LLVM 22.0.0git
X86ISelLoweringCall.cpp
Go to the documentation of this file.
1//===- llvm/lib/Target/X86/X86ISelCallLowering.cpp - Call lowering --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This file implements the lowering of LLVM calls to DAG nodes.
11//
12//===----------------------------------------------------------------------===//
13
15#include "X86.h"
16#include "X86CallingConv.h"
17#include "X86FrameLowering.h"
18#include "X86ISelLowering.h"
19#include "X86InstrBuilder.h"
21#include "X86TargetMachine.h"
22#include "llvm/ADT/Statistic.h"
28#include "llvm/IR/IRBuilder.h"
29#include "llvm/IR/Module.h"
30
31#define DEBUG_TYPE "x86-isel"
32
33using namespace llvm;
34
35STATISTIC(NumTailCalls, "Number of tail calls");
36
37/// Call this when the user attempts to do something unsupported, like
38/// returning a double without SSE2 enabled on x86_64. This is not fatal, unlike
39/// report_fatal_error, so calling code should attempt to recover without
40/// crashing.
41static void errorUnsupported(SelectionDAG &DAG, const SDLoc &dl,
42 const char *Msg) {
44 DAG.getContext()->diagnose(
46}
47
48/// Returns true if a CC can dynamically exclude a register from the list of
49/// callee-saved-registers (TargetRegistryInfo::getCalleeSavedRegs()) based on
50/// the return registers.
52 switch (CC) {
53 default:
54 return false;
58 return true;
59 }
60}
61
62/// Returns true if a CC can dynamically exclude a register from the list of
63/// callee-saved-registers (TargetRegistryInfo::getCalleeSavedRegs()) based on
64/// the parameters.
68
69static std::pair<MVT, unsigned>
71 const X86Subtarget &Subtarget) {
72 // v2i1/v4i1/v8i1/v16i1 all pass in xmm registers unless the calling
73 // convention is one that uses k registers.
74 if (NumElts == 2)
75 return {MVT::v2i64, 1};
76 if (NumElts == 4)
77 return {MVT::v4i32, 1};
78 if (NumElts == 8 && CC != CallingConv::X86_RegCall &&
80 return {MVT::v8i16, 1};
81 if (NumElts == 16 && CC != CallingConv::X86_RegCall &&
83 return {MVT::v16i8, 1};
84 // v32i1 passes in ymm unless we have BWI and the calling convention is
85 // regcall.
86 if (NumElts == 32 && (!Subtarget.hasBWI() || CC != CallingConv::X86_RegCall))
87 return {MVT::v32i8, 1};
88 // Split v64i1 vectors if we don't have v64i8 available.
89 if (NumElts == 64 && Subtarget.hasBWI() && CC != CallingConv::X86_RegCall) {
90 if (Subtarget.useAVX512Regs())
91 return {MVT::v64i8, 1};
92 return {MVT::v32i8, 2};
93 }
94
95 // Break wide or odd vXi1 vectors into scalars to match avx2 behavior.
96 if (!isPowerOf2_32(NumElts) || (NumElts == 64 && !Subtarget.hasBWI()) ||
97 NumElts > 64)
98 return {MVT::i8, NumElts};
99
101}
102
105 EVT VT) const {
106 if (VT.isVector()) {
107 if (VT.getVectorElementType() == MVT::i1 && Subtarget.hasAVX512()) {
108 unsigned NumElts = VT.getVectorNumElements();
109
110 MVT RegisterVT;
111 unsigned NumRegisters;
112 std::tie(RegisterVT, NumRegisters) =
113 handleMaskRegisterForCallingConv(NumElts, CC, Subtarget);
114 if (RegisterVT != MVT::INVALID_SIMPLE_VALUE_TYPE)
115 return RegisterVT;
116 }
117
118 if (VT.getVectorElementType() == MVT::f16 && VT.getVectorNumElements() < 8)
119 return MVT::v8f16;
120 }
121
122 // We will use more GPRs for f64 and f80 on 32 bits when x87 is disabled.
123 if ((VT == MVT::f64 || VT == MVT::f80) && !Subtarget.is64Bit() &&
124 !Subtarget.hasX87())
125 return MVT::i32;
126
127 if (isTypeLegal(MVT::f16)) {
128 if (VT.isVector() && VT.getVectorElementType() == MVT::bf16)
130 Context, CC, VT.changeVectorElementType(MVT::f16));
131
132 if (VT == MVT::bf16)
133 return MVT::f16;
134 }
135
136 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
137}
138
141 EVT VT) const {
142 if (VT.isVector()) {
143 if (VT.getVectorElementType() == MVT::i1 && Subtarget.hasAVX512()) {
144 unsigned NumElts = VT.getVectorNumElements();
145
146 MVT RegisterVT;
147 unsigned NumRegisters;
148 std::tie(RegisterVT, NumRegisters) =
149 handleMaskRegisterForCallingConv(NumElts, CC, Subtarget);
150 if (RegisterVT != MVT::INVALID_SIMPLE_VALUE_TYPE)
151 return NumRegisters;
152 }
153
154 if (VT.getVectorElementType() == MVT::f16 && VT.getVectorNumElements() < 8)
155 return 1;
156 }
157
158 // We have to split f64 to 2 registers and f80 to 3 registers on 32 bits if
159 // x87 is disabled.
160 if (!Subtarget.is64Bit() && !Subtarget.hasX87()) {
161 if (VT == MVT::f64)
162 return 2;
163 if (VT == MVT::f80)
164 return 3;
165 }
166
167 if (VT.isVector() && VT.getVectorElementType() == MVT::bf16 &&
168 isTypeLegal(MVT::f16))
169 return getNumRegistersForCallingConv(Context, CC,
170 VT.changeVectorElementType(MVT::f16));
171
172 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
173}
174
176 LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
177 unsigned &NumIntermediates, MVT &RegisterVT) const {
178 // Break wide or odd vXi1 vectors into scalars to match avx2 behavior.
179 if (VT.isVector() && VT.getVectorElementType() == MVT::i1 &&
180 Subtarget.hasAVX512() &&
182 (VT.getVectorNumElements() == 64 && !Subtarget.hasBWI()) ||
183 VT.getVectorNumElements() > 64)) {
184 RegisterVT = MVT::i8;
185 IntermediateVT = MVT::i1;
186 NumIntermediates = VT.getVectorNumElements();
187 return NumIntermediates;
188 }
189
190 // Split v64i1 vectors if we don't have v64i8 available.
191 if (VT == MVT::v64i1 && Subtarget.hasBWI() && !Subtarget.useAVX512Regs() &&
193 RegisterVT = MVT::v32i8;
194 IntermediateVT = MVT::v32i1;
195 NumIntermediates = 2;
196 return 2;
197 }
198
199 // Split vNbf16 vectors according to vNf16.
200 if (VT.isVector() && VT.getVectorElementType() == MVT::bf16 &&
201 isTypeLegal(MVT::f16))
202 VT = VT.changeVectorElementType(MVT::f16);
203
204 return TargetLowering::getVectorTypeBreakdownForCallingConv(Context, CC, VT, IntermediateVT,
205 NumIntermediates, RegisterVT);
206}
207
209 LLVMContext& Context,
210 EVT VT) const {
211 if (!VT.isVector())
212 return MVT::i8;
213
214 if (Subtarget.hasAVX512()) {
215 // Figure out what this type will be legalized to.
216 EVT LegalVT = VT;
217 while (getTypeAction(Context, LegalVT) != TypeLegal)
218 LegalVT = getTypeToTransformTo(Context, LegalVT);
219
220 // If we got a 512-bit vector then we'll definitely have a vXi1 compare.
221 if (LegalVT.getSimpleVT().is512BitVector())
222 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
223
224 if (LegalVT.getSimpleVT().isVector() && Subtarget.hasVLX()) {
225 // If we legalized to less than a 512-bit vector, then we will use a vXi1
226 // compare for vXi32/vXi64 for sure. If we have BWI we will also support
227 // vXi16/vXi8.
228 MVT EltVT = LegalVT.getSimpleVT().getVectorElementType();
229 if (Subtarget.hasBWI() || EltVT.getSizeInBits() >= 32)
230 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
231 }
232 }
233
235}
236
238 Type *Ty, CallingConv::ID CallConv, bool isVarArg,
239 const DataLayout &DL) const {
240 // On x86-64 i128 is split into two i64s and needs to be allocated to two
241 // consecutive registers, or spilled to the stack as a whole. On x86-32 i128
242 // is split to four i32s and never actually passed in registers, but we use
243 // the consecutive register mark to match it in TableGen.
244 if (Ty->isIntegerTy(128))
245 return true;
246
247 // On x86-32, fp128 acts the same as i128.
248 if (Subtarget.is32Bit() && Ty->isFP128Ty())
249 return true;
250
251 return false;
252}
253
254/// Helper for getByValTypeAlignment to determine
255/// the desired ByVal argument alignment.
256static void getMaxByValAlign(Type *Ty, Align &MaxAlign) {
257 if (MaxAlign == 16)
258 return;
259 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
260 if (VTy->getPrimitiveSizeInBits().getFixedValue() == 128)
261 MaxAlign = Align(16);
262 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
263 Align EltAlign;
264 getMaxByValAlign(ATy->getElementType(), EltAlign);
265 if (EltAlign > MaxAlign)
266 MaxAlign = EltAlign;
267 } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
268 for (auto *EltTy : STy->elements()) {
269 Align EltAlign;
270 getMaxByValAlign(EltTy, EltAlign);
271 if (EltAlign > MaxAlign)
272 MaxAlign = EltAlign;
273 if (MaxAlign == 16)
274 break;
275 }
276 }
277}
278
279/// Return the desired alignment for ByVal aggregate
280/// function arguments in the caller parameter area. For X86, aggregates
281/// that contain SSE vectors are placed at 16-byte boundaries while the rest
282/// are at 4-byte boundaries.
284 const DataLayout &DL) const {
285 if (Subtarget.is64Bit())
286 return std::max(DL.getABITypeAlign(Ty), Align::Constant<8>());
287
288 Align Alignment(4);
289 if (Subtarget.hasSSE1())
290 getMaxByValAlign(Ty, Alignment);
291 return Alignment;
292}
293
294/// It returns EVT::Other if the type should be determined using generic
295/// target-independent logic.
296/// For vector ops we check that the overall size isn't larger than our
297/// preferred vector width.
299 LLVMContext &Context, const MemOp &Op,
300 const AttributeList &FuncAttributes) const {
301 if (!FuncAttributes.hasFnAttr(Attribute::NoImplicitFloat)) {
302 if (Op.size() >= 16 &&
303 (!Subtarget.isUnalignedMem16Slow() || Op.isAligned(Align(16)))) {
304 // FIXME: Check if unaligned 64-byte accesses are slow.
305 if (Op.size() >= 64 && Subtarget.hasAVX512() &&
306 (Subtarget.getPreferVectorWidth() >= 512)) {
307 return Subtarget.hasBWI() ? MVT::v64i8 : MVT::v16i32;
308 }
309 // FIXME: Check if unaligned 32-byte accesses are slow.
310 if (Op.size() >= 32 && Subtarget.hasAVX() &&
311 Subtarget.useLight256BitInstructions()) {
312 // Although this isn't a well-supported type for AVX1, we'll let
313 // legalization and shuffle lowering produce the optimal codegen. If we
314 // choose an optimal type with a vector element larger than a byte,
315 // getMemsetStores() may create an intermediate splat (using an integer
316 // multiply) before we splat as a vector.
317 return MVT::v32i8;
318 }
319 if (Subtarget.hasSSE2() && (Subtarget.getPreferVectorWidth() >= 128))
320 return MVT::v16i8;
321 // TODO: Can SSE1 handle a byte vector?
322 // If we have SSE1 registers we should be able to use them.
323 if (Subtarget.hasSSE1() && (Subtarget.is64Bit() || Subtarget.hasX87()) &&
324 (Subtarget.getPreferVectorWidth() >= 128))
325 return MVT::v4f32;
326 } else if (((Op.isMemcpy() && !Op.isMemcpyStrSrc()) || Op.isZeroMemset()) &&
327 Op.size() >= 8 && !Subtarget.is64Bit() && Subtarget.hasSSE2()) {
328 // Do not use f64 to lower memcpy if source is string constant. It's
329 // better to use i32 to avoid the loads.
330 // Also, do not use f64 to lower memset unless this is a memset of zeros.
331 // The gymnastics of splatting a byte value into an XMM register and then
332 // only using 8-byte stores (because this is a CPU with slow unaligned
333 // 16-byte accesses) makes that a loser.
334 return MVT::f64;
335 }
336 }
337 // This is a compromise. If we reach here, unaligned accesses may be slow on
338 // this target. However, creating smaller, aligned accesses could be even
339 // slower and would certainly be a lot more code.
340 if (Subtarget.is64Bit() && Op.size() >= 8)
341 return MVT::i64;
342 return MVT::i32;
343}
344
346 if (VT == MVT::f32)
347 return Subtarget.hasSSE1();
348 if (VT == MVT::f64)
349 return Subtarget.hasSSE2();
350 return true;
351}
352
353static bool isBitAligned(Align Alignment, uint64_t SizeInBits) {
354 return (8 * Alignment.value()) % SizeInBits == 0;
355}
356
358 if (isBitAligned(Alignment, VT.getSizeInBits()))
359 return true;
360 switch (VT.getSizeInBits()) {
361 default:
362 // 8-byte and under are always assumed to be fast.
363 return true;
364 case 128:
365 return !Subtarget.isUnalignedMem16Slow();
366 case 256:
367 return !Subtarget.isUnalignedMem32Slow();
368 // TODO: What about AVX-512 (512-bit) accesses?
369 }
370}
371
373 EVT VT, unsigned, Align Alignment, MachineMemOperand::Flags Flags,
374 unsigned *Fast) const {
375 if (Fast)
376 *Fast = isMemoryAccessFast(VT, Alignment);
377 // NonTemporal vector memory ops must be aligned.
378 if (!!(Flags & MachineMemOperand::MONonTemporal) && VT.isVector()) {
379 // NT loads can only be vector aligned, so if its less aligned than the
380 // minimum vector size (which we can split the vector down to), we might as
381 // well use a regular unaligned vector load.
382 // We don't have any NT loads pre-SSE41.
383 if (!!(Flags & MachineMemOperand::MOLoad))
384 return (Alignment < 16 || !Subtarget.hasSSE41());
385 return false;
386 }
387 // Misaligned accesses of any size are always allowed.
388 return true;
389}
390
392 const DataLayout &DL, EVT VT,
393 unsigned AddrSpace, Align Alignment,
395 unsigned *Fast) const {
396 if (Fast)
397 *Fast = isMemoryAccessFast(VT, Alignment);
398 if (!!(Flags & MachineMemOperand::MONonTemporal) && VT.isVector()) {
399 if (allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags,
400 /*Fast=*/nullptr))
401 return true;
402 // NonTemporal vector memory ops are special, and must be aligned.
403 if (!isBitAligned(Alignment, VT.getSizeInBits()))
404 return false;
405 switch (VT.getSizeInBits()) {
406 case 128:
407 if (!!(Flags & MachineMemOperand::MOLoad) && Subtarget.hasSSE41())
408 return true;
409 if (!!(Flags & MachineMemOperand::MOStore) && Subtarget.hasSSE2())
410 return true;
411 return false;
412 case 256:
413 if (!!(Flags & MachineMemOperand::MOLoad) && Subtarget.hasAVX2())
414 return true;
415 if (!!(Flags & MachineMemOperand::MOStore) && Subtarget.hasAVX())
416 return true;
417 return false;
418 case 512:
419 if (Subtarget.hasAVX512())
420 return true;
421 return false;
422 default:
423 return false; // Don't have NonTemporal vector memory ops of this size.
424 }
425 }
426 return true;
427}
428
429/// Return the entry encoding for a jump table in the
430/// current function. The returned value is a member of the
431/// MachineJumpTableInfo::JTEntryKind enum.
433 // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
434 // symbol.
435 if (isPositionIndependent() && Subtarget.isPICStyleGOT())
437 if (isPositionIndependent() &&
439 !Subtarget.isTargetCOFF())
441
442 // Otherwise, use the normal jump table encoding heuristics.
444}
445
447 return Subtarget.useSoftFloat();
448}
449
451 ArgListTy &Args) const {
452
453 // Only relabel X86-32 for C / Stdcall CCs.
454 if (Subtarget.is64Bit())
455 return;
456 if (CC != CallingConv::C && CC != CallingConv::X86_StdCall)
457 return;
458 unsigned ParamRegs = 0;
459 if (auto *M = MF->getFunction().getParent())
460 ParamRegs = M->getNumberRegisterParameters();
461
462 // Mark the first N int arguments as having reg
463 for (auto &Arg : Args) {
464 Type *T = Arg.Ty;
465 if (T->isIntOrPtrTy())
466 if (MF->getDataLayout().getTypeAllocSize(T) <= 8) {
467 unsigned numRegs = 1;
468 if (MF->getDataLayout().getTypeAllocSize(T) > 4)
469 numRegs = 2;
470 if (ParamRegs < numRegs)
471 return;
472 ParamRegs -= numRegs;
473 Arg.IsInReg = true;
474 }
475 }
476}
477
478const MCExpr *
480 const MachineBasicBlock *MBB,
481 unsigned uid,MCContext &Ctx) const{
482 assert(isPositionIndependent() && Subtarget.isPICStyleGOT());
483 // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
484 // entries.
485 return MCSymbolRefExpr::create(MBB->getSymbol(), X86::S_GOTOFF, Ctx);
486}
487
488/// Returns relocation base for the given PIC jumptable.
490 SelectionDAG &DAG) const {
491 if (!Subtarget.is64Bit())
492 // This doesn't have SDLoc associated with it, but is not really the
493 // same as a Register.
494 return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(),
496 return Table;
497}
498
499/// This returns the relocation base for the given PIC jumptable,
500/// the same as getPICJumpTableRelocBase, but as an MCExpr.
502getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
503 MCContext &Ctx) const {
504 // X86-64 uses RIP relative addressing based on the jump table label.
