmb:
6706 case X86::VPMULLQZ256rmbkz:
6707 case X86::VPMULLQZ256rmkz:
6708 case X86::VPMULLQZ256rr:
6709 case X86::VPMULLQZ256rrkz:
6710 case X86::VPMULLQZrm:
6711 case X86::VPMULLQZrmb:
6712 case X86::VPMULLQZrmbkz:
6713 case X86::VPMULLQZrmkz:
6714 case X86::VPMULLQZrr:
6715 case X86::VPMULLQZrrkz:
6716 return Subtarget.hasMULLQFalseDeps();
6717 // GPR
6718 case X86::POPCNT32rm:
6719 case X86::POPCNT32rr:
6720 case X86::POPCNT64rm:
6721 case X86::POPCNT64rr:
6722 return Subtarget.hasPOPCNTFalseDeps();
6723 case X86::LZCNT32rm:
6724 case X86::LZCNT32rr:
6725 case X86::LZCNT64rm:
6726 case X86::LZCNT64rr:
6727 case X86::TZCNT32rm:
6728 case X86::TZCNT32rr:
6729 case X86::TZCNT64rm:
6730 case X86::TZCNT64rr:
6731 return Subtarget.hasLZCNTFalseDeps();
6732 }
6733
6734 return false;
6735}
6736
6737/// Inform the BreakFalseDeps pass how many idle
6738/// instructions we would like before a partial register update.
6740 const MachineInstr &MI, unsigned OpNum,
6741 const TargetRegisterInfo *TRI) const {
6742
6743 if (OpNum != 0)
6744 return 0;
6745
6746 // NDD ops with 8/16b results may appear to be partial register
6747 // updates after register allocation.
6748 bool HasNDDPartialWrite = false;
6749 if (X86II::hasNewDataDest(MI.getDesc().TSFlags)) {
6750 Register Reg = MI.getOperand(0).getReg();
6751 if (!Reg.isVirtual())
6752 HasNDDPartialWrite =
6753 X86::GR8RegClass.contains(Reg) || X86::GR16RegClass.contains(Reg);
6754 }
6755
6756 if (!(HasNDDPartialWrite || hasPartialRegUpdate(MI.getOpcode(), Subtarget)))
6757 return 0;
6758
6759 // Check if the result register is also used as a source.
6760 // For non-NDD ops, this means a partial update is wanted, hence we return 0.
6761 // For NDD ops, this means it is possible to compress the instruction
6762 // to a legacy form in CompressEVEX, which would create an unwanted partial
6763 // update, so we return the clearance.
6764 const MachineOperand &MO = MI.getOperand(0);
6765 Register Reg = MO.getReg();
6766 bool ReadsReg = false;
6767 if (Reg.isVirtual())
6768 ReadsReg = (MO.readsReg() || MI.readsVirtualRegister(Reg));
6769 else
6770 ReadsReg = MI.readsRegister(Reg, TRI);
6771 if (ReadsReg != HasNDDPartialWrite)
6772 return 0;
6773
6774 // If any instructions in the clearance range are reading Reg, insert a
6775 // dependency breaking instruction, which is inexpensive and is likely to
6776 // be hidden in other instruction's cycles.
6778}
6779
6780// Return true for any instruction the copies the high bits of the first source
6781// operand into the unused high bits of the destination operand.
6782// Also returns true for instructions that have two inputs where one may
6783// be undef and we want it to use the same register as the other input.
6784static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum,
6785 bool ForLoadFold = false) {
6786 // Set the OpNum parameter to the first source operand.
6787 switch (Opcode) {
6788 case X86::MMX_PUNPCKHBWrr:
6789 case X86::MMX_PUNPCKHWDrr:
6790 case X86::MMX_PUNPCKHDQrr:
6791 case X86::MMX_PUNPCKLBWrr:
6792 case X86::MMX_PUNPCKLWDrr:
6793 case X86::MMX_PUNPCKLDQrr:
6794 case X86::MOVHLPSrr:
6795 case X86::PACKSSWBrr:
6796 case X86::PACKUSWBrr:
6797 case X86::PACKSSDWrr:
6798 case X86::PACKUSDWrr:
6799 case X86::PUNPCKHBWrr:
6800 case X86::PUNPCKLBWrr:
6801 case X86::PUNPCKHWDrr:
6802 case X86::PUNPCKLWDrr:
6803 case X86::PUNPCKHDQrr:
6804 case X86::PUNPCKLDQrr:
6805 case X86::PUNPCKHQDQrr:
6806 case X86::PUNPCKLQDQrr:
6807 case X86::SHUFPDrri:
6808 case X86::SHUFPSrri:
6809 // These instructions are sometimes used with an undef first or second
6810 // source. Return true here so BreakFalseDeps will assign this source to the
6811 // same register as the first source to avoid a false dependency.
6812 // Operand 1 of these instructions is tied so they're separate from their
6813 // VEX counterparts.
6814 return OpNum == 2 && !ForLoadFold;
6815
6816 case X86::VMOVLHPSrr:
6817 case X86::VMOVLHPSZrr:
6818 case X86::VPACKSSWBrr:
6819 case X86::VPACKUSWBrr:
6820 case X86::VPACKSSDWrr:
6821 case X86::VPACKUSDWrr:
6822 case X86::VPACKSSWBZ128rr:
6823 case X86::VPACKUSWBZ128rr:
6824 case X86::VPACKSSDWZ128rr:
6825 case X86::VPACKUSDWZ128rr:
6826 case X86::VPERM2F128rri:
6827 case X86::VPERM2I128rri:
6828 case X86::VSHUFF32X4Z256rri:
6829 case X86::VSHUFF32X4Zrri:
6830 case X86::VSHUFF64X2Z256rri:
6831 case X86::VSHUFF64X2Zrri:
6832 case X86::VSHUFI32X4Z256rri:
6833 case X86::VSHUFI32X4Zrri:
6834 case X86::VSHUFI64X2Z256rri:
6835 case X86::VSHUFI64X2Zrri:
6836 case X86::VPUNPCKHBWrr:
6837 case X86::VPUNPCKLBWrr:
6838 case X86::VPUNPCKHBWYrr:
6839 case X86::VPUNPCKLBWYrr:
6840 case X86::VPUNPCKHBWZ128rr:
6841 case X86::VPUNPCKLBWZ128rr:
6842 case X86::VPUNPCKHBWZ256rr:
6843 case X86::VPUNPCKLBWZ256rr:
6844 case X86::VPUNPCKHBWZrr:
6845 case X86::VPUNPCKLBWZrr:
6846 case X86::VPUNPCKHWDrr:
6847 case X86::VPUNPCKLWDrr:
6848 case X86::VPUNPCKHWDYrr:
6849 case X86::VPUNPCKLWDYrr:
6850 case X86::VPUNPCKHWDZ128rr:
6851 case X86::VPUNPCKLWDZ128rr:
6852 case X86::VPUNPCKHWDZ256rr:
6853 case X86::VPUNPCKLWDZ256rr:
6854 case X86::VPUNPCKHWDZrr:
6855 case X86::VPUNPCKLWDZrr:
6856 case X86::VPUNPCKHDQrr:
6857 case X86::VPUNPCKLDQrr:
6858 case X86::VPUNPCKHDQYrr:
6859 case X86::VPUNPCKLDQYrr:
6860 case X86::VPUNPCKHDQZ128rr:
6861 case X86::VPUNPCKLDQZ128rr:
6862 case X86::VPUNPCKHDQZ256rr:
6863 case X86::VPUNPCKLDQZ256rr:
6864 case X86::VPUNPCKHDQZrr:
6865 case X86::VPUNPCKLDQZrr:
6866 case X86::VPUNPCKHQDQrr:
6867 case X86::VPUNPCKLQDQrr:
6868 case X86::VPUNPCKHQDQYrr:
6869 case X86::VPUNPCKLQDQYrr:
6870 case X86::VPUNPCKHQDQZ128rr:
6871 case X86::VPUNPCKLQDQZ128rr:
6872 case X86::VPUNPCKHQDQZ256rr:
6873 case X86::VPUNPCKLQDQZ256rr:
6874 case X86::VPUNPCKHQDQZrr:
6875 case X86::VPUNPCKLQDQZrr:
6876 // These instructions are sometimes used with an undef first or second
6877 // source. Return true here so BreakFalseDeps will assign this source to the
6878 // same register as the first source to avoid a false dependency.
6879 return (OpNum == 1 || OpNum == 2) && !ForLoadFold;
6880
6881 case X86::VCVTSI2SSrr:
6882 case X86::VCVTSI2SSrm:
6883 case X86::VCVTSI2SSrr_Int:
6884 case X86::VCVTSI2SSrm_Int:
6885 case X86::VCVTSI642SSrr:
6886 case X86::VCVTSI642SSrm:
6887 case X86::VCVTSI642SSrr_Int:
6888 case X86::VCVTSI642SSrm_Int:
6889 case X86::VCVTSI2SDrr:
6890 case X86::VCVTSI2SDrm:
6891 case X86::VCVTSI2SDrr_Int:
6892 case X86::VCVTSI2SDrm_Int:
6893 case X86::VCVTSI642SDrr:
6894 case X86::VCVTSI642SDrm:
6895 case X86::VCVTSI642SDrr_Int:
6896 case X86::VCVTSI642SDrm_Int:
6897 // AVX-512
6898 case X86::VCVTSI2SSZrr:
6899 case X86::VCVTSI2SSZrm:
6900 case X86::VCVTSI2SSZrr_Int:
6901 case X86::VCVTSI2SSZrrb_Int:
6902 case X86::VCVTSI2SSZrm_Int:
6903 case X86::VCVTSI642SSZrr:
6904 case X86::VCVTSI642SSZrm:
6905 case X86::VCVTSI642SSZrr_Int:
6906 case X86::VCVTSI642SSZrrb_Int:
6907 case X86::VCVTSI642SSZrm_Int:
6908 case X86::VCVTSI2SDZrr:
6909 case X86::VCVTSI2SDZrm:
6910 case X86::VCVTSI2SDZrr_Int:
6911 case X86::VCVTSI2SDZrm_Int:
6912 case X86::VCVTSI642SDZrr:
6913 case X86::VCVTSI642SDZrm:
6914 case X86::VCVTSI642SDZrr_Int:
6915 case X86::VCVTSI642SDZrrb_Int:
6916 case X86::VCVTSI642SDZrm_Int:
6917 case X86::VCVTUSI2SSZrr:
6918 case X86::VCVTUSI2SSZrm:
6919 case X86::VCVTUSI2SSZrr_Int:
6920 case X86::VCVTUSI2SSZrrb_Int:
6921 case X86::VCVTUSI2SSZrm_Int:
6922 case X86::VCVTUSI642SSZrr:
6923 case X86::VCVTUSI642SSZrm:
6924 case X86::VCVTUSI642SSZrr_Int:
6925 case X86::VCVTUSI642SSZrrb_Int:
6926 case X86::VCVTUSI642SSZrm_Int:
6927 case X86::VCVTUSI2SDZrr:
6928 case X86::VCVTUSI2SDZrm:
6929 case X86::VCVTUSI2SDZrr_Int:
6930 case X86::VCVTUSI2SDZrm_Int:
6931 case X86::VCVTUSI642SDZrr:
6932 case X86::VCVTUSI642SDZrm:
6933 case X86::VCVTUSI642SDZrr_Int:
6934 case X86::VCVTUSI642SDZrrb_Int:
6935 case X86::VCVTUSI642SDZrm_Int:
6936 case X86::VCVTSI2SHZrr:
6937 case X86::VCVTSI2SHZrm:
6938 case X86::VCVTSI2SHZrr_Int:
6939 case X86::VCVTSI2SHZrrb_Int:
6940 case X86::VCVTSI2SHZrm_Int:
6941 case X86::VCVTSI642SHZrr:
6942 case X86::VCVTSI642SHZrm:
6943 case X86::VCVTSI642SHZrr_Int:
6944 case X86::VCVTSI642SHZrrb_Int:
6945 case X86::VCVTSI642SHZrm_Int:
6946 case X86::VCVTUSI2SHZrr:
6947 case X86::VCVTUSI2SHZrm:
6948 case X86::VCVTUSI2SHZrr_Int:
6949 case X86::VCVTUSI2SHZrrb_Int:
6950 case X86::VCVTUSI2SHZrm_Int:
6951 case X86::VCVTUSI642SHZrr:
6952 case X86::VCVTUSI642SHZrm:
6953 case X86::VCVTUSI642SHZrr_Int:
6954 case X86::VCVTUSI642SHZrrb_Int:
6955 case X86::VCVTUSI642SHZrm_Int:
6956 // Load folding won't effect the undef register update since the input is
6957 // a GPR.
6958 return OpNum == 1 && !ForLoadFold;
6959 case X86::VCVTSD2SSrr:
6960 case X86::VCVTSD2SSrm:
6961 case X86::VCVTSD2SSrr_Int:
6962 case X86::VCVTSD2SSrm_Int:
6963 case X86::VCVTSS2SDrr:
6964 case X86::VCVTSS2SDrm:
6965 case X86::VCVTSS2SDrr_Int:
6966 case X86::VCVTSS2SDrm_Int:
6967 case X86::VRCPSSr:
6968 case X86::VRCPSSr_Int:
6969 case X86::VRCPSSm:
6970 case X86::VRCPSSm_Int:
6971 case X86::VROUNDSDri:
6972 case X86::VROUNDSDmi:
6973 case X86::VROUNDSDri_Int:
6974 case X86::VROUNDSDmi_Int:
6975 case X86::VROUNDSSri:
6976 case X86::VROUNDSSmi:
6977 case X86::VROUNDSSri_Int:
6978 case X86::VROUNDSSmi_Int:
6979 case X86::VRSQRTSSr:
6980 case X86::VRSQRTSSr_Int:
6981 case X86::VRSQRTSSm:
6982 case X86::VRSQRTSSm_Int:
6983 case X86::VSQRTSSr:
6984 case X86::VSQRTSSr_Int:
6985 case X86::VSQRTSSm:
6986 case X86::VSQRTSSm_Int:
6987 case X86::VSQRTSDr:
6988 case X86::VSQRTSDr_Int:
6989 case X86::VSQRTSDm:
6990 case X86::VSQRTSDm_Int:
6991 // AVX-512
6992 case X86::VCVTSD2SSZrr:
6993 case X86::VCVTSD2SSZrr_Int:
6994 case X86::VCVTSD2SSZrrb_Int:
6995 case X86::VCVTSD2SSZrm:
6996 case X86::VCVTSD2SSZrm_Int:
6997 case X86::VCVTSS2SDZrr:
6998 case X86::VCVTSS2SDZrr_Int:
6999 case X86::VCVTSS2SDZrrb_Int:
7000 case X86::VCVTSS2SDZrm:
7001 case X86::VCVTSS2SDZrm_Int:
7002 case X86::VGETEXPSDZr:
7003 case X86::VGETEXPSDZrb:
7004 case X86::VGETEXPSDZm:
7005 case X86::VGETEXPSSZr:
7006 case X86::VGETEXPSSZrb:
7007 case X86::VGETEXPSSZm:
7008 case X86::VGETMANTSDZrri:
7009 case X86::VGETMANTSDZrrib:
7010 case X86::VGETMANTSDZrmi:
7011 case X86::VGETMANTSSZrri:
7012 case X86::VGETMANTSSZrrib:
7013 case X86::VGETMANTSSZrmi:
7014 case X86::VRNDSCALESDZrri:
7015 case X86::VRNDSCALESDZrri_Int:
7016 case X86::VRNDSCALESDZrrib_Int:
7017 case X86::VRNDSCALESDZrmi:
7018 case X86::VRNDSCALESDZrmi_Int:
7019 case X86::VRNDSCALESSZrri:
7020 case X86::VRNDSCALESSZrri_Int:
7021 case X86::VRNDSCALESSZrrib_Int:
7022 case X86::VRNDSCALESSZrmi:
7023 case X86::VRNDSCALESSZrmi_Int:
7024 case X86::VRCP14SDZrr:
7025 case X86::VRCP14SDZrm:
7026 case X86::VRCP14SSZrr:
7027 case X86::VRCP14SSZrm:
7028 case X86::VRCPSHZrr:
7029 case X86::VRCPSHZrm:
7030 case X86::VRSQRTSHZrr:
7031 case X86::VRSQRTSHZrm:
7032 case X86::VREDUCESHZrmi:
7033 case X86::VREDUCESHZrri:
7034 case X86::VREDUCESHZrrib:
7035 case X86::VGETEXPSHZr:
7036 case X86::VGETEXPSHZrb:
7037 case X86::VGETEXPSHZm:
7038 case X86::VGETMANTSHZrri:
7039 case X86::VGETMANTSHZrrib:
7040 case X86::VGETMANTSHZrmi:
7041 case X86::VRNDSCALESHZrri:
7042 case X86::VRNDSCALESHZrri_Int:
7043 case X86::VRNDSCALESHZrrib_Int:
7044 case X86::VRNDSCALESHZrmi:
7045 case X86::VRNDSCALESHZrmi_Int:
7046 case X86::VSQRTSHZr:
7047 case X86::VSQRTSHZr_Int:
7048 case X86::VSQRTSHZrb_Int:
7049 case X86::VSQRTSHZm:
7050 case X86::VSQRTSHZm_Int:
7051 case X86::VRCP28SDZr:
7052 case X86::VRCP28SDZrb:
7053 case X86::VRCP28SDZm:
7054 case X86::VRCP28SSZr:
7055 case X86::VRCP28SSZrb:
7056 case X86::VRCP28SSZm:
7057 case X86::VREDUCESSZrmi:
7058 case X86::VREDUCESSZrri:
7059 case X86::VREDUCESSZrrib:
7060 case X86::VRSQRT14SDZrr:
7061 case X86::VRSQRT14SDZrm:
7062 case X86::VRSQRT14SSZrr:
7063 case X86::VRSQRT14SSZrm:
7064 case X86::VRSQRT28SDZr:
7065 case X86::VRSQRT28SDZrb:
7066 case X86::VRSQRT28SDZm:
7067 case X86::VRSQRT28SSZr:
7068 case X86::VRSQRT28SSZrb:
7069 case X86::VRSQRT28SSZm:
7070 case X86::VSQRTSSZr:
7071 case X86::VSQRTSSZr_Int:
7072 case X86::VSQRTSSZrb_Int:
7073 case X86::VSQRTSSZm:
7074 case X86::VSQRTSSZm_Int:
7075 case X86::VSQRTSDZr:
7076 case X86::VSQRTSDZr_Int:
7077 case X86::VSQRTSDZrb_Int:
7078 case X86::VSQRTSDZm:
7079 case X86::VSQRTSDZm_Int:
7080 case X86::VCVTSD2SHZrr:
7081 case X86::VCVTSD2SHZrr_Int:
7082 case X86::VCVTSD2SHZrrb_Int:
7083 case X86::VCVTSD2SHZrm:
7084 case X86::VCVTSD2SHZrm_Int:
7085 case X86::VCVTSS2SHZrr:
7086 case X86::VCVTSS2SHZrr_Int:
7087 case X86::VCVTSS2SHZrrb_Int:
7088 case X86::VCVTSS2SHZrm:
7089 case X86::VCVTSS2SHZrm_Int:
7090 case X86::VCVTSH2SDZrr:
7091 case X86::VCVTSH2SDZrr_Int:
7092 case X86::VCVTSH2SDZrrb_Int:
7093 case X86::VCVTSH2SDZrm:
7094 case X86::VCVTSH2SDZrm_Int:
7095 case X86::VCVTSH2SSZrr:
7096 case X86::VCVTSH2SSZrr_Int:
7097 case X86::VCVTSH2SSZrrb_Int:
7098 case X86::VCVTSH2SSZrm:
7099 case X86::VCVTSH2SSZrm_Int:
7100 return OpNum == 1;
7101 case X86::VMOVSSZrrk:
7102 case X86::VMOVSDZrrk:
7103 return OpNum == 3 && !ForLoadFold;
7104 case X86::VMOVSSZrrkz:
7105 case X86::VMOVSDZrrkz:
7106 return OpNum == 2 && !ForLoadFold;
7107 }
7108
7109 return false;
7110}
7111
7112/// Inform the BreakFalseDeps pass how many idle instructions we would like
7113/// before certain undef register reads.
7114///
7115/// This catches the VCVTSI2SD family of instructions:
7116///
7117/// vcvtsi2sdq %rax, undef %xmm0, %xmm14
7118///
7119/// We should to be careful *not* to catch VXOR idioms which are presumably
7120/// handled specially in the pipeline:
7121///
7122/// vxorps undef %xmm1, undef %xmm1, %xmm1
7123///
7124/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
7125/// high bits that are passed-through are not live.
7126unsigned
7128 const TargetRegisterInfo *TRI) const {
7129 const MachineOperand &MO = MI.getOperand(OpNum);
7130 if (MO.getReg().isPhysical() && hasUndefRegUpdate(MI.getOpcode(), OpNum))
7131 return UndefRegClearance;
7132
7133 return 0;
7134}
7135
7137 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
7138 Register Reg = MI.getOperand(OpNum).getReg();
7139 // If MI kills this register, the false dependence is already broken.
7140 if (MI.killsRegister(Reg, TRI))
7141 return;
7142
7143 if (X86::VR128RegClass.contains(Reg)) {
7144 // These instructions are all floating point domain, so xorps is the best
7145 // choice.
7146 unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
7147 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
7148 .addReg(Reg, RegState::Undef)
7149 .addReg(Reg, RegState::Undef);
7150 MI.addRegisterKilled(Reg, TRI, true);
7151 } else if (X86::VR256RegClass.contains(Reg)) {
7152 // Use vxorps to clear the full ymm register.
7153 // It wants to read and write the xmm sub-register.
7154 Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
7155 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
7156 .addReg(XReg, RegState::Undef)
7157 .addReg(XReg, RegState::Undef)
7159 MI.addRegisterKilled(Reg, TRI, true);
7160 } else if (X86::VR128XRegClass.contains(Reg)) {
7161 // Only handle VLX targets.
7162 if (!Subtarget.hasVLX())
7163 return;
7164 // Since vxorps requires AVX512DQ, vpxord should be the best choice.
7165 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), Reg)
7166 .addReg(Reg, RegState::Undef)
7167 .addReg(Reg, RegState::Undef);
7168 MI.addRegisterKilled(Reg, TRI, true);
7169 } else if (X86::VR256XRegClass.contains(Reg) ||
7170 X86::VR512RegClass.contains(Reg)) {
7171 // Only handle VLX targets.
7172 if (!Subtarget.hasVLX())
7173 return;
7174 // Use vpxord to clear the full ymm/zmm register.
7175 // It wants to read and write the xmm sub-register.
7176 Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
7177 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), XReg)
7178 .addReg(XReg, RegState::Undef)
7179 .addReg(XReg, RegState::Undef)
7181 MI.addRegisterKilled(Reg, TRI, true);
7182 } else if (X86::GR64RegClass.contains(Reg)) {
7183 // Using XOR32rr because it has shorter encoding and zeros up the upper bits
7184 // as well.
7185 Register XReg = TRI->getSubReg(Reg, X86::sub_32bit);
7186 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
7187 .addReg(XReg, RegState::Undef)
7188 .addReg(XReg, RegState::Undef)
7190 MI.addRegisterKilled(Reg, TRI, true);
7191 } else if (X86::GR32RegClass.contains(Reg)) {
7192 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
7193 .addReg(Reg, RegState::Undef)
7194 .addReg(Reg, RegState::Undef);
7195 MI.addRegisterKilled(Reg, TRI, true);
7196 } else if ((X86::GR16RegClass.contains(Reg) ||
7197 X86::GR8RegClass.contains(Reg)) &&
7198 X86II::hasNewDataDest(MI.getDesc().TSFlags)) {
7199 // This case is only expected for NDD ops which appear to be partial
7200 // writes, but are not due to the zeroing of the upper part. Here
7201 // we add an implicit def of the superegister, which prevents
7202 // CompressEVEX from converting this to a legacy form.
7203 Register SuperReg = getX86SubSuperRegister(Reg, 64);
7204 MachineInstrBuilder BuildMI(*MI.getParent()->getParent(), &MI);
7205 if (!MI.definesRegister(SuperReg, /*TRI=*/nullptr))
7206 BuildMI.addReg(SuperReg, RegState::ImplicitDefine);
7207 }
7208}
7209
7211 int PtrOffset = 0) {
7212 unsigned NumAddrOps = MOs.size();
7213
7214 if (NumAddrOps < 4) {
7215 // FrameIndex only - add an immediate offset (whether its zero or not).
7216 for (unsigned i = 0; i != NumAddrOps; ++i)
7217 MIB.add(MOs[i]);
7218 addOffset(MIB, PtrOffset);
7219 } else {
7220 // General Memory Addressing - we need to add any offset to an existing
7221 // offset.
7222 assert(MOs.size() == 5 && "Unexpected memory operand list length");
7223 for (unsigned i = 0; i != NumAddrOps; ++i) {
7224 const MachineOperand &MO = MOs[i];
7225 if (i == 3 && PtrOffset != 0) {
7226 MIB.addDisp(MO, PtrOffset);
7227 } else {
7228 MIB.add(MO);
7229 }
7230 }
7231 }
7232}
7233
7235 MachineInstr &NewMI,
7236 const TargetInstrInfo &TII) {
7238 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
7239
7240 for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
7241 MachineOperand &MO = NewMI.getOperand(Idx);
7242 // We only need to update constraints on virtual register operands.
7243 if (!MO.isReg())
7244 continue;
7245 Register Reg = MO.getReg();
7246 if (!Reg.isVirtual())
7247 continue;
7248
7249 auto *NewRC =
7250 MRI.constrainRegClass(Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI));
7251 if (!NewRC) {
7252 LLVM_DEBUG(
7253 dbgs() << "WARNING: Unable to update register constraint for operand "
7254 << Idx << " of instruction:\n";
7255 NewMI.dump(); dbgs() << "\n");
7256 }
7257 }
7258}
7259
7260static MachineInstr *fuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
7264 const TargetInstrInfo &TII) {
7265 // Create the base instruction with the memory operand as the first part.
7266 // Omit the implicit operands, something BuildMI can't do.
7267 MachineInstr *NewMI =
7268 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
7269 MachineInstrBuilder MIB(MF, NewMI);
7270 addOperands(MIB, MOs);
7271
7272 // Loop over the rest of the ri operands, converting them over.
