LLVM 22.0.0git
SelectionDAG.cpp
Go to the documentation of this file.
1//===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the SelectionDAG class.
10//
11//===----------------------------------------------------------------------===//
12
14#include "SDNodeDbgValue.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/APSInt.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/BitVector.h"
20#include "llvm/ADT/DenseSet.h"
21#include "llvm/ADT/FoldingSet.h"
22#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/Twine.h"
51#include "llvm/IR/Constant.h"
52#include "llvm/IR/Constants.h"
53#include "llvm/IR/DataLayout.h"
55#include "llvm/IR/DebugLoc.h"
57#include "llvm/IR/Function.h"
58#include "llvm/IR/GlobalValue.h"
59#include "llvm/IR/Metadata.h"
60#include "llvm/IR/Type.h"
64#include "llvm/Support/Debug.h"
73#include <algorithm>
74#include <cassert>
75#include <cstdint>
76#include <cstdlib>
77#include <limits>
78#include <optional>
79#include <set>
80#include <string>
81#include <utility>
82#include <vector>
83
84using namespace llvm;
85using namespace llvm::SDPatternMatch;
86
87/// makeVTList - Return an instance of the SDVTList struct initialized with the
88/// specified members.
89static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
90 SDVTList Res = {VTs, NumVTs};
91 return Res;
92}
93
94// Default null implementations of the callbacks.
98
99void SelectionDAG::DAGNodeDeletedListener::anchor() {}
100void SelectionDAG::DAGNodeInsertedListener::anchor() {}
101
102#define DEBUG_TYPE "selectiondag"
103
104static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
105 cl::Hidden, cl::init(true),
106 cl::desc("Gang up loads and stores generated by inlining of memcpy"));
107
108static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
109 cl::desc("Number limit for gluing ld/st of memcpy."),
110 cl::Hidden, cl::init(0));
111
113 MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192),
114 cl::desc("DAG combiner limit number of steps when searching DAG "
115 "for predecessor nodes"));
116
118 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
119}
120
122
123//===----------------------------------------------------------------------===//
124// ConstantFPSDNode Class
125//===----------------------------------------------------------------------===//
126
127/// isExactlyValue - We don't rely on operator== working on double values, as
128/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
129/// As such, this method can be used to do an exact bit-for-bit comparison of
130/// two floating point values.
132 return getValueAPF().bitwiseIsEqual(V);
133}
134
136 const APFloat& Val) {
137 assert(VT.isFloatingPoint() && "Can only convert between FP types");
138
139 // convert modifies in place, so make a copy.
140 APFloat Val2 = APFloat(Val);
141 bool losesInfo;
143 &losesInfo);
144 return !losesInfo;
145}
146
147//===----------------------------------------------------------------------===//
148// ISD Namespace
149//===----------------------------------------------------------------------===//
150
151bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
152 if (N->getOpcode() == ISD::SPLAT_VECTOR) {
153 if (auto OptAPInt = N->getOperand(0)->bitcastToAPInt()) {
154 unsigned EltSize =
155 N->getValueType(0).getVectorElementType().getSizeInBits();
156 SplatVal = OptAPInt->trunc(EltSize);
157 return true;
158 }
159 }
160
161 auto *BV = dyn_cast<BuildVectorSDNode>(N);
162 if (!BV)
163 return false;
164
165 APInt SplatUndef;
166 unsigned SplatBitSize;
167 bool HasUndefs;
168 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
169 // Endianness does not matter here. We are checking for a splat given the
170 // element size of the vector, and if we find such a splat for little endian
171 // layout, then that should be valid also for big endian (as the full vector
172 // size is known to be a multiple of the element size).
173 const bool IsBigEndian = false;
174 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
175 EltSize, IsBigEndian) &&
176 EltSize == SplatBitSize;
177}
178
179// FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
180// specializations of the more general isConstantSplatVector()?
181
182bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
183 // Look through a bit convert.
184 while (N->getOpcode() == ISD::BITCAST)
185 N = N->getOperand(0).getNode();
186
187 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
188 APInt SplatVal;
189 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
190 }
191
192 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
193
194 unsigned i = 0, e = N->getNumOperands();
195
196 // Skip over all of the undef values.
197 while (i != e && N->getOperand(i).isUndef())
198 ++i;
199
200 // Do not accept an all-undef vector.
201 if (i == e) return false;
202
203 // Do not accept build_vectors that aren't all constants or which have non-~0
204 // elements. We have to be a bit careful here, as the type of the constant
205 // may not be the same as the type of the vector elements due to type
206 // legalization (the elements are promoted to a legal type for the target and
207 // a vector of a type may be legal when the base element type is not).
208 // We only want to check enough bits to cover the vector elements, because
209 // we care if the resultant vector is all ones, not whether the individual
210 // constants are.
211 SDValue NotZero = N->getOperand(i);
212 if (auto OptAPInt = NotZero->bitcastToAPInt()) {
213 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
214 if (OptAPInt->countr_one() < EltSize)
215 return false;
216 } else
217 return false;
218
219 // Okay, we have at least one ~0 value, check to see if the rest match or are
220 // undefs. Even with the above element type twiddling, this should be OK, as
221 // the same type legalization should have applied to all the elements.
222 for (++i; i != e; ++i)
223 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
224 return false;
225 return true;
226}
227
228bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
229 // Look through a bit convert.
230 while (N->getOpcode() == ISD::BITCAST)
231 N = N->getOperand(0).getNode();
232
233 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
234 APInt SplatVal;
235 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
236 }
237
238 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
239
240 bool IsAllUndef = true;
241 for (const SDValue &Op : N->op_values()) {
242 if (Op.isUndef())
243 continue;
244 IsAllUndef = false;
245 // Do not accept build_vectors that aren't all constants or which have non-0
246 // elements. We have to be a bit careful here, as the type of the constant
247 // may not be the same as the type of the vector elements due to type
248 // legalization (the elements are promoted to a legal type for the target
249 // and a vector of a type may be legal when the base element type is not).
250 // We only want to check enough bits to cover the vector elements, because
251 // we care if the resultant vector is all zeros, not whether the individual
252 // constants are.
253 if (auto OptAPInt = Op->bitcastToAPInt()) {
254 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
255 if (OptAPInt->countr_zero() < EltSize)
256 return false;
257 } else
258 return false;
259 }
260
261 // Do not accept an all-undef vector.
262 if (IsAllUndef)
263 return false;
264 return true;
265}
266
268 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
269}
270
272 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
273}
274
276 if (N->getOpcode() != ISD::BUILD_VECTOR)
277 return false;
278
279 for (const SDValue &Op : N->op_values()) {
280 if (Op.isUndef())
281 continue;
283 return false;
284 }
285 return true;
286}
287
289 if (N->getOpcode() != ISD::BUILD_VECTOR)
290 return false;
291
292 for (const SDValue &Op : N->op_values()) {
293 if (Op.isUndef())
294 continue;
296 return false;
297 }
298 return true;
299}
300
301bool ISD::isVectorShrinkable(const SDNode *N, unsigned NewEltSize,
302 bool Signed) {
303 assert(N->getValueType(0).isVector() && "Expected a vector!");
304
305 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
306 if (EltSize <= NewEltSize)
307 return false;
308
309 if (N->getOpcode() == ISD::ZERO_EXTEND) {
310 return (N->getOperand(0).getValueType().getScalarSizeInBits() <=
311 NewEltSize) &&
312 !Signed;
313 }
314 if (N->getOpcode() == ISD::SIGN_EXTEND) {
315 return (N->getOperand(0).getValueType().getScalarSizeInBits() <=
316 NewEltSize) &&
317 Signed;
318 }
319 if (N->getOpcode() != ISD::BUILD_VECTOR)
320 return false;
321
322 for (const SDValue &Op : N->op_values()) {
323 if (Op.isUndef())
324 continue;
326 return false;
327
328 APInt C = Op->getAsAPIntVal().trunc(EltSize);
329 if (Signed && C.trunc(NewEltSize).sext(EltSize) != C)
330 return false;
331 if (!Signed && C.trunc(NewEltSize).zext(EltSize) != C)
332 return false;
333 }
334
335 return true;
336}
337
339 // Return false if the node has no operands.
340 // This is "logically inconsistent" with the definition of "all" but
341 // is probably the desired behavior.
342 if (N->getNumOperands() == 0)
343 return false;
344 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
345}
346
348 return N->getOpcode() == ISD::FREEZE && N->getOperand(0).isUndef();
349}
350
351template <typename ConstNodeType>
353 std::function<bool(ConstNodeType *)> Match,
354 bool AllowUndefs, bool AllowTruncation) {
355 // FIXME: Add support for scalar UNDEF cases?
356 if (auto *C = dyn_cast<ConstNodeType>(Op))
357 return Match(C);
358
359 // FIXME: Add support for vector UNDEF cases?
360 if (ISD::BUILD_VECTOR != Op.getOpcode() &&
361 ISD::SPLAT_VECTOR != Op.getOpcode())
362 return false;
363
364 EVT SVT = Op.getValueType().getScalarType();
365 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
366 if (AllowUndefs && Op.getOperand(i).isUndef()) {
367 if (!Match(nullptr))
368 return false;
369 continue;
370 }
371
372 auto *Cst = dyn_cast<ConstNodeType>(Op.getOperand(i));
373 if (!Cst || (!AllowTruncation && Cst->getValueType(0) != SVT) ||
374 !Match(Cst))
375 return false;
376 }
377 return true;
378}
379// Build used template types.
381 SDValue, std::function<bool(ConstantSDNode *)>, bool, bool);
383 SDValue, std::function<bool(ConstantFPSDNode *)>, bool, bool);
384
386 SDValue LHS, SDValue RHS,
387 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
388 bool AllowUndefs, bool AllowTypeMismatch) {
389 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
390 return false;
391
392 // TODO: Add support for scalar UNDEF cases?
393 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
394 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
395 return Match(LHSCst, RHSCst);
396
397 // TODO: Add support for vector UNDEF cases?
398 if (LHS.getOpcode() != RHS.getOpcode() ||
399 (LHS.getOpcode() != ISD::BUILD_VECTOR &&
400 LHS.getOpcode() != ISD::SPLAT_VECTOR))
401 return false;
402
403 EVT SVT = LHS.getValueType().getScalarType();
404 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
405 SDValue LHSOp = LHS.getOperand(i);
406 SDValue RHSOp = RHS.getOperand(i);
407 bool LHSUndef = AllowUndefs && LHSOp.isUndef();
408 bool RHSUndef = AllowUndefs && RHSOp.isUndef();
409 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
410 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
411 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
412 return false;
413 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
414 LHSOp.getValueType() != RHSOp.getValueType()))
415 return false;
416 if (!Match(LHSCst, RHSCst))
417 return false;
418 }
419 return true;
420}
421
423 switch (MinMaxOpc) {
424 default:
425 llvm_unreachable("unrecognized opcode");
426 case ISD::UMIN:
427 return ISD::UMAX;
428 case ISD::UMAX:
429 return ISD::UMIN;
430 case ISD::SMIN:
431 return ISD::SMAX;
432 case ISD::SMAX:
433 return ISD::SMIN;
434 }
435}
436
438 switch (VecReduceOpcode) {
439 default:
440 llvm_unreachable("Expected VECREDUCE opcode");
441 case ISD::VECREDUCE_FADD:
442 case ISD::VECREDUCE_SEQ_FADD:
443 case ISD::VP_REDUCE_FADD:
444 case ISD::VP_REDUCE_SEQ_FADD:
445 return ISD::FADD;
446 case ISD::VECREDUCE_FMUL:
447 case ISD::VECREDUCE_SEQ_FMUL:
448 case ISD::VP_REDUCE_FMUL:
449 case ISD::VP_REDUCE_SEQ_FMUL:
450 return ISD::FMUL;
451 case ISD::VECREDUCE_ADD:
452 case ISD::VP_REDUCE_ADD:
453 return ISD::ADD;
454 case ISD::VECREDUCE_MUL:
455 case ISD::VP_REDUCE_MUL:
456 return ISD::MUL;
457 case ISD::VECREDUCE_AND:
458 case ISD::VP_REDUCE_AND:
459 return ISD::AND;
460 case ISD::VECREDUCE_OR:
461 case ISD::VP_REDUCE_OR:
462 return ISD::OR;
463 case ISD::VECREDUCE_XOR:
464 case ISD::VP_REDUCE_XOR:
465 return ISD::XOR;
466 case ISD::VECREDUCE_SMAX:
467 case ISD::VP_REDUCE_SMAX:
468 return ISD::SMAX;
469 case ISD::VECREDUCE_SMIN:
470 case ISD::VP_REDUCE_SMIN:
471 return ISD::SMIN;
472 case ISD::VECREDUCE_UMAX:
473 case ISD::VP_REDUCE_UMAX:
474 return ISD::UMAX;
475 case ISD::VECREDUCE_UMIN:
476 case ISD::VP_REDUCE_UMIN:
477 return ISD::UMIN;
478 case ISD::VECREDUCE_FMAX:
479 case ISD::VP_REDUCE_FMAX:
480 return ISD::FMAXNUM;
481 case ISD::VECREDUCE_FMIN:
482 case ISD::VP_REDUCE_FMIN:
483 return ISD::FMINNUM;
484 case ISD::VECREDUCE_FMAXIMUM:
485 case ISD::VP_REDUCE_FMAXIMUM:
486 return ISD::FMAXIMUM;
487 case ISD::VECREDUCE_FMINIMUM:
488 case ISD::VP_REDUCE_FMINIMUM:
489 return ISD::FMINIMUM;
490 }
491}
492
493bool ISD::isVPOpcode(unsigned Opcode) {
494 switch (Opcode) {
495 default:
496 return false;
497#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \
498 case ISD::VPSD: \
499 return true;
500#include "llvm/IR/VPIntrinsics.def"
501 }
502}
503
504bool ISD::isVPBinaryOp(unsigned Opcode) {
505 switch (Opcode) {
506 default:
507 break;
508#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
509#define VP_PROPERTY_BINARYOP return true;
510#define END_REGISTER_VP_SDNODE(VPSD) break;
511#include "llvm/IR/VPIntrinsics.def"
512 }
513 return false;
514}
515
516bool ISD::isVPReduction(unsigned Opcode) {
517 switch (Opcode) {
518 default:
519 return false;
520 case ISD::VP_REDUCE_ADD:
521 case ISD::VP_REDUCE_MUL:
522 case ISD::VP_REDUCE_AND:
523 case ISD::VP_REDUCE_OR:
524 case ISD::VP_REDUCE_XOR:
525 case ISD::VP_REDUCE_SMAX:
526 case ISD::VP_REDUCE_SMIN:
527 case ISD::VP_REDUCE_UMAX:
528 case ISD::VP_REDUCE_UMIN:
529 case ISD::VP_REDUCE_FMAX:
530 case ISD::VP_REDUCE_FMIN:
531 case ISD::VP_REDUCE_FMAXIMUM:
532 case ISD::VP_REDUCE_FMINIMUM:
533 case ISD::VP_REDUCE_FADD:
534 case ISD::VP_REDUCE_FMUL:
535 case ISD::VP_REDUCE_SEQ_FADD:
536 case ISD::VP_REDUCE_SEQ_FMUL:
537 return true;
538 }
539}
540
541/// The operand position of the vector mask.
542std::optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
543 switch (Opcode) {
544 default:
545 return std::nullopt;
546#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \
547 case ISD::VPSD: \
548 return MASKPOS;
549#include "llvm/IR/VPIntrinsics.def"
550 }
551}
552
553/// The operand position of the explicit vector length parameter.
554std::optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
555 switch (Opcode) {
556 default:
557 return std::nullopt;
558#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \
559 case ISD::VPSD: \
560 return EVLPOS;
561#include "llvm/IR/VPIntrinsics.def"
562 }
563}
564
565std::optional<unsigned> ISD::getBaseOpcodeForVP(unsigned VPOpcode,
566 bool hasFPExcept) {
567 // FIXME: Return strict opcodes in case of fp exceptions.
568 switch (VPOpcode) {
569 default:
570 return std::nullopt;
571#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) case ISD::VPOPC:
572#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) return ISD::SDOPC;
573#define END_REGISTER_VP_SDNODE(VPOPC) break;
574#include "llvm/IR/VPIntrinsics.def"
575 }
576 return std::nullopt;
577}
578
579std::optional<unsigned> ISD::getVPForBaseOpcode(unsigned Opcode) {
580 switch (Opcode) {
581 default:
582 return std::nullopt;
583#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) break;
584#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) case ISD::SDOPC:
585#define END_REGISTER_VP_SDNODE(VPOPC) return ISD::VPOPC;
586#include "llvm/IR/VPIntrinsics.def"
587 }
588}
589
591 switch (ExtType) {
592 case ISD::EXTLOAD:
593 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
594 case ISD::SEXTLOAD:
595 return ISD::SIGN_EXTEND;
596 case ISD::ZEXTLOAD:
597 return ISD::ZERO_EXTEND;
598 default:
599 break;
600 }
601
602 llvm_unreachable("Invalid LoadExtType");
603}
604
606 // To perform this operation, we just need to swap the L and G bits of the
607 // operation.
608 unsigned OldL = (Operation >> 2) & 1;
609 unsigned OldG = (Operation >> 1) & 1;
610 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
611 (OldL << 1) | // New G bit
612 (OldG << 2)); // New L bit.
613}
614
616 unsigned Operation = Op;
617 if (isIntegerLike)
618 Operation ^= 7; // Flip L, G, E bits, but not U.
619 else
620 Operation ^= 15; // Flip all of the condition bits.
621
623 Operation &= ~8; // Don't let N and U bits get set.
624
625 return ISD::CondCode(Operation);
626}
627
631
633 bool isIntegerLike) {
634 return getSetCCInverseImpl(Op, isIntegerLike);
635}
636
637/// For an integer comparison, return 1 if the comparison is a signed operation
638/// and 2 if the result is an unsigned comparison. Return zero if the operation
639/// does not depend on the sign of the input (setne and seteq).
640static int isSignedOp(ISD::CondCode Opcode) {
641 switch (Opcode) {
642 default: llvm_unreachable("Illegal integer setcc operation!");
643 case ISD::SETEQ:
644 case ISD::SETNE: return 0;
645 case ISD::SETLT:
646 case ISD::SETLE:
647 case ISD::SETGT:
648 case ISD::SETGE: return 1;
649 case ISD::SETULT:
650 case ISD::SETULE:
651 case ISD::SETUGT:
652 case ISD::SETUGE: return 2;
653 }
654}
655
657 EVT Type) {
658 bool IsInteger = Type.isInteger();
659 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
660 // Cannot fold a signed integer setcc with an unsigned integer setcc.
661 return ISD::SETCC_INVALID;
662
663 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
664
665 // If the N and U bits get set, then the resultant comparison DOES suddenly
666 // care about orderedness, and it is true when ordered.
667 if (Op > ISD::SETTRUE2)
668 Op &= ~16; // Clear the U bit if the N bit is set.
669
670 // Canonicalize illegal integer setcc's.
671 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
672 Op = ISD::SETNE;
673
674 return ISD::CondCode(Op);
675}
676
678 EVT Type) {
679 bool IsInteger = Type.isInteger();
680 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
681 // Cannot fold a signed setcc with an unsigned setcc.
682 return ISD::SETCC_INVALID;
683
684 // Combine all of the condition bits.
685 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
686
687 // Canonicalize illegal integer setcc's.
688 if (IsInteger) {
689 switch (Result) {
690 default: break;
691 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
692 case ISD::SETOEQ: // SETEQ & SETU[LG]E
693 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
694 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
695 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
696 }
697 }
698
699 return Result;
700}
701
702//===----------------------------------------------------------------------===//
703// SDNode Profile Support
704//===----------------------------------------------------------------------===//
705
706/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
707static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
708 ID.AddInteger(OpC);
709}
710
711/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
712/// solely with their pointer.
714 ID.AddPointer(VTList.VTs);
715}
716
717/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
720 for (const auto &Op : Ops) {
721 ID.AddPointer(Op.getNode());
722 ID.AddInteger(Op.getResNo());
723 }
724}
725
726/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
729 for (const auto &Op : Ops) {
730 ID.AddPointer(Op.getNode());
731 ID.AddInteger(Op.getResNo());
732 }
733}
734
735static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC,
736 SDVTList VTList, ArrayRef<SDValue> OpList) {
737 AddNodeIDOpcode(ID, OpC);
738 AddNodeIDValueTypes(ID, VTList);
739 AddNodeIDOperands(ID, OpList);
740}
741
742/// If this is an SDNode with special info, add this info to the NodeID data.
744 switch (N->getOpcode()) {
747 case ISD::MCSymbol:
748 llvm_unreachable("Should only be used on nodes with operands");
749 default: break; // Normal nodes don't need extra info.
751 case ISD::Constant: {
753 ID.AddPointer(C->getConstantIntValue());
754 ID.AddBoolean(C->isOpaque());
755 break;
756 }
758 case ISD::ConstantFP:
759 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
760 break;
766 ID.AddPointer(GA->getGlobal());
767 ID.AddInteger(GA->getOffset());
768 ID.AddInteger(GA->getTargetFlags());
769 break;
770 }
771 case ISD::BasicBlock:
773 break;
774 case ISD::Register:
775 ID.AddInteger(cast<RegisterSDNode>(N)->getReg().id());
776 break;
778 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
779 break;
780 case ISD::SRCVALUE:
781 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
782 break;
783 case ISD::FrameIndex:
785 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
786 break;
787 case ISD::PSEUDO_PROBE:
788 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
789 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
790 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
791 break;
792 case ISD::JumpTable:
794 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
795 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
796 break;
800 ID.AddInteger(CP->getAlign().value());
801 ID.AddInteger(CP->getOffset());
802 if (CP->isMachineConstantPoolEntry())
803 CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
804 else
805 ID.AddPointer(CP->getConstVal());
806 ID.AddInteger(CP->getTargetFlags());
807 break;
808 }
809 case ISD::TargetIndex: {
811 ID.AddInteger(TI->getIndex());
812 ID.AddInteger(TI->getOffset());
813 ID.AddInteger(TI->getTargetFlags());
814 break;
815 }
816 case ISD::LOAD: {
817 const LoadSDNode *LD = cast<LoadSDNode>(N);
818 ID.AddInteger(LD->getMemoryVT().getRawBits());
819 ID.AddInteger(LD->getRawSubclassData());
820 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
821 ID.AddInteger(LD->getMemOperand()->getFlags());
822 break;
823 }
824 case ISD::STORE: {
825 const StoreSDNode *ST = cast<StoreSDNode>(N);
826 ID.AddInteger(ST->getMemoryVT().getRawBits());
827 ID.AddInteger(ST->getRawSubclassData());
828 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
829 ID.AddInteger(ST->getMemOperand()->getFlags());
830 break;
831 }
832 case ISD::VP_LOAD: {
833 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
834 ID.AddInteger(ELD->getMemoryVT().getRawBits());
835 ID.AddInteger(ELD->getRawSubclassData());
836 ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
837 ID.AddInteger(ELD->getMemOperand()->getFlags());
838 break;
839 }
840 case ISD::VP_LOAD_FF: {
841 const auto *LD = cast<VPLoadFFSDNode>(N);
842 ID.AddInteger(LD->getMemoryVT().getRawBits());
843 ID.AddInteger(LD->getRawSubclassData());
844 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
845 ID.AddInteger(LD->getMemOperand()->getFlags());
846 break;
847 }
848 case ISD::VP_STORE: {
849 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
850 ID.AddInteger(EST->getMemoryVT().getRawBits());
851 ID.AddInteger(EST->getRawSubclassData());
852 ID.AddInteger(EST->getPointerInfo().getAddrSpace());
853 ID.AddInteger(EST->getMemOperand()->getFlags());
854 break;
855 }
856 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
858 ID.AddInteger(SLD->getMemoryVT().getRawBits());
859 ID.AddInteger(SLD->getRawSubclassData());
860 ID.AddInteger(SLD->getPointerInfo().getAddrSpace());
861 break;
862 }
863 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
865 ID.AddInteger(SST->getMemoryVT().getRawBits());
866 ID.AddInteger(SST->getRawSubclassData());
867 ID.AddInteger(SST->getPointerInfo().getAddrSpace());
868 break;
869 }
870 case ISD::VP_GATHER: {
872 ID.AddInteger(EG->getMemoryVT().getRawBits());
873 ID.AddInteger(EG->getRawSubclassData());
874 ID.AddInteger(EG->getPointerInfo().getAddrSpace());
875 ID.AddInteger(EG->getMemOperand()->getFlags());
876 break;
877 }
878 case ISD::VP_SCATTER: {
880 ID.AddInteger(ES->getMemoryVT().getRawBits());
881 ID.AddInteger(ES->getRawSubclassData());
882 ID.AddInteger(ES->getPointerInfo().getAddrSpace());
883 ID.AddInteger(ES->getMemOperand()->getFlags());
884 break;
885 }
886 case ISD::MLOAD: {
888 ID.AddInteger(MLD->getMemoryVT().getRawBits());
889 ID.AddInteger(MLD->getRawSubclassData());
890 ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
891 ID.AddInteger(MLD->getMemOperand()->getFlags());
892 break;
893 }
894 case ISD::MSTORE: {
896 ID.AddInteger(MST->getMemoryVT().getRawBits());
897 ID.AddInteger(MST->getRawSubclassData());
898 ID.AddInteger(MST->getPointerInfo().getAddrSpace());
899 ID.AddInteger(MST->getMemOperand()->getFlags());
900 break;
901 }
902 case ISD::MGATHER: {
904 ID.AddInteger(MG->getMemoryVT().getRawBits());
905 ID.AddInteger(MG->getRawSubclassData());
906 ID.AddInteger(MG->getPointerInfo().getAddrSpace());
907 ID.AddInteger(MG->getMemOperand()->getFlags());
908 break;
909 }
910 case ISD::MSCATTER: {
912 ID.AddInteger(MS->getMemoryVT().getRawBits());
913 ID.AddInteger(MS->getRawSubclassData());
914 ID.AddInteger(MS->getPointerInfo().getAddrSpace());
915 ID.AddInteger(MS->getMemOperand()->getFlags());
916 break;
917 }
918 case ISD::ATOMIC_CMP_SWAP:
919 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
920 case ISD::ATOMIC_SWAP:
921 case ISD::ATOMIC_LOAD_ADD:
922 case ISD::ATOMIC_LOAD_SUB:
923 case ISD::ATOMIC_LOAD_AND:
924 case ISD::ATOMIC_LOAD_CLR:
925 case ISD::ATOMIC_LOAD_OR:
926 case ISD::ATOMIC_LOAD_XOR:
927 case ISD::ATOMIC_LOAD_NAND:
928 case ISD::ATOMIC_LOAD_MIN:
929 case ISD::ATOMIC_LOAD_MAX:
930 case ISD::ATOMIC_LOAD_UMIN:
931 case ISD::ATOMIC_LOAD_UMAX:
932 case ISD::ATOMIC_LOAD:
933 case ISD::ATOMIC_STORE: {
934 const AtomicSDNode *AT = cast<AtomicSDNode>(N);
935 ID.AddInteger(AT->getMemoryVT().getRawBits());
936 ID.AddInteger(AT->getRawSubclassData());
937 ID.AddInteger(AT->getPointerInfo().getAddrSpace());
938 ID.AddInteger(AT->getMemOperand()->getFlags());
939 break;
940 }
941 case ISD::VECTOR_SHUFFLE: {
942 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(N)->getMask();
943 for (int M : Mask)
944 ID.AddInteger(M);
945 break;
946 }
947 case ISD::ADDRSPACECAST: {
949 ID.AddInteger(ASC->getSrcAddressSpace());
950 ID.AddInteger(ASC->getDestAddressSpace());
951 break;
952 }
954 case ISD::BlockAddress: {
956 ID.AddPointer(BA->getBlockAddress());
957 ID.AddInteger(BA->getOffset());
958 ID.AddInteger(BA->getTargetFlags());
959 break;
960 }
961 case ISD::AssertAlign:
962 ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value());
963 break;
964 case ISD::PREFETCH:
967 // Handled by MemIntrinsicSDNode check after the switch.
968 break;
969 case ISD::MDNODE_SDNODE:
970 ID.AddPointer(cast<MDNodeSDNode>(N)->getMD());
971 break;
972 } // end switch (N->getOpcode())
973
974 // MemIntrinsic nodes could also have subclass data, address spaces, and flags
975 // to check.
976 if (auto *MN = dyn_cast<MemIntrinsicSDNode>(N)) {
977 ID.AddInteger(MN->getRawSubclassData());
978 ID.AddInteger(MN->getPointerInfo().getAddrSpace());
979 ID.AddInteger(MN->getMemOperand()->getFlags());
980 ID.AddInteger(MN->getMemoryVT().getRawBits());
981 }
982}
983
984/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
985/// data.
986static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
987 AddNodeIDOpcode(ID, N->getOpcode());
988 // Add the return value info.
989 AddNodeIDValueTypes(ID, N->getVTList());
990 // Add the operand info.
991 AddNodeIDOperands(ID, N->ops());
992
993 // Handle SDNode leafs with special info.
995}
996
997//===----------------------------------------------------------------------===//
998// SelectionDAG Class
999//===----------------------------------------------------------------------===//
1000
1001/// doNotCSE - Return true if CSE should not be performed for this node.
1002static bool doNotCSE(SDNode *N) {
1003 if (N->getValueType(0) == MVT::Glue)
1004 return true; // Never CSE anything that produces a glue result.
1005
1006 switch (N->getOpcode()) {
1007 default: break;
1008 case ISD::HANDLENODE:
1009 case ISD::EH_LABEL:
1010 return true; // Never CSE these nodes.
1011 }
1012
1013 // Check that remaining values produced are not flags.
1014 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
1015 if (N->getValueType(i) == MVT::Glue)
1016 return true; // Never CSE anything that produces a glue result.
1017
1018 return false;
1019}
1020
1021/// RemoveDeadNodes - This method deletes all unreachable nodes in the
1022/// SelectionDAG.
1024 // Create a dummy node (which is not added to allnodes), that adds a reference
1025 // to the root node, preventing it from being deleted.
1026 HandleSDNode Dummy(getRoot());
1027
1028 SmallVector<SDNode*, 128> DeadNodes;
1029
1030 // Add all obviously-dead nodes to the DeadNodes worklist.
1031 for (SDNode &Node : allnodes())
1032 if (Node.use_empty())
1033 DeadNodes.push_back(&Node);
1034
1035 RemoveDeadNodes(DeadNodes);
1036
1037 // If the root changed (e.g. it was a dead load, update the root).
1038 setRoot(Dummy.getValue());
1039}
1040
1041/// RemoveDeadNodes - This method deletes the unreachable nodes in the
1042/// given list, and any nodes that become unreachable as a result.
1044
1045 // Process the worklist, deleting the nodes and adding their uses to the
1046 // worklist.
1047 while (!DeadNodes.empty()) {
1048 SDNode *N = DeadNodes.pop_back_val();
1049 // Skip to next node if we've already managed to delete the node. This could
1050 // happen if replacing a node causes a node previously added to the node to
1051 // be deleted.
1052 if (N->getOpcode() == ISD::DELETED_NODE)
1053 continue;
1054
1055 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1056 DUL->NodeDeleted(N, nullptr);
1057
1058 // Take the node out of the appropriate CSE map.
1059 RemoveNodeFromCSEMaps(N);
1060
1061 // Next, brutally remove the operand list. This is safe to do, as there are
1062 // no cycles in the graph.
1063 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
1064 SDUse &Use = *I++;
1065 SDNode *Operand = Use.getNode();
1066 Use.set(SDValue());
1067
1068 // Now that we removed this operand, see if there are no uses of it left.
1069 if (Operand->use_empty())
1070 DeadNodes.push_back(Operand);
1071 }
1072
1073 DeallocateNode(N);
1074 }
1075}
1076
1078 SmallVector<SDNode*, 16> DeadNodes(1, N);
1079
1080 // Create a dummy node that adds a reference to the root node, preventing
1081 // it from being deleted. (This matters if the root is an operand of the
1082 // dead node.)
1083 HandleSDNode Dummy(getRoot());
1084
1085 RemoveDeadNodes(DeadNodes);
1086}
1087
1089 // First take this out of the appropriate CSE map.
1090 RemoveNodeFromCSEMaps(N);
1091
1092 // Finally, remove uses due to operands of this node, remove from the
1093 // AllNodes list, and delete the node.
1094 DeleteNodeNotInCSEMaps(N);
1095}
1096
1097void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
1098 assert(N->getIterator() != AllNodes.begin() &&
1099 "Cannot delete the entry node!");
1100 assert(N->use_empty() && "Cannot delete a node that is not dead!");
1101
1102 // Drop all of the operands and decrement used node's use counts.
1103 N->DropOperands();
1104
1105 DeallocateNode(N);
1106}
1107
1108void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
1109 assert(!(V->isVariadic() && isParameter));
1110 if (isParameter)
1111 ByvalParmDbgValues.push_back(V);
1112 else
1113 DbgValues.push_back(V);
1114 for (const SDNode *Node : V->getSDNodes())
1115 if (Node)
1116 DbgValMap[Node].push_back(V);
1117}
1118
1120 DbgValMapType::iterator I = DbgValMap.find(Node);
1121 if (I == DbgValMap.end())
1122 return;
1123 for (auto &Val: I->second)
1124 Val->setIsInvalidated();
1125 DbgValMap.erase(I);
1126}
1127
1128void SelectionDAG::DeallocateNode(SDNode *N) {
1129 // If we have operands, deallocate them.
1131
1132 NodeAllocator.Deallocate(AllNodes.remove(N));
1133
1134 // Set the opcode to DELETED_NODE to help catch bugs when node
1135 // memory is reallocated.
1136 // FIXME: There are places in SDag that have grown a dependency on the opcode
1137 // value in the released node.
1138 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
1139 N->NodeType = ISD::DELETED_NODE;
1140
1141 // If any of the SDDbgValue nodes refer to this SDNode, invalidate
1142 // them and forget about that node.
1143 DbgInfo->erase(N);
1144
1145 // Invalidate extra info.
1146 SDEI.erase(N);
1147}
1148
1149#ifndef NDEBUG
1150/// VerifySDNode - Check the given SDNode. Aborts if it is invalid.
1151void SelectionDAG::verifyNode(SDNode *N) const {
1152 switch (N->getOpcode()) {
1153 default:
1154 if (N->isTargetOpcode())
1156 break;
1157 case ISD::BUILD_PAIR: {
1158 EVT VT = N->getValueType(0);
1159 assert(N->getNumValues() == 1 && "Too many results!");
1160 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1161 "Wrong return type!");
1162 assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1163 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1164 "Mismatched operand types!");
1165 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1166 "Wrong operand type!");
1167 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1168 "Wrong return type size");
1169 break;
1170 }
1171 case ISD::BUILD_VECTOR: {
1172 assert(N->getNumValues() == 1 && "Too many results!");
1173 assert(N->getValueType(0).isVector() && "Wrong return type!");
1174 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1175 "Wrong number of operands!");
1176 EVT EltVT = N->getValueType(0).getVectorElementType();
1177 for (const SDUse &Op : N->ops()) {
1178 assert((Op.getValueType() == EltVT ||
1179 (EltVT.isInteger() && Op.getValueType().isInteger() &&
1180 EltVT.bitsLE(Op.getValueType()))) &&
1181 "Wrong operand type!");
1182 assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1183 "Operands must all have the same type");
1184 }
1185 break;
1186 }
1187 }
1188}
1189#endif // NDEBUG
1190
1191/// Insert a newly allocated node into the DAG.
1192///
1193/// Handles insertion into the all nodes list and CSE map, as well as
1194/// verification and other common operations when a new node is allocated.
1195void SelectionDAG::InsertNode(SDNode *N) {
1196 AllNodes.push_back(N);
1197#ifndef NDEBUG
1198 N->PersistentId = NextPersistentId++;
1199 verifyNode(N);
1200#endif
1201 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1202 DUL->NodeInserted(N);
1203}
1204
1205/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1206/// correspond to it. This is useful when we're about to delete or repurpose
1207/// the node. We don't want future request for structurally identical nodes
1208/// to return N anymore.
1209bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1210 bool Erased = false;
1211 switch (N->getOpcode()) {
1212 case ISD::HANDLENODE: return false; // noop.
1213 case ISD::CONDCODE:
1214 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1215 "Cond code doesn't exist!");
1216 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1217 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1218 break;
1220 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1221 break;
1223 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1224 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1225 ESN->getSymbol(), ESN->getTargetFlags()));
1226 break;
1227 }
1228 case ISD::MCSymbol: {
1229 auto *MCSN = cast<MCSymbolSDNode>(N);
1230 Erased = MCSymbols.erase(MCSN->getMCSymbol());
1231 break;
1232 }
1233 case ISD::VALUETYPE: {
1234 EVT VT = cast<VTSDNode>(N)->getVT();
1235 if (VT.isExtended()) {
1236 Erased = ExtendedValueTypeNodes.erase(VT);
1237 } else {
1238 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1239 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1240 }
1241 break;
1242 }
1243 default:
1244 // Remove it from the CSE Map.
1245 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1246 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1247 Erased = CSEMap.RemoveNode(N);
1248 break;
1249 }
1250#ifndef NDEBUG
1251 // Verify that the node was actually in one of the CSE maps, unless it has a
1252 // glue result (which cannot be CSE'd) or is one of the special cases that are
1253 // not subject to CSE.
1254 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1255 !N->isMachineOpcode() && !doNotCSE(N)) {
1256 N->dump(this);
1257 dbgs() << "\n";
1258 llvm_unreachable("Node is not in map!");
1259 }
1260#endif
1261 return Erased;
1262}
1263
1264/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1265/// maps and modified in place. Add it back to the CSE maps, unless an identical
1266/// node already exists, in which case transfer all its users to the existing
1267/// node. This transfer can potentially trigger recursive merging.
1268void
1269SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1270 // For node types that aren't CSE'd, just act as if no identical node
1271 // already exists.
1272 if (!doNotCSE(N)) {
1273 SDNode *Existing = CSEMap.GetOrInsertNode(N);
1274 if (Existing != N) {
1275 // If there was already an existing matching node, use ReplaceAllUsesWith
1276 // to replace the dead one with the existing one. This can cause
1277 // recursive merging of other unrelated nodes down the line.
1278 Existing->intersectFlagsWith(N->getFlags());
1279 if (auto *MemNode = dyn_cast<MemSDNode>(Existing))
1280 MemNode->refineRanges(cast<MemSDNode>(N)->getMemOperand());
1281 ReplaceAllUsesWith(N, Existing);
1282
1283 // N is now dead. Inform the listeners and delete it.
1284 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1285 DUL->NodeDeleted(N, Existing);
1286 DeleteNodeNotInCSEMaps(N);
1287 return;
1288 }
1289 }
1290
1291 // If the node doesn't already exist, we updated it. Inform listeners.
1292 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1293 DUL->NodeUpdated(N);
1294}
1295
1296/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1297/// were replaced with those specified. If this node is never memoized,
1298/// return null, otherwise return a pointer to the slot it would take. If a
1299/// node already exists with these operands, the slot will be non-null.
1300SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1301 void *&InsertPos) {
1302 if (doNotCSE(N))
1303 return nullptr;
1304
1305 SDValue Ops[] = { Op };
1306 FoldingSetNodeID ID;
1307 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1309 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1310 if (Node)
1311 Node->intersectFlagsWith(N->getFlags());
1312 return Node;
1313}
1314
1315/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1316/// were replaced with those specified. If this node is never memoized,
1317/// return null, otherwise return a pointer to the slot it would take. If a
1318/// node already exists with these operands, the slot will be non-null.
1319SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1320 SDValue Op1, SDValue Op2,
1321 void *&InsertPos) {
1322 if (doNotCSE(N))
1323 return nullptr;
1324
1325 SDValue Ops[] = { Op1, Op2 };
1326 FoldingSetNodeID ID;
1327 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1329 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1330 if (Node)
1331 Node->intersectFlagsWith(N->getFlags());
1332 return Node;
1333}
1334
1335/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1336/// were replaced with those specified. If this node is never memoized,
1337/// return null, otherwise return a pointer to the slot it would take. If a
1338/// node already exists with these operands, the slot will be non-null.
1339SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1340 void *&InsertPos) {
1341 if (doNotCSE(N))
1342 return nullptr;
1343
1344 FoldingSetNodeID ID;
1345 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1347 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1348 if (Node)
1349 Node->intersectFlagsWith(N->getFlags());
1350 return Node;
1351}
1352
1354 Type *Ty = VT == MVT::iPTR ? PointerType::get(*getContext(), 0)
1355 : VT.getTypeForEVT(*getContext());
1356
1357 return getDataLayout().getABITypeAlign(Ty);
1358}
1359
1360// EntryNode could meaningfully have debug info if we can find it...
1362 : TM(tm), OptLevel(OL), EntryNode(ISD::EntryToken, 0, DebugLoc(),
1363 getVTList(MVT::Other, MVT::Glue)),
1364 Root(getEntryNode()) {
1365 InsertNode(&EntryNode);
1366 DbgInfo = new SDDbgInfo();
1367}
1368
1370 OptimizationRemarkEmitter &NewORE, Pass *PassPtr,
1371 const TargetLibraryInfo *LibraryInfo,
1372 UniformityInfo *NewUA, ProfileSummaryInfo *PSIin,
1374 FunctionVarLocs const *VarLocs) {
1375 MF = &NewMF;
1376 SDAGISelPass = PassPtr;
1377 ORE = &NewORE;
1380 LibInfo = LibraryInfo;
1381 Context = &MF->getFunction().getContext();
1382 UA = NewUA;
1383 PSI = PSIin;
1384 BFI = BFIin;
1385 MMI = &MMIin;
1386 FnVarLocs = VarLocs;
1387}
1388
1390 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1391 allnodes_clear();
1392 OperandRecycler.clear(OperandAllocator);
1393 delete DbgInfo;
1394}
1395
1397 return llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1398}
1399
1400void SelectionDAG::allnodes_clear() {
1401 assert(&*AllNodes.begin() == &EntryNode);
1402 AllNodes.remove(AllNodes.begin());
1403 while (!AllNodes.empty())
1404 DeallocateNode(&AllNodes.front());
1405#ifndef NDEBUG
1406 NextPersistentId = 0;
1407#endif
1408}
1409
1410SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1411 void *&InsertPos) {
1412 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1413 if (N) {
1414 switch (N->getOpcode()) {
1415 default: break;
1416 case ISD::Constant:
1417 case ISD::ConstantFP:
1418 llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1419 "debug location. Use another overload.");
1420 }
1421 }
1422 return N;
1423}
1424
1425SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1426 const SDLoc &DL, void *&InsertPos) {
1427 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1428 if (N) {
1429 switch (N->getOpcode()) {
1430 case ISD::Constant:
1431 case ISD::ConstantFP:
1432 // Erase debug location from the node if the node is used at several
1433 // different places. Do not propagate one location to all uses as it
1434 // will cause a worse single stepping debugging experience.
1435 if (N->getDebugLoc() != DL.getDebugLoc())
1436 N->setDebugLoc(DebugLoc());
1437 break;
1438 default:
1439 // When the node's point of use is located earlier in the instruction
1440 // sequence than its prior point of use, update its debug info to the
1441 // earlier location.
1442 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1443 N->setDebugLoc(DL.getDebugLoc());
1444 break;
1445 }
1446 }
1447 return N;
1448}
1449
1451 allnodes_clear();
1452 OperandRecycler.clear(OperandAllocator);
1453 OperandAllocator.Reset();
1454 CSEMap.clear();
1455
1456 ExtendedValueTypeNodes.clear();
1457 ExternalSymbols.clear();
1458 TargetExternalSymbols.clear();
1459 MCSymbols.clear();
1460 SDEI.clear();
1461 llvm::fill(CondCodeNodes, nullptr);
1462 llvm::fill(ValueTypeNodes, nullptr);
1463
1464 EntryNode.UseList = nullptr;
1465 InsertNode(&EntryNode);
1466 Root = getEntryNode();
1467 DbgInfo->clear();
1468}
1469
1471 return VT.bitsGT(Op.getValueType())
1472 ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1473 : getNode(ISD::FP_ROUND, DL, VT, Op,
1474 getIntPtrConstant(0, DL, /*isTarget=*/true));
1475}
1476
1477std::pair<SDValue, SDValue>
1479 const SDLoc &DL, EVT VT) {
1480 assert(!VT.bitsEq(Op.getValueType()) &&
1481 "Strict no-op FP extend/round not allowed.");
1482 SDValue Res =
1483 VT.bitsGT(Op.getValueType())
1484 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1485 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1486 {Chain, Op, getIntPtrConstant(0, DL, /*isTarget=*/true)});
1487
1488 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1489}
1490
1492 return VT.bitsGT(Op.getValueType()) ?
1493 getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1494 getNode(ISD::TRUNCATE, DL, VT, Op);
1495}
1496
1498 return VT.bitsGT(Op.getValueType()) ?
1499 getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1500 getNode(ISD::TRUNCATE, DL, VT, Op);
1501}
1502
1504 return VT.bitsGT(Op.getValueType()) ?
1505 getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1506 getNode(ISD::TRUNCATE, DL, VT, Op);
1507}
1508
1510 EVT VT) {
1511 assert(!VT.isVector());
1512 auto Type = Op.getValueType();
1513 SDValue DestOp;
1514 if (Type == VT)
1515 return Op;
1516 auto Size = Op.getValueSizeInBits();
1517 DestOp = getBitcast(EVT::getIntegerVT(*Context, Size), Op);
1518 if (DestOp.getValueType() == VT)
1519 return DestOp;
1520
1521 return getAnyExtOrTrunc(DestOp, DL, VT);
1522}
1523
1525 EVT VT) {
1526 assert(!VT.isVector());
1527 auto Type = Op.getValueType();
1528 SDValue DestOp;
1529 if (Type == VT)
1530 return Op;
1531 auto Size = Op.getValueSizeInBits();
1532 DestOp = getBitcast(MVT::getIntegerVT(Size), Op);
1533 if (DestOp.getValueType() == VT)
1534 return DestOp;
1535
1536 return getSExtOrTrunc(DestOp, DL, VT);
1537}
1538
1540 EVT VT) {
1541 assert(!VT.isVector());
1542 auto Type = Op.getValueType();
1543 SDValue DestOp;
1544 if (Type == VT)
1545 return Op;
1546 auto Size = Op.getValueSizeInBits();
1547 DestOp = getBitcast(MVT::getIntegerVT(Size), Op);
1548 if (DestOp.getValueType() == VT)
1549 return DestOp;
1550
1551 return getZExtOrTrunc(DestOp, DL, VT);
1552}
1553
1555 EVT OpVT) {
1556 if (VT.bitsLE(Op.getValueType()))
1557 return getNode(ISD::TRUNCATE, SL, VT, Op);
1558
1559 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1560 return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1561}
1562
1564 EVT OpVT = Op.getValueType();
1565 assert(VT.isInteger() && OpVT.isInteger() &&
1566 "Cannot getZeroExtendInReg FP types");
1567 assert(VT.isVector() == OpVT.isVector() &&
1568 "getZeroExtendInReg type should be vector iff the operand "
1569 "type is vector!");
1570 assert((!VT.isVector() ||
1572 "Vector element counts must match in getZeroExtendInReg");
1573 assert(VT.bitsLE(OpVT) && "Not extending!");
1574 if (OpVT == VT)
1575 return Op;
1577 VT.getScalarSizeInBits());
1578 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1579}
1580
1582 SDValue EVL, const SDLoc &DL,
1583 EVT VT) {
1584 EVT OpVT = Op.getValueType();
1585 assert(VT.isInteger() && OpVT.isInteger() &&
1586 "Cannot getVPZeroExtendInReg FP types");
1587 assert(VT.isVector() && OpVT.isVector() &&
1588 "getVPZeroExtendInReg type and operand type should be vector!");
1590 "Vector element counts must match in getZeroExtendInReg");
1591 assert(VT.bitsLE(OpVT) && "Not extending!");
1592 if (OpVT == VT)
1593 return Op;
1595 VT.getScalarSizeInBits());
1596 return getNode(ISD::VP_AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT), Mask,
1597 EVL);
1598}
1599
1601 // Only unsigned pointer semantics are supported right now. In the future this
1602 // might delegate to TLI to check pointer signedness.
1603 return getZExtOrTrunc(Op, DL, VT);
1604}
1605
1607 // Only unsigned pointer semantics are supported right now. In the future this
1608 // might delegate to TLI to check pointer signedness.
1609 return getZeroExtendInReg(Op, DL, VT);
1610}
1611
1613 return getNode(ISD::SUB, DL, VT, getConstant(0, DL, VT), Val);
1614}
1615
1616/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1618 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1619}
1620
1622 SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1623 return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1624}
1625
1627 SDValue Mask, SDValue EVL, EVT VT) {
1628 SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1629 return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL);
1630}
1631
1633 SDValue Mask, SDValue EVL) {
1634 return getVPZExtOrTrunc(DL, VT, Op, Mask, EVL);
1635}
1636
1638 SDValue Mask, SDValue EVL) {
1639 if (VT.bitsGT(Op.getValueType()))
1640 return getNode(ISD::VP_ZERO_EXTEND, DL, VT, Op, Mask, EVL);
1641 if (VT.bitsLT(Op.getValueType()))
1642 return getNode(ISD::VP_TRUNCATE, DL, VT, Op, Mask, EVL);
1643 return Op;
1644}
1645
1647 EVT OpVT) {
1648 if (!V)
1649 return getConstant(0, DL, VT);
1650
1651 switch (TLI->getBooleanContents(OpVT)) {
1654 return getConstant(1, DL, VT);
1656 return getAllOnesConstant(DL, VT);
1657 }
1658 llvm_unreachable("Unexpected boolean content enum!");
1659}
1660
1662 bool isT, bool isO) {
1663 return getConstant(APInt(VT.getScalarSizeInBits(), Val, /*isSigned=*/false),
1664 DL, VT, isT, isO);
1665}
1666
1668 bool isT, bool isO) {
1669 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1670}
1671
1673 EVT VT, bool isT, bool isO) {
1674 assert(VT.isInteger() && "Cannot create FP integer constant!");
1675
1676 EVT EltVT = VT.getScalarType();
1677 const ConstantInt *Elt = &Val;
1678
1679 // Vector splats are explicit within the DAG, with ConstantSDNode holding the
1680 // to-be-splatted scalar ConstantInt.
1681 if (isa<VectorType>(Elt->getType()))
1682 Elt = ConstantInt::get(*getContext(), Elt->getValue());
1683
1684 // In some cases the vector type is legal but the element type is illegal and
1685 // needs to be promoted, for example v8i8 on ARM. In this case, promote the
1686 // inserted value (the type does not need to match the vector element type).
1687 // Any extra bits introduced will be truncated away.
1688 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1690 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1691 APInt NewVal;
1692 if (TLI->isSExtCheaperThanZExt(VT.getScalarType(), EltVT))
1693 NewVal = Elt->getValue().sextOrTrunc(EltVT.getSizeInBits());
1694 else
1695 NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1696 Elt = ConstantInt::get(*getContext(), NewVal);
1697 }
1698 // In other cases the element type is illegal and needs to be expanded, for
1699 // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1700 // the value into n parts and use a vector type with n-times the elements.
1701 // Then bitcast to the type requested.
1702 // Legalizing constants too early makes the DAGCombiner's job harder so we
1703 // only legalize if the DAG tells us we must produce legal types.
1704 else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1705 TLI->getTypeAction(*getContext(), EltVT) ==
1707 const APInt &NewVal = Elt->getValue();
1708 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1709 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1710
1711 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1712 if (VT.isScalableVector() ||
1713 TLI->isOperationLegal(ISD::SPLAT_VECTOR, VT)) {
1714 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1715 "Can only handle an even split!");
1716 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1717
1718 SmallVector<SDValue, 2> ScalarParts;
1719 for (unsigned i = 0; i != Parts; ++i)
1720 ScalarParts.push_back(getConstant(
1721 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1722 ViaEltVT, isT, isO));
1723
1724 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1725 }
1726
1727 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1728 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1729
1730 // Check the temporary vector is the correct size. If this fails then
1731 // getTypeToTransformTo() probably returned a type whose size (in bits)
1732 // isn't a power-of-2 factor of the requested type size.
1733 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1734
1735 SmallVector<SDValue, 2> EltParts;
1736 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1737 EltParts.push_back(getConstant(
1738 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1739 ViaEltVT, isT, isO));
1740
1741 // EltParts is currently in little endian order. If we actually want
1742 // big-endian order then reverse it now.
1743 if (getDataLayout().isBigEndian())
1744 std::reverse(EltParts.begin(), EltParts.end());
1745
1746 // The elements must be reversed when the element order is different
1747 // to the endianness of the elements (because the BITCAST is itself a
1748 // vector shuffle in this situation). However, we do not need any code to
1749 // perform this reversal because getConstant() is producing a vector
1750 // splat.
1751 // This situation occurs in MIPS MSA.
1752
1754 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1755 llvm::append_range(Ops, EltParts);
1756
1757 SDValue V =
1758 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1759 return V;
1760 }
1761
1762 assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1763 "APInt size does not match type size!");
1764 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1765 SDVTList VTs = getVTList(EltVT);
1767 AddNodeIDNode(ID, Opc, VTs, {});
1768 ID.AddPointer(Elt);
1769 ID.AddBoolean(isO);
1770 void *IP = nullptr;
1771 SDNode *N = nullptr;
1772 if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1773 if (!VT.isVector())
1774 return SDValue(N, 0);
1775
1776 if (!N) {
1777 N = newSDNode<ConstantSDNode>(isT, isO, Elt, VTs);
1778 CSEMap.InsertNode(N, IP);
1779 InsertNode(N);
1780 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1781 }
1782
1783 SDValue Result(N, 0);
1784 if (VT.isVector())
1785 Result = getSplat(VT, DL, Result);
1786 return Result;
1787}
1788
1790 bool isT, bool isO) {
1791 unsigned Size = VT.getScalarSizeInBits();
1792 return getConstant(APInt(Size, Val, /*isSigned=*/true), DL, VT, isT, isO);
1793}
1794
1796 bool IsOpaque) {
1798 IsTarget, IsOpaque);
1799}
1800
1802 bool isTarget) {
1803 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1804}
1805
1807 const SDLoc &DL) {
1808 assert(VT.isInteger() && "Shift amount is not an integer type!");
1809 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout());
1810 return getConstant(Val, DL, ShiftVT);
1811}
1812
1814 const SDLoc &DL) {
1815 assert(Val.ult(VT.getScalarSizeInBits()) && "Out of range shift");
1816 return getShiftAmountConstant(Val.getZExtValue(), VT, DL);
1817}
1818
1820 bool isTarget) {
1821 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1822}
1823
1825 bool isTarget) {
1826 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1827}
1828
1830 EVT VT, bool isTarget) {
1831 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1832
1833 EVT EltVT = VT.getScalarType();
1834 const ConstantFP *Elt = &V;
1835
1836 // Vector splats are explicit within the DAG, with ConstantFPSDNode holding
1837 // the to-be-splatted scalar ConstantFP.
1838 if (isa<VectorType>(Elt->getType()))
1839 Elt = ConstantFP::get(*getContext(), Elt->getValue());
1840
1841 // Do the map lookup using the actual bit pattern for the floating point
1842 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1843 // we don't have issues with SNANs.
1844 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1845 SDVTList VTs = getVTList(EltVT);
1847 AddNodeIDNode(ID, Opc, VTs, {});
1848 ID.AddPointer(Elt);
1849 void *IP = nullptr;
1850 SDNode *N = nullptr;
1851 if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1852 if (!VT.isVector())
1853 return SDValue(N, 0);
1854
1855 if (!N) {
1856 N = newSDNode<ConstantFPSDNode>(isTarget, Elt, VTs);
1857 CSEMap.InsertNode(N, IP);
1858 InsertNode(N);
1859 }
1860
1861 SDValue Result(N, 0);
1862 if (VT.isVector())
1863 Result = getSplat(VT, DL, Result);
1864 NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1865 return Result;
1866}
1867
1869 bool isTarget) {
1870 EVT EltVT = VT.getScalarType();
1871 if (EltVT == MVT::f32)
1872 return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1873 if (EltVT == MVT::f64)
1874 return getConstantFP(APFloat(Val), DL, VT, isTarget);
1875 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1876 EltVT == MVT::f16 || EltVT == MVT::bf16) {
1877 bool Ignored;
1878 APFloat APF = APFloat(Val);
1880 &Ignored);
1881 return getConstantFP(APF, DL, VT, isTarget);
1882 }
1883 llvm_unreachable("Unsupported type in getConstantFP");
1884}
1885
1887 EVT VT, int64_t Offset, bool isTargetGA,
1888 unsigned TargetFlags) {
1889 assert((TargetFlags == 0 || isTargetGA) &&
1890 "Cannot set target flags on target-independent globals");
1891
1892 // Truncate (with sign-extension) the offset value to the pointer size.
1894 if (BitWidth < 64)
1896
1897 unsigned Opc;
1898 if (GV->isThreadLocal())
1900 else
1902
1903 SDVTList VTs = getVTList(VT);
1905 AddNodeIDNode(ID, Opc, VTs, {});
1906 ID.AddPointer(GV);
1907 ID.AddInteger(Offset);
1908 ID.AddInteger(TargetFlags);
1909 void *IP = nullptr;
1910 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1911 return SDValue(E, 0);
1912
1913 auto *N = newSDNode<GlobalAddressSDNode>(
1914 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VTs, Offset, TargetFlags);
1915 CSEMap.InsertNode(N, IP);
1916 InsertNode(N);
1917 return SDValue(N, 0);
1918}
1919
1920SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1921 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1922 SDVTList VTs = getVTList(VT);
1924 AddNodeIDNode(ID, Opc, VTs, {});
1925 ID.AddInteger(FI);
1926 void *IP = nullptr;
1927 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1928 return SDValue(E, 0);
1929
1930 auto *N = newSDNode<FrameIndexSDNode>(FI, VTs, isTarget);
1931 CSEMap.InsertNode(N, IP);
1932 InsertNode(N);
1933 return SDValue(N, 0);
1934}
1935
1936SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1937 unsigned TargetFlags) {
1938 assert((TargetFlags == 0 || isTarget) &&
1939 "Cannot set target flags on target-independent jump tables");
1940 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1941 SDVTList VTs = getVTList(VT);
1943 AddNodeIDNode(ID, Opc, VTs, {});
1944 ID.AddInteger(JTI);
1945 ID.AddInteger(TargetFlags);
1946 void *IP = nullptr;
1947 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1948 return SDValue(E, 0);
1949
1950 auto *N = newSDNode<JumpTableSDNode>(JTI, VTs, isTarget, TargetFlags);
1951 CSEMap.InsertNode(N, IP);
1952 InsertNode(N);
1953 return SDValue(N, 0);
1954}
1955
1957 const SDLoc &DL) {
1959 return getNode(ISD::JUMP_TABLE_DEBUG_INFO, DL, MVT::Glue, Chain,
1960 getTargetConstant(static_cast<uint64_t>(JTI), DL, PTy, true));
1961}
1962
1964 MaybeAlign Alignment, int Offset,
1965 bool isTarget, unsigned TargetFlags) {
1966 assert((TargetFlags == 0 || isTarget) &&
1967 "Cannot set target flags on target-independent globals");
1968 if (!Alignment)
1969 Alignment = shouldOptForSize()
1970 ? getDataLayout().getABITypeAlign(C->getType())
1971 : getDataLayout().getPrefTypeAlign(C->getType());
1972 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1973 SDVTList VTs = getVTList(VT);
1975 AddNodeIDNode(ID, Opc, VTs, {});
1976 ID.AddInteger(Alignment->value());
1977 ID.AddInteger(Offset);
1978 ID.AddPointer(C);
1979 ID.AddInteger(TargetFlags);
1980 void *IP = nullptr;
1981 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1982 return SDValue(E, 0);
1983
1984 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VTs, Offset, *Alignment,
1985 TargetFlags);
1986 CSEMap.InsertNode(N, IP);
1987 InsertNode(N);
1988 SDValue V = SDValue(N, 0);
1989 NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1990 return V;
1991}
1992
1994 MaybeAlign Alignment, int Offset,
1995 bool isTarget, unsigned TargetFlags) {
1996 assert((TargetFlags == 0 || isTarget) &&
1997 "Cannot set target flags on target-independent globals");
1998 if (!Alignment)
1999 Alignment = getDataLayout().getPrefTypeAlign(C->getType());
2000 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
2001 SDVTList VTs = getVTList(VT);
2003 AddNodeIDNode(ID, Opc, VTs, {});
2004 ID.AddInteger(Alignment->value());
2005 ID.AddInteger(Offset);
2006 C->addSelectionDAGCSEId(ID);
2007 ID.AddInteger(TargetFlags);
2008 void *IP = nullptr;
2009 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2010 return SDValue(E, 0);
2011
2012 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VTs, Offset, *Alignment,
2013 TargetFlags);
2014 CSEMap.InsertNode(N, IP);
2015 InsertNode(N);
2016 return SDValue(N, 0);
2017}
2018
2021 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), {});
2022 ID.AddPointer(MBB);
2023 void *IP = nullptr;
2024 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2025 return SDValue(E, 0);
2026
2027 auto *N = newSDNode<BasicBlockSDNode>(MBB);
2028 CSEMap.InsertNode(N, IP);
2029 InsertNode(N);
2030 return SDValue(N, 0);
2031}
2032
2034 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
2035 ValueTypeNodes.size())
2036 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
2037
2038 SDNode *&N = VT.isExtended() ?
2039 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
2040
2041 if (N) return SDValue(N, 0);
2042 N = newSDNode<VTSDNode>(VT);
2043 InsertNode(N);
2044 return SDValue(N, 0);
2045}
2046
2048 SDNode *&N = ExternalSymbols[Sym];
2049 if (N) return SDValue(N, 0);
2050 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, getVTList(VT));
2051 InsertNode(N);
2052 return SDValue(N, 0);
2053}
2054
2056 SDNode *&N = MCSymbols[Sym];
2057 if (N)
2058 return SDValue(N, 0);
2059 N = newSDNode<MCSymbolSDNode>(Sym, getVTList(VT));
2060 InsertNode(N);
2061 return SDValue(N, 0);
2062}
2063
2065 unsigned TargetFlags) {
2066 SDNode *&N =
2067 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
2068 if (N) return SDValue(N, 0);
2069 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, getVTList(VT));
2070 InsertNode(N);
2071 return SDValue(N, 0);
2072}
2073
2075 if ((unsigned)Cond >= CondCodeNodes.size())
2076 CondCodeNodes.resize(Cond+1);
2077
2078 if (!CondCodeNodes[Cond]) {
2079 auto *N = newSDNode<CondCodeSDNode>(Cond);
2080 CondCodeNodes[Cond] = N;
2081 InsertNode(N);
2082 }
2083
2084 return SDValue(CondCodeNodes[Cond], 0);
2085}
2086
2088 bool ConstantFold) {
2089 assert(MulImm.getBitWidth() == VT.getSizeInBits() &&
2090 "APInt size does not match type size!");
2091
2092 if (MulImm == 0)
2093 return getConstant(0, DL, VT);
2094
2095 if (ConstantFold) {
2096 const MachineFunction &MF = getMachineFunction();
2097 const Function &F = MF.getFunction();
2098 ConstantRange CR = getVScaleRange(&F, 64);
2099 if (const APInt *C = CR.getSingleElement())
2100 return getConstant(MulImm * C->getZExtValue(), DL, VT);
2101 }
2102
2103 return getNode(ISD::VSCALE, DL, VT, getConstant(MulImm, DL, VT));
2104}
2105
2107 bool ConstantFold) {
2108 if (EC.isScalable())
2109 return getVScale(DL, VT,
2110 APInt(VT.getSizeInBits(), EC.getKnownMinValue()));
2111
2112 return getConstant(EC.getKnownMinValue(), DL, VT);
2113}
2114
2116 APInt One(ResVT.getScalarSizeInBits(), 1);
2117 return getStepVector(DL, ResVT, One);
2118}
2119
2121 const APInt &StepVal) {
2122 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
2123 if (ResVT.isScalableVector())
2124 return getNode(
2125 ISD::STEP_VECTOR, DL, ResVT,
2126 getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
2127
2128 SmallVector<SDValue, 16> OpsStepConstants;
2129 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
2130 OpsStepConstants.push_back(
2131 getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
2132 return getBuildVector(ResVT, DL, OpsStepConstants);
2133}
2134
2135/// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
2136/// point at N1 to point at N2 and indices that point at N2 to point at N1.
2141
2143 SDValue N2, ArrayRef<int> Mask) {
2144 assert(VT.getVectorNumElements() == Mask.size() &&
2145 "Must have the same number of vector elements as mask elements!");
2146 assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2147 "Invalid VECTOR_SHUFFLE");
2148
2149 // Canonicalize shuffle undef, undef -> undef
2150 if (N1.isUndef() && N2.isUndef())
2151 return getUNDEF(VT);
2152
2153 // Validate that all indices in Mask are within the range of the elements
2154 // input to the shuffle.
2155 int NElts = Mask.size();
2156 assert(llvm::all_of(Mask,
2157 [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
2158 "Index out of range");
2159
2160 // Copy the mask so we can do any needed cleanup.
2161 SmallVector<int, 8> MaskVec(Mask);
2162
2163 // Canonicalize shuffle v, v -> v, undef
2164 if (N1 == N2) {
2165 N2 = getUNDEF(VT);
2166 for (int i = 0; i != NElts; ++i)
2167 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
2168 }
2169
2170 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
2171 if (N1.isUndef())
2172 commuteShuffle(N1, N2, MaskVec);
2173
2174 if (TLI->hasVectorBlend()) {
2175 // If shuffling a splat, try to blend the splat instead. We do this here so
2176 // that even when this arises during lowering we don't have to re-handle it.
