98void SelectionDAG::DAGNodeDeletedListener::anchor() {}
99void SelectionDAG::DAGNodeInsertedListener::anchor() {}
101#define DEBUG_TYPE "selectiondag"
105 cl::desc(
"Gang up loads and stores generated by inlining of memcpy"));
108 cl::desc(
"Number limit for gluing ld/st of memcpy."),
113 cl::desc(
"DAG combiner limit number of steps when searching DAG "
114 "for predecessor nodes"));
152 if (
auto OptAPInt =
N->getOperand(0)->bitcastToAPInt()) {
154 N->getValueType(0).getVectorElementType().getSizeInBits();
155 SplatVal = OptAPInt->
trunc(EltSize);
165 unsigned SplatBitSize;
167 unsigned EltSize =
N->getValueType(0).getVectorElementType().getSizeInBits();
172 const bool IsBigEndian =
false;
173 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
174 EltSize, IsBigEndian) &&
175 EltSize == SplatBitSize;
183 while (
N->getOpcode() == ISD::BITCAST)
184 N =
N->getOperand(0).getNode();
193 unsigned i = 0, e =
N->getNumOperands();
196 while (i != e &&
N->getOperand(i).isUndef())
200 if (i == e)
return false;
212 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
213 if (OptAPInt->countr_one() < EltSize)
221 for (++i; i != e; ++i)
222 if (
N->getOperand(i) != NotZero && !
N->getOperand(i).isUndef())
229 while (
N->getOpcode() == ISD::BITCAST)
230 N =
N->getOperand(0).getNode();
239 bool IsAllUndef =
true;
252 if (
auto OptAPInt =
Op->bitcastToAPInt()) {
253 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
254 if (OptAPInt->countr_zero() < EltSize)
302 assert(
N->getValueType(0).isVector() &&
"Expected a vector!");
304 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
305 if (EltSize <= NewEltSize)
309 return (
N->getOperand(0).getValueType().getScalarSizeInBits() <=
314 return (
N->getOperand(0).getValueType().getScalarSizeInBits() <=
327 APInt C =
Op->getAsAPIntVal().trunc(EltSize);
328 if (
Signed &&
C.trunc(NewEltSize).sext(EltSize) !=
C)
330 if (!
Signed &&
C.trunc(NewEltSize).zext(EltSize) !=
C)
341 if (
N->getNumOperands() == 0)
347 return N->getOpcode() ==
ISD::FREEZE &&
N->getOperand(0).isUndef();
350template <
typename ConstNodeType>
352 std::function<
bool(ConstNodeType *)> Match,
353 bool AllowUndefs,
bool AllowTruncation) {
363 EVT SVT =
Op.getValueType().getScalarType();
364 for (
unsigned i = 0, e =
Op.getNumOperands(); i != e; ++i) {
365 if (AllowUndefs &&
Op.getOperand(i).isUndef()) {
372 if (!Cst || (!AllowTruncation && Cst->getValueType(0) != SVT) ||
387 bool AllowUndefs,
bool AllowTypeMismatch) {
388 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
394 return Match(LHSCst, RHSCst);
397 if (LHS.getOpcode() != RHS.getOpcode() ||
403 for (
unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
406 bool LHSUndef = AllowUndefs && LHSOp.
isUndef();
407 bool RHSUndef = AllowUndefs && RHSOp.
isUndef();
410 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
412 if (!AllowTypeMismatch && (LHSOp.
getValueType() != SVT ||
415 if (!Match(LHSCst, RHSCst))
437 switch (VecReduceOpcode) {
440 case ISD::VECREDUCE_FADD:
441 case ISD::VECREDUCE_SEQ_FADD:
442 case ISD::VP_REDUCE_FADD:
443 case ISD::VP_REDUCE_SEQ_FADD:
445 case ISD::VECREDUCE_FMUL:
446 case ISD::VECREDUCE_SEQ_FMUL:
447 case ISD::VP_REDUCE_FMUL:
448 case ISD::VP_REDUCE_SEQ_FMUL:
450 case ISD::VECREDUCE_ADD:
451 case ISD::VP_REDUCE_ADD:
453 case ISD::VECREDUCE_MUL:
454 case ISD::VP_REDUCE_MUL:
456 case ISD::VECREDUCE_AND:
457 case ISD::VP_REDUCE_AND:
459 case ISD::VECREDUCE_OR:
460 case ISD::VP_REDUCE_OR:
462 case ISD::VECREDUCE_XOR:
463 case ISD::VP_REDUCE_XOR:
465 case ISD::VECREDUCE_SMAX:
466 case ISD::VP_REDUCE_SMAX:
468 case ISD::VECREDUCE_SMIN:
469 case ISD::VP_REDUCE_SMIN:
471 case ISD::VECREDUCE_UMAX:
472 case ISD::VP_REDUCE_UMAX:
474 case ISD::VECREDUCE_UMIN:
475 case ISD::VP_REDUCE_UMIN:
477 case ISD::VECREDUCE_FMAX:
478 case ISD::VP_REDUCE_FMAX:
480 case ISD::VECREDUCE_FMIN:
481 case ISD::VP_REDUCE_FMIN:
483 case ISD::VECREDUCE_FMAXIMUM:
484 case ISD::VP_REDUCE_FMAXIMUM:
485 return ISD::FMAXIMUM;
486 case ISD::VECREDUCE_FMINIMUM:
487 case ISD::VP_REDUCE_FMINIMUM:
488 return ISD::FMINIMUM;
496#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \
499#include "llvm/IR/VPIntrinsics.def"
507#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
508#define VP_PROPERTY_BINARYOP return true;
509#define END_REGISTER_VP_SDNODE(VPSD) break;
510#include "llvm/IR/VPIntrinsics.def"
519 case ISD::VP_REDUCE_ADD:
520 case ISD::VP_REDUCE_MUL:
521 case ISD::VP_REDUCE_AND:
522 case ISD::VP_REDUCE_OR:
523 case ISD::VP_REDUCE_XOR:
524 case ISD::VP_REDUCE_SMAX:
525 case ISD::VP_REDUCE_SMIN:
526 case ISD::VP_REDUCE_UMAX:
527 case ISD::VP_REDUCE_UMIN:
528 case ISD::VP_REDUCE_FMAX:
529 case ISD::VP_REDUCE_FMIN:
530 case ISD::VP_REDUCE_FMAXIMUM:
531 case ISD::VP_REDUCE_FMINIMUM:
532 case ISD::VP_REDUCE_FADD:
533 case ISD::VP_REDUCE_FMUL:
534 case ISD::VP_REDUCE_SEQ_FADD:
535 case ISD::VP_REDUCE_SEQ_FMUL:
545#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \
548#include "llvm/IR/VPIntrinsics.def"
557#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \
560#include "llvm/IR/VPIntrinsics.def"
570#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) case ISD::VPOPC:
571#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) return ISD::SDOPC;
572#define END_REGISTER_VP_SDNODE(VPOPC) break;
573#include "llvm/IR/VPIntrinsics.def"
582#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) break;
583#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) case ISD::SDOPC:
584#define END_REGISTER_VP_SDNODE(VPOPC) return ISD::VPOPC;
585#include "llvm/IR/VPIntrinsics.def"
632 bool isIntegerLike) {
657 bool IsInteger =
Type.isInteger();
662 unsigned Op = Op1 | Op2;
678 bool IsInteger =
Type.isInteger();
713 ID.AddPointer(VTList.
VTs);
719 for (
const auto &
Op :
Ops) {
720 ID.AddPointer(
Op.getNode());
721 ID.AddInteger(
Op.getResNo());
728 for (
const auto &
Op :
Ops) {
729 ID.AddPointer(
Op.getNode());
730 ID.AddInteger(
Op.getResNo());
743 switch (
N->getOpcode()) {
752 ID.AddPointer(
C->getConstantIntValue());
753 ID.AddBoolean(
C->isOpaque());
786 case ISD::PSEUDO_PROBE:
799 ID.AddInteger(CP->getAlign().value());
800 ID.AddInteger(CP->getOffset());
801 if (CP->isMachineConstantPoolEntry())
802 CP->getMachineCPVal()->addSelectionDAGCSEId(
ID);
804 ID.AddPointer(CP->getConstVal());
805 ID.AddInteger(CP->getTargetFlags());
817 ID.AddInteger(LD->getMemoryVT().getRawBits());
818 ID.AddInteger(LD->getRawSubclassData());
819 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
820 ID.AddInteger(LD->getMemOperand()->getFlags());
825 ID.AddInteger(ST->getMemoryVT().getRawBits());
826 ID.AddInteger(ST->getRawSubclassData());
827 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
828 ID.AddInteger(ST->getMemOperand()->getFlags());
839 case ISD::VP_LOAD_FF: {
841 ID.AddInteger(LD->getMemoryVT().getRawBits());
842 ID.AddInteger(LD->getRawSubclassData());
843 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
844 ID.AddInteger(LD->getMemOperand()->getFlags());
847 case ISD::VP_STORE: {
855 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
862 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
869 case ISD::VP_GATHER: {
877 case ISD::VP_SCATTER: {
909 case ISD::MSCATTER: {
917 case ISD::ATOMIC_CMP_SWAP:
918 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
919 case ISD::ATOMIC_SWAP:
920 case ISD::ATOMIC_LOAD_ADD:
921 case ISD::ATOMIC_LOAD_SUB:
922 case ISD::ATOMIC_LOAD_AND:
923 case ISD::ATOMIC_LOAD_CLR:
924 case ISD::ATOMIC_LOAD_OR:
925 case ISD::ATOMIC_LOAD_XOR:
926 case ISD::ATOMIC_LOAD_NAND:
927 case ISD::ATOMIC_LOAD_MIN:
928 case ISD::ATOMIC_LOAD_MAX:
929 case ISD::ATOMIC_LOAD_UMIN:
930 case ISD::ATOMIC_LOAD_UMAX:
931 case ISD::ATOMIC_LOAD:
932 case ISD::ATOMIC_STORE: {
946 case ISD::ADDRSPACECAST: {
968 case ISD::MDNODE_SDNODE:
976 ID.AddInteger(MN->getRawSubclassData());
977 ID.AddInteger(MN->getPointerInfo().getAddrSpace());
978 ID.AddInteger(MN->getMemOperand()->getFlags());
979 ID.AddInteger(MN->getMemoryVT().getRawBits());
1002 if (
N->getValueType(0) == MVT::Glue)
1005 switch (
N->getOpcode()) {
1007 case ISD::HANDLENODE:
1013 for (
unsigned i = 1, e =
N->getNumValues(); i != e; ++i)
1014 if (
N->getValueType(i) == MVT::Glue)
1031 if (
Node.use_empty())
1046 while (!DeadNodes.
empty()) {
1055 DUL->NodeDeleted(
N,
nullptr);
1058 RemoveNodeFromCSEMaps(
N);
1089 RemoveNodeFromCSEMaps(
N);
1093 DeleteNodeNotInCSEMaps(
N);
1096void SelectionDAG::DeleteNodeNotInCSEMaps(
SDNode *
N) {
1097 assert(
N->getIterator() != AllNodes.begin() &&
1098 "Cannot delete the entry node!");
1099 assert(
N->use_empty() &&
"Cannot delete a node that is not dead!");
1108 assert(!(V->isVariadic() && isParameter));
1110 ByvalParmDbgValues.push_back(V);
1112 DbgValues.push_back(V);
1115 DbgValMap[
Node].push_back(V);
1119 DbgValMapType::iterator
I = DbgValMap.find(
Node);
1120 if (
I == DbgValMap.end())
1122 for (
auto &Val:
I->second)
1123 Val->setIsInvalidated();
1127void SelectionDAG::DeallocateNode(
SDNode *
N) {
1150void SelectionDAG::verifyNode(
SDNode *
N)
const {
1151 switch (
N->getOpcode()) {
1153 if (
N->isTargetOpcode())
1157 EVT VT =
N->getValueType(0);
1158 assert(
N->getNumValues() == 1 &&
"Too many results!");
1160 "Wrong return type!");
1161 assert(
N->getNumOperands() == 2 &&
"Wrong number of operands!");
1162 assert(
N->getOperand(0).getValueType() ==
N->getOperand(1).getValueType() &&
1163 "Mismatched operand types!");
1165 "Wrong operand type!");
1167 "Wrong return type size");
1171 assert(
N->getNumValues() == 1 &&
"Too many results!");
1172 assert(
N->getValueType(0).isVector() &&
"Wrong return type!");
1173 assert(
N->getNumOperands() ==
N->getValueType(0).getVectorNumElements() &&
1174 "Wrong number of operands!");
1175 EVT EltVT =
N->getValueType(0).getVectorElementType();
1176 for (
const SDUse &
Op :
N->ops()) {
1177 assert((
Op.getValueType() == EltVT ||
1178 (EltVT.
isInteger() &&
Op.getValueType().isInteger() &&
1179 EltVT.
bitsLE(
Op.getValueType()))) &&
1180 "Wrong operand type!");
1181 assert(
Op.getValueType() ==
N->getOperand(0).getValueType() &&
1182 "Operands must all have the same type");
1194void SelectionDAG::InsertNode(SDNode *
N) {
1195 AllNodes.push_back(
N);
1197 N->PersistentId = NextPersistentId++;
1201 DUL->NodeInserted(
N);
1208bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *
N) {
1209 bool Erased =
false;
1210 switch (
N->getOpcode()) {
1211 case ISD::HANDLENODE:
return false;
1214 "Cond code doesn't exist!");
1223 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1229 Erased = MCSymbols.erase(MCSN->getMCSymbol());
1235 Erased = ExtendedValueTypeNodes.erase(VT);
1246 Erased = CSEMap.RemoveNode(
N);
1253 if (!Erased &&
N->getValueType(
N->getNumValues()-1) != MVT::Glue &&
1268SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *
N) {
1272 SDNode *Existing = CSEMap.GetOrInsertNode(
N);
1273 if (Existing !=
N) {
1284 DUL->NodeDeleted(
N, Existing);
1285 DeleteNodeNotInCSEMaps(
N);
1292 DUL->NodeUpdated(
N);
1299SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *
N,
SDValue Op,
1305 FoldingSetNodeID
ID;
1308 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1310 Node->intersectFlagsWith(
N->getFlags());
1318SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *
N,
1325 FoldingSetNodeID
ID;
1328 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1330 Node->intersectFlagsWith(
N->getFlags());
1343 FoldingSetNodeID
ID;
1346 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1348 Node->intersectFlagsWith(
N->getFlags());
1361 : TM(tm), OptLevel(OL), EntryNode(
ISD::EntryToken, 0,
DebugLoc(),
1364 InsertNode(&EntryNode);
1375 SDAGISelPass = PassPtr;
1379 LibInfo = LibraryInfo;
1380 Context = &MF->getFunction().getContext();
1385 FnVarLocs = VarLocs;
1389 assert(!UpdateListeners &&
"Dangling registered DAGUpdateListeners");
1391 OperandRecycler.clear(OperandAllocator);
1399void SelectionDAG::allnodes_clear() {
1400 assert(&*AllNodes.begin() == &EntryNode);
1401 AllNodes.remove(AllNodes.begin());
1402 while (!AllNodes.empty())
1403 DeallocateNode(&AllNodes.front());
1405 NextPersistentId = 0;
1411 SDNode *
N = CSEMap.FindNodeOrInsertPos(
ID, InsertPos);
1413 switch (
N->getOpcode()) {
1418 "debug location. Use another overload.");
1425 const SDLoc &
DL,
void *&InsertPos) {
1426 SDNode *
N = CSEMap.FindNodeOrInsertPos(
ID, InsertPos);
1428 switch (
N->getOpcode()) {
1434 if (
N->getDebugLoc() !=
DL.getDebugLoc())
1441 if (
DL.getIROrder() &&
DL.getIROrder() <
N->getIROrder())
1442 N->setDebugLoc(
DL.getDebugLoc());
1451 OperandRecycler.clear(OperandAllocator);
1452 OperandAllocator.Reset();
1455 ExtendedValueTypeNodes.clear();
1456 ExternalSymbols.clear();
1457 TargetExternalSymbols.clear();
1463 EntryNode.UseList =
nullptr;
1464 InsertNode(&EntryNode);
1470 return VT.
bitsGT(
Op.getValueType())
1476std::pair<SDValue, SDValue>
1480 "Strict no-op FP extend/round not allowed.");
1487 return std::pair<SDValue, SDValue>(Res,
SDValue(Res.
getNode(), 1));
1491 return VT.
bitsGT(
Op.getValueType()) ?
1497 return VT.
bitsGT(
Op.getValueType()) ?
1503 return VT.
bitsGT(
Op.getValueType()) ?
1511 auto Type =
Op.getValueType();
1515 auto Size =
Op.getValueSizeInBits();
1526 auto Type =
Op.getValueType();
1530 auto Size =
Op.getValueSizeInBits();
1541 auto Type =
Op.getValueType();
1545 auto Size =
Op.getValueSizeInBits();
1559 return getNode(TLI->getExtendForContent(BType), SL, VT,
Op);
1563 EVT OpVT =
Op.getValueType();
1565 "Cannot getZeroExtendInReg FP types");
1567 "getZeroExtendInReg type should be vector iff the operand "
1571 "Vector element counts must match in getZeroExtendInReg");
1583 EVT OpVT =
Op.getValueType();
1585 "Cannot getVPZeroExtendInReg FP types");
1587 "getVPZeroExtendInReg type and operand type should be vector!");
1589 "Vector element counts must match in getZeroExtendInReg");
1628 return getNode(ISD::VP_XOR,
DL, VT, Val, TrueValue, Mask, EVL);
1639 return getNode(ISD::VP_ZERO_EXTEND,
DL, VT,
Op, Mask, EVL);
1641 return getNode(ISD::VP_TRUNCATE,
DL, VT,
Op, Mask, EVL);
1650 switch (TLI->getBooleanContents(OpVT)) {
1661 bool isT,
bool isO) {
1667 bool isT,
bool isO) {
1668 return getConstant(*ConstantInt::get(*Context, Val),
DL, VT, isT, isO);
1672 EVT VT,
bool isT,
bool isO) {
1689 EltVT = TLI->getTypeToTransformTo(*
getContext(), EltVT);
1695 Elt = ConstantInt::get(*
getContext(), NewVal);
1707 EVT ViaEltVT = TLI->getTypeToTransformTo(*
getContext(), EltVT);
1714 "Can only handle an even split!");
1718 for (
unsigned i = 0; i != Parts; ++i)
1720 NewVal.
extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits),
DL,
1721 ViaEltVT, isT, isO));
1726 unsigned ViaVecNumElts = VT.
getSizeInBits() / ViaEltSizeInBits;
1737 NewVal.
extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits),
DL,
1738 ViaEltVT, isT, isO));
1743 std::reverse(EltParts.
begin(), EltParts.
end());
1762 "APInt size does not match type size!");
1771 if ((
N = FindNodeOrInsertPos(
ID,
DL, IP)))
1776 N = newSDNode<ConstantSDNode>(isT, isO, Elt, VTs);
1777 CSEMap.InsertNode(
N, IP);
1789 bool isT,
bool isO) {
1797 IsTarget, IsOpaque);
1829 EVT VT,
bool isTarget) {
1850 if ((
N = FindNodeOrInsertPos(
ID,
DL, IP)))
1855 N = newSDNode<ConstantFPSDNode>(isTarget, Elt, VTs);
1856 CSEMap.InsertNode(
N, IP);
1870 if (EltVT == MVT::f32)
1872 if (EltVT == MVT::f64)
1874 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1875 EltVT == MVT::f16 || EltVT == MVT::bf16) {
1886 EVT VT, int64_t
Offset,
bool isTargetGA,
1887 unsigned TargetFlags) {
1888 assert((TargetFlags == 0 || isTargetGA) &&
1889 "Cannot set target flags on target-independent globals");
1907 ID.AddInteger(TargetFlags);
1909 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
1912 auto *
N = newSDNode<GlobalAddressSDNode>(
1913 Opc,
DL.getIROrder(),
DL.getDebugLoc(), GV, VTs,
Offset, TargetFlags);
1914 CSEMap.InsertNode(
N, IP);
1928 auto *
N = newSDNode<DeactivationSymbolSDNode>(GV, VTs);
1929 CSEMap.InsertNode(
N, IP);
1941 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1944 auto *
N = newSDNode<FrameIndexSDNode>(FI, VTs, isTarget);
1945 CSEMap.InsertNode(
N, IP);
1951 unsigned TargetFlags) {
1952 assert((TargetFlags == 0 || isTarget) &&
1953 "Cannot set target flags on target-independent jump tables");
1959 ID.AddInteger(TargetFlags);
1961 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1964 auto *
N = newSDNode<JumpTableSDNode>(JTI, VTs, isTarget, TargetFlags);
1965 CSEMap.InsertNode(
N, IP);
1973 return getNode(ISD::JUMP_TABLE_DEBUG_INFO,
DL, MVT::Glue, Chain,
1979 bool isTarget,
unsigned TargetFlags) {
1980 assert((TargetFlags == 0 || isTarget) &&
1981 "Cannot set target flags on target-independent globals");
1990 ID.AddInteger(Alignment->value());
1993 ID.AddInteger(TargetFlags);
1995 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1998 auto *
N = newSDNode<ConstantPoolSDNode>(isTarget,
C, VTs,
Offset, *Alignment,
2000 CSEMap.InsertNode(
N, IP);
2009 bool isTarget,
unsigned TargetFlags) {
2010 assert((TargetFlags == 0 || isTarget) &&
2011 "Cannot set target flags on target-independent globals");
2018 ID.AddInteger(Alignment->value());
2020 C->addSelectionDAGCSEId(
ID);
2021 ID.AddInteger(TargetFlags);
2023 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2026 auto *
N = newSDNode<ConstantPoolSDNode>(isTarget,
C, VTs,
Offset, *Alignment,
2028 CSEMap.InsertNode(
N, IP);
2038 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2041 auto *
N = newSDNode<BasicBlockSDNode>(
MBB);
2042 CSEMap.InsertNode(
N, IP);
2049 ValueTypeNodes.size())
2056 N = newSDNode<VTSDNode>(VT);
2062 SDNode *&
N = ExternalSymbols[Sym];
2064 N = newSDNode<ExternalSymbolSDNode>(
false, Sym, 0,
getVTList(VT));
2070 StringRef SymName = TLI->getLibcallImplName(Libcall);
2078 N = newSDNode<MCSymbolSDNode>(Sym,
getVTList(VT));
2084 unsigned TargetFlags) {
2086 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
2088 N = newSDNode<ExternalSymbolSDNode>(
true, Sym, TargetFlags,
getVTList(VT));
2094 if ((
unsigned)
Cond >= CondCodeNodes.size())
2095 CondCodeNodes.resize(
Cond+1);
2097 if (!CondCodeNodes[
Cond]) {
2098 auto *
N = newSDNode<CondCodeSDNode>(
Cond);
2099 CondCodeNodes[
Cond] =
N;
2108 "APInt size does not match type size!");
2126template <
typename Ty>
2128 EVT VT, Ty Quantity) {
2129 if (Quantity.isScalable())
2133 return DAG.
