LLVM 22.0.0git
SelectionDAGBuilder.cpp
Go to the documentation of this file.
1//===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements routines for translating from LLVM IR into SelectionDAG IR.
10//
11//===----------------------------------------------------------------------===//
12
13#include "SelectionDAGBuilder.h"
14#include "SDNodeDbgValue.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/StringRef.h"
22#include "llvm/ADT/Twine.h"
26#include "llvm/Analysis/Loads.h"
58#include "llvm/IR/Argument.h"
59#include "llvm/IR/Attributes.h"
60#include "llvm/IR/BasicBlock.h"
61#include "llvm/IR/CFG.h"
62#include "llvm/IR/CallingConv.h"
63#include "llvm/IR/Constant.h"
65#include "llvm/IR/Constants.h"
66#include "llvm/IR/DataLayout.h"
67#include "llvm/IR/DebugInfo.h"
72#include "llvm/IR/Function.h"
74#include "llvm/IR/InlineAsm.h"
75#include "llvm/IR/InstrTypes.h"
78#include "llvm/IR/Intrinsics.h"
79#include "llvm/IR/IntrinsicsAArch64.h"
80#include "llvm/IR/IntrinsicsAMDGPU.h"
81#include "llvm/IR/IntrinsicsWebAssembly.h"
82#include "llvm/IR/LLVMContext.h"
84#include "llvm/IR/Metadata.h"
85#include "llvm/IR/Module.h"
86#include "llvm/IR/Operator.h"
88#include "llvm/IR/Statepoint.h"
89#include "llvm/IR/Type.h"
90#include "llvm/IR/User.h"
91#include "llvm/IR/Value.h"
92#include "llvm/MC/MCContext.h"
97#include "llvm/Support/Debug.h"
105#include <cstddef>
106#include <limits>
107#include <optional>
108#include <tuple>
109
110using namespace llvm;
111using namespace PatternMatch;
112using namespace SwitchCG;
113
114#define DEBUG_TYPE "isel"
115
116/// LimitFloatPrecision - Generate low-precision inline sequences for
117/// some float libcalls (6, 8 or 12 bits).
118static unsigned LimitFloatPrecision;
119
120static cl::opt<bool>
121 InsertAssertAlign("insert-assert-align", cl::init(true),
122 cl::desc("Insert the experimental `assertalign` node."),
124
126 LimitFPPrecision("limit-float-precision",
127 cl::desc("Generate low-precision inline sequences "
128 "for some float libcalls"),
130 cl::init(0));
131
133 "switch-peel-threshold", cl::Hidden, cl::init(66),
134 cl::desc("Set the case probability threshold for peeling the case from a "
135 "switch statement. A value greater than 100 will void this "
136 "optimization"));
137
138// Limit the width of DAG chains. This is important in general to prevent
139// DAG-based analysis from blowing up. For example, alias analysis and
140// load clustering may not complete in reasonable time. It is difficult to
141// recognize and avoid this situation within each individual analysis, and
142// future analyses are likely to have the same behavior. Limiting DAG width is
143// the safe approach and will be especially important with global DAGs.
144//
145// MaxParallelChains default is arbitrarily high to avoid affecting
146// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
147// sequence over this should have been converted to llvm.memcpy by the
148// frontend. It is easy to induce this behavior with .ll code such as:
149// %buffer = alloca [4096 x i8]
150// %data = load [4096 x i8]* %argPtr
151// store [4096 x i8] %data, [4096 x i8]* %buffer
152static const unsigned MaxParallelChains = 64;
153
155 const SDValue *Parts, unsigned NumParts,
156 MVT PartVT, EVT ValueVT, const Value *V,
157 SDValue InChain,
158 std::optional<CallingConv::ID> CC);
159
160/// getCopyFromParts - Create a value that contains the specified legal parts
161/// combined into the value they represent. If the parts combine to a type
162/// larger than ValueVT then AssertOp can be used to specify whether the extra
163/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
164/// (ISD::AssertSext).
165static SDValue
166getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
167 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
168 SDValue InChain,
169 std::optional<CallingConv::ID> CC = std::nullopt,
170 std::optional<ISD::NodeType> AssertOp = std::nullopt) {
171 // Let the target assemble the parts if it wants to
172 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
173 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
174 PartVT, ValueVT, CC))
175 return Val;
176
177 if (ValueVT.isVector())
178 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
179 InChain, CC);
180
181 assert(NumParts > 0 && "No parts to assemble!");
182 SDValue Val = Parts[0];
183
184 if (NumParts > 1) {
185 // Assemble the value from multiple parts.
186 if (ValueVT.isInteger()) {
187 unsigned PartBits = PartVT.getSizeInBits();
188 unsigned ValueBits = ValueVT.getSizeInBits();
189
190 // Assemble the power of 2 part.
191 unsigned RoundParts = llvm::bit_floor(NumParts);
192 unsigned RoundBits = PartBits * RoundParts;
193 EVT RoundVT = RoundBits == ValueBits ?
194 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
195 SDValue Lo, Hi;
196
197 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
198
199 if (RoundParts > 2) {
200 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V,
201 InChain);
202 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2,
203 PartVT, HalfVT, V, InChain);
204 } else {
205 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
206 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
207 }
208
209 if (DAG.getDataLayout().isBigEndian())
210 std::swap(Lo, Hi);
211
212 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
213
214 if (RoundParts < NumParts) {
215 // Assemble the trailing non-power-of-2 part.
216 unsigned OddParts = NumParts - RoundParts;
217 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
218 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
219 OddVT, V, InChain, CC);
220
221 // Combine the round and odd parts.
222 Lo = Val;
223 if (DAG.getDataLayout().isBigEndian())
224 std::swap(Lo, Hi);
225 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
226 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
227 Hi = DAG.getNode(
228 ISD::SHL, DL, TotalVT, Hi,
229 DAG.getShiftAmountConstant(Lo.getValueSizeInBits(), TotalVT, DL));
230 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
231 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
232 }
233 } else if (PartVT.isFloatingPoint()) {
234 // FP split into multiple FP parts (for ppcf128)
235 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
236 "Unexpected split");
237 SDValue Lo, Hi;
238 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
239 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
240 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
241 std::swap(Lo, Hi);
242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
243 } else {
244 // FP split into integer parts (soft fp)
245 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
246 !PartVT.isVector() && "Unexpected split");
247 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
248 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V,
249 InChain, CC);
250 }
251 }
252
253 // There is now one part, held in Val. Correct it to match ValueVT.
254 // PartEVT is the type of the register class that holds the value.
255 // ValueVT is the type of the inline asm operation.
256 EVT PartEVT = Val.getValueType();
257
258 if (PartEVT == ValueVT)
259 return Val;
260
261 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
262 ValueVT.bitsLT(PartEVT)) {
263 // For an FP value in an integer part, we need to truncate to the right
264 // width first.
265 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
266 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
267 }
268
269 // Handle types that have the same size.
270 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
271 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
272
273 // Handle types with different sizes.
274 if (PartEVT.isInteger() && ValueVT.isInteger()) {
275 if (ValueVT.bitsLT(PartEVT)) {
276 // For a truncate, see if we have any information to
277 // indicate whether the truncated bits will always be
278 // zero or sign-extension.
279 if (AssertOp)
280 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
281 DAG.getValueType(ValueVT));
282 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
283 }
284 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
285 }
286
287 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
288 // FP_ROUND's are always exact here.
