28#include "llvm/IR/IntrinsicsAArch64.h"
31#include <initializer_list>
33#define DEBUG_TYPE "aarch64-legalinfo"
67 std::initializer_list<LLT> PackedVectorAllTypeList = {
73 std::initializer_list<LLT> ScalarAndPtrTypesList = {s8, s16, s32, s64, p0};
77 const TargetMachine &TM = ST.getTargetLowering()->getTargetMachine();
80 if (!ST.hasNEON() || !ST.hasFPARMv8()) {
87 const bool HasFP16 = ST.hasFullFP16();
88 const LLT &MinFPScalar = HasFP16 ? s16 : s32;
90 const bool HasCSSC = ST.hasCSSC();
91 const bool HasRCPC3 = ST.hasRCPC3();
92 const bool HasSVE = ST.hasSVE();
95 {G_IMPLICIT_DEF, G_FREEZE, G_CONSTANT_FOLD_BARRIER})
96 .legalFor({p0, s8, s16, s32, s64})
97 .legalFor({v2s8, v4s8, v8s8, v16s8, v2s16, v4s16, v8s16, v2s32, v4s32,
99 .widenScalarToNextPow2(0)
112 .legalFor(PackedVectorAllTypeList)
126 .widenScalarToNextPow2(0)
131 .maxScalarIf(
typeInSet(0, {s64, p0}), 1, s32);
136 .widenScalarToNextPow2(1)
141 .maxScalarIf(
typeInSet(1, {s64, p0}), 0, s32)
142 .maxScalarIf(
typeInSet(1, {s128}), 0, s64);
145 .legalFor({s32, s64, v8s8, v16s8, v4s16, v8s16, v2s32, v4s32, v2s64})
146 .legalFor(HasSVE, {nxv16s8, nxv8s16, nxv4s32, nxv2s64})
147 .widenScalarToNextPow2(0)
155 return Query.
Types[0].getNumElements() <= 2;
160 return Query.
Types[0].getNumElements() <= 4;
165 return Query.
Types[0].getNumElements() <= 16;
172 .
legalFor({s32, s64, v8s8, v16s8, v4s16, v8s16, v2s32, v4s32, v2s64})
173 .widenScalarToNextPow2(0)
181 return Query.
Types[0].getNumElements() <= 2;
186 return Query.
Types[0].getNumElements() <= 4;
191 return Query.
Types[0].getNumElements() <= 16;
199 const auto &SrcTy = Query.
Types[0];
200 const auto &AmtTy = Query.
Types[1];
201 return !SrcTy.isVector() && SrcTy.getSizeInBits() == 32 &&
202 AmtTy.getSizeInBits() == 32;
216 .widenScalarToNextPow2(0)
230 .
legalFor({{p0, s64}, {v2p0, v2s64}})
231 .clampScalarOrElt(1, s64, s64)
237 .legalFor({s32, s64})
239 .clampScalar(0, s32, s64)
244 .lowerFor({s8, s16, s32, s64, v2s32, v4s32, v2s64})
253 .widenScalarToNextPow2(0, 32)
258 .legalFor({s64, v16s8, v8s16, v4s32})
262 .legalFor({v8s8, v16s8, v4s16, v8s16, v2s32, v4s32})
263 .legalFor(HasCSSC, {s32, s64})
264 .minScalar(HasCSSC, 0, s32)
273 .legalFor(PackedVectorAllTypeList)
277 return SrcTy.isScalar() && SrcTy.getSizeInBits() < 128;
281 [=](
const LegalityQuery &Query) {
return std::make_pair(0, v4s16); })
284 [=](
const LegalityQuery &Query) {
return std::make_pair(0, v2s32); })
285 .clampNumElements(0, v8s8, v16s8)
293 .legalFor({v8s8, v16s8, v4s16, v8s16, v2s32, v4s32})
297 {G_SADDE, G_SSUBE, G_UADDE, G_USUBE, G_SADDO, G_SSUBO, G_UADDO, G_USUBO})
298 .legalFor({{s32, s32}, {s64, s32}})
299 .clampScalar(0, s32, s64)
304 .customFor({{s32, s32}, {s32, s64}, {s64, s64}})
310 return Q.
Types[0].isScalar() && Q.
Types[1].getScalarSizeInBits() < 64;
316 .customFor({{s32, s32}, {s64, s64}});
320 .
legalFor(HasCSSC, {{s32, s32}, {s64, s64}})
321 .legalFor({{v8s8, v8s8}, {v16s8, v16s8}})
322 .customFor(!HasCSSC, {{s32, s32}, {s64, s64}})
323 .customFor({{s128, s128},
329 .clampScalar(0, s32, s128)
349 .widenScalarToNextPow2(1, 32)
366 .customFor(!HasCSSC, {s32, s64});
372 .widenScalarToNextPow2(0, 32)
384 .
legalFor({s32, s64, v4s16, v8s16, v2s32, v4s32, v2s64})
393 .legalFor({v8s8, v16s8, v4s16, v8s16, v2s32, v4s32, v2s64})
394 .legalFor(HasSVE, {nxv16s8, nxv8s16, nxv4s32, nxv2s64})
395 .clampNumElements(0, v8s8, v16s8)
404 {G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FMA, G_FSQRT, G_FMAXNUM, G_FMINNUM,
405 G_FMAXIMUM, G_FMINIMUM, G_FCEIL, G_FFLOOR, G_FRINT, G_FNEARBYINT,
406 G_INTRINSIC_TRUNC, G_INTRINSIC_ROUND, G_INTRINSIC_ROUNDEVEN})
407 .legalFor({s32, s64, v2s32, v4s32, v2s64})
408 .legalFor(HasFP16, {s16, v4s16, v8s16})
418 .legalFor({s32, s64, v2s32, v4s32, v2s64})
419 .legalFor(HasFP16, {s16, v4s16, v8s16})
434 .legalFor({{s64, MinFPScalar}, {s64, s32}, {s64, s64}})
435 .libcallFor({{s64, s128}})
436 .minScalarOrElt(1, MinFPScalar);
439 G_FLOG10, G_FTAN, G_FEXP, G_FEXP2, G_FEXP10,
440 G_FACOS, G_FASIN, G_FATAN, G_FATAN2, G_FCOSH,
441 G_FSINH, G_FTANH, G_FMODF})
450 .
libcallFor({{s32, s32}, {s64, s32}, {s128, s32}});
455 .legalFor({{s64, s32}, {s64, s64}});
469 for (
unsigned Op : {G_SEXTLOAD, G_ZEXTLOAD}) {
472 if (
Op == G_SEXTLOAD)
477 .legalForTypesWithMemDesc({{s32, p0, s8, 8},
485 {v2s32, p0, s64, 8}})
486 .widenScalarToNextPow2(0)
487 .clampScalar(0, s32, s64)
490 .unsupportedIfMemSizeNotPow2()
497 return ValTy.isPointerVector() && ValTy.getAddressSpace() == 0;
502 return HasRCPC3 && Query.
Types[0] == s128 &&
506 return Query.
Types[0] == s128 &&
509 .legalForTypesWithMemDesc({{s8, p0, s8, 8},
516 {v16s8, p0, s128, 8},
518 {v8s16, p0, s128, 8},
520 {v4s32, p0, s128, 8},
521 {v2s64, p0, s128, 8}})
523 .legalForTypesWithMemDesc(
524 {{s32, p0, s8, 8}, {s32, p0, s16, 8}, {s64, p0, s32, 8}})
525 .legalForTypesWithMemDesc({
527 {nxv16s8, p0, nxv16s8, 8},
528 {nxv8s16, p0, nxv8s16, 8},
529 {nxv4s32, p0, nxv4s32, 8},
530 {nxv2s64, p0, nxv2s64, 8},
532 .widenScalarToNextPow2(0, 8)
543 return Query.
