58#define DEBUG_TYPE "legalizedag"
64struct FloatSignAsInt {
87class SelectionDAGLegalize {
99 EVT getSetCCResultType(
EVT VT)
const {
110 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
131 std::pair<SDValue, SDValue> ExpandLibCall(RTLIB::Libcall LC,
SDNode *
Node,
133 bool IsSigned,
EVT RetVT);
134 std::pair<SDValue, SDValue> ExpandLibCall(RTLIB::Libcall LC,
SDNode *
Node,
bool isSigned);
136 void ExpandFPLibCall(
SDNode *
Node, RTLIB::Libcall LC,
138 void ExpandFPLibCall(
SDNode *
Node, RTLIB::Libcall Call_F32,
139 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
140 RTLIB::Libcall Call_F128,
141 RTLIB::Libcall Call_PPCF128,
145 ExpandFastFPLibCall(
SDNode *
Node,
bool IsFast,
146 std::pair<RTLIB::Libcall, RTLIB::Libcall> Call_F32,
147 std::pair<RTLIB::Libcall, RTLIB::Libcall> Call_F64,
148 std::pair<RTLIB::Libcall, RTLIB::Libcall> Call_F80,
149 std::pair<RTLIB::Libcall, RTLIB::Libcall> Call_F128,
150 std::pair<RTLIB::Libcall, RTLIB::Libcall> Call_PPCF128,
154 RTLIB::Libcall Call_I16, RTLIB::Libcall Call_I32,
155 RTLIB::Libcall Call_I64, RTLIB::Libcall Call_I128);
157 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64,
158 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128,
159 RTLIB::Libcall Call_PPCF128,
162 RTLIB::Libcall CallI64,
163 RTLIB::Libcall CallI128);
177 void getSignAsIntValue(FloatSignAsInt &State,
const SDLoc &
DL,
179 SDValue modifySignAsInt(
const FloatSignAsInt &State,
const SDLoc &
DL,
227 dbgs() <<
" with: "; New->dump(&DAG));
230 "Replacing one node with another that produces a different number "
234 UpdatedNodes->
insert(New);
240 dbgs() <<
" with: "; New->dump(&DAG));
244 UpdatedNodes->
insert(New.getNode());
245 ReplacedNode(Old.getNode());
252 for (
unsigned i = 0, e = Old->
getNumValues(); i != e; ++i) {
263 dbgs() <<
" with: "; New->dump(&DAG));
267 UpdatedNodes->
insert(New.getNode());
268 ReplacedNode(Old.getNode());
278 bool isObjectScalable) {
286 ObjectSize, MFI.getObjectAlign(FI));
293SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType(
298 unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
300 assert(NumEltsGrowth &&
"Cannot promote to vector type with fewer elts!");
302 if (NumEltsGrowth == 1)
305 SmallVector<int, 8> NewMask;
306 for (
unsigned i = 0; i != NumMaskElts; ++i) {
308 for (
unsigned j = 0;
j != NumEltsGrowth; ++
j) {
312 NewMask.
push_back(Idx * NumEltsGrowth + j);
315 assert(NewMask.
size() == NumDestElts &&
"Non-integer NumEltsGrowth?");
323SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP,
bool UseCP) {
336 assert((VT == MVT::f64 || VT == MVT::f32) &&
"Invalid type expansion");
338 (VT == MVT::f64) ? MVT::i64 : MVT::i32);
348 while (SVT != MVT::f32 && SVT != MVT::f16 && SVT != MVT::bf16) {
381SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) {
383 EVT VT =
CP->getValueType(0);
413 SmallVector<int, 8> ShufOps;
414 for (
unsigned i = 0; i != NumElts; ++i)
415 ShufOps.
push_back(i != InsertPos->getZExtValue() ? i : NumElts);
420 return ExpandInsertToVectorThroughStack(
Op);
423SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
438 AAMDNodes AAInfo =
ST->getAAInfo();
449 bitcastToAPInt().zextOrTrunc(32),
450 SDLoc(CFP), MVT::i32);
451 return DAG.
getStore(Chain, dl, Con, Ptr,
ST->getPointerInfo(),
452 ST->getBaseAlign(), MMOFlags, AAInfo);
460 zextOrTrunc(64), SDLoc(CFP), MVT::i64);
461 return DAG.
getStore(Chain, dl, Con, Ptr,
ST->getPointerInfo(),
462 ST->getBaseAlign(), MMOFlags, AAInfo);
476 ST->getBaseAlign(), MMOFlags, AAInfo);
479 ST->getPointerInfo().getWithOffset(4),
480 ST->getBaseAlign(), MMOFlags, AAInfo);
489void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
496 AAMDNodes AAInfo =
ST->getAAInfo();
498 if (!
ST->isTruncatingStore()) {
500 if (SDNode *OptStore = OptimizeFloatStore(ST).
getNode()) {
501 ReplaceNode(ST, OptStore);
506 MVT VT =
Value.getSimpleValueType();
509 case TargetLowering::Legal: {
512 EVT MemVT =
ST->getMemoryVT();
515 *
ST->getMemOperand())) {
518 ReplaceNode(
SDValue(ST, 0), Result);
523 case TargetLowering::Custom: {
526 if (Res && Res !=
SDValue(Node, 0))
527 ReplaceNode(
SDValue(Node, 0), Res);
530 case TargetLowering::Promote: {
533 "Can only promote stores to same size type");
536 ST->getBaseAlign(), MMOFlags, AAInfo);
537 ReplaceNode(
SDValue(Node, 0), Result);
546 EVT StVT =
ST->getMemoryVT();
551 if (StWidth != StSize) {
559 ST->getBaseAlign(), MMOFlags, AAInfo);
560 ReplaceNode(
SDValue(Node, 0), Result);
565 unsigned LogStWidth =
Log2_32(StWidthBits);
567 unsigned RoundWidth = 1 << LogStWidth;
568 assert(RoundWidth < StWidthBits);
569 unsigned ExtraWidth = StWidthBits - RoundWidth;
570 assert(ExtraWidth < RoundWidth);
571 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
572 "Store size not an integral number of bytes!");
576 unsigned IncrementSize;
578 if (
DL.isLittleEndian()) {
582 RoundVT,
ST->getBaseAlign(), MMOFlags, AAInfo);
585 IncrementSize = RoundWidth / 8;
592 ST->getPointerInfo().getWithOffset(IncrementSize),
593 ExtraVT,
ST->getBaseAlign(), MMOFlags, AAInfo);
602 ST->getBaseAlign(), MMOFlags, AAInfo);
605 IncrementSize = RoundWidth / 8;
610 ST->getPointerInfo().getWithOffset(IncrementSize),
611 ExtraVT,
ST->getBaseAlign(), MMOFlags, AAInfo);
616 ReplaceNode(
SDValue(Node, 0), Result);
620 case TargetLowering::Legal: {
621 EVT MemVT =
ST->getMemoryVT();
625 *
ST->getMemOperand())) {
627 ReplaceNode(
SDValue(ST, 0), Result);
631 case TargetLowering::Custom: {
633 if (Res && Res !=
SDValue(Node, 0))
634 ReplaceNode(
SDValue(Node, 0), Res);
637 case TargetLowering::Expand:
639 "Vector Stores are handled in LegalizeVectorOps");
647 ST->getBaseAlign(), MMOFlags, AAInfo);
655 StVT,
ST->getBaseAlign(), MMOFlags, AAInfo);
658 ReplaceNode(
SDValue(Node, 0), Result);
664void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
673 LLVM_DEBUG(
dbgs() <<
"Legalizing non-extending load operation\n");
674 MVT VT =
Node->getSimpleValueType(0);
680 case TargetLowering::Legal: {
681 EVT MemVT =
LD->getMemoryVT();
686 *
LD->getMemOperand())) {
691 case TargetLowering::Custom:
698 case TargetLowering::Promote: {
701 "Can only promote loads to same size type");
705 if (
const MDNode *MD =
LD->getRanges()) {
709 LD->getMemOperand()->clearRanges();
712 RVal = DAG.
getNode(ISD::BITCAST, dl, VT, Res);
717 if (RChain.
getNode() != Node) {
718 assert(RVal.
getNode() != Node &&
"Load must be completely replaced");
722 UpdatedNodes->insert(RVal.
getNode());
723 UpdatedNodes->insert(RChain.
getNode());
731 EVT SrcVT =
LD->getMemoryVT();
734 AAMDNodes AAInfo =
LD->getAAInfo();
746 TargetLowering::Promote)) {
760 Chain, Ptr,
LD->getPointerInfo(), NVT,
761 LD->getBaseAlign(), MMOFlags, AAInfo);
773 Result.getValueType(), Result,
782 unsigned LogSrcWidth =
Log2_32(SrcWidthBits);
784 unsigned RoundWidth = 1 << LogSrcWidth;
785 assert(RoundWidth < SrcWidthBits);
786 unsigned ExtraWidth = SrcWidthBits - RoundWidth;
787 assert(ExtraWidth < RoundWidth);
788 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
789 "Load size not an integral number of bytes!");
793 unsigned IncrementSize;
796 if (
DL.isLittleEndian()) {
800 LD->getPointerInfo(), RoundVT,
LD->getBaseAlign(),
804 IncrementSize = RoundWidth / 8;
808 LD->getPointerInfo().getWithOffset(IncrementSize),
809 ExtraVT,
LD->getBaseAlign(), MMOFlags, AAInfo);
828 LD->getPointerInfo(), RoundVT,
LD->getBaseAlign(),
832 IncrementSize = RoundWidth / 8;
836 LD->getPointerInfo().getWithOffset(IncrementSize),
837 ExtraVT,
LD->getBaseAlign(), MMOFlags, AAInfo);
855 bool isCustom =
false;
859 case TargetLowering::Custom:
862 case TargetLowering::Legal:
874 EVT MemVT =
LD->getMemoryVT();
877 *
LD->getMemOperand())) {
883 case TargetLowering::Expand: {
884 EVT DestVT =
Node->getValueType(0);
898 SrcVT,
LD->getMemOperand());
902 Chain =
Load.getValue(1);
911 if (SVT == MVT::f16 || SVT == MVT::bf16) {
917 Ptr, ISrcVT,
LD->getMemOperand());
919 DAG.
getNode(SVT == MVT::f16 ? ISD::FP16_TO_FP : ISD::BF16_TO_FP,
921 Chain =
Result.getValue(1);
927 "Vector Loads are handled in LegalizeVectorOps");
934 "EXTLOAD should always be supported!");
938 Node->getValueType(0),
940 LD->getMemOperand());
949 Chain =
Result.getValue(1);
958 assert(
Value.getNode() != Node &&
"Load must be completely replaced");
962 UpdatedNodes->insert(
Value.getNode());
963 UpdatedNodes->insert(Chain.
getNode());
970void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
979 for (
unsigned i = 0, e =
Node->getNumValues(); i != e; ++i)
981 TargetLowering::TypeLegal &&
982 "Unexpected illegal type!");
986 TargetLowering::TypeLegal ||
989 "Unexpected illegal type!");
993 TargetLowering::LegalizeAction Action = TargetLowering::Legal;
994 bool SimpleFinishLegalizing =
true;
995 switch (
Node->getOpcode()) {
1006 ReplaceNode(Node, UndefNode.
getNode());
1012 case ISD::STACKSAVE:
1015 case ISD::GET_DYNAMIC_AREA_OFFSET:
1017 Node->getValueType(0));
1021 Node->getValueType(0));
1022 if (Action != TargetLowering::Promote)
1025 case ISD::SET_FPENV:
1026 case ISD::SET_FPMODE:
1028 Node->getOperand(1).getValueType());
1030 case ISD::FP_TO_FP16:
1031 case ISD::FP_TO_BF16:
1040 Node->getOperand(0).getValueType());
1042 case ISD::STRICT_FP_TO_FP16:
1043 case ISD::STRICT_FP_TO_BF16:
1054 Node->getOperand(1).getValueType());
1061 case ISD::ATOMIC_STORE:
1063 Node->getOperand(1).getValueType());
1072 unsigned Opc =
Node->getOpcode();
1079 unsigned CompareOperand =
Opc == ISD::BR_CC ? 2
1083 MVT OpVT =
Node->getOperand(CompareOperand).getSimpleValueType();
1087 if (Action == TargetLowering::Legal) {
1090 Node->getValueType(0));
1100 SimpleFinishLegalizing =
false;
1102 case ISD::CALLSEQ_START:
1103 case ISD::CALLSEQ_END:
1107 SimpleFinishLegalizing =
false;
1121 if (Action == TargetLowering::Legal)
1122 Action = TargetLowering::Expand;
1124 case ISD::INIT_TRAMPOLINE:
1125 case ISD::ADJUST_TRAMPOLINE:
1133 if (Action == TargetLowering::Legal)
1134 Action = TargetLowering::Custom;
1141 case ISD::READCYCLECOUNTER:
1142 case ISD::READSTEADYCOUNTER:
1152 Action = TargetLowering::Legal;
1154 case ISD::UBSANTRAP:
1156 if (Action == TargetLowering::Expand) {
1159 NewVal = DAG.
getNode(ISD::TRAP, SDLoc(Node),
Node->getVTList(),
1160 Node->getOperand(0));
1161 ReplaceNode(Node, NewVal.
getNode());
1166 case ISD::DEBUGTRAP:
1168 if (Action == TargetLowering::Expand) {
1171 NewVal = DAG.
getNode(ISD::TRAP, SDLoc(Node),
Node->getVTList(),
1172 Node->getOperand(0));
1173 ReplaceNode(Node, NewVal.
getNode());
1198 unsigned Scale =
Node->getConstantOperandVal(2);
1200 Node->getValueType(0), Scale);
1211 case ISD::VP_SCATTER:
1221 case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
1226 case ISD::VECREDUCE_FADD:
1227 case ISD::VECREDUCE_FMUL:
1228 case ISD::VECREDUCE_ADD:
1229 case ISD::VECREDUCE_MUL:
1230 case ISD::VECREDUCE_AND:
1231 case ISD::VECREDUCE_OR:
1232 case ISD::VECREDUCE_XOR:
1233 case ISD::VECREDUCE_SMAX:
1234 case ISD::VECREDUCE_SMIN:
1235 case ISD::VECREDUCE_UMAX:
1236 case ISD::VECREDUCE_UMIN:
1237 case ISD::VECREDUCE_FMAX:
1238 case ISD::VECREDUCE_FMIN:
1239 case ISD::VECREDUCE_FMAXIMUM:
1240 case ISD::VECREDUCE_FMINIMUM:
1243 Node->getOpcode(),
Node->getOperand(0).getValueType());
1245 case ISD::VECREDUCE_SEQ_FADD:
1246 case ISD::VECREDUCE_SEQ_FMUL:
1247 case ISD::VP_REDUCE_FADD:
1248 case ISD::VP_REDUCE_FMUL:
1249 case ISD::VP_REDUCE_ADD:
1250 case ISD::VP_REDUCE_MUL:
1251 case ISD::VP_REDUCE_AND:
1252 case ISD::VP_REDUCE_OR:
1253 case ISD::VP_REDUCE_XOR:
1254 case ISD::VP_REDUCE_SMAX:
1255 case ISD::VP_REDUCE_SMIN:
1256 case ISD::VP_REDUCE_UMAX:
1257 case ISD::VP_REDUCE_UMIN:
1258 case ISD::VP_REDUCE_FMAX:
1259 case ISD::VP_REDUCE_FMIN:
1260 case ISD::VP_REDUCE_FMAXIMUM:
1261 case ISD::VP_REDUCE_FMINIMUM:
1262 case ISD::VP_REDUCE_SEQ_FADD:
1263 case ISD::VP_REDUCE_SEQ_FMUL:
1265 Node->getOpcode(),
Node->getOperand(1).getValueType());
1267 case ISD::VP_CTTZ_ELTS:
1268 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
1270 Node->getOperand(0).getValueType());
1272 case ISD::EXPERIMENTAL_VECTOR_HISTOGRAM:
1286 if (SimpleFinishLegalizing) {
1287 SDNode *NewNode =
Node;
1288 switch (
Node->getOpcode()) {
1333 if (NewNode != Node) {
1334 ReplaceNode(Node, NewNode);
1338 case TargetLowering::Legal:
1341 case TargetLowering::Custom:
1349 if (
Node->getNumValues() == 1) {
1353 Node->getValueType(0) == MVT::Glue) &&
1354 "Type mismatch for custom legalized operation");
1357 ReplaceNode(
SDValue(Node, 0), Res);
1362 for (
unsigned i = 0, e =
Node->getNumValues(); i != e; ++i) {
1366 Node->getValueType(i) == MVT::Glue) &&
1367 "Type mismatch for custom legalized operation");
1371 ReplaceNode(Node, ResultVals.
data());
1376 case TargetLowering::Expand:
1377 if (ExpandNode(Node))
1380 case TargetLowering::LibCall:
1381 ConvertNodeToLibcall(Node);
1383 case TargetLowering::Promote:
1389 switch (
Node->getOpcode()) {
1398 case ISD::CALLSEQ_START:
1399 case ISD::CALLSEQ_END:
1402 return LegalizeLoadOps(Node);
1404 return LegalizeStoreOps(Node);
1408SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(
SDValue Op) {
1421 SmallPtrSet<const SDNode *, 32> Visited;
1428 if (
ST->isIndexed() ||
ST->isTruncatingStore() ||
1429 ST->getValue() != Vec)
1434 if (!
ST->getChain().reachesChainWithoutSideEffects(DAG.
getEntryNode()))
1443 ST->hasPredecessor(
Op.getNode()))
1463 Align ElementAlignment =
1468 if (
Op.getValueType().isVector()) {
1470 Op.getValueType(), Idx);
1471 NewLoad = DAG.
getLoad(
Op.getValueType(), dl, Ch, StackPtr,
1472 MachinePointerInfo(), ElementAlignment);
1486 NewLoadOperands[0] = Ch;
1492SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(
SDValue Op) {
1493 assert(
Op.getValueType().isVector() &&
"Non-vector insert subvector!");
1505 MachinePointerInfo PtrInfo =
1509 Align BaseVecAlignment =
1527 Ch, dl, Part, SubStackPtr,
1536 Ch, dl, Part, SubStackPtr,
1542 "ElementAlignment does not match!");
1545 return DAG.
getLoad(
Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1549SDValue SelectionDAGLegalize::ExpandConcatVectors(SDNode *Node) {
1553 unsigned NumOperands =
Node->getNumOperands();
1555 EVT VectorValueType =
Node->getOperand(0).getValueType();
1559 for (
unsigned I = 0;
I < NumOperands; ++
I) {
1561 for (
unsigned Idx = 0; Idx < NumSubElem; ++Idx) {
1570SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1573 "Unexpected opcode!");
1579 EVT VT =
Node->getValueType(0);
1581 :
Node->getOperand(0).getValueType();
1585 MachinePointerInfo PtrInfo =
1591 assert(TypeByteSize > 0 &&
"Vector element type too small for stack store!");
1596 MemVT.
bitsLT(
Node->getOperand(0).getValueType());
1599 for (
unsigned i = 0, e =
Node->getNumOperands(); i != e; ++i) {
1601 if (
Node->getOperand(i).isUndef())
continue;
1603 unsigned Offset = TypeByteSize*i;
1610 Node->getOperand(i), Idx,
1618 if (!Stores.
empty())
1624 return DAG.
getLoad(VT, dl, StoreChain, FIPtr, PtrInfo);
1630void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State,
1633 EVT FloatVT =
Value.getValueType();
1635 State.FloatVT = FloatVT;
1641 State.SignBit = NumBits - 1;
1656 State.FloatPointerInfo);
1659 if (DataLayout.isBigEndian()) {
1663 State.IntPointerInfo = State.FloatPointerInfo;
1666 unsigned ByteOffset = (NumBits / 8) - 1;
1673 State.IntPtr = IntPtr;
1675 State.IntPointerInfo, MVT::i8);
1682SDValue SelectionDAGLegalize::modifySignAsInt(
const FloatSignAsInt &State,
1686 return DAG.
getNode(ISD::BITCAST,
DL, State.FloatVT, NewIntValue);
1690 State.IntPointerInfo, MVT::i8);
1691 return DAG.
getLoad(State.FloatVT,
DL, Chain, State.FloatPtr,
1692 State.FloatPointerInfo);
1695SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node)
const {
1701 FloatSignAsInt SignAsInt;
1702 getSignAsIntValue(SignAsInt,
DL, Sign);
1722 FloatSignAsInt MagAsInt;
1723 getSignAsIntValue(MagAsInt,
DL, Mag);
1730 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit;
1731 EVT ShiftVT = IntVT;
1737 if (ShiftAmount > 0) {
1740 }
else if (ShiftAmount < 0) {
1753 return modifySignAsInt(MagAsInt,
DL, CopiedSign);
1756SDValue SelectionDAGLegalize::ExpandFNEG(SDNode *Node)
const {
1759 FloatSignAsInt SignAsInt;
1760 getSignAsIntValue(SignAsInt,
DL,
Node->getOperand(0));
1769 return modifySignAsInt(SignAsInt,
DL, SignFlip);
1772SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node)
const {
1777 EVT FloatVT =
Value.getValueType();
1784 FloatSignAsInt ValueAsInt;
1785 getSignAsIntValue(ValueAsInt,
DL,
Value);
1790 return modifySignAsInt(ValueAsInt,
DL, ClearedSign);
1793void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1794 SmallVectorImpl<SDValue> &
Results) {
1796 assert(
SPReg &&
"Target cannot require DYNAMIC_STACKALLOC expansion and"
1797 " not tell us which reg is the stack pointer!");
1799 EVT VT =
Node->getValueType(0);
1811 Chain =
SP.getValue(1);
1820 if (Alignment > StackAlign)
1835SDValue SelectionDAGLegalize::EmitStackConvert(
SDValue SrcOp, EVT SlotVT,
1836 EVT DestVT,
const SDLoc &dl) {
1837 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.
getEntryNode());
1840SDValue SelectionDAGLegalize::EmitStackConvert(
SDValue SrcOp, EVT SlotVT,
1841 EVT DestVT,
const SDLoc &dl,
1848 if ((SrcVT.
bitsGT(SlotVT) &&
1850 (SlotVT.
bitsLT(DestVT) &&
1861 MachinePointerInfo PtrInfo =
1868 if (SrcVT.
bitsGT(SlotVT))
1873 Store = DAG.
getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign);
1877 if (SlotVT.
bitsEq(DestVT))
1878 return DAG.
getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign);
1885SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1897 Node->getValueType(0).getVectorElementType());
1899 Node->getValueType(0), dl, Ch, StackPtr,
1906 unsigned NumElems =
Node->getNumOperands();
1908 EVT VT =
Node->getValueType(0);
1920 for (
unsigned i = 0; i < NumElems; ++i) {
1931 while (IntermedVals.
size() > 2) {
1932 NewIntermedVals.
clear();
1933 for (
unsigned i = 0, e = (IntermedVals.
size() & ~1u); i < e; i += 2) {
1939 FinalIndices.
reserve(IntermedVals[i].second.
size() +
1940 IntermedVals[i+1].second.
size());
1943 for (
unsigned j = 0, f = IntermedVals[i].second.
size(); j != f;
1946 FinalIndices.
push_back(IntermedVals[i].second[j]);
1948 for (
unsigned j = 0, f = IntermedVals[i+1].second.
size(); j != f;
1950 ShuffleVec[k] = NumElems + j;
1951 FinalIndices.
push_back(IntermedVals[i+1].second[j]);
1957 IntermedVals[i+1].first,
1962 std::make_pair(Shuffle, std::move(FinalIndices)));
1967 if ((IntermedVals.
size() & 1) != 0)
1970 IntermedVals.
swap(NewIntermedVals);
1974 "Invalid number of intermediate vectors");
1975 SDValue Vec1 = IntermedVals[0].first;
1977 if (IntermedVals.
size() > 1)
1978 Vec2 = IntermedVals[1].first;
1983 for (
unsigned i = 0, e = IntermedVals[0].second.
size(); i != e; ++i)
1984 ShuffleVec[IntermedVals[0].second[i]] = i;
1985 for (
unsigned i = 0, e = IntermedVals[1].second.
size(); i != e; ++i)
1986 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
1999SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
2000 unsigned NumElems =
Node->getNumOperands();
2003 EVT VT =
Node->getValueType(0);
2004 EVT OpVT =
Node->getOperand(0).getValueType();
2009 bool isOnlyLowElement =
true;
2010 bool MoreThanTwoValues =
false;
2012 for (
unsigned i = 0; i < NumElems; ++i) {
2017 isOnlyLowElement =
false;
2023 }
else if (!Value2.
getNode()) {
2026 }
else if (V != Value1 && V != Value2) {
2027 MoreThanTwoValues =
true;
2034 if (isOnlyLowElement)
2040 for (
unsigned i = 0, e = NumElems; i !=
e; ++i) {
2041 if (ConstantFPSDNode *V =
2044 }
else if (ConstantSDNode *V =
2047 CV.
push_back(
const_cast<ConstantInt *
>(
V->getConstantIntValue()));
2052 const ConstantInt *CI =
V->getConstantIntValue();
2072 SmallSet<SDValue, 16> DefinedValues;
2073 for (
unsigned i = 0; i < NumElems; ++i) {
2074 if (
Node->getOperand(i).isUndef())
2080 if (!MoreThanTwoValues) {
2081 SmallVector<int, 8> ShuffleVec(NumElems, -1);
2082 for (
unsigned i = 0; i < NumElems; ++i) {
2086 ShuffleVec[i] =
V == Value1 ? 0 : NumElems;
2108 return ExpandVectorBuildThroughStack(Node);
2111SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) {
2113 EVT VT =
Node->getValueType(0);
2124std::pair<SDValue, SDValue>
2125SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2126 TargetLowering::ArgListTy &&Args,
2127 bool IsSigned, EVT RetVT) {
2131 if (LCImpl != RTLIB::Unsupported)
2136 Node->getOperationName(&DAG));
2153 (RetTy ==
F.getReturnType() ||
F.getReturnType()->
isVoidTy());
2157 TargetLowering::CallLoweringInfo CLI(DAG);
2159 CLI.setDebugLoc(SDLoc(Node))
2163 .setTailCall(isTailCall)
2164 .setSExtResult(signExtend)
2165 .setZExtResult(!signExtend)
2166 .setIsPostTypeLegalization(
true);
2168 std::pair<SDValue, SDValue> CallInfo = TLI.