2177 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
2178 BitVector UndefElements;
2179 SDValue Splat = BV->getSplatValue(&UndefElements);
2180 if (!Splat)
2181 return;
2182
2183 for (int i = 0; i < NElts; ++i) {
2184 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
2185 continue;
2186
2187 // If this input comes from undef, mark it as such.
2188 if (UndefElements[MaskVec[i] - Offset]) {
2189 MaskVec[i] = -1;
2190 continue;
2191 }
2192
2193 // If we can blend a non-undef lane, use that instead.
2194 if (!UndefElements[i])
2195 MaskVec[i] = i + Offset;
2196 }
2197 };
2198 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
2199 BlendSplat(N1BV, 0);
2200 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
2201 BlendSplat(N2BV, NElts);
2202 }
2203
2204 // Canonicalize all index into lhs, -> shuffle lhs, undef
2205 // Canonicalize all index into rhs, -> shuffle rhs, undef
2206 bool AllLHS = true, AllRHS = true;
2207 bool N2Undef = N2.isUndef();
2208 for (int i = 0; i != NElts; ++i) {
2209 if (MaskVec[i] >= NElts) {
2210 if (N2Undef)
2211 MaskVec[i] = -1;
2212 else
2213 AllLHS = false;
2214 } else if (MaskVec[i] >= 0) {
2215 AllRHS = false;
2216 }
2217 }
2218 if (AllLHS && AllRHS)
2219 return getUNDEF(VT);
2220 if (AllLHS && !N2Undef)
2221 N2 = getUNDEF(VT);
2222 if (AllRHS) {
2223 N1 = getUNDEF(VT);
2224 commuteShuffle(N1, N2, MaskVec);
2225 }
2226 // Reset our undef status after accounting for the mask.
2227 N2Undef = N2.isUndef();
2228 // Re-check whether both sides ended up undef.
2229 if (N1.isUndef() && N2Undef)
2230 return getUNDEF(VT);
2231
2232 // If Identity shuffle return that node.
2233 bool Identity = true, AllSame = true;
2234 for (int i = 0; i != NElts; ++i) {
2235 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
2236 if (MaskVec[i] != MaskVec[0]) AllSame = false;
2237 }
2238 if (Identity && NElts)
2239 return N1;
2240
2241 // Shuffling a constant splat doesn't change the result.
2242 if (N2Undef) {
2243 SDValue V = N1;
2244
2245 // Look through any bitcasts. We check that these don't change the number
2246 // (and size) of elements and just changes their types.
2247 while (V.getOpcode() == ISD::BITCAST)
2248 V = V->getOperand(0);
2249
2250 // A splat should always show up as a build vector node.
2251 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2252 BitVector UndefElements;
2253 SDValue Splat = BV->getSplatValue(&UndefElements);
2254 // If this is a splat of an undef, shuffling it is also undef.
2255 if (Splat && Splat.isUndef())
2256 return getUNDEF(VT);
2257
2258 bool SameNumElts =
2259 V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
2260
2261 // We only have a splat which can skip shuffles if there is a splatted
2262 // value and no undef lanes rearranged by the shuffle.
2263 if (Splat && UndefElements.none()) {
2264 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
2265 // number of elements match or the value splatted is a zero constant.
2266 if (SameNumElts || isNullConstant(Splat))
2267 return N1;
2268 }
2269
2270 // If the shuffle itself creates a splat, build the vector directly.
2271 if (AllSame && SameNumElts) {
2272 EVT BuildVT = BV->getValueType(0);
2273 const SDValue &Splatted = BV->getOperand(MaskVec[0]);
2274 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
2275
2276 // We may have jumped through bitcasts, so the type of the
2277 // BUILD_VECTOR may not match the type of the shuffle.
2278 if (BuildVT != VT)
2279 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
2280 return NewBV;
2281 }
2282 }
2283 }
2284
2285 SDVTList VTs = getVTList(VT);
2287 SDValue Ops[2] = { N1, N2 };
2289 for (int i = 0; i != NElts; ++i)
2290 ID.AddInteger(MaskVec[i]);
2291
2292 void* IP = nullptr;
2293 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2294 return SDValue(E, 0);
2295
2296 // Allocate the mask array for the node out of the BumpPtrAllocator, since
2297 // SDNode doesn't have access to it. This memory will be "leaked" when
2298 // the node is deallocated, but recovered when the NodeAllocator is released.
2299 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2300 llvm::copy(MaskVec, MaskAlloc);
2301
2302 auto *N = newSDNode<ShuffleVectorSDNode>(VTs, dl.getIROrder(),
2303 dl.getDebugLoc(), MaskAlloc);
2304 createOperands(N, Ops);
2305
2306 CSEMap.InsertNode(N, IP);
2307 InsertNode(N);
2308 SDValue V = SDValue(N, 0);
2309 NewSDValueDbgMsg(V, "Creating new node: ", this);
2310 return V;
2311}
2312
2314 EVT VT = SV.getValueType(0);
2315 SmallVector<int, 8> MaskVec(SV.getMask());
2317
2318 SDValue Op0 = SV.getOperand(0);
2319 SDValue Op1 = SV.getOperand(1);
2320 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2321}
2322
2324 SDVTList VTs = getVTList(VT);
2326 AddNodeIDNode(ID, ISD::Register, VTs, {});
2327 ID.AddInteger(Reg.id());
2328 void *IP = nullptr;
2329 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2330 return SDValue(E, 0);
2331
2332 auto *N = newSDNode<RegisterSDNode>(Reg, VTs);
2333 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, UA);
2334 CSEMap.InsertNode(N, IP);
2335 InsertNode(N);
2336 return SDValue(N, 0);
2337}
2338
2341 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), {});
2342 ID.AddPointer(RegMask);
2343 void *IP = nullptr;
2344 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2345 return SDValue(E, 0);
2346
2347 auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2348 CSEMap.InsertNode(N, IP);
2349 InsertNode(N);
2350 return SDValue(N, 0);
2351}
2352
2354 MCSymbol *Label) {
2355 return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2356}
2357
2358SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2359 SDValue Root, MCSymbol *Label) {
2361 SDValue Ops[] = { Root };
2362 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2363 ID.AddPointer(Label);
2364 void *IP = nullptr;
2365 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2366 return SDValue(E, 0);
2367
2368 auto *N =
2369 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2370 createOperands(N, Ops);
2371
2372 CSEMap.InsertNode(N, IP);
2373 InsertNode(N);
2374 return SDValue(N, 0);
2375}
2376
2378 int64_t Offset, bool isTarget,
2379 unsigned TargetFlags) {
2380 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2381 SDVTList VTs = getVTList(VT);
2382
2384 AddNodeIDNode(ID, Opc, VTs, {});
2385 ID.AddPointer(BA);
2386 ID.AddInteger(Offset);
2387 ID.AddInteger(TargetFlags);
2388 void *IP = nullptr;
2389 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2390 return SDValue(E, 0);
2391
2392 auto *N = newSDNode<BlockAddressSDNode>(Opc, VTs, BA, Offset, TargetFlags);
2393 CSEMap.InsertNode(N, IP);
2394 InsertNode(N);
2395 return SDValue(N, 0);
2396}
2397
2400 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), {});
2401 ID.AddPointer(V);
2402
2403 void *IP = nullptr;
2404 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2405 return SDValue(E, 0);
2406
2407 auto *N = newSDNode<SrcValueSDNode>(V);
2408 CSEMap.InsertNode(N, IP);
2409 InsertNode(N);
2410 return SDValue(N, 0);
2411}
2412
2415 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), {});
2416 ID.AddPointer(MD);
2417
2418 void *IP = nullptr;
2419 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2420 return SDValue(E, 0);
2421
2422 auto *N = newSDNode<MDNodeSDNode>(MD);
2423 CSEMap.InsertNode(N, IP);
2424 InsertNode(N);
2425 return SDValue(N, 0);
2426}
2427
2429 if (VT == V.getValueType())
2430 return V;
2431
2432 return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2433}
2434
2436 unsigned SrcAS, unsigned DestAS) {
2437 SDVTList VTs = getVTList(VT);
2438 SDValue Ops[] = {Ptr};
2440 AddNodeIDNode(ID, ISD::ADDRSPACECAST, VTs, Ops);
2441 ID.AddInteger(SrcAS);
2442 ID.AddInteger(DestAS);
2443
2444 void *IP = nullptr;
2445 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2446 return SDValue(E, 0);
2447
2448 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2449 VTs, SrcAS, DestAS);
2450 createOperands(N, Ops);
2451
2452 CSEMap.InsertNode(N, IP);
2453 InsertNode(N);
2454 return SDValue(N, 0);
2455}
2456
2458 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2459}
2460
2461/// getShiftAmountOperand - Return the specified value casted to
2462/// the target's desired shift amount type.
2464 EVT OpTy = Op.getValueType();
2465 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2466 if (OpTy == ShTy || OpTy.isVector()) return Op;
2467
2468 return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2469}
2470
2471/// Given a store node \p StoreNode, return true if it is safe to fold that node
2472/// into \p FPNode, which expands to a library call with output pointers.
2474 SDNode *FPNode) {
2476 SmallVector<const SDNode *, 8> DeferredNodes;
2478
2479 // Skip FPNode use by StoreNode (that's the use we want to fold into FPNode).
2480 for (SDValue Op : StoreNode->ops())
2481 if (Op.getNode() != FPNode)
2482 Worklist.push_back(Op.getNode());
2483
2485 while (!Worklist.empty()) {
2486 const SDNode *Node = Worklist.pop_back_val();
2487 auto [_, Inserted] = Visited.insert(Node);
2488 if (!Inserted)
2489 continue;
2490
2491 if (MaxSteps > 0 && Visited.size() >= MaxSteps)
2492 return false;
2493
2494 // Reached the FPNode (would result in a cycle).
2495 // OR Reached CALLSEQ_START (would result in nested call sequences).
2496 if (Node == FPNode || Node->getOpcode() == ISD::CALLSEQ_START)
2497 return false;
2498
2499 if (Node->getOpcode() == ISD::CALLSEQ_END) {
2500 // Defer looking into call sequences (so we can check we're outside one).
2501 // We still need to look through these for the predecessor check.
2502 DeferredNodes.push_back(Node);
2503 continue;
2504 }
2505
2506 for (SDValue Op : Node->ops())
2507 Worklist.push_back(Op.getNode());
2508 }
2509
2510 // True if we're outside a call sequence and don't have the FPNode as a
2511 // predecessor. No cycles or nested call sequences possible.
2512 return !SDNode::hasPredecessorHelper(FPNode, Visited, DeferredNodes,
2513 MaxSteps);
2514}
2515
2517 RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl<SDValue> &Results,
2518 std::optional<unsigned> CallRetResNo) {
2519 LLVMContext &Ctx = *getContext();
2520 EVT VT = Node->getValueType(0);
2521 unsigned NumResults = Node->getNumValues();
2522
2523 if (LC == RTLIB::UNKNOWN_LIBCALL)
2524 return false;
2525
2526 const char *LCName = TLI->getLibcallName(LC);
2527 if (!LCName)
2528 return false;
2529
2530 auto getVecDesc = [&]() -> VecDesc const * {
2531 for (bool Masked : {false, true}) {
2532 if (VecDesc const *VD = getLibInfo().getVectorMappingInfo(
2533 LCName, VT.getVectorElementCount(), Masked)) {
2534 return VD;
2535 }
2536 }
2537 return nullptr;
2538 };
2539
2540 // For vector types, we must find a vector mapping for the libcall.
2541 VecDesc const *VD = nullptr;
2542 if (VT.isVector() && !(VD = getVecDesc()))
2543 return false;
2544
2545 // Find users of the node that store the results (and share input chains). The
2546 // destination pointers can be used instead of creating stack allocations.
2547 SDValue StoresInChain;
2548 SmallVector<StoreSDNode *, 2> ResultStores(NumResults);
2549 for (SDNode *User : Node->users()) {
2551 continue;
2552 auto *ST = cast<StoreSDNode>(User);
2553 SDValue StoreValue = ST->getValue();
2554 unsigned ResNo = StoreValue.getResNo();
2555 // Ensure the store corresponds to an output pointer.
2556 if (CallRetResNo == ResNo)
2557 continue;
2558 // Ensure the store to the default address space and not atomic or volatile.
2559 if (!ST->isSimple() || ST->getAddressSpace() != 0)
2560 continue;
2561 // Ensure all store chains are the same (so they don't alias).
2562 if (StoresInChain && ST->getChain() != StoresInChain)
2563 continue;
2564 // Ensure the store is properly aligned.
2565 Type *StoreType = StoreValue.getValueType().getTypeForEVT(Ctx);
2566 if (ST->getAlign() <
2567 getDataLayout().getABITypeAlign(StoreType->getScalarType()))
2568 continue;
2569 // Avoid:
2570 // 1. Creating cyclic dependencies.
2571 // 2. Expanding the node to a call within a call sequence.
2573 continue;
2574 ResultStores[ResNo] = ST;
2575 StoresInChain = ST->getChain();
2576 }
2577
2579
2580 // Pass the arguments.
2581 for (const SDValue &Op : Node->op_values()) {
2582 EVT ArgVT = Op.getValueType();
2583 Type *ArgTy = ArgVT.getTypeForEVT(Ctx);
2584 Args.emplace_back(Op, ArgTy);
2585 }
2586
2587 // Pass the output pointers.
2588 SmallVector<SDValue, 2> ResultPtrs(NumResults);
2590 for (auto [ResNo, ST] : llvm::enumerate(ResultStores)) {
2591 if (ResNo == CallRetResNo)
2592 continue;
2593 EVT ResVT = Node->getValueType(ResNo);
2594 SDValue ResultPtr = ST ? ST->getBasePtr() : CreateStackTemporary(ResVT);
2595 ResultPtrs[ResNo] = ResultPtr;
2596 Args.emplace_back(ResultPtr, PointerTy);
2597 }
2598
2599 SDLoc DL(Node);
2600
2601 // Pass the vector mask (if required).
2602 if (VD && VD->isMasked()) {
2603 EVT MaskVT = TLI->getSetCCResultType(getDataLayout(), Ctx, VT);
2604 SDValue Mask = getBoolConstant(true, DL, MaskVT, VT);
2605 Args.emplace_back(Mask, MaskVT.getTypeForEVT(Ctx));
2606 }
2607
2608 Type *RetType = CallRetResNo.has_value()
2609 ? Node->getValueType(*CallRetResNo).getTypeForEVT(Ctx)
2610 : Type::getVoidTy(Ctx);
2611 SDValue InChain = StoresInChain ? StoresInChain : getEntryNode();
2612 SDValue Callee = getExternalSymbol(VD ? VD->getVectorFnName().data() : LCName,
2613 TLI->getPointerTy(getDataLayout()));
2615 CLI.setDebugLoc(DL).setChain(InChain).setLibCallee(
2616 TLI->getLibcallCallingConv(LC), RetType, Callee, std::move(Args));
2617
2618 auto [Call, CallChain] = TLI->LowerCallTo(CLI);
2619
2620 for (auto [ResNo, ResultPtr] : llvm::enumerate(ResultPtrs)) {
2621 if (ResNo == CallRetResNo) {
2622 Results.push_back(Call);
2623 continue;
2624 }
2625 MachinePointerInfo PtrInfo;
2626 SDValue LoadResult =
2627 getLoad(Node->getValueType(ResNo), DL, CallChain, ResultPtr, PtrInfo);
2628 SDValue OutChain = LoadResult.getValue(1);
2629
2630 if (StoreSDNode *ST = ResultStores[ResNo]) {
2631 // Replace store with the library call.
2632 ReplaceAllUsesOfValueWith(SDValue(ST, 0), OutChain);
2633 PtrInfo = ST->getPointerInfo();
2634 } else {
2636 getMachineFunction(), cast<FrameIndexSDNode>(ResultPtr)->getIndex());
2637 }
2638
2639 Results.push_back(LoadResult);
2640 }
2641
2642 return true;
2643}
2644
2646 SDLoc dl(Node);
2648 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2649 EVT VT = Node->getValueType(0);
2650 SDValue Tmp1 = Node->getOperand(0);
2651 SDValue Tmp2 = Node->getOperand(1);
2652 const MaybeAlign MA(Node->getConstantOperandVal(3));
2653
2654 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2655 Tmp2, MachinePointerInfo(V));
2656 SDValue VAList = VAListLoad;
2657
2658 if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2659 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2660 getConstant(MA->value() - 1, dl, VAList.getValueType()));
2661
2662 VAList = getNode(
2663 ISD::AND, dl, VAList.getValueType(), VAList,
2664 getSignedConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2665 }
2666
2667 // Increment the pointer, VAList, to the next vaarg
2668 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2669 getConstant(getDataLayout().getTypeAllocSize(
2670 VT.getTypeForEVT(*getContext())),
2671 dl, VAList.getValueType()));
2672 // Store the incremented VAList to the legalized pointer
2673 Tmp1 =
2674 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2675 // Load the actual argument out of the pointer VAList
2676 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2677}
2678
2680 SDLoc dl(Node);
2682 // This defaults to loading a pointer from the input and storing it to the
2683 // output, returning the chain.
2684 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2685 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2686 SDValue Tmp1 =
2687 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2688 Node->getOperand(2), MachinePointerInfo(VS));
2689 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2690 MachinePointerInfo(VD));
2691}
2692
2694 const DataLayout &DL = getDataLayout();
2695 Type *Ty = VT.getTypeForEVT(*getContext());
2696 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2697
2698 if (TLI->isTypeLegal(VT) || !VT.isVector())
2699 return RedAlign;
2700
2701 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2702 const Align StackAlign = TFI->getStackAlign();
2703
2704 // See if we can choose a smaller ABI alignment in cases where it's an
2705 // illegal vector type that will get broken down.
2706 if (RedAlign > StackAlign) {
2707 EVT IntermediateVT;
2708 MVT RegisterVT;
2709 unsigned NumIntermediates;
2710 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2711 NumIntermediates, RegisterVT);
2712 Ty = IntermediateVT.getTypeForEVT(*getContext());
2713 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2714 if (RedAlign2 < RedAlign)
2715 RedAlign = RedAlign2;
2716
2717 if (!getMachineFunction().getFrameInfo().isStackRealignable())
2718 // If the stack is not realignable, the alignment should be limited to the
2719 // StackAlignment
2720 RedAlign = std::min(RedAlign, StackAlign);
2721 }
2722
2723 return RedAlign;
2724}
2725
2727 MachineFrameInfo &MFI = MF->getFrameInfo();
2728 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2729 int StackID = 0;
2730 if (Bytes.isScalable())
2731 StackID = TFI->getStackIDForScalableVectors();
2732 // The stack id gives an indication of whether the object is scalable or
2733 // not, so it's safe to pass in the minimum size here.
2734 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinValue(), Alignment,
2735 false, nullptr, StackID);
2736 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2737}
2738
2740 Type *Ty = VT.getTypeForEVT(*getContext());
2741 Align StackAlign =
2742 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2743 return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2744}
2745
2747 TypeSize VT1Size = VT1.getStoreSize();
2748 TypeSize VT2Size = VT2.getStoreSize();
2749 assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2750 "Don't know how to choose the maximum size when creating a stack "
2751 "temporary");
2752 TypeSize Bytes = VT1Size.getKnownMinValue() > VT2Size.getKnownMinValue()
2753 ? VT1Size
2754 : VT2Size;
2755
2756 Type *Ty1 = VT1.getTypeForEVT(*getContext());
2757 Type *Ty2 = VT2.getTypeForEVT(*getContext());
2758 const DataLayout &DL = getDataLayout();
2759 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2760 return CreateStackTemporary(Bytes, Align);
2761}
2762
2764 ISD::CondCode Cond, const SDLoc &dl) {
2765 EVT OpVT = N1.getValueType();
2766
2767 auto GetUndefBooleanConstant = [&]() {
2768 if (VT.getScalarType() == MVT::i1 ||
2769 TLI->getBooleanContents(OpVT) ==
2771 return getUNDEF(VT);
2772 // ZeroOrOne / ZeroOrNegative require specific values for the high bits,
2773 // so we cannot use getUNDEF(). Return zero instead.
2774 return getConstant(0, dl, VT);
2775 };
2776
2777 // These setcc operations always fold.
2778 switch (Cond) {
2779 default: break;
2780 case ISD::SETFALSE:
2781 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2782 case ISD::SETTRUE:
2783 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2784
2785 case ISD::SETOEQ:
2786 case ISD::SETOGT:
2787 case ISD::SETOGE:
2788 case ISD::SETOLT:
2789 case ISD::SETOLE:
2790 case ISD::SETONE:
2791 case ISD::SETO:
2792 case ISD::SETUO:
2793 case ISD::SETUEQ:
2794 case ISD::SETUNE:
2795 assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2796 break;
2797 }
2798
2799 if (OpVT.isInteger()) {
2800 // For EQ and NE, we can always pick a value for the undef to make the
2801 // predicate pass or fail, so we can return undef.
2802 // Matches behavior in llvm::ConstantFoldCompareInstruction.
2803 // icmp eq/ne X, undef -> undef.
2804 if ((N1.isUndef() || N2.isUndef()) &&
2805 (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2806 return GetUndefBooleanConstant();
2807
2808 // If both operands are undef, we can return undef for int comparison.
2809 // icmp undef, undef -> undef.
2810 if (N1.isUndef() && N2.isUndef())
2811 return GetUndefBooleanConstant();
2812
2813 // icmp X, X -> true/false
2814 // icmp X, undef -> true/false because undef could be X.
2815 if (N1.isUndef() || N2.isUndef() || N1 == N2)
2816 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2817 }
2818
2820 const APInt &C2 = N2C->getAPIntValue();
2822 const APInt &C1 = N1C->getAPIntValue();
2823
2825 dl, VT, OpVT);
2826 }
2827 }
2828
2829 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2830 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2831
2832 if (N1CFP && N2CFP) {
2833 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2834 switch (Cond) {
2835 default: break;
2836 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
2837 return GetUndefBooleanConstant();
2838 [[fallthrough]];
2839 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2840 OpVT);
2841 case ISD::SETNE: if (R==APFloat::cmpUnordered)
2842 return GetUndefBooleanConstant();
2843 [[fallthrough]];
2845 R==APFloat::cmpLessThan, dl, VT,
2846 OpVT);
2847 case ISD::SETLT: if (R==APFloat::cmpUnordered)
2848 return GetUndefBooleanConstant();
2849 [[fallthrough]];
2850 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2851 OpVT);
2852 case ISD::SETGT: if (R==APFloat::cmpUnordered)
2853 return GetUndefBooleanConstant();
2854 [[fallthrough]];
2856 VT, OpVT);
2857 case ISD::SETLE: if (R==APFloat::cmpUnordered)
2858 return GetUndefBooleanConstant();
2859 [[fallthrough]];
2861 R==APFloat::cmpEqual, dl, VT,
2862 OpVT);
2863 case ISD::SETGE: if (R==APFloat::cmpUnordered)
2864 return GetUndefBooleanConstant();
2865 [[fallthrough]];
2867 R==APFloat::cmpEqual, dl, VT, OpVT);
2868 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2869 OpVT);
2870 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2871 OpVT);
2873 R==APFloat::cmpEqual, dl, VT,
2874 OpVT);
2875 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2876 OpVT);
2878 R==APFloat::cmpLessThan, dl, VT,
2879 OpVT);
2881 R==APFloat::cmpUnordered, dl, VT,
2882 OpVT);
2884 VT, OpVT);
2885 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2886 OpVT);
2887 }
2888 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2889 // Ensure that the constant occurs on the RHS.
2891 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2892 return SDValue();
2893 return getSetCC(dl, VT, N2, N1, SwappedCond);
2894 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2895 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2896 // If an operand is known to be a nan (or undef that could be a nan), we can
2897 // fold it.
2898 // Choosing NaN for the undef will always make unordered comparison succeed
2899 // and ordered comparison fails.
2900 // Matches behavior in llvm::ConstantFoldCompareInstruction.
2901 switch (ISD::getUnorderedFlavor(Cond)) {
2902 default:
2903 llvm_unreachable("Unknown flavor!");
2904 case 0: // Known false.
2905 return getBoolConstant(false, dl, VT, OpVT);
2906 case 1: // Known true.
2907 return getBoolConstant(true, dl, VT, OpVT);
2908 case 2: // Undefined.
2909 return GetUndefBooleanConstant();
2910 }
2911 }
2912
2913 // Could not fold it.
2914 return SDValue();
2915}
2916
2917/// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
2918/// use this predicate to simplify operations downstream.
2920 unsigned BitWidth = Op.getScalarValueSizeInBits();
2922}
2923
2924/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
2925/// this predicate to simplify operations downstream. Mask is known to be zero
2926/// for bits that V cannot have.
2928 unsigned Depth) const {
2929 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2930}
2931
2932/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2933/// DemandedElts. We use this predicate to simplify operations downstream.
2934/// Mask is known to be zero for bits that V cannot have.
2936 const APInt &DemandedElts,
2937 unsigned Depth) const {
2938 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2939}
2940
2941/// MaskedVectorIsZero - Return true if 'Op' is known to be zero in
2942/// DemandedElts. We use this predicate to simplify operations downstream.
2944 unsigned Depth /* = 0 */) const {
2945 return computeKnownBits(V, DemandedElts, Depth).isZero();
2946}
2947
2948/// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2950 unsigned Depth) const {
2951 return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2952}
2953
2955 const APInt &DemandedElts,
2956 unsigned Depth) const {
2957 EVT VT = Op.getValueType();
2958 assert(VT.isVector() && !VT.isScalableVector() && "Only for fixed vectors!");
2959
2960 unsigned NumElts = VT.getVectorNumElements();
2961 assert(DemandedElts.getBitWidth() == NumElts && "Unexpected demanded mask.");
2962
2963 APInt KnownZeroElements = APInt::getZero(NumElts);
2964 for (unsigned EltIdx = 0; EltIdx != NumElts; ++EltIdx) {
2965 if (!DemandedElts[EltIdx])
2966 continue; // Don't query elements that are not demanded.
2967 APInt Mask = APInt::getOneBitSet(NumElts, EltIdx);
2968 if (MaskedVectorIsZero(Op, Mask, Depth))
2969 KnownZeroElements.setBit(EltIdx);
2970 }
2971 return KnownZeroElements;
2972}
2973
2974/// isSplatValue - Return true if the vector V has the same value
2975/// across all DemandedElts. For scalable vectors, we don't know the
2976/// number of lanes at compile time. Instead, we use a 1 bit APInt
2977/// to represent a conservative value for all lanes; that is, that
2978/// one bit value is implicitly splatted across all lanes.
2979bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2980 APInt &UndefElts, unsigned Depth) const {
2981 unsigned Opcode = V.getOpcode();
2982 EVT VT = V.getValueType();
2983 assert(VT.isVector() && "Vector type expected");
2984 assert((!VT.isScalableVector() || DemandedElts.getBitWidth() == 1) &&
2985 "scalable demanded bits are ignored");
2986
2987 if (!DemandedElts)
2988 return false; // No demanded elts, better to assume we don't know anything.
2989
2990 if (Depth >= MaxRecursionDepth)
2991 return false; // Limit search depth.
2992
2993 // Deal with some common cases here that work for both fixed and scalable
2994 // vector types.
2995 switch (Opcode) {
2996 case ISD::SPLAT_VECTOR:
2997 UndefElts = V.getOperand(0).isUndef()
2998 ? APInt::getAllOnes(DemandedElts.getBitWidth())
2999 : APInt(DemandedElts.getBitWidth(), 0);
3000 return true;
3001 case ISD::ADD:
3002 case ISD::SUB:
3003 case ISD::AND:
3004 case ISD::XOR:
3005 case ISD::OR: {
3006 APInt UndefLHS, UndefRHS;
3007 SDValue LHS = V.getOperand(0);
3008 SDValue RHS = V.getOperand(1);
3009 // Only recognize splats with the same demanded undef elements for both
3010 // operands, otherwise we might fail to handle binop-specific undef
3011 // handling.
3012 // e.g. (and undef, 0) -> 0 etc.
3013 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
3014 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1) &&
3015 (DemandedElts & UndefLHS) == (DemandedElts & UndefRHS)) {
3016 UndefElts = UndefLHS | UndefRHS;
3017 return true;
3018 }
3019 return false;
3020 }
3021 case ISD::ABS:
3022 case ISD::TRUNCATE:
3023 case ISD::SIGN_EXTEND:
3024 case ISD::ZERO_EXTEND:
3025 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
3026 default:
3027 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
3028 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
3029 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, *this,
3030 Depth);
3031 break;
3032 }
3033
3034 // We don't support other cases than those above for scalable vectors at
3035 // the moment.
3036 if (VT.isScalableVector())
3037 return false;
3038
3039 unsigned NumElts = VT.getVectorNumElements();
3040 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
3041 UndefElts = APInt::getZero(NumElts);
3042
3043 switch (Opcode) {
3044 case ISD::BUILD_VECTOR: {
3045 SDValue Scl;
3046 for (unsigned i = 0; i != NumElts; ++i) {
3047 SDValue Op = V.getOperand(i);
3048 if (Op.isUndef()) {
3049 UndefElts.setBit(i);
3050 continue;
3051 }
3052 if (!DemandedElts[i])
3053 continue;
3054 if (Scl && Scl != Op)
3055 return false;
3056 Scl = Op;
3057 }
3058 return true;
3059 }
3060 case ISD::VECTOR_SHUFFLE: {
3061 // Check if this is a shuffle node doing a splat or a shuffle of a splat.
3062 APInt DemandedLHS = APInt::getZero(NumElts);
3063 APInt DemandedRHS = APInt::getZero(NumElts);
3064 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
3065 for (int i = 0; i != (int)NumElts; ++i) {
3066 int M = Mask[i];
3067 if (M < 0) {
3068 UndefElts.setBit(i);
3069 continue;
3070 }
3071 if (!DemandedElts[i])
3072 continue;
3073 if (M < (int)NumElts)
3074 DemandedLHS.setBit(M);
3075 else
3076 DemandedRHS.setBit(M - NumElts);
3077 }
3078
3079 // If we aren't demanding either op, assume there's no splat.
3080 // If we are demanding both ops, assume there's no splat.
3081 if ((DemandedLHS.isZero() && DemandedRHS.isZero()) ||
3082 (!DemandedLHS.isZero() && !DemandedRHS.isZero()))
3083 return false;
3084
3085 // See if the demanded elts of the source op is a splat or we only demand
3086 // one element, which should always be a splat.
3087 // TODO: Handle source ops splats with undefs.
3088 auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) {
3089 APInt SrcUndefs;
3090 return (SrcElts.popcount() == 1) ||
3091 (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) &&
3092 (SrcElts & SrcUndefs).isZero());
3093 };
3094 if (!DemandedLHS.isZero())
3095 return CheckSplatSrc(V.getOperand(0), DemandedLHS);
3096 return CheckSplatSrc(V.getOperand(1), DemandedRHS);
3097 }
3099 // Offset the demanded elts by the subvector index.
3100 SDValue Src = V.getOperand(0);
3101 // We don't support scalable vectors at the moment.
3102 if (Src.getValueType().isScalableVector())
3103 return false;
3104 uint64_t Idx = V.getConstantOperandVal(1);
3105 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3106 APInt UndefSrcElts;
3107 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3108 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
3109 UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
3110 return true;
3111 }
3112 break;
3113 }
3117 // Widen the demanded elts by the src element count.
3118 SDValue Src = V.getOperand(0);
3119 // We don't support scalable vectors at the moment.
3120 if (Src.getValueType().isScalableVector())
3121 return false;
3122 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3123 APInt UndefSrcElts;
3124 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3125 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
3126 UndefElts = UndefSrcElts.trunc(NumElts);
3127 return true;
3128 }
3129 break;
3130 }
3131 case ISD::BITCAST: {
3132 SDValue Src = V.getOperand(0);
3133 EVT SrcVT = Src.getValueType();
3134 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits();
3135 unsigned BitWidth = VT.getScalarSizeInBits();
3136
3137 // Ignore bitcasts from unsupported types.
3138 // TODO: Add fp support?
3139 if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger())
3140 break;
3141
3142 // Bitcast 'small element' vector to 'large element' vector.
3143 if ((BitWidth % SrcBitWidth) == 0) {
3144 // See if each sub element is a splat.
3145 unsigned Scale = BitWidth / SrcBitWidth;
3146 unsigned NumSrcElts = SrcVT.getVectorNumElements();
3147 APInt ScaledDemandedElts =
3148 APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3149 for (unsigned I = 0; I != Scale; ++I) {
3150 APInt SubUndefElts;
3151 APInt SubDemandedElt = APInt::getOneBitSet(Scale, I);
3152 APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt);
3153 SubDemandedElts &= ScaledDemandedElts;
3154 if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1))
3155 return false;
3156 // TODO: Add support for merging sub undef elements.
3157 if (!SubUndefElts.isZero())
3158 return false;
3159 }
3160 return true;
3161 }
3162 break;
3163 }
3164 }
3165
3166 return false;
3167}
3168
3169/// Helper wrapper to main isSplatValue function.
3170bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
3171 EVT VT = V.getValueType();
3172 assert(VT.isVector() && "Vector type expected");
3173
3174 APInt UndefElts;
3175 // Since the number of lanes in a scalable vector is unknown at compile time,
3176 // we track one bit which is implicitly broadcast to all lanes. This means
3177 // that all lanes in a scalable vector are considered demanded.
3178 APInt DemandedElts
3180 return isSplatValue(V, DemandedElts, UndefElts) &&
3181 (AllowUndefs || !UndefElts);
3182}
3183
3186
3187 EVT VT = V.getValueType();
3188 unsigned Opcode = V.getOpcode();
3189 switch (Opcode) {
3190 default: {
3191 APInt UndefElts;
3192 // Since the number of lanes in a scalable vector is unknown at compile time,
3193 // we track one bit which is implicitly broadcast to all lanes. This means
3194 // that all lanes in a scalable vector are considered demanded.
3195 APInt DemandedElts
3197
3198 if (isSplatValue(V, DemandedElts, UndefElts)) {
3199 if (VT.isScalableVector()) {
3200 // DemandedElts and UndefElts are ignored for scalable vectors, since
3201 // the only supported cases are SPLAT_VECTOR nodes.
3202 SplatIdx = 0;
3203 } else {
3204 // Handle case where all demanded elements are UNDEF.
3205 if (DemandedElts.isSubsetOf(UndefElts)) {
3206 SplatIdx = 0;
3207 return getUNDEF(VT);
3208 }
3209 SplatIdx = (UndefElts & DemandedElts).countr_one();
3210 }
3211 return V;
3212 }
3213 break;
3214 }
3215 case ISD::SPLAT_VECTOR:
3216 SplatIdx = 0;
3217 return V;
3218 case ISD::VECTOR_SHUFFLE: {
3219 assert(!VT.isScalableVector());
3220 // Check if this is a shuffle node doing a splat.
3221 // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
3222 // getTargetVShiftNode currently struggles without the splat source.
3223 auto *SVN = cast<ShuffleVectorSDNode>(V);
3224 if (!SVN->isSplat())
3225 break;
3226 int Idx = SVN->getSplatIndex();
3227 int NumElts = V.getValueType().getVectorNumElements();
3228 SplatIdx = Idx % NumElts;
3229 return V.getOperand(Idx / NumElts);
3230 }
3231 }
3232
3233 return SDValue();
3234}
3235
3237 int SplatIdx;
3238 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
3239 EVT SVT = SrcVector.getValueType().getScalarType();
3240 EVT LegalSVT = SVT;
3241 if (LegalTypes && !TLI->isTypeLegal(SVT)) {
3242 if (!SVT.isInteger())
3243 return SDValue();
3244 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
3245 if (LegalSVT.bitsLT(SVT))
3246 return SDValue();
3247 }
3248 return getExtractVectorElt(SDLoc(V), LegalSVT, SrcVector, SplatIdx);
3249 }
3250 return SDValue();
3251}
3252
3253std::optional<ConstantRange>
3255 unsigned Depth) const {
3256 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3257 V.getOpcode() == ISD::SRA) &&
3258 "Unknown shift node");
3259 // Shifting more than the bitwidth is not valid.
3260 unsigned BitWidth = V.getScalarValueSizeInBits();
3261
3262 if (auto *Cst = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
3263 const APInt &ShAmt = Cst->getAPIntValue();
3264 if (ShAmt.uge(BitWidth))
3265 return std::nullopt;
3266 return ConstantRange(ShAmt);
3267 }
3268
3269 if (auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1))) {
3270 const APInt *MinAmt = nullptr, *MaxAmt = nullptr;
3271 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3272 if (!DemandedElts[i])
3273 continue;
3274 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
3275 if (!SA) {
3276 MinAmt = MaxAmt = nullptr;
3277 break;
3278 }
3279 const APInt &ShAmt = SA->getAPIntValue();
3280 if (ShAmt.uge(BitWidth))
3281 return std::nullopt;
3282 if (!MinAmt || MinAmt->ugt(ShAmt))
3283 MinAmt = &ShAmt;
3284 if (!MaxAmt || MaxAmt->ult(ShAmt))
3285 MaxAmt = &ShAmt;
3286 }
3287 assert(((!MinAmt && !MaxAmt) || (MinAmt && MaxAmt)) &&
3288 "Failed to find matching min/max shift amounts");
3289 if (MinAmt && MaxAmt)
3290 return ConstantRange(*MinAmt, *MaxAmt + 1);
3291 }
3292
3293 // Use computeKnownBits to find a hidden constant/knownbits (usually type
3294 // legalized). e.g. Hidden behind multiple bitcasts/build_vector/casts etc.
3295 KnownBits KnownAmt = computeKnownBits(V.getOperand(1), DemandedElts, Depth);
3296 if (KnownAmt.getMaxValue().ult(BitWidth))
3297 return ConstantRange::fromKnownBits(KnownAmt, /*IsSigned=*/false);
3298
3299 return std::nullopt;
3300}
3301
3302std::optional<unsigned>
3304 unsigned Depth) const {
3305 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3306 V.getOpcode() == ISD::SRA) &&
3307 "Unknown shift node");
3308 if (std::optional<ConstantRange> AmtRange =
3309 getValidShiftAmountRange(V, DemandedElts, Depth))
3310 if (const APInt *ShAmt = AmtRange->getSingleElement())
3311 return ShAmt->getZExtValue();
3312 return std::nullopt;
3313}
3314
3315std::optional<unsigned>
3317 EVT VT = V.getValueType();
3318 APInt DemandedElts = VT.isFixedLengthVector()
3320 : APInt(1, 1);
3321 return getValidShiftAmount(V, DemandedElts, Depth);
3322}
3323
3324std::optional<unsigned>
3326 unsigned Depth) const {
3327 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3328 V.getOpcode() == ISD::SRA) &&
3329 "Unknown shift node");
3330 if (std::optional<ConstantRange> AmtRange =
3331 getValidShiftAmountRange(V, DemandedElts, Depth))
3332 return AmtRange->getUnsignedMin().getZExtValue();
3333 return std::nullopt;
3334}
3335
3336std::optional<unsigned>
3338 EVT VT = V.getValueType();
3339 APInt DemandedElts = VT.isFixedLengthVector()
3341 : APInt(1, 1);
3342 return getValidMinimumShiftAmount(V, DemandedElts, Depth);
3343}
3344
3345std::optional<unsigned>
3347 unsigned Depth) const {
3348 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3349 V.getOpcode() == ISD::SRA) &&
3350 "Unknown shift node");
3351 if (std::optional<ConstantRange> AmtRange =
3352 getValidShiftAmountRange(V, DemandedElts, Depth))
3353 return AmtRange->getUnsignedMax().getZExtValue();
3354 return std::nullopt;
3355}
3356
3357std::optional<unsigned>
3359 EVT VT = V.getValueType();
3360 APInt DemandedElts = VT.isFixedLengthVector()
3362 : APInt(1, 1);
3363 return getValidMaximumShiftAmount(V, DemandedElts, Depth);
3364}
3365
3366/// Determine which bits of Op are known to be either zero or one and return
3367/// them in Known. For vectors, the known bits are those that are shared by
3368/// every vector element.
3370 EVT VT = Op.getValueType();
3371
3372 // Since the number of lanes in a scalable vector is unknown at compile time,
3373 // we track one bit which is implicitly broadcast to all lanes. This means
3374 // that all lanes in a scalable vector are considered demanded.
3375 APInt DemandedElts = VT.isFixedLengthVector()
3377 : APInt(1, 1);
3378 return computeKnownBits(Op, DemandedElts, Depth);
3379}
3380
3381/// Determine which bits of Op are known to be either zero or one and return
3382/// them in Known. The DemandedElts argument allows us to only collect the known
3383/// bits that are shared by the requested vector elements.
3385 unsigned Depth) const {
3386 unsigned BitWidth = Op.getScalarValueSizeInBits();
3387
3388 KnownBits Known(BitWidth); // Don't know anything.
3389
3390 if (auto OptAPInt = Op->bitcastToAPInt()) {
3391 // We know all of the bits for a constant!
3392 return KnownBits::makeConstant(*std::move(OptAPInt));
3393 }
3394
3395 if (Depth >= MaxRecursionDepth)
3396 return Known; // Limit search depth.
3397
3398 KnownBits Known2;
3399 unsigned NumElts = DemandedElts.getBitWidth();
3400 assert((!Op.getValueType().isFixedLengthVector() ||
3401 NumElts == Op.getValueType().getVectorNumElements()) &&
3402 "Unexpected vector size");
3403
3404 if (!DemandedElts)
3405 return Known; // No demanded elts, better to assume we don't know anything.
3406
3407 unsigned Opcode = Op.getOpcode();
3408 switch (Opcode) {
3409 case ISD::MERGE_VALUES:
3410 return computeKnownBits(Op.getOperand(Op.getResNo()), DemandedElts,
3411 Depth + 1);
3412 case ISD::SPLAT_VECTOR: {
3413 SDValue SrcOp = Op.getOperand(0);
3414 assert(SrcOp.getValueSizeInBits() >= BitWidth &&
3415 "Expected SPLAT_VECTOR implicit truncation");
3416 // Implicitly truncate the bits to match the official semantics of
3417 // SPLAT_VECTOR.
3418 Known = computeKnownBits(SrcOp, Depth + 1).trunc(BitWidth);
3419 break;
3420 }
3422 unsigned ScalarSize = Op.getOperand(0).getScalarValueSizeInBits();
3423 assert(ScalarSize * Op.getNumOperands() == BitWidth &&
3424 "Expected SPLAT_VECTOR_PARTS scalars to cover element width");
3425 for (auto [I, SrcOp] : enumerate(Op->ops())) {
3426 Known.insertBits(computeKnownBits(SrcOp, Depth + 1), ScalarSize * I);
3427 }
3428 break;
3429 }
3430 case ISD::STEP_VECTOR: {
3431 const APInt &Step = Op.getConstantOperandAPInt(0);
3432
3433 if (Step.isPowerOf2())
3434 Known.Zero.setLowBits(Step.logBase2());
3435
3437
3438 if (!isUIntN(BitWidth, Op.getValueType().getVectorMinNumElements()))
3439 break;
3440 const APInt MinNumElts =
3441 APInt(BitWidth, Op.getValueType().getVectorMinNumElements());
3442
3443 bool Overflow;
3444 const APInt MaxNumElts = getVScaleRange(&F, BitWidth)
3446 .umul_ov(MinNumElts, Overflow);
3447 if (Overflow)
3448 break;
3449
3450 const APInt MaxValue = (MaxNumElts - 1).umul_ov(Step, Overflow);
3451 if (Overflow)
3452 break;
3453
3454 Known.Zero.setHighBits(MaxValue.countl_zero());
3455 break;
3456 }
3457 case ISD::BUILD_VECTOR:
3458 assert(!Op.getValueType().isScalableVector());
3459 // Collect the known bits that are shared by every demanded vector element.
3460 Known.setAllConflict();
3461 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
3462 if (!DemandedElts[i])
3463 continue;
3464
3465 SDValue SrcOp = Op.getOperand(i);
3466 Known2 = computeKnownBits(SrcOp, Depth + 1);
3467
3468 // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3469 if (SrcOp.getValueSizeInBits() != BitWidth) {
3470 assert(SrcOp.getValueSizeInBits() > BitWidth &&
3471 "Expected BUILD_VECTOR implicit truncation");
3472 Known2 = Known2.trunc(BitWidth);
3473 }
3474
3475 // Known bits are the values that are shared by every demanded element.
3476 Known = Known.intersectWith(Known2);
3477
3478 // If we don't know any bits, early out.
3479 if (Known.isUnknown())
3480 break;
3481 }
3482 break;
3483 case ISD::VECTOR_COMPRESS: {
3484 SDValue Vec = Op.getOperand(0);
3485 SDValue PassThru = Op.getOperand(2);
3486 Known = computeKnownBits(PassThru, DemandedElts, Depth + 1);
3487 // If we don't know any bits, early out.
3488 if (Known.isUnknown())
3489 break;
3490 Known2 = computeKnownBits(Vec, Depth + 1);
3491 Known = Known.intersectWith(Known2);
3492 break;
3493 }
3494 case ISD::VECTOR_SHUFFLE: {
3495 assert(!Op.getValueType().isScalableVector());
3496 // Collect the known bits that are shared by every vector element referenced
3497 // by the shuffle.
3498 APInt DemandedLHS, DemandedRHS;
3500 assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3501 if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts,
3502 DemandedLHS, DemandedRHS))
3503 break;
3504
3505 // Known bits are the values that are shared by every demanded element.
3506 Known.setAllConflict();
3507 if (!!DemandedLHS) {
3508 SDValue LHS = Op.getOperand(0);
3509 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
3510 Known = Known.intersectWith(Known2);
3511 }
3512 // If we don't know any bits, early out.
3513 if (Known.isUnknown())
3514 break;
3515 if (!!DemandedRHS) {
3516 SDValue RHS = Op.getOperand(1);
3517 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
3518 Known = Known.intersectWith(Known2);
3519 }
3520 break;
3521 }
3522 case ISD::VSCALE: {
3524 const APInt &Multiplier = Op.getConstantOperandAPInt(0);
3525 Known = getVScaleRange(&F, BitWidth).multiply(Multiplier).toKnownBits();
3526 break;
3527 }
3528 case ISD::CONCAT_VECTORS: {
3529 if (Op.getValueType().isScalableVector())
3530 break;
3531 // Split DemandedElts and test each of the demanded subvectors.
3532 Known.setAllConflict();
3533 EVT SubVectorVT = Op.getOperand(0).getValueType();
3534 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3535 unsigned NumSubVectors = Op.getNumOperands();
3536 for (unsigned i = 0; i != NumSubVectors; ++i) {
3537 APInt DemandedSub =
3538 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
3539 if (!!DemandedSub) {
3540 SDValue Sub = Op.getOperand(i);
3541 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
3542 Known = Known.intersectWith(Known2);
3543 }
3544 // If we don't know any bits, early out.
3545 if (Known.isUnknown())
3546 break;
3547 }
3548 break;
3549 }
3550 case ISD::INSERT_SUBVECTOR: {
3551 if (Op.getValueType().isScalableVector())
3552 break;
3553 // Demand any elements from the subvector and the remainder from the src its
3554 // inserted into.
3555 SDValue Src = Op.getOperand(0);
3556 SDValue Sub = Op.getOperand(1);
3557 uint64_t Idx = Op.getConstantOperandVal(2);
3558 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3559 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3560 APInt DemandedSrcElts = DemandedElts;
3561 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
3562
3563 Known.setAllConflict();
3564 if (!!DemandedSubElts) {
3565 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
3566 if (Known.isUnknown())
3567 break; // early-out.
3568 }
3569 if (!!DemandedSrcElts) {
3570 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3571 Known = Known.intersectWith(Known2);
3572 }
3573 break;
3574 }
3576 // Offset the demanded elts by the subvector index.
3577 SDValue Src = Op.getOperand(0);
3578 // Bail until we can represent demanded elements for scalable vectors.
3579 if (Op.getValueType().isScalableVector() || Src.getValueType().isScalableVector())
3580 break;
3581 uint64_t Idx = Op.getConstantOperandVal(1);
3582 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3583 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3584 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3585 break;
3586 }
3587 case ISD::SCALAR_TO_VECTOR: {
3588 if (Op.getValueType().isScalableVector())
3589 break;
3590 // We know about scalar_to_vector as much as we know about it source,
3591 // which becomes the first element of otherwise unknown vector.
3592 if (DemandedElts != 1)
3593 break;
3594
3595 SDValue N0 = Op.getOperand(0);
3596 Known = computeKnownBits(N0, Depth + 1);
3597 if (N0.getValueSizeInBits() != BitWidth)
3598 Known = Known.trunc(BitWidth);
3599
3600 break;
3601 }
3602 case ISD::BITCAST: {
3603 if (Op.getValueType().isScalableVector())
3604 break;
3605
3606 SDValue N0 = Op.getOperand(0);
3607 EVT SubVT = N0.getValueType();
3608 unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3609
3610 // Ignore bitcasts from unsupported types.
3611 if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3612 break;
3613
3614 // Fast handling of 'identity' bitcasts.
3615 if (BitWidth == SubBitWidth) {
3616 Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3617 break;
3618 }
3619
3620 bool IsLE = getDataLayout().isLittleEndian();
3621
3622 // Bitcast 'small element' vector to 'large element' scalar/vector.
3623 if ((BitWidth % SubBitWidth) == 0) {
3624 assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3625
3626 // Collect known bits for the (larger) output by collecting the known
3627 // bits from each set of sub elements and shift these into place.
3628 // We need to separately call computeKnownBits for each set of
3629 // sub elements as the knownbits for each is likely to be different.
3630 unsigned SubScale = BitWidth / SubBitWidth;
3631 APInt SubDemandedElts(NumElts * SubScale, 0);
3632 for (unsigned i = 0; i != NumElts; ++i)
3633 if (DemandedElts[i])
3634 SubDemandedElts.setBit(i * SubScale);
3635
3636 for (unsigned i = 0; i != SubScale; ++i) {
3637 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3638 Depth + 1);
3639 unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3640 Known.insertBits(Known2, SubBitWidth * Shifts);
3641 }
3642 }
3643
3644 // Bitcast 'large element' scalar/vector to 'small element' vector.
3645 if ((SubBitWidth % BitWidth) == 0) {
3646 assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3647
3648 // Collect known bits for the (smaller) output by collecting the known
3649 // bits from the overlapping larger input elements and extracting the
3650 // sub sections we actually care about.
3651 unsigned SubScale = SubBitWidth / BitWidth;
3652 APInt SubDemandedElts =
3653 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3654 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3655
3656 Known.setAllConflict();
3657 for (unsigned i = 0; i != NumElts; ++i)
3658 if (DemandedElts[i]) {
3659 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3660 unsigned Offset = (Shifts % SubScale) * BitWidth;
3661 Known = Known.intersectWith(Known2.extractBits(BitWidth, Offset));
3662 // If we don't know any bits, early out.
3663 if (Known.isUnknown())
3664 break;
3665 }
3666 }
3667 break;
3668 }
3669 case ISD::AND:
3670 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3671 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3672
3673 Known &= Known2;
3674 break;
3675 case ISD::OR:
3676 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3677 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3678
3679 Known |= Known2;
3680 break;
3681 case ISD::XOR:
3682 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3683 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3684
3685 Known ^= Known2;
3686 break;
3687 case ISD::MUL: {
3688 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3689 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3690 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3691 // TODO: SelfMultiply can be poison, but not undef.
3692 if (SelfMultiply)
3693 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison(
3694 Op.getOperand(0), DemandedElts, false, Depth + 1);
3695 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3696
3697 // If the multiplication is known not to overflow, the product of a number
3698 // with itself is non-negative. Only do this if we didn't already computed
3699 // the opposite value for the sign bit.
3700 if (Op->getFlags().hasNoSignedWrap() &&
3701 Op.getOperand(0) == Op.getOperand(1) &&
3702 !Known.isNegative())
3703 Known.makeNonNegative();
3704 break;
3705 }
3706 case ISD::MULHU: {
3707 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3708 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3709 Known = KnownBits::mulhu(Known, Known2);
3710 break;
3711 }
3712 case ISD::MULHS: {
3713 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3714 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3715 Known = KnownBits::mulhs(Known, Known2);
3716 break;
3717 }
3718 case ISD::ABDU: {
3719 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3720 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3721 Known = KnownBits::abdu(Known, Known2);
3722 break;
3723 }
3724 case ISD::ABDS: {
3725 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3726 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3727 Known = KnownBits::abds(Known, Known2);
3728 unsigned SignBits1 =
3729 ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3730 if (SignBits1 == 1)
3731 break;
3732 unsigned SignBits0 =
3733 ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3734 Known.Zero.setHighBits(std::min(SignBits0, SignBits1) - 1);
3735 break;
3736 }
3737 case ISD::UMUL_LOHI: {
3738 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3739 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3740 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3741 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3742 if (Op.getResNo() == 0)
3743 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3744 else
3745 Known = KnownBits::mulhu(Known, Known2);
3746 break;
3747 }
3748 case ISD::SMUL_LOHI: {
3749 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3750 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3751 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3752 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3753 if (Op.getResNo() == 0)
3754 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3755 else
3756 Known = KnownBits::mulhs(Known, Known2);
3757 break;
3758 }
3759 case ISD::AVGFLOORU: {
3760 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3761 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3762 Known = KnownBits::avgFloorU(Known, Known2);
3763 break;
3764 }
3765 case ISD::AVGCEILU: {
3766 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3767 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3768 Known = KnownBits::avgCeilU(Known, Known2);
3769 break;
3770 }
3771 case ISD::AVGFLOORS: {
3772 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3773 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3774 Known = KnownBits::avgFloorS(Known, Known2);
3775 break;
3776 }
3777 case ISD::AVGCEILS: {
3778 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3779 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3780 Known = KnownBits::avgCeilS(Known, Known2);
3781 break;
3782 }
3783 case ISD::SELECT:
3784 case ISD::VSELECT:
3785 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3786 // If we don't know any bits, early out.
3787 if (Known.isUnknown())
3788 break;
3789 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3790
3791 // Only known if known in both the LHS and RHS.
3792 Known = Known.intersectWith(Known2);
3793 break;
3794 case ISD::SELECT_CC:
3795 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3796 // If we don't know any bits, early out.
3797 if (Known.isUnknown())
3798 break;
3799 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3800
3801 // Only known if known in both the LHS and RHS.
3802 Known = Known.intersectWith(Known2);
3803 break;
3804 case ISD::SMULO:
3805 case ISD::UMULO:
3806 if (Op.getResNo() != 1)
3807 break;
3808 // The boolean result conforms to getBooleanContents.
3809 // If we know the result of a setcc has the top bits zero, use this info.
3810 // We know that we have an integer-based boolean since these operations
3811 // are only available for integer.
3812 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3814 BitWidth > 1)
3815 Known.Zero.setBitsFrom(1);
3816 break;
3817 case ISD::SETCC:
3818 case ISD::SETCCCARRY:
3819 case ISD::STRICT_FSETCC:
3820 case ISD::STRICT_FSETCCS: {
3821 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3822 // If we know the result of a setcc has the top bits zero, use this info.
3823 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3825 BitWidth > 1)
3826 Known.Zero.setBitsFrom(1);
3827 break;
3828 }
3829 case ISD::SHL: {
3830 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3831 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3832
3833 bool NUW = Op->getFlags().hasNoUnsignedWrap();
3834 bool NSW = Op->getFlags().hasNoSignedWrap();
3835
3836 bool ShAmtNonZero = Known2.isNonZero();
3837
3838 Known = KnownBits::shl(Known, Known2, NUW, NSW, ShAmtNonZero);
3839
3840 // Minimum shift low bits are known zero.
3841 if (std::optional<unsigned> ShMinAmt =
3842 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
3843 Known.Zero.setLowBits(*ShMinAmt);
3844 break;
3845 }
3846 case ISD::SRL:
3847 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3848 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3849 Known = KnownBits::lshr(Known, Known2, /*ShAmtNonZero=*/false,
3850 Op->getFlags().hasExact());
3851
3852 // Minimum shift high bits are known zero.
3853 if (std::optional<unsigned> ShMinAmt =
3854 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
3855 Known.Zero.setHighBits(*ShMinAmt);
3856 break;
3857 case ISD::SRA:
3858 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3859 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3860 Known = KnownBits::ashr(Known, Known2, /*ShAmtNonZero=*/false,
3861 Op->getFlags().hasExact());
3862 break;
3863 case ISD::ROTL:
3864 case ISD::ROTR:
3865 if (ConstantSDNode *C =
3866 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3867 unsigned Amt = C->getAPIntValue().urem(BitWidth);
3868
3869 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3870
3871 // Canonicalize to ROTR.
3872 if (Opcode == ISD::ROTL && Amt != 0)
3873 Amt = BitWidth - Amt;
3874
3875 Known.Zero = Known.Zero.rotr(Amt);
3876 Known.One = Known.One.rotr(Amt);
3877 }
3878 break;
3879 case ISD::FSHL:
3880 case ISD::FSHR:
3881 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3882 unsigned Amt = C->getAPIntValue().urem(BitWidth);
3883
3884 // For fshl, 0-shift returns the 1st arg.
3885 // For fshr, 0-shift returns the 2nd arg.
3886 if (Amt == 0) {
3887 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3888 DemandedElts, Depth + 1);
3889 break;
3890 }
3891
3892 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3893 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3894 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3895 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3896 if (Opcode == ISD::FSHL) {
3897 Known <<= Amt;
3898 Known2 >>= BitWidth - Amt;
3899 } else {
3900 Known <<= BitWidth - Amt;
3901 Known2 >>= Amt;
3902 }
3903 Known = Known.unionWith(Known2);
3904 }
3905 break;
3906 case ISD::SHL_PARTS:
3907 case ISD::SRA_PARTS:
3908 case ISD::SRL_PARTS: {
3909 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3910
3911 // Collect lo/hi source values and concatenate.
3912 unsigned LoBits = Op.getOperand(0).getScalarValueSizeInBits();
3913 unsigned HiBits = Op.getOperand(1).getScalarValueSizeInBits();
3914 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3915 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3916 Known = Known2.concat(Known);
3917
3918 // Collect shift amount.
3919 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3920
3921 if (Opcode == ISD::SHL_PARTS)
3922 Known = KnownBits::shl(Known, Known2);
3923 else if (Opcode == ISD::SRA_PARTS)
3924 Known = KnownBits::ashr(Known, Known2);
3925 else // if (Opcode == ISD::SRL_PARTS)
3926 Known = KnownBits::lshr(Known, Known2);
3927
3928 // TODO: Minimum shift low/high bits are known zero.
3929
3930 if (Op.getResNo() == 0)
3931 Known = Known.extractBits(LoBits, 0);
3932 else
3933 Known = Known.extractBits(HiBits, LoBits);
3934 break;
3935 }
3937 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3938 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3939 Known = Known.sextInReg(EVT.getScalarSizeInBits());
3940 break;
3941 }
3942 case ISD::CTTZ:
3943 case ISD::CTTZ_ZERO_UNDEF: {
3944 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3945 // If we have a known 1, its position is our upper bound.
3946 unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3947 unsigned LowBits = llvm::bit_width(PossibleTZ);
3948 Known.Zero.setBitsFrom(LowBits);
3949 break;
3950 }
3951 case ISD::CTLZ:
3952 case ISD::CTLZ_ZERO_UNDEF: {
3953 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3954 // If we have a known 1, its position is our upper bound.
3955 unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3956 unsigned LowBits = llvm::bit_width(PossibleLZ);
3957 Known.Zero.setBitsFrom(LowBits);
3958 break;
3959 }
3960 case ISD::CTPOP: {
3961 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3962 // If we know some of the bits are zero, they can't be one.
3963 unsigned PossibleOnes = Known2.countMaxPopulation();
3964 Known.Zero.setBitsFrom(llvm::bit_width(PossibleOnes));
3965 break;
3966 }
3967 case ISD::PARITY: {
3968 // Parity returns 0 everywhere but the LSB.
3969 Known.Zero.setBitsFrom(1);
3970 break;
3971 }
3972 case ISD::MGATHER:
3973 case ISD::MLOAD: {
3974 ISD::LoadExtType ETy =
3975 (Opcode == ISD::MGATHER)
3976 ? cast<MaskedGatherSDNode>(Op)->getExtensionType()
3977 : cast<MaskedLoadSDNode>(Op)->getExtensionType();
3978 if (ETy == ISD::ZEXTLOAD) {
3979 EVT MemVT = cast<MemSDNode>(Op)->getMemoryVT();
3980 KnownBits Known0(MemVT.getScalarSizeInBits());
3981 return Known0.zext(BitWidth);
3982 }
3983 break;
3984 }
3985 case ISD::LOAD: {
3987 const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3988 if (ISD::isNON_EXTLoad(LD) && Cst) {
3989 // Determine any common known bits from the loaded constant pool value.
3990 Type *CstTy = Cst->getType();
3991 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits() &&
3992 !Op.getValueType().isScalableVector()) {
3993 // If its a vector splat, then we can (quickly) reuse the scalar path.
3994 // NOTE: We assume all elements match and none are UNDEF.
3995 if (CstTy->isVectorTy()) {
3996 if (const Constant *Splat = Cst->getSplatValue()) {
3997 Cst = Splat;
3998 CstTy = Cst->getType();
3999 }
4000 }
4001 // TODO - do we need to handle different bitwidths?
4002 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
4003 // Iterate across all vector elements finding common known bits.
4004 Known.setAllConflict();
4005 for (unsigned i = 0; i != NumElts; ++i) {
4006 if (!DemandedElts[i])
4007 continue;
4008 if (Constant *Elt = Cst->getAggregateElement(i)) {
4009 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4010 const APInt &Value = CInt->getValue();
4011 Known.One &= Value;
4012 Known.Zero &= ~Value;
4013 continue;
4014 }
4015 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4016 APInt Value = CFP->getValueAPF().bitcastToAPInt();
4017 Known.One &= Value;
4018 Known.Zero &= ~Value;
4019 continue;
4020 }
4021 }
4022 Known.One.clearAllBits();
4023 Known.Zero.clearAllBits();
4024 break;
4025 }
4026 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
4027 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
4028 Known = KnownBits::makeConstant(CInt->getValue());
4029 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
4030 Known =
4031 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
4032 }
4033 }
4034 }
4035 } else if (Op.getResNo() == 0) {
4036 unsigned ScalarMemorySize = LD->getMemoryVT().getScalarSizeInBits();
4037 KnownBits KnownScalarMemory(ScalarMemorySize);
4038 if (const MDNode *MD = LD->getRanges())
4039 computeKnownBitsFromRangeMetadata(*MD, KnownScalarMemory);
4040
4041 // Extend the Known bits from memory to the size of the scalar result.
4042 if (ISD::isZEXTLoad(Op.getNode()))
4043 Known = KnownScalarMemory.zext(BitWidth);
4044 else if (ISD::isSEXTLoad(Op.getNode()))
4045 Known = KnownScalarMemory.sext(BitWidth);
4046 else if (ISD::isEXTLoad(Op.getNode()))
4047 Known = KnownScalarMemory.anyext(BitWidth);
4048 else
4049 Known = KnownScalarMemory;
4050 assert(Known.getBitWidth() == BitWidth);
4051 return Known;
4052 }
4053 break;
4054 }
4056 if (Op.getValueType().isScalableVector())
4057 break;
4058 EVT InVT = Op.getOperand(0).getValueType();
4059 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4060 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4061 Known = Known.zext(BitWidth);
4062 break;
4063 }
4064 case ISD::ZERO_EXTEND: {
4065 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4066 Known = Known.zext(BitWidth);
4067 break;
4068 }
4070 if (Op.getValueType().isScalableVector())
4071 break;
4072 EVT InVT = Op.getOperand(0).getValueType();
4073 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4074 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4075 // If the sign bit is known to be zero or one, then sext will extend
4076 // it to the top bits, else it will just zext.
4077 Known = Known.sext(BitWidth);
4078 break;
4079 }
4080 case ISD::SIGN_EXTEND: {
4081 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4082 // If the sign bit is known to be zero or one, then sext will extend
4083 // it to the top bits, else it will just zext.
4084 Known = Known.sext(BitWidth);
4085 break;
4086 }
4088 if (Op.getValueType().isScalableVector())
4089 break;
4090 EVT InVT = Op.getOperand(0).getValueType();
4091 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4092 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4093 Known = Known.anyext(BitWidth);
4094 break;
4095 }
4096 case ISD::ANY_EXTEND: {
4097 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4098 Known = Known.anyext(BitWidth);
4099 break;
4100 }
4101 case ISD::TRUNCATE: {
4102 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4103 Known = Known.trunc(BitWidth);
4104 break;
4105 }
4106 case ISD::AssertZext: {
4107 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
4109 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4110 Known.Zero |= (~InMask);
4111 Known.One &= (~Known.Zero);
4112 break;
4113 }
4114 case ISD::AssertAlign: {
4115 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
4116 assert(LogOfAlign != 0);
4117
4118 // TODO: Should use maximum with source
4119 // If a node is guaranteed to be aligned, set low zero bits accordingly as
4120 // well as clearing one bits.
4121 Known.Zero.setLowBits(LogOfAlign);
4122 Known.One.clearLowBits(LogOfAlign);
4123 break;
4124 }
4125 case ISD::FGETSIGN:
4126 // All bits are zero except the low bit.
4127 Known.Zero.setBitsFrom(1);
4128 break;
4129 case ISD::ADD:
4130 case ISD::SUB: {
4131 SDNodeFlags Flags = Op.getNode()->getFlags();
4132 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4133 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4135 Op.getOpcode() == ISD::ADD, Flags.hasNoSignedWrap(),
4136 Flags.hasNoUnsignedWrap(), Known, Known2);
4137 break;
4138 }
4139 case ISD::USUBO:
4140 case ISD::SSUBO:
4141 case ISD::USUBO_CARRY:
4142 case ISD::SSUBO_CARRY:
4143 if (Op.getResNo() == 1) {
4144 // If we know the result of a setcc has the top bits zero, use this info.