getConstant(Quantity.getKnownMinValue(),
DL, VT);
2149 return getNode(ISD::GET_ACTIVE_LANE_MASK,
DL, MaskVT,
2159 const APInt &StepVal) {
2183 "Must have the same number of vector elements as mask elements!");
2185 "Invalid VECTOR_SHUFFLE");
2193 int NElts = Mask.size();
2195 [&](
int M) {
return M < (NElts * 2) && M >= -1; }) &&
2196 "Index out of range");
2204 for (
int i = 0; i != NElts; ++i)
2205 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
2212 if (TLI->hasVectorBlend()) {
2221 for (
int i = 0; i < NElts; ++i) {
2222 if (MaskVec[i] <
Offset || MaskVec[i] >= (
Offset + NElts))
2226 if (UndefElements[MaskVec[i] -
Offset]) {
2232 if (!UndefElements[i])
2237 BlendSplat(N1BV, 0);
2239 BlendSplat(N2BV, NElts);
2244 bool AllLHS =
true, AllRHS =
true;
2246 for (
int i = 0; i != NElts; ++i) {
2247 if (MaskVec[i] >= NElts) {
2252 }
else if (MaskVec[i] >= 0) {
2256 if (AllLHS && AllRHS)
2258 if (AllLHS && !N2Undef)
2271 bool Identity =
true, AllSame =
true;
2272 for (
int i = 0; i != NElts; ++i) {
2273 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity =
false;
2274 if (MaskVec[i] != MaskVec[0]) AllSame =
false;
2276 if (Identity && NElts)
2285 while (V.getOpcode() == ISD::BITCAST)
2309 if (AllSame && SameNumElts) {
2310 EVT BuildVT = BV->getValueType(0);
2317 NewBV =
getNode(ISD::BITCAST, dl, VT, NewBV);
2327 for (
int i = 0; i != NElts; ++i)
2328 ID.AddInteger(MaskVec[i]);
2331 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
2337 int *MaskAlloc = OperandAllocator.Allocate<
int>(NElts);
2340 auto *
N = newSDNode<ShuffleVectorSDNode>(VTs, dl.
getIROrder(),
2342 createOperands(
N,
Ops);
2344 CSEMap.InsertNode(
N, IP);
2365 ID.AddInteger(Reg.id());
2367 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2370 auto *
N = newSDNode<RegisterSDNode>(Reg, VTs);
2371 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(
N, FLI, UA);
2372 CSEMap.InsertNode(
N, IP);
2380 ID.AddPointer(RegMask);
2382 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2385 auto *
N = newSDNode<RegisterMaskSDNode>(RegMask);
2386 CSEMap.InsertNode(
N, IP);
2401 ID.AddPointer(Label);
2403 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2408 createOperands(
N,
Ops);
2410 CSEMap.InsertNode(
N, IP);
2416 int64_t
Offset,
bool isTarget,
2417 unsigned TargetFlags) {
2425 ID.AddInteger(TargetFlags);
2427 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2430 auto *
N = newSDNode<BlockAddressSDNode>(
Opc, VTs, BA,
Offset, TargetFlags);
2431 CSEMap.InsertNode(
N, IP);
2442 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2445 auto *
N = newSDNode<SrcValueSDNode>(V);
2446 CSEMap.InsertNode(
N, IP);
2457 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2460 auto *
N = newSDNode<MDNodeSDNode>(MD);
2461 CSEMap.InsertNode(
N, IP);
2467 if (VT == V.getValueType())
2474 unsigned SrcAS,
unsigned DestAS) {
2479 ID.AddInteger(SrcAS);
2480 ID.AddInteger(DestAS);
2483 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
2487 VTs, SrcAS, DestAS);
2488 createOperands(
N,
Ops);
2490 CSEMap.InsertNode(
N, IP);
2502 EVT OpTy =
Op.getValueType();
2504 if (OpTy == ShTy || OpTy.
isVector())
return Op;
2513 EVT VT =
Node->getValueType(0);
2522 if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2560 Align RedAlign = UseABI ?
DL.getABITypeAlign(Ty) :
DL.getPrefTypeAlign(Ty);
2562 if (TLI->isTypeLegal(VT) || !VT.
isVector())
2570 if (RedAlign > StackAlign) {
2573 unsigned NumIntermediates;
2574 TLI->getVectorTypeBreakdown(*
getContext(), VT, IntermediateVT,
2575 NumIntermediates, RegisterVT);
2577 Align RedAlign2 = UseABI ?
DL.getABITypeAlign(Ty) :
DL.getPrefTypeAlign(Ty);
2578 if (RedAlign2 < RedAlign)
2579 RedAlign = RedAlign2;
2584 RedAlign = std::min(RedAlign, StackAlign);
2599 false,
nullptr, StackID);
2614 "Don't know how to choose the maximum size when creating a stack "
2623 Align Align = std::max(
DL.getPrefTypeAlign(Ty1),
DL.getPrefTypeAlign(Ty2));
2631 auto GetUndefBooleanConstant = [&]() {
2633 TLI->getBooleanContents(OpVT) ==
2670 return GetUndefBooleanConstant();
2675 return GetUndefBooleanConstant();
2684 const APInt &C2 = N2C->getAPIntValue();
2686 const APInt &C1 = N1C->getAPIntValue();
2696 if (N1CFP && N2CFP) {
2701 return GetUndefBooleanConstant();
2706 return GetUndefBooleanConstant();
2712 return GetUndefBooleanConstant();
2717 return GetUndefBooleanConstant();
2722 return GetUndefBooleanConstant();
2728 return GetUndefBooleanConstant();
2755 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.
getSimpleVT()))
2757 return getSetCC(dl, VT, N2, N1, SwappedCond);
2758 }
else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2773 return GetUndefBooleanConstant();
2784 unsigned BitWidth =
Op.getScalarValueSizeInBits();
2792 unsigned Opc =
Op.getOpcode();
2801 return (NoFPClass & TestMask) == TestMask;
2803 case ISD::ARITH_FENCE:
2808 return Op->getFlags().hasNoNaNs();
2820 unsigned Depth)
const {
2828 const APInt &DemandedElts,
2829 unsigned Depth)
const {
2836 unsigned Depth )
const {
2842 unsigned Depth)
const {
2847 const APInt &DemandedElts,
2848 unsigned Depth)
const {
2849 EVT VT =
Op.getValueType();
2856 for (
unsigned EltIdx = 0; EltIdx != NumElts; ++EltIdx) {
2857 if (!DemandedElts[EltIdx])
2861 KnownZeroElements.
setBit(EltIdx);
2863 return KnownZeroElements;
2873 unsigned Opcode = V.getOpcode();
2874 EVT VT = V.getValueType();
2877 "scalable demanded bits are ignored");
2889 UndefElts = V.getOperand(0).isUndef()
2898 APInt UndefLHS, UndefRHS;
2907 (DemandedElts & UndefLHS) == (DemandedElts & UndefRHS)) {
2908 UndefElts = UndefLHS | UndefRHS;
2921 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, *
this,
2938 for (
unsigned i = 0; i != NumElts; ++i) {
2944 if (!DemandedElts[i])
2946 if (Scl && Scl !=
Op)
2957 for (
int i = 0; i != (int)NumElts; ++i) {
2963 if (!DemandedElts[i])
2965 if (M < (
int)NumElts)
2968 DemandedRHS.
setBit(M - NumElts);
2980 auto CheckSplatSrc = [&](
SDValue Src,
const APInt &SrcElts) {
2982 return (SrcElts.popcount() == 1) ||
2984 (SrcElts & SrcUndefs).
isZero());
2986 if (!DemandedLHS.
isZero())
2987 return CheckSplatSrc(V.getOperand(0), DemandedLHS);
2988 return CheckSplatSrc(V.getOperand(1), DemandedRHS);
2994 if (Src.getValueType().isScalableVector())
2996 uint64_t Idx = V.getConstantOperandVal(1);
2997 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2999 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
3001 UndefElts = UndefSrcElts.
extractBits(NumElts, Idx);
3012 if (Src.getValueType().isScalableVector())
3016 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts);
3018 UndefElts = UndefSrcElts.
trunc(NumElts);
3023 case ISD::BITCAST: {
3025 EVT SrcVT = Src.getValueType();
3035 if ((
BitWidth % SrcBitWidth) == 0) {
3037 unsigned Scale =
BitWidth / SrcBitWidth;
3039 APInt ScaledDemandedElts =
3041 for (
unsigned I = 0;
I != Scale; ++
I) {
3045 SubDemandedElts &= ScaledDemandedElts;
3049 if (!SubUndefElts.
isZero())
3063 EVT VT = V.getValueType();
3073 (AllowUndefs || !UndefElts);
3079 EVT VT = V.getValueType();
3080 unsigned Opcode = V.getOpcode();
3101 SplatIdx = (UndefElts & DemandedElts).
countr_one();
3116 if (!SVN->isSplat())
3118 int Idx = SVN->getSplatIndex();
3119 int NumElts = V.getValueType().getVectorNumElements();
3120 SplatIdx = Idx % NumElts;
3121 return V.getOperand(Idx / NumElts);
3133 if (LegalTypes && !TLI->isTypeLegal(SVT)) {
3136 LegalSVT = TLI->getTypeToTransformTo(*
getContext(), LegalSVT);
3137 if (LegalSVT.
bitsLT(SVT))
3145std::optional<ConstantRange>
3147 unsigned Depth)
const {
3150 "Unknown shift node");
3152 unsigned BitWidth = V.getScalarValueSizeInBits();
3155 const APInt &ShAmt = Cst->getAPIntValue();
3157 return std::nullopt;
3162 const APInt *MinAmt =
nullptr, *MaxAmt =
nullptr;
3163 for (
unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3164 if (!DemandedElts[i])
3168 MinAmt = MaxAmt =
nullptr;
3171 const APInt &ShAmt = SA->getAPIntValue();
3173 return std::nullopt;
3174 if (!MinAmt || MinAmt->
ugt(ShAmt))
3176 if (!MaxAmt || MaxAmt->ult(ShAmt))
3179 assert(((!MinAmt && !MaxAmt) || (MinAmt && MaxAmt)) &&
3180 "Failed to find matching min/max shift amounts");
3181 if (MinAmt && MaxAmt)
3191 return std::nullopt;
3194std::optional<unsigned>
3196 unsigned Depth)
const {
3199 "Unknown shift node");
3200 if (std::optional<ConstantRange> AmtRange =
3202 if (
const APInt *ShAmt = AmtRange->getSingleElement())
3203 return ShAmt->getZExtValue();
3204 return std::nullopt;
3207std::optional<unsigned>
3209 EVT VT = V.getValueType();
3216std::optional<unsigned>
3218 unsigned Depth)
const {
3221 "Unknown shift node");
3222 if (std::optional<ConstantRange> AmtRange =
3224 return AmtRange->getUnsignedMin().getZExtValue();
3225 return std::nullopt;
3228std::optional<unsigned>
3230 EVT VT = V.getValueType();
3237std::optional<unsigned>
3239 unsigned Depth)
const {
3242 "Unknown shift node");
3243 if (std::optional<ConstantRange> AmtRange =
3245 return AmtRange->getUnsignedMax().getZExtValue();
3246 return std::nullopt;
3249std::optional<unsigned>
3251 EVT VT = V.getValueType();
3262 EVT VT =
Op.getValueType();
3277 unsigned Depth)
const {
3278 unsigned BitWidth =
Op.getScalarValueSizeInBits();
3282 if (
auto OptAPInt =
Op->bitcastToAPInt()) {
3292 assert((!
Op.getValueType().isFixedLengthVector() ||
3293 NumElts ==
Op.getValueType().getVectorNumElements()) &&
3294 "Unexpected vector size");
3299 unsigned Opcode =
Op.getOpcode();
3307 "Expected SPLAT_VECTOR implicit truncation");
3314 unsigned ScalarSize =
Op.getOperand(0).getScalarValueSizeInBits();
3316 "Expected SPLAT_VECTOR_PARTS scalars to cover element width");
3323 const APInt &Step =
Op.getConstantOperandAPInt(0);
3332 const APInt MinNumElts =
3338 .
umul_ov(MinNumElts, Overflow);
3342 const APInt MaxValue = (MaxNumElts - 1).
umul_ov(Step, Overflow);
3350 assert(!
Op.getValueType().isScalableVector());
3353 for (
unsigned i = 0, e =
Op.getNumOperands(); i != e; ++i) {
3354 if (!DemandedElts[i])
3363 "Expected BUILD_VECTOR implicit truncation");
3387 assert(!
Op.getValueType().isScalableVector());
3390 APInt DemandedLHS, DemandedRHS;
3394 DemandedLHS, DemandedRHS))
3399 if (!!DemandedLHS) {
3407 if (!!DemandedRHS) {
3416 const APInt &Multiplier =
Op.getConstantOperandAPInt(0);
3421 if (
Op.getValueType().isScalableVector())
3425 EVT SubVectorVT =
Op.getOperand(0).getValueType();
3427 unsigned NumSubVectors =
Op.getNumOperands();
3428 for (
unsigned i = 0; i != NumSubVectors; ++i) {
3430 DemandedElts.
extractBits(NumSubVectorElts, i * NumSubVectorElts);
3431 if (!!DemandedSub) {
3443 if (
Op.getValueType().isScalableVector())
3450 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
3452 APInt DemandedSrcElts = DemandedElts;
3453 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
3456 if (!!DemandedSubElts) {
3461 if (!!DemandedSrcElts) {
3471 if (
Op.getValueType().isScalableVector() || Src.getValueType().isScalableVector())
3474 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3475 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
3480 if (
Op.getValueType().isScalableVector())
3484 if (DemandedElts != 1)
3494 case ISD::BITCAST: {
3495 if (
Op.getValueType().isScalableVector())
3515 if ((
BitWidth % SubBitWidth) == 0) {
3522 unsigned SubScale =
BitWidth / SubBitWidth;
3523 APInt SubDemandedElts(NumElts * SubScale, 0);
3524 for (
unsigned i = 0; i != NumElts; ++i)
3525 if (DemandedElts[i])
3526 SubDemandedElts.
setBit(i * SubScale);
3528 for (
unsigned i = 0; i != SubScale; ++i) {
3531 unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3532 Known.
insertBits(Known2, SubBitWidth * Shifts);
3537 if ((SubBitWidth %
BitWidth) == 0) {
3538 assert(
Op.getValueType().isVector() &&
"Expected bitcast to vector");
3543 unsigned SubScale = SubBitWidth /
BitWidth;
3544 APInt SubDemandedElts =
3549 for (
unsigned i = 0; i != NumElts; ++i)
3550 if (DemandedElts[i]) {
3551 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3582 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3586 Op.getOperand(0), DemandedElts,
false,
Depth + 1);
3592 if (
Op->getFlags().hasNoSignedWrap() &&
3593 Op.getOperand(0) ==
Op.getOperand(1) &&
3620 unsigned SignBits1 =
3624 unsigned SignBits0 =
3630 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3633 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3634 if (
Op.getResNo() == 0)
3641 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3644 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3645 if (
Op.getResNo() == 0)
3698 if (
Op.getResNo() != 1)
3704 if (TLI->getBooleanContents(
Op.getValueType().isVector(),
false) ==
3713 unsigned OpNo =
Op->isStrictFPOpcode() ? 1 : 0;
3715 if (TLI->getBooleanContents(
Op.getOperand(OpNo).getValueType()) ==
3725 bool NUW =
Op->getFlags().hasNoUnsignedWrap();
3726 bool NSW =
Op->getFlags().hasNoSignedWrap();
3733 if (std::optional<unsigned> ShMinAmt =
3742 Op->getFlags().hasExact());
3745 if (std::optional<unsigned> ShMinAmt =
3753 Op->getFlags().hasExact());
3759 unsigned Amt =
C->getAPIntValue().urem(
BitWidth);
3774 unsigned Amt =
C->getAPIntValue().urem(
BitWidth);
3780 DemandedElts,
Depth + 1);
3801 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3804 unsigned LoBits =
Op.getOperand(0).getScalarValueSizeInBits();
3805 unsigned HiBits =
Op.getOperand(1).getScalarValueSizeInBits();
3808 Known = Known2.
concat(Known);
3822 if (
Op.getResNo() == 0)
3867 (Opcode == ISD::MGATHER)
3879 const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3884 !
Op.getValueType().isScalableVector()) {
3897 for (
unsigned i = 0; i != NumElts; ++i) {
3898 if (!DemandedElts[i])
3908 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3927 }
else if (
Op.getResNo() == 0) {
3928 unsigned ScalarMemorySize = LD->getMemoryVT().getScalarSizeInBits();
3929 KnownBits KnownScalarMemory(ScalarMemorySize);
3930 if (
const MDNode *MD = LD->getRanges())
3941 Known = KnownScalarMemory;
3948 if (
Op.getValueType().isScalableVector())
3950 EVT InVT =
Op.getOperand(0).getValueType();
3962 if (
Op.getValueType().isScalableVector())
3964 EVT InVT =
Op.getOperand(0).getValueType();
3980 if (
Op.getValueType().isScalableVector())
3982 EVT InVT =
Op.getOperand(0).getValueType();
4002 Known.
Zero |= (~InMask);
4003 Known.
One &= (~Known.Zero);
4023 if ((NoFPClass & NegativeTestMask) == NegativeTestMask) {
4029 if ((NoFPClass & PositiveTestMask) == PositiveTestMask) {
4046 Op.getOpcode() ==
ISD::ADD, Flags.hasNoSignedWrap(),
4047 Flags.hasNoUnsignedWrap(), Known, Known2);
4054 if (
Op.getResNo() == 1) {
4056 if (TLI->getBooleanContents(
Op.getOperand(0).getValueType()) ==
4065 "We only compute knownbits for the difference here.");
4072 Borrow = Borrow.
trunc(1);
4086 if (
Op.getResNo() == 1) {
4088 if (TLI->getBooleanContents(
Op.getOperand(0).getValueType()) ==
4097 assert(
Op.getResNo() == 0 &&
"We only compute knownbits for the sum here.");
4107 Carry = Carry.
trunc(1);
4143 const unsigned Index =
Op.getConstantOperandVal(1);
4144 const unsigned EltBitWidth =
Op.getValueSizeInBits();
4151 Known = Known.
trunc(EltBitWidth);
4167 Known = Known.
trunc(EltBitWidth);
4173 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4183 if (
Op.getValueType().isScalableVector())
4192 bool DemandedVal =
true;
4193 APInt DemandedVecElts = DemandedElts;
4195 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4196 unsigned EltIdx = CEltNo->getZExtValue();
4197 DemandedVal = !!DemandedElts[EltIdx];
4205 if (!!DemandedVecElts) {
4223 Known = Known2.
abs();
4256 if (CstLow && CstHigh) {
4261 const APInt &ValueHigh = CstHigh->getAPIntValue();
4262 if (ValueLow.
sle(ValueHigh)) {
4265 unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
4288 if (IsMax && CstLow) {
4316 case ISD::ATOMIC_LOAD: {
4318 if (
Op.getResNo() == 0) {
4320 unsigned ScalarMemorySize = AT->getMemoryVT().getScalarSizeInBits();
4321 KnownBits KnownScalarMemory(ScalarMemorySize);
4322 if (
const MDNode *MD = AT->getRanges())
4325 switch (AT->getExtensionType()) {
4333 switch (TLI->getExtendForAtomicOps()) {
4346 Known = KnownScalarMemory;
4353 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4354 if (
Op.getResNo() == 1) {
4359 if (TLI->getBooleanContents(
Op.getValueType().isVector(),
false) ==
4366 case ISD::ATOMIC_CMP_SWAP:
4367 case ISD::ATOMIC_SWAP:
4368 case ISD::ATOMIC_LOAD_ADD:
4369 case ISD::ATOMIC_LOAD_SUB:
4370 case ISD::ATOMIC_LOAD_AND:
4371 case ISD::ATOMIC_LOAD_CLR:
4372 case ISD::ATOMIC_LOAD_OR:
4373 case ISD::ATOMIC_LOAD_XOR:
4374 case ISD::ATOMIC_LOAD_NAND:
4375 case ISD::ATOMIC_LOAD_MIN:
4376 case ISD::ATOMIC_LOAD_MAX:
4377 case ISD::ATOMIC_LOAD_UMIN:
4378 case ISD::ATOMIC_LOAD_UMAX: {
4380 if (
Op.getResNo() == 0) {
4382 unsigned MemBits = AT->getMemoryVT().getScalarSizeInBits();
4404 if (
Op.getValueType().isScalableVector())
4408 TLI->computeKnownBitsForTargetNode(
Op, Known, DemandedElts, *
this,
Depth);
4550 return C->getAPIntValue().zextOrTrunc(
BitWidth).isPowerOf2();
4558 if (
C &&
C->getAPIntValue() == 1)
4568 if (
C &&
C->getAPIntValue().isSignMask())
4580 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
4581 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4589 if (
C->getAPIntValue().zextOrTrunc(
BitWidth).isPowerOf2())
4627 return C1->getValueAPF().getExactLog2Abs() >= 0;
4636 EVT VT =
Op.getValueType();
4648 unsigned Depth)
const {
4649 EVT VT =
Op.getValueType();
4654 unsigned FirstAnswer = 1;
4657 const APInt &Val =
C->getAPIntValue();
4667 unsigned Opcode =
Op.getOpcode();
4672 return VTBits-Tmp+1;
4686 unsigned NumSrcBits =
Op.getOperand(0).getValueSizeInBits();
4688 if (NumSrcSignBits > (NumSrcBits - VTBits))
4689 return NumSrcSignBits - (NumSrcBits - VTBits);
4695 for (
unsigned i = 0, e =
Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
4696 if (!DemandedElts[i])
4703 APInt T =
C->getAPIntValue().trunc(VTBits);
4704 Tmp2 =
T.getNumSignBits();
4708 if (
SrcOp.getValueSizeInBits() != VTBits) {
4710 "Expected BUILD_VECTOR implicit truncation");
4711 unsigned ExtraBits =
SrcOp.getValueSizeInBits() - VTBits;
4712 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
4715 Tmp = std::min(Tmp, Tmp2);
4726 Tmp = std::min(Tmp, Tmp2);
4733 APInt DemandedLHS, DemandedRHS;
4737 DemandedLHS, DemandedRHS))
4740 Tmp = std::numeric_limits<unsigned>::max();
4743 if (!!DemandedRHS) {
4745 Tmp = std::min(Tmp, Tmp2);
4750 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
4754 case ISD::BITCAST: {
4766 if (VTBits == SrcBits)
4772 if ((SrcBits % VTBits) == 0) {
4775 unsigned Scale = SrcBits / VTBits;
4776 APInt SrcDemandedElts =
4786 for (
unsigned i = 0; i != NumElts; ++i)
4787 if (DemandedElts[i]) {
4788 unsigned SubOffset = i % Scale;
4789 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
4790 SubOffset = SubOffset * VTBits;
4791 if (Tmp <= SubOffset)
4793 Tmp2 = std::min(Tmp2, Tmp - SubOffset);
4803 return VTBits - Tmp + 1;
4805 Tmp = VTBits -
Op.getOperand(0).getScalarValueSizeInBits();
4812 return std::max(Tmp, Tmp2);
4817 EVT SrcVT = Src.getValueType();
4825 if (std::optional<unsigned> ShAmt =
4827 Tmp = std::min(Tmp + *ShAmt, VTBits);
4830 if (std::optional<ConstantRange> ShAmtRange =
4832 unsigned MaxShAmt = ShAmtRange->getUnsignedMax().getZExtValue();
4833 unsigned MinShAmt = ShAmtRange->getUnsignedMin().getZExtValue();
4844 unsigned SizeDifference =
4846 if (SizeDifference <= MinShAmt) {
4847 Tmp = SizeDifference +
4850 return Tmp - MaxShAmt;
4856 return Tmp - MaxShAmt;
4866 FirstAnswer = std::min(Tmp, Tmp2);
4876 if (Tmp == 1)
return 1;
4878 return std::min(Tmp, Tmp2);
4881 if (Tmp == 1)
return 1;
4883 return std::min(Tmp, Tmp2);
4895 if (CstLow && CstHigh) {
4900 Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4901 return std::min(Tmp, Tmp2);
4910 return std::min(Tmp, Tmp2);
4918 return std::min(Tmp, Tmp2);
4922 if (
Op.getResNo() == 0 &&
Op.getOperand(0) ==
Op.getOperand(1))
4933 if (
Op.getResNo() != 1)
4939 if (TLI->getBooleanContents(VT.
isVector(),
false) ==
4947 unsigned OpNo =
Op->isStrictFPOpcode() ? 1 : 0;
4949 if (TLI->getBooleanContents(
Op.getOperand(OpNo).getValueType()) ==
4964 unsigned RotAmt =
C->getAPIntValue().urem(VTBits);
4968 RotAmt = (VTBits - RotAmt) % VTBits;
4972 if (Tmp > (RotAmt + 1))
return (Tmp - RotAmt);
4979 if (Tmp == 1)
return 1;
4984 if (CRHS->isAllOnes()) {
4990 if ((Known.