Types[0].isScalar() &&
545 Query.
Types[0].getSizeInBits() > 32;
554 .customIf(IsPtrVecPred)
560 return HasRCPC3 && Query.
Types[0] == s128 &&
564 return Query.
Types[0] == s128 &&
567 .legalForTypesWithMemDesc(
568 {{s8, p0, s8, 8}, {s16, p0, s8, 8},
571 {s16, p0, s16, 8}, {s32, p0, s16, 8},
573 {s32, p0, s8, 8}, {s32, p0, s16, 8}, {s32, p0, s32, 8},
574 {s64, p0, s64, 8}, {s64, p0, s32, 8},
575 {p0, p0, s64, 8}, {s128, p0, s128, 8}, {v16s8, p0, s128, 8},
576 {v8s8, p0, s64, 8}, {v4s16, p0, s64, 8}, {v8s16, p0, s128, 8},
577 {v2s32, p0, s64, 8}, {v4s32, p0, s128, 8}, {v2s64, p0, s128, 8}})
578 .legalForTypesWithMemDesc({
583 {nxv16s8, p0, nxv16s8, 8},
584 {nxv8s16, p0, nxv8s16, 8},
585 {nxv4s32, p0, nxv4s32, 8},
586 {nxv2s64, p0, nxv2s64, 8},
588 .clampScalar(0, s8, s64)
591 return Query.
Types[0].isScalar() &&
595 .clampMaxNumElements(0, s8, 16)
604 return Query.
Types[0].getSizeInBits() ==
605 Query.
MMODescrs[0].MemoryTy.getSizeInBits();
611 .customIf(IsPtrVecPred)
629 {p0, v16s8, v16s8, 8},
630 {p0, v4s16, v4s16, 8},
631 {p0, v8s16, v8s16, 8},
632 {p0, v2s32, v2s32, 8},
633 {p0, v4s32, v4s32, 8},
634 {p0, v2s64, v2s64, 8},
640 auto IndexedLoadBasicPred = [=](
const LegalityQuery &Query) {
668 return MemTy == s8 || MemTy == s16;
670 return MemTy == s8 || MemTy == s16 || MemTy == s32;
678 .widenScalarToNextPow2(0)
683 .clampScalar(0, MinFPScalar, s128);
687 .
legalFor({{s32, s32}, {s32, s64}, {s32, p0}})
696 return Ty.isVector() && !SrcTy.isPointerVector() &&
697 Ty.getElementType() != SrcTy.getElementType();
705 return Query.
Types[1].isPointerVector();
722 .legalFor(HasFP16, {{s32, s16}, {v4s16, v4s16}, {v8s16, v8s16}})
731 return Ty.isVector() && !SrcTy.isPointerVector() &&
732 Ty.getElementType() != SrcTy.getElementType();
735 .clampNumElements(1, v4s16, v8s16)
743 unsigned DstSize = Query.
Types[0].getSizeInBits();
746 if (Query.
Types[0].isVector())
749 if (DstSize < 8 || DstSize >= 128 || !
isPowerOf2_32(DstSize))
757 unsigned SrcSize = SrcTy.getSizeInBits();
764 .legalIf(ExtLegalFunc)
765 .
legalFor({{v8s16, v8s8}, {v4s32, v4s16}, {v2s64, v2s32}})
766 .clampScalar(0, s64, s64)
773 return (Query.
Types[0].getScalarSizeInBits() >
774 Query.
Types[1].getScalarSizeInBits() * 2) &&
775 Query.
Types[0].isVector() &&
776 (Query.
Types[1].getScalarSizeInBits() == 8 ||
777 Query.
Types[1].getScalarSizeInBits() == 16);
779 .clampMinNumElements(1, s8, 8)
784 .
legalFor({{v8s8, v8s16}, {v4s16, v4s32}, {v2s32, v2s64}})
795 return DstTy.
isVector() && SrcTy.getSizeInBits() > 128 &&
798 .clampMinNumElements(0, s8, 8)
803 .legalFor({{v8s8, v8s16}, {v4s16, v4s32}, {v2s32, v2s64}});
807 .legalFor(PackedVectorAllTypeList)
818 {{s16, s32}, {s16, s64}, {s32, s64}, {v4s16, v4s32}, {v2s32, v2s64}})
819 .libcallFor({{s16, s128}, {s32, s128}, {s64, s128}})
820 .clampNumElements(0, v4s16, v4s16)
826 {{s32, s16}, {s64, s16}, {s64, s32}, {v4s32, v4s16}, {v2s64, v2s32}})
827 .libcallFor({{s128, s64}, {s128, s32}, {s128, s16}})
828 .clampNumElements(0, v4s32, v4s32)
834 .legalFor({{s32, s32},
842 {{s32, s16}, {s64, s16}, {v4s16, v4s16}, {v8s16, v8s16}})
849 return Query.
Types[1] == s16 && Query.
Types[0].getSizeInBits() > 64;
858 return Query.
Types[0].getScalarSizeInBits() <= 64 &&
859 Query.
Types[0].getScalarSizeInBits() >
860 Query.
Types[1].getScalarSizeInBits();
865 return Query.
Types[1].getScalarSizeInBits() <= 64 &&
866 Query.
Types[0].getScalarSizeInBits() <
867 Query.
Types[1].getScalarSizeInBits();
870 .clampNumElements(0, v4s16, v8s16)
874 {{s32, s128}, {s64, s128}, {s128, s128}, {s128, s32}, {s128, s64}});
877 .legalFor({{s32, s32},
886 {{s16, s16}, {s32, s16}, {s64, s16}, {v4s16, v4s16}, {v8s16, v8s16}})
894 return Query.
Types[1] == s16 && Query.
Types[0].getSizeInBits() > 64;
904 unsigned ITySize = Query.
Types[0].getScalarSizeInBits();
905 return (ITySize == 16 || ITySize == 32 || ITySize == 64) &&
906 ITySize > Query.
Types[1].getScalarSizeInBits();
911 unsigned FTySize = Query.
Types[1].getScalarSizeInBits();
912 return (FTySize == 16 || FTySize == 32 || FTySize == 64) &&
913 Query.
Types[0].getScalarSizeInBits() < FTySize;
922 .legalFor({{s32, s32},
930 {{s16, s32}, {s16, s64}, {v4s16, v4s16}, {v8s16, v8s16}})
937 return Query.
Types[1].isVector() &&
938 Query.
Types[1].getScalarSizeInBits() == 64 &&
939 Query.
Types[0].getScalarSizeInBits() == 16;
941 .widenScalarOrEltToNextPow2OrMinSize(0, HasFP16 ? 16 : 32)
945 return Query.
Types[0].getScalarSizeInBits() == 32 &&
946 Query.
Types[1].getScalarSizeInBits() == 64;
951 return Query.
Types[1].getScalarSizeInBits() <= 64 &&
952 Query.
Types[0].getScalarSizeInBits() <
953 Query.
Types[1].getScalarSizeInBits();
958 return Query.
Types[0].getScalarSizeInBits() <= 64 &&
959 Query.
Types[0].getScalarSizeInBits() >
960 Query.
Types[1].getScalarSizeInBits();
963 .clampNumElements(0, v4s16, v8s16)
977 .clampScalar(0, s32, s32);
981 .
legalFor({{s32, s32}, {s64, s32}, {p0, s32}})
982 .widenScalarToNextPow2(0)
1001 .
legalFor({{s64, p0}, {v2s64, v2p0}})
1002 .widenScalarToNextPow2(0, 64)
1008 return Query.
Types[0].getSizeInBits() != Query.
Types[1].getSizeInBits();
1010 .legalFor({{p0, s64}, {v2p0, v2s64}})
1011 .clampMaxNumElements(1, s64, 2);
1018 .legalForCartesianProduct({s64, v8s8, v4s16, v2s32})
1019 .legalForCartesianProduct({s128, v16s8, v8s16, v4s32, v2s64, v2p0})
1024 return DstTy.
isScalar() && SrcTy.isVector() &&
1025 SrcTy.getScalarSizeInBits() == 1;
1028 return Query.