4145 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
4147 BitWidth > 1)
4148 Known.Zero.setBitsFrom(1);
4149 break;
4150 }
4151 [[fallthrough]];
4152 case ISD::SUBC: {
4153 assert(Op.getResNo() == 0 &&
4154 "We only compute knownbits for the difference here.");
4155
4156 // With USUBO_CARRY and SSUBO_CARRY a borrow bit may be added in.
4157 KnownBits Borrow(1);
4158 if (Opcode == ISD::USUBO_CARRY || Opcode == ISD::SSUBO_CARRY) {
4159 Borrow = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
4160 // Borrow has bit width 1
4161 Borrow = Borrow.trunc(1);
4162 } else {
4163 Borrow.setAllZero();
4164 }
4165
4166 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4167 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4168 Known = KnownBits::computeForSubBorrow(Known, Known2, Borrow);
4169 break;
4170 }
4171 case ISD::UADDO:
4172 case ISD::SADDO:
4173 case ISD::UADDO_CARRY:
4174 case ISD::SADDO_CARRY:
4175 if (Op.getResNo() == 1) {
4176 // If we know the result of a setcc has the top bits zero, use this info.
4177 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
4179 BitWidth > 1)
4180 Known.Zero.setBitsFrom(1);
4181 break;
4182 }
4183 [[fallthrough]];
4184 case ISD::ADDC:
4185 case ISD::ADDE: {
4186 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
4187
4188 // With ADDE and UADDO_CARRY, a carry bit may be added in.
4189 KnownBits Carry(1);
4190 if (Opcode == ISD::ADDE)
4191 // Can't track carry from glue, set carry to unknown.
4192 Carry.resetAll();
4193 else if (Opcode == ISD::UADDO_CARRY || Opcode == ISD::SADDO_CARRY) {
4194 Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
4195 // Carry has bit width 1
4196 Carry = Carry.trunc(1);
4197 } else {
4198 Carry.setAllZero();
4199 }
4200
4201 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4202 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4203 Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
4204 break;
4205 }
4206 case ISD::UDIV: {
4207 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4208 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4209 Known = KnownBits::udiv(Known, Known2, Op->getFlags().hasExact());
4210 break;
4211 }
4212 case ISD::SDIV: {
4213 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4214 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4215 Known = KnownBits::sdiv(Known, Known2, Op->getFlags().hasExact());
4216 break;
4217 }
4218 case ISD::SREM: {
4219 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4220 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4221 Known = KnownBits::srem(Known, Known2);
4222 break;
4223 }
4224 case ISD::UREM: {
4225 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4226 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4227 Known = KnownBits::urem(Known, Known2);
4228 break;
4229 }
4230 case ISD::EXTRACT_ELEMENT: {
4231 Known = computeKnownBits(Op.getOperand(0), Depth+1);
4232 const unsigned Index = Op.getConstantOperandVal(1);
4233 const unsigned EltBitWidth = Op.getValueSizeInBits();
4234
4235 // Remove low part of known bits mask
4236 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
4237 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
4238
4239 // Remove high part of known bit mask
4240 Known = Known.trunc(EltBitWidth);
4241 break;
4242 }
4244 SDValue InVec = Op.getOperand(0);
4245 SDValue EltNo = Op.getOperand(1);
4246 EVT VecVT = InVec.getValueType();
4247 // computeKnownBits not yet implemented for scalable vectors.
4248 if (VecVT.isScalableVector())
4249 break;
4250 const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
4251 const unsigned NumSrcElts = VecVT.getVectorNumElements();
4252
4253 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
4254 // anything about the extended bits.
4255 if (BitWidth > EltBitWidth)
4256 Known = Known.trunc(EltBitWidth);
4257
4258 // If we know the element index, just demand that vector element, else for
4259 // an unknown element index, ignore DemandedElts and demand them all.
4260 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4261 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4262 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4263 DemandedSrcElts =
4264 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4265
4266 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
4267 if (BitWidth > EltBitWidth)
4268 Known = Known.anyext(BitWidth);
4269 break;
4270 }
4272 if (Op.getValueType().isScalableVector())
4273 break;
4274
4275 // If we know the element index, split the demand between the
4276 // source vector and the inserted element, otherwise assume we need
4277 // the original demanded vector elements and the value.
4278 SDValue InVec = Op.getOperand(0);
4279 SDValue InVal = Op.getOperand(1);
4280 SDValue EltNo = Op.getOperand(2);
4281 bool DemandedVal = true;
4282 APInt DemandedVecElts = DemandedElts;
4283 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4284 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4285 unsigned EltIdx = CEltNo->getZExtValue();
4286 DemandedVal = !!DemandedElts[EltIdx];
4287 DemandedVecElts.clearBit(EltIdx);
4288 }
4289 Known.setAllConflict();
4290 if (DemandedVal) {
4291 Known2 = computeKnownBits(InVal, Depth + 1);
4292 Known = Known.intersectWith(Known2.zextOrTrunc(BitWidth));
4293 }
4294 if (!!DemandedVecElts) {
4295 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
4296 Known = Known.intersectWith(Known2);
4297 }
4298 break;
4299 }
4300 case ISD::BITREVERSE: {
4301 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4302 Known = Known2.reverseBits();
4303 break;
4304 }
4305 case ISD::BSWAP: {
4306 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4307 Known = Known2.byteSwap();
4308 break;
4309 }
4310 case ISD::ABS: {
4311 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4312 Known = Known2.abs();
4313 Known.Zero.setHighBits(
4314 ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1) - 1);
4315 break;
4316 }
4317 case ISD::USUBSAT: {
4318 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4319 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4320 Known = KnownBits::usub_sat(Known, Known2);
4321 break;
4322 }
4323 case ISD::UMIN: {
4324 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4325 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4326 Known = KnownBits::umin(Known, Known2);
4327 break;
4328 }
4329 case ISD::UMAX: {
4330 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4331 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4332 Known = KnownBits::umax(Known, Known2);
4333 break;
4334 }
4335 case ISD::SMIN:
4336 case ISD::SMAX: {
4337 // If we have a clamp pattern, we know that the number of sign bits will be
4338 // the minimum of the clamp min/max range.
4339 bool IsMax = (Opcode == ISD::SMAX);
4340 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4341 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4342 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4343 CstHigh =
4344 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4345 if (CstLow && CstHigh) {
4346 if (!IsMax)
4347 std::swap(CstLow, CstHigh);
4348
4349 const APInt &ValueLow = CstLow->getAPIntValue();
4350 const APInt &ValueHigh = CstHigh->getAPIntValue();
4351 if (ValueLow.sle(ValueHigh)) {
4352 unsigned LowSignBits = ValueLow.getNumSignBits();
4353 unsigned HighSignBits = ValueHigh.getNumSignBits();
4354 unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
4355 if (ValueLow.isNegative() && ValueHigh.isNegative()) {
4356 Known.One.setHighBits(MinSignBits);
4357 break;
4358 }
4359 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
4360 Known.Zero.setHighBits(MinSignBits);
4361 break;
4362 }
4363 }
4364 }
4365
4366 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4367 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4368 if (IsMax)
4369 Known = KnownBits::smax(Known, Known2);
4370 else
4371 Known = KnownBits::smin(Known, Known2);
4372
4373 // For SMAX, if CstLow is non-negative we know the result will be
4374 // non-negative and thus all sign bits are 0.
4375 // TODO: There's an equivalent of this for smin with negative constant for
4376 // known ones.
4377 if (IsMax && CstLow) {
4378 const APInt &ValueLow = CstLow->getAPIntValue();
4379 if (ValueLow.isNonNegative()) {
4380 unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4381 Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits()));
4382 }
4383 }
4384
4385 break;
4386 }
4387 case ISD::UINT_TO_FP: {
4388 Known.makeNonNegative();
4389 break;
4390 }
4391 case ISD::SINT_TO_FP: {
4392 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4393 if (Known2.isNonNegative())
4394 Known.makeNonNegative();
4395 else if (Known2.isNegative())
4396 Known.makeNegative();
4397 break;
4398 }
4399 case ISD::FP_TO_UINT_SAT: {
4400 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
4401 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
4403 break;
4404 }
4405 case ISD::ATOMIC_LOAD: {
4406 // If we are looking at the loaded value.
4407 if (Op.getResNo() == 0) {
4408 auto *AT = cast<AtomicSDNode>(Op);
4409 unsigned ScalarMemorySize = AT->getMemoryVT().getScalarSizeInBits();
4410 KnownBits KnownScalarMemory(ScalarMemorySize);
4411 if (const MDNode *MD = AT->getRanges())
4412 computeKnownBitsFromRangeMetadata(*MD, KnownScalarMemory);
4413
4414 switch (AT->getExtensionType()) {
4415 case ISD::ZEXTLOAD:
4416 Known = KnownScalarMemory.zext(BitWidth);
4417 break;
4418 case ISD::SEXTLOAD:
4419 Known = KnownScalarMemory.sext(BitWidth);
4420 break;
4421 case ISD::EXTLOAD:
4422 switch (TLI->getExtendForAtomicOps()) {
4423 case ISD::ZERO_EXTEND:
4424 Known = KnownScalarMemory.zext(BitWidth);
4425 break;
4426 case ISD::SIGN_EXTEND:
4427 Known = KnownScalarMemory.sext(BitWidth);
4428 break;
4429 default:
4430 Known = KnownScalarMemory.anyext(BitWidth);
4431 break;
4432 }
4433 break;
4434 case ISD::NON_EXTLOAD:
4435 Known = KnownScalarMemory;
4436 break;
4437 }
4438 assert(Known.getBitWidth() == BitWidth);
4439 }
4440 break;
4441 }
4442 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4443 if (Op.getResNo() == 1) {
4444 // The boolean result conforms to getBooleanContents.
4445 // If we know the result of a setcc has the top bits zero, use this info.
4446 // We know that we have an integer-based boolean since these operations
4447 // are only available for integer.
4448 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
4450 BitWidth > 1)
4451 Known.Zero.setBitsFrom(1);
4452 break;
4453 }
4454 [[fallthrough]];
4455 case ISD::ATOMIC_CMP_SWAP:
4456 case ISD::ATOMIC_SWAP:
4457 case ISD::ATOMIC_LOAD_ADD:
4458 case ISD::ATOMIC_LOAD_SUB:
4459 case ISD::ATOMIC_LOAD_AND:
4460 case ISD::ATOMIC_LOAD_CLR:
4461 case ISD::ATOMIC_LOAD_OR:
4462 case ISD::ATOMIC_LOAD_XOR:
4463 case ISD::ATOMIC_LOAD_NAND:
4464 case ISD::ATOMIC_LOAD_MIN:
4465 case ISD::ATOMIC_LOAD_MAX:
4466 case ISD::ATOMIC_LOAD_UMIN:
4467 case ISD::ATOMIC_LOAD_UMAX: {
4468 // If we are looking at the loaded value.
4469 if (Op.getResNo() == 0) {
4470 auto *AT = cast<AtomicSDNode>(Op);
4471 unsigned MemBits = AT->getMemoryVT().getScalarSizeInBits();
4472
4473 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4474 Known.Zero.setBitsFrom(MemBits);
4475 }
4476 break;
4477 }
4478 case ISD::FrameIndex:
4480 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
4481 Known, getMachineFunction());
4482 break;
4483
4484 default:
4485 if (Opcode < ISD::BUILTIN_OP_END)
4486 break;
4487 [[fallthrough]];
4491 // TODO: Probably okay to remove after audit; here to reduce change size
4492 // in initial enablement patch for scalable vectors
4493 if (Op.getValueType().isScalableVector())
4494 break;
4495
4496 // Allow the target to implement this method for its nodes.
4497 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
4498 break;
4499 }
4500
4501 return Known;
4502}
4503
4504/// Convert ConstantRange OverflowResult into SelectionDAG::OverflowKind.
4517
4520 // X + 0 never overflow
4521 if (isNullConstant(N1))
4522 return OFK_Never;
4523
4524 // If both operands each have at least two sign bits, the addition
4525 // cannot overflow.
4526 if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1)
4527 return OFK_Never;
4528
4529 // TODO: Add ConstantRange::signedAddMayOverflow handling.
4530 return OFK_Sometime;
4531}
4532
4535 // X + 0 never overflow
4536 if (isNullConstant(N1))
4537 return OFK_Never;
4538
4539 // mulhi + 1 never overflow
4540 KnownBits N1Known = computeKnownBits(N1);
4541 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
4542 N1Known.getMaxValue().ult(2))
4543 return OFK_Never;
4544
4545 KnownBits N0Known = computeKnownBits(N0);
4546 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1 &&
4547 N0Known.getMaxValue().ult(2))
4548 return OFK_Never;
4549
4550 // Fallback to ConstantRange::unsignedAddMayOverflow handling.
4551 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4552 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4553 return mapOverflowResult(N0Range.unsignedAddMayOverflow(N1Range));
4554}
4555
4558 // X - 0 never overflow
4559 if (isNullConstant(N1))
4560 return OFK_Never;
4561
4562 // If both operands each have at least two sign bits, the subtraction
4563 // cannot overflow.
4564 if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1)
4565 return OFK_Never;
4566
4567 KnownBits N0Known = computeKnownBits(N0);
4568 KnownBits N1Known = computeKnownBits(N1);
4569 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, true);
4570 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, true);
4571 return mapOverflowResult(N0Range.signedSubMayOverflow(N1Range));
4572}
4573
4576 // X - 0 never overflow
4577 if (isNullConstant(N1))
4578 return OFK_Never;
4579
4580 KnownBits N0Known = computeKnownBits(N0);
4581 KnownBits N1Known = computeKnownBits(N1);
4582 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4583 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4584 return mapOverflowResult(N0Range.unsignedSubMayOverflow(N1Range));
4585}
4586
4589 // X * 0 and X * 1 never overflow.
4590 if (isNullConstant(N1) || isOneConstant(N1))
4591 return OFK_Never;
4592
4593 KnownBits N0Known = computeKnownBits(N0);
4594 KnownBits N1Known = computeKnownBits(N1);
4595 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4596 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4597 return mapOverflowResult(N0Range.unsignedMulMayOverflow(N1Range));
4598}
4599
4602 // X * 0 and X * 1 never overflow.
4603 if (isNullConstant(N1) || isOneConstant(N1))
4604 return OFK_Never;
4605
4606 // Get the size of the result.
4607 unsigned BitWidth = N0.getScalarValueSizeInBits();
4608
4609 // Sum of the sign bits.
4610 unsigned SignBits = ComputeNumSignBits(N0) + ComputeNumSignBits(N1);
4611
4612 // If we have enough sign bits, then there's no overflow.
4613 if (SignBits > BitWidth + 1)
4614 return OFK_Never;
4615
4616 if (SignBits == BitWidth + 1) {
4617 // The overflow occurs when the true multiplication of the
4618 // the operands is the minimum negative number.
4619 KnownBits N0Known = computeKnownBits(N0);
4620 KnownBits N1Known = computeKnownBits(N1);
4621 // If one of the operands is non-negative, then there's no
4622 // overflow.
4623 if (N0Known.isNonNegative() || N1Known.isNonNegative())
4624 return OFK_Never;
4625 }
4626
4627 return OFK_Sometime;
4628}
4629
4631 if (Depth >= MaxRecursionDepth)
4632 return false; // Limit search depth.
4633
4634 EVT OpVT = Val.getValueType();
4635 unsigned BitWidth = OpVT.getScalarSizeInBits();
4636
4637 // Is the constant a known power of 2?
4639 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4640 }))
4641 return true;
4642
4643 // A left-shift of a constant one will have exactly one bit set because
4644 // shifting the bit off the end is undefined.
4645 if (Val.getOpcode() == ISD::SHL) {
4646 auto *C = isConstOrConstSplat(Val.getOperand(0));
4647 if (C && C->getAPIntValue() == 1)
4648 return true;
4649 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1) &&
4650 isKnownNeverZero(Val, Depth);
4651 }
4652
4653 // Similarly, a logical right-shift of a constant sign-bit will have exactly
4654 // one bit set.
4655 if (Val.getOpcode() == ISD::SRL) {
4656 auto *C = isConstOrConstSplat(Val.getOperand(0));
4657 if (C && C->getAPIntValue().isSignMask())
4658 return true;
4659 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1) &&
4660 isKnownNeverZero(Val, Depth);
4661 }
4662
4663 if (Val.getOpcode() == ISD::ROTL || Val.getOpcode() == ISD::ROTR)
4664 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4665
4666 // Are all operands of a build vector constant powers of two?
4667 if (Val.getOpcode() == ISD::BUILD_VECTOR)
4668 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
4669 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
4670 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4671 return false;
4672 }))
4673 return true;
4674
4675 // Is the operand of a splat vector a constant power of two?
4676 if (Val.getOpcode() == ISD::SPLAT_VECTOR)
4678 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
4679 return true;
4680
4681 // vscale(power-of-two) is a power-of-two for some targets
4682 if (Val.getOpcode() == ISD::VSCALE &&
4683 getTargetLoweringInfo().isVScaleKnownToBeAPowerOfTwo() &&
4685 return true;
4686
4687 if (Val.getOpcode() == ISD::SMIN || Val.getOpcode() == ISD::SMAX ||
4688 Val.getOpcode() == ISD::UMIN || Val.getOpcode() == ISD::UMAX)
4689 return isKnownToBeAPowerOfTwo(Val.getOperand(1), Depth + 1) &&
4691
4692 if (Val.getOpcode() == ISD::SELECT || Val.getOpcode() == ISD::VSELECT)
4693 return isKnownToBeAPowerOfTwo(Val.getOperand(2), Depth + 1) &&
4695
4696 // Looking for `x & -x` pattern:
4697 // If x == 0:
4698 // x & -x -> 0
4699 // If x != 0:
4700 // x & -x -> non-zero pow2
4701 // so if we find the pattern return whether we know `x` is non-zero.
4702 SDValue X;
4703 if (sd_match(Val, m_And(m_Value(X), m_Neg(m_Deferred(X)))))
4704 return isKnownNeverZero(X, Depth);
4705
4706 if (Val.getOpcode() == ISD::ZERO_EXTEND)
4707 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4708
4709 // More could be done here, though the above checks are enough
4710 // to handle some common cases.
4711 return false;
4712}
4713
4715 if (ConstantFPSDNode *C1 = isConstOrConstSplatFP(Val, true))
4716 return C1->getValueAPF().getExactLog2Abs() >= 0;
4717
4718 if (Val.getOpcode() == ISD::UINT_TO_FP || Val.getOpcode() == ISD::SINT_TO_FP)
4719 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4720
4721 return false;
4722}
4723
4725 EVT VT = Op.getValueType();
4726
4727 // Since the number of lanes in a scalable vector is unknown at compile time,
4728 // we track one bit which is implicitly broadcast to all lanes. This means
4729 // that all lanes in a scalable vector are considered demanded.
4730 APInt DemandedElts = VT.isFixedLengthVector()
4732 : APInt(1, 1);
4733 return ComputeNumSignBits(Op, DemandedElts, Depth);
4734}
4735
4736unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
4737 unsigned Depth) const {
4738 EVT VT = Op.getValueType();
4739 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
4740 unsigned VTBits = VT.getScalarSizeInBits();
4741 unsigned NumElts = DemandedElts.getBitWidth();
4742 unsigned Tmp, Tmp2;
4743 unsigned FirstAnswer = 1;
4744
4745 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
4746 const APInt &Val = C->getAPIntValue();
4747 return Val.getNumSignBits();
4748 }
4749
4750 if (Depth >= MaxRecursionDepth)
4751 return 1; // Limit search depth.
4752
4753 if (!DemandedElts)
4754 return 1; // No demanded elts, better to assume we don't know anything.
4755
4756 unsigned Opcode = Op.getOpcode();
4757 switch (Opcode) {
4758 default: break;
4759 case ISD::AssertSext:
4760 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
4761 return VTBits-Tmp+1;
4762 case ISD::AssertZext:
4763 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
4764 return VTBits-Tmp;
4765 case ISD::FREEZE:
4766 if (isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), DemandedElts,
4767 /*PoisonOnly=*/false))
4768 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4769 break;
4770 case ISD::MERGE_VALUES:
4771 return ComputeNumSignBits(Op.getOperand(Op.getResNo()), DemandedElts,
4772 Depth + 1);
4773 case ISD::SPLAT_VECTOR: {
4774 // Check if the sign bits of source go down as far as the truncated value.
4775 unsigned NumSrcBits = Op.getOperand(0).getValueSizeInBits();
4776 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4777 if (NumSrcSignBits > (NumSrcBits - VTBits))
4778 return NumSrcSignBits - (NumSrcBits - VTBits);
4779 break;
4780 }
4781 case ISD::BUILD_VECTOR:
4782 assert(!VT.isScalableVector());
4783 Tmp = VTBits;
4784 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
4785 if (!DemandedElts[i])
4786 continue;
4787
4788 SDValue SrcOp = Op.getOperand(i);
4789 // BUILD_VECTOR can implicitly truncate sources, we handle this specially
4790 // for constant nodes to ensure we only look at the sign bits.
4792 APInt T = C->getAPIntValue().trunc(VTBits);
4793 Tmp2 = T.getNumSignBits();
4794 } else {
4795 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
4796
4797 if (SrcOp.getValueSizeInBits() != VTBits) {
4798 assert(SrcOp.getValueSizeInBits() > VTBits &&
4799 "Expected BUILD_VECTOR implicit truncation");
4800 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
4801 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
4802 }
4803 }
4804 Tmp = std::min(Tmp, Tmp2);
4805 }
4806 return Tmp;
4807
4808 case ISD::VECTOR_COMPRESS: {
4809 SDValue Vec = Op.getOperand(0);
4810 SDValue PassThru = Op.getOperand(2);
4811 Tmp = ComputeNumSignBits(PassThru, DemandedElts, Depth + 1);
4812 if (Tmp == 1)
4813 return 1;
4814 Tmp2 = ComputeNumSignBits(Vec, Depth + 1);
4815 Tmp = std::min(Tmp, Tmp2);
4816 return Tmp;
4817 }
4818
4819 case ISD::VECTOR_SHUFFLE: {
4820 // Collect the minimum number of sign bits that are shared by every vector
4821 // element referenced by the shuffle.
4822 APInt DemandedLHS, DemandedRHS;
4824 assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
4825 if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts,
4826 DemandedLHS, DemandedRHS))
4827 return 1;
4828
4829 Tmp = std::numeric_limits<unsigned>::max();
4830 if (!!DemandedLHS)
4831 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
4832 if (!!DemandedRHS) {
4833 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
4834 Tmp = std::min(Tmp, Tmp2);
4835 }
4836 // If we don't know anything, early out and try computeKnownBits fall-back.
4837 if (Tmp == 1)
4838 break;
4839 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4840 return Tmp;
4841 }
4842
4843 case ISD::BITCAST: {
4844 if (VT.isScalableVector())
4845 break;
4846 SDValue N0 = Op.getOperand(0);
4847 EVT SrcVT = N0.getValueType();
4848 unsigned SrcBits = SrcVT.getScalarSizeInBits();
4849
4850 // Ignore bitcasts from unsupported types..
4851 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
4852 break;
4853
4854 // Fast handling of 'identity' bitcasts.
4855 if (VTBits == SrcBits)
4856 return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
4857
4858 bool IsLE = getDataLayout().isLittleEndian();
4859
4860 // Bitcast 'large element' scalar/vector to 'small element' vector.
4861 if ((SrcBits % VTBits) == 0) {
4862 assert(VT.isVector() && "Expected bitcast to vector");
4863
4864 unsigned Scale = SrcBits / VTBits;
4865 APInt SrcDemandedElts =
4866 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
4867
4868 // Fast case - sign splat can be simply split across the small elements.
4869 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
4870 if (Tmp == SrcBits)
4871 return VTBits;
4872
4873 // Slow case - determine how far the sign extends into each sub-element.
4874 Tmp2 = VTBits;
4875 for (unsigned i = 0; i != NumElts; ++i)
4876 if (DemandedElts[i]) {
4877 unsigned SubOffset = i % Scale;
4878 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
4879 SubOffset = SubOffset * VTBits;
4880 if (Tmp <= SubOffset)
4881 return 1;
4882 Tmp2 = std::min(Tmp2, Tmp - SubOffset);
4883 }
4884 return Tmp2;
4885 }
4886 break;
4887 }
4888
4890 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
4891 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4892 return VTBits - Tmp + 1;
4893 case ISD::SIGN_EXTEND:
4894 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
4895 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
4897 // Max of the input and what this extends.
4898 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4899 Tmp = VTBits-Tmp+1;
4900 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4901 return std::max(Tmp, Tmp2);
4903 if (VT.isScalableVector())
4904 break;
4905 SDValue Src = Op.getOperand(0);
4906 EVT SrcVT = Src.getValueType();
4907 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements());
4908 Tmp = VTBits - SrcVT.getScalarSizeInBits();
4909 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
4910 }
4911 case ISD::SRA:
4912 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4913 // SRA X, C -> adds C sign bits.
4914 if (std::optional<unsigned> ShAmt =
4915 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
4916 Tmp = std::min(Tmp + *ShAmt, VTBits);
4917 return Tmp;
4918 case ISD::SHL:
4919 if (std::optional<ConstantRange> ShAmtRange =
4920 getValidShiftAmountRange(Op, DemandedElts, Depth + 1)) {
4921 unsigned MaxShAmt = ShAmtRange->getUnsignedMax().getZExtValue();
4922 unsigned MinShAmt = ShAmtRange->getUnsignedMin().getZExtValue();
4923 // Try to look through ZERO/SIGN/ANY_EXTEND. If all extended bits are
4924 // shifted out, then we can compute the number of sign bits for the
4925 // operand being extended. A future improvement could be to pass along the
4926 // "shifted left by" information in the recursive calls to
4927 // ComputeKnownSignBits. Allowing us to handle this more generically.
4928 if (ISD::isExtOpcode(Op.getOperand(0).getOpcode())) {
4929 SDValue Ext = Op.getOperand(0);
4930 EVT ExtVT = Ext.getValueType();
4931 SDValue Extendee = Ext.getOperand(0);
4932 EVT ExtendeeVT = Extendee.getValueType();
4933 unsigned SizeDifference =
4934 ExtVT.getScalarSizeInBits() - ExtendeeVT.getScalarSizeInBits();
4935 if (SizeDifference <= MinShAmt) {
4936 Tmp = SizeDifference +
4937 ComputeNumSignBits(Extendee, DemandedElts, Depth + 1);
4938 if (MaxShAmt < Tmp)
4939 return Tmp - MaxShAmt;
4940 }
4941 }
4942 // shl destroys sign bits, ensure it doesn't shift out all sign bits.
4943 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4944 if (MaxShAmt < Tmp)
4945 return Tmp - MaxShAmt;
4946 }
4947 break;
4948 case ISD::AND:
4949 case ISD::OR:
4950 case ISD::XOR: // NOT is handled here.
4951 // Logical binary ops preserve the number of sign bits at the worst.
4952 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4953 if (Tmp != 1) {
4954 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4955 FirstAnswer = std::min(Tmp, Tmp2);
4956 // We computed what we know about the sign bits as our first
4957 // answer. Now proceed to the generic code that uses
4958 // computeKnownBits, and pick whichever answer is better.
4959 }
4960 break;
4961
4962 case ISD::SELECT:
4963 case ISD::VSELECT:
4964 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4965 if (Tmp == 1) return 1; // Early out.
4966 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4967 return std::min(Tmp, Tmp2);
4968 case ISD::SELECT_CC:
4969 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4970 if (Tmp == 1) return 1; // Early out.
4971 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
4972 return std::min(Tmp, Tmp2);
4973
4974 case ISD::SMIN:
4975 case ISD::SMAX: {
4976 // If we have a clamp pattern, we know that the number of sign bits will be
4977 // the minimum of the clamp min/max range.
4978 bool IsMax = (Opcode == ISD::SMAX);
4979 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4980 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4981 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4982 CstHigh =
4983 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4984 if (CstLow && CstHigh) {
4985 if (!IsMax)
4986 std::swap(CstLow, CstHigh);
4987 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
4988 Tmp = CstLow->getAPIntValue().getNumSignBits();
4989 Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4990 return std::min(Tmp, Tmp2);
4991 }
4992 }
4993
4994 // Fallback - just get the minimum number of sign bits of the operands.
4995 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4996 if (Tmp == 1)
4997 return 1; // Early out.
4998 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4999 return std::min(Tmp, Tmp2);
5000 }
5001 case ISD::UMIN:
5002 case ISD::UMAX:
5003 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5004 if (Tmp == 1)
5005 return 1; // Early out.
5006 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5007 return std::min(Tmp, Tmp2);
5008 case ISD::SSUBO_CARRY:
5009 case ISD::USUBO_CARRY:
5010 // sub_carry(x,x,c) -> 0/-1 (sext carry)
5011 if (Op.getResNo() == 0 && Op.getOperand(0) == Op.getOperand(1))
5012 return VTBits;
5013 [[fallthrough]];
5014 case ISD::SADDO:
5015 case ISD::UADDO:
5016 case ISD::SADDO_CARRY:
5017 case ISD::UADDO_CARRY:
5018 case ISD::SSUBO:
5019 case ISD::USUBO:
5020 case ISD::SMULO:
5021 case ISD::UMULO:
5022 if (Op.getResNo() != 1)
5023 break;
5024 // The boolean result conforms to getBooleanContents. Fall through.
5025 // If setcc returns 0/-1, all bits are sign bits.
5026 // We know that we have an integer-based boolean since these operations
5027 // are only available for integer.
5028 if (TLI->getBooleanContents(VT.isVector(), false) ==
5030 return VTBits;
5031 break;
5032 case ISD::SETCC:
5033 case ISD::SETCCCARRY:
5034 case ISD::STRICT_FSETCC:
5035 case ISD::STRICT_FSETCCS: {
5036 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
5037 // If setcc returns 0/-1, all bits are sign bits.
5038 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
5040 return VTBits;
5041 break;
5042 }
5043 case ISD::ROTL:
5044 case ISD::ROTR:
5045 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5046
5047 // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
5048 if (Tmp == VTBits)
5049 return VTBits;
5050
5051 if (ConstantSDNode *C =
5052 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
5053 unsigned RotAmt = C->getAPIntValue().urem(VTBits);
5054
5055 // Handle rotate right by N like a rotate left by 32-N.
5056 if (Opcode == ISD::ROTR)
5057 RotAmt = (VTBits - RotAmt) % VTBits;
5058
5059 // If we aren't rotating out all of the known-in sign bits, return the
5060 // number that are left. This handles rotl(sext(x), 1) for example.
5061 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
5062 }
5063 break;
5064 case ISD::ADD:
5065 case ISD::ADDC:
5066 // Add can have at most one carry bit. Thus we know that the output
5067 // is, at worst, one more bit than the inputs.
5068 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5069 if (Tmp == 1) return 1; // Early out.
5070
5071 // Special case decrementing a value (ADD X, -1):
5072 if (ConstantSDNode *CRHS =
5073 isConstOrConstSplat(Op.getOperand(1), DemandedElts))
5074 if (CRHS->isAllOnes()) {
5075 KnownBits Known =
5076 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
5077
5078 // If the input is known to be 0 or 1, the output is 0/-1, which is all
5079 // sign bits set.
5080 if ((Known.Zero | 1).isAllOnes())
5081 return VTBits;
5082
5083 // If we are subtracting one from a positive number, there is no carry
5084 // out of the result.
5085 if (Known.isNonNegative())
5086 return Tmp;
5087 }
5088
5089 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5090 if (Tmp2 == 1) return 1; // Early out.
5091 return std::min(Tmp, Tmp2) - 1;
5092 case ISD::SUB:
5093 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5094 if (Tmp2 == 1) return 1; // Early out.
5095
5096 // Handle NEG.
5097 if (ConstantSDNode *CLHS =
5098 isConstOrConstSplat(Op.getOperand(0), DemandedElts))
5099 if (CLHS->isZero()) {
5100 KnownBits Known =
5101 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
5102 // If the input is known to be 0 or 1, the output is 0/-1, which is all
5103 // sign bits set.
5104 if ((Known.Zero | 1).isAllOnes())
5105 return VTBits;
5106
5107 // If the input is known to be positive (the sign bit is known clear),
5108 // the output of the NEG has the same number of sign bits as the input.
5109 if (Known.isNonNegative())
5110 return Tmp2;
5111
5112 // Otherwise, we treat this like a SUB.
5113 }
5114
5115 // Sub can have at most one carry bit. Thus we know that the output
5116 // is, at worst, one more bit than the inputs.
5117 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5118 if (Tmp == 1) return 1; // Early out.
5119 return std::min(Tmp, Tmp2) - 1;
5120 case ISD::MUL: {
5121 // The output of the Mul can be at most twice the valid bits in the inputs.
5122 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
5123 if (SignBitsOp0 == 1)
5124 break;
5125 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
5126 if (SignBitsOp1 == 1)
5127 break;
5128 unsigned OutValidBits =
5129 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
5130 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
5131 }
5132 case ISD::AVGCEILS:
5133 case ISD::AVGFLOORS:
5134 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5135 if (Tmp == 1)
5136 return 1; // Early out.
5137 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5138 return std::min(Tmp, Tmp2);
5139 case ISD::SREM:
5140 // The sign bit is the LHS's sign bit, except when the result of the
5141 // remainder is zero. The magnitude of the result should be less than or
5142 // equal to the magnitude of the LHS. Therefore, the result should have
5143 // at least as many sign bits as the left hand side.
5144 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5145 case ISD::TRUNCATE: {
5146 // Check if the sign bits of source go down as far as the truncated value.
5147 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
5148 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
5149 if (NumSrcSignBits > (NumSrcBits - VTBits))
5150 return NumSrcSignBits - (NumSrcBits - VTBits);
5151 break;
5152 }
5153 case ISD::EXTRACT_ELEMENT: {
5154 if (VT.isScalableVector())
5155 break;
5156 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
5157 const int BitWidth = Op.getValueSizeInBits();
5158 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
5159
5160 // Get reverse index (starting from 1), Op1 value indexes elements from
5161 // little end. Sign starts at big end.
5162 const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
5163
5164 // If the sign portion ends in our element the subtraction gives correct
5165 // result. Otherwise it gives either negative or > bitwidth result
5166 return std::clamp(KnownSign - rIndex * BitWidth, 1, BitWidth);
5167 }
5169 if (VT.isScalableVector())
5170 break;
5171 // If we know the element index, split the demand between the
5172 // source vector and the inserted element, otherwise assume we need
5173 // the original demanded vector elements and the value.
5174 SDValue InVec = Op.getOperand(0);
5175 SDValue InVal = Op.getOperand(1);
5176 SDValue EltNo = Op.getOperand(2);
5177 bool DemandedVal = true;
5178 APInt DemandedVecElts = DemandedElts;
5179 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
5180 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
5181 unsigned EltIdx = CEltNo->getZExtValue();
5182 DemandedVal = !!DemandedElts[EltIdx];
5183 DemandedVecElts.clearBit(EltIdx);
5184 }
5185 Tmp = std::numeric_limits<unsigned>::max();
5186 if (DemandedVal) {
5187 // TODO - handle implicit truncation of inserted elements.
5188 if (InVal.getScalarValueSizeInBits() != VTBits)
5189 break;
5190 Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
5191 Tmp = std::min(Tmp, Tmp2);
5192 }
5193 if (!!DemandedVecElts) {
5194 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
5195 Tmp = std::min(Tmp, Tmp2);
5196 }
5197 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5198 return Tmp;
5199 }
5201 assert(!VT.isScalableVector());
5202 SDValue InVec = Op.getOperand(0);
5203 SDValue EltNo = Op.getOperand(1);
5204 EVT VecVT = InVec.getValueType();
5205 // ComputeNumSignBits not yet implemented for scalable vectors.
5206 if (VecVT.isScalableVector())
5207 break;
5208 const unsigned BitWidth = Op.getValueSizeInBits();
5209 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
5210 const unsigned NumSrcElts = VecVT.getVectorNumElements();
5211
5212 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
5213 // anything about sign bits. But if the sizes match we can derive knowledge
5214 // about sign bits from the vector operand.
5215 if (BitWidth != EltBitWidth)
5216 break;
5217
5218 // If we know the element index, just demand that vector element, else for
5219 // an unknown element index, ignore DemandedElts and demand them all.
5220 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
5221 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
5222 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
5223 DemandedSrcElts =
5224 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
5225
5226 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
5227 }
5229 // Offset the demanded elts by the subvector index.
5230 SDValue Src = Op.getOperand(0);
5231 // Bail until we can represent demanded elements for scalable vectors.
5232 if (Src.getValueType().isScalableVector())
5233 break;
5234 uint64_t Idx = Op.getConstantOperandVal(1);
5235 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5236 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
5237 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
5238 }
5239 case ISD::CONCAT_VECTORS: {
5240 if (VT.isScalableVector())
5241 break;
5242 // Determine the minimum number of sign bits across all demanded
5243 // elts of the input vectors. Early out if the result is already 1.
5244 Tmp = std::numeric_limits<unsigned>::max();
5245 EVT SubVectorVT = Op.getOperand(0).getValueType();
5246 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
5247 unsigned NumSubVectors = Op.getNumOperands();
5248 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
5249 APInt DemandedSub =
5250 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
5251 if (!DemandedSub)
5252 continue;
5253 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
5254 Tmp = std::min(Tmp, Tmp2);
5255 }
5256 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5257 return Tmp;
5258 }
5259 case ISD::INSERT_SUBVECTOR: {
5260 if (VT.isScalableVector())
5261 break;
5262 // Demand any elements from the subvector and the remainder from the src its
5263 // inserted into.
5264 SDValue Src = Op.getOperand(0);
5265 SDValue Sub = Op.getOperand(1);
5266 uint64_t Idx = Op.getConstantOperandVal(2);
5267 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
5268 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
5269 APInt DemandedSrcElts = DemandedElts;
5270 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
5271
5272 Tmp = std::numeric_limits<unsigned>::max();
5273 if (!!DemandedSubElts) {
5274 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
5275 if (Tmp == 1)
5276 return 1; // early-out
5277 }
5278 if (!!DemandedSrcElts) {
5279 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
5280 Tmp = std::min(Tmp, Tmp2);
5281 }
5282 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5283 return Tmp;
5284 }
5285 case ISD::LOAD: {
5287 if (const MDNode *Ranges = LD->getRanges()) {
5288 if (DemandedElts != 1)
5289 break;
5290
5292 if (VTBits > CR.getBitWidth()) {
5293 switch (LD->getExtensionType()) {
5294 case ISD::SEXTLOAD:
5295 CR = CR.signExtend(VTBits);
5296 break;
5297 case ISD::ZEXTLOAD:
5298 CR = CR.zeroExtend(VTBits);
5299 break;
5300 default:
5301 break;
5302 }
5303 }
5304
5305 if (VTBits != CR.getBitWidth())
5306 break;
5307 return std::min(CR.getSignedMin().getNumSignBits(),
5309 }
5310
5311 break;
5312 }
5313 case ISD::ATOMIC_CMP_SWAP:
5314 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5315 case ISD::ATOMIC_SWAP:
5316 case ISD::ATOMIC_LOAD_ADD:
5317 case ISD::ATOMIC_LOAD_SUB:
5318 case ISD::ATOMIC_LOAD_AND:
5319 case ISD::ATOMIC_LOAD_CLR:
5320 case ISD::ATOMIC_LOAD_OR:
5321 case ISD::ATOMIC_LOAD_XOR:
5322 case ISD::ATOMIC_LOAD_NAND:
5323 case ISD::ATOMIC_LOAD_MIN:
5324 case ISD::ATOMIC_LOAD_MAX:
5325 case ISD::ATOMIC_LOAD_UMIN:
5326 case ISD::ATOMIC_LOAD_UMAX:
5327 case ISD::ATOMIC_LOAD: {
5328 auto *AT = cast<AtomicSDNode>(Op);
5329 // If we are looking at the loaded value.
5330 if (Op.getResNo() == 0) {
5331 Tmp = AT->getMemoryVT().getScalarSizeInBits();
5332 if (Tmp == VTBits)
5333 return 1; // early-out
5334
5335 // For atomic_load, prefer to use the extension type.
5336 if (Op->getOpcode() == ISD::ATOMIC_LOAD) {
5337 switch (AT->getExtensionType()) {
5338 default:
5339 break;
5340 case ISD::SEXTLOAD:
5341 return VTBits - Tmp + 1;
5342 case ISD::ZEXTLOAD:
5343 return VTBits - Tmp;
5344 }
5345 }
5346
5347 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
5348 return VTBits - Tmp + 1;
5349 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
5350 return VTBits - Tmp;
5351 }
5352 break;
5353 }
5354 }
5355
5356 // If we are looking at the loaded value of the SDNode.
5357 if (Op.getResNo() == 0) {
5358 // Handle LOADX separately here. EXTLOAD case will fallthrough.
5359 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
5360 unsigned ExtType = LD->getExtensionType();
5361 switch (ExtType) {
5362 default: break;
5363 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
5364 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5365 return VTBits - Tmp + 1;
5366 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
5367 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5368 return VTBits - Tmp;
5369 case ISD::NON_EXTLOAD:
5370 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
5371 // We only need to handle vectors - computeKnownBits should handle
5372 // scalar cases.
5373 Type *CstTy = Cst->getType();
5374 if (CstTy->isVectorTy() && !VT.isScalableVector() &&
5375 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
5376 VTBits == CstTy->getScalarSizeInBits()) {
5377 Tmp = VTBits;
5378 for (unsigned i = 0; i != NumElts; ++i) {
5379 if (!DemandedElts[i])
5380 continue;
5381 if (Constant *Elt = Cst->getAggregateElement(i)) {
5382 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
5383 const APInt &Value = CInt->getValue();
5384 Tmp = std::min(Tmp, Value.getNumSignBits());
5385 continue;
5386 }
5387 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
5388 APInt Value = CFP->getValueAPF().bitcastToAPInt();
5389 Tmp = std::min(Tmp, Value.getNumSignBits());
5390 continue;
5391 }
5392 }
5393 // Unknown type. Conservatively assume no bits match sign bit.
5394 return 1;
5395 }
5396 return Tmp;
5397 }
5398 }
5399 break;
5400 }
5401 }
5402 }
5403
5404 // Allow the target to implement this method for its nodes.
5405 if (Opcode >= ISD::BUILTIN_OP_END ||
5406 Opcode == ISD::INTRINSIC_WO_CHAIN ||
5407 Opcode == ISD::INTRINSIC_W_CHAIN ||
5408 Opcode == ISD::INTRINSIC_VOID) {
5409 // TODO: This can probably be removed once target code is audited. This
5410 // is here purely to reduce patch size and review complexity.
5411 if (!VT.isScalableVector()) {
5412 unsigned NumBits =
5413 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
5414 if (NumBits > 1)
5415 FirstAnswer = std::max(FirstAnswer, NumBits);
5416 }
5417 }
5418
5419 // Finally, if we can prove that the top bits of the result are 0's or 1's,
5420 // use this information.
5421 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
5422 return std::max(FirstAnswer, Known.countMinSignBits());
5423}
5424
5426 unsigned Depth) const {
5427 unsigned SignBits = ComputeNumSignBits(Op, Depth);
5428 return Op.getScalarValueSizeInBits() - SignBits + 1;
5429}
5430
5432 const APInt &DemandedElts,
5433 unsigned Depth) const {
5434 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
5435 return Op.getScalarValueSizeInBits() - SignBits + 1;
5436}
5437
5439 unsigned Depth) const {
5440 // Early out for FREEZE.
5441 if (Op.getOpcode() == ISD::FREEZE)
5442 return true;
5443
5444 EVT VT = Op.getValueType();
5445 APInt DemandedElts = VT.isFixedLengthVector()
5447 : APInt(1, 1);
5448 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
5449}
5450
5452 const APInt &DemandedElts,
5453 bool PoisonOnly,
5454 unsigned Depth) const {
5455 unsigned Opcode = Op.getOpcode();
5456
5457 // Early out for FREEZE.
5458 if (Opcode == ISD::FREEZE)
5459 return true;
5460
5461 if (Depth >= MaxRecursionDepth)
5462 return false; // Limit search depth.
5463
5464 if (isIntOrFPConstant(Op))
5465 return true;
5466
5467 switch (Opcode) {
5468 case ISD::CONDCODE:
5469 case ISD::VALUETYPE:
5470 case ISD::FrameIndex:
5472 case ISD::CopyFromReg:
5473 return true;
5474
5475 case ISD::POISON:
5476 return false;
5477
5478 case ISD::UNDEF:
5479 return PoisonOnly;
5480
5481 case ISD::BUILD_VECTOR:
5482 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
5483 // this shouldn't affect the result.
5484 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
5485 if (!DemandedElts[i])
5486 continue;
5488 Depth + 1))
5489 return false;
5490 }
5491 return true;
5492
5494 SDValue Src = Op.getOperand(0);
5495 if (Src.getValueType().isScalableVector())
5496 break;
5497 uint64_t Idx = Op.getConstantOperandVal(1);
5498 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5499 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
5500 return isGuaranteedNotToBeUndefOrPoison(Src, DemandedSrcElts, PoisonOnly,
5501 Depth + 1);
5502 }
5503
5504 case ISD::INSERT_SUBVECTOR: {
5505 if (Op.getValueType().isScalableVector())
5506 break;
5507 SDValue Src = Op.getOperand(0);
5508 SDValue Sub = Op.getOperand(1);
5509 uint64_t Idx = Op.getConstantOperandVal(2);
5510 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
5511 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
5512 APInt DemandedSrcElts = DemandedElts;
5513 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
5514
5515 if (!!DemandedSubElts && !isGuaranteedNotToBeUndefOrPoison(
5516 Sub, DemandedSubElts, PoisonOnly, Depth + 1))
5517 return false;
5518 if (!!DemandedSrcElts && !isGuaranteedNotToBeUndefOrPoison(
5519 Src, DemandedSrcElts, PoisonOnly, Depth + 1))
5520 return false;
5521 return true;
5522 }
5523
5525 SDValue Src = Op.getOperand(0);
5526 auto *IndexC = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5527 EVT SrcVT = Src.getValueType();
5528 if (SrcVT.isFixedLengthVector() && IndexC &&
5529 IndexC->getAPIntValue().ult(SrcVT.getVectorNumElements())) {
5530 APInt DemandedSrcElts = APInt::getOneBitSet(SrcVT.getVectorNumElements(),
5531 IndexC->getZExtValue());
5532 return isGuaranteedNotToBeUndefOrPoison(Src, DemandedSrcElts, PoisonOnly,
5533 Depth + 1);
5534 }
5535 break;
5536 }
5537
5539 SDValue InVec = Op.getOperand(0);
5540 SDValue InVal = Op.getOperand(1);
5541 SDValue EltNo = Op.getOperand(2);
5542 EVT VT = InVec.getValueType();
5543 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
5544 if (IndexC && VT.isFixedLengthVector() &&
5545 IndexC->getAPIntValue().ult(VT.getVectorNumElements())) {
5546 if (DemandedElts[IndexC->getZExtValue()] &&
5548 return false;
5549 APInt InVecDemandedElts = DemandedElts;
5550 InVecDemandedElts.clearBit(IndexC->getZExtValue());
5551 if (!!InVecDemandedElts &&
5553 peekThroughInsertVectorElt(InVec, InVecDemandedElts),
5554 InVecDemandedElts, PoisonOnly, Depth + 1))
5555 return false;
5556 return true;
5557 }
5558 break;
5559 }
5560
5562 // Check upper (known undef) elements.
5563 if (DemandedElts.ugt(1) && !PoisonOnly)
5564 return false;
5565 // Check element zero.
5566 if (DemandedElts[0] && !isGuaranteedNotToBeUndefOrPoison(
5567 Op.getOperand(0), PoisonOnly, Depth + 1))
5568 return false;
5569 return true;
5570
5571 case ISD::SPLAT_VECTOR:
5572 return isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), PoisonOnly,
5573 Depth + 1);
5574
5575 case ISD::VECTOR_SHUFFLE: {
5576 APInt DemandedLHS, DemandedRHS;
5577 auto *SVN = cast<ShuffleVectorSDNode>(Op);
5578 if (!getShuffleDemandedElts(DemandedElts.getBitWidth(), SVN->getMask(),
5579 DemandedElts, DemandedLHS, DemandedRHS,
5580 /*AllowUndefElts=*/false))
5581 return false;
5582 if (!DemandedLHS.isZero() &&
5583 !isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), DemandedLHS,
5584 PoisonOnly, Depth + 1))
5585 return false;
5586 if (!DemandedRHS.isZero() &&
5587 !isGuaranteedNotToBeUndefOrPoison(Op.getOperand(1), DemandedRHS,
5588 PoisonOnly, Depth + 1))
5589 return false;
5590 return true;
5591 }
5592
5593 case ISD::SHL:
5594 case ISD::SRL:
5595 case ISD::SRA:
5596 // Shift amount operand is checked by canCreateUndefOrPoison. So it is
5597 // enough to check operand 0 if Op can't create undef/poison.
5598 return !canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly,
5599 /*ConsiderFlags*/ true, Depth) &&
5600 isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), DemandedElts,
5601 PoisonOnly, Depth + 1);
5602
5603 case ISD::BSWAP:
5604 case ISD::CTPOP:
5605 case ISD::BITREVERSE:
5606 case ISD::AND:
5607 case ISD::OR:
5608 case ISD::XOR:
5609 case ISD::ADD:
5610 case ISD::SUB:
5611 case ISD::MUL:
5612 case ISD::SADDSAT:
5613 case ISD::UADDSAT:
5614 case ISD::SSUBSAT:
5615 case ISD::USUBSAT:
5616 case ISD::SSHLSAT:
5617 case ISD::USHLSAT:
5618 case ISD::SMIN:
5619 case ISD::SMAX:
5620 case ISD::UMIN:
5621 case ISD::UMAX:
5622 case ISD::ZERO_EXTEND:
5623 case ISD::SIGN_EXTEND:
5624 case ISD::ANY_EXTEND:
5625 case ISD::TRUNCATE:
5626 case ISD::VSELECT: {
5627 // If Op can't create undef/poison and none of its operands are undef/poison
5628 // then Op is never undef/poison. A difference from the more common check
5629 // below, outside the switch, is that we handle elementwise operations for
5630 // which the DemandedElts mask is valid for all operands here.
5631 return !canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly,
5632 /*ConsiderFlags*/ true, Depth) &&
5633 all_of(Op->ops(), [&](SDValue V) {
5634 return isGuaranteedNotToBeUndefOrPoison(V, DemandedElts,
5635 PoisonOnly, Depth + 1);
5636 });
5637 }
5638
5639 // TODO: Search for noundef attributes from library functions.
5640
5641 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
5642
5643 default:
5644 // Allow the target to implement this method for its nodes.
5645 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
5646 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
5647 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
5648 Op, DemandedElts, *this, PoisonOnly, Depth);
5649 break;
5650 }
5651
5652 // If Op can't create undef/poison and none of its operands are undef/poison
5653 // then Op is never undef/poison.
5654 // NOTE: TargetNodes can handle this in themselves in
5655 // isGuaranteedNotToBeUndefOrPoisonForTargetNode or let
5656 // TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode handle it.
5657 return !canCreateUndefOrPoison(Op, PoisonOnly, /*ConsiderFlags*/ true,
5658 Depth) &&
5659 all_of(Op->ops(), [&](SDValue V) {
5660 return isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, Depth + 1);
5661 });
5662}
5663
5665 bool ConsiderFlags,
5666 unsigned Depth) const {
5667 EVT VT = Op.getValueType();
5668 APInt DemandedElts = VT.isFixedLengthVector()
5670 : APInt(1, 1);
5671 return canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly, ConsiderFlags,
5672 Depth);
5673}
5674
5676 bool PoisonOnly, bool ConsiderFlags,
5677 unsigned Depth) const {
5678 if (ConsiderFlags && Op->hasPoisonGeneratingFlags())
5679 return true;
5680
5681 unsigned Opcode = Op.getOpcode();
5682 switch (Opcode) {
5683 case ISD::AssertSext:
5684 case ISD::AssertZext:
5685 case ISD::AssertAlign:
5687 // Assertion nodes can create poison if the assertion fails.
5688 return true;
5689
5690 case ISD::FREEZE:
5694 case ISD::SADDSAT:
5695 case ISD::UADDSAT:
5696 case ISD::SSUBSAT:
5697 case ISD::USUBSAT:
5698 case ISD::MULHU:
5699 case ISD::MULHS:
5700 case ISD::AVGFLOORS:
5701 case ISD::AVGFLOORU:
5702 case ISD::AVGCEILS:
5703 case ISD::AVGCEILU:
5704 case ISD::ABDU:
5705 case ISD::ABDS:
5706 case ISD::SMIN:
5707 case ISD::SMAX:
5708 case ISD::SCMP:
5709 case ISD::UMIN:
5710 case ISD::UMAX:
5711 case ISD::UCMP:
5712 case ISD::AND:
5713 case ISD::XOR:
5714 case ISD::ROTL:
5715 case ISD::ROTR:
5716 case ISD::FSHL:
5717 case ISD::FSHR:
5718 case ISD::BSWAP:
5719 case ISD::CTTZ:
5720 case ISD::CTLZ:
5721 case ISD::CTPOP:
5722 case ISD::BITREVERSE:
5723 case ISD::PARITY:
5724 case ISD::SIGN_EXTEND:
5725 case ISD::TRUNCATE:
5729 case ISD::BITCAST:
5730 case ISD::BUILD_VECTOR:
5731 case ISD::BUILD_PAIR:
5732 case ISD::SPLAT_VECTOR:
5733 case ISD::FABS:
5734 return false;
5735
5736 case ISD::ABS:
5737 // ISD::ABS defines abs(INT_MIN) -> INT_MIN and never generates poison.
5738 // Different to Intrinsic::abs.
5739 return false;
5740
5741 case ISD::ADDC:
5742 case ISD::SUBC:
5743 case ISD::ADDE:
5744 case ISD::SUBE:
5745 case ISD::SADDO:
5746 case ISD::SSUBO:
5747 case ISD::SMULO:
5748 case ISD::SADDO_CARRY:
5749 case ISD::SSUBO_CARRY:
5750 case ISD::UADDO:
5751 case ISD::USUBO:
5752 case ISD::UMULO:
5753 case ISD::UADDO_CARRY:
5754 case ISD::USUBO_CARRY:
5755 // No poison on result or overflow flags.
5756 return false;
5757
5758 case ISD::SELECT_CC:
5759 case ISD::SETCC: {
5760 // Integer setcc cannot create undef or poison.
5761 if (Op.getOperand(0).getValueType().isInteger())
5762 return false;
5763
5764 // FP compares are more complicated. They can create poison for nan/infinity
5765 // based on options and flags. The options and flags also cause special
5766 // nonan condition codes to be used. Those condition codes may be preserved
5767 // even if the nonan flag is dropped somewhere.
5768 unsigned CCOp = Opcode == ISD::SETCC ? 2 : 4;
5769 ISD::CondCode CCCode = cast<CondCodeSDNode>(Op.getOperand(CCOp))->get();
5770 if (((unsigned)CCCode & 0x10U))
5771 return true;
5772
5774 return Options.NoNaNsFPMath || Options.NoInfsFPMath;
5775 }
5776
5777 case ISD::OR:
5778 case ISD::ZERO_EXTEND:
5779 case ISD::SELECT:
5780 case ISD::VSELECT:
5781 case ISD::ADD:
5782 case ISD::SUB:
5783 case ISD::MUL:
5784 case ISD::FNEG:
5785 case ISD::FADD:
5786 case ISD::FSUB:
5787 case ISD::FMUL:
5788 case ISD::FDIV:
5789 case ISD::FREM:
5790 case ISD::FCOPYSIGN:
5791 case ISD::FMA:
5792 case ISD::FMAD:
5793 case ISD::FP_EXTEND:
5796 // No poison except from flags (which is handled above)
5797 return false;
5798
5799 case ISD::SHL:
5800 case ISD::SRL:
5801 case ISD::SRA:
5802 // If the max shift amount isn't in range, then the shift can
5803 // create poison.
5804 return !getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1);
5805
5808 // If the amount is zero then the result will be poison.
5809 // TODO: Add isKnownNeverZero DemandedElts handling.
5810 return !isKnownNeverZero(Op.getOperand(0), Depth + 1);
5811
5813 // Check if we demand any upper (undef) elements.
5814 return !PoisonOnly && DemandedElts.ugt(1);
5815
5818 // Ensure that the element index is in bounds.
5819 EVT VecVT = Op.getOperand(0).getValueType();
5820 SDValue Idx = Op.getOperand(Opcode == ISD::INSERT_VECTOR_ELT ? 2 : 1);
5821 KnownBits KnownIdx = computeKnownBits(Idx, Depth + 1);
5822 return KnownIdx.getMaxValue().uge(VecVT.getVectorMinNumElements());
5823 }
5824
5825 case ISD::VECTOR_SHUFFLE: {
5826 // Check for any demanded shuffle element that is undef.
5827 auto *SVN = cast<ShuffleVectorSDNode>(Op);
5828 for (auto [Idx, Elt] : enumerate(SVN->getMask()))
5829 if (Elt < 0 && DemandedElts[Idx])
5830 return true;
5831 return false;
5832 }
5833
5834 default:
5835 // Allow the target to implement this method for its nodes.
5836 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
5837 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
5838 return TLI->canCreateUndefOrPoisonForTargetNode(
5839 Op, DemandedElts, *this, PoisonOnly, ConsiderFlags, Depth);
5840 break;
5841 }
5842
5843 // Be conservative and return true.
5844 return true;
5845}
5846
5847bool SelectionDAG::isADDLike(SDValue Op, bool NoWrap) const {
5848 unsigned Opcode = Op.getOpcode();
5849 if (Opcode == ISD::OR)
5850 return Op->getFlags().hasDisjoint() ||
5851 haveNoCommonBitsSet(Op.getOperand(0), Op.getOperand(1));
5852 if (Opcode == ISD::XOR)
5853 return !NoWrap && isMinSignedConstant(Op.getOperand(1));
5854 return false;
5855}
5856
5858 return Op.getNumOperands() == 2 && isa<ConstantSDNode>(Op.getOperand(1)) &&
5859 (Op.isAnyAdd() || isADDLike(Op));
5860}
5861
5863 unsigned Depth) const {
5864 EVT VT = Op.getValueType();
5865
5866 // Since the number of lanes in a scalable vector is unknown at compile time,
5867 // we track one bit which is implicitly broadcast to all lanes. This means
5868 // that all lanes in a scalable vector are considered demanded.
5869 APInt DemandedElts = VT.isFixedLengthVector()
5871 : APInt(1, 1);
5872
5873 return isKnownNeverNaN(Op, DemandedElts, SNaN, Depth);
5874}
5875
5877 bool SNaN, unsigned Depth) const {
5878 assert(!DemandedElts.isZero() && "No demanded elements");
5879
5880 // If we're told that NaNs won't happen, assume they won't.
5881 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
5882 return true;
5883
5884 if (Depth >= MaxRecursionDepth)
5885 return false; // Limit search depth.
5886
5887 // If the value is a constant, we can obviously see if it is a NaN or not.
5889 return !C->getValueAPF().isNaN() ||
5890 (SNaN && !C->getValueAPF().isSignaling());
5891 }
5892
5893 unsigned Opcode = Op.getOpcode();
5894 switch (Opcode) {
5895 case ISD::FADD:
5896 case ISD::FSUB:
5897 case ISD::FMUL:
5898 case ISD::FDIV:
5899 case ISD::FREM:
5900 case ISD::FSIN:
5901 case ISD::FCOS:
5902 case ISD::FTAN:
5903 case ISD::FASIN:
5904 case ISD::FACOS:
5905 case ISD::FATAN:
5906 case ISD::FATAN2:
5907 case ISD::FSINH:
5908 case ISD::FCOSH:
5909 case ISD::FTANH:
5910 case ISD::FMA:
5911 case ISD::FMAD: {
5912 if (SNaN)
5913 return true;
5914 // TODO: Need isKnownNeverInfinity
5915 return false;
5916 }
5917 case ISD::FCANONICALIZE:
5918 case ISD::FEXP:
5919 case ISD::FEXP2:
5920 case ISD::FEXP10:
5921 case ISD::FTRUNC:
5922 case ISD::FFLOOR:
5923 case ISD::FCEIL:
5924 case ISD::FROUND:
5925 case ISD::FROUNDEVEN:
5926 case ISD::LROUND:
5927 case ISD::LLROUND:
5928 case ISD::FRINT:
5929 case ISD::LRINT:
5930 case ISD::LLRINT:
5931 case ISD::FNEARBYINT:
5932 case ISD::FLDEXP: {
5933 if (SNaN)
5934 return true;
5935 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
5936 }
5937 case ISD::FABS:
5938 case ISD::FNEG:
5939 case ISD::FCOPYSIGN: {
5940 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
5941 }
5942 case ISD::SELECT:
5943 return isKnownNeverNaN(Op.getOperand(1), DemandedElts, SNaN, Depth + 1) &&
5944 isKnownNeverNaN(Op.getOperand(2), DemandedElts, SNaN, Depth + 1);
5945 case ISD::FP_EXTEND:
5946 case ISD::FP_ROUND: {
5947 if (SNaN)
5948 return true;
5949 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
5950 }
5951 case ISD::SINT_TO_FP:
5952 case ISD::UINT_TO_FP:
5953 return true;
5954 case ISD::FSQRT: // Need is known positive
5955 case ISD::FLOG:
5956 case ISD::FLOG2:
5957 case ISD::FLOG10:
5958 case ISD::FPOWI:
5959 case ISD::FPOW: {
5960 if (SNaN)
5961 return true;
5962 // TODO: Refine on operand
5963 return false;
5964 }
5965 case ISD::FMINNUM:
5966 case ISD::FMAXNUM:
5967 case ISD::FMINIMUMNUM:
5968 case ISD::FMAXIMUMNUM: {
5969 // Only one needs to be known not-nan, since it will be returned if the
5970 // other ends up being one.
5971 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1) ||
5972 isKnownNeverNaN(Op.getOperand(1), DemandedElts, SNaN, Depth + 1);
5973 }
5974 case ISD::FMINNUM_IEEE:
5975 case ISD::FMAXNUM_IEEE: {
5976 if (SNaN)
5977 return true;
5978 // This can return a NaN if either operand is an sNaN, or if both operands
5979 // are NaN.
5980 return (isKnownNeverNaN(Op.getOperand(0), DemandedElts, false, Depth + 1) &&
5981 isKnownNeverSNaN(Op.getOperand(1), DemandedElts, Depth + 1)) ||
5982 (isKnownNeverNaN(Op.getOperand(1), DemandedElts, false, Depth + 1) &&
5983 isKnownNeverSNaN(Op.getOperand(0), DemandedElts, Depth + 1));
5984 }
5985 case ISD::FMINIMUM:
5986 case ISD::FMAXIMUM: {
5987 // TODO: Does this quiet or return the origina NaN as-is?
5988 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1) &&
5989 isKnownNeverNaN(Op.getOperand(1), DemandedElts, SNaN, Depth + 1);
5990 }
5992 SDValue Src = Op.getOperand(0);
5993 auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5994 EVT SrcVT = Src.getValueType();
5995 if (SrcVT.isFixedLengthVector() && Idx &&
5996 Idx->getAPIntValue().ult(SrcVT.getVectorNumElements())) {
5997 APInt DemandedSrcElts = APInt::getOneBitSet(SrcVT.getVectorNumElements(),
5998 Idx->getZExtValue());
5999 return isKnownNeverNaN(Src, DemandedSrcElts, SNaN, Depth + 1);
6000 }
6001 return isKnownNeverNaN(Src, SNaN, Depth + 1);
6002 }
6004 SDValue Src = Op.getOperand(0);
6005 if (Src.getValueType().isFixedLengthVector()) {
6006 unsigned Idx = Op.getConstantOperandVal(1);
6007 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
6008 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
6009 return isKnownNeverNaN(Src, DemandedSrcElts, SNaN, Depth + 1);
6010 }
6011 return isKnownNeverNaN(Src, SNaN, Depth + 1);
6012 }
6013 case ISD::INSERT_SUBVECTOR: {
6014 SDValue BaseVector = Op.getOperand(0);
6015 SDValue SubVector = Op.getOperand(1);
6016 EVT BaseVectorVT = BaseVector.getValueType();
6017 if (BaseVectorVT.isFixedLengthVector()) {
6018 unsigned Idx = Op.getConstantOperandVal(2);
6019 unsigned NumBaseElts = BaseVectorVT.getVectorNumElements();
6020 unsigned NumSubElts = SubVector.getValueType().getVectorNumElements();
6021
6022 // Clear/Extract the bits at the position where the subvector will be
6023 // inserted.