Zero | 1).isAllOnes())
5000 if (Tmp2 == 1)
return 1;
5004 return std::min(Tmp, Tmp2) - 1;
5007 if (Tmp2 == 1)
return 1;
5012 if (CLHS->isZero()) {
5017 if ((Known.
Zero | 1).isAllOnes())
5031 if (Tmp == 1)
return 1;
5032 return std::min(Tmp, Tmp2) - 1;
5036 if (SignBitsOp0 == 1)
5039 if (SignBitsOp1 == 1)
5041 unsigned OutValidBits =
5042 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
5043 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
5051 return std::min(Tmp, Tmp2);
5060 unsigned NumSrcBits =
Op.getOperand(0).getScalarValueSizeInBits();
5062 if (NumSrcSignBits > (NumSrcBits - VTBits))
5063 return NumSrcSignBits - (NumSrcBits - VTBits);
5070 const int BitWidth =
Op.getValueSizeInBits();
5071 const int Items =
Op.getOperand(0).getValueSizeInBits() /
BitWidth;
5075 const int rIndex = Items - 1 -
Op.getConstantOperandVal(1);
5090 bool DemandedVal =
true;
5091 APInt DemandedVecElts = DemandedElts;
5093 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
5094 unsigned EltIdx = CEltNo->getZExtValue();
5095 DemandedVal = !!DemandedElts[EltIdx];
5098 Tmp = std::numeric_limits<unsigned>::max();
5104 Tmp = std::min(Tmp, Tmp2);
5106 if (!!DemandedVecElts) {
5108 Tmp = std::min(Tmp, Tmp2);
5110 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5121 const unsigned BitWidth =
Op.getValueSizeInBits();
5122 const unsigned EltBitWidth =
Op.getOperand(0).getScalarValueSizeInBits();
5135 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
5145 if (Src.getValueType().isScalableVector())
5148 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5149 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
5157 Tmp = std::numeric_limits<unsigned>::max();
5158 EVT SubVectorVT =
Op.getOperand(0).getValueType();
5160 unsigned NumSubVectors =
Op.getNumOperands();
5161 for (
unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
5163 DemandedElts.
extractBits(NumSubVectorElts, i * NumSubVectorElts);
5167 Tmp = std::min(Tmp, Tmp2);
5169 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5180 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
5182 APInt DemandedSrcElts = DemandedElts;
5183 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
5185 Tmp = std::numeric_limits<unsigned>::max();
5186 if (!!DemandedSubElts) {
5191 if (!!DemandedSrcElts) {
5193 Tmp = std::min(Tmp, Tmp2);
5195 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5200 if (
const MDNode *Ranges = LD->getRanges()) {
5201 if (DemandedElts != 1)
5206 switch (LD->getExtensionType()) {
5226 case ISD::ATOMIC_CMP_SWAP:
5227 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5228 case ISD::ATOMIC_SWAP:
5229 case ISD::ATOMIC_LOAD_ADD:
5230 case ISD::ATOMIC_LOAD_SUB:
5231 case ISD::ATOMIC_LOAD_AND:
5232 case ISD::ATOMIC_LOAD_CLR:
5233 case ISD::ATOMIC_LOAD_OR:
5234 case ISD::ATOMIC_LOAD_XOR:
5235 case ISD::ATOMIC_LOAD_NAND:
5236 case ISD::ATOMIC_LOAD_MIN:
5237 case ISD::ATOMIC_LOAD_MAX:
5238 case ISD::ATOMIC_LOAD_UMIN:
5239 case ISD::ATOMIC_LOAD_UMAX:
5240 case ISD::ATOMIC_LOAD: {
5243 if (
Op.getResNo() == 0) {
5244 Tmp = AT->getMemoryVT().getScalarSizeInBits();
5249 if (
Op->getOpcode() == ISD::ATOMIC_LOAD) {
5250 switch (AT->getExtensionType()) {
5254 return VTBits - Tmp + 1;
5256 return VTBits - Tmp;
5261 return VTBits - Tmp + 1;
5263 return VTBits - Tmp;
5270 if (
Op.getResNo() == 0) {
5273 unsigned ExtType = LD->getExtensionType();
5277 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5278 return VTBits - Tmp + 1;
5280 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5281 return VTBits - Tmp;
5283 if (
const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
5286 Type *CstTy = Cst->getType();
5291 for (
unsigned i = 0; i != NumElts; ++i) {
5292 if (!DemandedElts[i])
5297 Tmp = std::min(Tmp,
Value.getNumSignBits());
5301 APInt Value = CFP->getValueAPF().bitcastToAPInt();
5302 Tmp = std::min(Tmp,
Value.getNumSignBits());
5326 TLI->ComputeNumSignBitsForTargetNode(
Op, DemandedElts, *
this,
Depth);
5328 FirstAnswer = std::max(FirstAnswer, NumBits);
5339 unsigned Depth)
const {
5341 return Op.getScalarValueSizeInBits() - SignBits + 1;
5345 const APInt &DemandedElts,
5346 unsigned Depth)
const {
5348 return Op.getScalarValueSizeInBits() - SignBits + 1;
5352 unsigned Depth)
const {
5357 EVT VT =
Op.getValueType();
5365 const APInt &DemandedElts,
5367 unsigned Depth)
const {
5368 unsigned Opcode =
Op.getOpcode();
5397 for (
unsigned i = 0, e =
Op.getNumOperands(); i < e; ++i) {
5398 if (!DemandedElts[i])
5408 if (Src.getValueType().isScalableVector())
5411 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5412 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
5418 if (
Op.getValueType().isScalableVector())
5423 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
5425 APInt DemandedSrcElts = DemandedElts;
5426 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
5440 EVT SrcVT = Src.getValueType();
5444 IndexC->getZExtValue());
5459 if (DemandedElts[IndexC->getZExtValue()] &&
5462 APInt InVecDemandedElts = DemandedElts;
5463 InVecDemandedElts.
clearBit(IndexC->getZExtValue());
5464 if (!!InVecDemandedElts &&
5489 APInt DemandedLHS, DemandedRHS;
5492 DemandedElts, DemandedLHS, DemandedRHS,
5495 if (!DemandedLHS.
isZero() &&
5499 if (!DemandedRHS.
isZero() &&
5547 return isGuaranteedNotToBeUndefOrPoison(V, DemandedElts,
5548 PoisonOnly, Depth + 1);
5560 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
5573 return isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, Depth + 1);
5579 unsigned Depth)
const {
5580 EVT VT =
Op.getValueType();
5590 unsigned Depth)
const {
5591 if (ConsiderFlags &&
Op->hasPoisonGeneratingFlags())
5594 unsigned Opcode =
Op.getOpcode();
5674 if (
Op.getOperand(0).getValueType().isInteger())
5681 unsigned CCOp = Opcode ==
ISD::SETCC ? 2 : 4;
5683 return (
unsigned)CCCode & 0x10U;
5703 case ISD::FP_EXTEND:
5729 EVT VecVT =
Op.getOperand(0).getValueType();
5738 for (
auto [Idx, Elt] :
enumerate(SVN->getMask()))
5739 if (Elt < 0 && DemandedElts[Idx])
5751 return TLI->canCreateUndefOrPoisonForTargetNode(
5761 unsigned Opcode =
Op.getOpcode();
5763 return Op->getFlags().hasDisjoint() ||
5776 unsigned Depth)
const {
5777 EVT VT =
Op.getValueType();
5790 bool SNaN,
unsigned Depth)
const {
5791 assert(!DemandedElts.
isZero() &&
"No demanded elements");
5802 return !
C->getValueAPF().isNaN() ||
5803 (SNaN && !
C->getValueAPF().isSignaling());
5806 unsigned Opcode =
Op.getOpcode();
5839 case ISD::FROUNDEVEN:
5845 case ISD::FNEARBYINT:
5859 case ISD::FP_EXTEND:
5881 case ISD::FMINIMUMNUM:
5882 case ISD::FMAXIMUMNUM: {
5888 case ISD::FMINNUM_IEEE:
5889 case ISD::FMAXNUM_IEEE: {
5900 case ISD::FMAXIMUM: {
5908 EVT SrcVT = Src.getValueType();
5912 Idx->getZExtValue());
5919 if (Src.getValueType().isFixedLengthVector()) {
5920 unsigned Idx =
Op.getConstantOperandVal(1);
5921 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5922 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
5932 unsigned Idx =
Op.getConstantOperandVal(2);
5938 APInt DemandedMask =
5940 APInt DemandedSrcElts = DemandedElts & ~DemandedMask;
5943 bool NeverNaN =
true;
5944 if (!DemandedSrcElts.
isZero())
5947 if (NeverNaN && !DemandedSubElts.
isZero())
5956 unsigned NumElts =
Op.getNumOperands();
5957 for (
unsigned I = 0;
I != NumElts; ++
I)
5958 if (DemandedElts[
I] &&
5975 return TLI->isKnownNeverNaNForTargetNode(
Op, DemandedElts, *
this, SNaN,
5984 assert(
Op.getValueType().isFloatingPoint() &&
5985 "Floating point type expected");
5996 assert(!
Op.getValueType().isFloatingPoint() &&
5997 "Floating point types unsupported - use isKnownNeverZeroFloat");
6006 switch (
Op.getOpcode()) {
6020 if (
Op->getFlags().hasNoSignedWrap() ||
Op->getFlags().hasNoUnsignedWrap())
6024 if (ValKnown.
One[0])
6084 if (
Op->getFlags().hasExact())
6100 if (
Op->getFlags().hasExact())
6105 if (
Op->getFlags().hasNoUnsignedWrap())
6116 std::optional<bool> ne =
6123 if (
Op->getFlags().hasNoSignedWrap() ||
Op->getFlags().hasNoUnsignedWrap())
6134 const APInt &Multiplier =
Op.getConstantOperandAPInt(0);
6148 return !C1->isNegative();
6150 switch (
Op.getOpcode()) {
6164 assert(
Use.getValueType().isFloatingPoint());
6168 switch (
User->getOpcode()) {
6176 return OperandNo == 0;
6197 if (
Op->use_size() > 2)
6200 [&](
const SDUse &
Use) { return canIgnoreSignBitOfZero(Use); });
6205 if (
A ==
B)
return true;
6210 if (CA->isZero() && CB->isZero())
return true;
6245 NotOperand = NotOperand->getOperand(0);
6247 if (
Other == NotOperand)
6250 return NotOperand ==
Other->getOperand(0) ||
6251 NotOperand ==
Other->getOperand(1);
6257 A =
A->getOperand(0);
6260 B =
B->getOperand(0);
6263 return MatchNoCommonBitsPattern(
A->getOperand(0),
A->getOperand(1),
B) ||
6264 MatchNoCommonBitsPattern(
A->getOperand(1),
A->getOperand(0),
B);
6270 assert(
A.getValueType() ==
B.getValueType() &&
6271 "Values must have the same type");
6293 "BUILD_VECTOR cannot be used with scalable types");
6295 "Incorrect element count in BUILD_VECTOR!");
6303 bool IsIdentity =
true;
6304 for (
int i = 0; i !=
NumOps; ++i) {
6307 (IdentitySrc &&
Ops[i].getOperand(0) != IdentitySrc) ||
6309 Ops[i].getConstantOperandAPInt(1) != i) {
6313 IdentitySrc =
Ops[i].getOperand(0);
6326 assert(!
Ops.empty() &&
"Can't concatenate an empty list of vectors!");
6329 return Ops[0].getValueType() ==
Op.getValueType();
6331 "Concatenation of vectors with inconsistent value types!");
6334 "Incorrect element count in vector concatenation!");
6336 if (
Ops.size() == 1)
6347 bool IsIdentity =
true;
6348 for (
unsigned i = 0, e =
Ops.size(); i != e; ++i) {
6350 unsigned IdentityIndex = i *
Op.getValueType().getVectorMinNumElements();
6352 Op.getOperand(0).getValueType() != VT ||
6353 (IdentitySrc &&
Op.getOperand(0) != IdentitySrc) ||
6354 Op.getConstantOperandVal(1) != IdentityIndex) {
6358 assert((!IdentitySrc || IdentitySrc ==
Op.getOperand(0)) &&
6359 "Unexpected identity source vector for concat of extracts");
6360 IdentitySrc =
Op.getOperand(0);
6363 assert(IdentitySrc &&
"Failed to set source vector of extracts");
6379 EVT OpVT =
Op.getValueType();
6395 SVT = (SVT.
bitsLT(
Op.getValueType()) ?
Op.getValueType() : SVT);
6419 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
6422 auto *
N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6423 CSEMap.InsertNode(
N, IP);
6435 Flags = Inserter->getFlags();
6436 return getNode(Opcode,
DL, VT, N1, Flags);
6454 case ISD::FP_EXTEND:
6457 case ISD::FP_TO_FP16:
6458 case ISD::FP_TO_BF16:
6465 case ISD::FP16_TO_FP:
6466 case ISD::BF16_TO_FP:
6487 "STEP_VECTOR can only be used with scalable types");
6490 "Unexpected step operand");
6509 case ISD::FP_EXTEND:
6511 "Invalid FP cast!");
6515 "Vector element count mismatch!");
6533 "Invalid SIGN_EXTEND!");
6535 "SIGN_EXTEND result type type should be vector iff the operand "
6540 "Vector element count mismatch!");
6563 unsigned NumSignExtBits =
6574 "Invalid ZERO_EXTEND!");
6576 "ZERO_EXTEND result type type should be vector iff the operand "
6581 "Vector element count mismatch!");
6619 "Invalid ANY_EXTEND!");
6621 "ANY_EXTEND result type type should be vector iff the operand "
6626 "Vector element count mismatch!");
6651 "Invalid TRUNCATE!");
6653 "TRUNCATE result type type should be vector iff the operand "
6658 "Vector element count mismatch!");
6685 assert(VT.
isVector() &&
"This DAG node is restricted to vector types.");
6687 "The input must be the same size or smaller than the result.");
6690 "The destination vector type must have fewer lanes than the input.");
6700 "BSWAP types must be a multiple of 16 bits!");
6714 "Cannot BITCAST between types of different sizes!");
6716 if (OpOpcode == ISD::BITCAST)
6727 "Illegal SCALAR_TO_VECTOR node!");
6742 if (OpOpcode == ISD::FNEG)
6746 if (OpOpcode == ISD::FNEG)
6761 case ISD::VECREDUCE_ADD:
6763 return getNode(ISD::VECREDUCE_XOR,
DL, VT, N1);
6765 case ISD::VECREDUCE_SMIN:
6766 case ISD::VECREDUCE_UMAX:
6768 return getNode(ISD::VECREDUCE_OR,
DL, VT, N1);
6770 case ISD::VECREDUCE_SMAX:
6771 case ISD::VECREDUCE_UMIN:
6773 return getNode(ISD::VECREDUCE_AND,
DL, VT, N1);
6784 "Wrong operand type!");
6791 if (VT != MVT::Glue) {
6795 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
6796 E->intersectFlagsWith(Flags);
6800 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6802 createOperands(
N,
Ops);
6803 CSEMap.InsertNode(
N, IP);
6805 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6806 createOperands(
N,
Ops);
6840 if (!C2.getBoolValue())
6844 if (!C2.getBoolValue())
6848 if (!C2.getBoolValue())
6852 if (!C2.getBoolValue())
6872 return std::nullopt;
6877 bool IsUndef1,
const APInt &C2,
6879 if (!(IsUndef1 || IsUndef2))
6887 return std::nullopt;
6895 if (!TLI->isOffsetFoldingLegal(GA))
6900 int64_t
Offset = C2->getSExtValue();
6920 assert(
Ops.size() == 2 &&
"Div/rem should have 2 operands");
6927 [](
SDValue V) { return V.isUndef() ||
6928 isNullConstant(V); });
6966 const APInt &Val =
C->getAPIntValue();
6970 C->isTargetOpcode(),
C->isOpaque());
6977 C->isTargetOpcode(),
C->isOpaque());
6982 C->isTargetOpcode(),
C->isOpaque());
6984 C->isTargetOpcode(),
C->isOpaque());
7012 case ISD::FP16_TO_FP:
7013 case ISD::BF16_TO_FP: {
7030 if (VT == MVT::f16 &&
C->getValueType(0) == MVT::i16)
7032 if (VT == MVT::f32 &&
C->getValueType(0) == MVT::i32)
7034 if (VT == MVT::f64 &&
C->getValueType(0) == MVT::i64)
7036 if (VT == MVT::f128 &&
C->getValueType(0) == MVT::i128)
7070 case ISD::FP_EXTEND: {
7089 case ISD::FP_TO_FP16:
7090 case ISD::FP_TO_BF16: {
7097 return getConstant(V.bitcastToAPInt().getZExtValue(),
DL, VT);
7100 if (VT == MVT::i16 &&
C->getValueType(0) == MVT::f16)
7103 if (VT == MVT::i16 &&
C->getValueType(0) == MVT::bf16)
7106 if (VT == MVT::i32 &&
C->getValueType(0) == MVT::f32)
7109 if (VT == MVT::i64 &&
C->getValueType(0) == MVT::f64)
7110 return getConstant(V.bitcastToAPInt().getZExtValue(),
DL, VT);
7116 if (Opcode == ISD::BITCAST)
7127 if (C1->isOpaque() || C2->isOpaque())
7130 std::optional<APInt> FoldAttempt =
7131 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
7137 "Can't fold vectors ops with scalar operands");
7145 if (TLI->isCommutativeBinOp(Opcode))
7161 const APInt &Val = C1->getAPIntValue();
7162 return SignExtendInReg(Val, VT);
7175 ScalarOps.
push_back(SignExtendInReg(Val, OpVT));
7183 SignExtendInReg(
Ops[0].getConstantOperandAPInt(0),
7194 if (C1 && C2 && C3) {
7195 if (C1->isOpaque() || C2->isOpaque() || C3->isOpaque())
7197 const APInt &V1 = C1->getAPIntValue(), &V2 = C2->getAPIntValue(),
7198 &V3 = C3->getAPIntValue();
7214 if (C1 && C2 && C3) {
7235 Ops[0].getValueType() == VT &&
Ops[1].getValueType() == VT &&
7236 (
Ops[0].getOpcode() == ISD::BITCAST ||
7237 Ops[1].getOpcode() == ISD::BITCAST)) {
7248 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
7249 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2)) {
7253 Opcode, RawBits1[
I], UndefElts1[
I], RawBits2[
I], UndefElts2[
I]);
7264 BVEltVT = BV1->getOperand(0).getValueType();
7267 BVEltVT = BV2->getOperand(0).getValueType();
7273 DstBits, RawBits, DstUndefs,
7276 for (
unsigned I = 0, E = DstBits.
size();
I != E; ++
I) {
7294 ?
Ops[0].getConstantOperandAPInt(0) * RHSVal
7295 :
Ops[0].getConstantOperandAPInt(0) << RHSVal;
7300 auto IsScalarOrSameVectorSize = [NumElts](
const SDValue &
Op) {
7301 return !