LowerCallTo(CLI);
2170 if (!CallInfo.second.getNode()) {
2176 LLVM_DEBUG(
dbgs() <<
"Created libcall: "; CallInfo.first.dump(&DAG));
2180std::pair<SDValue, SDValue> SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2182 TargetLowering::ArgListTy
Args;
2184 EVT ArgVT =
Op.getValueType();
2186 TargetLowering::ArgListEntry
Entry(
Op, ArgTy);
2189 Args.push_back(Entry);
2192 return ExpandLibCall(LC, Node, std::move(Args),
isSigned,
2193 Node->getValueType(0));
2196void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2198 SmallVectorImpl<SDValue> &
Results) {
2199 if (LC == RTLIB::UNKNOWN_LIBCALL)
2202 if (
Node->isStrictFPOpcode()) {
2203 EVT RetVT =
Node->getValueType(0);
2205 TargetLowering::MakeLibCallOptions CallOptions;
2208 std::pair<SDValue, SDValue> Tmp = TLI.
makeLibCall(DAG, LC, RetVT,
2211 Node->getOperand(0));
2213 Results.push_back(Tmp.second);
2215 bool IsSignedArgument =
Node->getOpcode() == ISD::FLDEXP;
2216 SDValue Tmp = ExpandLibCall(LC, Node, IsSignedArgument).first;
2222void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2223 RTLIB::Libcall Call_F32,
2224 RTLIB::Libcall Call_F64,
2225 RTLIB::Libcall Call_F80,
2226 RTLIB::Libcall Call_F128,
2227 RTLIB::Libcall Call_PPCF128,
2228 SmallVectorImpl<SDValue> &
Results) {
2230 Call_F32, Call_F64, Call_F80,
2231 Call_F128, Call_PPCF128);
2232 ExpandFPLibCall(Node, LC,
Results);
2235void SelectionDAGLegalize::ExpandFastFPLibCall(
2236 SDNode *Node,
bool IsFast,
2237 std::pair<RTLIB::Libcall, RTLIB::Libcall> Call_F32,
2238 std::pair<RTLIB::Libcall, RTLIB::Libcall> Call_F64,
2239 std::pair<RTLIB::Libcall, RTLIB::Libcall> Call_F80,
2240 std::pair<RTLIB::Libcall, RTLIB::Libcall> Call_F128,
2241 std::pair<RTLIB::Libcall, RTLIB::Libcall> Call_PPCF128,
2242 SmallVectorImpl<SDValue> &
Results) {
2244 EVT VT =
Node->getSimpleValueType(0);
2253 Call_F128.first, Call_PPCF128.first);
2259 Call_F80.second, Call_F128.second,
2260 Call_PPCF128.second);
2263 ExpandFPLibCall(Node, LC,
Results);
2266SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node,
bool isSigned,
2267 RTLIB::Libcall Call_I8,
2268 RTLIB::Libcall Call_I16,
2269 RTLIB::Libcall Call_I32,
2270 RTLIB::Libcall Call_I64,
2271 RTLIB::Libcall Call_I128) {
2273 switch (
Node->getSimpleValueType(0).SimpleTy) {
2275 case MVT::i8: LC = Call_I8;
break;
2276 case MVT::i16: LC = Call_I16;
break;
2277 case MVT::i32: LC = Call_I32;
break;
2278 case MVT::i64: LC = Call_I64;
break;
2279 case MVT::i128: LC = Call_I128;
break;
2281 return ExpandLibCall(LC, Node,
isSigned).first;
2286void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node,
2287 RTLIB::Libcall Call_F32,
2288 RTLIB::Libcall Call_F64,
2289 RTLIB::Libcall Call_F80,
2290 RTLIB::Libcall Call_F128,
2291 RTLIB::Libcall Call_PPCF128,
2292 SmallVectorImpl<SDValue> &
Results) {
2293 EVT InVT =
Node->getOperand(
Node->isStrictFPOpcode() ? 1 : 0).getValueType();
2295 Call_F32, Call_F64, Call_F80,
2296 Call_F128, Call_PPCF128);
2297 ExpandFPLibCall(Node, LC,
Results);
2300SDValue SelectionDAGLegalize::ExpandBitCountingLibCall(
2301 SDNode *Node, RTLIB::Libcall CallI32, RTLIB::Libcall CallI64,
2302 RTLIB::Libcall CallI128) {
2304 switch (
Node->getSimpleValueType(0).SimpleTy) {
2325 EVT ArgVT =
Op.getValueType();
2327 TargetLowering::ArgListEntry Arg(
Op, ArgTy);
2329 Arg.IsZExt = !Arg.IsSExt;
2331 SDValue Res = ExpandLibCall(LC, Node, TargetLowering::ArgListTy{Arg},
2344SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2345 SmallVectorImpl<SDValue> &
Results) {
2346 unsigned Opcode =
Node->getOpcode();
2350 switch (
Node->getSimpleValueType(0).SimpleTy) {
2352 case MVT::i8: LC=
isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8;
break;
2353 case MVT::i16: LC=
isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16;
break;
2354 case MVT::i32: LC=
isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
break;
2355 case MVT::i64: LC=
isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64;
break;
2356 case MVT::i128: LC=
isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128;
break;
2364 EVT RetVT =
Node->getValueType(0);
2367 TargetLowering::ArgListTy
Args;
2369 EVT ArgVT =
Op.getValueType();
2371 TargetLowering::ArgListEntry
Entry(
Op, ArgTy);
2374 Args.push_back(Entry);
2379 TargetLowering::ArgListEntry
Entry(
2380 FIPtr, PointerType::getUnqual(RetTy->
getContext()));
2383 Args.push_back(Entry);
2386 if (LibcallImpl == RTLIB::Unsupported) {
2388 Node->getOperationName(&DAG));
2399 TargetLowering::CallLoweringInfo CLI(DAG);
2407 std::pair<SDValue, SDValue> CallInfo = TLI.
LowerCallTo(CLI);
2411 MachinePointerInfo PtrInfo =
2414 SDValue Rem = DAG.
getLoad(RetVT, dl, CallInfo.second, FIPtr, PtrInfo);
2415 Results.push_back(CallInfo.first);
2428 unsigned OtherOpcode =
Node->getOpcode() == ISD::FSIN
2429 ? ISD::FCOS : ISD::FSIN;
2436 if (
User->getOpcode() == OtherOpcode ||
User->getOpcode() == ISD::FSINCOS)
2442SDValue SelectionDAGLegalize::ExpandSincosStretLibCall(SDNode *Node)
const {
2450 if (SincosStret == RTLIB::Unsupported)
2465 Type *SincosStretRetTy = FuncTy->getReturnType();
2471 TargetLowering::ArgListTy
Args;
2475 if (FuncTy->getParamType(0)->isPointerTy()) {
2479 AttributeSet PtrAttrs = FuncAttrs.getParamAttrs(0);
2481 const uint64_t ByteSize =
DL.getTypeAllocSize(StructTy);
2482 const Align StackAlign =
DL.getPrefTypeAlign(StructTy);
2487 TargetLowering::ArgListEntry
Entry(SRet, FuncTy->getParamType(0));
2488 Entry.IsSRet =
true;
2489 Entry.IndirectType = StructTy;
2490 Entry.Alignment = StackAlign;
2492 Args.push_back(Entry);
2493 Args.emplace_back(Arg, FuncTy->getParamType(1));
2495 Args.emplace_back(Arg, FuncTy->getParamType(0));
2498 TargetLowering::CallLoweringInfo CLI(DAG);
2501 .setLibCallee(CallConv, SincosStretRetTy, Callee, std::move(Args))
2502 .setIsPostTypeLegalization();
2504 std::pair<SDValue, SDValue> CallResult = TLI.
LowerCallTo(CLI);
2507 MachinePointerInfo PtrInfo =
2509 SDValue LoadSin = DAG.
getLoad(ArgVT, dl, CallResult.second, SRet, PtrInfo);
2518 SDVTList Tys = DAG.
getVTList(ArgVT, ArgVT);
2523 if (!CallResult.first.getValueType().isVector())
2524 return CallResult.first;
2532 SDVTList Tys = DAG.
getVTList(ArgVT, ArgVT);
2536SDValue SelectionDAGLegalize::expandLdexp(SDNode *Node)
const {
2538 EVT VT =
Node->getValueType(0);
2541 EVT ExpVT =
N.getValueType();
2543 if (AsIntVT == EVT())
2551 SDNodeFlags NUW_NSW;
2559 const APFloat::ExponentType MaxExpVal = APFloat::semanticsMaxExponent(FltSem);
2560 const APFloat::ExponentType MinExpVal = APFloat::semanticsMinExponent(FltSem);
2561 const int Precision = APFloat::semanticsPrecision(FltSem);
2568 const APFloat One(FltSem,
"1.0");
2569 APFloat ScaleUpK =
scalbn(One, MaxExpVal, APFloat::rmNearestTiesToEven);
2573 scalbn(One, MinExpVal + Precision, APFloat::rmNearestTiesToEven);
2643 ExponentShiftAmt, NUW_NSW);
2648SDValue SelectionDAGLegalize::expandFrexp(SDNode *Node)
const {
2652 EVT ExpVT =
Node->getValueType(1);
2654 if (AsIntVT == EVT())
2658 const APFloat::ExponentType MinExpVal = APFloat::semanticsMinExponent(FltSem);
2659 const unsigned Precision = APFloat::semanticsPrecision(FltSem);
2692 FractSignMaskVal.
setBit(BitSize - 1);
2699 const APFloat One(FltSem,
"1.0");
2703 scalbn(One, Precision + 1, APFloat::rmNearestTiesToEven);
2715 SDValue AddNegSmallestNormal =
2717 SDValue DenormOrZero = DAG.
getSetCC(dl, SetCCVT, AddNegSmallestNormal,
2726 SDValue ScaledAsInt = DAG.
getNode(ISD::BITCAST, dl, AsIntVT, ScaleUp);
2750 const APFloat Half(FltSem,
"0.5");
2771SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node,
2775 EVT DestVT =
Node->getValueType(0);
2777 unsigned OpNo =
Node->isStrictFPOpcode() ? 1 : 0;
2783 if (SrcVT == MVT::i32 && TLI.
isTypeLegal(MVT::f64) &&
2784 (DestVT.
bitsLE(MVT::f64) ||
2788 LLVM_DEBUG(
dbgs() <<
"32-bit [signed|unsigned] integer to float/double "
2812 MachinePointerInfo());
2817 DAG.
getStore(MemChain, dl,
Hi, HiPtr, MachinePointerInfo());
2822 DAG.
getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo());
2831 if (
Node->isStrictFPOpcode()) {
2833 {
Node->getOperand(0),
Load, Bias});
2835 if (DestVT !=
Sub.getValueType()) {
2836 std::pair<SDValue, SDValue> ResultPair;
2839 Result = ResultPair.first;
2840 Chain = ResultPair.second;
2855 if (((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) ||
2856 (SrcVT == MVT::i64 && DestVT == MVT::f64)) {
2857 LLVM_DEBUG(
dbgs() <<
"Converting unsigned i32/i64 to f32/f64\n");
2872 EVT SetCCVT = getSetCCResultType(SrcVT);
2884 if (
Node->isStrictFPOpcode()) {
2892 Flags.setNoFPExcept(
Node->getFlags().hasNoFPExcept());
2895 Flags.setNoFPExcept(
true);
2918 "Cannot perform lossless SINT_TO_FP!");
2921 if (
Node->isStrictFPOpcode()) {
2923 {
Node->getOperand(0), Op0 });
2932 SignSet, Four, Zero);
2941 case MVT::i8 : FF = 0x43800000ULL;
break;
2942 case MVT::i16: FF = 0x47800000ULL;
break;
2943 case MVT::i32: FF = 0x4F800000ULL;
break;
2944 case MVT::i64: FF = 0x5F800000ULL;
break;
2948 Constant *FudgeFactor = ConstantInt::get(
2957 if (DestVT == MVT::f32)
2967 HandleSDNode Handle(Load);
2968 LegalizeOp(
Load.getNode());
2972 if (
Node->isStrictFPOpcode()) {
2974 { Tmp1.