505 if (Subtarget.isPICStyleRIPRel() ||
506 (Subtarget.is64Bit() &&
509
510 // Otherwise, the reference is relative to the PIC base.
511 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
512}
513
514std::pair<const TargetRegisterClass *, uint8_t>
516 MVT VT) const {
517 const TargetRegisterClass *RRC = nullptr;
518 uint8_t Cost = 1;
519 switch (VT.SimpleTy) {
520 default:
522 case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
523 RRC = Subtarget.is64Bit() ? &X86::GR64RegClass : &X86::GR32RegClass;
524 break;
525 case MVT::x86mmx:
526 RRC = &X86::VR64RegClass;
527 break;
528 case MVT::f32: case MVT::f64:
529 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
530 case MVT::v4f32: case MVT::v2f64:
531 case MVT::v32i8: case MVT::v16i16: case MVT::v8i32: case MVT::v4i64:
532 case MVT::v8f32: case MVT::v4f64:
533 case MVT::v64i8: case MVT::v32i16: case MVT::v16i32: case MVT::v8i64:
534 case MVT::v16f32: case MVT::v8f64:
535 RRC = &X86::VR128XRegClass;
536 break;
537 }
538 return std::make_pair(RRC, Cost);
539}
540
541unsigned X86TargetLowering::getAddressSpace() const {
542 if (Subtarget.is64Bit())
544 : X86AS::FS;
545 return X86AS::GS;
546}
547
548static bool hasStackGuardSlotTLS(const Triple &TargetTriple) {
549 return TargetTriple.isOSGlibc() || TargetTriple.isOSFuchsia() ||
550 TargetTriple.isAndroid();
551}
552
554 int Offset, unsigned AddressSpace) {
556 ConstantInt::get(Type::getInt32Ty(IRB.getContext()), Offset),
558}
559
561 // glibc, bionic, and Fuchsia have a special slot for the stack guard in
562 // tcbhead_t; use it instead of the usual global variable (see
563 // sysdeps/{i386,x86_64}/nptl/tls.h)
564 if (hasStackGuardSlotTLS(Subtarget.getTargetTriple())) {
565 unsigned AddressSpace = getAddressSpace();
566
567 // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
568 if (Subtarget.isTargetFuchsia())
569 return SegmentOffset(IRB, 0x10, AddressSpace);
570
571 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
572 // Specially, some users may customize the base reg and offset.
573 int Offset = M->getStackProtectorGuardOffset();
574 // If we don't set -stack-protector-guard-offset value:
575 // %fs:0x28, unless we're using a Kernel code model, in which case
576 // it's %gs:0x28. gs:0x14 on i386.
577 if (Offset == INT_MAX)
578 Offset = (Subtarget.is64Bit()) ? 0x28 : 0x14;
579
580 StringRef GuardReg = M->getStackProtectorGuardReg();
581 if (GuardReg == "fs")
583 else if (GuardReg == "gs")
585
586 // Use symbol guard if user specify.
587 StringRef GuardSymb = M->getStackProtectorGuardSymbol();
588 if (!GuardSymb.empty()) {
589 GlobalVariable *GV = M->getGlobalVariable(GuardSymb);
590 if (!GV) {
591 Type *Ty = Subtarget.is64Bit() ? Type::getInt64Ty(M->getContext())
592 : Type::getInt32Ty(M->getContext());
593 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage,
594 nullptr, GuardSymb, nullptr,
596 if (!Subtarget.isTargetDarwin())
597 GV->setDSOLocal(M->getDirectAccessExternalData());
598 }
599 return GV;
600 }
601
602 return SegmentOffset(IRB, Offset, AddressSpace);
603 }
605}
606
608 // MSVC CRT provides functionalities for stack protection.
609 RTLIB::LibcallImpl SecurityCheckCookieLibcall =
610 getLibcallImpl(RTLIB::SECURITY_CHECK_COOKIE);
611
612 RTLIB::LibcallImpl SecurityCookieVar =
613 getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
614 if (SecurityCheckCookieLibcall != RTLIB::Unsupported &&
615 SecurityCookieVar != RTLIB::Unsupported) {
616 // MSVC CRT provides functionalities for stack protection.
617 // MSVC CRT has a global variable holding security cookie.
618 M.getOrInsertGlobal(getLibcallImplName(SecurityCookieVar),
619 PointerType::getUnqual(M.getContext()));
620
621 // MSVC CRT has a function to validate security cookie.
622 FunctionCallee SecurityCheckCookie =
623 M.getOrInsertFunction(getLibcallImplName(SecurityCheckCookieLibcall),
624 Type::getVoidTy(M.getContext()),
625 PointerType::getUnqual(M.getContext()));
626
627 if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee())) {
628 F->setCallingConv(CallingConv::X86_FastCall);
629 F->addParamAttr(0, Attribute::AttrKind::InReg);
630 }
631 return;
632 }
633
634 StringRef GuardMode = M.getStackProtectorGuard();
635
636 // glibc, bionic, and Fuchsia have a special slot for the stack guard.
637 if ((GuardMode == "tls" || GuardMode.empty()) &&
638 hasStackGuardSlotTLS(Subtarget.getTargetTriple()))
639 return;
641}
642
643Value *
645 // Android provides a fixed TLS slot for the SafeStack pointer. See the
646 // definition of TLS_SLOT_SAFESTACK in
647 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
648 if (Subtarget.isTargetAndroid()) {
649 // %fs:0x48, unless we're using a Kernel code model, in which case it's %gs:
650 // %gs:0x24 on i386
651 int Offset = (Subtarget.is64Bit()) ? 0x48 : 0x24;
652 return SegmentOffset(IRB, Offset, getAddressSpace());
653 }
654
655 // Fuchsia is similar.
656 if (Subtarget.isTargetFuchsia()) {
657 // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value.
658 return SegmentOffset(IRB, 0x18, getAddressSpace());
659 }
660
662}
663
664//===----------------------------------------------------------------------===//
665// Return Value Calling Convention Implementation
666//===----------------------------------------------------------------------===//
667
668bool X86TargetLowering::CanLowerReturn(
669 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
670 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context,
671 const Type *RetTy) const {
673 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
674 return CCInfo.CheckReturn(Outs, RetCC_X86);
675}
676
677const MCPhysReg *X86TargetLowering::getScratchRegisters(CallingConv::ID) const {
678 static const MCPhysReg ScratchRegs[] = { X86::R11, 0 };
679 return ScratchRegs;
680}
681
683 static const MCPhysReg RCRegs[] = {X86::FPCW, X86::MXCSR};
684 return RCRegs;
685}
686
687/// Lowers masks values (v*i1) to the local register values
688/// \returns DAG node after lowering to register type
689static SDValue lowerMasksToReg(const SDValue &ValArg, const EVT &ValLoc,
690 const SDLoc &DL, SelectionDAG &DAG) {
691 EVT ValVT = ValArg.getValueType();
692
693 if (ValVT == MVT::v1i1)
694 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ValLoc, ValArg,
695 DAG.getIntPtrConstant(0, DL));
696
697 if ((ValVT == MVT::v8i1 && (ValLoc == MVT::i8 || ValLoc == MVT::i32)) ||
698 (ValVT == MVT::v16i1 && (ValLoc == MVT::i16 || ValLoc == MVT::i32))) {
699 // Two stage lowering might be required
700 // bitcast: v8i1 -> i8 / v16i1 -> i16
701 // anyextend: i8 -> i32 / i16 -> i32
702 EVT TempValLoc = ValVT == MVT::v8i1 ? MVT::i8 : MVT::i16;
703 SDValue ValToCopy = DAG.getBitcast(TempValLoc, ValArg);
704 if (ValLoc == MVT::i32)
705 ValToCopy = DAG.getNode(ISD::ANY_EXTEND, DL, ValLoc, ValToCopy);
706 return ValToCopy;
707 }
708
709 if ((ValVT == MVT::v32i1 && ValLoc == MVT::i32) ||
710 (ValVT == MVT::v64i1 && ValLoc == MVT::i64)) {
711 // One stage lowering is required
712 // bitcast: v32i1 -> i32 / v64i1 -> i64
713 return DAG.getBitcast(ValLoc, ValArg);
714 }
715
716 return DAG.getNode(ISD::ANY_EXTEND, DL, ValLoc, ValArg);
717}
718
719/// Breaks v64i1 value into two registers and adds the new node to the DAG
721 const SDLoc &DL, SelectionDAG &DAG, SDValue &Arg,
722 SmallVectorImpl<std::pair<Register, SDValue>> &RegsToPass, CCValAssign &VA,
723 CCValAssign &NextVA, const X86Subtarget &Subtarget) {
724 assert(Subtarget.hasBWI() && "Expected AVX512BW target!");
725 assert(Subtarget.is32Bit() && "Expecting 32 bit target");
726 assert(Arg.getValueType() == MVT::i64 && "Expecting 64 bit value");
727 assert(VA.isRegLoc() && NextVA.isRegLoc() &&
728 "The value should reside in two registers");
729
730 // Before splitting the value we cast it to i64
731 Arg = DAG.getBitcast(MVT::i64, Arg);
732
733 // Splitting the value into two i32 types
734 SDValue Lo, Hi;
735 std::tie(Lo, Hi) = DAG.SplitScalar(Arg, DL, MVT::i32, MVT::i32);
736
737 // Attach the two i32 types into corresponding registers
738 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Lo));
739 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Hi));
740}
741
743X86TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
744 bool isVarArg,
746 const SmallVectorImpl<SDValue> &OutVals,
747 const SDLoc &dl, SelectionDAG &DAG) const {
748 MachineFunction &MF = DAG.getMachineFunction();
749 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
750
751 // In some cases we need to disable registers from the default CSR list.
752 // For example, when they are used as return registers (preserve_* and X86's
753 // regcall) or for argument passing (X86's regcall).
754 bool ShouldDisableCalleeSavedRegister =
755 shouldDisableRetRegFromCSR(CallConv) ||
756 MF.getFunction().hasFnAttribute("no_caller_saved_registers");
757
758 if (CallConv == CallingConv::X86_INTR && !Outs.empty())
759 report_fatal_error("X86 interrupts may not return any value");
760
762 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, *DAG.getContext());
763 CCInfo.AnalyzeReturn(Outs, RetCC_X86);
764
766 for (unsigned I = 0, OutsIndex = 0, E = RVLocs.size(); I != E;
767 ++I, ++OutsIndex) {
768 CCValAssign &VA = RVLocs[I];
769 assert(VA.isRegLoc() && "Can only return in registers!");
770
771 // Add the register to the CalleeSaveDisableRegs list.
772 if (ShouldDisableCalleeSavedRegister)
774
775 SDValue ValToCopy = OutVals[OutsIndex];
776 EVT ValVT = ValToCopy.getValueType();
777
778 // Promote values to the appropriate types.
779 if (VA.getLocInfo() == CCValAssign::SExt)
780 ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
781 else if (VA.getLocInfo() == CCValAssign::ZExt)
782 ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
783 else if (VA.getLocInfo() == CCValAssign::AExt) {
784 if (ValVT.isVector() && ValVT.getVectorElementType() == MVT::i1)
785 ValToCopy = lowerMasksToReg(ValToCopy, VA.getLocVT(), dl, DAG);
786 else
787 ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
788 }
789 else if (VA.getLocInfo() == CCValAssign::BCvt)
790 ValToCopy = DAG.getBitcast(VA.getLocVT(), ValToCopy);
791
793 "Unexpected FP-extend for return value.");
794
795 // Report an error if we have attempted to return a value via an XMM
796 // register and SSE was disabled.
797 if (!Subtarget.hasSSE1() && X86::FR32XRegClass.contains(VA.getLocReg())) {
798 errorUnsupported(DAG, dl, "SSE register return with SSE disabled");
799 VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts.
800 } else if (!Subtarget.hasSSE2() &&
801 X86::FR64XRegClass.contains(VA.getLocReg()) &&
802 ValVT == MVT::f64) {
803 // When returning a double via an XMM register, report an error if SSE2 is
804 // not enabled.
805 errorUnsupported(DAG, dl, "SSE2 register return with SSE2 disabled");
806 VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts.
807 }
808
809 // Returns in ST0/ST1 are handled specially: these are pushed as operands to
810 // the RET instruction and handled by the FP Stackifier.
811 if (VA.getLocReg() == X86::FP0 ||
812 VA.getLocReg() == X86::FP1) {
813 // If this is a copy from an xmm register to ST(0), use an FPExtend to
814 // change the value to the FP stack register class.
816 ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
817 RetVals.push_back(std::make_pair(VA.getLocReg(), ValToCopy));
818 // Don't emit a copytoreg.
819 continue;
820 }
821
822 // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
823 // which is returned in RAX / RDX.
824 if (Subtarget.is64Bit()) {
825 if (ValVT == MVT::x86mmx) {
826 if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
827 ValToCopy = DAG.getBitcast(MVT::i64, ValToCopy);
828 ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
829 ValToCopy);
830 // If we don't have SSE2 available, convert to v4f32 so the generated
831 // register is legal.
832 if (!Subtarget.hasSSE2())
833 ValToCopy = DAG.getBitcast(MVT::v4f32, ValToCopy);
834 }
835 }
836 }
837
838 if (VA.needsCustom()) {
839 assert(VA.getValVT() == MVT::v64i1 &&
840 "Currently the only custom case is when we split v64i1 to 2 regs");
841
842 Passv64i1ArgInRegs(dl, DAG, ValToCopy, RetVals, VA, RVLocs[++I],
843 Subtarget);
844
845 // Add the second register to the CalleeSaveDisableRegs list.
846 if (ShouldDisableCalleeSavedRegister)
847 MF.getRegInfo().disableCalleeSavedRegister(RVLocs[I].getLocReg());
848 } else {
849 RetVals.push_back(std::make_pair(VA.getLocReg(), ValToCopy));
850 }
851 }
852
853 SDValue Glue;
855 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
856 // Operand #1 = Bytes To Pop
857 RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(), dl,
858 MVT::i32));
859
860 // Copy the result values into the output registers.
861 for (auto &RetVal : RetVals) {
862 if (RetVal.first == X86::FP0 || RetVal.first == X86::FP1) {
863 RetOps.push_back(RetVal.second);
864 continue; // Don't emit a copytoreg.
865 }
866
867 Chain = DAG.getCopyToReg(Chain, dl, RetVal.first, RetVal.second, Glue);
868 Glue = Chain.getValue(1);
869 RetOps.push_back(
870 DAG.getRegister(RetVal.first, RetVal.second.getValueType()));
871 }
872
873 // Swift calling convention does not require we copy the sret argument
874 // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
875
876 // All x86 ABIs require that for returning structs by value we copy
877 // the sret argument into %rax/%eax (depending on ABI) for the return.
878 // We saved the argument into a virtual register in the entry block,
879 // so now we copy the value out and into %rax/%eax.
880 //
881 // Checking Function.hasStructRetAttr() here is insufficient because the IR
882 // may not have an explicit sret argument. If FuncInfo.CanLowerReturn is
883 // false, then an sret argument may be implicitly inserted in the SelDAG. In
884 // either case FuncInfo->setSRetReturnReg() will have been called.
885 if (Register SRetReg = FuncInfo->getSRetReturnReg()) {
886 // When we have both sret and another return value, we should use the
887 // original Chain stored in RetOps[0], instead of the current Chain updated
888 // in the above loop. If we only have sret, RetOps[0] equals to Chain.
889
890 // For the case of sret and another return value, we have
891 // Chain_0 at the function entry
892 // Chain_1 = getCopyToReg(Chain_0) in the above loop
893 // If we use Chain_1 in getCopyFromReg, we will have
894 // Val = getCopyFromReg(Chain_1)
895 // Chain_2 = getCopyToReg(Chain_1, Val) from below
896
897 // getCopyToReg(Chain_0) will be glued together with
898 // getCopyToReg(Chain_1, Val) into Unit A, getCopyFromReg(Chain_1) will be
899 // in Unit B, and we will have cyclic dependency between Unit A and Unit B:
900 // Data dependency from Unit B to Unit A due to usage of Val in
901 // getCopyToReg(Chain_1, Val)
902 // Chain dependency from Unit A to Unit B
903
904 // So here, we use RetOps[0] (i.e Chain_0) for getCopyFromReg.
905 SDValue Val = DAG.getCopyFromReg(RetOps[0], dl, SRetReg,
907
908 Register RetValReg
909 = (Subtarget.is64Bit() && !Subtarget.isTarget64BitILP32()) ?
910 X86::RAX : X86::EAX;
911 Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Glue);
912 Glue = Chain.getValue(1);
913
914 // RAX/EAX now acts like a return value.
915 RetOps.push_back(
916 DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout())));
917
918 // Add the returned register to the CalleeSaveDisableRegs list. Don't do
919 // this however for preserve_most/preserve_all to minimize the number of
920 // callee-saved registers for these CCs.
921 if (ShouldDisableCalleeSavedRegister &&
922 CallConv != CallingConv::PreserveAll &&
923 CallConv != CallingConv::PreserveMost)
925 }
926
927 const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
928 const MCPhysReg *I =
929 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
930 if (I) {
931 for (; *I; ++I) {
932 if (X86::GR64RegClass.contains(*I))
933 RetOps.push_back(DAG.getRegister(*I, MVT::i64));
934 else
935 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
936 }
937 }
938
939 RetOps[0] = Chain; // Update chain.
940
941 // Add the glue if we have it.
942 if (Glue.getNode())
943 RetOps.push_back(Glue);
944
946 if (CallConv == CallingConv::X86_INTR)
947 opcode = X86ISD::IRET;
948 return DAG.getNode(opcode, dl, MVT::Other, RetOps);
949}
950
951bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
952 if (N->getNumValues() != 1 || !N->hasNUsesOfValue(1, 0))
953 return false;
954
955 SDValue TCChain = Chain;
956 SDNode *Copy = *N->user_begin();
957 if (Copy->getOpcode() == ISD::CopyToReg) {
958 // If the copy has a glue operand, we conservatively assume it isn't safe to
959 // perform a tail call.