7273 unsigned NumOps = MI.getDesc().getNumOperands() - 2;
7274 for (unsigned i = 0; i != NumOps; ++i) {
7275 MachineOperand &MO = MI.getOperand(i + 2);
7276 MIB.add(MO);
7277 }
7278 for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), NumOps + 2))
7279 MIB.add(MO);
7280
7281 updateOperandRegConstraints(MF, *NewMI, TII);
7282
7283 MachineBasicBlock *MBB = InsertPt->getParent();
7284 MBB->insert(InsertPt, NewMI);
7285
7286 return MIB;
7287}
7288
7289static MachineInstr *fuseInst(MachineFunction &MF, unsigned Opcode,
7290 unsigned OpNo, ArrayRef<MachineOperand> MOs,
7293 int PtrOffset = 0) {
7294 // Omit the implicit operands, something BuildMI can't do.
7295 MachineInstr *NewMI =
7296 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
7297 MachineInstrBuilder MIB(MF, NewMI);
7298
7299 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
7300 MachineOperand &MO = MI.getOperand(i);
7301 if (i == OpNo) {
7302 assert(MO.isReg() && "Expected to fold into reg operand!");
7303 addOperands(MIB, MOs, PtrOffset);
7304 } else {
7305 MIB.add(MO);
7306 }
7307 }
7308
7309 updateOperandRegConstraints(MF, *NewMI, TII);
7310
7311 // Copy the NoFPExcept flag from the instruction we're fusing.
7314
7315 MachineBasicBlock *MBB = InsertPt->getParent();
7316 MBB->insert(InsertPt, NewMI);
7317
7318 return MIB;
7319}
7320
7321static MachineInstr *makeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
7324 MachineInstr &MI) {
7325 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
7326 MI.getDebugLoc(), TII.get(Opcode));
7327 addOperands(MIB, MOs);
7328 return MIB.addImm(0);
7329}
7330
7331MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
7332 MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
7334 unsigned Size, Align Alignment) const {
7335 switch (MI.getOpcode()) {
7336 case X86::INSERTPSrri:
7337 case X86::VINSERTPSrri:
7338 case X86::VINSERTPSZrri:
7339 // Attempt to convert the load of inserted vector into a fold load
7340 // of a single float.
7341 if (OpNum == 2) {
7342 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
7343 unsigned ZMask = Imm & 15;
7344 unsigned DstIdx = (Imm >> 4) & 3;
7345 unsigned SrcIdx = (Imm >> 6) & 3;
7346
7347 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7348 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI);
7349 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
7350 if ((Size == 0 || Size >= 16) && RCSize >= 16 &&
7351 (MI.getOpcode() != X86::INSERTPSrri || Alignment >= Align(4))) {
7352 int PtrOffset = SrcIdx * 4;
7353 unsigned NewImm = (DstIdx << 4) | ZMask;
7354 unsigned NewOpCode =
7355 (MI.getOpcode() == X86::VINSERTPSZrri) ? X86::VINSERTPSZrmi
7356 : (MI.getOpcode() == X86::VINSERTPSrri) ? X86::VINSERTPSrmi
7357 : X86::INSERTPSrmi;
7358 MachineInstr *NewMI =
7359 fuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
7360 NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
7361 return NewMI;
7362 }
7363 }
7364 break;
7365 case X86::MOVHLPSrr:
7366 case X86::VMOVHLPSrr:
7367 case X86::VMOVHLPSZrr:
7368 // Move the upper 64-bits of the second operand to the lower 64-bits.
7369 // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
7370 // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
7371 if (OpNum == 2) {
7372 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7373 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI);
7374 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
7375 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) {
7376 unsigned NewOpCode =
7377 (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm
7378 : (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm
7379 : X86::MOVLPSrm;
7380 MachineInstr *NewMI =
7381 fuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
7382 return NewMI;
7383 }
7384 }
7385 break;
7386 case X86::UNPCKLPDrr:
7387 // If we won't be able to fold this to the memory form of UNPCKL, use
7388 // MOVHPD instead. Done as custom because we can't have this in the load
7389 // table twice.
7390 if (OpNum == 2) {
7391 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7392 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI);
7393 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
7394 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) {
7395 MachineInstr *NewMI =
7396 fuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this);
7397 return NewMI;
7398 }
7399 }
7400 break;
7401 case X86::MOV32r0:
7402 if (auto *NewMI =
7403 makeM0Inst(*this, (Size == 4) ? X86::MOV32mi : X86::MOV64mi32, MOs,
7404 InsertPt, MI))
7405 return NewMI;
7406 break;
7407 }
7408
7409 return nullptr;
7410}
7411
7413 MachineInstr &MI) {
7414 if (!hasUndefRegUpdate(MI.getOpcode(), 1, /*ForLoadFold*/ true) ||
7415 !MI.getOperand(1).isReg())
7416 return false;
7417
7418 // The are two cases we need to handle depending on where in the pipeline
7419 // the folding attempt is being made.
7420 // -Register has the undef flag set.
7421 // -Register is produced by the IMPLICIT_DEF instruction.
7422
7423 if (MI.getOperand(1).isUndef())
7424 return true;
7425
7427 MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
7428 return VRegDef && VRegDef->isImplicitDef();
7429}
7430
7431unsigned X86InstrInfo::commuteOperandsForFold(MachineInstr &MI,
7432 unsigned Idx1) const {
7433 unsigned Idx2 = CommuteAnyOperandIndex;
7434 if (!findCommutedOpIndices(MI, Idx1, Idx2))
7435 return Idx1;
7436
7437 bool HasDef = MI.getDesc().getNumDefs();
7438 Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
7439 Register Reg1 = MI.getOperand(Idx1).getReg();
7440 Register Reg2 = MI.getOperand(Idx2).getReg();
7441 bool Tied1 = 0 == MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO);
7442 bool Tied2 = 0 == MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO);
7443
7444 // If either of the commutable operands are tied to the destination
7445 // then we can not commute + fold.
7446 if ((HasDef && Reg0 == Reg1 && Tied1) || (HasDef && Reg0 == Reg2 && Tied2))
7447 return Idx1;
7448
7449 return commuteInstruction(MI, false, Idx1, Idx2) ? Idx2 : Idx1;
7450}
7451
7452static void printFailMsgforFold(const MachineInstr &MI, unsigned Idx) {
7453 if (PrintFailedFusing && !MI.isCopy())
7454 dbgs() << "We failed to fuse operand " << Idx << " in " << MI;
7455}
7456
7458 MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
7460 unsigned Size, Align Alignment, bool AllowCommute) const {
7461 bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
7462 unsigned Opc = MI.getOpcode();
7463
7464 // For CPUs that favor the register form of a call or push,
7465 // do not fold loads into calls or pushes, unless optimizing for size
7466 // aggressively.
7467 if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
7468 (Opc == X86::CALL32r || Opc == X86::CALL64r ||
7469 Opc == X86::CALL64r_ImpCall || Opc == X86::PUSH16r ||
7470 Opc == X86::PUSH32r || Opc == X86::PUSH64r))
7471 return nullptr;
7472
7473 // Avoid partial and undef register update stalls unless optimizing for size.
7474 if (!MF.getFunction().hasOptSize() &&
7475 (hasPartialRegUpdate(Opc, Subtarget, /*ForLoadFold*/ true) ||
7477 return nullptr;
7478
7479 unsigned NumOps = MI.getDesc().getNumOperands();
7480 bool IsTwoAddr = NumOps > 1 && OpNum < 2 && MI.getOperand(0).isReg() &&
7481 MI.getOperand(1).isReg() &&
7482 MI.getOperand(0).getReg() == MI.getOperand(1).getReg();
7483
7484 // FIXME: AsmPrinter doesn't know how to handle
7485 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
7486 if (Opc == X86::ADD32ri &&
7487 MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
7488 return nullptr;
7489
7490 // GOTTPOFF relocation loads can only be folded into add instructions.
7491 // FIXME: Need to exclude other relocations that only support specific
7492 // instructions.
7493 if (MOs.size() == X86::AddrNumOperands &&
7494 MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
7495 Opc != X86::ADD64rr)
7496 return nullptr;
7497
7498 // Don't fold loads into indirect calls that need a KCFI check as we'll
7499 // have to unfold these in X86TargetLowering::EmitKCFICheck anyway.
7500 if (MI.isCall() && MI.getCFIType())
7501 return nullptr;
7502
7503 // Attempt to fold any custom cases we have.
7504 if (auto *CustomMI = foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt,
7505 Size, Alignment))
7506 return CustomMI;
7507
7508 // Folding a memory location into the two-address part of a two-address
7509 // instruction is different than folding it other places. It requires
7510 // replacing the *two* registers with the memory location.
7511 //
7512 // Utilize the mapping NonNDD -> RMW for the NDD variant.
7513 unsigned NonNDOpc = Subtarget.hasNDD() ? X86::getNonNDVariant(Opc) : 0U;
7514 const X86FoldTableEntry *I =
7515 IsTwoAddr ? lookupTwoAddrFoldTable(NonNDOpc ? NonNDOpc : Opc)
7516 : lookupFoldTable(Opc, OpNum);
7517
7518 MachineInstr *NewMI = nullptr;
7519 if (I) {
7520 unsigned Opcode = I->DstOp;
7521 if (Alignment <
7522 Align(1ULL << ((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT)))
7523 return nullptr;
7524 bool NarrowToMOV32rm = false;
7525 if (Size) {
7527 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI);
7528 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
7529 // Check if it's safe to fold the load. If the size of the object is
7530 // narrower than the load width, then it's not.
7531 // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
7532 if ((I->Flags & TB_FOLDED_LOAD) && Size < RCSize) {
7533 // If this is a 64-bit load, but the spill slot is 32, then we can do
7534 // a 32-bit load which is implicitly zero-extended. This likely is
7535 // due to live interval analysis remat'ing a load from stack slot.
7536 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
7537 return nullptr;
7538 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
7539 return nullptr;
7540 Opcode = X86::MOV32rm;
7541 NarrowToMOV32rm = true;
7542 }
7543 // For stores, make sure the size of the object is equal to the size of
7544 // the store. If the object is larger, the extra bits would be garbage. If
7545 // the object is smaller we might overwrite another object or fault.
7546 if ((I->Flags & TB_FOLDED_STORE) && Size != RCSize)
7547 return nullptr;
7548 }
7549
7550 NewMI = IsTwoAddr ? fuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this)
7551 : fuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
7552
7553 if (NarrowToMOV32rm) {
7554 // If this is the special case where we use a MOV32rm to load a 32-bit
7555 // value and zero-extend the top bits. Change the destination register
7556 // to a 32-bit one.
7557 Register DstReg = NewMI->getOperand(0).getReg();
7558 if (DstReg.isPhysical())
7559 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
7560 else
7561 NewMI->getOperand(0).setSubReg(X86::sub_32bit);
7562 }
7563 return NewMI;
7564 }
7565
7566 if (AllowCommute) {
7567 // If the instruction and target operand are commutable, commute the
7568 // instruction and try again.
7569 unsigned CommuteOpIdx2 = commuteOperandsForFold(MI, OpNum);
7570 if (CommuteOpIdx2 == OpNum) {
7571 printFailMsgforFold(MI, OpNum);
7572 return nullptr;
7573 }
7574 // Attempt to fold with the commuted version of the instruction.
7575 NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size,
7576 Alignment, /*AllowCommute=*/false);
7577 if (NewMI)
7578 return NewMI;
7579 // Folding failed again - undo the commute before returning.
7580 commuteInstruction(MI, false, OpNum, CommuteOpIdx2);
7581 }
7582
7583 printFailMsgforFold(MI, OpNum);
7584 return nullptr;
7585}
7586
7589 MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS,
7590 VirtRegMap *VRM) const {
7591 // Check switch flag
7592 if (NoFusing)
7593 return nullptr;
7594
7595 // Avoid partial and undef register update stalls unless optimizing for size.
7596 if (!MF.getFunction().hasOptSize() &&
7597 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/ true) ||
7599 return nullptr;
7600
7601 // Don't fold subreg spills, or reloads that use a high subreg.
7602 for (auto Op : Ops) {
7603 MachineOperand &MO = MI.getOperand(Op);
7604 auto SubReg = MO.getSubReg();
7605 // MOV32r0 is special b/c it's used to clear a 64-bit register too.
7606 // (See patterns for MOV32r0 in TD files).
7607 if (MI.getOpcode() == X86::MOV32r0 && SubReg == X86::sub_32bit)
7608 continue;
7609 if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
7610 return nullptr;
7611 }
7612
7613 const MachineFrameInfo &MFI = MF.getFrameInfo();
7614 unsigned Size = MFI.getObjectSize(FrameIndex);
7615 Align Alignment = MFI.getObjectAlign(FrameIndex);
7616 // If the function stack isn't realigned we don't want to fold instructions
7617 // that need increased alignment.
7618 if (!RI.hasStackRealignment(MF))
7619 Alignment =
7620 std::min(Alignment, Subtarget.getFrameLowering()->getStackAlign());
7621
7622 auto Impl = [&]() {
7623 return foldMemoryOperandImpl(MF, MI, Ops[0],
7624 MachineOperand::CreateFI(FrameIndex), InsertPt,
7625 Size, Alignment, /*AllowCommute=*/true);
7626 };
7627 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
7628 unsigned NewOpc = 0;
7629 unsigned RCSize = 0;
7630 unsigned Opc = MI.getOpcode();
7631 switch (Opc) {
7632 default:
7633 // NDD can be folded into RMW though its Op0 and Op1 are not tied.
7634 return (Subtarget.hasNDD() ? X86::getNonNDVariant(Opc) : 0U) ? Impl()
7635 : nullptr;
7636 case X86::TEST8rr:
7637 NewOpc = X86::CMP8ri;
7638 RCSize = 1;
7639 break;
7640 case X86::TEST16rr:
7641 NewOpc = X86::CMP16ri;
7642 RCSize = 2;
7643 break;
7644 case X86::TEST32rr:
7645 NewOpc = X86::CMP32ri;
7646 RCSize = 4;
7647 break;
7648 case X86::TEST64rr:
7649 NewOpc = X86::CMP64ri32;
7650 RCSize = 8;
7651 break;
7652 }
7653 // Check if it's safe to fold the load. If the size of the object is
7654 // narrower than the load width, then it's not.
7655 if (Size < RCSize)
7656 return nullptr;
7657 // Change to CMPXXri r, 0 first.
7658 MI.setDesc(get(NewOpc));
7659 MI.getOperand(1).ChangeToImmediate(0);
7660 } else if (Ops.size() != 1)
7661 return nullptr;
7662
7663 return Impl();
7664}
7665
7666/// Check if \p LoadMI is a partial register load that we can't fold into \p MI
7667/// because the latter uses contents that wouldn't be defined in the folded
7668/// version. For instance, this transformation isn't legal:
7669/// movss (%rdi), %xmm0
7670/// addps %xmm0, %xmm0
7671/// ->
7672/// addps (%rdi), %xmm0
7673///
7674/// But this one is:
7675/// movss (%rdi), %xmm0
7676/// addss %xmm0, %xmm0
7677/// ->
7678/// addss (%rdi), %xmm0
7679///
7681 const MachineInstr &UserMI,
7682 const MachineFunction &MF) {
7683 unsigned Opc = LoadMI.getOpcode();
7684 unsigned UserOpc = UserMI.getOpcode();
7686 const TargetRegisterClass *RC =
7687 MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
7688 unsigned RegSize = TRI.getRegSizeInBits(*RC);
7689
7690 if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm ||
7691 Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt ||
7692 Opc == X86::VMOVSSZrm_alt) &&
7693 RegSize > 32) {
7694 // These instructions only load 32 bits, we can't fold them if the
7695 // destination register is wider than 32 bits (4 bytes), and its user
7696 // instruction isn't scalar (SS).
7697 switch (UserOpc) {
7698 case X86::CVTSS2SDrr_Int:
7699 case X86::VCVTSS2SDrr_Int:
7700 case X86::VCVTSS2SDZrr_Int:
7701 case X86::VCVTSS2SDZrrk_Int:
7702 case X86::VCVTSS2SDZrrkz_Int:
7703 case X86::CVTSS2SIrr_Int:
7704 case X86::CVTSS2SI64rr_Int:
7705 case X86::VCVTSS2SIrr_Int:
7706 case X86::VCVTSS2SI64rr_Int:
7707 case X86::VCVTSS2SIZrr_Int:
7708 case X86::VCVTSS2SI64Zrr_Int:
7709 case X86::CVTTSS2SIrr_Int:
7710 case X86::CVTTSS2SI64rr_Int:
7711 case X86::VCVTTSS2SIrr_Int:
7712 case X86::VCVTTSS2SI64rr_Int:
7713 case X86::VCVTTSS2SIZrr_Int:
7714 case X86::VCVTTSS2SI64Zrr_Int:
7715 case X86::VCVTSS2USIZrr_Int:
7716 case X86::VCVTSS2USI64Zrr_Int:
7717 case X86::VCVTTSS2USIZrr_Int:
7718 case X86::VCVTTSS2USI64Zrr_Int:
7719 case X86::RCPSSr_Int:
7720 case X86::VRCPSSr_Int:
7721 case X86::RSQRTSSr_Int:
7722 case X86::VRSQRTSSr_Int:
7723 case X86::ROUNDSSri_Int:
7724 case X86::VROUNDSSri_Int:
7725 case X86::COMISSrr_Int:
7726 case X86::VCOMISSrr_Int:
7727 case X86::VCOMISSZrr_Int:
7728 case X86::UCOMISSrr_Int:
7729 case X86::VUCOMISSrr_Int:
7730 case X86::VUCOMISSZrr_Int:
7731 case X86::ADDSSrr_Int:
7732 case X86::VADDSSrr_Int:
7733 case X86::VADDSSZrr_Int:
7734 case X86::CMPSSrri_Int:
7735 case X86::VCMPSSrri_Int:
7736 case X86::VCMPSSZrri_Int:
7737 case X86::DIVSSrr_Int:
7738 case X86::VDIVSSrr_Int:
7739 case X86::VDIVSSZrr_Int:
7740 case X86::MAXSSrr_Int:
7741 case X86::VMAXSSrr_Int:
7742 case X86::VMAXSSZrr_Int:
7743 case X86::MINSSrr_Int:
7744 case X86::VMINSSrr_Int:
7745 case X86::VMINSSZrr_Int:
7746 case X86::MULSSrr_Int:
7747 case X86::VMULSSrr_Int:
7748 case X86::VMULSSZrr_Int:
7749 case X86::SQRTSSr_Int:
7750 case X86::VSQRTSSr_Int:
7751 case X86::VSQRTSSZr_Int:
7752 case X86::SUBSSrr_Int:
7753 case X86::VSUBSSrr_Int:
7754 case X86::VSUBSSZrr_Int:
7755 case X86::VADDSSZrrk_Int:
7756 case X86::VADDSSZrrkz_Int:
7757 case X86::VCMPSSZrrik_Int:
7758 case X86::VDIVSSZrrk_Int:
7759 case X86::VDIVSSZrrkz_Int:
7760 case X86::VMAXSSZrrk_Int:
7761 case X86::VMAXSSZrrkz_Int:
7762 case X86::VMINSSZrrk_Int:
7763 case X86::VMINSSZrrkz_Int:
7764 case X86::VMULSSZrrk_Int:
7765 case X86::VMULSSZrrkz_Int:
7766 case X86::VSQRTSSZrk_Int:
7767 case X86::VSQRTSSZrkz_Int:
7768 case X86::VSUBSSZrrk_Int:
7769 case X86::VSUBSSZrrkz_Int:
7770 case X86::VFMADDSS4rr_Int:
7771 case X86::VFNMADDSS4rr_Int:
7772 case X86::VFMSUBSS4rr_Int:
7773 case X86::VFNMSUBSS4rr_Int:
7774 case X86::VFMADD132SSr_Int:
7775 case X86::VFNMADD132SSr_Int:
7776 case X86::VFMADD213SSr_Int:
7777 case X86::VFNMADD213SSr_Int:
7778 case X86::VFMADD231SSr_Int:
7779 case X86::VFNMADD231SSr_Int:
7780 case X86::VFMSUB132SSr_Int:
7781 case X86::VFNMSUB132SSr_Int:
7782 case X86::VFMSUB213SSr_Int:
7783 case X86::VFNMSUB213SSr_Int:
7784 case X86::VFMSUB231SSr_Int:
7785 case X86::VFNMSUB231SSr_Int:
7786 case X86::VFMADD132SSZr_Int:
7787 case X86::VFNMADD132SSZr_Int:
7788 case X86::VFMADD213SSZr_Int:
7789 case X86::VFNMADD213SSZr_Int:
7790 case X86::VFMADD231SSZr_Int:
7791 case X86::VFNMADD231SSZr_Int:
7792 case X86::VFMSUB132SSZr_Int:
7793 case X86::VFNMSUB132SSZr_Int:
7794 case X86::VFMSUB213SSZr_Int:
7795 case X86::VFNMSUB213SSZr_Int:
7796 case X86::VFMSUB231SSZr_Int:
7797 case X86::VFNMSUB231SSZr_Int:
7798 case X86::VFMADD132SSZrk_Int:
7799 case X86::VFNMADD132SSZrk_Int:
7800 case X86::VFMADD213SSZrk_Int:
7801 case X86::VFNMADD213SSZrk_Int:
7802 case X86::VFMADD231SSZrk_Int:
7803 case X86::VFNMADD231SSZrk_Int:
7804 case X86::VFMSUB132SSZrk_Int:
7805 case X86::VFNMSUB132SSZrk_Int:
7806 case X86::VFMSUB213SSZrk_Int:
7807 case X86::VFNMSUB213SSZrk_Int:
7808 case X86::VFMSUB231SSZrk_Int:
7809 case X86::VFNMSUB231SSZrk_Int:
7810 case X86::VFMADD132SSZrkz_Int:
7811 case X86::VFNMADD132SSZrkz_Int:
7812 case X86::VFMADD213SSZrkz_Int:
7813 case X86::VFNMADD213SSZrkz_Int:
7814 case X86::VFMADD231SSZrkz_Int:
7815 case X86::VFNMADD231SSZrkz_Int:
7816 case X86::VFMSUB132SSZrkz_Int:
7817 case X86::VFNMSUB132SSZrkz_Int:
7818 case X86::VFMSUB213SSZrkz_Int:
7819 case X86::VFNMSUB213SSZrkz_Int:
7820 case X86::VFMSUB231SSZrkz_Int:
7821 case X86::VFNMSUB231SSZrkz_Int:
7822 case X86::VFIXUPIMMSSZrri:
7823 case X86::VFIXUPIMMSSZrrik:
7824 case X86::VFIXUPIMMSSZrrikz:
7825 case X86::VFPCLASSSSZri:
7826 case X86::VFPCLASSSSZrik:
7827 case X86::VGETEXPSSZr:
7828 case X86::VGETEXPSSZrk:
7829 case X86::VGETEXPSSZrkz:
7830 case X86::VGETMANTSSZrri:
7831 case X86::VGETMANTSSZrrik:
7832 case X86::VGETMANTSSZrrikz:
7833 case X86::VRANGESSZrri:
7834 case X86::VRANGESSZrrik:
7835 case X86::VRANGESSZrrikz:
7836 case X86::VRCP14SSZrr:
7837 case X86::VRCP14SSZrrk:
7838 case X86::VRCP14SSZrrkz:
7839 case X86::VRCP28SSZr:
7840 case X86::VRCP28SSZrk:
7841 case X86::VRCP28SSZrkz:
7842 case X86::VREDUCESSZrri:
7843 case X86::VREDUCESSZrrik:
7844 case X86::VREDUCESSZrrikz:
7845 case X86::VRNDSCALESSZrri_Int:
7846 case X86::VRNDSCALESSZrrik_Int:
7847 case X86::VRNDSCALESSZrrikz_Int:
7848 case X86::VRSQRT14SSZrr:
7849 case X86::VRSQRT14SSZrrk:
7850 case X86::VRSQRT14SSZrrkz:
7851 case X86::VRSQRT28SSZr:
7852 case X86::VRSQRT28SSZrk:
7853 case X86::VRSQRT28SSZrkz:
7854 case X86::VSCALEFSSZrr:
7855 case X86::VSCALEFSSZrrk:
7856 case X86::VSCALEFSSZrrkz:
7857 return false;
7858 default:
7859 return true;
7860 }
7861 }
7862
7863 if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm ||
7864 Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt ||
7865 Opc == X86::VMOVSDZrm_alt) &&
7866 RegSize > 64) {
7867 // These instructions only load 64 bits, we can't fold them if the
7868 // destination register is wider than 64 bits (8 bytes), and its user
7869 // instruction isn't scalar (SD).
