LLVM  9.0.0svn
Instructions.h
Go to the documentation of this file.
1 //===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file exposes the class definitions of all of the subclasses of the
11 // Instruction class. This is meant to be an easy way to get access to all
12 // instruction subclasses.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_IR_INSTRUCTIONS_H
17 #define LLVM_IR_INSTRUCTIONS_H
18 
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/ADT/iterator.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CallingConv.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/OperandTraits.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Use.h"
38 #include "llvm/IR/User.h"
39 #include "llvm/IR/Value.h"
41 #include "llvm/Support/Casting.h"
43 #include <cassert>
44 #include <cstddef>
45 #include <cstdint>
46 #include <iterator>
47 
48 namespace llvm {
49 
50 class APInt;
51 class ConstantInt;
52 class DataLayout;
53 class LLVMContext;
54 
55 //===----------------------------------------------------------------------===//
56 // AllocaInst Class
57 //===----------------------------------------------------------------------===//
58 
59 /// an instruction to allocate memory on the stack
60 class AllocaInst : public UnaryInstruction {
61  Type *AllocatedType;
62 
63 protected:
64  // Note: Instruction needs to be a friend here to call cloneImpl.
65  friend class Instruction;
66 
67  AllocaInst *cloneImpl() const;
68 
69 public:
70  explicit AllocaInst(Type *Ty, unsigned AddrSpace,
71  Value *ArraySize = nullptr,
72  const Twine &Name = "",
73  Instruction *InsertBefore = nullptr);
74  AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
75  const Twine &Name, BasicBlock *InsertAtEnd);
76 
77  AllocaInst(Type *Ty, unsigned AddrSpace,
78  const Twine &Name, Instruction *InsertBefore = nullptr);
79  AllocaInst(Type *Ty, unsigned AddrSpace,
80  const Twine &Name, BasicBlock *InsertAtEnd);
81 
82  AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, unsigned Align,
83  const Twine &Name = "", Instruction *InsertBefore = nullptr);
84  AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, unsigned Align,
85  const Twine &Name, BasicBlock *InsertAtEnd);
86 
87  /// Return true if there is an allocation size parameter to the allocation
88  /// instruction that is not 1.
89  bool isArrayAllocation() const;
90 
91  /// Get the number of elements allocated. For a simple allocation of a single
92  /// element, this will return a constant 1 value.
93  const Value *getArraySize() const { return getOperand(0); }
94  Value *getArraySize() { return getOperand(0); }
95 
96  /// Overload to return most specific pointer type.
97  PointerType *getType() const {
98  return cast<PointerType>(Instruction::getType());
99  }
100 
101  /// Get allocation size in bits. Returns None if size can't be determined,
102  /// e.g. in case of a VLA.
104 
105  /// Return the type that is being allocated by the instruction.
106  Type *getAllocatedType() const { return AllocatedType; }
107  /// for use only in special circumstances that need to generically
108  /// transform a whole instruction (eg: IR linking and vectorization).
109  void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
110 
111  /// Return the alignment of the memory that is being allocated by the
112  /// instruction.
113  unsigned getAlignment() const {
114  return (1u << (getSubclassDataFromInstruction() & 31)) >> 1;
115  }
116  void setAlignment(unsigned Align);
117 
118  /// Return true if this alloca is in the entry block of the function and is a
119  /// constant size. If so, the code generator will fold it into the
120  /// prolog/epilog code, so it is basically free.
121  bool isStaticAlloca() const;
122 
123  /// Return true if this alloca is used as an inalloca argument to a call. Such
124  /// allocas are never considered static even if they are in the entry block.
125  bool isUsedWithInAlloca() const {
126  return getSubclassDataFromInstruction() & 32;
127  }
128 
129  /// Specify whether this alloca is used to represent the arguments to a call.
130  void setUsedWithInAlloca(bool V) {
131  setInstructionSubclassData((getSubclassDataFromInstruction() & ~32) |
132  (V ? 32 : 0));
133  }
134 
135  /// Return true if this alloca is used as a swifterror argument to a call.
136  bool isSwiftError() const {
137  return getSubclassDataFromInstruction() & 64;
138  }
139 
140  /// Specify whether this alloca is used to represent a swifterror.
141  void setSwiftError(bool V) {
142  setInstructionSubclassData((getSubclassDataFromInstruction() & ~64) |
143  (V ? 64 : 0));
144  }
145 
146  // Methods for support type inquiry through isa, cast, and dyn_cast:
147  static bool classof(const Instruction *I) {
148  return (I->getOpcode() == Instruction::Alloca);
149  }
150  static bool classof(const Value *V) {
151  return isa<Instruction>(V) && classof(cast<Instruction>(V));
152  }
153 
154 private:
155  // Shadow Instruction::setInstructionSubclassData with a private forwarding
156  // method so that subclasses cannot accidentally use it.
157  void setInstructionSubclassData(unsigned short D) {
159  }
160 };
161 
162 //===----------------------------------------------------------------------===//
163 // LoadInst Class
164 //===----------------------------------------------------------------------===//
165 
166 /// An instruction for reading from memory. This uses the SubclassData field in
167 /// Value to store whether or not the load is volatile.
168 class LoadInst : public UnaryInstruction {
169  void AssertOK();
170 
171 protected:
172  // Note: Instruction needs to be a friend here to call cloneImpl.
173  friend class Instruction;
174 
175  LoadInst *cloneImpl() const;
176 
177 public:
178  LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr = "",
179  Instruction *InsertBefore = nullptr);
180  LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
181  LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
182  Instruction *InsertBefore = nullptr);
183  LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
184  BasicBlock *InsertAtEnd);
185  LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
186  unsigned Align, Instruction *InsertBefore = nullptr);
187  LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
188  unsigned Align, BasicBlock *InsertAtEnd);
189  LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
190  unsigned Align, AtomicOrdering Order,
192  Instruction *InsertBefore = nullptr);
193  LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
194  unsigned Align, AtomicOrdering Order, SyncScope::ID SSID,
195  BasicBlock *InsertAtEnd);
196 
197  // Deprecated [opaque pointer types]
198  explicit LoadInst(Value *Ptr, const Twine &NameStr = "",
199  Instruction *InsertBefore = nullptr)
200  : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
201  InsertBefore) {}
202  LoadInst(Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd)
203  : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
204  InsertAtEnd) {}
205  LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
206  Instruction *InsertBefore = nullptr)
207  : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
208  isVolatile, InsertBefore) {}
209  LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
210  BasicBlock *InsertAtEnd)
211  : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
212  isVolatile, InsertAtEnd) {}
213  LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align,
214  Instruction *InsertBefore = nullptr)
215  : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
216  isVolatile, Align, InsertBefore) {}
217  LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align,
218  BasicBlock *InsertAtEnd)
219  : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
220  isVolatile, Align, InsertAtEnd) {}
221  LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align,
223  Instruction *InsertBefore = nullptr)
224  : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
225  isVolatile, Align, Order, SSID, InsertBefore) {}
226  LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align,
227  AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd)
228  : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
229  isVolatile, Align, Order, SSID, InsertAtEnd) {}
230 
231  /// Return true if this is a load from a volatile memory location.
232  bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
233 
234  /// Specify whether this is a volatile load or not.
235  void setVolatile(bool V) {
236  setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
237  (V ? 1 : 0));
238  }
239 
240  /// Return the alignment of the access that is being performed.
241  unsigned getAlignment() const {
242  return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1;
243  }
244 
245  void setAlignment(unsigned Align);
246 
247  /// Returns the ordering constraint of this load instruction.
249  return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
250  }
251 
252  /// Sets the ordering constraint of this load instruction. May not be Release
253  /// or AcquireRelease.
254  void setOrdering(AtomicOrdering Ordering) {
255  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
256  ((unsigned)Ordering << 7));
257  }
258 
259  /// Returns the synchronization scope ID of this load instruction.
261  return SSID;
262  }
263 
264  /// Sets the synchronization scope ID of this load instruction.
266  this->SSID = SSID;
267  }
268 
269  /// Sets the ordering constraint and the synchronization scope ID of this load
270  /// instruction.
271  void setAtomic(AtomicOrdering Ordering,
273  setOrdering(Ordering);
274  setSyncScopeID(SSID);
275  }
276 
277  bool isSimple() const { return !isAtomic() && !isVolatile(); }
278 
279  bool isUnordered() const {
280  return (getOrdering() == AtomicOrdering::NotAtomic ||
281  getOrdering() == AtomicOrdering::Unordered) &&
282  !isVolatile();
283  }
284 
286  const Value *getPointerOperand() const { return getOperand(0); }
287  static unsigned getPointerOperandIndex() { return 0U; }
289 
290  /// Returns the address space of the pointer operand.
291  unsigned getPointerAddressSpace() const {
292  return getPointerOperandType()->getPointerAddressSpace();
293  }
294 
295  // Methods for support type inquiry through isa, cast, and dyn_cast:
296  static bool classof(const Instruction *I) {
297  return I->getOpcode() == Instruction::Load;
298  }
299  static bool classof(const Value *V) {
300  return isa<Instruction>(V) && classof(cast<Instruction>(V));
301  }
302 
303 private:
304  // Shadow Instruction::setInstructionSubclassData with a private forwarding
305  // method so that subclasses cannot accidentally use it.
306  void setInstructionSubclassData(unsigned short D) {
308  }
309 
310  /// The synchronization scope ID of this load instruction. Not quite enough
311  /// room in SubClassData for everything, so synchronization scope ID gets its
312  /// own field.
313  SyncScope::ID SSID;
314 };
315 
316 //===----------------------------------------------------------------------===//
317 // StoreInst Class
318 //===----------------------------------------------------------------------===//
319 
320 /// An instruction for storing to memory.
321 class StoreInst : public Instruction {
322  void AssertOK();
323 
324 protected:
325  // Note: Instruction needs to be a friend here to call cloneImpl.
326  friend class Instruction;
327 
328  StoreInst *cloneImpl() const;
329 
330 public:
331  StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
332  StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
333  StoreInst(Value *Val, Value *Ptr, bool isVolatile = false,
334  Instruction *InsertBefore = nullptr);
335  StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
336  StoreInst(Value *Val, Value *Ptr, bool isVolatile,
337  unsigned Align, Instruction *InsertBefore = nullptr);
338  StoreInst(Value *Val, Value *Ptr, bool isVolatile,
339  unsigned Align, BasicBlock *InsertAtEnd);
340  StoreInst(Value *Val, Value *Ptr, bool isVolatile,
341  unsigned Align, AtomicOrdering Order,
343  Instruction *InsertBefore = nullptr);
344  StoreInst(Value *Val, Value *Ptr, bool isVolatile,
345  unsigned Align, AtomicOrdering Order, SyncScope::ID SSID,
346  BasicBlock *InsertAtEnd);
347 
348  // allocate space for exactly two operands
349  void *operator new(size_t s) {
350  return User::operator new(s, 2);
351  }
352 
353  /// Return true if this is a store to a volatile memory location.
354  bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
355 
356  /// Specify whether this is a volatile store or not.
357  void setVolatile(bool V) {
358  setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
359  (V ? 1 : 0));
360  }
361 
362  /// Transparently provide more efficient getOperand methods.
364 
365  /// Return the alignment of the access that is being performed
366  unsigned getAlignment() const {
367  return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1;
368  }
369 
370  void setAlignment(unsigned Align);
371 
372  /// Returns the ordering constraint of this store instruction.
374  return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
375  }
376 
377  /// Sets the ordering constraint of this store instruction. May not be
378  /// Acquire or AcquireRelease.
379  void setOrdering(AtomicOrdering Ordering) {
380  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
381  ((unsigned)Ordering << 7));
382  }
383 
384  /// Returns the synchronization scope ID of this store instruction.
386  return SSID;
387  }
388 
389  /// Sets the synchronization scope ID of this store instruction.
391  this->SSID = SSID;
392  }
393 
394  /// Sets the ordering constraint and the synchronization scope ID of this
395  /// store instruction.
396  void setAtomic(AtomicOrdering Ordering,
398  setOrdering(Ordering);
399  setSyncScopeID(SSID);
400  }
401 
402  bool isSimple() const { return !isAtomic() && !isVolatile(); }
403 
404  bool isUnordered() const {
405  return (getOrdering() == AtomicOrdering::NotAtomic ||
406  getOrdering() == AtomicOrdering::Unordered) &&
407  !isVolatile();
408  }
409 
410  Value *getValueOperand() { return getOperand(0); }
411  const Value *getValueOperand() const { return getOperand(0); }
412 
414  const Value *getPointerOperand() const { return getOperand(1); }
415  static unsigned getPointerOperandIndex() { return 1U; }
417 
418  /// Returns the address space of the pointer operand.
419  unsigned getPointerAddressSpace() const {
420  return getPointerOperandType()->getPointerAddressSpace();
421  }
422 
423  // Methods for support type inquiry through isa, cast, and dyn_cast:
424  static bool classof(const Instruction *I) {
425  return I->getOpcode() == Instruction::Store;
426  }
427  static bool classof(const Value *V) {
428  return isa<Instruction>(V) && classof(cast<Instruction>(V));
429  }
430 
431 private:
432  // Shadow Instruction::setInstructionSubclassData with a private forwarding
433  // method so that subclasses cannot accidentally use it.
434  void setInstructionSubclassData(unsigned short D) {
436  }
437 
438  /// The synchronization scope ID of this store instruction. Not quite enough
439  /// room in SubClassData for everything, so synchronization scope ID gets its
440  /// own field.
441  SyncScope::ID SSID;
442 };
443 
444 template <>
445 struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
446 };
447 
449 
450 //===----------------------------------------------------------------------===//
451 // FenceInst Class
452 //===----------------------------------------------------------------------===//
453 
454 /// An instruction for ordering other memory operations.
455 class FenceInst : public Instruction {
456  void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
457 
458 protected:
459  // Note: Instruction needs to be a friend here to call cloneImpl.
460  friend class Instruction;
461 
462  FenceInst *cloneImpl() const;
463 
464 public:
465  // Ordering may only be Acquire, Release, AcquireRelease, or
466  // SequentiallyConsistent.
469  Instruction *InsertBefore = nullptr);
471  BasicBlock *InsertAtEnd);
472 
473  // allocate space for exactly zero operands
474  void *operator new(size_t s) {
475  return User::operator new(s, 0);
476  }
477 
478  /// Returns the ordering constraint of this fence instruction.
481  }
482 
483  /// Sets the ordering constraint of this fence instruction. May only be
484  /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
485  void setOrdering(AtomicOrdering Ordering) {
486  setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
487  ((unsigned)Ordering << 1));
488  }
489 
490  /// Returns the synchronization scope ID of this fence instruction.
492  return SSID;
493  }
494 
495  /// Sets the synchronization scope ID of this fence instruction.
497  this->SSID = SSID;
498  }
499 
500  // Methods for support type inquiry through isa, cast, and dyn_cast:
501  static bool classof(const Instruction *I) {
502  return I->getOpcode() == Instruction::Fence;
503  }
504  static bool classof(const Value *V) {
505  return isa<Instruction>(V) && classof(cast<Instruction>(V));
506  }
507 
508 private:
509  // Shadow Instruction::setInstructionSubclassData with a private forwarding
510  // method so that subclasses cannot accidentally use it.
511  void setInstructionSubclassData(unsigned short D) {
513  }
514 
515  /// The synchronization scope ID of this fence instruction. Not quite enough
516  /// room in SubClassData for everything, so synchronization scope ID gets its
517  /// own field.
518  SyncScope::ID SSID;
519 };
520 
521 //===----------------------------------------------------------------------===//
522 // AtomicCmpXchgInst Class
523 //===----------------------------------------------------------------------===//
524 
525 /// an instruction that atomically checks whether a
526 /// specified value is in a memory location, and, if it is, stores a new value
527 /// there. Returns the value that was loaded.
528 ///
530  void Init(Value *Ptr, Value *Cmp, Value *NewVal,
531  AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
532  SyncScope::ID SSID);
533 
534 protected:
535  // Note: Instruction needs to be a friend here to call cloneImpl.
536  friend class Instruction;
537 
538  AtomicCmpXchgInst *cloneImpl() const;
539 
540 public:
541  AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
542  AtomicOrdering SuccessOrdering,
543  AtomicOrdering FailureOrdering,
544  SyncScope::ID SSID, Instruction *InsertBefore = nullptr);
545  AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
546  AtomicOrdering SuccessOrdering,
547  AtomicOrdering FailureOrdering,
548  SyncScope::ID SSID, BasicBlock *InsertAtEnd);
549 
550  // allocate space for exactly three operands
551  void *operator new(size_t s) {
552  return User::operator new(s, 3);
553  }
554 
555  /// Return true if this is a cmpxchg from a volatile memory
556  /// location.
557  ///
558  bool isVolatile() const {
559  return getSubclassDataFromInstruction() & 1;
560  }
561 
562  /// Specify whether this is a volatile cmpxchg.
563  ///
564  void setVolatile(bool V) {
565  setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
566  (unsigned)V);
567  }
568 
569  /// Return true if this cmpxchg may spuriously fail.
570  bool isWeak() const {
571  return getSubclassDataFromInstruction() & 0x100;
572  }
573 
574  void setWeak(bool IsWeak) {
575  setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x100) |
576  (IsWeak << 8));
577  }
578 
579  /// Transparently provide more efficient getOperand methods.
581 
582  /// Returns the success ordering constraint of this cmpxchg instruction.
584  return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
585  }
586 
587  /// Sets the success ordering constraint of this cmpxchg instruction.
589  assert(Ordering != AtomicOrdering::NotAtomic &&
590  "CmpXchg instructions can only be atomic.");
591  setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x1c) |
592  ((unsigned)Ordering << 2));
593  }
594 
595  /// Returns the failure ordering constraint of this cmpxchg instruction.
597  return AtomicOrdering((getSubclassDataFromInstruction() >> 5) & 7);
598  }
599 
600  /// Sets the failure ordering constraint of this cmpxchg instruction.
602  assert(Ordering != AtomicOrdering::NotAtomic &&
603  "CmpXchg instructions can only be atomic.");
604  setInstructionSubclassData((getSubclassDataFromInstruction() & ~0xe0) |
605  ((unsigned)Ordering << 5));
606  }
607 
608  /// Returns the synchronization scope ID of this cmpxchg instruction.
610  return SSID;
611  }
612 
613  /// Sets the synchronization scope ID of this cmpxchg instruction.
615  this->SSID = SSID;
616  }
617 
619  const Value *getPointerOperand() const { return getOperand(0); }
620  static unsigned getPointerOperandIndex() { return 0U; }
621 
623  const Value *getCompareOperand() const { return getOperand(1); }
624 
626  const Value *getNewValOperand() const { return getOperand(2); }
627 
628  /// Returns the address space of the pointer operand.
629  unsigned getPointerAddressSpace() const {
631  }
632 
633  /// Returns the strongest permitted ordering on failure, given the
634  /// desired ordering on success.
635  ///
636  /// If the comparison in a cmpxchg operation fails, there is no atomic store
637  /// so release semantics cannot be provided. So this function drops explicit
638  /// Release requests from the AtomicOrdering. A SequentiallyConsistent
639  /// operation would remain SequentiallyConsistent.
640  static AtomicOrdering
642  switch (SuccessOrdering) {
643  default:
644  llvm_unreachable("invalid cmpxchg success ordering");
653  }
654  }
655 
656  // Methods for support type inquiry through isa, cast, and dyn_cast:
657  static bool classof(const Instruction *I) {
658  return I->getOpcode() == Instruction::AtomicCmpXchg;
659  }
660  static bool classof(const Value *V) {
661  return isa<Instruction>(V) && classof(cast<Instruction>(V));
662  }
663 
664 private:
665  // Shadow Instruction::setInstructionSubclassData with a private forwarding
666  // method so that subclasses cannot accidentally use it.
