36#include "llvm/IR/IntrinsicsAMDGPU.h"
37#include "llvm/IR/IntrinsicsR600.h"
39#define DEBUG_TYPE "amdgpu-legalinfo"
49 "amdgpu-global-isel-new-legality",
50 cl::desc(
"Use GlobalISel desired legality, rather than try to use"
51 "rules compatible with selection patterns"),
66 unsigned Bits = Ty.getSizeInBits();
76 const LLT Ty = Query.Types[TypeIdx];
82 return Ty.getNumElements() % 2 != 0 &&
83 EltSize > 1 && EltSize < 32 &&
84 Ty.getSizeInBits() % 32 != 0;
90 const LLT Ty = Query.Types[TypeIdx];
97 const LLT Ty = Query.Types[TypeIdx];
99 return EltTy.
getSizeInBits() == 16 && Ty.getNumElements() > 2;
105 const LLT Ty = Query.Types[TypeIdx];
107 return std::pair(TypeIdx,
114 const LLT Ty = Query.Types[TypeIdx];
116 unsigned Size = Ty.getSizeInBits();
117 unsigned Pieces = (
Size + 63) / 64;
118 unsigned NewNumElts = (Ty.getNumElements() + 1) / Pieces;
128 const LLT Ty = Query.Types[TypeIdx];
131 const int Size = Ty.getSizeInBits();
133 const int NextMul32 = (
Size + 31) / 32;
137 const int NewNumElts = (32 * NextMul32 + EltSize - 1) / EltSize;
145 unsigned MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
146 return std::make_pair(TypeIdx,
LLT::scalar(MemSize));
153 const LLT Ty = Query.Types[TypeIdx];
155 const unsigned EltSize = Ty.getElementType().getSizeInBits();
158 assert(EltSize == 32 || EltSize == 64);
163 for (NewNumElts = NumElts; NewNumElts < MaxNumElts; ++NewNumElts) {
167 return std::pair(TypeIdx,
182 const unsigned NumElems = Ty.getElementCount().getFixedValue();
187 const unsigned Size = Ty.getSizeInBits();
200 const LLT Ty = Query.Types[TypeIdx];
207 const LLT Ty = Query.Types[TypeIdx];
208 unsigned Size = Ty.getSizeInBits();
217 const LLT QueryTy = Query.Types[TypeIdx];
224 const LLT QueryTy = Query.Types[TypeIdx];
231 const LLT QueryTy = Query.Types[TypeIdx];
237 return ((ST.useRealTrue16Insts() &&
Size == 16) ||
Size % 32 == 0) &&
243 return EltSize == 16 || EltSize % 32 == 0;
247 const int EltSize = Ty.getElementType().getSizeInBits();
248 return EltSize == 32 || EltSize == 64 ||
249 (EltSize == 16 && Ty.getNumElements() % 2 == 0) ||
250 EltSize == 128 || EltSize == 256;
279 LLT Ty = Query.Types[TypeIdx];
287 const LLT QueryTy = Query.Types[TypeIdx];
371 if (Ty.isPointerOrPointerVector())
372 Ty = Ty.changeElementType(
LLT::scalar(Ty.getScalarSizeInBits()));
376 (ST.useRealTrue16Insts() && Ty ==
S16) ||
391 const LLT Ty = Query.Types[TypeIdx];
392 return !Ty.
isVector() && Ty.getSizeInBits() > 32 &&
393 Query.MMODescrs[0].MemoryTy.getSizeInBits() < Ty.getSizeInBits();
401 unsigned MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
411 bool IsLoad,
bool IsAtomic) {
415 return ST.enableFlatScratch() ? 128 : 32;
417 return ST.useDS128() ? 128 : 64;
428 return IsLoad ? 512 : 128;
433 return ST.hasMultiDwordFlatScratchAddressing() || IsAtomic ? 128 : 32;
442 const bool IsLoad = Query.
Opcode != AMDGPU::G_STORE;
444 unsigned RegSize = Ty.getSizeInBits();
447 unsigned AS = Query.
Types[1].getAddressSpace();
454 if (Ty.isVector() && MemSize !=
RegSize)
461 if (IsLoad && MemSize <
Size)
462 MemSize = std::max(MemSize,
Align);
482 if (!ST.hasDwordx3LoadStores())
495 if (AlignBits < MemSize) {
498 Align(AlignBits / 8)))
528 const unsigned Size = Ty.getSizeInBits();
529 if (Ty.isPointerVector())
539 unsigned EltSize = Ty.getScalarSizeInBits();
540 return EltSize != 32 && EltSize != 64;
554 const unsigned Size = Ty.getSizeInBits();
555 if (
Size != MemSizeInBits)
556 return Size <= 32 && Ty.isVector();
562 return Ty.isVector() && (!MemTy.
isVector() || MemTy == Ty) &&
571 uint64_t AlignInBits,
unsigned AddrSpace,
581 if (SizeInBits == 96 && ST.hasDwordx3LoadStores())
592 if (AlignInBits < RoundedSize)
599 RoundedSize, AddrSpace,
Align(AlignInBits / 8),
611 Query.
Types[1].getAddressSpace(), Opcode);
631 const unsigned NumParts =
PointerTy.getSizeInBits() / 32;
634 Register VectorReg =
MRI.createGenericVirtualRegister(VectorTy);
635 std::array<Register, 4> VectorElems;
636 B.setInsertPt(
B.getMBB(), ++
B.getInsertPt());
637 for (
unsigned I = 0;
I < NumParts; ++
I)
639 B.buildExtractVectorElementConstant(
S32, VectorReg,
I).getReg(0);
640 B.buildMergeValues(MO, VectorElems);
644 Register BitcastReg =
MRI.createGenericVirtualRegister(VectorTy);
645 B.setInsertPt(
B.getMBB(), ++
B.getInsertPt());
646 auto Scalar =
B.buildBitcast(ScalarTy, BitcastReg);
647 B.buildIntToPtr(MO, Scalar);
667 const unsigned NumParts =
PointerTy.getSizeInBits() / 32;
668 auto Unmerged =
B.buildUnmerge(
LLT::scalar(32), Pointer);
669 for (
unsigned I = 0;
I < NumParts; ++
I)
671 return B.buildBuildVector(VectorTy, PointerParts).getReg(0);
673 Register Scalar =
B.buildPtrToInt(ScalarTy, Pointer).getReg(0);
674 return B.buildBitcast(VectorTy, Scalar).getReg(0);
693 auto GetAddrSpacePtr = [&TM](
unsigned AS) {
706 const LLT BufferStridedPtr =
709 const LLT CodePtr = FlatPtr;
711 const std::initializer_list<LLT> AddrSpaces64 = {
712 GlobalPtr, ConstantPtr, FlatPtr
715 const std::initializer_list<LLT> AddrSpaces32 = {
716 LocalPtr, PrivatePtr, Constant32Ptr, RegionPtr
719 const std::initializer_list<LLT> AddrSpaces128 = {RsrcPtr};
721 const std::initializer_list<LLT> FPTypesBase = {
725 const std::initializer_list<LLT> FPTypes16 = {
729 const std::initializer_list<LLT> FPTypesPK16 = {
733 const LLT MinScalarFPTy = ST.has16BitInsts() ?
S16 :
S32;
754 if (ST.hasVOP3PInsts() && ST.hasAddNoCarry() && ST.hasIntClamp()) {
756 if (ST.hasScalarAddSub64()) {
759 .clampMaxNumElementsStrict(0,
S16, 2)
767 .clampMaxNumElementsStrict(0,
S16, 2)
774 if (ST.hasScalarSMulU64()) {
777 .clampMaxNumElementsStrict(0,
S16, 2)
785 .clampMaxNumElementsStrict(0,
S16, 2)
795 .minScalarOrElt(0,
S16)
800 }
else if (ST.has16BitInsts()) {
834 .widenScalarToNextMultipleOf(0, 32)
844 if (ST.hasMad64_32())
849 if (ST.hasIntClamp()) {
872 {G_SDIV, G_UDIV, G_SREM, G_UREM, G_SDIVREM, G_UDIVREM})
882 if (ST.hasVOP3PInsts()) {
884 .clampMaxNumElements(0,
S8, 2)
905 {G_UADDO, G_USUBO, G_UADDE, G_SADDE, G_USUBE, G_SSUBE})
917 LocalPtr, ConstantPtr, PrivatePtr, FlatPtr })
924 .clampScalar(0,
S16,
S64);
957 { G_FADD, G_FMUL, G_FMA, G_FCANONICALIZE,
958 G_STRICT_FADD, G_STRICT_FMUL, G_STRICT_FMA})
965 if (ST.has16BitInsts()) {
966 if (ST.hasVOP3PInsts())
969 FPOpActions.legalFor({
S16});
971 TrigActions.customFor({
S16});
972 FDIVActions.customFor({
S16});
975 if (ST.hasPackedFP32Ops()) {
976 FPOpActions.legalFor({
V2S32});
977 FPOpActions.clampMaxNumElementsStrict(0,
S32, 2);
980 auto &MinNumMaxNumIeee =
983 if (ST.hasVOP3PInsts()) {
984 MinNumMaxNumIeee.legalFor(FPTypesPK16)
986 .clampMaxNumElements(0,
S16, 2)
989 }
else if (ST.has16BitInsts()) {
990 MinNumMaxNumIeee.legalFor(FPTypes16).clampScalar(0,
S16,
S64).scalarize(0);
992 MinNumMaxNumIeee.legalFor(FPTypesBase)
998 {G_FMINNUM, G_FMAXNUM, G_FMINIMUMNUM, G_FMAXIMUMNUM});
1000 if (ST.hasVOP3PInsts()) {
1001 MinNumMaxNum.customFor(FPTypesPK16)
1003 .clampMaxNumElements(0,
S16, 2)
1004 .clampScalar(0,
S16,
S64)
1006 }
else if (ST.has16BitInsts()) {
1007 MinNumMaxNum.customFor(FPTypes16)
1008 .clampScalar(0,
S16,
S64)
1011 MinNumMaxNum.customFor(FPTypesBase)
1012 .clampScalar(0,
S32,
S64)
1016 if (ST.hasVOP3PInsts())
1032 .legalFor(FPTypesPK16)
1037 if (ST.has16BitInsts()) {
1066 if (ST.hasFractBug()) {
1095 if (ST.hasCvtPkF16F32Inst()) {
1097 .clampMaxNumElements(0,
S16, 2);
1101 FPTruncActions.scalarize(0).lower();
1109 if (ST.has16BitInsts()) {
1129 if (ST.hasMadF16() && ST.hasMadMacF32Insts())
1130 FMad.customFor({
S32,
S16});
1131 else if (ST.hasMadMacF32Insts())
1132 FMad.customFor({
S32});
1133 else if (ST.hasMadF16())
1134 FMad.customFor({
S16});
1139 if (ST.has16BitInsts()) {
1142 FRem.minScalar(0,
S32)
1151 .clampMaxNumElements(0,
S16, 2)
1170 if (ST.has16BitInsts())
1181 if (ST.has16BitInsts())
1192 .clampScalar(0,
S16,
S64)
1207 .clampScalar(0,
S16,
S64)
1211 if (ST.has16BitInsts()) {
1213 {G_INTRINSIC_TRUNC, G_FCEIL, G_INTRINSIC_ROUNDEVEN})
1215 .clampScalar(0,
S16,
S64)
1219 {G_INTRINSIC_TRUNC, G_FCEIL, G_INTRINSIC_ROUNDEVEN})
1221 .clampScalar(0,
S32,
S64)
1225 {G_INTRINSIC_TRUNC, G_FCEIL, G_INTRINSIC_ROUNDEVEN})
1228 .clampScalar(0,
S32,
S64)
1240 .scalarSameSizeAs(1, 0)
1256 {
S1}, {
S32,
S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr})
1257 .legalForCartesianProduct(
1258 {
S32}, {
S32,
S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr});
1259 if (ST.has16BitInsts()) {
1260 CmpBuilder.legalFor({{
S1,
S16}});
1271 {
S1}, ST.has16BitInsts() ? FPTypes16 : FPTypesBase);
1273 if (ST.hasSALUFloatInsts())
1283 if (ST.has16BitInsts())
1284 ExpOps.customFor({{
S32}, {
S16}});
1286 ExpOps.customFor({
S32});
1287 ExpOps.clampScalar(0, MinScalarFPTy,
S32)
1296 if (ST.has16BitInsts())
1312 .clampScalar(0,
S32,
S32)
1319 if (ST.has16BitInsts())
1322 .widenScalarToNextPow2(1)
1328 .lowerFor({
S1,
S16})
1329 .widenScalarToNextPow2(1)
1356 .clampScalar(0,
S32,
S32)
1366 .clampScalar(0,
S32,
S64)
1370 if (ST.has16BitInsts()) {
1373 .clampMaxNumElementsStrict(0,
S16, 2)
1380 if (ST.hasVOP3PInsts()) {
1383 .clampMaxNumElements(0,
S16, 2)
1388 if (ST.hasIntMinMax64()) {
1391 .clampMaxNumElements(0,
S16, 2)
1399 .clampMaxNumElements(0,
S16, 2)
1408 .widenScalarToNextPow2(0)
1436 .legalForCartesianProduct(AddrSpaces32, {
S32})
1452 .legalForCartesianProduct(AddrSpaces32, {
S32})
1469 const auto needToSplitMemOp = [=](
const LegalityQuery &Query,
1470 bool IsLoad) ->
bool {
1474 unsigned MemSize = Query.
MMODescrs[0].MemoryTy.getSizeInBits();
1488 unsigned NumRegs = (MemSize + 31) / 32;
1490 if (!ST.hasDwordx3LoadStores())
1501 unsigned GlobalAlign32 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 32;
1502 unsigned GlobalAlign16 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 16;
1503 unsigned GlobalAlign8 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 8;
1509 for (
unsigned Op : {G_LOAD, G_STORE}) {
1510 const bool IsStore =
Op == G_STORE;
1515 Actions.legalForTypesWithMemDesc({{
S32, GlobalPtr,
S32, GlobalAlign32},
1518 {
S64, GlobalPtr,
S64, GlobalAlign32},
1521 {
S32, GlobalPtr,
S8, GlobalAlign8},
1522 {
S32, GlobalPtr,
S16, GlobalAlign16},
1524 {
S32, LocalPtr,
S32, 32},
1525 {
S64, LocalPtr,
S64, 32},
1527 {
S32, LocalPtr,
S8, 8},
1528 {
S32, LocalPtr,
S16, 16},
1531 {
S32, PrivatePtr,
S32, 32},
1532 {
S32, PrivatePtr,
S8, 8},
1533 {
S32, PrivatePtr,
S16, 16},
1536 {
S32, ConstantPtr,
S32, GlobalAlign32},
1539 {
S64, ConstantPtr,
S64, GlobalAlign32},
1540 {
V2S32, ConstantPtr,
V2S32, GlobalAlign32}});
1549 Actions.unsupportedIf(
1550 typeInSet(1, {BufferFatPtr, BufferStridedPtr, RsrcPtr}));
1564 Actions.customIf(
typeIs(1, Constant32Ptr));
1590 return !Query.
Types[0].isVector() &&
1591 needToSplitMemOp(Query,
Op == G_LOAD);
1593 [=](
const LegalityQuery &Query) -> std::pair<unsigned, LLT> {
1598 unsigned MemSize = Query.
MMODescrs[0].MemoryTy.getSizeInBits();
1601 if (DstSize > MemSize)
1607 if (MemSize > MaxSize)
1615 return Query.
Types[0].isVector() &&
1616 needToSplitMemOp(Query,
Op == G_LOAD);
1618 [=](
const LegalityQuery &Query) -> std::pair<unsigned, LLT> {
1632 unsigned MemSize = Query.
MMODescrs[0].MemoryTy.getSizeInBits();
1633 if (MemSize > MaxSize) {
1637 if (MaxSize % EltSize == 0) {
1643 unsigned NumPieces = MemSize / MaxSize;
1647 if (NumPieces == 1 || NumPieces >= NumElts ||
1648 NumElts % NumPieces != 0)
1649 return std::pair(0, EltTy);
1657 return std::pair(0, EltTy);
1672 return std::pair(0, EltTy);
1677 .widenScalarToNextPow2(0)
1684 .legalForTypesWithMemDesc({{
S32, GlobalPtr,
S8, 8},
1685 {
S32, GlobalPtr,
S16, 2 * 8},
1686 {
S32, LocalPtr,
S8, 8},
1687 {
S32, LocalPtr,
S16, 16},
1688 {
S32, PrivatePtr,
S8, 8},
1689 {
S32, PrivatePtr,
S16, 16},
1690 {
S32, ConstantPtr,
S8, 8},
1691 {
S32, ConstantPtr,
S16, 2 * 8}})
1697 if (ST.hasFlatAddressSpace()) {
1698 ExtLoads.legalForTypesWithMemDesc(
1699 {{
S32, FlatPtr,
S8, 8}, {
S32, FlatPtr,
S16, 16}});
1714 {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB,
1715 G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR,
1716 G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX,
1717 G_ATOMICRMW_UMIN, G_ATOMICRMW_UINC_WRAP, G_ATOMICRMW_UDEC_WRAP})
1718 .legalFor({{
S32, GlobalPtr}, {
S32, LocalPtr},
1719 {
S64, GlobalPtr}, {
S64, LocalPtr},
1720 {
S32, RegionPtr}, {
S64, RegionPtr}});
1721 if (ST.hasFlatAddressSpace()) {
1722 Atomics.legalFor({{
S32, FlatPtr}, {
S64, FlatPtr}});
1727 .legalFor({{
S32, GlobalPtr}, {
S32, LocalPtr}, {
S32, RegionPtr}});
1728 if (ST.hasFlatAddressSpace()) {
1729 Atomics32.legalFor({{
S32, FlatPtr}});
1734 if (ST.hasLDSFPAtomicAddF32()) {
1735 Atomic.legalFor({{
S32, LocalPtr}, {
S32, RegionPtr}});
1736 if (ST.hasLdsAtomicAddF64())
1737 Atomic.legalFor({{
S64, LocalPtr}});
1738 if (ST.hasAtomicDsPkAdd16Insts())
1739 Atomic.legalFor({{
V2F16, LocalPtr}, {
V2BF16, LocalPtr}});
1741 if (ST.hasAtomicFaddInsts())
1742 Atomic.legalFor({{
S32, GlobalPtr}});
1743 if (ST.hasFlatAtomicFaddF32Inst())
1744 Atomic.legalFor({{
S32, FlatPtr}});
1746 if (ST.hasGFX90AInsts() || ST.hasGFX1250Insts()) {
1757 if (ST.hasAtomicBufferGlobalPkAddF16NoRtnInsts() ||
1758 ST.hasAtomicBufferGlobalPkAddF16Insts())
1759 Atomic.legalFor({{
V2F16, GlobalPtr}, {
V2F16, BufferFatPtr}});
1760 if (ST.hasAtomicGlobalPkAddBF16Inst())
1761 Atomic.legalFor({{
V2BF16, GlobalPtr}});
1762 if (ST.hasAtomicFlatPkAdd16Insts())
1763 Atomic.legalFor({{
V2F16, FlatPtr}, {
V2BF16, FlatPtr}});
1768 auto &AtomicFMinFMax =
1770 .legalFor({{
F32, LocalPtr}, {
F64, LocalPtr}});
1772 if (ST.hasAtomicFMinFMaxF32GlobalInsts())
1774 if (ST.hasAtomicFMinFMaxF64GlobalInsts())
1775 AtomicFMinFMax.
legalFor({{
F64, GlobalPtr}, {
F64, BufferFatPtr}});
1776 if (ST.hasAtomicFMinFMaxF32FlatInsts())
1778 if (ST.hasAtomicFMinFMaxF64FlatInsts())
1785 {
S32, FlatPtr}, {
S64, FlatPtr}})
1786 .legalFor({{
S32, LocalPtr}, {
S64, LocalPtr},
1787 {
S32, RegionPtr}, {
S64, RegionPtr}});
1793 LocalPtr, FlatPtr, PrivatePtr,
1797 .clampScalar(0,
S16,
S64)
1812 if (ST.has16BitInsts()) {
1813 if (ST.hasVOP3PInsts()) {
1815 .clampMaxNumElements(0,
S16, 2);
1817 Shifts.legalFor({{
S16,
S16}});
1820 Shifts.widenScalarIf(
1825 const LLT AmountTy = Query.
Types[1];
1826 return ValTy.isScalar() && ValTy.getSizeInBits() <= 16 &&
1830 Shifts.clampScalar(1,
S32,
S32);
1831 Shifts.widenScalarToNextPow2(0, 16);
1832 Shifts.clampScalar(0,
S16,
S64);
1842 Shifts.clampScalar(1,
S32,
S32);
1843 Shifts.widenScalarToNextPow2(0, 32);
1844 Shifts.clampScalar(0,
S32,
S64);
1853 for (
unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) {
1854 unsigned VecTypeIdx =
Op == G_EXTRACT_VECTOR_ELT ? 1 : 0;
1855 unsigned EltTypeIdx =
Op == G_EXTRACT_VECTOR_ELT ? 0 : 1;
1856 unsigned IdxTypeIdx = 2;
1860 const LLT EltTy = Query.
Types[EltTypeIdx];
1861 const LLT VecTy = Query.
Types[VecTypeIdx];
1862 const LLT IdxTy = Query.
Types[IdxTypeIdx];
1864 const bool isLegalVecType =
1874 return (EltSize == 32 || EltSize == 64) &&
1890 const LLT EltTy = Query.
Types[EltTypeIdx];
1891 const LLT VecTy = Query.
Types[VecTypeIdx];
1895 const unsigned TargetEltSize =
1896 DstEltSize % 64 == 0 ? 64 : 32;
1897 return std::pair(VecTypeIdx,
1901 .clampScalar(EltTypeIdx,
S32,
S64)
1915 const LLT &EltTy = Query.
Types[1].getElementType();
1916 return Query.
Types[0] != EltTy;
1919 for (
unsigned Op : {G_EXTRACT, G_INSERT}) {
1920 unsigned BigTyIdx =
Op == G_EXTRACT ? 1 : 0;
1921 unsigned LitTyIdx =
Op == G_EXTRACT ? 0 : 1;
1930 const LLT BigTy = Query.
Types[BigTyIdx];
1935 const LLT BigTy = Query.
Types[BigTyIdx];
1936 const LLT LitTy = Query.
Types[LitTyIdx];
1942 const LLT BigTy = Query.
Types[BigTyIdx];
1948 const LLT LitTy = Query.
Types[LitTyIdx];
1967 if (ST.hasScalarPackInsts()) {
1970 .minScalarOrElt(0,
S16)
1977 BuildVector.customFor({
V2S16,
S16});
1978 BuildVector.minScalarOrElt(0,
S32);
1997 for (
unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
1998 unsigned BigTyIdx =
Op == G_MERGE_VALUES ? 0 : 1;
1999 unsigned LitTyIdx =
Op == G_MERGE_VALUES ? 1 : 0;
2001 auto notValidElt = [=](
const LegalityQuery &Query,
unsigned TypeIdx) {
2002 const LLT Ty = Query.
Types[TypeIdx];
2003 if (Ty.isVector()) {
2018 const LLT BigTy = Query.
Types[BigTyIdx];
2038 return notValidElt(Query, LitTyIdx);
2043 return notValidElt(Query, BigTyIdx);
2048 if (
Op == G_MERGE_VALUES) {
2049 Builder.widenScalarIf(
2052 const LLT Ty = Query.
Types[LitTyIdx];
2053 return Ty.getSizeInBits() < 32;
2060 const LLT Ty = Query.
Types[BigTyIdx];
2061 return Ty.getSizeInBits() % 16 != 0;
2066 const LLT &Ty = Query.