289 if (ValueVT.bitsLT(Val.getValueType())) {
290
291 SDValue NoChange =
293
294 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr(
295 llvm::Attribute::StrictFP)) {
296 return DAG.getNode(ISD::STRICT_FP_ROUND, DL,
297 DAG.getVTList(ValueVT, MVT::Other), InChain, Val,
298 NoChange);
299 }
300
301 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange);
302 }
303
304 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
305 }
306
307 // Handle MMX to a narrower integer type by bitcasting MMX to integer and
308 // then truncating.
309 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
310 ValueVT.bitsLT(PartEVT)) {
311 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
312 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
313 }
314
315 report_fatal_error("Unknown mismatch in getCopyFromParts!");
316}
317
319 const Twine &ErrMsg) {
321 if (!I)
322 return Ctx.emitError(ErrMsg);
323
324 if (const CallInst *CI = dyn_cast<CallInst>(I))
325 if (CI->isInlineAsm()) {
326 return Ctx.diagnose(DiagnosticInfoInlineAsm(
327 *CI, ErrMsg + ", possible invalid constraint for vector type"));
328 }
329
330 return Ctx.emitError(I, ErrMsg);
331}
332
333/// getCopyFromPartsVector - Create a value that contains the specified legal
334/// parts combined into the value they represent. If the parts combine to a
335/// type larger than ValueVT then AssertOp can be used to specify whether the
336/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
337/// ValueVT (ISD::AssertSext).
339 const SDValue *Parts, unsigned NumParts,
340 MVT PartVT, EVT ValueVT, const Value *V,
341 SDValue InChain,
342 std::optional<CallingConv::ID> CallConv) {
343 assert(ValueVT.isVector() && "Not a vector value");
344 assert(NumParts > 0 && "No parts to assemble!");
345 const bool IsABIRegCopy = CallConv.has_value();
346
347 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
348 SDValue Val = Parts[0];
349
350 // Handle a multi-element vector.
351 if (NumParts > 1) {
352 EVT IntermediateVT;
353 MVT RegisterVT;
354 unsigned NumIntermediates;
355 unsigned NumRegs;
356
357 if (IsABIRegCopy) {
359 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
360 NumIntermediates, RegisterVT);
361 } else {
362 NumRegs =
363 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
364 NumIntermediates, RegisterVT);
365 }
366
367 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
368 NumParts = NumRegs; // Silence a compiler warning.
369 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
370 assert(RegisterVT.getSizeInBits() ==
371 Parts[0].getSimpleValueType().getSizeInBits() &&
372 "Part type sizes don't match!");
373
374 // Assemble the parts into intermediate operands.
375 SmallVector<SDValue, 8> Ops(NumIntermediates);
376 if (NumIntermediates == NumParts) {
377 // If the register was not expanded, truncate or copy the value,
378 // as appropriate.
379 for (unsigned i = 0; i != NumParts; ++i)
380 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT,
381 V, InChain, CallConv);
382 } else if (NumParts > 0) {
383 // If the intermediate type was expanded, build the intermediate
384 // operands from the parts.
385 assert(NumParts % NumIntermediates == 0 &&
386 "Must expand into a divisible number of parts!");
387 unsigned Factor = NumParts / NumIntermediates;
388 for (unsigned i = 0; i != NumIntermediates; ++i)
389 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT,
390 IntermediateVT, V, InChain, CallConv);
391 }
392
393 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
394 // intermediate operands.
395 EVT BuiltVectorTy =
396 IntermediateVT.isVector()
398 *DAG.getContext(), IntermediateVT.getScalarType(),
399 IntermediateVT.getVectorElementCount() * NumParts)
401 IntermediateVT.getScalarType(),
402 NumIntermediates);
403 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
405 DL, BuiltVectorTy, Ops);
406 }
407
408 // There is now one part, held in Val. Correct it to match ValueVT.
409 EVT PartEVT = Val.getValueType();
410
411 if (PartEVT == ValueVT)
412 return Val;
413
414 if (PartEVT.isVector()) {
415 // Vector/Vector bitcast.
416 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
417 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
418
419 // If the parts vector has more elements than the value vector, then we
420 // have a vector widening case (e.g. <2 x float> -> <4 x float>).
421 // Extract the elements we want.
422 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
425 (PartEVT.getVectorElementCount().isScalable() ==
426 ValueVT.getVectorElementCount().isScalable()) &&
427 "Cannot narrow, it would be a lossy transformation");
428 PartEVT =
430 ValueVT.getVectorElementCount());
431 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
432 DAG.getVectorIdxConstant(0, DL));
433 if (PartEVT == ValueVT)
434 return Val;
435 if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
436 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
437
438 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
439 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
440 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
441 }
442
443 // Promoted vector extract
444 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
445 }
446
447 // Trivial bitcast if the types are the same size and the destination
448 // vector type is legal.
449 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
450 TLI.isTypeLegal(ValueVT))
451 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
452
453 if (ValueVT.getVectorNumElements() != 1) {
454 // Certain ABIs require that vectors are passed as integers. For vectors
455 // are the same size, this is an obvious bitcast.
456 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
457 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
458 } else if (ValueVT.bitsLT(PartEVT)) {
459 const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
460 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
461 // Drop the extra bits.
462 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
463 return DAG.getBitcast(ValueVT, Val);
464 }
465
467 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
468 return DAG.getUNDEF(ValueVT);
469 }
470
471 // Handle cases such as i8 -> <1 x i1>
472 EVT ValueSVT = ValueVT.getVectorElementType();
473 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
474 unsigned ValueSize = ValueSVT.getSizeInBits();
475 if (ValueSize == PartEVT.getSizeInBits()) {
476 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
477 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
478 // It's possible a scalar floating point type gets softened to integer and
479 // then promoted to a larger integer. If PartEVT is the larger integer
480 // we need to truncate it and then bitcast to the FP type.
481 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
482 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
483 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
484 Val = DAG.getBitcast(ValueSVT, Val);
485 } else {
486 Val = ValueVT.isFloatingPoint()
487 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
488 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
489 }
490 }
491
492 return DAG.getBuildVector(ValueVT, DL, Val);
493}
494
495static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
496 SDValue Val, SDValue *Parts, unsigned NumParts,
497 MVT PartVT, const Value *V,
498 std::optional<CallingConv::ID> CallConv);
499
500/// getCopyToParts - Create a series of nodes that contain the specified value
501/// split into legal parts. If the parts contain more bits than Val, then, for
502/// integers, ExtendKind can be used to specify how to generate the extra bits.
503static void
505 unsigned NumParts, MVT PartVT, const Value *V,
506 std::optional<CallingConv::ID> CallConv = std::nullopt,
507 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
508 // Let the target split the parts if it wants to
509 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
510 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
511 CallConv))
512 return;
513 EVT ValueVT = Val.getValueType();
514
515 // Handle the vector case separately.
516 if (ValueVT.isVector())
517 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
518 CallConv);
519
520 unsigned OrigNumParts = NumParts;
522 "Copying to an illegal type!");
523
524 if (NumParts == 0)
525 return;
526
527 assert(!ValueVT.isVector() && "Vector case handled elsewhere");
528 EVT PartEVT = PartVT;
529 if (PartEVT == ValueVT) {
530 assert(NumParts == 1 && "No-op copy with multiple parts!");
531 Parts[0] = Val;
532 return;
533 }
534
535 unsigned PartBits = PartVT.getSizeInBits();
536 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
537 // If the parts cover more bits than the value has, promote the value.
538 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
539 assert(NumParts == 1 && "Do not know what to promote to!");
540 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
541 } else {
542 if (ValueVT.isFloatingPoint()) {
543 // FP values need to be bitcast, then extended if they are being put
544 // into a larger container.