getValue(1), Tmp1, FudgeInReg });
2975 Chain =
Result.getValue(1);
2987void SelectionDAGLegalize::PromoteLegalINT_TO_FP(
2988 SDNode *
N,
const SDLoc &dl, SmallVectorImpl<SDValue> &
Results) {
2992 EVT DestVT =
N->getValueType(0);
2993 SDValue LegalOp =
N->getOperand(IsStrict ? 1 : 0);
3000 unsigned OpToUse = 0;
3028 DAG.
getNode(OpToUse, dl, {DestVT, MVT::Other},
3031 dl, NewInTy, LegalOp)});
3038 DAG.
getNode(OpToUse, dl, DestVT,
3040 dl, NewInTy, LegalOp)));
3048void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *
N,
const SDLoc &dl,
3049 SmallVectorImpl<SDValue> &
Results) {
3050 bool IsStrict =
N->isStrictFPOpcode();
3053 EVT DestVT =
N->getValueType(0);
3056 EVT NewOutTy = DestVT;
3058 unsigned OpToUse = 0;
3082 SDVTList VTs = DAG.
getVTList(NewOutTy, MVT::Other);
3098SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT_SAT(SDNode *Node,
3100 unsigned Opcode =
Node->getOpcode();
3103 EVT NewOutTy =
Node->getValueType(0);
3115 Node->getOperand(1));
3121 EVT VT =
Op.getValueType();
3141SDValue SelectionDAGLegalize::PromoteReduction(SDNode *Node) {
3143 MVT VecVT = IsVPOpcode ?
Node->getOperand(1).getSimpleValueType()
3144 :
Node->getOperand(0).getSimpleValueType();
3146 MVT ScalarVT =
Node->getSimpleValueType(0);
3153 assert(
Node->getOperand(0).getValueType().isFloatingPoint() &&
3154 "Only FP promotion is supported");
3156 for (
unsigned j = 0;
j !=
Node->getNumOperands(); ++
j)
3157 if (
Node->getOperand(j).getValueType().isVector() &&
3162 assert(
Node->getOperand(j).getValueType().isFloatingPoint() &&
3163 "Only FP promotion is supported");
3165 DAG.
getNode(ISD::FP_EXTEND,
DL, NewVecVT,
Node->getOperand(j));
3166 }
else if (
Node->getOperand(j).getValueType().isFloatingPoint()) {
3169 DAG.
getNode(ISD::FP_EXTEND,
DL, NewScalarVT,
Node->getOperand(j));
3171 Operands[
j] =
Node->getOperand(j);
3182bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
3186 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
3188 switch (
Node->getOpcode()) {
3228 Results.push_back(ExpandPARITY(
Node->getOperand(0), dl));
3263 case ISD::READCYCLECOUNTER:
3264 case ISD::READSTEADYCOUNTER:
3277 case ISD::ATOMIC_LOAD: {
3280 SDVTList VTs = DAG.
getVTList(
Node->getValueType(0), MVT::Other);
3283 Node->getOperand(0),
Node->getOperand(1), Zero, Zero,
3289 case ISD::ATOMIC_STORE: {
3293 Node->getOperand(0),
Node->getOperand(2),
Node->getOperand(1),
3298 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
3302 SDVTList VTs = DAG.
getVTList(
Node->getValueType(0), MVT::Other);
3305 Node->getOperand(0),
Node->getOperand(1),
Node->getOperand(2),
3313 EVT OuterType =
Node->getValueType(0);
3344 case ISD::ATOMIC_LOAD_SUB: {
3346 EVT VT =
Node->getValueType(0);
3351 RHS =
RHS->getOperand(0);
3355 Node->getOperand(0),
Node->getOperand(1),
3361 case ISD::DYNAMIC_STACKALLOC:
3362 ExpandDYNAMIC_STACKALLOC(Node,
Results);
3365 for (
unsigned i = 0; i <
Node->getNumValues(); i++)
3370 EVT VT =
Node->getValueType(0);
3387 Node->getValueType(0))
3388 == TargetLowering::Legal)
3392 if ((Tmp1 = EmitStackConvert(
Node->getOperand(1),
Node->getValueType(0),
3393 Node->getValueType(0), dl,
3394 Node->getOperand(0)))) {
3395 ReplaceNode(Node, Tmp1.
getNode());
3396 LLVM_DEBUG(
dbgs() <<
"Successfully expanded STRICT_FP_ROUND node\n");
3409 if ((Tmp1 = EmitStackConvert(
Node->getOperand(0),
Node->getValueType(0),
3410 Node->getValueType(0), dl)))
3421 Node->getValueType(0))
3422 == TargetLowering::Legal)
3426 if ((Tmp1 = EmitStackConvert(
3427 Node->getOperand(1),
Node->getOperand(1).getValueType(),
3428 Node->getValueType(0), dl,
Node->getOperand(0)))) {
3429 ReplaceNode(Node, Tmp1.
getNode());
3430 LLVM_DEBUG(
dbgs() <<
"Successfully expanded STRICT_FP_EXTEND node\n");
3434 case ISD::FP_EXTEND: {
3436 EVT SrcVT =
Op.getValueType();
3437 EVT DstVT =
Node->getValueType(0);
3443 if ((Tmp1 = EmitStackConvert(
Op, SrcVT, DstVT, dl)))
3447 case ISD::BF16_TO_FP: {
3453 if (
Op.getValueType() == MVT::bf16) {
3455 DAG.
getNode(ISD::BITCAST, dl, MVT::i16,
Op));
3463 if (
Node->getValueType(0) != MVT::f32)
3468 case ISD::FP_TO_BF16: {
3470 if (
Op.getValueType() != MVT::f32)
3478 DAG.
getNode(ISD::BITCAST, dl, MVT::i32,
Op),
3482 if (
Node->getValueType(0) == MVT::bf16) {
3483 Op = DAG.
getNode(ISD::BITCAST, dl, MVT::bf16,
3507 SDNodeFlags CanonicalizeFlags =
Node->getFlags();
3510 {Chain, Operand, One}, CanonicalizeFlags);
3517 EVT VT =
Node->getValueType(0);
3549 if (
Node->isStrictFPOpcode())
3556 if ((Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2))) {
3558 if (
Node->isStrictFPOpcode())
3568 ReplaceNode(Node, Tmp1.
getNode());
3569 LLVM_DEBUG(
dbgs() <<
"Successfully expanded STRICT_FP_TO_SINT node\n");
3582 ReplaceNodeWithValue(
SDValue(Node, 0), Tmp1);
3583 LLVM_DEBUG(
dbgs() <<
"Successfully expanded STRICT_FP_TO_UINT node\n");
3592 case ISD::LLROUND: {
3595 EVT ResVT =
Node->getValueType(0);
3609 if (
Node->getOperand(0).getValueType().getVectorElementCount().isScalar())
3611 Tmp1 = DAG.
getNode(ISD::BITCAST, dl,
Node->getValueType(0),
3612 Node->getOperand(0));
3614 Tmp1 = ExpandExtractFromVectorThroughStack(
SDValue(Node, 0));
3618 Results.push_back(ExpandExtractFromVectorThroughStack(
SDValue(Node, 0)));
3621 Results.push_back(ExpandInsertToVectorThroughStack(
SDValue(Node, 0)));
3624 if (EVT VectorValueType =
Node->getOperand(0).getValueType();
3627 Results.push_back(ExpandVectorBuildThroughStack(Node));
3629 Results.push_back(ExpandConcatVectors(Node));
3632 Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
3641 EVT VT =
Node->getValueType(0);
3651 if (NewEltVT.
bitsLT(EltVT)) {
3663 Op0 = DAG.
getNode(ISD::BITCAST, dl, NewVT, Op0);
3664 Op1 = DAG.
getNode(ISD::BITCAST, dl, NewVT, Op1);
3667 unsigned int factor =
3675 for (
unsigned fi = 0; fi < factor; ++fi)
3679 for (
unsigned fi = 0; fi < factor; ++fi)
3690 for (
unsigned i = 0; i != NumElems; ++i) {
3695 unsigned Idx =
Mask[i];
3707 Tmp1 = DAG.
getNode(ISD::BITCAST, dl,
Node->getValueType(0), Tmp1);
3716 unsigned Factor =
Node->getNumOperands();
3720 EVT VecVT =
Node->getValueType(0);
3731 for (
unsigned I = 0;
I < Factor / 2;
I++) {
3734 {
L.getValue(
I),
R.getValue(
I)});
3741 unsigned Factor =
Node->getNumOperands();
3744 EVT VecVT =
Node->getValueType(0);
3749 for (
unsigned I = 0;
I < Factor / 2;
I++) {
3752 {
Node->getOperand(
I),
Node->getOperand(
I + Factor / 2)});
3760 for (
unsigned I = 0;
I < Factor / 2;
I++)
3762 for (
unsigned I = 0;
I < Factor / 2;
I++)
3767 EVT OpTy =
Node->getOperand(0).getValueType();
3768 if (
Node->getConstantOperandVal(1)) {
3777 Node->getOperand(0));
3782 case ISD::STACKSAVE:
3787 Node->getValueType(0)));
3794 case ISD::STACKRESTORE:
3799 Node->getOperand(1)));
3804 case ISD::GET_DYNAMIC_AREA_OFFSET:
3809 Results.push_back(ExpandFCOPYSIGN(Node));
3812 Results.push_back(ExpandFNEG(Node));
3815 Results.push_back(ExpandFABS(Node));
3821 Test,
Node->getFlags(), SDLoc(Node), DAG))
3831 switch (
Node->getOpcode()) {
3838 Tmp1 =
Node->getOperand(0);
3839 Tmp2 =
Node->getOperand(1);
3840 Tmp1 = DAG.
getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred);
3845 case ISD::FMAXNUM: {
3851 case ISD::FMAXIMUM: {
3856 case ISD::FMINIMUMNUM:
3857 case ISD::FMAXIMUMNUM: {
3863 EVT VT =
Node->getValueType(0);
3870 Tmp1 = DAG.
getNode(ISD::FSINCOS, dl, VTs,
Node->getOperand(0));
3871 if (
Node->getOpcode() == ISD::FCOS)
3879 EVT VT =
Node->getValueType(0);
3886 if (
SDValue Expanded = expandLdexp(Node)) {
3889 Results.push_back(Expanded.getValue(1));
3901 if (
SDValue Expanded = expandFrexp(Node)) {
3903 Results.push_back(Expanded.getValue(1));
3907 case ISD::FSINCOS: {
3910 EVT VT =
Node->getValueType(0);
3913 Tmp1 = DAG.
getNode(ISD::FSIN, dl, VT,
Op, Flags);
3914 Tmp2 = DAG.
getNode(ISD::FCOS, dl, VT,
Op, Flags);
3921 case ISD::FP16_TO_FP:
3922 if (
Node->getValueType(0) != MVT::f32) {
3927 DAG.
getNode(ISD::FP16_TO_FP, dl, MVT::f32,
Node->getOperand(0));
3929 DAG.
getNode(ISD::FP_EXTEND, dl,
Node->getValueType(0), Res));
3932 case ISD::STRICT_BF16_TO_FP:
3933 case ISD::STRICT_FP16_TO_FP:
3934 if (
Node->getValueType(0) != MVT::f32) {
3939 {Node->getOperand(0), Node->getOperand(1)});
3941 {
Node->getValueType(0), MVT::Other},
3947 case ISD::FP_TO_FP16:
3951 MVT SVT =
Op.getSimpleValueType();
3952 if ((SVT == MVT::f64 || SVT == MVT::f80) &&
3960 DAG.
getNode(ISD::FP_TO_FP16, dl,
Node->getValueType(0), FloatVal));
3970 Results.push_back(ExpandConstantFP(CFP,
true));
3975 Results.push_back(ExpandConstant(CP));
3979 EVT VT =
Node->getValueType(0);
3982 const SDNodeFlags
Flags =
Node->getFlags();
3983 Tmp1 = DAG.
getNode(ISD::FNEG, dl, VT,
Node->getOperand(1));
3990 EVT VT =
Node->getValueType(0);
3993 "Don't know how to expand this subtraction!");
3994 Tmp1 = DAG.
getNOT(dl,
Node->getOperand(1), VT);
4008 EVT VT =
Node->getValueType(0);
4011 Tmp1 = DAG.
getNode(DivRemOpc, dl, VTs,
Node->getOperand(0),
4012 Node->getOperand(1));
4019 unsigned ExpandOpcode =
4021 EVT VT =
Node->getValueType(0);
4024 Tmp1 = DAG.
getNode(ExpandOpcode, dl, VTs,
Node->getOperand(0),
4025 Node->getOperand(1));
4033 MVT VT =
LHS.getSimpleValueType();
4034 unsigned MULHOpcode =
4044 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.
getContext());
4048 TargetLowering::MulExpansionKind::Always)) {
4049 for (
unsigned i = 0; i < 2; ++i) {
4062 EVT VT =
Node->getValueType(0);
4073 unsigned OpToUse = 0;
4074 if (HasSMUL_LOHI && !HasMULHS) {
4076 }
else if (HasUMUL_LOHI && !HasMULHU) {
4078 }
else if (HasSMUL_LOHI) {
4080 }
else if (HasUMUL_LOHI) {
4085 Node->getOperand(1)));
4096 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) {
4141 Node->getOperand(0),
4142 Node->getOperand(1),
4143 Node->getConstantOperandVal(2),
4166 EVT VT =
LHS.getValueType();
4170 EVT CarryType =
Node->getValueType(1);
4171 EVT SetCCType = getSetCCResultType(
Node->getValueType(0));
4218 if (TLI.