7870 switch (UserOpc) {
7871 case X86::CVTSD2SSrr_Int:
7872 case X86::VCVTSD2SSrr_Int:
7873 case X86::VCVTSD2SSZrr_Int:
7874 case X86::VCVTSD2SSZrrk_Int:
7875 case X86::VCVTSD2SSZrrkz_Int:
7876 case X86::CVTSD2SIrr_Int:
7877 case X86::CVTSD2SI64rr_Int:
7878 case X86::VCVTSD2SIrr_Int:
7879 case X86::VCVTSD2SI64rr_Int:
7880 case X86::VCVTSD2SIZrr_Int:
7881 case X86::VCVTSD2SI64Zrr_Int:
7882 case X86::CVTTSD2SIrr_Int:
7883 case X86::CVTTSD2SI64rr_Int:
7884 case X86::VCVTTSD2SIrr_Int:
7885 case X86::VCVTTSD2SI64rr_Int:
7886 case X86::VCVTTSD2SIZrr_Int:
7887 case X86::VCVTTSD2SI64Zrr_Int:
7888 case X86::VCVTSD2USIZrr_Int:
7889 case X86::VCVTSD2USI64Zrr_Int:
7890 case X86::VCVTTSD2USIZrr_Int:
7891 case X86::VCVTTSD2USI64Zrr_Int:
7892 case X86::ROUNDSDri_Int:
7893 case X86::VROUNDSDri_Int:
7894 case X86::COMISDrr_Int:
7895 case X86::VCOMISDrr_Int:
7896 case X86::VCOMISDZrr_Int:
7897 case X86::UCOMISDrr_Int:
7898 case X86::VUCOMISDrr_Int:
7899 case X86::VUCOMISDZrr_Int:
7900 case X86::ADDSDrr_Int:
7901 case X86::VADDSDrr_Int:
7902 case X86::VADDSDZrr_Int:
7903 case X86::CMPSDrri_Int:
7904 case X86::VCMPSDrri_Int:
7905 case X86::VCMPSDZrri_Int:
7906 case X86::DIVSDrr_Int:
7907 case X86::VDIVSDrr_Int:
7908 case X86::VDIVSDZrr_Int:
7909 case X86::MAXSDrr_Int:
7910 case X86::VMAXSDrr_Int:
7911 case X86::VMAXSDZrr_Int:
7912 case X86::MINSDrr_Int:
7913 case X86::VMINSDrr_Int:
7914 case X86::VMINSDZrr_Int:
7915 case X86::MULSDrr_Int:
7916 case X86::VMULSDrr_Int:
7917 case X86::VMULSDZrr_Int:
7918 case X86::SQRTSDr_Int:
7919 case X86::VSQRTSDr_Int:
7920 case X86::VSQRTSDZr_Int:
7921 case X86::SUBSDrr_Int:
7922 case X86::VSUBSDrr_Int:
7923 case X86::VSUBSDZrr_Int:
7924 case X86::VADDSDZrrk_Int:
7925 case X86::VADDSDZrrkz_Int:
7926 case X86::VCMPSDZrrik_Int:
7927 case X86::VDIVSDZrrk_Int:
7928 case X86::VDIVSDZrrkz_Int:
7929 case X86::VMAXSDZrrk_Int:
7930 case X86::VMAXSDZrrkz_Int:
7931 case X86::VMINSDZrrk_Int:
7932 case X86::VMINSDZrrkz_Int:
7933 case X86::VMULSDZrrk_Int:
7934 case X86::VMULSDZrrkz_Int:
7935 case X86::VSQRTSDZrk_Int:
7936 case X86::VSQRTSDZrkz_Int:
7937 case X86::VSUBSDZrrk_Int:
7938 case X86::VSUBSDZrrkz_Int:
7939 case X86::VFMADDSD4rr_Int:
7940 case X86::VFNMADDSD4rr_Int:
7941 case X86::VFMSUBSD4rr_Int:
7942 case X86::VFNMSUBSD4rr_Int:
7943 case X86::VFMADD132SDr_Int:
7944 case X86::VFNMADD132SDr_Int:
7945 case X86::VFMADD213SDr_Int:
7946 case X86::VFNMADD213SDr_Int:
7947 case X86::VFMADD231SDr_Int:
7948 case X86::VFNMADD231SDr_Int:
7949 case X86::VFMSUB132SDr_Int:
7950 case X86::VFNMSUB132SDr_Int:
7951 case X86::VFMSUB213SDr_Int:
7952 case X86::VFNMSUB213SDr_Int:
7953 case X86::VFMSUB231SDr_Int:
7954 case X86::VFNMSUB231SDr_Int:
7955 case X86::VFMADD132SDZr_Int:
7956 case X86::VFNMADD132SDZr_Int:
7957 case X86::VFMADD213SDZr_Int:
7958 case X86::VFNMADD213SDZr_Int:
7959 case X86::VFMADD231SDZr_Int:
7960 case X86::VFNMADD231SDZr_Int:
7961 case X86::VFMSUB132SDZr_Int:
7962 case X86::VFNMSUB132SDZr_Int:
7963 case X86::VFMSUB213SDZr_Int:
7964 case X86::VFNMSUB213SDZr_Int:
7965 case X86::VFMSUB231SDZr_Int:
7966 case X86::VFNMSUB231SDZr_Int:
7967 case X86::VFMADD132SDZrk_Int:
7968 case X86::VFNMADD132SDZrk_Int:
7969 case X86::VFMADD213SDZrk_Int:
7970 case X86::VFNMADD213SDZrk_Int:
7971 case X86::VFMADD231SDZrk_Int:
7972 case X86::VFNMADD231SDZrk_Int:
7973 case X86::VFMSUB132SDZrk_Int:
7974 case X86::VFNMSUB132SDZrk_Int:
7975 case X86::VFMSUB213SDZrk_Int:
7976 case X86::VFNMSUB213SDZrk_Int:
7977 case X86::VFMSUB231SDZrk_Int:
7978 case X86::VFNMSUB231SDZrk_Int:
7979 case X86::VFMADD132SDZrkz_Int:
7980 case X86::VFNMADD132SDZrkz_Int:
7981 case X86::VFMADD213SDZrkz_Int:
7982 case X86::VFNMADD213SDZrkz_Int:
7983 case X86::VFMADD231SDZrkz_Int:
7984 case X86::VFNMADD231SDZrkz_Int:
7985 case X86::VFMSUB132SDZrkz_Int:
7986 case X86::VFNMSUB132SDZrkz_Int:
7987 case X86::VFMSUB213SDZrkz_Int:
7988 case X86::VFNMSUB213SDZrkz_Int:
7989 case X86::VFMSUB231SDZrkz_Int:
7990 case X86::VFNMSUB231SDZrkz_Int:
7991 case X86::VFIXUPIMMSDZrri:
7992 case X86::VFIXUPIMMSDZrrik:
7993 case X86::VFIXUPIMMSDZrrikz:
7994 case X86::VFPCLASSSDZri:
7995 case X86::VFPCLASSSDZrik:
7996 case X86::VGETEXPSDZr:
7997 case X86::VGETEXPSDZrk:
7998 case X86::VGETEXPSDZrkz:
7999 case X86::VGETMANTSDZrri:
8000 case X86::VGETMANTSDZrrik:
8001 case X86::VGETMANTSDZrrikz:
8002 case X86::VRANGESDZrri:
8003 case X86::VRANGESDZrrik:
8004 case X86::VRANGESDZrrikz:
8005 case X86::VRCP14SDZrr:
8006 case X86::VRCP14SDZrrk:
8007 case X86::VRCP14SDZrrkz:
8008 case X86::VRCP28SDZr:
8009 case X86::VRCP28SDZrk:
8010 case X86::VRCP28SDZrkz:
8011 case X86::VREDUCESDZrri:
8012 case X86::VREDUCESDZrrik:
8013 case X86::VREDUCESDZrrikz:
8014 case X86::VRNDSCALESDZrri_Int:
8015 case X86::VRNDSCALESDZrrik_Int:
8016 case X86::VRNDSCALESDZrrikz_Int:
8017 case X86::VRSQRT14SDZrr:
8018 case X86::VRSQRT14SDZrrk:
8019 case X86::VRSQRT14SDZrrkz:
8020 case X86::VRSQRT28SDZr:
8021 case X86::VRSQRT28SDZrk:
8022 case X86::VRSQRT28SDZrkz:
8023 case X86::VSCALEFSDZrr:
8024 case X86::VSCALEFSDZrrk:
8025 case X86::VSCALEFSDZrrkz:
8026 return false;
8027 default:
8028 return true;
8029 }
8030 }
8031
8032 if ((Opc == X86::VMOVSHZrm || Opc == X86::VMOVSHZrm_alt) && RegSize > 16) {
8033 // These instructions only load 16 bits, we can't fold them if the
8034 // destination register is wider than 16 bits (2 bytes), and its user
8035 // instruction isn't scalar (SH).
8036 switch (UserOpc) {
8037 case X86::VADDSHZrr_Int:
8038 case X86::VCMPSHZrri_Int:
8039 case X86::VDIVSHZrr_Int:
8040 case X86::VMAXSHZrr_Int:
8041 case X86::VMINSHZrr_Int:
8042 case X86::VMULSHZrr_Int:
8043 case X86::VSUBSHZrr_Int:
8044 case X86::VADDSHZrrk_Int:
8045 case X86::VADDSHZrrkz_Int:
8046 case X86::VCMPSHZrrik_Int:
8047 case X86::VDIVSHZrrk_Int:
8048 case X86::VDIVSHZrrkz_Int:
8049 case X86::VMAXSHZrrk_Int:
8050 case X86::VMAXSHZrrkz_Int:
8051 case X86::VMINSHZrrk_Int:
8052 case X86::VMINSHZrrkz_Int:
8053 case X86::VMULSHZrrk_Int:
8054 case X86::VMULSHZrrkz_Int:
8055 case X86::VSUBSHZrrk_Int:
8056 case X86::VSUBSHZrrkz_Int:
8057 case X86::VFMADD132SHZr_Int:
8058 case X86::VFNMADD132SHZr_Int:
8059 case X86::VFMADD213SHZr_Int:
8060 case X86::VFNMADD213SHZr_Int:
8061 case X86::VFMADD231SHZr_Int:
8062 case X86::VFNMADD231SHZr_Int:
8063 case X86::VFMSUB132SHZr_Int:
8064 case X86::VFNMSUB132SHZr_Int:
8065 case X86::VFMSUB213SHZr_Int:
8066 case X86::VFNMSUB213SHZr_Int:
8067 case X86::VFMSUB231SHZr_Int:
8068 case X86::VFNMSUB231SHZr_Int:
8069 case X86::VFMADD132SHZrk_Int:
8070 case X86::VFNMADD132SHZrk_Int:
8071 case X86::VFMADD213SHZrk_Int:
8072 case X86::VFNMADD213SHZrk_Int:
8073 case X86::VFMADD231SHZrk_Int:
8074 case X86::VFNMADD231SHZrk_Int:
8075 case X86::VFMSUB132SHZrk_Int:
8076 case X86::VFNMSUB132SHZrk_Int:
8077 case X86::VFMSUB213SHZrk_Int:
8078 case X86::VFNMSUB213SHZrk_Int:
8079 case X86::VFMSUB231SHZrk_Int:
8080 case X86::VFNMSUB231SHZrk_Int:
8081 case X86::VFMADD132SHZrkz_Int:
8082 case X86::VFNMADD132SHZrkz_Int:
8083 case X86::VFMADD213SHZrkz_Int:
8084 case X86::VFNMADD213SHZrkz_Int:
8085 case X86::VFMADD231SHZrkz_Int:
8086 case X86::VFNMADD231SHZrkz_Int:
8087 case X86::VFMSUB132SHZrkz_Int:
8088 case X86::VFNMSUB132SHZrkz_Int:
8089 case X86::VFMSUB213SHZrkz_Int:
8090 case X86::VFNMSUB213SHZrkz_Int:
8091 case X86::VFMSUB231SHZrkz_Int:
8092 case X86::VFNMSUB231SHZrkz_Int:
8093 return false;
8094 default:
8095 return true;
8096 }
8097 }
8098
8099 return false;
8100}
8101
8104 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
8105 LiveIntervals *LIS) const {
8106
8107 // If LoadMI is a masked load, check MI having the same mask.
8108 const MCInstrDesc &MCID = get(LoadMI.getOpcode());
8109 unsigned NumOps = MCID.getNumOperands();
8110 if (NumOps >= 3) {
8111 Register MaskReg;
8112 const MachineOperand &Op1 = LoadMI.getOperand(1);
8113 const MachineOperand &Op2 = LoadMI.getOperand(2);
8114
8115 auto IsVKWMClass = [](const TargetRegisterClass *RC) {
8116 return RC == &X86::VK2WMRegClass || RC == &X86::VK4WMRegClass ||
8117 RC == &X86::VK8WMRegClass || RC == &X86::VK16WMRegClass ||
8118 RC == &X86::VK32WMRegClass || RC == &X86::VK64WMRegClass;
8119 };
8120
8121 if (Op1.isReg() && IsVKWMClass(getRegClass(MCID, 1, &RI)))
8122 MaskReg = Op1.getReg();
8123 else if (Op2.isReg() && IsVKWMClass(getRegClass(MCID, 2, &RI)))
8124 MaskReg = Op2.getReg();
8125
8126 if (MaskReg) {
8127 bool HasSameMask = false;
8128 for (unsigned I = 1, E = MI.getDesc().getNumOperands(); I < E; ++I) {
8129 const MachineOperand &Op = MI.getOperand(I);
8130 if (Op.isReg() && Op.getReg() == MaskReg) {
8131 HasSameMask = true;
8132 break;
8133 }
8134 }
8135 if (!HasSameMask)
8136 return nullptr;
8137 }
8138 }
8139
8140 // TODO: Support the case where LoadMI loads a wide register, but MI
8141 // only uses a subreg.
8142 for (auto Op : Ops) {
8143 if (MI.getOperand(Op).getSubReg())
8144 return nullptr;
8145 }
8146
8147 // If loading from a FrameIndex, fold directly from the FrameIndex.
8148 int FrameIndex;
8149 if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
8150 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
8151 return nullptr;
8152 return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
8153 }
8154
8155 // Check switch flag
8156 if (NoFusing)
8157 return nullptr;
8158
8159 // Avoid partial and undef register update stalls unless optimizing for size.
8160 if (!MF.getFunction().hasOptSize() &&
8161 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/ true) ||
8163 return nullptr;
8164
8165 // Do not fold a NDD instruction and a memory instruction with relocation to
8166 // avoid emit APX relocation when the flag is disabled for backward
8167 // compatibility.
8168 uint64_t TSFlags = MI.getDesc().TSFlags;
8170 X86II::hasNewDataDest(TSFlags))
8171 return nullptr;
8172
8173 // Determine the alignment of the load.
8174 Align Alignment;
8175 unsigned LoadOpc = LoadMI.getOpcode();
8176 if (LoadMI.hasOneMemOperand())
8177 Alignment = (*LoadMI.memoperands_begin())->getAlign();
8178 else
8179 switch (LoadOpc) {
8180 case X86::AVX512_512_SET0:
8181 case X86::AVX512_512_SETALLONES:
8182 Alignment = Align(64);
8183 break;
8184 case X86::AVX2_SETALLONES:
8185 case X86::AVX1_SETALLONES:
8186 case X86::AVX_SET0:
8187 case X86::AVX512_256_SET0:
8188 Alignment = Align(32);
8189 break;
8190 case X86::V_SET0:
8191 case X86::V_SETALLONES:
8192 case X86::AVX512_128_SET0:
8193 case X86::FsFLD0F128:
8194 case X86::AVX512_FsFLD0F128:
8195 Alignment = Align(16);
8196 break;
8197 case X86::MMX_SET0:
8198 case X86::FsFLD0SD:
8199 case X86::AVX512_FsFLD0SD:
8200 Alignment = Align(8);
8201 break;
8202 case X86::FsFLD0SS:
8203 case X86::AVX512_FsFLD0SS:
8204 Alignment = Align(4);
8205 break;
8206 case X86::FsFLD0SH:
8207 case X86::AVX512_FsFLD0SH:
8208 Alignment = Align(2);
8209 break;
8210 default:
8211 return nullptr;
8212 }
8213 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
8214 unsigned NewOpc = 0;
8215 switch (MI.getOpcode()) {
8216 default:
8217 return nullptr;
8218 case X86::TEST8rr:
8219 NewOpc = X86::CMP8ri;
8220 break;
8221 case X86::TEST16rr:
8222 NewOpc = X86::CMP16ri;
8223 break;
8224 case X86::TEST32rr:
8225 NewOpc = X86::CMP32ri;
8226 break;
8227 case X86::TEST64rr:
8228 NewOpc = X86::CMP64ri32;
8229 break;
8230 }
8231 // Change to CMPXXri r, 0 first.
8232 MI.setDesc(get(NewOpc));
8233 MI.getOperand(1).ChangeToImmediate(0);
8234 } else if (Ops.size() != 1)
8235 return nullptr;
8236
8237 // Make sure the subregisters match.
8238 // Otherwise we risk changing the size of the load.
8239 if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
8240 return nullptr;
8241
8243 switch (LoadOpc) {
8244 case X86::MMX_SET0:
8245 case X86::V_SET0:
8246 case X86::V_SETALLONES:
8247 case X86::AVX2_SETALLONES:
8248 case X86::AVX1_SETALLONES:
8249 case X86::AVX_SET0:
8250 case X86::AVX512_128_SET0:
8251 case X86::AVX512_256_SET0:
8252 case X86::AVX512_512_SET0:
8253 case X86::AVX512_512_SETALLONES:
8254 case X86::FsFLD0SH:
8255 case X86::AVX512_FsFLD0SH:
8256 case X86::FsFLD0SD:
8257 case X86::AVX512_FsFLD0SD:
8258 case X86::FsFLD0SS:
8259 case X86::AVX512_FsFLD0SS:
8260 case X86::FsFLD0F128:
8261 case X86::AVX512_FsFLD0F128: {
8262 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
8263 // Create a constant-pool entry and operands to load from it.
8264
8265 // Large code model can't fold loads this way.
8267 return nullptr;
8268
8269 // x86-32 PIC requires a PIC base register for constant pools.
8270 unsigned PICBase = 0;
8271 // Since we're using Small or Kernel code model, we can always use
8272 // RIP-relative addressing for a smaller encoding.
8273 if (Subtarget.is64Bit()) {
8274 PICBase = X86::RIP;
8275 } else if (MF.getTarget().isPositionIndependent()) {
8276 // FIXME: PICBase = getGlobalBaseReg(&MF);
8277 // This doesn't work for several reasons.
8278 // 1. GlobalBaseReg may have been spilled.
8279 // 2. It may not be live at MI.
8280 return nullptr;
8281 }
8282
8283 // Create a constant-pool entry.
8285 Type *Ty;
8286 bool IsAllOnes = false;
8287 switch (LoadOpc) {
8288 case X86::FsFLD0SS:
8289 case X86::AVX512_FsFLD0SS:
8291 break;
8292 case X86::FsFLD0SD:
8293 case X86::AVX512_FsFLD0SD:
8295 break;
8296 case X86::FsFLD0F128:
8297 case X86::AVX512_FsFLD0F128:
8299 break;
8300 case X86::FsFLD0SH:
8301 case X86::AVX512_FsFLD0SH:
8303 break;
8304 case X86::AVX512_512_SETALLONES:
8305 IsAllOnes = true;
8306 [[fallthrough]];
8307 case X86::AVX512_512_SET0:
8309 16);
8310 break;
8311 case X86::AVX1_SETALLONES:
8312 case X86::AVX2_SETALLONES:
8313 IsAllOnes = true;
8314 [[fallthrough]];
8315 case X86::AVX512_256_SET0:
8316 case X86::AVX_SET0:
8318 8);
8319
8320 break;
8321 case X86::MMX_SET0:
8323 2);
8324 break;
8325 case X86::V_SETALLONES:
8326 IsAllOnes = true;
8327 [[fallthrough]];
8328 case X86::V_SET0:
8329 case X86::AVX512_128_SET0:
8331 4);
8332 break;
8333 }
8334
8335 const Constant *C =
8337 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
8338
8339 // Create operands to load from the constant pool entry.
8340 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
8342 MOs.push_back(MachineOperand::CreateReg(0, false));
8344 MOs.push_back(MachineOperand::CreateReg(0, false));
8345 break;
8346 }
8347 case X86::VPBROADCASTBZ128rm:
8348 case X86::VPBROADCASTBZ256rm:
8349 case X86::VPBROADCASTBZrm:
8350 case X86::VBROADCASTF32X2Z256rm:
8351 case X86::VBROADCASTF32X2Zrm:
8352 case X86::VBROADCASTI32X2Z128rm:
8353 case X86::VBROADCASTI32X2Z256rm:
8354 case X86::VBROADCASTI32X2Zrm:
8355 // No instructions currently fuse with 8bits or 32bits x 2.
8356 return nullptr;
8357
8358#define FOLD_BROADCAST(SIZE) \
8359 MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands, \
8360 LoadMI.operands_begin() + NumOps); \
8361 return foldMemoryBroadcast(MF, MI, Ops[0], MOs, InsertPt, /*Size=*/SIZE, \
8362 /*AllowCommute=*/true);
8363 case X86::VPBROADCASTWZ128rm:
8364 case X86::VPBROADCASTWZ256rm:
8365 case X86::VPBROADCASTWZrm:
8366 FOLD_BROADCAST(16);
8367 case X86::VPBROADCASTDZ128rm:
8368 case X86::VPBROADCASTDZ256rm:
8369 case X86::VPBROADCASTDZrm:
8370 case X86::VBROADCASTSSZ128rm:
8371 case X86::VBROADCASTSSZ256rm:
8372 case X86::VBROADCASTSSZrm:
8373 FOLD_BROADCAST(32);
8374 case X86::VPBROADCASTQZ128rm:
8375 case X86::VPBROADCASTQZ256rm:
8376 case X86::VPBROADCASTQZrm:
8377 case X86::VBROADCASTSDZ256rm:
8378 case X86::VBROADCASTSDZrm:
8379 FOLD_BROADCAST(64);
8380 default: {
8381 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
8382 return nullptr;
8383
8384 // Folding a normal load. Just copy the load's address operands.
8386 LoadMI.operands_begin() + NumOps);
8387 break;
8388 }
8389 }
8390 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
8391 /*Size=*/0, Alignment, /*AllowCommute=*/true);
8392}
8393
8395X86InstrInfo::foldMemoryBroadcast(MachineFunction &MF, MachineInstr &MI,
8396 unsigned OpNum, ArrayRef<MachineOperand> MOs,
8398 unsigned BitsSize, bool AllowCommute) const {
8399
8400 if (auto *I = lookupBroadcastFoldTable(MI.getOpcode(), OpNum))
8401 return matchBroadcastSize(*I, BitsSize)
8402 ? fuseInst(MF, I->DstOp, OpNum, MOs, InsertPt, MI, *this)
8403 : nullptr;
8404
8405 if (AllowCommute) {
8406 // If the instruction and target operand are commutable, commute the
8407 // instruction and try again.
8408 unsigned CommuteOpIdx2 = commuteOperandsForFold(MI, OpNum);
8409 if (CommuteOpIdx2 == OpNum) {
8410 printFailMsgforFold(MI, OpNum);
8411 return nullptr;
8412 }
8413 MachineInstr *NewMI =
8414 foldMemoryBroadcast(MF, MI, CommuteOpIdx2, MOs, InsertPt, BitsSize,
8415 /*AllowCommute=*/false);
8416 if (NewMI)
8417 return NewMI;
8418 // Folding failed again - undo the commute before returning.
8419 commuteInstruction(MI, false, OpNum, CommuteOpIdx2);
8420 }
8421
8422 printFailMsgforFold(MI, OpNum);
8423 return nullptr;
8424}
8425
8429
8430 for (MachineMemOperand *MMO : MMOs) {
8431 if (!MMO->isLoad())
8432 continue;
8433
8434 if (!MMO->isStore()) {
8435 // Reuse the MMO.
8436 LoadMMOs.push_back(MMO);
8437 } else {
8438 // Clone the MMO and unset the store flag.
8439 LoadMMOs.push_back(MF.getMachineMemOperand(
8440 MMO, MMO->getFlags() & ~MachineMemOperand::MOStore));
8441 }
8442 }
8443
8444 return LoadMMOs;
8445}
8446
8450
8451 for (MachineMemOperand *MMO : MMOs) {
8452 if (!MMO->isStore())
8453 continue;
8454
8455 if (!MMO->isLoad()) {
8456 // Reuse the MMO.
8457 StoreMMOs.push_back(MMO);
8458 } else {
8459 // Clone the MMO and unset the load flag.
8460 StoreMMOs.push_back(MF.getMachineMemOperand(
8461 MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad));
8462 }
8463 }
8464
8465 return StoreMMOs;
8466}
8467
8469 const TargetRegisterClass *RC,
8470 const X86Subtarget &STI) {
8471 assert(STI.hasAVX512() && "Expected at least AVX512!");
8472 unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC);
8473 assert((SpillSize == 64 || STI.hasVLX()) &&
8474 "Can't broadcast less than 64 bytes without AVX512VL!");
8475
8476#define CASE_BCAST_TYPE_OPC(TYPE, OP16, OP32, OP64) \
8477 case TYPE: \
8478 switch (SpillSize) { \
8479 default: \
8480 llvm_unreachable("Unknown spill size"); \
8481 case 16: \
8482 return X86::OP16; \
8483 case 32: \
8484 return X86::OP32; \
8485 case 64: \
8486 return X86::OP64; \
8487 } \
8488 break;
8489
8490 switch (I->Flags & TB_BCAST_MASK) {
8491 default:
8492 llvm_unreachable("Unexpected broadcast type!");
8493 CASE_BCAST_TYPE_OPC(TB_BCAST_W, VPBROADCASTWZ128rm, VPBROADCASTWZ256rm,
8494 VPBROADCASTWZrm)
8495 CASE_BCAST_TYPE_OPC(TB_BCAST_D, VPBROADCASTDZ128rm, VPBROADCASTDZ256rm,
8496 VPBROADCASTDZrm)
8497 CASE_BCAST_TYPE_OPC(TB_BCAST_Q, VPBROADCASTQZ128rm, VPBROADCASTQZ256rm,
8498 VPBROADCASTQZrm)
8499 CASE_BCAST_TYPE_OPC(TB_BCAST_SH, VPBROADCASTWZ128rm, VPBROADCASTWZ256rm,
8500 VPBROADCASTWZrm)
8501 CASE_BCAST_TYPE_OPC(TB_BCAST_SS, VBROADCASTSSZ128rm, VBROADCASTSSZ256rm,
8502 VBROADCASTSSZrm)
8503 CASE_BCAST_TYPE_OPC(TB_BCAST_SD, VMOVDDUPZ128rm, VBROADCASTSDZ256rm,
8504 VBROADCASTSDZrm)
8505 }
8506}
8507
8509 MachineFunction &MF, MachineInstr &MI, Register Reg, bool UnfoldLoad,
8510 bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
8511 const X86FoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
8512 if (I == nullptr)
8513 return false;
8514 unsigned Opc = I->DstOp;
8515 unsigned Index = I->Flags & TB_INDEX_MASK;
8516 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
8517 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
8518 if (UnfoldLoad && !FoldedLoad)
8519 return false;
8520 UnfoldLoad &= FoldedLoad;
8521 if (UnfoldStore && !FoldedStore)
8522 return false;
8523 UnfoldStore &= FoldedStore;
8524
8525 const MCInstrDesc &MCID = get(Opc);
8526
8527 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI);
8529 // TODO: Check if 32-byte or greater accesses are slow too?
8530 if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
8531 Subtarget.isUnalignedMem16Slow())
8532 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
8533 // conservatively assume the address is unaligned. That's bad for
8534 // performance.
8535 return false;
8540 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
8541 MachineOperand &Op = MI.getOperand(i);
8542 if (i >= Index && i < Index + X86::AddrNumOperands)
8543 AddrOps.push_back(Op);
8544 else if (Op.isReg() && Op.isImplicit())
8545 ImpOps.push_back(Op);
8546 else if (i < Index)
8547 BeforeOps.push_back(Op);
8548 else if (i > Index)
8549 AfterOps.push_back(Op);
8550 }
8551
8552 // Emit the load or broadcast instruction.
8553 if (UnfoldLoad) {
8554 auto MMOs = extractLoadMMOs(MI.memoperands(), MF);
8555
8556 unsigned Opc;
8557 if (I->Flags & TB_BCAST_MASK) {
8558 Opc = getBroadcastOpcode(I, RC, Subtarget);
8559 } else {
8560 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
8561 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
8562 Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget);
8563 }
8564
8565 DebugLoc DL;
8566 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg);
8567 for (const MachineOperand &AddrOp : AddrOps)
8568 MIB.add(AddrOp);
8569 MIB.setMemRefs(MMOs);
8570 NewMIs.push_back(MIB);
8571
8572 if (UnfoldStore) {
8573 // Address operands cannot be marked isKill.