960 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
961 return false;
962 TCChain = Copy->getOperand(0);
963 } else if (Copy->getOpcode() != ISD::FP_EXTEND)
964 return false;
965
966 bool HasRet = false;
967 for (const SDNode *U : Copy->users()) {
968 if (U->getOpcode() != X86ISD::RET_GLUE)
969 return false;
970 // If we are returning more than one value, we can definitely
971 // not make a tail call see PR19530
972 if (U->getNumOperands() > 4)
973 return false;
974 if (U->getNumOperands() == 4 &&
975 U->getOperand(U->getNumOperands() - 1).getValueType() != MVT::Glue)
976 return false;
977 HasRet = true;
978 }
979
980 if (!HasRet)
981 return false;
982
983 Chain = TCChain;
984 return true;
985}
986
987EVT X86TargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
988 ISD::NodeType ExtendKind) const {
989 MVT ReturnMVT = MVT::i32;
990
991 bool Darwin = Subtarget.getTargetTriple().isOSDarwin();
992 if (VT == MVT::i1 || (!Darwin && (VT == MVT::i8 || VT == MVT::i16))) {
993 // The ABI does not require i1, i8 or i16 to be extended.
994 //
995 // On Darwin, there is code in the wild relying on Clang's old behaviour of
996 // always extending i8/i16 return values, so keep doing that for now.
997 // (PR26665).
998 ReturnMVT = MVT::i8;
999 }
1000
1001 EVT MinVT = getRegisterType(Context, ReturnMVT);
1002 return VT.bitsLT(MinVT) ? MinVT : VT;
1003}
1004
1005/// Reads two 32 bit registers and creates a 64 bit mask value.
1006/// \param VA The current 32 bit value that need to be assigned.
1007/// \param NextVA The next 32 bit value that need to be assigned.
1008/// \param Root The parent DAG node.
1009/// \param [in,out] InGlue Represents SDvalue in the parent DAG node for
1010/// glue purposes. In the case the DAG is already using
1011/// physical register instead of virtual, we should glue
1012/// our new SDValue to InGlue SDvalue.
1013/// \return a new SDvalue of size 64bit.
1015 SDValue &Root, SelectionDAG &DAG,
1016 const SDLoc &DL, const X86Subtarget &Subtarget,
1017 SDValue *InGlue = nullptr) {
1018 assert((Subtarget.hasBWI()) && "Expected AVX512BW target!");
1019 assert(Subtarget.is32Bit() && "Expecting 32 bit target");
1020 assert(VA.getValVT() == MVT::v64i1 &&
1021 "Expecting first location of 64 bit width type");
1022 assert(NextVA.getValVT() == VA.getValVT() &&
1023 "The locations should have the same type");
1024 assert(VA.isRegLoc() && NextVA.isRegLoc() &&
1025 "The values should reside in two registers");
1026
1027 SDValue Lo, Hi;
1028 SDValue ArgValueLo, ArgValueHi;
1029
1031 const TargetRegisterClass *RC = &X86::GR32RegClass;
1032
1033 // Read a 32 bit value from the registers.
1034 if (nullptr == InGlue) {
1035 // When no physical register is present,
1036 // create an intermediate virtual register.
1037 Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
1038 ArgValueLo = DAG.getCopyFromReg(Root, DL, Reg, MVT::i32);
1039 Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
1040 ArgValueHi = DAG.getCopyFromReg(Root, DL, Reg, MVT::i32);
1041 } else {
1042 // When a physical register is available read the value from it and glue
1043 // the reads together.
1044 ArgValueLo =
1045 DAG.getCopyFromReg(Root, DL, VA.getLocReg(), MVT::i32, *InGlue);
1046 *InGlue = ArgValueLo.getValue(2);
1047 ArgValueHi =
1048 DAG.getCopyFromReg(Root, DL, NextVA.getLocReg(), MVT::i32, *InGlue);
1049 *InGlue = ArgValueHi.getValue(2);
1050 }
1051
1052 // Convert the i32 type into v32i1 type.
1053 Lo = DAG.getBitcast(MVT::v32i1, ArgValueLo);
1054
1055 // Convert the i32 type into v32i1 type.
1056 Hi = DAG.getBitcast(MVT::v32i1, ArgValueHi);
1057
1058 // Concatenate the two values together.
1059 return DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v64i1, Lo, Hi);
1060}
1061
1062/// The function will lower a register of various sizes (8/16/32/64)
1063/// to a mask value of the expected size (v8i1/v16i1/v32i1/v64i1)
1064/// \returns a DAG node contains the operand after lowering to mask type.
1065static SDValue lowerRegToMasks(const SDValue &ValArg, const EVT &ValVT,
1066 const EVT &ValLoc, const SDLoc &DL,
1067 SelectionDAG &DAG) {
1068 SDValue ValReturned = ValArg;
1069
1070 if (ValVT == MVT::v1i1)
1071 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v1i1, ValReturned);
1072
1073 if (ValVT == MVT::v64i1) {
1074 // In 32 bit machine, this case is handled by getv64i1Argument
1075 assert(ValLoc == MVT::i64 && "Expecting only i64 locations");
1076 // In 64 bit machine, There is no need to truncate the value only bitcast
1077 } else {
1078 MVT MaskLenVT;
1079 switch (ValVT.getSimpleVT().SimpleTy) {
1080 case MVT::v8i1:
1081 MaskLenVT = MVT::i8;
1082 break;
1083 case MVT::v16i1:
1084 MaskLenVT = MVT::i16;
1085 break;
1086 case MVT::v32i1:
1087 MaskLenVT = MVT::i32;
1088 break;
1089 default:
1090 llvm_unreachable("Expecting a vector of i1 types");
1091 }
1092
1093 ValReturned = DAG.getNode(ISD::TRUNCATE, DL, MaskLenVT, ValReturned);
1094 }
1095 return DAG.getBitcast(ValVT, ValReturned);
1096}
1097
1099 const SDLoc &dl, Register Reg, EVT VT,
1100 SDValue Glue) {
1101 SDVTList VTs = DAG.getVTList(VT, MVT::Other, MVT::Glue);
1102 SDValue Ops[] = {Chain, DAG.getRegister(Reg, VT), Glue};
1103 return DAG.getNode(X86ISD::POP_FROM_X87_REG, dl, VTs,
1104 ArrayRef(Ops, Glue.getNode() ? 3 : 2));
1105}
1106
1107/// Lower the result values of a call into the
1108/// appropriate copies out of appropriate physical registers.
1109///
1110SDValue X86TargetLowering::LowerCallResult(
1111 SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool isVarArg,
1112 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1114 uint32_t *RegMask) const {
1115
1116 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1117 // Assign locations to each value returned by this call.
1119 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1120 *DAG.getContext());
1121 CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1122
1123 // Copy all of the result registers out of their specified physreg.
1124 for (unsigned I = 0, InsIndex = 0, E = RVLocs.size(); I != E;
1125 ++I, ++InsIndex) {
1126 CCValAssign &VA = RVLocs[I];
1127 EVT CopyVT = VA.getLocVT();
1128
1129 // In some calling conventions we need to remove the used registers
1130 // from the register mask.
1131 if (RegMask) {
1132 for (MCPhysReg SubReg : TRI->subregs_inclusive(VA.getLocReg()))
1133 RegMask[SubReg / 32] &= ~(1u << (SubReg % 32));
1134 }
1135
1136 // Report an error if there was an attempt to return FP values via XMM
1137 // registers.
1138 if (!Subtarget.hasSSE1() && X86::FR32XRegClass.contains(VA.getLocReg())) {
1139 errorUnsupported(DAG, dl, "SSE register return with SSE disabled");
1140 if (VA.getLocReg() == X86::XMM1)
1141 VA.convertToReg(X86::FP1); // Set reg to FP1, avoid hitting asserts.
1142 else
1143 VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts.
1144 } else if (!Subtarget.hasSSE2() &&
1145 X86::FR64XRegClass.contains(VA.getLocReg()) &&
1146 CopyVT == MVT::f64) {
1147 errorUnsupported(DAG, dl, "SSE2 register return with SSE2 disabled");
1148 if (VA.getLocReg() == X86::XMM1)
1149 VA.convertToReg(X86::FP1); // Set reg to FP1, avoid hitting asserts.
1150 else
1151 VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts.
1152 }
1153
1154 // If we prefer to use the value in xmm registers, copy it out as f80 and
1155 // use a truncate to move it from fp stack reg to xmm reg.
1156 bool RoundAfterCopy = false;
1157 bool X87Result = VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1;
1158 if (X87Result && isScalarFPTypeInSSEReg(VA.getValVT())) {
1159 if (!Subtarget.hasX87())
1160 report_fatal_error("X87 register return with X87 disabled");
1161 CopyVT = MVT::f80;
1162 RoundAfterCopy = (CopyVT != VA.getLocVT());
1163 }
1164
1165 SDValue Val;
1166 if (VA.needsCustom()) {
1167 assert(VA.getValVT() == MVT::v64i1 &&
1168 "Currently the only custom case is when we split v64i1 to 2 regs");
1169 Val =
1170 getv64i1Argument(VA, RVLocs[++I], Chain, DAG, dl, Subtarget, &InGlue);
1171 } else {
1172 Chain =
1173 X87Result
1174 ? getPopFromX87Reg(DAG, Chain, dl, VA.getLocReg(), CopyVT, InGlue)
1175 .getValue(1)
1176 : DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), CopyVT, InGlue)
1177 .getValue(1);
1178 Val = Chain.getValue(0);
1179 InGlue = Chain.getValue(2);
1180 }
1181
1182 if (RoundAfterCopy)
1183 Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1184 // This truncation won't change the value.
1185 DAG.getIntPtrConstant(1, dl, /*isTarget=*/true));
1186
1187 if (VA.isExtInLoc()) {
1188 if (VA.getValVT().isVector() &&
1189 VA.getValVT().getScalarType() == MVT::i1 &&
1190 ((VA.getLocVT() == MVT::i64) || (VA.getLocVT() == MVT::i32) ||
1191 (VA.getLocVT() == MVT::i16) || (VA.getLocVT() == MVT::i8))) {
1192 // promoting a mask type (v*i1) into a register of type i64/i32/i16/i8
1193 Val = lowerRegToMasks(Val, VA.getValVT(), VA.getLocVT(), dl, DAG);
1194 } else
1195 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
1196 }
1197
1198 if (VA.getLocInfo() == CCValAssign::BCvt)
1199 Val = DAG.getBitcast(VA.getValVT(), Val);
1200
1201 InVals.push_back(Val);
1202 }
1203
1204 return Chain;
1205}
1206
1207//===----------------------------------------------------------------------===//
1208// C & StdCall & Fast Calling Convention implementation
1209//===----------------------------------------------------------------------===//
1210// StdCall calling convention seems to be standard for many Windows' API
1211// routines and around. It differs from C calling convention just a little:
1212// callee should clean up the stack, not caller. Symbols should be also
1213// decorated in some fancy way :) It doesn't support any vector arguments.
1214// For info on fast calling convention see Fast Calling Convention (tail call)
1215// implementation LowerX86_32FastCCCallTo.
1216
1217/// Determines whether Args, either a set of outgoing arguments to a call, or a
1218/// set of incoming args of a call, contains an sret pointer that the callee
1219/// pops
1220template <typename T>
1221static bool hasCalleePopSRet(const SmallVectorImpl<T> &Args,
1222 const X86Subtarget &Subtarget) {
1223 // Not C++20 (yet), so no concepts available.
1224 static_assert(std::is_same_v<T, ISD::OutputArg> ||
1225 std::is_same_v<T, ISD::InputArg>,
1226 "requires ISD::OutputArg or ISD::InputArg");
1227
1228 // Only 32-bit pops the sret. It's a 64-bit world these days, so early-out
1229 // for most compilations.
1230 if (!Subtarget.is32Bit())
1231 return false;
1232
1233 if (Args.empty())
1234 return false;
1235
1236 // Most calls do not have an sret argument, check the arg next.
1237 const ISD::ArgFlagsTy &Flags = Args[0].Flags;
1238 if (!Flags.isSRet() || Flags.isInReg())
1239 return false;
1240
1241 // The MSVCabi does not pop the sret.
1242 if (Subtarget.getTargetTriple().isOSMSVCRT())
1243 return false;
1244
1245 // MCUs don't pop the sret
1246 if (Subtarget.isTargetMCU())
1247 return false;
1248
1249 // Callee pops argument
1250 return true;
1251}
1252
1253/// Make a copy of an aggregate at address specified by "Src" to address
1254/// "Dst" with size and alignment information specified by the specific
1255/// parameter attribute. The copy will be passed as a byval function parameter.
1257 SDValue Chain, ISD::ArgFlagsTy Flags,
1258 SelectionDAG &DAG, const SDLoc &dl) {
1259 SDValue SizeNode = DAG.getIntPtrConstant(Flags.getByValSize(), dl);
1260
1261 return DAG.getMemcpy(
1262 Chain, dl, Dst, Src, SizeNode, Flags.getNonZeroByValAlign(),
1263 /*isVolatile*/ false, /*AlwaysInline=*/true,
1264 /*CI=*/nullptr, std::nullopt, MachinePointerInfo(), MachinePointerInfo());
1265}
1266
1267/// Return true if the calling convention is one that we can guarantee TCO for.
1269 return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
1272}
1273
1274/// Return true if we might ever do TCO for calls with this calling convention.
1276 switch (CC) {
1277 // C calling conventions:
1278 case CallingConv::C:
1279 case CallingConv::Win64:
1282 // Callee pop conventions:
1287 // Swift:
1288 case CallingConv::Swift:
1289 return true;
1290 default:
1291 return canGuaranteeTCO(CC);
1292 }
1293}
1294
1295/// Return true if the function is being made into a tailcall target by
1296/// changing its ABI.
1297static bool shouldGuaranteeTCO(CallingConv::ID CC, bool GuaranteedTailCallOpt) {
1298 return (GuaranteedTailCallOpt && canGuaranteeTCO(CC)) ||
1300}
1301
1302bool X86TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1303 if (!CI->isTailCall())
1304 return false;
1305
1306 CallingConv::ID CalleeCC = CI->getCallingConv();
1307 if (!mayTailCallThisCC(CalleeCC))
1308 return false;
1309
1310 return true;
1311}
1312
1313SDValue
1314X86TargetLowering::LowerMemArgument(SDValue Chain, CallingConv::ID CallConv,
1316 const SDLoc &dl, SelectionDAG &DAG,
1317 const CCValAssign &VA,
1318 MachineFrameInfo &MFI, unsigned i) const {
1319 // Create the nodes corresponding to a load from this parameter slot.
1320 ISD::ArgFlagsTy Flags = Ins[i].Flags;
1321 bool AlwaysUseMutable = shouldGuaranteeTCO(
1322 CallConv, DAG.getTarget().Options.GuaranteedTailCallOpt);
1323 bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1324 EVT ValVT;
1325 MVT PtrVT = getPointerTy(DAG.getDataLayout());
1326
1327 // If value is passed by pointer we have address passed instead of the value
1328 // itself. No need to extend if the mask value and location share the same
1329 // absolute size.
1330 bool ExtendedInMem =
1331 VA.isExtInLoc() && VA.getValVT().getScalarType() == MVT::i1 &&
1333
1334 if (VA.getLocInfo() == CCValAssign::Indirect || ExtendedInMem)
1335 ValVT = VA.getLocVT();
1336 else
1337 ValVT = VA.getValVT();
1338
1339 // FIXME: For now, all byval parameter objects are marked mutable. This can be
1340 // changed with more analysis.
1341 // In case of tail call optimization mark all arguments mutable. Since they
1342 // could be overwritten by lowering of arguments in case of a tail call.
1343 if (Flags.isByVal()) {
1344 unsigned Bytes = Flags.getByValSize();
1345 if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1346
1347 // FIXME: For now, all byval parameter objects are marked as aliasing. This
1348 // can be improved with deeper analysis.
1349 int FI = MFI.CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable,
1350 /*isAliased=*/true);
1351 return DAG.getFrameIndex(FI, PtrVT);
1352 }
1353
1354 EVT ArgVT = Ins[i].ArgVT;
1355
1356 // If this is a vector that has been split into multiple parts, don't elide
1357 // the copy. The layout on the stack may not match the packed in-memory
1358 // layout.
1359 bool ScalarizedVector = ArgVT.isVector() && !VA.getLocVT().isVector();
1360
1361 // This is an argument in memory. We might be able to perform copy elision.
1362 // If the argument is passed directly in memory without any extension, then we
1363 // can perform copy elision. Large vector types, for example, may be passed
1364 // indirectly by pointer.
1365 if (Flags.isCopyElisionCandidate() &&
1366 VA.getLocInfo() != CCValAssign::Indirect && !ExtendedInMem &&
1367 !ScalarizedVector) {
1368 SDValue PartAddr;
1369 if (Ins[i].PartOffset == 0) {
1370 // If this is a one-part value or the first part of a multi-part value,
1371 // create a stack object for the entire argument value type and return a
1372 // load from our portion of it. This assumes that if the first part of an
1373 // argument is in memory, the rest will also be in memory.
1374 int FI = MFI.CreateFixedObject(ArgVT.getStoreSize(), VA.getLocMemOffset(),
1375 /*IsImmutable=*/false);
1376 PartAddr = DAG.getFrameIndex(FI, PtrVT);
1377 return DAG.getLoad(
1378 ValVT, dl, Chain, PartAddr,
1380 }
1381
1382 // This is not the first piece of an argument in memory. See if there is
1383 // already a fixed stack object including this offset. If so, assume it
1384 // was created by the PartOffset == 0 branch above and create a load from
1385 // the appropriate offset into it.