6024 APInt DemandedMask =
6025 APInt::getBitsSet(NumBaseElts, Idx, Idx + NumSubElts);
6026 APInt DemandedSrcElts = DemandedElts & ~DemandedMask;
6027 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
6028
6029 bool NeverNaN = true;
6030 if (!DemandedSrcElts.isZero())
6031 NeverNaN &=
6032 isKnownNeverNaN(BaseVector, DemandedSrcElts, SNaN, Depth + 1);
6033 if (NeverNaN && !DemandedSubElts.isZero())
6034 NeverNaN &=
6035 isKnownNeverNaN(SubVector, DemandedSubElts, SNaN, Depth + 1);
6036 return NeverNaN;
6037 }
6038 return isKnownNeverNaN(BaseVector, SNaN, Depth + 1) &&
6039 isKnownNeverNaN(SubVector, SNaN, Depth + 1);
6040 }
6041 case ISD::BUILD_VECTOR: {
6042 unsigned NumElts = Op.getNumOperands();
6043 for (unsigned I = 0; I != NumElts; ++I)
6044 if (DemandedElts[I] &&
6045 !isKnownNeverNaN(Op.getOperand(I), SNaN, Depth + 1))
6046 return false;
6047 return true;
6048 }
6049 case ISD::AssertNoFPClass: {
6050 FPClassTest NoFPClass =
6051 static_cast<FPClassTest>(Op.getConstantOperandVal(1));
6052 if ((NoFPClass & fcNan) == fcNan)
6053 return true;
6054 if (SNaN && (NoFPClass & fcSNan) == fcSNan)
6055 return true;
6056 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
6057 }
6058 default:
6059 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
6060 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) {
6061 return TLI->isKnownNeverNaNForTargetNode(Op, DemandedElts, *this, SNaN,
6062 Depth);
6063 }
6064
6065 return false;
6066 }
6067}
6068
6070 assert(Op.getValueType().isFloatingPoint() &&
6071 "Floating point type expected");
6072
6073 // If the value is a constant, we can obviously see if it is a zero or not.
6075 Op, [](ConstantFPSDNode *C) { return !C->isZero(); });
6076}
6077
6079 if (Depth >= MaxRecursionDepth)
6080 return false; // Limit search depth.
6081
6082 assert(!Op.getValueType().isFloatingPoint() &&
6083 "Floating point types unsupported - use isKnownNeverZeroFloat");
6084
6085 // If the value is a constant, we can obviously see if it is a zero or not.
6087 [](ConstantSDNode *C) { return !C->isZero(); }))
6088 return true;
6089
6090 // TODO: Recognize more cases here. Most of the cases are also incomplete to
6091 // some degree.
6092 switch (Op.getOpcode()) {
6093 default:
6094 break;
6095
6096 case ISD::OR:
6097 return isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
6098 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6099
6100 case ISD::VSELECT:
6101 case ISD::SELECT:
6102 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6103 isKnownNeverZero(Op.getOperand(2), Depth + 1);
6104
6105 case ISD::SHL: {
6106 if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap())
6107 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6108 KnownBits ValKnown = computeKnownBits(Op.getOperand(0), Depth + 1);
6109 // 1 << X is never zero.
6110 if (ValKnown.One[0])
6111 return true;
6112 // If max shift cnt of known ones is non-zero, result is non-zero.
6113 APInt MaxCnt = computeKnownBits(Op.getOperand(1), Depth + 1).getMaxValue();
6114 if (MaxCnt.ult(ValKnown.getBitWidth()) &&
6115 !ValKnown.One.shl(MaxCnt).isZero())
6116 return true;
6117 break;
6118 }
6119 case ISD::UADDSAT:
6120 case ISD::UMAX:
6121 return isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
6122 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6123
6124 // For smin/smax: If either operand is known negative/positive
6125 // respectively we don't need the other to be known at all.
6126 case ISD::SMAX: {
6127 KnownBits Op1 = computeKnownBits(Op.getOperand(1), Depth + 1);
6128 if (Op1.isStrictlyPositive())
6129 return true;
6130
6131 KnownBits Op0 = computeKnownBits(Op.getOperand(0), Depth + 1);
6132 if (Op0.isStrictlyPositive())
6133 return true;
6134
6135 if (Op1.isNonZero() && Op0.isNonZero())
6136 return true;
6137
6138 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6139 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6140 }
6141 case ISD::SMIN: {
6142 KnownBits Op1 = computeKnownBits(Op.getOperand(1), Depth + 1);
6143 if (Op1.isNegative())
6144 return true;
6145
6146 KnownBits Op0 = computeKnownBits(Op.getOperand(0), Depth + 1);
6147 if (Op0.isNegative())
6148 return true;
6149
6150 if (Op1.isNonZero() && Op0.isNonZero())
6151 return true;
6152
6153 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6154 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6155 }
6156 case ISD::UMIN:
6157 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6158 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6159
6160 case ISD::ROTL:
6161 case ISD::ROTR:
6162 case ISD::BITREVERSE:
6163 case ISD::BSWAP:
6164 case ISD::CTPOP:
6165 case ISD::ABS:
6166 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6167
6168 case ISD::SRA:
6169 case ISD::SRL: {
6170 if (Op->getFlags().hasExact())
6171 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6172 KnownBits ValKnown = computeKnownBits(Op.getOperand(0), Depth + 1);
6173 if (ValKnown.isNegative())
6174 return true;
6175 // If max shift cnt of known ones is non-zero, result is non-zero.
6176 APInt MaxCnt = computeKnownBits(Op.getOperand(1), Depth + 1).getMaxValue();
6177 if (MaxCnt.ult(ValKnown.getBitWidth()) &&
6178 !ValKnown.One.lshr(MaxCnt).isZero())
6179 return true;
6180 break;
6181 }
6182 case ISD::UDIV:
6183 case ISD::SDIV:
6184 // div exact can only produce a zero if the dividend is zero.
6185 // TODO: For udiv this is also true if Op1 u<= Op0
6186 if (Op->getFlags().hasExact())
6187 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6188 break;
6189
6190 case ISD::ADD:
6191 if (Op->getFlags().hasNoUnsignedWrap())
6192 if (isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
6193 isKnownNeverZero(Op.getOperand(0), Depth + 1))
6194 return true;
6195 // TODO: There are a lot more cases we can prove for add.
6196 break;
6197
6198 case ISD::SUB: {
6199 if (isNullConstant(Op.getOperand(0)))
6200 return isKnownNeverZero(Op.getOperand(1), Depth + 1);
6201
6202 std::optional<bool> ne =
6203 KnownBits::ne(computeKnownBits(Op.getOperand(0), Depth + 1),
6204 computeKnownBits(Op.getOperand(1), Depth + 1));
6205 return ne && *ne;
6206 }
6207
6208 case ISD::MUL:
6209 if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap())
6210 if (isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6211 isKnownNeverZero(Op.getOperand(0), Depth + 1))
6212 return true;
6213 break;
6214
6215 case ISD::ZERO_EXTEND:
6216 case ISD::SIGN_EXTEND:
6217 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6218 case ISD::VSCALE: {
6220 const APInt &Multiplier = Op.getConstantOperandAPInt(0);
6221 ConstantRange CR =
6222 getVScaleRange(&F, Op.getScalarValueSizeInBits()).multiply(Multiplier);
6223 if (!CR.contains(APInt(CR.getBitWidth(), 0)))
6224 return true;
6225 break;
6226 }
6227 }
6228
6230}
6231
6233 if (ConstantFPSDNode *C1 = isConstOrConstSplatFP(Op, true))
6234 return !C1->isNegative();
6235
6236 return Op.getOpcode() == ISD::FABS;
6237}
6238
6240 // Check the obvious case.
6241 if (A == B) return true;
6242
6243 // For negative and positive zero.
6246 if (CA->isZero() && CB->isZero()) return true;
6247
6248 // Otherwise they may not be equal.
6249 return false;
6250}
6251
6252// Only bits set in Mask must be negated, other bits may be arbitrary.
6254 if (isBitwiseNot(V, AllowUndefs))
6255 return V.getOperand(0);
6256
6257 // Handle any_extend (not (truncate X)) pattern, where Mask only sets
6258 // bits in the non-extended part.
6259 ConstantSDNode *MaskC = isConstOrConstSplat(Mask);
6260 if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND)
6261 return SDValue();
6262 SDValue ExtArg = V.getOperand(0);
6263 if (ExtArg.getScalarValueSizeInBits() >=
6264 MaskC->getAPIntValue().getActiveBits() &&
6265 isBitwiseNot(ExtArg, AllowUndefs) &&
6266 ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE &&
6267 ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType())
6268 return ExtArg.getOperand(0).getOperand(0);
6269 return SDValue();
6270}
6271
6273 // Match masked merge pattern (X & ~M) op (Y & M)
6274 // Including degenerate case (X & ~M) op M
6275 auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask,
6276 SDValue Other) {
6277 if (SDValue NotOperand =
6278 getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) {
6279 if (NotOperand->getOpcode() == ISD::ZERO_EXTEND ||
6280 NotOperand->getOpcode() == ISD::TRUNCATE)
6281 NotOperand = NotOperand->getOperand(0);
6282
6283 if (Other == NotOperand)
6284 return true;
6285 if (Other->getOpcode() == ISD::AND)
6286 return NotOperand == Other->getOperand(0) ||
6287 NotOperand == Other->getOperand(1);
6288 }
6289 return false;
6290 };
6291
6292 if (A->getOpcode() == ISD::ZERO_EXTEND || A->getOpcode() == ISD::TRUNCATE)
6293 A = A->getOperand(0);
6294
6295 if (B->getOpcode() == ISD::ZERO_EXTEND || B->getOpcode() == ISD::TRUNCATE)
6296 B = B->getOperand(0);
6297
6298 if (A->getOpcode() == ISD::AND)
6299 return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) ||
6300 MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B);
6301 return false;
6302}
6303
6304// FIXME: unify with llvm::haveNoCommonBitsSet.
6306 assert(A.getValueType() == B.getValueType() &&
6307 "Values must have the same type");
6310 return true;
6313}
6314
6315static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
6316 SelectionDAG &DAG) {
6317 if (cast<ConstantSDNode>(Step)->isZero())
6318 return DAG.getConstant(0, DL, VT);
6319
6320 return SDValue();
6321}
6322
6325 SelectionDAG &DAG) {
6326 int NumOps = Ops.size();
6327 assert(NumOps != 0 && "Can't build an empty vector!");
6328 assert(!VT.isScalableVector() &&
6329 "BUILD_VECTOR cannot be used with scalable types");
6330 assert(VT.getVectorNumElements() == (unsigned)NumOps &&
6331 "Incorrect element count in BUILD_VECTOR!");
6332
6333 // BUILD_VECTOR of UNDEFs is UNDEF.
6334 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
6335 return DAG.getUNDEF(VT);
6336
6337 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
6338 SDValue IdentitySrc;
6339 bool IsIdentity = true;
6340 for (int i = 0; i != NumOps; ++i) {
6342 Ops[i].getOperand(0).getValueType() != VT ||
6343 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
6344 !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
6345 Ops[i].getConstantOperandAPInt(1) != i) {
6346 IsIdentity = false;
6347 break;
6348 }
6349 IdentitySrc = Ops[i].getOperand(0);
6350 }
6351 if (IsIdentity)
6352 return IdentitySrc;
6353
6354 return SDValue();
6355}
6356
6357/// Try to simplify vector concatenation to an input value, undef, or build
6358/// vector.
6361 SelectionDAG &DAG) {
6362 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
6364 [Ops](SDValue Op) {
6365 return Ops[0].getValueType() == Op.getValueType();
6366 }) &&
6367 "Concatenation of vectors with inconsistent value types!");
6368 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
6369 VT.getVectorElementCount() &&
6370 "Incorrect element count in vector concatenation!");
6371
6372 if (Ops.size() == 1)
6373 return Ops[0];
6374
6375 // Concat of UNDEFs is UNDEF.
6376 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
6377 return DAG.getUNDEF(VT);
6378
6379 // Scan the operands and look for extract operations from a single source
6380 // that correspond to insertion at the same location via this concatenation:
6381 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
6382 SDValue IdentitySrc;
6383 bool IsIdentity = true;
6384 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
6385 SDValue Op = Ops[i];
6386 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
6387 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
6388 Op.getOperand(0).getValueType() != VT ||
6389 (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
6390 Op.getConstantOperandVal(1) != IdentityIndex) {
6391 IsIdentity = false;
6392 break;
6393 }
6394 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
6395 "Unexpected identity source vector for concat of extracts");
6396 IdentitySrc = Op.getOperand(0);
6397 }
6398 if (IsIdentity) {
6399 assert(IdentitySrc && "Failed to set source vector of extracts");
6400 return IdentitySrc;
6401 }
6402
6403 // The code below this point is only designed to work for fixed width
6404 // vectors, so we bail out for now.
6405 if (VT.isScalableVector())
6406 return SDValue();
6407
6408 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
6409 // simplified to one big BUILD_VECTOR.
6410 // FIXME: Add support for SCALAR_TO_VECTOR as well.
6411 EVT SVT = VT.getScalarType();
6413 for (SDValue Op : Ops) {
6414 EVT OpVT = Op.getValueType();
6415 if (Op.isUndef())
6416 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
6417 else if (Op.getOpcode() == ISD::BUILD_VECTOR)
6418 Elts.append(Op->op_begin(), Op->op_end());
6419 else
6420 return SDValue();
6421 }
6422
6423 // BUILD_VECTOR requires all inputs to be of the same type, find the
6424 // maximum type and extend them all.
6425 for (SDValue Op : Elts)
6426 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
6427
6428 if (SVT.bitsGT(VT.getScalarType())) {
6429 for (SDValue &Op : Elts) {
6430 if (Op.isUndef())
6431 Op = DAG.getUNDEF(SVT);
6432 else
6433 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
6434 ? DAG.getZExtOrTrunc(Op, DL, SVT)
6435 : DAG.getSExtOrTrunc(Op, DL, SVT);
6436 }
6437 }
6438
6439 SDValue V = DAG.getBuildVector(VT, DL, Elts);
6440 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
6441 return V;
6442}
6443
6444/// Gets or creates the specified node.
6445SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
6446 SDVTList VTs = getVTList(VT);
6448 AddNodeIDNode(ID, Opcode, VTs, {});
6449 void *IP = nullptr;
6450 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6451 return SDValue(E, 0);
6452
6453 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6454 CSEMap.InsertNode(N, IP);
6455
6456 InsertNode(N);
6457 SDValue V = SDValue(N, 0);
6458 NewSDValueDbgMsg(V, "Creating new node: ", this);
6459 return V;
6460}
6461
6462SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6463 SDValue N1) {
6464 SDNodeFlags Flags;
6465 if (Inserter)
6466 Flags = Inserter->getFlags();
6467 return getNode(Opcode, DL, VT, N1, Flags);
6468}
6469
6470SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6471 SDValue N1, const SDNodeFlags Flags) {
6472 assert(N1.getOpcode() != ISD::DELETED_NODE && "Operand is DELETED_NODE!");
6473
6474 // Constant fold unary operations with a vector integer or float operand.
6475 switch (Opcode) {
6476 default:
6477 // FIXME: Entirely reasonable to perform folding of other unary
6478 // operations here as the need arises.
6479 break;
6480 case ISD::FNEG:
6481 case ISD::FABS:
6482 case ISD::FCEIL:
6483 case ISD::FTRUNC:
6484 case ISD::FFLOOR:
6485 case ISD::FP_EXTEND:
6486 case ISD::FP_TO_SINT:
6487 case ISD::FP_TO_UINT:
6488 case ISD::FP_TO_FP16:
6489 case ISD::FP_TO_BF16:
6490 case ISD::TRUNCATE:
6491 case ISD::ANY_EXTEND:
6492 case ISD::ZERO_EXTEND:
6493 case ISD::SIGN_EXTEND:
6494 case ISD::UINT_TO_FP:
6495 case ISD::SINT_TO_FP:
6496 case ISD::FP16_TO_FP:
6497 case ISD::BF16_TO_FP:
6498 case ISD::BITCAST:
6499 case ISD::ABS:
6500 case ISD::BITREVERSE:
6501 case ISD::BSWAP:
6502 case ISD::CTLZ:
6504 case ISD::CTTZ:
6506 case ISD::CTPOP:
6507 case ISD::STEP_VECTOR: {
6508 SDValue Ops = {N1};
6509 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
6510 return Fold;
6511 }
6512 }
6513
6514 unsigned OpOpcode = N1.getNode()->getOpcode();
6515 switch (Opcode) {
6516 case ISD::STEP_VECTOR:
6517 assert(VT.isScalableVector() &&
6518 "STEP_VECTOR can only be used with scalable types");
6519 assert(OpOpcode == ISD::TargetConstant &&
6520 VT.getVectorElementType() == N1.getValueType() &&
6521 "Unexpected step operand");
6522 break;
6523 case ISD::FREEZE:
6524 assert(VT == N1.getValueType() && "Unexpected VT!");
6525 if (isGuaranteedNotToBeUndefOrPoison(N1, /*PoisonOnly=*/false))
6526 return N1;
6527 break;
6528 case ISD::TokenFactor:
6529 case ISD::MERGE_VALUES:
6531 return N1; // Factor, merge or concat of one node? No need.
6532 case ISD::BUILD_VECTOR: {
6533 // Attempt to simplify BUILD_VECTOR.
6534 SDValue Ops[] = {N1};
6535 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6536 return V;
6537 break;
6538 }
6539 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
6540 case ISD::FP_EXTEND:
6542 "Invalid FP cast!");
6543 if (N1.getValueType() == VT) return N1; // noop conversion.
6544 assert((!VT.isVector() || VT.getVectorElementCount() ==
6546 "Vector element count mismatch!");
6547 assert(N1.getValueType().bitsLT(VT) && "Invalid fpext node, dst < src!");
6548 if (N1.isUndef())
6549 return getUNDEF(VT);
6550 break;
6551 case ISD::FP_TO_SINT:
6552 case ISD::FP_TO_UINT:
6553 if (N1.isUndef())
6554 return getUNDEF(VT);
6555 break;
6556 case ISD::SINT_TO_FP:
6557 case ISD::UINT_TO_FP:
6558 // [us]itofp(undef) = 0, because the result value is bounded.
6559 if (N1.isUndef())
6560 return getConstantFP(0.0, DL, VT);
6561 break;
6562 case ISD::SIGN_EXTEND:
6563 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6564 "Invalid SIGN_EXTEND!");
6565 assert(VT.isVector() == N1.getValueType().isVector() &&
6566 "SIGN_EXTEND result type type should be vector iff the operand "
6567 "type is vector!");
6568 if (N1.getValueType() == VT) return N1; // noop extension
6569 assert((!VT.isVector() || VT.getVectorElementCount() ==
6571 "Vector element count mismatch!");
6572 assert(N1.getValueType().bitsLT(VT) && "Invalid sext node, dst < src!");
6573 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) {
6574 SDNodeFlags Flags;
6575 if (OpOpcode == ISD::ZERO_EXTEND)
6576 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6577 SDValue NewVal = getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6578 transferDbgValues(N1, NewVal);
6579 return NewVal;
6580 }
6581
6582 if (OpOpcode == ISD::POISON)
6583 return getPOISON(VT);
6584
6585 if (N1.isUndef())
6586 // sext(undef) = 0, because the top bits will all be the same.
6587 return getConstant(0, DL, VT);
6588
6589 // Skip unnecessary sext_inreg pattern:
6590 // (sext (trunc x)) -> x iff the upper bits are all signbits.
6591 if (OpOpcode == ISD::TRUNCATE) {
6592 SDValue OpOp = N1.getOperand(0);
6593 if (OpOp.getValueType() == VT) {
6594 unsigned NumSignExtBits =
6596 if (ComputeNumSignBits(OpOp) > NumSignExtBits) {
6597 transferDbgValues(N1, OpOp);
6598 return OpOp;
6599 }
6600 }
6601 }
6602 break;
6603 case ISD::ZERO_EXTEND:
6604 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6605 "Invalid ZERO_EXTEND!");
6606 assert(VT.isVector() == N1.getValueType().isVector() &&
6607 "ZERO_EXTEND result type type should be vector iff the operand "
6608 "type is vector!");
6609 if (N1.getValueType() == VT) return N1; // noop extension
6610 assert((!VT.isVector() || VT.getVectorElementCount() ==
6612 "Vector element count mismatch!");
6613 assert(N1.getValueType().bitsLT(VT) && "Invalid zext node, dst < src!");
6614 if (OpOpcode == ISD::ZERO_EXTEND) { // (zext (zext x)) -> (zext x)
6615 SDNodeFlags Flags;
6616 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6617 SDValue NewVal =
6618 getNode(ISD::ZERO_EXTEND, DL, VT, N1.getOperand(0), Flags);
6619 transferDbgValues(N1, NewVal);
6620 return NewVal;
6621 }
6622
6623 if (OpOpcode == ISD::POISON)
6624 return getPOISON(VT);
6625
6626 if (N1.isUndef())
6627 // zext(undef) = 0, because the top bits will be zero.
6628 return getConstant(0, DL, VT);
6629
6630 // Skip unnecessary zext_inreg pattern:
6631 // (zext (trunc x)) -> x iff the upper bits are known zero.
6632 // TODO: Remove (zext (trunc (and x, c))) exception which some targets
6633 // use to recognise zext_inreg patterns.
6634 if (OpOpcode == ISD::TRUNCATE) {
6635 SDValue OpOp = N1.getOperand(0);
6636 if (OpOp.getValueType() == VT) {
6637 if (OpOp.getOpcode() != ISD::AND) {
6640 if (MaskedValueIsZero(OpOp, HiBits)) {
6641 transferDbgValues(N1, OpOp);
6642 return OpOp;
6643 }
6644 }
6645 }
6646 }
6647 break;
6648 case ISD::ANY_EXTEND:
6649 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6650 "Invalid ANY_EXTEND!");
6651 assert(VT.isVector() == N1.getValueType().isVector() &&
6652 "ANY_EXTEND result type type should be vector iff the operand "
6653 "type is vector!");
6654 if (N1.getValueType() == VT) return N1; // noop extension
6655 assert((!VT.isVector() || VT.getVectorElementCount() ==
6657 "Vector element count mismatch!");
6658 assert(N1.getValueType().bitsLT(VT) && "Invalid anyext node, dst < src!");
6659
6660 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
6661 OpOpcode == ISD::ANY_EXTEND) {
6662 SDNodeFlags Flags;
6663 if (OpOpcode == ISD::ZERO_EXTEND)
6664 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6665 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
6666 return getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6667 }
6668 if (N1.isUndef())
6669 return getUNDEF(VT);
6670
6671 // (ext (trunc x)) -> x
6672 if (OpOpcode == ISD::TRUNCATE) {
6673 SDValue OpOp = N1.getOperand(0);
6674 if (OpOp.getValueType() == VT) {
6675 transferDbgValues(N1, OpOp);
6676 return OpOp;
6677 }
6678 }
6679 break;
6680 case ISD::TRUNCATE:
6681 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6682 "Invalid TRUNCATE!");
6683 assert(VT.isVector() == N1.getValueType().isVector() &&
6684 "TRUNCATE result type type should be vector iff the operand "
6685 "type is vector!");
6686 if (N1.getValueType() == VT) return N1; // noop truncate
6687 assert((!VT.isVector() || VT.getVectorElementCount() ==
6689 "Vector element count mismatch!");
6690 assert(N1.getValueType().bitsGT(VT) && "Invalid truncate node, src < dst!");
6691 if (OpOpcode == ISD::TRUNCATE)
6692 return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0));
6693 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
6694 OpOpcode == ISD::ANY_EXTEND) {
6695 // If the source is smaller than the dest, we still need an extend.
6697 VT.getScalarType())) {
6698 SDNodeFlags Flags;
6699 if (OpOpcode == ISD::ZERO_EXTEND)
6700 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6701 return getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6702 }
6703 if (N1.getOperand(0).getValueType().bitsGT(VT))
6704 return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0));
6705 return N1.getOperand(0);
6706 }
6707 if (N1.isUndef())
6708 return getUNDEF(VT);
6709 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
6710 return getVScale(DL, VT,
6712 break;
6716 assert(VT.isVector() && "This DAG node is restricted to vector types.");
6717 assert(N1.getValueType().bitsLE(VT) &&
6718 "The input must be the same size or smaller than the result.");
6721 "The destination vector type must have fewer lanes than the input.");
6722 break;
6723 case ISD::ABS:
6724 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid ABS!");
6725 if (N1.isUndef())
6726 return getConstant(0, DL, VT);
6727 break;
6728 case ISD::BSWAP:
6729 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BSWAP!");
6730 assert((VT.getScalarSizeInBits() % 16 == 0) &&
6731 "BSWAP types must be a multiple of 16 bits!");
6732 if (N1.isUndef())
6733 return getUNDEF(VT);
6734 // bswap(bswap(X)) -> X.
6735 if (OpOpcode == ISD::BSWAP)
6736 return N1.getOperand(0);
6737 break;
6738 case ISD::BITREVERSE:
6739 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BITREVERSE!");
6740 if (N1.isUndef())
6741 return getUNDEF(VT);
6742 break;
6743 case ISD::BITCAST:
6745 "Cannot BITCAST between types of different sizes!");
6746 if (VT == N1.getValueType()) return N1; // noop conversion.
6747 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
6748 return getNode(ISD::BITCAST, DL, VT, N1.getOperand(0));
6749 if (N1.isUndef())
6750 return getUNDEF(VT);
6751 break;
6753 assert(VT.isVector() && !N1.getValueType().isVector() &&
6754 (VT.getVectorElementType() == N1.getValueType() ||
6756 N1.getValueType().isInteger() &&
6758 "Illegal SCALAR_TO_VECTOR node!");
6759 if (N1.isUndef())
6760 return getUNDEF(VT);
6761 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
6762 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
6764 N1.getConstantOperandVal(1) == 0 &&
6765 N1.getOperand(0).getValueType() == VT)
6766 return N1.getOperand(0);
6767 break;
6768 case ISD::FNEG:
6769 // Negation of an unknown bag of bits is still completely undefined.
6770 if (N1.isUndef())
6771 return getUNDEF(VT);
6772
6773 if (OpOpcode == ISD::FNEG) // --X -> X
6774 return N1.getOperand(0);
6775 break;
6776 case ISD::FABS:
6777 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
6778 return getNode(ISD::FABS, DL, VT, N1.getOperand(0));
6779 break;
6780 case ISD::VSCALE:
6781 assert(VT == N1.getValueType() && "Unexpected VT!");
6782 break;
6783 case ISD::CTPOP:
6784 if (N1.getValueType().getScalarType() == MVT::i1)
6785 return N1;
6786 break;
6787 case ISD::CTLZ:
6788 case ISD::CTTZ:
6789 if (N1.getValueType().getScalarType() == MVT::i1)
6790 return getNOT(DL, N1, N1.getValueType());
6791 break;
6792 case ISD::VECREDUCE_ADD:
6793 if (N1.getValueType().getScalarType() == MVT::i1)
6794 return getNode(ISD::VECREDUCE_XOR, DL, VT, N1);
6795 break;
6796 case ISD::VECREDUCE_SMIN:
6797 case ISD::VECREDUCE_UMAX:
6798 if (N1.getValueType().getScalarType() == MVT::i1)
6799 return getNode(ISD::VECREDUCE_OR, DL, VT, N1);
6800 break;
6801 case ISD::VECREDUCE_SMAX:
6802 case ISD::VECREDUCE_UMIN:
6803 if (N1.getValueType().getScalarType() == MVT::i1)
6804 return getNode(ISD::VECREDUCE_AND, DL, VT, N1);
6805 break;
6806 case ISD::SPLAT_VECTOR:
6807 assert(VT.isVector() && "Wrong return type!");
6808 // FIXME: Hexagon uses i32 scalar for a floating point zero vector so allow
6809 // that for now.
6811 (VT.isFloatingPoint() && N1.getValueType() == MVT::i32) ||
6813 N1.getValueType().isInteger() &&
6815 "Wrong operand type!");
6816 break;
6817 }
6818
6819 SDNode *N;
6820 SDVTList VTs = getVTList(VT);
6821 SDValue Ops[] = {N1};
6822 if (VT != MVT::Glue) { // Don't CSE glue producing nodes
6824 AddNodeIDNode(ID, Opcode, VTs, Ops);
6825 void *IP = nullptr;
6826 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6827 E->intersectFlagsWith(Flags);
6828 return SDValue(E, 0);
6829 }
6830
6831 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6832 N->setFlags(Flags);
6833 createOperands(N, Ops);
6834 CSEMap.InsertNode(N, IP);
6835 } else {
6836 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6837 createOperands(N, Ops);
6838 }
6839
6840 InsertNode(N);
6841 SDValue V = SDValue(N, 0);
6842 NewSDValueDbgMsg(V, "Creating new node: ", this);
6843 return V;
6844}
6845
6846static std::optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
6847 const APInt &C2) {
6848 switch (Opcode) {
6849 case ISD::ADD: return C1 + C2;
6850 case ISD::SUB: return C1 - C2;
6851 case ISD::MUL: return C1 * C2;
6852 case ISD::AND: return C1 & C2;
6853 case ISD::OR: return C1 | C2;
6854 case ISD::XOR: return C1 ^ C2;
6855 case ISD::SHL: return C1 << C2;
6856 case ISD::SRL: return C1.lshr(C2);
6857 case ISD::SRA: return C1.ashr(C2);
6858 case ISD::ROTL: return C1.rotl(C2);
6859 case ISD::ROTR: return C1.rotr(C2);
6860 case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
6861 case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
6862 case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
6863 case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
6864 case ISD::SADDSAT: return C1.sadd_sat(C2);
6865 case ISD::UADDSAT: return C1.uadd_sat(C2);
6866 case ISD::SSUBSAT: return C1.ssub_sat(C2);
6867 case ISD::USUBSAT: return C1.usub_sat(C2);
6868 case ISD::SSHLSAT: return C1.sshl_sat(C2);
6869 case ISD::USHLSAT: return C1.ushl_sat(C2);
6870 case ISD::UDIV:
6871 if (!C2.getBoolValue())
6872 break;
6873 return C1.udiv(C2);
6874 case ISD::UREM:
6875 if (!C2.getBoolValue())
6876 break;
6877 return C1.urem(C2);
6878 case ISD::SDIV:
6879 if (!C2.getBoolValue())
6880 break;
6881 return C1.sdiv(C2);
6882 case ISD::SREM:
6883 if (!C2.getBoolValue())
6884 break;
6885 return C1.srem(C2);
6886 case ISD::AVGFLOORS:
6887 return APIntOps::avgFloorS(C1, C2);
6888 case ISD::AVGFLOORU:
6889 return APIntOps::avgFloorU(C1, C2);
6890 case ISD::AVGCEILS:
6891 return APIntOps::avgCeilS(C1, C2);
6892 case ISD::AVGCEILU:
6893 return APIntOps::avgCeilU(C1, C2);
6894 case ISD::ABDS:
6895 return APIntOps::abds(C1, C2);
6896 case ISD::ABDU:
6897 return APIntOps::abdu(C1, C2);
6898 case ISD::MULHS:
6899 return APIntOps::mulhs(C1, C2);
6900 case ISD::MULHU:
6901 return APIntOps::mulhu(C1, C2);
6902 }
6903 return std::nullopt;
6904}
6905// Handle constant folding with UNDEF.
6906// TODO: Handle more cases.
6907static std::optional<APInt> FoldValueWithUndef(unsigned Opcode, const APInt &C1,
6908 bool IsUndef1, const APInt &C2,
6909 bool IsUndef2) {
6910 if (!(IsUndef1 || IsUndef2))
6911 return FoldValue(Opcode, C1, C2);
6912
6913 // Fold and(x, undef) -> 0
6914 // Fold mul(x, undef) -> 0
6915 if (Opcode == ISD::AND || Opcode == ISD::MUL)
6916 return APInt::getZero(C1.getBitWidth());
6917
6918 return std::nullopt;
6919}
6920
6922 const GlobalAddressSDNode *GA,
6923 const SDNode *N2) {
6924 if (GA->getOpcode() != ISD::GlobalAddress)
6925 return SDValue();
6926 if (!TLI->isOffsetFoldingLegal(GA))
6927 return SDValue();
6928 auto *C2 = dyn_cast<ConstantSDNode>(N2);
6929 if (!C2)
6930 return SDValue();
6931 int64_t Offset = C2->getSExtValue();
6932 switch (Opcode) {
6933 case ISD::ADD:
6934 case ISD::PTRADD:
6935 break;
6936 case ISD::SUB: Offset = -uint64_t(Offset); break;
6937 default: return SDValue();
6938 }
6939 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
6940 GA->getOffset() + uint64_t(Offset));
6941}
6942
6944 switch (Opcode) {
6945 case ISD::SDIV:
6946 case ISD::UDIV:
6947 case ISD::SREM:
6948 case ISD::UREM: {
6949 // If a divisor is zero/undef or any element of a divisor vector is
6950 // zero/undef, the whole op is undef.
6951 assert(Ops.size() == 2 && "Div/rem should have 2 operands");
6952 SDValue Divisor = Ops[1];
6953 if (Divisor.isUndef() || isNullConstant(Divisor))
6954 return true;
6955
6956 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
6957 llvm::any_of(Divisor->op_values(),
6958 [](SDValue V) { return V.isUndef() ||
6959 isNullConstant(V); });
6960 // TODO: Handle signed overflow.
6961 }
6962 // TODO: Handle oversized shifts.
6963 default:
6964 return false;
6965 }
6966}
6967
6970 SDNodeFlags Flags) {
6971 // If the opcode is a target-specific ISD node, there's nothing we can
6972 // do here and the operand rules may not line up with the below, so
6973 // bail early.
6974 // We can't create a scalar CONCAT_VECTORS so skip it. It will break
6975 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
6976 // foldCONCAT_VECTORS in getNode before this is called.
6977 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
6978 return SDValue();
6979
6980 unsigned NumOps = Ops.size();
6981 if (NumOps == 0)
6982 return SDValue();
6983
6984 if (isUndef(Opcode, Ops))
6985 return getUNDEF(VT);
6986
6987 // Handle unary special cases.
6988 if (NumOps == 1) {
6989 SDValue N1 = Ops[0];
6990
6991 // Constant fold unary operations with an integer constant operand. Even
6992 // opaque constant will be folded, because the folding of unary operations
6993 // doesn't create new constants with different values. Nevertheless, the
6994 // opaque flag is preserved during folding to prevent future folding with
6995 // other constants.
6996 if (auto *C = dyn_cast<ConstantSDNode>(N1)) {
6997 const APInt &Val = C->getAPIntValue();
6998 switch (Opcode) {
6999 case ISD::SIGN_EXTEND:
7000 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
7001 C->isTargetOpcode(), C->isOpaque());
7002 case ISD::TRUNCATE:
7003 if (C->isOpaque())
7004 break;
7005 [[fallthrough]];
7006 case ISD::ZERO_EXTEND:
7007 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
7008 C->isTargetOpcode(), C->isOpaque());
7009 case ISD::ANY_EXTEND:
7010 // Some targets like RISCV prefer to sign extend some types.
7011 if (TLI->isSExtCheaperThanZExt(N1.getValueType(), VT))
7012 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
7013 C->isTargetOpcode(), C->isOpaque());
7014 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
7015 C->isTargetOpcode(), C->isOpaque());
7016 case ISD::ABS:
7017 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
7018 C->isOpaque());
7019 case ISD::BITREVERSE:
7020 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
7021 C->isOpaque());
7022 case ISD::BSWAP:
7023 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
7024 C->isOpaque());
7025 case ISD::CTPOP:
7026 return getConstant(Val.popcount(), DL, VT, C->isTargetOpcode(),
7027 C->isOpaque());
7028 case ISD::CTLZ:
7030 return getConstant(Val.countl_zero(), DL, VT, C->isTargetOpcode(),
7031 C->isOpaque());
7032 case ISD::CTTZ:
7034 return getConstant(Val.countr_zero(), DL, VT, C->isTargetOpcode(),
7035 C->isOpaque());
7036 case ISD::UINT_TO_FP:
7037 case ISD::SINT_TO_FP: {
7039 (void)FPV.convertFromAPInt(Val, Opcode == ISD::SINT_TO_FP,
7041 return getConstantFP(FPV, DL, VT);
7042 }
7043 case ISD::FP16_TO_FP:
7044 case ISD::BF16_TO_FP: {
7045 bool Ignored;
7046 APFloat FPV(Opcode == ISD::FP16_TO_FP ? APFloat::IEEEhalf()
7047 : APFloat::BFloat(),
7048 (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
7049
7050 // This can return overflow, underflow, or inexact; we don't care.
7051 // FIXME need to be more flexible about rounding mode.
7053 &Ignored);
7054 return getConstantFP(FPV, DL, VT);
7055 }
7056 case ISD::STEP_VECTOR:
7057 if (SDValue V = FoldSTEP_VECTOR(DL, VT, N1, *this))
7058 return V;
7059 break;
7060 case ISD::BITCAST:
7061 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
7062 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
7063 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
7064 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
7065 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
7066 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
7067 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
7068 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
7069 break;
7070 }
7071 }
7072
7073 // Constant fold unary operations with a floating point constant operand.
7074 if (auto *C = dyn_cast<ConstantFPSDNode>(N1)) {
7075 APFloat V = C->getValueAPF(); // make copy
7076 switch (Opcode) {
7077 case ISD::FNEG:
7078 V.changeSign();
7079 return getConstantFP(V, DL, VT);
7080 case ISD::FABS:
7081 V.clearSign();
7082 return getConstantFP(V, DL, VT);
7083 case ISD::FCEIL: {
7084 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
7086 return getConstantFP(V, DL, VT);
7087 return SDValue();
7088 }
7089 case ISD::FTRUNC: {
7090 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
7092 return getConstantFP(V, DL, VT);
7093 return SDValue();
7094 }
7095 case ISD::FFLOOR: {
7096 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
7098 return getConstantFP(V, DL, VT);
7099 return SDValue();
7100 }
7101 case ISD::FP_EXTEND: {
7102 bool ignored;
7103 // This can return overflow, underflow, or inexact; we don't care.
7104 // FIXME need to be more flexible about rounding mode.
7105 (void)V.convert(VT.getFltSemantics(), APFloat::rmNearestTiesToEven,
7106 &ignored);
7107 return getConstantFP(V, DL, VT);
7108 }
7109 case ISD::FP_TO_SINT:
7110 case ISD::FP_TO_UINT: {
7111 bool ignored;
7112 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
7113 // FIXME need to be more flexible about rounding mode.
7115 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
7116 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
7117 break;
7118 return getConstant(IntVal, DL, VT);
7119 }
7120 case ISD::FP_TO_FP16:
7121 case ISD::FP_TO_BF16: {
7122 bool Ignored;
7123 // This can return overflow, underflow, or inexact; we don't care.
7124 // FIXME need to be more flexible about rounding mode.
7125 (void)V.convert(Opcode == ISD::FP_TO_FP16 ? APFloat::IEEEhalf()
7126 : APFloat::BFloat(),
7128 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
7129 }
7130 case ISD::BITCAST:
7131 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
7132 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL,
7133 VT);
7134 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
7135 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL,
7136 VT);
7137 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
7138 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL,
7139 VT);
7140 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
7141 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
7142 break;
7143 }
7144 }
7145
7146 // Early-out if we failed to constant fold a bitcast.
7147 if (Opcode == ISD::BITCAST)
7148 return SDValue();
7149 }
7150
7151 // Handle binops special cases.
7152 if (NumOps == 2) {
7153 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops))
7154 return CFP;
7155
7156 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
7157 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
7158 if (C1->isOpaque() || C2->isOpaque())
7159 return SDValue();
7160
7161 std::optional<APInt> FoldAttempt =
7162 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
7163 if (!FoldAttempt)
7164 return SDValue();
7165
7166 SDValue Folded = getConstant(*FoldAttempt, DL, VT);
7167 assert((!Folded || !VT.isVector()) &&
7168 "Can't fold vectors ops with scalar operands");
7169 return Folded;
7170 }
7171 }
7172
7173 // fold (add Sym, c) -> Sym+c
7175 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
7176 if (TLI->isCommutativeBinOp(Opcode))
7178 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
7179
7180 // fold (sext_in_reg c1) -> c2
7181 if (Opcode == ISD::SIGN_EXTEND_INREG) {
7182 EVT EVT = cast<VTSDNode>(Ops[1])->getVT();
7183
7184 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
7185 unsigned FromBits = EVT.getScalarSizeInBits();
7186 Val <<= Val.getBitWidth() - FromBits;
7187 Val.ashrInPlace(Val.getBitWidth() - FromBits);
7188 return getConstant(Val, DL, ConstantVT);
7189 };
7190
7191 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
7192 const APInt &Val = C1->getAPIntValue();
7193 return SignExtendInReg(Val, VT);
7194 }
7195
7197 SmallVector<SDValue, 8> ScalarOps;
7198 llvm::EVT OpVT = Ops[0].getOperand(0).getValueType();
7199 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) {
7200 SDValue Op = Ops[0].getOperand(I);
7201 if (Op.isUndef()) {
7202 ScalarOps.push_back(getUNDEF(OpVT));
7203 continue;
7204 }
7205 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
7206 ScalarOps.push_back(SignExtendInReg(Val, OpVT));
7207 }
7208 return getBuildVector(VT, DL, ScalarOps);
7209 }
7210
7211 if (Ops[0].getOpcode() == ISD::SPLAT_VECTOR &&
7212 isa<ConstantSDNode>(Ops[0].getOperand(0)))
7213 return getNode(ISD::SPLAT_VECTOR, DL, VT,
7214 SignExtendInReg(Ops[0].getConstantOperandAPInt(0),
7215 Ops[0].getOperand(0).getValueType()));
7216 }
7217 }
7218
7219 // Handle fshl/fshr special cases.
7220 if (Opcode == ISD::FSHL || Opcode == ISD::FSHR) {
7221 auto *C1 = dyn_cast<ConstantSDNode>(Ops[0]);
7222 auto *C2 = dyn_cast<ConstantSDNode>(Ops[1]);
7223 auto *C3 = dyn_cast<ConstantSDNode>(Ops[2]);
7224
7225 if (C1 && C2 && C3) {
7226 if (C1->isOpaque() || C2->isOpaque() || C3->isOpaque())
7227 return SDValue();
7228 const APInt &V1 = C1->getAPIntValue(), &V2 = C2->getAPIntValue(),
7229 &V3 = C3->getAPIntValue();
7230
7231 APInt FoldedVal = Opcode == ISD::FSHL ? APIntOps::fshl(V1, V2, V3)
7232 : APIntOps::fshr(V1, V2, V3);
7233 return getConstant(FoldedVal, DL, VT);
7234 }
7235 }
7236
7237 // Handle fma/fmad special cases.
7238 if (Opcode == ISD::FMA || Opcode == ISD::FMAD) {
7239 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
7240 assert(Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
7241 Ops[2].getValueType() == VT && "FMA types must match!");
7245 if (C1 && C2 && C3) {
7246 APFloat V1 = C1->getValueAPF();
7247 const APFloat &V2 = C2->getValueAPF();
7248 const APFloat &V3 = C3->getValueAPF();
7249 if (Opcode == ISD::FMAD) {
7252 } else
7254 return getConstantFP(V1, DL, VT);
7255 }
7256 }
7257
7258 // This is for vector folding only from here on.
7259 if (!VT.isVector())
7260 return SDValue();
7261
7262 ElementCount NumElts = VT.getVectorElementCount();
7263
7264 // See if we can fold through any bitcasted integer ops.
7265 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
7266 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
7267 (Ops[0].getOpcode() == ISD::BITCAST ||
7268 Ops[1].getOpcode() == ISD::BITCAST)) {
7271 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
7272 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
7273 if (BV1 && BV2 && N1.getValueType().isInteger() &&
7274 N2.getValueType().isInteger()) {
7275 bool IsLE = getDataLayout().isLittleEndian();
7276 unsigned EltBits = VT.getScalarSizeInBits();
7277 SmallVector<APInt> RawBits1, RawBits2;
7278 BitVector UndefElts1, UndefElts2;
7279 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
7280 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2)) {
7281 SmallVector<APInt> RawBits;
7282 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
7283 std::optional<APInt> Fold = FoldValueWithUndef(
7284 Opcode, RawBits1[I], UndefElts1[I], RawBits2[I], UndefElts2[I]);
7285 if (!Fold)
7286 break;
7287 RawBits.push_back(*Fold);
7288 }
7289 if (RawBits.size() == NumElts.getFixedValue()) {
7290 // We have constant folded, but we might need to cast this again back
7291 // to the original (possibly legalized) type.
7292 EVT BVVT, BVEltVT;
7293 if (N1.getValueType() == VT) {
7294 BVVT = N1.getValueType();
7295 BVEltVT = BV1->getOperand(0).getValueType();
7296 } else {
7297 BVVT = N2.getValueType();
7298 BVEltVT = BV2->getOperand(0).getValueType();
7299 }
7300 unsigned BVEltBits = BVEltVT.getSizeInBits();
7301 SmallVector<APInt> DstBits;
7302 BitVector DstUndefs;
7304 DstBits, RawBits, DstUndefs,
7305 BitVector(RawBits.size(), false));
7306 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
7307 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
7308 if (DstUndefs[I])
7309 continue;
7310 Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT);
7311 }
7312 return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
7313 }
7314 }
7315 }
7316 }
7317
7318 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
7319 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
7320 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
7321 Ops[0].getOpcode() == ISD::STEP_VECTOR) {
7322 APInt RHSVal;
7323 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
7324 APInt NewStep = Opcode == ISD::MUL
7325 ? Ops[0].getConstantOperandAPInt(0) * RHSVal
7326 : Ops[0].getConstantOperandAPInt(0) << RHSVal;
7327 return getStepVector(DL, VT, NewStep);
7328 }
7329 }
7330
7331 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
7332 return !Op.getValueType().isVector() ||
7333 Op.getValueType().getVectorElementCount() == NumElts;
7334 };
7335
7336 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
7337 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
7338 Op.getOpcode() == ISD::BUILD_VECTOR ||
7339 Op.getOpcode() == ISD::SPLAT_VECTOR;
7340 };
7341
7342 // All operands must be vector types with the same number of elements as
7343 // the result type and must be either UNDEF or a build/splat vector
7344 // or UNDEF scalars.
7345 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
7346 !llvm::all_of(Ops, IsScalarOrSameVectorSize))
7347 return SDValue();
7348
7349 // If we are comparing vectors, then the result needs to be a i1 boolean that
7350 // is then extended back to the legal result type depending on how booleans
7351 // are represented.
7352 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
7353 ISD::NodeType ExtendCode =
7354 (Opcode == ISD::SETCC && SVT != VT.getScalarType())
7355 ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT))
7357
7358 // Find legal integer scalar type for constant promotion and
7359 // ensure that its scalar size is at least as large as source.
7360 EVT LegalSVT = VT.getScalarType();
7361 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
7362 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
7363 if (LegalSVT.bitsLT(VT.getScalarType()))
7364 return SDValue();
7365 }
7366
7367 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
7368 // only have one operand to check. For fixed-length vector types we may have
7369 // a combination of BUILD_VECTOR and SPLAT_VECTOR.
7370 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
7371
7372 // Constant fold each scalar lane separately.
7373 SmallVector<SDValue, 4> ScalarResults;
7374 for (unsigned I = 0; I != NumVectorElts; I++) {
7375 SmallVector<SDValue, 4> ScalarOps;
7376 for (SDValue Op : Ops) {
7377 EVT InSVT = Op.getValueType().getScalarType();
7378 if (Op.getOpcode() != ISD::BUILD_VECTOR &&
7379 Op.getOpcode() != ISD::SPLAT_VECTOR) {
7380 if (Op.isUndef())
7381 ScalarOps.push_back(getUNDEF(InSVT));
7382 else
7383 ScalarOps.push_back(Op);
7384 continue;
7385 }
7386
7387 SDValue ScalarOp =
7388 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
7389 EVT ScalarVT = ScalarOp.getValueType();
7390
7391 // Build vector (integer) scalar operands may need implicit
7392 // truncation - do this before constant folding.
7393 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) {
7394 // Don't create illegally-typed nodes unless they're constants or undef
7395 // - if we fail to constant fold we can't guarantee the (dead) nodes
7396 // we're creating will be cleaned up before being visited for
7397 // legalization.
7398 if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() &&
7399 !isa<ConstantSDNode>(ScalarOp) &&
7400 TLI->getTypeAction(*getContext(), InSVT) !=
7402 return SDValue();
7403 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
7404 }
7405
7406 ScalarOps.push_back(ScalarOp);
7407 }
7408
7409 // Constant fold the scalar operands.
7410 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
7411
7412 // Scalar folding only succeeded if the result is a constant or UNDEF.
7413 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
7414 ScalarResult.getOpcode() != ISD::ConstantFP)
7415 return SDValue();
7416
7417 // Legalize the (integer) scalar constant if necessary. We only do
7418 // this once we know the folding succeeded, since otherwise we would
7419 // get a node with illegal type which has a user.
7420 if (LegalSVT != SVT)
7421 ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult);
7422
7423 ScalarResults.push_back(ScalarResult);
7424 }
7425
7426 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
7427 : getBuildVector(VT, DL, ScalarResults);
7428 NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
7429 return V;
7430}
7431
7434 // TODO: Add support for unary/ternary fp opcodes.
7435 if (Ops.size() != 2)
7436 return SDValue();
7437
7438 // TODO: We don't do any constant folding for strict FP opcodes here, but we
7439 // should. That will require dealing with a potentially non-default
7440 // rounding mode, checking the "opStatus" return value from the APFloat
7441 // math calculations, and possibly other variations.
7442 SDValue N1 = Ops[0];
7443 SDValue N2 = Ops[1];
7444 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
7445 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
7446 if (N1CFP && N2CFP) {
7447 APFloat C1 = N1CFP->getValueAPF(); // make copy
7448 const APFloat &C2 = N2CFP->getValueAPF();
7449 switch (Opcode) {
7450 case ISD::FADD:
7452 return getConstantFP(C1, DL, VT);
7453 case ISD::FSUB:
7455 return getConstantFP(C1, DL, VT);
7456 case ISD::FMUL:
7458 return getConstantFP(C1, DL, VT);
7459 case ISD::FDIV:
7461 return getConstantFP(C1, DL, VT);
7462 case ISD::FREM:
7463 C1.mod(C2);
7464 return getConstantFP(C1, DL, VT);
7465 case ISD::FCOPYSIGN:
7466 C1.copySign(C2);
7467 return getConstantFP(C1, DL, VT);
7468 case ISD::FMINNUM:
7469 return getConstantFP(minnum(C1, C2), DL, VT);
7470 case ISD::FMAXNUM:
7471 return getConstantFP(maxnum(C1, C2), DL, VT);
7472 case ISD::FMINIMUM:
7473 return getConstantFP(minimum(C1, C2), DL, VT);
7474 case ISD::FMAXIMUM:
7475 return getConstantFP(maximum(C1, C2), DL, VT);
7476 case ISD::FMINIMUMNUM:
7477 return getConstantFP(minimumnum(C1, C2), DL, VT);
7478 case ISD::FMAXIMUMNUM:
7479 return getConstantFP(maximumnum(C1, C2), DL, VT);
7480 default: break;
7481 }
7482 }
7483 if (N1CFP && Opcode == ISD::FP_ROUND) {
7484 APFloat C1 = N1CFP->getValueAPF(); // make copy
7485 bool Unused;
7486 // This can return overflow, underflow, or inexact; we don't care.
7487 // FIXME need to be more flexible about rounding mode.
7489 &Unused);
7490 return getConstantFP(C1, DL, VT);
7491 }
7492
7493 switch (Opcode) {
7494 case ISD::FSUB:
7495 // -0.0 - undef --> undef (consistent with "fneg undef")
7496 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
7497 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
7498 return getUNDEF(VT);
7499 [[fallthrough]];
7500
7501 case ISD::FADD:
7502 case ISD::FMUL:
7503 case ISD::FDIV:
7504 case ISD::FREM:
7505 // If both operands are undef, the result is undef. If 1 operand is undef,
7506 // the result is NaN. This should match the behavior of the IR optimizer.
7507 if (N1.isUndef() && N2.isUndef())
7508 return getUNDEF(VT);
7509 if (N1.isUndef() || N2.isUndef())
7511 }
7512 return SDValue();
7513}
7514
7516 const SDLoc &DL, EVT DstEltVT) {
7517 EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
7518
7519 // If this is already the right type, we're done.
7520 if (SrcEltVT == DstEltVT)
7521 return SDValue(BV, 0);
7522
7523 unsigned SrcBitSize = SrcEltVT.getSizeInBits();
7524 unsigned DstBitSize = DstEltVT.getSizeInBits();
7525
7526 // If this is a conversion of N elements of one type to N elements of another
7527 // type, convert each element. This handles FP<->INT cases.
7528 if (SrcBitSize == DstBitSize) {
7530 for (SDValue Op : BV->op_values()) {
7531 // If the vector element type is not legal, the BUILD_VECTOR operands
7532 // are promoted and implicitly truncated. Make that explicit here.
7533 if (Op.getValueType() != SrcEltVT)
7534 Op = getNode(ISD::TRUNCATE, DL, SrcEltVT, Op);
7535 Ops.push_back(getBitcast(DstEltVT, Op));
7536 }
7537 EVT VT = EVT::getVectorVT(*getContext(), DstEltVT,
7539 return getBuildVector(VT, DL, Ops);
7540 }
7541
7542 // Otherwise, we're growing or shrinking the elements. To avoid having to
7543 // handle annoying details of growing/shrinking FP values, we convert them to
7544 // int first.
7545 if (SrcEltVT.isFloatingPoint()) {
7546 // Convert the input float vector to a int vector where the elements are the
7547 // same sizes.
7548 EVT IntEltVT = EVT::getIntegerVT(*getContext(), SrcEltVT.getSizeInBits());
7549 if (SDValue Tmp = FoldConstantBuildVector(BV, DL, IntEltVT))
7551 DstEltVT);
7552 return SDValue();
7553 }
7554
7555 // Now we know the input is an integer vector. If the output is a FP type,
7556 // convert to integer first, then to FP of the right size.
7557 if (DstEltVT.isFloatingPoint()) {
7558 EVT IntEltVT = EVT::getIntegerVT(*getContext(), DstEltVT.getSizeInBits());
7559 if (SDValue Tmp = FoldConstantBuildVector(BV, DL, IntEltVT))
7561 DstEltVT);
7562 return SDValue();
7563 }
7564
7565 // Okay, we know the src/dst types are both integers of differing types.
7566 assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
7567
7568 // Extract the constant raw bit data.
7569 BitVector UndefElements;
7570 SmallVector<APInt> RawBits;
7571 bool IsLE = getDataLayout().isLittleEndian();
7572 if (!BV->getConstantRawBits(IsLE, DstBitSize, RawBits, UndefElements))
7573 return SDValue();
7574
7576 for (unsigned I = 0, E = RawBits.size(); I != E; ++I) {
7577 if (UndefElements[I])
7578 Ops.push_back(getUNDEF(DstEltVT));
7579 else
7580 Ops.push_back(getConstant(RawBits[I], DL, DstEltVT));
7581 }
7582
7583 EVT VT = EVT::getVectorVT(*getContext(), DstEltVT, Ops.size());
7584 return getBuildVector(VT, DL, Ops);
7585}
7586
7588 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
7589
7590 // There's no need to assert on a byte-aligned pointer. All pointers are at
7591 // least byte aligned.
7592 if (A == Align(1))
7593 return Val;
7594
7595 SDVTList VTs = getVTList(Val.getValueType());
7597 AddNodeIDNode(ID, ISD::AssertAlign, VTs, {Val});
7598 ID.AddInteger(A.value());
7599
7600 void *IP = nullptr;
7601 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7602 return SDValue(E, 0);
7603
7604 auto *N =
7605 newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, A);
7606 createOperands(N, {Val});
7607
7608 CSEMap.InsertNode(N, IP);
7609 InsertNode(N);
7610
7611 SDValue V(N, 0);
7612 NewSDValueDbgMsg(V, "Creating new node: ", this);
7613 return V;
7614}
7615
7616SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7617 SDValue N1, SDValue N2) {
7618 SDNodeFlags Flags;
7619 if (Inserter)
7620 Flags = Inserter->getFlags();
7621 return getNode(Opcode, DL, VT, N1, N2, Flags);
7622}
7623
7625 SDValue &N2) const {
7626 if (!TLI->isCommutativeBinOp(Opcode))
7627 return;
7628
7629 // Canonicalize:
7630 // binop(const, nonconst) -> binop(nonconst, const)
7633 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
7634 bool N2CFP = isConstantFPBuildVectorOrConstantFP(N2);
7635 if ((N1C && !N2C) || (N1CFP && !N2CFP))
7636 std::swap(N1, N2);
7637
7638 // Canonicalize:
7639 // binop(splat(x), step_vector) -> binop(step_vector, splat(x))
7640 else if (N1.getOpcode() == ISD::SPLAT_VECTOR &&
7642 std::swap(N1, N2);
7643}
7644
7645SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7646 SDValue N1, SDValue N2, const SDNodeFlags Flags) {
7648 N2.getOpcode() != ISD::DELETED_NODE &&
7649 "Operand is DELETED_NODE!");
7650
7651 canonicalizeCommutativeBinop(Opcode, N1, N2);
7652
7653 auto *N1C = dyn_cast<ConstantSDNode>(N1);
7654 auto *N2C = dyn_cast<ConstantSDNode>(N2);
7655
7656 // Don't allow undefs in vector splats - we might be returning N2 when folding
7657 // to zero etc.
7658 ConstantSDNode *N2CV =
7659 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true);
7660
7661 switch (Opcode) {
7662 default: break;
7663 case ISD::TokenFactor:
7664 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
7665 N2.getValueType() == MVT::Other && "Invalid token factor!");
7666 // Fold trivial token factors.
7667 if (N1.getOpcode() == ISD::EntryToken) return N2;
7668 if (N2.getOpcode() == ISD::EntryToken) return N1;
7669 if (N1 == N2) return N1;
7670 break;
7671 case ISD::BUILD_VECTOR: {
7672 // Attempt to simplify BUILD_VECTOR.
7673 SDValue Ops[] = {N1, N2};
7674 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7675 return V;
7676 break;
7677 }
7678 case ISD::CONCAT_VECTORS: {
7679 SDValue Ops[] = {N1, N2};
7680 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7681 return V;
7682 break;
7683 }
7684 case ISD::AND:
7685 assert(VT.isInteger() && "This operator does not apply to FP types!");
7686 assert(N1.getValueType() == N2.getValueType() &&
7687 N1.getValueType() == VT && "Binary operator types must match!");
7688 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
7689 // worth handling here.
7690 if (N2CV && N2CV->isZero())
7691 return N2;
7692 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X
7693 return N1;
7694 break;
7695 case ISD::OR:
7696 case ISD::XOR:
7697 case ISD::ADD:
7698 case ISD::PTRADD:
7699 case ISD::SUB:
7700 assert(VT.isInteger() && "This operator does not apply to FP types!");
7701 assert(N1.getValueType() == N2.getValueType() &&
7702 N1.getValueType() == VT && "Binary operator types must match!");
7703 // The equal operand types requirement is unnecessarily strong for PTRADD.
7704 // However, the SelectionDAGBuilder does not generate PTRADDs with different
7705 // operand types, and we'd need to re-implement GEP's non-standard wrapping
7706 // logic everywhere where PTRADDs may be folded or combined to properly
7707 // support them. If/when we introduce pointer types to the SDAG, we will
7708 // need to relax this constraint.
7709
7710 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
7711 // it's worth handling here.
7712 if (N2CV && N2CV->isZero())
7713 return N1;
7714 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) &&
7715 VT.getScalarType() == MVT::i1)
7716 return getNode(ISD::XOR, DL, VT, N1, N2);
7717 // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)).
7718 if (Opcode == ISD::ADD && N1.getOpcode() == ISD::VSCALE &&
7719 N2.getOpcode() == ISD::VSCALE) {
7720 const APInt &C1 = N1->getConstantOperandAPInt(0);
7721 const APInt &C2 = N2->getConstantOperandAPInt(0);
7722 return getVScale(DL, VT, C1 + C2);
7723 }
7724 break;
7725 case ISD::MUL:
7726 assert(VT.isInteger() && "This operator does not apply to FP types!");
7727 assert(N1.getValueType() == N2.getValueType() &&
7728 N1.getValueType() == VT && "Binary operator types must match!");
7729 if (VT.getScalarType() == MVT::i1)
7730 return getNode(ISD::AND, DL, VT, N1, N2);
7731 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7732 const APInt &MulImm = N1->getConstantOperandAPInt(0);
7733 const APInt &N2CImm = N2C->getAPIntValue();
7734 return getVScale(DL, VT, MulImm * N2CImm);
7735 }
7736 break;
7737 case ISD::UDIV:
7738 case ISD::UREM:
7739 case ISD::MULHU:
7740 case ISD::MULHS:
7741 case ISD::SDIV:
7742 case ISD::SREM:
7743 case ISD::SADDSAT:
7744 case ISD::SSUBSAT:
7745 case ISD::UADDSAT:
7746 case ISD::USUBSAT:
7747 assert(VT.isInteger() && "This operator does not apply to FP types!");
7748 assert(N1.getValueType() == N2.getValueType() &&
7749 N1.getValueType() == VT && "Binary operator types must match!");
7750 if (VT.getScalarType() == MVT::i1) {
7751 // fold (add_sat x, y) -> (or x, y) for bool types.
7752 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
7753 return getNode(ISD::OR, DL, VT, N1, N2);
7754 // fold (sub_sat x, y) -> (and x, ~y) for bool types.
7755 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
7756 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
7757 }
7758 break;
7759 case ISD::SCMP:
7760 case ISD::UCMP:
7761 assert(N1.getValueType() == N2.getValueType() &&
7762 "Types of operands of UCMP/SCMP must match");
7763 assert(N1.getValueType().isVector() == VT.isVector() &&
7764 "Operands and return type of must both be scalars or vectors");
7765 if (VT.isVector())
7768 "Result and operands must have the same number of elements");
7769 break;
7770 case ISD::AVGFLOORS:
7771 case ISD::AVGFLOORU:
7772 case ISD::AVGCEILS:
7773 case ISD::AVGCEILU:
7774 assert(VT.isInteger() && "This operator does not apply to FP types!");
7775 assert(N1.getValueType() == N2.getValueType() &&
7776 N1.getValueType() == VT && "Binary operator types must match!");
7777 break;
7778 case ISD::ABDS:
7779 case ISD::ABDU:
7780 assert(VT.isInteger() && "This operator does not apply to FP types!");
7781 assert(N1.getValueType() == N2.getValueType() &&
7782 N1.getValueType() == VT && "Binary operator types must match!");
7783 if (VT.getScalarType() == MVT::i1)
7784 return getNode(ISD::XOR, DL, VT, N1, N2);
7785 break;
7786 case ISD::SMIN:
7787 case ISD::UMAX:
7788 assert(VT.isInteger() && "This operator does not apply to FP types!");
7789 assert(N1.getValueType() == N2.getValueType() &&
7790 N1.getValueType() == VT && "Binary operator types must match!");
7791 if (VT.getScalarType() == MVT::i1)
7792 return getNode(ISD::OR, DL, VT, N1, N2);
7793 break;
7794 case ISD::SMAX:
7795 case ISD::UMIN:
7796 assert(VT.isInteger() && "This operator does not apply to FP types!");
7797 assert(N1.getValueType() == N2.getValueType() &&
7798 N1.getValueType() == VT && "Binary operator types must match!");
7799 if (VT.getScalarType() == MVT::i1)
7800 return getNode(ISD::AND, DL, VT, N1, N2);
7801 break;
7802 case ISD::FADD:
7803 case ISD::FSUB:
7804 case ISD::FMUL:
7805 case ISD::FDIV:
7806 case ISD::FREM:
7807 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
7808 assert(N1.getValueType() == N2.getValueType() &&
7809 N1.getValueType() == VT && "Binary operator types must match!");
7810 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
7811 return V;
7812 break;
7813 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
7814 assert(N1.getValueType() == VT &&
7817 "Invalid FCOPYSIGN!");
7818 break;
7819 case ISD::SHL:
7820 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7821 const APInt &MulImm = N1->getConstantOperandAPInt(0);
7822 const APInt &ShiftImm = N2C->getAPIntValue();
7823 return getVScale(DL, VT, MulImm << ShiftImm);
7824 }
7825 [[fallthrough]];
7826 case ISD::SRA:
7827 case ISD::SRL:
7828 if (SDValue V = simplifyShift(N1, N2))
7829 return V;
7830 [[fallthrough]];
7831 case ISD::ROTL:
7832 case ISD::ROTR:
7833 assert(VT == N1.getValueType() &&
7834 "Shift operators return type must be the same as their first arg");
7835 assert(VT.isInteger() && N2.getValueType().isInteger() &&
7836 "Shifts only work on integers");
7837 assert((!VT.isVector() || VT == N2.getValueType()) &&
7838 "Vector shift amounts must be in the same as their first arg");
7839 // Verify that the shift amount VT is big enough to hold valid shift
7840 // amounts. This catches things like trying to shift an i1024 value by an
7841 // i8, which is easy to fall into in generic code that uses
7842 // TLI.getShiftAmount().
7845 "Invalid use of small shift amount with oversized value!");
7846
7847 // Always fold shifts of i1 values so the code generator doesn't need to
7848 // handle them. Since we know the size of the shift has to be less than the
7849 // size of the value, the shift/rotate count is guaranteed to be zero.
7850 if (VT == MVT::i1)
7851 return N1;
7852 if (N2CV && N2CV->isZero())
7853 return N1;
7854 break;
7855 case ISD::FP_ROUND:
7857 VT.bitsLE(N1.getValueType()) && N2C &&
7858 (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
7859 N2.getOpcode() == ISD::TargetConstant && "Invalid FP_ROUND!");
7860 if (N1.getValueType() == VT) return N1; // noop conversion.