8574 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
8575 MachineOperand &MO = NewMIs[0]->getOperand(i);
8576 if (MO.isReg())
8577 MO.setIsKill(false);
8578 }
8579 }
8580 }
8581
8582 // Emit the data processing instruction.
8583 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
8584 MachineInstrBuilder MIB(MF, DataMI);
8585
8586 if (FoldedStore)
8587 MIB.addReg(Reg, RegState::Define);
8588 for (MachineOperand &BeforeOp : BeforeOps)
8589 MIB.add(BeforeOp);
8590 if (FoldedLoad)
8591 MIB.addReg(Reg);
8592 for (MachineOperand &AfterOp : AfterOps)
8593 MIB.add(AfterOp);
8594 for (MachineOperand &ImpOp : ImpOps) {
8595 MIB.addReg(ImpOp.getReg(), getDefRegState(ImpOp.isDef()) |
8597 getKillRegState(ImpOp.isKill()) |
8598 getDeadRegState(ImpOp.isDead()) |
8599 getUndefRegState(ImpOp.isUndef()));
8600 }
8601 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
8602 switch (DataMI->getOpcode()) {
8603 default:
8604 break;
8605 case X86::CMP64ri32:
8606 case X86::CMP32ri:
8607 case X86::CMP16ri:
8608 case X86::CMP8ri: {
8609 MachineOperand &MO0 = DataMI->getOperand(0);
8610 MachineOperand &MO1 = DataMI->getOperand(1);
8611 if (MO1.isImm() && MO1.getImm() == 0) {
8612 unsigned NewOpc;
8613 switch (DataMI->getOpcode()) {
8614 default:
8615 llvm_unreachable("Unreachable!");
8616 case X86::CMP64ri32:
8617 NewOpc = X86::TEST64rr;
8618 break;
8619 case X86::CMP32ri:
8620 NewOpc = X86::TEST32rr;
8621 break;
8622 case X86::CMP16ri:
8623 NewOpc = X86::TEST16rr;
8624 break;
8625 case X86::CMP8ri:
8626 NewOpc = X86::TEST8rr;
8627 break;
8628 }
8629 DataMI->setDesc(get(NewOpc));
8630 MO1.ChangeToRegister(MO0.getReg(), false);
8631 }
8632 }
8633 }
8634 NewMIs.push_back(DataMI);
8635
8636 // Emit the store instruction.
8637 if (UnfoldStore) {
8638 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI);
8639 auto MMOs = extractStoreMMOs(MI.memoperands(), MF);
8640 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16);
8641 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
8642 unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget);
8643 DebugLoc DL;
8644 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
8645 for (const MachineOperand &AddrOp : AddrOps)
8646 MIB.add(AddrOp);
8647 MIB.addReg(Reg, RegState::Kill);
8648 MIB.setMemRefs(MMOs);
8649 NewMIs.push_back(MIB);
8650 }
8651
8652 return true;
8653}
8654
8656 SelectionDAG &DAG, SDNode *N, SmallVectorImpl<SDNode *> &NewNodes) const {
8657 if (!N->isMachineOpcode())
8658 return false;
8659
8660 const X86FoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
8661 if (I == nullptr)
8662 return false;
8663 unsigned Opc = I->DstOp;
8664 unsigned Index = I->Flags & TB_INDEX_MASK;
8665 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
8666 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
8667 const MCInstrDesc &MCID = get(Opc);
8670 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI);
8671 unsigned NumDefs = MCID.NumDefs;
8672 std::vector<SDValue> AddrOps;
8673 std::vector<SDValue> BeforeOps;
8674 std::vector<SDValue> AfterOps;
8675 SDLoc dl(N);
8676 unsigned NumOps = N->getNumOperands();
8677 for (unsigned i = 0; i != NumOps - 1; ++i) {
8678 SDValue Op = N->getOperand(i);
8679 if (i >= Index - NumDefs && i < Index - NumDefs + X86::AddrNumOperands)
8680 AddrOps.push_back(Op);
8681 else if (i < Index - NumDefs)
8682 BeforeOps.push_back(Op);
8683 else if (i > Index - NumDefs)
8684 AfterOps.push_back(Op);
8685 }
8686 SDValue Chain = N->getOperand(NumOps - 1);
8687 AddrOps.push_back(Chain);
8688
8689 // Emit the load instruction.
8690 SDNode *Load = nullptr;
8691 if (FoldedLoad) {
8692 EVT VT = *TRI.legalclasstypes_begin(*RC);
8693 auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
8694 if (MMOs.empty() && RC == &X86::VR128RegClass &&
8695 Subtarget.isUnalignedMem16Slow())
8696 // Do not introduce a slow unaligned load.
8697 return false;
8698 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
8699 // memory access is slow above.
8700
8701 unsigned Opc;
8702 if (I->Flags & TB_BCAST_MASK) {
8703 Opc = getBroadcastOpcode(I, RC, Subtarget);
8704 } else {
8705 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
8706 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
8707 Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget);
8708 }
8709
8710 Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps);
8711 NewNodes.push_back(Load);
8712
8713 // Preserve memory reference information.
8714 DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs);
8715 }
8716
8717 // Emit the data processing instruction.
8718 std::vector<EVT> VTs;
8719 const TargetRegisterClass *DstRC = nullptr;
8720 if (MCID.getNumDefs() > 0) {
8721 DstRC = getRegClass(MCID, 0, &RI);
8722 VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
8723 }
8724 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
8725 EVT VT = N->getValueType(i);
8726 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
8727 VTs.push_back(VT);
8728 }
8729 if (Load)
8730 BeforeOps.push_back(SDValue(Load, 0));
8731 llvm::append_range(BeforeOps, AfterOps);
8732 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
8733 switch (Opc) {
8734 default:
8735 break;
8736 case X86::CMP64ri32:
8737 case X86::CMP32ri:
8738 case X86::CMP16ri:
8739 case X86::CMP8ri:
8740 if (isNullConstant(BeforeOps[1])) {
8741 switch (Opc) {
8742 default:
8743 llvm_unreachable("Unreachable!");
8744 case X86::CMP64ri32:
8745 Opc = X86::TEST64rr;
8746 break;
8747 case X86::CMP32ri:
8748 Opc = X86::TEST32rr;
8749 break;
8750 case X86::CMP16ri:
8751 Opc = X86::TEST16rr;
8752 break;
8753 case X86::CMP8ri:
8754 Opc = X86::TEST8rr;
8755 break;
8756 }
8757 BeforeOps[1] = BeforeOps[0];
8758 }
8759 }
8760 SDNode *NewNode = DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
8761 NewNodes.push_back(NewNode);
8762
8763 // Emit the store instruction.
8764 if (FoldedStore) {
8765 AddrOps.pop_back();
8766 AddrOps.push_back(SDValue(NewNode, 0));
8767 AddrOps.push_back(Chain);
8768 auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
8769 if (MMOs.empty() && RC == &X86::VR128RegClass &&
8770 Subtarget.isUnalignedMem16Slow())
8771 // Do not introduce a slow unaligned store.
8772 return false;
8773 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
8774 // memory access is slow above.
8775 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
8776 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
8777 SDNode *Store =
8778 DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
8779 dl, MVT::Other, AddrOps);
8780 NewNodes.push_back(Store);
8781
8782 // Preserve memory reference information.
8783 DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs);
8784 }
8785
8786 return true;
8787}
8788
8789unsigned
8791 bool UnfoldStore,
8792 unsigned *LoadRegIndex) const {
8794 if (I == nullptr)
8795 return 0;
8796 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
8797 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
8798 if (UnfoldLoad && !FoldedLoad)
8799 return 0;
8800 if (UnfoldStore && !FoldedStore)
8801 return 0;
8802 if (LoadRegIndex)
8803 *LoadRegIndex = I->Flags & TB_INDEX_MASK;
8804 return I->DstOp;
8805}
8806
8808 int64_t &Offset1,
8809 int64_t &Offset2) const {
8810 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
8811 return false;
8812
8813 auto IsLoadOpcode = [&](unsigned Opcode) {
8814 switch (Opcode) {
8815 default:
8816 return false;
8817 case X86::MOV8rm:
8818 case X86::MOV16rm:
8819 case X86::MOV32rm:
8820 case X86::MOV64rm:
8821 case X86::LD_Fp32m:
8822 case X86::LD_Fp64m:
8823 case X86::LD_Fp80m:
8824 case X86::MOVSSrm:
8825 case X86::MOVSSrm_alt:
8826 case X86::MOVSDrm:
8827 case X86::MOVSDrm_alt:
8828 case X86::MMX_MOVD64rm:
8829 case X86::MMX_MOVQ64rm:
8830 case X86::MOVAPSrm:
8831 case X86::MOVUPSrm:
8832 case X86::MOVAPDrm:
8833 case X86::MOVUPDrm:
8834 case X86::MOVDQArm:
8835 case X86::MOVDQUrm:
8836 // AVX load instructions
8837 case X86::VMOVSSrm:
8838 case X86::VMOVSSrm_alt:
8839 case X86::VMOVSDrm:
8840 case X86::VMOVSDrm_alt:
8841 case X86::VMOVAPSrm:
8842 case X86::VMOVUPSrm:
8843 case X86::VMOVAPDrm:
8844 case X86::VMOVUPDrm:
8845 case X86::VMOVDQArm:
8846 case X86::VMOVDQUrm:
8847 case X86::VMOVAPSYrm:
8848 case X86::VMOVUPSYrm:
8849 case X86::VMOVAPDYrm:
8850 case X86::VMOVUPDYrm:
8851 case X86::VMOVDQAYrm:
8852 case X86::VMOVDQUYrm:
8853 // AVX512 load instructions
8854 case X86::VMOVSSZrm:
8855 case X86::VMOVSSZrm_alt:
8856 case X86::VMOVSDZrm:
8857 case X86::VMOVSDZrm_alt:
8858 case X86::VMOVAPSZ128rm:
8859 case X86::VMOVUPSZ128rm:
8860 case X86::VMOVAPSZ128rm_NOVLX:
8861 case X86::VMOVUPSZ128rm_NOVLX:
8862 case X86::VMOVAPDZ128rm:
8863 case X86::VMOVUPDZ128rm:
8864 case X86::VMOVDQU8Z128rm:
8865 case X86::VMOVDQU16Z128rm:
8866 case X86::VMOVDQA32Z128rm:
8867 case X86::VMOVDQU32Z128rm:
8868 case X86::VMOVDQA64Z128rm:
8869 case X86::VMOVDQU64Z128rm:
8870 case X86::VMOVAPSZ256rm:
8871 case X86::VMOVUPSZ256rm:
8872 case X86::VMOVAPSZ256rm_NOVLX:
8873 case X86::VMOVUPSZ256rm_NOVLX:
8874 case X86::VMOVAPDZ256rm:
8875 case X86::VMOVUPDZ256rm:
8876 case X86::VMOVDQU8Z256rm:
8877 case X86::VMOVDQU16Z256rm:
8878 case X86::VMOVDQA32Z256rm:
8879 case X86::VMOVDQU32Z256rm:
8880 case X86::VMOVDQA64Z256rm:
8881 case X86::VMOVDQU64Z256rm:
8882 case X86::VMOVAPSZrm:
8883 case X86::VMOVUPSZrm:
8884 case X86::VMOVAPDZrm:
8885 case X86::VMOVUPDZrm:
8886 case X86::VMOVDQU8Zrm:
8887 case X86::VMOVDQU16Zrm:
8888 case X86::VMOVDQA32Zrm:
8889 case X86::VMOVDQU32Zrm:
8890 case X86::VMOVDQA64Zrm:
8891 case X86::VMOVDQU64Zrm:
8892 case X86::KMOVBkm:
8893 case X86::KMOVBkm_EVEX:
8894 case X86::KMOVWkm:
8895 case X86::KMOVWkm_EVEX:
8896 case X86::KMOVDkm:
8897 case X86::KMOVDkm_EVEX:
8898 case X86::KMOVQkm:
8899 case X86::KMOVQkm_EVEX:
8900 return true;
8901 }
8902 };
8903
8904 if (!IsLoadOpcode(Load1->getMachineOpcode()) ||
8905 !IsLoadOpcode(Load2->getMachineOpcode()))
8906 return false;
8907
8908 // Lambda to check if both the loads have the same value for an operand index.
8909 auto HasSameOp = [&](int I) {
8910 return Load1->getOperand(I) == Load2->getOperand(I);
8911 };
8912
8913 // All operands except the displacement should match.
8914 if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
8915 !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
8916 return false;
8917
8918 // Chain Operand must be the same.
8919 if (!HasSameOp(5))
8920 return false;
8921
8922 // Now let's examine if the displacements are constants.
8925 if (!Disp1 || !Disp2)
8926 return false;
8927
8928 Offset1 = Disp1->getSExtValue();
8929 Offset2 = Disp2->getSExtValue();
8930 return true;
8931}
8932
8934 int64_t Offset1, int64_t Offset2,
8935 unsigned NumLoads) const {
8936 assert(Offset2 > Offset1);
8937 if ((Offset2 - Offset1) / 8 > 64)
8938 return false;
8939
8940 unsigned Opc1 = Load1->getMachineOpcode();
8941 unsigned Opc2 = Load2->getMachineOpcode();
8942 if (Opc1 != Opc2)
8943 return false; // FIXME: overly conservative?
8944
8945 switch (Opc1) {
8946 default:
8947 break;
8948 case X86::LD_Fp32m:
8949 case X86::LD_Fp64m:
8950 case X86::LD_Fp80m:
8951 case X86::MMX_MOVD64rm:
8952 case X86::MMX_MOVQ64rm:
8953 return false;
8954 }
8955
8956 EVT VT = Load1->getValueType(0);
8957 switch (VT.getSimpleVT().SimpleTy) {
8958 default:
8959 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
8960 // have 16 of them to play with.
8961 if (Subtarget.is64Bit()) {
8962 if (NumLoads >= 3)
8963 return false;
8964 } else if (NumLoads) {
8965 return false;
8966 }
8967 break;
8968 case MVT::i8:
8969 case MVT::i16:
8970 case MVT::i32:
8971 case MVT::i64:
8972 case MVT::f32:
8973 case MVT::f64:
8974 if (NumLoads)
8975 return false;
8976 break;
8977 }
8978
8979 return true;
8980}
8981
8983 const MachineBasicBlock *MBB,
8984 const MachineFunction &MF) const {
8985
8986 // ENDBR instructions should not be scheduled around.
8987 unsigned Opcode = MI.getOpcode();
8988 if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32 ||
8989 Opcode == X86::PLDTILECFGV)
8990 return true;
8991
8992 // Frame setup and destroy can't be scheduled around.
8993 if (MI.getFlag(MachineInstr::FrameSetup) ||
8995 return true;
8996
8998}
8999
9002 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
9003 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
9004 Cond[0].setImm(GetOppositeBranchCondition(CC));
9005 return false;
9006}
9007
9009 const TargetRegisterClass *RC) const {
9010 // FIXME: Return false for x87 stack register classes for now. We can't
9011 // allow any loads of these registers before FpGet_ST0_80.
9012 return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
9013 RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
9014 RC == &X86::RFP80RegClass);
9015}
9016
9017/// Return a virtual register initialized with the
9018/// the global base register value. Output instructions required to
9019/// initialize the register in the function entry block, if necessary.
9020///
9021/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
9022///
9025 Register GlobalBaseReg = X86FI->getGlobalBaseReg();
9026 if (GlobalBaseReg)
9027 return GlobalBaseReg;
9028
9029 // Create the register. The code to initialize it is inserted
9030 // later, by the CGBR pass (below).
9031 MachineRegisterInfo &RegInfo = MF->getRegInfo();
9032 GlobalBaseReg = RegInfo.createVirtualRegister(
9033 Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
9034 X86FI->setGlobalBaseReg(GlobalBaseReg);
9035 return GlobalBaseReg;
9036}
9037
9038// FIXME: Some shuffle and unpack instructions have equivalents in different
9039// domains, but they require a bit more work than just switching opcodes.
9040
9041static const uint16_t *lookup(unsigned opcode, unsigned domain,
9042 ArrayRef<uint16_t[3]> Table) {
9043 for (const uint16_t(&Row)[3] : Table)
9044 if (Row[domain - 1] == opcode)
9045 return Row;
9046 return nullptr;
9047}
9048
9049static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
9050 ArrayRef<uint16_t[4]> Table) {
9051 // If this is the integer domain make sure to check both integer columns.
9052 for (const uint16_t(&Row)[4] : Table)
9053 if (Row[domain - 1] == opcode || (domain == 3 && Row[3] == opcode))
9054 return Row;
9055 return nullptr;
9056}
9057
9058// Helper to attempt to widen/narrow blend masks.
9059static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
9060 unsigned NewWidth, unsigned *pNewMask = nullptr) {
9061 assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
9062 "Illegal blend mask scale");
9063 unsigned NewMask = 0;
9064
9065 if ((OldWidth % NewWidth) == 0) {
9066 unsigned Scale = OldWidth / NewWidth;
9067 unsigned SubMask = (1u << Scale) - 1;
9068 for (unsigned i = 0; i != NewWidth; ++i) {
9069 unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
9070 if (Sub == SubMask)
9071 NewMask |= (1u << i);
9072 else if (Sub != 0x0)
9073 return false;
9074 }
9075 } else {
9076 unsigned Scale = NewWidth / OldWidth;
9077 unsigned SubMask = (1u << Scale) - 1;
9078 for (unsigned i = 0; i != OldWidth; ++i) {
9079 if (OldMask & (1 << i)) {
9080 NewMask |= (SubMask << (i * Scale));
9081 }
9082 }
9083 }
9084
9085 if (pNewMask)
9086 *pNewMask = NewMask;
9087 return true;
9088}
9089
9091 unsigned Opcode = MI.getOpcode();
9092 unsigned NumOperands = MI.getDesc().getNumOperands();
9093
9094 auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
9095 uint16_t validDomains = 0;
9096 if (MI.getOperand(NumOperands - 1).isImm()) {
9097 unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
9098 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
9099 validDomains |= 0x2; // PackedSingle
9100 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
9101 validDomains |= 0x4; // PackedDouble
9102 if (!Is256 || Subtarget.hasAVX2())
9103 validDomains |= 0x8; // PackedInt
9104 }
9105 return validDomains;
9106 };
9107
9108 switch (Opcode) {
9109 case X86::BLENDPDrmi:
9110 case X86::BLENDPDrri:
9111 case X86::VBLENDPDrmi:
9112 case X86::VBLENDPDrri:
9113 return GetBlendDomains(2, false);
9114 case X86::VBLENDPDYrmi:
9115 case X86::VBLENDPDYrri:
9116 return GetBlendDomains(4, true);
9117 case X86::BLENDPSrmi:
9118 case X86::BLENDPSrri:
9119 case X86::VBLENDPSrmi:
9120 case X86::VBLENDPSrri:
9121 case X86::VPBLENDDrmi:
9122 case X86::VPBLENDDrri:
9123 return GetBlendDomains(4, false);
9124 case X86::VBLENDPSYrmi:
9125 case X86::VBLENDPSYrri:
9126 case X86::VPBLENDDYrmi:
9127 case X86::VPBLENDDYrri:
9128 return GetBlendDomains(8, true);
9129 case X86::PBLENDWrmi:
9130 case X86::PBLENDWrri:
9131 case X86::VPBLENDWrmi:
9132 case X86::VPBLENDWrri:
9133 // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
9134 case X86::VPBLENDWYrmi:
9135 case X86::VPBLENDWYrri:
9136 return GetBlendDomains(8, false);
9137 case X86::VPANDDZ128rr:
9138 case X86::VPANDDZ128rm:
9139 case X86::VPANDDZ256rr:
9140 case X86::VPANDDZ256rm:
9141 case X86::VPANDQZ128rr:
9142 case X86::VPANDQZ128rm:
9143 case X86::VPANDQZ256rr:
9144 case X86::VPANDQZ256rm:
9145 case X86::VPANDNDZ128rr:
9146 case X86::VPANDNDZ128rm:
9147 case X86::VPANDNDZ256rr:
9148 case X86::VPANDNDZ256rm:
9149 case X86::VPANDNQZ128rr:
9150 case X86::VPANDNQZ128rm:
9151 case X86::VPANDNQZ256rr:
9152 case X86::VPANDNQZ256rm:
9153 case X86::VPORDZ128rr:
9154 case X86::VPORDZ128rm:
9155 case X86::VPORDZ256rr:
9156 case X86::VPORDZ256rm:
9157 case X86::VPORQZ128rr:
9158 case X86::VPORQZ128rm:
9159 case X86::VPORQZ256rr:
9160 case X86::VPORQZ256rm:
9161 case X86::VPXORDZ128rr:
9162 case X86::VPXORDZ128rm:
9163 case X86::VPXORDZ256rr:
9164 case X86::VPXORDZ256rm:
9165 case X86::VPXORQZ128rr:
9166 case X86::VPXORQZ128rm:
9167 case X86::VPXORQZ256rr:
9168 case X86::VPXORQZ256rm:
9169 // If we don't have DQI see if we can still switch from an EVEX integer
9170 // instruction to a VEX floating point instruction.
9171 if (Subtarget.hasDQI())
9172 return 0;
9173
9174 if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
9175 return 0;
9176 if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
9177 return 0;
9178 // Register forms will have 3 operands. Memory form will have more.
9179 if (NumOperands == 3 &&
9180 RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
9181 return 0;
9182
9183 // All domains are valid.
9184 return 0xe;
9185 case X86::MOVHLPSrr:
9186 // We can swap domains when both inputs are the same register.
9187 // FIXME: This doesn't catch all the cases we would like. If the input
9188 // register isn't KILLed by the instruction, the two address instruction
9189 // pass puts a COPY on one input. The other input uses the original
9190 // register. This prevents the same physical register from being used by
9191 // both inputs.
9192 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
9193 MI.getOperand(0).getSubReg() == 0 &&
9194 MI.getOperand(1).getSubReg() == 0 && MI.getOperand(2).getSubReg() == 0)
9195 return 0x6;
9196 return 0;
9197 case X86::SHUFPDrri:
9198 return 0x6;
9199 }
9200 return 0;
9201}
9202
9203#include "X86ReplaceableInstrs.def"
9204
9206 unsigned Domain) const {
9207 assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
9208 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
9209 assert(dom && "Not an SSE instruction");
9210
9211 unsigned Opcode = MI.getOpcode();
9212 unsigned NumOperands = MI.getDesc().getNumOperands();
9213
9214 auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
9215 if (MI.getOperand(NumOperands - 1).isImm()) {
9216 unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
9217 Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
9218 unsigned NewImm = Imm;
9219
9220 const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs);
9221 if (!table)
9222 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
9223
9224 if (Domain == 1) { // PackedSingle
9225 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
9226 } else if (Domain == 2) { // PackedDouble
9227 AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
9228 } else if (Domain == 3) { // PackedInt
9229 if (Subtarget.hasAVX2()) {
9230 // If we are already VPBLENDW use that, else use VPBLENDD.
9231 if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
9232 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
9233 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
9234 }
9235 } else {
9236 assert(!Is256 && "128-bit vector expected");
9237 AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
9238 }
9239 }
9240
9241 assert(table && table[Domain - 1] && "Unknown domain op");
9242 MI.setDesc(get(table[Domain - 1]));
9243 MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
9244 }
9245 return true;
9246 };
9247
9248 switch (Opcode) {
9249 case X86::BLENDPDrmi:
9250 case X86::BLENDPDrri:
9251 case X86::VBLENDPDrmi:
9252 case X86::VBLENDPDrri:
9253 return SetBlendDomain(2, false);
9254 case X86::VBLENDPDYrmi:
9255 case X86::VBLENDPDYrri:
9256 return SetBlendDomain(4, true);
9257 case X86::BLENDPSrmi:
9258 case X86::BLENDPSrri:
9259 case X86::VBLENDPSrmi:
9260 case X86::VBLENDPSrri:
9261 case X86::VPBLENDDrmi:
9262 case X86::VPBLENDDrri:
9263 return SetBlendDomain(4, false);
9264 case X86::VBLENDPSYrmi:
9265 case X86::VBLENDPSYrri:
9266 case X86::VPBLENDDYrmi:
9267 case X86::VPBLENDDYrri:
9268 return SetBlendDomain(8, true);
9269 case X86::PBLENDWrmi:
9270 case X86::PBLENDWrri:
9271 case X86::VPBLENDWrmi:
9272 case X86::VPBLENDWrri:
9273 return SetBlendDomain(8, false);
9274 case X86::VPBLENDWYrmi:
9275 case X86::VPBLENDWYrri:
9276 return SetBlendDomain(16, true);
9277 case X86::VPANDDZ128rr:
9278 case X86::VPANDDZ128rm:
9279 case X86::VPANDDZ256rr:
9280 case X86::VPANDDZ256rm:
9281 case X86::VPANDQZ128rr:
9282 case X86::VPANDQZ128rm:
9283 case X86::VPANDQZ256rr:
9284 case X86::VPANDQZ256rm:
9285 case X86::VPANDNDZ128rr:
9286 case X86::VPANDNDZ128rm:
9287 case X86::VPANDNDZ256rr:
9288 case X86::VPANDNDZ256rm:
9289 case X86::VPANDNQZ128rr:
9290 case X86::VPANDNQZ128rm:
9291 case X86::VPANDNQZ256rr:
9292 case X86::VPANDNQZ256rm:
9293 case X86::VPORDZ128rr:
9294 case X86::VPORDZ128rm:
9295 case X86::VPORDZ256rr:
9296 case X86::VPORDZ256rm:
9297 case X86::VPORQZ128rr:
9298 case X86::VPORQZ128rm:
9299 case X86::VPORQZ256rr:
9300 case X86::VPORQZ256rm:
9301 case X86::VPXORDZ128rr:
9302 case X86::VPXORDZ128rm:
9303 case X86::VPXORDZ256rr:
9304 case X86::VPXORDZ256rm:
9305 case X86::VPXORQZ128rr:
9306 case X86::VPXORQZ128rm:
9307 case X86::VPXORQZ256rr:
9308 case X86::VPXORQZ256rm: {
9309 // Without DQI, convert EVEX instructions to VEX instructions.
9310 if (Subtarget.hasDQI())
9311 return false;
9312
9313 const uint16_t *table =
9314 lookupAVX512(MI.getOpcode(), dom, ReplaceableCustomAVX512LogicInstrs);
9315 assert(table && "Instruction not found in table?");
9316 // Don't change integer Q instructions to D instructions and
9317 // use D intructions if we started with a PS instruction.