Types[BigTyIdx];
2067 unsigned NewSizeInBits = 1 <<
Log2_32_Ceil(Ty.getSizeInBits() + 1);
2068 if (NewSizeInBits >= 256) {
2069 unsigned RoundedTo =
alignTo<64>(Ty.getSizeInBits() + 1);
2070 if (RoundedTo < NewSizeInBits)
2071 NewSizeInBits = RoundedTo;
2073 return std::pair(BigTyIdx,
LLT::scalar(NewSizeInBits));
2084 .clampScalar(0,
S32,
S64);
2086 if (ST.hasVOP3PInsts()) {
2087 SextInReg.lowerFor({{
V2S16}})
2091 .clampMaxNumElementsStrict(0,
S16, 2);
2092 }
else if (ST.has16BitInsts()) {
2093 SextInReg.lowerFor({{
S32}, {
S64}, {
S16}});
2097 SextInReg.lowerFor({{
S32}, {
S64}});
2110 FSHRActionDefs.legalFor({{
S32,
S32}})
2111 .clampMaxNumElementsStrict(0,
S16, 2);
2112 if (ST.hasVOP3PInsts())
2114 FSHRActionDefs.scalarize(0).lower();
2116 if (ST.hasVOP3PInsts()) {
2119 .clampMaxNumElementsStrict(0,
S16, 2)
2143 .clampScalar(1,
S32,
S32)
2152 G_ATOMIC_CMPXCHG_WITH_SUCCESS, G_ATOMICRMW_NAND, G_ATOMICRMW_FSUB,
2153 G_READ_REGISTER, G_WRITE_REGISTER,
2158 if (ST.hasIEEEMinimumMaximumInsts()) {
2160 .legalFor(FPTypesPK16)
2163 }
else if (ST.hasVOP3PInsts()) {
2166 .clampMaxNumElementsStrict(0,
S16, 2)
2182 G_INDEXED_LOAD, G_INDEXED_SEXTLOAD,
2183 G_INDEXED_ZEXTLOAD, G_INDEXED_STORE})
2189 {G_VECREDUCE_SMIN, G_VECREDUCE_SMAX, G_VECREDUCE_UMIN, G_VECREDUCE_UMAX,
2190 G_VECREDUCE_ADD, G_VECREDUCE_MUL, G_VECREDUCE_FMUL, G_VECREDUCE_FMIN,
2191 G_VECREDUCE_FMAX, G_VECREDUCE_FMINIMUM, G_VECREDUCE_FMAXIMUM,
2192 G_VECREDUCE_OR, G_VECREDUCE_AND, G_VECREDUCE_XOR})
2198 verify(*ST.getInstrInfo());
2207 switch (
MI.getOpcode()) {
2208 case TargetOpcode::G_ADDRSPACE_CAST:
2210 case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2212 case TargetOpcode::G_FCEIL:
2214 case TargetOpcode::G_FREM:
2216 case TargetOpcode::G_INTRINSIC_TRUNC:
2218 case TargetOpcode::G_SITOFP:
2220 case TargetOpcode::G_UITOFP:
2222 case TargetOpcode::G_FPTOSI:
2224 case TargetOpcode::G_FPTOUI:
2226 case TargetOpcode::G_FMINNUM:
2227 case TargetOpcode::G_FMAXNUM:
2228 case TargetOpcode::G_FMINIMUMNUM:
2229 case TargetOpcode::G_FMAXIMUMNUM:
2231 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2233 case TargetOpcode::G_INSERT_VECTOR_ELT:
2235 case TargetOpcode::G_FSIN:
2236 case TargetOpcode::G_FCOS:
2238 case TargetOpcode::G_GLOBAL_VALUE:
2240 case TargetOpcode::G_LOAD:
2241 case TargetOpcode::G_SEXTLOAD:
2242 case TargetOpcode::G_ZEXTLOAD:
2244 case TargetOpcode::G_STORE:
2246 case TargetOpcode::G_FMAD:
2248 case TargetOpcode::G_FDIV:
2250 case TargetOpcode::G_FFREXP:
2252 case TargetOpcode::G_FSQRT:
2254 case TargetOpcode::G_UDIV:
2255 case TargetOpcode::G_UREM:
2256 case TargetOpcode::G_UDIVREM:
2258 case TargetOpcode::G_SDIV:
2259 case TargetOpcode::G_SREM:
2260 case TargetOpcode::G_SDIVREM:
2262 case TargetOpcode::G_ATOMIC_CMPXCHG:
2264 case TargetOpcode::G_FLOG2:
2266 case TargetOpcode::G_FLOG:
2267 case TargetOpcode::G_FLOG10:
2269 case TargetOpcode::G_FEXP2:
2271 case TargetOpcode::G_FEXP:
2272 case TargetOpcode::G_FEXP10:
2274 case TargetOpcode::G_FPOW:
2276 case TargetOpcode::G_FFLOOR:
2278 case TargetOpcode::G_BUILD_VECTOR:
2279 case TargetOpcode::G_BUILD_VECTOR_TRUNC:
2281 case TargetOpcode::G_MUL:
2283 case TargetOpcode::G_CTLZ:
2284 case TargetOpcode::G_CTTZ:
2286 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2288 case TargetOpcode::G_STACKSAVE:
2290 case TargetOpcode::G_GET_FPENV:
2292 case TargetOpcode::G_SET_FPENV:
2294 case TargetOpcode::G_TRAP:
2296 case TargetOpcode::G_DEBUGTRAP:
2316 if (ST.hasApertureRegs()) {
2321 ? AMDGPU::SRC_SHARED_BASE
2322 : AMDGPU::SRC_PRIVATE_BASE;
2323 assert((ApertureRegNo != AMDGPU::SRC_PRIVATE_BASE ||
2324 !ST.hasGloballyAddressableScratch()) &&
2325 "Cannot use src_private_base with globally addressable scratch!");
2327 MRI.setRegClass(Dst, &AMDGPU::SReg_64RegClass);
2328 B.buildCopy({Dst}, {
Register(ApertureRegNo)});
2329 return B.buildUnmerge(
S32, Dst).getReg(1);
2332 Register LoadAddr =
MRI.createGenericVirtualRegister(
2344 ST.getTargetLowering()->getImplicitParameterOffset(
B.getMF(), Param);
2346 Register KernargPtrReg =
MRI.createGenericVirtualRegister(
2360 B.buildObjectPtrOffset(LoadAddr, KernargPtrReg,
2363 return B.buildLoad(
S32, LoadAddr, *MMO).getReg(0);
2366 Register QueuePtr =
MRI.createGenericVirtualRegister(
2385 B.buildObjectPtrOffset(
2387 B.buildConstant(
LLT::scalar(64), StructOffset).getReg(0));
2388 return B.buildLoad(
S32, LoadAddr, *MMO).getReg(0);
2396 switch (Def->getOpcode()) {
2397 case AMDGPU::G_FRAME_INDEX:
2398 case AMDGPU::G_GLOBAL_VALUE:
2399 case AMDGPU::G_BLOCK_ADDR:
2401 case AMDGPU::G_CONSTANT: {
2402 const ConstantInt *CI = Def->getOperand(1).getCImm();
2419 assert(
MI.getOpcode() == TargetOpcode::G_ADDRSPACE_CAST ||
2421 Intrinsic::amdgcn_addrspacecast_nonnull));
2426 :
MI.getOperand(1).getReg();
2427 LLT DstTy =
MRI.getType(Dst);
2428 LLT SrcTy =
MRI.getType(Src);
2430 unsigned SrcAS = SrcTy.getAddressSpace();
2440 MI.setDesc(
B.getTII().get(TargetOpcode::G_BITCAST));
2447 auto castFlatToLocalOrPrivate = [&](
const DstOp &Dst) ->
Register {
2449 ST.hasGloballyAddressableScratch()) {
2453 Register SrcLo =
B.buildExtract(
S32, Src, 0).getReg(0);
2455 B.buildInstr(AMDGPU::S_MOV_B32, {
S32},
2456 {
Register(AMDGPU::SRC_FLAT_SCRATCH_BASE_LO)})
2458 MRI.setRegClass(FlatScratchBaseLo, &AMDGPU::SReg_32RegClass);
2460 return B.buildIntToPtr(Dst,
Sub).getReg(0);
2464 return B.buildExtract(Dst, Src, 0).getReg(0);
2470 castFlatToLocalOrPrivate(Dst);
2471 MI.eraseFromParent();
2477 auto SegmentNull =
B.buildConstant(DstTy, NullVal);
2478 auto FlatNull =
B.buildConstant(SrcTy, 0);
2481 auto PtrLo32 = castFlatToLocalOrPrivate(DstTy);
2485 B.buildSelect(Dst, CmpRes, PtrLo32, SegmentNull.getReg(0));
2487 MI.eraseFromParent();
2494 auto castLocalOrPrivateToFlat = [&](
const DstOp &Dst) ->
Register {
2497 Register SrcAsInt =
B.buildPtrToInt(
S32, Src).getReg(0);
2500 ST.hasGloballyAddressableScratch()) {
2505 ThreadID =
B.buildIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {
S32})
2509 if (ST.isWave64()) {
2510 ThreadID =
B.buildIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {
S32})
2516 B.buildConstant(
S32, 57 - 32 - ST.getWavefrontSizeLog2()).getReg(0);
2517 Register SrcHi =
B.buildShl(
S32, ThreadID, ShAmt).getReg(0);
2519 B.buildMergeLikeInstr(DstTy, {SrcAsInt, SrcHi}).
getReg(0);
2523 B.buildInstr(AMDGPU::S_MOV_B64, {
S64},
2524 {
Register(AMDGPU::SRC_FLAT_SCRATCH_BASE)})
2526 MRI.setRegClass(FlatScratchBase, &AMDGPU::SReg_64RegClass);
2527 return B.buildPtrAdd(Dst, CvtPtr, FlatScratchBase).getReg(0);
2536 return B.buildMergeLikeInstr(Dst, {SrcAsInt, ApertureReg}).
getReg(0);
2542 castLocalOrPrivateToFlat(Dst);
2543 MI.eraseFromParent();
2547 Register BuildPtr = castLocalOrPrivateToFlat(DstTy);
2553 SegmentNull.getReg(0));
2555 B.buildSelect(Dst, CmpRes, BuildPtr, FlatNull);
2557 MI.eraseFromParent();
2562 SrcTy.getSizeInBits() == 64) {
2564 B.buildExtract(Dst, Src, 0);
2565 MI.eraseFromParent();
2572 uint32_t AddrHiVal = Info->get32BitAddressHighBits();
2573 auto PtrLo =
B.buildPtrToInt(
S32, Src);
2574 if (AddrHiVal == 0) {
2576 B.buildIntToPtr(Dst, Zext);
2578 auto HighAddr =
B.buildConstant(
S32, AddrHiVal);
2579 B.buildMergeLikeInstr(Dst, {PtrLo, HighAddr});
2582 MI.eraseFromParent();
2589 MI.eraseFromParent();
2597 LLT Ty =
MRI.getType(Src);
2598 assert(Ty.isScalar() && Ty.getSizeInBits() == 64);
2603 auto C1 =
B.buildFConstant(Ty, C1Val);
2604 auto CopySign =
B.buildFCopysign(Ty, C1, Src);
2607 auto Tmp1 =
B.buildFAdd(Ty, Src, CopySign);
2608 auto Tmp2 =
B.buildFSub(Ty, Tmp1, CopySign);
2610 auto C2 =
B.buildFConstant(Ty, C2Val);
2611 auto Fabs =
B.buildFAbs(Ty, Src);
2614 B.buildSelect(
MI.getOperand(0).getReg(),
Cond, Src, Tmp2);
2615 MI.eraseFromParent();
2633 auto Trunc =
B.buildIntrinsicTrunc(
S64, Src);
2635 const auto Zero =
B.buildFConstant(
S64, 0.0);
2636 const auto One =
B.buildFConstant(
S64, 1.0);
2639 auto And =
B.buildAnd(
S1, Lt0, NeTrunc);
2640 auto Add =
B.buildSelect(
S64,
And, One, Zero);
2643 B.buildFAdd(
MI.getOperand(0).getReg(), Trunc,
Add);
2644 MI.eraseFromParent();
2652 Register Src0Reg =
MI.getOperand(1).getReg();
2653 Register Src1Reg =
MI.getOperand(2).getReg();
2654 auto Flags =
MI.getFlags();
2655 LLT Ty =
MRI.getType(DstReg);
2657 auto Div =
B.buildFDiv(Ty, Src0Reg, Src1Reg, Flags);
2658 auto Trunc =
B.buildIntrinsicTrunc(Ty, Div, Flags);
2659 auto Neg =
B.buildFNeg(Ty, Trunc, Flags);
2660 B.buildFMA(DstReg, Neg, Src1Reg, Src0Reg, Flags);
2661 MI.eraseFromParent();
2667 const unsigned FractBits = 52;
2668 const unsigned ExpBits = 11;
2671 auto Const0 =
B.buildConstant(
S32, FractBits - 32);
2672 auto Const1 =
B.buildConstant(
S32, ExpBits);
2674 auto ExpPart =
B.buildIntrinsic(Intrinsic::amdgcn_ubfe, {
S32})
2676 .addUse(Const0.getReg(0))
2677 .addUse(Const1.getReg(0));
2679 return B.buildSub(
S32, ExpPart,
B.buildConstant(
S32, 1023));
2693 auto Unmerge =
B.buildUnmerge({
S32,
S32}, Src);
2700 const unsigned FractBits = 52;
2703 const auto SignBitMask =
B.buildConstant(
S32, UINT32_C(1) << 31);
2704 auto SignBit =
B.buildAnd(
S32,
Hi, SignBitMask);
2706 const auto FractMask =
B.buildConstant(
S64, (UINT64_C(1) << FractBits) - 1);
2708 const auto Zero32 =
B.buildConstant(
S32, 0);
2711 auto SignBit64 =
B.buildMergeLikeInstr(
S64, {Zero32, SignBit});
2713 auto Shr =
B.buildAShr(
S64, FractMask, Exp);
2714 auto Not =
B.buildNot(
S64, Shr);
2715 auto Tmp0 =
B.buildAnd(
S64, Src, Not);
2716 auto FiftyOne =
B.buildConstant(
S32, FractBits - 1);
2721 auto Tmp1 =
B.buildSelect(
S64, ExpLt0, SignBit64, Tmp0);
2722 B.buildSelect(
MI.getOperand(0).getReg(), ExpGt51, Src, Tmp1);
2723 MI.eraseFromParent();
2739 auto Unmerge =
B.buildUnmerge({
S32,
S32}, Src);
2740 auto ThirtyTwo =
B.buildConstant(
S32, 32);
2742 if (
MRI.getType(Dst) ==
S64) {
2743 auto CvtHi =
Signed ?
B.buildSITOFP(
S64, Unmerge.getReg(1))
2744 :
B.buildUITOFP(
S64, Unmerge.getReg(1));
2746 auto CvtLo =
B.buildUITOFP(
S64, Unmerge.getReg(0));
2747 auto LdExp =
B.buildFLdexp(
S64, CvtHi, ThirtyTwo);
2750 B.buildFAdd(Dst, LdExp, CvtLo);
2751 MI.eraseFromParent();
2757 auto One =
B.buildConstant(
S32, 1);
2761 auto ThirtyOne =
B.buildConstant(
S32, 31);
2762 auto X =
B.buildXor(
S32, Unmerge.getReg(0), Unmerge.getReg(1));
2763 auto OppositeSign =
B.buildAShr(
S32,
X, ThirtyOne);
2764 auto MaxShAmt =
B.buildAdd(
S32, ThirtyTwo, OppositeSign);
2765 auto LS =
B.buildIntrinsic(Intrinsic::amdgcn_sffbh, {
S32})
2766 .addUse(Unmerge.getReg(1));
2767 auto LS2 =
B.buildSub(
S32, LS, One);
2768 ShAmt =
B.buildUMin(
S32, LS2, MaxShAmt);
2770 ShAmt =
B.buildCTLZ(
S32, Unmerge.getReg(1));
2771 auto Norm =
B.buildShl(
S64, Src, ShAmt);
2772 auto Unmerge2 =
B.buildUnmerge({
S32,
S32}, Norm);
2773 auto Adjust =
B.buildUMin(
S32, One, Unmerge2.getReg(0));
2774 auto Norm2 =
B.buildOr(
S32, Unmerge2.getReg(1), Adjust);
2775 auto FVal =
Signed ?
B.buildSITOFP(
S32, Norm2) :
B.buildUITOFP(
S32, Norm2);
2776 auto Scale =
B.buildSub(
S32, ThirtyTwo, ShAmt);
2777 B.buildFLdexp(Dst, FVal, Scale);
2778 MI.eraseFromParent();
2795 const LLT SrcLT =
MRI.getType(Src);
2798 unsigned Flags =
MI.getFlags();
2809 auto Trunc =
B.buildIntrinsicTrunc(SrcLT, Src, Flags);
2817 Sign =
B.buildAShr(
S32, Src,
B.buildConstant(
S32, 31));
2818 Trunc =
B.buildFAbs(
S32, Trunc, Flags);
2822 K0 =
B.buildFConstant(
2824 K1 =
B.buildFConstant(
2827 K0 =
B.buildFConstant(
2829 K1 =
B.buildFConstant(
2833 auto Mul =
B.buildFMul(SrcLT, Trunc, K0, Flags);
2834 auto FloorMul =
B.buildFFloor(SrcLT,
Mul, Flags);
2835 auto Fma =
B.buildFMA(SrcLT, FloorMul, K1, Trunc, Flags);
2838 :
B.buildFPTOUI(
S32, FloorMul);
2839 auto Lo =
B.buildFPTOUI(
S32, Fma);
2843 Sign =
B.buildMergeLikeInstr(
S64, {Sign, Sign});
2845 B.buildSub(Dst,
B.buildXor(
S64,
B.buildMergeLikeInstr(
S64, {Lo, Hi}), Sign),
2848 B.buildMergeLikeInstr(Dst, {
Lo,
Hi});
2849 MI.eraseFromParent();
2876 LLT VecTy =
MRI.getType(Vec);
2889 auto IntVec =
B.buildPtrToInt(IntVecTy, Vec);
2890 auto IntElt =
B.buildExtractVectorElement(IntTy, IntVec,
MI.getOperand(2));
2891 B.buildIntToPtr(Dst, IntElt);
2893 MI.eraseFromParent();
2900 std::optional<ValueAndVReg> MaybeIdxVal =
2904 const uint64_t IdxVal = MaybeIdxVal->Value.getZExtValue();
2907 auto Unmerge =
B.buildUnmerge(EltTy, Vec);
2908 B.buildCopy(Dst, Unmerge.getReg(IdxVal));
2913 MI.eraseFromParent();
2928 LLT VecTy =
MRI.getType(Vec);
2942 auto IntVecSource =
B.buildPtrToInt(IntVecTy, Vec);
2943 auto IntIns =
B.buildPtrToInt(IntTy, Ins);
2944 auto IntVecDest =
B.buildInsertVectorElement(IntVecTy, IntVecSource, IntIns,
2946 B.buildIntToPtr(Dst, IntVecDest);
2947 MI.eraseFromParent();
2954 std::optional<ValueAndVReg> MaybeIdxVal =
2959 const uint64_t IdxVal = MaybeIdxVal->Value.getZExtValue();
2962 if (IdxVal < NumElts) {
2964 for (
unsigned i = 0; i < NumElts; ++i)
2965 SrcRegs.
push_back(
MRI.createGenericVirtualRegister(EltTy));
2966 B.buildUnmerge(SrcRegs, Vec);
2968 SrcRegs[IdxVal] =
MI.getOperand(2).getReg();
2969 B.buildMergeLikeInstr(Dst, SrcRegs);
2974 MI.eraseFromParent();
2984 LLT Ty =
MRI.getType(DstReg);
2985 unsigned Flags =
MI.getFlags();
2989 if (ST.hasTrigReducedRange()) {
2990 auto MulVal =
B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags);
2991 TrigVal =
B.buildIntrinsic(Intrinsic::amdgcn_fract, {Ty})
2992 .addUse(MulVal.getReg(0))
2996 TrigVal =
B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags).getReg(0);
2999 Intrinsic::amdgcn_sin : Intrinsic::amdgcn_cos;
3003 MI.eraseFromParent();
3011 unsigned GAFlags)
const {
3040 B.getMRI()->createGenericVirtualRegister(ConstPtrTy);
3042 if (ST.has64BitLiterals()) {
3046 B.buildInstr(AMDGPU::SI_PC_ADD_REL_OFFSET64).addDef(PCReg);
3050 B.buildInstr(AMDGPU::SI_PC_ADD_REL_OFFSET).addDef(PCReg);
3059 if (!
B.getMRI()->getRegClassOrNull(PCReg))
3060 B.getMRI()->setRegClass(PCReg, &AMDGPU::SReg_64RegClass);
3063 B.buildExtract(DstReg, PCReg, 0);
3073 if (RequiresHighHalf && ST.has64BitLiterals()) {
3074 if (!
MRI.getRegClassOrNull(DstReg))
3075 MRI.setRegClass(DstReg, &AMDGPU::SReg_64RegClass);
3076 B.buildInstr(AMDGPU::S_MOV_B64)
3086 Register AddrLo = !RequiresHighHalf && !
MRI.getRegClassOrNull(DstReg)
3088 :
MRI.createGenericVirtualRegister(
S32);
3090 if (!
MRI.getRegClassOrNull(AddrLo))
3091 MRI.setRegClass(AddrLo, &AMDGPU::SReg_32RegClass);
3094 B.buildInstr(AMDGPU::S_MOV_B32)
3099 if (RequiresHighHalf) {
3101 "Must provide a 64-bit pointer type!");
3104 MRI.setRegClass(AddrHi, &AMDGPU::SReg_32RegClass);
3106 B.buildInstr(AMDGPU::S_MOV_B32)
3116 if (!