Types[0].isVector() != Query.
Types[1].isVector();
1042 .clampScalar(0, s8, s64)
1049 bool UseOutlineAtomics = ST.outlineAtomics() && !ST.hasLSE();
1052 .
legalFor(!UseOutlineAtomics, {{s32, p0}, {s64, p0}})
1053 .customFor(!UseOutlineAtomics, {{s128, p0}})
1054 .libcallFor(UseOutlineAtomics,
1055 {{s8, p0}, {s16, p0}, {s32, p0}, {s64, p0}, {s128, p0}})
1056 .clampScalar(0, s32, s64);
1059 G_ATOMICRMW_SUB, G_ATOMICRMW_AND, G_ATOMICRMW_OR,
1061 .legalFor(!UseOutlineAtomics, {{s32, p0}, {s64, p0}})
1062 .libcallFor(UseOutlineAtomics,
1063 {{s8, p0}, {s16, p0}, {s32, p0}, {s64, p0}})
1064 .clampScalar(0, s32, s64);
1069 {G_ATOMICRMW_MIN, G_ATOMICRMW_MAX, G_ATOMICRMW_UMIN, G_ATOMICRMW_UMAX})
1071 .clampScalar(0, s32, s64);
1076 for (
unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
1077 unsigned BigTyIdx =
Op == G_MERGE_VALUES ? 0 : 1;
1078 unsigned LitTyIdx =
Op == G_MERGE_VALUES ? 1 : 0;
1085 switch (Q.
Types[BigTyIdx].getSizeInBits()) {
1093 switch (Q.
Types[LitTyIdx].getSizeInBits()) {
1107 .
legalFor(HasSVE, {{s16, nxv16s8, s64},
1108 {s16, nxv8s16, s64},
1109 {s32, nxv4s32, s64},
1110 {s64, nxv2s64, s64}})
1112 const LLT &EltTy = Query.
Types[1].getElementType();
1113 if (Query.
Types[1].isScalableVector())
1115 return Query.
Types[0] != EltTy;
1120 return VecTy == v8s8 || VecTy == v16s8 || VecTy == v2s16 ||
1121 VecTy == v4s16 || VecTy == v8s16 || VecTy == v2s32 ||
1122 VecTy == v4s32 || VecTy == v2s64 || VecTy == v2p0;
1128 return Query.
Types[1].isFixedVector() &&
1129 Query.
Types[1].getNumElements() <= 2;
1134 return Query.
Types[1].isFixedVector() &&
1135 Query.
Types[1].getNumElements() <= 4;
1140 return Query.
Types[1].isFixedVector() &&
1141 Query.
Types[1].getNumElements() <= 8;
1146 return Query.
Types[1].isFixedVector() &&
1147 Query.
Types[1].getNumElements() <= 16;
1150 .minScalarOrElt(0, s8)
1161 typeInSet(0, {v8s8, v16s8, v4s16, v8s16, v2s32, v4s32, v2s64, v2p0}))
1162 .legalFor(HasSVE, {{nxv16s8, s32, s64},
1163 {nxv8s16, s32, s64},
1164 {nxv4s32, s32, s64},
1165 {nxv2s64, s64, s64}})
1184 .clampNumElements(0, v4s32, v4s32)
1202 {v8s8, v16s8, v4s16, v8s16, v2s32, v4s32, v2s64}, DstTy);
1206 return Query.
Types[0].getNumElements() >
1207 Query.
Types[1].getNumElements();
1213 return Query.
Types[0].getNumElements() <
1214 Query.
Types[1].getNumElements();
1217 .widenScalarOrEltToNextPow2OrMinSize(0, 8)
1230 .
legalFor({{v16s8, v8s8}, {v8s16, v4s16}, {v4s32, v2s32}})
1233 return Query.
Types[0].getSizeInBits() <= 128 &&
1234 Query.
Types[1].getSizeInBits() <= 64;
1243 SrcTy.getNumElements())));
1247 .
legalFor({{v8s8, v16s8}, {v4s16, v8s16}, {v2s32, v4s32}})
1253 .
legalFor(HasSVE, {{nxv4s32, s32}, {nxv2s64, s64}});
1272 .customForCartesianProduct({p0}, {s8}, {s64})
1276 .legalForCartesianProduct({p0}, {p0}, {s64})
1292 .
legalFor({{s32, v2s32}, {s32, v4s32}, {s64, v2s64}})
1293 .legalFor(HasFP16, {{s16, v4s16}, {s16, v8s16}})
1294 .minScalarOrElt(0, MinFPScalar)
1336 G_VECREDUCE_FMINIMUM, G_VECREDUCE_FMAXIMUM})
1337 .legalFor({{s32, v2s32}, {s32, v4s32}, {s64, v2s64}})
1338 .legalFor(HasFP16, {{s16, v4s16}, {s16, v8s16}})
1339 .minScalarOrElt(0, MinFPScalar)
1354 {G_VECREDUCE_SMIN, G_VECREDUCE_SMAX, G_VECREDUCE_UMIN, G_VECREDUCE_UMAX})
1355 .legalFor({{s8, v8s8},
1363 return Query.
Types[1].isVector() &&
1364 Query.
Types[1].getElementType() != s8 &&
1365 Query.
Types[1].getNumElements() & 1;
1368 .clampMaxNumElements(1, s64, 2)
1376 {G_VECREDUCE_OR, G_VECREDUCE_AND, G_VECREDUCE_XOR})
1383 if (SrcTy.isScalar())
1388 return SrcTy.getSizeInBits() > 64;
1392 return std::make_pair(1, SrcTy.divide(2));
1402 G_GET_FPMODE, G_SET_FPMODE, G_RESET_FPMODE})
1412 verify(*ST.getInstrInfo());
1421 switch (
MI.getOpcode()) {
1425 case TargetOpcode::G_VAARG:
1426 return legalizeVaArg(
MI,
MRI, MIRBuilder);
1427 case TargetOpcode::G_LOAD:
1428 case TargetOpcode::G_STORE:
1429 return legalizeLoadStore(
MI,
MRI, MIRBuilder, Observer);
1430 case TargetOpcode::G_SHL:
1431 case TargetOpcode::G_ASHR:
1432 case TargetOpcode::G_LSHR:
1433 return legalizeShlAshrLshr(
MI,
MRI, MIRBuilder, Observer);
1434 case TargetOpcode::G_GLOBAL_VALUE:
1435 return legalizeSmallCMGlobalValue(
MI,
MRI, MIRBuilder, Observer);
1436 case TargetOpcode::G_SBFX:
1437 case TargetOpcode::G_UBFX:
1438 return legalizeBitfieldExtract(
MI,
MRI, Helper);
1439 case TargetOpcode::G_FSHL:
1440 case TargetOpcode::G_FSHR:
1441 return legalizeFunnelShift(
MI,
MRI, MIRBuilder, Observer, Helper);
1442 case TargetOpcode::G_ROTR:
1443 return legalizeRotate(
MI,
MRI, Helper);
1444 case TargetOpcode::G_CTPOP:
1445 return legalizeCTPOP(
MI,
MRI, Helper);
1446 case TargetOpcode::G_ATOMIC_CMPXCHG:
1447 return legalizeAtomicCmpxchg128(
MI,
MRI, Helper);
1448 case TargetOpcode::G_CTTZ:
1449 return legalizeCTTZ(
MI, Helper);
1450 case TargetOpcode::G_BZERO:
1451 case TargetOpcode::G_MEMCPY:
1452 case TargetOpcode::G_MEMMOVE:
1453 case TargetOpcode::G_MEMSET:
1454 return legalizeMemOps(
MI, Helper);
1455 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1456 return legalizeExtractVectorElt(
MI,
MRI, Helper);
1457 case TargetOpcode::G_DYN_STACKALLOC:
1458 return legalizeDynStackAlloc(
MI, Helper);
1459 case TargetOpcode::G_PREFETCH:
1460 return legalizePrefetch(
MI, Helper);
1461 case TargetOpcode::G_ABS:
1463 case TargetOpcode::G_ICMP:
1464 return legalizeICMP(
MI,
MRI, MIRBuilder);
1465 case TargetOpcode::G_BITCAST:
1466 return legalizeBitcast(
MI, Helper);
1474 assert(
MI.getOpcode() == TargetOpcode::G_BITCAST &&
"Unexpected opcode");
1475 auto [DstReg, DstTy, SrcReg, SrcTy] =
MI.getFirst2RegLLTs();
1478 if (!DstTy.isScalar() || !SrcTy.isVector() ||
1483 MI.eraseFromParent();
1492 assert(
MI.getOpcode() == TargetOpcode::G_FSHL ||
1493 MI.getOpcode() == TargetOpcode::G_FSHR);
1497 Register ShiftNo =
MI.getOperand(3).getReg();
1498 LLT ShiftTy =
MRI.getType(ShiftNo);
1503 LLT OperationTy =
MRI.getType(
MI.getOperand(0).getReg());
1507 if (!VRegAndVal || VRegAndVal->Value.urem(
BitWidth) == 0)
1513 Amount =
MI.getOpcode() == TargetOpcode::G_FSHL ?