7861 break;
7862 case ISD::AssertNoFPClass: {
7864 "AssertNoFPClass is used for a non-floating type");
7865 assert(isa<ConstantSDNode>(N2) && "NoFPClass is not Constant");
7866 FPClassTest NoFPClass = static_cast<FPClassTest>(N2->getAsZExtVal());
7867 assert(llvm::to_underlying(NoFPClass) <=
7869 "FPClassTest value too large");
7870 (void)NoFPClass;
7871 break;
7872 }
7873 case ISD::AssertSext:
7874 case ISD::AssertZext: {
7875 EVT EVT = cast<VTSDNode>(N2)->getVT();
7876 assert(VT == N1.getValueType() && "Not an inreg extend!");
7877 assert(VT.isInteger() && EVT.isInteger() &&
7878 "Cannot *_EXTEND_INREG FP types");
7879 assert(!EVT.isVector() &&
7880 "AssertSExt/AssertZExt type should be the vector element type "
7881 "rather than the vector type!");
7882 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
7883 if (VT.getScalarType() == EVT) return N1; // noop assertion.
7884 break;
7885 }
7887 EVT EVT = cast<VTSDNode>(N2)->getVT();
7888 assert(VT == N1.getValueType() && "Not an inreg extend!");
7889 assert(VT.isInteger() && EVT.isInteger() &&
7890 "Cannot *_EXTEND_INREG FP types");
7891 assert(EVT.isVector() == VT.isVector() &&
7892 "SIGN_EXTEND_INREG type should be vector iff the operand "
7893 "type is vector!");
7894 assert((!EVT.isVector() ||
7896 "Vector element counts must match in SIGN_EXTEND_INREG");
7897 assert(EVT.bitsLE(VT) && "Not extending!");
7898 if (EVT == VT) return N1; // Not actually extending
7899 break;
7900 }
7902 case ISD::FP_TO_UINT_SAT: {
7903 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
7904 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
7905 assert(N1.getValueType().isVector() == VT.isVector() &&
7906 "FP_TO_*INT_SAT type should be vector iff the operand type is "
7907 "vector!");
7908 assert((!VT.isVector() || VT.getVectorElementCount() ==
7910 "Vector element counts must match in FP_TO_*INT_SAT");
7911 assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
7912 "Type to saturate to must be a scalar.");
7913 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
7914 "Not extending!");
7915 break;
7916 }
7919 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
7920 element type of the vector.");
7921
7922 // Extract from an undefined value or using an undefined index is undefined.
7923 if (N1.isUndef() || N2.isUndef())
7924 return getUNDEF(VT);
7925
7926 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
7927 // vectors. For scalable vectors we will provide appropriate support for
7928 // dealing with arbitrary indices.
7929 if (N2C && N1.getValueType().isFixedLengthVector() &&
7930 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
7931 return getUNDEF(VT);
7932
7933 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
7934 // expanding copies of large vectors from registers. This only works for
7935 // fixed length vectors, since we need to know the exact number of
7936 // elements.
7937 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
7939 unsigned Factor = N1.getOperand(0).getValueType().getVectorNumElements();
7940 return getExtractVectorElt(DL, VT,
7941 N1.getOperand(N2C->getZExtValue() / Factor),
7942 N2C->getZExtValue() % Factor);
7943 }
7944
7945 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
7946 // lowering is expanding large vector constants.
7947 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
7948 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
7951 "BUILD_VECTOR used for scalable vectors");
7952 unsigned Index =
7953 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
7954 SDValue Elt = N1.getOperand(Index);
7955
7956 if (VT != Elt.getValueType())
7957 // If the vector element type is not legal, the BUILD_VECTOR operands
7958 // are promoted and implicitly truncated, and the result implicitly
7959 // extended. Make that explicit here.
7960 Elt = getAnyExtOrTrunc(Elt, DL, VT);
7961
7962 return Elt;
7963 }
7964
7965 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
7966 // operations are lowered to scalars.
7967 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
7968 // If the indices are the same, return the inserted element else
7969 // if the indices are known different, extract the element from
7970 // the original vector.
7971 SDValue N1Op2 = N1.getOperand(2);
7973
7974 if (N1Op2C && N2C) {
7975 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
7976 if (VT == N1.getOperand(1).getValueType())
7977 return N1.getOperand(1);
7978 if (VT.isFloatingPoint()) {
7980 return getFPExtendOrRound(N1.getOperand(1), DL, VT);
7981 }
7982 return getSExtOrTrunc(N1.getOperand(1), DL, VT);
7983 }
7984 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
7985 }
7986 }
7987
7988 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
7989 // when vector types are scalarized and v1iX is legal.
7990 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
7991 // Here we are completely ignoring the extract element index (N2),
7992 // which is fine for fixed width vectors, since any index other than 0
7993 // is undefined anyway. However, this cannot be ignored for scalable
7994 // vectors - in theory we could support this, but we don't want to do this
7995 // without a profitability check.
7996 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
7998 N1.getValueType().getVectorNumElements() == 1) {
7999 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
8000 N1.getOperand(1));
8001 }
8002 break;
8004 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
8005 assert(!N1.getValueType().isVector() && !VT.isVector() &&
8006 (N1.getValueType().isInteger() == VT.isInteger()) &&
8007 N1.getValueType() != VT &&
8008 "Wrong types for EXTRACT_ELEMENT!");
8009
8010 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
8011 // 64-bit integers into 32-bit parts. Instead of building the extract of
8012 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
8013 if (N1.getOpcode() == ISD::BUILD_PAIR)
8014 return N1.getOperand(N2C->getZExtValue());
8015
8016 // EXTRACT_ELEMENT of a constant int is also very common.
8017 if (N1C) {
8018 unsigned ElementSize = VT.getSizeInBits();
8019 unsigned Shift = ElementSize * N2C->getZExtValue();
8020 const APInt &Val = N1C->getAPIntValue();
8021 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
8022 }
8023 break;
8025 EVT N1VT = N1.getValueType();
8026 assert(VT.isVector() && N1VT.isVector() &&
8027 "Extract subvector VTs must be vectors!");
8029 "Extract subvector VTs must have the same element type!");
8030 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
8031 "Cannot extract a scalable vector from a fixed length vector!");
8032 assert((VT.isScalableVector() != N1VT.isScalableVector() ||
8034 "Extract subvector must be from larger vector to smaller vector!");
8035 assert(N2C && "Extract subvector index must be a constant");
8036 assert((VT.isScalableVector() != N1VT.isScalableVector() ||
8037 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
8038 N1VT.getVectorMinNumElements()) &&
8039 "Extract subvector overflow!");
8040 assert(N2C->getAPIntValue().getBitWidth() ==
8041 TLI->getVectorIdxWidth(getDataLayout()) &&
8042 "Constant index for EXTRACT_SUBVECTOR has an invalid size");
8043 assert(N2C->getZExtValue() % VT.getVectorMinNumElements() == 0 &&
8044 "Extract index is not a multiple of the output vector length");
8045
8046 // Trivial extraction.
8047 if (VT == N1VT)
8048 return N1;
8049
8050 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
8051 if (N1.isUndef())
8052 return getUNDEF(VT);
8053
8054 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
8055 // the concat have the same type as the extract.
8056 if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
8057 VT == N1.getOperand(0).getValueType()) {
8058 unsigned Factor = VT.getVectorMinNumElements();
8059 return N1.getOperand(N2C->getZExtValue() / Factor);
8060 }
8061
8062 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
8063 // during shuffle legalization.
8064 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
8065 VT == N1.getOperand(1).getValueType())
8066 return N1.getOperand(1);
8067 break;
8068 }
8069 }
8070
8071 if (N1.getOpcode() == ISD::POISON || N2.getOpcode() == ISD::POISON) {
8072 switch (Opcode) {
8073 case ISD::XOR:
8074 case ISD::ADD:
8075 case ISD::PTRADD:
8076 case ISD::SUB:
8078 case ISD::UDIV:
8079 case ISD::SDIV:
8080 case ISD::UREM:
8081 case ISD::SREM:
8082 case ISD::MUL:
8083 case ISD::AND:
8084 case ISD::SSUBSAT:
8085 case ISD::USUBSAT:
8086 case ISD::UMIN:
8087 case ISD::OR:
8088 case ISD::SADDSAT:
8089 case ISD::UADDSAT:
8090 case ISD::UMAX:
8091 case ISD::SMAX:
8092 case ISD::SMIN:
8093 // fold op(arg1, poison) -> poison, fold op(poison, arg2) -> poison.
8094 return N2.getOpcode() == ISD::POISON ? N2 : N1;
8095 }
8096 }
8097
8098 // Canonicalize an UNDEF to the RHS, even over a constant.
8099 if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() != ISD::UNDEF) {
8100 if (TLI->isCommutativeBinOp(Opcode)) {
8101 std::swap(N1, N2);
8102 } else {
8103 switch (Opcode) {
8104 case ISD::PTRADD:
8105 case ISD::SUB:
8106 // fold op(undef, non_undef_arg2) -> undef.
8107 return N1;
8109 case ISD::UDIV:
8110 case ISD::SDIV:
8111 case ISD::UREM:
8112 case ISD::SREM:
8113 case ISD::SSUBSAT:
8114 case ISD::USUBSAT:
8115 // fold op(undef, non_undef_arg2) -> 0.
8116 return getConstant(0, DL, VT);
8117 }
8118 }
8119 }
8120
8121 // Fold a bunch of operators when the RHS is undef.
8122 if (N2.getOpcode() == ISD::UNDEF) {
8123 switch (Opcode) {
8124 case ISD::XOR:
8125 if (N1.getOpcode() == ISD::UNDEF)
8126 // Handle undef ^ undef -> 0 special case. This is a common
8127 // idiom (misuse).
8128 return getConstant(0, DL, VT);
8129 [[fallthrough]];
8130 case ISD::ADD:
8131 case ISD::PTRADD:
8132 case ISD::SUB:
8133 // fold op(arg1, undef) -> undef.
8134 return N2;
8135 case ISD::UDIV:
8136 case ISD::SDIV:
8137 case ISD::UREM:
8138 case ISD::SREM:
8139 // fold op(arg1, undef) -> poison.
8140 return getPOISON(VT);
8141 case ISD::MUL:
8142 case ISD::AND:
8143 case ISD::SSUBSAT:
8144 case ISD::USUBSAT:
8145 case ISD::UMIN:
8146 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> 0.
8147 return N1.getOpcode() == ISD::UNDEF ? N2 : getConstant(0, DL, VT);
8148 case ISD::OR:
8149 case ISD::SADDSAT:
8150 case ISD::UADDSAT:
8151 case ISD::UMAX:
8152 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> -1.
8153 return N1.getOpcode() == ISD::UNDEF ? N2 : getAllOnesConstant(DL, VT);
8154 case ISD::SMAX:
8155 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> MAX_INT.
8156 return N1.getOpcode() == ISD::UNDEF
8157 ? N2
8158 : getConstant(
8160 VT);
8161 case ISD::SMIN:
8162 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> MIN_INT.
8163 return N1.getOpcode() == ISD::UNDEF
8164 ? N2
8165 : getConstant(
8167 VT);
8168 }
8169 }
8170
8171 // Perform trivial constant folding.
8172 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}, Flags))
8173 return SV;
8174
8175 // Memoize this node if possible.
8176 SDNode *N;
8177 SDVTList VTs = getVTList(VT);
8178 SDValue Ops[] = {N1, N2};
8179 if (VT != MVT::Glue) {
8181 AddNodeIDNode(ID, Opcode, VTs, Ops);
8182 void *IP = nullptr;
8183 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8184 E->intersectFlagsWith(Flags);
8185 return SDValue(E, 0);
8186 }
8187
8188 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8189 N->setFlags(Flags);
8190 createOperands(N, Ops);
8191 CSEMap.InsertNode(N, IP);
8192 } else {
8193 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8194 createOperands(N, Ops);
8195 }
8196
8197 InsertNode(N);
8198 SDValue V = SDValue(N, 0);
8199 NewSDValueDbgMsg(V, "Creating new node: ", this);
8200 return V;
8201}
8202
8203SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8204 SDValue N1, SDValue N2, SDValue N3) {
8205 SDNodeFlags Flags;
8206 if (Inserter)
8207 Flags = Inserter->getFlags();
8208 return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
8209}
8210
8211SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8212 SDValue N1, SDValue N2, SDValue N3,
8213 const SDNodeFlags Flags) {
8215 N2.getOpcode() != ISD::DELETED_NODE &&
8216 N3.getOpcode() != ISD::DELETED_NODE &&
8217 "Operand is DELETED_NODE!");
8218 // Perform various simplifications.
8219 switch (Opcode) {
8220 case ISD::BUILD_VECTOR: {
8221 // Attempt to simplify BUILD_VECTOR.
8222 SDValue Ops[] = {N1, N2, N3};
8223 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8224 return V;
8225 break;
8226 }
8227 case ISD::CONCAT_VECTORS: {
8228 SDValue Ops[] = {N1, N2, N3};
8229 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8230 return V;
8231 break;
8232 }
8233 case ISD::SETCC: {
8234 assert(VT.isInteger() && "SETCC result type must be an integer!");
8235 assert(N1.getValueType() == N2.getValueType() &&
8236 "SETCC operands must have the same type!");
8237 assert(VT.isVector() == N1.getValueType().isVector() &&
8238 "SETCC type should be vector iff the operand type is vector!");
8239 assert((!VT.isVector() || VT.getVectorElementCount() ==
8241 "SETCC vector element counts must match!");
8242 // Use FoldSetCC to simplify SETCC's.
8243 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
8244 return V;
8245 break;
8246 }
8247 case ISD::SELECT:
8248 case ISD::VSELECT:
8249 if (SDValue V = simplifySelect(N1, N2, N3))
8250 return V;
8251 break;
8253 llvm_unreachable("should use getVectorShuffle constructor!");
8254 case ISD::VECTOR_SPLICE: {
8255 if (cast<ConstantSDNode>(N3)->isZero())
8256 return N1;
8257 break;
8258 }
8260 assert(VT.isVector() && VT == N1.getValueType() &&
8261 "INSERT_VECTOR_ELT vector type mismatch");
8263 "INSERT_VECTOR_ELT scalar fp/int mismatch");
8264 assert((!VT.isFloatingPoint() ||
8265 VT.getVectorElementType() == N2.getValueType()) &&
8266 "INSERT_VECTOR_ELT fp scalar type mismatch");
8267 assert((!VT.isInteger() ||
8269 "INSERT_VECTOR_ELT int scalar size mismatch");
8270
8271 auto *N3C = dyn_cast<ConstantSDNode>(N3);
8272 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
8273 // for scalable vectors where we will generate appropriate code to
8274 // deal with out-of-bounds cases correctly.
8275 if (N3C && VT.isFixedLengthVector() &&
8276 N3C->getZExtValue() >= VT.getVectorNumElements())
8277 return getUNDEF(VT);
8278
8279 // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
8280 if (N3.isUndef())
8281 return getUNDEF(VT);
8282
8283 // If inserting poison, just use the input vector.
8284 if (N2.getOpcode() == ISD::POISON)
8285 return N1;
8286
8287 // Inserting undef into undef/poison is still undef.
8288 if (N2.getOpcode() == ISD::UNDEF && N1.isUndef())
8289 return getUNDEF(VT);
8290
8291 // If the inserted element is an UNDEF, just use the input vector.
8292 // But not if skipping the insert could make the result more poisonous.
8293 if (N2.isUndef()) {
8294 if (N3C && VT.isFixedLengthVector()) {
8295 APInt EltMask =
8296 APInt::getOneBitSet(VT.getVectorNumElements(), N3C->getZExtValue());
8297 if (isGuaranteedNotToBePoison(N1, EltMask))
8298 return N1;
8299 } else if (isGuaranteedNotToBePoison(N1))
8300 return N1;
8301 }
8302 break;
8303 }
8304 case ISD::INSERT_SUBVECTOR: {
8305 // If inserting poison, just use the input vector,
8306 if (N2.getOpcode() == ISD::POISON)
8307 return N1;
8308
8309 // Inserting undef into undef/poison is still undef.
8310 if (N2.getOpcode() == ISD::UNDEF && N1.isUndef())
8311 return getUNDEF(VT);
8312
8313 EVT N2VT = N2.getValueType();
8314 assert(VT == N1.getValueType() &&
8315 "Dest and insert subvector source types must match!");
8316 assert(VT.isVector() && N2VT.isVector() &&
8317 "Insert subvector VTs must be vectors!");
8319 "Insert subvector VTs must have the same element type!");
8320 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
8321 "Cannot insert a scalable vector into a fixed length vector!");
8322 assert((VT.isScalableVector() != N2VT.isScalableVector() ||
8324 "Insert subvector must be from smaller vector to larger vector!");
8326 "Insert subvector index must be constant");
8327 assert((VT.isScalableVector() != N2VT.isScalableVector() ||
8328 (N2VT.getVectorMinNumElements() + N3->getAsZExtVal()) <=
8330 "Insert subvector overflow!");
8332 TLI->getVectorIdxWidth(getDataLayout()) &&
8333 "Constant index for INSERT_SUBVECTOR has an invalid size");
8334
8335 // Trivial insertion.
8336 if (VT == N2VT)
8337 return N2;
8338
8339 // If this is an insert of an extracted vector into an undef/poison vector,
8340 // we can just use the input to the extract. But not if skipping the
8341 // extract+insert could make the result more poisonous.
8342 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
8343 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) {
8344 if (N1.getOpcode() == ISD::POISON)
8345 return N2.getOperand(0);
8346 if (VT.isFixedLengthVector() && N2VT.isFixedLengthVector()) {
8347 unsigned LoBit = N3->getAsZExtVal();
8348 unsigned HiBit = LoBit + N2VT.getVectorNumElements();
8349 APInt EltMask =
8350 APInt::getBitsSet(VT.getVectorNumElements(), LoBit, HiBit);
8351 if (isGuaranteedNotToBePoison(N2.getOperand(0), ~EltMask))
8352 return N2.getOperand(0);
8353 } else if (isGuaranteedNotToBePoison(N2.getOperand(0)))
8354 return N2.getOperand(0);
8355 }
8356
8357 // If the inserted subvector is UNDEF, just use the input vector.
8358 // But not if skipping the insert could make the result more poisonous.
8359 if (N2.isUndef()) {
8360 if (VT.isFixedLengthVector()) {
8361 unsigned LoBit = N3->getAsZExtVal();
8362 unsigned HiBit = LoBit + N2VT.getVectorNumElements();
8363 APInt EltMask =
8364 APInt::getBitsSet(VT.getVectorNumElements(), LoBit, HiBit);
8365 if (isGuaranteedNotToBePoison(N1, EltMask))
8366 return N1;
8367 } else if (isGuaranteedNotToBePoison(N1))
8368 return N1;
8369 }
8370 break;
8371 }
8372 case ISD::BITCAST:
8373 // Fold bit_convert nodes from a type to themselves.
8374 if (N1.getValueType() == VT)
8375 return N1;
8376 break;
8377 case ISD::VP_TRUNCATE:
8378 case ISD::VP_SIGN_EXTEND:
8379 case ISD::VP_ZERO_EXTEND:
8380 // Don't create noop casts.
8381 if (N1.getValueType() == VT)
8382 return N1;
8383 break;
8384 case ISD::VECTOR_COMPRESS: {
8385 [[maybe_unused]] EVT VecVT = N1.getValueType();
8386 [[maybe_unused]] EVT MaskVT = N2.getValueType();
8387 [[maybe_unused]] EVT PassthruVT = N3.getValueType();
8388 assert(VT == VecVT && "Vector and result type don't match.");
8389 assert(VecVT.isVector() && MaskVT.isVector() && PassthruVT.isVector() &&
8390 "All inputs must be vectors.");
8391 assert(VecVT == PassthruVT && "Vector and passthru types don't match.");
8393 "Vector and mask must have same number of elements.");
8394
8395 if (N1.isUndef() || N2.isUndef())
8396 return N3;
8397
8398 break;
8399 }
8400 case ISD::PARTIAL_REDUCE_UMLA:
8401 case ISD::PARTIAL_REDUCE_SMLA:
8402 case ISD::PARTIAL_REDUCE_SUMLA: {
8403 [[maybe_unused]] EVT AccVT = N1.getValueType();
8404 [[maybe_unused]] EVT Input1VT = N2.getValueType();
8405 [[maybe_unused]] EVT Input2VT = N3.getValueType();
8406 assert(Input1VT.isVector() && Input1VT == Input2VT &&
8407 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8408 "node to have the same type!");
8409 assert(VT.isVector() && VT == AccVT &&
8410 "Expected the first operand of the PARTIAL_REDUCE_MLA node to have "
8411 "the same type as its result!");
8413 AccVT.getVectorElementCount()) &&
8414 "Expected the element count of the second and third operands of the "
8415 "PARTIAL_REDUCE_MLA node to be a positive integer multiple of the "
8416 "element count of the first operand and the result!");
8418 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8419 "node to have an element type which is the same as or smaller than "
8420 "the element type of the first operand and result!");
8421 break;
8422 }
8423 }
8424
8425 // Perform trivial constant folding for arithmetic operators.
8426 switch (Opcode) {
8427 case ISD::FMA:
8428 case ISD::FMAD:
8429 case ISD::SETCC:
8430 case ISD::FSHL:
8431 case ISD::FSHR:
8432 if (SDValue SV =
8433 FoldConstantArithmetic(Opcode, DL, VT, {N1, N2, N3}, Flags))
8434 return SV;
8435 break;
8436 }
8437
8438 // Memoize node if it doesn't produce a glue result.
8439 SDNode *N;
8440 SDVTList VTs = getVTList(VT);
8441 SDValue Ops[] = {N1, N2, N3};
8442 if (VT != MVT::Glue) {
8444 AddNodeIDNode(ID, Opcode, VTs, Ops);
8445 void *IP = nullptr;
8446 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8447 E->intersectFlagsWith(Flags);
8448 return SDValue(E, 0);
8449 }
8450
8451 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8452 N->setFlags(Flags);
8453 createOperands(N, Ops);
8454 CSEMap.InsertNode(N, IP);
8455 } else {
8456 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8457 createOperands(N, Ops);
8458 }
8459
8460 InsertNode(N);
8461 SDValue V = SDValue(N, 0);
8462 NewSDValueDbgMsg(V, "Creating new node: ", this);
8463 return V;
8464}
8465
8466SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8467 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8468 const SDNodeFlags Flags) {
8469 SDValue Ops[] = { N1, N2, N3, N4 };
8470 return getNode(Opcode, DL, VT, Ops, Flags);
8471}
8472
8473SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8474 SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8475 SDNodeFlags Flags;
8476 if (Inserter)
8477 Flags = Inserter->getFlags();
8478 return getNode(Opcode, DL, VT, N1, N2, N3, N4, Flags);
8479}
8480
8481SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8482 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8483 SDValue N5, const SDNodeFlags Flags) {
8484 SDValue Ops[] = { N1, N2, N3, N4, N5 };
8485 return getNode(Opcode, DL, VT, Ops, Flags);
8486}
8487
8488SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8489 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8490 SDValue N5) {
8491 SDNodeFlags Flags;
8492 if (Inserter)
8493 Flags = Inserter->getFlags();
8494 return getNode(Opcode, DL, VT, N1, N2, N3, N4, N5, Flags);
8495}
8496
8497/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
8498/// the incoming stack arguments to be loaded from the stack.
8500 SmallVector<SDValue, 8> ArgChains;
8501
8502 // Include the original chain at the beginning of the list. When this is
8503 // used by target LowerCall hooks, this helps legalize find the
8504 // CALLSEQ_BEGIN node.
8505 ArgChains.push_back(Chain);
8506
8507 // Add a chain value for each stack argument.
8508 for (SDNode *U : getEntryNode().getNode()->users())
8509 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
8510 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
8511 if (FI->getIndex() < 0)
8512 ArgChains.push_back(SDValue(L, 1));
8513
8514 // Build a tokenfactor for all the chains.
8515 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
8516}
8517
8518/// getMemsetValue - Vectorized representation of the memset value
8519/// operand.
8521 const SDLoc &dl) {
8522 assert(!Value.isUndef());
8523
8524 unsigned NumBits = VT.getScalarSizeInBits();
8526 assert(C->getAPIntValue().getBitWidth() == 8);
8527 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
8528 if (VT.isInteger()) {
8529 bool IsOpaque = VT.getSizeInBits() > 64 ||
8530 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
8531 return DAG.getConstant(Val, dl, VT, false, IsOpaque);
8532 }
8533 return DAG.getConstantFP(APFloat(VT.getFltSemantics(), Val), dl, VT);
8534 }
8535
8536 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
8537 EVT IntVT = VT.getScalarType();
8538 if (!IntVT.isInteger())
8539 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
8540
8541 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
8542 if (NumBits > 8) {
8543 // Use a multiplication with 0x010101... to extend the input to the
8544 // required length.
8545 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
8546 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
8547 DAG.getConstant(Magic, dl, IntVT));
8548 }
8549
8550 if (VT != Value.getValueType() && !VT.isInteger())
8551 Value = DAG.getBitcast(VT.getScalarType(), Value);
8552 if (VT != Value.getValueType())
8553 Value = DAG.getSplatBuildVector(VT, dl, Value);
8554
8555 return Value;
8556}
8557
8558/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
8559/// used when a memcpy is turned into a memset when the source is a constant
8560/// string ptr.
8562 const TargetLowering &TLI,
8563 const ConstantDataArraySlice &Slice) {
8564 // Handle vector with all elements zero.
8565 if (Slice.Array == nullptr) {
8566 if (VT.isInteger())
8567 return DAG.getConstant(0, dl, VT);
8568 return DAG.getNode(ISD::BITCAST, dl, VT,
8569 DAG.getConstant(0, dl, VT.changeTypeToInteger()));
8570 }
8571
8572 assert(!VT.isVector() && "Can't handle vector type here!");
8573 unsigned NumVTBits = VT.getSizeInBits();
8574 unsigned NumVTBytes = NumVTBits / 8;
8575 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
8576
8577 APInt Val(NumVTBits, 0);
8578 if (DAG.getDataLayout().isLittleEndian()) {
8579 for (unsigned i = 0; i != NumBytes; ++i)
8580 Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
8581 } else {
8582 for (unsigned i = 0; i != NumBytes; ++i)
8583 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
8584 }
8585
8586 // If the "cost" of materializing the integer immediate is less than the cost
8587 // of a load, then it is cost effective to turn the load into the immediate.
8588 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
8589 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
8590 return DAG.getConstant(Val, dl, VT);
8591 return SDValue();
8592}
8593
8595 const SDLoc &DL,
8596 const SDNodeFlags Flags) {
8597 EVT VT = Base.getValueType();
8598 SDValue Index;
8599
8600 if (Offset.isScalable())
8601 Index = getVScale(DL, Base.getValueType(),
8602 APInt(Base.getValueSizeInBits().getFixedValue(),
8603 Offset.getKnownMinValue()));
8604 else
8605 Index = getConstant(Offset.getFixedValue(), DL, VT);
8606
8607 return getMemBasePlusOffset(Base, Index, DL, Flags);
8608}
8609
8611 const SDLoc &DL,
8612 const SDNodeFlags Flags) {
8613 assert(Offset.getValueType().isInteger());
8614 EVT BasePtrVT = Ptr.getValueType();
8615 if (TLI->shouldPreservePtrArith(this->getMachineFunction().getFunction(),
8616 BasePtrVT))
8617 return getNode(ISD::PTRADD, DL, BasePtrVT, Ptr, Offset, Flags);
8618 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
8619}
8620
8621/// Returns true if memcpy source is constant data.
8623 uint64_t SrcDelta = 0;
8624 GlobalAddressSDNode *G = nullptr;
8625 if (Src.getOpcode() == ISD::GlobalAddress)
8627 else if (Src->isAnyAdd() &&
8628 Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
8629 Src.getOperand(1).getOpcode() == ISD::Constant) {
8630 G = cast<GlobalAddressSDNode>(Src.getOperand(0));
8631 SrcDelta = Src.getConstantOperandVal(1);
8632 }
8633 if (!G)
8634 return false;
8635
8636 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
8637 SrcDelta + G->getOffset());
8638}
8639
8641 SelectionDAG &DAG) {
8642 // On Darwin, -Os means optimize for size without hurting performance, so
8643 // only really optimize for size when -Oz (MinSize) is used.
8645 return MF.getFunction().hasMinSize();
8646 return DAG.shouldOptForSize();
8647}
8648
8650 SmallVector<SDValue, 32> &OutChains, unsigned From,
8651 unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
8652 SmallVector<SDValue, 16> &OutStoreChains) {
8653 assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
8654 assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
8655 SmallVector<SDValue, 16> GluedLoadChains;
8656 for (unsigned i = From; i < To; ++i) {
8657 OutChains.push_back(OutLoadChains[i]);
8658 GluedLoadChains.push_back(OutLoadChains[i]);
8659 }
8660
8661 // Chain for all loads.
8662 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8663 GluedLoadChains);
8664
8665 for (unsigned i = From; i < To; ++i) {
8666 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
8667 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
8668 ST->getBasePtr(), ST->getMemoryVT(),
8669 ST->getMemOperand());
8670 OutChains.push_back(NewStore);
8671 }
8672}
8673
8675 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
8676 uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline,
8677 MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo,
8678 const AAMDNodes &AAInfo, BatchAAResults *BatchAA) {
8679 // Turn a memcpy of undef to nop.
8680 // FIXME: We need to honor volatile even is Src is undef.
8681 if (Src.isUndef())
8682 return Chain;
8683
8684 // Expand memcpy to a series of load and store ops if the size operand falls
8685 // below a certain threshold.
8686 // TODO: In the AlwaysInline case, if the size is big then generate a loop
8687 // rather than maybe a humongous number of loads and stores.
8688 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8689 const DataLayout &DL = DAG.getDataLayout();
8690 LLVMContext &C = *DAG.getContext();
8691 std::vector<EVT> MemOps;
8692 bool DstAlignCanChange = false;
8694 MachineFrameInfo &MFI = MF.getFrameInfo();
8695 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
8697 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
8698 DstAlignCanChange = true;
8699 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
8700 if (!SrcAlign || Alignment > *SrcAlign)
8701 SrcAlign = Alignment;
8702 assert(SrcAlign && "SrcAlign must be set");
8704 // If marked as volatile, perform a copy even when marked as constant.
8705 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
8706 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
8707 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
8708 const MemOp Op = isZeroConstant
8709 ? MemOp::Set(Size, DstAlignCanChange, Alignment,
8710 /*IsZeroMemset*/ true, isVol)
8711 : MemOp::Copy(Size, DstAlignCanChange, Alignment,
8712 *SrcAlign, isVol, CopyFromConstant);
8713 if (!TLI.findOptimalMemOpLowering(
8714 C, MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
8715 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
8716 return SDValue();
8717
8718 if (DstAlignCanChange) {
8719 Type *Ty = MemOps[0].getTypeForEVT(C);
8720 Align NewAlign = DL.getABITypeAlign(Ty);
8721
8722 // Don't promote to an alignment that would require dynamic stack
8723 // realignment which may conflict with optimizations such as tail call
8724 // optimization.
8726 if (!TRI->hasStackRealignment(MF))
8727 if (MaybeAlign StackAlign = DL.getStackAlignment())
8728 NewAlign = std::min(NewAlign, *StackAlign);
8729
8730 if (NewAlign > Alignment) {
8731 // Give the stack frame object a larger alignment if needed.
8732 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
8733 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
8734 Alignment = NewAlign;
8735 }
8736 }
8737
8738 // Prepare AAInfo for loads/stores after lowering this memcpy.
8739 AAMDNodes NewAAInfo = AAInfo;
8740 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
8741
8742 const Value *SrcVal = dyn_cast_if_present<const Value *>(SrcPtrInfo.V);
8743 bool isConstant =
8744 BatchAA && SrcVal &&
8745 BatchAA->pointsToConstantMemory(MemoryLocation(SrcVal, Size, AAInfo));
8746
8747 MachineMemOperand::Flags MMOFlags =
8749 SmallVector<SDValue, 16> OutLoadChains;
8750 SmallVector<SDValue, 16> OutStoreChains;
8751 SmallVector<SDValue, 32> OutChains;
8752 unsigned NumMemOps = MemOps.size();
8753 uint64_t SrcOff = 0, DstOff = 0;
8754 for (unsigned i = 0; i != NumMemOps; ++i) {
8755 EVT VT = MemOps[i];
8756 unsigned VTSize = VT.getSizeInBits() / 8;
8757 SDValue Value, Store;
8758
8759 if (VTSize > Size) {
8760 // Issuing an unaligned load / store pair that overlaps with the previous
8761 // pair. Adjust the offset accordingly.
8762 assert(i == NumMemOps-1 && i != 0);
8763 SrcOff -= VTSize - Size;
8764 DstOff -= VTSize - Size;
8765 }
8766
8767 if (CopyFromConstant &&
8768 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
8769 // It's unlikely a store of a vector immediate can be done in a single
8770 // instruction. It would require a load from a constantpool first.
8771 // We only handle zero vectors here.
8772 // FIXME: Handle other cases where store of vector immediate is done in
8773 // a single instruction.
8774 ConstantDataArraySlice SubSlice;
8775 if (SrcOff < Slice.Length) {
8776 SubSlice = Slice;
8777 SubSlice.move(SrcOff);
8778 } else {
8779 // This is an out-of-bounds access and hence UB. Pretend we read zero.
8780 SubSlice.Array = nullptr;
8781 SubSlice.Offset = 0;
8782 SubSlice.Length = VTSize;
8783 }
8784 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
8785 if (Value.getNode()) {
8786 Store = DAG.getStore(
8787 Chain, dl, Value,
8788 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8789 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8790 OutChains.push_back(Store);
8791 }
8792 }
8793
8794 if (!Store.getNode()) {
8795 // The type might not be legal for the target. This should only happen
8796 // if the type is smaller than a legal type, as on PPC, so the right
8797 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
8798 // to Load/Store if NVT==VT.
8799 // FIXME does the case above also need this?
8800 EVT NVT = TLI.getTypeToTransformTo(C, VT);
8801 assert(NVT.bitsGE(VT));
8802
8803 bool isDereferenceable =
8804 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
8805 MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
8806 if (isDereferenceable)
8808 if (isConstant)
8809 SrcMMOFlags |= MachineMemOperand::MOInvariant;
8810
8811 Value = DAG.getExtLoad(
8812 ISD::EXTLOAD, dl, NVT, Chain,
8813 DAG.getMemBasePlusOffset(Src, TypeSize::getFixed(SrcOff), dl),
8814 SrcPtrInfo.getWithOffset(SrcOff), VT,
8815 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
8816 OutLoadChains.push_back(Value.getValue(1));
8817
8818 Store = DAG.getTruncStore(
8819 Chain, dl, Value,
8820 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8821 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
8822 OutStoreChains.push_back(Store);
8823 }
8824 SrcOff += VTSize;
8825 DstOff += VTSize;
8826 Size -= VTSize;
8827 }
8828
8829 unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
8831 unsigned NumLdStInMemcpy = OutStoreChains.size();
8832
8833 if (NumLdStInMemcpy) {
8834 // It may be that memcpy might be converted to memset if it's memcpy
8835 // of constants. In such a case, we won't have loads and stores, but
8836 // just stores. In the absence of loads, there is nothing to gang up.
8837 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
8838 // If target does not care, just leave as it.
8839 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
8840 OutChains.push_back(OutLoadChains[i]);
8841 OutChains.push_back(OutStoreChains[i]);
8842 }
8843 } else {
8844 // Ld/St less than/equal limit set by target.
8845 if (NumLdStInMemcpy <= GluedLdStLimit) {
8846 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
8847 NumLdStInMemcpy, OutLoadChains,
8848 OutStoreChains);
8849 } else {
8850 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
8851 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
8852 unsigned GlueIter = 0;
8853
8854 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
8855 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
8856 unsigned IndexTo = NumLdStInMemcpy - GlueIter;
8857
8858 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
8859 OutLoadChains, OutStoreChains);
8860 GlueIter += GluedLdStLimit;
8861 }
8862
8863 // Residual ld/st.
8864 if (RemainingLdStInMemcpy) {
8865 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
8866 RemainingLdStInMemcpy, OutLoadChains,
8867 OutStoreChains);
8868 }
8869 }
8870 }
8871 }
8872 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
8873}
8874
8876 SDValue Chain, SDValue Dst, SDValue Src,
8877 uint64_t Size, Align Alignment,
8878 bool isVol, bool AlwaysInline,
8879 MachinePointerInfo DstPtrInfo,
8880 MachinePointerInfo SrcPtrInfo,
8881 const AAMDNodes &AAInfo) {
8882 // Turn a memmove of undef to nop.
8883 // FIXME: We need to honor volatile even is Src is undef.
8884 if (Src.isUndef())
8885 return Chain;
8886
8887 // Expand memmove to a series of load and store ops if the size operand falls
8888 // below a certain threshold.
8889 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8890 const DataLayout &DL = DAG.getDataLayout();
8891 LLVMContext &C = *DAG.getContext();
8892 std::vector<EVT> MemOps;
8893 bool DstAlignCanChange = false;
8895 MachineFrameInfo &MFI = MF.getFrameInfo();
8896 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
8898 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
8899 DstAlignCanChange = true;
8900 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
8901 if (!SrcAlign || Alignment > *SrcAlign)
8902 SrcAlign = Alignment;
8903 assert(SrcAlign && "SrcAlign must be set");
8904 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
8905 if (!TLI.findOptimalMemOpLowering(
8906 C, MemOps, Limit,
8907 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
8908 /*IsVolatile*/ true),
8909 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
8910 MF.getFunction().getAttributes()))
8911 return SDValue();
8912
8913 if (DstAlignCanChange) {
8914 Type *Ty = MemOps[0].getTypeForEVT(C);
8915 Align NewAlign = DL.getABITypeAlign(Ty);
8916
8917 // Don't promote to an alignment that would require dynamic stack
8918 // realignment which may conflict with optimizations such as tail call
8919 // optimization.
8921 if (!TRI->hasStackRealignment(MF))
8922 if (MaybeAlign StackAlign = DL.getStackAlignment())
8923 NewAlign = std::min(NewAlign, *StackAlign);
8924
8925 if (NewAlign > Alignment) {
8926 // Give the stack frame object a larger alignment if needed.
8927 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
8928 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
8929 Alignment = NewAlign;
8930 }
8931 }
8932
8933 // Prepare AAInfo for loads/stores after lowering this memmove.
8934 AAMDNodes NewAAInfo = AAInfo;
8935 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
8936
8937 MachineMemOperand::Flags MMOFlags =
8939 uint64_t SrcOff = 0, DstOff = 0;
8940 SmallVector<SDValue, 8> LoadValues;
8941 SmallVector<SDValue, 8> LoadChains;
8942 SmallVector<SDValue, 8> OutChains;
8943 unsigned NumMemOps = MemOps.size();
8944 for (unsigned i = 0; i < NumMemOps; i++) {
8945 EVT VT = MemOps[i];
8946 unsigned VTSize = VT.getSizeInBits() / 8;
8947 SDValue Value;
8948
8949 bool isDereferenceable =
8950 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
8951 MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
8952 if (isDereferenceable)
8954
8955 Value = DAG.getLoad(
8956 VT, dl, Chain,
8957 DAG.getMemBasePlusOffset(Src, TypeSize::getFixed(SrcOff), dl),
8958 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
8959 LoadValues.push_back(Value);
8960 LoadChains.push_back(Value.getValue(1));
8961 SrcOff += VTSize;
8962 }
8963 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
8964 OutChains.clear();
8965 for (unsigned i = 0; i < NumMemOps; i++) {
8966 EVT VT = MemOps[i];
8967 unsigned VTSize = VT.getSizeInBits() / 8;
8968 SDValue Store;
8969
8970 Store = DAG.getStore(
8971 Chain, dl, LoadValues[i],
8972 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8973 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8974 OutChains.push_back(Store);
8975 DstOff += VTSize;
8976 }
8977
8978 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
8979}
8980
8981/// Lower the call to 'memset' intrinsic function into a series of store
8982/// operations.
8983///
8984/// \param DAG Selection DAG where lowered code is placed.
8985/// \param dl Link to corresponding IR location.
8986/// \param Chain Control flow dependency.
8987/// \param Dst Pointer to destination memory location.
8988/// \param Src Value of byte to write into the memory.
8989/// \param Size Number of bytes to write.
8990/// \param Alignment Alignment of the destination in bytes.
8991/// \param isVol True if destination is volatile.
8992/// \param AlwaysInline Makes sure no function call is generated.
8993/// \param DstPtrInfo IR information on the memory pointer.
8994/// \returns New head in the control flow, if lowering was successful, empty
8995/// SDValue otherwise.
8996///
8997/// The function tries to replace 'llvm.memset' intrinsic with several store
8998/// operations and value calculation code. This is usually profitable for small
8999/// memory size or when the semantic requires inlining.
9001 SDValue Chain, SDValue Dst, SDValue Src,
9002 uint64_t Size, Align Alignment, bool isVol,
9003 bool AlwaysInline, MachinePointerInfo DstPtrInfo,
9004 const AAMDNodes &AAInfo) {
9005 // Turn a memset of undef to nop.
9006 // FIXME: We need to honor volatile even is Src is undef.
9007 if (Src.isUndef())
9008 return Chain;
9009
9010 // Expand memset to a series of load/store ops if the size operand
9011 // falls below a certain threshold.
9012 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9013 std::vector<EVT> MemOps;
9014 bool DstAlignCanChange = false;
9015 LLVMContext &C = *DAG.getContext();
9017 MachineFrameInfo &MFI = MF.getFrameInfo();
9018 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
9020 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
9021 DstAlignCanChange = true;
9022 bool IsZeroVal = isNullConstant(Src);
9023 unsigned Limit = AlwaysInline ? ~0 : TLI.getMaxStoresPerMemset(OptSize);
9024
9025 if (!TLI.findOptimalMemOpLowering(
9026 C, MemOps, Limit,
9027 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
9028 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
9029 return SDValue();
9030
9031 if (DstAlignCanChange) {
9032 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
9033 const DataLayout &DL = DAG.getDataLayout();
9034 Align NewAlign = DL.getABITypeAlign(Ty);
9035
9036 // Don't promote to an alignment that would require dynamic stack
9037 // realignment which may conflict with optimizations such as tail call
9038 // optimization.
9040 if (!TRI->hasStackRealignment(MF))
9041 if (MaybeAlign StackAlign = DL.getStackAlignment())
9042 NewAlign = std::min(NewAlign, *StackAlign);
9043
9044 if (NewAlign > Alignment) {
9045 // Give the stack frame object a larger alignment if needed.
9046 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
9047 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
9048 Alignment = NewAlign;
9049 }
9050 }
9051
9052 SmallVector<SDValue, 8> OutChains;
9053 uint64_t DstOff = 0;
9054 unsigned NumMemOps = MemOps.size();
9055
9056 // Find the largest store and generate the bit pattern for it.
9057 EVT LargestVT = MemOps[0];
9058 for (unsigned i = 1; i < NumMemOps; i++)
9059 if (MemOps[i].bitsGT(LargestVT))
9060 LargestVT = MemOps[i];
9061 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
9062
9063 // Prepare AAInfo for loads/stores after lowering this memset.
9064 AAMDNodes NewAAInfo = AAInfo;
9065 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
9066
9067 for (unsigned i = 0; i < NumMemOps; i++) {
9068 EVT VT = MemOps[i];
9069 unsigned VTSize = VT.getSizeInBits() / 8;
9070 if (VTSize > Size) {
9071 // Issuing an unaligned load / store pair that overlaps with the previous
9072 // pair. Adjust the offset accordingly.
9073 assert(i == NumMemOps-1 && i != 0);
9074 DstOff -= VTSize - Size;
9075 }
9076
9077 // If this store is smaller than the largest store see whether we can get
9078 // the smaller value for free with a truncate or extract vector element and
9079 // then store.
9080 SDValue Value = MemSetValue;
9081 if (VT.bitsLT(LargestVT)) {
9082 unsigned Index;
9083 unsigned NElts = LargestVT.getSizeInBits() / VT.getSizeInBits();
9084 EVT SVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), NElts);
9085 if (!LargestVT.isVector() && !VT.isVector() &&
9086 TLI.isTruncateFree(LargestVT, VT))
9087 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
9088 else if (LargestVT.isVector() && !VT.isVector() &&
9090 LargestVT.getTypeForEVT(*DAG.getContext()),
9091 VT.getSizeInBits(), Index) &&
9092 TLI.isTypeLegal(SVT) &&
9093 LargestVT.getSizeInBits() == SVT.getSizeInBits()) {
9094 // Target which can combine store(extractelement VectorTy, Idx) can get
9095 // the smaller value for free.
9096 SDValue TailValue = DAG.getNode(ISD::BITCAST, dl, SVT, MemSetValue);
9097 Value = DAG.getExtractVectorElt(dl, VT, TailValue, Index);
9098 } else
9099 Value = getMemsetValue(Src, VT, DAG, dl);
9100 }
9101 assert(Value.getValueType() == VT && "Value with wrong type.");
9102 SDValue Store = DAG.getStore(
9103 Chain, dl, Value,
9104 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
9105 DstPtrInfo.getWithOffset(DstOff), Alignment,
9107 NewAAInfo);
9108 OutChains.push_back(Store);
9109 DstOff += VT.getSizeInBits() / 8;
9110 Size -= VTSize;
9111 }
9112
9113 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
9114}
9115
9117 unsigned AS) {
9118 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
9119 // pointer operands can be losslessly bitcasted to pointers of address space 0
9120 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
9121 report_fatal_error("cannot lower memory intrinsic in address space " +
9122 Twine(AS));
9123 }
9124}
9125
9127 const SelectionDAG *SelDAG,
9128 bool AllowReturnsFirstArg) {
9129 if (!CI || !CI->isTailCall())
9130 return false;
9131 // TODO: Fix "returns-first-arg" determination so it doesn't depend on which
9132 // helper symbol we lower to.
9133 return isInTailCallPosition(*CI, SelDAG->getTarget(),
9134 AllowReturnsFirstArg &&
9136}
9137
9138std::pair<SDValue, SDValue>
9140 SDValue Mem1, SDValue Size, const CallInst *CI) {
9141 const char *LibCallName = TLI->getLibcallName(RTLIB::MEMCMP);
9142 if (!LibCallName)
9143 return {};
9144
9147 {Mem0, PT},
9148 {Mem1, PT},
9150
9152 bool IsTailCall =
9153 isInTailCallPositionWrapper(CI, this, /*AllowReturnsFirstArg*/ true);
9154
9155 CLI.setDebugLoc(dl)
9156 .setChain(Chain)
9157 .setLibCallee(
9158 TLI->getLibcallCallingConv(RTLIB::MEMCMP),
9160 getExternalSymbol(LibCallName, TLI->getPointerTy(getDataLayout())),
9161 std::move(Args))
9162 .setTailCall(IsTailCall);
9163
9164 return TLI->LowerCallTo(CLI);
9165}
9166
9167std::pair<SDValue, SDValue> SelectionDAG::getStrlen(SDValue Chain,
9168 const SDLoc &dl,
9169 SDValue Src,
9170 const CallInst *CI) {
9171 const char *LibCallName = TLI->getLibcallName(RTLIB::STRLEN);
9172 if (!LibCallName)
9173 return {};
9174
9175 // Emit a library call.
9178
9180 bool IsTailCall =
9181 isInTailCallPositionWrapper(CI, this, /*AllowReturnsFirstArg*/ true);
9182
9183 CLI.setDebugLoc(dl)
9184 .setChain(Chain)
9185 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::STRLEN), CI->getType(),
9187 LibCallName, TLI->getProgramPointerTy(getDataLayout())),
9188 std::move(Args))
9189 .setTailCall(IsTailCall);
9190
9191 return TLI->LowerCallTo(CLI);
9192}
9193
9195 SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size,
9196 Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI,
9197 std::optional<bool> OverrideTailCall, MachinePointerInfo DstPtrInfo,
9198 MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo,
9199 BatchAAResults *BatchAA) {
9200 // Check to see if we should lower the memcpy to loads and stores first.
9201 // For cases within the target-specified limits, this is the best choice.
9203 if (ConstantSize) {
9204 // Memcpy with size zero? Just return the original chain.
9205 if (ConstantSize->isZero())
9206 return Chain;
9207
9209 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
9210 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9211 if (Result.getNode())
9212 return Result;
9213 }
9214
9215 // Then check to see if we should lower the memcpy with target-specific
9216 // code. If the target chooses to do this, this is the next best.
9217 if (TSI) {
9218 SDValue Result = TSI->EmitTargetCodeForMemcpy(
9219 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
9220 DstPtrInfo, SrcPtrInfo);
9221 if (Result.getNode())
9222 return Result;
9223 }
9224
9225 // If we really need inline code and the target declined to provide it,
9226 // use a (potentially long) sequence of loads and stores.
9227 if (AlwaysInline) {
9228 assert(ConstantSize && "AlwaysInline requires a constant size!");
9230 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
9231 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9232 }
9233
9236
9237 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
9238 // memcpy is not guaranteed to be safe. libc memcpys aren't required to
9239 // respect volatile, so they may do things like read or write memory
9240 // beyond the given memory regions. But fixing this isn't easy, and most
9241 // people don't care.
9242
9243 // Emit a library call.
9246 Args.emplace_back(Dst, PtrTy);
9247 Args.emplace_back(Src, PtrTy);
9248 Args.emplace_back(Size, getDataLayout().getIntPtrType(*getContext()));
9249 // FIXME: pass in SDLoc
9251 bool IsTailCall = false;
9252 const char *MemCpyName = TLI->getMemcpyName();
9253
9254 if (OverrideTailCall.has_value()) {
9255 IsTailCall = *OverrideTailCall;
9256 } else {
9257 bool LowersToMemcpy = StringRef(MemCpyName) == StringRef("memcpy");
9258 IsTailCall = isInTailCallPositionWrapper(CI, this, LowersToMemcpy);
9259 }
9260
9261 CLI.setDebugLoc(dl)
9262 .setChain(Chain)
9263 .setLibCallee(
9264 TLI->getLibcallCallingConv(RTLIB::MEMCPY),
9265 Dst.getValueType().getTypeForEVT(*getContext()),
9266 getExternalSymbol(MemCpyName, TLI->getPointerTy(getDataLayout())),
9267 std::move(Args))
9269 .setTailCall(IsTailCall);
9270
9271 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9272 return CallResult.second;
9273}
9274
9276 SDValue Dst, SDValue Src, SDValue Size,
9277 Type *SizeTy, unsigned ElemSz,
9278 bool isTailCall,
9279 MachinePointerInfo DstPtrInfo,
9280 MachinePointerInfo SrcPtrInfo) {
9281 // Emit a library call.
9284 Args.emplace_back(Dst, ArgTy);
9285 Args.emplace_back(Src, ArgTy);
9286 Args.emplace_back(Size, SizeTy);
9287
9288 RTLIB::Libcall LibraryCall =
9290 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9291 report_fatal_error("Unsupported element size");
9292
9294 CLI.setDebugLoc(dl)
9295 .setChain(Chain)
9296 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
9298 getExternalSymbol(TLI->getLibcallName(LibraryCall),
9299 TLI->getPointerTy(getDataLayout())),
9300 std::move(Args))
9302 .setTailCall(isTailCall);
9303
9304 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9305 return CallResult.second;
9306}
9307
9309 SDValue Src, SDValue Size, Align Alignment,
9310 bool isVol, const CallInst *CI,
9311 std::optional<bool> OverrideTailCall,
9312 MachinePointerInfo DstPtrInfo,
9313 MachinePointerInfo SrcPtrInfo,
9314 const AAMDNodes &AAInfo,
9315 BatchAAResults *BatchAA) {
9316 // Check to see if we should lower the memmove to loads and stores first.
9317 // For cases within the target-specified limits, this is the best choice.
9319 if (ConstantSize) {
9320 // Memmove with size zero? Just return the original chain.
9321 if (ConstantSize->isZero())
9322 return Chain;
9323
9325 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
9326 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
9327 if (Result.getNode())
9328 return Result;
9329 }
9330
9331 // Then check to see if we should lower the memmove with target-specific
9332 // code. If the target chooses to do this, this is the next best.
9333 if (TSI) {
9334 SDValue Result =
9335 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
9336 Alignment, isVol, DstPtrInfo, SrcPtrInfo);
9337 if (Result.getNode())
9338 return Result;
9339 }
9340
9343
9344 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
9345 // not be safe. See memcpy above for more details.
9346
9347 // Emit a library call.
9350 Args.emplace_back(Dst, PtrTy);
9351 Args.emplace_back(Src, PtrTy);
9352 Args.emplace_back(Size, getDataLayout().getIntPtrType(*getContext()));
9353 // FIXME: pass in SDLoc
9355
9356 bool IsTailCall = false;
9357 if (OverrideTailCall.has_value()) {
9358 IsTailCall = *OverrideTailCall;
9359 } else {
9360 bool LowersToMemmove =
9361 TLI->getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove");
9362 IsTailCall = isInTailCallPositionWrapper(CI, this, LowersToMemmove);
9363 }
9364
9365 CLI.setDebugLoc(dl)
9366 .setChain(Chain)
9367 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
9368 Dst.getValueType().getTypeForEVT(*getContext()),
9369 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
9370 TLI->getPointerTy(getDataLayout())),
9371 std::move(Args))
9373 .setTailCall(IsTailCall);
9374
9375 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9376 return CallResult.second;
9377}
9378
9380 SDValue Dst, SDValue Src, SDValue Size,
9381 Type *SizeTy, unsigned ElemSz,
9382 bool isTailCall,
9383 MachinePointerInfo DstPtrInfo,
9384 MachinePointerInfo SrcPtrInfo) {
9385 // Emit a library call.
9387 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
9388 Args.emplace_back(Dst, IntPtrTy);
9389 Args.emplace_back(Src, IntPtrTy);
9390 Args.emplace_back(Size, SizeTy);
9391
9392 RTLIB::Libcall LibraryCall =
9394 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9395 report_fatal_error("Unsupported element size");
9396
9398 CLI.setDebugLoc(dl)
9399 .setChain(Chain)
9400 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
9402 getExternalSymbol(TLI->getLibcallName(LibraryCall),
9403 TLI->getPointerTy(getDataLayout())),
9404 std::move(Args))
9406 .setTailCall(isTailCall);
9407
9408 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9409 return CallResult.second;
9410}
9411
9413 SDValue Src, SDValue Size, Align Alignment,
9414 bool isVol, bool AlwaysInline,
9415 const CallInst *CI,
9416 MachinePointerInfo DstPtrInfo,
9417 const AAMDNodes &AAInfo) {
9418 // Check to see if we should lower the memset to stores first.
9419 // For cases within the target-specified limits, this is the best choice.
9421 if (ConstantSize) {
9422 // Memset with size zero? Just return the original chain.
9423 if (ConstantSize->isZero())
9424 return Chain;
9425
9426 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
9427 ConstantSize->getZExtValue(), Alignment,
9428 isVol, false, DstPtrInfo, AAInfo);
9429
9430 if (Result.getNode())
9431 return Result;
9432 }
9433
9434 // Then check to see if we should lower the memset with target-specific
9435 // code. If the target chooses to do this, this is the next best.
9436 if (TSI) {
9437 SDValue Result = TSI->EmitTargetCodeForMemset(
9438 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo);
9439 if (Result.getNode())
9440 return Result;
9441 }
9442
9443 // If we really need inline code and the target declined to provide it,
9444 // use a (potentially long) sequence of loads and stores.
9445 if (AlwaysInline) {
9446 assert(ConstantSize && "AlwaysInline requires a constant size!");
9447 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
9448 ConstantSize->getZExtValue(), Alignment,
9449 isVol, true, DstPtrInfo, AAInfo);
9450 assert(Result &&
9451 "getMemsetStores must return a valid sequence when AlwaysInline");
9452 return Result;
9453 }
9454
9456
9457 // Emit a library call.
9458 auto &Ctx = *getContext();
9459 const auto& DL = getDataLayout();
9460
9462 // FIXME: pass in SDLoc
9463 CLI.setDebugLoc(dl).setChain(Chain);
9464
9465 const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO);
9466
9467 bool UseBZero = isNullConstant(Src) && BzeroName;
9468 // If zeroing out and bzero is present, use it.
9469 if (UseBZero) {
9471 Args.emplace_back(Dst, PointerType::getUnqual(Ctx));
9472 Args.emplace_back(Size, DL.getIntPtrType(Ctx));
9473 CLI.setLibCallee(
9474 TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx),
9475 getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args));
9476 } else {
9478 Args.emplace_back(Dst, PointerType::getUnqual(Ctx));
9479 Args.emplace_back(Src, Src.getValueType().getTypeForEVT(Ctx));
9480 Args.emplace_back(Size, DL.getIntPtrType(Ctx));
9481 CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
9482 Dst.getValueType().getTypeForEVT(Ctx),
9483 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
9484 TLI->getPointerTy(DL)),
9485 std::move(Args));
9486 }
9487 bool LowersToMemset =
9488 TLI->getLibcallName(RTLIB::MEMSET) == StringRef("memset");
9489 // If we're going to use bzero, make sure not to tail call unless the
9490 // subsequent return doesn't need a value, as bzero doesn't return the first
9491 // arg unlike memset.
9492 bool ReturnsFirstArg = CI && funcReturnsFirstArgOfCall(*CI) && !UseBZero;
9493 bool IsTailCall =
9494 CI && CI->isTailCall() &&
9495 isInTailCallPosition(*CI, getTarget(), ReturnsFirstArg && LowersToMemset);
9496 CLI.setDiscardResult().setTailCall(IsTailCall);
9497
9498 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9499 return CallResult.second;
9500}
9501
9504 Type *SizeTy, unsigned ElemSz,
9505 bool isTailCall,
9506 MachinePointerInfo DstPtrInfo) {
9507 // Emit a library call.
9509 Args.emplace_back(Dst, getDataLayout().getIntPtrType(*getContext()));
9510 Args.emplace_back(Value, Type::getInt8Ty(*getContext()));
9511 Args.emplace_back(Size, SizeTy);
9512
9513 RTLIB::Libcall LibraryCall =
9515 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9516 report_fatal_error("Unsupported element size");
9517
9519 CLI.setDebugLoc(dl)
9520 .setChain(Chain)
9521 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
9523 getExternalSymbol(TLI->getLibcallName(LibraryCall),
9524 TLI->getPointerTy(getDataLayout())),
9525 std::move(Args))
9527 .setTailCall(isTailCall);
9528
9529 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9530 return CallResult.second;
9531}
9532
9533SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
9535 MachineMemOperand *MMO,
9536 ISD::LoadExtType ExtType) {
9538 AddNodeIDNode(ID, Opcode, VTList, Ops);
9539 ID.AddInteger(MemVT.getRawBits());
9540 ID.AddInteger(getSyntheticNodeSubclassData<AtomicSDNode>(
9541 dl.getIROrder(), Opcode, VTList, MemVT, MMO, ExtType));
9542 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9543 ID.AddInteger(MMO->getFlags());
9544 void* IP = nullptr;
9545 if (auto *E = cast_or_null<AtomicSDNode>(FindNodeOrInsertPos(ID, dl, IP))) {
9546 E->refineAlignment(MMO);
9547 E->refineRanges(MMO);
9548 return SDValue(E, 0);
9549 }
9550
9551 auto *N = newSDNode<AtomicSDNode>(dl.getIROrder(), dl.getDebugLoc(), Opcode,
9552 VTList, MemVT, MMO, ExtType);
9553 createOperands(N, Ops);
9554
9555 CSEMap.InsertNode(N, IP);
9556 InsertNode(N);
9557 SDValue V(N, 0);
9558 NewSDValueDbgMsg(V, "Creating new node: ", this);
9559 return V;
9560}
9561
9563 EVT MemVT, SDVTList VTs, SDValue Chain,
9564 SDValue Ptr, SDValue Cmp, SDValue Swp,
9565 MachineMemOperand *MMO) {
9566 assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
9567 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
9568 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
9569
9570 SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
9571 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
9572}
9573
9574SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
9575 SDValue Chain, SDValue Ptr, SDValue Val,
9576 MachineMemOperand *MMO) {
9577 assert((Opcode == ISD::ATOMIC_LOAD_ADD || Opcode == ISD::ATOMIC_LOAD_SUB ||
9578 Opcode == ISD::ATOMIC_LOAD_AND || Opcode == ISD::ATOMIC_LOAD_CLR ||
9579 Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR ||
9580 Opcode == ISD::ATOMIC_LOAD_NAND || Opcode == ISD::ATOMIC_LOAD_MIN ||
9581 Opcode == ISD::ATOMIC_LOAD_MAX || Opcode == ISD::ATOMIC_LOAD_UMIN ||
9582 Opcode == ISD::ATOMIC_LOAD_UMAX || Opcode == ISD::ATOMIC_LOAD_FADD ||
9583 Opcode == ISD::ATOMIC_LOAD_FSUB || Opcode == ISD::ATOMIC_LOAD_FMAX ||
9584 Opcode == ISD::ATOMIC_LOAD_FMIN ||
9585 Opcode == ISD::ATOMIC_LOAD_FMINIMUM ||
9586 Opcode == ISD::ATOMIC_LOAD_FMAXIMUM ||
9587 Opcode == ISD::ATOMIC_LOAD_UINC_WRAP ||
9588 Opcode == ISD::ATOMIC_LOAD_UDEC_WRAP ||
9589 Opcode == ISD::ATOMIC_LOAD_USUB_COND ||
9590 Opcode == ISD::ATOMIC_LOAD_USUB_SAT || Opcode == ISD::ATOMIC_SWAP ||
9591 Opcode == ISD::ATOMIC_STORE) &&
9592 "Invalid Atomic Op");
9593
9594 EVT VT = Val.getValueType();
9595
9596 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
9597 getVTList(VT, MVT::Other);
9598 SDValue Ops[] = {Chain, Ptr, Val};
9599 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
9600}
9601
9603 EVT MemVT, EVT VT, SDValue Chain,
9605 SDVTList VTs = getVTList(VT, MVT::Other);
9606 SDValue Ops[] = {Chain, Ptr};
9607 return getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, VTs, Ops, MMO, ExtType);
9608}
9609
9610/// getMergeValues - Create a MERGE_VALUES node from the given operands.
9612 if (Ops.size() == 1)
9613 return Ops[0];
9614
9616 VTs.reserve(Ops.size());
9617 for (const SDValue &Op : Ops)
9618 VTs.push_back(Op.getValueType());
9619 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
9620}
9621
9623 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
9624 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
9626 const AAMDNodes &AAInfo) {
9627 if (Size.hasValue() && !Size.getValue())
9629
9631 MachineMemOperand *MMO =
9632 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
9633
9634 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
9635}
9636
9638 SDVTList VTList,
9639 ArrayRef<SDValue> Ops, EVT MemVT,
9640 MachineMemOperand *MMO) {
9641 assert(
9642 (Opcode == ISD::INTRINSIC_VOID || Opcode == ISD::INTRINSIC_W_CHAIN ||
9643 Opcode == ISD::PREFETCH ||
9644 (Opcode <= (unsigned)std::numeric_limits<int>::max() &&
9645 Opcode >= ISD::BUILTIN_OP_END && TSI->isTargetMemoryOpcode(Opcode))) &&
9646 "Opcode is not a memory-accessing opcode!");
9647
9648 // Memoize the node unless it returns a glue result.
9650 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
9652 AddNodeIDNode(ID, Opcode, VTList, Ops);
9653 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
9654 Opcode, dl.getIROrder(), VTList, MemVT, MMO));
9655 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9656 ID.AddInteger(MMO->getFlags());
9657 ID.AddInteger(MemVT.getRawBits());
9658 void *IP = nullptr;
9659 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9660 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
9661 return SDValue(E, 0);
9662 }
9663
9664 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
9665 VTList, MemVT, MMO);
9666 createOperands(N, Ops);
9667
9668 CSEMap.InsertNode(N, IP);
9669 } else {
9670 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
9671 VTList, MemVT, MMO);
9672 createOperands(N, Ops);
9673 }
9674 InsertNode(N);
9675 SDValue V(N, 0);
9676 NewSDValueDbgMsg(V, "Creating new node: ", this);
9677 return V;
9678}
9679
9681 SDValue Chain, int FrameIndex) {
9682 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
9683 const auto VTs = getVTList(MVT::Other);
9684 SDValue Ops[2] = {
9685 Chain,
9686 getFrameIndex(FrameIndex,
9687 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
9688 true)};
9689
9691 AddNodeIDNode(ID, Opcode, VTs, Ops);
9692 ID.AddInteger(FrameIndex);
9693 void *IP = nullptr;
9694 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
9695 return SDValue(E, 0);
9696
9697 LifetimeSDNode *N =
9698 newSDNode<LifetimeSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs);
9699 createOperands(N, Ops);
9700 CSEMap.InsertNode(N, IP);
9701 InsertNode(N);
9702 SDValue V(N, 0);
9703 NewSDValueDbgMsg(V, "Creating new node: ", this);
9704 return V;
9705}
9706
9708 uint64_t Guid, uint64_t Index,
9709 uint32_t Attr) {
9710 const unsigned Opcode = ISD::PSEUDO_PROBE;
9711 const auto VTs = getVTList(MVT::Other);
9712 SDValue Ops[] = {Chain};
9714 AddNodeIDNode(ID, Opcode, VTs, Ops);
9715 ID.AddInteger(Guid);
9716 ID.AddInteger(Index);
9717 void *IP = nullptr;
9718 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
9719 return SDValue(E, 0);
9720
9721 auto *N = newSDNode<PseudoProbeSDNode>(
9722 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
9723 createOperands(N, Ops);
9724 CSEMap.InsertNode(N, IP);
9725 InsertNode(N);
9726 SDValue V(N, 0);
9727 NewSDValueDbgMsg(V, "Creating new node: ", this);
9728 return V;
9729}
9730
9731/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
9732/// MachinePointerInfo record from it. This is particularly useful because the
9733/// code generator has many cases where it doesn't bother passing in a
9734/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
9736 SelectionDAG &DAG, SDValue Ptr,
9737 int64_t Offset = 0) {
9738 // If this is FI+Offset, we can model it.