MRI.getRegClassOrNull(AddrDst))
3117 MRI.setRegClass(AddrDst, &AMDGPU::SReg_64RegClass);
3119 B.buildMergeValues(AddrDst, {AddrLo, AddrHi});
3123 if (AddrDst != DstReg)
3124 B.buildCast(DstReg, AddrDst);
3125 }
else if (AddrLo != DstReg) {
3128 B.buildCast(DstReg, AddrLo);
3136 LLT Ty =
MRI.getType(DstReg);
3137 unsigned AS = Ty.getAddressSpace();
3145 GV->
getName() !=
"llvm.amdgcn.module.lds" &&
3149 Fn,
"local memory global used by non-kernel function",
3158 B.buildUndef(DstReg);
3159 MI.eraseFromParent();
3179 if (
B.getDataLayout().getTypeAllocSize(Ty).isZero()) {
3183 auto Sz =
B.buildIntrinsic(Intrinsic::amdgcn_groupstaticsize, {
S32});
3184 B.buildIntToPtr(DstReg, Sz);
3185 MI.eraseFromParent();
3192 MI.eraseFromParent();
3196 if (ST.isAmdPalOS() || ST.isMesa3DOS()) {
3198 MI.eraseFromParent();
3206 MI.eraseFromParent();
3212 MI.eraseFromParent();
3217 Register GOTAddr =
MRI.createGenericVirtualRegister(PtrTy);
3228 if (Ty.getSizeInBits() == 32) {
3230 auto Load =
B.buildLoad(PtrTy, GOTAddr, *GOTMMO);
3231 B.buildExtract(DstReg, Load, 0);
3233 B.buildLoad(DstReg, GOTAddr, *GOTMMO);
3235 MI.eraseFromParent();
3253 LLT PtrTy =
MRI.getType(PtrReg);
3258 auto Cast =
B.buildAddrSpaceCast(ConstPtr, PtrReg);
3260 MI.getOperand(1).setReg(Cast.getReg(0));
3265 if (
MI.getOpcode() != AMDGPU::G_LOAD)
3269 LLT ValTy =
MRI.getType(ValReg);
3279 const unsigned ValSize = ValTy.getSizeInBits();
3291 if (WideMemSize == ValSize) {
3297 MI.setMemRefs(MF, {WideMMO});
3303 if (ValSize > WideMemSize)
3310 WideLoad =
B.buildLoadFromOffset(WideTy, PtrReg, *MMO, 0).getReg(0);
3311 B.buildTrunc(ValReg, WideLoad).getReg(0);
3318 WideLoad =
B.buildLoadFromOffset(WideTy, PtrReg, *MMO, 0).getReg(0);
3319 B.buildExtract(ValReg, WideLoad, 0);
3323 WideLoad =
B.buildLoadFromOffset(WideTy, PtrReg, *MMO, 0).getReg(0);
3324 B.buildDeleteTrailingVectorElements(ValReg, WideLoad);
3328 MI.eraseFromParent();
3341 Register DataReg =
MI.getOperand(0).getReg();
3342 LLT DataTy =
MRI.getType(DataReg);
3356 LLT Ty =
MRI.getType(
MI.getOperand(0).getReg());
3385 "this should not have been custom lowered");
3387 LLT ValTy =
MRI.getType(CmpVal);
3390 Register PackedVal =
B.buildBuildVector(VecTy, { NewVal, CmpVal }).
getReg(0);
3392 B.buildInstr(AMDGPU::G_AMDGPU_ATOMIC_CMPXCHG)
3396 .setMemRefs(
MI.memoperands());
3398 MI.eraseFromParent();
3406 switch (
DefMI->getOpcode()) {
3407 case TargetOpcode::G_INTRINSIC: {
3409 case Intrinsic::amdgcn_frexp_mant:
3417 case TargetOpcode::G_FFREXP: {
3418 if (
DefMI->getOperand(0).getReg() == Src)
3422 case TargetOpcode::G_FPEXT: {
3443std::pair<Register, Register>
3445 unsigned Flags)
const {
3450 auto SmallestNormal =
B.buildFConstant(
3452 auto IsLtSmallestNormal =
3455 auto Scale32 =
B.buildFConstant(
F32, 0x1.0p+32);
3456 auto One =
B.buildFConstant(
F32, 1.0);
3458 B.buildSelect(
F32, IsLtSmallestNormal, Scale32, One, Flags);
3459 auto ScaledInput =
B.buildFMul(
F32, Src, ScaleFactor, Flags);
3461 return {ScaledInput.getReg(0), IsLtSmallestNormal.getReg(0)};
3474 LLT Ty =
B.getMRI()->getType(Dst);
3475 unsigned Flags =
MI.getFlags();
3480 auto Ext =
B.buildFPExt(
F32, Src, Flags);
3481 auto Log2 =
B.buildIntrinsic(Intrinsic::amdgcn_log, {
F32})
3482 .addUse(Ext.getReg(0))
3484 B.buildFPTrunc(Dst,
Log2, Flags);
3485 MI.eraseFromParent();
3493 B.buildIntrinsic(Intrinsic::amdgcn_log, {
MI.getOperand(0)})
3496 MI.eraseFromParent();
3500 auto Log2 =
B.buildIntrinsic(Intrinsic::amdgcn_log, {Ty})
3501 .addUse(ScaledInput)
3504 auto ThirtyTwo =
B.buildFConstant(Ty, 32.0);
3505 auto Zero =
B.buildFConstant(Ty, 0.0);
3507 B.buildSelect(Ty, IsLtSmallestNormal, ThirtyTwo, Zero, Flags);
3508 B.buildFSub(Dst,
Log2, ResultOffset, Flags);
3510 MI.eraseFromParent();
3516 auto FMul =
B.buildFMul(Ty,
X,
Y, Flags);
3517 return B.buildFAdd(Ty,
FMul, Z, Flags).getReg(0);
3522 const bool IsLog10 =
MI.getOpcode() == TargetOpcode::G_FLOG10;
3523 assert(IsLog10 ||
MI.getOpcode() == TargetOpcode::G_FLOG);
3528 unsigned Flags =
MI.getFlags();
3529 const LLT Ty =
MRI.getType(
X);
3539 if (Ty == F16 && !ST.has16BitInsts()) {
3541 auto PromoteSrc =
B.buildFPExt(
F32,
X);
3543 B.buildFPTrunc(Dst, LogVal);
3548 MI.eraseFromParent();
3557 B.buildIntrinsic(Intrinsic::amdgcn_log, {Ty}).addUse(
X).setMIFlags(Flags);
3560 if (ST.hasFastFMAF32()) {
3562 const float c_log10 = 0x1.344134p-2f;
3563 const float cc_log10 = 0x1.09f79ep-26f;
3566 const float c_log = 0x1.62e42ep-1f;
3567 const float cc_log = 0x1.efa39ep-25f;
3569 auto C =
B.buildFConstant(Ty, IsLog10 ? c_log10 : c_log);
3570 auto CC =
B.buildFConstant(Ty, IsLog10 ? cc_log10 : cc_log);
3574 R =
B.buildFMul(Ty,
Y,
C, NewFlags).getReg(0);
3575 auto NegR =
B.buildFNeg(Ty, R, NewFlags);
3576 auto FMA0 =
B.buildFMA(Ty,
Y,
C, NegR, NewFlags);
3577 auto FMA1 =
B.buildFMA(Ty,
Y, CC, FMA0, NewFlags);
3578 R =
B.buildFAdd(Ty, R, FMA1, NewFlags).getReg(0);
3581 const float ch_log10 = 0x1.344000p-2f;
3582 const float ct_log10 = 0x1.3509f6p-18f;
3585 const float ch_log = 0x1.62e000p-1f;
3586 const float ct_log = 0x1.0bfbe8p-15f;
3588 auto CH =
B.buildFConstant(Ty, IsLog10 ? ch_log10 : ch_log);
3589 auto CT =
B.buildFConstant(Ty, IsLog10 ? ct_log10 : ct_log);
3591 auto MaskConst =
B.buildConstant(Ty, 0xfffff000);
3592 auto YH =
B.buildAnd(Ty,
Y, MaskConst);
3593 auto YT =
B.buildFSub(Ty,
Y, YH, Flags);
3597 auto YTCT =
B.buildFMul(Ty, YT, CT, NewFlags);
3600 getMad(
B, Ty, YH.getReg(0), CT.getReg(0), YTCT.getReg(0), NewFlags);
3602 R =
getMad(
B, Ty, YH.getReg(0),
CH.getReg(0), Mad1, NewFlags);
3605 const bool IsFiniteOnly =
3609 if (!IsFiniteOnly) {
3612 auto Fabs =
B.buildFAbs(Ty,
Y);
3615 R =
B.buildSelect(Ty, IsFinite, R,
Y, Flags).getReg(0);
3619 auto Zero =
B.buildFConstant(Ty, 0.0);
3621 B.buildFConstant(Ty, IsLog10 ? 0x1.344136p+3f : 0x1.62e430p+4f);
3622 auto Shift =
B.buildSelect(Ty, IsScaled, ShiftK, Zero, Flags);
3623 B.buildFSub(Dst, R, Shift, Flags);
3625 B.buildCopy(Dst, R);
3628 MI.eraseFromParent();
3634 unsigned Flags)
const {
3635 const double Log2BaseInverted =
3638 LLT Ty =
B.getMRI()->getType(Dst);
3643 auto LogSrc =
B.buildIntrinsic(Intrinsic::amdgcn_log, {Ty})
3646 auto ScaledResultOffset =
B.buildFConstant(Ty, -32.0 * Log2BaseInverted);
3647 auto Zero =
B.buildFConstant(Ty, 0.0);
3649 B.buildSelect(Ty, IsScaled, ScaledResultOffset, Zero, Flags);
3650 auto Log2Inv =
B.buildFConstant(Ty, Log2BaseInverted);
3652 if (ST.hasFastFMAF32())
3653 B.buildFMA(Dst, LogSrc, Log2Inv, ResultOffset, Flags);
3655 auto Mul =
B.buildFMul(Ty, LogSrc, Log2Inv, Flags);
3656 B.buildFAdd(Dst,
Mul, ResultOffset, Flags);
3664 ?
B.buildFLog2(Ty, Src, Flags)
3665 :
B.buildIntrinsic(Intrinsic::amdgcn_log, {Ty})
3668 auto Log2BaseInvertedOperand =
B.buildFConstant(Ty, Log2BaseInverted);
3669 B.buildFMul(Dst, Log2Operand, Log2BaseInvertedOperand, Flags);
3680 unsigned Flags =
MI.getFlags();
3681 LLT Ty =
B.getMRI()->getType(Dst);
3687 auto Ext =
B.buildFPExt(
F32, Src, Flags);
3688 auto Log2 =
B.buildIntrinsic(Intrinsic::amdgcn_exp2, {
F32})
3689 .addUse(Ext.getReg(0))
3691 B.buildFPTrunc(Dst,
Log2, Flags);
3692 MI.eraseFromParent();
3702 MI.eraseFromParent();
3710 auto RangeCheckConst =
B.buildFConstant(Ty, -0x1.f80000p+6f);
3712 RangeCheckConst, Flags);
3714 auto SixtyFour =
B.buildFConstant(Ty, 0x1.0p+6f);
3715 auto Zero =
B.buildFConstant(Ty, 0.0);
3716 auto AddOffset =
B.buildSelect(
F32, NeedsScaling, SixtyFour, Zero, Flags);
3717 auto AddInput =
B.buildFAdd(
F32, Src, AddOffset, Flags);
3719 auto Exp2 =
B.buildIntrinsic(Intrinsic::amdgcn_exp2, {Ty})
3720 .addUse(AddInput.getReg(0))
3723 auto TwoExpNeg64 =
B.buildFConstant(Ty, 0x1.0p-64f);
3724 auto One =
B.buildFConstant(Ty, 1.0);
3725 auto ResultScale =
B.buildSelect(
F32, NeedsScaling, TwoExpNeg64, One, Flags);
3726 B.buildFMul(Dst, Exp2, ResultScale, Flags);
3727 MI.eraseFromParent();
3732 const SrcOp &Src,
unsigned Flags) {
3733 LLT Ty = Dst.getLLTTy(*
B.getMRI());
3736 return B.buildIntrinsic(Intrinsic::amdgcn_exp2, {Dst})
3737 .addUse(Src.getReg())
3740 return B.buildFExp2(Dst, Src, Flags);
3746 bool IsExp10)
const {
3747 LLT Ty =
B.getMRI()->getType(
X);
3751 auto Const =
B.buildFConstant(Ty, IsExp10 ? 0x1.a934f0p+1f :
numbers::log2e);
3752 auto Mul =
B.buildFMul(Ty,
X, Const, Flags);
3759 LLT Ty =
B.getMRI()->getType(Dst);
3766 auto Threshold =
B.buildFConstant(Ty, -0x1.5d58a0p+6f);
3769 auto ScaleOffset =
B.buildFConstant(Ty, 0x1.0p+6f);
3770 auto ScaledX =
B.buildFAdd(Ty,
X, ScaleOffset, Flags);
3771 auto AdjustedX =
B.buildSelect(Ty, NeedsScaling, ScaledX,
X, Flags);
3774 auto ExpInput =
B.buildFMul(Ty, AdjustedX, Log2E, Flags);
3776 auto Exp2 =
B.buildIntrinsic(Intrinsic::amdgcn_exp2, {Ty})
3777 .addUse(ExpInput.getReg(0))
3780 auto ResultScaleFactor =
B.buildFConstant(Ty, 0x1.969d48p-93f);
3781 auto AdjustedResult =
B.buildFMul(Ty, Exp2, ResultScaleFactor, Flags);
3782 B.buildSelect(Dst, NeedsScaling, AdjustedResult, Exp2, Flags);
3788 unsigned Flags)
const {
3789 LLT Ty =
B.getMRI()->getType(Dst);
3794 auto K0 =
B.buildFConstant(Ty, 0x1.a92000p+1f);
3795 auto K1 =
B.buildFConstant(Ty, 0x1.4f0978p-11f);
3797 auto Mul1 =
B.buildFMul(Ty,
X, K1, Flags);
3798 auto Exp2_1 =
buildExp(
B, Ty, Mul1, Flags);
3799 auto Mul0 =
B.buildFMul(Ty,
X, K0, Flags);
3800 auto Exp2_0 =
buildExp(
B, Ty, Mul0, Flags);
3801 B.buildFMul(Dst, Exp2_0, Exp2_1, Flags);
3811 auto Threshold =
B.buildFConstant(Ty, -0x1.2f7030p+5f);
3815 auto ScaleOffset =
B.buildFConstant(Ty, 0x1.0p+5f);
3816 auto ScaledX =
B.buildFAdd(Ty,
X, ScaleOffset, Flags);
3817 auto AdjustedX =
B.buildSelect(Ty, NeedsScaling, ScaledX,
X);
3819 auto K0 =
B.buildFConstant(Ty, 0x1.a92000p+1f);
3820 auto K1 =
B.buildFConstant(Ty, 0x1.4f0978p-11f);
3822 auto Mul1 =
B.buildFMul(Ty, AdjustedX, K1, Flags);
3823 auto Exp2_1 =
buildExp(
B, Ty, Mul1, Flags);
3824 auto Mul0 =
B.buildFMul(Ty, AdjustedX, K0, Flags);
3825 auto Exp2_0 =
buildExp(
B, Ty, Mul0, Flags);
3827 auto MulExps =
B.buildFMul(Ty, Exp2_0, Exp2_1, Flags);
3828 auto ResultScaleFactor =
B.buildFConstant(Ty, 0x1.9f623ep-107f);
3829 auto AdjustedResult =
B.buildFMul(Ty, MulExps, ResultScaleFactor, Flags);
3831 B.buildSelect(Dst, NeedsScaling, AdjustedResult, MulExps);
3839 const unsigned Flags =
MI.getFlags();
3842 LLT Ty =
MRI.getType(Dst);
3845 const bool IsExp10 =
MI.getOpcode() == TargetOpcode::G_FEXP10;
3853 MI.eraseFromParent();
3864 auto Ext =
B.buildFPExt(
F32,
X, Flags);
3867 B.buildFPTrunc(Dst, Lowered, Flags);
3868 MI.eraseFromParent();
3879 MI.eraseFromParent();
3907 const unsigned FlagsNoContract = Flags &
~MachineInstr::FmContract;
3910 if (ST.hasFastFMAF32()) {
3912 const float cc_exp = 0x1.4ae0bep-26f;
3913 const float c_exp10 = 0x1.a934f0p+1f;
3914 const float cc_exp10 = 0x1.2f346ep-24f;
3916 auto C =
B.buildFConstant(Ty, IsExp10 ? c_exp10 : c_exp);
3917 PH =
B.buildFMul(Ty,
X,
C, Flags).getReg(0);
3918 auto NegPH =
B.buildFNeg(Ty, PH, Flags);
3919 auto FMA0 =
B.buildFMA(Ty,
X,
C, NegPH, Flags);
3921 auto CC =
B.buildFConstant(Ty, IsExp10 ? cc_exp10 : cc_exp);
3922 PL =
B.buildFMA(Ty,
X, CC, FMA0, Flags).getReg(0);
3924 const float ch_exp = 0x1.714000p+0f;
3925 const float cl_exp = 0x1.47652ap-12f;
3927 const float ch_exp10 = 0x1.a92000p+1f;
3928 const float cl_exp10 = 0x1.4f0978p-11f;
3930 auto MaskConst =
B.buildConstant(Ty, 0xfffff000);
3931 auto XH =
B.buildAnd(Ty,
X, MaskConst);
3932 auto XL =
B.buildFSub(Ty,
X, XH, Flags);
3934 auto CH =
B.buildFConstant(Ty, IsExp10 ? ch_exp10 : ch_exp);
3935 PH =
B.buildFMul(Ty, XH,
CH, Flags).getReg(0);
3937 auto CL =
B.buildFConstant(Ty, IsExp10 ? cl_exp10 : cl_exp);
3938 auto XLCL =
B.buildFMul(Ty, XL, CL, Flags);
3941 getMad(
B, Ty, XL.getReg(0),
CH.getReg(0), XLCL.getReg(0), Flags);
3942 PL =
getMad(
B, Ty, XH.getReg(0), CL.getReg(0), Mad0, Flags);
3945 auto E =
B.buildIntrinsicRoundeven(Ty, PH, Flags);
3948 auto PHSubE =
B.buildFSub(Ty, PH, E, FlagsNoContract);
3949 auto A =
B.buildFAdd(Ty, PHSubE, PL, Flags);
3952 auto Exp2 =
B.buildIntrinsic(Intrinsic::amdgcn_exp2, {Ty})
3953 .addUse(
A.getReg(0))
3955 auto R =
B.buildFLdexp(Ty, Exp2, IntE, Flags);
3957 auto UnderflowCheckConst =
3958 B.buildFConstant(Ty, IsExp10 ? -0x1.66d3e8p+5f : -0x1.9d1da0p+6f);
3959 auto Zero =
B.buildFConstant(Ty, 0.0);
3963 R =
B.buildSelect(Ty, Underflow, Zero, R);
3966 auto OverflowCheckConst =
3967 B.buildFConstant(Ty, IsExp10 ? 0x1.344136p+5f : 0x1.62e430p+6f);
3972 R =
B.buildSelect(Ty, Overflow, Inf, R, Flags);
3975 B.buildCopy(Dst, R);
3976 MI.eraseFromParent();
3985 unsigned Flags =
MI.getFlags();
3986 LLT Ty =
B.getMRI()->getType(Dst);
3991 auto Log =
B.buildFLog2(
F32, Src0, Flags);
3992 auto Mul =
B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {
F32})
3993 .addUse(Log.getReg(0))
3996 B.buildFExp2(Dst,
Mul, Flags);
3997 }
else if (Ty == F16) {
3999 auto Log =
B.buildFLog2(F16, Src0, Flags);
4000 auto Ext0 =
B.buildFPExt(
F32, Log, Flags);
4001 auto Ext1 =
B.buildFPExt(
F32, Src1, Flags);
4002 auto Mul =
B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {
F32})
4003 .addUse(Ext0.getReg(0))
4004 .addUse(Ext1.getReg(0))
4006 B.buildFExp2(Dst,
B.buildFPTrunc(F16,
Mul), Flags);
4010 MI.eraseFromParent();
4018 ModSrc = SrcFNeg->getOperand(1).getReg();
4020 ModSrc = SrcFAbs->getOperand(1).getReg();
4022 ModSrc = SrcFAbs->getOperand(1).getReg();
4033 Register OrigSrc =
MI.getOperand(1).getReg();
4034 unsigned Flags =
MI.getFlags();
4036 "this should not have been custom lowered");
4046 auto Fract =
B.buildIntrinsic(Intrinsic::amdgcn_fract, {
F64})
4066 B.buildFMinNumIEEE(Min, Fract, Const, Flags);
4068 B.buildFMinNum(Min, Fract, Const, Flags);
4073 CorrectedFract =
B.buildSelect(
F64, IsNan, ModSrc, Min, Flags).getReg(0);
4076 auto NegFract =
B.buildFNeg(
F64, CorrectedFract, Flags);
4077 B.buildFAdd(Dst, OrigSrc, NegFract, Flags);
4079 MI.eraseFromParent();
4095 if (
MI.getOpcode() == AMDGPU::G_BUILD_VECTOR_TRUNC) {
4097 Src0 =
B.buildTrunc(
S16,
MI.getOperand(1).getReg()).getReg(0);
4098 Src1 =
B.buildTrunc(
S16,
MI.getOperand(2).getReg()).getReg(0);
4101 auto Merge =
B.buildMergeLikeInstr(
S32, {Src0, Src1});
4102 B.buildBitcast(Dst,
Merge);
4104 MI.eraseFromParent();
4121 bool UsePartialMad64_32,
4122 bool SeparateOddAlignedProducts)
const {
4137 auto getZero32 = [&]() ->
Register {
4139 Zero32 =
B.buildConstant(
S32, 0).getReg(0);
4142 auto getZero64 = [&]() ->
Register {
4144 Zero64 =
B.buildConstant(
S64, 0).getReg(0);
4149 for (
unsigned i = 0; i < Src0.
size(); ++i) {
4160 if (CarryIn.empty())
4163 bool HaveCarryOut =
true;
4165 if (CarryIn.size() == 1) {
4167 LocalAccum =
B.buildZExt(
S32, CarryIn[0]).getReg(0);
4171 CarryAccum = getZero32();
4173 CarryAccum =
B.buildZExt(
S32, CarryIn[0]).getReg(0);
4174 for (
unsigned i = 1; i + 1 < CarryIn.size(); ++i) {
4176 B.buildUAdde(
S32,
S1, CarryAccum, getZero32(), CarryIn[i])
4181 LocalAccum = getZero32();
4182 HaveCarryOut =
false;
4187 B.buildUAdde(
S32,
S1, CarryAccum, LocalAccum, CarryIn.back());
4188 LocalAccum =
Add.getReg(0);
4202 auto buildMadChain =
4205 assert((DstIndex + 1 < Accum.
size() && LocalAccum.size() == 2) ||
4206 (DstIndex + 1 >= Accum.
size() && LocalAccum.size() == 1));
4213 if (LocalAccum.size() == 1 &&
4214 (!UsePartialMad64_32 || !CarryIn.empty())) {
4217 unsigned j1 = DstIndex - j0;
4218 if (Src0KnownZeros[j0] || Src1KnownZeros[j1]) {
4222 auto Mul =
B.buildMul(
S32, Src0[j0], Src1[j1]);
4224 LocalAccum[0] =
Mul.getReg(0);
4226 if (CarryIn.empty()) {
4227 LocalAccum[0] =
B.buildAdd(
S32, LocalAccum[0],
Mul).getReg(0);
4230 B.buildUAdde(
S32,
S1, LocalAccum[0],
Mul, CarryIn.back())
4236 }
while (j0 <= DstIndex && (!UsePartialMad64_32 || !CarryIn.empty()));
4240 if (j0 <= DstIndex) {
4241 bool HaveSmallAccum =
false;
4244 if (LocalAccum[0]) {
4245 if (LocalAccum.size() == 1) {
4246 Tmp =
B.buildAnyExt(
S64, LocalAccum[0]).getReg(0);
4247 HaveSmallAccum =
true;
4248 }
else if (LocalAccum[1]) {
4249 Tmp =
B.buildMergeLikeInstr(
S64, LocalAccum).getReg(0);
4250 HaveSmallAccum =
false;
4252 Tmp =
B.buildZExt(
S64, LocalAccum[0]).getReg(0);
4253 HaveSmallAccum =
true;
4256 assert(LocalAccum.size() == 1 || !LocalAccum[1]);
4258 HaveSmallAccum =
true;
4262 unsigned j1 = DstIndex - j0;
4263 if (Src0KnownZeros[j0] || Src1KnownZeros[j1]) {
4267 auto Mad =
B.buildInstr(AMDGPU::G_AMDGPU_MAD_U64_U32, {
S64,
S1},
4268 {Src0[j0], Src1[j1], Tmp});
4269 Tmp = Mad.getReg(0);
4270 if (!HaveSmallAccum)
4271 CarryOut.push_back(Mad.getReg(1));
4272 HaveSmallAccum =
false;
4275 }
while (j0 <= DstIndex);
4277 auto Unmerge =
B.buildUnmerge(
S32, Tmp);
4278 LocalAccum[0] = Unmerge.getReg(0);
4279 if (LocalAccum.size() > 1)
4280 LocalAccum[1] = Unmerge.getReg(1);
4307 for (
unsigned i = 0; i <= Accum.
size() / 2; ++i) {
4308 Carry OddCarryIn = std::move(OddCarry);
4309 Carry EvenCarryIn = std::move(EvenCarry);
4314 if (2 * i < Accum.
size()) {
4315 auto LocalAccum = Accum.
drop_front(2 * i).take_front(2);
4316 EvenCarry = buildMadChain(LocalAccum, 2 * i, EvenCarryIn);
4321 if (!SeparateOddAlignedProducts) {
4322 auto LocalAccum = Accum.
drop_front(2 * i - 1).take_front(2);
4323 OddCarry = buildMadChain(LocalAccum, 2 * i - 1, OddCarryIn);
4325 bool IsHighest = 2 * i >= Accum.
size();
4328 .take_front(IsHighest ? 1 : 2);
4329 OddCarry = buildMadChain(LocalAccum, 2 * i - 1, OddCarryIn);
4335 Lo =
B.buildUAddo(
S32,
S1, Accum[2 * i - 1], SeparateOddOut[0]);
4337 Lo =
B.buildAdd(
S32, Accum[2 * i - 1], SeparateOddOut[0]);
4339 Lo =
B.buildUAdde(
S32,
S1, Accum[2 * i - 1], SeparateOddOut[0],
4342 Accum[2 * i - 1] =
Lo->getOperand(0).getReg();
4345 auto Hi =
B.buildUAdde(
S32,
S1, Accum[2 * i], SeparateOddOut[1],
4346 Lo->getOperand(1).getReg());
4347 Accum[2 * i] =
Hi.getReg(0);
4348 SeparateOddCarry =
Hi.getReg(1);
4355 if (
Register CarryOut = mergeCarry(Accum[2 * i - 1], OddCarryIn))
4356 EvenCarryIn.push_back(CarryOut);
4358 if (2 * i < Accum.
size()) {
4359 if (
Register CarryOut = mergeCarry(Accum[2 * i], EvenCarryIn))
4360 OddCarry.push_back(CarryOut);
4372 assert(ST.hasMad64_32());
4373 assert(
MI.getOpcode() == TargetOpcode::G_MUL);
4382 LLT Ty =
MRI.getType(DstReg);
4385 unsigned Size = Ty.getSizeInBits();
4386 if (ST.hasVectorMulU64() &&
Size == 64)
4389 unsigned NumParts =
Size / 32;
4401 const bool SeparateOddAlignedProducts = ST.hasFullRate64Ops();
4405 for (
unsigned i = 0; i < NumParts; ++i) {
4409 B.buildUnmerge(Src0Parts, Src0);
4410 B.buildUnmerge(Src1Parts, Src1);
4413 buildMultiply(Helper, AccumRegs, Src0Parts, Src1Parts, UsePartialMad64_32,
4414 SeparateOddAlignedProducts);
4416 B.buildMergeLikeInstr(DstReg, AccumRegs);
4417 MI.eraseFromParent();
4429 LLT DstTy =
MRI.getType(Dst);
4430 LLT SrcTy =
MRI.getType(Src);
4432 unsigned NewOpc =
MI.getOpcode() == AMDGPU::G_CTLZ
4433 ? AMDGPU::G_AMDGPU_FFBH_U32
4434 : AMDGPU::G_AMDGPU_FFBL_B32;
4435 auto Tmp =
B.buildInstr(NewOpc, {DstTy}, {Src});
4438 MI.eraseFromParent();
4447 LLT SrcTy =
MRI.getType(Src);
4448 TypeSize NumBits = SrcTy.getSizeInBits();
4452 auto ShiftAmt =
B.buildConstant(
S32, 32u - NumBits);
4453 auto Extend =
B.buildAnyExt(
S32, {Src}).
getReg(0u);
4454 auto Shift =
B.buildShl(
S32, Extend, ShiftAmt);
4455 auto Ctlz =
B.buildInstr(AMDGPU::G_AMDGPU_FFBH_U32, {
S32}, {Shift});
4456 B.buildTrunc(Dst, Ctlz);
4457 MI.eraseFromParent();
4463 if (
MI.getOpcode() != TargetOpcode::G_XOR)
4466 return ConstVal == -1;
4473 Register CondDef =
MI.getOperand(0).getReg();
4474 if (!