BitWidth - Amount : Amount;
1517 if (ShiftTy.
getSizeInBits() == 64 &&
MI.getOpcode() == TargetOpcode::G_FSHR &&
1524 if (
MI.getOpcode() == TargetOpcode::G_FSHR) {
1526 MI.getOperand(3).setReg(Cast64.getReg(0));
1531 else if (
MI.getOpcode() == TargetOpcode::G_FSHL) {
1532 MIRBuilder.
buildInstr(TargetOpcode::G_FSHR, {
MI.getOperand(0).getReg()},
1533 {
MI.getOperand(1).getReg(),
MI.getOperand(2).getReg(),
1535 MI.eraseFromParent();
1544 Register SrcReg1 =
MI.getOperand(2).getReg();
1545 Register SrcReg2 =
MI.getOperand(3).getReg();
1546 LLT DstTy =
MRI.getType(DstReg);
1547 LLT SrcTy =
MRI.getType(SrcReg1);
1564 MIRBuilder.
buildNot(DstReg, CmpReg);
1566 MI.eraseFromParent();
1576 LLT AmtTy =
MRI.getType(AmtReg);
1582 MI.getOperand(2).setReg(NewAmt.getReg(0));
1587bool AArch64LegalizerInfo::legalizeSmallCMGlobalValue(
1590 assert(
MI.getOpcode() == TargetOpcode::G_GLOBAL_VALUE);
1595 auto &GlobalOp =
MI.getOperand(1);
1597 if (GlobalOp.isSymbol())
1599 const auto* GV = GlobalOp.getGlobal();
1600 if (GV->isThreadLocal())
1603 auto &
TM = ST->getTargetLowering()->getTargetMachine();
1604 unsigned OpFlags = ST->ClassifyGlobalReference(GV, TM);
1609 auto Offset = GlobalOp.getOffset();
1614 MRI.setRegClass(ADRP.getReg(0), &AArch64::GPR64RegClass);
1631 "Should not have folded in an offset for a tagged global!");
1633 .addGlobalAddress(GV, 0x100000000,
1636 MRI.setRegClass(ADRP.getReg(0), &AArch64::GPR64RegClass);
1639 MIRBuilder.
buildInstr(AArch64::G_ADD_LOW, {DstReg}, {ADRP})
1640 .addGlobalAddress(GV,
Offset,
1642 MI.eraseFromParent();
1651 auto LowerUnaryOp = [&
MI, &MIB](
unsigned Opcode) {
1653 MI.eraseFromParent();
1656 auto LowerBinOp = [&
MI, &MIB](
unsigned Opcode) {
1658 {
MI.getOperand(2),
MI.getOperand(3)});
1659 MI.eraseFromParent();
1662 auto LowerTriOp = [&
MI, &MIB](
unsigned Opcode) {
1664 {
MI.getOperand(2),
MI.getOperand(3),
MI.getOperand(4)});
1665 MI.eraseFromParent();
1670 switch (IntrinsicID) {
1671 case Intrinsic::vacopy: {
1672 unsigned PtrSize = ST->isTargetILP32() ? 4 : 8;
1673 unsigned VaListSize =
1674 (ST->isTargetDarwin() || ST->isTargetWindows())
1676 : ST->isTargetILP32() ? 20 : 32;
1684 VaListSize,
Align(PtrSize)));
1688 VaListSize,
Align(PtrSize)));
1689 MI.eraseFromParent();
1692 case Intrinsic::get_dynamic_area_offset: {
1694 MI.eraseFromParent();
1697 case Intrinsic::aarch64_mops_memset_tag: {
1698 assert(
MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
1701 auto &
Value =
MI.getOperand(3);
1703 Value.setReg(ExtValueReg);
1706 case Intrinsic::aarch64_prefetch: {
1707 auto &AddrVal =
MI.getOperand(1);
1709 int64_t IsWrite =
MI.getOperand(2).getImm();
1710 int64_t
Target =
MI.getOperand(3).getImm();
1711 int64_t IsStream =
MI.getOperand(4).getImm();
1712 int64_t IsData =
MI.getOperand(5).getImm();
1714 unsigned PrfOp = (IsWrite << 4) |
1720 MI.eraseFromParent();
1723 case Intrinsic::aarch64_neon_uaddv:
1724 case Intrinsic::aarch64_neon_saddv:
1725 case Intrinsic::aarch64_neon_umaxv:
1726 case Intrinsic::aarch64_neon_smaxv:
1727 case Intrinsic::aarch64_neon_uminv:
1728 case Intrinsic::aarch64_neon_sminv: {
1729 bool IsSigned = IntrinsicID == Intrinsic::aarch64_neon_saddv ||
1730 IntrinsicID == Intrinsic::aarch64_neon_smaxv ||
1731 IntrinsicID == Intrinsic::aarch64_neon_sminv;
1733 auto OldDst =
MI.getOperand(0).getReg();
1734 auto OldDstTy =
MRI.getType(OldDst);
1735 LLT NewDstTy =
MRI.getType(
MI.getOperand(2).getReg()).getElementType();
1736 if (OldDstTy == NewDstTy)
1739 auto NewDst =
MRI.createGenericVirtualRegister(NewDstTy);
1742 MI.getOperand(0).setReg(NewDst);
1746 MIB.
buildExtOrTrunc(IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT,
1751 case Intrinsic::aarch64_neon_uaddlp:
1752 case Intrinsic::aarch64_neon_saddlp: {
1753 unsigned Opc = IntrinsicID == Intrinsic::aarch64_neon_uaddlp
1755 : AArch64::G_SADDLP;
1757 MI.eraseFromParent();
1761 case Intrinsic::aarch64_neon_uaddlv:
1762 case Intrinsic::aarch64_neon_saddlv: {
1763 unsigned Opc = IntrinsicID == Intrinsic::aarch64_neon_uaddlv
1765 : AArch64::G_SADDLV;
1768 LLT DstTy =
MRI.getType(DstReg);
1792 MI.eraseFromParent();
1796 case Intrinsic::aarch64_neon_smax:
1797 return LowerBinOp(TargetOpcode::G_SMAX);
1798 case Intrinsic::aarch64_neon_smin:
1799 return LowerBinOp(TargetOpcode::G_SMIN);
1800 case Intrinsic::aarch64_neon_umax:
1801 return LowerBinOp(TargetOpcode::G_UMAX);
1802 case Intrinsic::aarch64_neon_umin:
1803 return LowerBinOp(TargetOpcode::G_UMIN);
1804 case Intrinsic::aarch64_neon_fmax:
1805 return LowerBinOp(TargetOpcode::G_FMAXIMUM);
1806 case Intrinsic::aarch64_neon_fmin:
1807 return LowerBinOp(TargetOpcode::G_FMINIMUM);
1808 case Intrinsic::aarch64_neon_fmaxnm:
1809 return LowerBinOp(TargetOpcode::G_FMAXNUM);
1810 case Intrinsic::aarch64_neon_fminnm:
1811 return LowerBinOp(TargetOpcode::G_FMINNUM);
1812 case Intrinsic::aarch64_neon_smull:
1813 return LowerBinOp(AArch64::G_SMULL);
1814 case Intrinsic::aarch64_neon_umull:
1815 return LowerBinOp(AArch64::G_UMULL);
1816 case Intrinsic::aarch64_neon_sabd:
1817 return LowerBinOp(TargetOpcode::G_ABDS);
1818 case Intrinsic::aarch64_neon_uabd:
1819 return LowerBinOp(TargetOpcode::G_ABDU);