1386 int64_t PartBegin = VA.getLocMemOffset();
1387 int64_t PartEnd = PartBegin + ValVT.getSizeInBits() / 8;
1388 int FI = MFI.getObjectIndexBegin();
1389 for (; MFI.isFixedObjectIndex(FI); ++FI) {
1390 int64_t ObjBegin = MFI.getObjectOffset(FI);
1391 int64_t ObjEnd = ObjBegin + MFI.getObjectSize(FI);
1392 if (ObjBegin <= PartBegin && PartEnd <= ObjEnd)
1393 break;
1394 }
1395 if (MFI.isFixedObjectIndex(FI)) {
1396 SDValue Addr =
1397 DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getFrameIndex(FI, PtrVT),
1398 DAG.getIntPtrConstant(Ins[i].PartOffset, dl));
1399 return DAG.getLoad(ValVT, dl, Chain, Addr,
1401 DAG.getMachineFunction(), FI, Ins[i].PartOffset));
1402 }
1403 }
1404
1405 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
1406 VA.getLocMemOffset(), isImmutable);
1407
1408 // Set SExt or ZExt flag.
1409 if (VA.getLocInfo() == CCValAssign::ZExt) {
1410 MFI.setObjectZExt(FI, true);
1411 } else if (VA.getLocInfo() == CCValAssign::SExt) {
1412 MFI.setObjectSExt(FI, true);
1413 }
1414
1415 MaybeAlign Alignment;
1416 if (Subtarget.isTargetWindowsMSVC() && !Subtarget.is64Bit() &&
1417 ValVT != MVT::f80)
1418 Alignment = MaybeAlign(4);
1419 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1420 SDValue Val = DAG.getLoad(
1421 ValVT, dl, Chain, FIN,
1423 Alignment);
1424 return ExtendedInMem
1425 ? (VA.getValVT().isVector()
1426 ? DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VA.getValVT(), Val)
1427 : DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val))
1428 : Val;
1429}
1430
1431// FIXME: Get this from tablegen.
1433 const X86Subtarget &Subtarget) {
1434 assert(Subtarget.is64Bit());
1435
1436 if (Subtarget.isCallingConvWin64(CallConv)) {
1437 static const MCPhysReg GPR64ArgRegsWin64[] = {
1438 X86::RCX, X86::RDX, X86::R8, X86::R9
1439 };
1440 return GPR64ArgRegsWin64;
1441 }
1442
1443 static const MCPhysReg GPR64ArgRegs64Bit[] = {
1444 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1445 };
1446 return GPR64ArgRegs64Bit;
1447}
1448
1449// FIXME: Get this from tablegen.
1451 CallingConv::ID CallConv,
1452 const X86Subtarget &Subtarget) {
1453 assert(Subtarget.is64Bit());
1454 if (Subtarget.isCallingConvWin64(CallConv)) {
1455 // The XMM registers which might contain var arg parameters are shadowed
1456 // in their paired GPR. So we only need to save the GPR to their home
1457 // slots.
1458 // TODO: __vectorcall will change this.
1459 return {};
1460 }
1461
1462 bool isSoftFloat = Subtarget.useSoftFloat();
1463 if (isSoftFloat || !Subtarget.hasSSE1())
1464 // Kernel mode asks for SSE to be disabled, so there are no XMM argument
1465 // registers.
1466 return {};
1467
1468 static const MCPhysReg XMMArgRegs64Bit[] = {
1469 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1470 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1471 };
1472 return XMMArgRegs64Bit;
1473}
1474
1475#ifndef NDEBUG
1477 return llvm::is_sorted(
1478 ArgLocs, [](const CCValAssign &A, const CCValAssign &B) -> bool {
1479 return A.getValNo() < B.getValNo();
1480 });
1481}
1482#endif
1483
1484namespace {
1485/// This is a helper class for lowering variable arguments parameters.
1486class VarArgsLoweringHelper {
1487public:
1488 VarArgsLoweringHelper(X86MachineFunctionInfo *FuncInfo, const SDLoc &Loc,
1489 SelectionDAG &DAG, const X86Subtarget &Subtarget,
1490 CallingConv::ID CallConv, CCState &CCInfo)
1491 : FuncInfo(FuncInfo), DL(Loc), DAG(DAG), Subtarget(Subtarget),
1492 TheMachineFunction(DAG.getMachineFunction()),
1493 TheFunction(TheMachineFunction.getFunction()),
1494 FrameInfo(TheMachineFunction.getFrameInfo()),
1495 FrameLowering(*Subtarget.getFrameLowering()),
1496 TargLowering(DAG.getTargetLoweringInfo()), CallConv(CallConv),
1497 CCInfo(CCInfo) {}
1498
1499 // Lower variable arguments parameters.
1500 void lowerVarArgsParameters(SDValue &Chain, unsigned StackSize);
1501
1502private:
1503 void createVarArgAreaAndStoreRegisters(SDValue &Chain, unsigned StackSize);
1504
1505 void forwardMustTailParameters(SDValue &Chain);
1506
1507 bool is64Bit() const { return Subtarget.is64Bit(); }
1508 bool isWin64() const { return Subtarget.isCallingConvWin64(CallConv); }
1509
1510 X86MachineFunctionInfo *FuncInfo;
1511 const SDLoc &DL;
1512 SelectionDAG &DAG;
1513 const X86Subtarget &Subtarget;
1514 MachineFunction &TheMachineFunction;
1515 const Function &TheFunction;
1516 MachineFrameInfo &FrameInfo;
1517 const TargetFrameLowering &FrameLowering;
1518 const TargetLowering &TargLowering;
1519 CallingConv::ID CallConv;
1520 CCState &CCInfo;
1521};
1522} // namespace
1523
1524void VarArgsLoweringHelper::createVarArgAreaAndStoreRegisters(
1525 SDValue &Chain, unsigned StackSize) {
1526 // If the function takes variable number of arguments, make a frame index for
1527 // the start of the first vararg value... for expansion of llvm.va_start. We
1528 // can skip this if there are no va_start calls.
1529 if (is64Bit() || (CallConv != CallingConv::X86_FastCall &&
1530 CallConv != CallingConv::X86_ThisCall)) {
1531 FuncInfo->setVarArgsFrameIndex(
1532 FrameInfo.CreateFixedObject(1, StackSize, true));
1533 }
1534
1535 // 64-bit calling conventions support varargs and register parameters, so we
1536 // have to do extra work to spill them in the prologue.
1537 if (is64Bit()) {
1538 // Find the first unallocated argument registers.
1539 ArrayRef<MCPhysReg> ArgGPRs = get64BitArgumentGPRs(CallConv, Subtarget);
1540 ArrayRef<MCPhysReg> ArgXMMs =
1541 get64BitArgumentXMMs(TheMachineFunction, CallConv, Subtarget);
1542 unsigned NumIntRegs = CCInfo.getFirstUnallocated(ArgGPRs);
1543 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(ArgXMMs);
1544
1545 assert(!(NumXMMRegs && !Subtarget.hasSSE1()) &&
1546 "SSE register cannot be used when SSE is disabled!");
1547
1548 if (isWin64()) {
1549 // Get to the caller-allocated home save location. Add 8 to account
1550 // for the return address.
1551 int HomeOffset = FrameLowering.getOffsetOfLocalArea() + 8;
1552 FuncInfo->setRegSaveFrameIndex(
1553 FrameInfo.CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1554 // Fixup to set vararg frame on shadow area (4 x i64).
1555 if (NumIntRegs < 4)
1556 FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1557 } else {
1558 // For X86-64, if there are vararg parameters that are passed via
1559 // registers, then we must store them to their spots on the stack so
1560 // they may be loaded by dereferencing the result of va_next.
1561 FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1562 FuncInfo->setVarArgsFPOffset(ArgGPRs.size() * 8 + NumXMMRegs * 16);
1563 FuncInfo->setRegSaveFrameIndex(FrameInfo.CreateStackObject(
1564 ArgGPRs.size() * 8 + ArgXMMs.size() * 16, Align(16), false));
1565 }
1566
1568 LiveGPRs; // list of SDValue for GPR registers keeping live input value
1569 SmallVector<SDValue, 8> LiveXMMRegs; // list of SDValue for XMM registers
1570 // keeping live input value
1571 SDValue ALVal; // if applicable keeps SDValue for %al register
1572
1573 // Gather all the live in physical registers.
1574 for (MCPhysReg Reg : ArgGPRs.slice(NumIntRegs)) {
1575 Register GPR = TheMachineFunction.addLiveIn(Reg, &X86::GR64RegClass);
1576 LiveGPRs.push_back(DAG.getCopyFromReg(Chain, DL, GPR, MVT::i64));
1577 }
1578 const auto &AvailableXmms = ArgXMMs.slice(NumXMMRegs);
1579 if (!AvailableXmms.empty()) {
1580 Register AL = TheMachineFunction.addLiveIn(X86::AL, &X86::GR8RegClass);
1581 ALVal = DAG.getCopyFromReg(Chain, DL, AL, MVT::i8);
1582 for (MCPhysReg Reg : AvailableXmms) {
1583 // FastRegisterAllocator spills virtual registers at basic
1584 // block boundary. That leads to usages of xmm registers
1585 // outside of check for %al. Pass physical registers to
1586 // VASTART_SAVE_XMM_REGS to avoid unneccessary spilling.
1587 TheMachineFunction.getRegInfo().addLiveIn(Reg);
1588 LiveXMMRegs.push_back(DAG.getRegister(Reg, MVT::v4f32));
1589 }
1590 }
1591
1592 // Store the integer parameter registers.
1594 SDValue RSFIN =
1595 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1596 TargLowering.getPointerTy(DAG.getDataLayout()));
1597 unsigned Offset = FuncInfo->getVarArgsGPOffset();
1598 for (SDValue Val : LiveGPRs) {
1599 SDValue FIN = DAG.getNode(ISD::ADD, DL,
1600 TargLowering.getPointerTy(DAG.getDataLayout()),
1601 RSFIN, DAG.getIntPtrConstant(Offset, DL));
1602 SDValue Store =
1603 DAG.getStore(Val.getValue(1), DL, Val, FIN,
1605 DAG.getMachineFunction(),
1606 FuncInfo->getRegSaveFrameIndex(), Offset));
1607 MemOps.push_back(Store);
1608 Offset += 8;
1609 }
1610
1611 // Now store the XMM (fp + vector) parameter registers.
1612 if (!LiveXMMRegs.empty()) {
1613 SmallVector<SDValue, 12> SaveXMMOps;
1614 SaveXMMOps.push_back(Chain);
1615 SaveXMMOps.push_back(ALVal);
1616 SaveXMMOps.push_back(RSFIN);
1617 SaveXMMOps.push_back(
1618 DAG.getTargetConstant(FuncInfo->getVarArgsFPOffset(), DL, MVT::i32));
1619 llvm::append_range(SaveXMMOps, LiveXMMRegs);
1620 MachineMemOperand *StoreMMO =
1623 DAG.getMachineFunction(), FuncInfo->getRegSaveFrameIndex(),
1624 Offset),
1627 DL, DAG.getVTList(MVT::Other),
1628 SaveXMMOps, MVT::i8, StoreMMO));
1629 }
1630
1631 if (!MemOps.empty())
1632 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
1633 }
1634}
1635
1636void VarArgsLoweringHelper::forwardMustTailParameters(SDValue &Chain) {
1637 // Find the largest legal vector type.
1638 MVT VecVT = MVT::Other;
1639 // FIXME: Only some x86_32 calling conventions support AVX512.
1640 if (Subtarget.useAVX512Regs() &&
1641 (is64Bit() || (CallConv == CallingConv::X86_VectorCall ||
1642 CallConv == CallingConv::Intel_OCL_BI)))
1643 VecVT = MVT::v16f32;
1644 else if (Subtarget.hasAVX())
1645 VecVT = MVT::v8f32;
1646 else if (Subtarget.hasSSE2())
1647 VecVT = MVT::v4f32;
1648
1649 // We forward some GPRs and some vector types.
1650 SmallVector<MVT, 2> RegParmTypes;
1651 MVT IntVT = is64Bit() ? MVT::i64 : MVT::i32;
1652 RegParmTypes.push_back(IntVT);
1653 if (VecVT != MVT::Other)
1654 RegParmTypes.push_back(VecVT);
1655
1656 // Compute the set of forwarded registers. The rest are scratch.
1658 FuncInfo->getForwardedMustTailRegParms();
1659 CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, CC_X86);
1660
1661 // Forward AL for SysV x86_64 targets, since it is used for varargs.
1662 if (is64Bit() && !isWin64() && !CCInfo.isAllocated(X86::AL)) {
1663 Register ALVReg = TheMachineFunction.addLiveIn(X86::AL, &X86::GR8RegClass);
1664 Forwards.push_back(ForwardedRegister(ALVReg, X86::AL, MVT::i8));
1665 }
1666
1667 // Copy all forwards from physical to virtual registers.
1668 for (ForwardedRegister &FR : Forwards) {
1669 // FIXME: Can we use a less constrained schedule?
1670 SDValue RegVal = DAG.getCopyFromReg(Chain, DL, FR.VReg, FR.VT);
1671 FR.VReg = TheMachineFunction.getRegInfo().createVirtualRegister(
1672 TargLowering.getRegClassFor(FR.VT));
1673 Chain = DAG.getCopyToReg(Chain, DL, FR.VReg, RegVal);
1674 }
1675}
1676
1677void VarArgsLoweringHelper::lowerVarArgsParameters(SDValue &Chain,
1678 unsigned StackSize) {
1679 // Set FrameIndex to the 0xAAAAAAA value to mark unset state.
1680 // If necessary, it would be set into the correct value later.
1681 FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1682 FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1683
1684 if (FrameInfo.hasVAStart())
1685 createVarArgAreaAndStoreRegisters(Chain, StackSize);
1686
1687 if (FrameInfo.hasMustTailInVarArgFunc())
1688 forwardMustTailParameters(Chain);
1689}
1690
1691SDValue X86TargetLowering::LowerFormalArguments(
1692 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1693 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1694 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1695 MachineFunction &MF = DAG.getMachineFunction();
1696 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1697
1698 const Function &F = MF.getFunction();
1699 if (F.hasExternalLinkage() && Subtarget.isTargetCygMing() &&
1700 F.getName() == "main")
1701 FuncInfo->setForceFramePointer(true);
1702
1703 MachineFrameInfo &MFI = MF.getFrameInfo();
1704 bool Is64Bit = Subtarget.is64Bit();
1705 bool IsWin64 = Subtarget.isCallingConvWin64(CallConv);
1706
1707 assert(
1708 !(IsVarArg && canGuaranteeTCO(CallConv)) &&
1709 "Var args not supported with calling conv' regcall, fastcc, ghc or hipe");
1710
1711 // Assign locations to all of the incoming arguments.
1713 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1714
1715 // Allocate shadow area for Win64.
1716 if (IsWin64)
1717 CCInfo.AllocateStack(32, Align(8));
1718
1719 CCInfo.AnalyzeArguments(Ins, CC_X86);
1720
1721 // In vectorcall calling convention a second pass is required for the HVA
1722 // types.
1723 if (CallingConv::X86_VectorCall == CallConv) {
1724 CCInfo.AnalyzeArgumentsSecondPass(Ins, CC_X86);
1725 }
1726
1727 // The next loop assumes that the locations are in the same order of the
1728 // input arguments.
1729 assert(isSortedByValueNo(ArgLocs) &&
1730 "Argument Location list must be sorted before lowering");
1731
1732 SDValue ArgValue;
1733 for (unsigned I = 0, InsIndex = 0, E = ArgLocs.size(); I != E;
1734 ++I, ++InsIndex) {
1735 assert(InsIndex < Ins.size() && "Invalid Ins index");
1736 CCValAssign &VA = ArgLocs[I];
1737
1738 if (VA.isRegLoc()) {
1739 EVT RegVT = VA.getLocVT();
1740 if (VA.needsCustom()) {
1741 assert(
1742 VA.getValVT() == MVT::v64i1 &&
1743 "Currently the only custom case is when we split v64i1 to 2 regs");
1744
1745 // v64i1 values, in regcall calling convention, that are
1746 // compiled to 32 bit arch, are split up into two registers.
1747 ArgValue =
1748 getv64i1Argument(VA, ArgLocs[++I], Chain, DAG, dl, Subtarget);
1749 } else {
1750 const TargetRegisterClass *RC;
1751 if (RegVT == MVT::i8)
1752 RC = &X86::GR8RegClass;
1753 else if (RegVT == MVT::i16)
1754 RC = &X86::GR16RegClass;
1755 else if (RegVT == MVT::i32)
1756 RC = &X86::GR32RegClass;
1757 else if (Is64Bit && RegVT == MVT::i64)
1758 RC = &X86::GR64RegClass;
1759 else if (RegVT == MVT::f16)
1760 RC = Subtarget.hasAVX512() ? &X86::FR16XRegClass : &X86::FR16RegClass;
1761 else if (RegVT == MVT::f32)
1762 RC = Subtarget.hasAVX512() ? &X86::FR32XRegClass : &X86::FR32RegClass;
1763 else if (RegVT == MVT::f64)
1764 RC = Subtarget.hasAVX512() ? &X86::FR64XRegClass : &X86::FR64RegClass;
1765 else if (RegVT == MVT::f80)
1766 RC = &X86::RFP80RegClass;
1767 else if (RegVT == MVT::f128)
1768 RC = &X86::VR128RegClass;
1769 else if (RegVT.is512BitVector())
1770 RC = &X86::VR512RegClass;
1771 else if (RegVT.is256BitVector())
1772 RC = Subtarget.hasVLX() ? &X86::VR256XRegClass : &X86::VR256RegClass;
1773 else if (RegVT.is128BitVector())
1774 RC = Subtarget.hasVLX() ? &X86::VR128XRegClass : &X86::VR128RegClass;
1775 else if (RegVT == MVT::x86mmx)
1776 RC = &X86::VR64RegClass;
1777 else if (RegVT == MVT::v1i1)
1778 RC = &X86::VK1RegClass;
1779 else if (RegVT == MVT::v8i1)
1780 RC = &X86::VK8RegClass;
1781 else if (RegVT == MVT::v16i1)
1782 RC = &X86::VK16RegClass;
1783 else if (RegVT == MVT::v32i1)
1784 RC = &X86::VK32RegClass;
1785 else if (RegVT == MVT::v64i1)
1786 RC = &X86::VK64RegClass;
1787 else
1788 llvm_unreachable("Unknown argument type!");
1789
1790 Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
1791 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1792 }
1793
1794 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1795 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1796 // right size.