545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
546 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
547 }
548 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
549 ValueVT.isInteger() &&
550 "Unknown mismatch!");
551 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
552 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
553 if (PartVT == MVT::x86mmx)
554 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
555 }
556 } else if (PartBits == ValueVT.getSizeInBits()) {
557 // Different types of the same size.
558 assert(NumParts == 1 && PartEVT != ValueVT);
559 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
560 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
561 // If the parts cover less bits than value has, truncate the value.
562 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
563 ValueVT.isInteger() &&
564 "Unknown mismatch!");
565 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
566 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
567 if (PartVT == MVT::x86mmx)
568 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
569 }
570
571 // The value may have changed - recompute ValueVT.
572 ValueVT = Val.getValueType();
573 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
574 "Failed to tile the value with PartVT!");
575
576 if (NumParts == 1) {
577 if (PartEVT != ValueVT) {
579 "scalar-to-vector conversion failed");
580 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
581 }
582
583 Parts[0] = Val;
584 return;
585 }
586
587 // Expand the value into multiple parts.
588 if (NumParts & (NumParts - 1)) {
589 // The number of parts is not a power of 2. Split off and copy the tail.
590 assert(PartVT.isInteger() && ValueVT.isInteger() &&
591 "Do not know what to expand to!");
592 unsigned RoundParts = llvm::bit_floor(NumParts);
593 unsigned RoundBits = RoundParts * PartBits;
594 unsigned OddParts = NumParts - RoundParts;
595 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
596 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
597
598 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
599 CallConv);
600
601 if (DAG.getDataLayout().isBigEndian())
602 // The odd parts were reversed by getCopyToParts - unreverse them.
603 std::reverse(Parts + RoundParts, Parts + NumParts);
604
605 NumParts = RoundParts;
606 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
607 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
608 }
609
610 // The number of parts is a power of 2. Repeatedly bisect the value using
611 // EXTRACT_ELEMENT.
612 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
614 ValueVT.getSizeInBits()),
615 Val);
616
617 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
618 for (unsigned i = 0; i < NumParts; i += StepSize) {
619 unsigned ThisBits = StepSize * PartBits / 2;
620 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
621 SDValue &Part0 = Parts[i];
622 SDValue &Part1 = Parts[i+StepSize/2];
623
624 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
625 ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
626 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
627 ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
628
629 if (ThisBits == PartBits && ThisVT != PartVT) {
630 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
631 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
632 }
633 }
634 }
635
636 if (DAG.getDataLayout().isBigEndian())
637 std::reverse(Parts, Parts + OrigNumParts);
638}
639
641 const SDLoc &DL, EVT PartVT) {
642 if (!PartVT.isVector())
643 return SDValue();
644
645 EVT ValueVT = Val.getValueType();
646 EVT PartEVT = PartVT.getVectorElementType();
647 EVT ValueEVT = ValueVT.getVectorElementType();
648 ElementCount PartNumElts = PartVT.getVectorElementCount();
649 ElementCount ValueNumElts = ValueVT.getVectorElementCount();
650
651 // We only support widening vectors with equivalent element types and
652 // fixed/scalable properties. If a target needs to widen a fixed-length type
653 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
654 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
655 PartNumElts.isScalable() != ValueNumElts.isScalable())
656 return SDValue();
657
658 // Have a try for bf16 because some targets share its ABI with fp16.
659 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
661 "Cannot widen to illegal type");
662 Val = DAG.getNode(ISD::BITCAST, DL,
663 ValueVT.changeVectorElementType(MVT::f16), Val);
664 } else if (PartEVT != ValueEVT) {
665 return SDValue();
666 }
667
668 // Widening a scalable vector to another scalable vector is done by inserting
669 // the vector into a larger undef one.
670 if (PartNumElts.isScalable())
671 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
672 Val, DAG.getVectorIdxConstant(0, DL));
673
674 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
675 // undef elements.
677 DAG.ExtractVectorElements(Val, Ops);
678 SDValue EltUndef = DAG.getUNDEF(PartEVT);
679 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
680
681 // FIXME: Use CONCAT for 2x -> 4x.
682 return DAG.getBuildVector(PartVT, DL, Ops);
683}
684
685/// getCopyToPartsVector - Create a series of nodes that contain the specified
686/// value split into legal parts.
687static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
688 SDValue Val, SDValue *Parts, unsigned NumParts,
689 MVT PartVT, const Value *V,
690 std::optional<CallingConv::ID> CallConv) {
691 EVT ValueVT = Val.getValueType();
692 assert(ValueVT.isVector() && "Not a vector");
693 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
694 const bool IsABIRegCopy = CallConv.has_value();
695
696 if (NumParts == 1) {
697 EVT PartEVT = PartVT;
698 if (PartEVT == ValueVT) {
699 // Nothing to do.
700 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
701 // Bitconvert vector->vector case.
702 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
703 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
704 Val = Widened;
705 } else if (PartVT.isVector() &&
707 ValueVT.getVectorElementType()) &&
708 PartEVT.getVectorElementCount() ==
709 ValueVT.getVectorElementCount()) {
710
711 // Promoted vector extract
712 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
713 } else if (PartEVT.isVector() &&
714 PartEVT.getVectorElementType() !=
715 ValueVT.getVectorElementType() &&
716 TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
718 // Combination of widening and promotion.
719 EVT WidenVT =
721 PartVT.getVectorElementCount());
722 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
723 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
724 } else {
725 // Don't extract an integer from a float vector. This can happen if the
726 // FP type gets softened to integer and then promoted. The promotion
727 // prevents it from being picked up by the earlier bitcast case.
728 if (ValueVT.getVectorElementCount().isScalar() &&
729 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
730 // If we reach this condition and PartVT is FP, this means that
731 // ValueVT is also FP and both have a different size, otherwise we
732 // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here
733 // would be invalid since that would mean the smaller FP type has to
734 // be extended to the larger one.
735 if (PartVT.isFloatingPoint()) {
736 Val = DAG.getBitcast(ValueVT.getScalarType(), Val);
737 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
738 } else
739 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
740 DAG.getVectorIdxConstant(0, DL));
741 } else {
742 uint64_t ValueSize = ValueVT.getFixedSizeInBits();
743 assert(PartVT.getFixedSizeInBits() > ValueSize &&
744 "lossy conversion of vector to scalar type");
745 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
746 Val = DAG.getBitcast(IntermediateType, Val);
747 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
748 }
749 }
750
751 assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
752 Parts[0] = Val;
753 return;
754 }
755
756 // Handle a multi-element vector.
757 EVT IntermediateVT;
758 MVT RegisterVT;
759 unsigned NumIntermediates;
760 unsigned NumRegs;
761 if (IsABIRegCopy) {
763 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
764 RegisterVT);
765 } else {
766 NumRegs =
767 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
768 NumIntermediates, RegisterVT);
769 }
770
771 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
772 NumParts = NumRegs; // Silence a compiler warning.
773 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
774
775 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
776 "Mixing scalable and fixed vectors when copying in parts");
777
778 std::optional<ElementCount> DestEltCnt;
779
780 if (IntermediateVT.isVector())
781 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
782 else
783 DestEltCnt = ElementCount::getFixed(NumIntermediates);
784
785 EVT BuiltVectorTy = EVT::getVectorVT(
786 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
787
788 if (ValueVT == BuiltVectorTy) {
789 // Nothing to do.
790 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
791 // Bitconvert vector->vector case.
792 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
793 } else {
794 if (BuiltVectorTy.getVectorElementType().bitsGT(
795 ValueVT.getVectorElementType())) {
796 // Integer promotion.