667  void setInstructionSubclassData(unsigned short D) {
669  }
670 
671  /// The synchronization scope ID of this cmpxchg instruction. Not quite
672  /// enough room in SubClassData for everything, so synchronization scope ID
673  /// gets its own field.
674  SyncScope::ID SSID;
675 };
676 
677 template <>
679  public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
680 };
681 
683 
684 //===----------------------------------------------------------------------===//
685 // AtomicRMWInst Class
686 //===----------------------------------------------------------------------===//
687 
688 /// an instruction that atomically reads a memory location,
689 /// combines it with another value, and then stores the result back. Returns
690 /// the old value.
691 ///
692 class AtomicRMWInst : public Instruction {
693 protected:
694  // Note: Instruction needs to be a friend here to call cloneImpl.
695  friend class Instruction;
696 
697  AtomicRMWInst *cloneImpl() const;
698 
699 public:
700  /// This enumeration lists the possible modifications atomicrmw can make. In
701  /// the descriptions, 'p' is the pointer to the instruction's memory location,
702  /// 'old' is the initial value of *p, and 'v' is the other value passed to the
703  /// instruction. These instructions always return 'old'.
704  enum BinOp {
705  /// *p = v
707  /// *p = old + v
709  /// *p = old - v
711  /// *p = old & v
713  /// *p = ~(old & v)
715  /// *p = old | v
716  Or,
717  /// *p = old ^ v
719  /// *p = old >signed v ? old : v
721  /// *p = old <signed v ? old : v
723  /// *p = old >unsigned v ? old : v
725  /// *p = old <unsigned v ? old : v
727 
728  FIRST_BINOP = Xchg,
729  LAST_BINOP = UMin,
730  BAD_BINOP
731  };
732 
734  AtomicOrdering Ordering, SyncScope::ID SSID,
735  Instruction *InsertBefore = nullptr);
737  AtomicOrdering Ordering, SyncScope::ID SSID,
738  BasicBlock *InsertAtEnd);
739 
740  // allocate space for exactly two operands
741  void *operator new(size_t s) {
742  return User::operator new(s, 2);
743  }
744 
745  BinOp getOperation() const {
746  return static_cast<BinOp>(getSubclassDataFromInstruction() >> 5);
747  }
748 
749  static StringRef getOperationName(BinOp Op);
750 
752  unsigned short SubclassData = getSubclassDataFromInstruction();
753  setInstructionSubclassData((SubclassData & 31) |
754  (Operation << 5));
755  }
756 
757  /// Return true if this is a RMW on a volatile memory location.
758  ///
759  bool isVolatile() const {
760  return getSubclassDataFromInstruction() & 1;
761  }
762 
763  /// Specify whether this is a volatile RMW or not.
764  ///
765  void setVolatile(bool V) {
766  setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
767  (unsigned)V);
768  }
769 
770  /// Transparently provide more efficient getOperand methods.
772 
773  /// Returns the ordering constraint of this rmw instruction.
775  return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
776  }
777 
778  /// Sets the ordering constraint of this rmw instruction.
779  void setOrdering(AtomicOrdering Ordering) {
780  assert(Ordering != AtomicOrdering::NotAtomic &&
781  "atomicrmw instructions can only be atomic.");
782  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 2)) |
783  ((unsigned)Ordering << 2));
784  }
785 
786  /// Returns the synchronization scope ID of this rmw instruction.
788  return SSID;
789  }
790 
791  /// Sets the synchronization scope ID of this rmw instruction.
793  this->SSID = SSID;
794  }
795 
797  const Value *getPointerOperand() const { return getOperand(0); }
798  static unsigned getPointerOperandIndex() { return 0U; }
799 
800  Value *getValOperand() { return getOperand(1); }
801  const Value *getValOperand() const { return getOperand(1); }
802 
803  /// Returns the address space of the pointer operand.
804  unsigned getPointerAddressSpace() const {
806  }
807 
808  // Methods for support type inquiry through isa, cast, and dyn_cast:
809  static bool classof(const Instruction *I) {
810  return I->getOpcode() == Instruction::AtomicRMW;
811  }
812  static bool classof(const Value *V) {
813  return isa<Instruction>(V) && classof(cast<Instruction>(V));
814  }
815 
816 private:
817  void Init(BinOp Operation, Value *Ptr, Value *Val,
818  AtomicOrdering Ordering, SyncScope::ID SSID);
819 
820  // Shadow Instruction::setInstructionSubclassData with a private forwarding
821  // method so that subclasses cannot accidentally use it.
822  void setInstructionSubclassData(unsigned short D) {
824  }
825 
826  /// The synchronization scope ID of this rmw instruction. Not quite enough
827  /// room in SubClassData for everything, so synchronization scope ID gets its
828  /// own field.
829  SyncScope::ID SSID;
830 };
831 
832 template <>
834  : public FixedNumOperandTraits<AtomicRMWInst,2> {
835 };
836 
838 
839 //===----------------------------------------------------------------------===//
840 // GetElementPtrInst Class
841 //===----------------------------------------------------------------------===//
842 
843 // checkGEPType - Simple wrapper function to give a better assertion failure
844 // message on bad indexes for a gep instruction.
845 //
847  assert(Ty && "Invalid GetElementPtrInst indices for type!");
848  return Ty;
849 }
850 
851 /// an instruction for type-safe pointer arithmetic to
852 /// access elements of arrays and structs
853 ///
855  Type *SourceElementType;
856  Type *ResultElementType;
857 
859 
860  /// Constructors - Create a getelementptr instruction with a base pointer an
861  /// list of indices. The first ctor can optionally insert before an existing
862  /// instruction, the second appends the new instruction to the specified
863  /// BasicBlock.
864  inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
865  ArrayRef<Value *> IdxList, unsigned Values,
866  const Twine &NameStr, Instruction *InsertBefore);
867  inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
868  ArrayRef<Value *> IdxList, unsigned Values,
869  const Twine &NameStr, BasicBlock *InsertAtEnd);
870 
871  void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
872 
873 protected:
874  // Note: Instruction needs to be a friend here to call cloneImpl.
875  friend class Instruction;
876 
877  GetElementPtrInst *cloneImpl() const;
878 
879 public:
880  static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
881  ArrayRef<Value *> IdxList,
882  const Twine &NameStr = "",
883  Instruction *InsertBefore = nullptr) {
884  unsigned Values = 1 + unsigned(IdxList.size());
885  if (!PointeeType)
886  PointeeType =
887  cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
888  else
889  assert(
890  PointeeType ==
891  cast<PointerType>(Ptr->getType()->getScalarType())->getElementType());
892  return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
893  NameStr, InsertBefore);
894  }
895 
896  static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
897  ArrayRef<Value *> IdxList,
898  const Twine &NameStr,
899  BasicBlock *InsertAtEnd) {
900  unsigned Values = 1 + unsigned(IdxList.size());
901  if (!PointeeType)
902  PointeeType =
903  cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
904  else
905  assert(
906  PointeeType ==
907  cast<PointerType>(Ptr->getType()->getScalarType())->getElementType());
908  return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
909  NameStr, InsertAtEnd);
910  }
911 
912  /// Create an "inbounds" getelementptr. See the documentation for the
913  /// "inbounds" flag in LangRef.html for details.
915  ArrayRef<Value *> IdxList,
916  const Twine &NameStr = "",
917  Instruction *InsertBefore = nullptr){
918  return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore);
919  }
920 
921  static GetElementPtrInst *
922  CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
923  const Twine &NameStr = "",
924  Instruction *InsertBefore = nullptr) {
926  Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
927  GEP->setIsInBounds(true);
928  return GEP;
929  }
930 
932  ArrayRef<Value *> IdxList,
933  const Twine &NameStr,
934  BasicBlock *InsertAtEnd) {
935  return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd);
936  }
937 
938  static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
939  ArrayRef<Value *> IdxList,
940  const Twine &NameStr,
941  BasicBlock *InsertAtEnd) {
943  Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
944  GEP->setIsInBounds(true);
945  return GEP;
946  }
947 
948  /// Transparently provide more efficient getOperand methods.
950 
951  Type *getSourceElementType() const { return SourceElementType; }
952 
953  void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
954  void setResultElementType(Type *Ty) { ResultElementType = Ty; }
955 
957  assert(ResultElementType ==
958  cast<PointerType>(getType()->getScalarType())->getElementType());
959  return ResultElementType;
960  }
961 
962  /// Returns the address space of this instruction's pointer type.
963  unsigned getAddressSpace() const {
964  // Note that this is always the same as the pointer operand's address space
965  // and that is cheaper to compute, so cheat here.
966  return getPointerAddressSpace();
967  }
968 
969  /// Returns the type of the element that would be loaded with
970  /// a load instruction with the specified parameters.
971  ///
972  /// Null is returned if the indices are invalid for the specified
973  /// pointer type.
974  ///
975  static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
976  static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
977  static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
978 
979  inline op_iterator idx_begin() { return op_begin()+1; }
980  inline const_op_iterator idx_begin() const { return op_begin()+1; }
981  inline op_iterator idx_end() { return op_end(); }
982  inline const_op_iterator idx_end() const { return op_end(); }
983 
985  return make_range(idx_begin(), idx_end());
986  }
987 
989  return make_range(idx_begin(), idx_end());
990  }
991 
993  return getOperand(0);
994  }
995  const Value *getPointerOperand() const {
996  return getOperand(0);
997  }
998  static unsigned getPointerOperandIndex() {
999  return 0U; // get index for modifying correct operand.
1000  }
1001 
1002  /// Method to return the pointer operand as a
1003  /// PointerType.
1005  return getPointerOperand()->getType();
1006  }
1007 
1008  /// Returns the address space of the pointer operand.
1009  unsigned getPointerAddressSpace() const {
1010  return getPointerOperandType()->getPointerAddressSpace();
1011  }
1012 
1013  /// Returns the pointer type returned by the GEP
1014  /// instruction, which may be a vector of pointers.
1016  return getGEPReturnType(
1017  cast<PointerType>(Ptr->getType()->getScalarType())->getElementType(),
1018  Ptr, IdxList);
1019  }
1020  static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1021  ArrayRef<Value *> IdxList) {
1022  Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)),
1023  Ptr->getType()->getPointerAddressSpace());
1024  // Vector GEP
1025  if (Ptr->getType()->isVectorTy()) {
1026  unsigned NumElem = Ptr->getType()->getVectorNumElements();
1027  return VectorType::get(PtrTy, NumElem);
1028  }
1029  for (Value *Index : IdxList)
1030  if (Index->getType()->isVectorTy()) {
1031  unsigned NumElem = Index->getType()->getVectorNumElements();
1032  return VectorType::get(PtrTy, NumElem);
1033  }
1034  // Scalar GEP
1035  return PtrTy;
1036  }
1037 
1038  unsigned getNumIndices() const { // Note: always non-negative
1039  return getNumOperands() - 1;
1040  }
1041 
1042  bool hasIndices() const {
1043  return getNumOperands() > 1;
1044  }
1045 
1046  /// Return true if all of the indices of this GEP are
1047  /// zeros. If so, the result pointer and the first operand have the same
1048  /// value, just potentially different types.
1049  bool hasAllZeroIndices() const;
1050 
1051  /// Return true if all of the indices of this GEP are
1052  /// constant integers. If so, the result pointer and the first operand have
1053  /// a constant offset between them.
1054  bool hasAllConstantIndices() const;
1055 
1056  /// Set or clear the inbounds flag on this GEP instruction.
1057  /// See LangRef.html for the meaning of inbounds on a getelementptr.
1058  void setIsInBounds(bool b = true);
1059 
1060  /// Determine whether the GEP has the inbounds flag.
1061  bool isInBounds() const;
1062 
1063  /// Accumulate the constant address offset of this GEP if possible.
1064  ///
1065  /// This routine accepts an APInt into which it will accumulate the constant
1066  /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1067  /// all-constant, it returns false and the value of the offset APInt is
1068  /// undefined (it is *not* preserved!). The APInt passed into this routine
1069  /// must be at least as wide as the IntPtr type for the address space of
1070  /// the base GEP pointer.
1071  bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1072 
1073  // Methods for support type inquiry through isa, cast, and dyn_cast:
1074  static bool classof(const Instruction *I) {
1075  return (I->getOpcode() == Instruction::GetElementPtr);
1076  }
1077  static bool classof(const Value *V) {
1078  return isa<Instruction>(V) && classof(cast<Instruction>(V));
1079  }
1080 };
1081 
1082 template <>
1084  public VariadicOperandTraits<GetElementPtrInst, 1> {
1085 };
1086 
1087 GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1088  ArrayRef<Value *> IdxList, unsigned Values,
1089  const Twine &NameStr,
1090  Instruction *InsertBefore)
1091  : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1093  Values, InsertBefore),
1094  SourceElementType(PointeeType),
1095  ResultElementType(getIndexedType(PointeeType, IdxList)) {
1096  assert(ResultElementType ==
1097  cast<PointerType>(getType()->getScalarType())->getElementType());
1098  init(Ptr, IdxList, NameStr);
1099 }
1100 
1101 GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1102  ArrayRef<Value *> IdxList, unsigned Values,
1103  const Twine &NameStr,
1104  BasicBlock *InsertAtEnd)
1105  : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1107  Values, InsertAtEnd),
1108  SourceElementType(PointeeType),
1109  ResultElementType(getIndexedType(PointeeType, IdxList)) {
1110  assert(ResultElementType ==
1111  cast<PointerType>(getType()->getScalarType())->getElementType());
1112  init(Ptr, IdxList, NameStr);
1113 }
1114 
1115 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)
1116 
1117 //===----------------------------------------------------------------------===//
1118 // UnaryOperator Class
1119 //===----------------------------------------------------------------------===//
1120 
1121 /// a unary instruction
1123  void AssertOK();
1124 
1125 protected:
1126  UnaryOperator(UnaryOps iType, Value *S, Type *Ty,
1127  const Twine &Name, Instruction *InsertBefore);
1128  UnaryOperator(UnaryOps iType, Value *S, Type *Ty,
1129  const Twine &Name, BasicBlock *InsertAtEnd);
1130 
1131  // Note: Instruction needs to be a friend here to call cloneImpl.
1132  friend class Instruction;
1133 
1134  UnaryOperator *cloneImpl() const;
1135 
1136 public:
1137 
1138  /// Construct a unary instruction, given the opcode and an operand.
1139  /// Optionally (if InstBefore is specified) insert the instruction
1140  /// into a BasicBlock right before the specified instruction. The specified
1141  /// Instruction is allowed to be a dereferenced end iterator.
1142  ///
1143  static UnaryOperator *Create(UnaryOps Op, Value *S,
1144  const Twine &Name = Twine(),
1145  Instruction *InsertBefore = nullptr);
1146 
1147  /// Construct a unary instruction, given the opcode and an operand.
1148  /// Also automatically insert this instruction to the end of the
1149  /// BasicBlock specified.
1150  ///
1151  static UnaryOperator *Create(UnaryOps Op, Value *S,
1152  const Twine &Name,
1153  BasicBlock *InsertAtEnd);
1154 
1155  /// These methods just forward to Create, and are useful when you
1156  /// statically know what type of instruction you're going to create. These
1157  /// helpers just save some typing.
1158 #define HANDLE_UNARY_INST(N, OPC, CLASS) \
1159  static UnaryInstruction *Create##OPC(Value *V, \
1160  const Twine &Name = "") {\
1161  return Create(Instruction::OPC, V, Name);\
1162  }
1163 #include "llvm/IR/Instruction.def"
1164 #define HANDLE_UNARY_INST(N, OPC, CLASS) \
1165  static UnaryInstruction *Create##OPC(Value *V, \
1166  const Twine &Name, BasicBlock *BB) {\
1167  return Create(Instruction::OPC, V, Name, BB);\
1168  }
1169 #include "llvm/IR/Instruction.def"
1170 #define HANDLE_UNARY_INST(N, OPC, CLASS) \
1171  static UnaryInstruction *Create##OPC(Value *V, \
1172  const Twine &Name, Instruction *I) {\
1173  return Create(Instruction::OPC, V, Name, I);\
1174  }
1175 #include "llvm/IR/Instruction.def"
1176 
1178  return static_cast<UnaryOps>(Instruction::getOpcode());
1179  }
1180 };
1181 
1182 //===----------------------------------------------------------------------===//
1183 // ICmpInst Class
1184 //===----------------------------------------------------------------------===//
1185 
1186 /// This instruction compares its operands according to the predicate given
1187 /// to the constructor. It only operates on integers or pointers. The operands
1188 /// must be identical types.
1189 /// Represent an integer comparison operator.
1190 class ICmpInst: public CmpInst {
1191  void AssertOK() {
1192  assert(isIntPredicate() &&
1193  "Invalid ICmp predicate value");
1194  assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1195  "Both operands to ICmp instruction are not of the same type!");
1196  // Check that the operands are the right type
1197  assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
1198  getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
1199  "Invalid operand types for ICmp instruction");
1200  }
1201 
1202 protected:
1203  // Note: Instruction needs to be a friend here to call cloneImpl.
1204  friend class Instruction;
1205 
1206  /// Clone an identical ICmpInst
1207  ICmpInst *cloneImpl() const;
1208 
1209 public:
1210  /// Constructor with insert-before-instruction semantics.
1212  Instruction *InsertBefore, ///< Where to insert
1213  Predicate pred, ///< The predicate to use for the comparison
1214  Value *LHS, ///< The left-hand-side of the expression
1215  Value *RHS, ///< The right-hand-side of the expression
1216  const Twine &NameStr = "" ///< Name of the instruction
1217  ) : CmpInst(makeCmpResultType(LHS->getType()),
1218  Instruction::ICmp, pred, LHS, RHS, NameStr,
1219  InsertBefore) {
1220 #ifndef NDEBUG
1221  AssertOK();
1222 #endif
1223  }
1224 
1225  /// Constructor with insert-at-end semantics.
1227  BasicBlock &InsertAtEnd, ///< Block to insert into.
1228  Predicate pred, ///< The predicate to use for the comparison
1229  Value *LHS, ///< The left-hand-side of the expression
1230  Value *RHS, ///< The right-hand-side of the expression
1231  const Twine &NameStr = "" ///< Name of the instruction
1232  ) : CmpInst(makeCmpResultType(LHS->getType()),
1233  Instruction::ICmp, pred, LHS, RHS, NameStr,
1234  &InsertAtEnd) {
1235 #ifndef NDEBUG
1236  AssertOK();
1237 #endif
1238  }
1239 
1240  /// Constructor with no-insertion semantics
1242  Predicate pred, ///< The predicate to use for the comparison
1243  Value *LHS, ///< The left-hand-side of the expression
1244  Value *RHS, ///< The right-hand-side of the expression
1245  const Twine &NameStr = "" ///< Name of the instruction
1246  ) : CmpInst(makeCmpResultType(LHS->getType()),
1247  Instruction::ICmp, pred, LHS, RHS, NameStr) {
1248 #ifndef NDEBUG
1249  AssertOK();
1250 #endif
1251  }
1252 
1253  /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1254  /// @returns the predicate that would be the result if the operand were
1255  /// regarded as signed.
1256  /// Return the signed version of the predicate
1258  return getSignedPredicate(getPredicate());
1259  }
1260 
1261  /// This is a static version that you can use without an instruction.
1262  /// Return the signed version of the predicate.
1263  static Predicate getSignedPredicate(Predicate pred);
1264 
1265  /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1266  /// @returns the predicate that would be the result if the operand were
1267  /// regarded as unsigned.