1797 if (VA.getLocInfo() == CCValAssign::SExt)
1798 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1799 DAG.getValueType(VA.getValVT()));
1800 else if (VA.getLocInfo() == CCValAssign::ZExt)
1801 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1802 DAG.getValueType(VA.getValVT()));
1803 else if (VA.getLocInfo() == CCValAssign::BCvt)
1804 ArgValue = DAG.getBitcast(VA.getValVT(), ArgValue);
1805
1806 if (VA.isExtInLoc()) {
1807 // Handle MMX values passed in XMM regs.
1808 if (RegVT.isVector() && VA.getValVT().getScalarType() != MVT::i1)
1809 ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
1810 else if (VA.getValVT().isVector() &&
1811 VA.getValVT().getScalarType() == MVT::i1 &&
1812 ((VA.getLocVT() == MVT::i64) || (VA.getLocVT() == MVT::i32) ||
1813 (VA.getLocVT() == MVT::i16) || (VA.getLocVT() == MVT::i8))) {
1814 // Promoting a mask type (v*i1) into a register of type i64/i32/i16/i8
1815 ArgValue = lowerRegToMasks(ArgValue, VA.getValVT(), RegVT, dl, DAG);
1816 } else
1817 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1818 }
1819 } else {
1820 assert(VA.isMemLoc());
1821 ArgValue =
1822 LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, InsIndex);
1823 }
1824
1825 // If value is passed via pointer - do a load.
1826 if (VA.getLocInfo() == CCValAssign::Indirect &&
1827 !(Ins[I].Flags.isByVal() && VA.isRegLoc())) {
1828 ArgValue =
1829 DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, MachinePointerInfo());
1830 }
1831
1832 InVals.push_back(ArgValue);
1833 }
1834
1835 for (unsigned I = 0, E = Ins.size(); I != E; ++I) {
1836 if (Ins[I].Flags.isSwiftAsync()) {
1837 auto X86FI = MF.getInfo<X86MachineFunctionInfo>();
1838 if (X86::isExtendedSwiftAsyncFrameSupported(Subtarget, MF))
1839 X86FI->setHasSwiftAsyncContext(true);
1840 else {
1841 int PtrSize = Subtarget.is64Bit() ? 8 : 4;
1842 int FI =
1843 MF.getFrameInfo().CreateStackObject(PtrSize, Align(PtrSize), false);
1844 X86FI->setSwiftAsyncContextFrameIdx(FI);
1845 SDValue St = DAG.getStore(
1846 DAG.getEntryNode(), dl, InVals[I],
1847 DAG.getFrameIndex(FI, PtrSize == 8 ? MVT::i64 : MVT::i32),
1849 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, St, Chain);
1850 }
1851 }
1852
1853 // Swift calling convention does not require we copy the sret argument
1854 // into %rax/%eax for the return. We don't set SRetReturnReg for Swift.
1855 if (CallConv == CallingConv::Swift || CallConv == CallingConv::SwiftTail)
1856 continue;
1857
1858 // All x86 ABIs require that for returning structs by value we copy the
1859 // sret argument into %rax/%eax (depending on ABI) for the return. Save
1860 // the argument into a virtual register so that we can access it from the
1861 // return points.
1862 if (Ins[I].Flags.isSRet()) {
1863 assert(!FuncInfo->getSRetReturnReg() &&
1864 "SRet return has already been set");
1865 MVT PtrTy = getPointerTy(DAG.getDataLayout());
1866 Register Reg =
1868 FuncInfo->setSRetReturnReg(Reg);
1869 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[I]);
1870 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1871 break;
1872 }
1873 }
1874
1875 unsigned StackSize = CCInfo.getStackSize();
1876 // Align stack specially for tail calls.
1877 if (shouldGuaranteeTCO(CallConv,
1879 StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1880
1881 if (IsVarArg)
1882 VarArgsLoweringHelper(FuncInfo, dl, DAG, Subtarget, CallConv, CCInfo)
1883 .lowerVarArgsParameters(Chain, StackSize);
1884
1885 // Some CCs need callee pop.
1886 if (X86::isCalleePop(CallConv, Is64Bit, IsVarArg,
1888 FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1889 } else if (CallConv == CallingConv::X86_INTR && Ins.size() == 2) {
1890 // X86 interrupts must pop the error code (and the alignment padding) if
1891 // present.
1892 FuncInfo->setBytesToPopOnReturn(Is64Bit ? 16 : 4);
1893 } else {
1894 FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1895 // If this is an sret function, the return should pop the hidden pointer.
1896 if (!canGuaranteeTCO(CallConv) && hasCalleePopSRet(Ins, Subtarget))
1897 FuncInfo->setBytesToPopOnReturn(4);
1898 }
1899
1900 if (!Is64Bit) {
1901 // RegSaveFrameIndex is X86-64 only.
1902 FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1903 }
1904
1905 FuncInfo->setArgumentStackSize(StackSize);
1906
1907 if (WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo()) {
1908 EHPersonality Personality = classifyEHPersonality(F.getPersonalityFn());
1909 if (Personality == EHPersonality::CoreCLR) {
1910 assert(Is64Bit);
1911 // TODO: Add a mechanism to frame lowering that will allow us to indicate
1912 // that we'd prefer this slot be allocated towards the bottom of the frame
1913 // (i.e. near the stack pointer after allocating the frame). Every
1914 // funclet needs a copy of this slot in its (mostly empty) frame, and the
1915 // offset from the bottom of this and each funclet's frame must be the
1916 // same, so the size of funclets' (mostly empty) frames is dictated by
1917 // how far this slot is from the bottom (since they allocate just enough
1918 // space to accommodate holding this slot at the correct offset).
1919 int PSPSymFI = MFI.CreateStackObject(8, Align(8), /*isSpillSlot=*/false);
1920 EHInfo->PSPSymFrameIdx = PSPSymFI;
1921 }
1922 }
1923
1924 if (shouldDisableArgRegFromCSR(CallConv) ||
1925 F.hasFnAttribute("no_caller_saved_registers")) {
1926 MachineRegisterInfo &MRI = MF.getRegInfo();
1927 for (std::pair<MCRegister, Register> Pair : MRI.liveins())
1928 MRI.disableCalleeSavedRegister(Pair.first);
1929 }
1930
1931 if (CallingConv::PreserveNone == CallConv)
1932 for (const ISD::InputArg &In : Ins) {
1933 if (In.Flags.isSwiftSelf() || In.Flags.isSwiftAsync() ||
1934 In.Flags.isSwiftError()) {
1935 errorUnsupported(DAG, dl,
1936 "Swift attributes can't be used with preserve_none");
1937 break;
1938 }
1939 }
1940
1941 return Chain;
1942}
1943
1944SDValue X86TargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
1945 SDValue Arg, const SDLoc &dl,
1946 SelectionDAG &DAG,
1947 const CCValAssign &VA,
1948 ISD::ArgFlagsTy Flags,
1949 bool isByVal) const {
1950 unsigned LocMemOffset = VA.getLocMemOffset();
1951 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
1952 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
1953 StackPtr, PtrOff);
1954 if (isByVal)
1955 return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1956
1957 MaybeAlign Alignment;
1958 if (Subtarget.isTargetWindowsMSVC() && !Subtarget.is64Bit() &&
1959 Arg.getSimpleValueType() != MVT::f80)
1960 Alignment = MaybeAlign(4);
1961 return DAG.getStore(
1962 Chain, dl, Arg, PtrOff,
1964 Alignment);
1965}
1966
1967/// Emit a load of return address if tail call
1968/// optimization is performed and it is required.
1969SDValue X86TargetLowering::EmitTailCallLoadRetAddr(
1970 SelectionDAG &DAG, SDValue &OutRetAddr, SDValue Chain, bool IsTailCall,
1971 bool Is64Bit, int FPDiff, const SDLoc &dl) const {
1972 // Adjust the Return address stack slot.
1973 EVT VT = getPointerTy(DAG.getDataLayout());
1974 OutRetAddr = getReturnAddressFrameIndex(DAG);
1975
1976 // Load the "old" Return address.
1977 OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo());
1978 return SDValue(OutRetAddr.getNode(), 1);
1979}
1980
1981/// Emit a store of the return address if tail call
1982/// optimization is performed and it is required (FPDiff!=0).
1984 SDValue Chain, SDValue RetAddrFrIdx,
1985 EVT PtrVT, unsigned SlotSize,
1986 int FPDiff, const SDLoc &dl) {
1987 // Store the return address to the appropriate stack slot.
1988 if (!FPDiff) return Chain;
1989 // Calculate the new stack slot for the return address.
1990 int NewReturnAddrFI =
1991 MF.getFrameInfo().CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize,
1992 false);
1993 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
1994 Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1996 DAG.getMachineFunction(), NewReturnAddrFI));
1997 return Chain;
1998}
1999
2000/// Returns a vector_shuffle mask for an movs{s|d}, movd
2001/// operation of specified width.
2002SDValue X86TargetLowering::getMOVL(SelectionDAG &DAG, const SDLoc &dl, MVT VT,
2003 SDValue V1, SDValue V2) const {
2004 unsigned NumElems = VT.getVectorNumElements();
2005 SmallVector<int, 8> Mask;
2006 Mask.push_back(NumElems);
2007 for (unsigned i = 1; i != NumElems; ++i)
2008 Mask.push_back(i);
2009 return DAG.getVectorShuffle(VT, dl, V1, V2, Mask);
2010}
2011
2012SDValue
2013X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2014 SmallVectorImpl<SDValue> &InVals) const {
2015 SelectionDAG &DAG = CLI.DAG;
2016 SDLoc &dl = CLI.DL;
2017 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2018 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
2019 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
2020 SDValue Chain = CLI.Chain;
2021 SDValue Callee = CLI.Callee;
2022 CallingConv::ID CallConv = CLI.CallConv;
2023 bool &isTailCall = CLI.IsTailCall;
2024 bool isVarArg = CLI.IsVarArg;
2025 const auto *CB = CLI.CB;
2026
2027 MachineFunction &MF = DAG.getMachineFunction();
2028 bool Is64Bit = Subtarget.is64Bit();
2029 bool IsWin64 = Subtarget.isCallingConvWin64(CallConv);
2030 bool IsSibcall = false;
2031 bool IsGuaranteeTCO = MF.getTarget().Options.GuaranteedTailCallOpt ||
2032 CallConv == CallingConv::Tail || CallConv == CallingConv::SwiftTail;
2033 bool IsCalleePopSRet = !IsGuaranteeTCO && hasCalleePopSRet(Outs, Subtarget);
2034 X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
2035 bool HasNCSR = (CB && isa<CallInst>(CB) &&
2036 CB->hasFnAttr("no_caller_saved_registers"));
2037 bool IsIndirectCall = (CB && isa<CallInst>(CB) && CB->isIndirectCall());
2038 bool IsCFICall = IsIndirectCall && CLI.CFIType;
2039 const Module *M = MF.getFunction().getParent();
2040
2041 // If the indirect call target has the nocf_check attribute, the call needs
2042 // the NOTRACK prefix. For simplicity just disable tail calls as there are
2043 // so many variants.
2044 bool IsNoTrackIndirectCall = IsIndirectCall && CB->doesNoCfCheck() &&
2045 M->getModuleFlag("cf-protection-branch");
2046 if (IsNoTrackIndirectCall)
2047 isTailCall = false;
2048
2049 MachineFunction::CallSiteInfo CSInfo;
2050 if (CallConv == CallingConv::X86_INTR)
2051 report_fatal_error("X86 interrupts may not be called directly");
2052
2053 // Set type id for call site info.
2054 if (MF.getTarget().Options.EmitCallGraphSection && CB && CB->isIndirectCall())
2055 CSInfo = MachineFunction::CallSiteInfo(*CB);
2056
2057 if (IsIndirectCall && !IsWin64 &&
2058 M->getModuleFlag("import-call-optimization"))
2059 errorUnsupported(DAG, dl,
2060 "Indirect calls must have a normal calling convention if "
2061 "Import Call Optimization is enabled");
2062
2063 // Analyze operands of the call, assigning locations to each operand.
2065 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
2066
2067 // Allocate shadow area for Win64.
2068 if (IsWin64)
2069 CCInfo.AllocateStack(32, Align(8));
2070
2071 CCInfo.AnalyzeArguments(Outs, CC_X86);
2072
2073 // In vectorcall calling convention a second pass is required for the HVA
2074 // types.
2075 if (CallingConv::X86_VectorCall == CallConv) {
2076 CCInfo.AnalyzeArgumentsSecondPass(Outs, CC_X86);
2077 }
2078
2079 bool IsMustTail = CLI.CB && CLI.CB->isMustTailCall();
2080 if (Subtarget.isPICStyleGOT() && !IsGuaranteeTCO && !IsMustTail) {
2081 // If we are using a GOT, disable tail calls to external symbols with
2082 // default visibility. Tail calling such a symbol requires using a GOT
2083 // relocation, which forces early binding of the symbol. This breaks code
2084 // that require lazy function symbol resolution. Using musttail or
2085 // GuaranteedTailCallOpt will override this.
2086 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2087 if (!G || (!G->getGlobal()->hasLocalLinkage() &&
2088 G->getGlobal()->hasDefaultVisibility()))
2089 isTailCall = false;
2090 }
2091
2092 if (isTailCall && !IsMustTail) {
2093 // Check if it's really possible to do a tail call.
2094 isTailCall = IsEligibleForTailCallOptimization(CLI, CCInfo, ArgLocs,
2095 IsCalleePopSRet);
2096
2097 // Sibcalls are automatically detected tailcalls which do not require
2098 // ABI changes.
2099 if (!IsGuaranteeTCO && isTailCall)
2100 IsSibcall = true;
2101
2102 if (isTailCall)
2103 ++NumTailCalls;
2104 }
2105
2106 if (IsMustTail && !isTailCall)
2107 report_fatal_error("failed to perform tail call elimination on a call "
2108 "site marked musttail");
2109
2110 assert(!(isVarArg && canGuaranteeTCO(CallConv)) &&
2111 "Var args not supported with calling convention fastcc, ghc or hipe");
2112
2113 // Get a count of how many bytes are to be pushed on the stack.
2114 unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
2115 if (IsSibcall)
2116 // This is a sibcall. The memory operands are available in caller's
2117 // own caller's stack.
2118 NumBytes = 0;
2119 else if (IsGuaranteeTCO && canGuaranteeTCO(CallConv))
2120 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2121
2122 int FPDiff = 0;
2123 if (isTailCall &&
2124 shouldGuaranteeTCO(CallConv,
2126 // Lower arguments at fp - stackoffset + fpdiff.
2127 unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
2128
2129 FPDiff = NumBytesCallerPushed - NumBytes;
2130
2131 // Set the delta of movement of the returnaddr stackslot.
2132 // But only set if delta is greater than previous delta.
2133 if (FPDiff < X86Info->getTCReturnAddrDelta())
2134 X86Info->setTCReturnAddrDelta(FPDiff);
2135 }
2136
2137 unsigned NumBytesToPush = NumBytes;
2138 unsigned NumBytesToPop = NumBytes;
2139
2140 // If we have an inalloca argument, all stack space has already been allocated
2141 // for us and be right at the top of the stack. We don't support multiple
2142 // arguments passed in memory when using inalloca.
2143 if (!Outs.empty() && Outs.back().Flags.isInAlloca()) {
2144 NumBytesToPush = 0;
2145 if (!ArgLocs.back().isMemLoc())
2146 report_fatal_error("cannot use inalloca attribute on a register "
2147 "parameter");
2148 if (ArgLocs.back().getLocMemOffset() != 0)
2149 report_fatal_error("any parameter with the inalloca attribute must be "
2150 "the only memory argument");
2151 } else if (CLI.IsPreallocated) {
2152 assert(ArgLocs.back().isMemLoc() &&
2153 "cannot use preallocated attribute on a register "
2154 "parameter");
2155 SmallVector<size_t, 4> PreallocatedOffsets;
2156 for (size_t i = 0; i < CLI.OutVals.size(); ++i) {
2157 if (CLI.CB->paramHasAttr(i, Attribute::Preallocated)) {
2158 PreallocatedOffsets.push_back(ArgLocs[i].getLocMemOffset());
2159 }
2160 }
2161 auto *MFI = DAG.getMachineFunction().getInfo<X86MachineFunctionInfo>();
2162 size_t PreallocatedId = MFI->getPreallocatedIdForCallSite(CLI.CB);
2163 MFI->setPreallocatedStackSize(PreallocatedId, NumBytes);
2164 MFI->setPreallocatedArgOffsets(PreallocatedId, PreallocatedOffsets);
2165 NumBytesToPush = 0;
2166 }
2167
2168 if (!IsSibcall && !IsMustTail)
2169 Chain = DAG.getCALLSEQ_START(Chain, NumBytesToPush,
2170 NumBytes - NumBytesToPush, dl);
2171
2172 SDValue RetAddrFrIdx;
2173 // Load return address for tail calls.
2174 if (isTailCall && FPDiff)
2175 Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2176 Is64Bit, FPDiff, dl);
2177
2179 SmallVector<SDValue, 8> MemOpChains;
2181
2182 // The next loop assumes that the locations are in the same order of the
2183 // input arguments.
2184 assert(isSortedByValueNo(ArgLocs) &&
2185 "Argument Location list must be sorted before lowering");
2186
2187 // Walk the register/memloc assignments, inserting copies/loads. In the case
2188 // of tail call optimization arguments are handle later.
2189 const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
2190 for (unsigned I = 0, OutIndex = 0, E = ArgLocs.size(); I != E;
2191 ++I, ++OutIndex) {
2192 assert(OutIndex < Outs.size() && "Invalid Out index");
2193 // Skip inalloca/preallocated arguments, they have already been written.
2194 ISD::ArgFlagsTy Flags = Outs[OutIndex].Flags;
2195 if (Flags.isInAlloca() || Flags.isPreallocated())
2196 continue;
2197
2198 CCValAssign &VA = ArgLocs[I];
2199 EVT RegVT = VA.getLocVT();
2200 SDValue Arg = OutVals[OutIndex];
2201 bool isByVal = Flags.isByVal();
2202
2203 // Promote the value if needed.