1820 case Intrinsic::aarch64_neon_abs: {
1822 MIB.
buildInstr(TargetOpcode::G_ABS, {
MI.getOperand(0)}, {
MI.getOperand(2)});
1823 MI.eraseFromParent();
1826 case Intrinsic::aarch64_neon_sqadd: {
1827 if (
MRI.getType(
MI.getOperand(0).getReg()).isVector())
1828 return LowerBinOp(TargetOpcode::G_SADDSAT);
1831 case Intrinsic::aarch64_neon_sqsub: {
1832 if (
MRI.getType(
MI.getOperand(0).getReg()).isVector())
1833 return LowerBinOp(TargetOpcode::G_SSUBSAT);
1836 case Intrinsic::aarch64_neon_uqadd: {
1837 if (
MRI.getType(
MI.getOperand(0).getReg()).isVector())
1838 return LowerBinOp(TargetOpcode::G_UADDSAT);
1841 case Intrinsic::aarch64_neon_uqsub: {
1842 if (
MRI.getType(
MI.getOperand(0).getReg()).isVector())
1843 return LowerBinOp(TargetOpcode::G_USUBSAT);
1846 case Intrinsic::aarch64_neon_udot:
1847 return LowerTriOp(AArch64::G_UDOT);
1848 case Intrinsic::aarch64_neon_sdot:
1849 return LowerTriOp(AArch64::G_SDOT);
1850 case Intrinsic::aarch64_neon_usdot:
1851 return LowerTriOp(AArch64::G_USDOT);
1852 case Intrinsic::aarch64_neon_sqxtn:
1853 return LowerUnaryOp(TargetOpcode::G_TRUNC_SSAT_S);
1854 case Intrinsic::aarch64_neon_sqxtun:
1855 return LowerUnaryOp(TargetOpcode::G_TRUNC_SSAT_U);
1856 case Intrinsic::aarch64_neon_uqxtn:
1857 return LowerUnaryOp(TargetOpcode::G_TRUNC_USAT_U);
1859 case Intrinsic::vector_reverse:
1867bool AArch64LegalizerInfo::legalizeShlAshrLshr(
1870 assert(
MI.getOpcode() == TargetOpcode::G_ASHR ||
1871 MI.getOpcode() == TargetOpcode::G_LSHR ||
1872 MI.getOpcode() == TargetOpcode::G_SHL);
1885 MI.getOperand(2).setReg(ExtCst.getReg(0));
1906bool AArch64LegalizerInfo::legalizeLoadStore(
1909 assert(
MI.getOpcode() == TargetOpcode::G_STORE ||
1910 MI.getOpcode() == TargetOpcode::G_LOAD);
1921 const LLT ValTy =
MRI.getType(ValReg);
1926 bool IsLoad =
MI.getOpcode() == TargetOpcode::G_LOAD;
1930 ST->hasLSE2() && ST->hasRCPC3() && (IsLoadAcquire || IsStoreRelease);
1936 Opcode = IsLoad ? AArch64::LDIAPPX : AArch64::STILPX;
1942 assert(ST->hasLSE2() &&
"ldp/stp not single copy atomic without +lse2");
1944 Opcode = IsLoad ? AArch64::LDPXi : AArch64::STPXi;
1947 MachineInstrBuilder NewI;
1949 NewI = MIRBuilder.
buildInstr(Opcode, {s64, s64}, {});
1955 Opcode, {}, {
Split->getOperand(0),
Split->getOperand(1)});
1959 NewI.
addUse(
MI.getOperand(1).getReg());
1970 *
MRI.getTargetRegisterInfo(),
1971 *ST->getRegBankInfo());
1972 MI.eraseFromParent();
1978 LLVM_DEBUG(
dbgs() <<
"Tried to do custom legalization on wrong load/store");
1984 auto &MMO = **
MI.memoperands_begin();
1987 if (
MI.getOpcode() == TargetOpcode::G_STORE) {
1991 auto NewLoad = MIRBuilder.
buildLoad(NewTy,
MI.getOperand(1), MMO);
1994 MI.eraseFromParent();
2001 MachineFunction &MF = MIRBuilder.
getMF();
2002 Align Alignment(
MI.getOperand(2).getImm());
2004 Register ListPtr =
MI.getOperand(1).getReg();
2006 LLT PtrTy =
MRI.getType(ListPtr);
2016 MachineInstrBuilder DstPtr;
2017 if (Alignment > PtrAlign) {
2021 auto ListTmp = MIRBuilder.
buildPtrAdd(PtrTy,
List, AlignMinus1.getReg(0));
2026 LLT ValTy =
MRI.getType(Dst);
2031 ValTy, std::max(Alignment, PtrAlign)));
2042 MI.eraseFromParent();
2046bool AArch64LegalizerInfo::legalizeBitfieldExtract(
2077 MachineIRBuilder &MIRBuilder = Helper.
MIRBuilder;
2080 LLT Ty =
MRI.getType(Val);
2084 "Expected src and dst to have the same type!");
2092 auto Add = MIRBuilder.
buildAdd(s64, CTPOP1, CTPOP2);
2095 MI.eraseFromParent();
2099 if (!ST->hasNEON() ||
2100 MI.getMF()->getFunction().hasFnAttribute(Attribute::NoImplicitFloat)) {
2112 assert((Size == 32 || Size == 64 || Size == 128) &&
"Expected only 32, 64, or 128 bit scalars!");
2114 Val = MIRBuilder.buildZExt(LLT::scalar(64), Val).getReg(0);
2126 LLT Dt = Ty == LLT::fixed_vector(2, 64) ? LLT::fixed_vector(4, 32) : Ty;
2127 auto Zeros = MIRBuilder.buildConstant(Dt, 0);
2128 auto Ones = MIRBuilder.buildConstant(VTy, 1);
2129 MachineInstrBuilder Sum;
2131 if (Ty == LLT::fixed_vector(2, 64)) {
2133 MIRBuilder.buildInstr(AArch64::G_UDOT, {Dt}, {Zeros, Ones, CTPOP});
2134 Sum = MIRBuilder.buildInstr(AArch64::G_UADDLP, {Ty}, {UDOT});
2136 Sum = MIRBuilder.
buildInstr(AArch64::G_UDOT, {Dt}, {Zeros, Ones,
CTPOP});
2138 Sum = MIRBuilder.
buildInstr(AArch64::G_UDOT, {Dt}, {Zeros, Ones,
CTPOP});
2144 MI.eraseFromParent();
2152 Opc = Intrinsic::aarch64_neon_uaddlv;
2153 HAddTys.push_back(LLT::scalar(32));
2155 Opc = Intrinsic::aarch64_neon_uaddlp;
2158 Opc = Intrinsic::aarch64_neon_uaddlp;
2162 Opc = Intrinsic::aarch64_neon_uaddlp;
2167 Opc = Intrinsic::aarch64_neon_uaddlp;
2170 Opc = Intrinsic::aarch64_neon_uaddlp;
2176 for (
LLT HTy : HAddTys) {
2186 MI.eraseFromParent();
2190bool AArch64LegalizerInfo::legalizeAtomicCmpxchg128(
2192 MachineIRBuilder &MIRBuilder = Helper.
MIRBuilder;
2194 auto Addr =
MI.getOperand(1).getReg();
2195 auto DesiredI = MIRBuilder.