1268  /// Return the unsigned version of the predicate
1270  return getUnsignedPredicate(getPredicate());
1271  }
1272 
1273  /// This is a static version that you can use without an instruction.
1274  /// Return the unsigned version of the predicate.
1275  static Predicate getUnsignedPredicate(Predicate pred);
1276 
1277  /// Return true if this predicate is either EQ or NE. This also
1278  /// tests for commutativity.
1279  static bool isEquality(Predicate P) {
1280  return P == ICMP_EQ || P == ICMP_NE;
1281  }
1282 
1283  /// Return true if this predicate is either EQ or NE. This also
1284  /// tests for commutativity.
1285  bool isEquality() const {
1286  return isEquality(getPredicate());
1287  }
1288 
1289  /// @returns true if the predicate of this ICmpInst is commutative
1290  /// Determine if this relation is commutative.
1291  bool isCommutative() const { return isEquality(); }
1292 
1293  /// Return true if the predicate is relational (not EQ or NE).
1294  ///
1295  bool isRelational() const {
1296  return !isEquality();
1297  }
1298 
1299  /// Return true if the predicate is relational (not EQ or NE).
1300  ///
1301  static bool isRelational(Predicate P) {
1302  return !isEquality(P);
1303  }
1304 
1305  /// Exchange the two operands to this instruction in such a way that it does
1306  /// not modify the semantics of the instruction. The predicate value may be
1307  /// changed to retain the same result if the predicate is order dependent
1308  /// (e.g. ult).
1309  /// Swap operands and adjust predicate.
1310  void swapOperands() {
1311  setPredicate(getSwappedPredicate());
1312  Op<0>().swap(Op<1>());
1313  }
1314 
1315  // Methods for support type inquiry through isa, cast, and dyn_cast:
1316  static bool classof(const Instruction *I) {
1317  return I->getOpcode() == Instruction::ICmp;
1318  }
1319  static bool classof(const Value *V) {
1320  return isa<Instruction>(V) && classof(cast<Instruction>(V));
1321  }
1322 };
1323 
1324 //===----------------------------------------------------------------------===//
1325 // FCmpInst Class
1326 //===----------------------------------------------------------------------===//
1327 
1328 /// This instruction compares its operands according to the predicate given
1329 /// to the constructor. It only operates on floating point values or packed
1330 /// vectors of floating point values. The operands must be identical types.
1331 /// Represents a floating point comparison operator.
1332 class FCmpInst: public CmpInst {
1333  void AssertOK() {
1334  assert(isFPPredicate() && "Invalid FCmp predicate value");
1335  assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1336  "Both operands to FCmp instruction are not of the same type!");
1337  // Check that the operands are the right type
1338  assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
1339  "Invalid operand types for FCmp instruction");
1340  }
1341 
1342 protected:
1343  // Note: Instruction needs to be a friend here to call cloneImpl.
1344  friend class Instruction;
1345 
1346  /// Clone an identical FCmpInst
1347  FCmpInst *cloneImpl() const;
1348 
1349 public:
1350  /// Constructor with insert-before-instruction semantics.
1352  Instruction *InsertBefore, ///< Where to insert
1353  Predicate pred, ///< The predicate to use for the comparison
1354  Value *LHS, ///< The left-hand-side of the expression
1355  Value *RHS, ///< The right-hand-side of the expression
1356  const Twine &NameStr = "" ///< Name of the instruction
1357  ) : CmpInst(makeCmpResultType(LHS->getType()),
1358  Instruction::FCmp, pred, LHS, RHS, NameStr,
1359  InsertBefore) {
1360  AssertOK();
1361  }
1362 
1363  /// Constructor with insert-at-end semantics.
1365  BasicBlock &InsertAtEnd, ///< Block to insert into.
1366  Predicate pred, ///< The predicate to use for the comparison
1367  Value *LHS, ///< The left-hand-side of the expression
1368  Value *RHS, ///< The right-hand-side of the expression
1369  const Twine &NameStr = "" ///< Name of the instruction
1370  ) : CmpInst(makeCmpResultType(LHS->getType()),
1371  Instruction::FCmp, pred, LHS, RHS, NameStr,
1372  &InsertAtEnd) {
1373  AssertOK();
1374  }
1375 
1376  /// Constructor with no-insertion semantics
1378  Predicate Pred, ///< The predicate to use for the comparison
1379  Value *LHS, ///< The left-hand-side of the expression
1380  Value *RHS, ///< The right-hand-side of the expression
1381  const Twine &NameStr = "", ///< Name of the instruction
1382  Instruction *FlagsSource = nullptr
1383  ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1384  RHS, NameStr, nullptr, FlagsSource) {
1385  AssertOK();
1386  }
1387 
1388  /// @returns true if the predicate of this instruction is EQ or NE.
1389  /// Determine if this is an equality predicate.
1390  static bool isEquality(Predicate Pred) {
1391  return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1392  Pred == FCMP_UNE;
1393  }
1394 
1395  /// @returns true if the predicate of this instruction is EQ or NE.
1396  /// Determine if this is an equality predicate.
1397  bool isEquality() const { return isEquality(getPredicate()); }
1398 
1399  /// @returns true if the predicate of this instruction is commutative.
1400  /// Determine if this is a commutative predicate.
1401  bool isCommutative() const {
1402  return isEquality() ||
1403  getPredicate() == FCMP_FALSE ||
1404  getPredicate() == FCMP_TRUE ||
1405  getPredicate() == FCMP_ORD ||
1406  getPredicate() == FCMP_UNO;
1407  }
1408 
1409  /// @returns true if the predicate is relational (not EQ or NE).
1410  /// Determine if this a relational predicate.
1411  bool isRelational() const { return !isEquality(); }
1412 
1413  /// Exchange the two operands to this instruction in such a way that it does
1414  /// not modify the semantics of the instruction. The predicate value may be
1415  /// changed to retain the same result if the predicate is order dependent
1416  /// (e.g. ult).
1417  /// Swap operands and adjust predicate.
1418  void swapOperands() {
1419  setPredicate(getSwappedPredicate());
1420  Op<0>().swap(Op<1>());
1421  }
1422 
1423  /// Methods for support type inquiry through isa, cast, and dyn_cast:
1424  static bool classof(const Instruction *I) {
1425  return I->getOpcode() == Instruction::FCmp;
1426  }
1427  static bool classof(const Value *V) {
1428  return isa<Instruction>(V) && classof(cast<Instruction>(V));
1429  }
1430 };
1431 
1432 //===----------------------------------------------------------------------===//
1433 /// This class represents a function call, abstracting a target
1434 /// machine's calling convention. This class uses low bit of the SubClassData
1435 /// field to indicate whether or not this is a tail call. The rest of the bits
1436 /// hold the calling convention of the call.
1437 ///
1438 class CallInst : public CallBase {
1439  CallInst(const CallInst &CI);
1440 
1441  /// Construct a CallInst given a range of arguments.
1442  /// Construct a CallInst from a range of arguments
1443  inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1444  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1445  Instruction *InsertBefore);
1446 
1447  inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1448  const Twine &NameStr, Instruction *InsertBefore)
1449  : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1450 
1451  /// Construct a CallInst given a range of arguments.
1452  /// Construct a CallInst from a range of arguments
1453  inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1454  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1455  BasicBlock *InsertAtEnd);
1456 
1457  explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1458  Instruction *InsertBefore);
1459 
1460  CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1461  BasicBlock *InsertAtEnd);
1462 
1463  void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1464  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1465  void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1466 
1467  /// Compute the number of operands to allocate.
1468  static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1469  // We need one operand for the called function, plus the input operand
1470  // counts provided.
1471  return 1 + NumArgs + NumBundleInputs;
1472  }
1473 
1474 protected:
1475  // Note: Instruction needs to be a friend here to call cloneImpl.
1476  friend class Instruction;
1477 
1478  CallInst *cloneImpl() const;
1479 
1480 public:
1481  static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1482  Instruction *InsertBefore = nullptr) {
1483  return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1484  }
1485 
1487  const Twine &NameStr,
1488  Instruction *InsertBefore = nullptr) {
1489  return new (ComputeNumOperands(Args.size()))
1490  CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1491  }
1492 
1494  ArrayRef<OperandBundleDef> Bundles = None,
1495  const Twine &NameStr = "",
1496  Instruction *InsertBefore = nullptr) {
1497  const int NumOperands =
1498  ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1499  const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1500 
1501  return new (NumOperands, DescriptorBytes)
1502  CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1503  }
1504 
1505  static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1506  BasicBlock *InsertAtEnd) {
1507  return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1508  }
1509 
1511  const Twine &NameStr, BasicBlock *InsertAtEnd) {
1512  return new (ComputeNumOperands(Args.size()))
1513  CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1514  }
1515 
1518  const Twine &NameStr, BasicBlock *InsertAtEnd) {
1519  const int NumOperands =
1520  ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1521  const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1522 
1523  return new (NumOperands, DescriptorBytes)
1524  CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1525  }
1526 
1527  static CallInst *Create(Function *Func, const Twine &NameStr = "",
1528  Instruction *InsertBefore = nullptr) {
1529  return Create(Func->getFunctionType(), Func, NameStr, InsertBefore);
1530  }
1531 
1533  const Twine &NameStr = "",
1534  Instruction *InsertBefore = nullptr) {
1535  return Create(Func->getFunctionType(), Func, Args, NameStr, InsertBefore);
1536  }
1537 
1538  static CallInst *Create(Function *Func, const Twine &NameStr,
1539  BasicBlock *InsertAtEnd) {
1540  return Create(Func->getFunctionType(), Func, NameStr, InsertAtEnd);
1541  }
1542 
1544  const Twine &NameStr, BasicBlock *InsertAtEnd) {
1545  return Create(Func->getFunctionType(), Func, Args, NameStr, InsertAtEnd);
1546  }
1547 
1548  // Deprecated [opaque pointer types]
1549  static CallInst *Create(Value *Func, const Twine &NameStr = "",
1550  Instruction *InsertBefore = nullptr) {
1551  return Create(cast<FunctionType>(
1552  cast<PointerType>(Func->getType())->getElementType()),
1553  Func, NameStr, InsertBefore);
1554  }
1555 
1556  // Deprecated [opaque pointer types]
1558  const Twine &NameStr,
1559  Instruction *InsertBefore = nullptr) {
1560  return Create(cast<FunctionType>(
1561  cast<PointerType>(Func->getType())->getElementType()),
1562  Func, Args, NameStr, InsertBefore);
1563  }
1564 
1565  // Deprecated [opaque pointer types]
1567  ArrayRef<OperandBundleDef> Bundles = None,
1568  const Twine &NameStr = "",
1569  Instruction *InsertBefore = nullptr) {
1570  return Create(cast<FunctionType>(
1571  cast<PointerType>(Func->getType())->getElementType()),
1572  Func, Args, Bundles, NameStr, InsertBefore);
1573  }
1574 
1575  // Deprecated [opaque pointer types]
1576  static CallInst *Create(Value *Func, const Twine &NameStr,
1577  BasicBlock *InsertAtEnd) {
1578  return Create(cast<FunctionType>(
1579  cast<PointerType>(Func->getType())->getElementType()),
1580  Func, NameStr, InsertAtEnd);
1581  }
1582 
1583  // Deprecated [opaque pointer types]
1585  const Twine &NameStr, BasicBlock *InsertAtEnd) {
1586  return Create(cast<FunctionType>(
1587  cast<PointerType>(Func->getType())->getElementType()),
1588  Func, Args, NameStr, InsertAtEnd);
1589  }
1590 
1591  // Deprecated [opaque pointer types]
1594  const Twine &NameStr, BasicBlock *InsertAtEnd) {
1595  return Create(cast<FunctionType>(
1596  cast<PointerType>(Func->getType())->getElementType()),
1597  Func, Args, Bundles, NameStr, InsertAtEnd);
1598  }
1599 
1600  /// Create a clone of \p CI with a different set of operand bundles and
1601  /// insert it before \p InsertPt.
1602  ///
1603  /// The returned call instruction is identical \p CI in every way except that
1604  /// the operand bundles for the new instruction are set to the operand bundles
1605  /// in \p Bundles.
1606  static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1607  Instruction *InsertPt = nullptr);
1608 
1609  /// Generate the IR for a call to malloc:
1610  /// 1. Compute the malloc call's argument as the specified type's size,
1611  /// possibly multiplied by the array size if the array size is not
1612  /// constant 1.
1613  /// 2. Call malloc with that argument.
1614  /// 3. Bitcast the result of the malloc call to the specified type.
1615  static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1616  Type *AllocTy, Value *AllocSize,
1617  Value *ArraySize = nullptr,
1618  Function *MallocF = nullptr,
1619  const Twine &Name = "");
1620  static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1621  Type *AllocTy, Value *AllocSize,
1622  Value *ArraySize = nullptr,
1623  Function *MallocF = nullptr,
1624  const Twine &Name = "");
1625  static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1626  Type *AllocTy, Value *AllocSize,
1627  Value *ArraySize = nullptr,
1628  ArrayRef<OperandBundleDef> Bundles = None,
1629  Function *MallocF = nullptr,
1630  const Twine &Name = "");
1631  static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1632  Type *AllocTy, Value *AllocSize,
1633  Value *ArraySize = nullptr,
1634  ArrayRef<OperandBundleDef> Bundles = None,
1635  Function *MallocF = nullptr,
1636  const Twine &Name = "");
1637  /// Generate the IR for a call to the builtin free function.
1638  static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1639  static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1640  static Instruction *CreateFree(Value *Source,
1642  Instruction *InsertBefore);
1643  static Instruction *CreateFree(Value *Source,
1645  BasicBlock *InsertAtEnd);
1646 
1647  // Note that 'musttail' implies 'tail'.
1649  TCK_None = 0,
1650  TCK_Tail = 1,
1651  TCK_MustTail = 2,
1652  TCK_NoTail = 3
1653  };
1656  }
1657 
1658  bool isTailCall() const {
1659  unsigned Kind = getSubclassDataFromInstruction() & 3;
1660  return Kind == TCK_Tail || Kind == TCK_MustTail;
1661  }
1662 
1663  bool isMustTailCall() const {
1664  return (getSubclassDataFromInstruction() & 3) == TCK_MustTail;
1665  }
1666 
1667  bool isNoTailCall() const {
1668  return (getSubclassDataFromInstruction() & 3) == TCK_NoTail;
1669  }
1670 
1671  void setTailCall(bool isTC = true) {
1672  setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1673  unsigned(isTC ? TCK_Tail : TCK_None));
1674  }
1675 
1677  setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1678  unsigned(TCK));
1679  }
1680 
1681  /// Return true if the call can return twice
1682  bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1684  addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
1685  }
1686 
1687  /// Check if this call is an inline asm statement.
1688  bool isInlineAsm() const { return isa<InlineAsm>(getCalledOperand()); }
1689 
1690  // Methods for support type inquiry through isa, cast, and dyn_cast:
1691  static bool classof(const Instruction *I) {
1692  return I->getOpcode() == Instruction::Call;
1693  }
1694  static bool classof(const Value *V) {
1695  return isa<Instruction>(V) && classof(cast<Instruction>(V));
1696  }
1697 
1698 private:
1699  // Shadow Instruction::setInstructionSubclassData with a private forwarding
1700  // method so that subclasses cannot accidentally use it.
1701  void setInstructionSubclassData(unsigned short D) {
1703  }
1704 };
1705 
1706 CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1707  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1708  BasicBlock *InsertAtEnd)
1711  (Args.size() + CountBundleInputs(Bundles) + 1),
1712  unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1713  InsertAtEnd) {
1714  init(Ty, Func, Args, Bundles, NameStr);
1715 }
1716 
1717 CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1718  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1719  Instruction *InsertBefore)
1722  (Args.size() + CountBundleInputs(Bundles) + 1),
1723  unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1724  InsertBefore) {
1725  init(Ty, Func, Args, Bundles, NameStr);
1726 }
1727 
1728 //===----------------------------------------------------------------------===//
1729 // SelectInst Class
1730 //===----------------------------------------------------------------------===//
1731 
1732 /// This class represents the LLVM 'select' instruction.
1733 ///
1734 class SelectInst : public Instruction {
1735  SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1736  Instruction *InsertBefore)
1738  &Op<0>(), 3, InsertBefore) {
1739  init(C, S1, S2);
1740  setName(NameStr);
1741  }
1742 
1743  SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1744  BasicBlock *InsertAtEnd)
1746  &Op<0>(), 3, InsertAtEnd) {
1747  init(C, S1, S2);
1748  setName(NameStr);
1749  }
1750 
1751  void init(Value *C, Value *S1, Value *S2) {
1752  assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select");
1753  Op<0>() = C;
1754  Op<1>() = S1;
1755  Op<2>() = S2;
1756  }
1757 
1758 protected:
1759  // Note: Instruction needs to be a friend here to call cloneImpl.
1760  friend class Instruction;
1761 
1762  SelectInst *cloneImpl() const;
1763 
1764 public:
1765  static SelectInst *Create(Value *C, Value *S1, Value *S2,
1766  const Twine &NameStr = "",
1767  Instruction *InsertBefore = nullptr,
1768  Instruction *MDFrom = nullptr) {
1769  SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1770  if (MDFrom)
1771  Sel->copyMetadata(*MDFrom);
1772  return Sel;
1773  }
1774 
1775  static SelectInst *Create(Value *C, Value *S1, Value *S2,
1776  const Twine &NameStr,
1777  BasicBlock *InsertAtEnd) {
1778  return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1779  }
1780 
1781  const Value *getCondition() const { return Op<0>(); }
1782  const Value *getTrueValue() const { return Op<1>(); }
1783  const Value *getFalseValue() const { return Op<2>(); }
1784  Value *getCondition() { return Op<0>(); }
1785  Value *getTrueValue() { return Op<1>(); }
1786  Value *getFalseValue() { return Op<2>(); }
1787 
1788  void setCondition(Value *V) { Op<0>() = V; }
1789  void setTrueValue(Value *V) { Op<1>() = V; }
1790  void setFalseValue(Value *V) { Op<2>() = V; }
1791 
1792  /// Return a string if the specified operands are invalid
1793  /// for a select operation, otherwise return null.
1794  static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1795 
1796  /// Transparently provide more efficient getOperand methods.
1798 
1800  return static_cast<OtherOps>(Instruction::getOpcode());
1801  }
1802 
1803  // Methods for support type inquiry through isa, cast, and dyn_cast:
1804  static bool classof(const Instruction *I) {
1805  return I->getOpcode() == Instruction::Select;
1806  }
1807  static bool classof(const Value *V) {
1808  return isa<Instruction>(V) && classof(cast<Instruction>(V));
1809  }
1810 };
1811 
1812 template <>
1813 struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1814 };
1815 
1817 
1818 //===----------------------------------------------------------------------===//
1819 // VAArgInst Class
1820 //===----------------------------------------------------------------------===//
1821 
1822 /// This class represents the va_arg llvm instruction, which returns
1823 /// an argument of the specified type given a va_list and increments that list
1824 ///
1825 class VAArgInst : public UnaryInstruction {
1826 protected:
1827  // Note: Instruction needs to be a friend here to call cloneImpl.