MRI.hasOneNonDBGUse(CondDef))
4482 if (!
MRI.hasOneNonDBGUse(NegatedCond))
4488 UseMI = &*
MRI.use_instr_nodbg_begin(NegatedCond);
4492 if (
UseMI->getParent() != Parent ||
UseMI->getOpcode() != AMDGPU::G_BRCOND)
4501 UncondBrTarget = &*NextMBB;
4503 if (
Next->getOpcode() != AMDGPU::G_BR)
4522 *ArgRC,
B.getDebugLoc(), ArgTy);
4526 const unsigned Mask = Arg->
getMask();
4534 auto ShiftAmt =
B.buildConstant(
S32, Shift);
4535 AndMaskSrc =
B.buildLShr(
S32, LiveIn, ShiftAmt).getReg(0);
4538 B.buildAnd(DstReg, AndMaskSrc,
B.buildConstant(
S32, Mask >> Shift));
4540 B.buildCopy(DstReg, LiveIn);
4550 if (!ST.hasClusters()) {
4553 MI.eraseFromParent();
4566 Register ClusterMaxIdXYZ =
MRI.createGenericVirtualRegister(
S32);
4567 Register ClusterWorkGroupIdXYZ =
MRI.createGenericVirtualRegister(
S32);
4573 auto One =
B.buildConstant(
S32, 1);
4574 auto ClusterSizeXYZ =
B.buildAdd(
S32, ClusterMaxIdXYZ, One);
4575 auto GlobalIdXYZ =
B.buildAdd(
S32, ClusterWorkGroupIdXYZ,
4576 B.buildMul(
S32, ClusterIdXYZ, ClusterSizeXYZ));
4583 B.buildCopy(DstReg, GlobalIdXYZ);
4584 MI.eraseFromParent();
4588 B.buildCopy(DstReg, ClusterIdXYZ);
4589 MI.eraseFromParent();
4594 unsigned ClusterIdField = HwregEncoding::encode(ID_IB_STS2, 6, 4);
4596 MRI.setRegClass(ClusterId, &AMDGPU::SReg_32RegClass);
4597 B.buildInstr(AMDGPU::S_GETREG_B32_const)
4599 .addImm(ClusterIdField);
4600 auto Zero =
B.buildConstant(
S32, 0);
4603 B.buildSelect(DstReg, NoClusters, ClusterIdXYZ, GlobalIdXYZ);
4604 MI.eraseFromParent();
4646 auto LoadConstant = [&](
unsigned N) {
4647 B.buildConstant(DstReg,
N);
4651 if (ST.hasArchitectedSGPRs() &&
4658 Arg = &WorkGroupIDX;
4659 ArgRC = &AMDGPU::SReg_32RegClass;
4663 Arg = &WorkGroupIDY;
4664 ArgRC = &AMDGPU::SReg_32RegClass;
4668 Arg = &WorkGroupIDZ;
4669 ArgRC = &AMDGPU::SReg_32RegClass;
4673 if (HasFixedDims && ClusterDims.
getDims()[0] == 1)
4674 return LoadConstant(0);
4675 Arg = &ClusterWorkGroupIDX;
4676 ArgRC = &AMDGPU::SReg_32RegClass;
4680 if (HasFixedDims && ClusterDims.
getDims()[1] == 1)
4681 return LoadConstant(0);
4682 Arg = &ClusterWorkGroupIDY;
4683 ArgRC = &AMDGPU::SReg_32RegClass;
4687 if (HasFixedDims && ClusterDims.
getDims()[2] == 1)
4688 return LoadConstant(0);
4689 Arg = &ClusterWorkGroupIDZ;
4690 ArgRC = &AMDGPU::SReg_32RegClass;
4695 return LoadConstant(ClusterDims.
getDims()[0] - 1);
4696 Arg = &ClusterWorkGroupMaxIDX;
4697 ArgRC = &AMDGPU::SReg_32RegClass;
4702 return LoadConstant(ClusterDims.
getDims()[1] - 1);
4703 Arg = &ClusterWorkGroupMaxIDY;
4704 ArgRC = &AMDGPU::SReg_32RegClass;
4709 return LoadConstant(ClusterDims.
getDims()[2] - 1);
4710 Arg = &ClusterWorkGroupMaxIDZ;
4711 ArgRC = &AMDGPU::SReg_32RegClass;
4715 Arg = &ClusterWorkGroupMaxFlatID;
4716 ArgRC = &AMDGPU::SReg_32RegClass;
4731 return LoadConstant(0);
4736 B.buildUndef(DstReg);
4740 if (!Arg->isRegister() || !Arg->getRegister().isValid())
4752 MI.eraseFromParent();
4758 B.buildConstant(
MI.getOperand(0).getReg(),
C);
4759 MI.eraseFromParent();
4766 unsigned MaxID = ST.getMaxWorkitemID(
B.getMF().getFunction(), Dim);
4780 B.buildUndef(DstReg);
4781 MI.eraseFromParent();
4785 if (Arg->isMasked()) {
4799 MI.eraseFromParent();
4814 Register KernArgReg =
B.getMRI()->createGenericVirtualRegister(PtrTy);
4823 return B.buildObjectPtrOffset(PtrTy, KernArgReg, COffset).getReg(0);
4831 Align Alignment)
const {
4835 "unexpected kernarg parameter type");
4842 MI.eraseFromParent();
4850 LLT DstTy =
MRI.getType(Dst);
4877 auto FloatY =
B.buildUITOFP(
S32,
Y);
4878 auto RcpIFlag =
B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {
S32}, {FloatY});
4880 auto ScaledY =
B.buildFMul(
S32, RcpIFlag, Scale);
4881 auto Z =
B.buildFPTOUI(
S32, ScaledY);
4884 auto NegY =
B.buildSub(
S32,
B.buildConstant(
S32, 0),
Y);
4885 auto NegYZ =
B.buildMul(
S32, NegY, Z);
4886 Z =
B.buildAdd(
S32, Z,
B.buildUMulH(
S32, Z, NegYZ));
4889 auto Q =
B.buildUMulH(
S32,
X, Z);
4890 auto R =
B.buildSub(
S32,
X,
B.buildMul(
S32, Q,
Y));
4893 auto One =
B.buildConstant(
S32, 1);
4896 Q =
B.buildSelect(
S32,
Cond,
B.buildAdd(
S32, Q, One), Q);
4902 B.buildSelect(DstDivReg,
Cond,
B.buildAdd(
S32, Q, One), Q);
4905 B.buildSelect(DstRemReg,
Cond,
B.buildSub(
S32, R,
Y), R);
4924 auto Unmerge =
B.buildUnmerge(
S32, Val);
4926 auto CvtLo =
B.buildUITOFP(
S32, Unmerge.getReg(0));
4927 auto CvtHi =
B.buildUITOFP(
S32, Unmerge.getReg(1));
4929 auto Mad =
B.buildFMAD(
4933 auto Rcp =
B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {
S32}, {Mad});
4934 auto Mul1 =
B.buildFMul(
4938 auto Mul2 =
B.buildFMul(
4940 auto Trunc =
B.buildIntrinsicTrunc(
S32, Mul2);
4943 auto Mad2 =
B.buildFMAD(
4947 auto ResultLo =
B.buildFPTOUI(
S32, Mad2);
4948 auto ResultHi =
B.buildFPTOUI(
S32, Trunc);
4950 return {ResultLo.getReg(0), ResultHi.getReg(0)};
4965 auto Rcp =
B.buildMergeLikeInstr(
S64, {RcpLo, RcpHi});
4967 auto Zero64 =
B.buildConstant(
S64, 0);
4968 auto NegDenom =
B.buildSub(
S64, Zero64, Denom);
4970 auto MulLo1 =
B.buildMul(
S64, NegDenom, Rcp);
4971 auto MulHi1 =
B.buildUMulH(
S64, Rcp, MulLo1);
4973 auto UnmergeMulHi1 =
B.buildUnmerge(
S32, MulHi1);
4974 Register MulHi1_Lo = UnmergeMulHi1.getReg(0);
4975 Register MulHi1_Hi = UnmergeMulHi1.getReg(1);
4977 auto Add1_Lo =
B.buildUAddo(
S32,
S1, RcpLo, MulHi1_Lo);
4978 auto Add1_Hi =
B.buildUAdde(
S32,
S1, RcpHi, MulHi1_Hi, Add1_Lo.getReg(1));
4979 auto Add1 =
B.buildMergeLikeInstr(
S64, {Add1_Lo, Add1_Hi});
4981 auto MulLo2 =
B.buildMul(
S64, NegDenom, Add1);
4982 auto MulHi2 =
B.buildUMulH(
S64, Add1, MulLo2);
4983 auto UnmergeMulHi2 =
B.buildUnmerge(
S32, MulHi2);
4984 Register MulHi2_Lo = UnmergeMulHi2.getReg(0);
4985 Register MulHi2_Hi = UnmergeMulHi2.getReg(1);
4987 auto Zero32 =
B.buildConstant(
S32, 0);
4988 auto Add2_Lo =
B.buildUAddo(
S32,
S1, Add1_Lo, MulHi2_Lo);
4989 auto Add2_Hi =
B.buildUAdde(
S32,
S1, Add1_Hi, MulHi2_Hi, Add2_Lo.getReg(1));
4990 auto Add2 =
B.buildMergeLikeInstr(
S64, {Add2_Lo, Add2_Hi});
4992 auto UnmergeNumer =
B.buildUnmerge(
S32, Numer);
4993 Register NumerLo = UnmergeNumer.getReg(0);
4994 Register NumerHi = UnmergeNumer.getReg(1);
4996 auto MulHi3 =
B.buildUMulH(
S64, Numer, Add2);
4997 auto Mul3 =
B.buildMul(
S64, Denom, MulHi3);
4998 auto UnmergeMul3 =
B.buildUnmerge(
S32, Mul3);
4999 Register Mul3_Lo = UnmergeMul3.getReg(0);
5000 Register Mul3_Hi = UnmergeMul3.getReg(1);
5001 auto Sub1_Lo =
B.buildUSubo(
S32,
S1, NumerLo, Mul3_Lo);
5002 auto Sub1_Hi =
B.buildUSube(
S32,
S1, NumerHi, Mul3_Hi, Sub1_Lo.getReg(1));
5003 auto Sub1_Mi =
B.buildSub(
S32, NumerHi, Mul3_Hi);
5004 auto Sub1 =
B.buildMergeLikeInstr(
S64, {Sub1_Lo, Sub1_Hi});
5006 auto UnmergeDenom =
B.buildUnmerge(
S32, Denom);
5007 Register DenomLo = UnmergeDenom.getReg(0);
5008 Register DenomHi = UnmergeDenom.getReg(1);
5011 auto C1 =
B.buildSExt(
S32, CmpHi);
5014 auto C2 =
B.buildSExt(
S32, CmpLo);
5017 auto C3 =
B.buildSelect(
S32, CmpEq, C2, C1);
5024 auto Sub2_Lo =
B.buildUSubo(
S32,
S1, Sub1_Lo, DenomLo);
5025 auto Sub2_Mi =
B.buildUSube(
S32,
S1, Sub1_Mi, DenomHi, Sub1_Lo.getReg(1));
5026 auto Sub2_Hi =
B.buildUSube(
S32,
S1, Sub2_Mi, Zero32, Sub2_Lo.getReg(1));
5027 auto Sub2 =
B.buildMergeLikeInstr(
S64, {Sub2_Lo, Sub2_Hi});
5029 auto One64 =
B.buildConstant(
S64, 1);
5030 auto Add3 =
B.buildAdd(
S64, MulHi3, One64);
5036 auto C6 =
B.buildSelect(
5040 auto Add4 =
B.buildAdd(
S64, Add3, One64);
5041 auto Sub3_Lo =
B.buildUSubo(
S32,
S1, Sub2_Lo, DenomLo);
5043 auto Sub3_Mi =
B.buildUSube(
S32,
S1, Sub2_Mi, DenomHi, Sub2_Lo.getReg(1));
5044 auto Sub3_Hi =
B.buildUSube(
S32,
S1, Sub3_Mi, Zero32, Sub3_Lo.getReg(1));
5045 auto Sub3 =
B.buildMergeLikeInstr(
S64, {Sub3_Lo, Sub3_Hi});
5051 auto Sel1 =
B.buildSelect(
5058 auto Sel2 =
B.buildSelect(
5069 switch (
MI.getOpcode()) {
5072 case AMDGPU::G_UDIV: {
5073 DstDivReg =
MI.getOperand(0).getReg();
5076 case AMDGPU::G_UREM: {
5077 DstRemReg =
MI.getOperand(0).getReg();
5080 case AMDGPU::G_UDIVREM: {
5081 DstDivReg =
MI.getOperand(0).getReg();
5082 DstRemReg =
MI.getOperand(1).getReg();
5089 const unsigned FirstSrcOpIdx =
MI.getNumExplicitDefs();
5090 Register Num =
MI.getOperand(FirstSrcOpIdx).getReg();
5091 Register Den =
MI.getOperand(FirstSrcOpIdx + 1).getReg();
5092 LLT Ty =
MRI.getType(
MI.getOperand(0).getReg());
5101 MI.eraseFromParent();
5111 LLT Ty =
MRI.getType(
MI.getOperand(0).getReg());
5112 if (Ty !=
S32 && Ty !=
S64)
5115 const unsigned FirstSrcOpIdx =
MI.getNumExplicitDefs();
5116 Register LHS =
MI.getOperand(FirstSrcOpIdx).getReg();
5117 Register RHS =
MI.getOperand(FirstSrcOpIdx + 1).getReg();
5119 auto SignBitOffset =
B.buildConstant(
S32, Ty.getSizeInBits() - 1);
5120 auto LHSign =
B.buildAShr(Ty, LHS, SignBitOffset);
5121 auto RHSign =
B.buildAShr(Ty, RHS, SignBitOffset);
5123 LHS =
B.buildAdd(Ty, LHS, LHSign).getReg(0);
5124 RHS =
B.buildAdd(Ty, RHS, RHSign).getReg(0);
5126 LHS =
B.buildXor(Ty, LHS, LHSign).getReg(0);
5127 RHS =
B.buildXor(Ty, RHS, RHSign).getReg(0);
5129 Register DstDivReg, DstRemReg, TmpDivReg, TmpRemReg;
5130 switch (
MI.getOpcode()) {
5133 case AMDGPU::G_SDIV: {
5134 DstDivReg =
MI.getOperand(0).getReg();
5135 TmpDivReg =
MRI.createGenericVirtualRegister(Ty);
5138 case AMDGPU::G_SREM: {
5139 DstRemReg =
MI.getOperand(0).getReg();
5140 TmpRemReg =
MRI.createGenericVirtualRegister(Ty);
5143 case AMDGPU::G_SDIVREM: {
5144 DstDivReg =
MI.getOperand(0).getReg();
5145 DstRemReg =
MI.getOperand(1).getReg();
5146 TmpDivReg =
MRI.createGenericVirtualRegister(Ty);
5147 TmpRemReg =
MRI.createGenericVirtualRegister(Ty);
5158 auto Sign =
B.buildXor(Ty, LHSign, RHSign).getReg(0);
5159 auto SignXor =
B.buildXor(Ty, TmpDivReg, Sign).getReg(0);
5160 B.buildSub(DstDivReg, SignXor, Sign);
5164 auto Sign = LHSign.getReg(0);
5165 auto SignXor =
B.buildXor(Ty, TmpRemReg, Sign).getReg(0);
5166 B.buildSub(DstRemReg, SignXor, Sign);
5169 MI.eraseFromParent();
5180 LLT ResTy =
MRI.getType(Res);
5185 if (!AllowInaccurateRcp && ResTy !=
LLT::scalar(16))
5196 if (CLHS->isExactlyValue(1.0)) {
5197 B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res)
5201 MI.eraseFromParent();
5206 if (CLHS->isExactlyValue(-1.0)) {
5207 auto FNeg =
B.buildFNeg(ResTy, RHS, Flags);
5208 B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res)
5209 .addUse(FNeg.getReg(0))
5212 MI.eraseFromParent();
5219 if (!AllowInaccurateRcp && (ResTy !=
LLT::scalar(16) ||
5224 auto RCP =
B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy})
5227 B.buildFMul(Res, LHS, RCP, Flags);
5229 MI.eraseFromParent();
5240 LLT ResTy =
MRI.getType(Res);
5244 if (!AllowInaccurateRcp)
5247 auto NegY =
B.buildFNeg(ResTy,
Y);
5248 auto One =
B.buildFConstant(ResTy, 1.0);
5250 auto R =
B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy})
5254 auto Tmp0 =
B.buildFMA(ResTy, NegY, R, One);
5255 R =
B.buildFMA(ResTy, Tmp0, R, R);
5257 auto Tmp1 =
B.buildFMA(ResTy, NegY, R, One);
5258 R =
B.buildFMA(ResTy, Tmp1, R, R);
5260 auto Ret =
B.buildFMul(ResTy,
X, R);
5261 auto Tmp2 =
B.buildFMA(ResTy, NegY, Ret,
X);
5263 B.buildFMA(Res, Tmp2, R, Ret);
5264 MI.eraseFromParent();
5296 auto LHSExt =
B.buildFPExt(
S32, LHS, Flags);
5297 auto RHSExt =
B.buildFPExt(
S32, RHS, Flags);
5298 auto NegRHSExt =
B.buildFNeg(
S32, RHSExt);
5299 auto Rcp =
B.buildIntrinsic(Intrinsic::amdgcn_rcp, {
S32})
5300 .addUse(RHSExt.getReg(0))
5302 auto Quot =
B.buildFMul(
S32, LHSExt, Rcp, Flags);
5304 if (ST.hasMadMacF32Insts()) {
5305 Err =
B.buildFMAD(
S32, NegRHSExt, Quot, LHSExt, Flags);
5306 Quot =
B.buildFMAD(
S32, Err, Rcp, Quot, Flags);
5307 Err =
B.buildFMAD(
S32, NegRHSExt, Quot, LHSExt, Flags);
5309 Err =
B.buildFMA(
S32, NegRHSExt, Quot, LHSExt, Flags);
5310 Quot =
B.buildFMA(
S32, Err, Rcp, Quot, Flags);
5311 Err =
B.buildFMA(
S32, NegRHSExt, Quot, LHSExt, Flags);
5313 auto Tmp =
B.buildFMul(
S32, Err, Rcp, Flags);
5314 Tmp =
B.buildAnd(
S32, Tmp,
B.buildConstant(
S32, 0xff800000));
5315 Quot =
B.buildFAdd(
S32, Tmp, Quot, Flags);
5316 auto RDst =
B.buildFPTrunc(
S16, Quot, Flags);
5317 B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res)
5318 .addUse(RDst.getReg(0))
5323 MI.eraseFromParent();
5336 unsigned SPDenormMode =
5339 if (ST.hasDenormModeInst()) {
5341 uint32_t DPDenormModeDefault =
Mode.fpDenormModeDPValue();
5343 uint32_t NewDenormModeValue = SPDenormMode | (DPDenormModeDefault << 2);
5344 B.buildInstr(AMDGPU::S_DENORM_MODE)
5345 .addImm(NewDenormModeValue);
5348 B.buildInstr(AMDGPU::S_SETREG_IMM32_B32)
5349 .addImm(SPDenormMode)
5371 auto One =
B.buildFConstant(
S32, 1.0f);
5373 auto DenominatorScaled =
5374 B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {
S32,
S1})
5379 auto NumeratorScaled =
5380 B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {
S32,
S1})
5386 auto ApproxRcp =
B.buildIntrinsic(Intrinsic::amdgcn_rcp, {
S32})
5387 .addUse(DenominatorScaled.getReg(0))
5389 auto NegDivScale0 =
B.buildFNeg(
S32, DenominatorScaled, Flags);
5392 const bool HasDynamicDenormals =
5397 if (!PreservesDenormals) {
5398 if (HasDynamicDenormals) {
5399 SavedSPDenormMode =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5400 B.buildInstr(AMDGPU::S_GETREG_B32)
5401 .addDef(SavedSPDenormMode)
5407 auto Fma0 =
B.buildFMA(
S32, NegDivScale0, ApproxRcp, One, Flags);
5408 auto Fma1 =
B.buildFMA(
S32, Fma0, ApproxRcp, ApproxRcp, Flags);
5409 auto Mul =
B.buildFMul(
S32, NumeratorScaled, Fma1, Flags);
5410 auto Fma2 =
B.buildFMA(
S32, NegDivScale0,
Mul, NumeratorScaled, Flags);
5411 auto Fma3 =
B.buildFMA(
S32, Fma2, Fma1,
Mul, Flags);
5412 auto Fma4 =
B.buildFMA(
S32, NegDivScale0, Fma3, NumeratorScaled, Flags);
5414 if (!PreservesDenormals) {
5415 if (HasDynamicDenormals) {
5416 assert(SavedSPDenormMode);
5417 B.buildInstr(AMDGPU::S_SETREG_B32)
5418 .addReg(SavedSPDenormMode)
5424 auto Fmas =
B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {
S32})
5425 .addUse(Fma4.getReg(0))
5426 .addUse(Fma1.getReg(0))
5427 .addUse(Fma3.getReg(0))
5428 .addUse(NumeratorScaled.getReg(1))
5431 B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res)
5432 .addUse(Fmas.getReg(0))
5437 MI.eraseFromParent();
5456 auto One =
B.buildFConstant(
S64, 1.0);
5458 auto DivScale0 =
B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {
S64,
S1})
5464 auto NegDivScale0 =
B.buildFNeg(
S64, DivScale0.getReg(0), Flags);
5466 auto Rcp =
B.buildIntrinsic(Intrinsic::amdgcn_rcp, {
S64})
5467 .addUse(DivScale0.getReg(0))
5470 auto Fma0 =
B.buildFMA(
S64, NegDivScale0, Rcp, One, Flags);
5471 auto Fma1 =
B.buildFMA(
S64, Rcp, Fma0, Rcp, Flags);
5472 auto Fma2 =
B.buildFMA(
S64, NegDivScale0, Fma1, One, Flags);
5474 auto DivScale1 =
B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {
S64,
S1})
5480 auto Fma3 =
B.buildFMA(
S64, Fma1, Fma2, Fma1, Flags);
5481 auto Mul =
B.buildFMul(
S64, DivScale1.getReg(0), Fma3, Flags);
5482 auto Fma4 =
B.buildFMA(
S64, NegDivScale0,
Mul, DivScale1.getReg(0), Flags);
5485 if (!ST.hasUsableDivScaleConditionOutput()) {
5491 auto NumUnmerge =
B.buildUnmerge(
S32, LHS);
5492 auto DenUnmerge =
B.buildUnmerge(
S32, RHS);
5493 auto Scale0Unmerge =
B.buildUnmerge(
S32, DivScale0);
5494 auto Scale1Unmerge =
B.buildUnmerge(
S32, DivScale1);
5497 Scale1Unmerge.getReg(1));
5499 Scale0Unmerge.getReg(1));
5500 Scale =
B.buildXor(
S1, CmpNum, CmpDen).getReg(0);
5502 Scale = DivScale1.getReg(1);
5505 auto Fmas =