797 ValueVT = EVT::getVectorVT(*DAG.getContext(),
798 BuiltVectorTy.getVectorElementType(),
799 ValueVT.getVectorElementCount());
800 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
801 }
802
803 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
804 Val = Widened;
805 }
806 }
807
808 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
809
810 // Split the vector into intermediate operands.
811 SmallVector<SDValue, 8> Ops(NumIntermediates);
812 for (unsigned i = 0; i != NumIntermediates; ++i) {
813 if (IntermediateVT.isVector()) {
814 // This does something sensible for scalable vectors - see the
815 // definition of EXTRACT_SUBVECTOR for further details.
816 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
817 Ops[i] =
818 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
819 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
820 } else {
821 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
822 DAG.getVectorIdxConstant(i, DL));
823 }
824 }
825
826 // Split the intermediate operands into legal parts.
827 if (NumParts == NumIntermediates) {
828 // If the register was not expanded, promote or copy the value,
829 // as appropriate.
830 for (unsigned i = 0; i != NumParts; ++i)
831 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
832 } else if (NumParts > 0) {
833 // If the intermediate type was expanded, split each the value into
834 // legal parts.
835 assert(NumIntermediates != 0 && "division by zero");
836 assert(NumParts % NumIntermediates == 0 &&
837 "Must expand into a divisible number of parts!");
838 unsigned Factor = NumParts / NumIntermediates;
839 for (unsigned i = 0; i != NumIntermediates; ++i)
840 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
841 CallConv);
842 }
843}
844
845static void failForInvalidBundles(const CallBase &I, StringRef Name,
846 ArrayRef<uint32_t> AllowedBundles) {
847 if (I.hasOperandBundlesOtherThan(AllowedBundles)) {
848 ListSeparator LS;
849 std::string Error;
851 for (unsigned i = 0, e = I.getNumOperandBundles(); i != e; ++i) {
852 OperandBundleUse U = I.getOperandBundleAt(i);
853 if (!is_contained(AllowedBundles, U.getTagID()))
854 OS << LS << U.getTagName();
855 }
857 Twine("cannot lower ", Name)
858 .concat(Twine(" with arbitrary operand bundles: ", Error)));
859 }
860}
861
863 EVT valuevt, std::optional<CallingConv::ID> CC)
864 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
865 RegCount(1, regs.size()), CallConv(CC) {}
866
868 const DataLayout &DL, Register Reg, Type *Ty,
869 std::optional<CallingConv::ID> CC) {
870 ComputeValueVTs(TLI, DL, Ty, ValueVTs);
871
872 CallConv = CC;
873
874 for (EVT ValueVT : ValueVTs) {
875 unsigned NumRegs =
877 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
878 : TLI.getNumRegisters(Context, ValueVT);
879 MVT RegisterVT =
881 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
882 : TLI.getRegisterType(Context, ValueVT);
883 for (unsigned i = 0; i != NumRegs; ++i)
884 Regs.push_back(Reg + i);
885 RegVTs.push_back(RegisterVT);
886 RegCount.push_back(NumRegs);
887 Reg = Reg.id() + NumRegs;
888 }
889}
890
892 FunctionLoweringInfo &FuncInfo,
893 const SDLoc &dl, SDValue &Chain,
894 SDValue *Glue, const Value *V) const {
895 // A Value with type {} or [0 x %t] needs no registers.
896 if (ValueVTs.empty())
897 return SDValue();
898
899 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
900
901 // Assemble the legal parts into the final values.
902 SmallVector<SDValue, 4> Values(ValueVTs.size());
904 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
905 // Copy the legal parts from the registers.
906 EVT ValueVT = ValueVTs[Value];
907 unsigned NumRegs = RegCount[Value];
908 MVT RegisterVT = isABIMangled()
910 *DAG.getContext(), *CallConv, RegVTs[Value])
911 : RegVTs[Value];
912
913 Parts.resize(NumRegs);
914 for (unsigned i = 0; i != NumRegs; ++i) {
915 SDValue P;
916 if (!Glue) {
917 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
918 } else {
919 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
920 *Glue = P.getValue(2);
921 }
922
923 Chain = P.getValue(1);
924 Parts[i] = P;
925
926 // If the source register was virtual and if we know something about it,
927 // add an assert node.
928 if (!Regs[Part + i].isVirtual() || !RegisterVT.isInteger())
929 continue;
930
932 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
933 if (!LOI)
934 continue;
935
936 unsigned RegSize = RegisterVT.getScalarSizeInBits();
937 unsigned NumSignBits = LOI->NumSignBits;
938 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
939
940 if (NumZeroBits == RegSize) {
941 // The current value is a zero.
942 // Explicitly express that as it would be easier for
943 // optimizations to kick in.
944 Parts[i] = DAG.getConstant(0, dl, RegisterVT);
945 continue;
946 }
947
948 // FIXME: We capture more information than the dag can represent. For
949 // now, just use the tightest assertzext/assertsext possible.
950 bool isSExt;
951 EVT FromVT(MVT::Other);
952 if (NumZeroBits) {
953 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
954 isSExt = false;
955 } else if (NumSignBits > 1) {
956 FromVT =
957 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
958 isSExt = true;
959 } else {
960 continue;
961 }
962 // Add an assertion node.
963 assert(FromVT != MVT::Other);
964 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
965 RegisterVT, P, DAG.getValueType(FromVT));
966 }
967
968 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
969 RegisterVT, ValueVT, V, Chain, CallConv);
970 Part += NumRegs;
971 Parts.clear();
972 }
973
974 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
975}
976
978 const SDLoc &dl, SDValue &Chain, SDValue *Glue,
979 const Value *V,
980 ISD::NodeType PreferredExtendType) const {
981 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
982 ISD::NodeType ExtendKind = PreferredExtendType;
983
984 // Get the list of the values's legal parts.
985 unsigned NumRegs = Regs.size();
986 SmallVector<SDValue, 8> Parts(NumRegs);
987 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
988 unsigned NumParts = RegCount[Value];
989
990 MVT RegisterVT = isABIMangled()
992 *DAG.getContext(), *CallConv, RegVTs[Value])
993 : RegVTs[Value];
994
995 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
996 ExtendKind = ISD::ZERO_EXTEND;
997
998 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
999 NumParts, RegisterVT, V, CallConv, ExtendKind);
1000 Part += NumParts;
1001 }
1002
1003 // Copy the parts into the registers.
1004 SmallVector<SDValue, 8> Chains(NumRegs);
1005 for (unsigned i = 0; i != NumRegs; ++i) {
1006 SDValue Part;
1007 if (!Glue) {
1008 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
1009 } else {
1010 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
1011 *Glue = Part.getValue(1);
1012 }
1013
1014 Chains[i] = Part.getValue(0);
1015 }
1016
1017 if (NumRegs == 1 || Glue)
1018 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
1019 // flagged to it. That is the CopyToReg nodes and the user are considered
1020 // a single scheduling unit. If we create a TokenFactor and return it as
1021 // chain, then the TokenFactor is both a predecessor (operand) of the
1022 // user as well as a successor (the TF operands are flagged to the user).
1023 // c1, f1 = CopyToReg
1024 // c2, f2 = CopyToReg
1025 // c3 = TokenFactor c1, c2
1026 // ...
1027 // = op c3, ..., f2
1028 Chain = Chains[NumRegs-1];
1029 else
1030 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
1031}
1032
1034 unsigned MatchingIdx, const SDLoc &dl,
1035 SelectionDAG &DAG,
1036 std::vector<SDValue> &Ops) const {
1037 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1038
1039 InlineAsm::Flag Flag(Code, Regs.size());
1040 if (HasMatching)
1041 Flag.setMatchingOp(MatchingIdx);
1042 else if (!Regs.empty() && Regs.front().isVirtual()) {
1043 // Put the register class of the virtual registers in the flag word. That
1044 // way, later passes can recompute register class constraints for inline
1045 // assembly as well as normal instructions.