1828  friend class Instruction;
1829 
1830  VAArgInst *cloneImpl() const;
1831 
1832 public:
1833  VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1834  Instruction *InsertBefore = nullptr)
1835  : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1836  setName(NameStr);
1837  }
1838 
1839  VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1840  BasicBlock *InsertAtEnd)
1841  : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1842  setName(NameStr);
1843  }
1844 
1846  const Value *getPointerOperand() const { return getOperand(0); }
1847  static unsigned getPointerOperandIndex() { return 0U; }
1848 
1849  // Methods for support type inquiry through isa, cast, and dyn_cast:
1850  static bool classof(const Instruction *I) {
1851  return I->getOpcode() == VAArg;
1852  }
1853  static bool classof(const Value *V) {
1854  return isa<Instruction>(V) && classof(cast<Instruction>(V));
1855  }
1856 };
1857 
1858 //===----------------------------------------------------------------------===//
1859 // ExtractElementInst Class
1860 //===----------------------------------------------------------------------===//
1861 
1862 /// This instruction extracts a single (scalar)
1863 /// element from a VectorType value
1864 ///
1866  ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1867  Instruction *InsertBefore = nullptr);
1868  ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1869  BasicBlock *InsertAtEnd);
1870 
1871 protected:
1872  // Note: Instruction needs to be a friend here to call cloneImpl.
1873  friend class Instruction;
1874 
1875  ExtractElementInst *cloneImpl() const;
1876 
1877 public:
1878  static ExtractElementInst *Create(Value *Vec, Value *Idx,
1879  const Twine &NameStr = "",
1880  Instruction *InsertBefore = nullptr) {
1881  return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1882  }
1883 
1884  static ExtractElementInst *Create(Value *Vec, Value *Idx,
1885  const Twine &NameStr,
1886  BasicBlock *InsertAtEnd) {
1887  return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1888  }
1889 
1890  /// Return true if an extractelement instruction can be
1891  /// formed with the specified operands.
1892  static bool isValidOperands(const Value *Vec, const Value *Idx);
1893 
1894  Value *getVectorOperand() { return Op<0>(); }
1895  Value *getIndexOperand() { return Op<1>(); }
1896  const Value *getVectorOperand() const { return Op<0>(); }
1897  const Value *getIndexOperand() const { return Op<1>(); }
1898 
1900  return cast<VectorType>(getVectorOperand()->getType());
1901  }
1902 
1903  /// Transparently provide more efficient getOperand methods.
1905 
1906  // Methods for support type inquiry through isa, cast, and dyn_cast:
1907  static bool classof(const Instruction *I) {
1908  return I->getOpcode() == Instruction::ExtractElement;
1909  }
1910  static bool classof(const Value *V) {
1911  return isa<Instruction>(V) && classof(cast<Instruction>(V));
1912  }
1913 };
1914 
1915 template <>
1917  public FixedNumOperandTraits<ExtractElementInst, 2> {
1918 };
1919 
1920 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)
1921 
1922 //===----------------------------------------------------------------------===//
1923 // InsertElementInst Class
1924 //===----------------------------------------------------------------------===//
1925 
1926 /// This instruction inserts a single (scalar)
1927 /// element into a VectorType value
1928 ///
1930  InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1931  const Twine &NameStr = "",
1932  Instruction *InsertBefore = nullptr);
1933  InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1934  BasicBlock *InsertAtEnd);
1935 
1936 protected:
1937  // Note: Instruction needs to be a friend here to call cloneImpl.
1938  friend class Instruction;
1939 
1940  InsertElementInst *cloneImpl() const;
1941 
1942 public:
1943  static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1944  const Twine &NameStr = "",
1945  Instruction *InsertBefore = nullptr) {
1946  return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1947  }
1948 
1949  static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1950  const Twine &NameStr,
1951  BasicBlock *InsertAtEnd) {
1952  return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1953  }
1954 
1955  /// Return true if an insertelement instruction can be
1956  /// formed with the specified operands.
1957  static bool isValidOperands(const Value *Vec, const Value *NewElt,
1958  const Value *Idx);
1959 
1960  /// Overload to return most specific vector type.
1961  ///
1962  VectorType *getType() const {
1963  return cast<VectorType>(Instruction::getType());
1964  }
1965 
1966  /// Transparently provide more efficient getOperand methods.
1968 
1969  // Methods for support type inquiry through isa, cast, and dyn_cast:
1970  static bool classof(const Instruction *I) {
1971  return I->getOpcode() == Instruction::InsertElement;
1972  }
1973  static bool classof(const Value *V) {
1974  return isa<Instruction>(V) && classof(cast<Instruction>(V));
1975  }
1976 };
1977 
1978 template <>
1980  public FixedNumOperandTraits<InsertElementInst, 3> {
1981 };
1982 
1983 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)
1984 
1985 //===----------------------------------------------------------------------===//
1986 // ShuffleVectorInst Class
1987 //===----------------------------------------------------------------------===//
1988 
1989 /// This instruction constructs a fixed permutation of two
1990 /// input vectors.
1991 ///
1993 protected:
1994  // Note: Instruction needs to be a friend here to call cloneImpl.
1995  friend class Instruction;
1996 
1997  ShuffleVectorInst *cloneImpl() const;
1998 
1999 public:
2001  const Twine &NameStr = "",
2002  Instruction *InsertBefor = nullptr);
2004  const Twine &NameStr, BasicBlock *InsertAtEnd);
2005 
2006  // allocate space for exactly three operands
2007  void *operator new(size_t s) {
2008  return User::operator new(s, 3);
2009  }
2010 
2011  /// Return true if a shufflevector instruction can be
2012  /// formed with the specified operands.
2013  static bool isValidOperands(const Value *V1, const Value *V2,
2014  const Value *Mask);
2015 
2016  /// Overload to return most specific vector type.
2017  ///
2018  VectorType *getType() const {
2019  return cast<VectorType>(Instruction::getType());
2020  }
2021 
2022  /// Transparently provide more efficient getOperand methods.
2024 
2025  Constant *getMask() const {
2026  return cast<Constant>(getOperand(2));
2027  }
2028 
2029  /// Return the shuffle mask value for the specified element of the mask.
2030  /// Return -1 if the element is undef.
2031  static int getMaskValue(const Constant *Mask, unsigned Elt);
2032 
2033  /// Return the shuffle mask value of this instruction for the given element
2034  /// index. Return -1 if the element is undef.
2035  int getMaskValue(unsigned Elt) const {
2036  return getMaskValue(getMask(), Elt);
2037  }
2038 
2039  /// Convert the input shuffle mask operand to a vector of integers. Undefined
2040  /// elements of the mask are returned as -1.
2041  static void getShuffleMask(const Constant *Mask,
2042  SmallVectorImpl<int> &Result);
2043 
2044  /// Return the mask for this instruction as a vector of integers. Undefined
2045  /// elements of the mask are returned as -1.
2046  void getShuffleMask(SmallVectorImpl<int> &Result) const {
2047  return getShuffleMask(getMask(), Result);
2048  }
2049 
2052  getShuffleMask(Mask);
2053  return Mask;
2054  }
2055 
2056  /// Return true if this shuffle returns a vector with a different number of
2057  /// elements than its source vectors.
2058  /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2059  /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2060  bool changesLength() const {
2061  unsigned NumSourceElts = Op<0>()->getType()->getVectorNumElements();
2062  unsigned NumMaskElts = getMask()->getType()->getVectorNumElements();
2063  return NumSourceElts != NumMaskElts;
2064  }
2065 
2066  /// Return true if this shuffle returns a vector with a greater number of
2067  /// elements than its source vectors.
2068  /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2069  bool increasesLength() const {
2070  unsigned NumSourceElts = Op<0>()->getType()->getVectorNumElements();
2071  unsigned NumMaskElts = getMask()->getType()->getVectorNumElements();
2072  return NumSourceElts < NumMaskElts;
2073  }
2074 
2075  /// Return true if this shuffle mask chooses elements from exactly one source
2076  /// vector.
2077  /// Example: <7,5,undef,7>
2078  /// This assumes that vector operands are the same length as the mask.
2079  static bool isSingleSourceMask(ArrayRef<int> Mask);
2080  static bool isSingleSourceMask(const Constant *Mask) {
2081  assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2082  SmallVector<int, 16> MaskAsInts;
2083  getShuffleMask(Mask, MaskAsInts);
2084  return isSingleSourceMask(MaskAsInts);
2085  }
2086 
2087  /// Return true if this shuffle chooses elements from exactly one source
2088  /// vector without changing the length of that vector.
2089  /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2090  /// TODO: Optionally allow length-changing shuffles.
2091  bool isSingleSource() const {
2092  return !changesLength() && isSingleSourceMask(getMask());
2093  }
2094 
2095  /// Return true if this shuffle mask chooses elements from exactly one source
2096  /// vector without lane crossings. A shuffle using this mask is not
2097  /// necessarily a no-op because it may change the number of elements from its
2098  /// input vectors or it may provide demanded bits knowledge via undef lanes.
2099  /// Example: <undef,undef,2,3>
2100  static bool isIdentityMask(ArrayRef<int> Mask);
2101  static bool isIdentityMask(const Constant *Mask) {
2102  assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2103  SmallVector<int, 16> MaskAsInts;
2104  getShuffleMask(Mask, MaskAsInts);
2105  return isIdentityMask(MaskAsInts);
2106  }
2107 
2108  /// Return true if this shuffle chooses elements from exactly one source
2109  /// vector without lane crossings and does not change the number of elements
2110  /// from its input vectors.
2111  /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2112  bool isIdentity() const {
2113  return !changesLength() && isIdentityMask(getShuffleMask());
2114  }
2115 
2116  /// Return true if this shuffle lengthens exactly one source vector with
2117  /// undefs in the high elements.
2118  bool isIdentityWithPadding() const;
2119 
2120  /// Return true if this shuffle extracts the first N elements of exactly one
2121  /// source vector.
2122  bool isIdentityWithExtract() const;
2123 
2124  /// Return true if this shuffle concatenates its 2 source vectors. This
2125  /// returns false if either input is undefined. In that case, the shuffle is
2126  /// is better classified as an identity with padding operation.
2127  bool isConcat() const;
2128 
2129  /// Return true if this shuffle mask chooses elements from its source vectors
2130  /// without lane crossings. A shuffle using this mask would be
2131  /// equivalent to a vector select with a constant condition operand.
2132  /// Example: <4,1,6,undef>
2133  /// This returns false if the mask does not choose from both input vectors.
2134  /// In that case, the shuffle is better classified as an identity shuffle.
2135  /// This assumes that vector operands are the same length as the mask
2136  /// (a length-changing shuffle can never be equivalent to a vector select).
2137  static bool isSelectMask(ArrayRef<int> Mask);
2138  static bool isSelectMask(const Constant *Mask) {
2139  assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2140  SmallVector<int, 16> MaskAsInts;
2141  getShuffleMask(Mask, MaskAsInts);
2142  return isSelectMask(MaskAsInts);
2143  }
2144 
2145  /// Return true if this shuffle chooses elements from its source vectors
2146  /// without lane crossings and all operands have the same number of elements.
2147  /// In other words, this shuffle is equivalent to a vector select with a
2148  /// constant condition operand.
2149  /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2150  /// This returns false if the mask does not choose from both input vectors.
2151  /// In that case, the shuffle is better classified as an identity shuffle.
2152  /// TODO: Optionally allow length-changing shuffles.
2153  bool isSelect() const {
2154  return !changesLength() && isSelectMask(getMask());
2155  }
2156 
2157  /// Return true if this shuffle mask swaps the order of elements from exactly
2158  /// one source vector.
2159  /// Example: <7,6,undef,4>
2160  /// This assumes that vector operands are the same length as the mask.
2161  static bool isReverseMask(ArrayRef<int> Mask);
2162  static bool isReverseMask(const Constant *Mask) {
2163  assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2164  SmallVector<int, 16> MaskAsInts;
2165  getShuffleMask(Mask, MaskAsInts);
2166  return isReverseMask(MaskAsInts);
2167  }
2168 
2169  /// Return true if this shuffle swaps the order of elements from exactly
2170  /// one source vector.
2171  /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2172  /// TODO: Optionally allow length-changing shuffles.
2173  bool isReverse() const {
2174  return !changesLength() && isReverseMask(getMask());
2175  }
2176 
2177  /// Return true if this shuffle mask chooses all elements with the same value
2178  /// as the first element of exactly one source vector.
2179  /// Example: <4,undef,undef,4>
2180  /// This assumes that vector operands are the same length as the mask.
2181  static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2182  static bool isZeroEltSplatMask(const Constant *Mask) {
2183  assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2184  SmallVector<int, 16> MaskAsInts;
2185  getShuffleMask(Mask, MaskAsInts);
2186  return isZeroEltSplatMask(MaskAsInts);
2187  }
2188 
2189  /// Return true if all elements of this shuffle are the same value as the
2190  /// first element of exactly one source vector without changing the length
2191  /// of that vector.
2192  /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2193  /// TODO: Optionally allow length-changing shuffles.
2194  /// TODO: Optionally allow splats from other elements.
2195  bool isZeroEltSplat() const {
2196  return !changesLength() && isZeroEltSplatMask(getMask());
2197  }
2198 
2199  /// Return true if this shuffle mask is a transpose mask.
2200  /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2201  /// even- or odd-numbered vector elements from two n-dimensional source
2202  /// vectors and write each result into consecutive elements of an
2203  /// n-dimensional destination vector. Two shuffles are necessary to complete
2204  /// the transpose, one for the even elements and another for the odd elements.
2205  /// This description closely follows how the TRN1 and TRN2 AArch64
2206  /// instructions operate.
2207  ///
2208  /// For example, a simple 2x2 matrix can be transposed with:
2209  ///
2210  /// ; Original matrix
2211  /// m0 = < a, b >
2212  /// m1 = < c, d >
2213  ///
2214  /// ; Transposed matrix
2215  /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2216  /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2217  ///
2218  /// For matrices having greater than n columns, the resulting nx2 transposed
2219  /// matrix is stored in two result vectors such that one vector contains
2220  /// interleaved elements from all the even-numbered rows and the other vector
2221  /// contains interleaved elements from all the odd-numbered rows. For example,
2222  /// a 2x4 matrix can be transposed with:
2223  ///
2224  /// ; Original matrix
2225  /// m0 = < a, b, c, d >
2226  /// m1 = < e, f, g, h >
2227  ///
2228  /// ; Transposed matrix
2229  /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2230  /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2231  static bool isTransposeMask(ArrayRef<int> Mask);
2232  static bool isTransposeMask(const Constant *Mask) {
2233  assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2234  SmallVector<int, 16> MaskAsInts;
2235  getShuffleMask(Mask, MaskAsInts);
2236  return isTransposeMask(MaskAsInts);
2237  }
2238 
2239  /// Return true if this shuffle transposes the elements of its inputs without
2240  /// changing the length of the vectors. This operation may also be known as a
2241  /// merge or interleave. See the description for isTransposeMask() for the
2242  /// exact specification.
2243  /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2244  bool isTranspose() const {
2245  return !changesLength() && isTransposeMask(getMask());
2246  }
2247 
2248  /// Return true if this shuffle mask is an extract subvector mask.
2249  /// A valid extract subvector mask returns a smaller vector from a single
2250  /// source operand. The base extraction index is returned as well.
2251  static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2252  int &Index);
2253  static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2254  int &Index) {
2255  assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2256  SmallVector<int, 16> MaskAsInts;
2257  getShuffleMask(Mask, MaskAsInts);
2258  return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2259  }
2260 
2261  /// Return true if this shuffle mask is an extract subvector mask.
2262  bool isExtractSubvectorMask(int &Index) const {
2263  int NumSrcElts = Op<0>()->getType()->getVectorNumElements();
2264  return isExtractSubvectorMask(getMask(), NumSrcElts, Index);
2265  }
2266 
2267  /// Change values in a shuffle permute mask assuming the two vector operands
2268  /// of length InVecNumElts have swapped position.
2270  unsigned InVecNumElts) {
2271  for (int &Idx : Mask) {
2272  if (Idx == -1)
2273  continue;
2274  Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2275  assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
2276  "shufflevector mask index out of range");
2277  }
2278  }
2279 
2280  // Methods for support type inquiry through isa, cast, and dyn_cast:
2281  static bool classof(const Instruction *I) {
2282  return I->getOpcode() == Instruction::ShuffleVector;
2283  }
2284  static bool classof(const Value *V) {
2285  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2286  }
2287 };
2288 
2289 template <>
2291  public FixedNumOperandTraits<ShuffleVectorInst, 3> {
2292 };
2293 
2294 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)
2295 
2296 //===----------------------------------------------------------------------===//
2297 // ExtractValueInst Class
2298 //===----------------------------------------------------------------------===//
2299 
2300 /// This instruction extracts a struct member or array
2301 /// element value from an aggregate value.
2302 ///
2304  SmallVector<unsigned, 4> Indices;
2305 
2306  ExtractValueInst(const ExtractValueInst &EVI);
2307 
2308  /// Constructors - Create a extractvalue instruction with a base aggregate
2309  /// value and a list of indices. The first ctor can optionally insert before
2310  /// an existing instruction, the second appends the new instruction to the
2311  /// specified BasicBlock.
2312  inline ExtractValueInst(Value *Agg,
2313  ArrayRef<unsigned> Idxs,
2314  const Twine &NameStr,
2315  Instruction *InsertBefore);
2316  inline ExtractValueInst(Value *Agg,
2317  ArrayRef<unsigned> Idxs,
2318  const Twine &NameStr, BasicBlock *InsertAtEnd);
2319 
2320  void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2321 
2322 protected:
2323  // Note: Instruction needs to be a friend here to call cloneImpl.
2324  friend class Instruction;
2325 
2326  ExtractValueInst *cloneImpl() const;
2327 
2328 public:
2330  ArrayRef<unsigned> Idxs,
2331  const Twine &NameStr = "",
2332  Instruction *InsertBefore = nullptr) {
2333  return new
2334  ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2335  }
2336 
2338  ArrayRef<unsigned> Idxs,
2339  const Twine &NameStr,
2340  BasicBlock *InsertAtEnd) {
2341  return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2342  }
2343 
2344  /// Returns the type of the element that would be extracted
2345  /// with an extractvalue instruction with the specified parameters.
2346  ///
2347  /// Null is returned if the indices are invalid for the specified type.
2348  static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2349 
2350  using idx_iterator = const unsigned*;
2351 
2352  inline idx_iterator idx_begin() const { return Indices.begin(); }
2353  inline idx_iterator idx_end() const { return Indices.end(); }
2355  return make_range(idx_begin(), idx_end());
2356  }
2357 
2359  return getOperand(0);
2360  }
2361  const Value *getAggregateOperand() const {
2362  return getOperand(0);
2363  }
2364  static unsigned getAggregateOperandIndex() {
2365  return 0U; // get index for modifying correct operand
2366  }
2367 
2369  return Indices;
2370  }
2371 
2372  unsigned getNumIndices() const {
2373  return (unsigned)Indices.size();
2374  }
2375 
2376  bool hasIndices() const {
2377  return true;
2378  }
2379 
2380  // Methods for support type inquiry through isa, cast, and dyn_cast:
2381  static bool classof(const Instruction *I) {
2382  return I->getOpcode() == Instruction::ExtractValue;
2383  }
2384  static bool classof(const Value *V) {
2385  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2386  }
2387 };
2388 
2389 ExtractValueInst::ExtractValueInst(Value *Agg,
2390  ArrayRef<unsigned> Idxs,
2391  const Twine &NameStr,
2392  Instruction *InsertBefore)
2393  : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2394  ExtractValue, Agg, InsertBefore) {
2395  init(Idxs, NameStr);
2396 }
2397 
2398 ExtractValueInst::ExtractValueInst(Value *Agg,
2399  ArrayRef<unsigned> Idxs,
2400  const Twine &NameStr,
2401  BasicBlock *InsertAtEnd)
2402  : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2403  ExtractValue, Agg, InsertAtEnd) {
2404  init(Idxs, NameStr);
2405 }
2406 
2407 //===----------------------------------------------------------------------===//
2408 // InsertValueInst Class
2409 //===----------------------------------------------------------------------===//
2410 
2411 /// This instruction inserts a struct field of array element
2412 /// value into an aggregate value.