B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {
S64})
5506 .addUse(Fma4.getReg(0))
5507 .addUse(Fma3.getReg(0))
5508 .addUse(
Mul.getReg(0))
5512 B.buildIntrinsic(Intrinsic::amdgcn_div_fixup,
ArrayRef(Res))
5513 .addUse(Fmas.getReg(0))
5518 MI.eraseFromParent();
5530 LLT Ty =
MRI.getType(Res0);
5533 auto Mant =
B.buildIntrinsic(Intrinsic::amdgcn_frexp_mant, {Ty})
5536 auto Exp =
B.buildIntrinsic(Intrinsic::amdgcn_frexp_exp, {InstrExpTy})
5540 if (ST.hasFractBug()) {
5541 auto Fabs =
B.buildFAbs(Ty, Val);
5545 auto Zero =
B.buildConstant(InstrExpTy, 0);
5546 Exp =
B.buildSelect(InstrExpTy, IsFinite, Exp, Zero);
5547 Mant =
B.buildSelect(Ty, IsFinite, Mant, Val);
5550 B.buildCopy(Res0, Mant);
5551 B.buildSExtOrTrunc(Res1, Exp);
5553 MI.eraseFromParent();
5568 auto Abs =
B.buildFAbs(
S32, RHS, Flags);
5571 auto C0 =
B.buildFConstant(
S32, 0x1p+96f);
5572 auto C1 =
B.buildFConstant(
S32, 0x1p-32f);
5573 auto C2 =
B.buildFConstant(
S32, 1.0f);
5576 auto Sel =
B.buildSelect(
S32, CmpRes, C1, C2, Flags);
5578 auto Mul0 =
B.buildFMul(
S32, RHS, Sel, Flags);
5580 auto RCP =
B.buildIntrinsic(Intrinsic::amdgcn_rcp, {
S32})
5581 .addUse(Mul0.getReg(0))
5584 auto Mul1 =
B.buildFMul(
S32, LHS, RCP, Flags);
5586 B.buildFMul(Res, Sel, Mul1, Flags);
5588 MI.eraseFromParent();
5597 unsigned Flags =
MI.getFlags();
5598 assert(!ST.has16BitInsts());
5600 auto Ext =
B.buildFPExt(
F32,
MI.getOperand(1), Flags);
5601 auto Log2 =
B.buildIntrinsic(Intrinsic::amdgcn_sqrt, {
F32})
5602 .addUse(Ext.getReg(0))
5604 B.buildFPTrunc(
MI.getOperand(0),
Log2, Flags);
5605 MI.eraseFromParent();
5615 const unsigned Flags =
MI.getFlags();
5624 MI.eraseFromParent();
5628 auto ScaleThreshold =
B.buildFConstant(
F32, 0x1.0p-96f);
5630 auto ScaleUpFactor =
B.buildFConstant(
F32, 0x1.0p+32f);
5631 auto ScaledX =
B.buildFMul(
F32,
X, ScaleUpFactor, Flags);
5632 auto SqrtX =
B.buildSelect(
F32, NeedScale, ScaledX,
X, Flags);
5637 .addUse(SqrtX.getReg(0))
5640 auto NegOne =
B.buildConstant(I32, -1);
5641 auto SqrtSNextDown =
B.buildAdd(I32, SqrtS, NegOne);
5643 auto NegSqrtSNextDown =
B.buildFNeg(
F32, SqrtSNextDown, Flags);
5644 auto SqrtVP =
B.buildFMA(
F32, NegSqrtSNextDown, SqrtS, SqrtX, Flags);
5646 auto PosOne =
B.buildConstant(I32, 1);
5647 auto SqrtSNextUp =
B.buildAdd(I32, SqrtS, PosOne);
5649 auto NegSqrtSNextUp =
B.buildFNeg(
F32, SqrtSNextUp, Flags);
5650 auto SqrtVS =
B.buildFMA(
F32, NegSqrtSNextUp, SqrtS, SqrtX, Flags);
5652 auto Zero =
B.buildFConstant(
F32, 0.0f);
5656 B.buildSelect(
F32, SqrtVPLE0, SqrtSNextDown, SqrtS, Flags).getReg(0);
5660 B.buildSelect(
F32, SqrtVPVSGT0, SqrtSNextUp, SqrtS, Flags).getReg(0);
5663 B.buildIntrinsic(Intrinsic::amdgcn_rsq, {
F32}).addReg(SqrtX.getReg(0));
5664 B.buildFMul(SqrtS, SqrtX, SqrtR, Flags);
5666 auto Half =
B.buildFConstant(
F32, 0.5f);
5667 auto SqrtH =
B.buildFMul(
F32, SqrtR, Half, Flags);
5668 auto NegSqrtH =
B.buildFNeg(
F32, SqrtH, Flags);
5669 auto SqrtE =
B.buildFMA(
F32, NegSqrtH, SqrtS, Half, Flags);
5670 SqrtH =
B.buildFMA(
F32, SqrtH, SqrtE, SqrtH, Flags);
5671 SqrtS =
B.buildFMA(
F32, SqrtS, SqrtE, SqrtS, Flags).getReg(0);
5672 auto NegSqrtS =
B.buildFNeg(
F32, SqrtS, Flags);
5673 auto SqrtD =
B.buildFMA(
F32, NegSqrtS, SqrtS, SqrtX, Flags);
5674 SqrtS =
B.buildFMA(
F32, SqrtD, SqrtH, SqrtS, Flags).getReg(0);
5677 auto ScaleDownFactor =
B.buildFConstant(
F32, 0x1.0p-16f);
5679 auto ScaledDown =
B.buildFMul(
F32, SqrtS, ScaleDownFactor, Flags);
5681 SqrtS =
B.buildSelect(
F32, NeedScale, ScaledDown, SqrtS, Flags).getReg(0);
5684 B.buildSelect(Dst, IsZeroOrInf, SqrtX, SqrtS, Flags);
5686 MI.eraseFromParent();
5718 assert(
MRI.getType(Dst) ==
F64 &&
"only expect to lower f64 sqrt");
5721 unsigned Flags =
MI.getFlags();
5723 auto ScaleConstant =
B.buildFConstant(
F64, 0x1.0p-767);
5725 auto ZeroInt =
B.buildConstant(
S32, 0);
5729 auto ScaleUpFactor =
B.buildConstant(
S32, 256);
5730 auto ScaleUp =
B.buildSelect(
S32, Scaling, ScaleUpFactor, ZeroInt);
5731 auto SqrtX =
B.buildFLdexp(
F64,
X, ScaleUp, Flags);
5734 B.buildIntrinsic(Intrinsic::amdgcn_rsq, {
F64}).addReg(SqrtX.getReg(0));
5736 auto Half =
B.buildFConstant(
F64, 0.5);
5737 auto SqrtH0 =
B.buildFMul(
F64, SqrtY, Half);
5738 auto SqrtS0 =
B.buildFMul(
F64, SqrtX, SqrtY);
5740 auto NegSqrtH0 =
B.buildFNeg(
F64, SqrtH0);
5741 auto SqrtR0 =
B.buildFMA(
F64, NegSqrtH0, SqrtS0, Half);
5743 auto SqrtS1 =
B.buildFMA(
F64, SqrtS0, SqrtR0, SqrtS0);
5744 auto SqrtH1 =
B.buildFMA(
F64, SqrtH0, SqrtR0, SqrtH0);
5746 auto NegSqrtS1 =
B.buildFNeg(
F64, SqrtS1);
5747 auto SqrtD0 =
B.buildFMA(
F64, NegSqrtS1, SqrtS1, SqrtX);
5749 auto SqrtS2 =
B.buildFMA(
F64, SqrtD0, SqrtH1, SqrtS1);
5751 auto NegSqrtS2 =
B.buildFNeg(
F64, SqrtS2);
5752 auto SqrtD1 =
B.buildFMA(
F64, NegSqrtS2, SqrtS2, SqrtX);
5754 auto SqrtRet =
B.buildFMA(
F64, SqrtD1, SqrtH1, SqrtS2);
5757 auto ScaleDownFactor =
B.buildConstant(
S32, -128);
5758 auto ScaleDown =
B.buildSelect(
S32, Scaling, ScaleDownFactor, ZeroInt);
5759 SqrtRet =
B.buildFLdexp(
F64, SqrtRet, ScaleDown, Flags);
5768 B.buildSelect(Dst, IsZeroOrInf, SqrtX, SqrtRet, Flags);
5770 MI.eraseFromParent();
5777 LLT Ty =
MRI.getType(
MI.getOperand(0).getReg());
5801 auto Flags =
MI.getFlags();
5803 LLT Ty =
MRI.getType(Dst);
5813 auto Rsq =
B.buildIntrinsic(Intrinsic::amdgcn_rsq, {Ty})
5823 auto ClampMax = UseIEEE ?
B.buildFMinNumIEEE(Ty, Rsq, MaxFlt, Flags) :
5824 B.buildFMinNum(Ty, Rsq, MaxFlt, Flags);
5829 B.buildFMaxNumIEEE(Dst, ClampMax, MinFlt, Flags);
5831 B.buildFMaxNum(Dst, ClampMax, MinFlt, Flags);
5832 MI.eraseFromParent();
5844 bool IsPermLane16 = IID == Intrinsic::amdgcn_permlane16 ||
5845 IID == Intrinsic::amdgcn_permlanex16;
5846 bool IsSetInactive = IID == Intrinsic::amdgcn_set_inactive ||
5847 IID == Intrinsic::amdgcn_set_inactive_chain_arg;
5851 auto LaneOp =
B.buildIntrinsic(IID, {VT}).addUse(Src0);
5853 case Intrinsic::amdgcn_readfirstlane:
5854 case Intrinsic::amdgcn_permlane64:
5855 return LaneOp.getReg(0);
5856 case Intrinsic::amdgcn_readlane:
5857 case Intrinsic::amdgcn_set_inactive:
5858 case Intrinsic::amdgcn_set_inactive_chain_arg:
5859 return LaneOp.addUse(Src1).getReg(0);
5860 case Intrinsic::amdgcn_writelane:
5861 return LaneOp.addUse(Src1).addUse(Src2).getReg(0);
5862 case Intrinsic::amdgcn_permlane16:
5863 case Intrinsic::amdgcn_permlanex16: {
5865 int64_t Src4 =
MI.getOperand(6).getImm();
5866 int64_t Src5 =
MI.getOperand(7).getImm();
5867 return LaneOp.addUse(Src1)
5874 case Intrinsic::amdgcn_mov_dpp8:
5875 return LaneOp.addImm(
MI.getOperand(3).getImm()).getReg(0);
5876 case Intrinsic::amdgcn_update_dpp:
5877 return LaneOp.addUse(Src1)
5878 .addImm(
MI.getOperand(4).getImm())
5879 .addImm(
MI.getOperand(5).getImm())
5880 .addImm(
MI.getOperand(6).getImm())
5881 .addImm(
MI.getOperand(7).getImm())
5891 if (IID == Intrinsic::amdgcn_readlane || IID == Intrinsic::amdgcn_writelane ||
5892 IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16) {
5893 Src1 =
MI.getOperand(3).getReg();
5894 if (IID == Intrinsic::amdgcn_writelane || IsPermLane16) {
5895 Src2 =
MI.getOperand(4).getReg();
5899 LLT Ty =
MRI.getType(DstReg);
5900 unsigned Size = Ty.getSizeInBits();
5902 unsigned SplitSize = 32;
5903 if (IID == Intrinsic::amdgcn_update_dpp && (
Size % 64 == 0) &&
5904 ST.hasDPALU_DPP() &&
5908 if (
Size == SplitSize) {
5914 Src0 =
B.buildAnyExt(
S32, Src0).getReg(0);
5916 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16)
5919 if (IID == Intrinsic::amdgcn_writelane)
5922 Register LaneOpDst = createLaneOp(Src0, Src1, Src2,
S32);
5923 B.buildTrunc(DstReg, LaneOpDst);
5924 MI.eraseFromParent();
5928 if (
Size % SplitSize != 0)
5932 bool NeedsBitcast =
false;
5933 if (Ty.isVector()) {
5936 if (EltSize == SplitSize) {
5937 PartialResTy = EltTy;
5938 }
else if (EltSize == 16 || EltSize == 32) {
5939 unsigned NElem = SplitSize / EltSize;
5943 NeedsBitcast =
true;
5948 unsigned NumParts =
Size / SplitSize;
5952 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16)
5953 Src1Parts =
B.buildUnmerge(PartialResTy, Src1);
5955 if (IID == Intrinsic::amdgcn_writelane)
5956 Src2Parts =
B.buildUnmerge(PartialResTy, Src2);
5958 for (
unsigned i = 0; i < NumParts; ++i) {
5959 Src0 = Src0Parts.
getReg(i);
5961 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16)
5962 Src1 = Src1Parts.
getReg(i);
5964 if (IID == Intrinsic::amdgcn_writelane)
5965 Src2 = Src2Parts.
getReg(i);
5967 PartialRes.
push_back(createLaneOp(Src0, Src1, Src2, PartialResTy));
5971 B.buildBitcast(DstReg,
B.buildMergeLikeInstr(
5974 B.buildMergeLikeInstr(DstReg, PartialRes);
5976 MI.eraseFromParent();
5984 ST.getTargetLowering()->getImplicitParameterOffset(
5986 LLT DstTy =
MRI.getType(DstReg);
5989 Register KernargPtrReg =
MRI.createGenericVirtualRegister(DstTy);
5994 B.buildObjectPtrOffset(DstReg, KernargPtrReg,
5995 B.buildConstant(IdxTy,
Offset).getReg(0));
6006 Register Pointer =
MI.getOperand(2).getReg();
6008 Register NumRecords =
MI.getOperand(4).getReg();
6014 B.setInsertPt(
B.getMBB(), ++
B.getInsertPt());
6016 auto ExtStride =
B.buildAnyExt(
S32, Stride);
6018 if (ST.has45BitNumRecordsBufferResource()) {
6023 auto PointerInt =
B.buildPtrToInt(PtrIntTy, Pointer);
6024 auto ExtPointer =
B.buildAnyExtOrTrunc(
S64, PointerInt);
6025 auto NumRecordsLHS =
B.buildShl(
S64, NumRecords,
B.buildConstant(
S32, 57));
6026 Register LowHalf =
B.buildOr(
S64, ExtPointer, NumRecordsLHS).getReg(0);
6030 auto NumRecordsRHS =
B.buildLShr(
S64, NumRecords,
B.buildConstant(
S32, 7));
6031 auto ShiftedStride =
B.buildShl(
S32, ExtStride,
B.buildConstant(
S32, 12));
6032 auto ExtShiftedStride =
6033 B.buildMergeValues(
S64, {Zero, ShiftedStride.getReg(0)});
6034 auto ShiftedFlags =
B.buildShl(
S32, Flags,
B.buildConstant(
S32, 28));
6035 auto ExtShiftedFlags =
6036 B.buildMergeValues(
S64, {Zero, ShiftedFlags.getReg(0)});
6037 auto CombinedFields =
B.buildOr(
S64, NumRecordsRHS, ExtShiftedStride);
6039 B.buildOr(
S64, CombinedFields, ExtShiftedFlags).getReg(0);
6040 B.buildMergeValues(Result, {LowHalf, HighHalf});
6042 NumRecords =
B.buildTrunc(
S32, NumRecords).getReg(0);
6043 auto Unmerge =
B.buildUnmerge(
S32, Pointer);
6044 auto LowHalf = Unmerge.getReg(0);
6045 auto HighHalf = Unmerge.getReg(1);
6047 auto AndMask =
B.buildConstant(
S32, 0x0000ffff);
6048 auto Masked =
B.buildAnd(
S32, HighHalf, AndMask);
6049 auto ShiftConst =
B.buildConstant(
S32, 16);
6050 auto ShiftedStride =
B.buildShl(
S32, ExtStride, ShiftConst);
6051 auto NewHighHalf =
B.buildOr(
S32,
Masked, ShiftedStride);
6052 Register NewHighHalfReg = NewHighHalf.getReg(0);
6053 B.buildMergeValues(Result, {LowHalf, NewHighHalfReg, NumRecords, Flags});
6056 MI.eraseFromParent();
6073 MI.eraseFromParent();
6081 std::optional<uint32_t> KnownSize =
6083 if (KnownSize.has_value())
6084 B.buildConstant(DstReg, *KnownSize);
6102 MI.eraseFromParent();
6109 unsigned AddrSpace)
const {
6111 auto Unmerge =
B.buildUnmerge(
S32,
MI.getOperand(2).getReg());
6115 ST.hasGloballyAddressableScratch()) {
6117 B.buildInstr(AMDGPU::S_MOV_B32, {
S32},
6118 {
Register(AMDGPU::SRC_FLAT_SCRATCH_BASE_HI)})
6120 MRI.setRegClass(FlatScratchBaseHi, &AMDGPU::SReg_32RegClass);
6122 Register XOR =
B.buildXor(
S32, Hi32, FlatScratchBaseHi).getReg(0);
6124 B.buildConstant(
S32, 1u << 26));
6129 MI.eraseFromParent();
6139std::pair<Register, unsigned>
6153 MRI, OrigOffset,
nullptr, CheckNUW);
6156 if (
MRI.getType(BaseReg).isPointer())
6157 BaseReg =
B.buildPtrToInt(
MRI.getType(OrigOffset), BaseReg).getReg(0);
6167 unsigned Overflow = ImmOffset & ~MaxImm;
6168 ImmOffset -= Overflow;
6169 if ((int32_t)Overflow < 0) {
6170 Overflow += ImmOffset;
6174 if (Overflow != 0) {
6176 BaseReg =
B.buildConstant(
S32, Overflow).getReg(0);
6178 auto OverflowVal =
B.buildConstant(
S32, Overflow);
6179 BaseReg =
B.buildAdd(
S32, BaseReg, OverflowVal).getReg(0);
6184 BaseReg =
B.buildConstant(
S32, 0).getReg(0);
6186 return std::pair(BaseReg, ImmOffset);
6193 bool ImageStore)
const {
6196 LLT StoreVT =
MRI.getType(Reg);
6199 if (ST.hasUnpackedD16VMem()) {
6200 auto Unmerge =
B.buildUnmerge(
S16, Reg);
6203 for (
int I = 0, E = Unmerge->getNumOperands() - 1;
I != E; ++
I)
6204 WideRegs.
push_back(
B.buildAnyExt(
S32, Unmerge.getReg(
I)).getReg(0));
6212 if (ImageStore && ST.hasImageStoreD16Bug()) {
6215 Reg =
B.buildBitcast(
S32, Reg).getReg(0);
6217 PackedRegs.
resize(2,
B.buildUndef(
S32).getReg(0));
6224 auto Unmerge =
B.buildUnmerge(
S16, Reg);
6225 for (
int I = 0, E = Unmerge->getNumOperands() - 1;
I != E; ++
I)
6227 PackedRegs.
resize(6,
B.buildUndef(
S16).getReg(0));
6235 auto Unmerge =
B.buildUnmerge(
S32, Reg);
6236 for (
int I = 0, E = Unmerge->getNumOperands() - 1;
I != E; ++
I)
6238 PackedRegs.
resize(4,
B.buildUndef(
S32).getReg(0));
6255 bool IsFormat)
const {
6257 LLT Ty =
MRI->getType(VData);
6267 VData =
B.buildBitcast(Ty, VData).getReg(0);
6275 if (Ty.isVector()) {
6276 if (Ty.getElementType() ==
S16 && Ty.getNumElements() <= 4) {
6288 bool IsFormat)
const {
6293 LLT Ty =
MRI.getType(VData);
6295 const bool IsD16 = IsFormat && (EltTy.
getSizeInBits() == 16);
6310 const unsigned NumVIndexOps = IsTyped ? 8 : 7;
6313 const bool HasVIndex =
MI.getNumOperands() == NumVIndexOps;
6317 VIndex =
MI.getOperand(3).getReg();
6320 VIndex =
B.buildConstant(
S32, 0).getReg(0);
6323 Register VOffset =
MI.getOperand(3 + OpOffset).getReg();
6324 Register SOffset =
MI.getOperand(4 + OpOffset).getReg();
6328 Format =
MI.getOperand(5 + OpOffset).getImm();
6332 unsigned AuxiliaryData =
MI.getOperand(5 + OpOffset).getImm();
6338 Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT_D16 :
6339 AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT;
6340 }
else if (IsFormat) {
6341 Opc = IsD16 ? AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT_D16 :
6342 AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT;
6346 Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_BYTE;
6349 Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_SHORT;
6352 Opc = AMDGPU::G_AMDGPU_BUFFER_STORE;
6357 auto MIB =
B.buildInstr(
Opc)
6368 MIB.addImm(AuxiliaryData)
6369 .addImm(HasVIndex ? -1 : 0)
6370 .addMemOperand(MMO);
6372 MI.eraseFromParent();
6378 unsigned ImmOffset,
unsigned Format,
6381 auto MIB =
B.buildInstr(
Opc)
6392 MIB.addImm(AuxiliaryData)
6393 .addImm(HasVIndex ? -1 : 0)
6394 .addMemOperand(MMO);
6400 bool IsTyped)
const {
6414 assert(
MI.getNumExplicitDefs() == 1 ||
MI.getNumExplicitDefs() == 2);
6415 bool IsTFE =
MI.getNumExplicitDefs() == 2;
6417 StatusDst =
MI.getOperand(1).getReg();
6422 Register RSrc =
MI.getOperand(2 + OpOffset).getReg();
6425 const unsigned NumVIndexOps = IsTyped ? 8 : 7;
6428 const bool HasVIndex =
MI.getNumOperands() == NumVIndexOps + OpOffset;
6431 VIndex =
MI.getOperand(3 + OpOffset).getReg();
6434 VIndex =
B.buildConstant(
S32, 0).getReg(0);
6437 Register VOffset =
MI.getOperand(3 + OpOffset).getReg();
6438 Register SOffset =
MI.getOperand(4 + OpOffset).getReg();
6442 Format =
MI.getOperand(5 + OpOffset).getImm();
6446 unsigned AuxiliaryData =
MI.getOperand(5 + OpOffset).getImm();
6449 LLT Ty =
MRI.getType(Dst);
6456 Dst =
MI.getOperand(0).getReg();
6457 B.setInsertPt(
B.getMBB(),
MI);
6464 Dst =
MI.getOperand(0).getReg();
6465 B.setInsertPt(
B.getMBB(),
MI);
6469 const bool IsD16 = IsFormat && (EltTy.