buildUnmerge({s64, s64},
MI.getOperand(2));
2196 auto NewI = MIRBuilder.
buildUnmerge({s64, s64},
MI.getOperand(3));
2197 auto DstLo =
MRI.createGenericVirtualRegister(s64);
2198 auto DstHi =
MRI.createGenericVirtualRegister(s64);
2200 MachineInstrBuilder CAS;
2211 auto Ordering = (*
MI.memoperands_begin())->getMergedOrdering();
2215 Opcode = AArch64::CASPAX;
2218 Opcode = AArch64::CASPLX;
2222 Opcode = AArch64::CASPALX;
2225 Opcode = AArch64::CASPX;
2230 auto CASDst =
MRI.createGenericVirtualRegister(s128);
2231 auto CASDesired =
MRI.createGenericVirtualRegister(s128);
2232 auto CASNew =
MRI.createGenericVirtualRegister(s128);
2233 MIRBuilder.
buildInstr(TargetOpcode::REG_SEQUENCE, {CASDesired}, {})
2234 .addUse(DesiredI->getOperand(0).getReg())
2236 .
addUse(DesiredI->getOperand(1).getReg())
2237 .
addImm(AArch64::subo64);
2238 MIRBuilder.
buildInstr(TargetOpcode::REG_SEQUENCE, {CASNew}, {})
2242 .
addImm(AArch64::subo64);
2244 CAS = MIRBuilder.
buildInstr(Opcode, {CASDst}, {CASDesired, CASNew, Addr});
2252 auto Ordering = (*
MI.memoperands_begin())->getMergedOrdering();
2256 Opcode = AArch64::CMP_SWAP_128_ACQUIRE;
2259 Opcode = AArch64::CMP_SWAP_128_RELEASE;
2263 Opcode = AArch64::CMP_SWAP_128;
2266 Opcode = AArch64::CMP_SWAP_128_MONOTONIC;
2270 auto Scratch =
MRI.createVirtualRegister(&AArch64::GPR64RegClass);
2271 CAS = MIRBuilder.
buildInstr(Opcode, {DstLo, DstHi, Scratch},
2272 {Addr, DesiredI->getOperand(0),
2273 DesiredI->getOperand(1), NewI->
getOperand(0),
2279 *
MRI.getTargetRegisterInfo(),
2280 *ST->getRegBankInfo());
2283 MI.eraseFromParent();
2289 MachineIRBuilder &MIRBuilder = Helper.
MIRBuilder;
2290 MachineRegisterInfo &
MRI = *MIRBuilder.
getMRI();
2291 LLT Ty =
MRI.getType(
MI.getOperand(1).getReg());
2293 MIRBuilder.
buildCTLZ(
MI.getOperand(0).getReg(), BitReverse);
2294 MI.eraseFromParent();
2300 MachineIRBuilder &MIRBuilder = Helper.
MIRBuilder;
2303 if (
MI.getOpcode() == TargetOpcode::G_MEMSET) {
2306 auto &
Value =
MI.getOperand(1);
2309 Value.setReg(ExtValueReg);
2316bool AArch64LegalizerInfo::legalizeExtractVectorElt(
2330bool AArch64LegalizerInfo::legalizeDynStackAlloc(
2332 MachineFunction &MF = *
MI.getParent()->getParent();
2333 MachineIRBuilder &MIRBuilder = Helper.
MIRBuilder;
2334 MachineRegisterInfo &
MRI = *MIRBuilder.
getMRI();
2346 Register AllocSize =
MI.getOperand(1).getReg();
2350 "Unexpected type for dynamic alloca");
2352 "Unexpected type for dynamic alloca");
2354 LLT PtrTy =
MRI.getType(Dst);
2360 MIRBuilder.
buildInstr(AArch64::PROBED_STACKALLOC_DYN, {}, {SPTmp});
2361 MRI.setRegClass(NewMI.getReg(0), &AArch64::GPR64commonRegClass);
2362 MIRBuilder.
setInsertPt(*NewMI->getParent(), NewMI);
2365 MI.eraseFromParent();
2372 auto &AddrVal =
MI.getOperand(0);
2374 int64_t IsWrite =
MI.getOperand(1).getImm();
2375 int64_t Locality =
MI.getOperand(2).getImm();
2376 int64_t
IsData =
MI.getOperand(3).getImm();
2378 bool IsStream = Locality == 0;
2379 if (Locality != 0) {
2380 assert(Locality <= 3 &&
"Prefetch locality out-of-range");
2384 Locality = 3 - Locality;
2387 unsigned PrfOp = (IsWrite << 4) | (!IsData << 3) | (Locality << 1) | IsStream;
2390 MI.eraseFromParent();
unsigned const MachineRegisterInfo * MRI
static void matchLDPSTPAddrMode(Register Root, Register &Base, int &Offset, MachineRegisterInfo &MRI)
This file declares the targeting of the Machinelegalizer class for AArch64.
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
Interface for Targets to specify which operations they can successfully select and how the others sho...
Contains matchers for matching SSA Machine Instructions.
This file declares the MachineIRBuilder class.
Promote Memory to Register
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
static constexpr MCPhysReg SPReg
bool legalizeCustom(LegalizerHelper &Helper, MachineInstr &MI, LostDebugLocObserver &LocObserver) const override
Called for instructions with the Custom LegalizationAction.
bool legalizeIntrinsic(LegalizerHelper &Helper, MachineInstr &MI) const override
AArch64LegalizerInfo(const AArch64Subtarget &ST)
Class for arbitrary precision integers.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
int64_t getSExtValue() const
Get sign extended value.
LLVM_ABI StringRef getValueAsString() const
Return the attribute's value as a string.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Abstract class that contains various methods for clients to notify about changes.
virtual void changingInstr(MachineInstr &MI)=0
This instruction is about to be mutated in some way.
virtual void changedInstr(MachineInstr &MI)=0
This instruction was mutated in some way.
constexpr bool isScalableVector() const
Returns true if the LLT is a scalable vector.
constexpr unsigned getScalarSizeInBits() const
constexpr bool isScalar() const
static constexpr LLT scalable_vector(unsigned MinNumElements, unsigned ScalarSizeInBits)
Get a low-level scalable vector of some number of elements and element width.
static constexpr LLT vector(ElementCount EC, unsigned ScalarSizeInBits)
Get a low-level vector of some number of elements and element width.
constexpr bool isPointerVector() const
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
constexpr uint16_t getNumElements() const
Returns the number of elements in a vector LLT.
constexpr bool isVector() const
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
constexpr LLT getElementType() const
Returns the vector's element type. Only valid for vector types.
constexpr ElementCount getElementCount() const
constexpr LLT changeElementSize(unsigned NewEltSize) const
If this type is a vector, return a vector with the same number of elements but the new element size.
constexpr unsigned getAddressSpace() const
static constexpr LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits)
Get a low-level fixed-width vector of some number of elements and element width.
constexpr LLT changeElementCount(ElementCount EC) const
Return a vector or scalar with the same element type and the new element count.
LLVM_ABI void computeTables()
Compute any ancillary tables needed to quickly decide how an operation should be handled.
LegalizeRuleSet & minScalar(unsigned TypeIdx, const LLT Ty)
Ensure the scalar is at least as wide as Ty.
LegalizeRuleSet & widenScalarOrEltToNextPow2OrMinSize(unsigned TypeIdx, unsigned MinSize=0)
Widen the scalar or vector element type to the next power of two that is at least MinSize.
LegalizeRuleSet & legalFor(std::initializer_list< LLT > Types)
The instruction is legal when type index 0 is any type in the given list.