9741 FI->getIndex(), Offset);
9742
9743 // If this is (FI+Offset1)+Offset2, we can model it.
9744 if (Ptr.getOpcode() != ISD::ADD ||
9745 !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
9746 !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
9747 return Info;
9748
9749 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9751 DAG.getMachineFunction(), FI,
9752 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
9753}
9754
9755/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
9756/// MachinePointerInfo record from it. This is particularly useful because the
9757/// code generator has many cases where it doesn't bother passing in a
9758/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
9760 SelectionDAG &DAG, SDValue Ptr,
9761 SDValue OffsetOp) {
9762 // If the 'Offset' value isn't a constant, we can't handle this.
9764 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
9765 if (OffsetOp.isUndef())
9766 return InferPointerInfo(Info, DAG, Ptr);
9767 return Info;
9768}
9769
9771 EVT VT, const SDLoc &dl, SDValue Chain,
9773 MachinePointerInfo PtrInfo, EVT MemVT,
9774 Align Alignment,
9775 MachineMemOperand::Flags MMOFlags,
9776 const AAMDNodes &AAInfo, const MDNode *Ranges) {
9777 assert(Chain.getValueType() == MVT::Other &&
9778 "Invalid chain type");
9779
9780 MMOFlags |= MachineMemOperand::MOLoad;
9781 assert((MMOFlags & MachineMemOperand::MOStore) == 0);
9782 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
9783 // clients.
9784 if (PtrInfo.V.isNull())
9785 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
9786
9787 TypeSize Size = MemVT.getStoreSize();
9789 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
9790 Alignment, AAInfo, Ranges);
9791 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
9792}
9793
9795 EVT VT, const SDLoc &dl, SDValue Chain,
9796 SDValue Ptr, SDValue Offset, EVT MemVT,
9797 MachineMemOperand *MMO) {
9798 if (VT == MemVT) {
9799 ExtType = ISD::NON_EXTLOAD;
9800 } else if (ExtType == ISD::NON_EXTLOAD) {
9801 assert(VT == MemVT && "Non-extending load from different memory type!");
9802 } else {
9803 // Extending load.
9804 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
9805 "Should only be an extending load, not truncating!");
9806 assert(VT.isInteger() == MemVT.isInteger() &&
9807 "Cannot convert from FP to Int or Int -> FP!");
9808 assert(VT.isVector() == MemVT.isVector() &&
9809 "Cannot use an ext load to convert to or from a vector!");
9810 assert((!VT.isVector() ||
9812 "Cannot use an ext load to change the number of vector elements!");
9813 }
9814
9815 assert((!MMO->getRanges() ||
9817 ->getBitWidth() == MemVT.getScalarSizeInBits() &&
9818 MemVT.isInteger())) &&
9819 "Range metadata and load type must match!");
9820
9821 bool Indexed = AM != ISD::UNINDEXED;
9822 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
9823
9824 SDVTList VTs = Indexed ?
9825 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
9826 SDValue Ops[] = { Chain, Ptr, Offset };
9828 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
9829 ID.AddInteger(MemVT.getRawBits());
9830 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
9831 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
9832 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9833 ID.AddInteger(MMO->getFlags());
9834 void *IP = nullptr;
9835 if (auto *E = cast_or_null<LoadSDNode>(FindNodeOrInsertPos(ID, dl, IP))) {
9836 E->refineAlignment(MMO);
9837 E->refineRanges(MMO);
9838 return SDValue(E, 0);
9839 }
9840 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9841 ExtType, MemVT, MMO);
9842 createOperands(N, Ops);
9843
9844 CSEMap.InsertNode(N, IP);
9845 InsertNode(N);
9846 SDValue V(N, 0);
9847 NewSDValueDbgMsg(V, "Creating new node: ", this);
9848 return V;
9849}
9850
9853 MaybeAlign Alignment,
9854 MachineMemOperand::Flags MMOFlags,
9855 const AAMDNodes &AAInfo, const MDNode *Ranges) {
9856 SDValue Undef = getUNDEF(Ptr.getValueType());
9857 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
9858 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
9859}
9860
9863 SDValue Undef = getUNDEF(Ptr.getValueType());
9864 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
9865 VT, MMO);
9866}
9867
9869 EVT VT, SDValue Chain, SDValue Ptr,
9870 MachinePointerInfo PtrInfo, EVT MemVT,
9871 MaybeAlign Alignment,
9872 MachineMemOperand::Flags MMOFlags,
9873 const AAMDNodes &AAInfo) {
9874 SDValue Undef = getUNDEF(Ptr.getValueType());
9875 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
9876 MemVT, Alignment, MMOFlags, AAInfo);
9877}
9878
9880 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
9881 MachineMemOperand *MMO) {
9882 SDValue Undef = getUNDEF(Ptr.getValueType());
9883 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
9884 MemVT, MMO);
9885}
9886
9890 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
9891 assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
9892 // Don't propagate the invariant or dereferenceable flags.
9893 auto MMOFlags =
9894 LD->getMemOperand()->getFlags() &
9896 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
9897 LD->getChain(), Base, Offset, LD->getPointerInfo(),
9898 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
9899}
9900
9903 Align Alignment,
9904 MachineMemOperand::Flags MMOFlags,
9905 const AAMDNodes &AAInfo) {
9906 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9907
9908 MMOFlags |= MachineMemOperand::MOStore;
9909 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
9910
9911 if (PtrInfo.V.isNull())
9912 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
9913
9916 MachineMemOperand *MMO =
9917 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
9918 return getStore(Chain, dl, Val, Ptr, MMO);
9919}
9920
9923 SDValue Undef = getUNDEF(Ptr.getValueType());
9924 return getStore(Chain, dl, Val, Ptr, Undef, Val.getValueType(), MMO,
9926}
9927
9931 bool IsTruncating) {
9932 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9933 EVT VT = Val.getValueType();
9934 if (VT == SVT) {
9935 IsTruncating = false;
9936 } else if (!IsTruncating) {
9937 assert(VT == SVT && "No-truncating store from different memory type!");
9938 } else {
9940 "Should only be a truncating store, not extending!");
9941 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
9942 assert(VT.isVector() == SVT.isVector() &&
9943 "Cannot use trunc store to convert to or from a vector!");
9944 assert((!VT.isVector() ||
9946 "Cannot use trunc store to change the number of vector elements!");
9947 }
9948
9949 bool Indexed = AM != ISD::UNINDEXED;
9950 assert((Indexed || Offset.isUndef()) && "Unindexed store with an offset!");
9951 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
9952 : getVTList(MVT::Other);
9953 SDValue Ops[] = {Chain, Val, Ptr, Offset};
9955 AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
9956 ID.AddInteger(SVT.getRawBits());
9957 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
9958 dl.getIROrder(), VTs, AM, IsTruncating, SVT, MMO));
9959 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9960 ID.AddInteger(MMO->getFlags());
9961 void *IP = nullptr;
9962 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9963 cast<StoreSDNode>(E)->refineAlignment(MMO);
9964 return SDValue(E, 0);
9965 }
9966 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9967 IsTruncating, SVT, MMO);
9968 createOperands(N, Ops);
9969
9970 CSEMap.InsertNode(N, IP);
9971 InsertNode(N);
9972 SDValue V(N, 0);
9973 NewSDValueDbgMsg(V, "Creating new node: ", this);
9974 return V;
9975}
9976
9979 EVT SVT, Align Alignment,
9980 MachineMemOperand::Flags MMOFlags,
9981 const AAMDNodes &AAInfo) {
9982 assert(Chain.getValueType() == MVT::Other &&
9983 "Invalid chain type");
9984
9985 MMOFlags |= MachineMemOperand::MOStore;
9986 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
9987
9988 if (PtrInfo.V.isNull())
9989 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
9990
9992 MachineMemOperand *MMO = MF.getMachineMemOperand(
9993 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
9994 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
9995}
9996
9998 SDValue Ptr, EVT SVT,
9999 MachineMemOperand *MMO) {
10000 SDValue Undef = getUNDEF(Ptr.getValueType());
10001 return getStore(Chain, dl, Val, Ptr, Undef, SVT, MMO, ISD::UNINDEXED, true);
10002}
10003
10007 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
10008 assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
10009 return getStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
10010 ST->getMemoryVT(), ST->getMemOperand(), AM,
10011 ST->isTruncatingStore());
10012}
10013
10015 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
10016 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
10017 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
10018 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
10019 const MDNode *Ranges, bool IsExpanding) {
10020 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10021
10022 MMOFlags |= MachineMemOperand::MOLoad;
10023 assert((MMOFlags & MachineMemOperand::MOStore) == 0);
10024 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
10025 // clients.
10026 if (PtrInfo.V.isNull())
10027 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
10028
10029 TypeSize Size = MemVT.getStoreSize();
10031 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
10032 Alignment, AAInfo, Ranges);
10033 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
10034 MMO, IsExpanding);
10035}
10036
10038 ISD::LoadExtType ExtType, EVT VT,
10039 const SDLoc &dl, SDValue Chain, SDValue Ptr,
10040 SDValue Offset, SDValue Mask, SDValue EVL,
10041 EVT MemVT, MachineMemOperand *MMO,
10042 bool IsExpanding) {
10043 bool Indexed = AM != ISD::UNINDEXED;
10044 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
10045
10046 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
10047 : getVTList(VT, MVT::Other);
10048 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
10050 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
10051 ID.AddInteger(MemVT.getRawBits());
10052 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
10053 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10054 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10055 ID.AddInteger(MMO->getFlags());
10056 void *IP = nullptr;
10057 if (auto *E = cast_or_null<VPLoadSDNode>(FindNodeOrInsertPos(ID, dl, IP))) {
10058 E->refineAlignment(MMO);
10059 E->refineRanges(MMO);
10060 return SDValue(E, 0);
10061 }
10062 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
10063 ExtType, IsExpanding, MemVT, MMO);
10064 createOperands(N, Ops);
10065
10066 CSEMap.InsertNode(N, IP);
10067 InsertNode(N);
10068 SDValue V(N, 0);
10069 NewSDValueDbgMsg(V, "Creating new node: ", this);
10070 return V;
10071}
10072
10074 SDValue Ptr, SDValue Mask, SDValue EVL,
10075 MachinePointerInfo PtrInfo,
10076 MaybeAlign Alignment,
10077 MachineMemOperand::Flags MMOFlags,
10078 const AAMDNodes &AAInfo, const MDNode *Ranges,
10079 bool IsExpanding) {
10080 SDValue Undef = getUNDEF(Ptr.getValueType());
10081 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
10082 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
10083 IsExpanding);
10084}
10085
10087 SDValue Ptr, SDValue Mask, SDValue EVL,
10088 MachineMemOperand *MMO, bool IsExpanding) {
10089 SDValue Undef = getUNDEF(Ptr.getValueType());
10090 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
10091 Mask, EVL, VT, MMO, IsExpanding);
10092}
10093
10095 EVT VT, SDValue Chain, SDValue Ptr,
10096 SDValue Mask, SDValue EVL,
10097 MachinePointerInfo PtrInfo, EVT MemVT,
10098 MaybeAlign Alignment,
10099 MachineMemOperand::Flags MMOFlags,
10100 const AAMDNodes &AAInfo, bool IsExpanding) {
10101 SDValue Undef = getUNDEF(Ptr.getValueType());
10102 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
10103 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
10104 IsExpanding);
10105}
10106
10108 EVT VT, SDValue Chain, SDValue Ptr,
10109 SDValue Mask, SDValue EVL, EVT MemVT,
10110 MachineMemOperand *MMO, bool IsExpanding) {
10111 SDValue Undef = getUNDEF(Ptr.getValueType());
10112 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
10113 EVL, MemVT, MMO, IsExpanding);
10114}
10115
10119 auto *LD = cast<VPLoadSDNode>(OrigLoad);
10120 assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
10121 // Don't propagate the invariant or dereferenceable flags.
10122 auto MMOFlags =
10123 LD->getMemOperand()->getFlags() &
10125 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
10126 LD->getChain(), Base, Offset, LD->getMask(),
10127 LD->getVectorLength(), LD->getPointerInfo(),
10128 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
10129 nullptr, LD->isExpandingLoad());
10130}
10131
10134 SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
10135 ISD::MemIndexedMode AM, bool IsTruncating,
10136 bool IsCompressing) {
10137 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10138 bool Indexed = AM != ISD::UNINDEXED;
10139 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
10140 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
10141 : getVTList(MVT::Other);
10142 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
10144 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
10145 ID.AddInteger(MemVT.getRawBits());
10146 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10147 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10148 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10149 ID.AddInteger(MMO->getFlags());
10150 void *IP = nullptr;
10151 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10152 cast<VPStoreSDNode>(E)->refineAlignment(MMO);
10153 return SDValue(E, 0);
10154 }
10155 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
10156 IsTruncating, IsCompressing, MemVT, MMO);
10157 createOperands(N, Ops);
10158
10159 CSEMap.InsertNode(N, IP);
10160 InsertNode(N);
10161 SDValue V(N, 0);
10162 NewSDValueDbgMsg(V, "Creating new node: ", this);
10163 return V;
10164}
10165
10167 SDValue Val, SDValue Ptr, SDValue Mask,
10168 SDValue EVL, MachinePointerInfo PtrInfo,
10169 EVT SVT, Align Alignment,
10170 MachineMemOperand::Flags MMOFlags,
10171 const AAMDNodes &AAInfo,
10172 bool IsCompressing) {
10173 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10174
10175 MMOFlags |= MachineMemOperand::MOStore;
10176 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
10177
10178 if (PtrInfo.V.isNull())
10179 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
10180
10182 MachineMemOperand *MMO = MF.getMachineMemOperand(
10183 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
10184 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
10185 IsCompressing);
10186}
10187
10189 SDValue Val, SDValue Ptr, SDValue Mask,
10190 SDValue EVL, EVT SVT,
10191 MachineMemOperand *MMO,
10192 bool IsCompressing) {
10193 EVT VT = Val.getValueType();
10194
10195 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10196 if (VT == SVT)
10197 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
10198 EVL, VT, MMO, ISD::UNINDEXED,
10199 /*IsTruncating*/ false, IsCompressing);
10200
10202 "Should only be a truncating store, not extending!");
10203 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
10204 assert(VT.isVector() == SVT.isVector() &&
10205 "Cannot use trunc store to convert to or from a vector!");
10206 assert((!VT.isVector() ||
10208 "Cannot use trunc store to change the number of vector elements!");
10209
10210 SDVTList VTs = getVTList(MVT::Other);
10211 SDValue Undef = getUNDEF(Ptr.getValueType());
10212 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
10214 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
10215 ID.AddInteger(SVT.getRawBits());
10216 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10217 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
10218 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10219 ID.AddInteger(MMO->getFlags());
10220 void *IP = nullptr;
10221 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10222 cast<VPStoreSDNode>(E)->refineAlignment(MMO);
10223 return SDValue(E, 0);
10224 }
10225 auto *N =
10226 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10227 ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
10228 createOperands(N, Ops);
10229
10230 CSEMap.InsertNode(N, IP);
10231 InsertNode(N);
10232 SDValue V(N, 0);
10233 NewSDValueDbgMsg(V, "Creating new node: ", this);
10234 return V;
10235}
10236
10240 auto *ST = cast<VPStoreSDNode>(OrigStore);
10241 assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
10242 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
10243 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
10244 Offset, ST->getMask(), ST->getVectorLength()};
10246 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
10247 ID.AddInteger(ST->getMemoryVT().getRawBits());
10248 ID.AddInteger(ST->getRawSubclassData());
10249 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
10250 ID.AddInteger(ST->getMemOperand()->getFlags());
10251 void *IP = nullptr;
10252 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
10253 return SDValue(E, 0);
10254
10255 auto *N = newSDNode<VPStoreSDNode>(
10256 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
10257 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
10258 createOperands(N, Ops);
10259
10260 CSEMap.InsertNode(N, IP);
10261 InsertNode(N);
10262 SDValue V(N, 0);
10263 NewSDValueDbgMsg(V, "Creating new node: ", this);
10264 return V;
10265}
10266
10268 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
10269 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
10270 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) {
10271 bool Indexed = AM != ISD::UNINDEXED;
10272 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
10273
10274 SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL};
10275 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
10276 : getVTList(VT, MVT::Other);
10278 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops);
10279 ID.AddInteger(VT.getRawBits());
10280 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
10281 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10282 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10283
10284 void *IP = nullptr;
10285 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10286 cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO);
10287 return SDValue(E, 0);
10288 }
10289
10290 auto *N =
10291 newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM,
10292 ExtType, IsExpanding, MemVT, MMO);
10293 createOperands(N, Ops);
10294 CSEMap.InsertNode(N, IP);
10295 InsertNode(N);
10296 SDValue V(N, 0);
10297 NewSDValueDbgMsg(V, "Creating new node: ", this);
10298 return V;
10299}
10300
10302 SDValue Ptr, SDValue Stride,
10303 SDValue Mask, SDValue EVL,
10304 MachineMemOperand *MMO,
10305 bool IsExpanding) {
10306 SDValue Undef = getUNDEF(Ptr.getValueType());
10308 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
10309}
10310
10312 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
10313 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT,
10314 MachineMemOperand *MMO, bool IsExpanding) {
10315 SDValue Undef = getUNDEF(Ptr.getValueType());
10316 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
10317 Stride, Mask, EVL, MemVT, MMO, IsExpanding);
10318}
10319
10321 SDValue Val, SDValue Ptr,
10322 SDValue Offset, SDValue Stride,
10323 SDValue Mask, SDValue EVL, EVT MemVT,
10324 MachineMemOperand *MMO,
10326 bool IsTruncating, bool IsCompressing) {
10327 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10328 bool Indexed = AM != ISD::UNINDEXED;
10329 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
10330 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
10331 : getVTList(MVT::Other);
10332 SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL};
10334 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
10335 ID.AddInteger(MemVT.getRawBits());
10336 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10337 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10338 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10339 void *IP = nullptr;
10340 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10341 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
10342 return SDValue(E, 0);
10343 }
10344 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
10345 VTs, AM, IsTruncating,
10346 IsCompressing, MemVT, MMO);
10347 createOperands(N, Ops);
10348
10349 CSEMap.InsertNode(N, IP);
10350 InsertNode(N);
10351 SDValue V(N, 0);
10352 NewSDValueDbgMsg(V, "Creating new node: ", this);
10353 return V;
10354}
10355
10357 SDValue Val, SDValue Ptr,
10358 SDValue Stride, SDValue Mask,
10359 SDValue EVL, EVT SVT,
10360 MachineMemOperand *MMO,
10361 bool IsCompressing) {
10362 EVT VT = Val.getValueType();
10363
10364 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10365 if (VT == SVT)
10366 return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()),
10367 Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED,
10368 /*IsTruncating*/ false, IsCompressing);
10369
10371 "Should only be a truncating store, not extending!");
10372 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
10373 assert(VT.isVector() == SVT.isVector() &&
10374 "Cannot use trunc store to convert to or from a vector!");
10375 assert((!VT.isVector() ||
10377 "Cannot use trunc store to change the number of vector elements!");
10378
10379 SDVTList VTs = getVTList(MVT::Other);
10380 SDValue Undef = getUNDEF(Ptr.getValueType());
10381 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL};
10383 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
10384 ID.AddInteger(SVT.getRawBits());
10385 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10386 DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
10387 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10388 void *IP = nullptr;
10389 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10390 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
10391 return SDValue(E, 0);
10392 }
10393 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
10394 VTs, ISD::UNINDEXED, true,
10395 IsCompressing, SVT, MMO);
10396 createOperands(N, Ops);
10397
10398 CSEMap.InsertNode(N, IP);
10399 InsertNode(N);
10400 SDValue V(N, 0);
10401 NewSDValueDbgMsg(V, "Creating new node: ", this);
10402 return V;
10403}
10404
10407 ISD::MemIndexType IndexType) {
10408 assert(Ops.size() == 6 && "Incompatible number of operands");
10409
10411 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
10412 ID.AddInteger(VT.getRawBits());
10413 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
10414 dl.getIROrder(), VTs, VT, MMO, IndexType));
10415 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10416 ID.AddInteger(MMO->getFlags());
10417 void *IP = nullptr;
10418 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10419 cast<VPGatherSDNode>(E)->refineAlignment(MMO);
10420 return SDValue(E, 0);
10421 }
10422
10423 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10424 VT, MMO, IndexType);
10425 createOperands(N, Ops);
10426
10427 assert(N->getMask().getValueType().getVectorElementCount() ==
10428 N->getValueType(0).getVectorElementCount() &&
10429 "Vector width mismatch between mask and data");
10430 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10431 N->getValueType(0).getVectorElementCount().isScalable() &&
10432 "Scalable flags of index and data do not match");
10434 N->getIndex().getValueType().getVectorElementCount(),
10435 N->getValueType(0).getVectorElementCount()) &&
10436 "Vector width mismatch between index and data");
10437 assert(isa<ConstantSDNode>(N->getScale()) &&
10438 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10439 "Scale should be a constant power of 2");
10440
10441 CSEMap.InsertNode(N, IP);
10442 InsertNode(N);
10443 SDValue V(N, 0);
10444 NewSDValueDbgMsg(V, "Creating new node: ", this);
10445 return V;
10446}
10447
10450 MachineMemOperand *MMO,
10451 ISD::MemIndexType IndexType) {
10452 assert(Ops.size() == 7 && "Incompatible number of operands");
10453
10455 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
10456 ID.AddInteger(VT.getRawBits());
10457 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
10458 dl.getIROrder(), VTs, VT, MMO, IndexType));
10459 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10460 ID.AddInteger(MMO->getFlags());
10461 void *IP = nullptr;
10462 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10463 cast<VPScatterSDNode>(E)->refineAlignment(MMO);
10464 return SDValue(E, 0);
10465 }
10466 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10467 VT, MMO, IndexType);
10468 createOperands(N, Ops);
10469
10470 assert(N->getMask().getValueType().getVectorElementCount() ==
10471 N->getValue().getValueType().getVectorElementCount() &&
10472 "Vector width mismatch between mask and data");
10473 assert(
10474 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10475 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10476 "Scalable flags of index and data do not match");
10478 N->getIndex().getValueType().getVectorElementCount(),
10479 N->getValue().getValueType().getVectorElementCount()) &&
10480 "Vector width mismatch between index and data");
10481 assert(isa<ConstantSDNode>(N->getScale()) &&
10482 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10483 "Scale should be a constant power of 2");
10484
10485 CSEMap.InsertNode(N, IP);
10486 InsertNode(N);
10487 SDValue V(N, 0);
10488 NewSDValueDbgMsg(V, "Creating new node: ", this);
10489 return V;
10490}
10491
10494 SDValue PassThru, EVT MemVT,
10495 MachineMemOperand *MMO,
10497 ISD::LoadExtType ExtTy, bool isExpanding) {
10498 bool Indexed = AM != ISD::UNINDEXED;
10499 assert((Indexed || Offset.isUndef()) &&
10500 "Unindexed masked load with an offset!");
10501 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
10502 : getVTList(VT, MVT::Other);
10503 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
10505 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
10506 ID.AddInteger(MemVT.getRawBits());
10507 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
10508 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
10509 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10510 ID.AddInteger(MMO->getFlags());
10511 void *IP = nullptr;
10512 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10513 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
10514 return SDValue(E, 0);
10515 }
10516 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10517 AM, ExtTy, isExpanding, MemVT, MMO);
10518 createOperands(N, Ops);
10519
10520 CSEMap.InsertNode(N, IP);
10521 InsertNode(N);
10522 SDValue V(N, 0);
10523 NewSDValueDbgMsg(V, "Creating new node: ", this);
10524 return V;
10525}
10526
10531 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
10532 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
10533 Offset, LD->getMask(), LD->getPassThru(),
10534 LD->getMemoryVT(), LD->getMemOperand(), AM,
10535 LD->getExtensionType(), LD->isExpandingLoad());
10536}
10537
10540 SDValue Mask, EVT MemVT,
10541 MachineMemOperand *MMO,
10542 ISD::MemIndexedMode AM, bool IsTruncating,
10543 bool IsCompressing) {
10544 assert(Chain.getValueType() == MVT::Other &&
10545 "Invalid chain type");
10546 bool Indexed = AM != ISD::UNINDEXED;
10547 assert((Indexed || Offset.isUndef()) &&
10548 "Unindexed masked store with an offset!");
10549 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
10550 : getVTList(MVT::Other);
10551 SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
10553 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
10554 ID.AddInteger(MemVT.getRawBits());
10555 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
10556 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10557 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10558 ID.AddInteger(MMO->getFlags());
10559 void *IP = nullptr;
10560 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10561 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
10562 return SDValue(E, 0);
10563 }
10564 auto *N =
10565 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
10566 IsTruncating, IsCompressing, MemVT, MMO);
10567 createOperands(N, Ops);
10568
10569 CSEMap.InsertNode(N, IP);
10570 InsertNode(N);
10571 SDValue V(N, 0);
10572 NewSDValueDbgMsg(V, "Creating new node: ", this);
10573 return V;
10574}
10575
10580 assert(ST->getOffset().isUndef() &&
10581 "Masked store is already a indexed store!");
10582 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
10583 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
10584 AM, ST->isTruncatingStore(), ST->isCompressingStore());
10585}
10586
10589 MachineMemOperand *MMO,
10590 ISD::MemIndexType IndexType,
10591 ISD::LoadExtType ExtTy) {
10592 assert(Ops.size() == 6 && "Incompatible number of operands");
10593
10595 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
10596 ID.AddInteger(MemVT.getRawBits());
10597 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
10598 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
10599 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10600 ID.AddInteger(MMO->getFlags());
10601 void *IP = nullptr;
10602 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10603 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
10604 return SDValue(E, 0);
10605 }
10606
10607 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10608 VTs, MemVT, MMO, IndexType, ExtTy);
10609 createOperands(N, Ops);
10610
10611 assert(N->getPassThru().getValueType() == N->getValueType(0) &&
10612 "Incompatible type of the PassThru value in MaskedGatherSDNode");
10613 assert(N->getMask().getValueType().getVectorElementCount() ==
10614 N->getValueType(0).getVectorElementCount() &&
10615 "Vector width mismatch between mask and data");
10616 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10617 N->getValueType(0).getVectorElementCount().isScalable() &&
10618 "Scalable flags of index and data do not match");
10620 N->getIndex().getValueType().getVectorElementCount(),
10621 N->getValueType(0).getVectorElementCount()) &&
10622 "Vector width mismatch between index and data");
10623 assert(isa<ConstantSDNode>(N->getScale()) &&
10624 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10625 "Scale should be a constant power of 2");
10626
10627 CSEMap.InsertNode(N, IP);
10628 InsertNode(N);
10629 SDValue V(N, 0);
10630 NewSDValueDbgMsg(V, "Creating new node: ", this);
10631 return V;
10632}
10633
10636 MachineMemOperand *MMO,
10637 ISD::MemIndexType IndexType,
10638 bool IsTrunc) {
10639 assert(Ops.size() == 6 && "Incompatible number of operands");
10640
10642 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
10643 ID.AddInteger(MemVT.getRawBits());
10644 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
10645 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
10646 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10647 ID.AddInteger(MMO->getFlags());
10648 void *IP = nullptr;
10649 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10650 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
10651 return SDValue(E, 0);
10652 }
10653
10654 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10655 VTs, MemVT, MMO, IndexType, IsTrunc);
10656 createOperands(N, Ops);
10657
10658 assert(N->getMask().getValueType().getVectorElementCount() ==
10659 N->getValue().getValueType().getVectorElementCount() &&
10660 "Vector width mismatch between mask and data");
10661 assert(
10662 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10663 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10664 "Scalable flags of index and data do not match");
10666 N->getIndex().getValueType().getVectorElementCount(),
10667 N->getValue().getValueType().getVectorElementCount()) &&
10668 "Vector width mismatch between index and data");
10669 assert(isa<ConstantSDNode>(N->getScale()) &&
10670 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10671 "Scale should be a constant power of 2");
10672
10673 CSEMap.InsertNode(N, IP);
10674 InsertNode(N);
10675 SDValue V(N, 0);
10676 NewSDValueDbgMsg(V, "Creating new node: ", this);
10677 return V;
10678}
10679
10681 const SDLoc &dl, ArrayRef<SDValue> Ops,
10682 MachineMemOperand *MMO,
10683 ISD::MemIndexType IndexType) {
10684 assert(Ops.size() == 7 && "Incompatible number of operands");
10685
10687 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VECTOR_HISTOGRAM, VTs, Ops);
10688 ID.AddInteger(MemVT.getRawBits());
10689 ID.AddInteger(getSyntheticNodeSubclassData<MaskedHistogramSDNode>(
10690 dl.getIROrder(), VTs, MemVT, MMO, IndexType));
10691 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10692 ID.AddInteger(MMO->getFlags());
10693 void *IP = nullptr;
10694 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10695 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
10696 return SDValue(E, 0);
10697 }
10698
10699 auto *N = newSDNode<MaskedHistogramSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10700 VTs, MemVT, MMO, IndexType);
10701 createOperands(N, Ops);
10702
10703 assert(N->getMask().getValueType().getVectorElementCount() ==
10704 N->getIndex().getValueType().getVectorElementCount() &&
10705 "Vector width mismatch between mask and data");
10706 assert(isa<ConstantSDNode>(N->getScale()) &&
10707 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10708 "Scale should be a constant power of 2");
10709 assert(N->getInc().getValueType().isInteger() && "Non integer update value");
10710
10711 CSEMap.InsertNode(N, IP);
10712 InsertNode(N);
10713 SDValue V(N, 0);
10714 NewSDValueDbgMsg(V, "Creating new node: ", this);
10715 return V;
10716}
10717
10719 SDValue Ptr, SDValue Mask, SDValue EVL,
10720 MachineMemOperand *MMO) {
10721 SDVTList VTs = getVTList(VT, EVL.getValueType(), MVT::Other);
10722 SDValue Ops[] = {Chain, Ptr, Mask, EVL};
10724 AddNodeIDNode(ID, ISD::VP_LOAD_FF, VTs, Ops);
10725 ID.AddInteger(VT.getRawBits());
10726 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadFFSDNode>(DL.getIROrder(),
10727 VTs, VT, MMO));
10728 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10729 ID.AddInteger(MMO->getFlags());
10730 void *IP = nullptr;
10731 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10732 cast<VPLoadFFSDNode>(E)->refineAlignment(MMO);
10733 return SDValue(E, 0);
10734 }
10735 auto *N = newSDNode<VPLoadFFSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs,
10736 VT, MMO);
10737 createOperands(N, Ops);
10738
10739 CSEMap.InsertNode(N, IP);
10740 InsertNode(N);
10741 SDValue V(N, 0);
10742 NewSDValueDbgMsg(V, "Creating new node: ", this);
10743 return V;
10744}
10745
10747 EVT MemVT, MachineMemOperand *MMO) {
10748 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10749 SDVTList VTs = getVTList(MVT::Other);
10750 SDValue Ops[] = {Chain, Ptr};
10752 AddNodeIDNode(ID, ISD::GET_FPENV_MEM, VTs, Ops);
10753 ID.AddInteger(MemVT.getRawBits());
10754 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10755 ISD::GET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO));
10756 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10757 ID.AddInteger(MMO->getFlags());
10758 void *IP = nullptr;
10759 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
10760 return SDValue(E, 0);
10761
10762 auto *N = newSDNode<FPStateAccessSDNode>(ISD::GET_FPENV_MEM, dl.getIROrder(),
10763 dl.getDebugLoc(), VTs, MemVT, MMO);
10764 createOperands(N, Ops);
10765
10766 CSEMap.InsertNode(N, IP);
10767 InsertNode(N);
10768 SDValue V(N, 0);
10769 NewSDValueDbgMsg(V, "Creating new node: ", this);
10770 return V;
10771}
10772
10774 EVT MemVT, MachineMemOperand *MMO) {
10775 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10776 SDVTList VTs = getVTList(MVT::Other);
10777 SDValue Ops[] = {Chain, Ptr};
10779 AddNodeIDNode(ID, ISD::SET_FPENV_MEM, VTs, Ops);
10780 ID.AddInteger(MemVT.getRawBits());
10781 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10782 ISD::SET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO));
10783 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10784 ID.AddInteger(MMO->getFlags());
10785 void *IP = nullptr;
10786 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
10787 return SDValue(E, 0);
10788
10789 auto *N = newSDNode<FPStateAccessSDNode>(ISD::SET_FPENV_MEM, dl.getIROrder(),
10790 dl.getDebugLoc(), VTs, MemVT, MMO);
10791 createOperands(N, Ops);
10792
10793 CSEMap.InsertNode(N, IP);
10794 InsertNode(N);
10795 SDValue V(N, 0);
10796 NewSDValueDbgMsg(V, "Creating new node: ", this);
10797 return V;
10798}
10799
10801 // select undef, T, F --> T (if T is a constant), otherwise F
10802 // select, ?, undef, F --> F
10803 // select, ?, T, undef --> T
10804 if (Cond.isUndef())
10805 return isConstantValueOfAnyType(T) ? T : F;
10806 if (T.isUndef())
10807 return F;
10808 if (F.isUndef())
10809 return T;
10810
10811 // select true, T, F --> T
10812 // select false, T, F --> F
10813 if (auto C = isBoolConstant(Cond))
10814 return *C ? T : F;
10815
10816 // select ?, T, T --> T
10817 if (T == F)
10818 return T;
10819
10820 return SDValue();
10821}
10822
10824 // shift undef, Y --> 0 (can always assume that the undef value is 0)
10825 if (X.isUndef())
10826 return getConstant(0, SDLoc(X.getNode()), X.getValueType());
10827 // shift X, undef --> undef (because it may shift by the bitwidth)
10828 if (Y.isUndef())
10829 return getUNDEF(X.getValueType());
10830
10831 // shift 0, Y --> 0
10832 // shift X, 0 --> X
10834 return X;
10835
10836 // shift X, C >= bitwidth(X) --> undef
10837 // All vector elements must be too big (or undef) to avoid partial undefs.
10838 auto isShiftTooBig = [X](ConstantSDNode *Val) {
10839 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
10840 };
10841 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
10842 return getUNDEF(X.getValueType());
10843
10844 // shift i1/vXi1 X, Y --> X (any non-zero shift amount is undefined).
10845 if (X.getValueType().getScalarType() == MVT::i1)
10846 return X;
10847
10848 return SDValue();
10849}
10850
10852 SDNodeFlags Flags) {
10853 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
10854 // (an undef operand can be chosen to be Nan/Inf), then the result of this
10855 // operation is poison. That result can be relaxed to undef.
10856 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
10857 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
10858 bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
10859 (YC && YC->getValueAPF().isNaN());
10860 bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
10861 (YC && YC->getValueAPF().isInfinity());
10862
10863 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
10864 return getUNDEF(X.getValueType());
10865
10866 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
10867 return getUNDEF(X.getValueType());
10868
10869 if (!YC)
10870 return SDValue();
10871
10872 // X + -0.0 --> X
10873 if (Opcode == ISD::FADD)
10874 if (YC->getValueAPF().isNegZero())
10875 return X;
10876
10877 // X - +0.0 --> X
10878 if (Opcode == ISD::FSUB)
10879 if (YC->getValueAPF().isPosZero())
10880 return X;
10881
10882 // X * 1.0 --> X
10883 // X / 1.0 --> X
10884 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
10885 if (YC->getValueAPF().isExactlyValue(1.0))
10886 return X;
10887
10888 // X * 0.0 --> 0.0
10889 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
10890 if (YC->getValueAPF().isZero())
10891 return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
10892
10893 return SDValue();
10894}
10895
10897 SDValue Ptr, SDValue SV, unsigned Align) {
10898 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
10899 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
10900}
10901
10902SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10904 switch (Ops.size()) {
10905 case 0: return getNode(Opcode, DL, VT);
10906 case 1: return getNode(Opcode, DL, VT, Ops[0].get());
10907 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
10908 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
10909 default: break;
10910 }
10911
10912 // Copy from an SDUse array into an SDValue array for use with
10913 // the regular getNode logic.
10915 return getNode(Opcode, DL, VT, NewOps);
10916}
10917
10918SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10920 SDNodeFlags Flags;
10921 if (Inserter)
10922 Flags = Inserter->getFlags();
10923 return getNode(Opcode, DL, VT, Ops, Flags);
10924}
10925
10926SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10927 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
10928 unsigned NumOps = Ops.size();
10929 switch (NumOps) {
10930 case 0: return getNode(Opcode, DL, VT);
10931 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
10932 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
10933 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
10934 default: break;
10935 }
10936
10937#ifndef NDEBUG
10938 for (const auto &Op : Ops)
10939 assert(Op.getOpcode() != ISD::DELETED_NODE &&
10940 "Operand is DELETED_NODE!");
10941#endif
10942
10943 switch (Opcode) {
10944 default: break;
10945 case ISD::BUILD_VECTOR:
10946 // Attempt to simplify BUILD_VECTOR.
10947 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
10948 return V;
10949 break;
10951 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
10952 return V;
10953 break;
10954 case ISD::SELECT_CC:
10955 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
10956 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
10957 "LHS and RHS of condition must have same type!");
10958 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
10959 "True and False arms of SelectCC must have same type!");
10960 assert(Ops[2].getValueType() == VT &&
10961 "select_cc node must be of same type as true and false value!");
10962 assert((!Ops[0].getValueType().isVector() ||
10963 Ops[0].getValueType().getVectorElementCount() ==
10964 VT.getVectorElementCount()) &&
10965 "Expected select_cc with vector result to have the same sized "
10966 "comparison type!");
10967 break;
10968 case ISD::BR_CC:
10969 assert(NumOps == 5 && "BR_CC takes 5 operands!");
10970 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
10971 "LHS/RHS of comparison should match types!");
10972 break;
10973 case ISD::VP_ADD:
10974 case ISD::VP_SUB:
10975 // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR
10976 if (VT.getScalarType() == MVT::i1)
10977 Opcode = ISD::VP_XOR;
10978 break;
10979 case ISD::VP_MUL:
10980 // If it is VP_MUL mask operation then turn it to VP_AND
10981 if (VT.getScalarType() == MVT::i1)
10982 Opcode = ISD::VP_AND;
10983 break;
10984 case ISD::VP_REDUCE_MUL:
10985 // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND
10986 if (VT == MVT::i1)
10987 Opcode = ISD::VP_REDUCE_AND;
10988 break;
10989 case ISD::VP_REDUCE_ADD:
10990 // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR
10991 if (VT == MVT::i1)
10992 Opcode = ISD::VP_REDUCE_XOR;
10993 break;
10994 case ISD::VP_REDUCE_SMAX:
10995 case ISD::VP_REDUCE_UMIN:
10996 // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to
10997 // VP_REDUCE_AND.
10998 if (VT == MVT::i1)
10999 Opcode = ISD::VP_REDUCE_AND;
11000 break;
11001 case ISD::VP_REDUCE_SMIN:
11002 case ISD::VP_REDUCE_UMAX:
11003 // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to
11004 // VP_REDUCE_OR.
11005 if (VT == MVT::i1)
11006 Opcode = ISD::VP_REDUCE_OR;
11007 break;
11008 }
11009
11010 // Memoize nodes.
11011 SDNode *N;
11012 SDVTList VTs = getVTList(VT);
11013
11014 if (VT != MVT::Glue) {
11016 AddNodeIDNode(ID, Opcode, VTs, Ops);
11017 void *IP = nullptr;
11018
11019 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
11020 E->intersectFlagsWith(Flags);
11021 return SDValue(E, 0);
11022 }
11023
11024 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
11025 createOperands(N, Ops);
11026
11027 CSEMap.InsertNode(N, IP);
11028 } else {
11029 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
11030 createOperands(N, Ops);
11031 }
11032
11033 N->setFlags(Flags);
11034 InsertNode(N);
11035 SDValue V(N, 0);
11036 NewSDValueDbgMsg(V, "Creating new node: ", this);
11037 return V;
11038}
11039
11040SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
11041 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
11042 SDNodeFlags Flags;
11043 if (Inserter)
11044 Flags = Inserter->getFlags();
11045 return getNode(Opcode, DL, getVTList(ResultTys), Ops, Flags);
11046}
11047
11048SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
11050 const SDNodeFlags Flags) {
11051 return getNode(Opcode, DL, getVTList(ResultTys), Ops, Flags);
11052}
11053
11054SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11056 SDNodeFlags Flags;
11057 if (Inserter)
11058 Flags = Inserter->getFlags();
11059 return getNode(Opcode, DL, VTList, Ops, Flags);
11060}
11061
11062SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11063 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
11064 if (VTList.NumVTs == 1)
11065 return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags);
11066
11067#ifndef NDEBUG
11068 for (const auto &Op : Ops)
11069 assert(Op.getOpcode() != ISD::DELETED_NODE &&
11070 "Operand is DELETED_NODE!");
11071#endif
11072
11073 switch (Opcode) {
11074 case ISD::SADDO:
11075 case ISD::UADDO:
11076 case ISD::SSUBO:
11077 case ISD::USUBO: {
11078 assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
11079 "Invalid add/sub overflow op!");
11080 assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() &&
11081 Ops[0].getValueType() == Ops[1].getValueType() &&
11082 Ops[0].getValueType() == VTList.VTs[0] &&
11083 "Binary operator types must match!");
11084 SDValue N1 = Ops[0], N2 = Ops[1];
11085 canonicalizeCommutativeBinop(Opcode, N1, N2);
11086
11087 // (X +- 0) -> X with zero-overflow.
11088 ConstantSDNode *N2CV = isConstOrConstSplat(N2, /*AllowUndefs*/ false,
11089 /*AllowTruncation*/ true);
11090 if (N2CV && N2CV->isZero()) {
11091 SDValue ZeroOverFlow = getConstant(0, DL, VTList.VTs[1]);
11092 return getNode(ISD::MERGE_VALUES, DL, VTList, {N1, ZeroOverFlow}, Flags);
11093 }
11094
11095 if (VTList.VTs[0].getScalarType() == MVT::i1 &&
11096 VTList.VTs[1].getScalarType() == MVT::i1) {
11097 SDValue F1 = getFreeze(N1);
11098 SDValue F2 = getFreeze(N2);
11099 // {vXi1,vXi1} (u/s)addo(vXi1 x, vXi1y) -> {xor(x,y),and(x,y)}
11100 if (Opcode == ISD::UADDO || Opcode == ISD::SADDO)
11101 return getNode(ISD::MERGE_VALUES, DL, VTList,
11102 {getNode(ISD::XOR, DL, VTList.VTs[0], F1, F2),
11103 getNode(ISD::AND, DL, VTList.VTs[1], F1, F2)},
11104 Flags);
11105 // {vXi1,vXi1} (u/s)subo(vXi1 x, vXi1y) -> {xor(x,y),and(~x,y)}
11106 if (Opcode == ISD::USUBO || Opcode == ISD::SSUBO) {
11107 SDValue NotF1 = getNOT(DL, F1, VTList.VTs[0]);
11108 return getNode(ISD::MERGE_VALUES, DL, VTList,
11109 {getNode(ISD::XOR, DL, VTList.VTs[0], F1, F2),
11110 getNode(ISD::AND, DL, VTList.VTs[1], NotF1, F2)},
11111 Flags);
11112 }
11113 }
11114 break;
11115 }
11116 case ISD::SADDO_CARRY:
11117 case ISD::UADDO_CARRY:
11118 case ISD::SSUBO_CARRY:
11119 case ISD::USUBO_CARRY:
11120 assert(VTList.NumVTs == 2 && Ops.size() == 3 &&
11121 "Invalid add/sub overflow op!");
11122 assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() &&
11123 Ops[0].getValueType() == Ops[1].getValueType() &&
11124 Ops[0].getValueType() == VTList.VTs[0] &&
11125 Ops[2].getValueType() == VTList.VTs[1] &&
11126 "Binary operator types must match!");
11127 break;
11128 case ISD::SMUL_LOHI:
11129 case ISD::UMUL_LOHI: {
11130 assert(VTList.NumVTs == 2 && Ops.size() == 2 && "Invalid mul lo/hi op!");
11131 assert(VTList.VTs[0].isInteger() && VTList.VTs[0] == VTList.VTs[1] &&
11132 VTList.VTs[0] == Ops[0].getValueType() &&
11133 VTList.VTs[0] == Ops[1].getValueType() &&
11134 "Binary operator types must match!");
11135 // Constant fold.
11138 if (LHS && RHS) {
11139 unsigned Width = VTList.VTs[0].getScalarSizeInBits();
11140 unsigned OutWidth = Width * 2;
11141 APInt Val = LHS->getAPIntValue();
11142 APInt Mul = RHS->getAPIntValue();
11143 if (Opcode == ISD::SMUL_LOHI) {
11144 Val = Val.sext(OutWidth);
11145 Mul = Mul.sext(OutWidth);
11146 } else {
11147 Val = Val.zext(OutWidth);
11148 Mul = Mul.zext(OutWidth);
11149 }
11150 Val *= Mul;
11151
11152 SDValue Hi =
11153 getConstant(Val.extractBits(Width, Width), DL, VTList.VTs[0]);
11154 SDValue Lo = getConstant(Val.trunc(Width), DL, VTList.VTs[0]);
11155 return getNode(ISD::MERGE_VALUES, DL, VTList, {Lo, Hi}, Flags);
11156 }
11157 break;
11158 }
11159 case ISD::FFREXP: {
11160 assert(VTList.NumVTs == 2 && Ops.size() == 1 && "Invalid ffrexp op!");
11161 assert(VTList.VTs[0].isFloatingPoint() && VTList.VTs[1].isInteger() &&
11162 VTList.VTs[0] == Ops[0].getValueType() && "frexp type mismatch");
11163
11165 int FrexpExp;
11166 APFloat FrexpMant =
11167 frexp(C->getValueAPF(), FrexpExp, APFloat::rmNearestTiesToEven);
11168 SDValue Result0 = getConstantFP(FrexpMant, DL, VTList.VTs[0]);
11169 SDValue Result1 = getSignedConstant(FrexpMant.isFinite() ? FrexpExp : 0,
11170 DL, VTList.VTs[1]);
11171 return getNode(ISD::MERGE_VALUES, DL, VTList, {Result0, Result1}, Flags);
11172 }
11173
11174 break;
11175 }
11177 assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
11178 "Invalid STRICT_FP_EXTEND!");
11179 assert(VTList.VTs[0].isFloatingPoint() &&
11180 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
11181 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
11182 "STRICT_FP_EXTEND result type should be vector iff the operand "
11183 "type is vector!");
11184 assert((!VTList.VTs[0].isVector() ||
11185 VTList.VTs[0].getVectorElementCount() ==
11186 Ops[1].getValueType().getVectorElementCount()) &&
11187 "Vector element count mismatch!");
11188 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
11189 "Invalid fpext node, dst <= src!");
11190 break;
11192 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
11193 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
11194 "STRICT_FP_ROUND result type should be vector iff the operand "
11195 "type is vector!");
11196 assert((!VTList.VTs[0].isVector() ||
11197 VTList.VTs[0].getVectorElementCount() ==
11198 Ops[1].getValueType().getVectorElementCount()) &&
11199 "Vector element count mismatch!");
11200 assert(VTList.VTs[0].isFloatingPoint() &&
11201 Ops[1].getValueType().isFloatingPoint() &&
11202 VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
11203 Ops[2].getOpcode() == ISD::TargetConstant &&
11204 (Ops[2]->getAsZExtVal() == 0 || Ops[2]->getAsZExtVal() == 1) &&
11205 "Invalid STRICT_FP_ROUND!");
11206 break;
11207 }
11208
11209 // Memoize the node unless it returns a glue result.
11210 SDNode *N;
11211 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
11213 AddNodeIDNode(ID, Opcode, VTList, Ops);
11214 void *IP = nullptr;
11215 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
11216 E->intersectFlagsWith(Flags);
11217 return SDValue(E, 0);
11218 }
11219
11220 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
11221 createOperands(N, Ops);
11222 CSEMap.InsertNode(N, IP);
11223 } else {
11224 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
11225 createOperands(N, Ops);
11226 }
11227
11228 N->setFlags(Flags);
11229 InsertNode(N);
11230 SDValue V(N, 0);
11231 NewSDValueDbgMsg(V, "Creating new node: ", this);
11232 return V;
11233}
11234
11235SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
11236 SDVTList VTList) {
11237 return getNode(Opcode, DL, VTList, ArrayRef<SDValue>());
11238}
11239
11240SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11241 SDValue N1) {
11242 SDValue Ops[] = { N1 };
11243 return getNode(Opcode, DL, VTList, Ops);
11244}
11245
11246SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11247 SDValue N1, SDValue N2) {
11248 SDValue Ops[] = { N1, N2 };
11249 return getNode(Opcode, DL, VTList, Ops);
11250}
11251
11252SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11253 SDValue N1, SDValue N2, SDValue N3) {
11254 SDValue Ops[] = { N1, N2, N3 };
11255 return getNode(Opcode, DL, VTList, Ops);
11256}
11257
11258SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11259 SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
11260 SDValue Ops[] = { N1, N2, N3, N4 };
11261 return getNode(Opcode, DL, VTList, Ops);
11262}
11263
11264SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11265 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
11266 SDValue N5) {
11267 SDValue Ops[] = { N1, N2, N3, N4, N5 };
11268 return getNode(Opcode, DL, VTList, Ops);
11269}
11270
11272 if (!VT.isExtended())
11273 return makeVTList(SDNode::getValueTypeList(VT.getSimpleVT()), 1);
11274
11275 return makeVTList(&(*EVTs.insert(VT).first), 1);
11276}
11277
11280 ID.AddInteger(2U);
11281 ID.AddInteger(VT1.getRawBits());
11282 ID.AddInteger(VT2.getRawBits());
11283
11284 void *IP = nullptr;
11285 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11286 if (!Result) {
11287 EVT *Array = Allocator.Allocate<EVT>(2);
11288 Array[0] = VT1;
11289 Array[1] = VT2;
11290 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
11291 VTListMap.InsertNode(Result, IP);
11292 }
11293 return Result->getSDVTList();
11294}
11295
11298 ID.AddInteger(3U);
11299 ID.AddInteger(VT1.getRawBits());
11300 ID.AddInteger(VT2.getRawBits());
11301 ID.AddInteger(VT3.getRawBits());
11302
11303 void *IP = nullptr;
11304 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11305 if (!Result) {
11306 EVT *Array = Allocator.Allocate<EVT>(3);
11307 Array[0] = VT1;
11308 Array[1] = VT2;
11309 Array[2] = VT3;
11310 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
11311 VTListMap.InsertNode(Result, IP);
11312 }
11313 return Result->getSDVTList();
11314}
11315
11318 ID.AddInteger(4U);
11319 ID.AddInteger(VT1.getRawBits());
11320 ID.AddInteger(VT2.getRawBits());
11321 ID.AddInteger(VT3.getRawBits());
11322 ID.AddInteger(VT4.getRawBits());
11323
11324 void *IP = nullptr;
11325 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11326 if (!Result) {
11327 EVT *Array = Allocator.Allocate<EVT>(4);
11328 Array[0] = VT1;
11329 Array[1] = VT2;
11330 Array[2] = VT3;
11331 Array[3] = VT4;
11332 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
11333 VTListMap.InsertNode(Result, IP);
11334 }
11335 return Result->getSDVTList();
11336}
11337
11339 unsigned NumVTs = VTs.size();
11341 ID.AddInteger(NumVTs);
11342 for (unsigned index = 0; index < NumVTs; index++) {
11343 ID.AddInteger(VTs[index].getRawBits());
11344 }
11345
11346 void *IP = nullptr;
11347 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11348 if (!Result) {
11349 EVT *Array = Allocator.Allocate<EVT>(NumVTs);
11350 llvm::copy(VTs, Array);
11351 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
11352 VTListMap.InsertNode(Result, IP);
11353 }
11354 return Result->getSDVTList();
11355}
11356
11357
11358/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
11359/// specified operands. If the resultant node already exists in the DAG,
11360/// this does not modify the specified node, instead it returns the node that
11361/// already exists. If the resultant node does not exist in the DAG, the
11362/// input node is returned. As a degenerate case, if you specify the same
11363/// input operands as the node already has, the input node is returned.
11365 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
11366
11367 // Check to see if there is no change.
11368 if (Op == N->getOperand(0)) return N;
11369
11370 // See if the modified node already exists.
11371 void *InsertPos = nullptr;
11372 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
11373 return Existing;
11374
11375 // Nope it doesn't. Remove the node from its current place in the maps.
11376 if (InsertPos)
11377 if (!RemoveNodeFromCSEMaps(N))
11378 InsertPos = nullptr;
11379
11380 // Now we update the operands.
11381 N->OperandList[0].set(Op);
11382
11384 // If this gets put into a CSE map, add it.
11385 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
11386 return N;
11387}
11388
11390 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
11391
11392 // Check to see if there is no change.
11393 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
11394 return N; // No operands changed, just return the input node.
11395
11396 // See if the modified node already exists.
11397 void *InsertPos = nullptr;
11398 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
11399 return Existing;
11400
11401 // Nope it doesn't. Remove the node from its current place in the maps.
11402 if (InsertPos)
11403 if (!RemoveNodeFromCSEMaps(N))
11404 InsertPos = nullptr;
11405
11406 // Now we update the operands.
11407 if (N->OperandList[0] != Op1)
11408 N->OperandList[0].set(Op1);
11409 if (N->OperandList[1] != Op2)
11410 N->OperandList[1].set(Op2);
11411
11413 // If this gets put into a CSE map, add it.
11414 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
11415 return N;
11416}
11417
11420 SDValue Ops[] = { Op1, Op2, Op3 };
11421 return UpdateNodeOperands(N, Ops);
11422}
11423
11426 SDValue Op3, SDValue Op4) {
11427 SDValue Ops[] = { Op1, Op2, Op3, Op4 };
11428 return UpdateNodeOperands(N, Ops);
11429}
11430
11433 SDValue Op3, SDValue Op4, SDValue Op5) {
11434 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
11435 return UpdateNodeOperands(N, Ops);
11436}
11437
11440 unsigned NumOps = Ops.size();
11441 assert(N->getNumOperands() == NumOps &&
11442 "Update with wrong number of operands");
11443
11444 // If no operands changed just return the input node.
11445 if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
11446 return N;
11447
11448 // See if the modified node already exists.
11449 void *InsertPos = nullptr;
11450 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
11451 return Existing;
11452
11453 // Nope it doesn't. Remove the node from its current place in the maps.
11454 if (InsertPos)
11455 if (!RemoveNodeFromCSEMaps(N))
11456 InsertPos = nullptr;
11457
11458 // Now we update the operands.
11459 for (unsigned i = 0; i != NumOps; ++i)
11460 if (N->OperandList[i] != Ops[i])
11461 N->OperandList[i].set(Ops[i]);
11462
11464 // If this gets put into a CSE map, add it.
11465 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
11466 return N;
11467}
11468
11469/// DropOperands - Release the operands and set this node to have
11470/// zero operands.
11472 // Unlike the code in MorphNodeTo that does this, we don't need to
11473 // watch for dead nodes here.
11474 for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
11475 SDUse &Use = *I++;
11476 Use.set(SDValue());
11477 }
11478}
11479
11481 ArrayRef<MachineMemOperand *> NewMemRefs) {
11482 if (NewMemRefs.empty()) {
11483 N->clearMemRefs();
11484 return;
11485 }
11486
11487 // Check if we can avoid allocating by storing a single reference directly.
11488 if (NewMemRefs.size() == 1) {
11489 N->MemRefs = NewMemRefs[0];
11490 N->NumMemRefs = 1;
11491 return;
11492 }
11493
11494 MachineMemOperand **MemRefsBuffer =
11495 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
11496 llvm::copy(NewMemRefs, MemRefsBuffer);
11497 N->MemRefs = MemRefsBuffer;
11498 N->NumMemRefs = static_cast<int>(NewMemRefs.size());
11499}
11500
11501/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
11502/// machine opcode.
11503///
11505 EVT VT) {
11506 SDVTList VTs = getVTList(VT);
11507 return SelectNodeTo(N, MachineOpc, VTs, {});
11508}
11509
11511 EVT VT, SDValue Op1) {
11512 SDVTList VTs = getVTList(VT);
11513 SDValue Ops[] = { Op1 };
11514 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11515}
11516
11518 EVT VT, SDValue Op1,
11519 SDValue Op2) {
11520 SDVTList VTs = getVTList(VT);
11521 SDValue Ops[] = { Op1, Op2 };
11522 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11523}
11524
11526 EVT VT, SDValue Op1,
11527 SDValue Op2, SDValue Op3) {
11528 SDVTList VTs = getVTList(VT);
11529 SDValue Ops[] = { Op1, Op2, Op3 };
11530 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11531}
11532
11535 SDVTList VTs = getVTList(VT);
11536 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11537}
11538
11540 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
11541 SDVTList VTs = getVTList(VT1, VT2);
11542 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11543}
11544
11546 EVT VT1, EVT VT2) {
11547 SDVTList VTs = getVTList(VT1, VT2);
11548 return SelectNodeTo(N, MachineOpc, VTs, {});
11549}
11550
11552 EVT VT1, EVT VT2, EVT VT3,
11554 SDVTList VTs = getVTList(VT1, VT2, VT3);
11555 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11556}
11557
11559 EVT VT1, EVT VT2,
11560 SDValue Op1, SDValue Op2) {
11561 SDVTList VTs = getVTList(VT1, VT2);
11562 SDValue Ops[] = { Op1, Op2 };
11563 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11564}
11565
11568 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
11569 // Reset the NodeID to -1.
11570 New->setNodeId(-1);
11571 if (New != N) {
11572 ReplaceAllUsesWith(N, New);
11574 }
11575 return New;
11576}
11577
11578/// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
11579/// the line number information on the merged node since it is not possible to
11580/// preserve the information that operation is associated with multiple lines.
11581/// This will make the debugger working better at -O0, were there is a higher
11582/// probability having other instructions associated with that line.
11583///
11584/// For IROrder, we keep the smaller of the two
11585SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
11586 DebugLoc NLoc = N->getDebugLoc();
11587 if (NLoc && OptLevel == CodeGenOptLevel::None && OLoc.getDebugLoc() != NLoc) {
11588 N->setDebugLoc(DebugLoc());
11589 }
11590 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
11591 N->setIROrder(Order);
11592 return N;
11593}
11594
11595/// MorphNodeTo - This *mutates* the specified node to have the specified
11596/// return type, opcode, and operands.
11597///
11598/// Note that MorphNodeTo returns the resultant node. If there is already a
11599/// node of the specified opcode and operands, it returns that node instead of
11600/// the current one. Note that the SDLoc need not be the same.
11601///
11602/// Using MorphNodeTo is faster than creating a new node and swapping it in
11603/// with ReplaceAllUsesWith both because it often avoids allocating a new
11604/// node, and because it doesn't require CSE recalculation for any of
11605/// the node's users.
11606///
11607/// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
11608/// As a consequence it isn't appropriate to use from within the DAG combiner or
11609/// the legalizer which maintain worklists that would need to be updated when
11610/// deleting things.
11613 // If an identical node already exists, use it.
11614 void *IP = nullptr;
11615 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
11617 AddNodeIDNode(ID, Opc, VTs, Ops);
11618 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
11619 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
11620 }
11621
11622 if (!RemoveNodeFromCSEMaps(N))
11623 IP = nullptr;
11624
11625 // Start the morphing.
11626 N->NodeType = Opc;
11627 N->ValueList = VTs.VTs;
11628 N->NumValues = VTs.NumVTs;
11629
11630 // Clear the operands list, updating used nodes to remove this from their
11631 // use list. Keep track of any operands that become dead as a result.
11632 SmallPtrSet<SDNode*, 16> DeadNodeSet;
11633 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
11634 SDUse &Use = *I++;
11635 SDNode *Used = Use.getNode();
11636 Use.set(SDValue());
11637 if (Used->use_empty())
11638 DeadNodeSet.insert(Used);
11639 }
11640
11641 // For MachineNode, initialize the memory references information.
11643 MN->clearMemRefs();
11644
11645 // Swap for an appropriately sized array from the recycler.
11646 removeOperands(N);
11647 createOperands(N, Ops);
11648
11649 // Delete any nodes that are still dead after adding the uses for the
11650 // new operands.
11651 if (!DeadNodeSet.empty()) {
11652 SmallVector<SDNode *, 16> DeadNodes;
11653 for (SDNode *N : DeadNodeSet)
11654 if (N->use_empty())
11655 DeadNodes.push_back(N);
11656 RemoveDeadNodes(DeadNodes);
11657 }
11658
11659 if (IP)
11660 CSEMap.InsertNode(N, IP); // Memoize the new node.
11661 return N;
11662}
11663
11665 unsigned OrigOpc = Node->getOpcode();
11666 unsigned NewOpc;
11667 switch (OrigOpc) {
11668 default:
11669 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
11670#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11671 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
11672#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11673 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
11674#include "llvm/IR/ConstrainedOps.def"
11675 }
11676
11677 assert(Node->getNumValues() == 2 && "Unexpected number of results!");
11678
11679 // We're taking this node out of the chain, so we need to re-link things.
11680 SDValue InputChain = Node->getOperand(0);
11681 SDValue OutputChain = SDValue(Node, 1);
11682 ReplaceAllUsesOfValueWith(OutputChain, InputChain);
11683
11685 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
11686 Ops.push_back(Node->getOperand(i));
11687
11688 SDVTList VTs = getVTList(Node->getValueType(0));
11689 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
11690
11691 // MorphNodeTo can operate in two ways: if an existing node with the
11692 // specified operands exists, it can just return it. Otherwise, it
11693 // updates the node in place to have the requested operands.
11694 if (Res == Node) {
11695 // If we updated the node in place, reset the node ID. To the isel,
11696 // this should be just like a newly allocated machine node.
11697 Res->setNodeId(-1);
11698 } else {
11701 }
11702
11703 return Res;
11704}
11705
11706/// getMachineNode - These are used for target selectors to create a new node
11707/// with specified return type(s), MachineInstr opcode, and operands.
11708///
11709/// Note that getMachineNode returns the resultant node. If there is already a
11710/// node of the specified opcode and operands, it returns that node instead of
11711/// the current one.
11713 EVT VT) {
11714 SDVTList VTs = getVTList(VT);
11715 return getMachineNode(Opcode, dl, VTs, {});
11716}
11717
11719 EVT VT, SDValue Op1) {
11720 SDVTList VTs = getVTList(VT);
11721 SDValue Ops[] = { Op1 };
11722 return getMachineNode(Opcode, dl, VTs, Ops);
11723}
11724
11726 EVT VT, SDValue Op1, SDValue Op2) {
11727 SDVTList VTs = getVTList(VT);
11728 SDValue Ops[] = { Op1, Op2 };
11729 return getMachineNode(Opcode, dl, VTs, Ops);
11730}
11731
11733 EVT VT, SDValue Op1, SDValue Op2,
11734 SDValue Op3) {
11735 SDVTList VTs = getVTList(VT);
11736 SDValue Ops[] = { Op1, Op2, Op3 };
11737 return getMachineNode(Opcode, dl, VTs, Ops);
11738}
11739
11742 SDVTList VTs = getVTList(VT);
11743 return getMachineNode(Opcode, dl, VTs, Ops);
11744}
11745
11747 EVT VT1, EVT VT2, SDValue Op1,
11748 SDValue Op2) {
11749 SDVTList VTs = getVTList(VT1, VT2);
11750 SDValue Ops[] = { Op1, Op2 };
11751 return getMachineNode(Opcode, dl, VTs, Ops);
11752}
11753
11755 EVT VT1, EVT VT2, SDValue Op1,
11756 SDValue Op2, SDValue Op3) {
11757 SDVTList VTs = getVTList(VT1, VT2);
11758 SDValue Ops[] = { Op1, Op2, Op3 };
11759 return getMachineNode(Opcode, dl, VTs, Ops);
11760}
11761
11763 EVT VT1, EVT VT2,
11765 SDVTList VTs = getVTList(VT1, VT2);
11766 return getMachineNode(Opcode, dl, VTs, Ops);
11767}
11768
11770 EVT VT1, EVT VT2, EVT VT3,
11771 SDValue Op1, SDValue Op2) {
11772 SDVTList VTs = getVTList(VT1, VT2, VT3);
11773 SDValue Ops[] = { Op1, Op2 };
11774 return getMachineNode(Opcode, dl, VTs, Ops);
11775}
11776
11778 EVT VT1, EVT VT2, EVT VT3,
11779 SDValue Op1, SDValue Op2,
11780 SDValue Op3) {
11781 SDVTList VTs = getVTList(VT1, VT2, VT3);
11782 SDValue Ops[] = { Op1, Op2, Op3 };
11783 return getMachineNode(Opcode, dl, VTs, Ops);
11784}
11785
11787 EVT VT1, EVT VT2, EVT VT3,
11789 SDVTList VTs = getVTList(VT1, VT2, VT3);
11790 return getMachineNode(Opcode, dl, VTs, Ops);
11791}
11792
11794 ArrayRef<EVT> ResultTys,
11796 SDVTList VTs = getVTList(ResultTys);
11797 return getMachineNode(Opcode, dl, VTs, Ops);
11798}
11799
11801 SDVTList VTs,
11803 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
11805 void *IP = nullptr;
11806
11807 if (DoCSE) {
11809 AddNodeIDNode(ID, ~Opcode, VTs, Ops);
11810 IP = nullptr;
11811 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
11812 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
11813 }
11814 }
11815
11816 // Allocate a new MachineSDNode.
11817 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
11818 createOperands(N, Ops);
11819
11820 if (DoCSE)
11821 CSEMap.InsertNode(N, IP);
11822
11823 InsertNode(N);
11824 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
11825 return N;
11826}
11827
11828/// getTargetExtractSubreg - A convenience function for creating
11829/// TargetOpcode::EXTRACT_SUBREG nodes.