getSizeInBits() == 16);
6470 const bool Unpacked = ST.hasUnpackedD16VMem();
6480 Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 :
6481 AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT;
6482 }
else if (IsFormat) {
6486 Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT_D16;
6488 Opc = IsTFE ? AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT_TFE
6489 : AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT;
6494 Opc = IsTFE ? AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE_TFE
6495 : AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE;
6498 Opc = IsTFE ? AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT_TFE
6499 : AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT;
6502 Opc = IsTFE ? AMDGPU::G_AMDGPU_BUFFER_LOAD_TFE
6503 : AMDGPU::G_AMDGPU_BUFFER_LOAD;
6509 unsigned NumValueDWords =
divideCeil(Ty.getSizeInBits(), 32);
6510 unsigned NumLoadDWords = NumValueDWords + 1;
6512 Register LoadDstReg =
B.getMRI()->createGenericVirtualRegister(LoadTy);
6514 Format, AuxiliaryData, MMO, IsTyped, HasVIndex,
B);
6516 Register ExtDst =
B.getMRI()->createGenericVirtualRegister(
S32);
6517 B.buildUnmerge({ExtDst, StatusDst}, LoadDstReg);
6518 B.buildTrunc(Dst, ExtDst);
6519 }
else if (NumValueDWords == 1) {
6520 B.buildUnmerge({Dst, StatusDst}, LoadDstReg);
6523 for (
unsigned I = 0;
I != NumValueDWords; ++
I)
6524 LoadElts.
push_back(
B.getMRI()->createGenericVirtualRegister(
S32));
6526 B.buildUnmerge(LoadElts, LoadDstReg);
6528 B.buildMergeLikeInstr(Dst, LoadElts);
6531 (IsD16 && !Ty.isVector())) {
6532 Register LoadDstReg =
B.getMRI()->createGenericVirtualRegister(
S32);
6534 Format, AuxiliaryData, MMO, IsTyped, HasVIndex,
B);
6535 B.setInsertPt(
B.getMBB(), ++
B.getInsertPt());
6536 B.buildTrunc(Dst, LoadDstReg);
6537 }
else if (Unpacked && IsD16 && Ty.isVector()) {
6539 Register LoadDstReg =
B.getMRI()->createGenericVirtualRegister(UnpackedTy);
6541 Format, AuxiliaryData, MMO, IsTyped, HasVIndex,
B);
6542 B.setInsertPt(
B.getMBB(), ++
B.getInsertPt());
6544 auto Unmerge =
B.buildUnmerge(
S32, LoadDstReg);
6546 for (
unsigned I = 0,
N = Unmerge->getNumOperands() - 1;
I !=
N; ++
I)
6547 Repack.
push_back(
B.buildTrunc(EltTy, Unmerge.getReg(
I)).getReg(0));
6548 B.buildMergeLikeInstr(Dst, Repack);
6551 AuxiliaryData, MMO, IsTyped, HasVIndex,
B);
6554 MI.eraseFromParent();
6560 case Intrinsic::amdgcn_raw_buffer_atomic_swap:
6561 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_swap:
6562 case Intrinsic::amdgcn_struct_buffer_atomic_swap:
6563 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_swap:
6564 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SWAP;
6565 case Intrinsic::amdgcn_raw_buffer_atomic_add:
6566 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add:
6567 case Intrinsic::amdgcn_struct_buffer_atomic_add:
6568 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add:
6569 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_ADD;
6570 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
6571 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub:
6572 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
6573 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub:
6574 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SUB;
6575 case Intrinsic::amdgcn_raw_buffer_atomic_smin:
6576 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin:
6577 case Intrinsic::amdgcn_struct_buffer_atomic_smin:
6578 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin:
6579 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMIN;
6580 case Intrinsic::amdgcn_raw_buffer_atomic_umin:
6581 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin:
6582 case Intrinsic::amdgcn_struct_buffer_atomic_umin:
6583 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin:
6584 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMIN;
6585 case Intrinsic::amdgcn_raw_buffer_atomic_smax:
6586 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax:
6587 case Intrinsic::amdgcn_struct_buffer_atomic_smax:
6588 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax:
6589 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMAX;
6590 case Intrinsic::amdgcn_raw_buffer_atomic_umax:
6591 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax:
6592 case Intrinsic::amdgcn_struct_buffer_atomic_umax:
6593 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax:
6594 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMAX;
6595 case Intrinsic::amdgcn_raw_buffer_atomic_and:
6596 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and:
6597 case Intrinsic::amdgcn_struct_buffer_atomic_and:
6598 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and:
6599 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_AND;
6600 case Intrinsic::amdgcn_raw_buffer_atomic_or:
6601 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or:
6602 case Intrinsic::amdgcn_struct_buffer_atomic_or:
6603 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or:
6604 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_OR;
6605 case Intrinsic::amdgcn_raw_buffer_atomic_xor:
6606 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor:
6607 case Intrinsic::amdgcn_struct_buffer_atomic_xor:
6608 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor:
6609 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_XOR;
6610 case Intrinsic::amdgcn_raw_buffer_atomic_inc:
6611 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_inc:
6612 case Intrinsic::amdgcn_struct_buffer_atomic_inc:
6613 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_inc:
6614 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_INC;
6615 case Intrinsic::amdgcn_raw_buffer_atomic_dec:
6616 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_dec:
6617 case Intrinsic::amdgcn_struct_buffer_atomic_dec:
6618 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_dec:
6619 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_DEC;
6620 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
6621 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap:
6622 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
6623 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_cmpswap:
6624 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_CMPSWAP;
6625 case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
6626 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fadd:
6627 case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
6628 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fadd:
6629 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FADD;
6630 case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
6631 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmin:
6632 case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
6633 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmin:
6634 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMIN;
6635 case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
6636 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmax:
6637 case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
6638 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmax:
6639 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMAX;
6640 case Intrinsic::amdgcn_raw_buffer_atomic_sub_clamp_u32:
6641 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub_clamp_u32:
6642 case Intrinsic::amdgcn_struct_buffer_atomic_sub_clamp_u32:
6643 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub_clamp_u32:
6644 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SUB_CLAMP_U32;
6645 case Intrinsic::amdgcn_raw_buffer_atomic_cond_sub_u32:
6646 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_cond_sub_u32:
6647 case Intrinsic::amdgcn_struct_buffer_atomic_cond_sub_u32:
6648 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_cond_sub_u32:
6649 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_COND_SUB_U32;
6658 const bool IsCmpSwap =
6659 IID == Intrinsic::amdgcn_raw_buffer_atomic_cmpswap ||
6660 IID == Intrinsic::amdgcn_struct_buffer_atomic_cmpswap ||
6661 IID == Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap ||
6662 IID == Intrinsic::amdgcn_struct_ptr_buffer_atomic_cmpswap;
6673 CmpVal =
MI.getOperand(3).getReg();
6678 Register RSrc =
MI.getOperand(3 + OpOffset).getReg();
6679 const unsigned NumVIndexOps = IsCmpSwap ? 9 : 8;
6682 const bool HasVIndex =
MI.getNumOperands() == NumVIndexOps;
6685 VIndex =
MI.getOperand(4 + OpOffset).getReg();
6688 VIndex =
B.buildConstant(
LLT::scalar(32), 0).getReg(0);
6691 Register VOffset =
MI.getOperand(4 + OpOffset).getReg();
6692 Register SOffset =
MI.getOperand(5 + OpOffset).getReg();
6693 unsigned AuxiliaryData =
MI.getOperand(6 + OpOffset).getImm();
6712 .addImm(AuxiliaryData)
6713 .addImm(HasVIndex ? -1 : 0)
6714 .addMemOperand(MMO);
6716 MI.eraseFromParent();
6726 bool IsA16,
bool IsG16) {
6742 (
B.getMRI()->getType(AddrReg) ==
S16)) {
6747 B.buildBuildVector(
V2S16, {AddrReg, B.buildUndef(S16).getReg(0)})
6751 "Bias needs to be converted to 16 bit in A16 mode");
6753 AddrReg =
B.buildBitcast(
V2S16, AddrReg).getReg(0);
6759 if (((
I + 1) >= EndIdx) ||
6766 !
MI.getOperand(ArgOffset +
I + 1).isReg()) {
6768 B.buildBuildVector(
V2S16, {AddrReg, B.buildUndef(S16).getReg(0)})
6773 V2S16, {AddrReg, MI.getOperand(ArgOffset + I + 1).getReg()})
6784 int DimIdx,
int NumVAddrs) {
6788 for (
int I = 0;
I != NumVAddrs; ++
I) {
6790 if (
SrcOp.isReg()) {
6796 int NumAddrRegs = AddrRegs.
size();
6797 if (NumAddrRegs != 1) {
6800 MI.getOperand(DimIdx).setReg(VAddr.getReg(0));
6803 for (
int I = 1;
I != NumVAddrs; ++
I) {
6806 MI.getOperand(DimIdx +
I).setReg(AMDGPU::NoRegister);
6828 const unsigned NumDefs =
MI.getNumExplicitDefs();
6829 const unsigned ArgOffset = NumDefs + 1;
6830 bool IsTFE = NumDefs == 2;
6848 VData =
MI.getOperand(NumDefs == 0 ? 1 : 0).getReg();
6849 Ty =
MRI->getType(VData);
6852 const bool IsAtomicPacked16Bit =
6853 (BaseOpcode->
BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_F16 ||
6854 BaseOpcode->
BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_BF16);
6862 ST.hasG16() ? (BaseOpcode->
Gradients && GradTy ==
S16) : GradTy ==
S16;
6863 const bool IsA16 = AddrTy ==
S16;
6864 const bool IsD16 = !IsAtomicPacked16Bit && Ty.getScalarType() ==
S16;
6867 if (!BaseOpcode->
Atomic) {
6868 DMask =
MI.getOperand(ArgOffset + Intr->
DMaskIndex).getImm();
6871 }
else if (DMask != 0) {
6873 }
else if (!IsTFE && !BaseOpcode->
Store) {
6875 B.buildUndef(
MI.getOperand(0));
6876 MI.eraseFromParent();
6884 const unsigned StoreOpcode = IsD16 ? AMDGPU::G_AMDGPU_INTRIN_IMAGE_STORE_D16
6885 : AMDGPU::G_AMDGPU_INTRIN_IMAGE_STORE;
6886 const unsigned LoadOpcode = IsD16 ? AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD_D16
6887 : AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD;
6888 unsigned NewOpcode = LoadOpcode;
6889 if (BaseOpcode->
Store)
6890 NewOpcode = StoreOpcode;
6892 NewOpcode = AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD_NORET;
6895 MI.setDesc(
B.getTII().get(NewOpcode));
6899 if (IsTFE && DMask == 0) {
6902 MI.getOperand(ArgOffset + Intr->
DMaskIndex).setImm(DMask);
6905 if (BaseOpcode->
Atomic) {
6907 LLT Ty =
MRI->getType(VData0);
6910 if (Ty.isVector() && !IsAtomicPacked16Bit)
6917 auto Concat =
B.buildBuildVector(PackedTy, {VData0, VData1});
6918 MI.getOperand(2).setReg(
Concat.getReg(0));
6919 MI.getOperand(3).setReg(AMDGPU::NoRegister);
6923 unsigned CorrectedNumVAddrs = Intr->
NumVAddrs;
6926 if (BaseOpcode->
Gradients && !ST.hasG16() && (IsA16 != IsG16)) {
6932 if (IsA16 && !ST.hasA16()) {
6937 const unsigned NSAMaxSize = ST.getNSAMaxSize(BaseOpcode->
Sampler);
6938 const unsigned HasPartialNSA = ST.hasPartialNSAEncoding();
6940 if (IsA16 || IsG16) {
6948 const bool UseNSA = ST.hasNSAEncoding() &&
6949 PackedRegs.
size() >= ST.getNSAThreshold(MF) &&
6950 (PackedRegs.
size() <= NSAMaxSize || HasPartialNSA);
6951 const bool UsePartialNSA =
6952 UseNSA && HasPartialNSA && PackedRegs.
size() > NSAMaxSize;
6954 if (UsePartialNSA) {
6958 auto Concat =
B.buildConcatVectors(
6959 PackedAddrTy,
ArrayRef(PackedRegs).slice(NSAMaxSize - 1));
6960 PackedRegs[NSAMaxSize - 1] =
Concat.getReg(0);
6961 PackedRegs.
resize(NSAMaxSize);
6962 }
else if (!UseNSA && PackedRegs.
size() > 1) {
6964 auto Concat =
B.buildConcatVectors(PackedAddrTy, PackedRegs);
6965 PackedRegs[0] =
Concat.getReg(0);
6969 const unsigned NumPacked = PackedRegs.
size();
6972 if (!
SrcOp.isReg()) {
6982 SrcOp.setReg(AMDGPU::NoRegister);
6999 const bool UseNSA = ST.hasNSAEncoding() &&
7000 CorrectedNumVAddrs >= ST.getNSAThreshold(MF) &&
7001 (CorrectedNumVAddrs <= NSAMaxSize || HasPartialNSA);
7002 const bool UsePartialNSA =
7003 UseNSA && HasPartialNSA && CorrectedNumVAddrs > NSAMaxSize;
7005 if (UsePartialNSA) {
7007 ArgOffset + Intr->
VAddrStart + NSAMaxSize - 1,
7009 }
else if (!UseNSA && Intr->
NumVAddrs > 1) {
7024 if (!Ty.isVector() || !IsD16)
7028 if (RepackedReg != VData) {
7029 MI.getOperand(1).setReg(RepackedReg);
7037 const int NumElts = Ty.
isVector() ? Ty.getNumElements() : 1;
7040 if (NumElts < DMaskLanes)
7043 if (NumElts > 4 || DMaskLanes > 4)
7053 const unsigned AdjustedNumElts = DMaskLanes == 0 ? 1 : DMaskLanes;
7054 const LLT AdjustedTy =
7070 if (IsD16 && ST.hasUnpackedD16VMem()) {
7077 unsigned RoundedElts = (AdjustedTy.
getSizeInBits() + 31) / 32;
7078 unsigned RoundedSize = 32 * RoundedElts;
7082 RegTy = !IsTFE && EltSize == 16 ?
V2S16 :
S32;
7087 if (!IsTFE && (RoundedTy == Ty || !Ty.
isVector()))
7093 B.setInsertPt(*
MI.getParent(), ++
MI.getIterator());
7097 const LLT LoadResultTy = IsTFE ? TFETy : RoundedTy;
7098 const int ResultNumRegs = LoadResultTy.
getSizeInBits() / 32;
7100 Register NewResultReg =
MRI->createGenericVirtualRegister(LoadResultTy);
7102 MI.getOperand(0).setReg(NewResultReg);
7110 Dst1Reg =
MI.getOperand(1).getReg();
7111 if (
MRI->getType(Dst1Reg) !=
S32)
7115 MI.removeOperand(1);
7119 B.buildUnmerge({DstReg, Dst1Reg}, NewResultReg);
7128 const int NumDataRegs = IsTFE ? ResultNumRegs - 1 : ResultNumRegs;
7130 if (ResultNumRegs == 1) {
7132 ResultRegs[0] = NewResultReg;
7135 for (
int I = 0;
I != NumDataRegs; ++
I)
7136 ResultRegs[
I] =
MRI->createGenericVirtualRegister(RegTy);
7137 B.buildUnmerge(ResultRegs, NewResultReg);
7142 ResultRegs.
resize(NumDataRegs);
7147 if (IsD16 && !Ty.isVector()) {
7148 B.buildTrunc(DstReg, ResultRegs[0]);
7153 if (Ty ==
V2S16 && NumDataRegs == 1 && !ST.hasUnpackedD16VMem()) {
7154 B.buildBitcast(DstReg, ResultRegs[0]);
7166 if (RegTy !=
V2S16 && !ST.hasUnpackedD16VMem()) {
7168 Reg =
B.buildBitcast(
V2S16, Reg).getReg(0);
7169 }
else if (ST.hasUnpackedD16VMem()) {
7171 Reg =
B.buildTrunc(
S16, Reg).getReg(0);
7175 auto padWithUndef = [&](
LLT Ty,
int NumElts) {
7178 Register Undef =
B.buildUndef(Ty).getReg(0);
7179 for (
int I = 0;
I != NumElts; ++
I)
7184 LLT ResTy =
MRI->getType(ResultRegs[0]);
7186 padWithUndef(ResTy, NumElts - ResultRegs.
size());
7187 B.buildBuildVector(DstReg, ResultRegs);
7191 assert(!ST.hasUnpackedD16VMem() && ResTy ==
V2S16);
7192 const int RegsToCover = (Ty.getSizeInBits() + 31) / 32;
7198 if (ResultRegs.
size() == 1) {
7199 NewResultReg = ResultRegs[0];
7200 }
else if (ResultRegs.
size() == 2) {
7202 NewResultReg =
B.buildConcatVectors(
V4S16, ResultRegs).getReg(0);
7208 if (
MRI->getType(DstReg).getNumElements() <
7209 MRI->getType(NewResultReg).getNumElements()) {
7210 B.buildDeleteTrailingVectorElements(DstReg, NewResultReg);
7212 B.buildPadVectorWithUndefElements(DstReg, NewResultReg);
7217 padWithUndef(ResTy, RegsToCover - ResultRegs.
size());
7218 B.buildConcatVectors(DstReg, ResultRegs);
7227 Register OrigDst =
MI.getOperand(0).getReg();
7229 LLT Ty =
B.getMRI()->getType(OrigDst);
7230 unsigned Size = Ty.getSizeInBits();
7233 if (
Size < 32 && ST.hasScalarSubwordLoads()) {
7235 Opc =
Size == 8 ? AMDGPU::G_AMDGPU_S_BUFFER_LOAD_UBYTE
7236 : AMDGPU::G_AMDGPU_S_BUFFER_LOAD_USHORT;
7239 Dst =
B.getMRI()->createGenericVirtualRegister(
LLT::scalar(32));
7241 Opc = AMDGPU::G_AMDGPU_S_BUFFER_LOAD;
7250 B.setInsertPt(
B.getMBB(),
MI);
7255 B.setInsertPt(
B.getMBB(),
MI);
7261 MI.setDesc(
B.getTII().get(
Opc));
7262 MI.removeOperand(1);
7265 const unsigned MemSize = (
Size + 7) / 8;
7266 const Align MemAlign =
B.getDataLayout().getABITypeAlign(
7273 MI.addMemOperand(MF, MMO);
7274 if (Dst != OrigDst) {
7275 MI.getOperand(0).setReg(Dst);
7276 B.setInsertPt(
B.getMBB(), ++
B.getInsertPt());
7277 B.buildTrunc(OrigDst, Dst);
7299 MI.setDesc(
B.getTII().get(AMDGPU::G_AMDGPU_S_BUFFER_PREFETCH));
7300 MI.removeOperand(0);
7310 if (!ST.isTrapHandlerEnabled() ||
7314 return ST.supportsGetDoorbellID() ?
7327 MI.eraseFromParent();
7337 BuildMI(*TrapBB, TrapBB->
end(),
DL,
B.getTII().get(AMDGPU::S_ENDPGM))
7339 BuildMI(BB, &
MI,
DL,
B.getTII().get(AMDGPU::S_CBRANCH_EXECNZ))
7343 MI.eraseFromParent();
7352 Register SGPR01(AMDGPU::SGPR0_SGPR1);
7359 ST.getTargetLowering()->getImplicitParameterOffset(
B.getMF(), Param);
7361 Register KernargPtrReg =
MRI.createGenericVirtualRegister(
7377 Register LoadAddr =
MRI.createGenericVirtualRegister(
7379 B.buildObjectPtrOffset(LoadAddr, KernargPtrReg,
7382 Register Temp =
B.buildLoad(
S64, LoadAddr, *MMO).getReg(0);
7383 B.buildCopy(SGPR01, Temp);
7384 B.buildInstr(AMDGPU::S_TRAP)
7387 MI.eraseFromParent();
7398 B.buildCopy(SGPR01, LiveIn);
7399 B.buildInstr(AMDGPU::S_TRAP)
7403 MI.eraseFromParent();
7412 if (ST.hasPrivEnabledTrap2NopBug()) {
7413 ST.getInstrInfo()->insertSimulatedTrap(
MRI,
B.getMBB(),
MI,
7415 MI.eraseFromParent();
7419 B.buildInstr(AMDGPU::S_TRAP)
7421 MI.eraseFromParent();
7430 if (!ST.isTrapHandlerEnabled() ||
7434 Fn,
"debugtrap handler not supported",
MI.getDebugLoc(),
DS_Warning));
7437 B.buildInstr(AMDGPU::S_TRAP)
7441 MI.eraseFromParent();
7454 Register NodePtr =
MI.getOperand(2).getReg();
7455 Register RayExtent =
MI.getOperand(3).getReg();
7456 Register RayOrigin =
MI.getOperand(4).getReg();
7458 Register RayInvDir =
MI.getOperand(6).getReg();
7461 if (!ST.hasGFX10_AEncoding()) {
7464 Fn,
"intrinsic not supported on subtarget",
MI.getDebugLoc()));
7471 const bool IsA16 =
MRI.getType(RayDir).getElementType().getSizeInBits() == 16;
7472 const bool Is64 =
MRI.getType(NodePtr).getSizeInBits() == 64;
7473 const unsigned NumVDataDwords = 4;
7474 const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11);
7475 const unsigned NumVAddrs = IsGFX11Plus ? (IsA16 ? 4 : 5) : NumVAddrDwords;
7477 IsGFX12Plus || (ST.hasNSAEncoding() && NumVAddrs <= ST.getNSAMaxSize());
7479 const unsigned BaseOpcodes[2][2] = {
7480 {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16},
7481 {AMDGPU::IMAGE_BVH64_INTERSECT_RAY,
7482 AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}};
7486 IsGFX12Plus ? AMDGPU::MIMGEncGfx12
7487 : IsGFX11 ? AMDGPU::MIMGEncGfx11NSA
7488 : AMDGPU::MIMGEncGfx10NSA,
7489 NumVDataDwords, NumVAddrDwords);
7493 IsGFX11 ? AMDGPU::MIMGEncGfx11Default
7494 : AMDGPU::MIMGEncGfx10Default,
7495 NumVDataDwords, NumVAddrDwords);
7500 if (UseNSA && IsGFX11Plus) {
7502 auto Unmerge =
B.buildUnmerge({
S32,
S32,
S32}, Src);
7503 auto Merged =
B.buildMergeLikeInstr(
7504 V3S32, {Unmerge.getReg(0), Unmerge.getReg(1), Unmerge.getReg(2)});
7505 Ops.push_back(Merged.getReg(0));
7508 Ops.push_back(NodePtr);
7509 Ops.push_back(RayExtent);
7510 packLanes(RayOrigin);
7513 auto UnmergeRayDir =
B.buildUnmerge({
S16,
S16,
S16}, RayDir);
7514 auto UnmergeRayInvDir =
B.buildUnmerge({
S16,
S16,
S16}, RayInvDir);
7515 auto MergedDir =
B.buildMergeLikeInstr(
7518 S32,
B.buildMergeLikeInstr(
V2S16, {UnmergeRayInvDir.getReg(0),
7519 UnmergeRayDir.getReg(0)}))
7522 S32,
B.buildMergeLikeInstr(
V2S16, {UnmergeRayInvDir.getReg(1),
7523 UnmergeRayDir.getReg(1)}))
7526 S32,
B.buildMergeLikeInstr(
V2S16, {UnmergeRayInvDir.getReg(2),
7527 UnmergeRayDir.getReg(2)}))
7529 Ops.push_back(MergedDir.getReg(0));
7532 packLanes(RayInvDir);
7536 auto Unmerge =
B.buildUnmerge({
S32,
S32}, NodePtr);
7537 Ops.push_back(Unmerge.getReg(0));
7538 Ops.push_back(Unmerge.getReg(1));
7540 Ops.push_back(NodePtr);
7542 Ops.push_back(RayExtent);
7545 auto Unmerge =
B.buildUnmerge({
S32,
S32,
S32}, Src);
7546 Ops.push_back(Unmerge.getReg(0));
7547 Ops.push_back(Unmerge.getReg(1));
7548 Ops.push_back(Unmerge.getReg(2));
7551 packLanes(RayOrigin);
7553 auto UnmergeRayDir =
B.buildUnmerge({
S16,
S16,
S16}, RayDir);
7554 auto UnmergeRayInvDir =
B.buildUnmerge({
S16,
S16,
S16}, RayInvDir);
7558 B.buildMergeLikeInstr(R1,
7559 {UnmergeRayDir.getReg(0), UnmergeRayDir.getReg(1)});
7560 B.buildMergeLikeInstr(
7561 R2, {UnmergeRayDir.getReg(2), UnmergeRayInvDir.getReg(0)});
7562 B.buildMergeLikeInstr(
7563 R3, {UnmergeRayInvDir.getReg(1), UnmergeRayInvDir.getReg(2)});
7569 packLanes(RayInvDir);
7576 Register MergedOps =
B.buildMergeLikeInstr(OpTy,
Ops).getReg(0);
7578 Ops.push_back(MergedOps);
7581 auto MIB =
B.buildInstr(AMDGPU::G_AMDGPU_BVH_INTERSECT_RAY)
7590 .addImm(IsA16 ? 1 : 0)
7593 MI.eraseFromParent();
7603 Register DstOrigin =
MI.getOperand(1).getReg();
7605 Register NodePtr =
MI.getOperand(4).getReg();
7606 Register RayExtent =
MI.getOperand(5).getReg();
7607 Register InstanceMask =
MI.getOperand(6).getReg();
7608 Register RayOrigin =
MI.getOperand(7).getReg();
7610 Register Offsets =
MI.getOperand(9).getReg();
7611 Register TDescr =
MI.getOperand(10).getReg();
7613 if (!ST.hasBVHDualAndBVH8Insts()) {
7616 Fn,
"intrinsic not supported on subtarget",
MI.getDebugLoc()));
7621 Intrinsic::amdgcn_image_bvh8_intersect_ray;
7622 const unsigned NumVDataDwords = 10;
7623 const unsigned NumVAddrDwords = IsBVH8 ? 11 : 12;
7625 IsBVH8 ? AMDGPU::IMAGE_BVH8_INTERSECT_RAY
7626 : AMDGPU::IMAGE_BVH_DUAL_INTERSECT_RAY,
7627 AMDGPU::MIMGEncGfx12, NumVDataDwords, NumVAddrDwords);
7630 auto RayExtentInstanceMaskVec =
B.buildMergeLikeInstr(
7631 V2S32, {RayExtent,
B.buildAnyExt(
S32, InstanceMask)});
7633 B.buildInstr(IsBVH8 ? AMDGPU::G_AMDGPU_BVH8_INTERSECT_RAY
7634 : AMDGPU::G_AMDGPU_BVH_DUAL_INTERSECT_RAY)
7640 .addUse(RayExtentInstanceMaskVec.getReg(0))
7647 MI.eraseFromParent();
7656 B.buildInstr(AMDGPU::G_AMDGPU_WAVE_ADDRESS, {DstReg}, {StackPtr});
7657 MI.eraseFromParent();
7664 if (!ST.hasArchitectedSGPRs())
7668 auto TTMP8 =
B.buildCopy(
S32,
Register(AMDGPU::TTMP8));
7669 auto LSB =
B.buildConstant(
S32, 25);
7670 auto Width =
B.buildConstant(
S32, 5);
7671 B.buildUbfx(DstReg, TTMP8, LSB, Width);
7672 MI.eraseFromParent();
7680 unsigned Width)
const {
7683 if (!