9318 if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
9319 Domain = 4;
9320 MI.setDesc(get(table[Domain - 1]));
9321 return true;
9322 }
9323 case X86::UNPCKHPDrr:
9324 case X86::MOVHLPSrr:
9325 // We just need to commute the instruction which will switch the domains.
9326 if (Domain != dom && Domain != 3 &&
9327 MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
9328 MI.getOperand(0).getSubReg() == 0 &&
9329 MI.getOperand(1).getSubReg() == 0 &&
9330 MI.getOperand(2).getSubReg() == 0) {
9331 commuteInstruction(MI, false);
9332 return true;
9333 }
9334 // We must always return true for MOVHLPSrr.
9335 if (Opcode == X86::MOVHLPSrr)
9336 return true;
9337 break;
9338 case X86::SHUFPDrri: {
9339 if (Domain == 1) {
9340 unsigned Imm = MI.getOperand(3).getImm();
9341 unsigned NewImm = 0x44;
9342 if (Imm & 1)
9343 NewImm |= 0x0a;
9344 if (Imm & 2)
9345 NewImm |= 0xa0;
9346 MI.getOperand(3).setImm(NewImm);
9347 MI.setDesc(get(X86::SHUFPSrri));
9348 }
9349 return true;
9350 }
9351 }
9352 return false;
9353}
9354
9355std::pair<uint16_t, uint16_t>
9357 uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
9358 unsigned opcode = MI.getOpcode();
9359 uint16_t validDomains = 0;
9360 if (domain) {
9361 // Attempt to match for custom instructions.
9362 validDomains = getExecutionDomainCustom(MI);
9363 if (validDomains)
9364 return std::make_pair(domain, validDomains);
9365
9366 if (lookup(opcode, domain, ReplaceableInstrs)) {
9367 validDomains = 0xe;
9368 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
9369 validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
9370 } else if (lookup(opcode, domain, ReplaceableInstrsFP)) {
9371 validDomains = 0x6;
9372 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
9373 // Insert/extract instructions should only effect domain if AVX2
9374 // is enabled.
9375 if (!Subtarget.hasAVX2())
9376 return std::make_pair(0, 0);
9377 validDomains = 0xe;
9378 } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
9379 validDomains = 0xe;
9380 } else if (Subtarget.hasDQI() &&
9381 lookupAVX512(opcode, domain, ReplaceableInstrsAVX512DQ)) {
9382 validDomains = 0xe;
9383 } else if (Subtarget.hasDQI()) {
9384 if (const uint16_t *table =
9385 lookupAVX512(opcode, domain, ReplaceableInstrsAVX512DQMasked)) {
9386 if (domain == 1 || (domain == 3 && table[3] == opcode))
9387 validDomains = 0xa;
9388 else
9389 validDomains = 0xc;
9390 }
9391 }
9392 }
9393 return std::make_pair(domain, validDomains);
9394}
9395
9397 assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
9398 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
9399 assert(dom && "Not an SSE instruction");
9400
9401 // Attempt to match for custom instructions.
9403 return;
9404
9405 const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
9406 if (!table) { // try the other table
9407 assert((Subtarget.hasAVX2() || Domain < 3) &&
9408 "256-bit vector operations only available in AVX2");
9409 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
9410 }
9411 if (!table) { // try the FP table
9412 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP);
9413 assert((!table || Domain < 3) &&
9414 "Can only select PackedSingle or PackedDouble");
9415 }
9416 if (!table) { // try the other table
9417 assert(Subtarget.hasAVX2() &&
9418 "256-bit insert/extract only available in AVX2");
9419 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
9420 }
9421 if (!table) { // try the AVX512 table
9422 assert(Subtarget.hasAVX512() && "Requires AVX-512");
9423 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
9424 // Don't change integer Q instructions to D instructions.
9425 if (table && Domain == 3 && table[3] == MI.getOpcode())
9426 Domain = 4;
9427 }
9428 if (!table) { // try the AVX512DQ table
9429 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
9430 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
9431 // Don't change integer Q instructions to D instructions and
9432 // use D instructions if we started with a PS instruction.
9433 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
9434 Domain = 4;
9435 }
9436 if (!table) { // try the AVX512DQMasked table
9437 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
9438 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
9439 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
9440 Domain = 4;
9441 }
9442 assert(table && "Cannot change domain");
9443 MI.setDesc(get(table[Domain - 1]));
9444}
9445
9451
9452/// Return the noop instruction to use for a noop.
9454 MCInst Nop;
9455 Nop.setOpcode(X86::NOOP);
9456 return Nop;
9457}
9458
9460 switch (opc) {
9461 default:
9462 return false;
9463 case X86::DIVPDrm:
9464 case X86::DIVPDrr:
9465 case X86::DIVPSrm:
9466 case X86::DIVPSrr:
9467 case X86::DIVSDrm:
9468 case X86::DIVSDrm_Int:
9469 case X86::DIVSDrr:
9470 case X86::DIVSDrr_Int:
9471 case X86::DIVSSrm:
9472 case X86::DIVSSrm_Int:
9473 case X86::DIVSSrr:
9474 case X86::DIVSSrr_Int:
9475 case X86::SQRTPDm:
9476 case X86::SQRTPDr:
9477 case X86::SQRTPSm:
9478 case X86::SQRTPSr:
9479 case X86::SQRTSDm:
9480 case X86::SQRTSDm_Int:
9481 case X86::SQRTSDr:
9482 case X86::SQRTSDr_Int:
9483 case X86::SQRTSSm:
9484 case X86::SQRTSSm_Int:
9485 case X86::SQRTSSr:
9486 case X86::SQRTSSr_Int:
9487 // AVX instructions with high latency
9488 case X86::VDIVPDrm:
9489 case X86::VDIVPDrr:
9490 case X86::VDIVPDYrm:
9491 case X86::VDIVPDYrr:
9492 case X86::VDIVPSrm:
9493 case X86::VDIVPSrr:
9494 case X86::VDIVPSYrm:
9495 case X86::VDIVPSYrr:
9496 case X86::VDIVSDrm:
9497 case X86::VDIVSDrm_Int:
9498 case X86::VDIVSDrr:
9499 case X86::VDIVSDrr_Int:
9500 case X86::VDIVSSrm:
9501 case X86::VDIVSSrm_Int:
9502 case X86::VDIVSSrr:
9503 case X86::VDIVSSrr_Int:
9504 case X86::VSQRTPDm:
9505 case X86::VSQRTPDr:
9506 case X86::VSQRTPDYm:
9507 case X86::VSQRTPDYr:
9508 case X86::VSQRTPSm:
9509 case X86::VSQRTPSr:
9510 case X86::VSQRTPSYm:
9511 case X86::VSQRTPSYr:
9512 case X86::VSQRTSDm:
9513 case X86::VSQRTSDm_Int:
9514 case X86::VSQRTSDr:
9515 case X86::VSQRTSDr_Int:
9516 case X86::VSQRTSSm:
9517 case X86::VSQRTSSm_Int:
9518 case X86::VSQRTSSr:
9519 case X86::VSQRTSSr_Int:
9520 // AVX512 instructions with high latency
9521 case X86::VDIVPDZ128rm:
9522 case X86::VDIVPDZ128rmb:
9523 case X86::VDIVPDZ128rmbk:
9524 case X86::VDIVPDZ128rmbkz:
9525 case X86::VDIVPDZ128rmk:
9526 case X86::VDIVPDZ128rmkz:
9527 case X86::VDIVPDZ128rr:
9528 case X86::VDIVPDZ128rrk:
9529 case X86::VDIVPDZ128rrkz:
9530 case X86::VDIVPDZ256rm:
9531 case X86::VDIVPDZ256rmb:
9532 case X86::VDIVPDZ256rmbk:
9533 case X86::VDIVPDZ256rmbkz:
9534 case X86::VDIVPDZ256rmk:
9535 case X86::VDIVPDZ256rmkz:
9536 case X86::VDIVPDZ256rr:
9537 case X86::VDIVPDZ256rrk:
9538 case X86::VDIVPDZ256rrkz:
9539 case X86::VDIVPDZrrb:
9540 case X86::VDIVPDZrrbk:
9541 case X86::VDIVPDZrrbkz:
9542 case X86::VDIVPDZrm:
9543 case X86::VDIVPDZrmb:
9544 case X86::VDIVPDZrmbk:
9545 case X86::VDIVPDZrmbkz:
9546 case X86::VDIVPDZrmk:
9547 case X86::VDIVPDZrmkz:
9548 case X86::VDIVPDZrr:
9549 case X86::VDIVPDZrrk:
9550 case X86::VDIVPDZrrkz:
9551 case X86::VDIVPSZ128rm:
9552 case X86::VDIVPSZ128rmb:
9553 case X86::VDIVPSZ128rmbk:
9554 case X86::VDIVPSZ128rmbkz:
9555 case X86::VDIVPSZ128rmk:
9556 case X86::VDIVPSZ128rmkz:
9557 case X86::VDIVPSZ128rr:
9558 case X86::VDIVPSZ128rrk:
9559 case X86::VDIVPSZ128rrkz:
9560 case X86::VDIVPSZ256rm:
9561 case X86::VDIVPSZ256rmb:
9562 case X86::VDIVPSZ256rmbk:
9563 case X86::VDIVPSZ256rmbkz:
9564 case X86::VDIVPSZ256rmk:
9565 case X86::VDIVPSZ256rmkz:
9566 case X86::VDIVPSZ256rr:
9567 case X86::VDIVPSZ256rrk:
9568 case X86::VDIVPSZ256rrkz:
9569 case X86::VDIVPSZrrb:
9570 case X86::VDIVPSZrrbk:
9571 case X86::VDIVPSZrrbkz:
9572 case X86::VDIVPSZrm:
9573 case X86::VDIVPSZrmb:
9574 case X86::VDIVPSZrmbk:
9575 case X86::VDIVPSZrmbkz:
9576 case X86::VDIVPSZrmk:
9577 case X86::VDIVPSZrmkz:
9578 case X86::VDIVPSZrr:
9579 case X86::VDIVPSZrrk:
9580 case X86::VDIVPSZrrkz:
9581 case X86::VDIVSDZrm:
9582 case X86::VDIVSDZrr:
9583 case X86::VDIVSDZrm_Int:
9584 case X86::VDIVSDZrmk_Int:
9585 case X86::VDIVSDZrmkz_Int:
9586 case X86::VDIVSDZrr_Int:
9587 case X86::VDIVSDZrrk_Int:
9588 case X86::VDIVSDZrrkz_Int:
9589 case X86::VDIVSDZrrb_Int:
9590 case X86::VDIVSDZrrbk_Int:
9591 case X86::VDIVSDZrrbkz_Int:
9592 case X86::VDIVSSZrm:
9593 case X86::VDIVSSZrr:
9594 case X86::VDIVSSZrm_Int:
9595 case X86::VDIVSSZrmk_Int:
9596 case X86::VDIVSSZrmkz_Int:
9597 case X86::VDIVSSZrr_Int:
9598 case X86::VDIVSSZrrk_Int:
9599 case X86::VDIVSSZrrkz_Int:
9600 case X86::VDIVSSZrrb_Int:
9601 case X86::VDIVSSZrrbk_Int:
9602 case X86::VDIVSSZrrbkz_Int:
9603 case X86::VSQRTPDZ128m:
9604 case X86::VSQRTPDZ128mb:
9605 case X86::VSQRTPDZ128mbk:
9606 case X86::VSQRTPDZ128mbkz:
9607 case X86::VSQRTPDZ128mk:
9608 case X86::VSQRTPDZ128mkz:
9609 case X86::VSQRTPDZ128r:
9610 case X86::VSQRTPDZ128rk:
9611 case X86::VSQRTPDZ128rkz:
9612 case X86::VSQRTPDZ256m:
9613 case X86::VSQRTPDZ256mb:
9614 case X86::VSQRTPDZ256mbk:
9615 case X86::VSQRTPDZ256mbkz:
9616 case X86::VSQRTPDZ256mk:
9617 case X86::VSQRTPDZ256mkz:
9618 case X86::VSQRTPDZ256r:
9619 case X86::VSQRTPDZ256rk:
9620 case X86::VSQRTPDZ256rkz:
9621 case X86::VSQRTPDZm:
9622 case X86::VSQRTPDZmb:
9623 case X86::VSQRTPDZmbk:
9624 case X86::VSQRTPDZmbkz:
9625 case X86::VSQRTPDZmk:
9626 case X86::VSQRTPDZmkz:
9627 case X86::VSQRTPDZr:
9628 case X86::VSQRTPDZrb:
9629 case X86::VSQRTPDZrbk:
9630 case X86::VSQRTPDZrbkz:
9631 case X86::VSQRTPDZrk:
9632 case X86::VSQRTPDZrkz:
9633 case X86::VSQRTPSZ128m:
9634 case X86::VSQRTPSZ128mb:
9635 case X86::VSQRTPSZ128mbk:
9636 case X86::VSQRTPSZ128mbkz:
9637 case X86::VSQRTPSZ128mk:
9638 case X86::VSQRTPSZ128mkz:
9639 case X86::VSQRTPSZ128r:
9640 case X86::VSQRTPSZ128rk:
9641 case X86::VSQRTPSZ128rkz:
9642 case X86::VSQRTPSZ256m:
9643 case X86::VSQRTPSZ256mb:
9644 case X86::VSQRTPSZ256mbk:
9645 case X86::VSQRTPSZ256mbkz:
9646 case X86::VSQRTPSZ256mk:
9647 case X86::VSQRTPSZ256mkz:
9648 case X86::VSQRTPSZ256r:
9649 case X86::VSQRTPSZ256rk:
9650 case X86::VSQRTPSZ256rkz:
9651 case X86::VSQRTPSZm:
9652 case X86::VSQRTPSZmb:
9653 case X86::VSQRTPSZmbk:
9654 case X86::VSQRTPSZmbkz:
9655 case X86::VSQRTPSZmk:
9656 case X86::VSQRTPSZmkz:
9657 case X86::VSQRTPSZr:
9658 case X86::VSQRTPSZrb:
9659 case X86::VSQRTPSZrbk:
9660 case X86::VSQRTPSZrbkz:
9661 case X86::VSQRTPSZrk:
9662 case X86::VSQRTPSZrkz:
9663 case X86::VSQRTSDZm:
9664 case X86::VSQRTSDZm_Int:
9665 case X86::VSQRTSDZmk_Int:
9666 case X86::VSQRTSDZmkz_Int:
9667 case X86::VSQRTSDZr:
9668 case X86::VSQRTSDZr_Int:
9669 case X86::VSQRTSDZrk_Int:
9670 case X86::VSQRTSDZrkz_Int:
9671 case X86::VSQRTSDZrb_Int:
9672 case X86::VSQRTSDZrbk_Int:
9673 case X86::VSQRTSDZrbkz_Int:
9674 case X86::VSQRTSSZm:
9675 case X86::VSQRTSSZm_Int:
9676 case X86::VSQRTSSZmk_Int:
9677 case X86::VSQRTSSZmkz_Int:
9678 case X86::VSQRTSSZr:
9679 case X86::VSQRTSSZr_Int:
9680 case X86::VSQRTSSZrk_Int:
9681 case X86::VSQRTSSZrkz_Int:
9682 case X86::VSQRTSSZrb_Int:
9683 case X86::VSQRTSSZrbk_Int:
9684 case X86::VSQRTSSZrbkz_Int:
9685
9686 case X86::VGATHERDPDYrm:
9687 case X86::VGATHERDPDZ128rm:
9688 case X86::VGATHERDPDZ256rm:
9689 case X86::VGATHERDPDZrm:
9690 case X86::VGATHERDPDrm:
9691 case X86::VGATHERDPSYrm:
9692 case X86::VGATHERDPSZ128rm:
9693 case X86::VGATHERDPSZ256rm:
9694 case X86::VGATHERDPSZrm:
9695 case X86::VGATHERDPSrm:
9696 case X86::VGATHERPF0DPDm:
9697 case X86::VGATHERPF0DPSm:
9698 case X86::VGATHERPF0QPDm:
9699 case X86::VGATHERPF0QPSm:
9700 case X86::VGATHERPF1DPDm:
9701 case X86::VGATHERPF1DPSm:
9702 case X86::VGATHERPF1QPDm:
9703 case X86::VGATHERPF1QPSm:
9704 case X86::VGATHERQPDYrm:
9705 case X86::VGATHERQPDZ128rm:
9706 case X86::VGATHERQPDZ256rm:
9707 case X86::VGATHERQPDZrm:
9708 case X86::VGATHERQPDrm:
9709 case X86::VGATHERQPSYrm:
9710 case X86::VGATHERQPSZ128rm:
9711 case X86::VGATHERQPSZ256rm:
9712 case X86::VGATHERQPSZrm:
9713 case X86::VGATHERQPSrm:
9714 case X86::VPGATHERDDYrm:
9715 case X86::VPGATHERDDZ128rm:
9716 case X86::VPGATHERDDZ256rm:
9717 case X86::VPGATHERDDZrm:
9718 case X86::VPGATHERDDrm:
9719 case X86::VPGATHERDQYrm:
9720 case X86::VPGATHERDQZ128rm:
9721 case X86::VPGATHERDQZ256rm:
9722 case X86::VPGATHERDQZrm:
9723 case X86::VPGATHERDQrm:
9724 case X86::VPGATHERQDYrm:
9725 case X86::VPGATHERQDZ128rm:
9726 case X86::VPGATHERQDZ256rm:
9727 case X86::VPGATHERQDZrm:
9728 case X86::VPGATHERQDrm:
9729 case X86::VPGATHERQQYrm:
9730 case X86::VPGATHERQQZ128rm:
9731 case X86::VPGATHERQQZ256rm:
9732 case X86::VPGATHERQQZrm:
9733 case X86::VPGATHERQQrm:
9734 case X86::VSCATTERDPDZ128mr:
9735 case X86::VSCATTERDPDZ256mr:
9736 case X86::VSCATTERDPDZmr:
9737 case X86::VSCATTERDPSZ128mr:
9738 case X86::VSCATTERDPSZ256mr:
9739 case X86::VSCATTERDPSZmr:
9740 case X86::VSCATTERPF0DPDm:
9741 case X86::VSCATTERPF0DPSm:
9742 case X86::VSCATTERPF0QPDm:
9743 case X86::VSCATTERPF0QPSm:
9744 case X86::VSCATTERPF1DPDm:
9745 case X86::VSCATTERPF1DPSm:
9746 case X86::VSCATTERPF1QPDm:
9747 case X86::VSCATTERPF1QPSm:
9748 case X86::VSCATTERQPDZ128mr:
9749 case X86::VSCATTERQPDZ256mr:
9750 case X86::VSCATTERQPDZmr:
9751 case X86::VSCATTERQPSZ128mr:
9752 case X86::VSCATTERQPSZ256mr:
9753 case X86::VSCATTERQPSZmr:
9754 case X86::VPSCATTERDDZ128mr:
9755 case X86::VPSCATTERDDZ256mr:
9756 case X86::VPSCATTERDDZmr:
9757 case X86::VPSCATTERDQZ128mr:
9758 case X86::VPSCATTERDQZ256mr:
9759 case X86::VPSCATTERDQZmr:
9760 case X86::VPSCATTERQDZ128mr:
9761 case X86::VPSCATTERQDZ256mr:
9762 case X86::VPSCATTERQDZmr:
9763 case X86::VPSCATTERQQZ128mr:
9764 case X86::VPSCATTERQQZ256mr:
9765 case X86::VPSCATTERQQZmr:
9766 return true;
9767 }
9768}
9769
9771 const MachineRegisterInfo *MRI,
9772 const MachineInstr &DefMI,
9773 unsigned DefIdx,
9774 const MachineInstr &UseMI,
9775 unsigned UseIdx) const {
9776 return isHighLatencyDef(DefMI.getOpcode());
9777}
9778
9780 const MachineBasicBlock *MBB) const {
9781 assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 &&
9782 Inst.getNumDefs() <= 2 && "Reassociation needs binary operators");
9783
9784 // Integer binary math/logic instructions have a third source operand:
9785 // the EFLAGS register. That operand must be both defined here and never
9786 // used; ie, it must be dead. If the EFLAGS operand is live, then we can
9787 // not change anything because rearranging the operands could affect other
9788 // instructions that depend on the exact status flags (zero, sign, etc.)
9789 // that are set by using these particular operands with this operation.
9790 const MachineOperand *FlagDef =
9791 Inst.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
9792 assert((Inst.getNumDefs() == 1 || FlagDef) && "Implicit def isn't flags?");
9793 if (FlagDef && !FlagDef->isDead())
9794 return false;
9795
9797}
9798
9799// TODO: There are many more machine instruction opcodes to match:
9800// 1. Other data types (integer, vectors)
9801// 2. Other math / logic operations (xor, or)
9802// 3. Other forms of the same operation (intrinsics and other variants)
9804 bool Invert) const {
9805 if (Invert)
9806 return false;
9807 switch (Inst.getOpcode()) {
9808 CASE_ND(ADD8rr)
9809 CASE_ND(ADD16rr)
9810 CASE_ND(ADD32rr)
9811 CASE_ND(ADD64rr)
9812 CASE_ND(AND8rr)
9813 CASE_ND(AND16rr)
9814 CASE_ND(AND32rr)
9815 CASE_ND(AND64rr)
9816 CASE_ND(OR8rr)
9817 CASE_ND(OR16rr)
9818 CASE_ND(OR32rr)
9819 CASE_ND(OR64rr)
9820 CASE_ND(XOR8rr)
9821 CASE_ND(XOR16rr)
9822 CASE_ND(XOR32rr)
9823 CASE_ND(XOR64rr)
9824 CASE_ND(IMUL16rr)
9825 CASE_ND(IMUL32rr)
9826 CASE_ND(IMUL64rr)
9827 case X86::PANDrr:
9828 case X86::PORrr:
9829 case X86::PXORrr:
9830 case X86::ANDPDrr:
9831 case X86::ANDPSrr:
9832 case X86::ORPDrr:
9833 case X86::ORPSrr:
9834 case X86::XORPDrr:
9835 case X86::XORPSrr:
9836 case X86::PADDBrr:
9837 case X86::PADDWrr:
9838 case X86::PADDDrr:
9839 case X86::PADDQrr:
9840 case X86::PMULLWrr:
9841 case X86::PMULLDrr:
9842 case X86::PMAXSBrr:
9843 case X86::PMAXSDrr:
9844 case X86::PMAXSWrr:
9845 case X86::PMAXUBrr:
9846 case X86::PMAXUDrr:
9847 case X86::PMAXUWrr:
9848 case X86::PMINSBrr:
9849 case X86::PMINSDrr:
9850 case X86::PMINSWrr:
9851 case X86::PMINUBrr:
9852 case X86::PMINUDrr:
9853 case X86::PMINUWrr:
9854 case X86::VPANDrr:
9855 case X86::VPANDYrr:
9856 case X86::VPANDDZ128rr:
9857 case X86::VPANDDZ256rr:
9858 case X86::VPANDDZrr:
9859 case X86::VPANDQZ128rr:
9860 case X86::VPANDQZ256rr:
9861 case X86::VPANDQZrr:
9862 case X86::VPORrr:
9863 case X86::VPORYrr:
9864 case X86::VPORDZ128rr:
9865 case X86::VPORDZ256rr:
9866 case X86::VPORDZrr:
9867 case X86::VPORQZ128rr:
9868 case X86::VPORQZ256rr:
9869 case X86::VPORQZrr:
9870 case X86::VPXORrr:
9871 case X86::VPXORYrr:
9872 case X86::VPXORDZ128rr:
9873 case X86::VPXORDZ256rr:
9874 case X86::VPXORDZrr:
9875 case X86::VPXORQZ128rr:
9876 case X86::VPXORQZ256rr:
9877 case X86::VPXORQZrr:
9878 case X86::VANDPDrr:
9879 case X86::VANDPSrr:
9880 case X86::VANDPDYrr:
9881 case X86::VANDPSYrr:
9882 case X86::VANDPDZ128rr:
9883 case X86::VANDPSZ128rr:
9884 case X86::VANDPDZ256rr:
9885 case X86::VANDPSZ256rr:
9886 case X86::VANDPDZrr:
9887 case X86::VANDPSZrr:
9888 case X86::VORPDrr:
9889 case X86::VORPSrr:
9890 case X86::VORPDYrr:
9891 case X86::VORPSYrr:
9892 case X86::VORPDZ128rr:
9893 case X86::VORPSZ128rr:
9894 case X86::VORPDZ256rr:
9895 case X86::VORPSZ256rr:
9896 case X86::VORPDZrr:
9897 case X86::VORPSZrr:
9898 case X86::VXORPDrr:
9899 case X86::VXORPSrr:
9900 case X86::VXORPDYrr:
9901 case X86::VXORPSYrr:
9902 case X86::VXORPDZ128rr:
9903 case X86::VXORPSZ128rr:
9904 case X86::VXORPDZ256rr:
9905 case X86::VXORPSZ256rr:
9906 case X86::VXORPDZrr:
9907 case X86::VXORPSZrr:
9908 case X86::KADDBkk:
9909 case X86::KADDWkk:
9910 case X86::KADDDkk:
9911 case X86::KADDQkk:
9912 case X86::KANDBkk:
9913 case X86::KANDWkk:
9914 case X86::KANDDkk:
9915 case X86::KANDQkk:
9916 case X86::KORBkk:
9917 case X86::KORWkk:
9918 case X86::KORDkk:
9919 case X86::KORQkk:
9920 case X86::KXORBkk:
9921 case X86::KXORWkk:
9922 case X86::KXORDkk:
9923 case X86::KXORQkk:
9924 case X86::VPADDBrr:
9925 case X86::VPADDWrr:
9926 case X86::VPADDDrr:
9927 case X86::VPADDQrr:
9928 case X86::VPADDBYrr:
9929 case X86::VPADDWYrr:
9930 case X86::VPADDDYrr:
9931 case X86::VPADDQYrr:
9932 case X86::VPADDBZ128rr:
9933 case X86::VPADDWZ128rr:
9934 case X86::VPADDDZ128rr:
9935 case X86::VPADDQZ128rr:
9936 case X86::VPADDBZ256rr:
9937 case X86::VPADDWZ256rr:
9938 case X86::VPADDDZ256rr:
9939 case X86::VPADDQZ256rr:
9940 case X86::VPADDBZrr:
9941 case X86::VPADDWZrr:
9942 case X86::VPADDDZrr:
9943 case X86::VPADDQZrr:
9944 case X86::VPMULLWrr:
9945 case X86::VPMULLWYrr:
9946 case X86::VPMULLWZ128rr:
9947 case X86::VPMULLWZ256rr:
9948 case X86::VPMULLWZrr:
9949 case X86::VPMULLDrr:
9950 case X86::VPMULLDYrr:
9951 case X86::VPMULLDZ128rr:
9952 case X86::VPMULLDZ256rr:
9953 case X86::VPMULLDZrr:
9954 case X86::VPMULLQZ128rr:
9955 case X86::VPMULLQZ256rr:
9956 case X86::VPMULLQZrr:
9957 case X86::VPMAXSBrr:
9958 case X86::VPMAXSBYrr:
9959 case X86::VPMAXSBZ128rr:
9960 case X86::VPMAXSBZ256rr:
9961 case X86::VPMAXSBZrr:
9962 case X86::VPMAXSDrr:
9963 case X86::VPMAXSDYrr:
9964 case X86::VPMAXSDZ128rr:
9965 case X86::VPMAXSDZ256rr:
9966 case X86::VPMAXSDZrr:
9967 case X86::VPMAXSQZ128rr:
9968 case X86::VPMAXSQZ256rr:
9969 case X86::VPMAXSQZrr:
9970 case X86::VPMAXSWrr:
9971 case X86::VPMAXSWYrr:
9972 case X86::VPMAXSWZ128rr:
9973 case X86::VPMAXSWZ256rr:
9974 case X86::VPMAXSWZrr:
9975 case X86::VPMAXUBrr:
9976 case X86::VPMAXUBYrr:
9977 case X86::VPMAXUBZ128rr:
9978 case X86::VPMAXUBZ256rr:
9979 case X86::VPMAXUBZrr:
9980 case X86::VPMAXUDrr:
9981 case X86::VPMAXUDYrr:
9982 case X86::VPMAXUDZ128rr:
9983 case X86::VPMAXUDZ256rr:
9984 case X86::VPMAXUDZrr:
9985 case X86::VPMAXUQZ128rr:
9986 case X86::VPMAXUQZ256rr:
9987 case X86::VPMAXUQZrr:
9988 case X86::VPMAXUWrr:
9989 case X86::VPMAXUWYrr:
9990 case X86::VPMAXUWZ128rr:
9991 case X86::VPMAXUWZ256rr:
9992 case X86::VPMAXUWZrr:
9993 case X86::VPMINSBrr:
9994 case X86::VPMINSBYrr:
9995 case X86::VPMINSBZ128rr:
9996 case X86::VPMINSBZ256rr:
9997 case X86::VPMINSBZrr:
9998 case X86::VPMINSDrr:
9999 case X86::VPMINSDYrr:
10000 case X86::VPMINSDZ128rr:
10001 case X86::VPMINSDZ256rr:
10002 case X86::VPMINSDZrr:
10003 case X86::VPMINSQZ128rr:
10004 case X86::VPMINSQZ256rr:
10005 case X86::VPMINSQZrr:
10006 case X86::VPMINSWrr:
10007 case X86::VPMINSWYrr:
10008 case X86::VPMINSWZ128rr:
10009 case X86::VPMINSWZ256rr:
10010 case X86::VPMINSWZrr:
10011 case X86::VPMINUBrr:
10012 case X86::VPMINUBYrr:
10013 case X86::VPMINUBZ128rr:
10014 case X86::VPMINUBZ256rr:
10015 case X86::VPMINUBZrr:
10016 case X86::VPMINUDrr:
10017 case X86::VPMINUDYrr:
10018 case X86::VPMINUDZ128rr:
10019 case X86::VPMINUDZ256rr:
10020 case X86::VPMINUDZrr:
10021 case X86::VPMINUQZ128rr:
10022 case X86::VPMINUQZ256rr:
10023 case X86::VPMINUQZrr:
10024 case X86::VPMINUWrr:
10025 case X86::VPMINUWYrr:
10026 case X86::VPMINUWZ128rr:
10027 case X86::VPMINUWZ256rr:
10028 case X86::VPMINUWZrr:
10029 // Normal min/max instructions are not commutative because of NaN and signed
10030 // zero semantics, but these are. Thus, there's no need to check for global
10031 // relaxed math; the instructions themselves have the properties we need.