expandMULO(Node, Result, Overflow, DAG)) {
4235 Tmp1 =
Node->getOperand(0);
4236 Tmp2 =
Node->getOperand(1);
4237 Tmp3 =
Node->getOperand(2);
4258 unsigned EntrySize =
4294 Tmp1 =
Node->getOperand(0);
4295 Tmp2 =
Node->getOperand(1);
4301 Node->getOperand(2));
4310 Tmp1 = DAG.
getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
4313 Node->getOperand(2));
4321 bool IsVP =
Node->getOpcode() == ISD::VP_SETCC;
4326 unsigned Offset = IsStrict ? 1 : 0;
4336 DAG,
Node->getValueType(0), Tmp1, Tmp2, Tmp3, Mask, EVL, NeedInvert, dl,
4337 Chain, IsSignaling);
4345 {Chain, Tmp1, Tmp2, Tmp3},
Node->getFlags());
4349 {Tmp1, Tmp2, Tmp3, Mask, EVL},
Node->getFlags());
4351 Tmp1 = DAG.
getNode(
Node->getOpcode(), dl,
Node->getValueType(0), Tmp1,
4352 Tmp2, Tmp3,
Node->getFlags());
4375 assert(!IsStrict &&
"Don't know how to expand for strict nodes.");
4380 EVT VT =
Node->getValueType(0);
4391 Tmp1 =
Node->getOperand(0);
4392 Tmp2 =
Node->getOperand(1);
4393 Tmp3 =
Node->getOperand(2);
4394 Tmp4 =
Node->getOperand(3);
4395 EVT VT =
Node->getValueType(0);
4405 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
4407 EVT CCVT = getSetCCResultType(CmpVT);
4415 bool Legalized =
false;
4433 Tmp1 = DAG.
getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC,
4440 DAG, getSetCCResultType(Tmp1.
getValueType()), Tmp1, Tmp2, CC,
4443 assert(Legalized &&
"Can't legalize SELECT_CC with legal condition!");
4454 Tmp2, Tmp3, Tmp4, CC,
Node->getFlags());
4459 Tmp2, Tmp3, Tmp4, CC,
Node->getFlags());
4468 Tmp1 =
Node->getOperand(0);
4469 Tmp2 =
Node->getOperand(2);
4470 Tmp3 =
Node->getOperand(3);
4471 Tmp4 =
Node->getOperand(1);
4474 DAG, getSetCCResultType(Tmp2.
getValueType()), Tmp2, Tmp3, Tmp4,
4477 assert(Legalized &&
"Can't legalize BR_CC with legal condition!");
4482 assert(!NeedInvert &&
"Don't know how to invert BR_CC!");
4484 Tmp1 = DAG.
getNode(ISD::BR_CC, dl,
Node->getValueType(0), Tmp1,
4485 Tmp4, Tmp2, Tmp3,
Node->getOperand(4));
4489 Tmp1 = DAG.
getNode(ISD::BR_CC, dl,
Node->getValueType(0), Tmp1, Tmp4,
4490 Tmp2, Tmp3,
Node->getOperand(4));
4496 Results.push_back(ExpandBUILD_VECTOR(Node));
4499 Results.push_back(ExpandSPLAT_VECTOR(Node));
4505 EVT VT =
Node->getValueType(0);
4511 for (
unsigned Idx = 0; Idx < NumElem; Idx++) {
4526 case ISD::VECREDUCE_FADD:
4527 case ISD::VECREDUCE_FMUL:
4528 case ISD::VECREDUCE_ADD:
4529 case ISD::VECREDUCE_MUL:
4530 case ISD::VECREDUCE_AND:
4531 case ISD::VECREDUCE_OR:
4532 case ISD::VECREDUCE_XOR:
4533 case ISD::VECREDUCE_SMAX:
4534 case ISD::VECREDUCE_SMIN:
4535 case ISD::VECREDUCE_UMAX:
4536 case ISD::VECREDUCE_UMIN:
4537 case ISD::VECREDUCE_FMAX:
4538 case ISD::VECREDUCE_FMIN:
4539 case ISD::VECREDUCE_FMAXIMUM:
4540 case ISD::VECREDUCE_FMINIMUM:
4543 case ISD::VP_CTTZ_ELTS:
4544 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
4556 EVT ResVT =
Node->getValueType(0);
4562 case ISD::ADDRSPACECAST:
4586 switch (
Node->getOpcode()) {
4589 Node->getValueType(0))
4590 == TargetLowering::Legal)
4601 EVT VT =
Node->getValueType(0);
4602 const SDNodeFlags
Flags =
Node->getFlags();
4605 {Node->getOperand(0), Node->getOperand(1), Neg},
4621 Node->getOperand(1).getValueType())
4622 == TargetLowering::Legal)
4635 ReplaceNode(Node,
Results.data());
4647 return Flags.hasApproximateFuncs() && Flags.hasNoNaNs() &&
4648 Flags.hasNoInfs() && Flags.hasNoSignedZeros();
4651void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) {
4655 TargetLowering::MakeLibCallOptions CallOptions;
4658 unsigned Opc =
Node->getOpcode();
4660 case ISD::ATOMIC_FENCE: {
4663 TargetLowering::ArgListTy
Args;
4665 TargetLowering::CallLoweringInfo CLI(DAG);
4667 .setChain(
Node->getOperand(0))
4669 CallingConv::C, Type::getVoidTy(*DAG.
getContext()),
4674 std::pair<SDValue, SDValue> CallResult = TLI.
LowerCallTo(CLI);
4676 Results.push_back(CallResult.second);
4682 case ISD::ATOMIC_SWAP:
4683 case ISD::ATOMIC_LOAD_ADD:
4684 case ISD::ATOMIC_LOAD_SUB:
4685 case ISD::ATOMIC_LOAD_AND:
4686 case ISD::ATOMIC_LOAD_CLR:
4687 case ISD::ATOMIC_LOAD_OR:
4688 case ISD::ATOMIC_LOAD_XOR:
4689 case ISD::ATOMIC_LOAD_NAND:
4690 case ISD::ATOMIC_LOAD_MIN:
4691 case ISD::ATOMIC_LOAD_MAX:
4692 case ISD::ATOMIC_LOAD_UMIN:
4693 case ISD::ATOMIC_LOAD_UMAX:
4694 case ISD::ATOMIC_CMP_SWAP: {
4698 EVT RetVT =
Node->getValueType(0);
4703 Ops.push_back(
Node->getOperand(1));
4707 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
4708 "Unexpected atomic op or value type!");
4712 std::pair<SDValue, SDValue> Tmp = TLI.
makeLibCall(DAG, LC, RetVT,
4715 Node->getOperand(0));
4717 Results.push_back(Tmp.second);
4722 TargetLowering::ArgListTy
Args;
4723 TargetLowering::CallLoweringInfo CLI(DAG);
4725 .setChain(
Node->getOperand(0))
4726 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.
getContext()),
4730 std::pair<SDValue, SDValue> CallResult = TLI.
LowerCallTo(CLI);
4732 Results.push_back(CallResult.second);
4739 std::pair<SDValue, SDValue> Tmp = TLI.
makeLibCall(
4740 DAG, RTLIB::CLEAR_CACHE, MVT::isVoid, {StartVal, EndVal}, CallOptions,
4741 SDLoc(Node), InputChain);
4742 Results.push_back(Tmp.second);
4747 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
4748 RTLIB::FMIN_F80, RTLIB::FMIN_F128,
4749 RTLIB::FMIN_PPCF128,
Results);
4756 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
4757 RTLIB::FMAX_F80, RTLIB::FMAX_F128,
4758 RTLIB::FMAX_PPCF128,
Results);
4760 case ISD::FMINIMUMNUM:
4761 ExpandFPLibCall(Node, RTLIB::FMINIMUM_NUM_F32, RTLIB::FMINIMUM_NUM_F64,
4762 RTLIB::FMINIMUM_NUM_F80, RTLIB::FMINIMUM_NUM_F128,
4763 RTLIB::FMINIMUM_NUM_PPCF128,
Results);
4765 case ISD::FMAXIMUMNUM:
4766 ExpandFPLibCall(Node, RTLIB::FMAXIMUM_NUM_F32, RTLIB::FMAXIMUM_NUM_F64,
4767 RTLIB::FMAXIMUM_NUM_F80, RTLIB::FMAXIMUM_NUM_F128,
4768 RTLIB::FMAXIMUM_NUM_PPCF128,
Results);
4775 {RTLIB::FAST_SQRT_F32, RTLIB::SQRT_F32},
4776 {RTLIB::FAST_SQRT_F64, RTLIB::SQRT_F64},
4777 {RTLIB::FAST_SQRT_F80, RTLIB::SQRT_F80},
4778 {RTLIB::FAST_SQRT_F128, RTLIB::SQRT_F128},
4779 {RTLIB::FAST_SQRT_PPCF128, RTLIB::SQRT_PPCF128},
4784 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64,
4785 RTLIB::CBRT_F80, RTLIB::CBRT_F128,
4786 RTLIB::CBRT_PPCF128,
Results);
4790 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
4791 RTLIB::SIN_F80, RTLIB::SIN_F128,
4796 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
4797 RTLIB::COS_F80, RTLIB::COS_F128,
4802 ExpandFPLibCall(Node, RTLIB::TAN_F32, RTLIB::TAN_F64, RTLIB::TAN_F80,
4803 RTLIB::TAN_F128, RTLIB::TAN_PPCF128,
Results);
4807 ExpandFPLibCall(Node, RTLIB::ASIN_F32, RTLIB::ASIN_F64, RTLIB::ASIN_F80,
4808 RTLIB::ASIN_F128, RTLIB::ASIN_PPCF128,
Results);
4812 ExpandFPLibCall(Node, RTLIB::ACOS_F32, RTLIB::ACOS_F64, RTLIB::ACOS_F80,
4813 RTLIB::ACOS_F128, RTLIB::ACOS_PPCF128,
Results);
4817 ExpandFPLibCall(Node, RTLIB::ATAN_F32, RTLIB::ATAN_F64, RTLIB::ATAN_F80,
4818 RTLIB::ATAN_F128, RTLIB::ATAN_PPCF128,
Results);
4822 ExpandFPLibCall(Node, RTLIB::ATAN2_F32, RTLIB::ATAN2_F64, RTLIB::ATAN2_F80,
4823 RTLIB::ATAN2_F128, RTLIB::ATAN2_PPCF128,
Results);
4827 ExpandFPLibCall(Node, RTLIB::SINH_F32, RTLIB::SINH_F64, RTLIB::SINH_F80,
4828 RTLIB::SINH_F128, RTLIB::SINH_PPCF128,
Results);
4832 ExpandFPLibCall(Node, RTLIB::COSH_F32, RTLIB::COSH_F64, RTLIB::COSH_F80,
4833 RTLIB::COSH_F128, RTLIB::COSH_PPCF128,
Results);
4837 ExpandFPLibCall(Node, RTLIB::TANH_F32, RTLIB::TANH_F64, RTLIB::TANH_F80,
4838 RTLIB::TANH_F128, RTLIB::TANH_PPCF128,
Results);
4841 case ISD::FSINCOSPI: {
4842 EVT VT =
Node->getValueType(0);
4844 if (
Node->getOpcode() == ISD::FSINCOS) {
4846 if (SincosStret != RTLIB::UNKNOWN_LIBCALL) {
4847 if (
SDValue Expanded = ExpandSincosStretLibCall(Node)) {
4849 Results.push_back(Expanded.getValue(1));
4855 RTLIB::Libcall LC =
Node->getOpcode() == ISD::FSINCOS
4861 Node->getOperationName(&DAG));
4871 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80,
4872 RTLIB::LOG_F128, RTLIB::LOG_PPCF128,
Results);
4876 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80,
4877 RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128,
Results);
4881 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80,
4882 RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128,
Results);
4886 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80,
4887 RTLIB::EXP_F128, RTLIB::EXP_PPCF128,
Results);
4891 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80,
4892 RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128,
Results);
4895 ExpandFPLibCall(Node, RTLIB::EXP10_F32, RTLIB::EXP10_F64, RTLIB::EXP10_F80,
4896 RTLIB::EXP10_F128, RTLIB::EXP10_PPCF128,
Results);
4900 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
4901 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
4902 RTLIB::TRUNC_PPCF128,
Results);
4906 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
4907 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
4908 RTLIB::FLOOR_PPCF128,
Results);
4912 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
4913 RTLIB::CEIL_F80, RTLIB::CEIL_F128,
4914 RTLIB::CEIL_PPCF128,
Results);
4918 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
4919 RTLIB::RINT_F80, RTLIB::RINT_F128,
4920 RTLIB::RINT_PPCF128,
Results);
4922 case ISD::FNEARBYINT:
4924 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
4925 RTLIB::NEARBYINT_F64,
4926 RTLIB::NEARBYINT_F80,
4927 RTLIB::NEARBYINT_F128,
4928 RTLIB::NEARBYINT_PPCF128,
Results);
4932 ExpandFPLibCall(Node, RTLIB::ROUND_F32,
4936 RTLIB::ROUND_PPCF128,
Results);
4938 case ISD::FROUNDEVEN:
4940 ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32,
4941 RTLIB::ROUNDEVEN_F64,
4942 RTLIB::ROUNDEVEN_F80,
4943 RTLIB::ROUNDEVEN_F128,
4944 RTLIB::ROUNDEVEN_PPCF128,
Results);
4948 ExpandFPLibCall(Node, RTLIB::LDEXP_F32, RTLIB::LDEXP_F64, RTLIB::LDEXP_F80,
4949 RTLIB::LDEXP_F128, RTLIB::LDEXP_PPCF128,
Results);
4953 EVT VT =
Node->getValueType(0);
4965 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
"Unexpected fpowi.");
4968 if (
Node->isStrictFPOpcode()) {
4971 {
Node->getValueType(0),
Node->getValueType(1)},
4972 {
Node->getOperand(0),
Node->getOperand(2)});
4975 {
Node->getValueType(0),
Node->getValueType(1)},
4982 Node->getOperand(1));
4984 Node->getValueType(0),
4989 unsigned Offset =
Node->isStrictFPOpcode() ? 1 : 0;
4990 bool ExponentHasSizeOfInt =
4992 Node->getOperand(1 +
Offset).getValueType().getSizeInBits();
4993 if (!ExponentHasSizeOfInt) {
5000 ExpandFPLibCall(Node, LC,
Results);
5005 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80,
5006 RTLIB::POW_F128, RTLIB::POW_PPCF128,
Results);
5010 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32,
5011 RTLIB::LROUND_F64, RTLIB::LROUND_F80,
5013 RTLIB::LROUND_PPCF128,
Results);
5017 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32,
5018 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80,
5019 RTLIB::LLROUND_F128,
5020 RTLIB::LLROUND_PPCF128,
Results);
5024 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32,
5025 RTLIB::LRINT_F64, RTLIB::LRINT_F80,
5027 RTLIB::LRINT_PPCF128,
Results);
5031 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32,
5032 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80,
5034 RTLIB::LLRINT_PPCF128,
Results);
5039 {RTLIB::FAST_DIV_F32, RTLIB::DIV_F32},
5040 {RTLIB::FAST_DIV_F64, RTLIB::DIV_F64},
5041 {RTLIB::FAST_DIV_F80, RTLIB::DIV_F80},
5042 {RTLIB::FAST_DIV_F128, RTLIB::DIV_F128},
5043 {RTLIB::FAST_DIV_PPCF128, RTLIB::DIV_PPCF128},
Results);
5048 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
5049 RTLIB::REM_F80, RTLIB::REM_F128,
5054 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
5055 RTLIB::FMA_F80, RTLIB::FMA_F128,
5061 {RTLIB::FAST_ADD_F32, RTLIB::ADD_F32},
5062 {RTLIB::FAST_ADD_F64, RTLIB::ADD_F64},
5063 {RTLIB::FAST_ADD_F80, RTLIB::ADD_F80},
5064 {RTLIB::FAST_ADD_F128, RTLIB::ADD_F128},
5065 {RTLIB::FAST_ADD_PPCF128, RTLIB::ADD_PPCF128},
Results);
5071 {RTLIB::FAST_MUL_F32, RTLIB::MUL_F32},
5072 {RTLIB::FAST_MUL_F64, RTLIB::MUL_F64},
5073 {RTLIB::FAST_MUL_F80, RTLIB::MUL_F80},
5074 {RTLIB::FAST_MUL_F128, RTLIB::MUL_F128},
5075 {RTLIB::FAST_MUL_PPCF128, RTLIB::MUL_PPCF128},
Results);
5078 case ISD::FP16_TO_FP:
5079 if (
Node->getValueType(0) == MVT::f32) {
5080 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node,
false).first);
5083 case ISD::STRICT_BF16_TO_FP:
5084 if (
Node->getValueType(0) == MVT::f32) {
5085 std::pair<SDValue, SDValue> Tmp = TLI.