MRI.getRegClassOrNull(DstReg))
7684 MRI.setRegClass(DstReg, &AMDGPU::SReg_32RegClass);
7685 B.buildInstr(AMDGPU::S_GETREG_B32_const)
7688 MI.eraseFromParent();
7702 if (
MRI.getType(Src) !=
S64)
7706 B.buildIntrinsic(Intrinsic::amdgcn_s_getreg, {
S32},
7710 B.buildIntrinsic(Intrinsic::amdgcn_s_getreg, {
S32},
7713 B.buildMergeLikeInstr(Src, {ModeReg, TrapReg});
7714 MI.eraseFromParent();
7722 if (
MRI.getType(Src) !=
S64)
7725 auto Unmerge =
B.buildUnmerge({
S32,
S32},
MI.getOperand(0));
7729 .addReg(Unmerge.getReg(0));
7733 .addReg(Unmerge.getReg(1));
7734 MI.eraseFromParent();
7746 case Intrinsic::amdgcn_if:
7747 case Intrinsic::amdgcn_else: {
7750 bool Negated =
false;
7762 std::swap(CondBrTarget, UncondBrTarget);
7764 B.setInsertPt(
B.getMBB(), BrCond->getIterator());
7765 if (IntrID == Intrinsic::amdgcn_if) {
7766 B.buildInstr(AMDGPU::SI_IF)
7769 .addMBB(UncondBrTarget);
7771 B.buildInstr(AMDGPU::SI_ELSE)
7774 .addMBB(UncondBrTarget);
7783 B.buildBr(*CondBrTarget);
7786 MRI.setRegClass(Def,
TRI->getWaveMaskRegClass());
7787 MRI.setRegClass(
Use,
TRI->getWaveMaskRegClass());
7788 MI.eraseFromParent();
7789 BrCond->eraseFromParent();
7795 case Intrinsic::amdgcn_loop: {
7798 bool Negated =
false;
7808 std::swap(CondBrTarget, UncondBrTarget);
7810 B.setInsertPt(
B.getMBB(), BrCond->getIterator());
7811 B.buildInstr(AMDGPU::SI_LOOP)
7813 .addMBB(UncondBrTarget);
7818 B.buildBr(*CondBrTarget);
7820 MI.eraseFromParent();
7821 BrCond->eraseFromParent();
7822 MRI.setRegClass(Reg,
TRI->getWaveMaskRegClass());
7828 case Intrinsic::amdgcn_addrspacecast_nonnull:
7830 case Intrinsic::amdgcn_make_buffer_rsrc:
7832 case Intrinsic::amdgcn_kernarg_segment_ptr:
7835 B.buildConstant(
MI.getOperand(0).getReg(), 0);
7836 MI.eraseFromParent();
7842 case Intrinsic::amdgcn_implicitarg_ptr:
7844 case Intrinsic::amdgcn_workitem_id_x:
7847 case Intrinsic::amdgcn_workitem_id_y:
7850 case Intrinsic::amdgcn_workitem_id_z:
7853 case Intrinsic::amdgcn_workgroup_id_x:
7858 case Intrinsic::amdgcn_workgroup_id_y:
7863 case Intrinsic::amdgcn_workgroup_id_z:
7868 case Intrinsic::amdgcn_cluster_id_x:
7869 return ST.hasClusters() &&
7872 case Intrinsic::amdgcn_cluster_id_y:
7873 return ST.hasClusters() &&
7876 case Intrinsic::amdgcn_cluster_id_z:
7877 return ST.hasClusters() &&
7880 case Intrinsic::amdgcn_cluster_workgroup_id_x:
7881 return ST.hasClusters() &&
7884 case Intrinsic::amdgcn_cluster_workgroup_id_y:
7885 return ST.hasClusters() &&
7888 case Intrinsic::amdgcn_cluster_workgroup_id_z:
7889 return ST.hasClusters() &&
7892 case Intrinsic::amdgcn_cluster_workgroup_flat_id:
7893 return ST.hasClusters() &&
7895 case Intrinsic::amdgcn_cluster_workgroup_max_id_x:
7896 return ST.hasClusters() &&
7899 case Intrinsic::amdgcn_cluster_workgroup_max_id_y:
7900 return ST.hasClusters() &&
7903 case Intrinsic::amdgcn_cluster_workgroup_max_id_z:
7904 return ST.hasClusters() &&
7907 case Intrinsic::amdgcn_cluster_workgroup_max_flat_id:
7908 return ST.hasClusters() &&
7912 case Intrinsic::amdgcn_wave_id:
7914 case Intrinsic::amdgcn_lds_kernel_id:
7917 case Intrinsic::amdgcn_dispatch_ptr:
7920 case Intrinsic::amdgcn_queue_ptr:
7923 case Intrinsic::amdgcn_implicit_buffer_ptr:
7926 case Intrinsic::amdgcn_dispatch_id:
7929 case Intrinsic::r600_read_ngroups_x:
7933 case Intrinsic::r600_read_ngroups_y:
7936 case Intrinsic::r600_read_ngroups_z:
7939 case Intrinsic::r600_read_local_size_x:
7942 case Intrinsic::r600_read_local_size_y:
7946 case Intrinsic::r600_read_local_size_z:
7949 case Intrinsic::amdgcn_fdiv_fast:
7951 case Intrinsic::amdgcn_is_shared:
7953 case Intrinsic::amdgcn_is_private:
7955 case Intrinsic::amdgcn_wavefrontsize: {
7956 B.buildConstant(
MI.getOperand(0), ST.getWavefrontSize());
7957 MI.eraseFromParent();
7960 case Intrinsic::amdgcn_s_buffer_load:
7962 case Intrinsic::amdgcn_raw_buffer_store:
7963 case Intrinsic::amdgcn_raw_ptr_buffer_store:
7964 case Intrinsic::amdgcn_struct_buffer_store:
7965 case Intrinsic::amdgcn_struct_ptr_buffer_store:
7967 case Intrinsic::amdgcn_raw_buffer_store_format:
7968 case Intrinsic::amdgcn_raw_ptr_buffer_store_format:
7969 case Intrinsic::amdgcn_struct_buffer_store_format:
7970 case Intrinsic::amdgcn_struct_ptr_buffer_store_format:
7972 case Intrinsic::amdgcn_raw_tbuffer_store:
7973 case Intrinsic::amdgcn_raw_ptr_tbuffer_store:
7974 case Intrinsic::amdgcn_struct_tbuffer_store:
7975 case Intrinsic::amdgcn_struct_ptr_tbuffer_store:
7977 case Intrinsic::amdgcn_raw_buffer_load:
7978 case Intrinsic::amdgcn_raw_ptr_buffer_load:
7979 case Intrinsic::amdgcn_raw_atomic_buffer_load:
7980 case Intrinsic::amdgcn_raw_ptr_atomic_buffer_load:
7981 case Intrinsic::amdgcn_struct_buffer_load:
7982 case Intrinsic::amdgcn_struct_ptr_buffer_load:
7983 case Intrinsic::amdgcn_struct_atomic_buffer_load:
7984 case Intrinsic::amdgcn_struct_ptr_atomic_buffer_load:
7986 case Intrinsic::amdgcn_raw_buffer_load_format:
7987 case Intrinsic::amdgcn_raw_ptr_buffer_load_format:
7988 case Intrinsic::amdgcn_struct_buffer_load_format:
7989 case Intrinsic::amdgcn_struct_ptr_buffer_load_format:
7991 case Intrinsic::amdgcn_raw_tbuffer_load:
7992 case Intrinsic::amdgcn_raw_ptr_tbuffer_load:
7993 case Intrinsic::amdgcn_struct_tbuffer_load:
7994 case Intrinsic::amdgcn_struct_ptr_tbuffer_load:
7996 case Intrinsic::amdgcn_raw_buffer_atomic_swap:
7997 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_swap:
7998 case Intrinsic::amdgcn_struct_buffer_atomic_swap:
7999 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_swap:
8000 case Intrinsic::amdgcn_raw_buffer_atomic_add:
8001 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add:
8002 case Intrinsic::amdgcn_struct_buffer_atomic_add:
8003 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add:
8004 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
8005 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub:
8006 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
8007 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub:
8008 case Intrinsic::amdgcn_raw_buffer_atomic_smin:
8009 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin:
8010 case Intrinsic::amdgcn_struct_buffer_atomic_smin:
8011 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin:
8012 case Intrinsic::amdgcn_raw_buffer_atomic_umin:
8013 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin:
8014 case Intrinsic::amdgcn_struct_buffer_atomic_umin:
8015 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin:
8016 case Intrinsic::amdgcn_raw_buffer_atomic_smax:
8017 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax:
8018 case Intrinsic::amdgcn_struct_buffer_atomic_smax:
8019 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax:
8020 case Intrinsic::amdgcn_raw_buffer_atomic_umax:
8021 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax:
8022 case Intrinsic::amdgcn_struct_buffer_atomic_umax:
8023 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax:
8024 case Intrinsic::amdgcn_raw_buffer_atomic_and:
8025 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and:
8026 case Intrinsic::amdgcn_struct_buffer_atomic_and:
8027 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and:
8028 case Intrinsic::amdgcn_raw_buffer_atomic_or:
8029 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or:
8030 case Intrinsic::amdgcn_struct_buffer_atomic_or:
8031 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or:
8032 case Intrinsic::amdgcn_raw_buffer_atomic_xor:
8033 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor:
8034 case Intrinsic::amdgcn_struct_buffer_atomic_xor:
8035 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor:
8036 case Intrinsic::amdgcn_raw_buffer_atomic_inc:
8037 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_inc:
8038 case Intrinsic::amdgcn_struct_buffer_atomic_inc:
8039 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_inc:
8040 case Intrinsic::amdgcn_raw_buffer_atomic_dec:
8041 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_dec:
8042 case Intrinsic::amdgcn_struct_buffer_atomic_dec:
8043 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_dec:
8044 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
8045 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap:
8046 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
8047 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_cmpswap:
8048 case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
8049 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmin:
8050 case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
8051 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmin:
8052 case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
8053 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmax:
8054 case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
8055 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmax:
8056 case Intrinsic::amdgcn_raw_buffer_atomic_sub_clamp_u32:
8057 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub_clamp_u32:
8058 case Intrinsic::amdgcn_struct_buffer_atomic_sub_clamp_u32:
8059 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub_clamp_u32:
8060 case Intrinsic::amdgcn_raw_buffer_atomic_cond_sub_u32:
8061 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_cond_sub_u32:
8062 case Intrinsic::amdgcn_struct_buffer_atomic_cond_sub_u32:
8063 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_cond_sub_u32:
8064 case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
8065 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fadd:
8066 case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
8067 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fadd:
8069 case Intrinsic::amdgcn_rsq_clamp:
8071 case Intrinsic::amdgcn_image_bvh_intersect_ray:
8073 case Intrinsic::amdgcn_image_bvh_dual_intersect_ray:
8074 case Intrinsic::amdgcn_image_bvh8_intersect_ray:
8076 case Intrinsic::amdgcn_swmmac_f32_16x16x128_fp8_fp8:
8077 case Intrinsic::amdgcn_swmmac_f32_16x16x128_fp8_bf8:
8078 case Intrinsic::amdgcn_swmmac_f32_16x16x128_bf8_fp8:
8079 case Intrinsic::amdgcn_swmmac_f32_16x16x128_bf8_bf8:
8080 case Intrinsic::amdgcn_swmmac_f16_16x16x128_fp8_fp8:
8081 case Intrinsic::amdgcn_swmmac_f16_16x16x128_fp8_bf8:
8082 case Intrinsic::amdgcn_swmmac_f16_16x16x128_bf8_fp8:
8083 case Intrinsic::amdgcn_swmmac_f16_16x16x128_bf8_bf8: {
8086 if (
MRI.getType(Index) !=
S64)
8087 MI.getOperand(5).setReg(
B.buildAnyExt(
S64, Index).getReg(0));
8090 case Intrinsic::amdgcn_swmmac_f16_16x16x32_f16:
8091 case Intrinsic::amdgcn_swmmac_bf16_16x16x32_bf16:
8092 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf16:
8093 case Intrinsic::amdgcn_swmmac_f32_16x16x32_f16:
8094 case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_fp8:
8095 case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_bf8:
8096 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_fp8:
8097 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_bf8: {
8100 if (
MRI.getType(Index) !=
S32)
8101 MI.getOperand(5).setReg(
B.buildAnyExt(
S32, Index).getReg(0));
8104 case Intrinsic::amdgcn_swmmac_f16_16x16x64_f16:
8105 case Intrinsic::amdgcn_swmmac_bf16_16x16x64_bf16:
8106 case Intrinsic::amdgcn_swmmac_f32_16x16x64_bf16:
8107 case Intrinsic::amdgcn_swmmac_bf16f32_16x16x64_bf16:
8108 case Intrinsic::amdgcn_swmmac_f32_16x16x64_f16:
8109 case Intrinsic::amdgcn_swmmac_i32_16x16x128_iu8:
8110 case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu4:
8111 case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu8:
8112 case Intrinsic::amdgcn_swmmac_i32_16x16x64_iu4: {
8114 LLT IdxTy = IntrID == Intrinsic::amdgcn_swmmac_i32_16x16x128_iu8
8117 if (
MRI.getType(Index) != IdxTy)
8118 MI.getOperand(7).setReg(
B.buildAnyExt(IdxTy, Index).getReg(0));
8122 case Intrinsic::amdgcn_fmed3: {
8128 MI.setDesc(
B.getTII().get(AMDGPU::G_AMDGPU_FMED3));
8129 MI.removeOperand(1);
8133 case Intrinsic::amdgcn_readlane:
8134 case Intrinsic::amdgcn_writelane:
8135 case Intrinsic::amdgcn_readfirstlane:
8136 case Intrinsic::amdgcn_permlane16:
8137 case Intrinsic::amdgcn_permlanex16:
8138 case Intrinsic::amdgcn_permlane64:
8139 case Intrinsic::amdgcn_set_inactive:
8140 case Intrinsic::amdgcn_set_inactive_chain_arg:
8141 case Intrinsic::amdgcn_mov_dpp8:
8142 case Intrinsic::amdgcn_update_dpp:
8144 case Intrinsic::amdgcn_s_buffer_prefetch_data:
8146 case Intrinsic::amdgcn_dead: {
8150 MI.eraseFromParent();
8153 case Intrinsic::amdgcn_cooperative_atomic_load_32x4B:
8154 case Intrinsic::amdgcn_cooperative_atomic_load_16x8B:
8155 case Intrinsic::amdgcn_cooperative_atomic_load_8x16B:
8156 assert(
MI.hasOneMemOperand() &&
"Expected IRTranslator to set MemOp!");
8157 B.buildLoad(
MI.getOperand(0),
MI.getOperand(2), **
MI.memoperands_begin());
8158 MI.eraseFromParent();
8160 case Intrinsic::amdgcn_cooperative_atomic_store_32x4B:
8161 case Intrinsic::amdgcn_cooperative_atomic_store_16x8B:
8162 case Intrinsic::amdgcn_cooperative_atomic_store_8x16B:
8163 assert(
MI.hasOneMemOperand() &&
"Expected IRTranslator to set MemOp!");
8164 B.buildStore(
MI.getOperand(2),
MI.getOperand(1), **
MI.memoperands_begin());
8165 MI.eraseFromParent();
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, SelectionDAG &DAG)
static SDValue getMad(SelectionDAG &DAG, const SDLoc &SL, EVT VT, SDValue X, SDValue Y, SDValue C, SDNodeFlags Flags=SDNodeFlags())
static bool valueIsKnownNeverF32Denorm(SDValue Src)
Return true if it's known that Src can never be an f32 denormal value.
Contains the definition of a TargetInstrInfo class that is common to all AMD GPUs.
static void packImage16bitOpsToDwords(MachineIRBuilder &B, MachineInstr &MI, SmallVectorImpl< Register > &PackedAddrs, unsigned ArgOffset, const AMDGPU::ImageDimIntrinsicInfo *Intr, bool IsA16, bool IsG16)
Turn a set of s16 typed registers in AddrRegs into a dword sized vector with s16 typed elements.
static unsigned getBufferAtomicPseudo(Intrinsic::ID IntrID)
static LLT getBufferRsrcScalarType(const LLT Ty)
static LegalityPredicate isIllegalRegisterType(const GCNSubtarget &ST, unsigned TypeIdx)
static cl::opt< bool > EnableNewLegality("amdgpu-global-isel-new-legality", cl::desc("Use GlobalISel desired legality, rather than try to use" "rules compatible with selection patterns"), cl::init(false), cl::ReallyHidden)
static MachineInstrBuilder buildExp(MachineIRBuilder &B, const DstOp &Dst, const SrcOp &Src, unsigned Flags)
static bool needsDenormHandlingF32(const MachineFunction &MF, Register Src, unsigned Flags)
constexpr std::initializer_list< LLT > AllVectors
static LegalizeMutation bitcastToVectorElement32(unsigned TypeIdx)
static LegalityPredicate isSmallOddVector(unsigned TypeIdx)
static LegalizeMutation oneMoreElement(unsigned TypeIdx)
static LegalityPredicate vectorSmallerThan(unsigned TypeIdx, unsigned Size)
static bool allowApproxFunc(const MachineFunction &MF, unsigned Flags)
static bool shouldBitcastLoadStoreType(const GCNSubtarget &ST, const LLT Ty, const LLT MemTy)
Return true if a load or store of the type should be lowered with a bitcast to a different type.
static constexpr unsigned FPEnvModeBitField
static LegalizeMutation getScalarTypeFromMemDesc(unsigned TypeIdx)
static LegalityPredicate vectorWiderThan(unsigned TypeIdx, unsigned Size)
static bool shouldWidenLoad(const GCNSubtarget &ST, LLT MemoryTy, uint64_t AlignInBits, unsigned AddrSpace, unsigned Opcode)
Return true if we should legalize a load by widening an odd sized memory access up to the alignment.
static bool isRegisterVectorElementType(LLT EltTy)
static LegalizeMutation fewerEltsToSize64Vector(unsigned TypeIdx)
static LegalityPredicate isWideVec16(unsigned TypeIdx)
constexpr std::initializer_list< LLT > AllScalarTypes
static LegalityPredicate isTruncStoreToSizePowerOf2(unsigned TypeIdx)
constexpr std::initializer_list< LLT > AllS32Vectors
static LegalizeMutation moreElementsToNextExistingRegClass(unsigned TypeIdx)
static Register castBufferRsrcToV4I32(Register Pointer, MachineIRBuilder &B)
Cast a buffer resource (an address space 8 pointer) into a 4xi32, which is the form in which the valu...
static bool isRegisterClassType(const GCNSubtarget &ST, LLT Ty)
static std::pair< Register, Register > emitReciprocalU64(MachineIRBuilder &B, Register Val)
static LLT getBitcastRegisterType(const LLT Ty)
static LLT getBufferRsrcRegisterType(const LLT Ty)
static LegalizeMutation bitcastToRegisterType(unsigned TypeIdx)
static Register stripAnySourceMods(Register OrigSrc, MachineRegisterInfo &MRI)
static LLT castBufferRsrcFromV4I32(MachineInstr &MI, MachineIRBuilder &B, MachineRegisterInfo &MRI, unsigned Idx)
Mutates IR (typicaly a load instruction) to use a <4 x s32> as the initial type of the operand idx an...
static bool replaceWithConstant(MachineIRBuilder &B, MachineInstr &MI, int64_t C)
static constexpr unsigned SPDenormModeBitField
static unsigned maxSizeForAddrSpace(const GCNSubtarget &ST, unsigned AS, bool IsLoad, bool IsAtomic)
static bool isLoadStoreSizeLegal(const GCNSubtarget &ST, const LegalityQuery &Query)
static MachineInstr * verifyCFIntrinsic(MachineInstr &MI, MachineRegisterInfo &MRI, MachineInstr *&Br, MachineBasicBlock *&UncondBrTarget, bool &Negated)
static LegalityPredicate numElementsNotEven(unsigned TypeIdx)
constexpr std::initializer_list< LLT > AllS64Vectors
static void castBufferRsrcArgToV4I32(MachineInstr &MI, MachineIRBuilder &B, unsigned Idx)
static constexpr unsigned FPEnvTrapBitField
static constexpr unsigned MaxRegisterSize
static bool isRegisterSize(const GCNSubtarget &ST, unsigned Size)
static LegalityPredicate isWideScalarExtLoadTruncStore(unsigned TypeIdx)
static bool hasBufferRsrcWorkaround(const LLT Ty)
static void toggleSPDenormMode(bool Enable, MachineIRBuilder &B, const GCNSubtarget &ST, SIModeRegisterDefaults Mode)
constexpr std::initializer_list< LLT > AllS16Vectors
static bool loadStoreBitcastWorkaround(const LLT Ty)
static LLT widenToNextPowerOf2(LLT Ty)
static bool isNot(const MachineRegisterInfo &MRI, const MachineInstr &MI)
static void convertImageAddrToPacked(MachineIRBuilder &B, MachineInstr &MI, int DimIdx, int NumVAddrs)
Convert from separate vaddr components to a single vector address register, and replace the remaining...
static bool isLoadStoreLegal(const GCNSubtarget &ST, const LegalityQuery &Query)
static LegalizeMutation moreEltsToNext32Bit(unsigned TypeIdx)
static LLT getPow2VectorType(LLT Ty)
static void buildBufferLoad(unsigned Opc, Register LoadDstReg, Register RSrc, Register VIndex, Register VOffset, Register SOffset, unsigned ImmOffset, unsigned Format, unsigned AuxiliaryData, MachineMemOperand *MMO, bool IsTyped, bool HasVIndex, MachineIRBuilder &B)
static LLT getPow2ScalarType(LLT Ty)
static LegalityPredicate elementTypeIsLegal(unsigned TypeIdx)
static bool isRegisterVectorType(LLT Ty)
static LegalityPredicate sizeIsMultipleOf32(unsigned TypeIdx)
static bool isRegisterType(const GCNSubtarget &ST, LLT Ty)
static bool isKnownNonNull(Register Val, MachineRegisterInfo &MRI, const AMDGPUTargetMachine &TM, unsigned AddrSpace)
Return true if the value is a known valid address, such that a null check is not necessary.
This file declares the targeting of the Machinelegalizer class for AMDGPU.
Provides AMDGPU specific target descriptions.
The AMDGPU TargetMachine interface definition for hw codegen targets.
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Interface for Targets to specify which operations they can successfully select and how the others sho...
Contains matchers for matching SSA Machine Instructions.
This file declares the MachineIRBuilder class.
Register const TargetRegisterInfo * TRI
Promote Memory to Register
static MCRegister getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
#define FP_DENORM_FLUSH_NONE
Interface definition for SIInstrInfo.
Interface definition for SIRegisterInfo.