10032 case X86::MAXCPDrr:
10033 case X86::MAXCPSrr:
10034 case X86::MAXCSDrr:
10035 case X86::MAXCSSrr:
10036 case X86::MINCPDrr:
10037 case X86::MINCPSrr:
10038 case X86::MINCSDrr:
10039 case X86::MINCSSrr:
10040 case X86::VMAXCPDrr:
10041 case X86::VMAXCPSrr:
10042 case X86::VMAXCPDYrr:
10043 case X86::VMAXCPSYrr:
10044 case X86::VMAXCPDZ128rr:
10045 case X86::VMAXCPSZ128rr:
10046 case X86::VMAXCPDZ256rr:
10047 case X86::VMAXCPSZ256rr:
10048 case X86::VMAXCPDZrr:
10049 case X86::VMAXCPSZrr:
10050 case X86::VMAXCSDrr:
10051 case X86::VMAXCSSrr:
10052 case X86::VMAXCSDZrr:
10053 case X86::VMAXCSSZrr:
10054 case X86::VMINCPDrr:
10055 case X86::VMINCPSrr:
10056 case X86::VMINCPDYrr:
10057 case X86::VMINCPSYrr:
10058 case X86::VMINCPDZ128rr:
10059 case X86::VMINCPSZ128rr:
10060 case X86::VMINCPDZ256rr:
10061 case X86::VMINCPSZ256rr:
10062 case X86::VMINCPDZrr:
10063 case X86::VMINCPSZrr:
10064 case X86::VMINCSDrr:
10065 case X86::VMINCSSrr:
10066 case X86::VMINCSDZrr:
10067 case X86::VMINCSSZrr:
10068 case X86::VMAXCPHZ128rr:
10069 case X86::VMAXCPHZ256rr:
10070 case X86::VMAXCPHZrr:
10071 case X86::VMAXCSHZrr:
10072 case X86::VMINCPHZ128rr:
10073 case X86::VMINCPHZ256rr:
10074 case X86::VMINCPHZrr:
10075 case X86::VMINCSHZrr:
10076 return true;
10077 case X86::ADDPDrr:
10078 case X86::ADDPSrr:
10079 case X86::ADDSDrr:
10080 case X86::ADDSSrr:
10081 case X86::MULPDrr:
10082 case X86::MULPSrr:
10083 case X86::MULSDrr:
10084 case X86::MULSSrr:
10085 case X86::VADDPDrr:
10086 case X86::VADDPSrr:
10087 case X86::VADDPDYrr:
10088 case X86::VADDPSYrr:
10089 case X86::VADDPDZ128rr:
10090 case X86::VADDPSZ128rr:
10091 case X86::VADDPDZ256rr:
10092 case X86::VADDPSZ256rr:
10093 case X86::VADDPDZrr:
10094 case X86::VADDPSZrr:
10095 case X86::VADDSDrr:
10096 case X86::VADDSSrr:
10097 case X86::VADDSDZrr:
10098 case X86::VADDSSZrr:
10099 case X86::VMULPDrr:
10100 case X86::VMULPSrr:
10101 case X86::VMULPDYrr:
10102 case X86::VMULPSYrr:
10103 case X86::VMULPDZ128rr:
10104 case X86::VMULPSZ128rr:
10105 case X86::VMULPDZ256rr:
10106 case X86::VMULPSZ256rr:
10107 case X86::VMULPDZrr:
10108 case X86::VMULPSZrr:
10109 case X86::VMULSDrr:
10110 case X86::VMULSSrr:
10111 case X86::VMULSDZrr:
10112 case X86::VMULSSZrr:
10113 case X86::VADDPHZ128rr:
10114 case X86::VADDPHZ256rr:
10115 case X86::VADDPHZrr:
10116 case X86::VADDSHZrr:
10117 case X86::VMULPHZ128rr:
10118 case X86::VMULPHZ256rr:
10119 case X86::VMULPHZrr:
10120 case X86::VMULSHZrr:
10123 default:
10124 return false;
10125 }
10126}
10127
10128/// If \p DescribedReg overlaps with the MOVrr instruction's destination
10129/// register then, if possible, describe the value in terms of the source
10130/// register.
10131static std::optional<ParamLoadedValue>
10133 const TargetRegisterInfo *TRI) {
10134 Register DestReg = MI.getOperand(0).getReg();
10135 Register SrcReg = MI.getOperand(1).getReg();
10136
10137 auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
10138
10139 // If the described register is the destination, just return the source.
10140 if (DestReg == DescribedReg)
10141 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
10142
10143 // If the described register is a sub-register of the destination register,
10144 // then pick out the source register's corresponding sub-register.
10145 if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) {
10146 Register SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx);
10147 return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr);
10148 }
10149
10150 // The remaining case to consider is when the described register is a
10151 // super-register of the destination register. MOV8rr and MOV16rr does not
10152 // write to any of the other bytes in the register, meaning that we'd have to
10153 // describe the value using a combination of the source register and the
10154 // non-overlapping bits in the described register, which is not currently
10155 // possible.
10156 if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr ||
10157 !TRI->isSuperRegister(DestReg, DescribedReg))
10158 return std::nullopt;
10159
10160 assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case");
10161 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
10162}
10163
10164std::optional<ParamLoadedValue>
10166 const MachineOperand *Op = nullptr;
10167 DIExpression *Expr = nullptr;
10168
10170
10171 switch (MI.getOpcode()) {
10172 case X86::LEA32r:
10173 case X86::LEA64r:
10174 case X86::LEA64_32r: {
10175 // We may need to describe a 64-bit parameter with a 32-bit LEA.
10176 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
10177 return std::nullopt;
10178
10179 // Operand 4 could be global address. For now we do not support
10180 // such situation.
10181 if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm())
10182 return std::nullopt;
10183
10184 const MachineOperand &Op1 = MI.getOperand(1);
10185 const MachineOperand &Op2 = MI.getOperand(3);
10186 assert(Op2.isReg() &&
10187 (Op2.getReg() == X86::NoRegister || Op2.getReg().isPhysical()));
10188
10189 // Omit situations like:
10190 // %rsi = lea %rsi, 4, ...
10191 if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) ||
10192 Op2.getReg() == MI.getOperand(0).getReg())
10193 return std::nullopt;
10194 else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister &&
10195 TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) ||
10196 (Op2.getReg() != X86::NoRegister &&
10197 TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg())))
10198 return std::nullopt;
10199
10200 int64_t Coef = MI.getOperand(2).getImm();
10201 int64_t Offset = MI.getOperand(4).getImm();
10203
10204 if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) {
10205 Op = &Op1;
10206 } else if (Op1.isFI())
10207 Op = &Op1;
10208
10209 if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) {
10210 Ops.push_back(dwarf::DW_OP_constu);
10211 Ops.push_back(Coef + 1);
10212 Ops.push_back(dwarf::DW_OP_mul);
10213 } else {
10214 if (Op && Op2.getReg() != X86::NoRegister) {
10215 int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false);
10216 if (dwarfReg < 0)
10217 return std::nullopt;
10218 else if (dwarfReg < 32) {
10219 Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg);
10220 Ops.push_back(0);
10221 } else {
10222 Ops.push_back(dwarf::DW_OP_bregx);
10223 Ops.push_back(dwarfReg);
10224 Ops.push_back(0);
10225 }
10226 } else if (!Op) {
10227 assert(Op2.getReg() != X86::NoRegister);
10228 Op = &Op2;
10229 }
10230
10231 if (Coef > 1) {
10232 assert(Op2.getReg() != X86::NoRegister);
10233 Ops.push_back(dwarf::DW_OP_constu);
10234 Ops.push_back(Coef);
10235 Ops.push_back(dwarf::DW_OP_mul);
10236 }
10237
10238 if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) &&
10239 Op2.getReg() != X86::NoRegister) {
10240 Ops.push_back(dwarf::DW_OP_plus);
10241 }
10242 }
10243
10245 Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops);
10246
10247 return ParamLoadedValue(*Op, Expr);
10248 }
10249 case X86::MOV8ri:
10250 case X86::MOV16ri:
10251 // TODO: Handle MOV8ri and MOV16ri.
10252 return std::nullopt;
10253 case X86::MOV32ri:
10254 case X86::MOV64ri:
10255 case X86::MOV64ri32:
10256 // MOV32ri may be used for producing zero-extended 32-bit immediates in
10257 // 64-bit parameters, so we need to consider super-registers.
10258 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
10259 return std::nullopt;
10260 return ParamLoadedValue(MI.getOperand(1), Expr);
10261 case X86::MOV8rr:
10262 case X86::MOV16rr:
10263 case X86::MOV32rr:
10264 case X86::MOV64rr:
10265 return describeMOVrrLoadedValue(MI, Reg, TRI);
10266 case X86::XOR32rr: {
10267 // 64-bit parameters are zero-materialized using XOR32rr, so also consider
10268 // super-registers.
10269 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
10270 return std::nullopt;
10271 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
10273 return std::nullopt;
10274 }
10275 case X86::MOVSX64rr32: {
10276 // We may need to describe the lower 32 bits of the MOVSX; for example, in
10277 // cases like this:
10278 //
10279 // $ebx = [...]
10280 // $rdi = MOVSX64rr32 $ebx
10281 // $esi = MOV32rr $edi
10282 if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg))
10283 return std::nullopt;
10284
10285 Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
10286
10287 // If the described register is the destination register we need to
10288 // sign-extend the source register from 32 bits. The other case we handle
10289 // is when the described register is the 32-bit sub-register of the
10290 // destination register, in case we just need to return the source
10291 // register.
10292 if (Reg == MI.getOperand(0).getReg())
10293 Expr = DIExpression::appendExt(Expr, 32, 64, true);
10294 else
10295 assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) &&
10296 "Unhandled sub-register case for MOVSX64rr32");
10297
10298 return ParamLoadedValue(MI.getOperand(1), Expr);
10299 }
10300 default:
10301 assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction");
10303 }
10304}
10305
10306/// This is an architecture-specific helper function of reassociateOps.
10307/// Set special operand attributes for new instructions after reassociation.
10309 MachineInstr &OldMI2,
10310 MachineInstr &NewMI1,
10311 MachineInstr &NewMI2) const {
10312 // Integer instructions may define an implicit EFLAGS dest register operand.
10313 MachineOperand *OldFlagDef1 =
10314 OldMI1.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
10315 MachineOperand *OldFlagDef2 =
10316 OldMI2.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
10317
10318 assert(!OldFlagDef1 == !OldFlagDef2 &&
10319 "Unexpected instruction type for reassociation");
10320
10321 if (!OldFlagDef1 || !OldFlagDef2)
10322 return;
10323
10324 assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() &&
10325 "Must have dead EFLAGS operand in reassociable instruction");
10326
10327 MachineOperand *NewFlagDef1 =
10328 NewMI1.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
10329 MachineOperand *NewFlagDef2 =
10330 NewMI2.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
10331
10332 assert(NewFlagDef1 && NewFlagDef2 &&
10333 "Unexpected operand in reassociable instruction");
10334
10335 // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
10336 // of this pass or other passes. The EFLAGS operands must be dead in these new
10337 // instructions because the EFLAGS operands in the original instructions must
10338 // be dead in order for reassociation to occur.
10339 NewFlagDef1->setIsDead();
10340 NewFlagDef2->setIsDead();
10341}
10342
10343std::pair<unsigned, unsigned>
10345 return std::make_pair(TF, 0u);
10346}
10347
10350 using namespace X86II;
10351 static const std::pair<unsigned, const char *> TargetFlags[] = {
10352 {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
10353 {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
10354 {MO_GOT, "x86-got"},
10355 {MO_GOTOFF, "x86-gotoff"},
10356 {MO_GOTPCREL, "x86-gotpcrel"},
10357 {MO_GOTPCREL_NORELAX, "x86-gotpcrel-norelax"},
10358 {MO_PLT, "x86-plt"},
10359 {MO_TLSGD, "x86-tlsgd"},
10360 {MO_TLSLD, "x86-tlsld"},
10361 {MO_TLSLDM, "x86-tlsldm"},
10362 {MO_GOTTPOFF, "x86-gottpoff"},
10363 {MO_INDNTPOFF, "x86-indntpoff"},
10364 {MO_TPOFF, "x86-tpoff"},
10365 {MO_DTPOFF, "x86-dtpoff"},
10366 {MO_NTPOFF, "x86-ntpoff"},
10367 {MO_GOTNTPOFF, "x86-gotntpoff"},
10368 {MO_DLLIMPORT, "x86-dllimport"},
10369 {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
10370 {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
10371 {MO_TLVP, "x86-tlvp"},
10372 {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
10373 {MO_SECREL, "x86-secrel"},
10374 {MO_COFFSTUB, "x86-coffstub"}};
10375 return ArrayRef(TargetFlags);
10376}
10377
10378namespace {
10379/// Create Global Base Reg pass. This initializes the PIC
10380/// global base register for x86-32.
10381struct CGBR : public MachineFunctionPass {
10382 static char ID;
10383 CGBR() : MachineFunctionPass(ID) {}
10384
10385 bool runOnMachineFunction(MachineFunction &MF) override {
10386 const X86TargetMachine *TM =
10387 static_cast<const X86TargetMachine *>(&MF.getTarget());
10388 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
10389
10390 // Only emit a global base reg in PIC mode.
10391 if (!TM->isPositionIndependent())
10392 return false;
10393
10395 Register GlobalBaseReg = X86FI->getGlobalBaseReg();
10396
10397 // If we didn't need a GlobalBaseReg, don't insert code.
10398 if (GlobalBaseReg == 0)
10399 return false;
10400
10401 // Insert the set of GlobalBaseReg into the first MBB of the function
10402 MachineBasicBlock &FirstMBB = MF.front();
10404 DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
10406 const X86InstrInfo *TII = STI.getInstrInfo();
10407
10408 Register PC;
10409 if (STI.isPICStyleGOT())
10410 PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
10411 else
10412 PC = GlobalBaseReg;
10413
10414 if (STI.is64Bit()) {
10415 if (TM->getCodeModel() == CodeModel::Large) {
10416 // In the large code model, we are aiming for this code, though the
10417 // register allocation may vary:
10418 // leaq .LN$pb(%rip), %rax
10419 // movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
10420 // addq %rcx, %rax
10421 // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
10422 Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
10423 Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
10424 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
10425 .addReg(X86::RIP)
10426 .addImm(0)
10427 .addReg(0)
10429 .addReg(0);
10430 std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol());
10431 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
10432 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
10434 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
10435 .addReg(PBReg, RegState::Kill)
10436 .addReg(GOTReg, RegState::Kill);
10437 } else {
10438 // In other code models, use a RIP-relative LEA to materialize the
10439 // GOT.
10440 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
10441 .addReg(X86::RIP)
10442 .addImm(0)
10443 .addReg(0)
10444 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
10445 .addReg(0);
10446 }
10447 } else {
10448 // Operand of MovePCtoStack is completely ignored by asm printer. It's
10449 // only used in JIT code emission as displacement to pc.
10450 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
10451
10452 // If we're using vanilla 'GOT' PIC style, we should use relative
10453 // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
10454 if (STI.isPICStyleGOT()) {
10455 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
10456 // %some_register
10457 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
10458 .addReg(PC)
10459 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
10461 }
10462 }
10463
10464 return true;
10465 }
10466
10467 StringRef getPassName() const override {
10468 return "X86 PIC Global Base Reg Initialization";
10469 }
10470
10471 void getAnalysisUsage(AnalysisUsage &AU) const override {
10472 AU.setPreservesCFG();
10474 }
10475};
10476} // namespace
10477
10478char CGBR::ID = 0;
10480
10481namespace {
10482struct LDTLSCleanup : public MachineFunctionPass {
10483 static char ID;
10484 LDTLSCleanup() : MachineFunctionPass(ID) {}
10485
10486 bool runOnMachineFunction(MachineFunction &MF) override {
10487 if (skipFunction(MF.getFunction()))
10488 return false;
10489
10490 X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
10491 if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
10492 // No point folding accesses if there isn't at least two.
10493 return false;
10494 }
10495
10496 MachineDominatorTree *DT =
10497 &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
10498 return VisitNode(DT->getRootNode(), Register());
10499 }
10500
10501 // Visit the dominator subtree rooted at Node in pre-order.
10502 // If TLSBaseAddrReg is non-null, then use that to replace any
10503 // TLS_base_addr instructions. Otherwise, create the register
10504 // when the first such instruction is seen, and then use it
10505 // as we encounter more instructions.
10506 bool VisitNode(MachineDomTreeNode *Node, Register TLSBaseAddrReg) {
10507 MachineBasicBlock *BB = Node->getBlock();
10508 bool Changed = false;
10509
10510 // Traverse the current block.
10511 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
10512 ++I) {
10513 switch (I->getOpcode()) {
10514 case X86::TLS_base_addr32:
10515 case X86::TLS_base_addr64:
10516 if (TLSBaseAddrReg)
10517 I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
10518 else
10519 I = SetRegister(*I, &TLSBaseAddrReg);
10520 Changed = true;
10521 break;
10522 default:
10523 break;
10524 }
10525 }
10526
10527 // Visit the children of this block in the dominator tree.
10528 for (auto &I : *Node) {
10529 Changed |= VisitNode(I, TLSBaseAddrReg);
10530 }
10531
10532 return Changed;
10533 }
10534
10535 // Replace the TLS_base_addr instruction I with a copy from
10536 // TLSBaseAddrReg, returning the new instruction.
10537 MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
10538 Register TLSBaseAddrReg) {
10539 MachineFunction *MF = I.getParent()->getParent();
10540 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
10541 const bool is64Bit = STI.is64Bit();
10542 const X86InstrInfo *TII = STI.getInstrInfo();
10543
10544 // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
10545 MachineInstr *Copy =
10546 BuildMI(*I.getParent(), I, I.getDebugLoc(),
10547 TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
10548 .addReg(TLSBaseAddrReg);
10549
10550 // Erase the TLS_base_addr instruction.
10551 I.eraseFromParent();
10552
10553 return Copy;
10554 }
10555
10556 // Create a virtual register in *TLSBaseAddrReg, and populate it by
10557 // inserting a copy instruction after I. Returns the new instruction.
10558 MachineInstr *SetRegister(MachineInstr &I, Register *TLSBaseAddrReg) {
10559 MachineFunction *MF = I.getParent()->getParent();
10560 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
10561 const bool is64Bit = STI.is64Bit();
10562 const X86InstrInfo *TII = STI.getInstrInfo();
10563
10564 // Create a virtual register for the TLS base address.
10565 MachineRegisterInfo &RegInfo = MF->getRegInfo();
10566 *TLSBaseAddrReg = RegInfo.createVirtualRegister(
10567 is64Bit ? &X86::GR64RegClass : &X86::GR32RegClass);
10568
10569 // Insert a copy from RAX/EAX to TLSBaseAddrReg.
10570 MachineInstr *Next = I.getNextNode();
10571 MachineInstr *Copy = BuildMI(*I.getParent(), Next, I.getDebugLoc(),
10572 TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
10573 .addReg(is64Bit ? X86::RAX : X86::EAX);
10574
10575 return Copy;
10576 }
10577
10578 StringRef getPassName() const override {
10579 return "Local Dynamic TLS Access Clean-up";
10580 }
10581
10582 void getAnalysisUsage(AnalysisUsage &AU) const override {
10583 AU.setPreservesCFG();
10584 AU.addRequired<MachineDominatorTreeWrapperPass>();
10586 }
10587};
10588} // namespace
10589
10590char LDTLSCleanup::ID = 0;
10592 return new LDTLSCleanup();
10593}
10594
10595/// Constants defining how certain sequences should be outlined.
10596///
10597/// \p MachineOutlinerDefault implies that the function is called with a call
10598/// instruction, and a return must be emitted for the outlined function frame.
10599///
10600/// That is,
10601///
10602/// I1 OUTLINED_FUNCTION:
10603/// I2 --> call OUTLINED_FUNCTION I1
10604/// I3 I2
10605/// I3
10606/// ret
10607///
10608/// * Call construction overhead: 1 (call instruction)
10609/// * Frame construction overhead: 1 (return instruction)
10610///
10611/// \p MachineOutlinerTailCall implies that the function is being tail called.
10612/// A jump is emitted instead of a call, and the return is already present in
10613/// the outlined sequence. That is,
10614///
10615/// I1 OUTLINED_FUNCTION:
10616/// I2 --> jmp OUTLINED_FUNCTION I1
10617/// ret I2
10618/// ret
10619///
10620/// * Call construction overhead: 1 (jump instruction)
10621/// * Frame construction overhead: 0 (don't need to return)
10622///
10624
10625std::optional<std::unique_ptr<outliner::OutlinedFunction>>
10627 const MachineModuleInfo &MMI,
10628 std::vector<outliner::Candidate> &RepeatedSequenceLocs,
10629 unsigned MinRepeats) const {
10630 unsigned SequenceSize = 0;
10631 for (auto &MI : RepeatedSequenceLocs[0]) {
10632 // FIXME: x86 doesn't implement getInstSizeInBytes, so
10633 // we can't tell the cost. Just assume each instruction
10634 // is one byte.
10635 if (MI.isDebugInstr() || MI.isKill())
10636 continue;
10637 SequenceSize += 1;
10638 }
10639
10640 // We check to see if CFI Instructions are present, and if they are
10641 // we find the number of CFI Instructions in the candidates.
10642 unsigned CFICount = 0;
10643 for (auto &I : RepeatedSequenceLocs[0]) {
10644 if (I.isCFIInstruction())
10645 CFICount++;
10646 }
10647
10648 // We compare the number of found CFI Instructions to the number of CFI
10649 // instructions in the parent function for each candidate. We must check this
10650 // since if we outline one of the CFI instructions in a function, we have to
10651 // outline them all for correctness. If we do not, the address offsets will be
10652 // incorrect between the two sections of the program.
10653 for (outliner::Candidate &C : RepeatedSequenceLocs) {
10654 std::vector<MCCFIInstruction> CFIInstructions =
10655 C.getMF()->getFrameInstructions();
10656
10657 if (CFICount > 0 && CFICount != CFIInstructions.size())
10658 return std::nullopt;
10659 }
10660
10661 // FIXME: Use real size in bytes for call and ret instructions.
10662 if (RepeatedSequenceLocs[0].back().isTerminator()) {
10663 for (outliner::Candidate &C : RepeatedSequenceLocs)
10664 C.setCallInfo(MachineOutlinerTailCall, 1);
10665
10666 return std::make_unique<outliner::OutlinedFunction>(
10667 RepeatedSequenceLocs, SequenceSize,
10668 0, // Number of bytes to emit frame.