2413 ///
2415  SmallVector<unsigned, 4> Indices;
2416 
2417  InsertValueInst(const InsertValueInst &IVI);
2418 
2419  /// Constructors - Create a insertvalue instruction with a base aggregate
2420  /// value, a value to insert, and a list of indices. The first ctor can
2421  /// optionally insert before an existing instruction, the second appends
2422  /// the new instruction to the specified BasicBlock.
2423  inline InsertValueInst(Value *Agg, Value *Val,
2424  ArrayRef<unsigned> Idxs,
2425  const Twine &NameStr,
2426  Instruction *InsertBefore);
2427  inline InsertValueInst(Value *Agg, Value *Val,
2428  ArrayRef<unsigned> Idxs,
2429  const Twine &NameStr, BasicBlock *InsertAtEnd);
2430 
2431  /// Constructors - These two constructors are convenience methods because one
2432  /// and two index insertvalue instructions are so common.
2433  InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2434  const Twine &NameStr = "",
2435  Instruction *InsertBefore = nullptr);
2436  InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2437  BasicBlock *InsertAtEnd);
2438 
2439  void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2440  const Twine &NameStr);
2441 
2442 protected:
2443  // Note: Instruction needs to be a friend here to call cloneImpl.
2444  friend class Instruction;
2445 
2446  InsertValueInst *cloneImpl() const;
2447 
2448 public:
2449  // allocate space for exactly two operands
2450  void *operator new(size_t s) {
2451  return User::operator new(s, 2);
2452  }
2453 
2454  static InsertValueInst *Create(Value *Agg, Value *Val,
2455  ArrayRef<unsigned> Idxs,
2456  const Twine &NameStr = "",
2457  Instruction *InsertBefore = nullptr) {
2458  return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2459  }
2460 
2461  static InsertValueInst *Create(Value *Agg, Value *Val,
2462  ArrayRef<unsigned> Idxs,
2463  const Twine &NameStr,
2464  BasicBlock *InsertAtEnd) {
2465  return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2466  }
2467 
2468  /// Transparently provide more efficient getOperand methods.
2470 
2471  using idx_iterator = const unsigned*;
2472 
2473  inline idx_iterator idx_begin() const { return Indices.begin(); }
2474  inline idx_iterator idx_end() const { return Indices.end(); }
2476  return make_range(idx_begin(), idx_end());
2477  }
2478 
2480  return getOperand(0);
2481  }
2482  const Value *getAggregateOperand() const {
2483  return getOperand(0);
2484  }
2485  static unsigned getAggregateOperandIndex() {
2486  return 0U; // get index for modifying correct operand
2487  }
2488 
2490  return getOperand(1);
2491  }
2493  return getOperand(1);
2494  }
2495  static unsigned getInsertedValueOperandIndex() {
2496  return 1U; // get index for modifying correct operand
2497  }
2498 
2500  return Indices;
2501  }
2502 
2503  unsigned getNumIndices() const {
2504  return (unsigned)Indices.size();
2505  }
2506 
2507  bool hasIndices() const {
2508  return true;
2509  }
2510 
2511  // Methods for support type inquiry through isa, cast, and dyn_cast:
2512  static bool classof(const Instruction *I) {
2513  return I->getOpcode() == Instruction::InsertValue;
2514  }
2515  static bool classof(const Value *V) {
2516  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2517  }
2518 };
2519 
2520 template <>
2522  public FixedNumOperandTraits<InsertValueInst, 2> {
2523 };
2524 
2525 InsertValueInst::InsertValueInst(Value *Agg,
2526  Value *Val,
2527  ArrayRef<unsigned> Idxs,
2528  const Twine &NameStr,
2529  Instruction *InsertBefore)
2530  : Instruction(Agg->getType(), InsertValue,
2532  2, InsertBefore) {
2533  init(Agg, Val, Idxs, NameStr);
2534 }
2535 
2536 InsertValueInst::InsertValueInst(Value *Agg,
2537  Value *Val,
2538  ArrayRef<unsigned> Idxs,
2539  const Twine &NameStr,
2540  BasicBlock *InsertAtEnd)
2541  : Instruction(Agg->getType(), InsertValue,
2543  2, InsertAtEnd) {
2544  init(Agg, Val, Idxs, NameStr);
2545 }
2546 
2548 
2549 //===----------------------------------------------------------------------===//
2550 // PHINode Class
2551 //===----------------------------------------------------------------------===//
2552 
2553 // PHINode - The PHINode class is used to represent the magical mystical PHI
2554 // node, that can not exist in nature, but can be synthesized in a computer
2555 // scientist's overactive imagination.
2556 //
2557 class PHINode : public Instruction {
2558  /// The number of operands actually allocated. NumOperands is
2559  /// the number actually in use.
2560  unsigned ReservedSpace;
2561 
2562  PHINode(const PHINode &PN);
2563 
2564  explicit PHINode(Type *Ty, unsigned NumReservedValues,
2565  const Twine &NameStr = "",
2566  Instruction *InsertBefore = nullptr)
2567  : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2568  ReservedSpace(NumReservedValues) {
2569  setName(NameStr);
2570  allocHungoffUses(ReservedSpace);
2571  }
2572 
2573  PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2574  BasicBlock *InsertAtEnd)
2575  : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2576  ReservedSpace(NumReservedValues) {
2577  setName(NameStr);
2578  allocHungoffUses(ReservedSpace);
2579  }
2580 
2581 protected:
2582  // Note: Instruction needs to be a friend here to call cloneImpl.
2583  friend class Instruction;
2584 
2585  PHINode *cloneImpl() const;
2586 
2587  // allocHungoffUses - this is more complicated than the generic
2588  // User::allocHungoffUses, because we have to allocate Uses for the incoming
2589  // values and pointers to the incoming blocks, all in one allocation.
2590  void allocHungoffUses(unsigned N) {
2591  User::allocHungoffUses(N, /* IsPhi */ true);
2592  }
2593 
2594 public:
2595  /// Constructors - NumReservedValues is a hint for the number of incoming
2596  /// edges that this phi node will have (use 0 if you really have no idea).
2597  static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2598  const Twine &NameStr = "",
2599  Instruction *InsertBefore = nullptr) {
2600  return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2601  }
2602 
2603  static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2604  const Twine &NameStr, BasicBlock *InsertAtEnd) {
2605  return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2606  }
2607 
2608  /// Provide fast operand accessors
2610 
2611  // Block iterator interface. This provides access to the list of incoming
2612  // basic blocks, which parallels the list of incoming values.
2613 
2616 
2618  Use::UserRef *ref =
2619  reinterpret_cast<Use::UserRef*>(op_begin() + ReservedSpace);
2620  return reinterpret_cast<block_iterator>(ref + 1);
2621  }
2622 
2624  const Use::UserRef *ref =
2625  reinterpret_cast<const Use::UserRef*>(op_begin() + ReservedSpace);
2626  return reinterpret_cast<const_block_iterator>(ref + 1);
2627  }
2628 
2630  return block_begin() + getNumOperands();
2631  }
2632 
2634  return block_begin() + getNumOperands();
2635  }
2636 
2638  return make_range(block_begin(), block_end());
2639  }
2640 
2642  return make_range(block_begin(), block_end());
2643  }
2644 
2646 
2648 
2649  /// Return the number of incoming edges
2650  ///
2651  unsigned getNumIncomingValues() const { return getNumOperands(); }
2652 
2653  /// Return incoming value number x
2654  ///
2655  Value *getIncomingValue(unsigned i) const {
2656  return getOperand(i);
2657  }
2658  void setIncomingValue(unsigned i, Value *V) {
2659  assert(V && "PHI node got a null value!");
2660  assert(getType() == V->getType() &&
2661  "All operands to PHI node must be the same type as the PHI node!");
2662  setOperand(i, V);
2663  }
2664 
2665  static unsigned getOperandNumForIncomingValue(unsigned i) {
2666  return i;
2667  }
2668 
2669  static unsigned getIncomingValueNumForOperand(unsigned i) {
2670  return i;
2671  }
2672 
2673  /// Return incoming basic block number @p i.
2674  ///
2675  BasicBlock *getIncomingBlock(unsigned i) const {
2676  return block_begin()[i];
2677  }
2678 
2679  /// Return incoming basic block corresponding
2680  /// to an operand of the PHI.
2681  ///
2682  BasicBlock *getIncomingBlock(const Use &U) const {
2683  assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
2684  return getIncomingBlock(unsigned(&U - op_begin()));
2685  }
2686 
2687  /// Return incoming basic block corresponding
2688  /// to value use iterator.
2689  ///
2691  return getIncomingBlock(I.getUse());
2692  }
2693 
2694  void setIncomingBlock(unsigned i, BasicBlock *BB) {
2695  assert(BB && "PHI node got a null basic block!");
2696  block_begin()[i] = BB;
2697  }
2698 
2699  /// Add an incoming value to the end of the PHI list
2700  ///
2701  void addIncoming(Value *V, BasicBlock *BB) {
2702  if (getNumOperands() == ReservedSpace)
2703  growOperands(); // Get more space!
2704  // Initialize some new operands.
2706  setIncomingValue(getNumOperands() - 1, V);
2707  setIncomingBlock(getNumOperands() - 1, BB);
2708  }
2709 
2710  /// Remove an incoming value. This is useful if a
2711  /// predecessor basic block is deleted. The value removed is returned.
2712  ///
2713  /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2714  /// is true), the PHI node is destroyed and any uses of it are replaced with
2715  /// dummy values. The only time there should be zero incoming values to a PHI
2716  /// node is when the block is dead, so this strategy is sound.
2717  ///
2718  Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2719 
2720  Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2721  int Idx = getBasicBlockIndex(BB);
2722  assert(Idx >= 0 && "Invalid basic block argument to remove!");
2723  return removeIncomingValue(Idx, DeletePHIIfEmpty);
2724  }
2725 
2726  /// Return the first index of the specified basic
2727  /// block in the value list for this PHI. Returns -1 if no instance.
2728  ///
2729  int getBasicBlockIndex(const BasicBlock *BB) const {
2730  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2731  if (block_begin()[i] == BB)
2732  return i;
2733  return -1;
2734  }
2735 
2737  int Idx = getBasicBlockIndex(BB);
2738  assert(Idx >= 0 && "Invalid basic block argument!");
2739  return getIncomingValue(Idx);
2740  }
2741 
2742  /// If the specified PHI node always merges together the
2743  /// same value, return the value, otherwise return null.
2744  Value *hasConstantValue() const;
2745 
2746  /// Whether the specified PHI node always merges
2747  /// together the same value, assuming undefs are equal to a unique
2748  /// non-undef value.
2749  bool hasConstantOrUndefValue() const;
2750 
2751  /// Methods for support type inquiry through isa, cast, and dyn_cast:
2752  static bool classof(const Instruction *I) {
2753  return I->getOpcode() == Instruction::PHI;
2754  }
2755  static bool classof(const Value *V) {
2756  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2757  }
2758 
2759 private:
2760  void growOperands();
2761 };
2762 
2763 template <>
2765 };
2766 
2768 
2769 //===----------------------------------------------------------------------===//
2770 // LandingPadInst Class
2771 //===----------------------------------------------------------------------===//
2772 
2773 //===---------------------------------------------------------------------------
2774 /// The landingpad instruction holds all of the information
2775 /// necessary to generate correct exception handling. The landingpad instruction
2776 /// cannot be moved from the top of a landing pad block, which itself is
2777 /// accessible only from the 'unwind' edge of an invoke. This uses the
2778 /// SubclassData field in Value to store whether or not the landingpad is a
2779 /// cleanup.
2780 ///
2781 class LandingPadInst : public Instruction {
2782  /// The number of operands actually allocated. NumOperands is
2783  /// the number actually in use.
2784  unsigned ReservedSpace;
2785 
2786  LandingPadInst(const LandingPadInst &LP);
2787 
2788 public:
2790 
2791 private:
2792  explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2793  const Twine &NameStr, Instruction *InsertBefore);
2794  explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2795  const Twine &NameStr, BasicBlock *InsertAtEnd);
2796 
2797  // Allocate space for exactly zero operands.
2798  void *operator new(size_t s) {
2799  return User::operator new(s);
2800  }
2801 
2802  void growOperands(unsigned Size);
2803  void init(unsigned NumReservedValues, const Twine &NameStr);
2804 
2805 protected:
2806  // Note: Instruction needs to be a friend here to call cloneImpl.
2807  friend class Instruction;
2808 
2809  LandingPadInst *cloneImpl() const;
2810 
2811 public:
2812  /// Constructors - NumReservedClauses is a hint for the number of incoming
2813  /// clauses that this landingpad will have (use 0 if you really have no idea).
2814  static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2815  const Twine &NameStr = "",
2816  Instruction *InsertBefore = nullptr);
2817  static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2818  const Twine &NameStr, BasicBlock *InsertAtEnd);
2819 
2820  /// Provide fast operand accessors
2822 
2823  /// Return 'true' if this landingpad instruction is a
2824  /// cleanup. I.e., it should be run when unwinding even if its landing pad
2825  /// doesn't catch the exception.
2826  bool isCleanup() const { return getSubclassDataFromInstruction() & 1; }
2827 
2828  /// Indicate that this landingpad instruction is a cleanup.
2829  void setCleanup(bool V) {
2830  setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
2831  (V ? 1 : 0));
2832  }
2833 
2834  /// Add a catch or filter clause to the landing pad.
2835  void addClause(Constant *ClauseVal);
2836 
2837  /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2838  /// determine what type of clause this is.
2839  Constant *getClause(unsigned Idx) const {
2840  return cast<Constant>(getOperandList()[Idx]);
2841  }
2842 
2843  /// Return 'true' if the clause and index Idx is a catch clause.
2844  bool isCatch(unsigned Idx) const {
2845  return !isa<ArrayType>(getOperandList()[Idx]->getType());
2846  }
2847 
2848  /// Return 'true' if the clause and index Idx is a filter clause.
2849  bool isFilter(unsigned Idx) const {
2850  return isa<ArrayType>(getOperandList()[Idx]->getType());
2851  }
2852 
2853  /// Get the number of clauses for this landing pad.
2854  unsigned getNumClauses() const { return getNumOperands(); }
2855 
2856  /// Grow the size of the operand list to accommodate the new
2857  /// number of clauses.
2858  void reserveClauses(unsigned Size) { growOperands(Size); }
2859 
2860  // Methods for support type inquiry through isa, cast, and dyn_cast:
2861  static bool classof(const Instruction *I) {
2862  return I->getOpcode() == Instruction::LandingPad;
2863  }
2864  static bool classof(const Value *V) {
2865  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2866  }
2867 };
2868 
2869 template <>
2871 };
2872 
2874 
2875 //===----------------------------------------------------------------------===//
2876 // ReturnInst Class
2877 //===----------------------------------------------------------------------===//
2878 
2879 //===---------------------------------------------------------------------------
2880 /// Return a value (possibly void), from a function. Execution
2881 /// does not continue in this function any longer.
2882 ///
2883 class ReturnInst : public Instruction {
2884  ReturnInst(const ReturnInst &RI);
2885 
2886 private:
2887  // ReturnInst constructors:
2888  // ReturnInst() - 'ret void' instruction
2889  // ReturnInst( null) - 'ret void' instruction
2890  // ReturnInst(Value* X) - 'ret X' instruction
2891  // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2892  // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2893  // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2894  // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2895  //
2896  // NOTE: If the Value* passed is of type void then the constructor behaves as
2897  // if it was passed NULL.
2898  explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2899  Instruction *InsertBefore = nullptr);
2900  ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2901  explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2902 
2903 protected:
2904  // Note: Instruction needs to be a friend here to call cloneImpl.
2905  friend class Instruction;
2906 
2907  ReturnInst *cloneImpl() const;
2908 
2909 public:
2910  static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
2911  Instruction *InsertBefore = nullptr) {
2912  return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
2913  }
2914 
2915  static ReturnInst* Create(LLVMContext &C, Value *retVal,
2916  BasicBlock *InsertAtEnd) {
2917  return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
2918  }
2919 
2920  static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
2921  return new(0) ReturnInst(C, InsertAtEnd);
2922  }
2923 
2924  /// Provide fast operand accessors
2926 
2927  /// Convenience accessor. Returns null if there is no return value.
2929  return getNumOperands() != 0 ? getOperand(0) : nullptr;
2930  }
2931 
2932  unsigned getNumSuccessors() const { return 0; }
2933 
2934  // Methods for support type inquiry through isa, cast, and dyn_cast:
2935  static bool classof(const Instruction *I) {
2936  return (I->getOpcode() == Instruction::Ret);
2937  }
2938  static bool classof(const Value *V) {
2939  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2940  }
2941 
2942 private:
2943  BasicBlock *getSuccessor(unsigned idx) const {
2944  llvm_unreachable("ReturnInst has no successors!");
2945  }
2946 
2947  void setSuccessor(unsigned idx, BasicBlock *B) {
2948  llvm_unreachable("ReturnInst has no successors!");
2949  }
2950 };
2951 
2952 template <>
2953 struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
2954 };
2955 
2957 
2958 //===----------------------------------------------------------------------===//
2959 // BranchInst Class
2960 //===----------------------------------------------------------------------===//
2961 
2962 //===---------------------------------------------------------------------------
2963 /// Conditional or Unconditional Branch instruction.
2964 ///
2965 class BranchInst : public Instruction {
2966  /// Ops list - Branches are strange. The operands are ordered:
2967  /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
2968  /// they don't have to check for cond/uncond branchness. These are mostly
2969  /// accessed relative from op_end().
2970  BranchInst(const BranchInst &BI);
2971  // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
2972  // BranchInst(BB *B) - 'br B'
2973  // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
2974  // BranchInst(BB* B, Inst *I) - 'br B' insert before I
2975  // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
2976  // BranchInst(BB* B, BB *I) - 'br B' insert at end
2977  // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
2978  explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
2979  BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
2980  Instruction *InsertBefore = nullptr);
2981  BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
2982  BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
2983  BasicBlock *InsertAtEnd);
2984 
2985  void AssertOK();
2986 
2987 protected:
2988  // Note: Instruction needs to be a friend here to call cloneImpl.
2989  friend class Instruction;
2990 
2991  BranchInst *cloneImpl() const;
2992 
2993 public:
2994  /// Iterator type that casts an operand to a basic block.
2995  ///
2996  /// This only makes sense because the successors are stored as adjacent
2997  /// operands for branch instructions.
2999  : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3000  std::random_access_iterator_tag, BasicBlock *,
3001  ptrdiff_t, BasicBlock *, BasicBlock *> {
3003 
3004  BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3005  BasicBlock *operator->() const { return operator*(); }
3006  };
3007 
3008  /// The const version of `succ_op_iterator`.
3010  : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3011  std::random_access_iterator_tag,
3012  const BasicBlock *, ptrdiff_t, const BasicBlock *,
3013  const BasicBlock *> {
3015  : iterator_adaptor_base(I) {}
3016 
3017  const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3018  const BasicBlock *operator->() const { return operator*(); }
3019  };
3020 
3021  static BranchInst *Create(BasicBlock *IfTrue,
3022  Instruction *InsertBefore = nullptr) {
3023  return new(1) BranchInst(IfTrue, InsertBefore);
3024  }
3025 
3026  static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3027  Value *Cond, Instruction *InsertBefore = nullptr) {
3028  return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3029  }
3030 
3031  static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3032  return new(1) BranchInst(IfTrue, InsertAtEnd);
3033  }
3034 
3035  static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3036  Value *Cond, BasicBlock *InsertAtEnd) {
3037  return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3038  }
3039 
3040  /// Transparently provide more efficient getOperand methods.