makeLibCall(
5086 DAG, RTLIB::FPEXT_BF16_F32, MVT::f32,
Node->getOperand(1),
5087 CallOptions, SDLoc(Node),
Node->getOperand(0));
5089 Results.push_back(Tmp.second);
5092 case ISD::STRICT_FP16_TO_FP: {
5093 if (
Node->getValueType(0) == MVT::f32) {
5094 std::pair<SDValue, SDValue> Tmp = TLI.
makeLibCall(
5095 DAG, RTLIB::FPEXT_F16_F32, MVT::f32,
Node->getOperand(1), CallOptions,
5096 SDLoc(Node),
Node->getOperand(0));
5098 Results.push_back(Tmp.second);
5102 case ISD::FP_TO_FP16: {
5105 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
"Unable to expand fp_to_fp16");
5106 Results.push_back(ExpandLibCall(LC, Node,
false).first);
5109 case ISD::FP_TO_BF16: {
5112 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
"Unable to expand fp_to_bf16");
5113 Results.push_back(ExpandLibCall(LC, Node,
false).first);
5121 bool IsStrict =
Node->isStrictFPOpcode();
5124 EVT SVT =
Node->getOperand(IsStrict ? 1 : 0).getValueType();
5125 EVT RVT =
Node->getValueType(0);
5132 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
5133 for (
unsigned t = MVT::FIRST_INTEGER_VALUETYPE;
5134 t <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL;
5142 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
"Unable to legalize as libcall");
5147 NVT,
Node->getOperand(IsStrict ? 1 : 0));
5149 std::pair<SDValue, SDValue> Tmp =
5153 Results.push_back(Tmp.second);
5161 bool IsStrict =
Node->isStrictFPOpcode();
5166 EVT SVT =
Op.getValueType();
5167 EVT RVT =
Node->getValueType(0);
5174 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
5175 for (
unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE;
5176 IntVT <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL;
5184 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
"Unable to legalize as libcall");
5187 std::pair<SDValue, SDValue> Tmp =
5193 Results.push_back(Tmp.second);
5204 bool IsStrict =
Node->isStrictFPOpcode();
5207 EVT VT =
Node->getValueType(0);
5209 "Unable to expand as libcall if it is not normal rounding");
5212 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
"Unable to legalize as libcall");
5214 std::pair<SDValue, SDValue> Tmp =
5215 TLI.
makeLibCall(DAG, LC, VT,
Op, CallOptions, SDLoc(Node), Chain);
5218 Results.push_back(Tmp.second);
5221 case ISD::FP_EXTEND: {
5224 Node->getValueType(0)),
5225 Node,
false).first);
5229 case ISD::STRICT_FP_TO_FP16:
5230 case ISD::STRICT_FP_TO_BF16: {
5231 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
5232 if (
Node->getOpcode() == ISD::STRICT_FP_TO_FP16)
5234 else if (
Node->getOpcode() == ISD::STRICT_FP_TO_BF16)
5238 Node->getValueType(0));
5240 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
"Unable to legalize as libcall");
5242 std::pair<SDValue, SDValue> Tmp =
5244 CallOptions, SDLoc(Node),
Node->getOperand(0));
5246 Results.push_back(Tmp.second);
5252 {RTLIB::FAST_SUB_F32, RTLIB::SUB_F32},
5253 {RTLIB::FAST_SUB_F64, RTLIB::SUB_F64},
5254 {RTLIB::FAST_SUB_F80, RTLIB::SUB_F80},
5255 {RTLIB::FAST_SUB_F128, RTLIB::SUB_F128},
5256 {RTLIB::FAST_SUB_PPCF128, RTLIB::SUB_PPCF128},
Results);
5260 Results.push_back(ExpandIntLibCall(Node,
true,
5262 RTLIB::SREM_I16, RTLIB::SREM_I32,
5263 RTLIB::SREM_I64, RTLIB::SREM_I128));
5266 Results.push_back(ExpandIntLibCall(Node,
false,
5268 RTLIB::UREM_I16, RTLIB::UREM_I32,
5269 RTLIB::UREM_I64, RTLIB::UREM_I128));
5272 Results.push_back(ExpandIntLibCall(Node,
true,
5274 RTLIB::SDIV_I16, RTLIB::SDIV_I32,
5275 RTLIB::SDIV_I64, RTLIB::SDIV_I128));
5278 Results.push_back(ExpandIntLibCall(Node,
false,
5280 RTLIB::UDIV_I16, RTLIB::UDIV_I32,
5281 RTLIB::UDIV_I64, RTLIB::UDIV_I128));
5286 ExpandDivRemLibCall(Node,
Results);
5289 Results.push_back(ExpandIntLibCall(Node,
false,
5291 RTLIB::MUL_I16, RTLIB::MUL_I32,
5292 RTLIB::MUL_I64, RTLIB::MUL_I128));
5295 Results.push_back(ExpandBitCountingLibCall(
5296 Node, RTLIB::CTLZ_I32, RTLIB::CTLZ_I64, RTLIB::CTLZ_I128));
5299 Results.push_back(ExpandBitCountingLibCall(
5300 Node, RTLIB::CTPOP_I32, RTLIB::CTPOP_I64, RTLIB::CTPOP_I128));
5302 case ISD::RESET_FPENV: {
5312 case ISD::GET_FPENV_MEM: {
5319 case ISD::SET_FPENV_MEM: {
5326 case ISD::GET_FPMODE: {
5329 EVT ModeVT =
Node->getValueType(0);
5333 Node->getOperand(0), dl);
5335 ModeVT, dl, Chain, StackPtr,
5341 case ISD::SET_FPMODE: {
5345 EVT ModeVT =
Mode.getValueType();
5349 Node->getOperand(0), dl,
Mode, StackPtr,
5355 case ISD::RESET_FPMODE: {
5363 Node->getOperand(0), dl));
5370 LLVM_DEBUG(
dbgs() <<
"Successfully converted node to libcall\n");
5371 ReplaceNode(Node,
Results.data());
5379 MVT EltVT,
MVT NewEltVT) {
5381 MVT MidVT = OldEltsPerNewElt == 1
5388void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
5391 MVT OVT =
Node->getSimpleValueType(0);
5397 Node->getOpcode() == ISD::VECREDUCE_FMAX ||
5398 Node->getOpcode() == ISD::VECREDUCE_FMIN ||
5399 Node->getOpcode() == ISD::VECREDUCE_FMAXIMUM ||
5400 Node->getOpcode() == ISD::VECREDUCE_FMINIMUM) {
5401 OVT =
Node->getOperand(0).getSimpleValueType();
5403 if (
Node->getOpcode() == ISD::ATOMIC_STORE ||
5408 Node->getOpcode() == ISD::VP_REDUCE_FADD ||
5409 Node->getOpcode() == ISD::VP_REDUCE_FMUL ||
5410 Node->getOpcode() == ISD::VP_REDUCE_FMAX ||
5411 Node->getOpcode() == ISD::VP_REDUCE_FMIN ||
5412 Node->getOpcode() == ISD::VP_REDUCE_FMAXIMUM ||
5413 Node->getOpcode() == ISD::VP_REDUCE_FMINIMUM ||
5414 Node->getOpcode() == ISD::VP_REDUCE_SEQ_FADD)
5415 OVT =
Node->getOperand(1).getSimpleValueType();
5416 if (
Node->getOpcode() == ISD::BR_CC ||
5418 OVT =
Node->getOperand(2).getSimpleValueType();
5421 SelectionDAG::FlagInserter FlagsInserter(DAG, FastMathFlags);
5424 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
5425 switch (
Node->getOpcode()) {
5437 unsigned NewOpc =
Node->getOpcode();
5450 Tmp1 = DAG.
getNode(NewOpc, dl, NVT, Tmp1);
5466 auto AnyExtendedNode =
5472 auto LeftShiftResult =
5476 auto CTLZResult = DAG.