10669 MachineOutlinerTailCall // Type of frame.
10670 );
10671 }
10672
10673 if (CFICount > 0)
10674 return std::nullopt;
10675
10676 for (outliner::Candidate &C : RepeatedSequenceLocs)
10677 C.setCallInfo(MachineOutlinerDefault, 1);
10678
10679 return std::make_unique<outliner::OutlinedFunction>(
10680 RepeatedSequenceLocs, SequenceSize, 1, MachineOutlinerDefault);
10681}
10682
10684 MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
10685 const Function &F = MF.getFunction();
10686
10687 // Does the function use a red zone? If it does, then we can't risk messing
10688 // with the stack.
10689 if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) {
10690 // It could have a red zone. If it does, then we don't want to touch it.
10692 if (!X86FI || X86FI->getUsesRedZone())
10693 return false;
10694 }
10695
10696 // If we *don't* want to outline from things that could potentially be deduped
10697 // then return false.
10698 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
10699 return false;
10700
10701 // This function is viable for outlining, so return true.
10702 return true;
10703}
10704
10708 unsigned Flags) const {
10709 MachineInstr &MI = *MIT;
10710
10711 // Is this a terminator for a basic block?
10712 if (MI.isTerminator())
10713 // TargetInstrInfo::getOutliningType has already filtered out anything
10714 // that would break this, so we can allow it here.
10716
10717 // Don't outline anything that modifies or reads from the stack pointer.
10718 //
10719 // FIXME: There are instructions which are being manually built without
10720 // explicit uses/defs so we also have to check the MCInstrDesc. We should be
10721 // able to remove the extra checks once those are fixed up. For example,
10722 // sometimes we might get something like %rax = POP64r 1. This won't be
10723 // caught by modifiesRegister or readsRegister even though the instruction
10724 // really ought to be formed so that modifiesRegister/readsRegister would
10725 // catch it.
10726 if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
10727 MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
10728 MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
10730
10731 // Outlined calls change the instruction pointer, so don't read from it.
10732 if (MI.readsRegister(X86::RIP, &RI) ||
10733 MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
10734 MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
10736
10737 // Don't outline CFI instructions.
10738 if (MI.isCFIInstruction())
10740
10742}
10743
10746 const outliner::OutlinedFunction &OF) const {
10747 // If we're a tail call, we already have a return, so don't do anything.
10748 if (OF.FrameConstructionID == MachineOutlinerTailCall)
10749 return;
10750
10751 // We're a normal call, so our sequence doesn't have a return instruction.
10752 // Add it in.
10753 MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RET64));
10754 MBB.insert(MBB.end(), retq);
10755}
10756
10760 // Is it a tail call?
10761 if (C.CallConstructionID == MachineOutlinerTailCall) {
10762 // Yes, just insert a JMP.
10763 It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
10764 .addGlobalAddress(M.getNamedValue(MF.getName())));
10765 } else {
10766 // No, insert a call.
10767 It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
10768 .addGlobalAddress(M.getNamedValue(MF.getName())));
10769 }
10770
10771 return It;
10772}
10773
10776 DebugLoc &DL,
10777 bool AllowSideEffects) const {
10778 const MachineFunction &MF = *MBB.getParent();
10779 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
10781
10782 if (ST.hasMMX() && X86::VR64RegClass.contains(Reg))
10783 // FIXME: Should we ignore MMX registers?
10784 return;
10785
10786 if (TRI.isGeneralPurposeRegister(MF, Reg)) {
10787 // Convert register to the 32-bit version. Both 'movl' and 'xorl' clear the
10788 // upper bits of a 64-bit register automagically.
10789 Reg = getX86SubSuperRegister(Reg, 32);
10790
10791 if (!AllowSideEffects)
10792 // XOR affects flags, so use a MOV instead.
10793 BuildMI(MBB, Iter, DL, get(X86::MOV32ri), Reg).addImm(0);
10794 else
10795 BuildMI(MBB, Iter, DL, get(X86::XOR32rr), Reg)
10796 .addReg(Reg, RegState::Undef)
10797 .addReg(Reg, RegState::Undef);
10798 } else if (X86::VR128RegClass.contains(Reg)) {
10799 // XMM#
10800 if (!ST.hasSSE1())
10801 return;
10802
10803 BuildMI(MBB, Iter, DL, get(X86::V_SET0), Reg);
10804 } else if (X86::VR256RegClass.contains(Reg)) {
10805 // YMM#
10806 if (!ST.hasAVX())
10807 return;
10808
10809 BuildMI(MBB, Iter, DL, get(X86::AVX_SET0), Reg);
10810 } else if (X86::VR512RegClass.contains(Reg)) {
10811 // ZMM#
10812 if (!ST.hasAVX512())
10813 return;
10814
10815 BuildMI(MBB, Iter, DL, get(X86::AVX512_512_SET0), Reg);
10816 } else if (X86::VK1RegClass.contains(Reg) || X86::VK2RegClass.contains(Reg) ||
10817 X86::VK4RegClass.contains(Reg) || X86::VK8RegClass.contains(Reg) ||
10818 X86::VK16RegClass.contains(Reg)) {
10819 if (!ST.hasVLX())
10820 return;
10821
10822 unsigned Op = ST.hasBWI() ? X86::KSET0Q : X86::KSET0W;
10823 BuildMI(MBB, Iter, DL, get(Op), Reg);
10824 }
10825}
10826
10828 MachineInstr &Root, SmallVectorImpl<unsigned> &Patterns,
10829 bool DoRegPressureReduce) const {
10830 unsigned Opc = Root.getOpcode();
10831 switch (Opc) {
10832 case X86::VPDPWSSDrr:
10833 case X86::VPDPWSSDrm:
10834 case X86::VPDPWSSDYrr:
10835 case X86::VPDPWSSDYrm: {
10836 if (!Subtarget.hasFastDPWSSD()) {
10838 return true;
10839 }
10840 break;
10841 }
10842 case X86::VPDPWSSDZ128rr:
10843 case X86::VPDPWSSDZ128rm:
10844 case X86::VPDPWSSDZ256rr:
10845 case X86::VPDPWSSDZ256rm:
10846 case X86::VPDPWSSDZrr:
10847 case X86::VPDPWSSDZrm: {
10848 if (Subtarget.hasBWI() && !Subtarget.hasFastDPWSSD()) {
10850 return true;
10851 }
10852 break;
10853 }
10854 }
10856 Patterns, DoRegPressureReduce);
10857}
10858
10859static void
10863 DenseMap<Register, unsigned> &InstrIdxForVirtReg) {
10864 MachineFunction *MF = Root.getMF();
10866
10867 unsigned Opc = Root.getOpcode();
10868 unsigned AddOpc = 0;
10869 unsigned MaddOpc = 0;
10870 switch (Opc) {
10871 default:
10872 assert(false && "It should not reach here");
10873 break;
10874 // vpdpwssd xmm2,xmm3,xmm1
10875 // -->
10876 // vpmaddwd xmm3,xmm3,xmm1
10877 // vpaddd xmm2,xmm2,xmm3
10878 case X86::VPDPWSSDrr:
10879 MaddOpc = X86::VPMADDWDrr;
10880 AddOpc = X86::VPADDDrr;
10881 break;
10882 case X86::VPDPWSSDrm:
10883 MaddOpc = X86::VPMADDWDrm;
10884 AddOpc = X86::VPADDDrr;
10885 break;
10886 case X86::VPDPWSSDZ128rr:
10887 MaddOpc = X86::VPMADDWDZ128rr;
10888 AddOpc = X86::VPADDDZ128rr;
10889 break;
10890 case X86::VPDPWSSDZ128rm:
10891 MaddOpc = X86::VPMADDWDZ128rm;
10892 AddOpc = X86::VPADDDZ128rr;
10893 break;
10894 // vpdpwssd ymm2,ymm3,ymm1
10895 // -->
10896 // vpmaddwd ymm3,ymm3,ymm1
10897 // vpaddd ymm2,ymm2,ymm3
10898 case X86::VPDPWSSDYrr:
10899 MaddOpc = X86::VPMADDWDYrr;
10900 AddOpc = X86::VPADDDYrr;
10901 break;
10902 case X86::VPDPWSSDYrm:
10903 MaddOpc = X86::VPMADDWDYrm;
10904 AddOpc = X86::VPADDDYrr;
10905 break;
10906 case X86::VPDPWSSDZ256rr:
10907 MaddOpc = X86::VPMADDWDZ256rr;
10908 AddOpc = X86::VPADDDZ256rr;
10909 break;
10910 case X86::VPDPWSSDZ256rm:
10911 MaddOpc = X86::VPMADDWDZ256rm;
10912 AddOpc = X86::VPADDDZ256rr;
10913 break;
10914 // vpdpwssd zmm2,zmm3,zmm1
10915 // -->
10916 // vpmaddwd zmm3,zmm3,zmm1
10917 // vpaddd zmm2,zmm2,zmm3
10918 case X86::VPDPWSSDZrr:
10919 MaddOpc = X86::VPMADDWDZrr;
10920 AddOpc = X86::VPADDDZrr;
10921 break;
10922 case X86::VPDPWSSDZrm:
10923 MaddOpc = X86::VPMADDWDZrm;
10924 AddOpc = X86::VPADDDZrr;
10925 break;
10926 }
10927 // Create vpmaddwd.
10928 const TargetRegisterClass *RC =
10929 RegInfo.getRegClass(Root.getOperand(0).getReg());
10930 Register NewReg = RegInfo.createVirtualRegister(RC);
10931 MachineInstr *Madd = Root.getMF()->CloneMachineInstr(&Root);
10932 Madd->setDesc(TII.get(MaddOpc));
10933 Madd->untieRegOperand(1);
10934 Madd->removeOperand(1);
10935 Madd->getOperand(0).setReg(NewReg);
10936 InstrIdxForVirtReg.insert(std::make_pair(NewReg, 0));
10937 // Create vpaddd.
10938 Register DstReg = Root.getOperand(0).getReg();
10939 bool IsKill = Root.getOperand(1).isKill();
10940 MachineInstr *Add =
10941 BuildMI(*MF, MIMetadata(Root), TII.get(AddOpc), DstReg)
10942 .addReg(Root.getOperand(1).getReg(), getKillRegState(IsKill))
10943 .addReg(Madd->getOperand(0).getReg(), getKillRegState(true));
10944 InsInstrs.push_back(Madd);
10945 InsInstrs.push_back(Add);
10946 DelInstrs.push_back(&Root);
10947}
10948
10950 MachineInstr &Root, unsigned Pattern,
10953 DenseMap<Register, unsigned> &InstrIdxForVirtReg) const {
10954 switch (Pattern) {
10955 default:
10956 // Reassociate instructions.
10958 DelInstrs, InstrIdxForVirtReg);
10959 return;
10961 genAlternativeDpCodeSequence(Root, *this, InsInstrs, DelInstrs,
10962 InstrIdxForVirtReg);
10963 return;
10964 }
10965}
10966
10967// See also: X86DAGToDAGISel::SelectInlineAsmMemoryOperand().
10969 int FI) const {
10972 M.Base.FrameIndex = FI;
10973 M.getFullAddress(Ops);
10974}
10975
10976#define GET_INSTRINFO_HELPERS
10977#include "X86GenInstrInfo.inc"
unsigned SubReg
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
return SDValue()
MachineOutlinerClass
Constants defining how certain sequences should be outlined.
@ MachineOutlinerTailCall
Emit a save, restore, call, and return.
@ MachineOutlinerDefault
unsigned RegSize
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
DXIL Forward Handle Accesses
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
Module.h This file contains the declarations for the Module class.
static bool lookup(const GsymReader &GR, DataExtractor &Data, uint64_t &Offset, uint64_t BaseAddr, uint64_t Addr, SourceLocations &SrcLocs, llvm::Error &Err)
A Lookup helper functions.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file implements the LivePhysRegs utility for tracking liveness of physical registers.
static bool Expand2AddrUndef(MachineInstrBuilder &MIB, const MCInstrDesc &Desc)
Expand a single-def pseudo instruction to a two-addr instruction with two undef reads of the register...
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
Register Reg
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
bool IsDead
This file contains some templates that are useful if you are working with the STL at all.
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition Value.cpp:472
Provides some synthesis utilities to produce sequences of values.
static SPCC::CondCodes GetOppositeBranchCondition(SPCC::CondCodes CC)
#define LLVM_DEBUG(...)
Definition Debug.h:114
#define FROM_TO(FROM, TO)
cl::opt< bool > X86EnableAPXForRelocation
static bool is64Bit(const char *name)
#define GET_EGPR_IF_ENABLED(OPC)
static bool isLEA(unsigned Opcode)
static void addOperands(MachineInstrBuilder &MIB, ArrayRef< MachineOperand > MOs, int PtrOffset=0)
static std::optional< ParamLoadedValue > describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg, const TargetRegisterInfo *TRI)
If DescribedReg overlaps with the MOVrr instruction's destination register then, if possible,...
static cl::opt< unsigned > PartialRegUpdateClearance("partial-reg-update-clearance", cl::desc("Clearance between two register writes " "for inserting XOR to avoid partial " "register update"), cl::init(64), cl::Hidden)
static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF, MachineInstr &MI)
static unsigned CopyToFromAsymmetricReg(Register DestReg, Register SrcReg, const X86Subtarget &Subtarget)
static bool isConvertibleLEA(MachineInstr *MI)
static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB, const TargetInstrInfo &TII, const X86Subtarget &Subtarget)
static bool isAMXOpcode(unsigned Opc)
static int getJumpTableIndexFromReg(const MachineRegisterInfo &MRI, Register Reg)
static void updateOperandRegConstraints(MachineFunction &MF, MachineInstr &NewMI, const TargetInstrInfo &TII)
static int getJumpTableIndexFromAddr(const MachineInstr &MI)
static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth, unsigned NewWidth, unsigned *pNewMask=nullptr)
static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII, bool MinusOne)
static unsigned getNewOpcFromTable(ArrayRef< X86TableEntry > Table, unsigned Opc)
static unsigned getStoreRegOpcode(Register SrcReg, const TargetRegisterClass *RC, bool IsStackAligned, const X86Subtarget &STI)
#define FOLD_BROADCAST(SIZE)
static cl::opt< unsigned > UndefRegClearance("undef-reg-clearance", cl::desc("How many idle instructions we would like before " "certain undef register reads"), cl::init(128), cl::Hidden)
#define CASE_BCAST_TYPE_OPC(TYPE, OP16, OP32, OP64)
static bool isTruncatedShiftCountForLEA(unsigned ShAmt)
Check whether the given shift count is appropriate can be represented by a LEA instruction.
static cl::opt< bool > ReMatPICStubLoad("remat-pic-stub-load", cl::desc("Re-materialize load from stub in PIC mode"), cl::init(false), cl::Hidden)
static SmallVector< MachineMemOperand *, 2 > extractLoadMMOs(ArrayRef< MachineMemOperand * > MMOs, MachineFunction &MF)
static MachineInstr * fuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, ArrayRef< MachineOperand > MOs, MachineBasicBlock::iterator InsertPt, MachineInstr &MI, const TargetInstrInfo &TII)
static void printFailMsgforFold(const MachineInstr &MI, unsigned Idx)
static bool canConvert2Copy(unsigned Opc)
static cl::opt< bool > NoFusing("disable-spill-fusing", cl::desc("Disable fusing of spill code into instructions"), cl::Hidden)
static bool expandNOVLXStore(MachineInstrBuilder &MIB, const TargetRegisterInfo *TRI, const MCInstrDesc &StoreDesc, const MCInstrDesc &ExtractDesc, unsigned SubIdx)
static bool isX87Reg(Register Reg)
Return true if the Reg is X87 register.
static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc, Register Reg)
Expand a single-def pseudo instruction to a two-addr instruction with two k0 reads.
static bool isFrameLoadOpcode(int Opcode, TypeSize &MemBytes)
#define VPERM_CASES_BROADCAST(Suffix)
static std::pair< X86::CondCode, unsigned > isUseDefConvertible(const MachineInstr &MI)
Check whether the use can be converted to remove a comparison against zero.
static bool findRedundantFlagInstr(MachineInstr &CmpInstr, MachineInstr &CmpValDefInstr, const MachineRegisterInfo *MRI, MachineInstr **AndInstr, const TargetRegisterInfo *TRI, const X86Subtarget &ST, bool &NoSignFlag, bool &ClearsOverflowFlag)
static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc)
static unsigned getLoadRegOpcode(Register DestReg, const TargetRegisterClass *RC, bool IsStackAligned, const X86Subtarget &STI)
static void expandLoadStackGuard(MachineInstrBuilder &MIB, const TargetInstrInfo &TII)
static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum, bool ForLoadFold=false)
static MachineInstr * makeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, ArrayRef< MachineOperand > MOs, MachineBasicBlock::iterator InsertPt, MachineInstr &MI)
#define GET_ND_IF_ENABLED(OPC)
static bool expandMOVSHP(MachineInstrBuilder &MIB, MachineInstr &MI, const TargetInstrInfo &TII, bool HasAVX)
static bool hasPartialRegUpdate(unsigned Opcode, const X86Subtarget &Subtarget, bool ForLoadFold=false)
Return true for all instructions that only update the first 32 or 64-bits of the destination register...
#define CASE_NF(OP)
static const uint16_t * lookupAVX512(unsigned opcode, unsigned domain, ArrayRef< uint16_t[4]> Table)
static unsigned getLoadStoreRegOpcode(Register Reg, const TargetRegisterClass *RC, bool IsStackAligned, const X86Subtarget &STI, bool Load)
#define VPERM_CASES(Suffix)
#define FROM_TO_SIZE(A, B, S)
static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2)
static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag, bool &ClearsOverflowFlag)
Check whether the definition can be converted to remove a comparison against zero.
static MachineInstr * fuseInst(MachineFunction &MF, unsigned Opcode, unsigned OpNo, ArrayRef< MachineOperand > MOs, MachineBasicBlock::iterator InsertPt, MachineInstr &MI, const TargetInstrInfo &TII, int PtrOffset=0)
static X86::CondCode getSwappedCondition(X86::CondCode CC)
Assuming the flags are set by MI(a,b), return the condition code if we modify the instructions such t...
static unsigned getCommutedVPERMV3Opcode(unsigned Opcode)
static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII)
static MachineBasicBlock * getFallThroughMBB(MachineBasicBlock *MBB, MachineBasicBlock *TBB)
static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI, const MachineInstr &UserMI, const MachineFunction &MF)
Check if LoadMI is a partial register load that we can't fold into MI because the latter uses content...
static unsigned getLoadStoreOpcodeForFP16(bool Load, const X86Subtarget &STI)
static bool isHReg(Register Reg)
Test if the given register is a physical h register.
static cl::opt< bool > PrintFailedFusing("print-failed-fuse-candidates", cl::desc("Print instructions that the allocator wants to" " fuse, but the X86 backend currently can't"), cl::Hidden)
static bool expandNOVLXLoad(MachineInstrBuilder &MIB, const TargetRegisterInfo *TRI, const MCInstrDesc &LoadDesc, const MCInstrDesc &BroadcastDesc, unsigned SubIdx)
static void genAlternativeDpCodeSequence(MachineInstr &Root, const TargetInstrInfo &TII, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs, DenseMap< Register, unsigned > &InstrIdxForVirtReg)
#define CASE_ND(OP)
static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1, unsigned SrcOpIdx2)
This determines which of three possible cases of a three source commute the source indexes correspond...
static bool isFrameStoreOpcode(int Opcode, TypeSize &MemBytes)
static unsigned getTruncatedShiftCount(const MachineInstr &MI, unsigned ShiftAmtOperandIdx)
Check whether the shift count for a machine operand is non-zero.
static SmallVector< MachineMemOperand *, 2 > extractStoreMMOs(ArrayRef< MachineMemOperand * > MMOs, MachineFunction &MF)
static unsigned getBroadcastOpcode(const X86FoldTableEntry *I, const TargetRegisterClass *RC, const X86Subtarget &STI)
static unsigned convertALUrr2ALUri(unsigned Opc)
Convert an ALUrr opcode to corresponding ALUri opcode.
static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI)
Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
static bool isCommutableVPERMV3Instruction(unsigned Opcode)
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
Definition APInt.h:207
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition APInt.h:210
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:220
AnalysisUsage & addRequired()
LLVM_ABI void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition Pass.cpp:270
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
iterator end() const
Definition ArrayRef.h:132
size_t size() const
size - Get the array size.
Definition ArrayRef.h:143
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition InstrTypes.h:679
@ ICMP_SLT
signed less than
Definition InstrTypes.h:705
@ ICMP_SLE
signed less or equal
Definition InstrTypes.h:706
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition InstrTypes.h:682
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
Definition InstrTypes.h:691
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition InstrTypes.h:680
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
Definition InstrTypes.h:681
@ ICMP_UGE
unsigned greater or equal
Definition InstrTypes.h:700
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_SGT
signed greater than
Definition InstrTypes.h:703
@ FCMP_ULT
1 1 0 0 True if unordered or less than
Definition InstrTypes.h:690
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
Definition InstrTypes.h:684
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
Definition InstrTypes.h:687
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
Definition InstrTypes.h:688
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition InstrTypes.h:683
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
Definition InstrTypes.h:685
@ ICMP_NE
not equal
Definition InstrTypes.h:698
@ ICMP_SGE
signed greater or equal
Definition InstrTypes.h:704
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Definition InstrTypes.h:692
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:702
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Definition InstrTypes.h:689
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition InstrTypes.h:686
This is an important base class in LLVM.
Definition Constant.h:43
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
DWARF expression.
static LLVM_ABI void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
static LLVM_ABI DIExpression * appendExt(const DIExpression *Expr, unsigned FromSize, unsigned ToSize, bool Signed)
Append a zero- or sign-extension to Expr.
A debug info location.
Definition DebugLoc.h:124
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:233
DomTreeNodeBase< NodeT > * getRootNode()
getRootNode - This returns the entry node for the CFG of the function.
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition Type.cpp:803
FunctionPass class - This class is used to implement most global optimizations.
Definition Pass.h:314
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
Definition Function.h:706
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition Function.h:703
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Definition Function.cpp:359
LiveInterval - This class represents the liveness of a register, or stack slot.
SlotIndex InsertMachineInstrInMaps(MachineInstr &MI)
SlotIndex getInstructionIndex(const MachineInstr &Instr) const
Returns the base index of the given instruction.
LiveInterval & getInterval(Register Reg)
SlotIndex ReplaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI)
A set of physical registers with utility functions to track liveness when walking backward/forward th...
const Segment * getSegmentContaining(SlotIndex Idx) const
Return the segment that contains the specified index, or null if there is none.
LLVM_ABI void replaceKillInstruction(Register Reg, MachineInstr &OldMI, MachineInstr &NewMI)
replaceKillInstruction - Update register kill info by replacing a kill instruction with a new one.
LLVM_ABI VarInfo & getVarInfo(Register Reg)
getVarInfo - Return the VarInfo structure for the specified VIRTUAL register.
static LocationSize precise(uint64_t Value)
bool usesWindowsCFI() const
Definition MCAsmInfo.h:652
static MCCFIInstruction createAdjustCfaOffset(MCSymbol *L, int64_t Adjustment, SMLoc Loc={})
.cfi_adjust_cfa_offset Same as .cfi_def_cfa_offset, but Offset is a relative value that is added/subt...
Definition MCDwarf.h:608
Instances of this class represent a single low-level machine instruction.
Definition MCInst.h:188
void setOpcode(unsigned Op)
Definition MCInst.h:201
Describe properties that are true of each instruction in the target description file.
This holds information about one operand of a machine instruction, indicating the register class for ...
Definition MCInstrDesc.h:87
Wrapper class representing physical registers. Should be passed by value.
Definition MCRegister.h:33
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1569
Set of metadata that should be preserved when using BuildMI().
SimpleValueType SimpleTy
MachineInstrBundleIterator< const MachineInstr > const_iterator
void push_back(MachineInstr *MI)
MachineInstr * remove(MachineInstr *I)
Remove the unbundled instruction from the instruction list without deleting it.
LLVM_ABI DebugLoc findDebugLoc(instr_iterator MBBI)
Find the next valid DebugLoc starting at MBBI, skipping any debug instructions.
MachineInstrBundleIterator< MachineInstr, true > reverse_iterator
LLVM_ABI bool isLayoutSuccessor(const MachineBasicBlock *MBB) const
Return true if the specified MBB will be emitted immediately after this block, such that if this bloc...
LLVM_ABI void eraseFromParent()
This method unlinks 'this' from the containing function and deletes it.
LLVM_ABI instr_iterator erase(instr_iterator I)
Remove an instruction from the instruction list and delete it.
iterator_range< succ_iterator > successors()
MachineInstrBundleIterator< MachineInstr > iterator
@ LQR_Dead
Register is known to be fully dead.
This class is a data container for one entry in a MachineConstantPool.
union llvm::MachineConstantPoolEntry::@004270020304201266316354007027341142157160323045 Val
The constant itself.
bool isMachineConstantPoolEntry() const
isMachineConstantPoolEntry - Return true if the MachineConstantPoolEntry is indeed a target specific ...
The MachineConstantPool class keeps track of constants referenced by a function which must be spilled...
unsigned getConstantPoolIndex(const Constant *C, Align Alignment)
getConstantPoolIndex - Create a new entry in the constant pool or return an existing one.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
MCSymbol * getPICBaseSymbol() const
getPICBaseSymbol - Return a function-local symbol to represent the PIC base.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
bool needsFrameMoves() const
True if this function needs frame moves for debug or exceptions.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
MachineConstantPool * getConstantPool()
getConstantPool - Return the constant pool object for the current function.
const MachineBasicBlock & front() const
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
Register getReg(unsigned Idx) const
Get the register for the operand index.
const MachineInstrBuilder & setMemRefs(ArrayRef< MachineMemOperand * > MMOs) const
const MachineInstrBuilder & addExternalSymbol(const char *FnName, unsigned TargetFlags=0) const
const MachineInstrBuilder & setMIFlag(MachineInstr::MIFlag Flag) const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addSym(MCSymbol *Sym, unsigned char TargetFlags=0) const
const MachineInstrBuilder & addGlobalAddress(const GlobalValue *GV, int64_t Offset=0, unsigned TargetFlags=0) const
const MachineInstrBuilder & addDisp(const MachineOperand &Disp, int64_t off, unsigned char TargetFlags=0) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
const MachineInstrBuilder & copyImplicitOps(const MachineInstr &OtherMI) const
Copy all the implicit operands from OtherMI onto this one.
const MachineInstrBuilder & addMemOperand(MachineMemOperand *MMO) const
MachineInstr * getInstr() const
If conversion operators fail, use this method to get the MachineInstr explicitly.