3042 
3043  bool isUnconditional() const { return getNumOperands() == 1; }
3044  bool isConditional() const { return getNumOperands() == 3; }
3045 
3046  Value *getCondition() const {
3047  assert(isConditional() && "Cannot get condition of an uncond branch!");
3048  return Op<-3>();
3049  }
3050 
3051  void setCondition(Value *V) {
3052  assert(isConditional() && "Cannot set condition of unconditional branch!");
3053  Op<-3>() = V;
3054  }
3055 
3056  unsigned getNumSuccessors() const { return 1+isConditional(); }
3057 
3058  BasicBlock *getSuccessor(unsigned i) const {
3059  assert(i < getNumSuccessors() && "Successor # out of range for Branch!");
3060  return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3061  }
3062 
3063  void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3064  assert(idx < getNumSuccessors() && "Successor # out of range for Branch!");
3065  *(&Op<-1>() - idx) = NewSucc;
3066  }
3067 
3068  /// Swap the successors of this branch instruction.
3069  ///
3070  /// Swaps the successors of the branch instruction. This also swaps any
3071  /// branch weight metadata associated with the instruction so that it
3072  /// continues to map correctly to each operand.
3073  void swapSuccessors();
3074 
3076  return make_range(
3077  succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3079  }
3080 
3083  std::next(value_op_begin(), isConditional() ? 1 : 0)),
3085  }
3086 
3087  // Methods for support type inquiry through isa, cast, and dyn_cast:
3088  static bool classof(const Instruction *I) {
3089  return (I->getOpcode() == Instruction::Br);
3090  }
3091  static bool classof(const Value *V) {
3092  return isa<Instruction>(V) && classof(cast<Instruction>(V));
3093  }
3094 };
3095 
3096 template <>
3097 struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3098 };
3099 
3101 
3102 //===----------------------------------------------------------------------===//
3103 // SwitchInst Class
3104 //===----------------------------------------------------------------------===//
3105 
3106 //===---------------------------------------------------------------------------
3107 /// Multiway switch
3108 ///
3109 class SwitchInst : public Instruction {
3110  unsigned ReservedSpace;
3111 
3112  // Operand[0] = Value to switch on
3113  // Operand[1] = Default basic block destination
3114  // Operand[2n ] = Value to match
3115  // Operand[2n+1] = BasicBlock to go to on match
3116  SwitchInst(const SwitchInst &SI);
3117 
3118  /// Create a new switch instruction, specifying a value to switch on and a
3119  /// default destination. The number of additional cases can be specified here
3120  /// to make memory allocation more efficient. This constructor can also
3121  /// auto-insert before another instruction.
3122  SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3123  Instruction *InsertBefore);
3124 
3125  /// Create a new switch instruction, specifying a value to switch on and a
3126  /// default destination. The number of additional cases can be specified here
3127  /// to make memory allocation more efficient. This constructor also
3128  /// auto-inserts at the end of the specified BasicBlock.
3129  SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3130  BasicBlock *InsertAtEnd);
3131 
3132  // allocate space for exactly zero operands
3133  void *operator new(size_t s) {
3134  return User::operator new(s);
3135  }
3136 
3137  void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3138  void growOperands();
3139 
3140 protected:
3141  // Note: Instruction needs to be a friend here to call cloneImpl.
3142  friend class Instruction;
3143 
3144  SwitchInst *cloneImpl() const;
3145 
3146 public:
3147  // -2
3148  static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3149 
3150  template <typename CaseHandleT> class CaseIteratorImpl;
3151 
3152  /// A handle to a particular switch case. It exposes a convenient interface
3153  /// to both the case value and the successor block.
3154  ///
3155  /// We define this as a template and instantiate it to form both a const and
3156  /// non-const handle.
3157  template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3159  // Directly befriend both const and non-const iterators.
3160  friend class SwitchInst::CaseIteratorImpl<
3161  CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3162 
3163  protected:
3164  // Expose the switch type we're parameterized with to the iterator.
3165  using SwitchInstType = SwitchInstT;
3166 
3167  SwitchInstT *SI;
3169 
3170  CaseHandleImpl() = default;
3171  CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3172 
3173  public:
3174  /// Resolves case value for current case.
3175  ConstantIntT *getCaseValue() const {
3176  assert((unsigned)Index < SI->getNumCases() &&
3177  "Index out the number of cases.");
3178  return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3179  }
3180 
3181  /// Resolves successor for current case.
3182  BasicBlockT *getCaseSuccessor() const {
3183  assert(((unsigned)Index < SI->getNumCases() ||
3184  (unsigned)Index == DefaultPseudoIndex) &&
3185  "Index out the number of cases.");
3186  return SI->getSuccessor(getSuccessorIndex());
3187  }
3188 
3189  /// Returns number of current case.
3190  unsigned getCaseIndex() const { return Index; }
3191 
3192  /// Returns successor index for current case successor.
3193  unsigned getSuccessorIndex() const {
3194  assert(((unsigned)Index == DefaultPseudoIndex ||
3195  (unsigned)Index < SI->getNumCases()) &&
3196  "Index out the number of cases.");
3197  return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3198  }
3199 
3200  bool operator==(const CaseHandleImpl &RHS) const {
3201  assert(SI == RHS.SI && "Incompatible operators.");
3202  return Index == RHS.Index;
3203  }
3204  };
3205 
3206  using ConstCaseHandle =
3208 
3210  : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3212 
3213  public:
3215 
3216  /// Sets the new value for current case.
3218  assert((unsigned)Index < SI->getNumCases() &&
3219  "Index out the number of cases.");
3220  SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3221  }
3222 
3223  /// Sets the new successor for current case.
3225  SI->setSuccessor(getSuccessorIndex(), S);
3226  }
3227  };
3228 
3229  template <typename CaseHandleT>
3230  class CaseIteratorImpl
3231  : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3232  std::random_access_iterator_tag,
3233  CaseHandleT> {
3234  using SwitchInstT = typename CaseHandleT::SwitchInstType;
3235 
3236  CaseHandleT Case;
3237 
3238  public:
3239  /// Default constructed iterator is in an invalid state until assigned to
3240  /// a case for a particular switch.
3241  CaseIteratorImpl() = default;
3242 
3243  /// Initializes case iterator for given SwitchInst and for given
3244  /// case number.
3245  CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3246 
3247  /// Initializes case iterator for given SwitchInst and for given
3248  /// successor index.
3249  static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3250  unsigned SuccessorIndex) {
3251  assert(SuccessorIndex < SI->getNumSuccessors() &&
3252  "Successor index # out of range!");
3253  return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3254  : CaseIteratorImpl(SI, DefaultPseudoIndex);
3255  }
3256 
3257  /// Support converting to the const variant. This will be a no-op for const
3258  /// variant.
3260  return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3261  }
3262 
3264  // Check index correctness after addition.
3265  // Note: Index == getNumCases() means end().
3266  assert(Case.Index + N >= 0 &&
3267  (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
3268  "Case.Index out the number of cases.");
3269  Case.Index += N;
3270  return *this;
3271  }
3273  // Check index correctness after subtraction.
3274  // Note: Case.Index == getNumCases() means end().
3275  assert(Case.Index - N >= 0 &&
3276  (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
3277  "Case.Index out the number of cases.");
3278  Case.Index -= N;
3279  return *this;
3280  }
3282  assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
3283  return Case.Index - RHS.Case.Index;
3284  }
3285  bool operator==(const CaseIteratorImpl &RHS) const {
3286  return Case == RHS.Case;
3287  }
3288  bool operator<(const CaseIteratorImpl &RHS) const {
3289  assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
3290  return Case.Index < RHS.Case.Index;
3291  }
3292  CaseHandleT &operator*() { return Case; }
3293  const CaseHandleT &operator*() const { return Case; }
3294  };
3295 
3298 
3299  static SwitchInst *Create(Value *Value, BasicBlock *Default,
3300  unsigned NumCases,
3301  Instruction *InsertBefore = nullptr) {
3302  return new SwitchInst(Value, Default, NumCases, InsertBefore);
3303  }
3304 
3305  static SwitchInst *Create(Value *Value, BasicBlock *Default,
3306  unsigned NumCases, BasicBlock *InsertAtEnd) {
3307  return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3308  }
3309 
3310  /// Provide fast operand accessors
3312 
3313  // Accessor Methods for Switch stmt
3314  Value *getCondition() const { return getOperand(0); }
3315  void setCondition(Value *V) { setOperand(0, V); }
3316 
3318  return cast<BasicBlock>(getOperand(1));
3319  }
3320 
3321  void setDefaultDest(BasicBlock *DefaultCase) {
3322  setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3323  }
3324 
3325  /// Return the number of 'cases' in this switch instruction, excluding the
3326  /// default case.
3327  unsigned getNumCases() const {
3328  return getNumOperands()/2 - 1;
3329  }
3330 
3331  /// Returns a read/write iterator that points to the first case in the
3332  /// SwitchInst.
3334  return CaseIt(this, 0);
3335  }
3336 
3337  /// Returns a read-only iterator that points to the first case in the
3338  /// SwitchInst.
3340  return ConstCaseIt(this, 0);
3341  }
3342 
3343  /// Returns a read/write iterator that points one past the last in the
3344  /// SwitchInst.
3346  return CaseIt(this, getNumCases());
3347  }
3348 
3349  /// Returns a read-only iterator that points one past the last in the
3350  /// SwitchInst.
3352  return ConstCaseIt(this, getNumCases());
3353  }
3354 
3355  /// Iteration adapter for range-for loops.
3357  return make_range(case_begin(), case_end());
3358  }
3359 
3360  /// Constant iteration adapter for range-for loops.
3362  return make_range(case_begin(), case_end());
3363  }
3364 
3365  /// Returns an iterator that points to the default case.
3366  /// Note: this iterator allows to resolve successor only. Attempt
3367  /// to resolve case value causes an assertion.
3368  /// Also note, that increment and decrement also causes an assertion and
3369  /// makes iterator invalid.
3371  return CaseIt(this, DefaultPseudoIndex);
3372  }
3374  return ConstCaseIt(this, DefaultPseudoIndex);
3375  }
3376 
3377  /// Search all of the case values for the specified constant. If it is
3378  /// explicitly handled, return the case iterator of it, otherwise return
3379  /// default case iterator to indicate that it is handled by the default
3380  /// handler.
3383  cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
3384  if (I != case_end())
3385  return I;
3386 
3387  return case_default();
3388  }
3390  ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
3391  return Case.getCaseValue() == C;
3392  });
3393  if (I != case_end())
3394  return I;
3395 
3396  return case_default();
3397  }
3398 
3399  /// Finds the unique case value for a given successor. Returns null if the
3400  /// successor is not found, not unique, or is the default case.
3402  if (BB == getDefaultDest())
3403  return nullptr;
3404 
3405  ConstantInt *CI = nullptr;
3406  for (auto Case : cases()) {
3407  if (Case.getCaseSuccessor() != BB)
3408  continue;
3409 
3410  if (CI)
3411  return nullptr; // Multiple cases lead to BB.
3412 
3413  CI = Case.getCaseValue();
3414  }
3415 
3416  return CI;
3417  }
3418 
3419  /// Add an entry to the switch instruction.
3420  /// Note:
3421  /// This action invalidates case_end(). Old case_end() iterator will
3422  /// point to the added case.
3423  void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3424 
3425  /// This method removes the specified case and its successor from the switch
3426  /// instruction. Note that this operation may reorder the remaining cases at
3427  /// index idx and above.
3428  /// Note:
3429  /// This action invalidates iterators for all cases following the one removed,
3430  /// including the case_end() iterator. It returns an iterator for the next
3431  /// case.
3432  CaseIt removeCase(CaseIt I);
3433 
3434  unsigned getNumSuccessors() const { return getNumOperands()/2; }
3435  BasicBlock *getSuccessor(unsigned idx) const {
3436  assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!");
3437  return cast<BasicBlock>(getOperand(idx*2+1));
3438  }
3439  void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3440  assert(idx < getNumSuccessors() && "Successor # out of range for switch!");
3441  setOperand(idx * 2 + 1, NewSucc);
3442  }
3443 
3444  // Methods for support type inquiry through isa, cast, and dyn_cast:
3445  static bool classof(const Instruction *I) {
3446  return I->getOpcode() == Instruction::Switch;
3447  }
3448  static bool classof(const Value *V) {
3449  return isa<Instruction>(V) && classof(cast<Instruction>(V));
3450  }
3451 };
3452 
3453 template <>
3455 };
3456 
3457 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)
3458 
3459 //===----------------------------------------------------------------------===//
3460 // IndirectBrInst Class
3461 //===----------------------------------------------------------------------===//
3462 
3463 //===---------------------------------------------------------------------------
3464 /// Indirect Branch Instruction.
3465 ///
3466 class IndirectBrInst : public Instruction {
3467  unsigned ReservedSpace;
3468 
3469  // Operand[0] = Address to jump to
3470  // Operand[n+1] = n-th destination
3471  IndirectBrInst(const IndirectBrInst &IBI);
3472 
3473  /// Create a new indirectbr instruction, specifying an
3474  /// Address to jump to. The number of expected destinations can be specified
3475  /// here to make memory allocation more efficient. This constructor can also
3476  /// autoinsert before another instruction.
3477  IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3478 
3479  /// Create a new indirectbr instruction, specifying an
3480  /// Address to jump to. The number of expected destinations can be specified
3481  /// here to make memory allocation more efficient. This constructor also
3482  /// autoinserts at the end of the specified BasicBlock.
3483  IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3484 
3485  // allocate space for exactly zero operands
3486  void *operator new(size_t s) {
3487  return User::operator new(s);
3488  }
3489 
3490  void init(Value *Address, unsigned NumDests);
3491  void growOperands();
3492 
3493 protected:
3494  // Note: Instruction needs to be a friend here to call cloneImpl.
3495  friend class Instruction;
3496 
3497  IndirectBrInst *cloneImpl() const;
3498 
3499 public:
3500  /// Iterator type that casts an operand to a basic block.
3501  ///
3502  /// This only makes sense because the successors are stored as adjacent
3503  /// operands for indirectbr instructions.
3505  : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3506  std::random_access_iterator_tag, BasicBlock *,
3507  ptrdiff_t, BasicBlock *, BasicBlock *> {
3509 
3510  BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3511  BasicBlock *operator->() const { return operator*(); }
3512  };
3513 
3514  /// The const version of `succ_op_iterator`.
3516  : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3517  std::random_access_iterator_tag,
3518  const BasicBlock *, ptrdiff_t, const BasicBlock *,
3519  const BasicBlock *> {
3521  : iterator_adaptor_base(I) {}
3522 
3523  const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3524  const BasicBlock *operator->() const { return operator*(); }
3525  };
3526 
3527  static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3528  Instruction *InsertBefore = nullptr) {
3529  return new IndirectBrInst(Address, NumDests, InsertBefore);
3530  }
3531 
3532  static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3533  BasicBlock *InsertAtEnd) {
3534  return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3535  }
3536 
3537  /// Provide fast operand accessors.
3539 
3540  // Accessor Methods for IndirectBrInst instruction.
3541  Value *getAddress() { return getOperand(0); }
3542  const Value *getAddress() const { return getOperand(0); }
3543  void setAddress(Value *V) { setOperand(0, V); }
3544 
3545  /// return the number of possible destinations in this
3546  /// indirectbr instruction.
3547  unsigned getNumDestinations() const { return getNumOperands()-1; }
3548 
3549  /// Return the specified destination.
3550  BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3551  const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3552 
3553  /// Add a destination.
3554  ///
3555  void addDestination(BasicBlock *Dest);
3556 
3557  /// This method removes the specified successor from the
3558  /// indirectbr instruction.
3559  void removeDestination(unsigned i);
3560 
3561  unsigned getNumSuccessors() const { return getNumOperands()-1; }
3562  BasicBlock *getSuccessor(unsigned i) const {
3563  return cast<BasicBlock>(getOperand(i+1));
3564  }
3565  void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3566  setOperand(i + 1, NewSucc);
3567  }
3568 
3570  return make_range(succ_op_iterator(std::next(value_op_begin())),
3572  }
3573 
3575  return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3577  }
3578 
3579  // Methods for support type inquiry through isa, cast, and dyn_cast:
3580  static bool classof(const Instruction *I) {
3581  return I->getOpcode() == Instruction::IndirectBr;
3582  }
3583  static bool classof(const Value *V) {
3584  return isa<Instruction>(V) && classof(cast<Instruction>(V));
3585  }
3586 };
3587 
3588 template <>
3590 };
3591 
3592 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)
3593 
3594 //===----------------------------------------------------------------------===//
3595 // InvokeInst Class
3596 //===----------------------------------------------------------------------===//
3597 
3598 /// Invoke instruction. The SubclassData field is used to hold the
3599 /// calling convention of the call.
3600 ///
3601 class InvokeInst : public CallBase {
3602  /// The number of operands for this call beyond the called function,
3603  /// arguments, and operand bundles.
3604  static constexpr int NumExtraOperands = 2;
3605 
3606  /// The index from the end of the operand array to the normal destination.
3607  static constexpr int NormalDestOpEndIdx = -3;
3608 
3609  /// The index from the end of the operand array to the unwind destination.
3610  static constexpr int UnwindDestOpEndIdx = -2;
3611 
3612  InvokeInst(const InvokeInst &BI);
3613 
3614  /// Construct an InvokeInst given a range of arguments.
3615  ///
3616  /// Construct an InvokeInst from a range of arguments
3617  inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3618  BasicBlock *IfException, ArrayRef<Value *> Args,
3619  ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3620  const Twine &NameStr, Instruction *InsertBefore);
3621 
3622  inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3623  BasicBlock *IfException, ArrayRef<Value *> Args,
3624  ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3625  const Twine &NameStr, BasicBlock *InsertAtEnd);
3626 
3627  void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3628  BasicBlock *IfException, ArrayRef<Value *> Args,
3629  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3630 
3631  /// Compute the number of operands to allocate.
3632  static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
3633  // We need one operand for the called function, plus our extra operands and
3634  // the input operand counts provided.
3635  return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3636  }
3637 
3638 protected:
3639  // Note: Instruction needs to be a friend here to call cloneImpl.