11831 SDValue Operand) {
11832 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
11833 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
11834 VT, Operand, SRIdxVal);
11835 return SDValue(Subreg, 0);
11836}
11837
11838/// getTargetInsertSubreg - A convenience function for creating
11839/// TargetOpcode::INSERT_SUBREG nodes.
11841 SDValue Operand, SDValue Subreg) {
11842 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
11843 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
11844 VT, Operand, Subreg, SRIdxVal);
11845 return SDValue(Result, 0);
11846}
11847
11848/// getNodeIfExists - Get the specified node if it's already available, or
11849/// else return NULL.
11852 SDNodeFlags Flags;
11853 if (Inserter)
11854 Flags = Inserter->getFlags();
11855 return getNodeIfExists(Opcode, VTList, Ops, Flags);
11856}
11857
11860 const SDNodeFlags Flags) {
11861 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
11863 AddNodeIDNode(ID, Opcode, VTList, Ops);
11864 void *IP = nullptr;
11865 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
11866 E->intersectFlagsWith(Flags);
11867 return E;
11868 }
11869 }
11870 return nullptr;
11871}
11872
11873/// doesNodeExist - Check if a node exists without modifying its flags.
11874bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
11876 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
11878 AddNodeIDNode(ID, Opcode, VTList, Ops);
11879 void *IP = nullptr;
11880 if (FindNodeOrInsertPos(ID, SDLoc(), IP))
11881 return true;
11882 }
11883 return false;
11884}
11885
11886/// getDbgValue - Creates a SDDbgValue node.
11887///
11888/// SDNode
11890 SDNode *N, unsigned R, bool IsIndirect,
11891 const DebugLoc &DL, unsigned O) {
11892 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11893 "Expected inlined-at fields to agree");
11894 return new (DbgInfo->getAlloc())
11895 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
11896 {}, IsIndirect, DL, O,
11897 /*IsVariadic=*/false);
11898}
11899
11900/// Constant
11902 DIExpression *Expr,
11903 const Value *C,
11904 const DebugLoc &DL, unsigned O) {
11905 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11906 "Expected inlined-at fields to agree");
11907 return new (DbgInfo->getAlloc())
11908 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
11909 /*IsIndirect=*/false, DL, O,
11910 /*IsVariadic=*/false);
11911}
11912
11913/// FrameIndex
11915 DIExpression *Expr, unsigned FI,
11916 bool IsIndirect,
11917 const DebugLoc &DL,
11918 unsigned O) {
11919 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11920 "Expected inlined-at fields to agree");
11921 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
11922}
11923
11924/// FrameIndex with dependencies
11926 DIExpression *Expr, unsigned FI,
11927 ArrayRef<SDNode *> Dependencies,
11928 bool IsIndirect,
11929 const DebugLoc &DL,
11930 unsigned O) {
11931 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11932 "Expected inlined-at fields to agree");
11933 return new (DbgInfo->getAlloc())
11934 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
11935 Dependencies, IsIndirect, DL, O,
11936 /*IsVariadic=*/false);
11937}
11938
11939/// VReg
11941 Register VReg, bool IsIndirect,
11942 const DebugLoc &DL, unsigned O) {
11943 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11944 "Expected inlined-at fields to agree");
11945 return new (DbgInfo->getAlloc())
11946 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
11947 {}, IsIndirect, DL, O,
11948 /*IsVariadic=*/false);
11949}
11950
11953 ArrayRef<SDNode *> Dependencies,
11954 bool IsIndirect, const DebugLoc &DL,
11955 unsigned O, bool IsVariadic) {
11956 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11957 "Expected inlined-at fields to agree");
11958 return new (DbgInfo->getAlloc())
11959 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
11960 DL, O, IsVariadic);
11961}
11962
11964 unsigned OffsetInBits, unsigned SizeInBits,
11965 bool InvalidateDbg) {
11966 SDNode *FromNode = From.getNode();
11967 SDNode *ToNode = To.getNode();
11968 assert(FromNode && ToNode && "Can't modify dbg values");
11969
11970 // PR35338
11971 // TODO: assert(From != To && "Redundant dbg value transfer");
11972 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
11973 if (From == To || FromNode == ToNode)
11974 return;
11975
11976 if (!FromNode->getHasDebugValue())
11977 return;
11978
11979 SDDbgOperand FromLocOp =
11980 SDDbgOperand::fromNode(From.getNode(), From.getResNo());
11982
11984 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
11985 if (Dbg->isInvalidated())
11986 continue;
11987
11988 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
11989
11990 // Create a new location ops vector that is equal to the old vector, but
11991 // with each instance of FromLocOp replaced with ToLocOp.
11992 bool Changed = false;
11993 auto NewLocOps = Dbg->copyLocationOps();
11994 std::replace_if(
11995 NewLocOps.begin(), NewLocOps.end(),
11996 [&Changed, FromLocOp](const SDDbgOperand &Op) {
11997 bool Match = Op == FromLocOp;
11998 Changed |= Match;
11999 return Match;
12000 },
12001 ToLocOp);
12002 // Ignore this SDDbgValue if we didn't find a matching location.
12003 if (!Changed)
12004 continue;
12005
12006 DIVariable *Var = Dbg->getVariable();
12007 auto *Expr = Dbg->getExpression();
12008 // If a fragment is requested, update the expression.
12009 if (SizeInBits) {
12010 // When splitting a larger (e.g., sign-extended) value whose
12011 // lower bits are described with an SDDbgValue, do not attempt
12012 // to transfer the SDDbgValue to the upper bits.
12013 if (auto FI = Expr->getFragmentInfo())
12014 if (OffsetInBits + SizeInBits > FI->SizeInBits)
12015 continue;
12016 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
12017 SizeInBits);
12018 if (!Fragment)
12019 continue;
12020 Expr = *Fragment;
12021 }
12022
12023 auto AdditionalDependencies = Dbg->getAdditionalDependencies();
12024 // Clone the SDDbgValue and move it to To.
12025 SDDbgValue *Clone = getDbgValueList(
12026 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
12027 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
12028 Dbg->isVariadic());
12029 ClonedDVs.push_back(Clone);
12030
12031 if (InvalidateDbg) {
12032 // Invalidate value and indicate the SDDbgValue should not be emitted.
12033 Dbg->setIsInvalidated();
12034 Dbg->setIsEmitted();
12035 }
12036 }
12037
12038 for (SDDbgValue *Dbg : ClonedDVs) {
12039 assert(is_contained(Dbg->getSDNodes(), ToNode) &&
12040 "Transferred DbgValues should depend on the new SDNode");
12041 AddDbgValue(Dbg, false);
12042 }
12043}
12044
12046 if (!N.getHasDebugValue())
12047 return;
12048
12049 auto GetLocationOperand = [](SDNode *Node, unsigned ResNo) {
12050 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(Node))
12051 return SDDbgOperand::fromFrameIdx(FISDN->getIndex());
12052 return SDDbgOperand::fromNode(Node, ResNo);
12053 };
12054
12056 for (auto *DV : GetDbgValues(&N)) {
12057 if (DV->isInvalidated())
12058 continue;
12059 switch (N.getOpcode()) {
12060 default:
12061 break;
12062 case ISD::ADD: {
12063 SDValue N0 = N.getOperand(0);
12064 SDValue N1 = N.getOperand(1);
12065 if (!isa<ConstantSDNode>(N0)) {
12066 bool RHSConstant = isa<ConstantSDNode>(N1);
12068 if (RHSConstant)
12069 Offset = N.getConstantOperandVal(1);
12070 // We are not allowed to turn indirect debug values variadic, so
12071 // don't salvage those.
12072 if (!RHSConstant && DV->isIndirect())
12073 continue;
12074
12075 // Rewrite an ADD constant node into a DIExpression. Since we are
12076 // performing arithmetic to compute the variable's *value* in the
12077 // DIExpression, we need to mark the expression with a
12078 // DW_OP_stack_value.
12079 auto *DIExpr = DV->getExpression();
12080 auto NewLocOps = DV->copyLocationOps();
12081 bool Changed = false;
12082 size_t OrigLocOpsSize = NewLocOps.size();
12083 for (size_t i = 0; i < OrigLocOpsSize; ++i) {
12084 // We're not given a ResNo to compare against because the whole
12085 // node is going away. We know that any ISD::ADD only has one
12086 // result, so we can assume any node match is using the result.
12087 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
12088 NewLocOps[i].getSDNode() != &N)
12089 continue;
12090 NewLocOps[i] = GetLocationOperand(N0.getNode(), N0.getResNo());
12091 if (RHSConstant) {
12094 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
12095 } else {
12096 // Convert to a variadic expression (if not already).
12097 // convertToVariadicExpression() returns a const pointer, so we use
12098 // a temporary const variable here.
12099 const auto *TmpDIExpr =
12103 ExprOps.push_back(NewLocOps.size());
12104 ExprOps.push_back(dwarf::DW_OP_plus);
12105 SDDbgOperand RHS =
12107 NewLocOps.push_back(RHS);
12108 DIExpr = DIExpression::appendOpsToArg(TmpDIExpr, ExprOps, i, true);
12109 }
12110 Changed = true;
12111 }
12112 (void)Changed;
12113 assert(Changed && "Salvage target doesn't use N");
12114
12115 bool IsVariadic =
12116 DV->isVariadic() || OrigLocOpsSize != NewLocOps.size();
12117
12118 auto AdditionalDependencies = DV->getAdditionalDependencies();
12119 SDDbgValue *Clone = getDbgValueList(
12120 DV->getVariable(), DIExpr, NewLocOps, AdditionalDependencies,
12121 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder(), IsVariadic);
12122 ClonedDVs.push_back(Clone);
12123 DV->setIsInvalidated();
12124 DV->setIsEmitted();
12125 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
12126 N0.getNode()->dumprFull(this);
12127 dbgs() << " into " << *DIExpr << '\n');
12128 }
12129 break;
12130 }
12131 case ISD::TRUNCATE: {
12132 SDValue N0 = N.getOperand(0);
12133 TypeSize FromSize = N0.getValueSizeInBits();
12134 TypeSize ToSize = N.getValueSizeInBits(0);
12135
12136 DIExpression *DbgExpression = DV->getExpression();
12137 auto ExtOps = DIExpression::getExtOps(FromSize, ToSize, false);
12138 auto NewLocOps = DV->copyLocationOps();
12139 bool Changed = false;
12140 for (size_t i = 0; i < NewLocOps.size(); ++i) {
12141 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
12142 NewLocOps[i].getSDNode() != &N)
12143 continue;
12144
12145 NewLocOps[i] = GetLocationOperand(N0.getNode(), N0.getResNo());
12146 DbgExpression = DIExpression::appendOpsToArg(DbgExpression, ExtOps, i);
12147 Changed = true;
12148 }
12149 assert(Changed && "Salvage target doesn't use N");
12150 (void)Changed;
12151
12152 SDDbgValue *Clone =
12153 getDbgValueList(DV->getVariable(), DbgExpression, NewLocOps,
12154 DV->getAdditionalDependencies(), DV->isIndirect(),
12155 DV->getDebugLoc(), DV->getOrder(), DV->isVariadic());
12156
12157 ClonedDVs.push_back(Clone);
12158 DV->setIsInvalidated();
12159 DV->setIsEmitted();
12160 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; N0.getNode()->dumprFull(this);
12161 dbgs() << " into " << *DbgExpression << '\n');
12162 break;
12163 }
12164 }
12165 }
12166
12167 for (SDDbgValue *Dbg : ClonedDVs) {
12168 assert((!Dbg->getSDNodes().empty() ||
12169 llvm::any_of(Dbg->getLocationOps(),
12170 [&](const SDDbgOperand &Op) {
12171 return Op.getKind() == SDDbgOperand::FRAMEIX;
12172 })) &&
12173 "Salvaged DbgValue should depend on a new SDNode");
12174 AddDbgValue(Dbg, false);
12175 }
12176}
12177
12178/// Creates a SDDbgLabel node.
12180 const DebugLoc &DL, unsigned O) {
12181 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
12182 "Expected inlined-at fields to agree");
12183 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
12184}
12185
12186namespace {
12187
12188/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
12189/// pointed to by a use iterator is deleted, increment the use iterator
12190/// so that it doesn't dangle.
12191///
12192class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
12195
12196 void NodeDeleted(SDNode *N, SDNode *E) override {
12197 // Increment the iterator as needed.
12198 while (UI != UE && N == UI->getUser())
12199 ++UI;
12200 }
12201
12202public:
12203 RAUWUpdateListener(SelectionDAG &d,
12206 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
12207};
12208
12209} // end anonymous namespace
12210
12211/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
12212/// This can cause recursive merging of nodes in the DAG.
12213///
12214/// This version assumes From has a single result value.
12215///
12217 SDNode *From = FromN.getNode();
12218 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
12219 "Cannot replace with this method!");
12220 assert(From != To.getNode() && "Cannot replace uses of with self");
12221
12222 // Preserve Debug Values
12223 transferDbgValues(FromN, To);
12224 // Preserve extra info.
12225 copyExtraInfo(From, To.getNode());
12226
12227 // Iterate over all the existing uses of From. New uses will be added
12228 // to the beginning of the use list, which we avoid visiting.
12229 // This specifically avoids visiting uses of From that arise while the
12230 // replacement is happening, because any such uses would be the result
12231 // of CSE: If an existing node looks like From after one of its operands
12232 // is replaced by To, we don't want to replace of all its users with To
12233 // too. See PR3018 for more info.
12234 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
12235 RAUWUpdateListener Listener(*this, UI, UE);
12236 while (UI != UE) {
12237 SDNode *User = UI->getUser();
12238
12239 // This node is about to morph, remove its old self from the CSE maps.
12240 RemoveNodeFromCSEMaps(User);
12241
12242 // A user can appear in a use list multiple times, and when this
12243 // happens the uses are usually next to each other in the list.
12244 // To help reduce the number of CSE recomputations, process all
12245 // the uses of this user that we can find this way.
12246 do {
12247 SDUse &Use = *UI;
12248 ++UI;
12249 Use.set(To);
12250 if (To->isDivergent() != From->isDivergent())
12252 } while (UI != UE && UI->getUser() == User);
12253 // Now that we have modified User, add it back to the CSE maps. If it
12254 // already exists there, recursively merge the results together.
12255 AddModifiedNodeToCSEMaps(User);
12256 }
12257
12258 // If we just RAUW'd the root, take note.
12259 if (FromN == getRoot())
12260 setRoot(To);
12261}
12262
12263/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
12264/// This can cause recursive merging of nodes in the DAG.
12265///
12266/// This version assumes that for each value of From, there is a
12267/// corresponding value in To in the same position with the same type.
12268///
12270#ifndef NDEBUG
12271 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
12272 assert((!From->hasAnyUseOfValue(i) ||
12273 From->getValueType(i) == To->getValueType(i)) &&
12274 "Cannot use this version of ReplaceAllUsesWith!");
12275#endif
12276
12277 // Handle the trivial case.
12278 if (From == To)
12279 return;
12280
12281 // Preserve Debug Info. Only do this if there's a use.
12282 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
12283 if (From->hasAnyUseOfValue(i)) {
12284 assert((i < To->getNumValues()) && "Invalid To location");
12285 transferDbgValues(SDValue(From, i), SDValue(To, i));
12286 }
12287 // Preserve extra info.
12288 copyExtraInfo(From, To);
12289
12290 // Iterate over just the existing users of From. See the comments in
12291 // the ReplaceAllUsesWith above.
12292 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
12293 RAUWUpdateListener Listener(*this, UI, UE);
12294 while (UI != UE) {
12295 SDNode *User = UI->getUser();
12296
12297 // This node is about to morph, remove its old self from the CSE maps.
12298 RemoveNodeFromCSEMaps(User);
12299
12300 // A user can appear in a use list multiple times, and when this
12301 // happens the uses are usually next to each other in the list.
12302 // To help reduce the number of CSE recomputations, process all
12303 // the uses of this user that we can find this way.
12304 do {
12305 SDUse &Use = *UI;
12306 ++UI;
12307 Use.setNode(To);
12308 if (To->isDivergent() != From->isDivergent())
12310 } while (UI != UE && UI->getUser() == User);
12311
12312 // Now that we have modified User, add it back to the CSE maps. If it
12313 // already exists there, recursively merge the results together.
12314 AddModifiedNodeToCSEMaps(User);
12315 }
12316
12317 // If we just RAUW'd the root, take note.
12318 if (From == getRoot().getNode())
12319 setRoot(SDValue(To, getRoot().getResNo()));
12320}
12321
12322/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
12323/// This can cause recursive merging of nodes in the DAG.
12324///
12325/// This version can replace From with any result values. To must match the
12326/// number and types of values returned by From.
12328 if (From->getNumValues() == 1) // Handle the simple case efficiently.
12329 return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
12330
12331 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) {
12332 // Preserve Debug Info.
12333 transferDbgValues(SDValue(From, i), To[i]);
12334 // Preserve extra info.
12335 copyExtraInfo(From, To[i].getNode());
12336 }
12337
12338 // Iterate over just the existing users of From. See the comments in
12339 // the ReplaceAllUsesWith above.
12340 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
12341 RAUWUpdateListener Listener(*this, UI, UE);
12342 while (UI != UE) {
12343 SDNode *User = UI->getUser();
12344
12345 // This node is about to morph, remove its old self from the CSE maps.
12346 RemoveNodeFromCSEMaps(User);
12347
12348 // A user can appear in a use list multiple times, and when this happens the
12349 // uses are usually next to each other in the list. To help reduce the
12350 // number of CSE and divergence recomputations, process all the uses of this
12351 // user that we can find this way.
12352 bool To_IsDivergent = false;
12353 do {
12354 SDUse &Use = *UI;
12355 const SDValue &ToOp = To[Use.getResNo()];
12356 ++UI;
12357 Use.set(ToOp);
12358 To_IsDivergent |= ToOp->isDivergent();
12359 } while (UI != UE && UI->getUser() == User);
12360
12361 if (To_IsDivergent != From->isDivergent())
12363
12364 // Now that we have modified User, add it back to the CSE maps. If it
12365 // already exists there, recursively merge the results together.
12366 AddModifiedNodeToCSEMaps(User);
12367 }
12368
12369 // If we just RAUW'd the root, take note.
12370 if (From == getRoot().getNode())
12371 setRoot(SDValue(To[getRoot().getResNo()]));
12372}
12373
12374/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
12375/// uses of other values produced by From.getNode() alone. The Deleted
12376/// vector is handled the same way as for ReplaceAllUsesWith.
12378 // Handle the really simple, really trivial case efficiently.
12379 if (From == To) return;
12380
12381 // Handle the simple, trivial, case efficiently.
12382 if (From.getNode()->getNumValues() == 1) {
12383 ReplaceAllUsesWith(From, To);
12384 return;
12385 }
12386
12387 // Preserve Debug Info.
12388 transferDbgValues(From, To);
12389 copyExtraInfo(From.getNode(), To.getNode());
12390
12391 // Iterate over just the existing users of From. See the comments in
12392 // the ReplaceAllUsesWith above.
12393 SDNode::use_iterator UI = From.getNode()->use_begin(),
12394 UE = From.getNode()->use_end();
12395 RAUWUpdateListener Listener(*this, UI, UE);
12396 while (UI != UE) {
12397 SDNode *User = UI->getUser();
12398 bool UserRemovedFromCSEMaps = false;
12399
12400 // A user can appear in a use list multiple times, and when this
12401 // happens the uses are usually next to each other in the list.
12402 // To help reduce the number of CSE recomputations, process all
12403 // the uses of this user that we can find this way.
12404 do {
12405 SDUse &Use = *UI;
12406
12407 // Skip uses of different values from the same node.
12408 if (Use.getResNo() != From.getResNo()) {
12409 ++UI;
12410 continue;
12411 }
12412
12413 // If this node hasn't been modified yet, it's still in the CSE maps,
12414 // so remove its old self from the CSE maps.
12415 if (!UserRemovedFromCSEMaps) {
12416 RemoveNodeFromCSEMaps(User);
12417 UserRemovedFromCSEMaps = true;
12418 }
12419
12420 ++UI;
12421 Use.set(To);
12422 if (To->isDivergent() != From->isDivergent())
12424 } while (UI != UE && UI->getUser() == User);
12425 // We are iterating over all uses of the From node, so if a use
12426 // doesn't use the specific value, no changes are made.
12427 if (!UserRemovedFromCSEMaps)
12428 continue;
12429
12430 // Now that we have modified User, add it back to the CSE maps. If it
12431 // already exists there, recursively merge the results together.
12432 AddModifiedNodeToCSEMaps(User);
12433 }
12434
12435 // If we just RAUW'd the root, take note.
12436 if (From == getRoot())
12437 setRoot(To);
12438}
12439
12440namespace {
12441
12442/// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
12443/// to record information about a use.
12444struct UseMemo {
12445 SDNode *User;
12446 unsigned Index;
12447 SDUse *Use;
12448};
12449
12450/// operator< - Sort Memos by User.
12451bool operator<(const UseMemo &L, const UseMemo &R) {
12452 return (intptr_t)L.User < (intptr_t)R.User;
12453}
12454
12455/// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node
12456/// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that
12457/// the node already has been taken care of recursively.
12458class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener {
12459 SmallVectorImpl<UseMemo> &Uses;
12460
12461 void NodeDeleted(SDNode *N, SDNode *E) override {
12462 for (UseMemo &Memo : Uses)
12463 if (Memo.User == N)
12464 Memo.User = nullptr;
12465 }
12466
12467public:
12468 RAUOVWUpdateListener(SelectionDAG &d, SmallVectorImpl<UseMemo> &uses)
12469 : SelectionDAG::DAGUpdateListener(d), Uses(uses) {}
12470};
12471
12472} // end anonymous namespace
12473
12474/// Return true if a glue output should propagate divergence information.
12476 switch (Node->getOpcode()) {
12477 case ISD::CopyFromReg:
12478 case ISD::CopyToReg:
12479 return false;
12480 default:
12481 return true;
12482 }
12483
12484 llvm_unreachable("covered opcode switch");
12485}
12486
12488 if (TLI->isSDNodeAlwaysUniform(N)) {
12489 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, UA) &&
12490 "Conflicting divergence information!");
12491 return false;
12492 }
12493 if (TLI->isSDNodeSourceOfDivergence(N, FLI, UA))
12494 return true;
12495 for (const auto &Op : N->ops()) {
12496 EVT VT = Op.getValueType();
12497
12498 // Skip Chain. It does not carry divergence.
12499 if (VT != MVT::Other && Op.getNode()->isDivergent() &&
12500 (VT != MVT::Glue || gluePropagatesDivergence(Op.getNode())))
12501 return true;
12502 }
12503 return false;
12504}
12505
12507 SmallVector<SDNode *, 16> Worklist(1, N);
12508 do {
12509 N = Worklist.pop_back_val();
12510 bool IsDivergent = calculateDivergence(N);
12511 if (N->SDNodeBits.IsDivergent != IsDivergent) {
12512 N->SDNodeBits.IsDivergent = IsDivergent;
12513 llvm::append_range(Worklist, N->users());
12514 }
12515 } while (!Worklist.empty());
12516}
12517
12518void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
12520 Order.reserve(AllNodes.size());
12521 for (auto &N : allnodes()) {
12522 unsigned NOps = N.getNumOperands();
12523 Degree[&N] = NOps;
12524 if (0 == NOps)
12525 Order.push_back(&N);
12526 }
12527 for (size_t I = 0; I != Order.size(); ++I) {
12528 SDNode *N = Order[I];
12529 for (auto *U : N->users()) {
12530 unsigned &UnsortedOps = Degree[U];
12531 if (0 == --UnsortedOps)
12532 Order.push_back(U);
12533 }
12534 }
12535}
12536
12537#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
12538void SelectionDAG::VerifyDAGDivergence() {
12539 std::vector<SDNode *> TopoOrder;
12540 CreateTopologicalOrder(TopoOrder);
12541 for (auto *N : TopoOrder) {
12542 assert(calculateDivergence(N) == N->isDivergent() &&
12543 "Divergence bit inconsistency detected");
12544 }
12545}
12546#endif
12547
12548/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
12549/// uses of other values produced by From.getNode() alone. The same value
12550/// may appear in both the From and To list. The Deleted vector is
12551/// handled the same way as for ReplaceAllUsesWith.
12553 const SDValue *To,
12554 unsigned Num){
12555 // Handle the simple, trivial case efficiently.
12556 if (Num == 1)
12557 return ReplaceAllUsesOfValueWith(*From, *To);
12558
12559 transferDbgValues(*From, *To);
12560 copyExtraInfo(From->getNode(), To->getNode());
12561
12562 // Read up all the uses and make records of them. This helps
12563 // processing new uses that are introduced during the
12564 // replacement process.
12566 for (unsigned i = 0; i != Num; ++i) {
12567 unsigned FromResNo = From[i].getResNo();
12568 SDNode *FromNode = From[i].getNode();
12569 for (SDUse &Use : FromNode->uses()) {
12570 if (Use.getResNo() == FromResNo) {
12571 UseMemo Memo = {Use.getUser(), i, &Use};
12572 Uses.push_back(Memo);
12573 }
12574 }
12575 }
12576
12577 // Sort the uses, so that all the uses from a given User are together.
12579 RAUOVWUpdateListener Listener(*this, Uses);
12580
12581 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
12582 UseIndex != UseIndexEnd; ) {
12583 // We know that this user uses some value of From. If it is the right
12584 // value, update it.
12585 SDNode *User = Uses[UseIndex].User;
12586 // If the node has been deleted by recursive CSE updates when updating
12587 // another node, then just skip this entry.
12588 if (User == nullptr) {
12589 ++UseIndex;
12590 continue;
12591 }
12592
12593 // This node is about to morph, remove its old self from the CSE maps.
12594 RemoveNodeFromCSEMaps(User);
12595
12596 // The Uses array is sorted, so all the uses for a given User
12597 // are next to each other in the list.
12598 // To help reduce the number of CSE recomputations, process all
12599 // the uses of this user that we can find this way.
12600 do {
12601 unsigned i = Uses[UseIndex].Index;
12602 SDUse &Use = *Uses[UseIndex].Use;
12603 ++UseIndex;
12604
12605 Use.set(To[i]);
12606 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
12607
12608 // Now that we have modified User, add it back to the CSE maps. If it
12609 // already exists there, recursively merge the results together.
12610 AddModifiedNodeToCSEMaps(User);
12611 }
12612}
12613
12614/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
12615/// based on their topological order. It returns the maximum id and a vector
12616/// of the SDNodes* in assigned order by reference.
12618 unsigned DAGSize = 0;
12619
12620 // SortedPos tracks the progress of the algorithm. Nodes before it are
12621 // sorted, nodes after it are unsorted. When the algorithm completes
12622 // it is at the end of the list.
12623 allnodes_iterator SortedPos = allnodes_begin();
12624
12625 // Visit all the nodes. Move nodes with no operands to the front of
12626 // the list immediately. Annotate nodes that do have operands with their
12627 // operand count. Before we do this, the Node Id fields of the nodes
12628 // may contain arbitrary values. After, the Node Id fields for nodes
12629 // before SortedPos will contain the topological sort index, and the
12630 // Node Id fields for nodes At SortedPos and after will contain the
12631 // count of outstanding operands.
12633 checkForCycles(&N, this);
12634 unsigned Degree = N.getNumOperands();
12635 if (Degree == 0) {
12636 // A node with no uses, add it to the result array immediately.
12637 N.setNodeId(DAGSize++);
12638 allnodes_iterator Q(&N);
12639 if (Q != SortedPos)
12640 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
12641 assert(SortedPos != AllNodes.end() && "Overran node list");
12642 ++SortedPos;
12643 } else {
12644 // Temporarily use the Node Id as scratch space for the degree count.
12645 N.setNodeId(Degree);
12646 }
12647 }
12648
12649 // Visit all the nodes. As we iterate, move nodes into sorted order,
12650 // such that by the time the end is reached all nodes will be sorted.
12651 for (SDNode &Node : allnodes()) {
12652 SDNode *N = &Node;
12653 checkForCycles(N, this);
12654 // N is in sorted position, so all its uses have one less operand
12655 // that needs to be sorted.
12656 for (SDNode *P : N->users()) {
12657 unsigned Degree = P->getNodeId();
12658 assert(Degree != 0 && "Invalid node degree");
12659 --Degree;
12660 if (Degree == 0) {
12661 // All of P's operands are sorted, so P may sorted now.
12662 P->setNodeId(DAGSize++);
12663 if (P->getIterator() != SortedPos)
12664 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
12665 assert(SortedPos != AllNodes.end() && "Overran node list");
12666 ++SortedPos;
12667 } else {
12668 // Update P's outstanding operand count.
12669 P->setNodeId(Degree);
12670 }
12671 }
12672 if (Node.getIterator() == SortedPos) {
12673#ifndef NDEBUG
12675 SDNode *S = &*++I;
12676 dbgs() << "Overran sorted position:\n";
12677 S->dumprFull(this); dbgs() << "\n";
12678 dbgs() << "Checking if this is due to cycles\n";
12679 checkForCycles(this, true);
12680#endif
12681 llvm_unreachable(nullptr);
12682 }
12683 }
12684
12685 assert(SortedPos == AllNodes.end() &&
12686 "Topological sort incomplete!");
12687 assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
12688 "First node in topological sort is not the entry token!");
12689 assert(AllNodes.front().getNodeId() == 0 &&
12690 "First node in topological sort has non-zero id!");
12691 assert(AllNodes.front().getNumOperands() == 0 &&
12692 "First node in topological sort has operands!");
12693 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
12694 "Last node in topologic sort has unexpected id!");
12695 assert(AllNodes.back().use_empty() &&
12696 "Last node in topologic sort has users!");
12697 assert(DAGSize == allnodes_size() && "Node count mismatch!");
12698 return DAGSize;
12699}
12700
12701/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
12702/// value is produced by SD.
12703void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
12704 for (SDNode *SD : DB->getSDNodes()) {
12705 if (!SD)
12706 continue;
12707 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
12708 SD->setHasDebugValue(true);
12709 }
12710 DbgInfo->add(DB, isParameter);
12711}
12712
12713void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
12714
12716 SDValue NewMemOpChain) {
12717 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
12718 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
12719 // The new memory operation must have the same position as the old load in
12720 // terms of memory dependency. Create a TokenFactor for the old load and new
12721 // memory operation and update uses of the old load's output chain to use that
12722 // TokenFactor.
12723 if (OldChain == NewMemOpChain || OldChain.use_empty())
12724 return NewMemOpChain;
12725
12726 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
12727 OldChain, NewMemOpChain);
12728 ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
12729 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
12730 return TokenFactor;
12731}
12732
12734 SDValue NewMemOp) {
12735 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
12736 SDValue OldChain = SDValue(OldLoad, 1);
12737 SDValue NewMemOpChain = NewMemOp.getValue(1);
12738 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
12739}
12740
12742 Function **OutFunction) {
12743 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
12744
12745 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
12746 auto *Module = MF->getFunction().getParent();
12747 auto *Function = Module->getFunction(Symbol);
12748
12749 if (OutFunction != nullptr)
12750 *OutFunction = Function;
12751
12752 if (Function != nullptr) {
12753 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
12754 return getGlobalAddress(Function, SDLoc(Op), PtrTy);
12755 }
12756
12757 std::string ErrorStr;
12758 raw_string_ostream ErrorFormatter(ErrorStr);
12759 ErrorFormatter << "Undefined external symbol ";
12760 ErrorFormatter << '"' << Symbol << '"';
12761 report_fatal_error(Twine(ErrorStr));
12762}
12763
12764//===----------------------------------------------------------------------===//
12765// SDNode Class
12766//===----------------------------------------------------------------------===//
12767
12770 return Const != nullptr && Const->isZero();
12771}
12772
12774 return V.isUndef() || isNullConstant(V);
12775}
12776
12779 return Const != nullptr && Const->isZero() && !Const->isNegative();
12780}
12781
12784 return Const != nullptr && Const->isAllOnes();
12785}
12786
12789 return Const != nullptr && Const->isOne();
12790}
12791
12794 return Const != nullptr && Const->isMinSignedValue();
12795}
12796
12797bool llvm::isNeutralConstant(unsigned Opcode, SDNodeFlags Flags, SDValue V,
12798 unsigned OperandNo) {
12799 // NOTE: The cases should match with IR's ConstantExpr::getBinOpIdentity().
12800 // TODO: Target-specific opcodes could be added.
12801 if (auto *ConstV = isConstOrConstSplat(V, /*AllowUndefs*/ false,
12802 /*AllowTruncation*/ true)) {
12803 APInt Const = ConstV->getAPIntValue().trunc(V.getScalarValueSizeInBits());
12804 switch (Opcode) {
12805 case ISD::ADD:
12806 case ISD::OR:
12807 case ISD::XOR:
12808 case ISD::UMAX:
12809 return Const.isZero();
12810 case ISD::MUL:
12811 return Const.isOne();
12812 case ISD::AND:
12813 case ISD::UMIN:
12814 return Const.isAllOnes();
12815 case ISD::SMAX:
12816 return Const.isMinSignedValue();
12817 case ISD::SMIN:
12818 return Const.isMaxSignedValue();
12819 case ISD::SUB:
12820 case ISD::SHL:
12821 case ISD::SRA:
12822 case ISD::SRL:
12823 return OperandNo == 1 && Const.isZero();
12824 case ISD::UDIV:
12825 case ISD::SDIV:
12826 return OperandNo == 1 && Const.isOne();
12827 }
12828 } else if (auto *ConstFP = isConstOrConstSplatFP(V)) {
12829 switch (Opcode) {
12830 case ISD::FADD:
12831 return ConstFP->isZero() &&
12832 (Flags.hasNoSignedZeros() || ConstFP->isNegative());
12833 case ISD::FSUB:
12834 return OperandNo == 1 && ConstFP->isZero() &&
12835 (Flags.hasNoSignedZeros() || !ConstFP->isNegative());
12836 case ISD::FMUL:
12837 return ConstFP->isExactlyValue(1.0);
12838 case ISD::FDIV:
12839 return OperandNo == 1 && ConstFP->isExactlyValue(1.0);
12840 case ISD::FMINNUM:
12841 case ISD::FMAXNUM: {
12842 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
12843 EVT VT = V.getValueType();
12844 const fltSemantics &Semantics = VT.getFltSemantics();
12845 APFloat NeutralAF = !Flags.hasNoNaNs()
12846 ? APFloat::getQNaN(Semantics)
12847 : !Flags.hasNoInfs()
12848 ? APFloat::getInf(Semantics)
12849 : APFloat::getLargest(Semantics);
12850 if (Opcode == ISD::FMAXNUM)
12851 NeutralAF.changeSign();
12852
12853 return ConstFP->isExactlyValue(NeutralAF);
12854 }
12855 }
12856 }
12857 return false;
12858}
12859
12861 while (V.getOpcode() == ISD::BITCAST)
12862 V = V.getOperand(0);
12863 return V;
12864}
12865
12867 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
12868 V = V.getOperand(0);
12869 return V;
12870}
12871
12873 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
12874 V = V.getOperand(0);
12875 return V;
12876}
12877
12879 while (V.getOpcode() == ISD::INSERT_VECTOR_ELT) {
12880 SDValue InVec = V.getOperand(0);
12881 SDValue EltNo = V.getOperand(2);
12882 EVT VT = InVec.getValueType();
12883 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
12884 if (IndexC && VT.isFixedLengthVector() &&
12885 IndexC->getAPIntValue().ult(VT.getVectorNumElements()) &&
12886 !DemandedElts[IndexC->getZExtValue()]) {
12887 V = InVec;
12888 continue;
12889 }
12890 break;
12891 }
12892 return V;
12893}
12894
12896 while (V.getOpcode() == ISD::TRUNCATE)
12897 V = V.getOperand(0);
12898 return V;
12899}
12900
12901bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
12902 if (V.getOpcode() != ISD::XOR)
12903 return false;
12904 V = peekThroughBitcasts(V.getOperand(1));
12905 unsigned NumBits = V.getScalarValueSizeInBits();
12906 ConstantSDNode *C =
12907 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
12908 return C && (C->getAPIntValue().countr_one() >= NumBits);
12909}
12910
12912 bool AllowTruncation) {
12913 EVT VT = N.getValueType();
12914 APInt DemandedElts = VT.isFixedLengthVector()
12916 : APInt(1, 1);
12917 return isConstOrConstSplat(N, DemandedElts, AllowUndefs, AllowTruncation);
12918}
12919
12921 bool AllowUndefs,
12922 bool AllowTruncation) {
12924 return CN;
12925
12926 // SplatVectors can truncate their operands. Ignore that case here unless
12927 // AllowTruncation is set.
12928 if (N->getOpcode() == ISD::SPLAT_VECTOR) {
12929 EVT VecEltVT = N->getValueType(0).getVectorElementType();
12930 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
12931 EVT CVT = CN->getValueType(0);
12932 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
12933 if (AllowTruncation || CVT == VecEltVT)
12934 return CN;
12935 }
12936 }
12937
12939 BitVector UndefElements;
12940 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
12941
12942 // BuildVectors can truncate their operands. Ignore that case here unless
12943 // AllowTruncation is set.
12944 // TODO: Look into whether we should allow UndefElements in non-DemandedElts
12945 if (CN && (UndefElements.none() || AllowUndefs)) {
12946 EVT CVT = CN->getValueType(0);
12947 EVT NSVT = N.getValueType().getScalarType();
12948 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
12949 if (AllowTruncation || (CVT == NSVT))
12950 return CN;
12951 }
12952 }
12953
12954 return nullptr;
12955}
12956
12958 EVT VT = N.getValueType();
12959 APInt DemandedElts = VT.isFixedLengthVector()
12961 : APInt(1, 1);
12962 return isConstOrConstSplatFP(N, DemandedElts, AllowUndefs);
12963}
12964
12966 const APInt &DemandedElts,
12967 bool AllowUndefs) {
12969 return CN;
12970
12972 BitVector UndefElements;
12973 ConstantFPSDNode *CN =
12974 BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
12975 // TODO: Look into whether we should allow UndefElements in non-DemandedElts
12976 if (CN && (UndefElements.none() || AllowUndefs))
12977 return CN;
12978 }
12979
12980 if (N.getOpcode() == ISD::SPLAT_VECTOR)
12981 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
12982 return CN;
12983
12984 return nullptr;
12985}
12986
12987bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
12988 // TODO: may want to use peekThroughBitcast() here.
12989 ConstantSDNode *C =
12990 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
12991 return C && C->isZero();
12992}
12993
12994bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
12995 ConstantSDNode *C =
12996 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation*/ true);
12997 return C && C->isOne();
12998}
12999
13000bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
13002 unsigned BitWidth = N.getScalarValueSizeInBits();
13003 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
13004 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
13005}
13006
13007bool llvm::isOnesOrOnesSplat(SDValue N, bool AllowUndefs) {
13008 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
13009 return C && APInt::isSameValue(C->getAPIntValue(),
13010 APInt(C->getAPIntValue().getBitWidth(), 1));
13011}
13012
13013bool llvm::isZeroOrZeroSplat(SDValue N, bool AllowUndefs) {
13015 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs, true);
13016 return C && C->isZero();
13017}
13018
13022
13023MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
13024 SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
13025 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
13026 MemSDNodeBits.IsVolatile = MMO->isVolatile();
13027 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
13028 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
13029 MemSDNodeBits.IsInvariant = MMO->isInvariant();
13030
13031 // We check here that the size of the memory operand fits within the size of
13032 // the MMO. This is because the MMO might indicate only a possible address
13033 // range instead of specifying the affected memory addresses precisely.
13034 assert(
13035 (!MMO->getType().isValid() ||
13036 TypeSize::isKnownLE(memvt.getStoreSize(), MMO->getSize().getValue())) &&
13037 "Size mismatch!");
13038}
13039
13040/// Profile - Gather unique data for the node.
13041///
13043 AddNodeIDNode(ID, this);
13044}
13045
13046namespace {
13047
13048 struct EVTArray {
13049 std::vector<EVT> VTs;
13050
13051 EVTArray() {
13052 VTs.reserve(MVT::VALUETYPE_SIZE);
13053 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
13054 VTs.push_back(MVT((MVT::SimpleValueType)i));
13055 }
13056 };
13057
13058} // end anonymous namespace
13059
13060/// getValueTypeList - Return a pointer to the specified value type.
13061///
13062const EVT *SDNode::getValueTypeList(MVT VT) {
13063 static EVTArray SimpleVTArray;
13064
13065 assert(VT < MVT::VALUETYPE_SIZE && "Value type out of range!");
13066 return &SimpleVTArray.VTs[VT.SimpleTy];
13067}
13068
13069/// hasAnyUseOfValue - Return true if there are any use of the indicated
13070/// value. This method ignores uses of other values defined by this operation.
13071bool SDNode::hasAnyUseOfValue(unsigned Value) const {
13072 assert(Value < getNumValues() && "Bad value!");
13073
13074 for (SDUse &U : uses())
13075 if (U.getResNo() == Value)
13076 return true;
13077
13078 return false;
13079}
13080
13081/// isOnlyUserOf - Return true if this node is the only use of N.
13082bool SDNode::isOnlyUserOf(const SDNode *N) const {
13083 bool Seen = false;
13084 for (const SDNode *User : N->users()) {
13085 if (User == this)
13086 Seen = true;
13087 else
13088 return false;
13089 }
13090
13091 return Seen;
13092}
13093
13094/// Return true if the only users of N are contained in Nodes.
13096 bool Seen = false;
13097 for (const SDNode *User : N->users()) {
13098 if (llvm::is_contained(Nodes, User))
13099 Seen = true;
13100 else
13101 return false;
13102 }
13103
13104 return Seen;
13105}
13106
13107/// Return true if the referenced return value is an operand of N.
13108bool SDValue::isOperandOf(const SDNode *N) const {
13109 return is_contained(N->op_values(), *this);
13110}
13111
13112bool SDNode::isOperandOf(const SDNode *N) const {
13113 return any_of(N->op_values(),
13114 [this](SDValue Op) { return this == Op.getNode(); });
13115}
13116
13117/// reachesChainWithoutSideEffects - Return true if this operand (which must
13118/// be a chain) reaches the specified operand without crossing any
13119/// side-effecting instructions on any chain path. In practice, this looks
13120/// through token factors and non-volatile loads. In order to remain efficient,
13121/// this only looks a couple of nodes in, it does not do an exhaustive search.
13122///
13123/// Note that we only need to examine chains when we're searching for
13124/// side-effects; SelectionDAG requires that all side-effects are represented
13125/// by chains, even if another operand would force a specific ordering. This
13126/// constraint is necessary to allow transformations like splitting loads.
13128 unsigned Depth) const {
13129 if (*this == Dest) return true;
13130
13131 // Don't search too deeply, we just want to be able to see through
13132 // TokenFactor's etc.
13133 if (Depth == 0) return false;
13134
13135 // If this is a token factor, all inputs to the TF happen in parallel.
13136 if (getOpcode() == ISD::TokenFactor) {
13137 // First, try a shallow search.
13138 if (is_contained((*this)->ops(), Dest)) {
13139 // We found the chain we want as an operand of this TokenFactor.
13140 // Essentially, we reach the chain without side-effects if we could
13141 // serialize the TokenFactor into a simple chain of operations with
13142 // Dest as the last operation. This is automatically true if the
13143 // chain has one use: there are no other ordering constraints.
13144 // If the chain has more than one use, we give up: some other
13145 // use of Dest might force a side-effect between Dest and the current
13146 // node.
13147 if (Dest.hasOneUse())
13148 return true;
13149 }
13150 // Next, try a deep search: check whether every operand of the TokenFactor
13151 // reaches Dest.
13152 return llvm::all_of((*this)->ops(), [=](SDValue Op) {
13153 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
13154 });
13155 }
13156
13157 // Loads don't have side effects, look through them.
13158 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
13159 if (Ld->isUnordered())
13160 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
13161 }
13162 return false;
13163}
13164
13165bool SDNode::hasPredecessor(const SDNode *N) const {
13168 Worklist.push_back(this);
13169 return hasPredecessorHelper(N, Visited, Worklist);
13170}
13171
13173 this->Flags &= Flags;
13174}
13175
13176SDValue
13178 ArrayRef<ISD::NodeType> CandidateBinOps,
13179 bool AllowPartials) {
13180 // The pattern must end in an extract from index 0.
13181 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13182 !isNullConstant(Extract->getOperand(1)))
13183 return SDValue();
13184
13185 // Match against one of the candidate binary ops.
13186 SDValue Op = Extract->getOperand(0);
13187 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
13188 return Op.getOpcode() == unsigned(BinOp);
13189 }))
13190 return SDValue();
13191
13192 // Floating-point reductions may require relaxed constraints on the final step
13193 // of the reduction because they may reorder intermediate operations.
13194 unsigned CandidateBinOp = Op.getOpcode();
13195 if (Op.getValueType().isFloatingPoint()) {
13196 SDNodeFlags Flags = Op->getFlags();
13197 switch (CandidateBinOp) {
13198 case ISD::FADD:
13199 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
13200 return SDValue();
13201 break;
13202 default:
13203 llvm_unreachable("Unhandled FP opcode for binop reduction");
13204 }
13205 }
13206
13207 // Matching failed - attempt to see if we did enough stages that a partial
13208 // reduction from a subvector is possible.
13209 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
13210 if (!AllowPartials || !Op)
13211 return SDValue();
13212 EVT OpVT = Op.getValueType();
13213 EVT OpSVT = OpVT.getScalarType();
13214 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
13215 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
13216 return SDValue();
13217 BinOp = (ISD::NodeType)CandidateBinOp;
13218 return getExtractSubvector(SDLoc(Op), SubVT, Op, 0);
13219 };
13220
13221 // At each stage, we're looking for something that looks like:
13222 // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
13223 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
13224 // i32 undef, i32 undef, i32 undef, i32 undef>
13225 // %a = binop <8 x i32> %op, %s
13226 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
13227 // we expect something like:
13228 // <4,5,6,7,u,u,u,u>
13229 // <2,3,u,u,u,u,u,u>
13230 // <1,u,u,u,u,u,u,u>
13231 // While a partial reduction match would be:
13232 // <2,3,u,u,u,u,u,u>
13233 // <1,u,u,u,u,u,u,u>
13234 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
13235 SDValue PrevOp;
13236 for (unsigned i = 0; i < Stages; ++i) {
13237 unsigned MaskEnd = (1 << i);
13238
13239 if (Op.getOpcode() != CandidateBinOp)
13240 return PartialReduction(PrevOp, MaskEnd);
13241
13242 SDValue Op0 = Op.getOperand(0);
13243 SDValue Op1 = Op.getOperand(1);
13244
13246 if (Shuffle) {
13247 Op = Op1;
13248 } else {
13249 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
13250 Op = Op0;
13251 }
13252
13253 // The first operand of the shuffle should be the same as the other operand
13254 // of the binop.
13255 if (!Shuffle || Shuffle->getOperand(0) != Op)
13256 return PartialReduction(PrevOp, MaskEnd);
13257
13258 // Verify the shuffle has the expected (at this stage of the pyramid) mask.
13259 for (int Index = 0; Index < (int)MaskEnd; ++Index)
13260 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
13261 return PartialReduction(PrevOp, MaskEnd);
13262
13263 PrevOp = Op;
13264 }
13265
13266 // Handle subvector reductions, which tend to appear after the shuffle
13267 // reduction stages.
13268 while (Op.getOpcode() == CandidateBinOp) {
13269 unsigned NumElts = Op.getValueType().getVectorNumElements();
13270 SDValue Op0 = Op.getOperand(0);
13271 SDValue Op1 = Op.getOperand(1);
13272 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
13274 Op0.getOperand(0) != Op1.getOperand(0))
13275 break;
13276 SDValue Src = Op0.getOperand(0);
13277 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
13278 if (NumSrcElts != (2 * NumElts))
13279 break;
13280 if (!(Op0.getConstantOperandAPInt(1) == 0 &&
13281 Op1.getConstantOperandAPInt(1) == NumElts) &&
13282 !(Op1.getConstantOperandAPInt(1) == 0 &&
13283 Op0.getConstantOperandAPInt(1) == NumElts))
13284 break;
13285 Op = Src;
13286 }
13287
13288 BinOp = (ISD::NodeType)CandidateBinOp;
13289 return Op;
13290}
13291
13293 EVT VT = N->getValueType(0);
13294 EVT EltVT = VT.getVectorElementType();
13295 unsigned NE = VT.getVectorNumElements();
13296
13297 SDLoc dl(N);
13298
13299 // If ResNE is 0, fully unroll the vector op.
13300 if (ResNE == 0)
13301 ResNE = NE;
13302 else if (NE > ResNE)
13303 NE = ResNE;
13304
13305 if (N->getNumValues() == 2) {
13306 SmallVector<SDValue, 8> Scalars0, Scalars1;
13307 SmallVector<SDValue, 4> Operands(N->getNumOperands());
13308 EVT VT1 = N->getValueType(1);
13309 EVT EltVT1 = VT1.getVectorElementType();
13310
13311 unsigned i;
13312 for (i = 0; i != NE; ++i) {
13313 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
13314 SDValue Operand = N->getOperand(j);
13315 EVT OperandVT = Operand.getValueType();
13316
13317 // A vector operand; extract a single element.
13318 EVT OperandEltVT = OperandVT.getVectorElementType();
13319 Operands[j] = getExtractVectorElt(dl, OperandEltVT, Operand, i);
13320 }
13321
13322 SDValue EltOp = getNode(N->getOpcode(), dl, {EltVT, EltVT1}, Operands);
13323 Scalars0.push_back(EltOp);
13324 Scalars1.push_back(EltOp.getValue(1));
13325 }
13326
13327 for (; i < ResNE; ++i) {
13328 Scalars0.push_back(getUNDEF(EltVT));
13329 Scalars1.push_back(getUNDEF(EltVT1));
13330 }
13331
13332 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
13333 EVT VecVT1 = EVT::getVectorVT(*getContext(), EltVT1, ResNE);
13334 SDValue Vec0 = getBuildVector(VecVT, dl, Scalars0);
13335 SDValue Vec1 = getBuildVector(VecVT1, dl, Scalars1);
13336 return getMergeValues({Vec0, Vec1}, dl);
13337 }
13338
13339 assert(N->getNumValues() == 1 &&
13340 "Can't unroll a vector with multiple results!");
13341
13343 SmallVector<SDValue, 4> Operands(N->getNumOperands());
13344
13345 unsigned i;
13346 for (i= 0; i != NE; ++i) {
13347 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
13348 SDValue Operand = N->getOperand(j);
13349 EVT OperandVT = Operand.getValueType();
13350 if (OperandVT.isVector()) {
13351 // A vector operand; extract a single element.
13352 EVT OperandEltVT = OperandVT.getVectorElementType();
13353 Operands[j] = getExtractVectorElt(dl, OperandEltVT, Operand, i);
13354 } else {
13355 // A scalar operand; just use it as is.
13356 Operands[j] = Operand;
13357 }
13358 }
13359
13360 switch (N->getOpcode()) {
13361 default: {
13362 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
13363 N->getFlags()));
13364 break;
13365 }
13366 case ISD::VSELECT:
13367 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
13368 break;
13369 case ISD::SHL:
13370 case ISD::SRA:
13371 case ISD::SRL:
13372 case ISD::ROTL:
13373 case ISD::ROTR:
13374 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
13376 Operands[1])));
13377 break;
13379 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
13380 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
13381 Operands[0],
13382 getValueType(ExtVT)));
13383 break;
13384 }
13385 case ISD::ADDRSPACECAST: {
13386 const auto *ASC = cast<AddrSpaceCastSDNode>(N);
13387 Scalars.push_back(getAddrSpaceCast(dl, EltVT, Operands[0],
13388 ASC->getSrcAddressSpace(),
13389 ASC->getDestAddressSpace()));
13390 break;
13391 }
13392 }
13393 }
13394
13395 for (; i < ResNE; ++i)
13396 Scalars.push_back(getUNDEF(EltVT));
13397
13398 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
13399 return getBuildVector(VecVT, dl, Scalars);
13400}
13401
13402std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
13403 SDNode *N, unsigned ResNE) {
13404 unsigned Opcode = N->getOpcode();
13405 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
13406 Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
13407 Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
13408 "Expected an overflow opcode");
13409
13410 EVT ResVT = N->getValueType(0);
13411 EVT OvVT = N->getValueType(1);
13412 EVT ResEltVT = ResVT.getVectorElementType();
13413 EVT OvEltVT = OvVT.getVectorElementType();
13414 SDLoc dl(N);
13415
13416 // If ResNE is 0, fully unroll the vector op.
13417 unsigned NE = ResVT.getVectorNumElements();
13418 if (ResNE == 0)
13419 ResNE = NE;
13420 else if (NE > ResNE)
13421 NE = ResNE;
13422
13423 SmallVector<SDValue, 8> LHSScalars;
13424 SmallVector<SDValue, 8> RHSScalars;
13425 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
13426 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
13427
13428 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
13429 SDVTList VTs = getVTList(ResEltVT, SVT);
13430 SmallVector<SDValue, 8> ResScalars;
13431 SmallVector<SDValue, 8> OvScalars;
13432 for (unsigned i = 0; i < NE; ++i) {
13433 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
13434 SDValue Ov =
13435 getSelect(dl, OvEltVT, Res.getValue(1),
13436 getBoolConstant(true, dl, OvEltVT, ResVT),
13437 getConstant(0, dl, OvEltVT));
13438
13439 ResScalars.push_back(Res);
13440 OvScalars.push_back(Ov);
13441 }
13442
13443 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
13444 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
13445
13446 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
13447 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
13448 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
13449 getBuildVector(NewOvVT, dl, OvScalars));
13450}
13451
13454 unsigned Bytes,
13455 int Dist) const {
13456 if (LD->isVolatile() || Base->isVolatile())
13457 return false;
13458 // TODO: probably too restrictive for atomics, revisit
13459 if (!LD->isSimple())
13460 return false;
13461 if (LD->isIndexed() || Base->isIndexed())
13462 return false;
13463 if (LD->getChain() != Base->getChain())
13464 return false;
13465 EVT VT = LD->getMemoryVT();
13466 if (VT.getSizeInBits() / 8 != Bytes)
13467 return false;
13468
13469 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
13470 auto LocDecomp = BaseIndexOffset::match(LD, *this);
13471
13472 int64_t Offset = 0;
13473 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
13474 return (Dist * (int64_t)Bytes == Offset);
13475 return false;
13476}
13477
13478/// InferPtrAlignment - Infer alignment of a load / store address. Return
13479/// std::nullopt if it cannot be inferred.
13481 // If this is a GlobalAddress + cst, return the alignment.
13482 const GlobalValue *GV = nullptr;
13483 int64_t GVOffset = 0;
13484 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
13485 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
13486 KnownBits Known(PtrWidth);
13488 unsigned AlignBits = Known.countMinTrailingZeros();
13489 if (AlignBits)
13490 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
13491 }
13492
13493 // If this is a direct reference to a stack slot, use information about the
13494 // stack slot's alignment.
13495 int FrameIdx = INT_MIN;
13496 int64_t FrameOffset = 0;
13498 FrameIdx = FI->getIndex();
13499 } else if (isBaseWithConstantOffset(Ptr) &&
13500 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
13501 // Handle FI+Cst
13502 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
13503 FrameOffset = Ptr.getConstantOperandVal(1);
13504 }
13505
13506 if (FrameIdx != INT_MIN) {
13508 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
13509 }
13510
13511 return std::nullopt;
13512}
13513
13514/// Split the scalar node with EXTRACT_ELEMENT using the provided
13515/// VTs and return the low/high part.
13516std::pair<SDValue, SDValue> SelectionDAG::SplitScalar(const SDValue &N,
13517 const SDLoc &DL,
13518 const EVT &LoVT,
13519 const EVT &HiVT) {
13520 assert(!LoVT.isVector() && !HiVT.isVector() && !N.getValueType().isVector() &&
13521 "Split node must be a scalar type");
13522 SDValue Lo =
13524 SDValue Hi =
13526 return std::make_pair(Lo, Hi);
13527}
13528
13529/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
13530/// which is split (or expanded) into two not necessarily identical pieces.
13531std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
13532 // Currently all types are split in half.
13533 EVT LoVT, HiVT;
13534 if (!VT.isVector())
13535 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
13536 else
13537 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
13538
13539 return std::make_pair(LoVT, HiVT);
13540}
13541
13542/// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
13543/// type, dependent on an enveloping VT that has been split into two identical
13544/// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
13545std::pair<EVT, EVT>
13547 bool *HiIsEmpty) const {
13548 EVT EltTp = VT.getVectorElementType();
13549 // Examples:
13550 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty)
13551 // custom VL=9 with enveloping VL=8/8 yields 8/1
13552 // custom VL=10 with enveloping VL=8/8 yields 8/2
13553 // etc.
13554 ElementCount VTNumElts = VT.getVectorElementCount();
13555 ElementCount EnvNumElts = EnvVT.getVectorElementCount();
13556 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
13557 "Mixing fixed width and scalable vectors when enveloping a type");
13558 EVT LoVT, HiVT;
13559 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
13560 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
13561 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
13562 *HiIsEmpty = false;
13563 } else {
13564 // Flag that hi type has zero storage size, but return split envelop type
13565 // (this would be easier if vector types with zero elements were allowed).
13566 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
13567 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
13568 *HiIsEmpty = true;
13569 }
13570 return std::make_pair(LoVT, HiVT);
13571}
13572
13573/// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
13574/// low/high part.
13575std::pair<SDValue, SDValue>
13576SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
13577 const EVT &HiVT) {
13578 assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
13579 LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
13580 "Splitting vector with an invalid mixture of fixed and scalable "
13581 "vector types");
13583 N.getValueType().getVectorMinNumElements() &&
13584 "More vector elements requested than available!");
13585 SDValue Lo, Hi;
13586 Lo = getExtractSubvector(DL, LoVT, N, 0);
13587 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
13588 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
13589 // IDX with the runtime scaling factor of the result vector type. For
13590 // fixed-width result vectors, that runtime scaling factor is 1.
13593 return std::make_pair(Lo, Hi);
13594}
13595
13596std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
13597 const SDLoc &DL) {
13598 // Split the vector length parameter.
13599 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
13600 EVT VT = N.getValueType();
13602 "Expecting the mask to be an evenly-sized vector");
13603 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
13604 SDValue HalfNumElts =
13605 VecVT.isFixedLengthVector()
13606 ? getConstant(HalfMinNumElts, DL, VT)
13607 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
13608 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
13609 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
13610 return std::make_pair(Lo, Hi);
13611}
13612
13613/// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
13615 EVT VT = N.getValueType();
13618 return getInsertSubvector(DL, getUNDEF(WideVT), N, 0);
13619}
13620
13623 unsigned Start, unsigned Count,
13624 EVT EltVT) {
13625 EVT VT = Op.getValueType();
13626 if (Count == 0)
13628 if (EltVT == EVT())
13629 EltVT = VT.getVectorElementType();
13630 SDLoc SL(Op);
13631 for (unsigned i = Start, e = Start + Count; i != e; ++i) {
13632 Args.push_back(getExtractVectorElt(SL, EltVT, Op, i));
13633 }
13634}
13635
13636// getAddressSpace - Return the address space this GlobalAddress belongs to.
13638 return getGlobal()->getType()->getAddressSpace();
13639}
13640
13643 return Val.MachineCPVal->getType();
13644 return Val.ConstVal->getType();
13645}
13646
13647bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
13648 unsigned &SplatBitSize,
13649 bool &HasAnyUndefs,
13650 unsigned MinSplatBits,
13651 bool IsBigEndian) const {
13652 EVT VT = getValueType(0);
13653 assert(VT.isVector() && "Expected a vector type");
13654 unsigned VecWidth = VT.getSizeInBits();
13655 if (MinSplatBits > VecWidth)
13656 return false;
13657
13658 // FIXME: The widths are based on this node's type, but build vectors can
13659 // truncate their operands.
13660 SplatValue = APInt(VecWidth, 0);
13661 SplatUndef = APInt(VecWidth, 0);
13662
13663 // Get the bits. Bits with undefined values (when the corresponding element
13664 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
13665 // in SplatValue. If any of the values are not constant, give up and return
13666 // false.
13667 unsigned int NumOps = getNumOperands();
13668 assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
13669 unsigned EltWidth = VT.getScalarSizeInBits();
13670
13671 for (unsigned j = 0; j < NumOps; ++j) {
13672 unsigned i = IsBigEndian ? NumOps - 1 - j : j;
13673 SDValue OpVal = getOperand(i);
13674 unsigned BitPos = j * EltWidth;
13675
13676 if (OpVal.isUndef())
13677 SplatUndef.setBits(BitPos, BitPos + EltWidth);
13678 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
13679 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
13680 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
13681 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
13682 else
13683 return false;
13684 }
13685
13686 // The build_vector is all constants or undefs. Find the smallest element
13687 // size that splats the vector.
13688 HasAnyUndefs = (SplatUndef != 0);
13689
13690 // FIXME: This does not work for vectors with elements less than 8 bits.
13691 while (VecWidth > 8) {
13692 // If we can't split in half, stop here.
13693 if (VecWidth & 1)
13694 break;
13695
13696 unsigned HalfSize = VecWidth / 2;
13697 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
13698 APInt LowValue = SplatValue.extractBits(HalfSize, 0);
13699 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
13700 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
13701
13702 // If the two halves do not match (ignoring undef bits), stop here.
13703 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
13704 MinSplatBits > HalfSize)
13705 break;
13706
13707 SplatValue = HighValue | LowValue;
13708 SplatUndef = HighUndef & LowUndef;
13709
13710 VecWidth = HalfSize;
13711 }
13712
13713 // FIXME: The loop above only tries to split in halves. But if the input
13714 // vector for example is <3 x i16> it wouldn't be able to detect a
13715 // SplatBitSize of 16. No idea if that is a design flaw currently limiting
13716 // optimizations. I guess that back in the days when this helper was created
13717 // vectors normally was power-of-2 sized.
13718
13719 SplatBitSize = VecWidth;
13720 return true;
13721}
13722
13724 BitVector *UndefElements) const {
13725 unsigned NumOps = getNumOperands();
13726 if (UndefElements) {
13727 UndefElements->clear();
13728 UndefElements->resize(NumOps);
13729 }
13730 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
13731 if (!DemandedElts)
13732 return SDValue();
13733 SDValue Splatted;
13734 for (unsigned i = 0; i != NumOps; ++i) {
13735 if (!DemandedElts[i])
13736 continue;
13737 SDValue Op = getOperand(i);
13738 if (Op.isUndef()) {
13739 if (UndefElements)
13740 (*UndefElements)[i] = true;
13741 } else if (!Splatted) {
13742 Splatted = Op;
13743 } else if (Splatted != Op) {
13744 return SDValue();
13745 }
13746 }
13747
13748 if (!Splatted) {
13749 unsigned FirstDemandedIdx = DemandedElts.countr_zero();
13750 assert(getOperand(FirstDemandedIdx).isUndef() &&
13751 "Can only have a splat without a constant for all undefs.");
13752 return getOperand(FirstDemandedIdx);
13753 }
13754
13755 return Splatted;
13756}
13757
13759 APInt DemandedElts = APInt::getAllOnes(getNumOperands());
13760 return getSplatValue(DemandedElts, UndefElements);
13761}
13762
13764 SmallVectorImpl<SDValue> &Sequence,
13765 BitVector *UndefElements) const {
13766 unsigned NumOps = getNumOperands();
13767 Sequence.clear();
13768 if (UndefElements) {
13769 UndefElements->clear();
13770 UndefElements->resize(NumOps);
13771 }
13772 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
13773 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
13774 return false;
13775
13776 // Set the undefs even if we don't find a sequence (like getSplatValue).
13777 if (UndefElements)
13778 for (unsigned I = 0; I != NumOps; ++I)
13779 if (DemandedElts[I] && getOperand(I).isUndef())
13780 (*UndefElements)[I] = true;
13781
13782 // Iteratively widen the sequence length looking for repetitions.
13783 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
13784 Sequence.append(SeqLen, SDValue());
13785 for (unsigned I = 0; I != NumOps; ++I) {
13786 if (!DemandedElts[I])
13787 continue;
13788 SDValue &SeqOp = Sequence[I % SeqLen];
13790 if (Op.isUndef()) {
13791 if (!SeqOp)
13792 SeqOp = Op;
13793 continue;
13794 }
13795 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
13796 Sequence.clear();
13797 break;
13798 }
13799 SeqOp = Op;
13800 }
13801 if (!Sequence.empty())
13802 return true;
13803 }
13804
13805 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
13806 return false;
13807}
13808
13810 BitVector *UndefElements) const {
13811 APInt DemandedElts = APInt::getAllOnes(getNumOperands());
13812 return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
13813}
13814
13817 BitVector *UndefElements) const {
13819 getSplatValue(DemandedElts, UndefElements));
13820}
13821
13824 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
13825}
13826
13829 BitVector *UndefElements) const {
13831 getSplatValue(DemandedElts, UndefElements));
13832}
13833
13838
13839int32_t
13841 uint32_t BitWidth) const {
13842 if (ConstantFPSDNode *CN =
13844 bool IsExact;
13845 APSInt IntVal(BitWidth);
13846 const APFloat &APF = CN->getValueAPF();
13847 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
13848 APFloat::opOK ||
13849 !IsExact)
13850 return -1;
13851
13852 return IntVal.exactLogBase2();
13853 }
13854 return -1;
13855}
13856
13858 bool IsLittleEndian, unsigned DstEltSizeInBits,
13859 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
13860 // Early-out if this contains anything but Undef/Constant/ConstantFP.
13861 if (!isConstant())
13862 return false;
13863
13864 unsigned NumSrcOps = getNumOperands();
13865 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
13866 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13867 "Invalid bitcast scale");
13868
13869 // Extract raw src bits.