2204 switch (VA.getLocInfo()) {
2205 default: llvm_unreachable("Unknown loc info!");
2206 case CCValAssign::Full: break;
2207 case CCValAssign::SExt:
2208 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2209 break;
2210 case CCValAssign::ZExt:
2211 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2212 break;
2213 case CCValAssign::AExt:
2214 if (Arg.getValueType().isVector() &&
2215 Arg.getValueType().getVectorElementType() == MVT::i1)
2216 Arg = lowerMasksToReg(Arg, RegVT, dl, DAG);
2217 else if (RegVT.is128BitVector()) {
2218 // Special case: passing MMX values in XMM registers.
2219 Arg = DAG.getBitcast(MVT::i64, Arg);
2220 Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2221 Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2222 } else
2223 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2224 break;
2225 case CCValAssign::BCvt:
2226 Arg = DAG.getBitcast(RegVT, Arg);
2227 break;
2228 case CCValAssign::Indirect: {
2229 if (isByVal) {
2230 // Memcpy the argument to a temporary stack slot to prevent
2231 // the caller from seeing any modifications the callee may make
2232 // as guaranteed by the `byval` attribute.
2233 int FrameIdx = MF.getFrameInfo().CreateStackObject(
2234 Flags.getByValSize(),
2235 std::max(Align(16), Flags.getNonZeroByValAlign()), false);
2236 SDValue StackSlot =
2237 DAG.getFrameIndex(FrameIdx, getPointerTy(DAG.getDataLayout()));
2238 Chain =
2239 CreateCopyOfByValArgument(Arg, StackSlot, Chain, Flags, DAG, dl);
2240 // From now on treat this as a regular pointer
2241 Arg = StackSlot;
2242 isByVal = false;
2243 } else {
2244 // Store the argument.
2245 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2246 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2247 Chain = DAG.getStore(
2248 Chain, dl, Arg, SpillSlot,
2250 Arg = SpillSlot;
2251 }
2252 break;
2253 }
2254 }
2255
2256 if (VA.needsCustom()) {
2257 assert(VA.getValVT() == MVT::v64i1 &&
2258 "Currently the only custom case is when we split v64i1 to 2 regs");
2259 // Split v64i1 value into two registers
2260 Passv64i1ArgInRegs(dl, DAG, Arg, RegsToPass, VA, ArgLocs[++I], Subtarget);
2261 } else if (VA.isRegLoc()) {
2262 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2263 const TargetOptions &Options = DAG.getTarget().Options;
2264 if (Options.EmitCallSiteInfo)
2265 CSInfo.ArgRegPairs.emplace_back(VA.getLocReg(), I);
2266 if (isVarArg && IsWin64) {
2267 // Win64 ABI requires argument XMM reg to be copied to the corresponding
2268 // shadow reg if callee is a varargs function.
2269 Register ShadowReg;
2270 switch (VA.getLocReg()) {
2271 case X86::XMM0: ShadowReg = X86::RCX; break;
2272 case X86::XMM1: ShadowReg = X86::RDX; break;
2273 case X86::XMM2: ShadowReg = X86::R8; break;
2274 case X86::XMM3: ShadowReg = X86::R9; break;
2275 }
2276 if (ShadowReg)
2277 RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2278 }
2279 } else if (!IsSibcall && (!isTailCall || isByVal)) {
2280 assert(VA.isMemLoc());
2281 if (!StackPtr.getNode())
2282 StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
2284 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2285 dl, DAG, VA, Flags, isByVal));
2286 }
2287 }
2288
2289 if (!MemOpChains.empty())
2290 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
2291
2292 if (Subtarget.isPICStyleGOT()) {
2293 // ELF / PIC requires GOT in the EBX register before function calls via PLT
2294 // GOT pointer (except regcall).
2295 if (!isTailCall) {
2296 // Indirect call with RegCall calling convertion may use up all the
2297 // general registers, so it is not suitable to bind EBX reister for
2298 // GOT address, just let register allocator handle it.
2299 if (CallConv != CallingConv::X86_RegCall)
2300 RegsToPass.push_back(std::make_pair(
2301 Register(X86::EBX), DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(),
2302 getPointerTy(DAG.getDataLayout()))));
2303 } else {
2304 // If we are tail calling and generating PIC/GOT style code load the
2305 // address of the callee into ECX. The value in ecx is used as target of
2306 // the tail jump. This is done to circumvent the ebx/callee-saved problem
2307 // for tail calls on PIC/GOT architectures. Normally we would just put the
2308 // address of GOT into ebx and then call target@PLT. But for tail calls
2309 // ebx would be restored (since ebx is callee saved) before jumping to the
2310 // target@PLT.
2311
2312 // Note: The actual moving to ECX is done further down.
2313 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2314 if (G && !G->getGlobal()->hasLocalLinkage() &&
2315 G->getGlobal()->hasDefaultVisibility())
2316 Callee = LowerGlobalAddress(Callee, DAG);
2317 else if (isa<ExternalSymbolSDNode>(Callee))
2318 Callee = LowerExternalSymbol(Callee, DAG);
2319 }
2320 }
2321
2322 if (Is64Bit && isVarArg && !IsWin64 && !IsMustTail &&
2323 (Subtarget.hasSSE1() || !M->getModuleFlag("SkipRaxSetup"))) {
2324 // From AMD64 ABI document:
2325 // For calls that may call functions that use varargs or stdargs
2326 // (prototype-less calls or calls to functions containing ellipsis (...) in
2327 // the declaration) %al is used as hidden argument to specify the number
2328 // of SSE registers used. The contents of %al do not need to match exactly
2329 // the number of registers, but must be an ubound on the number of SSE
2330 // registers used and is in the range 0 - 8 inclusive.
2331
2332 // Count the number of XMM registers allocated.
2333 static const MCPhysReg XMMArgRegs[] = {
2334 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2335 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2336 };
2337 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
2338 assert((Subtarget.hasSSE1() || !NumXMMRegs)
2339 && "SSE registers cannot be used when SSE is disabled");
2340 RegsToPass.push_back(std::make_pair(Register(X86::AL),
2341 DAG.getConstant(NumXMMRegs, dl,
2342 MVT::i8)));
2343 }
2344
2345 if (isVarArg && IsMustTail) {
2346 const auto &Forwards = X86Info->getForwardedMustTailRegParms();
2347 for (const auto &F : Forwards) {
2348 SDValue Val = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT);
2349 RegsToPass.push_back(std::make_pair(F.PReg, Val));
2350 }
2351 }
2352
2353 // For tail calls lower the arguments to the 'real' stack slots. Sibcalls
2354 // don't need this because the eligibility check rejects calls that require
2355 // shuffling arguments passed in memory.
2356 if (!IsSibcall && isTailCall) {
2357 // Force all the incoming stack arguments to be loaded from the stack
2358 // before any new outgoing arguments or the return address are stored to the
2359 // stack, because the outgoing stack slots may alias the incoming argument
2360 // stack slots, and the alias isn't otherwise explicit. This is slightly
2361 // more conservative than necessary, because it means that each store
2362 // effectively depends on every argument instead of just those arguments it
2363 // would clobber.
2364 Chain = DAG.getStackArgumentTokenFactor(Chain);
2365
2366 SmallVector<SDValue, 8> MemOpChains2;
2367 SDValue FIN;
2368 int FI = 0;
2369 for (unsigned I = 0, OutsIndex = 0, E = ArgLocs.size(); I != E;
2370 ++I, ++OutsIndex) {
2371 CCValAssign &VA = ArgLocs[I];
2372
2373 if (VA.isRegLoc()) {
2374 if (VA.needsCustom()) {
2375 assert((CallConv == CallingConv::X86_RegCall) &&
2376 "Expecting custom case only in regcall calling convention");
2377 // This means that we are in special case where one argument was
2378 // passed through two register locations - Skip the next location
2379 ++I;
2380 }
2381
2382 continue;
2383 }
2384
2385 assert(VA.isMemLoc());
2386 SDValue Arg = OutVals[OutsIndex];
2387 ISD::ArgFlagsTy Flags = Outs[OutsIndex].Flags;
2388 // Skip inalloca/preallocated arguments. They don't require any work.
2389 if (Flags.isInAlloca() || Flags.isPreallocated())
2390 continue;
2391 // Create frame index.
2392 int32_t Offset = VA.getLocMemOffset()+FPDiff;
2393 uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2394 FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
2395 FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2396
2397 if (Flags.isByVal()) {
2398 // Copy relative to framepointer.
2400 if (!StackPtr.getNode())
2401 StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
2404 StackPtr, Source);
2405
2406 MemOpChains2.push_back(
2407 CreateCopyOfByValArgument(Source, FIN, Chain, Flags, DAG, dl));
2408 } else {
2409 // Store relative to framepointer.
2410 MemOpChains2.push_back(DAG.getStore(
2411 Chain, dl, Arg, FIN,
2413 }
2414 }
2415
2416 if (!MemOpChains2.empty())
2417 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
2418
2419 // Store the return address to the appropriate stack slot.
2420 Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
2422 RegInfo->getSlotSize(), FPDiff, dl);
2423 }
2424
2425 // Build a sequence of copy-to-reg nodes chained together with token chain
2426 // and glue operands which copy the outgoing args into registers.
2427 SDValue InGlue;
2428 for (const auto &[Reg, N] : RegsToPass) {
2429 Chain = DAG.getCopyToReg(Chain, dl, Reg, N, InGlue);
2430 InGlue = Chain.getValue(1);
2431 }
2432
2433 bool IsImpCall = false;
2434 if (DAG.getTarget().getCodeModel() == CodeModel::Large) {
2435 assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2436 // In the 64-bit large code model, we have to make all calls
2437 // through a register, since the call instruction's 32-bit
2438 // pc-relative offset may not be large enough to hold the whole
2439 // address.
2440 } else if (Callee->getOpcode() == ISD::GlobalAddress ||
2441 Callee->getOpcode() == ISD::ExternalSymbol) {
2442 // Lower direct calls to global addresses and external symbols. Setting
2443 // ForCall to true here has the effect of removing WrapperRIP when possible
2444 // to allow direct calls to be selected without first materializing the
2445 // address into a register.
2446 Callee = LowerGlobalOrExternal(Callee, DAG, /*ForCall=*/true, &IsImpCall);
2447 } else if (Subtarget.isTarget64BitILP32() &&
2448 Callee.getValueType() == MVT::i32) {
2449 // Zero-extend the 32-bit Callee address into a 64-bit according to x32 ABI
2450 Callee = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Callee);
2451 }
2452
2454
2455 if (!IsSibcall && isTailCall && !IsMustTail) {
2456 Chain = DAG.getCALLSEQ_END(Chain, NumBytesToPop, 0, InGlue, dl);
2457 InGlue = Chain.getValue(1);
2458 }
2459
2460 Ops.push_back(Chain);
2461 Ops.push_back(Callee);
2462
2463 if (isTailCall)
2464 Ops.push_back(DAG.getSignedTargetConstant(FPDiff, dl, MVT::i32));
2465
2466 // Add argument registers to the end of the list so that they are known live
2467 // into the call.
2468 for (const auto &[Reg, N] : RegsToPass)
2469 Ops.push_back(DAG.getRegister(Reg, N.getValueType()));
2470
2471 // Add a register mask operand representing the call-preserved registers.
2472 const uint32_t *Mask = [&]() {
2473 auto AdaptedCC = CallConv;
2474 // If HasNCSR is asserted (attribute NoCallerSavedRegisters exists),
2475 // use X86_INTR calling convention because it has the same CSR mask
2476 // (same preserved registers).
2477 if (HasNCSR)
2479 // If NoCalleeSavedRegisters is requested, than use GHC since it happens
2480 // to use the CSR_NoRegs_RegMask.
2481 if (CB && CB->hasFnAttr("no_callee_saved_registers"))
2482 AdaptedCC = (CallingConv::ID)CallingConv::GHC;
2483 return RegInfo->getCallPreservedMask(MF, AdaptedCC);
2484 }();
2485 assert(Mask && "Missing call preserved mask for calling convention");
2486
2487 if (MachineOperand::clobbersPhysReg(Mask, RegInfo->getFramePtr())) {
2488 X86Info->setFPClobberedByCall(true);
2489 if (CLI.CB && isa<InvokeInst>(CLI.CB))
2490 X86Info->setFPClobberedByInvoke(true);
2491 }
2492 if (MachineOperand::clobbersPhysReg(Mask, RegInfo->getBaseRegister())) {
2493 X86Info->setBPClobberedByCall(true);
2494 if (CLI.CB && isa<InvokeInst>(CLI.CB))
2495 X86Info->setBPClobberedByInvoke(true);
2496 }
2497
2498 // If this is an invoke in a 32-bit function using a funclet-based
2499 // personality, assume the function clobbers all registers. If an exception
2500 // is thrown, the runtime will not restore CSRs.
2501 // FIXME: Model this more precisely so that we can register allocate across
2502 // the normal edge and spill and fill across the exceptional edge.
2503 if (!Is64Bit && CLI.CB && isa<InvokeInst>(CLI.CB)) {
2504 const Function &CallerFn = MF.getFunction();
2505 EHPersonality Pers =
2506 CallerFn.hasPersonalityFn()
2509 if (isFuncletEHPersonality(Pers))
2510 Mask = RegInfo->getNoPreservedMask();
2511 }
2512
2513 // Define a new register mask from the existing mask.
2514 uint32_t *RegMask = nullptr;
2515
2516 // In some calling conventions we need to remove the used physical registers
2517 // from the reg mask. Create a new RegMask for such calling conventions.
2518 // RegMask for calling conventions that disable only return registers (e.g.
2519 // preserve_most) will be modified later in LowerCallResult.
2520 bool ShouldDisableArgRegs = shouldDisableArgRegFromCSR(CallConv) || HasNCSR;
2521 if (ShouldDisableArgRegs || shouldDisableRetRegFromCSR(CallConv)) {
2522 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2523
2524 // Allocate a new Reg Mask and copy Mask.
2525 RegMask = MF.allocateRegMask();
2526 unsigned RegMaskSize = MachineOperand::getRegMaskSize(TRI->getNumRegs());
2527 memcpy(RegMask, Mask, sizeof(RegMask[0]) * RegMaskSize);
2528
2529 // Make sure all sub registers of the argument registers are reset
2530 // in the RegMask.
2531 if (ShouldDisableArgRegs) {
2532 for (auto const &RegPair : RegsToPass)
2533 for (MCPhysReg SubReg : TRI->subregs_inclusive(RegPair.first))
2534 RegMask[SubReg / 32] &= ~(1u << (SubReg % 32));
2535 }
2536
2537 // Create the RegMask Operand according to our updated mask.
2538 Ops.push_back(DAG.getRegisterMask(RegMask));
2539 } else {
2540 // Create the RegMask Operand according to the static mask.
2541 Ops.push_back(DAG.getRegisterMask(Mask));
2542 }
2543
2544 if (InGlue.getNode())
2545 Ops.push_back(InGlue);
2546
2547 if (isTailCall) {
2548 // We used to do:
2549 //// If this is the first return lowered for this function, add the regs
2550 //// to the liveout set for the function.
2551 // This isn't right, although it's probably harmless on x86; liveouts
2552 // should be computed from returns not tail calls. Consider a void
2553 // function making a tail call to a function returning int.
2555 SDValue Ret = DAG.getNode(X86ISD::TC_RETURN, dl, MVT::Other, Ops);
2556
2557 if (IsCFICall)
2558 Ret.getNode()->setCFIType(CLI.CFIType->getZExtValue());
2559
2560 DAG.addNoMergeSiteInfo(Ret.getNode(), CLI.NoMerge);
2561 DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
2562 return Ret;
2563 }
2564
2565 // Returns a chain & a glue for retval copy to use.
2566 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2567 if (IsImpCall) {
2568 Chain = DAG.getNode(X86ISD::IMP_CALL, dl, NodeTys, Ops);
2569 } else if (IsNoTrackIndirectCall) {
2570 Chain = DAG.getNode(X86ISD::NT_CALL, dl, NodeTys, Ops);
2571 } else if (CLI.CB && objcarc::hasAttachedCallOpBundle(CLI.CB)) {
2572 // Calls with a "clang.arc.attachedcall" bundle are special. They should be
2573 // expanded to the call, directly followed by a special marker sequence and
2574 // a call to a ObjC library function. Use the CALL_RVMARKER to do that.
2575 assert(!isTailCall &&
2576 "tail calls cannot be marked with clang.arc.attachedcall");
2577 assert(Is64Bit && "clang.arc.attachedcall is only supported in 64bit mode");
2578
2579 // Add a target global address for the retainRV/claimRV runtime function
2580 // just before the call target.
2582 auto PtrVT = getPointerTy(DAG.getDataLayout());
2583 auto GA = DAG.getTargetGlobalAddress(ARCFn, dl, PtrVT);
2584 Ops.insert(Ops.begin() + 1, GA);
2585 Chain = DAG.getNode(X86ISD::CALL_RVMARKER, dl, NodeTys, Ops);
2586 } else {
2587 Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops);
2588 }
2589
2590 if (IsCFICall)
2591 Chain.getNode()->setCFIType(CLI.CFIType->getZExtValue());
2592
2593 InGlue = Chain.getValue(1);
2594 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
2595 DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));
2596
2597 // Save heapallocsite metadata.
2598 if (CLI.CB)
2599 if (MDNode *HeapAlloc = CLI.CB->getMetadata("heapallocsite"))
2600 DAG.addHeapAllocSite(Chain.getNode(), HeapAlloc);
2601
2602 // Create the CALLSEQ_END node.
2603 unsigned NumBytesForCalleeToPop = 0; // Callee pops nothing.
2604 if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2606 NumBytesForCalleeToPop = NumBytes; // Callee pops everything
2607 else if (!canGuaranteeTCO(CallConv) && IsCalleePopSRet)
2608 // If this call passes a struct-return pointer, the callee
2609 // pops that struct pointer.
2610 NumBytesForCalleeToPop = 4;
2611
2612 // Returns a glue for retval copy to use.