1046 // Don't do this for tied operands that can use the regclass information
1047 // from the def.
1049 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1050 Flag.setRegClass(RC->getID());
1051 }
1052
1053 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1054 Ops.push_back(Res);
1055
1056 if (Code == InlineAsm::Kind::Clobber) {
1057 // Clobbers should always have a 1:1 mapping with registers, and may
1058 // reference registers that have illegal (e.g. vector) types. Hence, we
1059 // shouldn't try to apply any sort of splitting logic to them.
1060 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1061 "No 1:1 mapping from clobbers to regs?");
1063 (void)SP;
1064 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1065 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1066 assert(
1067 (Regs[I] != SP ||
1069 "If we clobbered the stack pointer, MFI should know about it.");
1070 }
1071 return;
1072 }
1073
1074 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1075 MVT RegisterVT = RegVTs[Value];
1076 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1077 RegisterVT);
1078 for (unsigned i = 0; i != NumRegs; ++i) {
1079 assert(Reg < Regs.size() && "Mismatch in # registers expected");
1080 Register TheReg = Regs[Reg++];
1081 Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1082 }
1083 }
1084}
1085
1089 unsigned I = 0;
1090 for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1091 unsigned RegCount = std::get<0>(CountAndVT);
1092 MVT RegisterVT = std::get<1>(CountAndVT);
1093 TypeSize RegisterSize = RegisterVT.getSizeInBits();
1094 for (unsigned E = I + RegCount; I != E; ++I)
1095 OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1096 }
1097 return OutVec;
1098}
1099
1101 AssumptionCache *ac, const TargetLibraryInfo *li,
1102 const TargetTransformInfo &TTI) {
1103 BatchAA = aa;
1104 AC = ac;
1105 GFI = gfi;
1106 LibInfo = li;
1107 Context = DAG.getContext();
1108 LPadToCallSiteMap.clear();
1109 this->TTI = &TTI;
1110 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1111 AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1112 *DAG.getMachineFunction().getFunction().getParent());
1113}
1114
1116 NodeMap.clear();
1117 UnusedArgNodeMap.clear();
1118 PendingLoads.clear();
1119 PendingExports.clear();
1120 PendingConstrainedFP.clear();
1121 PendingConstrainedFPStrict.clear();
1122 CurInst = nullptr;
1123 HasTailCall = false;
1124 SDNodeOrder = LowestSDNodeOrder;
1125 StatepointLowering.clear();
1126}
1127
1129 DanglingDebugInfoMap.clear();
1130}
1131
1132// Update DAG root to include dependencies on Pending chains.
1133SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1134 SDValue Root = DAG.getRoot();
1135
1136 if (Pending.empty())
1137 return Root;
1138
1139 // Add current root to PendingChains, unless we already indirectly
1140 // depend on it.
1141 if (Root.getOpcode() != ISD::EntryToken) {
1142 unsigned i = 0, e = Pending.size();
1143 for (; i != e; ++i) {
1144 assert(Pending[i].getNode()->getNumOperands() > 1);
1145 if (Pending[i].getNode()->getOperand(0) == Root)
1146 break; // Don't add the root if we already indirectly depend on it.
1147 }
1148
1149 if (i == e)
1150 Pending.push_back(Root);
1151 }
1152
1153 if (Pending.size() == 1)
1154 Root = Pending[0];
1155 else
1156 Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1157
1158 DAG.setRoot(Root);
1159 Pending.clear();
1160 return Root;
1161}
1162
1166
1168 // If the new exception behavior differs from that of the pending
1169 // ones, chain up them and update the root.
1170 switch (EB) {
1173 // Floating-point exceptions produced by such operations are not intended
1174 // to be observed, so the sequence of these operations does not need to be
1175 // preserved.
1176 //
1177 // They however must not be mixed with the instructions that have strict
1178 // exception behavior. Placing an operation with 'ebIgnore' behavior between
1179 // 'ebStrict' operations could distort the observed exception behavior.
1180 if (!PendingConstrainedFPStrict.empty()) {
1181 assert(PendingConstrainedFP.empty());
1182 updateRoot(PendingConstrainedFPStrict);
1183 }
1184 break;
1186 // Floating-point exception produced by these operations may be observed, so
1187 // they must be correctly chained. If trapping on FP exceptions is
1188 // disabled, the exceptions can be observed only by functions that read
1189 // exception flags, like 'llvm.get_fpenv' or 'fetestexcept'. It means that
1190 // the order of operations is not significant between barriers.
1191 //
1192 // If trapping is enabled, each operation becomes an implicit observation
1193 // point, so the operations must be sequenced according their original
1194 // source order.
1195 if (!PendingConstrainedFP.empty()) {
1196 assert(PendingConstrainedFPStrict.empty());
1197 updateRoot(PendingConstrainedFP);
1198 }
1199 // TODO: Add support for trapping-enabled scenarios.
1200 }
1201 return DAG.getRoot();
1202}
1203
1205 // Chain up all pending constrained intrinsics together with all
1206 // pending loads, by simply appending them to PendingLoads and
1207 // then calling getMemoryRoot().
1208 PendingLoads.reserve(PendingLoads.size() +
1209 PendingConstrainedFP.size() +
1210 PendingConstrainedFPStrict.size());
1211 PendingLoads.append(PendingConstrainedFP.begin(),
1212 PendingConstrainedFP.end());
1213 PendingLoads.append(PendingConstrainedFPStrict.begin(),
1214 PendingConstrainedFPStrict.end());
1215 PendingConstrainedFP.clear();
1216 PendingConstrainedFPStrict.clear();
1217 return getMemoryRoot();
1218}
1219
1221 // We need to emit pending fpexcept.strict constrained intrinsics,
1222 // so append them to the PendingExports list.
1223 PendingExports.append(PendingConstrainedFPStrict.begin(),
1224 PendingConstrainedFPStrict.end());
1225 PendingConstrainedFPStrict.clear();
1226 return updateRoot(PendingExports);
1227}
1228
1230 DILocalVariable *Variable,
1232 DebugLoc DL) {
1233 assert(Variable && "Missing variable");
1234
1235 // Check if address has undef value.
1236 if (!Address || isa<UndefValue>(Address) ||
1237 (Address->use_empty() && !isa<Argument>(Address))) {
1238 LLVM_DEBUG(
1239 dbgs()
1240 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1241 return;
1242 }
1243
1244 bool IsParameter = Variable->isParameter() || isa<Argument>(Address);
1245
1246 SDValue &N = NodeMap[Address];
1247 if (!N.getNode() && isa<Argument>(Address))
1248 // Check unused arguments map.
1249 N = UnusedArgNodeMap[Address];
1250 SDDbgValue *SDV;
1251 if (N.getNode()) {
1252 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
1253 Address = BCI->getOperand(0);
1254 // Parameters are handled specially.
1255 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
1256 if (IsParameter && FINode) {
1257 // Byval parameter. We have a frame index at this point.
1258 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
1259 /*IsIndirect*/ true, DL, SDNodeOrder);
1260 } else if (isa<Argument>(Address)) {
1261 // Address is an argument, so try to emit its dbg value using
1262 // virtual register info from the FuncInfo.ValueMap.
1263 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1264 FuncArgumentDbgValueKind::Declare, N);
1265 return;
1266 } else {
1267 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
1268 true, DL, SDNodeOrder);
1269 }
1270 DAG.AddDbgValue(SDV, IsParameter);
1271 } else {
1272 // If Address is an argument then try to emit its dbg value using
1273 // virtual register info from the FuncInfo.ValueMap.