Op.getValueType().isVector() ||
7302 Op.getValueType().getVectorElementCount() == NumElts;
7305 auto IsBuildVectorSplatVectorOrUndef = [](
const SDValue &
Op) {
7331 LegalSVT = TLI->getTypeToTransformTo(*
getContext(), LegalSVT);
7343 for (
unsigned I = 0;
I != NumVectorElts;
I++) {
7346 EVT InSVT =
Op.getValueType().getScalarType();
7389 if (LegalSVT != SVT)
7390 ScalarResult =
getNode(ExtendCode,
DL, LegalSVT, ScalarResult);
7404 if (
Ops.size() != 2)
7415 if (N1CFP && N2CFP) {
7449 case ISD::FMINIMUMNUM:
7451 case ISD::FMAXIMUMNUM:
7470 if (N1C && N1C->getValueAPF().isNegZero() && N2.
isUndef())
7493 if (SrcEltVT == DstEltVT)
7501 if (SrcBitSize == DstBitSize) {
7506 if (
Op.getValueType() != SrcEltVT)
7549 for (
unsigned I = 0, E = RawBits.
size();
I != E; ++
I) {
7550 if (UndefElements[
I])
7571 ID.AddInteger(
A.value());
7574 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
7578 newSDNode<AssertAlignSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs,
A);
7579 createOperands(
N, {Val});
7581 CSEMap.InsertNode(
N, IP);
7593 Flags = Inserter->getFlags();
7594 return getNode(Opcode,
DL, VT, N1, N2, Flags);
7599 if (!TLI->isCommutativeBinOp(Opcode))
7608 if ((N1C && !N2C) || (N1CFP && !N2CFP))
7622 "Operand is DELETED_NODE!");
7638 N2.
getValueType() == MVT::Other &&
"Invalid token factor!");
7642 if (N1 == N2)
return N1;
7658 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7660 N1.
getValueType() == VT &&
"Binary operator types must match!");
7663 if (N2CV && N2CV->
isZero())
7673 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7675 N1.
getValueType() == VT &&
"Binary operator types must match!");
7685 if (N2CV && N2CV->
isZero())
7699 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7701 N1.
getValueType() == VT &&
"Binary operator types must match!");
7704 if (N2CV && N2CV->
isZero())
7706 if (N2C && (N1.
getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7708 const APInt &N2CImm = N2C->getAPIntValue();
7722 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7724 N1.
getValueType() == VT &&
"Binary operator types must match!");
7737 "Types of operands of UCMP/SCMP must match");
7739 "Operands and return type of must both be scalars or vectors");
7743 "Result and operands must have the same number of elements");
7749 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7751 N1.
getValueType() == VT &&
"Binary operator types must match!");
7755 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7757 N1.
getValueType() == VT &&
"Binary operator types must match!");
7763 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7765 N1.
getValueType() == VT &&
"Binary operator types must match!");
7771 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7773 N1.
getValueType() == VT &&
"Binary operator types must match!");
7784 N1.
getValueType() == VT &&
"Binary operator types must match!");
7792 "Invalid FCOPYSIGN!");
7795 if (N2C && (N1.
getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7797 const APInt &ShiftImm = N2C->getAPIntValue();
7809 "Shift operators return type must be the same as their first arg");
7811 "Shifts only work on integers");
7813 "Vector shift amounts must be in the same as their first arg");
7820 "Invalid use of small shift amount with oversized value!");
7827 if (N2CV && N2CV->
isZero())
7833 (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
7839 "AssertNoFPClass is used for a non-floating type");
7844 "FPClassTest value too large");
7853 "Cannot *_EXTEND_INREG FP types");
7855 "AssertSExt/AssertZExt type should be the vector element type "
7856 "rather than the vector type!");
7865 "Cannot *_EXTEND_INREG FP types");
7867 "SIGN_EXTEND_INREG type should be vector iff the operand "
7871 "Vector element counts must match in SIGN_EXTEND_INREG");
7873 if (
EVT == VT)
return N1;
7881 "FP_TO_*INT_SAT type should be vector iff the operand type is "
7885 "Vector element counts must match in FP_TO_*INT_SAT");
7887 "Type to saturate to must be a scalar.");
7894 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
7895 element type of the vector.");
7917 N2C->getZExtValue() % Factor);
7926 "BUILD_VECTOR used for scalable vectors");
7949 if (N1Op2C && N2C) {
7979 assert(N2C && (
unsigned)N2C->getZExtValue() < 2 &&
"Bad EXTRACT_ELEMENT!");
7983 "Wrong types for EXTRACT_ELEMENT!");
7994 unsigned Shift = ElementSize * N2C->getZExtValue();
7995 const APInt &Val = N1C->getAPIntValue();
8002 "Extract subvector VTs must be vectors!");
8004 "Extract subvector VTs must have the same element type!");
8006 "Cannot extract a scalable vector from a fixed length vector!");
8009 "Extract subvector must be from larger vector to smaller vector!");
8010 assert(N2C &&
"Extract subvector index must be a constant");
8014 "Extract subvector overflow!");
8015 assert(N2C->getAPIntValue().getBitWidth() ==
8017 "Constant index for EXTRACT_SUBVECTOR has an invalid size");
8019 "Extract index is not a multiple of the output vector length");
8034 return N1.
getOperand(N2C->getZExtValue() / Factor);
8075 if (TLI->isCommutativeBinOp(Opcode)) {
8154 if (VT != MVT::Glue) {
8158 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
8159 E->intersectFlagsWith(Flags);
8163 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8165 createOperands(
N,
Ops);
8166 CSEMap.InsertNode(
N, IP);
8168 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8169 createOperands(
N,
Ops);
8182 Flags = Inserter->getFlags();
8183 return getNode(Opcode,
DL, VT, N1, N2, N3, Flags);
8192 "Operand is DELETED_NODE!");
8211 "SETCC operands must have the same type!");
8213 "SETCC type should be vector iff the operand type is vector!");
8216 "SETCC vector element counts must match!");
8236 "INSERT_VECTOR_ELT vector type mismatch");
8238 "INSERT_VECTOR_ELT scalar fp/int mismatch");
8241 "INSERT_VECTOR_ELT fp scalar type mismatch");
8244 "INSERT_VECTOR_ELT int scalar size mismatch");
8290 "Dest and insert subvector source types must match!");
8292 "Insert subvector VTs must be vectors!");
8294 "Insert subvector VTs must have the same element type!");
8296 "Cannot insert a scalable vector into a fixed length vector!");
8299 "Insert subvector must be from smaller vector to larger vector!");
8301 "Insert subvector index must be constant");
8305 "Insert subvector overflow!");
8308 "Constant index for INSERT_SUBVECTOR has an invalid size");
8352 case ISD::VP_TRUNCATE:
8353 case ISD::VP_SIGN_EXTEND:
8354 case ISD::VP_ZERO_EXTEND:
8363 assert(VT == VecVT &&
"Vector and result type don't match.");
8365 "All inputs must be vectors.");
8366 assert(VecVT == PassthruVT &&
"Vector and passthru types don't match.");
8368 "Vector and mask must have same number of elements.");
8375 case ISD::PARTIAL_REDUCE_UMLA:
8376 case ISD::PARTIAL_REDUCE_SMLA:
8377 case ISD::PARTIAL_REDUCE_SUMLA:
8378 case ISD::PARTIAL_REDUCE_FMLA: {
8383 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8384 "node to have the same type!");
8386 "Expected the first operand of the PARTIAL_REDUCE_MLA node to have "
8387 "the same type as its result!");
8390 "Expected the element count of the second and third operands of the "
8391 "PARTIAL_REDUCE_MLA node to be a positive integer multiple of the "
8392 "element count of the first operand and the result!");
8394 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8395 "node to have an element type which is the same as or smaller than "
8396 "the element type of the first operand and result!");
8418 if (VT != MVT::Glue) {
8422 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
8423 E->intersectFlagsWith(Flags);
8427 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8429 createOperands(
N,
Ops);
8430 CSEMap.InsertNode(
N, IP);
8432 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8433 createOperands(
N,
Ops);
8453 Flags = Inserter->getFlags();
8454 return getNode(Opcode,
DL, VT, N1, N2, N3, N4, Flags);
8469 Flags = Inserter->getFlags();
8470 return getNode(Opcode,
DL, VT, N1, N2, N3, N4, N5, Flags);
8487 if (FI->getIndex() < 0)
8502 assert(
C->getAPIntValue().getBitWidth() == 8);
8507 return DAG.
getConstant(Val, dl, VT,
false, IsOpaque);
8512 assert(
Value.getValueType() == MVT::i8 &&
"memset with non-byte fill value?");
8528 if (VT !=
Value.getValueType())
8541 if (Slice.Array ==
nullptr) {
8544 return DAG.
getNode(ISD::BITCAST, dl, VT,
8550 unsigned NumVTBytes = NumVTBits / 8;
8551 unsigned NumBytes = std::min(NumVTBytes,
unsigned(Slice.Length));
8553 APInt Val(NumVTBits, 0);
8555 for (
unsigned i = 0; i != NumBytes; ++i)
8558 for (
unsigned i = 0; i != NumBytes; ++i)
8559 Val |= (
uint64_t)(
unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
8582 if (TLI->shouldPreservePtrArith(this->getMachineFunction().getFunction(),
8597 else if (Src->isAnyAdd() &&
8601 SrcDelta = Src.getConstantOperandVal(1);
8607 SrcDelta +
G->getOffset());
8623 assert(OutLoadChains.
size() &&
"Missing loads in memcpy inlining");
8624 assert(OutStoreChains.
size() &&
"Missing stores in memcpy inlining");
8626 for (
unsigned i = From; i < To; ++i) {
8628 GluedLoadChains.
push_back(OutLoadChains[i]);
8635 for (
unsigned i = From; i < To; ++i) {
8638 ST->getBasePtr(), ST->getMemoryVT(),
8639 ST->getMemOperand());
8661 std::vector<EVT> MemOps;
8662 bool DstAlignCanChange =
false;
8668 DstAlignCanChange =
true;
8670 if (!SrcAlign || Alignment > *SrcAlign)
8671 SrcAlign = Alignment;
8672 assert(SrcAlign &&
"SrcAlign must be set");
8676 bool isZeroConstant = CopyFromConstant && Slice.Array ==
nullptr;
8678 const MemOp Op = isZeroConstant
8682 *SrcAlign, isVol, CopyFromConstant);
8688 if (DstAlignCanChange) {
8689 Type *Ty = MemOps[0].getTypeForEVT(
C);
8690 Align NewAlign =
DL.getABITypeAlign(Ty);
8696 if (!
TRI->hasStackRealignment(MF))
8698 NewAlign = std::min(NewAlign, *StackAlign);
8700 if (NewAlign > Alignment) {
8704 Alignment = NewAlign;
8714 BatchAA && SrcVal &&
8722 unsigned NumMemOps = MemOps.size();
8724 for (
unsigned i = 0; i != NumMemOps; ++i) {
8729 if (VTSize >
Size) {
8732 assert(i == NumMemOps-1 && i != 0);
8733 SrcOff -= VTSize -
Size;
8734 DstOff -= VTSize -
Size;
8737 if (CopyFromConstant &&
8745 if (SrcOff < Slice.Length) {
8747 SubSlice.
move(SrcOff);
8750 SubSlice.
Array =
nullptr;
8752 SubSlice.
Length = VTSize;
8755 if (
Value.getNode()) {
8759 DstPtrInfo.
getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8764 if (!Store.getNode()) {
8773 bool isDereferenceable =
8776 if (isDereferenceable)
8791 DstPtrInfo.
getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
8801 unsigned NumLdStInMemcpy = OutStoreChains.
size();
8803 if (NumLdStInMemcpy) {
8809 for (
unsigned i = 0; i < NumLdStInMemcpy; ++i) {
8815 if (NumLdStInMemcpy <= GluedLdStLimit) {
8817 NumLdStInMemcpy, OutLoadChains,
8820 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
8821 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
8822 unsigned GlueIter = 0;
8824 for (
unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
8825 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
8826 unsigned IndexTo = NumLdStInMemcpy - GlueIter;
8829 OutLoadChains, OutStoreChains);
8830 GlueIter += GluedLdStLimit;
8834 if (RemainingLdStInMemcpy) {
8836 RemainingLdStInMemcpy, OutLoadChains,
8848 bool isVol,
bool AlwaysInline,
8862 std::vector<EVT> MemOps;
8863 bool DstAlignCanChange =
false;
8869 DstAlignCanChange =
true;
8871 if (!SrcAlign || Alignment > *SrcAlign)
8872 SrcAlign = Alignment;
8873 assert(SrcAlign &&
"SrcAlign must be set");
8883 if (DstAlignCanChange) {
8884 Type *Ty = MemOps[0].getTypeForEVT(
C);
8885 Align NewAlign =
DL.getABITypeAlign(Ty);
8891 if (!
TRI->hasStackRealignment(MF))
8893 NewAlign = std::min(NewAlign, *StackAlign);
8895 if (NewAlign > Alignment) {
8899 Alignment = NewAlign;
8913 unsigned NumMemOps = MemOps.size();
8914 for (
unsigned i = 0; i < NumMemOps; i++) {
8919 bool isDereferenceable =
8922 if (isDereferenceable)
8928 SrcPtrInfo.
getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
8935 for (
unsigned i = 0; i < NumMemOps; i++) {
8941 Chain, dl, LoadValues[i],
8943 DstPtrInfo.
getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8983 std::vector<EVT> MemOps;
8984 bool DstAlignCanChange =
false;
8991 DstAlignCanChange =
true;
8997 MemOp::Set(
Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
9001 if (DstAlignCanChange) {
9004 Align NewAlign =
DL.getABITypeAlign(Ty);
9010 if (!
TRI->hasStackRealignment(MF))
9012 NewAlign = std::min(NewAlign, *StackAlign);
9014 if (NewAlign > Alignment) {
9018 Alignment = NewAlign;
9024 unsigned NumMemOps = MemOps.size();
9027 EVT LargestVT = MemOps[0];
9028 for (
unsigned i = 1; i < NumMemOps; i++)
9029 if (MemOps[i].bitsGT(LargestVT))
9030 LargestVT = MemOps[i];
9037 for (
unsigned i = 0; i < NumMemOps; i++) {
9040 if (VTSize >
Size) {
9043 assert(i == NumMemOps-1 && i != 0);
9044 DstOff -= VTSize -
Size;
9051 if (VT.
bitsLT(LargestVT)) {
9066 SDValue TailValue = DAG.
getNode(ISD::BITCAST, dl, SVT, MemSetValue);
9071 assert(
Value.getValueType() == VT &&
"Value with wrong type.");
9098 bool AllowReturnsFirstArg) {
9104 AllowReturnsFirstArg &&
9108std::pair<SDValue, SDValue>
9111 RTLIB::LibcallImpl MemcmpImpl = TLI->getLibcallImpl(RTLIB::MEMCMP);
9112 if (MemcmpImpl == RTLIB::Unsupported)
9125 StringRef LibCallName = TLI->getLibcallImplName(MemcmpImpl);
9128 .
setLibCallee(TLI->getLibcallImplCallingConv(MemcmpImpl),
9135 return TLI->LowerCallTo(CLI);
9142 RTLIB::LibcallImpl StrlenImpl = TLI->getLibcallImpl(RTLIB::STRLEN);
9143 if (StrlenImpl == RTLIB::Unsupported)
9153 StringRef LibcallName = TLI->getLibcallImplName(StrlenImpl);
9158 TLI->getLibcallImplCallingConv(StrlenImpl), CI->
getType(),
9164 return TLI->LowerCallTo(CLI);
9169 Align Alignment,
bool isVol,
bool AlwaysInline,
const CallInst *CI,
9178 if (ConstantSize->
isZero())
9182 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9183 isVol,
false, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9184 if (Result.getNode())
9191 SDValue Result = TSI->EmitTargetCodeForMemcpy(
9192 *
this, dl, Chain, Dst, Src,
Size, Alignment, isVol, AlwaysInline,
9193 DstPtrInfo, SrcPtrInfo);
9194 if (Result.getNode())
9201 assert(ConstantSize &&
"AlwaysInline requires a constant size!");
9203 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9204 isVol,
true, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9219 Args.emplace_back(Dst, PtrTy);
9220 Args.emplace_back(Src, PtrTy);
9224 bool IsTailCall =
false;
9225 RTLIB::LibcallImpl MemCpyImpl = TLI->getMemcpyImpl();
9227 if (OverrideTailCall.has_value()) {
9228 IsTailCall = *OverrideTailCall;
9230 bool LowersToMemcpy = MemCpyImpl == RTLIB::impl_memcpy;
9237 TLI->getLibcallImplCallingConv(MemCpyImpl),
9238 Dst.getValueType().getTypeForEVT(*
getContext()),
9245 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9246 return CallResult.second;
9251 Type *SizeTy,
unsigned ElemSz,
9258 Args.emplace_back(Dst, ArgTy);
9259 Args.emplace_back(Src, ArgTy);
9260 Args.emplace_back(
Size, SizeTy);
9262 RTLIB::Libcall LibraryCall =
9264 RTLIB::LibcallImpl LibcallImpl = TLI->getLibcallImpl(LibraryCall);
9265 if (LibcallImpl == RTLIB::Unsupported)
9272 TLI->getLibcallImplCallingConv(LibcallImpl),
9280 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9281 return CallResult.second;
9287 std::optional<bool> OverrideTailCall,
9297 if (ConstantSize->
isZero())
9301 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9302 isVol,
false, DstPtrInfo, SrcPtrInfo, AAInfo);
9303 if (Result.getNode())
9311 TSI->EmitTargetCodeForMemmove(*
this, dl, Chain, Dst, Src,
Size,
9312 Alignment, isVol, DstPtrInfo, SrcPtrInfo);
9313 if (Result.getNode())
9326 Args.emplace_back(Dst, PtrTy);
9327 Args.emplace_back(Src, PtrTy);
9332 RTLIB::LibcallImpl MemmoveImpl = TLI->getLibcallImpl(RTLIB::MEMMOVE);
9334 bool IsTailCall =
false;
9335 if (OverrideTailCall.has_value()) {
9336 IsTailCall = *OverrideTailCall;
9338 bool LowersToMemmove = MemmoveImpl == RTLIB::impl_memmove;
9345 TLI->getLibcallImplCallingConv(MemmoveImpl),
9346 Dst.getValueType().getTypeForEVT(*
getContext()),
9353 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9354 return CallResult.second;
9359 Type *SizeTy,
unsigned ElemSz,
9366 Args.emplace_back(Dst, IntPtrTy);
9367 Args.emplace_back(Src, IntPtrTy);
9368 Args.emplace_back(
Size, SizeTy);
9370 RTLIB::Libcall LibraryCall =
9372 RTLIB::LibcallImpl LibcallImpl = TLI->getLibcallImpl(LibraryCall);
9373 if (LibcallImpl == RTLIB::Unsupported)
9380 TLI->getLibcallImplCallingConv(LibcallImpl),
9388 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9389 return CallResult.second;
9394 bool isVol,
bool AlwaysInline,
9403 if (ConstantSize->
isZero())
9408 isVol,
false, DstPtrInfo, AAInfo);
9410 if (Result.getNode())
9417 SDValue Result = TSI->EmitTargetCodeForMemset(
9418 *
this, dl, Chain, Dst, Src,
Size, Alignment, isVol, AlwaysInline, DstPtrInfo);
9419 if (Result.getNode())
9426 assert(ConstantSize &&
"AlwaysInline requires a constant size!");
9429 isVol,
true, DstPtrInfo, AAInfo);
9431 "getMemsetStores must return a valid sequence when AlwaysInline");
9445 RTLIB::LibcallImpl BzeroImpl = TLI->getLibcallImpl(RTLIB::BZERO);
9446 bool UseBZero = BzeroImpl != RTLIB::Unsupported &&
isNullConstant(Src);
9452 Args.emplace_back(
Size,
DL.getIntPtrType(Ctx));
9456 TLI->getPointerTy(
DL)),
9459 RTLIB::LibcallImpl MemsetImpl = TLI->getLibcallImpl(RTLIB::MEMSET);
9463 Args.emplace_back(Src, Src.getValueType().getTypeForEVT(Ctx));
9464 Args.emplace_back(
Size,
DL.getIntPtrType(Ctx));
9466 TLI->getLibcallImplCallingConv(MemsetImpl),
9467 Dst.getValueType().getTypeForEVT(Ctx),
9469 TLI->getPointerTy(
DL)),
9473 RTLIB::LibcallImpl MemsetImpl = TLI->getLibcallImpl(RTLIB::MEMSET);
9474 bool LowersToMemset = MemsetImpl == RTLIB::impl_memset;
9485 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9486 return CallResult.second;
9491 Type *SizeTy,
unsigned ElemSz,
9498 Args.emplace_back(
Size, SizeTy);
9500 RTLIB::Libcall LibraryCall =
9502 RTLIB::LibcallImpl LibcallImpl = TLI->getLibcallImpl(LibraryCall);
9503 if (LibcallImpl == RTLIB::Unsupported)
9510 TLI->getLibcallImplCallingConv(LibcallImpl),
9518 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9519 return CallResult.second;
9529 ID.AddInteger(getSyntheticNodeSubclassData<AtomicSDNode>(
9530 dl.
getIROrder(), Opcode, VTList, MemVT, MMO, ExtType));
9535 E->refineAlignment(MMO);
9536 E->refineRanges(MMO);
9541 VTList, MemVT, MMO, ExtType);
9542 createOperands(
N,
Ops);
9544 CSEMap.InsertNode(
N, IP);
9555 assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
9556 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
9566 assert((Opcode == ISD::ATOMIC_LOAD_ADD || Opcode == ISD::ATOMIC_LOAD_SUB ||
9567 Opcode == ISD::ATOMIC_LOAD_AND || Opcode == ISD::ATOMIC_LOAD_CLR ||
9568 Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR ||
9569 Opcode == ISD::ATOMIC_LOAD_NAND || Opcode == ISD::ATOMIC_LOAD_MIN ||
9570 Opcode == ISD::ATOMIC_LOAD_MAX || Opcode == ISD::ATOMIC_LOAD_UMIN ||
9571 Opcode == ISD::ATOMIC_LOAD_UMAX || Opcode == ISD::ATOMIC_LOAD_FADD ||
9572 Opcode == ISD::ATOMIC_LOAD_FSUB || Opcode == ISD::ATOMIC_LOAD_FMAX ||
9573 Opcode == ISD::ATOMIC_LOAD_FMIN ||
9574 Opcode == ISD::ATOMIC_LOAD_FMINIMUM ||
9575 Opcode == ISD::ATOMIC_LOAD_FMAXIMUM ||
9576 Opcode == ISD::ATOMIC_LOAD_UINC_WRAP ||
9577 Opcode == ISD::ATOMIC_LOAD_UDEC_WRAP ||
9578 Opcode == ISD::ATOMIC_LOAD_USUB_COND ||
9579 Opcode == ISD::ATOMIC_LOAD_USUB_SAT || Opcode == ISD::ATOMIC_SWAP ||
9580 Opcode == ISD::ATOMIC_STORE) &&
9581 "Invalid Atomic Op");
9596 return getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, VTs,
Ops, MMO, ExtType);
9601 if (
Ops.size() == 1)
9616 if (
Size.hasValue() && !
Size.getValue())
9621 MF.getMachineMemOperand(PtrInfo, Flags,
Size, Alignment, AAInfo);
9632 Opcode == ISD::PREFETCH ||
9633 (Opcode <= (
unsigned)std::numeric_limits<int>::max() &&
9635 "Opcode is not a memory-accessing opcode!");
9639 if (VTList.
VTs[VTList.