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static constexpr int Concat[]
bool legalizeConstHwRegRead(MachineInstr &MI, MachineIRBuilder &B, AMDGPU::Hwreg::Id HwReg, unsigned LowBit, unsigned Width) const
void buildMultiply(LegalizerHelper &Helper, MutableArrayRef< Register > Accum, ArrayRef< Register > Src0, ArrayRef< Register > Src1, bool UsePartialMad64_32, bool SeparateOddAlignedProducts) const
bool legalizeGlobalValue(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFSQRTF16(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeIntrinsicTrunc(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
std::pair< Register, unsigned > splitBufferOffsets(MachineIRBuilder &B, Register OrigOffset) const
bool legalizeBVHIntersectRayIntrinsic(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeIsAddrSpace(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, unsigned AddrSpace) const
bool legalizeUnsignedDIV_REM(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFSQRTF32(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeAtomicCmpXChg(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeTrapHsa(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeBufferStore(MachineInstr &MI, LegalizerHelper &Helper, bool IsTyped, bool IsFormat) const
bool legalizeMul(LegalizerHelper &Helper, MachineInstr &MI) const
bool legalizeFFREXP(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
Register getSegmentAperture(unsigned AddrSpace, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFDIV64(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizePointerAsRsrcIntrin(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
To create a buffer resource from a 64-bit pointer, mask off the upper 32 bits of the pointer and repl...
bool legalizeFlogCommon(MachineInstr &MI, MachineIRBuilder &B) const
bool getLDSKernelId(Register DstReg, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFExp2(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeTrap(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeBufferAtomic(MachineInstr &MI, MachineIRBuilder &B, Intrinsic::ID IID) const
void legalizeUnsignedDIV_REM32Impl(MachineIRBuilder &B, Register DstDivReg, Register DstRemReg, Register Num, Register Den) const
Register handleD16VData(MachineIRBuilder &B, MachineRegisterInfo &MRI, Register Reg, bool ImageStore=false) const
Handle register layout difference for f16 images for some subtargets.
bool legalizeCTLZ_CTTZ(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeBuildVector(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFFloor(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
AMDGPULegalizerInfo(const GCNSubtarget &ST, const GCNTargetMachine &TM)
bool legalizeFDIV32(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFMad(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFDIV(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeSBufferPrefetch(LegalizerHelper &Helper, MachineInstr &MI) const
bool legalizeFExp10Unsafe(MachineIRBuilder &B, Register Dst, Register Src, unsigned Flags) const
bool legalizeFExp(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeIntrinsic(LegalizerHelper &Helper, MachineInstr &MI) const override
bool legalizeFrem(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizePreloadedArgIntrin(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, AMDGPUFunctionArgInfo::PreloadedValue ArgType) const
bool legalizeStore(LegalizerHelper &Helper, MachineInstr &MI) const
bool legalizeCustom(LegalizerHelper &Helper, MachineInstr &MI, LostDebugLocObserver &LocObserver) const override
Called for instructions with the Custom LegalizationAction.
bool buildPCRelGlobalAddress(Register DstReg, LLT PtrTy, MachineIRBuilder &B, const GlobalValue *GV, int64_t Offset, unsigned GAFlags=SIInstrInfo::MO_NONE) const
MachinePointerInfo getKernargSegmentPtrInfo(MachineFunction &MF) const
bool legalizeFDIV16(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeRsqClampIntrinsic(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFExpUnsafeImpl(MachineIRBuilder &B, Register Dst, Register Src, unsigned Flags, bool IsExp10) const
std::pair< Register, Register > getScaledLogInput(MachineIRBuilder &B, Register Src, unsigned Flags) const
bool legalizeFDIVFastIntrin(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool loadInputValue(Register DstReg, MachineIRBuilder &B, AMDGPUFunctionArgInfo::PreloadedValue ArgType) const
bool legalizeBVHDualOrBVH8IntersectRayIntrinsic(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeInsertVectorElt(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFExpUnsafe(MachineIRBuilder &B, Register Dst, Register Src, unsigned Flags) const
bool legalizeAddrSpaceCast(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeBufferLoad(MachineInstr &MI, LegalizerHelper &Helper, bool IsFormat, bool IsTyped) const
bool legalizeImplicitArgPtr(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeMinNumMaxNum(LegalizerHelper &Helper, MachineInstr &MI) const
void legalizeUnsignedDIV_REM64Impl(MachineIRBuilder &B, Register DstDivReg, Register DstRemReg, Register Num, Register Den) const
bool legalizeDebugTrap(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFastUnsafeFDIV(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeSinCos(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeWaveID(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeFroundeven(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeLDSKernelId(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeWorkGroupId(MachineInstr &MI, MachineIRBuilder &B, AMDGPUFunctionArgInfo::PreloadedValue ClusterIdPV, AMDGPUFunctionArgInfo::PreloadedValue ClusterMaxIdPV, AMDGPUFunctionArgInfo::PreloadedValue ClusterWorkGroupIdPV) const
bool legalizeSignedDIV_REM(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeITOFP(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, bool Signed) const
bool legalizeFPow(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeFastUnsafeFDIV64(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFPTOI(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, bool Signed) const
bool legalizeStackSave(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeFlogUnsafe(MachineIRBuilder &B, Register Dst, Register Src, bool IsLog10, unsigned Flags) const
bool legalizeKernargMemParameter(MachineInstr &MI, MachineIRBuilder &B, uint64_t Offset, Align Alignment=Align(4)) const
Legalize a value that's loaded from kernel arguments.
bool legalizeImageIntrinsic(MachineInstr &MI, MachineIRBuilder &B, GISelChangeObserver &Observer, const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr) const
Rewrite image intrinsics to use register layouts expected by the subtarget.
void buildAbsGlobalAddress(Register DstReg, LLT PtrTy, MachineIRBuilder &B, const GlobalValue *GV, MachineRegisterInfo &MRI) const
bool legalizeGetFPEnv(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool getImplicitArgPtr(Register DstReg, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFSQRT(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
Register getKernargParameterPtr(MachineIRBuilder &B, int64_t Offset) const
bool legalizeSBufferLoad(LegalizerHelper &Helper, MachineInstr &MI) const
bool legalizeFceil(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFSQRTF64(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeExtractVectorElt(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeLoad(LegalizerHelper &Helper, MachineInstr &MI) const
bool legalizeCTLZ_ZERO_UNDEF(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
Register fixStoreSourceType(MachineIRBuilder &B, Register VData, LLT MemTy, bool IsFormat) const
bool legalizeLaneOp(LegalizerHelper &Helper, MachineInstr &MI, Intrinsic::ID IID) const
bool legalizeSetFPEnv(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeWorkitemIDIntrinsic(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, unsigned Dim, AMDGPUFunctionArgInfo::PreloadedValue ArgType) const
void buildLoadInputValue(Register DstReg, MachineIRBuilder &B, const ArgDescriptor *Arg, const TargetRegisterClass *ArgRC, LLT ArgTy) const
bool legalizeTrapHsaQueuePtr(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFlog2(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeTrapEndpgm(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
static std::optional< uint32_t > getLDSKernelIdMetadata(const Function &F)
void setDynLDSAlign(const Function &F, const GlobalVariable &GV)
unsigned allocateLDSGlobal(const DataLayout &DL, const GlobalVariable &GV)
bool isEntryFunction() const
bool isModuleEntryFunction() const
static int64_t getNullPointerValue(unsigned AddrSpace)
Get the integer value of a null pointer in the given address space.
bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override
Returns true if a cast between SrcAS and DestAS is a noop.
const std::array< unsigned, 3 > & getDims() const
static const fltSemantics & IEEEsingle()
static const fltSemantics & IEEEdouble()
static APFloat getSmallestNormalized(const fltSemantics &Sem, bool Negative=false)
Returns the smallest (by magnitude) normalized finite number in the given semantics.
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
@ ICMP_SLT
signed less than
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ ICMP_UGE
unsigned greater or equal
@ ICMP_SGT
signed greater than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ ICMP_ULT
unsigned less than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
This is the shared class of boolean and integer constants.
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Diagnostic information for unsupported feature in backend.
static constexpr ElementCount getFixed(ScalarTy MinVal)
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Abstract class that contains various methods for clients to notify about changes.
virtual void changingInstr(MachineInstr &MI)=0
This instruction is about to be mutated in some way.
virtual void changedInstr(MachineInstr &MI)=0
This instruction was mutated in some way.
Simple wrapper observer that takes several observers, and calls each one for each event.
KnownBits getKnownBits(Register R)
bool hasExternalLinkage() const
Module * getParent()
Get the module that this global value is contained inside of...
Type * getValueType() const
static constexpr LLT float64()
Get a 64-bit IEEE double value.
constexpr unsigned getScalarSizeInBits() const
constexpr LLT changeElementType(LLT NewEltTy) const
If this type is a vector, return a vector with the same number of elements but the new element type.
static constexpr LLT vector(ElementCount EC, unsigned ScalarSizeInBits)
Get a low-level vector of some number of elements and element width.
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
constexpr uint16_t getNumElements() const
Returns the number of elements in a vector LLT.
constexpr bool isVector() const
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
constexpr bool isPointer() const
constexpr LLT getElementType() const
Returns the vector's element type. Only valid for vector types.
constexpr LLT changeElementSize(unsigned NewEltSize) const
If this type is a vector, return a vector with the same number of elements but the new element size.
static constexpr LLT float16()
Get a 16-bit IEEE half value.
constexpr unsigned getAddressSpace() const
static constexpr LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits)
Get a low-level fixed-width vector of some number of elements and element width.
constexpr LLT changeElementCount(ElementCount EC) const
Return a vector or scalar with the same element type and the new element count.
constexpr LLT getScalarType() const
static constexpr LLT scalarOrVector(ElementCount EC, LLT ScalarTy)
static constexpr LLT float32()
Get a 32-bit IEEE float value.
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
LLVM_ABI void computeTables()
Compute any ancillary tables needed to quickly decide how an operation should be handled.
LegalizeRuleSet & minScalar(unsigned TypeIdx, const LLT Ty)
Ensure the scalar is at least as wide as Ty.
LegalizeRuleSet & legalFor(std::initializer_list< LLT > Types)
The instruction is legal when type index 0 is any type in the given list.
LegalizeRuleSet & unsupported()
The instruction is unsupported.
LegalizeRuleSet & scalarSameSizeAs(unsigned TypeIdx, unsigned SameSizeIdx)
Change the type TypeIdx to have the same scalar size as type SameSizeIdx.
LegalizeRuleSet & fewerElementsIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Remove elements to reach the type selected by the mutation if the predicate is true.
LegalizeRuleSet & clampScalarOrElt(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the range of scalar sizes to MinTy and MaxTy.
LegalizeRuleSet & bitcastIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
The specified type index is coerced if predicate is true.
LegalizeRuleSet & maxScalar(unsigned TypeIdx, const LLT Ty)
Ensure the scalar is at most as wide as Ty.
LegalizeRuleSet & minScalarOrElt(unsigned TypeIdx, const LLT Ty)
Ensure the scalar or element is at least as wide as Ty.
LegalizeRuleSet & clampMaxNumElements(unsigned TypeIdx, const LLT EltTy, unsigned MaxElements)
Limit the number of elements in EltTy vectors to at most MaxElements.
LegalizeRuleSet & unsupportedFor(std::initializer_list< LLT > Types)
LegalizeRuleSet & lower()
The instruction is lowered.
LegalizeRuleSet & moreElementsIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Add more elements to reach the type selected by the mutation if the predicate is true.
LegalizeRuleSet & lowerFor(std::initializer_list< LLT > Types)
The instruction is lowered when type index 0 is any type in the given list.
LegalizeRuleSet & lowerIf(LegalityPredicate Predicate)
The instruction is lowered if predicate is true.
LegalizeRuleSet & clampScalar(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the range of scalar sizes to MinTy and MaxTy.
LegalizeRuleSet & custom()
Unconditionally custom lower.
LegalizeRuleSet & clampMaxNumElementsStrict(unsigned TypeIdx, const LLT EltTy, unsigned NumElts)
Express EltTy vectors strictly using vectors with NumElts elements (or scalars when NumElts equals 1)...
LegalizeRuleSet & unsupportedIf(LegalityPredicate Predicate)
LegalizeRuleSet & widenScalarIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Widen the scalar to the one selected by the mutation if the predicate is true.
LegalizeRuleSet & alwaysLegal()
LegalizeRuleSet & clampNumElements(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the number of elements for the given vectors to at least MinTy's number of elements and at most...
LegalizeRuleSet & maxScalarIf(LegalityPredicate Predicate, unsigned TypeIdx, const LLT Ty)
Conditionally limit the maximum size of the scalar.
LegalizeRuleSet & customIf(LegalityPredicate Predicate)
LegalizeRuleSet & widenScalarToNextPow2(unsigned TypeIdx, unsigned MinSize=0)
Widen the scalar to the next power of two that is at least MinSize.
LegalizeRuleSet & scalarize(unsigned TypeIdx)
LegalizeRuleSet & legalForCartesianProduct(std::initializer_list< LLT > Types)
The instruction is legal when type indexes 0 and 1 are both in the given list.
LegalizeRuleSet & legalIf(LegalityPredicate Predicate)
The instruction is legal if predicate is true.
LegalizeRuleSet & customFor(std::initializer_list< LLT > Types)
LegalizeRuleSet & widenScalarToNextMultipleOf(unsigned TypeIdx, unsigned Size)
Widen the scalar to the next multiple of Size.
LLVM_ABI LegalizeResult lowerFMinNumMaxNum(MachineInstr &MI)
LLVM_ABI void moreElementsVectorDst(MachineInstr &MI, LLT MoreTy, unsigned OpIdx)
Legalize a single operand OpIdx of the machine instruction MI as a Def by performing it with addition...
GISelValueTracking * getValueTracking() const
@ Legalized
Instruction has been legalized and the MachineFunction changed.
GISelChangeObserver & Observer
To keep track of changes made by the LegalizerHelper.
LLVM_ABI void bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx)
Legalize a single operand OpIdx of the machine instruction MI as a def by inserting a G_BITCAST from ...
LLVM_ABI LegalizeResult lowerFMad(MachineInstr &MI)
MachineIRBuilder & MIRBuilder
Expose MIRBuilder so clients can set their own RecordInsertInstruction functions.
LLVM_ABI void widenScalarDst(MachineInstr &MI, LLT WideTy, unsigned OpIdx=0, unsigned TruncOpcode=TargetOpcode::G_TRUNC)
Legalize a single operand OpIdx of the machine instruction MI as a Def by extending the operand's typ...
LegalizeRuleSet & getActionDefinitionsBuilder(unsigned Opcode)
Get the action definition builder for the given opcode.
const LegacyLegalizerInfo & getLegacyLegalizerInfo() const
TypeSize getValue() const
Wrapper class representing physical registers. Should be passed by value.
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
LLVM_ABI MachineBasicBlock * splitAt(MachineInstr &SplitInst, bool UpdateLiveIns=true, LiveIntervals *LIS=nullptr)
Split a basic block into 2 pieces at SplitPoint.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
MachineInstrBundleIterator< MachineInstr > iterator
PseudoSourceValueManager & getPSVManager() const
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
void push_back(MachineBasicBlock *MBB)
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
Helper class to build MachineInstr.
MachineFunction & getMF()
Getter for the function we currently build.
Register getReg(unsigned Idx) const
Get the register for the operand index.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addGlobalAddress(const GlobalValue *GV, int64_t Offset=0, unsigned TargetFlags=0) const
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
Representation of each machine instruction.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
LocationSize getSize() const
Return the size in bytes of the memory reference.
LLT getMemoryType() const
Return the memory type of the memory reference.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
LLVM_ABI Align getAlign() const
Return the minimum known alignment in bytes of the actual memory reference.
MachineOperand class - Representation of each machine instruction operand.
MachineBasicBlock * getMBB() const
LLVM_ABI void setReg(Register Reg)
Change the register this operand corresponds to.
void setMBB(MachineBasicBlock *MBB)
static MachineOperand CreateImm(int64_t Val)
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
MutableArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
LLVM_ABI const PseudoSourceValue * getConstantPool()
Return a pseudo source value referencing the constant pool.
Wrapper class representing virtual and physical registers.
constexpr bool isValid() const
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
static unsigned getMaxMUBUFImmOffset(const GCNSubtarget &ST)
This class keeps track of the SPI_SP_INPUT_ADDR config register, which tells the hardware which inter...
bool hasWorkGroupIDZ() const
AMDGPU::ClusterDimsAttr getClusterDims() const
SIModeRegisterDefaults getMode() const
std::tuple< const ArgDescriptor *, const TargetRegisterClass *, LLT > getPreloadedValue(AMDGPUFunctionArgInfo::PreloadedValue Value) const
static LLVM_READONLY const TargetRegisterClass * getSGPRClassForBitWidth(unsigned BitWidth)
bool allowsMisalignedMemoryAccessesImpl(unsigned Size, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *IsFast=nullptr) const
bool shouldEmitFixup(const GlobalValue *GV) const
bool shouldUseLDSConstAddress(const GlobalValue *GV) const
bool shouldEmitPCReloc(const GlobalValue *GV) const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void truncate(size_type N)
Like resize, but requires that N is less than size().
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
unsigned getPointerSizeInBits(unsigned AS) const
unsigned NoNaNsFPMath
NoNaNsFPMath - This flag is enabled when the -enable-no-nans-fp-math flag is specified on the command...
The instances of the Type class are immutable: once they are created, they are never changed.
A Use represents the edge between a Value definition and its users.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ CONSTANT_ADDRESS_32BIT
Address space for 32-bit constant memory.
@ BUFFER_STRIDED_POINTER
Address space for 192-bit fat buffer pointers with an additional index.
@ REGION_ADDRESS
Address space for region memory. (GDS)
@ LOCAL_ADDRESS
Address space for local memory.
@ CONSTANT_ADDRESS
Address space for constant memory (VTX2).
@ FLAT_ADDRESS
Address space for flat memory.
@ GLOBAL_ADDRESS
Address space for global memory (RAT0, VTX0).
@ BUFFER_FAT_POINTER
Address space for 160-bit buffer fat pointers.
@ PRIVATE_ADDRESS
Address space for private memory.
@ BUFFER_RESOURCE
Address space for 128-bit buffer resources.
int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, unsigned VDataDwords, unsigned VAddrDwords)
bool isFlatGlobalAddrSpace(unsigned AS)
bool isGFX12Plus(const MCSubtargetInfo &STI)
bool isGFX11(const MCSubtargetInfo &STI)
LLVM_READNONE bool isLegalDPALU_DPPControl(const MCSubtargetInfo &ST, unsigned DC)
unsigned getAMDHSACodeObjectVersion(const Module &M)
LLVM_READNONE constexpr bool isKernel(CallingConv::ID CC)
LLVM_READNONE constexpr bool isEntryFunctionCC(CallingConv::ID CC)
LLVM_READNONE constexpr bool isCompute(CallingConv::ID CC)
TargetExtType * isNamedBarrier(const GlobalVariable &GV)
bool isGFX11Plus(const MCSubtargetInfo &STI)
bool isGFX1250(const MCSubtargetInfo &STI)
LLVM_READONLY const MIMGBaseOpcodeInfo * getMIMGBaseOpcodeInfo(unsigned BaseOpcode)
std::pair< Register, unsigned > getBaseWithConstantOffset(MachineRegisterInfo &MRI, Register Reg, GISelValueTracking *ValueTracking=nullptr, bool CheckNUW=false)
Returns base register and constant offset.
const ImageDimIntrinsicInfo * getImageDimIntrinsicInfo(unsigned Intr)
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ MaxID
The highest possible ID. Must be some 2^k - 1.
@ AMDGPU_Gfx
Used for AMD graphics targets.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI LegalityPredicate scalarOrEltWiderThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar or a vector with an element type that's wider than the ...
LLVM_ABI LegalityPredicate isScalar(unsigned TypeIdx)
True iff the specified type index is a scalar.
LLVM_ABI LegalityPredicate isPointer(unsigned TypeIdx)
True iff the specified type index is a pointer (with any address space).
LLVM_ABI LegalityPredicate typeInSet(unsigned TypeIdx, std::initializer_list< LLT > TypesInit)
True iff the given type index is one of the specified types.
LLVM_ABI LegalityPredicate smallerThan(unsigned TypeIdx0, unsigned TypeIdx1)
True iff the first type index has a smaller total bit size than second type index.
LLVM_ABI LegalityPredicate largerThan(unsigned TypeIdx0, unsigned TypeIdx1)
True iff the first type index has a larger total bit size than second type index.
LLVM_ABI LegalityPredicate elementTypeIs(unsigned TypeIdx, LLT EltTy)
True if the type index is a vector with element type EltTy.
LLVM_ABI LegalityPredicate sameSize(unsigned TypeIdx0, unsigned TypeIdx1)
True iff the specified type indices are both the same bit size.
LLVM_ABI LegalityPredicate scalarOrEltNarrowerThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar or vector with an element type that's narrower than the...
LLVM_ABI LegalityPredicate sizeIs(unsigned TypeIdx, unsigned Size)
True if the total bitwidth of the specified type index is Size bits.
LegalityPredicate typeIsNot(unsigned TypeIdx, LLT Type)
True iff the given type index is not the specified type.
Predicate all(Predicate P0, Predicate P1)
True iff P0 and P1 are true.
LLVM_ABI LegalityPredicate typeIs(unsigned TypeIdx, LLT TypesInit)
True iff the given type index is the specified type.
LLVM_ABI LegalityPredicate scalarNarrowerThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar that's narrower than the given size.
LLVM_ABI LegalizeMutation scalarize(unsigned TypeIdx)
Break up the vector type for the given type index into the element type.
LLVM_ABI LegalizeMutation widenScalarOrEltToNextPow2(unsigned TypeIdx, unsigned Min=0)
Widen the scalar type or vector element type for the given type index to the next power of 2.
LLVM_ABI LegalizeMutation changeTo(unsigned TypeIdx, LLT Ty)
Select this specific type for the given type index.
@ Implicit
Not emitted register (e.g. carry, or temporary result).
Invariant opcodes: All instruction sets have these as their low opcodes.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI Register getFunctionLiveInPhysReg(MachineFunction &MF, const TargetInstrInfo &TII, MCRegister PhysReg, const TargetRegisterClass &RC, const DebugLoc &DL, LLT RegTy=LLT())
Return a virtual register corresponding to the incoming argument register PhysReg.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
LLVM_ABI Type * getTypeForLLT(LLT Ty, LLVMContext &C)
Get the type back from LLT.
LLVM_ABI MachineInstr * getOpcodeDef(unsigned Opcode, Register Reg, const MachineRegisterInfo &MRI)
See if Reg is defined by an single def instruction that is Opcode.
LLVM_ABI const ConstantFP * getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI)
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
LLVM_ABI const llvm::fltSemantics & getFltSemanticForLLT(LLT Ty)
Get the appropriate floating point arithmetic semantic based on the bit size of the given scalar LLT.
std::function< std::pair< unsigned, LLT >(const LegalityQuery &)> LegalizeMutation
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
constexpr int popcount(T Value) noexcept
Count the number of set bits in a value.
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
LLVM_ABI std::optional< int64_t > getIConstantVRegSExtVal(Register VReg, const MachineRegisterInfo &MRI)
If VReg is defined by a G_CONSTANT fits in int64_t returns it.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
constexpr bool has_single_bit(T Value) noexcept
std::function< bool(const LegalityQuery &)> LegalityPredicate
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
To bit_cast(const From &from) noexcept
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
FunctionAddr VTableAddr Next
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI void eraseInstr(MachineInstr &MI, MachineRegisterInfo &MRI, LostDebugLocObserver *LocObserver=nullptr)
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI std::optional< ValueAndVReg > getIConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs=true)
If VReg is defined by a statically evaluable chain of instructions rooted on a G_CONSTANT returns its...
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
unsigned Log2(Align A)
Returns the log2 of the alignment.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
@ CLUSTER_WORKGROUP_MAX_ID_X
@ CLUSTER_WORKGROUP_MAX_ID_Z
@ CLUSTER_WORKGROUP_MAX_FLAT_ID
@ CLUSTER_WORKGROUP_MAX_ID_Y
static constexpr uint64_t encode(Fields... Values)
MIMGBaseOpcode BaseOpcode
This struct is a compact representation of a valid (non-zero power of two) alignment.
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
MCRegister getRegister() const
static ArgDescriptor createRegister(Register Reg, unsigned Mask=~0u)
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ Dynamic
Denormals have unknown treatment.
static constexpr DenormalMode getPreserveSign()
static constexpr DenormalMode getIEEE()
bool isZero() const
Returns true if value is all zero.
The LegalityQuery object bundles together all the information that's needed to decide whether a given...
ArrayRef< MemDesc > MMODescrs
Operations which require memory can use this to place requirements on the memory type for each MMO.
This class contains a discriminated union of information about pointers in memory operands,...
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getGOT(MachineFunction &MF)
Return a MachinePointerInfo record that refers to a GOT entry.
DenormalMode FP64FP16Denormals
If this is set, neither input or output denormals are flushed for both f64 and f16/v2f16 instructions...
bool IEEE
Floating point opcodes that support exception flag gathering quiet and propagate signaling NaN inputs...
DenormalMode FP32Denormals
If this is set, neither input or output denormals are flushed for most f32 instructions.