1274 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1275 FuncArgumentDbgValueKind::Declare, N)) {
1276 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info"
1277 << " (could not emit func-arg dbg_value)\n");
1278 }
1279 }
1280}
1281
1283 // Add SDDbgValue nodes for any var locs here. Do so before updating
1284 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1285 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1286 // Add SDDbgValue nodes for any var locs here. Do so before updating
1287 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1288 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1289 It != End; ++It) {
1290 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1291 dropDanglingDebugInfo(Var, It->Expr);
1292 if (It->Values.isKillLocation(It->Expr)) {
1293 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1294 continue;
1295 }
1296 SmallVector<Value *> Values(It->Values.location_ops());
1297 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1298 It->Values.hasArgList())) {
1299 SmallVector<Value *, 4> Vals(It->Values.location_ops());
1301 FnVarLocs->getDILocalVariable(It->VariableID),
1302 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder);
1303 }
1304 }
1305 }
1306
1307 // We must skip DbgVariableRecords if they've already been processed above as
1308 // we have just emitted the debug values resulting from assignment tracking
1309 // analysis, making any existing DbgVariableRecords redundant (and probably
1310 // less correct). We still need to process DbgLabelRecords. This does sink
1311 // DbgLabelRecords to the bottom of the group of debug records. That sholdn't
1312 // be important as it does so deterministcally and ordering between
1313 // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR
1314 // printing).
1315 bool SkipDbgVariableRecords = DAG.getFunctionVarLocs();
1316 // Is there is any debug-info attached to this instruction, in the form of
1317 // DbgRecord non-instruction debug-info records.
1318 for (DbgRecord &DR : I.getDbgRecordRange()) {
1319 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1320 assert(DLR->getLabel() && "Missing label");
1321 SDDbgLabel *SDV =
1322 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder);
1323 DAG.AddDbgLabel(SDV);
1324 continue;
1325 }
1326
1327 if (SkipDbgVariableRecords)
1328 continue;
1330 DILocalVariable *Variable = DVR.getVariable();
1333
1335 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1336 continue;
1337 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR
1338 << "\n");
1340 DVR.getDebugLoc());
1341 continue;
1342 }
1343
1344 // A DbgVariableRecord with no locations is a kill location.
1346 if (Values.empty()) {
1348 SDNodeOrder);
1349 continue;
1350 }
1351
1352 // A DbgVariableRecord with an undef or absent location is also a kill
1353 // location.
1354 if (llvm::any_of(Values,
1355 [](Value *V) { return !V || isa<UndefValue>(V); })) {
1357 SDNodeOrder);
1358 continue;
1359 }
1360
1361 bool IsVariadic = DVR.hasArgList();
1362 if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(),
1363 SDNodeOrder, IsVariadic)) {
1364 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
1365 DVR.getDebugLoc(), SDNodeOrder);
1366 }
1367 }
1368}
1369
1371 visitDbgInfo(I);
1372
1373 // Set up outgoing PHI node register values before emitting the terminator.
1374 if (I.isTerminator()) {
1375 HandlePHINodesInSuccessorBlocks(I.getParent());
1376 }
1377
1378 ++SDNodeOrder;
1379 CurInst = &I;
1380
1381 // Set inserted listener only if required.
1382 bool NodeInserted = false;
1383 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1384 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1385 MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra);
1386 if (PCSectionsMD || MMRA) {
1387 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1388 DAG, [&](SDNode *) { NodeInserted = true; });
1389 }
1390
1391 visit(I.getOpcode(), I);
1392
1393 if (!I.isTerminator() && !HasTailCall &&
1394 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1396
1397 // Handle metadata.
1398 if (PCSectionsMD || MMRA) {
1399 auto It = NodeMap.find(&I);
1400 if (It != NodeMap.end()) {
1401 if (PCSectionsMD)
1402 DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1403 if (MMRA)
1404 DAG.addMMRAMetadata(It->second.getNode(), MMRA);
1405 } else if (NodeInserted) {
1406 // This should not happen; if it does, don't let it go unnoticed so we can
1407 // fix it. Relevant visit*() function is probably missing a setValue().
1408 errs() << "warning: loosing !pcsections and/or !mmra metadata ["
1409 << I.getModule()->getName() << "]\n";
1410 LLVM_DEBUG(I.dump());
1411 assert(false);
1412 }
1413 }
1414
1415 CurInst = nullptr;
1416}
1417
1418void SelectionDAGBuilder::visitPHI(const PHINode &) {
1419 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1420}
1421
1422void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1423 // Note: this doesn't use InstVisitor, because it has to work with
1424 // ConstantExpr's in addition to instructions.
1425 switch (Opcode) {
1426 default: llvm_unreachable("Unknown instruction type encountered!");
1427 // Build the switch statement using the Instruction.def file.
1428#define HANDLE_INST(NUM, OPCODE, CLASS) \
1429 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1430#include "llvm/IR/Instruction.def"
1431 }
1432}
1433
1435 DILocalVariable *Variable,
1436 DebugLoc DL, unsigned Order,
1439 // For variadic dbg_values we will now insert poison.
1440 // FIXME: We can potentially recover these!
1442 for (const Value *V : Values) {
1443 auto *Poison = PoisonValue::get(V->getType());
1445 }
1446 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1447 /*IsIndirect=*/false, DL, Order,
1448 /*IsVariadic=*/true);
1449 DAG.AddDbgValue(SDV, /*isParameter=*/false);
1450 return true;
1451}
1452
1454 DILocalVariable *Var,
1455 DIExpression *Expr,
1456 bool IsVariadic, DebugLoc DL,
1457 unsigned Order) {
1458 if (IsVariadic) {
1459 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr);
1460 return;
1461 }
1462 // TODO: Dangling debug info will eventually either be resolved or produce
1463 // a poison DBG_VALUE. However in the resolution case, a gap may appear
1464 // between the original dbg.value location and its resolved DBG_VALUE,
1465 // which we should ideally fill with an extra poison DBG_VALUE.
1466 assert(Values.size() == 1);
1467 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order);
1468}
1469
1471 const DIExpression *Expr) {
1472 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1473 DIVariable *DanglingVariable = DDI.getVariable();
1474 DIExpression *DanglingExpr = DDI.getExpression();
1475 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1476 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for "
1477 << printDDI(nullptr, DDI) << "\n");
1478 return true;
1479 }
1480 return false;
1481 };
1482
1483 for (auto &DDIMI : DanglingDebugInfoMap) {
1484 DanglingDebugInfoVector &DDIV = DDIMI.second;
1485
1486 // If debug info is to be dropped, run it through final checks to see
1487 // whether it can be salvaged.
1488 for (auto &DDI : DDIV)
1489 if (isMatchingDbgValue(DDI))
1490 salvageUnresolvedDbgValue(DDIMI.first, DDI);
1491
1492 erase_if(DDIV, isMatchingDbgValue);
1493 }
1494}
1495
1496// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1497// generate the debug data structures now that we've seen its definition.
1499 SDValue Val) {
1500 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1501 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1502 return;
1503
1504 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1505 for (auto &DDI : DDIV) {
1506 DebugLoc DL = DDI.getDebugLoc();
1507 unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1508 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1509 DILocalVariable *Variable = DDI.getVariable();
1510 DIExpression *Expr = DDI.getExpression();
1511 assert(Variable->isValidLocationForIntrinsic(DL) &&
1512 "Expected inlined-at fields to agree");
1513 SDDbgValue *SDV;
1514 if (Val.getNode()) {
1515 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1516 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1517 // we couldn't resolve it directly when examining the DbgValue intrinsic
1518 // in the first place we should not be more successful here). Unless we
1519 // have some test case that prove this to be correct we should avoid
1520 // calling EmitFuncArgumentDbgValue here.