2613 if (!IsSibcall) {
2614 Chain = DAG.getCALLSEQ_END(Chain, NumBytesToPop, NumBytesForCalleeToPop,
2615 InGlue, dl);
2616 InGlue = Chain.getValue(1);
2617 }
2618
2619 if (CallingConv::PreserveNone == CallConv)
2620 for (const ISD::OutputArg &Out : Outs) {
2621 if (Out.Flags.isSwiftSelf() || Out.Flags.isSwiftAsync() ||
2622 Out.Flags.isSwiftError()) {
2623 errorUnsupported(DAG, dl,
2624 "Swift attributes can't be used with preserve_none");
2625 break;
2626 }
2627 }
2628
2629 // Handle result values, copying them out of physregs into vregs that we
2630 // return.
2631 return LowerCallResult(Chain, InGlue, CallConv, isVarArg, Ins, dl, DAG,
2632 InVals, RegMask);
2633}
2634
2635//===----------------------------------------------------------------------===//
2636// Fast Calling Convention (tail call) implementation
2637//===----------------------------------------------------------------------===//
2638
2639// Like std call, callee cleans arguments, convention except that ECX is
2640// reserved for storing the tail called function address. Only 2 registers are
2641// free for argument passing (inreg). Tail call optimization is performed
2642// provided:
2643// * tailcallopt is enabled
2644// * caller/callee are fastcc
2645// On X86_64 architecture with GOT-style position independent code only local
2646// (within module) calls are supported at the moment.
2647// To keep the stack aligned according to platform abi the function
2648// GetAlignedArgumentStackSize ensures that argument delta is always multiples
2649// of stack alignment. (Dynamic linkers need this - Darwin's dyld for example)
2650// If a tail called function callee has more arguments than the caller the
2651// caller needs to make sure that there is room to move the RETADDR to. This is
2652// achieved by reserving an area the size of the argument delta right after the
2653// original RETADDR, but before the saved framepointer or the spilled registers
2654// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2655// stack layout:
2656// arg1
2657// arg2
2658// RETADDR
2659// [ new RETADDR
2660// move area ]
2661// (possible EBP)
2662// ESI
2663// EDI
2664// local1 ..
2665
2666/// Make the stack size align e.g 16n + 12 aligned for a 16-byte align
2667/// requirement.
2668unsigned
2669X86TargetLowering::GetAlignedArgumentStackSize(const unsigned StackSize,
2670 SelectionDAG &DAG) const {
2671 const Align StackAlignment = Subtarget.getFrameLowering()->getStackAlign();
2672 const uint64_t SlotSize = Subtarget.getRegisterInfo()->getSlotSize();
2673 assert(StackSize % SlotSize == 0 &&
2674 "StackSize must be a multiple of SlotSize");
2675 return alignTo(StackSize + SlotSize, StackAlignment) - SlotSize;
2676}
2677
2678/// Return true if the given stack call argument is already available in the
2679/// same position (relatively) of the caller's incoming argument stack.
2680static
2683 const X86InstrInfo *TII, const CCValAssign &VA) {
2684 unsigned Bytes = Arg.getValueSizeInBits() / 8;
2685
2686 for (;;) {
2687 // Look through nodes that don't alter the bits of the incoming value.
2688 unsigned Op = Arg.getOpcode();
2689 if (Op == ISD::ZERO_EXTEND || Op == ISD::ANY_EXTEND || Op == ISD::BITCAST ||
2690 Op == ISD::AssertZext) {
2691 Arg = Arg.getOperand(0);
2692 continue;
2693 }
2694 if (Op == ISD::TRUNCATE) {
2695 const SDValue &TruncInput = Arg.getOperand(0);
2696 if (TruncInput.getOpcode() == ISD::AssertZext &&
2697 cast<VTSDNode>(TruncInput.getOperand(1))->getVT() ==
2698 Arg.getValueType()) {
2699 Arg = TruncInput.getOperand(0);
2700 continue;
2701 }
2702 }
2703 break;
2704 }
2705
2706 int FI = INT_MAX;
2707 if (Arg.getOpcode() == ISD::CopyFromReg) {
2708 Register VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2709 if (!VR.isVirtual())
2710 return false;
2711 MachineInstr *Def = MRI->getVRegDef(VR);
2712 if (!Def)
2713 return false;
2714 if (!Flags.isByVal()) {
2715 if (!TII->isLoadFromStackSlot(*Def, FI))
2716 return false;
2717 } else {
2718 unsigned Opcode = Def->getOpcode();
2719 if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r ||
2720 Opcode == X86::LEA64_32r) &&
2721 Def->getOperand(1).isFI()) {
2722 FI = Def->getOperand(1).getIndex();
2723 Bytes = Flags.getByValSize();
2724 } else
2725 return false;
2726 }
2727 } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2728 if (Flags.isByVal())
2729 // ByVal argument is passed in as a pointer but it's now being
2730 // dereferenced. e.g.
2731 // define @foo(%struct.X* %A) {
2732 // tail call @bar(%struct.X* byval %A)
2733 // }
2734 return false;
2735 SDValue Ptr = Ld->getBasePtr();
2737 if (!FINode)
2738 return false;
2739 FI = FINode->getIndex();
2740 } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2742 FI = FINode->getIndex();
2743 Bytes = Flags.getByValSize();
2744 } else
2745 return false;
2746
2747 assert(FI != INT_MAX);
2748 if (!MFI.isFixedObjectIndex(FI))
2749 return false;
2750
2751 if (Offset != MFI.getObjectOffset(FI))
2752 return false;
2753
2754 // If this is not byval, check that the argument stack object is immutable.
2755 // inalloca and argument copy elision can create mutable argument stack
2756 // objects. Byval objects can be mutated, but a byval call intends to pass the
2757 // mutated memory.
2758 if (!Flags.isByVal() && !MFI.isImmutableObjectIndex(FI))
2759 return false;
2760
2761 if (VA.getLocVT().getFixedSizeInBits() >
2763 // If the argument location is wider than the argument type, check that any
2764 // extension flags match.
2765 if (Flags.isZExt() != MFI.isObjectZExt(FI) ||
2766 Flags.isSExt() != MFI.isObjectSExt(FI)) {
2767 return false;
2768 }
2769 }
2770
2771 return Bytes == MFI.getObjectSize(FI);
2772}
2773
2774static bool
2776 Register CallerSRetReg) {
2777 const auto &Outs = CLI.Outs;
2778 const auto &OutVals = CLI.OutVals;
2779
2780 // We know the caller has a sret pointer argument (CallerSRetReg). Locate the
2781 // operand index within the callee that may have a sret pointer too.
2782 unsigned Pos = 0;
2783 for (unsigned E = Outs.size(); Pos != E; ++Pos)
2784 if (Outs[Pos].Flags.isSRet())
2785 break;
2786 // Bail out if the callee has not any sret argument.
2787 if (Pos == Outs.size())
2788 return false;
2789
2790 // At this point, either the caller is forwarding its sret argument to the
2791 // callee, or the callee is being passed a different sret pointer. We now look
2792 // for a CopyToReg, where the callee sret argument is written into a new vreg
2793 // (which should later be %rax/%eax, if this is returned).
2794 SDValue SRetArgVal = OutVals[Pos];
2795 for (SDNode *User : SRetArgVal->users()) {
2796 if (User->getOpcode() != ISD::CopyToReg)
2797 continue;
2799 if (Reg == CallerSRetReg && User->getOperand(2) == SRetArgVal)
2800 return true;
2801 }
2802
2803 return false;
2804}
2805
2806/// Check whether the call is eligible for tail call optimization. Targets
2807/// that want to do tail call optimization should implement this function.
2808/// Note that the x86 backend does not check musttail calls for eligibility! The
2809/// rest of x86 tail call lowering must be prepared to forward arguments of any
2810/// type.
2811bool X86TargetLowering::IsEligibleForTailCallOptimization(
2813 SmallVectorImpl<CCValAssign> &ArgLocs, bool IsCalleePopSRet) const {
2814 SelectionDAG &DAG = CLI.DAG;
2815 const SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2816 const SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
2817 const SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
2818 SDValue Callee = CLI.Callee;
2819 CallingConv::ID CalleeCC = CLI.CallConv;
2820 bool isVarArg = CLI.IsVarArg;
2821
2822 if (!mayTailCallThisCC(CalleeCC))
2823 return false;
2824
2825 // If -tailcallopt is specified, make fastcc functions tail-callable.
2826 MachineFunction &MF = DAG.getMachineFunction();
2827 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2828 const Function &CallerF = MF.getFunction();
2829
2830 // If the function return type is x86_fp80 and the callee return type is not,
2831 // then the FP_EXTEND of the call result is not a nop. It's not safe to
2832 // perform a tailcall optimization here.
2833 if (CallerF.getReturnType()->isX86_FP80Ty() && !CLI.RetTy->isX86_FP80Ty())
2834 return false;
2835
2836 CallingConv::ID CallerCC = CallerF.getCallingConv();
2837 bool CCMatch = CallerCC == CalleeCC;
2838 bool IsCalleeWin64 = Subtarget.isCallingConvWin64(CalleeCC);
2839 bool IsCallerWin64 = Subtarget.isCallingConvWin64(CallerCC);
2840 bool IsGuaranteeTCO = DAG.getTarget().Options.GuaranteedTailCallOpt ||
2841 CalleeCC == CallingConv::Tail || CalleeCC == CallingConv::SwiftTail;
2842
2843 // Win64 functions have extra shadow space for argument homing. Don't do the
2844 // sibcall if the caller and callee have mismatched expectations for this
2845 // space.
2846 if (IsCalleeWin64 != IsCallerWin64)
2847 return false;
2848
2849 if (IsGuaranteeTCO) {
2850 if (canGuaranteeTCO(CalleeCC) && CCMatch)
2851 return true;
2852 return false;
2853 }
2854
2855 // Look for obvious safe cases to perform tail call optimization that do not
2856 // require ABI changes. This is what gcc calls sibcall.
2857
2858 // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2859 // emit a special epilogue.
2860 const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
2861 if (RegInfo->hasStackRealignment(MF))
2862 return false;
2863
2864 // Avoid sibcall optimization if we are an sret return function and the callee
2865 // is incompatible, unless such premises are proven wrong. See comment in
2866 // LowerReturn about why hasStructRetAttr is insufficient.
2867 if (Register SRetReg = FuncInfo->getSRetReturnReg()) {
2868 // For a compatible tail call the callee must return our sret pointer. So it
2869 // needs to be (a) an sret function itself and (b) we pass our sret as its
2870 // sret. Condition #b is harder to determine.
2871 if (!mayBeSRetTailCallCompatible(CLI, SRetReg))
2872 return false;
2873 } else if (IsCalleePopSRet)
2874 // The callee pops an sret, so we cannot tail-call, as our caller doesn't
2875 // expect that.
2876 return false;
2877
2878 // Do not sibcall optimize vararg calls unless all arguments are passed via
2879 // registers.
2880 LLVMContext &C = *DAG.getContext();
2881 if (isVarArg && !Outs.empty()) {
2882 // Optimizing for varargs on Win64 is unlikely to be safe without
2883 // additional testing.
2884 if (IsCalleeWin64 || IsCallerWin64)
2885 return false;
2886
2887 for (const auto &VA : ArgLocs)
2888 if (!VA.isRegLoc())
2889 return false;
2890 }
2891
2892 // If the call result is in ST0 / ST1, it needs to be popped off the x87
2893 // stack. Therefore, if it's not used by the call it is not safe to optimize
2894 // this into a sibcall.
2895 bool Unused = false;
2896 for (const auto &In : Ins) {
2897 if (!In.Used) {
2898 Unused = true;
2899 break;
2900 }
2901 }
2902 if (Unused) {
2904 CCState RVCCInfo(CalleeCC, false, MF, RVLocs, C);
2905 RVCCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2906 for (const auto &VA : RVLocs) {
2907 if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
2908 return false;
2909 }
2910 }
2911
2912 // Check that the call results are passed in the same way.
2913 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
2915 return false;
2916 // The callee has to preserve all registers the caller needs to preserve.
2917 const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
2918 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2919 if (!CCMatch) {
2920 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2921 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2922 return false;
2923 }
2924
2925 // The stack frame of the caller cannot be replaced by the tail-callee one's
2926 // if the function is required to preserve all the registers. Conservatively
2927 // prevent tail optimization even if hypothetically all the registers are used
2928 // for passing formal parameters or returning values.
2929 if (CallerF.hasFnAttribute("no_caller_saved_registers"))
2930 return false;
2931
2932 unsigned StackArgsSize = CCInfo.getStackSize();
2933
2934 // If the callee takes no arguments then go on to check the results of the
2935 // call.
2936 if (!Outs.empty()) {
2937 if (StackArgsSize > 0) {
2938 // Check if the arguments are already laid out in the right way as
2939 // the caller's fixed stack objects.
2940 MachineFrameInfo &MFI = MF.getFrameInfo();
2941 const MachineRegisterInfo *MRI = &MF.getRegInfo();
2942 const X86InstrInfo *TII = Subtarget.getInstrInfo();
2943 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
2944 const CCValAssign &VA = ArgLocs[I];
2945 SDValue Arg = OutVals[I];
2946 ISD::ArgFlagsTy Flags = Outs[I].Flags;
2948 return false;
2949 if (!VA.isRegLoc()) {
2950 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, MFI, MRI,
2951 TII, VA))
2952 return false;
2953 }
2954 }
2955 }
2956
2957 bool PositionIndependent = isPositionIndependent();
2958 // If the tailcall address may be in a register, then make sure it's
2959 // possible to register allocate for it. In 32-bit, the call address can
2960 // only target EAX, EDX, or ECX since the tail call must be scheduled after
2961 // callee-saved registers are restored. These happen to be the same
2962 // registers used to pass 'inreg' arguments so watch out for those.
2963 if (!Subtarget.is64Bit() && ((!isa<GlobalAddressSDNode>(Callee) &&
2964 !isa<ExternalSymbolSDNode>(Callee)) ||
2965 PositionIndependent)) {
2966 unsigned NumInRegs = 0;
2967 // In PIC we need an extra register to formulate the address computation
2968 // for the callee.
2969 unsigned MaxInRegs = PositionIndependent ? 2 : 3;
2970
2971 for (const auto &VA : ArgLocs) {
2972 if (!VA.isRegLoc())
2973 continue;
2974 Register Reg = VA.getLocReg();
2975 switch (Reg) {
2976 default: break;
2977 case X86::EAX: case X86::EDX: case X86::ECX:
2978 if (++NumInRegs == MaxInRegs)
2979 return false;
2980 break;
2981 }
2982 }
2983 }
2984
2985 const MachineRegisterInfo &MRI = MF.getRegInfo();
2986 if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
2987 return false;
2988 }
2989
2990 bool CalleeWillPop =
2991 X86::isCalleePop(CalleeCC, Subtarget.is64Bit(), isVarArg,
2993
2994 if (unsigned BytesToPop = FuncInfo->getBytesToPopOnReturn()) {
2995 // If we have bytes to pop, the callee must pop them.
2996 bool CalleePopMatches = CalleeWillPop && BytesToPop == StackArgsSize;
2997 if (!CalleePopMatches)
2998 return false;
2999 } else if (CalleeWillPop && StackArgsSize > 0) {
3000 // If we don't have bytes to pop, make sure the callee doesn't pop any.
3001 return false;
3002 }
3003
3004 return true;
3005}
3006
3007/// Determines whether the callee is required to pop its own arguments.
3008/// Callee pop is necessary to support tail calls.
3010 bool is64Bit, bool IsVarArg, bool GuaranteeTCO) {
3011 // If GuaranteeTCO is true, we force some calls to be callee pop so that we
3012 // can guarantee TCO.
3013 if (!IsVarArg && shouldGuaranteeTCO(CallingConv, GuaranteeTCO))
3014 return true;
3015
3016 switch (CallingConv) {
3017 default:
3018 return false;
3023 return !is64Bit;
3024 }
3025}
unsigned SubReg
unsigned const MachineRegisterInfo * MRI
return SDValue()
static bool canGuaranteeTCO(CallingConv::ID CC, bool GuaranteeTailCalls)
Return true if the calling convention is one that we can guarantee TCO for.
static bool mayTailCallThisCC(CallingConv::ID CC)
Return true if we might ever do TCO for calls with this calling convention.
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
const HexagonInstrInfo * TII
static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, ISD::ArgFlagsTy Flags, SelectionDAG &DAG, const SDLoc &dl)
CreateCopyOfByValArgument - Make a copy of an aggregate at address specified by "Src" to address "Dst...
Module.h This file contains the declarations for the Module class.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static LVOptions Options
Definition LVOptions.cpp:25
const MCPhysReg ArgGPRs[]
static bool shouldGuaranteeTCO(CallingConv::ID CC, bool GuaranteedTailCallOpt)
Return true if the function is being made into a tailcall target by changing its ABI.
static bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, MachineFrameInfo &MFI, const MachineRegisterInfo *MRI, const M68kInstrInfo *TII, const CCValAssign &VA)
Return true if the given stack call argument is already available in the same position (relatively) o...
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
#define G(x, y, z)
Definition MD5.cpp:56
Machine Check Debug Module
Register Reg
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
#define T
This file defines ARC utility functions which are used by various parts of the compiler.
static CodeModel::Model getCodeModel(const PPCSubtarget &S, const TargetMachine &TM, const MachineOperand &MO)
static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign)
getMaxByValAlign - Helper for getByValTypeAlignment to determine the desired ByVal argument alignment...