LegalizeRuleSet & maxScalarEltSameAsIf(LegalityPredicate Predicate, unsigned TypeIdx, unsigned SmallTypeIdx)
Conditionally narrow the scalar or elt to match the size of another.
LegalizeRuleSet & unsupported()
The instruction is unsupported.
LegalizeRuleSet & scalarSameSizeAs(unsigned TypeIdx, unsigned SameSizeIdx)
Change the type TypeIdx to have the same scalar size as type SameSizeIdx.
LegalizeRuleSet & bitcastIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
The specified type index is coerced if predicate is true.
LegalizeRuleSet & libcallFor(std::initializer_list< LLT > Types)
LegalizeRuleSet & maxScalar(unsigned TypeIdx, const LLT Ty)
Ensure the scalar is at most as wide as Ty.
LegalizeRuleSet & minScalarOrElt(unsigned TypeIdx, const LLT Ty)
Ensure the scalar or element is at least as wide as Ty.
LegalizeRuleSet & clampMaxNumElements(unsigned TypeIdx, const LLT EltTy, unsigned MaxElements)
Limit the number of elements in EltTy vectors to at most MaxElements.
LegalizeRuleSet & clampMinNumElements(unsigned TypeIdx, const LLT EltTy, unsigned MinElements)
Limit the number of elements in EltTy vectors to at least MinElements.
LegalizeRuleSet & widenVectorEltsToVectorMinSize(unsigned TypeIdx, unsigned VectorSize)
Ensure the vector size is at least as wide as VectorSize by promoting the element.
LegalizeRuleSet & lowerIfMemSizeNotPow2()
Lower a memory operation if the memory size, rounded to bytes, is not a power of 2.
LegalizeRuleSet & minScalarEltSameAsIf(LegalityPredicate Predicate, unsigned TypeIdx, unsigned LargeTypeIdx)
Conditionally widen the scalar or elt to match the size of another.
LegalizeRuleSet & customForCartesianProduct(std::initializer_list< LLT > Types)
LegalizeRuleSet & lowerIfMemSizeNotByteSizePow2()
Lower a memory operation if the memory access size is not a round power of 2 byte size.
LegalizeRuleSet & moreElementsToNextPow2(unsigned TypeIdx)
Add more elements to the vector to reach the next power of two.
LegalizeRuleSet & narrowScalarIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Narrow the scalar to the one selected by the mutation if the predicate is true.
LegalizeRuleSet & lower()
The instruction is lowered.
LegalizeRuleSet & moreElementsIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Add more elements to reach the type selected by the mutation if the predicate is true.
LegalizeRuleSet & lowerFor(std::initializer_list< LLT > Types)
The instruction is lowered when type index 0 is any type in the given list.
LegalizeRuleSet & scalarizeIf(LegalityPredicate Predicate, unsigned TypeIdx)
LegalizeRuleSet & lowerIf(LegalityPredicate Predicate)
The instruction is lowered if predicate is true.
LegalizeRuleSet & clampScalar(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the range of scalar sizes to MinTy and MaxTy.
LegalizeRuleSet & custom()
Unconditionally custom lower.
LegalizeRuleSet & minScalarSameAs(unsigned TypeIdx, unsigned LargeTypeIdx)
Widen the scalar to match the size of another.
LegalizeRuleSet & unsupportedIf(LegalityPredicate Predicate)
LegalizeRuleSet & minScalarOrEltIf(LegalityPredicate Predicate, unsigned TypeIdx, const LLT Ty)
Ensure the scalar or element is at least as wide as Ty.
LegalizeRuleSet & widenScalarIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Widen the scalar to the one selected by the mutation if the predicate is true.
LegalizeRuleSet & alwaysLegal()
LegalizeRuleSet & clampNumElements(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the number of elements for the given vectors to at least MinTy's number of elements and at most...
LegalizeRuleSet & maxScalarIf(LegalityPredicate Predicate, unsigned TypeIdx, const LLT Ty)
Conditionally limit the maximum size of the scalar.
LegalizeRuleSet & customIf(LegalityPredicate Predicate)
LegalizeRuleSet & widenScalarToNextPow2(unsigned TypeIdx, unsigned MinSize=0)
Widen the scalar to the next power of two that is at least MinSize.
LegalizeRuleSet & scalarize(unsigned TypeIdx)
LegalizeRuleSet & legalForCartesianProduct(std::initializer_list< LLT > Types)
The instruction is legal when type indexes 0 and 1 are both in the given list.
LegalizeRuleSet & legalForTypesWithMemDesc(std::initializer_list< LegalityPredicates::TypePairAndMemDesc > TypesAndMemDesc)
The instruction is legal when type indexes 0 and 1 along with the memory size and minimum alignment i...
unsigned immIdx(unsigned ImmIdx)
LegalizeRuleSet & widenScalarOrEltToNextPow2(unsigned TypeIdx, unsigned MinSize=0)
Widen the scalar or vector element type to the next power of two that is at least MinSize.
LegalizeRuleSet & legalIf(LegalityPredicate Predicate)
The instruction is legal if predicate is true.
LLVM_ABI LegalizeResult lowerDynStackAlloc(MachineInstr &MI)
LLVM_ABI LegalizeResult lowerBitCount(MachineInstr &MI)
LLVM_ABI LegalizeResult lowerExtractInsertVectorElt(MachineInstr &MI)
Lower a vector extract or insert by writing the vector to a stack temporary and reloading the element...
LLVM_ABI LegalizeResult lowerAbsToCNeg(MachineInstr &MI)
const TargetLowering & getTargetLowering() const
LLVM_ABI LegalizeResult lowerFunnelShiftAsShifts(MachineInstr &MI)
LLVM_ABI MachineInstrBuilder createStackStoreLoad(const DstOp &Res, const SrcOp &Val)
Create a store of Val to a stack temporary and return a load as the same type as Res.
@ Legalized
Instruction has been legalized and the MachineFunction changed.
@ UnableToLegalize
Some kind of error has occurred and we could not legalize this instruction.
GISelChangeObserver & Observer
To keep track of changes made by the LegalizerHelper.
LLVM_ABI Register getDynStackAllocTargetPtr(Register SPReg, Register AllocSize, Align Alignment, LLT PtrTy)
MachineIRBuilder & MIRBuilder
Expose MIRBuilder so clients can set their own RecordInsertInstruction functions.
LegalizeRuleSet & getActionDefinitionsBuilder(unsigned Opcode)
Get the action definition builder for the given opcode.
const LegacyLegalizerInfo & getLegacyLegalizerInfo() const
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Helper class to build MachineInstr.
void setInsertPt(MachineBasicBlock &MBB, MachineBasicBlock::iterator II)
Set the insertion point before the specified position.
MachineInstrBuilder buildAdd(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_ADD Op0, Op1.
MachineInstrBuilder buildNot(const DstOp &Dst, const SrcOp &Src0)
Build and insert a bitwise not, NegOne = G_CONSTANT -1 Res = G_OR Op0, NegOne.
MachineInstrBuilder buildUnmerge(ArrayRef< LLT > Res, const SrcOp &Op)
Build and insert Res0, ... = G_UNMERGE_VALUES Op.
MachineInstrBuilder buildExtract(const DstOp &Res, const SrcOp &Src, uint64_t Index)
Build and insert Res0, ... = G_EXTRACT Src, Idx0.
MachineInstrBuilder buildICmp(CmpInst::Predicate Pred, const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1, std::optional< unsigned > Flags=std::nullopt)
Build and insert a Res = G_ICMP Pred, Op0, Op1.
MachineBasicBlock::iterator getInsertPt()
Current insertion point for new instructions.
MachineInstrBuilder buildZExt(const DstOp &Res, const SrcOp &Op, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_ZEXT Op.