1521 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1522 FuncArgumentDbgValueKind::Value, Val)) {
1523 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for "
1524 << printDDI(V, DDI) << "\n");
1525 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump());
1526 // Increase the SDNodeOrder for the DbgValue here to make sure it is
1527 // inserted after the definition of Val when emitting the instructions
1528 // after ISel. An alternative could be to teach
1529 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1530 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1531 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1532 << ValSDNodeOrder << "\n");
1533 SDV = getDbgValue(Val, Variable, Expr, DL,
1534 std::max(DbgSDNodeOrder, ValSDNodeOrder));
1535 DAG.AddDbgValue(SDV, false);
1536 } else
1537 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1538 << printDDI(V, DDI)
1539 << " in EmitFuncArgumentDbgValue\n");
1540 } else {
1541 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI)
1542 << "\n");
1543 auto Poison = PoisonValue::get(V->getType());
1544 auto SDV =
1545 DAG.getConstantDbgValue(Variable, Expr, Poison, DL, DbgSDNodeOrder);
1546 DAG.AddDbgValue(SDV, false);
1547 }
1548 }
1549 DDIV.clear();
1550}
1551
1553 DanglingDebugInfo &DDI) {
1554 // TODO: For the variadic implementation, instead of only checking the fail
1555 // state of `handleDebugValue`, we need know specifically which values were
1556 // invalid, so that we attempt to salvage only those values when processing
1557 // a DIArgList.
1558 const Value *OrigV = V;
1559 DILocalVariable *Var = DDI.getVariable();
1560 DIExpression *Expr = DDI.getExpression();
1561 DebugLoc DL = DDI.getDebugLoc();
1562 unsigned SDOrder = DDI.getSDNodeOrder();
1563
1564 // Currently we consider only dbg.value intrinsics -- we tell the salvager
1565 // that DW_OP_stack_value is desired.
1566 bool StackValue = true;
1567
1568 // Can this Value can be encoded without any further work?
1569 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1570 return;
1571
1572 // Attempt to salvage back through as many instructions as possible. Bail if
1573 // a non-instruction is seen, such as a constant expression or global
1574 // variable. FIXME: Further work could recover those too.
1575 while (isa<Instruction>(V)) {
1576 const Instruction &VAsInst = *cast<const Instruction>(V);
1577 // Temporary "0", awaiting real implementation.
1579 SmallVector<Value *, 4> AdditionalValues;
1580 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst),
1581 Expr->getNumLocationOperands(), Ops,
1582 AdditionalValues);
1583 // If we cannot salvage any further, and haven't yet found a suitable debug
1584 // expression, bail out.
1585 if (!V)
1586 break;
1587
1588 // TODO: If AdditionalValues isn't empty, then the salvage can only be
1589 // represented with a DBG_VALUE_LIST, so we give up. When we have support
1590 // here for variadic dbg_values, remove that condition.
1591 if (!AdditionalValues.empty())
1592 break;
1593
1594 // New value and expr now represent this debuginfo.
1595 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1596
1597 // Some kind of simplification occurred: check whether the operand of the
1598 // salvaged debug expression can be encoded in this DAG.
1599 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1600 LLVM_DEBUG(
1601 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n"
1602 << *OrigV << "\nBy stripping back to:\n " << *V << "\n");
1603 return;
1604 }
1605 }
1606
1607 // This was the final opportunity to salvage this debug information, and it
1608 // couldn't be done. Place a poison DBG_VALUE at this location to terminate
1609 // any earlier variable location.
1610 assert(OrigV && "V shouldn't be null");
1611 auto *Poison = PoisonValue::get(OrigV->getType());
1612 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Poison, DL, SDNodeOrder);
1613 DAG.AddDbgValue(SDV, false);
1614 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n "
1615 << printDDI(OrigV, DDI) << "\n");
1616}
1617
1619 DIExpression *Expr,
1620 DebugLoc DbgLoc,
1621 unsigned Order) {
1625 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1626 /*IsVariadic*/ false);
1627}
1628
1630 DILocalVariable *Var,
1631 DIExpression *Expr, DebugLoc DbgLoc,
1632 unsigned Order, bool IsVariadic) {
1633 if (Values.empty())
1634 return true;
1635
1636 // Filter EntryValue locations out early.
1637 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1638 return true;
1639
1640 SmallVector<SDDbgOperand> LocationOps;
1641 SmallVector<SDNode *> Dependencies;
1642 for (const Value *V : Values) {
1643 // Constant value.
1646 LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1647 continue;
1648 }
1649
1650 // Look through IntToPtr constants.
1651 if (auto *CE = dyn_cast<ConstantExpr>(V))
1652 if (CE->getOpcode() == Instruction::IntToPtr) {
1653 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1654 continue;
1655 }
1656
1657 // If the Value is a frame index, we can create a FrameIndex debug value
1658 // without relying on the DAG at all.
1659 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1660 auto SI = FuncInfo.StaticAllocaMap.find(AI);
1661 if (SI != FuncInfo.StaticAllocaMap.end()) {
1662 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1663 continue;
1664 }
1665 }
1666
1667 // Do not use getValue() in here; we don't want to generate code at
1668 // this point if it hasn't been done yet.
1669 SDValue N = NodeMap[V];
1670 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1671 N = UnusedArgNodeMap[V];
1672
1673 if (N.getNode()) {
1674 // Only emit func arg dbg value for non-variadic dbg.values for now.
1675 if (!IsVariadic &&
1676 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1677 FuncArgumentDbgValueKind::Value, N))
1678 return true;
1679 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1680 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1681 // describe stack slot locations.
1682 //
1683 // Consider "int x = 0; int *px = &x;". There are two kinds of
1684 // interesting debug values here after optimization:
1685 //
1686 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
1687 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1688 //
1689 // Both describe the direct values of their associated variables.
1690 Dependencies.push_back(N.getNode());
1691 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1692 continue;
1693 }
1694 LocationOps.emplace_back(
1695 SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1696 continue;
1697 }
1698
1699 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1700 // Special rules apply for the first dbg.values of parameter variables in a
1701 // function. Identify them by the fact they reference Argument Values, that
1702 // they're parameters, and they are parameters of the current function. We
1703 // need to let them dangle until they get an SDNode.
1704 bool IsParamOfFunc =
1705 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1706 if (IsParamOfFunc)
1707 return false;
1708
1709 // The value is not used in this block yet (or it would have an SDNode).
1710 // We still want the value to appear for the user if possible -- if it has
1711 // an associated VReg, we can refer to that instead.
1712 auto VMI = FuncInfo.ValueMap.find(V);
1713 if (VMI != FuncInfo.ValueMap.end()) {
1714 Register Reg = VMI->second;
1715 // If this is a PHI node, it may be split up into several MI PHI nodes
1716 // (in FunctionLoweringInfo::set).
1717 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1718 V->getType(), std::nullopt);
1719 if (RFV.occupiesMultipleRegs()) {
1720 // FIXME: We could potentially support variadic dbg_values here.
1721 if (IsVariadic)
1722 return false;
1723 unsigned Offset = 0;
1724 unsigned BitsToDescribe = 0;
1725 if (auto VarSize = Var->getSizeInBits())
1726 BitsToDescribe = *VarSize;
1727 if (auto Fragment = Expr->getFragmentInfo())
1728 BitsToDescribe = Fragment->SizeInBits;
1729 for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1730 // Bail out if all bits are described already.