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition Value.cpp:472
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
static Function * getFunction(FunctionType *Ty, const Twine &Name, Module *M)
static bool is64Bit(const char *name)
static SDValue lowerMasksToReg(const SDValue &ValArg, const EVT &ValLoc, const SDLoc &DL, SelectionDAG &DAG)
Lowers masks values (v*i1) to the local register values.
static void Passv64i1ArgInRegs(const SDLoc &DL, SelectionDAG &DAG, SDValue &Arg, SmallVectorImpl< std::pair< Register, SDValue > > &RegsToPass, CCValAssign &VA, CCValAssign &NextVA, const X86Subtarget &Subtarget)
Breaks v64i1 value into two registers and adds the new node to the DAG.
static SDValue getv64i1Argument(CCValAssign &VA, CCValAssign &NextVA, SDValue &Root, SelectionDAG &DAG, const SDLoc &DL, const X86Subtarget &Subtarget, SDValue *InGlue=nullptr)
Reads two 32 bit registers and creates a 64 bit mask value.
static ArrayRef< MCPhysReg > get64BitArgumentXMMs(MachineFunction &MF, CallingConv::ID CallConv, const X86Subtarget &Subtarget)
static bool isSortedByValueNo(ArrayRef< CCValAssign > ArgLocs)
static ArrayRef< MCPhysReg > get64BitArgumentGPRs(CallingConv::ID CallConv, const X86Subtarget &Subtarget)
static SDValue getPopFromX87Reg(SelectionDAG &DAG, SDValue Chain, const SDLoc &dl, Register Reg, EVT VT, SDValue Glue)
static bool mayBeSRetTailCallCompatible(const TargetLowering::CallLoweringInfo &CLI, Register CallerSRetReg)
static std::pair< MVT, unsigned > handleMaskRegisterForCallingConv(unsigned NumElts, CallingConv::ID CC, const X86Subtarget &Subtarget)
static bool shouldDisableRetRegFromCSR(CallingConv::ID CC)
Returns true if a CC can dynamically exclude a register from the list of callee-saved-registers (Targ...
static void errorUnsupported(SelectionDAG &DAG, const SDLoc &dl, const char *Msg)
Call this when the user attempts to do something unsupported, like returning a double without SSE2 en...
static SDValue EmitTailCallStoreRetAddr(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue RetAddrFrIdx, EVT PtrVT, unsigned SlotSize, int FPDiff, const SDLoc &dl)
Emit a store of the return address if tail call optimization is performed and it is required (FPDiff!...
static bool hasCalleePopSRet(const SmallVectorImpl< T > &Args, const X86Subtarget &Subtarget)
Determines whether Args, either a set of outgoing arguments to a call, or a set of incoming args of a...
static bool shouldDisableArgRegFromCSR(CallingConv::ID CC)
Returns true if a CC can dynamically exclude a register from the list of callee-saved-registers (Targ...
static bool hasStackGuardSlotTLS(const Triple &TargetTriple)
static SDValue lowerRegToMasks(const SDValue &ValArg, const EVT &ValVT, const EVT &ValLoc, const SDLoc &DL, SelectionDAG &DAG)
The function will lower a register of various sizes (8/16/32/64) to a mask value of the expected size...
static Constant * SegmentOffset(IRBuilderBase &IRB, int Offset, unsigned AddressSpace)
static bool isBitAligned(Align Alignment, uint64_t SizeInBits)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition ArrayRef.h:143
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
Definition ArrayRef.h:187
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
CCState - This class holds information needed while lowering arguments and return values.
static LLVM_ABI bool resultsCompatible(CallingConv::ID CalleeCC, CallingConv::ID CallerCC, MachineFunction &MF, LLVMContext &C, const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn CalleeFn, CCAssignFn CallerFn)
Returns true if the results of the two calling conventions are compatible.
uint64_t getStackSize() const
Returns the size of the currently allocated portion of the stack.
CCValAssign - Represent assignment of one arg/retval to a location.
void convertToReg(MCRegister Reg)
Register getLocReg() const
LocInfo getLocInfo() const
bool needsCustom() const
bool isExtInLoc() const
int64_t getLocMemOffset() const
CallingConv::ID getCallingConv() const
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
This class represents a function call, abstracting a target machine's calling convention.
bool isTailCall() const
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition Constants.h:163
This is an important base class in LLVM.
Definition Constant.h:43
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
LLVM_ABI TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
Diagnostic information for unsupported feature in backend.
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
bool hasPersonalityFn() const
Check whether this function has a personality function.
Definition Function.h:903
Constant * getPersonalityFn() const
Get the personality function associated with this function.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition Function.cpp:727
Module * getParent()
Get the module that this global value is contained inside of...
void setDSOLocal(bool Local)
@ ExternalLinkage
Externally visible function.
Definition GlobalValue.h:53
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
BasicBlock * GetInsertBlock() const
Definition IRBuilder.h:201
LLVMContext & getContext() const
Definition IRBuilder.h:203
PointerType * getPtrTy(unsigned AddrSpace=0)
Fetch the type representing a pointer.
Definition IRBuilder.h:605
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
This class is used to represent ISD::LOAD nodes.
Context object for machine code objects.
Definition MCContext.h:83
Base class for the full range of assembler expressions which are needed for parsing.
Definition MCExpr.h:34
static const MCSymbolRefExpr * create(const MCSymbol *Symbol, MCContext &Ctx, SMLoc Loc=SMLoc())
Definition MCExpr.h:214
Machine Value Type.
@ INVALID_SIMPLE_VALUE_TYPE
SimpleValueType SimpleTy
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool is512BitVector() const
Return true if this is a 512-bit vector type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
MVT getVectorElementType() const
MVT getScalarType() const
If this is a vector, return the element type, otherwise return this.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable, bool isAliased=false)
Create a new object at a fixed location on the stack.
void setObjectZExt(int ObjectIdx, bool IsZExt)
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
void setObjectSExt(int ObjectIdx, bool IsSExt)
bool isImmutableObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to an immutable object.
void setHasTailCall(bool V=true)
bool isObjectZExt(int ObjectIdx) const
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
bool isObjectSExt(int ObjectIdx) const
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
int getObjectIndexBegin() const
Return the minimum frame object index.
const WinEHFuncInfo * getWinEHFuncInfo() const
getWinEHFuncInfo - Return information about how the current function uses Windows exception handling.
MCSymbol * getPICBaseSymbol() const
getPICBaseSymbol - Return a function-local symbol to represent the PIC base.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
uint32_t * allocateRegMask()
Allocate and initialize a register mask with NumRegister bits.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC)
addLiveIn - Add the specified physical register as a live-in value and create a corresponding virtual...
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
Representation of each machine instruction.
@ EK_Custom32
EK_Custom32 - Each entry is a 32-bit value that is custom lowered by the TargetLowering::LowerCustomJ...
@ EK_LabelDifference64
EK_LabelDifference64 - Each entry is the address of the block minus the address of the jump table.
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOStore
The memory access writes data.
static unsigned getRegMaskSize(unsigned NumRegs)
Returns number of elements needed for a regmask array.
static bool clobbersPhysReg(const uint32_t *RegMask, MCRegister PhysReg)
clobbersPhysReg - Returns true if this RegMask clobbers PhysReg.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
LLVM_ABI Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
LLVM_ABI void disableCalleeSavedRegister(MCRegister Reg)
Disables the register from the list of CSRs.
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
Wrapper class representing virtual and physical registers.
Definition Register.h:19
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition Register.h:74
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
const DebugLoc & getDebugLoc() const
Represents one node in the SelectionDAG.
void setCFIType(uint32_t Type)
iterator_range< user_iterator > users()
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
LLVM_ABI SDValue getStackArgumentTokenFactor(SDValue Chain)
Compute a TokenFactor to force all the incoming stack arguments to be loaded from the stack.
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
void addNoMergeSiteInfo(const SDNode *Node, bool NoMerge)
Set NoMergeSiteInfo to be associated with Node if NoMerge is true.
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
const DataLayout & getDataLayout() const
void addHeapAllocSite(const SDNode *Node, MDNode *MD)
Set HeapAllocSite to be associated with Node.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
SDValue getSignedTargetConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
const TargetMachine & getTarget() const
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
void addCallSiteInfo(const SDNode *Node, CallSiteInfo &&CallInfo)
Set CallSiteInfo to be associated with Node.
LLVMContext * getContext() const
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr bool empty() const
empty - Check if the string is empty.
Definition StringRef.h:143
Class to represent struct types.
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
virtual Value * getSafeStackPointerLocation(IRBuilderBase &IRB) const
Returns the target-specific address of the unsafe stack pointer.
const TargetMachine & getTargetMachine() const
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
virtual unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Certain targets such as MIPS require that some types such as vectors are always broken down into scal...
virtual Value * getIRStackGuard(IRBuilderBase &IRB) const
If the target has a standard location for the stack protector guard, returns the address of that loca...
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
virtual std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const
Return the largest legal super-reg register class of the register class for the specified type and it...
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
static StringRef getLibcallImplName(RTLIB::LibcallImpl Call)
Get the libcall routine name for the specified libcall implementation.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
std::vector< ArgListEntry > ArgListTy
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual void insertSSPDeclarations(Module &M) const
Inserts necessary declarations for SSP (stack protection) purpose.
virtual const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const
This returns the relocation base for the given PIC jumptable, the same as getPICJumpTableRelocBase,...
bool parametersInCSRMatch(const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< SDValue > &OutVals) const
Check whether parameters to a call that are passed in callee saved registers are the same as from the...
bool isPositionIndependent() const
virtual ArrayRef< MCPhysReg > getRoundingControlRegisters() const
Returns a 0 terminated array of rounding control registers that can be attached into strict FP call.
virtual unsigned getJumpTableEncoding() const
Return the entry encoding for a jump table in the current function.
TargetOptions Options
CodeModel::Model getCodeModel() const
Returns the code model.
unsigned GuaranteedTailCallOpt
GuaranteedTailCallOpt - This flag is enabled when -tailcallopt is specified on the commandline.
unsigned EmitCallGraphSection
Emit section containing call graph metadata.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
Triple - Helper class for working with autoconf configuration names.
Definition Triple.h:47
bool isAndroid() const
Tests whether the target is Android.
Definition Triple.h:827
bool isOSMSVCRT() const
Is this a "Windows" OS targeting a "MSVCRT.dll" environment.
Definition Triple.h:724
bool isOSGlibc() const
Tests whether the OS uses glibc.
Definition Triple.h:755
bool isOSFuchsia() const
Definition Triple.h:644
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
Definition Type.cpp:298
bool isX86_FP80Ty() const
Return true if this is x86 long double.
Definition Type.h:159
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:281
Value * getOperand(unsigned i) const
Definition User.h:232
LLVM Value Representation.
Definition Value.h:75
void setBytesToPopOnReturn(unsigned bytes)
void setVarArgsGPOffset(unsigned Offset)
SmallVectorImpl< ForwardedRegister > & getForwardedMustTailRegParms()
void setVarArgsFPOffset(unsigned Offset)
const uint32_t * getCallPreservedMask(const MachineFunction &MF, CallingConv::ID) const override
Register getStackRegister() const
unsigned getSlotSize() const
Register getFramePtr() const
Returns physical register used as frame pointer.
Register getBaseRegister() const
const uint32_t * getNoPreservedMask() const override
bool hasSSE1() const
bool isTargetMCU() const
const Triple & getTargetTriple() const
bool useAVX512Regs() const
bool isCallingConvWin64(CallingConv::ID CC) const
std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const override
Return the largest legal super-reg register class of the register class for the specified type and it...
SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const override
Returns relocation base for the given PIC jumptable.
unsigned getJumpTableEncoding() const override
Return the entry encoding for a jump table in the current function.
bool isMemoryAccessFast(EVT VT, Align Alignment) const
bool useSoftFloat() const override
const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const override
This returns the relocation base for the given PIC jumptable, the same as getPICJumpTableRelocBase,...
bool isSafeMemOpType(MVT VT) const override
Returns true if it's safe to use load / store of the specified type to expand memcpy / memset inline.
bool functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, bool isVarArg, const DataLayout &DL) const override
For some targets, an LLVM struct type must be broken down into multiple simple types,...
Value * getIRStackGuard(IRBuilderBase &IRB) const override
If the target has a standard location for the stack protector cookie, returns the address of that loc...
Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const override
Return the desired alignment for ByVal aggregate function arguments in the caller parameter area.
MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const override
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const override
Returns true if the target allows unaligned memory accesses of the specified type.
EVT getOptimalMemOpType(LLVMContext &Context, const MemOp &Op, const AttributeList &FuncAttributes) const override
It returns EVT::Other if the type should be determined using generic target-independent logic.
unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const override
Certain targets such as MIPS require that some types such as vectors are always broken down into scal...
void markLibCallAttributes(MachineFunction *MF, unsigned CC, ArgListTy &Args) const override
Value * getSafeStackPointerLocation(IRBuilderBase &IRB) const override
Return true if the target stores SafeStack pointer at a fixed offset in some non-standard address spa...
bool isScalarFPTypeInSSEReg(EVT VT) const
Return true if the specified scalar FP type is computed in an SSE register, not on the X87 floating p...
unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const override
Certain targets require unusual breakdowns of certain types.
bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const override
This function returns true if the memory access is aligned or if the target allows this specific unal...
SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const override
Return the value type to use for ISD::SETCC.
EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const override
For types supported by the target, this is an identity function.
void insertSSPDeclarations(Module &M) const override
Inserts necessary declarations for SSP (stack protection) purpose.
const MCExpr * LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, unsigned uid, MCContext &Ctx) const override
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:201
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
CallingConv Namespace - This namespace contains an enum with a value for the well-known calling conve...
Definition CallingConv.h:21
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ X86_64_SysV
The C convention as specified in the x86-64 supplement to the System V ABI, used on most non-Windows ...
@ HiPE
Used by the High-Performance Erlang Compiler (HiPE).
Definition CallingConv.h:53
@ Swift
Calling convention for Swift.
Definition CallingConv.h:69
@ PreserveMost
Used for runtime calls that preserves most registers.
Definition CallingConv.h:63
@ X86_INTR
x86 hardware interrupt context.
@ GHC
Used by the Glasgow Haskell Compiler (GHC).
Definition CallingConv.h:50
@ X86_ThisCall
Similar to X86_StdCall.
@ PreserveAll
Used for runtime calls that preserves (almost) all registers.
Definition CallingConv.h:66
@ X86_StdCall
stdcall is mostly used by the Win32 API.
Definition CallingConv.h:99
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
@ X86_VectorCall
MSVC calling convention that passes vectors and vector aggregates in SSE registers.
@ Intel_OCL_BI
Used for Intel OpenCL built-ins.
@ PreserveNone
Used for runtime calls that preserves none general registers.
Definition CallingConv.h:90
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition CallingConv.h:76
@ Win64
The C convention as implemented on Windows/x86-64 and AArch64.
@ SwiftTail
This follows the Swift calling convention in how arguments are passed but guarantees tail calls will ...
Definition CallingConv.h:87
@ X86_RegCall
Register calling convention used for parameters transfer optimization.
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ X86_FastCall
'fast' analog of X86_StdCall.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:841
@ GlobalAddress
Definition ISDOpcodes.h:88
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:577
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:832
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
Definition ISDOpcodes.h:662
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition ISDOpcodes.h:225
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:569
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
Definition ISDOpcodes.h:219
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:838
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition ISDOpcodes.h:53
@ ExternalSymbol
Definition ISDOpcodes.h:93
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:947
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:844
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
Definition ISDOpcodes.h:62
LLVM_ABI LegalityPredicate isVector(unsigned TypeIdx)
True iff the specified type index is a vector.
@ RET_GLUE
Return with a glue operand.
@ IRET
Return from interrupt. Operand 0 is the number of bytes to pop.
@ CALL
These operations represent an abstract X86 call instruction, which includes a bunch of information.
@ GlobalBaseReg
On Darwin, this node represents the result of the popl at function entry, used for PIC code.
@ TC_RETURN
Tail call return.
@ NT_CALL
Same as call except it adds the NoTrack prefix.
@ MOVDQ2Q
Copies a 64-bit value from the low word of an XMM vector to an MMX vector.
@ POP_FROM_X87_REG
The same as ISD::CopyFromReg except that this node makes it explicit that it may lower to an x87 FPU ...
bool isExtendedSwiftAsyncFrameSupported(const X86Subtarget &Subtarget, const MachineFunction &MF)
True if the target supports the extended frame for async Swift functions.
bool isCalleePop(CallingConv::ID CallingConv, bool is64Bit, bool IsVarArg, bool GuaranteeTCO)
Determines whether the callee is required to pop its own arguments.
std::optional< Function * > getAttachedARCFunction(const CallBase *CB)
This function returns operand bundle clang_arc_attachedcall's argument, which is the address of the A...
Definition ObjCARCUtil.h:43
bool hasAttachedCallOpBundle(const CallBase *CB)
Definition ObjCARCUtil.h:29
This is an optimization pass for GlobalISel generic memory operations.
@ Offset
Definition DWP.cpp:477
InstructionCost Cost
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2136
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
bool is_sorted(R &&Range, Compare C)
Wrapper function around std::is_sorted to check if elements in a range R are sorted with respect to a...
Definition STLExtras.h:1920
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
bool isFuncletEHPersonality(EHPersonality Pers)
Returns true if this is a personality function that invokes handler funclets (which must return to it...
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
Definition MCRegister.h:21
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
bool CC_X86(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
bool RetCC_X86(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
Definition Alignment.h:77
static constexpr Align Constant()
Allow constructions of constexpr Align.
Definition Alignment.h:88
Extended Value Type.
Definition ValueTypes.h:35
EVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
Definition ValueTypes.h:94
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
bool is128BitVector() const
Return true if this is a 128-bit vector type.
Definition ValueTypes.h:207
bool is512BitVector() const
Return true if this is a 512-bit vector type.
Definition ValueTypes.h:217
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
bool is256BitVector() const
Return true if this is a 256-bit vector type.
Definition ValueTypes.h:212
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
EVT changeVectorElementType(EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
Definition ValueTypes.h:102
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
Describes a register that needs to be forwarded from the prologue to a musttail call.
SmallVector< ArgRegPair, 1 > ArgRegPairs
Vector of call argument and its forwarding register.
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getStack(MachineFunction &MF, int64_t Offset, uint8_t ID=0)
Stack pointer relative access.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
This structure contains all information that is necessary for lowering calls.
SmallVector< ISD::InputArg, 32 > Ins
SmallVector< ISD::OutputArg, 32 > Outs
Type * RetTy
Same as OrigRetTy, or partially legalized for soft float libcalls.