getNode(
Node->getOpcode(), dl, NVT, LeftShiftResult);
5484 Tmp1 = DAG.
getNode(
Node->getOpcode(), dl, NVT, Tmp1);
5495 PromoteLegalFP_TO_INT(Node, dl,
Results);
5499 Results.push_back(PromoteLegalFP_TO_INT_SAT(Node, dl));
5505 PromoteLegalINT_TO_FP(Node, dl,
Results);
5513 TruncOp = ISD::BITCAST;
5516 &&
"VAARG promotion is supported only for vectors or integer types");
5521 Tmp1 = DAG.
getVAArg(NVT, dl, Chain, Ptr,
Node->getOperand(2),
5522 Node->getConstantOperandVal(3));
5525 Tmp2 = DAG.
getNode(TruncOp, dl, OVT, Tmp1);
5532 UpdatedNodes->insert(Tmp2.
getNode());
5533 UpdatedNodes->insert(Chain.
getNode());
5550 unsigned ExtOp, TruncOp;
5552 ExtOp = ISD::BITCAST;
5553 TruncOp = ISD::BITCAST;
5557 switch (
Node->getOpcode()) {
5582 Tmp1 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(0));
5583 Tmp2 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(1));
5585 Tmp1 = DAG.
getNode(
Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
5594 Tmp1 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(0));
5595 Tmp2 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(1));
5606 unsigned ExtOp, TruncOp;
5607 if (
Node->getValueType(0).isVector() ||
5609 ExtOp = ISD::BITCAST;
5610 TruncOp = ISD::BITCAST;
5611 }
else if (
Node->getValueType(0).isInteger()) {
5615 ExtOp = ISD::FP_EXTEND;
5618 Tmp1 =
Node->getOperand(0);
5620 Tmp2 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(1));
5621 Tmp3 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(2));
5623 Tmp1 = DAG.
getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
5625 Tmp1 = DAG.
getNode(TruncOp, dl,
Node->getValueType(0), Tmp1);
5627 Tmp1 = DAG.
getNode(TruncOp, dl,
Node->getValueType(0), Tmp1,
5636 Tmp1 = DAG.
getNode(ISD::BITCAST, dl, NVT,
Node->getOperand(0));
5637 Tmp2 = DAG.
getNode(ISD::BITCAST, dl, NVT,
Node->getOperand(1));
5640 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
5641 Tmp1 = DAG.
getNode(ISD::BITCAST, dl, OVT, Tmp1);
5649 Node->getOperand(2));
5657 MVT CVT =
Node->getSimpleValueType(0);
5658 assert(CVT == OVT &&
"not handled");
5660 unsigned ExtOp = ISD::FP_EXTEND;
5667 Tmp1 =
Node->getOperand(0);
5668 Tmp2 =
Node->getOperand(1);
5670 Tmp1 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(0));
5671 Tmp2 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(1));
5674 Tmp3 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(2));
5675 Tmp4 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(3));
5681 if (ExtOp != ISD::FP_EXTEND)
5693 unsigned ExtOp = ISD::FP_EXTEND;
5702 if (
Node->isStrictFPOpcode()) {
5704 std::tie(Tmp1, std::ignore) =
5706 std::tie(Tmp2, std::ignore) =
5710 SDVTList VTs = DAG.
getVTList(
Node->getValueType(0), MVT::Other);
5712 {OutChain, Tmp1, Tmp2, Node->getOperand(3)},
5717 Tmp1 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(0));
5718 Tmp2 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(1));
5720 Tmp2,
Node->getOperand(2),
Node->getFlags()));
5724 unsigned ExtOp = ISD::FP_EXTEND;
5730 Tmp1 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(2));
5731 Tmp2 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(3));
5733 Node->getOperand(0),
Node->getOperand(1),
5734 Tmp1, Tmp2,
Node->getOperand(4)));
5746 case ISD::FMINIMUMNUM:
5747 case ISD::FMAXIMUMNUM:
5750 Tmp1 = DAG.
getNode(ISD::FP_EXTEND, dl, NVT,
Node->getOperand(0));
5751 Tmp2 = DAG.
getNode(ISD::FP_EXTEND, dl, NVT,
Node->getOperand(1));
5752 Tmp3 = DAG.
getNode(
Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
5761 SDVTList VTs = DAG.
getVTList(NVT, MVT::Other);
5763 Node->getOperand(1));
5765 Node->getOperand(2));
5786 {
Node->getOperand(0),
Node->getOperand(1)});
5788 {
Node->getOperand(0),
Node->getOperand(2)});
5791 Tmp1 = DAG.
getNode(
Node->getOpcode(), dl, {NVT, MVT::Other},
5792 {Tmp3, Tmp1, Tmp2});
5800 Tmp1 = DAG.
getNode(ISD::FP_EXTEND, dl, NVT,
Node->getOperand(0));
5801 Tmp2 = DAG.
getNode(ISD::FP_EXTEND, dl, NVT,
Node->getOperand(1));
5802 Tmp3 = DAG.
getNode(ISD::FP_EXTEND, dl, NVT,
Node->getOperand(2));
5805 DAG.
getNode(
Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3),
5810 {
Node->getOperand(0),
Node->getOperand(1)});
5812 {
Node->getOperand(0),
Node->getOperand(2)});
5814 {
Node->getOperand(0),
Node->getOperand(3)});
5817 Tmp4 = DAG.
getNode(
Node->getOpcode(), dl, {NVT, MVT::Other},
5818 {Tmp4, Tmp1, Tmp2, Tmp3});
5828 Tmp1 = DAG.
getNode(ISD::FP_EXTEND, dl, NVT,
Node->getOperand(0));
5829 Tmp2 =
Node->getOperand(1);
5830 Tmp3 = DAG.
getNode(
Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
5845 {
Node->getOperand(0),
Node->getOperand(1)});
5846 Tmp2 =
Node->getOperand(2);
5858 {
Node->getOperand(0),
Node->getOperand(1)});
5859 Tmp2 = DAG.
getNode(
Node->getOpcode(), dl, {NVT, MVT::Other},
5860 {Tmp1.getValue(1), Tmp1, Node->getOperand(2)});
5868 Tmp1 = DAG.
getNode(ISD::FP_EXTEND, dl, NVT,
Node->getOperand(0));
5869 Tmp2 = DAG.
getNode(ISD::FFREXP, dl, {NVT,
Node->getValueType(1)}, Tmp1);
5880 case ISD::FSINCOSPI: {
5881 Tmp1 = DAG.
getNode(ISD::FP_EXTEND, dl, NVT,
Node->getOperand(0));
5884 for (
unsigned ResNum = 0; ResNum <
Node->getNumValues(); ResNum++)
5892 case ISD::FNEARBYINT:
5894 case ISD::FROUNDEVEN:
5915 Tmp1 = DAG.
getNode(ISD::FP_EXTEND, dl, NVT,
Node->getOperand(0));
5916 Tmp2 = DAG.
getNode(
Node->getOpcode(), dl, NVT, Tmp1);
5944 {
Node->getOperand(0),
Node->getOperand(1)});
5945 Tmp2 = DAG.
getNode(
Node->getOpcode(), dl, {NVT, MVT::Other},
5946 {Tmp1.getValue(1), Tmp1});
5964 "Invalid promote type for build_vector");
5997 "Invalid promote type for extract_vector_elt");
6012 for (
unsigned I = 0;
I < NewEltsPerOldElt; ++
I) {
6043 "Invalid promote type for insert_vector_elt");
6061 for (
unsigned I = 0;
I < NewEltsPerOldElt; ++
I) {
6066 CastVal, IdxOffset);
6069 NewVec, Elt, InEltIdx);
6103 case ISD::ATOMIC_SWAP:
6104 case ISD::ATOMIC_STORE: {
6109 "unexpected promotion type");
6111 "unexpected atomic_swap with illegal type");
6118 if (AM->
getOpcode() == ISD::ATOMIC_STORE)
6124 if (AM->
getOpcode() != ISD::ATOMIC_STORE) {
6125 Results.push_back(DAG.
getNode(ISD::BITCAST, SL, OVT, NewAtomic));
6131 case ISD::ATOMIC_LOAD: {
6135 "unexpected promotion type");
6137 "unexpected atomic_load with illegal type");
6142 Results.push_back(DAG.
getNode(ISD::BITCAST, SL, OVT, NewAtomic));
6148 MVT ScalarType =
Scalar.getSimpleValueType();
6152 Tmp2 = DAG.
getNode(
Node->getOpcode(), dl, NVT, Tmp1);
6156 Tmp1 = DAG.
getNode(ISD::FP_EXTEND, dl, NewScalarType, Scalar);
6157 Tmp2 = DAG.
getNode(
Node->getOpcode(), dl, NVT, Tmp1);
6163 case ISD::VECREDUCE_FMAX:
6164 case ISD::VECREDUCE_FMIN:
6165 case ISD::VECREDUCE_FMAXIMUM:
6166 case ISD::VECREDUCE_FMINIMUM:
6167 case ISD::VP_REDUCE_FMAX:
6168 case ISD::VP_REDUCE_FMIN:
6169 case ISD::VP_REDUCE_FMAXIMUM:
6170 case ISD::VP_REDUCE_FMINIMUM:
6171 Results.push_back(PromoteReduction(Node));
6178 ReplaceNode(Node,
Results.data());
6196 SelectionDAGLegalize
Legalizer(*
this, LegalizedNodes);
6203 bool AnyLegalized =
false;
6214 if (LegalizedNodes.
insert(
N).second) {
6215 AnyLegalized =
true;
6236 SelectionDAGLegalize
Legalizer(*
this, LegalizedNodes, &UpdatedNodes);
6243 return LegalizedNodes.
count(
N);
aarch64 falkor hwpf fix Falkor HW Prefetch Fix Late Phase
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static msgpack::DocNode getNode(msgpack::DocNode DN, msgpack::Type Type, MCValue Val)
static bool isConstant(const MachineInstr &MI)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static bool isSigned(unsigned int Opcode)
Utilities for dealing with flags related to floating point properties and mode controls.
static MaybeAlign getAlign(Value *Ptr)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static bool ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, const TargetLowering &TLI, SDValue &Res)
static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI)
Return true if sincos or __sincos_stret libcall is available.
static bool useSinCos(SDNode *Node)
Only issue sincos libcall if both sin and cos are needed.
static bool canUseFastMathLibcall(const SDNode *Node)
Return if we can use the FAST_* variant of a math libcall for the node.
static MachineMemOperand * getStackAlignedMMO(SDValue StackPtr, MachineFunction &MF, bool isObjectScalable)
static MVT getPromotedVectorElementType(const TargetLowering &TLI, MVT EltVT, MVT NewEltVT)
std::pair< MCSymbol *, MachineModuleInfoImpl::StubValueTy > PairTy
Promote Memory to Register
PowerPC Reduce CR logical Operation
static constexpr MCPhysReg SPReg
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallSet class.
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file describes how to lower LLVM code to machine code.
static constexpr int Concat[]
static APFloat getSmallestNormalized(const fltSemantics &Sem, bool Negative=false)
Returns the smallest (by magnitude) normalized finite number in the given semantics.
APInt bitcastToAPInt() const
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
Class for arbitrary precision integers.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
const SDValue & getBasePtr() const
const SDValue & getVal() const
LLVM_ABI Type * getStructRetType() const
static LLVM_ABI bool isValueValidForType(EVT VT, const APFloat &Val)
const APFloat & getValueAPF() const
const ConstantFP * getConstantFPValue() const
const APFloat & getValueAPF() const
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
bool isLittleEndian() const
Layout endianness...
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
const BasicBlock & back() const
LLVM_ABI void emitError(const Instruction *I, const Twine &ErrorStr)
emitError - Emit an error message to the currently installed error handler with optional location inf...
static LocationSize precise(uint64_t Value)
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
uint64_t getScalarSizeInBits() const
bool bitsLE(MVT VT) const
Return true if this has no more bits than VT.
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isInteger() const
Return true if this is an integer or a vector integer type.
bool bitsLT(MVT VT) const
Return true if this has less bits than VT.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineJumpTableInfo * getJumpTableInfo() const
getJumpTableInfo - Return the jump table info object for the current function.
LLVM_ABI unsigned getEntrySize(const DataLayout &TD) const
getEntrySize - Return the size of each entry in the jump table.
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOStore
The memory access writes data.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const SDValue & getChain() const
EVT getMemoryVT() const
Return the type of the in-memory value.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
bool isStrictFPOpcode()
Test if this node is a strict floating point pseudo-op.
ArrayRef< SDUse > ops() const
LLVM_ABI void dump() const
Dump this node, for debugging.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
iterator_range< user_iterator > users()
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
const SDValue & getOperand(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op)
Return the specified value casted to the target's desired shift amount type.
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
const TargetSubtargetInfo & getSubtarget() const
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
Gets a node for an atomic cmpxchg op.
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO)
Gets a node for an atomic op, produces result (if relevant) and chain and takes 2 operands.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI SDValue expandVACopy(SDNode *Node)
Expand the specified ISD::VACOPY node as the Legalize pass would.
allnodes_const_iterator allnodes_begin() const
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
allnodes_const_iterator allnodes_end() const
LLVM_ABI void DeleteNode(SDNode *N)
Remove the specified node from the system.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue expandVAArg(SDNode *Node)
Expand the specified ISD::VAARG node as the Legalize pass would.
LLVM_ABI void Legalize()
This transforms the SelectionDAG into a SelectionDAG that is compatible with the target instruction s...
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI bool LegalizeOp(SDNode *N, SmallSetVector< SDNode *, 16 > &UpdatedNodes)
Transforms a SelectionDAG node and any operands to it into a node that is compatible with the target ...
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue SV, unsigned Align)
VAArg produces a result and token chain, and takes a pointer and a source value as input.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue makeStateFunctionCall(unsigned LibFunc, SDValue Ptr, SDValue InChain, const SDLoc &DLoc)
Helper used to make a call to a library function that has one argument of pointer type.
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
LLVM_ABI void RemoveDeadNodes()
This method deletes all unreachable nodes in the SelectionDAG.
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI std::pair< SDValue, SDValue > getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT)
Convert Op, which must be a STRICT operation of float type, to the float type VT, by either extending...
LLVM_ABI SDValue getVPLogicalNOT(const SDLoc &DL, SDValue Val, SDValue Mask, SDValue EVL, EVT VT)
Create a vector-predicated logical NOT operation as (VP_XOR Val, BooleanOne, Mask,...
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI unsigned AssignTopologicalOrder()
Topological-sort the AllNodes list and a assign a unique node id for each node in the DAG based on th...
const TargetLibraryInfo & getLibInfo() const
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
LLVM_ABI SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a logical NOT operation as (XOR Val, BooleanOne).
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void reserve(size_type N)
void swap(SmallVectorImpl &RHS)
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
StackDirection getStackGrowthDirection() const
getStackGrowthDirection - Return the direction the stack grows
unsigned getIntSize() const
Get size of a C-level int or unsigned int, in bits.
bool isOperationExpand(unsigned Op, EVT VT) const
Return true if the specified operation is illegal on this target or unlikely to be made legal with cu...
virtual bool isShuffleMaskLegal(ArrayRef< int >, EVT) const
Targets can use this to indicate that they only support some VECTOR_SHUFFLE operations,...
virtual bool shouldExpandBuildVectorWithShuffles(EVT, unsigned DefinedValues) const
CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const
Get the CallingConv that should be used for the specified libcall.