NumVTs-1] != MVT::Glue) {
9642 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
9643 Opcode, dl.
getIROrder(), VTList, MemVT, MMO));
9648 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
9654 VTList, MemVT, MMO);
9655 createOperands(
N,
Ops);
9657 CSEMap.InsertNode(
N, IP);
9660 VTList, MemVT, MMO);
9661 createOperands(
N,
Ops);
9670 SDValue Chain,
int FrameIndex) {
9671 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
9681 ID.AddInteger(FrameIndex);
9683 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
9688 createOperands(
N,
Ops);
9689 CSEMap.InsertNode(
N, IP);
9699 const unsigned Opcode = ISD::PSEUDO_PROBE;
9705 ID.AddInteger(Index);
9707 if (
SDNode *E = FindNodeOrInsertPos(
ID, Dl, IP))
9710 auto *
N = newSDNode<PseudoProbeSDNode>(
9712 createOperands(
N,
Ops);
9713 CSEMap.InsertNode(
N, IP);
9767 "Invalid chain type");
9779 Alignment, AAInfo, Ranges);
9780 return getLoad(AM, ExtType, VT, dl, Chain, Ptr,
Offset, MemVT, MMO);
9790 assert(VT == MemVT &&
"Non-extending load from different memory type!");
9794 "Should only be an extending load, not truncating!");
9796 "Cannot convert from FP to Int or Int -> FP!");
9798 "Cannot use an ext load to convert to or from a vector!");
9801 "Cannot use an ext load to change the number of vector elements!");
9808 "Range metadata and load type must match!");
9819 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
9820 dl.
getIROrder(), VTs, AM, ExtType, MemVT, MMO));
9825 E->refineAlignment(MMO);
9826 E->refineRanges(MMO);
9830 ExtType, MemVT, MMO);
9831 createOperands(
N,
Ops);
9833 CSEMap.InsertNode(
N, IP);
9847 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
9865 MemVT, Alignment, MMOFlags, AAInfo);
9880 assert(LD->getOffset().isUndef() &&
"Load is already a indexed load!");
9883 LD->getMemOperand()->getFlags() &
9886 LD->getChain(),
Base,
Offset, LD->getPointerInfo(),
9887 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
9906 MF.getMachineMemOperand(PtrInfo, MMOFlags,
Size, Alignment, AAInfo);
9907 return getStore(Chain, dl, Val, Ptr, MMO);
9920 bool IsTruncating) {
9924 IsTruncating =
false;
9925 }
else if (!IsTruncating) {
9926 assert(VT == SVT &&
"No-truncating store from different memory type!");
9929 "Should only be a truncating store, not extending!");
9932 "Cannot use trunc store to convert to or from a vector!");
9935 "Cannot use trunc store to change the number of vector elements!");
9946 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
9947 dl.
getIROrder(), VTs, AM, IsTruncating, SVT, MMO));
9951 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
9956 IsTruncating, SVT, MMO);
9957 createOperands(
N,
Ops);
9959 CSEMap.InsertNode(
N, IP);
9972 "Invalid chain type");
9982 PtrInfo, MMOFlags, SVT.
getStoreSize(), Alignment, AAInfo);
9997 assert(ST->getOffset().isUndef() &&
"Store is already a indexed store!");
9999 ST->getMemoryVT(), ST->getMemOperand(), AM,
10000 ST->isTruncatingStore());
10008 const MDNode *Ranges,
bool IsExpanding) {
10019 Alignment, AAInfo, Ranges);
10020 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr,
Offset, Mask, EVL, MemVT,
10029 bool IsExpanding) {
10031 assert(Mask.getValueType().getVectorElementCount() ==
10033 "Vector width mismatch between mask and data");
10044 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
10045 dl.
getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10048 void *IP =
nullptr;
10050 E->refineAlignment(MMO);
10051 E->refineRanges(MMO);
10055 ExtType, IsExpanding, MemVT, MMO);
10056 createOperands(
N,
Ops);
10058 CSEMap.InsertNode(
N, IP);
10071 bool IsExpanding) {
10074 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
10083 Mask, EVL, VT, MMO, IsExpanding);
10092 const AAMDNodes &AAInfo,
bool IsExpanding) {
10095 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo,
nullptr,
10105 EVL, MemVT, MMO, IsExpanding);
10112 assert(LD->getOffset().isUndef() &&
"Load is already a indexed load!");
10115 LD->getMemOperand()->getFlags() &
10118 LD->getChain(),
Base,
Offset, LD->getMask(),
10119 LD->getVectorLength(), LD->getPointerInfo(),
10120 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
10121 nullptr, LD->isExpandingLoad());
10128 bool IsCompressing) {
10130 assert(Mask.getValueType().getVectorElementCount() ==
10132 "Vector width mismatch between mask and data");
10142 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10143 dl.
getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10146 void *IP =
nullptr;
10147 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10152 IsTruncating, IsCompressing, MemVT, MMO);
10153 createOperands(
N,
Ops);
10155 CSEMap.InsertNode(
N, IP);
10168 bool IsCompressing) {
10179 PtrInfo, MMOFlags, SVT.
getStoreSize(), Alignment, AAInfo);
10188 bool IsCompressing) {
10195 false, IsCompressing);
10198 "Should only be a truncating store, not extending!");
10201 "Cannot use trunc store to convert to or from a vector!");
10204 "Cannot use trunc store to change the number of vector elements!");
10208 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
10212 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10216 void *IP =
nullptr;
10217 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10224 createOperands(
N,
Ops);
10226 CSEMap.InsertNode(
N, IP);
10237 assert(ST->getOffset().isUndef() &&
"Store is already an indexed store!");
10240 Offset, ST->getMask(), ST->getVectorLength()};
10243 ID.AddInteger(ST->getMemoryVT().getRawBits());
10244 ID.AddInteger(ST->getRawSubclassData());
10245 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
10246 ID.AddInteger(ST->getMemOperand()->getFlags());
10247 void *IP =
nullptr;
10248 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10251 auto *
N = newSDNode<VPStoreSDNode>(
10253 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
10254 createOperands(
N,
Ops);
10256 CSEMap.InsertNode(
N, IP);
10276 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
10277 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10280 void *IP =
nullptr;
10281 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10287 newSDNode<VPStridedLoadSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs, AM,
10288 ExtType, IsExpanding, MemVT, MMO);
10289 createOperands(
N,
Ops);
10290 CSEMap.InsertNode(
N, IP);
10301 bool IsExpanding) {
10304 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
10313 Stride, Mask, EVL, MemVT, MMO, IsExpanding);
10322 bool IsTruncating,
bool IsCompressing) {
10332 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10333 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10335 void *IP =
nullptr;
10336 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10340 auto *
N = newSDNode<VPStridedStoreSDNode>(
DL.getIROrder(),
DL.getDebugLoc(),
10341 VTs, AM, IsTruncating,
10342 IsCompressing, MemVT, MMO);
10343 createOperands(
N,
Ops);
10345 CSEMap.InsertNode(
N, IP);
10357 bool IsCompressing) {
10364 false, IsCompressing);
10367 "Should only be a truncating store, not extending!");
10370 "Cannot use trunc store to convert to or from a vector!");
10373 "Cannot use trunc store to change the number of vector elements!");
10377 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL};
10381 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10384 void *IP =
nullptr;
10385 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10389 auto *
N = newSDNode<VPStridedStoreSDNode>(
DL.getIROrder(),
DL.getDebugLoc(),
10391 IsCompressing, SVT, MMO);
10392 createOperands(
N,
Ops);
10394 CSEMap.InsertNode(
N, IP);
10404 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10409 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
10413 void *IP =
nullptr;
10414 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10420 VT, MMO, IndexType);
10421 createOperands(
N,
Ops);
10423 assert(
N->getMask().getValueType().getVectorElementCount() ==
10424 N->getValueType(0).getVectorElementCount() &&
10425 "Vector width mismatch between mask and data");
10426 assert(
N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10427 N->getValueType(0).getVectorElementCount().isScalable() &&
10428 "Scalable flags of index and data do not match");
10430 N->getIndex().getValueType().getVectorElementCount(),
10431 N->getValueType(0).getVectorElementCount()) &&
10432 "Vector width mismatch between index and data");
10434 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10435 "Scale should be a constant power of 2");
10437 CSEMap.InsertNode(
N, IP);
10448 assert(
Ops.size() == 7 &&
"Incompatible number of operands");
10453 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
10457 void *IP =
nullptr;
10458 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10463 VT, MMO, IndexType);
10464 createOperands(
N,
Ops);
10466 assert(
N->getMask().getValueType().getVectorElementCount() ==
10467 N->getValue().getValueType().getVectorElementCount() &&
10468 "Vector width mismatch between mask and data");
10470 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10471 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10472 "Scalable flags of index and data do not match");
10474 N->getIndex().getValueType().getVectorElementCount(),
10475 N->getValue().getValueType().getVectorElementCount()) &&
10476 "Vector width mismatch between index and data");
10478 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10479 "Scale should be a constant power of 2");
10481 CSEMap.InsertNode(
N, IP);
10496 "Unindexed masked load with an offset!");
10503 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
10504 dl.
getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
10507 void *IP =
nullptr;
10508 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10513 AM, ExtTy, isExpanding, MemVT, MMO);
10514 createOperands(
N,
Ops);
10516 CSEMap.InsertNode(
N, IP);
10527 assert(LD->getOffset().isUndef() &&
"Masked load is already a indexed load!");
10529 Offset, LD->getMask(), LD->getPassThru(),
10530 LD->getMemoryVT(), LD->getMemOperand(), AM,
10531 LD->getExtensionType(), LD->isExpandingLoad());
10539 bool IsCompressing) {
10541 "Invalid chain type");
10544 "Unindexed masked store with an offset!");
10551 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
10552 dl.
getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10555 void *IP =
nullptr;
10556 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10562 IsTruncating, IsCompressing, MemVT, MMO);
10563 createOperands(
N,
Ops);
10565 CSEMap.InsertNode(
N, IP);
10576 assert(ST->getOffset().isUndef() &&
10577 "Masked store is already a indexed store!");
10579 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
10580 AM, ST->isTruncatingStore(), ST->isCompressingStore());
10588 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10593 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
10594 dl.
getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
10597 void *IP =
nullptr;
10598 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10604 VTs, MemVT, MMO, IndexType, ExtTy);
10605 createOperands(
N,
Ops);
10607 assert(
N->getPassThru().getValueType() ==
N->getValueType(0) &&
10608 "Incompatible type of the PassThru value in MaskedGatherSDNode");
10609 assert(
N->getMask().getValueType().getVectorElementCount() ==
10610 N->getValueType(0).getVectorElementCount() &&
10611 "Vector width mismatch between mask and data");
10612 assert(
N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10613 N->getValueType(0).getVectorElementCount().isScalable() &&
10614 "Scalable flags of index and data do not match");
10616 N->getIndex().getValueType().getVectorElementCount(),
10617 N->getValueType(0).getVectorElementCount()) &&
10618 "Vector width mismatch between index and data");
10620 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10621 "Scale should be a constant power of 2");
10623 CSEMap.InsertNode(
N, IP);
10635 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10640 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
10641 dl.
getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
10644 void *IP =
nullptr;
10645 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10651 VTs, MemVT, MMO, IndexType, IsTrunc);
10652 createOperands(
N,
Ops);
10654 assert(
N->getMask().getValueType().getVectorElementCount() ==
10655 N->getValue().getValueType().getVectorElementCount() &&
10656 "Vector width mismatch between mask and data");
10658 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10659 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10660 "Scalable flags of index and data do not match");
10662 N->getIndex().getValueType().getVectorElementCount(),
10663 N->getValue().getValueType().getVectorElementCount()) &&
10664 "Vector width mismatch between index and data");
10666 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10667 "Scale should be a constant power of 2");
10669 CSEMap.InsertNode(
N, IP);
10680 assert(
Ops.size() == 7 &&
"Incompatible number of operands");
10685 ID.AddInteger(getSyntheticNodeSubclassData<MaskedHistogramSDNode>(
10686 dl.
getIROrder(), VTs, MemVT, MMO, IndexType));
10689 void *IP =
nullptr;
10690 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10696 VTs, MemVT, MMO, IndexType);
10697 createOperands(
N,
Ops);
10699 assert(
N->getMask().getValueType().getVectorElementCount() ==
10700 N->getIndex().getValueType().getVectorElementCount() &&
10701 "Vector width mismatch between mask and data");
10703 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10704 "Scale should be a constant power of 2");
10705 assert(
N->getInc().getValueType().isInteger() &&
"Non integer update value");
10707 CSEMap.InsertNode(
N, IP);
10722 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadFFSDNode>(
DL.getIROrder(),
10726 void *IP =
nullptr;
10727 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10731 auto *
N = newSDNode<VPLoadFFSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs,
10733 createOperands(
N,
Ops);
10735 CSEMap.InsertNode(
N, IP);
10750 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10751 ISD::GET_FPENV_MEM, dl.
getIROrder(), VTs, MemVT, MMO));
10754 void *IP =
nullptr;
10755 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10758 auto *
N = newSDNode<FPStateAccessSDNode>(ISD::GET_FPENV_MEM, dl.
getIROrder(),
10760 createOperands(
N,
Ops);
10762 CSEMap.InsertNode(
N, IP);
10777 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10778 ISD::SET_FPENV_MEM, dl.
getIROrder(), VTs, MemVT, MMO));
10781 void *IP =
nullptr;
10782 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10785 auto *
N = newSDNode<FPStateAccessSDNode>(ISD::SET_FPENV_MEM, dl.
getIROrder(),
10787 createOperands(
N,
Ops);
10789 CSEMap.InsertNode(
N, IP);
10800 if (
Cond.isUndef())
10835 return !Val || Val->getAPIntValue().uge(
X.getScalarValueSizeInBits());
10841 if (
X.getValueType().getScalarType() == MVT::i1)
10854 bool HasNan = (XC && XC->
getValueAPF().isNaN()) ||
10856 bool HasInf = (XC && XC->
getValueAPF().isInfinity()) ||
10859 if (Flags.hasNoNaNs() && (HasNan ||
X.isUndef() ||
Y.isUndef()))
10862 if (Flags.hasNoInfs() && (HasInf ||
X.isUndef() ||
Y.isUndef()))
10885 if (Opcode ==
ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
10900 switch (
Ops.size()) {
10901 case 0:
return getNode(Opcode,
DL, VT);
10911 return getNode(Opcode,
DL, VT, NewOps);
10918 Flags = Inserter->getFlags();
10926 case 0:
return getNode(Opcode,
DL, VT);
10927 case 1:
return getNode(Opcode,
DL, VT,
Ops[0], Flags);
10934 for (
const auto &
Op :
Ops)
10936 "Operand is DELETED_NODE!");
10953 "LHS and RHS of condition must have same type!");
10955 "True and False arms of SelectCC must have same type!");
10957 "select_cc node must be of same type as true and false value!");
10961 "Expected select_cc with vector result to have the same sized "
10962 "comparison type!");
10967 "LHS/RHS of comparison should match types!");
10973 Opcode = ISD::VP_XOR;
10978 Opcode = ISD::VP_AND;
10980 case ISD::VP_REDUCE_MUL:
10983 Opcode = ISD::VP_REDUCE_AND;
10985 case ISD::VP_REDUCE_ADD:
10988 Opcode = ISD::VP_REDUCE_XOR;
10990 case ISD::VP_REDUCE_SMAX:
10991 case ISD::VP_REDUCE_UMIN:
10995 Opcode = ISD::VP_REDUCE_AND;
10997 case ISD::VP_REDUCE_SMIN:
10998 case ISD::VP_REDUCE_UMAX:
11002 Opcode = ISD::VP_REDUCE_OR;
11010 if (VT != MVT::Glue) {
11013 void *IP =
nullptr;
11015 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11016 E->intersectFlagsWith(Flags);
11020 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
11021 createOperands(
N,
Ops);
11023 CSEMap.InsertNode(
N, IP);
11025 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
11026 createOperands(
N,
Ops);
11029 N->setFlags(Flags);
11040 Flags = Inserter->getFlags();
11054 Flags = Inserter->getFlags();
11064 for (
const auto &
Op :
Ops)
11066 "Operand is DELETED_NODE!");
11075 "Invalid add/sub overflow op!");
11077 Ops[0].getValueType() ==
Ops[1].getValueType() &&
11078 Ops[0].getValueType() == VTList.
VTs[0] &&
11079 "Binary operator types must match!");
11086 if (N2CV && N2CV->
isZero()) {
11117 "Invalid add/sub overflow op!");
11119 Ops[0].getValueType() ==
Ops[1].getValueType() &&
11120 Ops[0].getValueType() == VTList.
VTs[0] &&
11121 Ops[2].getValueType() == VTList.
VTs[1] &&
11122 "Binary operator types must match!");
11126 assert(VTList.
NumVTs == 2 &&
Ops.size() == 2 &&
"Invalid mul lo/hi op!");
11128 VTList.
VTs[0] ==
Ops[0].getValueType() &&
11129 VTList.
VTs[0] ==
Ops[1].getValueType() &&
11130 "Binary operator types must match!");
11136 unsigned OutWidth = Width * 2;
11137 APInt Val = LHS->getAPIntValue();
11140 Val = Val.
sext(OutWidth);
11141 Mul =
Mul.sext(OutWidth);
11143 Val = Val.
zext(OutWidth);
11144 Mul =
Mul.zext(OutWidth);
11155 case ISD::FFREXP: {
11156 assert(VTList.
NumVTs == 2 &&
Ops.size() == 1 &&
"Invalid ffrexp op!");
11158 VTList.
VTs[0] ==
Ops[0].getValueType() &&
"frexp type mismatch");
11166 DL, VTList.
VTs[1]);
11174 "Invalid STRICT_FP_EXTEND!");
11176 Ops[1].getValueType().isFloatingPoint() &&
"Invalid FP cast!");
11178 "STRICT_FP_EXTEND result type should be vector iff the operand "
11179 "type is vector!");
11182 Ops[1].getValueType().getVectorElementCount()) &&
11183 "Vector element count mismatch!");
11185 "Invalid fpext node, dst <= src!");
11188 assert(VTList.
NumVTs == 2 &&
Ops.size() == 3 &&
"Invalid STRICT_FP_ROUND!");
11190 "STRICT_FP_ROUND result type should be vector iff the operand "
11191 "type is vector!");
11194 Ops[1].getValueType().getVectorElementCount()) &&
11195 "Vector element count mismatch!");
11197 Ops[1].getValueType().isFloatingPoint() &&
11200 (
Ops[2]->getAsZExtVal() == 0 ||
Ops[2]->getAsZExtVal() == 1) &&
11201 "Invalid STRICT_FP_ROUND!");
11207 if (VTList.
VTs[VTList.
NumVTs-1] != MVT::Glue) {
11210 void *IP =
nullptr;
11211 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11212 E->intersectFlagsWith(Flags);
11216 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTList);
11217 createOperands(
N,
Ops);
11218 CSEMap.InsertNode(
N, IP);
11220 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTList);
11221 createOperands(
N,
Ops);
11224 N->setFlags(Flags);
11271 return makeVTList(&(*EVTs.insert(VT).first), 1);
11280 void *IP =
nullptr;
11283 EVT *Array = Allocator.Allocate<
EVT>(2);
11286 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 2);
11287 VTListMap.InsertNode(Result, IP);
11289 return Result->getSDVTList();
11299 void *IP =
nullptr;
11302 EVT *Array = Allocator.Allocate<
EVT>(3);
11306 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 3);
11307 VTListMap.InsertNode(Result, IP);
11309 return Result->getSDVTList();
11320 void *IP =
nullptr;
11323 EVT *Array = Allocator.Allocate<
EVT>(4);
11328 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 4);
11329 VTListMap.InsertNode(Result, IP);
11331 return Result->getSDVTList();
11335 unsigned NumVTs = VTs.
size();
11337 ID.AddInteger(NumVTs);
11338 for (
unsigned index = 0; index < NumVTs; index++) {
11339 ID.AddInteger(VTs[index].getRawBits());
11342 void *IP =
nullptr;
11345 EVT *Array = Allocator.Allocate<
EVT>(NumVTs);
11347 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, NumVTs);
11348 VTListMap.InsertNode(Result, IP);
11350 return Result->getSDVTList();
11361 assert(
N->getNumOperands() == 1 &&
"Update with wrong number of operands");
11364 if (
Op ==
N->getOperand(0))
return N;
11367 void *InsertPos =
nullptr;
11368 if (
SDNode *Existing = FindModifiedNodeSlot(
N,
Op, InsertPos))
11373 if (!RemoveNodeFromCSEMaps(
N))
11374 InsertPos =
nullptr;
11377 N->OperandList[0].set(
Op);
11381 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11386 assert(
N->getNumOperands() == 2 &&
"Update with wrong number of operands");
11389 if (Op1 ==
N->getOperand(0) && Op2 ==
N->getOperand(1))
11393 void *InsertPos =
nullptr;
11394 if (
SDNode *Existing = FindModifiedNodeSlot(
N, Op1, Op2, InsertPos))
11399 if (!RemoveNodeFromCSEMaps(
N))
11400 InsertPos =
nullptr;
11403 if (
N->OperandList[0] != Op1)
11404 N->OperandList[0].set(Op1);
11405 if (
N->OperandList[1] != Op2)
11406 N->OperandList[1].set(Op2);
11410 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11430 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
11438 "Update with wrong number of operands");
11441 if (std::equal(
Ops.begin(),
Ops.end(),
N->op_begin()))
11445 void *InsertPos =
nullptr;
11446 if (
SDNode *Existing = FindModifiedNodeSlot(
N,
Ops, InsertPos))
11451 if (!RemoveNodeFromCSEMaps(
N))
11452 InsertPos =
nullptr;
11455 for (
unsigned i = 0; i !=
NumOps; ++i)
11456 if (
N->OperandList[i] !=
Ops[i])
11457 N->OperandList[i].set(
Ops[i]);
11461 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11478 if (NewMemRefs.
empty()) {
11484 if (NewMemRefs.
size() == 1) {
11485 N->MemRefs = NewMemRefs[0];
11491 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.
size());
11493 N->MemRefs = MemRefsBuffer;
11494 N->NumMemRefs =
static_cast<int>(NewMemRefs.
size());
11566 New->setNodeId(-1);
11586 unsigned Order = std::min(
N->getIROrder(), OLoc.
getIROrder());
11587 N->setIROrder(Order);
11610 void *IP =
nullptr;
11611 if (VTs.
VTs[VTs.
NumVTs-1] != MVT::Glue) {
11615 return UpdateSDLocOnMergeSDNode(ON,
SDLoc(
N));
11618 if (!RemoveNodeFromCSEMaps(
N))
11623 N->ValueList = VTs.
VTs;
11633 if (Used->use_empty())
11634 DeadNodeSet.
insert(Used);
11639 MN->clearMemRefs();
11643 createOperands(
N,
Ops);
11647 if (!DeadNodeSet.
empty()) {
11649 for (
SDNode *
N : DeadNodeSet)
11650 if (
N->use_empty())
11656 CSEMap.InsertNode(
N, IP);
11661 unsigned OrigOpc =
Node->getOpcode();
11666#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11667 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
11668#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11669 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
11670#include "llvm/IR/ConstrainedOps.def"
11673 assert(
Node->getNumValues() == 2 &&
"Unexpected number of results!");
11681 for (
unsigned i = 1, e =
Node->getNumOperands(); i != e; ++i)
11682 Ops.push_back(
Node->getOperand(i));
11799 bool DoCSE = VTs.
VTs[VTs.
NumVTs-1] != MVT::Glue;
11801 void *IP =
nullptr;
11807 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11813 N = newSDNode<MachineSDNode>(~Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
11814 createOperands(
N,
Ops);
11817 CSEMap.InsertNode(
N, IP);
11830 VT, Operand, SRIdxVal);
11840 VT, Operand, Subreg, SRIdxVal);
11848 bool AllowCommute) {
11851 Flags = Inserter->getFlags();
11858 bool AllowCommute) {
11859 if (VTList.