MachineInstrBuilder buildIntrinsic(Intrinsic::ID ID, ArrayRef< Register > Res, bool HasSideEffects, bool isConvergent)
Build and insert a G_INTRINSIC instruction.
MachineInstrBuilder buildCTLZ(const DstOp &Dst, const SrcOp &Src0)
Build and insert Res = G_CTLZ Op0, Src0.
MachineInstrBuilder buildMergeLikeInstr(const DstOp &Res, ArrayRef< Register > Ops)
Build and insert Res = G_MERGE_VALUES Op0, ... or Res = G_BUILD_VECTOR Op0, ... or Res = G_CONCAT_VEC...
MachineInstrBuilder buildLoad(const DstOp &Res, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert Res = G_LOAD Addr, MMO.
MachineInstrBuilder buildPtrAdd(const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_PTR_ADD Op0, Op1.
MachineInstrBuilder buildBitReverse(const DstOp &Dst, const SrcOp &Src)
Build and insert Dst = G_BITREVERSE Src.
MachineInstrBuilder buildStore(const SrcOp &Val, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert G_STORE Val, Addr, MMO.
MachineInstrBuilder buildInstr(unsigned Opcode)
Build and insert <empty> = Opcode <empty>.
MachineInstrBuilder buildCTPOP(const DstOp &Dst, const SrcOp &Src0)
Build and insert Res = G_CTPOP Op0, Src0.
MachineFunction & getMF()
Getter for the function we currently build.
MachineInstrBuilder buildExtOrTrunc(unsigned ExtOpc, const DstOp &Res, const SrcOp &Op)
Build and insert Res = ExtOpc, Res = G_TRUNC Op, or Res = COPY Op depending on the differing sizes of...
MachineInstrBuilder buildTrunc(const DstOp &Res, const SrcOp &Op, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_TRUNC Op.
const MachineBasicBlock & getMBB() const
Getter for the basic block we currently build.
MachineInstrBuilder buildAnyExt(const DstOp &Res, const SrcOp &Op)
Build and insert Res = G_ANYEXT Op0.
MachineInstrBuilder buildBitcast(const DstOp &Dst, const SrcOp &Src)
Build and insert Dst = G_BITCAST Src.
MachineRegisterInfo * getMRI()
Getter for MRI.
MachineInstrBuilder buildCopy(const DstOp &Res, const SrcOp &Op)
Build and insert Res = COPY Op.
MachineInstrBuilder buildMaskLowPtrBits(const DstOp &Res, const SrcOp &Op0, uint32_t NumBits)
Build and insert Res = G_PTRMASK Op0, G_CONSTANT (1 << NumBits) - 1.
virtual MachineInstrBuilder buildConstant(const DstOp &Res, const ConstantInt &Val)
Build and insert Res = G_CONSTANT Val.
Register getReg(unsigned Idx) const
Get the register for the operand index.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
const MachineInstrBuilder & addUse(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register use operand.
Representation of each machine instruction.
const MachineOperand & getOperand(unsigned i) const
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
LLVM_ABI void setReg(Register Reg)
Change the register this operand corresponds to.
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
LLVM_ABI Register createGenericVirtualRegister(LLT Ty, StringRef Name="")
Create and return a new generic virtual register with low-level type Ty.
Wrapper class representing virtual and physical registers.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
Primary interface to the complete machine description for the target machine.
Target - Wrapper for Target specific information.
LLVM Value Representation.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ MO_NC
MO_NC - Indicates whether the linker is expected to check the symbol reference for overflow.
@ MO_PAGEOFF
MO_PAGEOFF - A symbol operand with this flag represents the offset of that symbol within a 4K page.
@ MO_GOT
MO_GOT - This flag indicates that a symbol operand represents the address of the GOT entry for the sy...
@ MO_PREL
MO_PREL - Indicates that the bits of the symbol operand represented by MO_G0 etc are PC relative.
@ MO_PAGE
MO_PAGE - A symbol operand with this flag represents the pc-relative offset of the 4K page containing...
@ MO_TAGGED
MO_TAGGED - With MO_PAGE, indicates that the page includes a memory tag in bits 56-63.
@ MO_G3
MO_G3 - A symbol operand with this flag (granule 3) represents the high 16-bits of a 64-bit address,...
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
LLVM_ABI LegalityPredicate scalarOrEltWiderThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar or a vector with an element type that's wider than the ...
LLVM_ABI LegalityPredicate isPointerVector(unsigned TypeIdx)
True iff the specified type index is a vector of pointers (with any address space).
LLVM_ABI LegalityPredicate typeInSet(unsigned TypeIdx, std::initializer_list< LLT > TypesInit)
True iff the given type index is one of the specified types.
LLVM_ABI LegalityPredicate smallerThan(unsigned TypeIdx0, unsigned TypeIdx1)
True iff the first type index has a smaller total bit size than second type index.
LLVM_ABI LegalityPredicate atomicOrderingAtLeastOrStrongerThan(unsigned MMOIdx, AtomicOrdering Ordering)
True iff the specified MMO index has at an atomic ordering of at Ordering or stronger.
Predicate any(Predicate P0, Predicate P1)
True iff P0 or P1 are true.
LLVM_ABI LegalityPredicate isVector(unsigned TypeIdx)
True iff the specified type index is a vector.
Predicate all(Predicate P0, Predicate P1)
True iff P0 and P1 are true.
LLVM_ABI LegalityPredicate typeIs(unsigned TypeIdx, LLT TypesInit)
True iff the given type index is the specified type.
LLVM_ABI LegalityPredicate scalarWiderThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar that's wider than the given size.
@ Bitcast
Perform the operation on a different, but equivalently sized type.
LLVM_ABI LegalizeMutation moreElementsToNextPow2(unsigned TypeIdx, unsigned Min=0)
Add more elements to the type for the given type index to the next power of.
LLVM_ABI LegalizeMutation scalarize(unsigned TypeIdx)
Break up the vector type for the given type index into the element type.
LLVM_ABI LegalizeMutation widenScalarOrEltToNextPow2(unsigned TypeIdx, unsigned Min=0)
Widen the scalar type or vector element type for the given type index to the next power of 2.
LLVM_ABI LegalizeMutation changeTo(unsigned TypeIdx, LLT Ty)
Select this specific type for the given type index.
LLVM_ABI LegalizeMutation changeElementSizeTo(unsigned TypeIdx, unsigned FromTypeIdx)
Change the scalar size or element size to have the same scalar size as type index FromIndex.
operand_type_match m_Reg()
ConstantMatch< APInt > m_ICst(APInt &Cst)
bool mi_match(Reg R, const MachineRegisterInfo &MRI, Pattern &&P)
BinaryOp_match< LHS, RHS, TargetOpcode::G_PTR_ADD, false > m_GPtrAdd(const LHS &L, const RHS &R)
Invariant opcodes: All instruction sets have these as their low opcodes.
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
LLVM_ABI bool constrainSelectedInstRegOperands(MachineInstr &I, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI)
Mutate the newly-selected instruction I to constrain its (possibly generic) virtual register operands...
std::function< bool(const LegalityQuery &)> LegalityPredicate
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
AtomicOrdering
Atomic ordering for LLVM's memory model.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
DWARFExpression::Operation Op
constexpr bool isShiftedInt(int64_t x)
Checks if a signed integer is an N bit number shifted left by S.
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI std::optional< ValueAndVReg > getIConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs=true)
If VReg is defined by a statically evaluable chain of instructions rooted on a G_CONSTANT returns its...
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align assumeAligned(uint64_t Value)
Treats the value 0 as a 1, so Align is always at least 1.
unsigned Log2(Align A)
Returns the log2 of the alignment.
This struct is a compact representation of a valid (non-zero power of two) alignment.
The LegalityQuery object bundles together all the information that's needed to decide whether a given...
ArrayRef< MemDesc > MMODescrs
Operations which require memory can use this to place requirements on the memory type for each MMO.
This class contains a discriminated union of information about pointers in memory operands,...