3640  friend class Instruction;
3641 
3642  InvokeInst *cloneImpl() const;
3643 
3644 public:
3645  static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3646  BasicBlock *IfException, ArrayRef<Value *> Args,
3647  const Twine &NameStr,
3648  Instruction *InsertBefore = nullptr) {
3649  int NumOperands = ComputeNumOperands(Args.size());
3650  return new (NumOperands)
3651  InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3652  NameStr, InsertBefore);
3653  }
3654 
3655  static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3656  BasicBlock *IfException, ArrayRef<Value *> Args,
3657  ArrayRef<OperandBundleDef> Bundles = None,
3658  const Twine &NameStr = "",
3659  Instruction *InsertBefore = nullptr) {
3660  int NumOperands =
3661  ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3662  unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3663 
3664  return new (NumOperands, DescriptorBytes)
3665  InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3666  NameStr, InsertBefore);
3667  }
3668 
3669  static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3670  BasicBlock *IfException, ArrayRef<Value *> Args,
3671  const Twine &NameStr, BasicBlock *InsertAtEnd) {
3672  int NumOperands = ComputeNumOperands(Args.size());
3673  return new (NumOperands)
3674  InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3675  NameStr, InsertAtEnd);
3676  }
3677 
3678  static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3679  BasicBlock *IfException, ArrayRef<Value *> Args,
3681  const Twine &NameStr, BasicBlock *InsertAtEnd) {
3682  int NumOperands =
3683  ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3684  unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3685 
3686  return new (NumOperands, DescriptorBytes)
3687  InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3688  NameStr, InsertAtEnd);
3689  }
3690 
3691  static InvokeInst *Create(Function *Func, BasicBlock *IfNormal,
3692  BasicBlock *IfException, ArrayRef<Value *> Args,
3693  const Twine &NameStr,
3694  Instruction *InsertBefore = nullptr) {
3695  return Create(Func->getFunctionType(), Func, IfNormal, IfException, Args,
3696  None, NameStr, InsertBefore);
3697  }
3698 
3699  static InvokeInst *Create(Function *Func, BasicBlock *IfNormal,
3700  BasicBlock *IfException, ArrayRef<Value *> Args,
3701  ArrayRef<OperandBundleDef> Bundles = None,
3702  const Twine &NameStr = "",
3703  Instruction *InsertBefore = nullptr) {
3704  return Create(Func->getFunctionType(), Func, IfNormal, IfException, Args,
3705  Bundles, NameStr, InsertBefore);
3706  }
3707 
3708  static InvokeInst *Create(Function *Func, BasicBlock *IfNormal,
3709  BasicBlock *IfException, ArrayRef<Value *> Args,
3710  const Twine &NameStr, BasicBlock *InsertAtEnd) {
3711  return Create(Func->getFunctionType(), Func, IfNormal, IfException, Args,
3712  NameStr, InsertAtEnd);
3713  }
3714 
3715  static InvokeInst *Create(Function *Func, BasicBlock *IfNormal,
3716  BasicBlock *IfException, ArrayRef<Value *> Args,
3718  const Twine &NameStr, BasicBlock *InsertAtEnd) {
3719  return Create(Func->getFunctionType(), Func, IfNormal, IfException, Args,
3720  Bundles, NameStr, InsertAtEnd);
3721  }
3722 
3723  // Deprecated [opaque pointer types]
3724  static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3725  BasicBlock *IfException, ArrayRef<Value *> Args,
3726  const Twine &NameStr,
3727  Instruction *InsertBefore = nullptr) {
3728  return Create(cast<FunctionType>(
3729  cast<PointerType>(Func->getType())->getElementType()),
3730  Func, IfNormal, IfException, Args, None, NameStr,
3731  InsertBefore);
3732  }
3733 
3734  // Deprecated [opaque pointer types]
3735  static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3736  BasicBlock *IfException, ArrayRef<Value *> Args,
3737  ArrayRef<OperandBundleDef> Bundles = None,
3738  const Twine &NameStr = "",
3739  Instruction *InsertBefore = nullptr) {
3740  return Create(cast<FunctionType>(
3741  cast<PointerType>(Func->getType())->getElementType()),
3742  Func, IfNormal, IfException, Args, Bundles, NameStr,
3743  InsertBefore);
3744  }
3745 
3746  // Deprecated [opaque pointer types]
3747  static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3748  BasicBlock *IfException, ArrayRef<Value *> Args,
3749  const Twine &NameStr, BasicBlock *InsertAtEnd) {
3750  return Create(cast<FunctionType>(
3751  cast<PointerType>(Func->getType())->getElementType()),
3752  Func, IfNormal, IfException, Args, NameStr, InsertAtEnd);
3753  }
3754 
3755  // Deprecated [opaque pointer types]
3756  static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3757  BasicBlock *IfException, ArrayRef<Value *> Args,
3759  const Twine &NameStr, BasicBlock *InsertAtEnd) {
3760  return Create(cast<FunctionType>(
3761  cast<PointerType>(Func->getType())->getElementType()),
3762  Func, IfNormal, IfException, Args, Bundles, NameStr,
3763  InsertAtEnd);
3764  }
3765 
3766  /// Create a clone of \p II with a different set of operand bundles and
3767  /// insert it before \p InsertPt.
3768  ///
3769  /// The returned invoke instruction is identical to \p II in every way except
3770  /// that the operand bundles for the new instruction are set to the operand
3771  /// bundles in \p Bundles.
3772  static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3773  Instruction *InsertPt = nullptr);
3774 
3775  /// Determine if the call should not perform indirect branch tracking.
3776  bool doesNoCfCheck() const { return hasFnAttr(Attribute::NoCfCheck); }
3777 
3778  /// Determine if the call cannot unwind.
3779  bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); }
3781  addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
3782  }
3783 
3784  // get*Dest - Return the destination basic blocks...
3786  return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
3787  }
3789  return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
3790  }
3792  Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3793  }
3795  Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3796  }
3797 
3798  /// Get the landingpad instruction from the landing pad
3799  /// block (the unwind destination).
3800  LandingPadInst *getLandingPadInst() const;
3801 
3802  BasicBlock *getSuccessor(unsigned i) const {
3803  assert(i < 2 && "Successor # out of range for invoke!");
3804  return i == 0 ? getNormalDest() : getUnwindDest();
3805  }
3806 
3807  void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3808  assert(i < 2 && "Successor # out of range for invoke!");
3809  if (i == 0)
3810  setNormalDest(NewSucc);
3811  else
3812  setUnwindDest(NewSucc);
3813  }
3814 
3815  unsigned getNumSuccessors() const { return 2; }
3816 
3817  // Methods for support type inquiry through isa, cast, and dyn_cast:
3818  static bool classof(const Instruction *I) {
3819  return (I->getOpcode() == Instruction::Invoke);
3820  }
3821  static bool classof(const Value *V) {
3822  return isa<Instruction>(V) && classof(cast<Instruction>(V));
3823  }
3824 
3825 private:
3826 
3827  // Shadow Instruction::setInstructionSubclassData with a private forwarding
3828  // method so that subclasses cannot accidentally use it.
3829  void setInstructionSubclassData(unsigned short D) {
3831  }
3832 };
3833 
3834 InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3835  BasicBlock *IfException, ArrayRef<Value *> Args,
3836  ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3837  const Twine &NameStr, Instruction *InsertBefore)
3838  : CallBase(Ty->getReturnType(), Instruction::Invoke,
3839  OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3840  InsertBefore) {
3841  init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3842 }
3843 
3844 InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3845  BasicBlock *IfException, ArrayRef<Value *> Args,
3846  ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3847  const Twine &NameStr, BasicBlock *InsertAtEnd)
3848  : CallBase(Ty->getReturnType(), Instruction::Invoke,
3849  OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3850  InsertAtEnd) {
3851  init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3852 }
3853 
3854 //===----------------------------------------------------------------------===//
3855 // ResumeInst Class
3856 //===----------------------------------------------------------------------===//
3857 
3858 //===---------------------------------------------------------------------------
3859 /// Resume the propagation of an exception.
3860 ///
3861 class ResumeInst : public Instruction {
3862  ResumeInst(const ResumeInst &RI);
3863 
3864  explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
3865  ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
3866 
3867 protected:
3868  // Note: Instruction needs to be a friend here to call cloneImpl.
3869  friend class Instruction;
3870 
3871  ResumeInst *cloneImpl() const;
3872 
3873 public:
3874  static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
3875  return new(1) ResumeInst(Exn, InsertBefore);
3876  }
3877 
3878  static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
3879  return new(1) ResumeInst(Exn, InsertAtEnd);
3880  }
3881 
3882  /// Provide fast operand accessors
3884 
3885  /// Convenience accessor.
3886  Value *getValue() const { return Op<0>(); }
3887 
3888  unsigned getNumSuccessors() const { return 0; }
3889 
3890  // Methods for support type inquiry through isa, cast, and dyn_cast:
3891  static bool classof(const Instruction *I) {
3892  return I->getOpcode() == Instruction::Resume;
3893  }
3894  static bool classof(const Value *V) {
3895  return isa<Instruction>(V) && classof(cast<Instruction>(V));
3896  }
3897 
3898 private:
3899  BasicBlock *getSuccessor(unsigned idx) const {
3900  llvm_unreachable("ResumeInst has no successors!");
3901  }
3902 
3903  void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3904  llvm_unreachable("ResumeInst has no successors!");
3905  }
3906 };
3907 
3908 template <>
3910  public FixedNumOperandTraits<ResumeInst, 1> {
3911 };
3912 
3913 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)
3914 
3915 //===----------------------------------------------------------------------===//
3916 // CatchSwitchInst Class
3917 //===----------------------------------------------------------------------===//
3919  /// The number of operands actually allocated. NumOperands is
3920  /// the number actually in use.
3921  unsigned ReservedSpace;
3922 
3923  // Operand[0] = Outer scope
3924  // Operand[1] = Unwind block destination
3925  // Operand[n] = BasicBlock to go to on match
3926  CatchSwitchInst(const CatchSwitchInst &CSI);
3927 
3928  /// Create a new switch instruction, specifying a
3929  /// default destination. The number of additional handlers can be specified
3930  /// here to make memory allocation more efficient.
3931  /// This constructor can also autoinsert before another instruction.
3932  CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
3933  unsigned NumHandlers, const Twine &NameStr,
3934  Instruction *InsertBefore);
3935 
3936  /// Create a new switch instruction, specifying a
3937  /// default destination. The number of additional handlers can be specified
3938  /// here to make memory allocation more efficient.
3939  /// This constructor also autoinserts at the end of the specified BasicBlock.
3940  CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
3941  unsigned NumHandlers, const Twine &NameStr,
3942  BasicBlock *InsertAtEnd);
3943 
3944  // allocate space for exactly zero operands
3945  void *operator new(size_t s) { return User::operator new(s); }
3946 
3947  void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
3948  void growOperands(unsigned Size);
3949 
3950 protected:
3951  // Note: Instruction needs to be a friend here to call cloneImpl.
3952  friend class Instruction;
3953 
3954  CatchSwitchInst *cloneImpl() const;
3955 
3956 public:
3957  static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
3958  unsigned NumHandlers,
3959  const Twine &NameStr = "",
3960  Instruction *InsertBefore = nullptr) {
3961  return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
3962  InsertBefore);
3963  }
3964 
3965  static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
3966  unsigned NumHandlers, const Twine &NameStr,
3967  BasicBlock *InsertAtEnd) {
3968  return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
3969  InsertAtEnd);
3970  }
3971 
3972  /// Provide fast operand accessors
3974 
3975  // Accessor Methods for CatchSwitch stmt
3976  Value *getParentPad() const { return getOperand(0); }
3977  void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
3978 
3979  // Accessor Methods for CatchSwitch stmt
3980  bool hasUnwindDest() const { return getSubclassDataFromInstruction() & 1; }
3981  bool unwindsToCaller() const { return !hasUnwindDest(); }
3983  if (hasUnwindDest())
3984  return cast<BasicBlock>(getOperand(1));
3985  return nullptr;
3986  }
3987  void setUnwindDest(BasicBlock *UnwindDest) {
3988  assert(UnwindDest);
3989  assert(hasUnwindDest());
3990  setOperand(1, UnwindDest);
3991  }
3992 
3993  /// return the number of 'handlers' in this catchswitch
3994  /// instruction, except the default handler
3995  unsigned getNumHandlers() const {
3996  if (hasUnwindDest())
3997  return getNumOperands() - 2;
3998  return getNumOperands() - 1;
3999  }
4000 
4001 private:
4002  static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4003  static const BasicBlock *handler_helper(const Value *V) {
4004  return cast<BasicBlock>(V);
4005  }
4006 
4007 public:
4008  using DerefFnTy = BasicBlock *(*)(Value *);
4011  using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4012  using const_handler_iterator =
4015 
4016  /// Returns an iterator that points to the first handler in CatchSwitchInst.
4018  op_iterator It = op_begin() + 1;
4019  if (hasUnwindDest())
4020  ++It;
4021  return handler_iterator(It, DerefFnTy(handler_helper));
4022  }
4023 
4024  /// Returns an iterator that points to the first handler in the
4025  /// CatchSwitchInst.
4026  const_handler_iterator handler_begin() const {
4027  const_op_iterator It = op_begin() + 1;
4028  if (hasUnwindDest())
4029  ++It;
4030  return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4031  }
4032 
4033  /// Returns a read-only iterator that points one past the last
4034  /// handler in the CatchSwitchInst.
4036  return handler_iterator(op_end(), DerefFnTy(handler_helper));
4037  }
4038 
4039  /// Returns an iterator that points one past the last handler in the
4040  /// CatchSwitchInst.
4041  const_handler_iterator handler_end() const {
4042  return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4043  }
4044 
4045  /// iteration adapter for range-for loops.
4047  return make_range(handler_begin(), handler_end());
4048  }
4049 
4050  /// iteration adapter for range-for loops.
4052  return make_range(handler_begin(), handler_end());
4053  }
4054 
4055  /// Add an entry to the switch instruction...
4056  /// Note:
4057  /// This action invalidates handler_end(). Old handler_end() iterator will
4058  /// point to the added handler.
4059  void addHandler(BasicBlock *Dest);
4060 
4061  void removeHandler(handler_iterator HI);
4062 
4063  unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4064  BasicBlock *getSuccessor(unsigned Idx) const {
4065  assert(Idx < getNumSuccessors() &&
4066  "Successor # out of range for catchswitch!");
4067  return cast<BasicBlock>(getOperand(Idx + 1));
4068  }
4069  void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4070  assert(Idx < getNumSuccessors() &&
4071  "Successor # out of range for catchswitch!");
4072  setOperand(Idx + 1, NewSucc);
4073  }
4074 
4075  // Methods for support type inquiry through isa, cast, and dyn_cast:
4076  static bool classof(const Instruction *I) {
4077  return I->getOpcode() == Instruction::CatchSwitch;
4078  }
4079  static bool classof(const Value *V) {
4080  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4081  }
4082 };
4083 
4084 template <>
4086 
4087 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)
4088 
4089 //===----------------------------------------------------------------------===//
4090 // CleanupPadInst Class
4091 //===----------------------------------------------------------------------===//
4093 private:
4094  explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4095  unsigned Values, const Twine &NameStr,
4096  Instruction *InsertBefore)
4097  : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4098  NameStr, InsertBefore) {}
4099  explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4100  unsigned Values, const Twine &NameStr,
4101  BasicBlock *InsertAtEnd)
4102  : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4103  NameStr, InsertAtEnd) {}
4104 
4105 public:
4106  static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None,
4107  const Twine &NameStr = "",
4108  Instruction *InsertBefore = nullptr) {
4109  unsigned Values = 1 + Args.size();
4110  return new (Values)
4111  CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
4112  }
4113 
4114  static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
4115  const Twine &NameStr, BasicBlock *InsertAtEnd) {
4116  unsigned Values = 1 + Args.size();
4117  return new (Values)
4118  CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
4119  }
4120 
4121  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4122  static bool classof(const Instruction *I) {
4123  return I->getOpcode() == Instruction::CleanupPad;
4124  }
4125  static bool classof(const Value *V) {
4126  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4127  }
4128 };
4129 
4130 //===----------------------------------------------------------------------===//
4131 // CatchPadInst Class
4132 //===----------------------------------------------------------------------===//
4134 private:
4135  explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4136  unsigned Values, const Twine &NameStr,
4137  Instruction *InsertBefore)
4138  : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4139  NameStr, InsertBefore) {}
4140  explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4141  unsigned Values, const Twine &NameStr,
4142  BasicBlock *InsertAtEnd)
4143  : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4144  NameStr, InsertAtEnd) {}
4145 
4146 public:
4147  static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4148  const Twine &NameStr = "",
4149  Instruction *InsertBefore = nullptr) {
4150  unsigned Values = 1 + Args.size();
4151  return new (Values)
4152  CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4153  }
4154 
4155  static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4156  const Twine &NameStr, BasicBlock *InsertAtEnd) {
4157  unsigned Values = 1 + Args.size();
4158  return new (Values)
4159  CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
4160  }
4161 
4162  /// Convenience accessors
4163  CatchSwitchInst *getCatchSwitch() const {
4164  return cast<CatchSwitchInst>(Op<-1>());
4165  }
4166  void setCatchSwitch(Value *CatchSwitch) {
4167  assert(CatchSwitch);
4168  Op<-1>() = CatchSwitch;
4169  }
4170 
4171  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4172  static bool classof(const Instruction *I) {
4173  return I->getOpcode() == Instruction::CatchPad;
4174  }
4175  static bool classof(const Value *V) {
4176  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4177  }
4178 };
4179 
4180 //===----------------------------------------------------------------------===//
4181 // CatchReturnInst Class
4182 //===----------------------------------------------------------------------===//
4183 
4185  CatchReturnInst(const CatchReturnInst &RI);
4186  CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
4187  CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
4188 
4189  void init(Value *CatchPad, BasicBlock *BB);
4190 
4191 protected:
4192  // Note: Instruction needs to be a friend here to call cloneImpl.
4193  friend class Instruction;
4194 
4195  CatchReturnInst *cloneImpl() const;
4196 
4197 public:
4198  static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4199  Instruction *InsertBefore = nullptr) {
4200  assert(CatchPad);
4201  assert(BB);
4202  return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
4203  }
4204 
4205  static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4206  BasicBlock *InsertAtEnd) {
4207  assert(CatchPad);
4208  assert(BB);
4209  return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
4210  }
4211 
4212  /// Provide fast operand accessors
4214 
4215  /// Convenience accessors.
4216  CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
4217  void setCatchPad(CatchPadInst *CatchPad) {
4218  assert(CatchPad);
4219  Op<0>() = CatchPad;
4220  }
4221 
4222  BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
4223  void setSuccessor(BasicBlock *NewSucc) {
4224  assert(NewSucc);
4225  Op<1>() = NewSucc;
4226  }
4227  unsigned getNumSuccessors() const { return 1; }
4228 
4229  /// Get the parentPad of this catchret's catchpad's catchswitch.
4230  /// The successor block is implicitly a member of this funclet.
4231  Value *getCatchSwitchParentPad() const {
4232  return getCatchPad()->getCatchSwitch()->getParentPad();
4233  }
4234 
4235  // Methods for support type inquiry through isa, cast, and dyn_cast:
4236  static bool classof(const Instruction *I) {
4237  return (I->getOpcode() == Instruction::CatchRet);
4238  }
4239  static bool classof(const Value *V) {
4240  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4241  }
4242 
4243 private:
4244  BasicBlock *getSuccessor(unsigned Idx) const {
4245  assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
4246  return getSuccessor();
4247  }
4248 
4249  void setSuccessor(unsigned Idx, BasicBlock *B) {
4250  assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
4251  setSuccessor(B);
4252  }
4253 };
4254 
4255 template <>
4257  : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4258 
4259 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)
4260 
4261 //===----------------------------------------------------------------------===//
4262 // CleanupReturnInst Class
4263 //===----------------------------------------------------------------------===//
4264 
4266 private:
4268  CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4269  Instruction *InsertBefore = nullptr);
4270  CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4271  BasicBlock *InsertAtEnd);
4272 
4273  void init(Value *CleanupPad, BasicBlock *UnwindBB);
4274 
4275 protected:
4276  // Note: Instruction needs to be a friend here to call cloneImpl.
4277  friend class Instruction;
4278 
4279  CleanupReturnInst *cloneImpl() const;
4280 
4281 public:
4282  static CleanupReturnInst *Create(Value *CleanupPad,
4283  BasicBlock *UnwindBB = nullptr,
4284  Instruction *InsertBefore = nullptr) {
4285  assert(CleanupPad);
4286  unsigned Values = 1;
4287  if (UnwindBB)
4288  ++Values;
4289  return new (Values)
4290  CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
4291  }
4292 
4293  static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
4294  BasicBlock *InsertAtEnd) {
4295  assert(CleanupPad);
4296  unsigned Values = 1;
4297  if (UnwindBB)
4298  ++Values;
4299  return new (Values)
4300  CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
4301  }
4302 
4303  /// Provide fast operand accessors
4305 
4306  bool hasUnwindDest() const { return getSubclassDataFromInstruction() & 1; }
4307  bool unwindsToCaller() const { return !hasUnwindDest(); }
4308 
4309  /// Convenience accessor.