VTs[VTList.
NumVTs - 1] == MVT::Glue)
11865 void *IP =
nullptr;
11866 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP)) {
11867 E->intersectFlagsWith(Flags);
11876 if (AllowCommute && TLI->isCommutativeBinOp(Opcode))
11885 if (VTList.
VTs[VTList.
NumVTs - 1] != MVT::Glue) {
11888 void *IP =
nullptr;
11889 if (FindNodeOrInsertPos(
ID,
SDLoc(), IP))
11899 SDNode *
N,
unsigned R,
bool IsIndirect,
11902 "Expected inlined-at fields to agree");
11903 return new (DbgInfo->getAlloc())
11905 {}, IsIndirect,
DL, O,
11915 "Expected inlined-at fields to agree");
11916 return new (DbgInfo->getAlloc())
11929 "Expected inlined-at fields to agree");
11941 "Expected inlined-at fields to agree");
11942 return new (DbgInfo->getAlloc())
11944 Dependencies, IsIndirect,
DL, O,
11953 "Expected inlined-at fields to agree");
11954 return new (DbgInfo->getAlloc())
11956 {}, IsIndirect,
DL, O,
11964 unsigned O,
bool IsVariadic) {
11966 "Expected inlined-at fields to agree");
11967 return new (DbgInfo->getAlloc())
11968 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
11969 DL, O, IsVariadic);
11973 unsigned OffsetInBits,
unsigned SizeInBits,
11974 bool InvalidateDbg) {
11977 assert(FromNode && ToNode &&
"Can't modify dbg values");
11982 if (From == To || FromNode == ToNode)
11994 if (Dbg->isInvalidated())
12002 auto NewLocOps = Dbg->copyLocationOps();
12004 NewLocOps.begin(), NewLocOps.end(),
12006 bool Match = Op == FromLocOp;
12016 auto *Expr = Dbg->getExpression();
12022 if (
auto FI = Expr->getFragmentInfo())
12023 if (OffsetInBits + SizeInBits > FI->SizeInBits)
12032 auto AdditionalDependencies = Dbg->getAdditionalDependencies();
12035 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
12036 Dbg->getDebugLoc(), std::max(ToNode->
getIROrder(), Dbg->getOrder()),
12037 Dbg->isVariadic());
12040 if (InvalidateDbg) {
12042 Dbg->setIsInvalidated();
12043 Dbg->setIsEmitted();
12049 "Transferred DbgValues should depend on the new SDNode");
12055 if (!
N.getHasDebugValue())
12058 auto GetLocationOperand = [](
SDNode *
Node,
unsigned ResNo) {
12066 if (DV->isInvalidated())
12068 switch (
N.getOpcode()) {
12078 Offset =
N.getConstantOperandVal(1);
12081 if (!RHSConstant && DV->isIndirect())
12088 auto *DIExpr = DV->getExpression();
12089 auto NewLocOps = DV->copyLocationOps();
12091 size_t OrigLocOpsSize = NewLocOps.size();
12092 for (
size_t i = 0; i < OrigLocOpsSize; ++i) {
12097 NewLocOps[i].getSDNode() != &
N)
12108 const auto *TmpDIExpr =
12116 NewLocOps.push_back(RHS);
12125 DV->isVariadic() || OrigLocOpsSize != NewLocOps.size();
12127 auto AdditionalDependencies = DV->getAdditionalDependencies();
12129 DV->getVariable(), DIExpr, NewLocOps, AdditionalDependencies,
12130 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder(), IsVariadic);
12132 DV->setIsInvalidated();
12133 DV->setIsEmitted();
12135 N0.
getNode()->dumprFull(
this);
12136 dbgs() <<
" into " << *DIExpr <<
'\n');
12143 TypeSize ToSize =
N.getValueSizeInBits(0);
12147 auto NewLocOps = DV->copyLocationOps();
12149 for (
size_t i = 0; i < NewLocOps.size(); ++i) {
12151 NewLocOps[i].getSDNode() != &
N)
12163 DV->getAdditionalDependencies(), DV->isIndirect(),
12164 DV->getDebugLoc(), DV->getOrder(), DV->isVariadic());
12167 DV->setIsInvalidated();
12168 DV->setIsEmitted();
12170 dbgs() <<
" into " << *DbgExpression <<
'\n');
12177 assert((!Dbg->getSDNodes().empty() ||
12180 return Op.getKind() == SDDbgOperand::FRAMEIX;
12182 "Salvaged DbgValue should depend on a new SDNode");
12191 "Expected inlined-at fields to agree");
12192 return new (DbgInfo->getAlloc())
SDDbgLabel(Label,
DL, O);
12207 while (UI != UE &&
N == UI->
getUser())
12215 :
SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
12228 "Cannot replace with this method!");
12229 assert(From != To.
getNode() &&
"Cannot replace uses of with self");
12244 RAUWUpdateListener Listener(*
this, UI, UE);
12249 RemoveNodeFromCSEMaps(
User);
12264 AddModifiedNodeToCSEMaps(
User);
12280 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i)
12283 "Cannot use this version of ReplaceAllUsesWith!");
12291 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i)
12293 assert((i < To->getNumValues()) &&
"Invalid To location");
12302 RAUWUpdateListener Listener(*
this, UI, UE);
12307 RemoveNodeFromCSEMaps(
User);
12323 AddModifiedNodeToCSEMaps(
User);
12340 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i) {
12350 RAUWUpdateListener Listener(*
this, UI, UE);
12355 RemoveNodeFromCSEMaps(
User);
12361 bool To_IsDivergent =
false;
12375 AddModifiedNodeToCSEMaps(
User);
12388 if (From == To)
return;
12404 RAUWUpdateListener Listener(*
this, UI, UE);
12407 bool UserRemovedFromCSEMaps =
false;
12424 if (!UserRemovedFromCSEMaps) {
12425 RemoveNodeFromCSEMaps(
User);
12426 UserRemovedFromCSEMaps =
true;
12436 if (!UserRemovedFromCSEMaps)
12441 AddModifiedNodeToCSEMaps(
User);
12460bool operator<(
const UseMemo &L,
const UseMemo &R) {
12461 return (intptr_t)L.User < (intptr_t)R.User;
12468 SmallVectorImpl<UseMemo> &
Uses;
12470 void NodeDeleted(SDNode *
N, SDNode *
E)
override {
12471 for (UseMemo &Memo :
Uses)
12472 if (Memo.User ==
N)
12473 Memo.User =
nullptr;
12477 RAUOVWUpdateListener(SelectionDAG &d, SmallVectorImpl<UseMemo> &uses)
12478 : SelectionDAG::DAGUpdateListener(d),
Uses(uses) {}
12485 switch (
Node->getOpcode()) {
12497 if (TLI->isSDNodeAlwaysUniform(
N)) {
12498 assert(!TLI->isSDNodeSourceOfDivergence(
N, FLI, UA) &&
12499 "Conflicting divergence information!");
12502 if (TLI->isSDNodeSourceOfDivergence(
N, FLI, UA))
12504 for (
const auto &
Op :
N->ops()) {
12505 EVT VT =
Op.getValueType();
12508 if (VT != MVT::Other &&
Op.getNode()->isDivergent() &&
12520 if (
N->SDNodeBits.IsDivergent != IsDivergent) {
12521 N->SDNodeBits.IsDivergent = IsDivergent;
12524 }
while (!Worklist.
empty());
12527void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
12529 Order.reserve(AllNodes.size());
12531 unsigned NOps =
N.getNumOperands();
12534 Order.push_back(&
N);
12536 for (
size_t I = 0;
I != Order.size(); ++
I) {
12538 for (
auto *U :
N->users()) {
12539 unsigned &UnsortedOps = Degree[U];
12540 if (0 == --UnsortedOps)
12541 Order.push_back(U);
12546#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
12547void SelectionDAG::VerifyDAGDivergence() {
12548 std::vector<SDNode *> TopoOrder;
12549 CreateTopologicalOrder(TopoOrder);
12550 for (
auto *
N : TopoOrder) {
12552 "Divergence bit inconsistency detected");
12575 for (
unsigned i = 0; i != Num; ++i) {
12576 unsigned FromResNo = From[i].
getResNo();
12579 if (
Use.getResNo() == FromResNo) {
12581 Uses.push_back(Memo);
12588 RAUOVWUpdateListener Listener(*
this,
Uses);
12590 for (
unsigned UseIndex = 0, UseIndexEnd =
Uses.size();
12591 UseIndex != UseIndexEnd; ) {
12597 if (
User ==
nullptr) {
12603 RemoveNodeFromCSEMaps(
User);
12610 unsigned i =
Uses[UseIndex].Index;
12615 }
while (UseIndex != UseIndexEnd &&
Uses[UseIndex].
User ==
User);
12619 AddModifiedNodeToCSEMaps(
User);
12627 unsigned DAGSize = 0;
12643 unsigned Degree =
N.getNumOperands();
12646 N.setNodeId(DAGSize++);
12648 if (Q != SortedPos)
12649 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
12650 assert(SortedPos != AllNodes.end() &&
"Overran node list");
12654 N.setNodeId(Degree);
12666 unsigned Degree =
P->getNodeId();
12667 assert(Degree != 0 &&
"Invalid node degree");
12671 P->setNodeId(DAGSize++);
12672 if (
P->getIterator() != SortedPos)
12673 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(
P));
12674 assert(SortedPos != AllNodes.end() &&
"Overran node list");
12678 P->setNodeId(Degree);
12681 if (
Node.getIterator() == SortedPos) {
12685 dbgs() <<
"Overran sorted position:\n";
12687 dbgs() <<
"Checking if this is due to cycles\n";
12694 assert(SortedPos == AllNodes.end() &&
12695 "Topological sort incomplete!");
12697 "First node in topological sort is not the entry token!");
12698 assert(AllNodes.front().getNodeId() == 0 &&
12699 "First node in topological sort has non-zero id!");
12700 assert(AllNodes.front().getNumOperands() == 0 &&
12701 "First node in topological sort has operands!");
12702 assert(AllNodes.back().getNodeId() == (
int)DAGSize-1 &&
12703 "Last node in topologic sort has unexpected id!");
12704 assert(AllNodes.back().use_empty() &&
12705 "Last node in topologic sort has users!");
12712 SortedNodes.
clear();
12719 unsigned NumOperands =
N.getNumOperands();
12720 if (NumOperands == 0)
12724 RemainingOperands[&
N] = NumOperands;
12729 for (
unsigned i = 0U; i < SortedNodes.
size(); ++i) {
12730 const SDNode *
N = SortedNodes[i];
12731 for (
const SDNode *U :
N->users()) {
12734 if (U->getOpcode() == ISD::HANDLENODE)
12736 unsigned &NumRemOperands = RemainingOperands[U];
12737 assert(NumRemOperands &&
"Invalid number of remaining operands");
12739 if (!NumRemOperands)
12744 assert(SortedNodes.
size() == AllNodes.size() &&
"Node count mismatch");
12746 "First node in topological sort is not the entry token");
12747 assert(SortedNodes.
front()->getNumOperands() == 0 &&
12748 "First node in topological sort has operands");
12754 for (
SDNode *SD : DB->getSDNodes()) {
12757 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
12758 SD->setHasDebugValue(
true);
12760 DbgInfo->add(DB, isParameter);
12773 if (OldChain == NewMemOpChain || OldChain.
use_empty())
12774 return NewMemOpChain;
12777 OldChain, NewMemOpChain);
12780 return TokenFactor;
12799 if (OutFunction !=
nullptr)
12807 std::string ErrorStr;
12809 ErrorFormatter <<
"Undefined external symbol ";
12810 ErrorFormatter <<
'"' << Symbol <<
'"';
12820 return Const !=
nullptr && Const->isZero();
12829 return Const !=
nullptr && Const->isZero() && !Const->isNegative();
12834 return Const !=
nullptr && Const->isAllOnes();
12839 return Const !=
nullptr && Const->isOne();
12844 return Const !=
nullptr && Const->isMinSignedValue();
12848 unsigned OperandNo) {
12853 APInt Const = ConstV->getAPIntValue().trunc(V.getScalarValueSizeInBits());
12859 return Const.isZero();
12861 return Const.isOne();
12864 return Const.isAllOnes();
12866 return Const.isMinSignedValue();
12868 return Const.isMaxSignedValue();
12873 return OperandNo == 1 && Const.isZero();
12876 return OperandNo == 1 && Const.isOne();
12881 return ConstFP->isZero() &&
12882 (Flags.hasNoSignedZeros() || ConstFP->isNegative());
12884 return OperandNo == 1 && ConstFP->isZero() &&
12885 (Flags.hasNoSignedZeros() || !ConstFP->isNegative());
12887 return ConstFP->isExactlyValue(1.0);
12889 return OperandNo == 1 && ConstFP->isExactlyValue(1.0);
12891 case ISD::FMAXNUM: {
12893 EVT VT = V.getValueType();
12895 APFloat NeutralAF = !Flags.hasNoNaNs()
12897 : !Flags.hasNoInfs()
12900 if (Opcode == ISD::FMAXNUM)
12903 return ConstFP->isExactlyValue(NeutralAF);
12911 while (V.getOpcode() == ISD::BITCAST)
12917 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
12936 !DemandedElts[IndexC->getZExtValue()]) {
12955 unsigned NumBits = V.getScalarValueSizeInBits();
12958 return C && (
C->getAPIntValue().
countr_one() >= NumBits);
12962 bool AllowTruncation) {
12963 EVT VT =
N.getValueType();
12972 bool AllowTruncation) {
12979 EVT VecEltVT =
N->getValueType(0).getVectorElementType();
12981 EVT CVT = CN->getValueType(0);
12982 assert(CVT.
bitsGE(VecEltVT) &&
"Illegal splat_vector element extension");
12983 if (AllowTruncation || CVT == VecEltVT)
12990 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
12995 if (CN && (UndefElements.
none() || AllowUndefs)) {
12997 EVT NSVT =
N.getValueType().getScalarType();
12998 assert(CVT.
bitsGE(NSVT) &&
"Illegal build vector element extension");
12999 if (AllowTruncation || (CVT == NSVT))
13008 EVT VT =
N.getValueType();
13016 const APInt &DemandedElts,
13017 bool AllowUndefs) {
13024 BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
13026 if (CN && (UndefElements.
none() || AllowUndefs))
13041 return C &&
C->isZero();
13047 return C &&
C->isOne();
13052 return C &&
C->isExactlyValue(1.0);
13057 unsigned BitWidth =
N.getScalarValueSizeInBits();
13059 return C &&
C->isAllOnes() &&
C->getValueSizeInBits(0) ==
BitWidth;
13065 APInt(
C->getAPIntValue().getBitWidth(), 1));
13071 return C &&
C->isZero();
13076 return C &&
C->isZero();
13085 :
SDNode(
Opc, Order, dl, VTs), MemoryVT(memvt),
MMO(mmo) {
13095 (!
MMO->getType().isValid() ||
13109 std::vector<EVT> VTs;
13122const EVT *SDNode::getValueTypeList(
MVT VT) {
13123 static EVTArray SimpleVTArray;
13126 return &SimpleVTArray.VTs[VT.
SimpleTy];
13135 if (U.getResNo() ==
Value)
13173 return any_of(
N->op_values(),
13174 [
this](
SDValue Op) { return this == Op.getNode(); });
13188 unsigned Depth)
const {
13189 if (*
this == Dest)
return true;
13193 if (
Depth == 0)
return false;
13213 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
13219 if (Ld->isUnordered())
13220 return Ld->getChain().reachesChainWithoutSideEffects(Dest,
Depth-1);
13233 this->Flags &= Flags;
13239 bool AllowPartials) {
13254 unsigned CandidateBinOp =
Op.getOpcode();
13255 if (
Op.getValueType().isFloatingPoint()) {
13257 switch (CandidateBinOp) {
13259 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
13269 auto PartialReduction = [&](
SDValue Op,
unsigned NumSubElts) {
13270 if (!AllowPartials || !
Op)
13272 EVT OpVT =
Op.getValueType();
13275 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
13294 unsigned Stages =
Log2_32(
Op.getValueType().getVectorNumElements());
13296 for (
unsigned i = 0; i < Stages; ++i) {
13297 unsigned MaskEnd = (1 << i);
13299 if (
Op.getOpcode() != CandidateBinOp)
13300 return PartialReduction(PrevOp, MaskEnd);
13316 return PartialReduction(PrevOp, MaskEnd);
13319 for (
int Index = 0; Index < (int)MaskEnd; ++Index)
13320 if (Shuffle->
getMaskElt(Index) != (
int)(MaskEnd + Index))
13321 return PartialReduction(PrevOp, MaskEnd);
13328 while (
Op.getOpcode() == CandidateBinOp) {
13329 unsigned NumElts =
Op.getValueType().getVectorNumElements();
13338 if (NumSrcElts != (2 * NumElts))
13353 EVT VT =
N->getValueType(0);
13362 else if (NE > ResNE)
13365 if (
N->getNumValues() == 2) {
13368 EVT VT1 =
N->getValueType(1);
13372 for (i = 0; i != NE; ++i) {
13373 for (
unsigned j = 0, e =
N->getNumOperands(); j != e; ++j) {
13374 SDValue Operand =
N->getOperand(j);
13382 SDValue EltOp =
getNode(
N->getOpcode(), dl, {EltVT, EltVT1}, Operands);
13387 for (; i < ResNE; ++i) {
13399 assert(
N->getNumValues() == 1 &&
13400 "Can't unroll a vector with multiple results!");
13406 for (i= 0; i != NE; ++i) {
13407 for (
unsigned j = 0, e =
N->getNumOperands(); j != e; ++j) {
13408 SDValue Operand =
N->getOperand(j);
13416 Operands[j] = Operand;
13420 switch (
N->getOpcode()) {
13445 case ISD::ADDRSPACECAST: {
13448 ASC->getSrcAddressSpace(),
13449 ASC->getDestAddressSpace()));
13455 for (; i < ResNE; ++i)
13464 unsigned Opcode =
N->getOpcode();
13468 "Expected an overflow opcode");
13470 EVT ResVT =
N->getValueType(0);
13471 EVT OvVT =
N->getValueType(1);
13480 else if (NE > ResNE)
13492 for (
unsigned i = 0; i < NE; ++i) {
13493 SDValue Res =
getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
13516 if (LD->isVolatile() ||
Base->isVolatile())
13519 if (!LD->isSimple())
13521 if (LD->isIndexed() ||
Base->isIndexed())
13523 if (LD->getChain() !=
Base->getChain())
13525 EVT VT = LD->getMemoryVT();
13533 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *
this,
Offset))
13534 return (Dist * (int64_t)Bytes ==
Offset);
13543 int64_t GVOffset = 0;
13544 if (TLI->isGAPlusOffset(Ptr.
getNode(), GV, GVOffset)) {
13555 int FrameIdx = INT_MIN;
13556 int64_t FrameOffset = 0;
13558 FrameIdx = FI->getIndex();
13566 if (FrameIdx != INT_MIN) {
13571 return std::nullopt;
13581 "Split node must be a scalar type");
13586 return std::make_pair(
Lo,
Hi);
13595 LoVT = HiVT = TLI->getTypeToTransformTo(*
getContext(), VT);
13599 return std::make_pair(LoVT, HiVT);
13607 bool *HiIsEmpty)
const {
13617 "Mixing fixed width and scalable vectors when enveloping a type");
13622 *HiIsEmpty =
false;
13630 return std::make_pair(LoVT, HiVT);
13635std::pair<SDValue, SDValue>
13640 "Splitting vector with an invalid mixture of fixed and scalable "
13643 N.getValueType().getVectorMinNumElements() &&
13644 "More vector elements requested than available!");
13653 return std::make_pair(
Lo,
Hi);
13660 EVT VT =
N.getValueType();
13662 "Expecting the mask to be an evenly-sized vector");
13667 return std::make_pair(
Lo,
Hi);
13672 EVT VT =
N.getValueType();
13680 unsigned Start,
unsigned Count,
13682 EVT VT =
Op.getValueType();
13685 if (EltVT ==
EVT())
13688 for (
unsigned i = Start, e = Start +
Count; i != e; ++i) {
13700 return Val.MachineCPVal->getType();
13701 return Val.ConstVal->getType();
13705 unsigned &SplatBitSize,
13706 bool &HasAnyUndefs,
13707 unsigned MinSplatBits,
13708 bool IsBigEndian)
const {
13712 if (MinSplatBits > VecWidth)
13717 SplatValue =
APInt(VecWidth, 0);
13718 SplatUndef =
APInt(VecWidth, 0);
13725 assert(
NumOps > 0 &&
"isConstantSplat has 0-size build vector");
13728 for (
unsigned j = 0; j <
NumOps; ++j) {
13729 unsigned i = IsBigEndian ?