Representation of each machine instruction.
mop_iterator operands_begin()
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
bool isImplicitDef() const
const MachineBasicBlock * getParent() const
void dropDebugNumber()
Drop any variable location debugging information associated with this instruction.
LLVM_ABI void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol)
Set a symbol that will be emitted just prior to the instruction itself.
LLVM_ABI void addImplicitDefUseOperands(MachineFunction &MF)
Add all implicit def and use operands to this instruction.
bool getFlag(MIFlag Flag) const
Return whether an MI flag is set.
unsigned getNumOperands() const
Retuns the total number of operands.
LLVM_ABI void addOperand(MachineFunction &MF, const MachineOperand &Op)
Add the specified operand to the instruction.
LLVM_ABI unsigned getNumExplicitOperands() const
Returns the number of non-implicit operands.
bool modifiesRegister(Register Reg, const TargetRegisterInfo *TRI) const
Return true if the MachineInstr modifies (fully define or partially define) the specified register.
const MCInstrDesc & getDesc() const
Returns the target instruction descriptor of this MachineInstr.
void untieRegOperand(unsigned OpIdx)
Break any tie involving OpIdx.
LLVM_ABI void setDesc(const MCInstrDesc &TID)
Replace the instruction descriptor (thus opcode) of the current instruction with a new one.
LLVM_ABI unsigned getNumExplicitDefs() const
Returns the number of non-implicit definitions.
LLVM_ABI void eraseFromBundle()
Unlink 'this' from its basic block and delete it.
bool hasOneMemOperand() const
Return true if this instruction has exactly one MachineMemOperand.
LLVM_ABI void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx, const TargetRegisterInfo &RegInfo)
Replace all occurrences of FromReg with ToReg:SubIdx, properly composing subreg indices where necessa...
mmo_iterator memoperands_begin() const
Access to memory operands of the instruction.
LLVM_ABI bool isIdenticalTo(const MachineInstr &Other, MICheckType Check=CheckDefs) const
Return true if this instruction is identical to Other.
LLVM_ABI const MachineFunction * getMF() const
Return the function that contains the basic block that this instruction belongs to.
void setFlag(MIFlag Flag)
Set a MI flag.
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
LLVM_ABI void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
LLVM_ABI void removeOperand(unsigned OpNo)
Erase an operand from an instruction, leaving it with one fewer operand than it started with.
LLVM_ABI void dump() const
const MachineOperand & getOperand(unsigned i) const
unsigned getNumDefs() const
Returns the total number of definitions.
void setDebugLoc(DebugLoc DL)
Replace current source information with new such.
MachineOperand * findRegisterDefOperand(Register Reg, const TargetRegisterInfo *TRI, bool isDead=false, bool Overlap=false)
Wrapper for findRegisterDefOperandIdx, it returns a pointer to the MachineOperand rather than an inde...
A description of a memory reference used in the backend.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
This class contains meta information specific to a module.
MachineOperand class - Representation of each machine instruction operand.
void setSubReg(unsigned subReg)
unsigned getSubReg() const
void setImplicit(bool Val=true)
void setImm(int64_t immVal)
int64_t getImm() const
bool readsReg() const
readsReg - Returns true if this operand reads the previous value of its register.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineBasicBlock * getMBB() const
bool isCPI() const
isCPI - Tests if this is a MO_ConstantPoolIndex operand.
void setIsDead(bool Val=true)
LLVM_ABI void setReg(Register Reg)
Change the register this operand corresponds to.
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
void setIsKill(bool Val=true)
bool isJTI() const
isJTI - Tests if this is a MO_JumpTableIndex operand.
LLVM_ABI void ChangeToRegister(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isDebug=false)
ChangeToRegister - Replace this operand with a new register operand of the specified value.
static MachineOperand CreateImm(int64_t Val)
void setIsUndef(bool Val=true)
Register getReg() const
getReg - Returns the register number.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
LLVM_ABI bool isIdenticalTo(const MachineOperand &Other) const
Returns true if this operand is identical to the specified operand except for liveness related flags ...
static MachineOperand CreateCPI(unsigned Idx, int Offset, unsigned TargetFlags=0)
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
int64_t getOffset() const
Return the offset from the symbol in this operand.
static MachineOperand CreateFI(int Idx)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
const TargetRegisterClass * getRegClass(Register Reg) const
Return the register class of the specified virtual register.
LLVM_ABI Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
LLVM_ABI const TargetRegisterClass * constrainRegClass(Register Reg, const TargetRegisterClass *RC, unsigned MinNumRegs=0)
constrainRegClass - Constrain the register class of the specified virtual register to be a common sub...
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
Wrapper class representing virtual and physical registers.
Definition Register.h:19
constexpr bool isValid() const
Definition Register.h:107
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition Register.h:74
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition Register.h:78
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
bool isMachineOpcode() const
Test if this node has a post-isel opcode, directly corresponding to a MachineInstr opcode.
unsigned getMachineOpcode() const
This may only be called if isMachineOpcode returns true.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
MachineFunction & getMachineFunction() const
SlotIndex - An opaque wrapper around machine indexes.
Definition SlotIndexes.h:66
SlotIndex getBaseIndex() const
Returns the base index for associated with this index.
SlotIndex getRegSlot(bool EC=false) const
Returns the register use/def slot in the current instruction for a normal or early-clobber def.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Information about stack frame layout on the target.
bool hasFP(const MachineFunction &MF) const
hasFP - Return true if the specified function should have a dedicated frame pointer register.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
TargetInstrInfo - Interface to description of machine instruction set.
virtual bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const
Returns true iff the routine could find two commutable operands in the given machine instruction.
virtual const TargetRegisterClass * getRegClass(const MCInstrDesc &MCID, unsigned OpNum, const TargetRegisterInfo *TRI) const
Given a machine instruction descriptor, returns the register class constraint for OpNum,...
virtual bool hasReassociableOperands(const MachineInstr &Inst, const MachineBasicBlock *MBB) const
Return true when \P Inst has reassociable operands in the same \P MBB.
virtual void genAlternativeCodeSequence(MachineInstr &Root, unsigned Pattern, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs, DenseMap< Register, unsigned > &InstIdxForVirtReg) const
When getMachineCombinerPatterns() finds patterns, this function generates the instructions that could...
virtual std::optional< ParamLoadedValue > describeLoadedValue(const MachineInstr &MI, Register Reg) const
Produce the expression describing the MI loading a value into the physical register Reg.
virtual bool getMachineCombinerPatterns(MachineInstr &Root, SmallVectorImpl< unsigned > &Patterns, bool DoRegPressureReduce) const
Return true when there is potentially a faster code sequence for an instruction chain ending in Root.
virtual bool isReMaterializableImpl(const MachineInstr &MI) const
For instructions with opcodes for which the M_REMATERIALIZABLE flag is set, this hook lets the target...
virtual bool isSchedulingBoundary(const MachineInstr &MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const
Test if the given instruction should be considered a scheduling boundary.
virtual MachineInstr * commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned OpIdx1, unsigned OpIdx2) const
This method commutes the operands of the given machine instruction MI.
bool isPositionIndependent() const
CodeModel::Model getCodeModel() const
Returns the code model.
const MCAsmInfo * getMCAsmInfo() const
Return target specific asm information.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
Provide an instruction scheduling machine model to CodeGen passes.
virtual const TargetFrameLowering * getFrameLowering() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
Target - Wrapper for Target specific information.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:344
static constexpr TypeSize getZero()
Definition TypeSize.h:350
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
static LLVM_ABI Type * getFP128Ty(LLVMContext &C)
Definition Type.cpp:290
static LLVM_ABI Type * getDoubleTy(LLVMContext &C)
Definition Type.cpp:286
static LLVM_ABI Type * getFloatTy(LLVMContext &C)
Definition Type.cpp:285
static LLVM_ABI Type * getHalfTy(LLVMContext &C)
Definition Type.cpp:283
SlotIndex def
The index of the defining instruction.
LLVM Value Representation.
Definition Value.h:75
void BuildCFI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, const MCCFIInstruction &CFIInst, MachineInstr::MIFlag Flag=MachineInstr::NoFlags) const
Wraps up getting a CFI index and building a MachineInstr for it.
void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg, MachineInstr::MIFlag Flags=MachineInstr::NoFlags) const override
void getFrameIndexOperands(SmallVectorImpl< MachineOperand > &Ops, int FI) const override
bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask, int64_t CmpValue, const MachineRegisterInfo *MRI) const override
Check if there exists an earlier instruction that operates on the same source operands and sets eflag...
bool getMachineCombinerPatterns(MachineInstr &Root, SmallVectorImpl< unsigned > &Patterns, bool DoRegPressureReduce) const override
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, Register DestReg, Register SrcReg, bool KillSrc, bool RenamableDest=false, bool RenamableSrc=false) const override
bool isSchedulingBoundary(const MachineInstr &MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const override
Overrides the isSchedulingBoundary from Codegen/TargetInstrInfo.cpp to make it capable of identifying...
MachineBasicBlock::iterator insertOutlinedCall(Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, MachineFunction &MF, outliner::Candidate &C) const override
void replaceBranchWithTailCall(MachineBasicBlock &MBB, SmallVectorImpl< MachineOperand > &Cond, const MachineInstr &TailCall) const override
void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, unsigned SubIdx, const MachineInstr &Orig, const TargetRegisterInfo &TRI) const override
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl< MachineOperand > &Cond, bool AllowModify) const override
bool canInsertSelect(const MachineBasicBlock &, ArrayRef< MachineOperand > Cond, Register, Register, Register, int &, int &, int &) const override
void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, Register DstReg, ArrayRef< MachineOperand > Cond, Register TrueReg, Register FalseReg) const override
unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, unsigned *LoadRegIndex=nullptr) const override
bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const override
Returns true iff the routine could find two commutable operands in the given machine instruction.
bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1, int64_t &Offset2) const override
X86InstrInfo(const X86Subtarget &STI)
static bool isDataInvariantLoad(MachineInstr &MI)
Returns true if the instruction has no behavior (specified or otherwise) that is based on the value l...
MachineInstr * commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned CommuteOpIdx1, unsigned CommuteOpIdx2) const override
bool isFunctionSafeToOutlineFrom(MachineFunction &MF, bool OutlineFromLinkOnceODRs) const override
const X86RegisterInfo & getRegisterInfo() const
getRegisterInfo - TargetInstrInfo is a superset of MRegister info.
bool hasCommutePreference(MachineInstr &MI, bool &Commute) const override
Returns true if we have preference on the operands order in MI, the commute decision is returned in C...
bool hasLiveCondCodeDef(MachineInstr &MI) const
True if MI has a condition code def, e.g.
std::optional< ParamLoadedValue > describeLoadedValue(const MachineInstr &MI, Register Reg) const override
bool canMakeTailCallConditional(SmallVectorImpl< MachineOperand > &Cond, const MachineInstr &TailCall) const override
bool getMemOperandsWithOffsetWidth(const MachineInstr &LdSt, SmallVectorImpl< const MachineOperand * > &BaseOps, int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, const TargetRegisterInfo *TRI) const override
bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, Register Reg, bool UnfoldLoad, bool UnfoldStore, SmallVectorImpl< MachineInstr * > &NewMIs) const override
std::optional< DestSourcePair > isCopyInstrImpl(const MachineInstr &MI) const override
MachineInstr * convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, LiveIntervals *LIS) const override
convertToThreeAddress - This method must be implemented by targets that set the M_CONVERTIBLE_TO_3_AD...
std::pair< unsigned, unsigned > decomposeMachineOperandsTargetFlags(unsigned TF) const override
bool expandPostRAPseudo(MachineInstr &MI) const override
bool isAssociativeAndCommutative(const MachineInstr &Inst, bool Invert) const override
MCInst getNop() const override
Return the noop instruction to use for a noop.
outliner::InstrType getOutliningTypeImpl(const MachineModuleInfo &MMI, MachineBasicBlock::iterator &MIT, unsigned Flags) const override
bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1, int64_t Offset2, unsigned NumLoads) const override
This is a used by the pre-regalloc scheduler to determine (in conjunction with areLoadsFromSameBasePt...
MachineInstr * foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, ArrayRef< unsigned > Ops, MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS=nullptr, VirtRegMap *VRM=nullptr) const override
Fold a load or store of the specified stack slot into the specified machine instruction for the speci...
bool analyzeCompare(const MachineInstr &MI, Register &SrcReg, Register &SrcReg2, int64_t &CmpMask, int64_t &CmpValue) const override
bool getConstValDefinedInReg(const MachineInstr &MI, const Register Reg, int64_t &ImmVal) const override
std::optional< ExtAddrMode > getAddrModeFromMemoryOp(const MachineInstr &MemI, const TargetRegisterInfo *TRI) const override
Register isStoreToStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const override
isStoreToStackSlotPostFE - Check for post-frame ptr elimination stack locations as well.
bool isUnconditionalTailCall(const MachineInstr &MI) const override
bool reverseBranchCondition(SmallVectorImpl< MachineOperand > &Cond) const override
std::optional< std::unique_ptr< outliner::OutlinedFunction > > getOutliningCandidateInfo(const MachineModuleInfo &MMI, std::vector< outliner::Candidate > &RepeatedSequenceLocs, unsigned MinRepeats) const override
bool classifyLEAReg(MachineInstr &MI, const MachineOperand &Src, unsigned LEAOpcode, bool AllowSP, Register &NewSrc, unsigned &NewSrcSubReg, bool &isKill, MachineOperand &ImplicitOp, LiveVariables *LV, LiveIntervals *LIS) const
Given an operand within a MachineInstr, insert preceding code to put it into the right format for a p...
Register isLoadFromStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const override
isLoadFromStackSlotPostFE - Check for post-frame ptr elimination stack locations as well.
void setExecutionDomain(MachineInstr &MI, unsigned Domain) const override
void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg, MachineInstr::MIFlag Flags=MachineInstr::NoFlags) const override
const TargetRegisterClass * getRegClass(const MCInstrDesc &MCID, unsigned OpNum, const TargetRegisterInfo *TRI) const override
Given a machine instruction descriptor, returns the register class constraint for OpNum,...
unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef< MachineOperand > Cond, const DebugLoc &DL, int *BytesAdded=nullptr) const override
ArrayRef< std::pair< unsigned, const char * > > getSerializableDirectMachineOperandTargetFlags() const override
Register isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const override
bool setExecutionDomainCustom(MachineInstr &MI, unsigned Domain) const
int getSPAdjust(const MachineInstr &MI) const override
getSPAdjust - This returns the stack pointer adjustment made by this instruction.
bool verifyInstruction(const MachineInstr &MI, StringRef &ErrInfo) const override
bool isReMaterializableImpl(const MachineInstr &MI) const override
Register getGlobalBaseReg(MachineFunction *MF) const
getGlobalBaseReg - Return a virtual register initialized with the the global base register value.
int getJumpTableIndex(const MachineInstr &MI) const override
void insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const override
void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2, MachineInstr &NewMI1, MachineInstr &NewMI2) const override
This is an architecture-specific helper function of reassociateOps.
std::pair< uint16_t, uint16_t > getExecutionDomain(const MachineInstr &MI) const override
bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg, Register &DstReg, unsigned &SubIdx) const override
isCoalescableExtInstr - Return true if the instruction is a "coalescable" extension instruction.
void loadStoreTileReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned Opc, Register Reg, int FrameIdx, bool isKill=false) const
void genAlternativeCodeSequence(MachineInstr &Root, unsigned Pattern, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs, DenseMap< Register, unsigned > &InstrIdxForVirtReg) const override
When getMachineCombinerPatterns() finds potential patterns, this function generates the instructions ...
bool hasReassociableOperands(const MachineInstr &Inst, const MachineBasicBlock *MBB) const override
bool analyzeBranchPredicate(MachineBasicBlock &MBB, TargetInstrInfo::MachineBranchPredicate &MBP, bool AllowModify=false) const override
static bool isDataInvariant(MachineInstr &MI)
Returns true if the instruction has no behavior (specified or otherwise) that is based on the value o...
unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const override
Inform the BreakFalseDeps pass how many idle instructions we would like before certain undef register...
void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const override
void buildClearRegister(Register Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator Iter, DebugLoc &DL, bool AllowSideEffects=true) const override
Register isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const override
int64_t getFrameAdjustment(const MachineInstr &I) const
Returns the stack pointer adjustment that happens inside the frame setup..destroy sequence (e....
bool hasHighOperandLatency(const TargetSchedModel &SchedModel, const MachineRegisterInfo *MRI, const MachineInstr &DefMI, unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const override
bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override
uint16_t getExecutionDomainCustom(const MachineInstr &MI) const
bool isHighLatencyDef(int opc) const override
void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF, const outliner::OutlinedFunction &OF) const override
bool foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg, MachineRegisterInfo *MRI) const override
foldImmediate - 'Reg' is known to be defined by a move immediate instruction, try to fold the immedia...
unsigned removeBranch(MachineBasicBlock &MBB, int *BytesRemoved=nullptr) const override
unsigned getFMA3OpcodeToCommuteOperands(const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2, const X86InstrFMA3Group &FMA3Group) const
Returns an adjusted FMA opcode that must be used in FMA instruction that performs the same computatio...
bool preservesZeroValueInReg(const MachineInstr *MI, const Register NullValueReg, const TargetRegisterInfo *TRI) const override
unsigned getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const override
Inform the BreakFalseDeps pass how many idle instructions we would like before a partial register upd...
X86MachineFunctionInfo - This class is derived from MachineFunction and contains private X86 target-s...
const TargetRegisterClass * constrainRegClassToNonRex2(const TargetRegisterClass *RC) const
bool isPICStyleGOT() const
const X86InstrInfo * getInstrInfo() const override
bool hasAVX512() const
const X86RegisterInfo * getRegisterInfo() const override
bool hasAVX() const
const X86FrameLowering * getFrameLowering() const override
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
@ Implicit
Not emitted register (e.g. carry, or temporary result).
@ Define
Register definition.
@ Kill
The last use of a register.
@ Undef
Value of the register doesn't matter.
@ X86
Windows x64, Windows Itanium (IA-64)
Definition MCAsmInfo.h:50
X86II - This namespace holds all of the target specific flags that instruction info tracks.
bool isKMergeMasked(uint64_t TSFlags)
bool hasNewDataDest(uint64_t TSFlags)
@ MO_GOT_ABSOLUTE_ADDRESS
MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a relocation of: SYMBOL_LABEL + [.
@ MO_INDNTPOFF
MO_INDNTPOFF - On a symbol operand this indicates that the immediate is the absolute address of the G...
@ MO_GOTNTPOFF
MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is the offset of the GOT entry w...
@ MO_GOTTPOFF
MO_GOTTPOFF - On a symbol operand this indicates that the immediate is the offset of the GOT entry wi...
@ MO_PIC_BASE_OFFSET
MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the immediate should get the value of th...
@ MO_GOTPCREL
MO_GOTPCREL - On a symbol operand this indicates that the immediate is offset to the GOT entry for th...
@ EVEX
EVEX - Specifies that this instruction use EVEX form which provides syntax support up to 32 512-bit r...
@ SSEDomainShift
Execution domain for SSE instructions.
bool canUseApxExtendedReg(const MCInstrDesc &Desc)
bool isPseudo(uint64_t TSFlags)
bool isKMasked(uint64_t TSFlags)
int getMemoryOperandNo(uint64_t TSFlags)
unsigned getOperandBias(const MCInstrDesc &Desc)
Compute whether all of the def operands are repeated in the uses and therefore should be skipped.
Define some predicates that are used for node matching.
CondCode getCondFromBranch(const MachineInstr &MI)
CondCode getCondFromCFCMov(const MachineInstr &MI)
@ LAST_VALID_COND
Definition X86BaseInfo.h:94
CondCode getCondFromMI(const MachineInstr &MI)
Return the condition code of the instruction.
int getFirstAddrOperandIdx(const MachineInstr &MI)
Return the index of the instruction's first address operand, if it has a memory reference,...
@ AddrNumOperands
Definition X86BaseInfo.h:36
unsigned getSwappedVCMPImm(unsigned Imm)
Get the VCMP immediate if the opcodes are swapped.
CondCode GetOppositeBranchCondition(CondCode CC)
GetOppositeBranchCondition - Return the inverse of the specified cond, e.g.
unsigned getSwappedVPCOMImm(unsigned Imm)
Get the VPCOM immediate if the opcodes are swapped.
bool isX87Instruction(MachineInstr &MI)
Check if the instruction is X87 instruction.
unsigned getNonNDVariant(unsigned Opc)
unsigned getVPCMPImmForCond(ISD::CondCode CC)
Get the VPCMP immediate for the given condition.
std::pair< CondCode, bool > getX86ConditionCode(CmpInst::Predicate Predicate)
Return a pair of condition code for the given predicate and whether the instruction operands should b...
CondCode getCondFromSETCC(const MachineInstr &MI)
unsigned getSwappedVPCMPImm(unsigned Imm)
Get the VPCMP immediate if the opcodes are swapped.
CondCode getCondFromCCMP(const MachineInstr &MI)
int getCCMPCondFlagsFromCondCode(CondCode CC)
int getCondSrcNoFromDesc(const MCInstrDesc &MCID)
Return the source operand # for condition code by MCID.
const Constant * getConstantFromPool(const MachineInstr &MI, unsigned OpNo)
Find any constant pool entry associated with a specific instruction operand.
unsigned getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand=false, bool HasNDD=false)
Return a cmov opcode for the given register size in bytes, and operand type.
unsigned getNFVariant(unsigned Opc)
unsigned getVectorRegisterWidth(const MCOperandInfo &Info)
Get the width of the vector register operand.
CondCode getCondFromCMov(const MachineInstr &MI)
initializer< Ty > init(const Ty &Val)
InstrType
Represents how an instruction should be mapped by the outliner.
NodeAddr< NodeBase * > Node
Definition RDFGraph.h:381
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
@ Offset
Definition DWP.cpp:477
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1725
static bool isAddMemInstrWithRelocation(const MachineInstr &MI)
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
Definition MathExtras.h:165
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
static bool isMem(const MachineInstr &MI, unsigned Op)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
bool isAligned(Align Lhs, uint64_t SizeInBytes)
Checks that SizeInBytes is a multiple of the alignment.
Definition Alignment.h:134
MCRegister getX86SubSuperRegister(MCRegister Reg, unsigned Size, bool High=false)
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
FunctionPass * createX86GlobalBaseRegPass()
This pass initializes a global base register for PIC on x86-32.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2136
static const MachineInstrBuilder & addRegReg(const MachineInstrBuilder &MIB, Register Reg1, bool isKill1, unsigned SubReg1, Register Reg2, bool isKill2, unsigned SubReg2)
addRegReg - This function is used to add a memory reference of the form: [Reg + Reg].
unsigned getDeadRegState(bool B)
static const MachineInstrBuilder & addFrameReference(const MachineInstrBuilder &MIB, int FI, int Offset=0, bool mem=true)
addFrameReference - This function is used to add a reference to the base of an abstract object on the...
FunctionPass * createCleanupLocalDynamicTLSPass()
This pass combines multiple accesses to local-dynamic TLS variables so that the TLS base address for ...
Op::Description Desc
constexpr int popcount(T Value) noexcept
Count the number of set bits in a value.
Definition bit.h:154
const X86FoldTableEntry * lookupBroadcastFoldTable(unsigned RegOp, unsigned OpNum)
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition bit.h:202
const X86InstrFMA3Group * getFMA3Group(unsigned Opcode, uint64_t TSFlags)
Returns a reference to a group of FMA3 opcodes to where the given Opcode is included.
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
MachineInstr * getImm(const MachineOperand &MO, const MachineRegisterInfo *MRI)
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1739
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
const X86FoldTableEntry * lookupTwoAddrFoldTable(unsigned RegOp)
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
bool is_sorted(R &&Range, Compare C)
Wrapper function around std::is_sorted to check if elements in a range R are sorted with respect to a...
Definition STLExtras.h:1920
constexpr bool isUInt(uint64_t x)
Checks if an unsigned integer fits into the given bit width.
Definition MathExtras.h:189
DomTreeNodeBase< MachineBasicBlock > MachineDomTreeNode
static bool isMemInstrWithGOTPCREL(const MachineInstr &MI)
static const MachineInstrBuilder & addOffset(const MachineInstrBuilder &MIB, int Offset)
unsigned getUndefRegState(bool B)
unsigned getRegState(const MachineOperand &RegOp)
Get all register state flags from machine operand RegOp.
unsigned getDefRegState(bool B)
auto lower_bound(R &&Range, T &&Value)
Provide wrappers to std::lower_bound which take ranges instead of having to pass begin/end explicitly...
Definition STLExtras.h:1994
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
unsigned getKillRegState(bool B)
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
FunctionAddr VTableAddr Next
Definition InstrProf.h:141
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
const X86FoldTableEntry * lookupUnfoldTable(unsigned MemOp)
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
bool matchBroadcastSize(const X86FoldTableEntry &Entry, unsigned BroadcastBits)
std::pair< MachineOperand, DIExpression * > ParamLoadedValue
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
Definition Sequence.h:305
const X86FoldTableEntry * lookupFoldTable(unsigned RegOp, unsigned OpNum)
static const MachineInstrBuilder & addRegOffset(const MachineInstrBuilder &MIB, Register Reg, bool isKill, int Offset)
addRegOffset - This function is used to add a memory reference of the form [Reg + Offset],...
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:869
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Extended Value Type.
Definition ValueTypes.h:35
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare.
This represents a simple continuous liveness interval for a value.
std::vector< MachineInstr * > Kills
Kills - List of MachineInstruction's which are the last use of this virtual register (kill it) in the...
static LLVM_ABI MachinePointerInfo getGOT(MachineFunction &MF)
Return a MachinePointerInfo record that refers to a GOT entry.
X86AddressMode - This struct holds a generalized full x86 address mode.
enum llvm::X86AddressMode::@202116273335065351270200035056227005202106004277 BaseType
This class is used to group {132, 213, 231} forms of FMA opcodes together.
unsigned get213Opcode() const
Returns the 213 form of FMA opcode.
unsigned get231Opcode() const
Returns the 231 form of FMA opcode.
bool isIntrinsic() const
Returns true iff the group of FMA opcodes holds intrinsic opcodes.
unsigned get132Opcode() const
Returns the 132 form of FMA opcode.
An individual sequence of instructions to be replaced with a call to an outlined function.
The information necessary to create an outlined function for some class of candidate.