13870 SmallVector<APInt> SrcBitElements(NumSrcOps,
13871 APInt::getZero(SrcEltSizeInBits));
13872 BitVector SrcUndeElements(NumSrcOps, false);
13873
13874 for (unsigned I = 0; I != NumSrcOps; ++I) {
13876 if (Op.isUndef()) {
13877 SrcUndeElements.set(I);
13878 continue;
13879 }
13880 auto *CInt = dyn_cast<ConstantSDNode>(Op);
13881 auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
13882 assert((CInt || CFP) && "Unknown constant");
13883 SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
13884 : CFP->getValueAPF().bitcastToAPInt();
13885 }
13886
13887 // Recast to dst width.
13888 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
13889 SrcBitElements, UndefElements, SrcUndeElements);
13890 return true;
13891}
13892
13893void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
13894 unsigned DstEltSizeInBits,
13895 SmallVectorImpl<APInt> &DstBitElements,
13896 ArrayRef<APInt> SrcBitElements,
13897 BitVector &DstUndefElements,
13898 const BitVector &SrcUndefElements) {
13899 unsigned NumSrcOps = SrcBitElements.size();
13900 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
13901 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13902 "Invalid bitcast scale");
13903 assert(NumSrcOps == SrcUndefElements.size() &&
13904 "Vector size mismatch");
13905
13906 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
13907 DstUndefElements.clear();
13908 DstUndefElements.resize(NumDstOps, false);
13909 DstBitElements.assign(NumDstOps, APInt::getZero(DstEltSizeInBits));
13910
13911 // Concatenate src elements constant bits together into dst element.
13912 if (SrcEltSizeInBits <= DstEltSizeInBits) {
13913 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
13914 for (unsigned I = 0; I != NumDstOps; ++I) {
13915 DstUndefElements.set(I);
13916 APInt &DstBits = DstBitElements[I];
13917 for (unsigned J = 0; J != Scale; ++J) {
13918 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13919 if (SrcUndefElements[Idx])
13920 continue;
13921 DstUndefElements.reset(I);
13922 const APInt &SrcBits = SrcBitElements[Idx];
13923 assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
13924 "Illegal constant bitwidths");
13925 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
13926 }
13927 }
13928 return;
13929 }
13930
13931 // Split src element constant bits into dst elements.
13932 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
13933 for (unsigned I = 0; I != NumSrcOps; ++I) {
13934 if (SrcUndefElements[I]) {
13935 DstUndefElements.set(I * Scale, (I + 1) * Scale);
13936 continue;
13937 }
13938 const APInt &SrcBits = SrcBitElements[I];
13939 for (unsigned J = 0; J != Scale; ++J) {
13940 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13941 APInt &DstBits = DstBitElements[Idx];
13942 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
13943 }
13944 }
13945}
13946
13948 for (const SDValue &Op : op_values()) {
13949 unsigned Opc = Op.getOpcode();
13950 if (!Op.isUndef() && Opc != ISD::Constant && Opc != ISD::ConstantFP)
13951 return false;
13952 }
13953 return true;
13954}
13955
13956std::optional<std::pair<APInt, APInt>>
13958 unsigned NumOps = getNumOperands();
13959 if (NumOps < 2)
13960 return std::nullopt;
13961
13964 return std::nullopt;
13965
13966 unsigned EltSize = getValueType(0).getScalarSizeInBits();
13967 APInt Start = getConstantOperandAPInt(0).trunc(EltSize);
13968 APInt Stride = getConstantOperandAPInt(1).trunc(EltSize) - Start;
13969
13970 if (Stride.isZero())
13971 return std::nullopt;
13972
13973 for (unsigned i = 2; i < NumOps; ++i) {
13975 return std::nullopt;
13976
13977 APInt Val = getConstantOperandAPInt(i).trunc(EltSize);
13978 if (Val != (Start + (Stride * i)))
13979 return std::nullopt;
13980 }
13981
13982 return std::make_pair(Start, Stride);
13983}
13984
13986 // Find the first non-undef value in the shuffle mask.
13987 unsigned i, e;
13988 for (i = 0, e = Mask.size(); i != e && Mask[i] < 0; ++i)
13989 /* search */;
13990
13991 // If all elements are undefined, this shuffle can be considered a splat
13992 // (although it should eventually get simplified away completely).
13993 if (i == e)
13994 return true;
13995
13996 // Make sure all remaining elements are either undef or the same as the first
13997 // non-undef value.
13998 for (int Idx = Mask[i]; i != e; ++i)
13999 if (Mask[i] >= 0 && Mask[i] != Idx)
14000 return false;
14001 return true;
14002}
14003
14004// Returns true if it is a constant integer BuildVector or constant integer,
14005// possibly hidden by a bitcast.
14007 SDValue N, bool AllowOpaques) const {
14009
14010 if (auto *C = dyn_cast<ConstantSDNode>(N))
14011 return AllowOpaques || !C->isOpaque();
14012
14014 return true;
14015
14016 // Treat a GlobalAddress supporting constant offset folding as a
14017 // constant integer.
14018 if (auto *GA = dyn_cast<GlobalAddressSDNode>(N))
14019 if (GA->getOpcode() == ISD::GlobalAddress &&
14020 TLI->isOffsetFoldingLegal(GA))
14021 return true;
14022
14023 if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
14024 isa<ConstantSDNode>(N.getOperand(0)))
14025 return true;
14026 return false;
14027}
14028
14029// Returns true if it is a constant float BuildVector or constant float.
14032 return true;
14033
14035 return true;
14036
14037 if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
14038 isa<ConstantFPSDNode>(N.getOperand(0)))
14039 return true;
14040
14041 return false;
14042}
14043
14044std::optional<bool> SelectionDAG::isBoolConstant(SDValue N) const {
14045 ConstantSDNode *Const =
14046 isConstOrConstSplat(N, false, /*AllowTruncation=*/true);
14047 if (!Const)
14048 return std::nullopt;
14049
14050 EVT VT = N->getValueType(0);
14051 const APInt CVal = Const->getAPIntValue().trunc(VT.getScalarSizeInBits());
14052 switch (TLI->getBooleanContents(N.getValueType())) {
14054 if (CVal.isOne())
14055 return true;
14056 if (CVal.isZero())
14057 return false;
14058 return std::nullopt;
14060 if (CVal.isAllOnes())
14061 return true;
14062 if (CVal.isZero())
14063 return false;
14064 return std::nullopt;
14066 return CVal[0];
14067 }
14068 llvm_unreachable("Unknown BooleanContent enum");
14069}
14070
14071void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
14072 assert(!Node->OperandList && "Node already has operands");
14074 "too many operands to fit into SDNode");
14075 SDUse *Ops = OperandRecycler.allocate(
14076 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
14077
14078 bool IsDivergent = false;
14079 for (unsigned I = 0; I != Vals.size(); ++I) {
14080 Ops[I].setUser(Node);
14081 Ops[I].setInitial(Vals[I]);
14082 EVT VT = Ops[I].getValueType();
14083
14084 // Skip Chain. It does not carry divergence.
14085 if (VT != MVT::Other &&
14086 (VT != MVT::Glue || gluePropagatesDivergence(Ops[I].getNode())) &&
14087 Ops[I].getNode()->isDivergent()) {
14088 IsDivergent = true;
14089 }
14090 }
14091 Node->NumOperands = Vals.size();
14092 Node->OperandList = Ops;
14093 if (!TLI->isSDNodeAlwaysUniform(Node)) {
14094 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, UA);
14095 Node->SDNodeBits.IsDivergent = IsDivergent;
14096 }
14097 checkForCycles(Node);
14098}
14099
14102 size_t Limit = SDNode::getMaxNumOperands();
14103 while (Vals.size() > Limit) {
14104 unsigned SliceIdx = Vals.size() - Limit;
14105 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
14106 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
14107 Vals.erase(Vals.begin() + SliceIdx, Vals.end());
14108 Vals.emplace_back(NewTF);
14109 }
14110 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
14111}
14112
14114 EVT VT, SDNodeFlags Flags) {
14115 switch (Opcode) {
14116 default:
14117 return SDValue();
14118 case ISD::ADD:
14119 case ISD::OR:
14120 case ISD::XOR:
14121 case ISD::UMAX:
14122 return getConstant(0, DL, VT);
14123 case ISD::MUL:
14124 return getConstant(1, DL, VT);
14125 case ISD::AND:
14126 case ISD::UMIN:
14127 return getAllOnesConstant(DL, VT);
14128 case ISD::SMAX:
14130 case ISD::SMIN:
14132 case ISD::FADD:
14133 // If flags allow, prefer positive zero since it's generally cheaper
14134 // to materialize on most targets.
14135 return getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, VT);
14136 case ISD::FMUL:
14137 return getConstantFP(1.0, DL, VT);
14138 case ISD::FMINNUM:
14139 case ISD::FMAXNUM: {
14140 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
14141 const fltSemantics &Semantics = VT.getFltSemantics();
14142 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
14143 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
14144 APFloat::getLargest(Semantics);
14145 if (Opcode == ISD::FMAXNUM)
14146 NeutralAF.changeSign();
14147
14148 return getConstantFP(NeutralAF, DL, VT);
14149 }
14150 case ISD::FMINIMUM:
14151 case ISD::FMAXIMUM: {
14152 // Neutral element for fminimum is Inf or FLT_MAX, depending on FMF.
14153 const fltSemantics &Semantics = VT.getFltSemantics();
14154 APFloat NeutralAF = !Flags.hasNoInfs() ? APFloat::getInf(Semantics)
14155 : APFloat::getLargest(Semantics);
14156 if (Opcode == ISD::FMAXIMUM)
14157 NeutralAF.changeSign();
14158
14159 return getConstantFP(NeutralAF, DL, VT);
14160 }
14161
14162 }
14163}
14164
14165/// Helper used to make a call to a library function that has one argument of
14166/// pointer type.
14167///
14168/// Such functions include 'fegetmode', 'fesetenv' and some others, which are
14169/// used to get or set floating-point state. They have one argument of pointer
14170/// type, which points to the memory region containing bits of the
14171/// floating-point state. The value returned by such function is ignored in the
14172/// created call.
14173///
14174/// \param LibFunc Reference to library function (value of RTLIB::Libcall).
14175/// \param Ptr Pointer used to save/load state.
14176/// \param InChain Ingoing token chain.
14177/// \returns Outgoing chain token.
14179 SDValue InChain,
14180 const SDLoc &DLoc) {
14181 assert(InChain.getValueType() == MVT::Other && "Expected token chain");
14183 Args.emplace_back(Ptr, Ptr.getValueType().getTypeForEVT(*getContext()));
14184 RTLIB::Libcall LC = static_cast<RTLIB::Libcall>(LibFunc);
14185 SDValue Callee = getExternalSymbol(TLI->getLibcallName(LC),
14186 TLI->getPointerTy(getDataLayout()));
14188 CLI.setDebugLoc(DLoc).setChain(InChain).setLibCallee(
14189 TLI->getLibcallCallingConv(LC), Type::getVoidTy(*getContext()), Callee,
14190 std::move(Args));
14191 return TLI->LowerCallTo(CLI).second;
14192}
14193
14195 assert(From && To && "Invalid SDNode; empty source SDValue?");
14196 auto I = SDEI.find(From);
14197 if (I == SDEI.end())
14198 return;
14199
14200 // Use of operator[] on the DenseMap may cause an insertion, which invalidates
14201 // the iterator, hence the need to make a copy to prevent a use-after-free.
14202 NodeExtraInfo NEI = I->second;
14203 if (LLVM_LIKELY(!NEI.PCSections)) {
14204 // No deep copy required for the types of extra info set.
14205 //
14206 // FIXME: Investigate if other types of extra info also need deep copy. This
14207 // depends on the types of nodes they can be attached to: if some extra info
14208 // is only ever attached to nodes where a replacement To node is always the
14209 // node where later use and propagation of the extra info has the intended
14210 // semantics, no deep copy is required.
14211 SDEI[To] = std::move(NEI);
14212 return;
14213 }
14214
14215 const SDNode *EntrySDN = getEntryNode().getNode();
14216
14217 // We need to copy NodeExtraInfo to all _new_ nodes that are being introduced
14218 // through the replacement of From with To. Otherwise, replacements of a node
14219 // (From) with more complex nodes (To and its operands) may result in lost
14220 // extra info where the root node (To) is insignificant in further propagating
14221 // and using extra info when further lowering to MIR.
14222 //
14223 // In the first step pre-populate the visited set with the nodes reachable
14224 // from the old From node. This avoids copying NodeExtraInfo to parts of the
14225 // DAG that is not new and should be left untouched.
14226 SmallVector<const SDNode *> Leafs{From}; // Leafs reachable with VisitFrom.
14227 DenseSet<const SDNode *> FromReach; // The set of nodes reachable from From.
14228 auto VisitFrom = [&](auto &&Self, const SDNode *N, int MaxDepth) {
14229 if (MaxDepth == 0) {
14230 // Remember this node in case we need to increase MaxDepth and continue
14231 // populating FromReach from this node.
14232 Leafs.emplace_back(N);
14233 return;
14234 }
14235 if (!FromReach.insert(N).second)
14236 return;
14237 for (const SDValue &Op : N->op_values())
14238 Self(Self, Op.getNode(), MaxDepth - 1);
14239 };
14240
14241 // Copy extra info to To and all its transitive operands (that are new).
14243 auto DeepCopyTo = [&](auto &&Self, const SDNode *N) {
14244 if (FromReach.contains(N))
14245 return true;
14246 if (!Visited.insert(N).second)
14247 return true;
14248 if (EntrySDN == N)
14249 return false;
14250 for (const SDValue &Op : N->op_values()) {
14251 if (N == To && Op.getNode() == EntrySDN) {
14252 // Special case: New node's operand is the entry node; just need to
14253 // copy extra info to new node.
14254 break;
14255 }
14256 if (!Self(Self, Op.getNode()))
14257 return false;
14258 }
14259 // Copy only if entry node was not reached.
14260 SDEI[N] = NEI;
14261 return true;
14262 };
14263
14264 // We first try with a lower MaxDepth, assuming that the path to common
14265 // operands between From and To is relatively short. This significantly
14266 // improves performance in the common case. The initial MaxDepth is big
14267 // enough to avoid retry in the common case; the last MaxDepth is large
14268 // enough to avoid having to use the fallback below (and protects from
14269 // potential stack exhaustion from recursion).
14270 for (int PrevDepth = 0, MaxDepth = 16; MaxDepth <= 1024;
14271 PrevDepth = MaxDepth, MaxDepth *= 2, Visited.clear()) {
14272 // StartFrom is the previous (or initial) set of leafs reachable at the
14273 // previous maximum depth.
14275 std::swap(StartFrom, Leafs);
14276 for (const SDNode *N : StartFrom)
14277 VisitFrom(VisitFrom, N, MaxDepth - PrevDepth);
14278 if (LLVM_LIKELY(DeepCopyTo(DeepCopyTo, To)))
14279 return;
14280 // This should happen very rarely (reached the entry node).
14281 LLVM_DEBUG(dbgs() << __func__ << ": MaxDepth=" << MaxDepth << " too low\n");
14282 assert(!Leafs.empty());
14283 }
14284
14285 // This should not happen - but if it did, that means the subgraph reachable
14286 // from From has depth greater or equal to maximum MaxDepth, and VisitFrom()
14287 // could not visit all reachable common operands. Consequently, we were able
14288 // to reach the entry node.
14289 errs() << "warning: incomplete propagation of SelectionDAG::NodeExtraInfo\n";
14290 assert(false && "From subgraph too complex - increase max. MaxDepth?");
14291 // Best-effort fallback if assertions disabled.
14292 SDEI[To] = std::move(NEI);
14293}
14294
14295#ifndef NDEBUG
14296static void checkForCyclesHelper(const SDNode *N,
14299 const llvm::SelectionDAG *DAG) {
14300 // If this node has already been checked, don't check it again.
14301 if (Checked.count(N))
14302 return;
14303
14304 // If a node has already been visited on this depth-first walk, reject it as
14305 // a cycle.
14306 if (!Visited.insert(N).second) {
14307 errs() << "Detected cycle in SelectionDAG\n";
14308 dbgs() << "Offending node:\n";
14309 N->dumprFull(DAG); dbgs() << "\n";
14310 abort();
14311 }
14312
14313 for (const SDValue &Op : N->op_values())
14314 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
14315
14316 Checked.insert(N);
14317 Visited.erase(N);
14318}
14319#endif
14320
14322 const llvm::SelectionDAG *DAG,
14323 bool force) {
14324#ifndef NDEBUG
14325 bool check = force;
14326#ifdef EXPENSIVE_CHECKS
14327 check = true;
14328#endif // EXPENSIVE_CHECKS
14329 if (check) {
14330 assert(N && "Checking nonexistent SDNode");
14333 checkForCyclesHelper(N, visited, checked, DAG);
14334 }
14335#endif // !NDEBUG
14336}
14337
14338void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
14339 checkForCycles(DAG->getRoot().getNode(), DAG, force);
14340}
return SDValue()
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static bool isConstant(const MachineInstr &MI)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
Definition CSEInfo.cpp:27
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
#define __asan_unpoison_memory_region(p, size)
Definition Compiler.h:569
#define LLVM_LIKELY(EXPR)
Definition Compiler.h:335
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseSet and SmallDenseSet classes.
This file contains constants used for implementing Dwarf debug support.
This file defines a hash set that can be used to remove duplication of nodes in a graph.
#define _
iv users
Definition IVUsers.cpp:48
std::pair< Instruction::BinaryOps, Value * > OffsetOp
Find all possible pairs (BinOp, RHS) that BinOp V, RHS can be simplified.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static LVOptions Options
Definition LVOptions.cpp:25
static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB)
static bool shouldLowerMemFuncForSize(const MachineFunction &MF)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition Lint.cpp:539
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG)
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
#define G(x, y, z)
Definition MD5.cpp:56
mir Rename Register Operands
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
Register const TargetRegisterInfo * TRI
This file provides utility analysis objects describing memory locations.
This file contains the declarations for metadata subclasses.
#define T
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
#define P(N)
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
Remove Loads Into Fake Uses
Contains matchers for matching SelectionDAG nodes and values.
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
This file contains some templates that are useful if you are working with the STL at all.
static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow)
static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo, BatchAAResults *BatchAA)
static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo)
Lower the call to 'memset' intrinsic function into a series of store operations.
static std::optional< APInt > FoldValueWithUndef(unsigned Opcode, const APInt &C1, bool IsUndef1, const APInt &C2, bool IsUndef2)
static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, SelectionDAG &DAG)
static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC, SDVTList VTList, ArrayRef< SDValue > OpList)
static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, const TargetLowering &TLI, const ConstantDataArraySlice &Slice)
getMemsetStringVal - Similar to getMemsetValue.
static cl::opt< bool > EnableMemCpyDAGOpt("enable-memcpy-dag-opt", cl::Hidden, cl::init(true), cl::desc("Gang up loads and stores generated by inlining of memcpy"))
static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B)
static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList)
AddNodeIDValueTypes - Value type lists are intern'd so we can represent them solely with their pointe...
static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef< int > M)
Swaps the values of N1 and N2.
static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice)
Returns true if memcpy source is constant data.
static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo)
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)
AddNodeIDOpcode - Add the node opcode to the NodeID data.
static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike)
static bool doNotCSE(SDNode *N)
doNotCSE - Return true if CSE should not be performed for this node.
static cl::opt< int > MaxLdStGlue("ldstmemcpy-glue-max", cl::desc("Number limit for gluing ld/st of memcpy."), cl::Hidden, cl::init(0))
static void AddNodeIDOperands(FoldingSetNodeID &ID, ArrayRef< SDValue > Ops)
AddNodeIDOperands - Various routines for adding operands to the NodeID data.
static bool canFoldStoreIntoLibCallOutputPointers(StoreSDNode *StoreNode, SDNode *FPNode)
Given a store node StoreNode, return true if it is safe to fold that node into FPNode,...
static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
Try to simplify vector concatenation to an input value, undef, or build vector.
static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, SelectionDAG &DAG, SDValue Ptr, int64_t Offset=0)
InferPointerInfo - If the specified ptr/offset is a frame index, infer a MachinePointerInfo record fr...
static bool isInTailCallPositionWrapper(const CallInst *CI, const SelectionDAG *SelDAG, bool AllowReturnsFirstArg)
static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N)
If this is an SDNode with special info, add this info to the NodeID data.
static bool gluePropagatesDivergence(const SDNode *Node)
Return true if a glue output should propagate divergence information.
static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G)
static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs)
makeVTList - Return an instance of the SDVTList struct initialized with the specified members.
static void checkForCyclesHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallPtrSetImpl< const SDNode * > &Checked, const llvm::SelectionDAG *DAG)
static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, SmallVector< SDValue, 32 > &OutChains, unsigned From, unsigned To, SmallVector< SDValue, 16 > &OutLoadChains, SmallVector< SDValue, 16 > &OutStoreChains)
static int isSignedOp(ISD::CondCode Opcode)
For an integer comparison, return 1 if the comparison is a signed operation and 2 if the result is an...
static std::optional< APInt > FoldValue(unsigned Opcode, const APInt &C1, const APInt &C2)
static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, unsigned AS)
static cl::opt< unsigned > MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192), cl::desc("DAG combiner limit number of steps when searching DAG " "for predecessor nodes"))
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file describes how to lower LLVM code to machine code.
static void removeOperands(MachineInstr &MI, unsigned i)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
Definition APFloat.h:1120
opStatus divide(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1208
void copySign(const APFloat &RHS)
Definition APFloat.h:1302
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
Definition APFloat.cpp:6057
opStatus subtract(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1190
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
Definition APFloat.h:1432
opStatus add(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1181
bool isFinite() const
Definition APFloat.h:1454
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
Definition APFloat.h:1347
opStatus multiply(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1199
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
Definition APFloat.h:1235
bool isZero() const
Definition APFloat.h:1445
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
Definition APFloat.h:1138
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
Definition APFloat.h:1332
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
Definition APFloat.h:1098
opStatus mod(const APFloat &RHS)
Definition APFloat.h:1226
bool isPosZero() const
Definition APFloat.h:1460
bool isNegZero() const
Definition APFloat.h:1461
void changeSign()
Definition APFloat.h:1297
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Definition APFloat.h:1109
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1971
LLVM_ABI APInt usub_sat(const APInt &RHS) const
Definition APInt.cpp:2055
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
Definition APInt.cpp:1573
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:234
void clearBit(unsigned BitPosition)
Set a given bit to 0.
Definition APInt.h:1406
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
Definition APInt.cpp:1012
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition APInt.h:229
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1540
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
Definition APInt.h:1391
unsigned popcount() const
Count the number of bits set.
Definition APInt.h:1670
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
Definition APInt.h:1385
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
Definition APInt.cpp:639
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition APInt.cpp:1033
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1512
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition APInt.h:1330
APInt abs() const
Get the absolute value.
Definition APInt.h:1795
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
Definition APInt.cpp:2026
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition APInt.h:371
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1182
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
Definition APInt.h:258
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:380
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition APInt.cpp:1666
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1488
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition APInt.h:1111
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition APInt.h:209
bool isNegative() const
Determine sign of this APInt.
Definition APInt.h:329
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
Definition APInt.cpp:1644
void clearAllBits()
Set every bit to 0.
Definition APInt.h:1396
LLVM_ABI APInt rotr(unsigned rotateAmt) const
Rotate right by rotateAmt.
Definition APInt.cpp:1154
LLVM_ABI APInt reverseBits() const
Definition APInt.cpp:768
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
Definition APInt.h:834
bool sle(const APInt &RHS) const
Signed less or equal comparison.
Definition APInt.h:1166
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition APInt.h:1639
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
Definition APInt.h:1628
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition APInt.h:1598
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
Definition APInt.cpp:651
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:219
LLVM_ABI APInt sshl_sat(const APInt &RHS) const
Definition APInt.cpp:2086
LLVM_ABI APInt ushl_sat(const APInt &RHS) const
Definition APInt.cpp:2100
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition APInt.cpp:1041
LLVM_ABI APInt rotl(unsigned rotateAmt) const
Rotate left by rotateAmt.
Definition APInt.cpp:1141
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
Definition APInt.cpp:397
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
Definition APInt.h:1435
unsigned logBase2() const
Definition APInt.h:1761
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
Definition APInt.cpp:2036
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition APInt.h:827
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
Definition APInt.cpp:1736
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition APInt.h:334
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition APInt.h:1150
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
Definition APInt.cpp:985
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
Definition APInt.h:1367
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition APInt.h:873
LLVM_ABI APInt byteSwap() const
Definition APInt.cpp:746
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
Definition APInt.h:1257
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:440
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!...
Definition APInt.h:553
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition APInt.h:306
void clearBits(unsigned LoBit, unsigned HiBit)
Clear the bits from LoBit (inclusive) to HiBit (exclusive) to 0.
Definition APInt.h:1417
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition APInt.h:200
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
Definition APInt.h:1388
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
Definition APInt.cpp:482
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
Definition APInt.h:1237
bool isOne() const
Determine if this is a value of 1.
Definition APInt.h:389
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
Definition APInt.h:286
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition APInt.h:239
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:851
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition APInt.h:1221
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
Definition APInt.cpp:2045
An arbitrary precision integer that knows its signedness.
Definition APSInt.h:24
unsigned getSrcAddressSpace() const
unsigned getDestAddressSpace() const
static Capacity get(size_t N)
Get the capacity of an array that can hold at least N elements.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:142
This is an SDNode representing atomic operations.
static LLVM_ABI BaseIndexOffset match(const SDNode *N, const SelectionDAG &DAG)
Parses tree in N for base, index, offset addresses.
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal=false)
BitVector & reset()
Definition BitVector.h:411
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
Definition BitVector.h:360
void clear()
clear - Removes all bits from the bitvector.
Definition BitVector.h:354
BitVector & set()
Definition BitVector.h:370
bool none() const
none - Returns true if none of the bits are set.
Definition BitVector.h:207
size_type size() const
size - Returns the number of bits in this bitvector.
Definition BitVector.h:178
const BlockAddress * getBlockAddress() const
The address of a basic block.
Definition Constants.h:899
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &RawBitElements, BitVector &UndefElements) const
Extract the raw bit data from a build vector of Undef, Constant or ConstantFP node elements.
static LLVM_ABI void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &DstBitElements, ArrayRef< APInt > SrcBitElements, BitVector &DstUndefElements, const BitVector &SrcUndefElements)
Recast bit data SrcBitElements to DstEltSizeInBits wide elements.
LLVM_ABI bool getRepeatedSequence(const APInt &DemandedElts, SmallVectorImpl< SDValue > &Sequence, BitVector *UndefElements=nullptr) const
Find the shortest repeating sequence of values in the build vector.
LLVM_ABI ConstantFPSDNode * getConstantFPSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant FP or null if this is not a constant FP splat.
LLVM_ABI std::optional< std::pair< APInt, APInt > > isConstantSequence() const
If this BuildVector is constant and represents the numerical series "<a, a+n, a+2n,...
LLVM_ABI SDValue getSplatValue(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted value or a null value if this is not a splat.
LLVM_ABI bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits=0, bool isBigEndian=false) const
Check if this is a constant splat, and if so, find the smallest element size that splats the vector.
LLVM_ABI ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
LLVM_ABI int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, uint32_t BitWidth) const
If this is a constant FP splat and the splatted constant FP is an exact power or 2,...
LLVM_ABI bool isConstant() const
This class represents a function call, abstracting a target machine's calling convention.
bool isTailCall() const
static LLVM_ABI bool isValueValidForType(EVT VT, const APFloat &Val)
const APFloat & getValueAPF() const
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:277
const APFloat & getValue() const
Definition Constants.h:321
This is the shared class of boolean and integer constants.
Definition Constants.h:87
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
Definition Constants.h:157
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:154
LLVM_ABI Type * getType() const
This class represents a range of values.
LLVM_ABI ConstantRange multiply(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a multiplication of a value in thi...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI ConstantRange zeroExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI ConstantRange signExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
LLVM_ABI APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
This is an important base class in LLVM.
Definition Constant.h:43
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
DWARF expression.
static LLVM_ABI ExtOps getExtOps(unsigned FromSize, unsigned ToSize, bool Signed)
Returns the ops for a zero- or sign-extension in a DIExpression.
static LLVM_ABI void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI const DIExpression * convertToVariadicExpression(const DIExpression *Expr)
If Expr is a non-variadic expression (i.e.
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
Base class for variables.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
bool isLittleEndian() const
Layout endianness...
Definition DataLayout.h:207
LLVM_ABI IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
A debug info location.
Definition DebugLoc.h:124
Implements a dense probed hash-table based set.
Definition DenseSet.h:279
const char * getSymbol() const
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Definition FoldingSet.h:330
Data structure describing the variable locations in a function.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition Function.h:703
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
LLVM_ABI unsigned getAddressSpace() const
const GlobalValue * getGlobal() const
bool isThreadLocal() const
If the value is "Thread Local", its value isn't shared by the threads.
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
This class is used to form a handle around another node that is persistent and is updated across invo...
const SDValue & getValue() const
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
This SDNode is used for LIFETIME_START/LIFETIME_END values.
This class is used to represent ISD::LOAD nodes.
static LocationSize precise(uint64_t Value)
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition MCSymbol.h:42
Metadata node.
Definition Metadata.h:1078
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1442
Machine Value Type.
SimpleValueType SimpleTy
static MVT getIntegerVT(unsigned BitWidth)
Abstract base class for all machine specific constantpool value subclasses.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
void setObjectAlignment(int ObjectIdx, Align Alignment)
setObjectAlignment - Change the alignment of the specified stack object.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
Function & getFunction()
Return the LLVM function that this machine code represents.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
A description of a memory reference used in the backend.
const MDNode * getRanges() const
Return the range tag for the memory reference.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
const MachinePointerInfo & getPointerInfo() const
Flags getFlags() const
Return the raw flags of the source value,.
This class contains meta information specific to a module.
An SDNode that represents everything that will be needed to construct a MachineInstr.
This class is used to represent an MGATHER node.
This class is used to represent an MLOAD node.
This class is used to represent an MSCATTER node.
This class is used to represent an MSTORE node.
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
LLVM_ABI MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT memvt, MachineMemOperand *MMO)
MachineMemOperand * MMO
Memory reference information.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
unsigned getRawSubclassData() const
Return the SubclassData value, without HasDebugValue.
EVT getMemoryVT() const
Return the type of the in-memory value.
Representation for a specific memory location.
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
Definition Module.cpp:230
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition ArrayRef.h:303
The optimization diagnostic interface.
Pass interface - Implemented by all 'passes'.
Definition Pass.h:99
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
unsigned getAddressSpace() const
Return the address space of the Pointer type.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
bool isNull() const
Test if the pointer held in the union is null, regardless of which type it is.
Analysis providing profile information.
void Deallocate(SubClass *E)
Deallocate - Release storage for the pointed-to object.
Wrapper class representing virtual and physical registers.
Definition Register.h:19
Keeps track of dbg_value information through SDISel.
LLVM_ABI void add(SDDbgValue *V, bool isParameter)
LLVM_ABI void erase(const SDNode *Node)
Invalidate all DbgValues attached to the node and remove it from the Node-to-DbgValues map.
Holds the information from a dbg_label node through SDISel.
Holds the information for a single machine location through SDISel; either an SDNode,...
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
@ SDNODE
Value is the result of an expression.
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
const DebugLoc & getDebugLoc() const
unsigned getIROrder() const
This class provides iterator support for SDUse operands that use a specific SDNode.
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
LLVM_ABI void dumprFull(const SelectionDAG *G=nullptr) const
printrFull to dbgs().
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool isDivergent() const
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
static constexpr size_t getMaxNumOperands()
Return the maximum number of operands that a SDNode can hold.
iterator_range< use_iterator > uses()
MemSDNodeBitfields MemSDNodeBits
LLVM_ABI void Profile(FoldingSetNodeID &ID) const
Gather unique data for the node.
bool getHasDebugValue() const
SDNodeFlags getFlags() const
void setNodeId(int Id)
Set unique node id.
LLVM_ABI void intersectFlagsWith(const SDNodeFlags Flags)
Clear any flags in this node that aren't also set in Flags.
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
bool use_empty() const
Return true if there are no uses of this node.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getNumOperands() const
Return the number of values used by this operation.
const SDValue & getOperand(unsigned Num) const
static LLVM_ABI bool areOnlyUsersOf(ArrayRef< const SDNode * > Nodes, const SDNode *N)
Return true if all the users of N are contained in Nodes.
use_iterator use_begin() const
Provide iteration support to walk over all uses of an SDNode.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if this node is an operand of N.
const APInt & getConstantOperandAPInt(unsigned Num) const
Helper method returns the APInt of a ConstantSDNode operand.
std::optional< APInt > bitcastToAPInt() const
LLVM_ABI bool hasPredecessor(const SDNode *N) const
Return true if N is a predecessor of this node.
LLVM_ABI bool hasAnyUseOfValue(unsigned Value) const
Return true if there are any use of the indicated value.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
op_iterator op_end() const
op_iterator op_begin() const
static use_iterator use_end()
LLVM_ABI void DropOperands()
Release the operands and set this node to have zero operands.
SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
Create an SDNode.
Represents a use of a SDNode.
SDNode * getUser()
This returns the SDNode that contains this Use.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
bool isUndef() const
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if the referenced return value is an operand of N.
SDValue()=default
LLVM_ABI bool reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth=2) const
Return true if this operand (which must be a chain) reaches the specified operand without crossing an...
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
unsigned getOpcode() const
virtual void verifyTargetNode(const SelectionDAG &DAG, const SDNode *N) const
Checks that the given target-specific node is valid. Aborts if it is not.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
LLVM_ABI SDValue getVPZeroExtendInReg(SDValue Op, SDValue Mask, SDValue EVL, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op)
Return the specified value casted to the target's desired shift amount type.
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsExpanding=false)
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
LLVM_ABI SDValue getSplatSourceVector(SDValue V, int &SplatIndex)
If V is a splatted value, return the source vector and its splat index.
LLVM_ABI SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI OverflowKind computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const
Determine if the result of the unsigned sub of 2 nodes can overflow.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI std::pair< SDValue, SDValue > getStrlen(SDValue Chain, const SDLoc &dl, SDValue Src, const CallInst *CI)
LLVM_ABI SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, ISD::LoadExtType ExtTy)
LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI std::optional< bool > isBoolConstant(SDValue N) const
Check if a value \op N is a constant using the target's BooleanContent for its type.
LLVM_ABI SDValue getStackArgumentTokenFactor(SDValue Chain)
Compute a TokenFactor to force all the incoming stack arguments to be loaded from the stack.
const TargetSubtargetInfo & getSubtarget() const
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI void updateDivergence(SDNode *N)
LLVM_ABI SDValue getSplatValue(SDValue V, bool LegalTypes=false)
If V is a splat vector, return its scalar source operand by extracting that element from the source v...
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getNeutralElement(unsigned Opcode, const SDLoc &DL, EVT VT, SDNodeFlags Flags)
Get the (commutative) neutral element for the given opcode, if it exists.
LLVM_ABI SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Value, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo)
LLVM_ABI SDValue getAtomicLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO)
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm, bool ConstantFold=true)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, uint64_t Guid, uint64_t Index, uint32_t Attr)
Creates a PseudoProbeSDNode with function GUID Guid and the index of the block Index it is probing,...
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDNode * SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT)
These are used for target selectors to mutate the specified node to have the specified return type,...
LLVM_ABI SelectionDAG(const TargetMachine &TM, CodeGenOptLevel)
LLVM_ABI SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBitcastedSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getStridedLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
Gets a node for an atomic cmpxchg op.
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
LLVM_ABI void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, unsigned Num)
Like ReplaceAllUsesOfValueWith, but for multiple values at once.
LLVM_ABI SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue getSymbolFunctionGlobalAddress(SDValue Op, Function **TargetFunction=nullptr)
Return a GlobalAddress of the function from the current module with name matching the given ExternalS...
LLVM_ABI std::optional< unsigned > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
OverflowKind
Used to represent the possible overflow behavior of an operation.
static LLVM_ABI unsigned getHasPredecessorMaxSteps()
LLVM_ABI bool haveNoCommonBitsSet(SDValue A, SDValue B) const
Return true if A and B have no common bits set.
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI bool cannotBeOrderedNegativeFP(SDValue Op) const
Test whether the given float value is known to be positive.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI bool calculateDivergence(SDNode *N)
LLVM_ABI SDValue getElementCount(const SDLoc &DL, EVT VT, ElementCount EC, bool ConstantFold=true)
LLVM_ABI SDValue getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getAssertAlign(const SDLoc &DL, SDValue V, Align A)
Return an AssertAlignSDNode.
LLVM_ABI SDNode * mutateStrictFPToFP(SDNode *Node)
Mutate the specified strict FP node to its non-strict equivalent, unlinking the node from its chain a...
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getBitcastedZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
LLVM_ABI SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO)
Gets a node for an atomic op, produces result (if relevant) and chain and takes 2 operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
LLVM_ABI SDValue getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be an integer vector, to the vector-type VT,...
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI bool isEqualTo(SDValue A, SDValue B) const
Test whether two SDValues are known to compare equal.
static constexpr unsigned MaxRecursionDepth
LLVM_ABI SDValue getStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
bool isGuaranteedNotToBePoison(SDValue Op, unsigned Depth=0) const
Return true if this function can prove that Op is never poison.
LLVM_ABI SDValue expandVACopy(SDNode *Node)
Expand the specified ISD::VACOPY node as the Legalize pass would.
LLVM_ABI SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI APInt computeVectorKnownZeroElements(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
For each demanded element of a vector, see if it is known to be zero.
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
bool NewNodesMustHaveLegalTypes
When true, additional steps are taken to ensure that getConstant() and similar functions return DAG n...
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
LLVM_ABI void salvageDebugInfo(SDNode &N)
To be invoked on an SDNode that is slated to be erased.
LLVM_ABI SDNode * MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef< SDValue > Ops)
This mutates the specified node to have the specified return type, opcode, and operands.
LLVM_ABI std::pair< SDValue, SDValue > UnrollVectorOverflowOp(SDNode *N, unsigned ResNE=0)
Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
allnodes_const_iterator allnodes_begin() const
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
LLVM_ABI SDValue getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI void DeleteNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
LLVM_ABI SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal)
Try to simplify a select/vselect into 1 of its operands or a constant.
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI bool isConstantFPBuildVectorOrConstantFP(SDValue N) const
Test whether the given value is a constant FP or similar node.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue expandVAArg(SDNode *Node)
Expand the specified ISD::VAARG node as the Legalize pass would.
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
const SelectionDAGTargetInfo & getSelectionDAGInfo() const
LLVM_ABI bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes, int Dist) const
Return true if loads are next to each other and can be merged.
LLVM_ABI SDValue getMaskedHistogram(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDDbgLabel * getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O)
Creates a SDDbgLabel node.
LLVM_ABI SDValue getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI OverflowKind computeOverflowForUnsignedMul(SDValue N0, SDValue N1) const
Determine if the result of the unsigned mul of 2 nodes can overflow.
LLVM_ABI void copyExtraInfo(SDNode *From, SDNode *To)
Copy extra info associated with one node to another.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue SV, unsigned Align)
VAArg produces a result and token chain, and takes a pointer and a source value as input.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getLoadFFVP(EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachineMemOperand *MMO)
LLVM_ABI SDValue getMDNode(const MDNode *MD)
Return an MDNodeSDNode which holds an MDNode.
LLVM_ABI void clear()
Clear state and free memory necessary to make this SelectionDAG ready to process a new block.
std::pair< SDValue, SDValue > getMemcmp(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, const CallInst *CI)
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI SDValue makeStateFunctionCall(unsigned LibFunc, SDValue Ptr, SDValue InChain, const SDLoc &DLoc)
Helper used to make a call to a library function that has one argument of pointer type.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
LLVM_ABI SDValue getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getSrcValue(const Value *v)
Construct a node to track a Value* through the backend.
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI OverflowKind computeOverflowForSignedMul(SDValue N0, SDValue N1) const
Determine if the result of the signed mul of 2 nodes can overflow.
LLVM_ABI MaybeAlign InferPtrAlign(SDValue Ptr) const
Infer alignment of a load / store address.
LLVM_ABI void dump() const
LLVM_ABI bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if '(Op & Mask) == Mask'.
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNodes()
This method deletes all unreachable nodes in the SelectionDAG.
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI void AddDbgLabel(SDDbgLabel *DB)
Add a dbg_label SDNode.
bool isConstantValueOfAnyType(SDValue N) const
LLVM_ABI SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand)
A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI SDDbgValue * getVRegDbgValue(DIVariable *Var, DIExpression *Expr, Register VReg, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a VReg SDDbgValue node.
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI SDValue getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI std::optional< unsigned > getValidMinimumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI std::pair< SDValue, SDValue > getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT)
Convert Op, which must be a STRICT operation of float type, to the float type VT, by either extending...
LLVM_ABI std::pair< SDValue, SDValue > SplitEVL(SDValue N, EVT VecVT, const SDLoc &DL)
Split the explicit vector length parameter of a VP operation.
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getVPLogicalNOT(const SDLoc &DL, SDValue Val, SDValue Mask, SDValue EVL, EVT VT)
Create a vector-predicated logical NOT operation as (VP_XOR Val, BooleanOne, Mask,...
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
iterator_range< allnodes_iterator > allnodes()
LLVM_ABI SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI SDValue WidenVector(const SDValue &N, const SDLoc &DL)
Widen the vector up to the next power of two using INSERT_SUBVECTOR.
LLVM_ABI bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
LLVM_ABI SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, const MDNode *Ranges=nullptr, bool IsExpanding=false)
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDDbgValue * getConstantDbgValue(DIVariable *Var, DIExpression *Expr, const Value *C, const DebugLoc &DL, unsigned O)
Creates a constant SDDbgValue node.
LLVM_ABI SDValue getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain, int FrameIndex)
Creates a LifetimeSDNode that starts (IsStart==true) or ends (IsStart==false) the lifetime of the Fra...
ArrayRef< SDDbgValue * > GetDbgValues(const SDNode *SD) const
Get the debug values which reference the given SDNode.
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI OverflowKind computeOverflowForSignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the signed addition of 2 nodes can overflow.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI unsigned AssignTopologicalOrder()
Topological-sort the AllNodes list and a assign a unique node id for each node in the DAG based on th...
ilist< SDNode >::size_type allnodes_size() const
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
LLVM_ABI SDValue FoldConstantBuildVector(BuildVectorSDNode *BV, const SDLoc &DL, EVT DstEltVT)
Fold BUILD_VECTOR of constants/undefs to the destination type BUILD_VECTOR of constants/undefs elemen...
LLVM_ABI SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsCompressing=false)
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
const TargetLibraryInfo & getLibInfo() const
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI bool MaskedVectorIsZero(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
Return true if 'Op' is known to be zero in DemandedElts.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
LLVM_ABI SDDbgValue * getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr, unsigned FI, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a FrameIndex SDDbgValue node.
LLVM_ABI SDValue getExtStridedLoadVP(ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI SDValue getJumpTable(int JTI, EVT VT, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI bool isBaseWithConstantOffset(SDValue Op) const
Return true if the specified operand is an ISD::ADD with a ConstantSDNode on the right-hand side,...
LLVM_ABI SDValue getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be of integer type, to the vector-type integer type VT,...
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to extend the Op as a pointer value assuming it was the smaller SrcTy ...
LLVM_ABI bool canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts, bool PoisonOnly=false, bool ConsiderFlags=true, unsigned Depth=0) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
LLVM_ABI OverflowKind computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the unsigned addition of 2 nodes can overflow.
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT SVT, MachineMemOperand *MMO, bool IsCompressing=false)
LLVM_ABI void canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, SDValue &N2) const
Swap N1 and N2 if Opcode is a commutative binary opcode and the canonical form expects the opposite o...
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVM_ABI bool isKnownToBeAPowerOfTwoFP(SDValue Val, unsigned Depth=0) const
Test if the given fp value is known to be an integer power-of-2, either positive or negative.
LLVM_ABI OverflowKind computeOverflowForSignedSub(SDValue N0, SDValue N1) const
Determine if the result of the signed sub of 2 nodes can overflow.
LLVM_ABI bool expandMultipleResultFPLibCall(RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl< SDValue > &Results, std::optional< unsigned > CallRetResNo={})
Expands a node with multiple results to an FP or vector libcall.
LLVMContext * getContext() const
LLVM_ABI SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, SDNodeFlags Flags)
Try to simplify a floating-point binary operation into 1 of its operands or a constant.
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue getMCSymbol(MCSymbol *Sym, EVT VT)
LLVM_ABI bool isUndef(unsigned Opcode, ArrayRef< SDValue > Ops)
Return true if the result of this operation is always undefined.
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
LLVM_ABI std::pair< EVT, EVT > GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, bool *HiIsEmpty) const
Compute the VTs needed for the low/hi parts of a type, dependent on an enveloping VT that has been sp...
LLVM_ABI SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops)
Fold floating-point operations when all operands are constants and/or undefined.
LLVM_ABI SDNode * getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops, const SDNodeFlags Flags)
Get the specified node if it's already available, or else return NULL.
LLVM_ABI void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE, Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, UniformityInfo *UA, ProfileSummaryInfo *PSIin, BlockFrequencyInfo *BFIin, MachineModuleInfo &MMI, FunctionVarLocs const *FnVarLocs)
Prepare this SelectionDAG to process code in the given MachineFunction.
LLVM_ABI std::optional< ConstantRange > getValidShiftAmountRange(SDValue V, const APInt &DemandedElts, unsigned Depth) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue FoldSymbolOffset(unsigned Opcode, EVT VT, const GlobalAddressSDNode *GA, const SDNode *N2)
LLVM_ABI SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand, SDValue Subreg)
A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDDbgValue * getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N, unsigned R, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a SDDbgValue node.
LLVM_ABI SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base, SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, ISD::LoadExtType, bool IsExpanding=false)
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, ArrayRef< ISD::NodeType > CandidateBinOps, bool AllowPartials=false)
Match a binop + shuffle pyramid that represents a horizontal reduction over the elements of a vector ...
LLVM_ABI bool isADDLike(SDValue Op, bool NoWrap=false) const
Return true if the specified operand is an ISD::OR or ISD::XOR node that can be treated as an ISD::AD...
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
LLVM_ABI SDValue simplifyShift(SDValue X, SDValue Y)
Try to simplify a shift into 1 of its operands or a constant.
LLVM_ABI void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits=0, unsigned SizeInBits=0, bool InvalidateDbg=true)
Transfer debug values from one node to another, while optionally generating fragment expressions for ...
LLVM_ABI SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a logical NOT operation as (XOR Val, BooleanOne).
LLVM_ABI SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, bool IsTruncating=false)
ilist< SDNode >::iterator allnodes_iterator
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
int getMaskElt(unsigned Idx) const
ArrayRef< int > getMask() const
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
static LLVM_ABI bool isSplatMask(ArrayRef< int > Mask)
size_type size() const
Definition SmallPtrSet.h:99
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition StringRef.h:140
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
Completely target-dependent object reference.
unsigned getTargetFlags() const
Provides information about what library functions are available for the current target.
virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const
Return true if it is beneficial to convert a load of a constant to just the constant itself.
const TargetMachine & getTargetMachine() const
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
unsigned getMaxStoresPerMemcpy(bool OptSize) const
Get maximum # of store operations permitted for llvm.memcpy.
virtual bool shallExtractConstSplatVectorElementToStore(Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const
Return true if the target shall perform extract vector element and store given that the vector is kno...
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
BooleanContent
Enum that describes how the target represents true/false values.
unsigned getMaxStoresPerMemmove(bool OptSize) const
Get maximum # of store operations permitted for llvm.memmove.
virtual unsigned getMaxGluedStoresPerMemcpy() const
Get maximum # of store operations to be glued together.
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
std::vector< ArgListEntry > ArgListTy
unsigned getMaxStoresPerMemset(bool OptSize) const
Get maximum # of store operations permitted for llvm.memset.
virtual bool isLegalStoreImmediate(int64_t Value) const
Return true if the specified immediate is legal for the value input of a store instruction.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool findOptimalMemOpLowering(LLVMContext &Context, std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
Primary interface to the complete machine description for the target machine.
virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast between SrcAS and DestAS is a noop.
const Triple & getTargetTriple() const
TargetOptions Options
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const SelectionDAGTargetInfo * getSelectionDAGInfo() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
virtual const TargetLowering * getTargetLowering() const
bool isOSDarwin() const
Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, DriverKit, XROS, or bridgeOS).
Definition Triple.h:611
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:344
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:281
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:295
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:198
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM_ABI void set(Value *Val)
Definition Value.h:905
User * getUser() const
Returns the User that contains this Use.
Definition Use.h:61
This class is used to represent an VP_GATHER node.
This class is used to represent a VP_LOAD node.
This class is used to represent an VP_SCATTER node.
This class is used to represent a VP_STORE node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
Provides info so a possible vectorization of a function can be computed.
bool isMasked() const
StringRef getVectorFnName() const
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:202
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:175
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
Definition TypeSize.h:270
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:201
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:231
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr bool isKnownEven() const
A return value of true indicates we know at compile time that the number of elements (vscale * Min) i...
Definition TypeSize.h:177
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:238
A raw_ostream that writes to an std::string.
CallInst * Call
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt mulhu(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on zero-extended operands.
Definition APInt.cpp:3131
LLVM_ABI APInt avgCeilU(const APInt &C1, const APInt &C2)
Compute the ceil of the unsigned average of C1 and C2.
Definition APInt.cpp:3118
LLVM_ABI APInt avgFloorU(const APInt &C1, const APInt &C2)
Compute the floor of the unsigned average of C1 and C2.
Definition APInt.cpp:3108
LLVM_ABI APInt fshr(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift right.
Definition APInt.cpp:3182
LLVM_ABI APInt mulhs(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on sign-extended operands.
Definition APInt.cpp:3123
APInt abds(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be signed.
Definition APInt.h:2268
LLVM_ABI APInt fshl(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift left.
Definition APInt.cpp:3173
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
Definition APInt.cpp:3009
APInt abdu(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be unsigned.
Definition APInt.h:2273
LLVM_ABI APInt avgFloorS(const APInt &C1, const APInt &C2)
Compute the floor of the signed average of C1 and C2.
Definition APInt.cpp:3103
LLVM_ABI APInt avgCeilS(const APInt &C1, const APInt &C2)
Compute the ceil of the signed average of C1 and C2.
Definition APInt.cpp:3113
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, bool isIntegerLike)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types a...
Definition ISDOpcodes.h:24
LLVM_ABI CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical AND between different comparisons of identical values: ((X op1 Y) & (X...
LLVM_ABI bool isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are ~0 ...
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:801
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:256
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:774
@ TargetConstantPool
Definition ISDOpcodes.h:184
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
Definition ISDOpcodes.h:504
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
Definition ISDOpcodes.h:45
@ POISON
POISON - A poison node.
Definition ISDOpcodes.h:231
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
Definition ISDOpcodes.h:525
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
Definition ISDOpcodes.h:270
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
Definition ISDOpcodes.h:587
@ BSWAP
Byte Swap and Counting operators.
Definition ISDOpcodes.h:765
@ TargetBlockAddress
Definition ISDOpcodes.h:186
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:289
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition ISDOpcodes.h:515
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:835
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:511
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
Definition ISDOpcodes.h:215
@ GlobalAddress
Definition ISDOpcodes.h:88
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:862
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:571
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:410
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:738
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
Definition ISDOpcodes.h:892
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
Definition ISDOpcodes.h:249
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ GlobalTLSAddress
Definition ISDOpcodes.h:89
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:826
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
Definition ISDOpcodes.h:706
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
Definition ISDOpcodes.h:656
@ TargetExternalSymbol
Definition ISDOpcodes.h:185
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:773
@ TargetJumpTable
Definition ISDOpcodes.h:183
@ TargetIndex
TargetIndex - Like a constant pool entry, but with completely target-dependent semantics.
Definition ISDOpcodes.h:193
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
Definition ISDOpcodes.h:809
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ STEP_VECTOR
STEP_VECTOR(IMM) - Returns a scalable vector whose lanes are comprised of a linear sequence of unsign...
Definition ISDOpcodes.h:682
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:528
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:778
@ UNDEF
UNDEF - An undefined node.
Definition ISDOpcodes.h:228
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
Definition ISDOpcodes.h:242
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:663
@ AssertAlign
AssertAlign - These nodes record if a register contains a value that has a known alignment and the tr...
Definition ISDOpcodes.h:69
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition ISDOpcodes.h:225
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ TargetGlobalAddress
TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or anything else with this node...
Definition ISDOpcodes.h:180
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
Definition ISDOpcodes.h:695
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:756
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
Definition ISDOpcodes.h:78
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition ISDOpcodes.h:636
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
Definition ISDOpcodes.h:601
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
Definition ISDOpcodes.h:48
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:563
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
Definition ISDOpcodes.h:219
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:832
@ TargetConstantFP
Definition ISDOpcodes.h:175
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition ISDOpcodes.h:793
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:379
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ TargetFrameIndex
Definition ISDOpcodes.h:182
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
Definition ISDOpcodes.h:881
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition ISDOpcodes.h:870
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:718
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition ISDOpcodes.h:787
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:323
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
Definition ISDOpcodes.h:493
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:908
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
Definition ISDOpcodes.h:174
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition ISDOpcodes.h:498
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:730
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
Definition ISDOpcodes.h:200
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
Definition ISDOpcodes.h:726
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
Definition ISDOpcodes.h:701
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:299
@ SPLAT_VECTOR_PARTS
SPLAT_VECTOR_PARTS(SCALAR1, SCALAR2, ...) - Returns a vector with the scalar values joined together a...
Definition ISDOpcodes.h:672
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:552
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition ISDOpcodes.h:53
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
Definition ISDOpcodes.h:648
@ ExternalSymbol
Definition ISDOpcodes.h:93
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:941
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
Definition ISDOpcodes.h:690
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
Definition ISDOpcodes.h:903
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:927
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:838
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
Definition ISDOpcodes.h:815
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
Definition ISDOpcodes.h:62
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:521
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
Definition ISDOpcodes.h:713
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:333
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
Definition ISDOpcodes.h:208
@ TargetGlobalTLSAddress
Definition ISDOpcodes.h:181
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:543
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isNormalStore(const SDNode *N)
Returns true if the specified node is a non-truncating and unindexed store.
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
bool matchUnaryFpPredicate(SDValue Op, std::function< bool(ConstantFPSDNode *)> Match, bool AllowUndefs=false)
Hook for matching ConstantFPSDNode predicate.
bool isExtOpcode(unsigned Opcode)
LLVM_ABI bool isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are 0 o...
LLVM_ABI bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed)
Returns true if the specified node is a vector where all elements can be truncated to the specified e...
LLVM_ABI bool isVPBinaryOp(unsigned Opcode)
Whether this is a vector-predicated binary operation opcode.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI std::optional< unsigned > getBaseOpcodeForVP(unsigned Opcode, bool hasFPExcept)
Translate this VP Opcode to its corresponding non-VP Opcode.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
LLVM_ABI std::optional< unsigned > getVPMaskIdx(unsigned Opcode)
The operand position of the vector mask.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
LLVM_ABI std::optional< unsigned > getVPExplicitVectorLengthIdx(unsigned Opcode)
The operand position of the explicit vector length parameter.
bool isEXTLoad(const SDNode *N)
Returns true if the specified node is a EXTLOAD.
LLVM_ABI bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
LLVM_ABI bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI std::optional< unsigned > getVPForBaseOpcode(unsigned Opcode)
Translate this non-VP Opcode to its corresponding VP Opcode.
MemIndexType
MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's index parameter when calcula...
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool matchUnaryPredicateImpl(SDValue Op, std::function< bool(ConstNodeType *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Attempt to match a unary predicate against a scalar/splat constant or every element of a constant BUI...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI NodeType getInverseMinMaxOpcode(unsigned MinMaxOpc)
Given a MinMaxOpc of ISD::(U|S)MIN or ISD::(U|S)MAX, returns ISD::(U|S)MAX and ISD::(U|S)MIN,...
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
LLVM_ABI bool isVPReduction(unsigned Opcode)
Whether this is a vector-predicated reduction opcode.
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
LLVM_ABI bool isBuildVectorOfConstantFPSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantFPSDNode or undef.
bool isSEXTLoad(const SDNode *N)
Returns true if the specified node is a SEXTLOAD.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
LLVM_ABI bool isVPOpcode(unsigned Opcode)
Whether this is a vector-predicated Opcode.
LLVM_ABI CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical OR between different comparisons of identical values: ((X op1 Y) | (X ...
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
initializer< Ty > init(const Ty &Val)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
Definition Dwarf.h:149
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
Definition Metadata.h:667
NodeAddr< NodeBase * > Node
Definition RDFGraph.h:381
This is an optimization pass for GlobalISel generic memory operations.
GenericUniformityInfo< SSAContext > UniformityInfo
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition MathExtras.h:355
@ Offset
Definition DWP.cpp:477
bool operator<(int64_t V1, const APSInt &V2)
Definition APSInt.h:362
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
Definition Analysis.cpp:241
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1725
LLVM_ABI SDValue peekThroughExtractSubvectors(SDValue V)
Return the non-extracted vector source operand of V if it exists.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1705
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI bool isAllOnesOrAllOnesSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant -1 integer or a splatted vector of a constant -1 integer (with...
Definition Utils.cpp:1607
LLVM_ABI SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs)
If V is a bitwise not, returns the inverted operand.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2452
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:644
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
Definition bit.h:279
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:733
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
Definition bit.h:289
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
Definition APFloat.h:1643
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2116
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
Definition MathExtras.h:252
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:634
auto cast_or_null(const Y &Val)
Definition Casting.h:715
void * PointerTy
LLVM_ABI bool isNullOrNullSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
Definition Utils.cpp:1589
LLVM_ABI bool isMinSignedConstant(SDValue V)
Returns true if V is a constant min signed integer value.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
Definition APFloat.h:1555
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:754
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1712
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
Definition APFloat.h:1598
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:342
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
LLVM_ABI SDValue peekThroughInsertVectorElt(SDValue V, const APInt &DemandedElts)
Recursively peek through INSERT_VECTOR_ELT nodes, returning the source vector operand of V,...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:288
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI void checkForCycles(const SelectionDAG *DAG, bool force=false)
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1624
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
Definition APFloat.h:1629
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI SDValue peekThroughTruncates(SDValue V)
Return the non-truncated source operand of V if it exists.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1719
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
constexpr std::underlying_type_t< Enum > to_underlying(Enum E)
Returns underlying integer value of an enum.
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI SDValue peekThroughOneUseBitcasts(SDValue V)
Return the non-bitcasted and one-use source operand of V if it exists.
CodeGenOptLevel
Code generation optimization level.
Definition CodeGen.h:82
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ Other
Any other memory.
Definition ModRef.h:68
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
Definition APFloat.h:1579
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
LLVM_ABI bool isNullConstantOrUndef(SDValue V)
Returns true if V is a constant integer zero or an UNDEF node.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
Definition Analysis.cpp:543
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
OutputIt copy(R &&Range, OutputIt Out)
Definition STLExtras.h:1815
constexpr unsigned BitWidth
bool funcReturnsFirstArgOfCall(const CallInst &CI)
Returns true if the parent of CI returns CI's first argument after calling CI.
Definition Analysis.cpp:723
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:560
LLVM_ABI bool isZeroOrZeroSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1877
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:201
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
Definition MathExtras.h:583
unsigned Log2(Align A)
Returns the log2 of the alignment.
Definition Alignment.h:197
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
Definition APFloat.h:1616
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
Definition APFloat.h:1656
LLVM_ABI bool isOnesOrOnesSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V, unsigned OperandNo)
Returns true if V is a neutral element of Opc with Flags.
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
Definition MathExtras.h:384
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define N
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition Metadata.h:761
MDNode * TBAAStruct
The tag for type-based alias analysis (tbaa struct).
Definition Metadata.h:781
MDNode * TBAA
The tag for type-based alias analysis.
Definition Metadata.h:778
static LLVM_ABI const fltSemantics & IEEEsingle() LLVM_READNONE
Definition APFloat.cpp:266
cmpResult
IEEE-754R 5.11: Floating Point Comparison Relations.
Definition APFloat.h:294
static constexpr roundingMode rmTowardNegative
Definition APFloat.h:307
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:304
static constexpr roundingMode rmTowardZero
Definition APFloat.h:308
static LLVM_ABI const fltSemantics & IEEEquad() LLVM_READNONE
Definition APFloat.cpp:268
static LLVM_ABI const fltSemantics & IEEEdouble() LLVM_READNONE
Definition APFloat.cpp:267
static LLVM_ABI const fltSemantics & IEEEhalf() LLVM_READNONE
Definition APFloat.cpp:264
static constexpr roundingMode rmTowardPositive
Definition APFloat.h:306
static LLVM_ABI const fltSemantics & BFloat() LLVM_READNONE
Definition APFloat.cpp:265
opStatus
IEEE-754R 7: Default exception handling.
Definition APFloat.h:320
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Represents offset+length into a ConstantDataArray.
uint64_t Length
Length of the slice.
uint64_t Offset
Slice starts at this Offset.
void move(uint64_t Delta)
Moves the Offset and adjusts Length accordingly.
const ConstantDataArray * Array
ConstantDataArray pointer.
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
intptr_t getRawBits() const
Definition ValueTypes.h:512
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
Definition ValueTypes.h:121
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition ValueTypes.h:284
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition ValueTypes.h:147
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
Definition ValueTypes.h:359
uint64_t getScalarSizeInBits() const
Definition ValueTypes.h:385
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
bool isFixedLengthVector() const
Definition ValueTypes.h:181
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
Definition ValueTypes.h:292
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
Definition ValueTypes.h:256
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
Definition ValueTypes.h:174
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
bool isExtended() const
Test if the given EVT is extended (as opposed to being simple).
Definition ValueTypes.h:142
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
Definition ValueTypes.h:308
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
Definition ValueTypes.h:453
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
Definition KnownBits.h:301
LLVM_ABI KnownBits sextInReg(unsigned SrcBitWidth) const
Return known bits for a in-register sign extension of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
Definition KnownBits.h:255
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
Definition KnownBits.h:108
bool isZero() const
Returns true if value is all zero.
Definition KnownBits.h:80
void makeNonNegative()
Make this value non-negative.
Definition KnownBits.h:124
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
Definition KnownBits.h:242
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
Definition KnownBits.h:66
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
Definition KnownBits.h:274
static LLVM_ABI std::optional< bool > ne(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_NE result.
void makeNegative()
Make this value negative.
Definition KnownBits.h:119
void setAllConflict()
Make all bits known to be both zero and one.
Definition KnownBits.h:99
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
Definition KnownBits.h:161
KnownBits byteSwap() const
Definition KnownBits.h:514
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
Definition KnownBits.h:289
void setAllZero()
Make all bits known to be zero and discard any previous information.
Definition KnownBits.h:86
KnownBits reverseBits() const
Definition KnownBits.h:518
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
Definition KnownBits.h:233
unsigned getBitWidth() const
Get the bit width of this value.
Definition KnownBits.h:44
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
Definition KnownBits.h:172
void resetAll()
Resets the known state of all bits.
Definition KnownBits.h:74
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
Definition KnownBits.h:321
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
Definition KnownBits.h:111
static LLVM_ABI KnownBits abdu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for abdu(LHS, RHS).
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
Definition KnownBits.h:225
static LLVM_ABI KnownBits avgFloorU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorU.
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
Definition KnownBits.h:311
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
Definition KnownBits.h:180
static LLVM_ABI KnownBits computeForSubBorrow(const KnownBits &LHS, KnownBits RHS, const KnownBits &Borrow)
Compute known bits results from subtracting RHS from LHS with 1-bit Borrow.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
Definition KnownBits.h:196
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
Definition KnownBits.h:145
static LLVM_ABI KnownBits abds(KnownBits LHS, KnownBits RHS)
Compute known bits for abds(LHS, RHS).
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
Definition KnownBits.cpp:60
bool isStrictlyPositive() const
Returns true if this value is known to be positive.
Definition KnownBits.h:114
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static LLVM_ABI KnownBits avgFloorS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorS.
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
Definition KnownBits.h:326
bool isNegative() const
Returns true if this value is known to be negative.
Definition KnownBits.h:105
static LLVM_ABI KnownBits computeForAddCarry(const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry)
Compute known bits resulting from adding LHS, RHS and a 1-bit Carry.
Definition KnownBits.cpp:53
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
Definition KnownBits.h:280
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
Definition KnownBits.h:219
static LLVM_ABI KnownBits avgCeilU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilU.
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
Definition KnownBits.h:167
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
static LLVM_ABI KnownBits avgCeilS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilS.
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI bool isDereferenceable(unsigned Size, LLVMContext &C, const DataLayout &DL) const
Return true if memory region [V, V+Offset+Size) is known to be dereferenceable.
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
PointerUnion< const Value *, const PseudoSourceValue * > V
This is the IR pointer value for the access, or it is null if unknown.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition Alignment.h:106
static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign, bool IsZeroMemset, bool IsVolatile)
static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign, Align SrcAlign, bool IsVolatile, bool MemcpyStrSrc=false)
These are IR-level optimization flags that may be propagated to SDNodes.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
unsigned int NumVTs
Clients of various APIs that cause global effects on the DAG can optionally implement this interface.
virtual void NodeDeleted(SDNode *N, SDNode *E)
The node N that was deleted and, if E is not null, an equivalent node E that replaced it.
virtual void NodeInserted(SDNode *N)
The node N that was inserted.
virtual void NodeUpdated(SDNode *N)
The node N that was updated.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)