NumOps - 1 - j : j;
13731 unsigned BitPos = j * EltWidth;
13734 SplatUndef.
setBits(BitPos, BitPos + EltWidth);
13736 SplatValue.
insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
13738 SplatValue.
insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
13745 HasAnyUndefs = (SplatUndef != 0);
13748 while (VecWidth > 8) {
13753 unsigned HalfSize = VecWidth / 2;
13760 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
13761 MinSplatBits > HalfSize)
13764 SplatValue = HighValue | LowValue;
13765 SplatUndef = HighUndef & LowUndef;
13767 VecWidth = HalfSize;
13776 SplatBitSize = VecWidth;
13783 if (UndefElements) {
13784 UndefElements->
clear();
13791 for (
unsigned i = 0; i !=
NumOps; ++i) {
13792 if (!DemandedElts[i])
13795 if (
Op.isUndef()) {
13797 (*UndefElements)[i] =
true;
13798 }
else if (!Splatted) {
13800 }
else if (Splatted !=
Op) {
13806 unsigned FirstDemandedIdx = DemandedElts.
countr_zero();
13808 "Can only have a splat without a constant for all undefs.");
13825 if (UndefElements) {
13826 UndefElements->
clear();
13837 (*UndefElements)[
I] =
true;
13840 for (
unsigned SeqLen = 1; SeqLen <
NumOps; SeqLen *= 2) {
13841 Sequence.append(SeqLen,
SDValue());
13842 for (
unsigned I = 0;
I !=
NumOps; ++
I) {
13843 if (!DemandedElts[
I])
13845 SDValue &SeqOp = Sequence[
I % SeqLen];
13847 if (
Op.isUndef()) {
13852 if (SeqOp && !SeqOp.
isUndef() && SeqOp !=
Op) {
13858 if (!Sequence.empty())
13862 assert(Sequence.empty() &&
"Failed to empty non-repeating sequence pattern");
13903 const APFloat &APF = CN->getValueAPF();
13909 return IntVal.exactLogBase2();
13915 bool IsLittleEndian,
unsigned DstEltSizeInBits,
13923 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13924 "Invalid bitcast scale");
13929 BitVector SrcUndeElements(NumSrcOps,
false);
13931 for (
unsigned I = 0;
I != NumSrcOps; ++
I) {
13933 if (
Op.isUndef()) {
13934 SrcUndeElements.
set(
I);
13939 assert((CInt || CFP) &&
"Unknown constant");
13940 SrcBitElements[
I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
13941 : CFP->getValueAPF().bitcastToAPInt();
13945 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
13946 SrcBitElements, UndefElements, SrcUndeElements);
13951 unsigned DstEltSizeInBits,
13956 unsigned NumSrcOps = SrcBitElements.
size();
13957 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
13958 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13959 "Invalid bitcast scale");
13960 assert(NumSrcOps == SrcUndefElements.
size() &&
13961 "Vector size mismatch");
13963 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
13964 DstUndefElements.
clear();
13965 DstUndefElements.
resize(NumDstOps,
false);
13969 if (SrcEltSizeInBits <= DstEltSizeInBits) {
13970 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
13971 for (
unsigned I = 0;
I != NumDstOps; ++
I) {
13972 DstUndefElements.
set(
I);
13973 APInt &DstBits = DstBitElements[
I];
13974 for (
unsigned J = 0; J != Scale; ++J) {
13975 unsigned Idx = (
I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13976 if (SrcUndefElements[Idx])
13978 DstUndefElements.
reset(
I);
13979 const APInt &SrcBits = SrcBitElements[Idx];
13981 "Illegal constant bitwidths");
13982 DstBits.
insertBits(SrcBits, J * SrcEltSizeInBits);
13989 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
13990 for (
unsigned I = 0;
I != NumSrcOps; ++
I) {
13991 if (SrcUndefElements[
I]) {
13992 DstUndefElements.
set(
I * Scale, (
I + 1) * Scale);
13995 const APInt &SrcBits = SrcBitElements[
I];
13996 for (
unsigned J = 0; J != Scale; ++J) {
13997 unsigned Idx = (
I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13998 APInt &DstBits = DstBitElements[Idx];
13999 DstBits = SrcBits.
extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
14006 unsigned Opc =
Op.getOpcode();
14013std::optional<std::pair<APInt, APInt>>
14017 return std::nullopt;
14021 return std::nullopt;
14028 return std::nullopt;
14030 for (
unsigned i = 2; i <
NumOps; ++i) {
14032 return std::nullopt;
14035 if (Val != (Start + (Stride * i)))
14036 return std::nullopt;
14039 return std::make_pair(Start, Stride);
14045 for (i = 0, e = Mask.size(); i != e && Mask[i] < 0; ++i)
14055 for (
int Idx = Mask[i]; i != e; ++i)
14056 if (Mask[i] >= 0 && Mask[i] != Idx)
14064 SDValue N,
bool AllowOpaques)
const {
14068 return AllowOpaques || !
C->isOpaque();
14077 TLI->isOffsetFoldingLegal(GA))
14105 return std::nullopt;
14107 EVT VT =
N->getValueType(0);
14109 switch (TLI->getBooleanContents(
N.getValueType())) {
14115 return std::nullopt;
14121 return std::nullopt;
14129 assert(!
Node->OperandList &&
"Node already has operands");
14131 "too many operands to fit into SDNode");
14132 SDUse *
Ops = OperandRecycler.allocate(
14135 bool IsDivergent =
false;
14136 for (
unsigned I = 0;
I != Vals.
size(); ++
I) {
14138 Ops[
I].setInitial(Vals[
I]);
14139 EVT VT =
Ops[
I].getValueType();
14142 if (VT != MVT::Other &&
14145 IsDivergent =
true;
14150 if (!TLI->isSDNodeAlwaysUniform(Node)) {
14151 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, UA);
14152 Node->SDNodeBits.IsDivergent = IsDivergent;
14160 while (Vals.
size() > Limit) {
14161 unsigned SliceIdx = Vals.
size() - Limit;
14196 case ISD::FMAXNUM: {
14202 if (Opcode == ISD::FMAXNUM)
14207 case ISD::FMINIMUM:
14208 case ISD::FMAXIMUM: {
14213 if (Opcode == ISD::FMAXIMUM)
14237 const SDLoc &DLoc) {
14241 RTLIB::LibcallImpl LibcallImpl =
14242 TLI->getLibcallImpl(
static_cast<RTLIB::Libcall
>(LibFunc));
14243 if (LibcallImpl == RTLIB::Unsupported)
14251 TLI->getLibcallImplCallingConv(LibcallImpl),
14253 return TLI->LowerCallTo(CLI).second;
14257 assert(From && To &&
"Invalid SDNode; empty source SDValue?");
14258 auto I = SDEI.find(From);
14259 if (
I == SDEI.end())
14264 NodeExtraInfo NEI =
I->second;
14273 SDEI[To] = std::move(NEI);
14290 auto VisitFrom = [&](
auto &&Self,
const SDNode *
N,
int MaxDepth) {
14291 if (MaxDepth == 0) {
14297 if (!FromReach.
insert(
N).second)
14300 Self(Self,
Op.getNode(), MaxDepth - 1);
14305 auto DeepCopyTo = [&](
auto &&Self,
const SDNode *
N) {
14308 if (!Visited.
insert(
N).second)
14313 if (
N == To &&
Op.getNode() == EntrySDN) {
14318 if (!Self(Self,
Op.getNode()))
14332 for (
int PrevDepth = 0, MaxDepth = 16; MaxDepth <= 1024;
14333 PrevDepth = MaxDepth, MaxDepth *= 2, Visited.
clear()) {
14338 for (
const SDNode *
N : StartFrom)
14339 VisitFrom(VisitFrom,
N, MaxDepth - PrevDepth);
14343 LLVM_DEBUG(
dbgs() << __func__ <<
": MaxDepth=" << MaxDepth <<
" too low\n");
14351 errs() <<
"warning: incomplete propagation of SelectionDAG::NodeExtraInfo\n";
14352 assert(
false &&
"From subgraph too complex - increase max. MaxDepth?");
14354 SDEI[To] = std::move(NEI);
14368 if (!Visited.
insert(
N).second) {
14369 errs() <<
"Detected cycle in SelectionDAG\n";
14370 dbgs() <<
"Offending node:\n";
14371 N->dumprFull(DAG);
dbgs() <<
"\n";
14387 bool check = force;
14388#ifdef EXPENSIVE_CHECKS
14392 assert(
N &&
"Checking nonexistent SDNode");
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static bool isConstant(const MachineInstr &MI)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
#define __asan_unpoison_memory_region(p, size)
#define LLVM_LIKELY(EXPR)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseSet and SmallDenseSet classes.
This file contains constants used for implementing Dwarf debug support.
This file defines a hash set that can be used to remove duplication of nodes in a graph.
std::pair< Instruction::BinaryOps, Value * > OffsetOp
Find all possible pairs (BinOp, RHS) that BinOp V, RHS can be simplified.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB)
static bool shouldLowerMemFuncForSize(const MachineFunction &MF)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG)
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
Register const TargetRegisterInfo * TRI
This file provides utility analysis objects describing memory locations.
static MCRegister getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
Remove Loads Into Fake Uses
Contains matchers for matching SelectionDAG nodes and values.
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow)
static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo, BatchAAResults *BatchAA)
static SDValue getFixedOrScalableQuantity(SelectionDAG &DAG, const SDLoc &DL, EVT VT, Ty Quantity)
static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo)
Lower the call to 'memset' intrinsic function into a series of store operations.
static std::optional< APInt > FoldValueWithUndef(unsigned Opcode, const APInt &C1, bool IsUndef1, const APInt &C2, bool IsUndef2)
static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, SelectionDAG &DAG)
static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC, SDVTList VTList, ArrayRef< SDValue > OpList)
static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, const TargetLowering &TLI, const ConstantDataArraySlice &Slice)
getMemsetStringVal - Similar to getMemsetValue.
static cl::opt< bool > EnableMemCpyDAGOpt("enable-memcpy-dag-opt", cl::Hidden, cl::init(true), cl::desc("Gang up loads and stores generated by inlining of memcpy"))
static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B)
static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList)
AddNodeIDValueTypes - Value type lists are intern'd so we can represent them solely with their pointe...
static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef< int > M)
Swaps the values of N1 and N2.
static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice)
Returns true if memcpy source is constant data.
static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo)
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)
AddNodeIDOpcode - Add the node opcode to the NodeID data.
static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike)
static bool doNotCSE(SDNode *N)
doNotCSE - Return true if CSE should not be performed for this node.
static cl::opt< int > MaxLdStGlue("ldstmemcpy-glue-max", cl::desc("Number limit for gluing ld/st of memcpy."), cl::Hidden, cl::init(0))
static void AddNodeIDOperands(FoldingSetNodeID &ID, ArrayRef< SDValue > Ops)
AddNodeIDOperands - Various routines for adding operands to the NodeID data.
static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
Try to simplify vector concatenation to an input value, undef, or build vector.
static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, SelectionDAG &DAG, SDValue Ptr, int64_t Offset=0)
InferPointerInfo - If the specified ptr/offset is a frame index, infer a MachinePointerInfo record fr...
static bool isInTailCallPositionWrapper(const CallInst *CI, const SelectionDAG *SelDAG, bool AllowReturnsFirstArg)
static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N)
If this is an SDNode with special info, add this info to the NodeID data.
static bool gluePropagatesDivergence(const SDNode *Node)
Return true if a glue output should propagate divergence information.
static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G)
static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs)
makeVTList - Return an instance of the SDVTList struct initialized with the specified members.
static void checkForCyclesHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallPtrSetImpl< const SDNode * > &Checked, const llvm::SelectionDAG *DAG)
static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, SmallVector< SDValue, 32 > &OutChains, unsigned From, unsigned To, SmallVector< SDValue, 16 > &OutLoadChains, SmallVector< SDValue, 16 > &OutStoreChains)
static int isSignedOp(ISD::CondCode Opcode)
For an integer comparison, return 1 if the comparison is a signed operation and 2 if the result is an...
static std::optional< APInt > FoldValue(unsigned Opcode, const APInt &C1, const APInt &C2)
static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, unsigned AS)
static cl::opt< unsigned > MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192), cl::desc("DAG combiner limit number of steps when searching DAG " "for predecessor nodes"))
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file describes how to lower LLVM code to machine code.
static void removeOperands(MachineInstr &MI, unsigned i)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static int Lookup(ArrayRef< TableEntry > Table, unsigned Opcode)
static const fltSemantics & IEEEsingle()
cmpResult
IEEE-754R 5.11: Floating Point Comparison Relations.
static constexpr roundingMode rmTowardZero
static const fltSemantics & BFloat()
static const fltSemantics & IEEEquad()
static const fltSemantics & IEEEdouble()
static constexpr roundingMode rmTowardNegative
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardPositive
static const fltSemantics & IEEEhalf()
opStatus
IEEE-754R 7: Default exception handling.
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
opStatus divide(const APFloat &RHS, roundingMode RM)
void copySign(const APFloat &RHS)
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
opStatus subtract(const APFloat &RHS, roundingMode RM)
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
opStatus add(const APFloat &RHS, roundingMode RM)
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
opStatus multiply(const APFloat &RHS, roundingMode RM)
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
opStatus mod(const APFloat &RHS)
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt usub_sat(const APInt &RHS) const
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
unsigned popcount() const
Count the number of bits set.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
APInt abs() const
Get the absolute value.
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
void clearAllBits()
Set every bit to 0.
LLVM_ABI APInt rotr(unsigned rotateAmt) const
Rotate right by rotateAmt.
LLVM_ABI APInt reverseBits() const
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
bool sle(const APInt &RHS) const
Signed less or equal comparison.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sshl_sat(const APInt &RHS) const
LLVM_ABI APInt ushl_sat(const APInt &RHS) const
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
LLVM_ABI APInt rotl(unsigned rotateAmt) const
Rotate left by rotateAmt.
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
unsigned logBase2() const
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
APInt shl(unsigned shiftAmt) const
Left-shift function.
LLVM_ABI APInt byteSwap() const
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!...
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
void clearBits(unsigned LoBit, unsigned HiBit)
Clear the bits from LoBit (inclusive) to HiBit (exclusive) to 0.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
bool isOne() const
Determine if this is a value of 1.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
An arbitrary precision integer that knows its signedness.
unsigned getSrcAddressSpace() const
unsigned getDestAddressSpace() const
static Capacity get(size_t N)
Get the capacity of an array that can hold at least N elements.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
This is an SDNode representing atomic operations.
static LLVM_ABI BaseIndexOffset match(const SDNode *N, const SelectionDAG &DAG)
Parses tree in N for base, index, offset addresses.
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal=false)
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
void clear()
clear - Removes all bits from the bitvector.
bool none() const
none - Returns true if none of the bits are set.
size_type size() const
size - Returns the number of bits in this bitvector.
int64_t getOffset() const
unsigned getTargetFlags() const
const BlockAddress * getBlockAddress() const
The address of a basic block.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &RawBitElements, BitVector &UndefElements) const
Extract the raw bit data from a build vector of Undef, Constant or ConstantFP node elements.
static LLVM_ABI void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &DstBitElements, ArrayRef< APInt > SrcBitElements, BitVector &DstUndefElements, const BitVector &SrcUndefElements)
Recast bit data SrcBitElements to DstEltSizeInBits wide elements.
LLVM_ABI bool getRepeatedSequence(const APInt &DemandedElts, SmallVectorImpl< SDValue > &Sequence, BitVector *UndefElements=nullptr) const
Find the shortest repeating sequence of values in the build vector.
LLVM_ABI ConstantFPSDNode * getConstantFPSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant FP or null if this is not a constant FP splat.
LLVM_ABI std::optional< std::pair< APInt, APInt > > isConstantSequence() const
If this BuildVector is constant and represents the numerical series "<a, a+n, a+2n,...
LLVM_ABI SDValue getSplatValue(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted value or a null value if this is not a splat.
LLVM_ABI bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits=0, bool isBigEndian=false) const
Check if this is a constant splat, and if so, find the smallest element size that splats the vector.
LLVM_ABI ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
LLVM_ABI int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, uint32_t BitWidth) const
If this is a constant FP splat and the splatted constant FP is an exact power or 2,...
LLVM_ABI bool isConstant() const
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isValueValidForType(EVT VT, const APFloat &Val)
const APFloat & getValueAPF() const
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
ConstantFP - Floating Point Values [float, double].
const APFloat & getValue() const
This is the shared class of boolean and integer constants.
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
const APInt & getValue() const
Return the constant as an APInt value reference.
bool isMachineConstantPoolEntry() const
LLVM_ABI Type * getType() const
This class represents a range of values.
LLVM_ABI ConstantRange multiply(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a multiplication of a value in thi...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI ConstantRange zeroExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI ConstantRange signExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
LLVM_ABI APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
This is an important base class in LLVM.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
static LLVM_ABI ExtOps getExtOps(unsigned FromSize, unsigned ToSize, bool Signed)
Returns the ops for a zero- or sign-extension in a DIExpression.
static LLVM_ABI void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI const DIExpression * convertToVariadicExpression(const DIExpression *Expr)
If Expr is a non-variadic expression (i.e.
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
Base class for variables.
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
LLVM_ABI IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
Implements a dense probed hash-table based set.
const char * getSymbol() const
unsigned getTargetFlags() const
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Data structure describing the variable locations in a function.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
AttributeList getAttributes() const
Return the attribute list for this Function.
int64_t getOffset() const
LLVM_ABI unsigned getAddressSpace() const
unsigned getTargetFlags() const
const GlobalValue * getGlobal() const
bool isThreadLocal() const
If the value is "Thread Local", its value isn't shared by the threads.
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
This class is used to form a handle around another node that is persistent and is updated across invo...
const SDValue & getValue() const
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This is an important class for using LLVM in a threaded context.
This SDNode is used for LIFETIME_START/LIFETIME_END values.
This class is used to represent ISD::LOAD nodes.
static LocationSize precise(uint64_t Value)
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
const MDOperand & getOperand(unsigned I) const
static MVT getIntegerVT(unsigned BitWidth)
Abstract base class for all machine specific constantpool value subclasses.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
void setObjectAlignment(int ObjectIdx, Align Alignment)
setObjectAlignment - Change the alignment of the specified stack object.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
Function & getFunction()
Return the LLVM function that this machine code represents.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
A description of a memory reference used in the backend.
const MDNode * getRanges() const
Return the range tag for the memory reference.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
const MachinePointerInfo & getPointerInfo() const
Flags getFlags() const
Return the raw flags of the source value,.
This class contains meta information specific to a module.
An SDNode that represents everything that will be needed to construct a MachineInstr.
This class is used to represent an MGATHER node.
This class is used to represent an MLOAD node.
This class is used to represent an MSCATTER node.
This class is used to represent an MSTORE node.
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
LLVM_ABI MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT memvt, MachineMemOperand *MMO)
MachineMemOperand * MMO
Memory reference information.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
unsigned getRawSubclassData() const
Return the SubclassData value, without HasDebugValue.
EVT getMemoryVT() const
Return the type of the in-memory value.
Representation for a specific memory location.
A Module instance is used to store all the information related to an LLVM module.
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Pass interface - Implemented by all 'passes'.
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
unsigned getAddressSpace() const
Return the address space of the Pointer type.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
bool isNull() const
Test if the pointer held in the union is null, regardless of which type it is.
Analysis providing profile information.
void Deallocate(SubClass *E)
Deallocate - Release storage for the pointed-to object.
Wrapper class representing virtual and physical registers.
Keeps track of dbg_value information through SDISel.
LLVM_ABI void add(SDDbgValue *V, bool isParameter)
LLVM_ABI void erase(const SDNode *Node)
Invalidate all DbgValues attached to the node and remove it from the Node-to-DbgValues map.
Holds the information from a dbg_label node through SDISel.
Holds the information for a single machine location through SDISel; either an SDNode,...
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
@ SDNODE
Value is the result of an expression.
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
const DebugLoc & getDebugLoc() const
unsigned getIROrder() const
This class provides iterator support for SDUse operands that use a specific SDNode.
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
LLVM_ABI void dumprFull(const SelectionDAG *G=nullptr) const
printrFull to dbgs().
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
static constexpr size_t getMaxNumOperands()
Return the maximum number of operands that a SDNode can hold.
iterator_range< use_iterator > uses()
MemSDNodeBitfields MemSDNodeBits
LLVM_ABI void Profile(FoldingSetNodeID &ID) const
Gather unique data for the node.
bool getHasDebugValue() const
SDNodeFlags getFlags() const
void setNodeId(int Id)
Set unique node id.
LLVM_ABI void intersectFlagsWith(const SDNodeFlags Flags)
Clear any flags in this node that aren't also set in Flags.
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
bool use_empty() const
Return true if there are no uses of this node.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getNumOperands() const
Return the number of values used by this operation.
const SDValue & getOperand(unsigned Num) const
static LLVM_ABI bool areOnlyUsersOf(ArrayRef< const SDNode * > Nodes, const SDNode *N)
Return true if all the users of N are contained in Nodes.
use_iterator use_begin() const
Provide iteration support to walk over all uses of an SDNode.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if this node is an operand of N.
const APInt & getConstantOperandAPInt(unsigned Num) const
Helper method returns the APInt of a ConstantSDNode operand.
std::optional< APInt > bitcastToAPInt() const
LLVM_ABI bool hasPredecessor(const SDNode *N) const
Return true if N is a predecessor of this node.
LLVM_ABI bool hasAnyUseOfValue(unsigned Value) const
Return true if there are any use of the indicated value.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
op_iterator op_end() const
op_iterator op_begin() const
static use_iterator use_end()
LLVM_ABI void DropOperands()
Release the operands and set this node to have zero operands.
SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
Create an SDNode.
Represents a use of a SDNode.
SDNode * getUser()
This returns the SDNode that contains this Use.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if the referenced return value is an operand of N.
LLVM_ABI bool reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth=2) const
Return true if this operand (which must be a chain) reaches the specified operand without crossing an...
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
unsigned getOpcode() const
virtual void verifyTargetNode(const SelectionDAG &DAG, const SDNode *N) const
Checks that the given target-specific node is valid. Aborts if it is not.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getElementCount(const SDLoc &DL, EVT VT, ElementCount EC)
LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
LLVM_ABI SDValue getVPZeroExtendInReg(SDValue Op, SDValue Mask, SDValue EVL, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op)
Return the specified value casted to the target's desired shift amount type.
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsExpanding=false)
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
LLVM_ABI SDValue getSplatSourceVector(SDValue V, int &SplatIndex)
If V is a splatted value, return the source vector and its splat index.
LLVM_ABI SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI OverflowKind computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const
Determine if the result of the unsigned sub of 2 nodes can overflow.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI std::pair< SDValue, SDValue > getStrlen(SDValue Chain, const SDLoc &dl, SDValue Src, const CallInst *CI)
Lower a strlen operation into a target library call and return the resulting chain and call result as...
LLVM_ABI SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, ISD::LoadExtType ExtTy)
LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI std::optional< bool > isBoolConstant(SDValue N) const
Check if a value \op N is a constant using the target's BooleanContent for its type.
LLVM_ABI SDValue getStackArgumentTokenFactor(SDValue Chain)
Compute a TokenFactor to force all the incoming stack arguments to be loaded from the stack.
const TargetSubtargetInfo & getSubtarget() const
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI void updateDivergence(SDNode *N)
LLVM_ABI SDValue getSplatValue(SDValue V, bool LegalTypes=false)
If V is a splat vector, return its scalar source operand by extracting that element from the source v...
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getNeutralElement(unsigned Opcode, const SDLoc &DL, EVT VT, SDNodeFlags Flags)
Get the (commutative) neutral element for the given opcode, if it exists.
LLVM_ABI SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Value, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo)
LLVM_ABI SDValue getAtomicLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO)
LLVM_ABI SDNode * getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops, const SDNodeFlags Flags, bool AllowCommute=false)
Get the specified node if it's already available, or else return NULL.
LLVM_ABI SDValue getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, uint64_t Guid, uint64_t Index, uint32_t Attr)
Creates a PseudoProbeSDNode with function GUID Guid and the index of the block Index it is probing,...
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDNode * SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT)
These are used for target selectors to mutate the specified node to have the specified return type,...
LLVM_ABI SelectionDAG(const TargetMachine &TM, CodeGenOptLevel)
LLVM_ABI SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBitcastedSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getStridedLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
Gets a node for an atomic cmpxchg op.
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
LLVM_ABI void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, unsigned Num)
Like ReplaceAllUsesOfValueWith, but for multiple values at once.
LLVM_ABI SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue getSymbolFunctionGlobalAddress(SDValue Op, Function **TargetFunction=nullptr)
Return a GlobalAddress of the function from the current module with name matching the given ExternalS...
LLVM_ABI std::optional< unsigned > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
OverflowKind
Used to represent the possible overflow behavior of an operation.
static LLVM_ABI unsigned getHasPredecessorMaxSteps()
LLVM_ABI bool haveNoCommonBitsSet(SDValue A, SDValue B) const
Return true if A and B have no common bits set.