4311  return cast<CleanupPadInst>(Op<0>());
4312  }
4313  void setCleanupPad(CleanupPadInst *CleanupPad) {
4314  assert(CleanupPad);
4315  Op<0>() = CleanupPad;
4316  }
4317 
4318  unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4319 
4321  return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4322  }
4323  void setUnwindDest(BasicBlock *NewDest) {
4324  assert(NewDest);
4325  assert(hasUnwindDest());
4326  Op<1>() = NewDest;
4327  }
4328 
4329  // Methods for support type inquiry through isa, cast, and dyn_cast:
4330  static bool classof(const Instruction *I) {
4331  return (I->getOpcode() == Instruction::CleanupRet);
4332  }
4333  static bool classof(const Value *V) {
4334  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4335  }
4336 
4337 private:
4338  BasicBlock *getSuccessor(unsigned Idx) const {
4339  assert(Idx == 0);
4340  return getUnwindDest();
4341  }
4342 
4343  void setSuccessor(unsigned Idx, BasicBlock *B) {
4344  assert(Idx == 0);
4345  setUnwindDest(B);
4346  }
4347 
4348  // Shadow Instruction::setInstructionSubclassData with a private forwarding
4349  // method so that subclasses cannot accidentally use it.
4350  void setInstructionSubclassData(unsigned short D) {
4352  }
4353 };
4354 
4355 template <>
4357  : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
4358 
4359 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)
4360 
4361 //===----------------------------------------------------------------------===//
4362 // UnreachableInst Class
4363 //===----------------------------------------------------------------------===//
4364 
4365 //===---------------------------------------------------------------------------
4366 /// This function has undefined behavior. In particular, the
4367 /// presence of this instruction indicates some higher level knowledge that the
4368 /// end of the block cannot be reached.
4369 ///
4371 protected:
4372  // Note: Instruction needs to be a friend here to call cloneImpl.
4373  friend class Instruction;
4374 
4375  UnreachableInst *cloneImpl() const;
4376 
4377 public:
4378  explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
4379  explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
4380 
4381  // allocate space for exactly zero operands
4382  void *operator new(size_t s) {
4383  return User::operator new(s, 0);
4384  }
4385 
4386  unsigned getNumSuccessors() const { return 0; }
4387 
4388  // Methods for support type inquiry through isa, cast, and dyn_cast:
4389  static bool classof(const Instruction *I) {
4390  return I->getOpcode() == Instruction::Unreachable;
4391  }
4392  static bool classof(const Value *V) {
4393  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4394  }
4395 
4396 private:
4397  BasicBlock *getSuccessor(unsigned idx) const {
4398  llvm_unreachable("UnreachableInst has no successors!");
4399  }
4400 
4401  void setSuccessor(unsigned idx, BasicBlock *B) {
4402  llvm_unreachable("UnreachableInst has no successors!");
4403  }
4404 };
4405 
4406 //===----------------------------------------------------------------------===//
4407 // TruncInst Class
4408 //===----------------------------------------------------------------------===//
4409 
4410 /// This class represents a truncation of integer types.
4411 class TruncInst : public CastInst {
4412 protected:
4413  // Note: Instruction needs to be a friend here to call cloneImpl.
4414  friend class Instruction;
4415 
4416  /// Clone an identical TruncInst
4417  TruncInst *cloneImpl() const;
4418 
4419 public:
4420  /// Constructor with insert-before-instruction semantics
4421  TruncInst(
4422  Value *S, ///< The value to be truncated
4423  Type *Ty, ///< The (smaller) type to truncate to
4424  const Twine &NameStr = "", ///< A name for the new instruction
4425  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4426  );
4427 
4428  /// Constructor with insert-at-end-of-block semantics
4429  TruncInst(
4430  Value *S, ///< The value to be truncated
4431  Type *Ty, ///< The (smaller) type to truncate to
4432  const Twine &NameStr, ///< A name for the new instruction
4433  BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4434  );
4435 
4436  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4437  static bool classof(const Instruction *I) {
4438  return I->getOpcode() == Trunc;
4439  }
4440  static bool classof(const Value *V) {
4441  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4442  }
4443 };
4444 
4445 //===----------------------------------------------------------------------===//
4446 // ZExtInst Class
4447 //===----------------------------------------------------------------------===//
4448 
4449 /// This class represents zero extension of integer types.
4450 class ZExtInst : public CastInst {
4451 protected:
4452  // Note: Instruction needs to be a friend here to call cloneImpl.
4453  friend class Instruction;
4454 
4455  /// Clone an identical ZExtInst
4456  ZExtInst *cloneImpl() const;
4457 
4458 public:
4459  /// Constructor with insert-before-instruction semantics
4460  ZExtInst(
4461  Value *S, ///< The value to be zero extended
4462  Type *Ty, ///< The type to zero extend to
4463  const Twine &NameStr = "", ///< A name for the new instruction
4464  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4465  );
4466 
4467  /// Constructor with insert-at-end semantics.
4468  ZExtInst(
4469  Value *S, ///< The value to be zero extended
4470  Type *Ty, ///< The type to zero extend to
4471  const Twine &NameStr, ///< A name for the new instruction
4472  BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4473  );
4474 
4475  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4476  static bool classof(const Instruction *I) {
4477  return I->getOpcode() == ZExt;
4478  }
4479  static bool classof(const Value *V) {
4480  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4481  }
4482 };
4483 
4484 //===----------------------------------------------------------------------===//
4485 // SExtInst Class
4486 //===----------------------------------------------------------------------===//
4487 
4488 /// This class represents a sign extension of integer types.
4489 class SExtInst : public CastInst {
4490 protected:
4491  // Note: Instruction needs to be a friend here to call cloneImpl.
4492  friend class Instruction;
4493 
4494  /// Clone an identical SExtInst
4495  SExtInst *cloneImpl() const;
4496 
4497 public:
4498  /// Constructor with insert-before-instruction semantics
4499  SExtInst(
4500  Value *S, ///< The value to be sign extended
4501  Type *Ty, ///< The type to sign extend to
4502  const Twine &NameStr = "", ///< A name for the new instruction
4503  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4504  );
4505 
4506  /// Constructor with insert-at-end-of-block semantics
4507  SExtInst(
4508  Value *S, ///< The value to be sign extended
4509  Type *Ty, ///< The type to sign extend to
4510  const Twine &NameStr, ///< A name for the new instruction
4511  BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4512  );
4513 
4514  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4515  static bool classof(const Instruction *I) {
4516  return I->getOpcode() == SExt;
4517  }
4518  static bool classof(const Value *V) {
4519  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4520  }
4521 };
4522 
4523 //===----------------------------------------------------------------------===//
4524 // FPTruncInst Class
4525 //===----------------------------------------------------------------------===//
4526 
4527 /// This class represents a truncation of floating point types.
4528 class FPTruncInst : public CastInst {
4529 protected:
4530  // Note: Instruction needs to be a friend here to call cloneImpl.
4531  friend class Instruction;
4532 
4533  /// Clone an identical FPTruncInst
4534  FPTruncInst *cloneImpl() const;
4535 
4536 public:
4537  /// Constructor with insert-before-instruction semantics
4538  FPTruncInst(
4539  Value *S, ///< The value to be truncated
4540  Type *Ty, ///< The type to truncate to
4541  const Twine &NameStr = "", ///< A name for the new instruction
4542  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4543  );
4544 
4545  /// Constructor with insert-before-instruction semantics
4546  FPTruncInst(
4547  Value *S, ///< The value to be truncated
4548  Type *Ty, ///< The type to truncate to
4549  const Twine &NameStr, ///< A name for the new instruction
4550  BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4551  );
4552 
4553  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4554  static bool classof(const Instruction *I) {
4555  return I->getOpcode() == FPTrunc;
4556  }
4557  static bool classof(const Value *V) {
4558  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4559  }
4560 };
4561 
4562 //===----------------------------------------------------------------------===//
4563 // FPExtInst Class
4564 //===----------------------------------------------------------------------===//
4565 
4566 /// This class represents an extension of floating point types.
4567 class FPExtInst : public CastInst {
4568 protected:
4569  // Note: Instruction needs to be a friend here to call cloneImpl.
4570  friend class Instruction;
4571 
4572  /// Clone an identical FPExtInst
4573  FPExtInst *cloneImpl() const;
4574 
4575 public:
4576  /// Constructor with insert-before-instruction semantics
4577  FPExtInst(
4578  Value *S, ///< The value to be extended
4579  Type *Ty, ///< The type to extend to
4580  const Twine &NameStr = "", ///< A name for the new instruction
4581  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4582  );
4583 
4584  /// Constructor with insert-at-end-of-block semantics
4585  FPExtInst(
4586  Value *S, ///< The value to be extended
4587  Type *Ty, ///< The type to extend to
4588  const Twine &NameStr, ///< A name for the new instruction
4589  BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4590  );
4591 
4592  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4593  static bool classof(const Instruction *I) {
4594  return I->getOpcode() == FPExt;
4595  }
4596  static bool classof(const Value *V) {
4597  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4598  }
4599 };
4600 
4601 //===----------------------------------------------------------------------===//
4602 // UIToFPInst Class
4603 //===----------------------------------------------------------------------===//
4604 
4605 /// This class represents a cast unsigned integer to floating point.
4606 class UIToFPInst : public CastInst {
4607 protected:
4608  // Note: Instruction needs to be a friend here to call cloneImpl.
4609  friend class Instruction;
4610 
4611  /// Clone an identical UIToFPInst
4612  UIToFPInst *cloneImpl() const;
4613 
4614 public:
4615  /// Constructor with insert-before-instruction semantics
4616  UIToFPInst(
4617  Value *S, ///< The value to be converted
4618  Type *Ty, ///< The type to convert to
4619  const Twine &NameStr = "", ///< A name for the new instruction
4620  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4621  );
4622 
4623  /// Constructor with insert-at-end-of-block semantics
4624  UIToFPInst(
4625  Value *S, ///< The value to be converted
4626  Type *Ty, ///< The type to convert to
4627  const Twine &NameStr, ///< A name for the new instruction
4628  BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4629  );
4630 
4631  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4632  static bool classof(const Instruction *I) {
4633  return I->getOpcode() == UIToFP;
4634  }
4635  static bool classof(const Value *V) {
4636  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4637  }
4638 };
4639 
4640 //===----------------------------------------------------------------------===//
4641 // SIToFPInst Class
4642 //===----------------------------------------------------------------------===//
4643 
4644 /// This class represents a cast from signed integer to floating point.
4645 class SIToFPInst : public CastInst {
4646 protected:
4647  // Note: Instruction needs to be a friend here to call cloneImpl.
4648  friend class Instruction;
4649 
4650  /// Clone an identical SIToFPInst
4651  SIToFPInst *cloneImpl() const;
4652 
4653 public:
4654  /// Constructor with insert-before-instruction semantics
4655  SIToFPInst(
4656  Value *S, ///< The value to be converted
4657  Type *Ty, ///< The type to convert to
4658  const Twine &NameStr = "", ///< A name for the new instruction
4659  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4660  );
4661 
4662  /// Constructor with insert-at-end-of-block semantics
4663  SIToFPInst(
4664  Value *S, ///< The value to be converted
4665  Type *Ty, ///< The type to convert to
4666  const Twine &NameStr, ///< A name for the new instruction
4667  BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4668  );
4669 
4670  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4671  static bool classof(const Instruction *I) {
4672  return I->getOpcode() == SIToFP;
4673  }
4674  static bool classof(const Value *V) {
4675  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4676  }
4677 };
4678 
4679 //===----------------------------------------------------------------------===//
4680 // FPToUIInst Class
4681 //===----------------------------------------------------------------------===//
4682 
4683 /// This class represents a cast from floating point to unsigned integer
4684 class FPToUIInst : public CastInst {
4685 protected:
4686  // Note: Instruction needs to be a friend here to call cloneImpl.
4687  friend class Instruction;
4688 
4689  /// Clone an identical FPToUIInst
4690  FPToUIInst *cloneImpl() const;
4691 
4692 public:
4693  /// Constructor with insert-before-instruction semantics
4694  FPToUIInst(
4695  Value *S, ///< The value to be converted
4696  Type *Ty, ///< The type to convert to
4697  const Twine &NameStr = "", ///< A name for the new instruction
4698  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4699  );
4700 
4701  /// Constructor with insert-at-end-of-block semantics
4702  FPToUIInst(
4703  Value *S, ///< The value to be converted
4704  Type *Ty, ///< The type to convert to
4705  const Twine &NameStr, ///< A name for the new instruction
4706  BasicBlock *InsertAtEnd ///< Where to insert the new instruction
4707  );
4708 
4709  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4710  static bool classof(const Instruction *I) {
4711  return I->getOpcode() == FPToUI;
4712  }
4713  static bool classof(const Value *V) {
4714  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4715  }
4716 };
4717 
4718 //===----------------------------------------------------------------------===//
4719 // FPToSIInst Class
4720 //===----------------------------------------------------------------------===//
4721 
4722 /// This class represents a cast from floating point to signed integer.
4723 class FPToSIInst : public CastInst {
4724 protected:
4725  // Note: Instruction needs to be a friend here to call cloneImpl.
4726  friend class Instruction;
4727 
4728  /// Clone an identical FPToSIInst
4729  FPToSIInst *cloneImpl() const;
4730 
4731 public:
4732  /// Constructor with insert-before-instruction semantics
4733  FPToSIInst(
4734  Value *S, ///< The value to be converted
4735  Type *Ty, ///< The type to convert to
4736  const Twine &NameStr = "", ///< A name for the new instruction
4737  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4738  );
4739 
4740  /// Constructor with insert-at-end-of-block semantics
4741  FPToSIInst(
4742  Value *S, ///< The value to be converted
4743  Type *Ty, ///< The type to convert to
4744  const Twine &NameStr, ///< A name for the new instruction
4745  BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4746  );
4747 
4748  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4749  static bool classof(const Instruction *I) {
4750  return I->getOpcode() == FPToSI;
4751  }
4752  static bool classof(const Value *V) {
4753  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4754  }
4755 };
4756 
4757 //===----------------------------------------------------------------------===//
4758 // IntToPtrInst Class
4759 //===----------------------------------------------------------------------===//
4760 
4761 /// This class represents a cast from an integer to a pointer.
4762 class IntToPtrInst : public CastInst {
4763 public:
4764  // Note: Instruction needs to be a friend here to call cloneImpl.
4765  friend class Instruction;
4766 
4767  /// Constructor with insert-before-instruction semantics
4768  IntToPtrInst(
4769  Value *S, ///< The value to be converted
4770  Type *Ty, ///< The type to convert to
4771  const Twine &NameStr = "", ///< A name for the new instruction
4772  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4773  );
4774 
4775  /// Constructor with insert-at-end-of-block semantics
4776  IntToPtrInst(
4777  Value *S, ///< The value to be converted
4778  Type *Ty, ///< The type to convert to
4779  const Twine &NameStr, ///< A name for the new instruction
4780  BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4781  );
4782 
4783  /// Clone an identical IntToPtrInst.
4784  IntToPtrInst *cloneImpl() const;
4785 
4786  /// Returns the address space of this instruction's pointer type.
4787  unsigned getAddressSpace() const {
4788  return getType()->getPointerAddressSpace();
4789  }
4790 
4791  // Methods for support type inquiry through isa, cast, and dyn_cast:
4792  static bool classof(const Instruction *I) {
4793  return I->getOpcode() == IntToPtr;
4794  }
4795  static bool classof(const Value *V) {
4796  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4797  }
4798 };
4799 
4800 //===----------------------------------------------------------------------===//
4801 // PtrToIntInst Class
4802 //===----------------------------------------------------------------------===//
4803 
4804 /// This class represents a cast from a pointer to an integer.
4805 class PtrToIntInst : public CastInst {
4806 protected:
4807  // Note: Instruction needs to be a friend here to call cloneImpl.
4808  friend class Instruction;
4809 
4810  /// Clone an identical PtrToIntInst.
4811  PtrToIntInst *cloneImpl() const;
4812 
4813 public:
4814  /// Constructor with insert-before-instruction semantics
4815  PtrToIntInst(
4816  Value *S, ///< The value to be converted
4817  Type *Ty, ///< The type to convert to
4818  const Twine &NameStr = "", ///< A name for the new instruction
4819  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4820  );
4821 
4822  /// Constructor with insert-at-end-of-block semantics
4823  PtrToIntInst(
4824  Value *S, ///< The value to be converted
4825  Type *Ty, ///< The type to convert to
4826  const Twine &NameStr, ///< A name for the new instruction
4827  BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4828  );
4829 
4830  /// Gets the pointer operand.
4831  Value *getPointerOperand() { return getOperand(0); }
4832  /// Gets the pointer operand.
4833  const Value *getPointerOperand() const { return getOperand(0); }
4834  /// Gets the operand index of the pointer operand.
4835  static unsigned getPointerOperandIndex() { return 0U; }
4836 
4837  /// Returns the address space of the pointer operand.
4838  unsigned getPointerAddressSpace() const {
4840  }
4841 
4842  // Methods for support type inquiry through isa, cast, and dyn_cast:
4843  static bool classof(const Instruction *I) {
4844  return I->getOpcode() == PtrToInt;
4845  }
4846  static bool classof(const Value *V) {
4847  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4848  }
4849 };
4850 
4851 //===----------------------------------------------------------------------===//
4852 // BitCastInst Class
4853 //===----------------------------------------------------------------------===//
4854 
4855 /// This class represents a no-op cast from one type to another.
4856 class BitCastInst : public CastInst {
4857 protected:
4858  // Note: Instruction needs to be a friend here to call cloneImpl.
4859  friend class Instruction;
4860 
4861  /// Clone an identical BitCastInst.
4862  BitCastInst *cloneImpl() const;
4863 
4864 public:
4865  /// Constructor with insert-before-instruction semantics
4866  BitCastInst(
4867  Value *S, ///< The value to be casted
4868  Type *Ty, ///< The type to casted to
4869  const Twine &NameStr = "", ///< A name for the new instruction
4870  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4871  );
4872 
4873  /// Constructor with insert-at-end-of-block semantics
4874  BitCastInst(
4875  Value *S, ///< The value to be casted
4876  Type *Ty, ///< The type to casted to
4877  const Twine &NameStr, ///< A name for the new instruction
4878  BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4879  );
4880 
4881  // Methods for support type inquiry through isa, cast, and dyn_cast:
4882  static bool classof(const Instruction *I) {
4883  return I->getOpcode() == BitCast;
4884  }
4885  static bool classof(const Value *V) {
4886  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4887  }
4888 };
4889 
4890 //===----------------------------------------------------------------------===//
4891 // AddrSpaceCastInst Class
4892 //===----------------------------------------------------------------------===//
4893 
4894 /// This class represents a conversion between pointers from one address space
4895 /// to another.
4896 class AddrSpaceCastInst : public CastInst {
4897 protected:
4898  // Note: Instruction needs to be a friend here to call cloneImpl.
4899  friend class Instruction;
4900 
4901  /// Clone an identical AddrSpaceCastInst.
4902  AddrSpaceCastInst *cloneImpl() const;
4903 
4904 public:
4905  /// Constructor with insert-before-instruction semantics
4907  Value *S, ///< The value to be casted
4908  Type *Ty, ///< The type to casted to
4909  const Twine &NameStr = "", ///< A name for the new instruction
4910  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4911  );
4912 
4913  /// Constructor with insert-at-end-of-block semantics
4915  Value *S, ///< The value to be casted
4916  Type *Ty, ///< The type to casted to
4917