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
bool isOperationLegalOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal using promotion.
LegalizeAction getCondCodeAction(ISD::CondCode CC, MVT VT) const
Return how the condition code should be treated: either it is legal, needs to be expanded to some oth...
CallingConv::ID getLibcallImplCallingConv(RTLIB::LibcallImpl Call) const
Get the CallingConv that should be used for the specified libcall implementation.
virtual bool isFPImmLegal(const APFloat &, EVT, bool ForCodeSize=false) const
Returns true if the target can instruction select the specified FP immediate natively.
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT, unsigned Scale) const
Some fixed point operations may be natively supported by the target but only for specific scales.
virtual ISD::NodeType getExtendForAtomicOps() const
Returns how the platform's atomic operations are extended (ZERO_EXTEND, SIGN_EXTEND,...
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
bool isStrictFPEnabled() const
Return true if the target support strict float operation.
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal for a comparison of the specified types on this ...
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
MVT getProgramPointerTy(const DataLayout &DL) const
Return the type for code pointers, which is determined by the program address space specified through...
virtual bool isJumpTableRelative() const
virtual bool ShouldShrinkFPConstant(EVT) const
If true, then instruction selection should seek to shrink the FP constant of the specified type to a ...
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const
Return how this store with truncation should be treated: either it is legal, needs to be promoted to ...
LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return how this load with extension should be treated: either it is legal, needs to be promoted to a ...
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
virtual LegalizeAction getCustomOperationAction(SDNode &Op) const
How to legalize this custom operation?
bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal or custom on this target.
LegalizeAction getStrictFPOperationAction(unsigned Op, EVT VT) const
bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal on this target.
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
virtual bool useSoftFloat() const
bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const
Return true if the specified store with truncation has solution on this target.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
virtual bool shouldSignExtendTypeInLibCall(Type *Ty, bool IsSigned) const
Returns true if arguments should be sign-extended in lib calls.
std::vector< ArgListEntry > ArgListTy
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal or custom for a comparison of the specified type...
MVT getFrameIndexTy(const DataLayout &DL) const
Return the type for frame index, which is determined by the alloca address space specified through th...
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const
If the action for this operation is to promote, this method returns the ValueType to promote to.
const RTLIB::RuntimeLibcallsInfo & getRuntimeLibcallsInfo() const
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT.
bool expandMultipleResultFPLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl< SDValue > &Results, std::optional< unsigned > CallRetResNo={}) const
Expands a node with multiple results to an FP or vector libcall.
bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]MULO.
bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL=SDValue(), SDValue LH=SDValue(), SDValue RL=SDValue(), SDValue RH=SDValue()) const
Expand a MUL into two nodes.
SDValue expandCTLZ(SDNode *N, SelectionDAG &DAG) const
Expand CTLZ/CTLZ_ZERO_UNDEF nodes.
SDValue expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const
Expand BITREVERSE nodes.
SDValue expandCTTZ(SDNode *N, SelectionDAG &DAG) const
Expand CTTZ/CTTZ_ZERO_UNDEF nodes.
virtual SDValue expandIndirectJTBranch(const SDLoc &dl, SDValue Value, SDValue Addr, int JTI, SelectionDAG &DAG) const
Expands target specific indirect branch for the case of JumpTable expansion.
SDValue expandABD(SDNode *N, SelectionDAG &DAG) const
Expand ABDS/ABDU nodes.
SDValue expandShlSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]SHLSAT.
SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test, SDNodeFlags Flags, const SDLoc &DL, SelectionDAG &DAG) const
Expand check for floating point class.
SDValue expandFP_TO_INT_SAT(SDNode *N, SelectionDAG &DAG) const
Expand FP_TO_[US]INT_SAT into FP_TO_[US]INT and selects or min/max.
SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const
Expands an unaligned store to 2 half-size stores for integer values, and possibly more for vectors.
void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::S(ADD|SUB)O.
SDValue expandABS(SDNode *N, SelectionDAG &DAG, bool IsNegative=false) const
Expand ABS nodes.
SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const
Expand a VECREDUCE_* into an explicit calculation.
SDValue expandVPCTTZElements(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTTZ_ELTS/VP_CTTZ_ELTS_ZERO_UNDEF nodes.
bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand float to UINT conversion.
bool expandREM(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const
Expand an SREM or UREM using SDIV/UDIV or SDIVREM/UDIVREM, if legal.
std::pair< SDValue, SDValue > expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Expands an unaligned load to 2 half-size loads for an integer, and possibly more for vectors.
SDValue expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimumnum/fmaximumnum into multiple comparison with selects.
SDValue expandVectorSplice(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::VECTOR_SPLICE.
SDValue getVectorSubVecPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, EVT SubVecVT, SDValue Index, const SDNodeFlags PtrArithFlags=SDNodeFlags()) const
Get a pointer to a sub-vector of type SubVecVT at index Idx located in memory for a vector of type Ve...
SDValue expandCTPOP(SDNode *N, SelectionDAG &DAG) const
Expand CTPOP nodes.
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
SDValue expandBSWAP(SDNode *N, SelectionDAG &DAG) const
Expand BSWAP nodes.
SDValue expandFMINIMUM_FMAXIMUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimum/fmaximum into multiple comparison with selects.
bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const
Expand float(f32) to SINT(i64) conversion.
virtual SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const
Returns relocation base for the given PIC jumptable.
bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, SDValue &Chain) const
Check whether a given call node is in tail position within its function.
SDValue expandFunnelShift(SDNode *N, SelectionDAG &DAG) const
Expand funnel shift.
bool LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, SDValue Mask, SDValue EVL, bool &NeedInvert, const SDLoc &dl, SDValue &Chain, bool IsSignaling=false) const
Legalize a SETCC or VP_SETCC with given LHS and RHS and condition code CC on the current target.
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const
This callback is invoked for operations that are unsupported by the target, which are registered to u...
SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, SDValue LHS, SDValue RHS, unsigned Scale, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]DIVFIX[SAT].
SDValue expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const
Expand round(fp) to fp conversion.
SDValue expandROT(SDNode *N, bool AllowVectorOps, SelectionDAG &DAG) const
Expand rotations.
SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, SDValue Index, const SDNodeFlags PtrArithFlags=SDNodeFlags()) const
Get a pointer to vector element Idx located in memory for a vector of type VecVT starting at a base a...
SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::LibcallImpl LibcallImpl, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
SDValue expandCMP(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]CMP.
SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT].
void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::U(ADD|SUB)O.
bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand UINT(i64) to double(f64) conversion.
bool expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, SDValue LHS, SDValue RHS, SmallVectorImpl< SDValue > &Result, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL=SDValue(), SDValue LH=SDValue(), SDValue RL=SDValue(), SDValue RH=SDValue()) const
Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes, respectively,...
SDValue expandAVG(SDNode *N, SelectionDAG &DAG) const
Expand vector/scalar AVGCEILS/AVGCEILU/AVGFLOORS/AVGFLOORU nodes.
Primary interface to the complete machine description for the target machine.
const Triple & getTargetTriple() const
virtual const TargetFrameLowering * getFrameLowering() const
static constexpr TypeSize getFixed(ScalarTy ExactSize)
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
bool isVoidTy() const
Return true if this is 'void'.
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
LLVM Value Representation.
constexpr ScalarTy getFixedValue() const
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
@ POISON
POISON - A poison node.
@ EH_SJLJ_LONGJMP
OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer) This corresponds to the eh.sjlj.longjmp intrinsic.
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ BSWAP
Byte Swap and Counting operators.
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
@ FRAME_TO_ARGS_OFFSET
FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to first (possible) on-stack ar...
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ EH_SJLJ_SETUP_DISPATCH
OUTCHAIN = EH_SJLJ_SETUP_DISPATCH(INCHAIN) The target initializes the dispatch table here.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
@ STRICT_FSQRT
Constrained versions of libm-equivalent floating point intrinsics.
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ EH_RETURN
OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents 'eh_return' gcc dwarf builtin,...
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ ADDROFRETURNADDR
ADDROFRETURNADDR - Represents the llvm.addressofreturnaddress intrinsic.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
@ SSUBO
Same for subtraction.
@ VECTOR_INTERLEAVE
VECTOR_INTERLEAVE(VEC1, VEC2, ...) - Returns N vectors from N input vectors, where N is the factor to...
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ UNDEF
UNDEF - An undefined node.
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ GET_ROUNDING
Returns current rounding mode: -1 Undefined 0 Round to 0 1 Round to nearest, ties to even 2 Round to ...
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ READ_REGISTER
READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on the DAG, which implements the n...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ GLOBAL_OFFSET_TABLE
The address of the GOT.
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ STRICT_SINT_TO_FP
STRICT_[US]INT_TO_FP - Convert a signed or unsigned integer to a floating point value.
@ EH_DWARF_CFA
EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical Frame Address (CFA),...
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
@ STRICT_FP_TO_SINT
STRICT_FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ STRICT_FADD
Constrained versions of the binary floating point operators.
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ SPONENTRY
SPONENTRY - Represents the llvm.sponentry intrinsic.
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ EH_SJLJ_SETJMP
RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer) This corresponds to the eh.sjlj....
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ VECTOR_DEINTERLEAVE
VECTOR_DEINTERLEAVE(VEC1, VEC2, ...) - Returns N vectors from N input vectors, where N is the factor ...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isNormalStore(const SDNode *N)
Returns true if the specified node is a non-truncating and unindexed store.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI std::optional< unsigned > getVPMaskIdx(unsigned Opcode)
The operand position of the vector mask.
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
bool isSignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs a signed comparison when used with integer o...
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
LLVM_ABI bool isVPOpcode(unsigned Opcode)
Whether this is a vector-predicated Opcode.
LLVM_ABI Libcall getPOWI(EVT RetVT)
getPOWI - Return the POWI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSYNC(unsigned Opc, MVT VT)
Return the SYNC_FETCH_AND_* value for the given opcode and type, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLDEXP(EVT RetVT)
getLDEXP - Return the LDEXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFREXP(EVT RetVT)
getFREXP - Return the FREXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINCOSPI(EVT RetVT)
getSINCOSPI - Return the SINCOSPI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPLibCall(EVT VT, Libcall Call_F32, Libcall Call_F64, Libcall Call_F80, Libcall Call_F128, Libcall Call_PPCF128)
GetFPLibCall - Helper to return the right libcall for the given floating point type,...
LLVM_ABI Libcall getFPTOUINT(EVT OpVT, EVT RetVT)
getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMODF(EVT VT)
getMODF - Return the MODF_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, MVT VT)
Return the outline atomics value for the given opcode, atomic ordering and type, or UNKNOWN_LIBCALL i...
LLVM_ABI Libcall getFPEXT(EVT OpVT, EVT RetVT)
getFPEXT - Return the FPEXT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPROUND(EVT OpVT, EVT RetVT)
getFPROUND - Return the FPROUND_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINCOS_STRET(EVT RetVT)
Return the SINCOS_STRET_ value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINCOS(EVT RetVT)
getSINCOS - Return the SINCOS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
@ Undef
Value of the register doesn't matter.
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
NodeAddr< NodeBase * > Node
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
FunctionAddr VTableAddr Value
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM)
Returns: X * 2^Exp for integral exponents.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
AtomicOrdering
Atomic ordering for LLVM's memory model.
To bit_cast(const From &from) noexcept
@ Or
Bitwise or logical OR of integers.
@ And
Bitwise or logical AND of integers.
@ Sub
Subtraction of integers.
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
bool isByteSized() const
Return true if the bit size is a multiple of 8.
uint64_t getScalarSizeInBits() const
EVT getHalfSizedIntegerVT(LLVMContext &Context) const
Finds the smallest simple value type that is greater than or equal to half the width of this EVT.
TypeSize getStoreSizeInBits() const
Return the number of bits overwritten by a store of the specified value type.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
bool isInteger() const
Return true if this is an integer or a vector integer type.
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getJumpTable(MachineFunction &MF)
Return a MachinePointerInfo record that refers to a jump table entry.
static LLVM_ABI MachinePointerInfo getConstantPool(MachineFunction &MF)
Return a MachinePointerInfo record that refers to the constant pool.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getUnknownStack(MachineFunction &MF)
Stack memory without other information.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
CallingConv::ID getLibcallImplCallingConv(RTLIB::LibcallImpl Call) const
Get the CallingConv that should be used for the specified libcall.
std::pair< FunctionType *, AttributeList > getFunctionTy(LLVMContext &Ctx, const Triple &TT, const DataLayout &DL, RTLIB::LibcallImpl LibcallImpl) const
These are IR-level optimization flags that may be propagated to SDNodes.
void setNoFPExcept(bool b)
void setNoUnsignedWrap(bool b)
void setNoSignedWrap(bool b)
bool IsPostTypeLegalization
MakeLibCallOptions & setIsSigned(bool Value=true)