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI bool cannotBeOrderedNegativeFP(SDValue Op) const
Test whether the given float value is known to be positive.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI bool calculateDivergence(SDNode *N)
LLVM_ABI SDValue getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getAssertAlign(const SDLoc &DL, SDValue V, Align A)
Return an AssertAlignSDNode.
LLVM_ABI SDNode * mutateStrictFPToFP(SDNode *Node)
Mutate the specified strict FP node to its non-strict equivalent, unlinking the node from its chain a...
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI bool canIgnoreSignBitOfZero(const SDUse &Use) const
Check if a use of a float value is insensitive to signed zeros.
LLVM_ABI bool SignBitIsZeroFP(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero, for a floating-point value.
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getBitcastedZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
LLVM_ABI SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO)
Gets a node for an atomic op, produces result (if relevant) and chain and takes 2 operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
LLVM_ABI SDValue getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be an integer vector, to the vector-type VT,...
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI bool isEqualTo(SDValue A, SDValue B) const
Test whether two SDValues are known to compare equal.
static constexpr unsigned MaxRecursionDepth
LLVM_ABI SDValue getStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
bool isGuaranteedNotToBePoison(SDValue Op, unsigned Depth=0) const
Return true if this function can prove that Op is never poison.
LLVM_ABI SDValue expandVACopy(SDNode *Node)
Expand the specified ISD::VACOPY node as the Legalize pass would.
LLVM_ABI SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI void dump(bool Sorted=false) const
Dump the textual format of this DAG.
LLVM_ABI APInt computeVectorKnownZeroElements(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
For each demanded element of a vector, see if it is known to be zero.
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
bool NewNodesMustHaveLegalTypes
When true, additional steps are taken to ensure that getConstant() and similar functions return DAG n...
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
LLVM_ABI void salvageDebugInfo(SDNode &N)
To be invoked on an SDNode that is slated to be erased.
LLVM_ABI SDNode * MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef< SDValue > Ops)
This mutates the specified node to have the specified return type, opcode, and operands.
LLVM_ABI std::pair< SDValue, SDValue > UnrollVectorOverflowOp(SDNode *N, unsigned ResNE=0)
Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
allnodes_const_iterator allnodes_begin() const
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
LLVM_ABI SDValue getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI void DeleteNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
LLVM_ABI SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal)
Try to simplify a select/vselect into 1 of its operands or a constant.
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI bool isConstantFPBuildVectorOrConstantFP(SDValue N) const
Test whether the given value is a constant FP or similar node.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue expandVAArg(SDNode *Node)
Expand the specified ISD::VAARG node as the Legalize pass would.
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
const SelectionDAGTargetInfo & getSelectionDAGInfo() const
LLVM_ABI bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes, int Dist) const
Return true if loads are next to each other and can be merged.
LLVM_ABI SDValue getMaskedHistogram(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDDbgLabel * getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O)
Creates a SDDbgLabel node.
LLVM_ABI SDValue getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI OverflowKind computeOverflowForUnsignedMul(SDValue N0, SDValue N1) const
Determine if the result of the unsigned mul of 2 nodes can overflow.
LLVM_ABI void copyExtraInfo(SDNode *From, SDNode *To)
Copy extra info associated with one node to another.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue SV, unsigned Align)
VAArg produces a result and token chain, and takes a pointer and a source value as input.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getLoadFFVP(EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachineMemOperand *MMO)
LLVM_ABI SDValue getTypeSize(const SDLoc &DL, EVT VT, TypeSize TS)
LLVM_ABI SDValue getMDNode(const MDNode *MD)
Return an MDNodeSDNode which holds an MDNode.
LLVM_ABI void clear()
Clear state and free memory necessary to make this SelectionDAG ready to process a new block.
LLVM_ABI std::pair< SDValue, SDValue > getMemcmp(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, const CallInst *CI)
Lower a memcmp operation into a target library call and return the resulting chain and call result as...
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI SDValue makeStateFunctionCall(unsigned LibFunc, SDValue Ptr, SDValue InChain, const SDLoc &DLoc)
Helper used to make a call to a library function that has one argument of pointer type.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
LLVM_ABI SDValue getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getSrcValue(const Value *v)
Construct a node to track a Value* through the backend.
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI OverflowKind computeOverflowForSignedMul(SDValue N0, SDValue N1) const
Determine if the result of the signed mul of 2 nodes can overflow.
LLVM_ABI MaybeAlign InferPtrAlign(SDValue Ptr) const
Infer alignment of a load / store address.
LLVM_ABI bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if '(Op & Mask) == Mask'.
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNodes()
This method deletes all unreachable nodes in the SelectionDAG.
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI void AddDbgLabel(SDDbgLabel *DB)
Add a dbg_label SDNode.
bool isConstantValueOfAnyType(SDValue N) const
LLVM_ABI SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand)
A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI SDDbgValue * getVRegDbgValue(DIVariable *Var, DIExpression *Expr, Register VReg, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a VReg SDDbgValue node.
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI SDValue getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI std::optional< unsigned > getValidMinimumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI std::pair< SDValue, SDValue > getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT)
Convert Op, which must be a STRICT operation of float type, to the float type VT, by either extending...
LLVM_ABI std::pair< SDValue, SDValue > SplitEVL(SDValue N, EVT VecVT, const SDLoc &DL)
Split the explicit vector length parameter of a VP operation.
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getVPLogicalNOT(const SDLoc &DL, SDValue Val, SDValue Mask, SDValue EVL, EVT VT)
Create a vector-predicated logical NOT operation as (VP_XOR Val, BooleanOne, Mask,...
LLVM_ABI SDValue getMaskFromElementCount(const SDLoc &DL, EVT VT, ElementCount Len)
Return a vector with the first 'Len' lanes set to true and remaining lanes set to false.
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
iterator_range< allnodes_iterator > allnodes()
LLVM_ABI SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI SDValue WidenVector(const SDValue &N, const SDLoc &DL)
Widen the vector up to the next power of two using INSERT_SUBVECTOR.
LLVM_ABI bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
LLVM_ABI SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, const MDNode *Ranges=nullptr, bool IsExpanding=false)
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDDbgValue * getConstantDbgValue(DIVariable *Var, DIExpression *Expr, const Value *C, const DebugLoc &DL, unsigned O)
Creates a constant SDDbgValue node.
LLVM_ABI SDValue getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain, int FrameIndex)
Creates a LifetimeSDNode that starts (IsStart==true) or ends (IsStart==false) the lifetime of the Fra...
ArrayRef< SDDbgValue * > GetDbgValues(const SDNode *SD) const
Get the debug values which reference the given SDNode.
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI OverflowKind computeOverflowForSignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the signed addition of 2 nodes can overflow.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI unsigned AssignTopologicalOrder()
Topological-sort the AllNodes list and a assign a unique node id for each node in the DAG based on th...
ilist< SDNode >::size_type allnodes_size() const
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
LLVM_ABI SDValue FoldConstantBuildVector(BuildVectorSDNode *BV, const SDLoc &DL, EVT DstEltVT)
Fold BUILD_VECTOR of constants/undefs to the destination type BUILD_VECTOR of constants/undefs elemen...
LLVM_ABI SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsCompressing=false)
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI bool MaskedVectorIsZero(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
Return true if 'Op' is known to be zero in DemandedElts.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
LLVM_ABI SDDbgValue * getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr, unsigned FI, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a FrameIndex SDDbgValue node.
LLVM_ABI SDValue getExtStridedLoadVP(ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI SDValue getJumpTable(int JTI, EVT VT, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI bool isBaseWithConstantOffset(SDValue Op) const
Return true if the specified operand is an ISD::ADD with a ConstantSDNode on the right-hand side,...
LLVM_ABI SDValue getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be of integer type, to the vector-type integer type VT,...
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void getTopologicallyOrderedNodes(SmallVectorImpl< const SDNode * > &SortedNodes) const
Get all the nodes in their topological order without modifying any states.
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to extend the Op as a pointer value assuming it was the smaller SrcTy ...
LLVM_ABI bool canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts, bool PoisonOnly=false, bool ConsiderFlags=true, unsigned Depth=0) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
LLVM_ABI OverflowKind computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the unsigned addition of 2 nodes can overflow.
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT SVT, MachineMemOperand *MMO, bool IsCompressing=false)
LLVM_ABI void canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, SDValue &N2) const
Swap N1 and N2 if Opcode is a commutative binary opcode and the canonical form expects the opposite o...
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVM_ABI bool isKnownToBeAPowerOfTwoFP(SDValue Val, unsigned Depth=0) const
Test if the given fp value is known to be an integer power-of-2, either positive or negative.
LLVM_ABI OverflowKind computeOverflowForSignedSub(SDValue N0, SDValue N1) const
Determine if the result of the signed sub of 2 nodes can overflow.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
LLVM_ABI SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, SDNodeFlags Flags)
Try to simplify a floating-point binary operation into 1 of its operands or a constant.
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI SDValue getDeactivationSymbol(const GlobalValue *GV)
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue getMCSymbol(MCSymbol *Sym, EVT VT)
LLVM_ABI bool isUndef(unsigned Opcode, ArrayRef< SDValue > Ops)
Return true if the result of this operation is always undefined.
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
LLVM_ABI std::pair< EVT, EVT > GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, bool *HiIsEmpty) const
Compute the VTs needed for the low/hi parts of a type, dependent on an enveloping VT that has been sp...
LLVM_ABI SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops)
Fold floating-point operations when all operands are constants and/or undefined.
LLVM_ABI void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE, Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, UniformityInfo *UA, ProfileSummaryInfo *PSIin, BlockFrequencyInfo *BFIin, MachineModuleInfo &MMI, FunctionVarLocs const *FnVarLocs)
Prepare this SelectionDAG to process code in the given MachineFunction.
LLVM_ABI std::optional< ConstantRange > getValidShiftAmountRange(SDValue V, const APInt &DemandedElts, unsigned Depth) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue FoldSymbolOffset(unsigned Opcode, EVT VT, const GlobalAddressSDNode *GA, const SDNode *N2)
LLVM_ABI SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand, SDValue Subreg)
A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDDbgValue * getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N, unsigned R, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a SDDbgValue node.
LLVM_ABI SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base, SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, ISD::LoadExtType, bool IsExpanding=false)
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, ArrayRef< ISD::NodeType > CandidateBinOps, bool AllowPartials=false)
Match a binop + shuffle pyramid that represents a horizontal reduction over the elements of a vector ...
LLVM_ABI bool isADDLike(SDValue Op, bool NoWrap=false) const
Return true if the specified operand is an ISD::OR or ISD::XOR node that can be treated as an ISD::AD...
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
LLVM_ABI SDValue simplifyShift(SDValue X, SDValue Y)
Try to simplify a shift into 1 of its operands or a constant.
LLVM_ABI void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits=0, unsigned SizeInBits=0, bool InvalidateDbg=true)
Transfer debug values from one node to another, while optionally generating fragment expressions for ...
LLVM_ABI SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a logical NOT operation as (XOR Val, BooleanOne).
LLVM_ABI SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, bool IsTruncating=false)
ilist< SDNode >::iterator allnodes_iterator
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
int getMaskElt(unsigned Idx) const
ArrayRef< int > getMask() const
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
static LLVM_ABI bool isSplatMask(ArrayRef< int > Mask)
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
Completely target-dependent object reference.
int64_t getOffset() const
unsigned getTargetFlags() const
Provides information about what library functions are available for the current target.
virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const
Return true if it is beneficial to convert a load of a constant to just the constant itself.
const TargetMachine & getTargetMachine() const
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
unsigned getMaxStoresPerMemcpy(bool OptSize) const
Get maximum # of store operations permitted for llvm.memcpy.
virtual bool shallExtractConstSplatVectorElementToStore(Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const
Return true if the target shall perform extract vector element and store given that the vector is kno...
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
BooleanContent
Enum that describes how the target represents true/false values.
@ ZeroOrOneBooleanContent
@ UndefinedBooleanContent
@ ZeroOrNegativeOneBooleanContent
unsigned getMaxStoresPerMemmove(bool OptSize) const
Get maximum # of store operations permitted for llvm.memmove.
virtual unsigned getMaxGluedStoresPerMemcpy() const
Get maximum # of store operations to be glued together.
std::vector< ArgListEntry > ArgListTy
unsigned getMaxStoresPerMemset(bool OptSize) const
Get maximum # of store operations permitted for llvm.memset.
virtual bool isLegalStoreImmediate(int64_t Value) const
Return true if the specified immediate is legal for the value input of a store instruction.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool findOptimalMemOpLowering(LLVMContext &Context, std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
Primary interface to the complete machine description for the target machine.
virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast between SrcAS and DestAS is a noop.
const Triple & getTargetTriple() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const SelectionDAGTargetInfo * getSelectionDAGInfo() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
virtual const TargetLowering * getTargetLowering() const
bool isOSDarwin() const
Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, DriverKit, XROS, or bridgeOS).
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
A Use represents the edge between a Value definition and its users.
LLVM_ABI unsigned getOperandNo() const
Return the operand # of this use in its User.
LLVM_ABI void set(Value *Val)
User * getUser() const
Returns the User that contains this Use.
Value * getOperand(unsigned i) const
This class is used to represent an VP_GATHER node.
This class is used to represent a VP_LOAD node.
This class is used to represent an VP_SCATTER node.
This class is used to represent a VP_STORE node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr bool isKnownEven() const
A return value of true indicates we know at compile time that the number of elements (vscale * Min) i...
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt mulhu(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on zero-extended operands.
LLVM_ABI APInt avgCeilU(const APInt &C1, const APInt &C2)
Compute the ceil of the unsigned average of C1 and C2.
LLVM_ABI APInt avgFloorU(const APInt &C1, const APInt &C2)
Compute the floor of the unsigned average of C1 and C2.
LLVM_ABI APInt fshr(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift right.
LLVM_ABI APInt mulhs(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on sign-extended operands.
APInt abds(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be signed.
LLVM_ABI APInt fshl(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift left.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
APInt abdu(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be unsigned.
LLVM_ABI APInt avgFloorS(const APInt &C1, const APInt &C2)
Compute the floor of the signed average of C1 and C2.
LLVM_ABI APInt avgCeilS(const APInt &C1, const APInt &C2)
Compute the ceil of the signed average of C1 and C2.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, bool isIntegerLike)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types a...
LLVM_ABI CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical AND between different comparisons of identical values: ((X op1 Y) & (X...
LLVM_ABI bool isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are ~0 ...
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ POISON
POISON - A poison node.
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ BSWAP
Byte Swap and Counting operators.
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ TargetIndex
TargetIndex - Like a constant pool entry, but with completely target-dependent semantics.
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
@ SSUBO
Same for subtraction.
@ STEP_VECTOR
STEP_VECTOR(IMM) - Returns a scalable vector whose lanes are comprised of a linear sequence of unsign...
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ UNDEF
UNDEF - An undefined node.
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ AssertAlign
AssertAlign - These nodes record if a register contains a value that has a known alignment and the tr...
@ BasicBlock
Various leaf nodes.
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ TargetGlobalAddress
TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or anything else with this node...
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ SPLAT_VECTOR_PARTS
SPLAT_VECTOR_PARTS(SCALAR1, SCALAR2, ...) - Returns a vector with the scalar values joined together a...
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
bool matchUnaryFpPredicate(SDValue Op, std::function< bool(ConstantFPSDNode *)> Match, bool AllowUndefs=false)
Hook for matching ConstantFPSDNode predicate.
bool isExtOpcode(unsigned Opcode)
LLVM_ABI bool isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are 0 o...
LLVM_ABI bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed)
Returns true if the specified node is a vector where all elements can be truncated to the specified e...
LLVM_ABI bool isVPBinaryOp(unsigned Opcode)
Whether this is a vector-predicated binary operation opcode.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI std::optional< unsigned > getBaseOpcodeForVP(unsigned Opcode, bool hasFPExcept)
Translate this VP Opcode to its corresponding non-VP Opcode.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
LLVM_ABI std::optional< unsigned > getVPMaskIdx(unsigned Opcode)
The operand position of the vector mask.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
LLVM_ABI std::optional< unsigned > getVPExplicitVectorLengthIdx(unsigned Opcode)
The operand position of the explicit vector length parameter.
bool isEXTLoad(const SDNode *N)
Returns true if the specified node is a EXTLOAD.
LLVM_ABI bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
LLVM_ABI bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI std::optional< unsigned > getVPForBaseOpcode(unsigned Opcode)
Translate this non-VP Opcode to its corresponding VP Opcode.
MemIndexType
MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's index parameter when calcula...
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool matchUnaryPredicateImpl(SDValue Op, std::function< bool(ConstNodeType *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Attempt to match a unary predicate against a scalar/splat constant or every element of a constant BUI...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI NodeType getInverseMinMaxOpcode(unsigned MinMaxOpc)
Given a MinMaxOpc of ISD::(U|S)MIN or ISD::(U|S)MAX, returns ISD::(U|S)MAX and ISD::(U|S)MIN,...
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
LLVM_ABI bool isVPReduction(unsigned Opcode)
Whether this is a vector-predicated reduction opcode.
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
LLVM_ABI bool isBuildVectorOfConstantFPSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantFPSDNode or undef.
bool isSEXTLoad(const SDNode *N)
Returns true if the specified node is a SEXTLOAD.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
LLVM_ABI bool isVPOpcode(unsigned Opcode)
Whether this is a vector-predicated Opcode.
LLVM_ABI CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical OR between different comparisons of identical values: ((X op1 Y) | (X ...
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
initializer< Ty > init(const Ty &Val)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
NodeAddr< NodeBase * > Node
This is an optimization pass for GlobalISel generic memory operations.
GenericUniformityInfo< SSAContext > UniformityInfo
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
bool operator<(int64_t V1, const APSInt &V2)
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI SDValue peekThroughExtractSubvectors(SDValue V)
Return the non-extracted vector source operand of V if it exists.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI bool isAllOnesOrAllOnesSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant -1 integer or a splatted vector of a constant -1 integer (with...
LLVM_ABI SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs)
If V is a bitwise not, returns the inverted operand.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
LLVM_ABI bool isOneOrOneSplatFP(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant floating-point value, or a splatted vector of a constant float...
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
auto cast_or_null(const Y &Val)
LLVM_ABI bool isNullOrNullSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isMinSignedConstant(SDValue V)
Returns true if V is a constant min signed integer value.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
LLVM_ABI SDValue peekThroughInsertVectorElt(SDValue V, const APInt &DemandedElts)
Recursively peek through INSERT_VECTOR_ELT nodes, returning the source vector operand of V,...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI void checkForCycles(const SelectionDAG *DAG, bool force=false)
void sort(IteratorTy Start, IteratorTy End)
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI SDValue peekThroughTruncates(SDValue V)
Return the non-truncated source operand of V if it exists.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
constexpr std::underlying_type_t< Enum > to_underlying(Enum E)
Returns underlying integer value of an enum.
FunctionAddr VTableAddr Count
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI SDValue peekThroughOneUseBitcasts(SDValue V)
Return the non-bitcasted and one-use source operand of V if it exists.
CodeGenOptLevel
Code generation optimization level.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
LLVM_ABI bool isNullConstantOrUndef(SDValue V)
Returns true if V is a constant integer zero or an UNDEF node.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
OutputIt copy(R &&Range, OutputIt Out)
constexpr unsigned BitWidth
bool funcReturnsFirstArgOfCall(const CallInst &CI)
Returns true if the parent of CI returns CI's first argument after calling CI.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isZeroOrZeroSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI bool isZeroOrZeroSplatFP(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant (+/-)0.0 floating-point value or a splatted vector thereof (wi...
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
LLVM_ABI bool isOnesOrOnesSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V, unsigned OperandNo)
Returns true if V is a neutral element of Opc with Flags.
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
MDNode * TBAAStruct
The tag for type-based alias analysis (tbaa struct).
MDNode * TBAA
The tag for type-based alias analysis.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Represents offset+length into a ConstantDataArray.
uint64_t Length
Length of the slice.
uint64_t Offset
Slice starts at this Offset.
void move(uint64_t Delta)
Moves the Offset and adjusts Length accordingly.
const ConstantDataArray * Array
ConstantDataArray pointer.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
intptr_t getRawBits() const
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
uint64_t getScalarSizeInBits() const
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isFixedLengthVector() const
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isExtended() const
Test if the given EVT is extended (as opposed to being simple).
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
LLVM_ABI KnownBits sextInReg(unsigned SrcBitWidth) const
Return known bits for a in-register sign extension of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
bool isZero() const
Returns true if value is all zero.
void makeNonNegative()
Make this value non-negative.
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
static LLVM_ABI std::optional< bool > ne(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_NE result.
void makeNegative()
Make this value negative.
void setAllConflict()
Make all bits known to be both zero and one.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
KnownBits byteSwap() const
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
void setAllZero()
Make all bits known to be zero and discard any previous information.
KnownBits reverseBits() const
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
void resetAll()
Resets the known state of all bits.
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
static LLVM_ABI KnownBits abdu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for abdu(LHS, RHS).
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
static LLVM_ABI KnownBits avgFloorU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorU.
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
static LLVM_ABI KnownBits computeForSubBorrow(const KnownBits &LHS, KnownBits RHS, const KnownBits &Borrow)
Compute known bits results from subtracting RHS from LHS with 1-bit Borrow.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits abds(KnownBits LHS, KnownBits RHS)
Compute known bits for abds(LHS, RHS).
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
bool isStrictlyPositive() const
Returns true if this value is known to be positive.
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static LLVM_ABI KnownBits avgFloorS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorS.
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
bool isNegative() const
Returns true if this value is known to be negative.
static LLVM_ABI KnownBits computeForAddCarry(const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry)
Compute known bits resulting from adding LHS, RHS and a 1-bit Carry.
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
static LLVM_ABI KnownBits avgCeilU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilU.
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
static LLVM_ABI KnownBits avgCeilS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilS.
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI bool isDereferenceable(unsigned Size, LLVMContext &C, const DataLayout &DL) const
Return true if memory region [V, V+Offset+Size) is known to be dereferenceable.
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
PointerUnion< const Value *, const PseudoSourceValue * > V
This is the IR pointer value for the access, or it is null if unknown.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign, bool IsZeroMemset, bool IsVolatile)
static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign, Align SrcAlign, bool IsVolatile, bool MemcpyStrSrc=false)
These are IR-level optimization flags that may be propagated to SDNodes.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
Clients of various APIs that cause global effects on the DAG can optionally implement this interface.
DAGUpdateListener *const Next
virtual void NodeDeleted(SDNode *N, SDNode *E)
The node N that was deleted and, if E is not null, an equivalent node E that replaced it.
virtual void NodeInserted(SDNode *N)
The node N that was inserted.
virtual void NodeUpdated(SDNode *N)
The node N that was updated.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)