1731 if (Offset >= BitsToDescribe)
1732 break;
1733 // TODO: handle scalable vectors.
1734 unsigned RegisterSize = RegAndSize.second;
1735 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1736 ? BitsToDescribe - Offset
1737 : RegisterSize;
1738 auto FragmentExpr = DIExpression::createFragmentExpression(
1739 Expr, Offset, FragmentSize);
1740 if (!FragmentExpr)
1741 continue;
1742 SDDbgValue *SDV = DAG.getVRegDbgValue(
1743 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order);
1744 DAG.AddDbgValue(SDV, false);
1745 Offset += RegisterSize;
1746 }
1747 return true;
1748 }
1749 // We can use simple vreg locations for variadic dbg_values as well.
1750 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1751 continue;
1752 }
1753 // We failed to create a SDDbgOperand for V.
1754 return false;
1755 }
1756
1757 // We have created a SDDbgOperand for each Value in Values.
1758 assert(!LocationOps.empty());
1759 SDDbgValue *SDV =
1760 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1761 /*IsIndirect=*/false, DbgLoc, Order, IsVariadic);
1762 DAG.AddDbgValue(SDV, /*isParameter=*/false);
1763 return true;
1764}
1765
1767 // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1768 for (auto &Pair : DanglingDebugInfoMap)
1769 for (auto &DDI : Pair.second)
1770 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI);
1772}
1773
1774/// getCopyFromRegs - If there was virtual register allocated for the value V
1775/// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1778 SDValue Result;
1779
1780 if (It != FuncInfo.ValueMap.end()) {
1781 Register InReg = It->second;
1782
1783 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1784 DAG.getDataLayout(), InReg, Ty,
1785 std::nullopt); // This is not an ABI copy.
1786 SDValue Chain = DAG.getEntryNode();
1787 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1788 V);
1789 resolveDanglingDebugInfo(V, Result);
1790 }
1791
1792 return Result;
1793}
1794
1795/// getValue - Return an SDValue for the given Value.
1797 // If we already have an SDValue for this value, use it. It's important
1798 // to do this first, so that we don't create a CopyFromReg if we already
1799 // have a regular SDValue.
1800 SDValue &N = NodeMap[V];
1801 if (N.getNode()) return N;
1802
1803 // If there's a virtual register allocated and initialized for this
1804 // value, use it.
1805 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1806 return copyFromReg;
1807
1808 // Otherwise create a new SDValue and remember it.
1809 SDValue Val = getValueImpl(V);
1810 NodeMap[V] = Val;
1812 return Val;
1813}
1814
1815/// getNonRegisterValue - Return an SDValue for the given Value, but
1816/// don't look in FuncInfo.ValueMap for a virtual register.
1818 // If we already have an SDValue for this value, use it.
1819 SDValue &N = NodeMap[V];
1820 if (N.getNode()) {
1821 if (isIntOrFPConstant(N)) {
1822 // Remove the debug location from the node as the node is about to be used
1823 // in a location which may differ from the original debug location. This
1824 // is relevant to Constant and ConstantFP nodes because they can appear
1825 // as constant expressions inside PHI nodes.
1826 N->setDebugLoc(DebugLoc());
1827 }
1828 return N;
1829 }
1830
1831 // Otherwise create a new SDValue and remember it.
1832 SDValue Val = getValueImpl(V);
1833 NodeMap[V] = Val;
1835 return Val;
1836}
1837
1838/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1839/// Create an SDValue for the given value.
1841 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1842
1843 if (const Constant *C = dyn_cast<Constant>(V)) {
1844 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1845
1846 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1847 SDLoc DL = getCurSDLoc();
1848
1849 // DAG.getConstant() may attempt to legalise the vector constant which can
1850 // significantly change the combines applied to the DAG. To reduce the
1851 // divergence when enabling ConstantInt based vectors we try to construct
1852 // the DAG in the same way as shufflevector based splats. TODO: The
1853 // divergence sometimes leads to better optimisations. Ideally we should
1854 // prevent DAG.getConstant() from legalising too early but there are some
1855 // degradations preventing this.
1856 if (VT.isScalableVector())
1857 return DAG.getNode(
1858 ISD::SPLAT_VECTOR, DL, VT,
1859 DAG.getConstant(CI->getValue(), DL, VT.getVectorElementType()));
1860 if (VT.isFixedLengthVector())
1861 return DAG.getSplatBuildVector(
1862 VT, DL,
1863 DAG.getConstant(CI->getValue(), DL, VT.getVectorElementType()));
1864 return DAG.getConstant(*CI, DL, VT);
1865 }
1866
1867 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1868 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1869
1870 if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(C)) {
1871 return DAG.getNode(ISD::PtrAuthGlobalAddress, getCurSDLoc(), VT,
1872 getValue(CPA->getPointer()), getValue(CPA->getKey()),
1873 getValue(CPA->getAddrDiscriminator()),
1874 getValue(CPA->getDiscriminator()));
1875 }
1876
1878 return DAG.getConstant(0, getCurSDLoc(), VT);
1879
1880 if (match(C, m_VScale()))
1881 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1882
1883 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1884 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1885
1886 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1887 return isa<PoisonValue>(C) ? DAG.getPOISON(VT) : DAG.getUNDEF(VT);
1888
1889 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1890 visit(CE->getOpcode(), *CE);
1891 SDValue N1 = NodeMap[V];
1892 assert(N1.getNode() && "visit didn't populate the NodeMap!");
1893 return N1;
1894 }
1895
1897 SmallVector<SDValue, 4> Constants;
1898 for (const Use &U : C->operands()) {
1899 SDNode *Val = getValue(U).getNode();
1900 // If the operand is an empty aggregate, there are no values.
1901 if (!Val) continue;
1902 // Add each leaf value from the operand to the Constants list
1903 // to form a flattened list of all the values.
1904 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1905 Constants.push_back(SDValue(Val, i));
1906 }
1907
1908 return DAG.getMergeValues(Constants, getCurSDLoc());
1909 }
1910
1911 if (const ConstantDataSequential *CDS =
1914 for (uint64_t i = 0, e = CDS->getNumElements(); i != e; ++i) {
1915 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1916 // Add each leaf value from the operand to the Constants list
1917 // to form a flattened list of all the values.
1918 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1919 Ops.push_back(SDValue(Val, i));
1920 }
1921
1922 if (isa<ArrayType>(CDS->getType()))
1923 return DAG.getMergeValues(Ops, getCurSDLoc());
1924 return DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1925 }
1926
1927 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1929 "Unknown struct or array constant!");
1930
1931 SmallVector<EVT, 4> ValueVTs;
1932 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1933 unsigned NumElts = ValueVTs.size();
1934 if (NumElts == 0)
1935 return SDValue(); // empty struct
1936 SmallVector<SDValue, 4> Constants(NumElts);
1937 for (unsigned i = 0; i != NumElts; ++i) {
1938 EVT EltVT = ValueVTs[i];
1939 if (isa<UndefValue>(C))
1940 Constants[i] = DAG.getUNDEF(EltVT);
1941 else if (EltVT.isFloatingPoint())
1942 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1943 else
1944 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1945 }
1946
1947 return DAG.getMergeValues(Constants, getCurSDLoc());
1948 }
1949
1950 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1951 return DAG.getBlockAddress(BA, VT);
1952
1953 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1954 return getValue(Equiv->getGlobalValue());
1955
1956 if (const auto *NC = dyn_cast<NoCFIValue>(C))
1957 return getValue(NC->getGlobalValue());
1958
1959 if (VT == MVT::aarch64svcount) {
1960 assert(C->isNullValue() && "Can only zero this target type!");
1961 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT,
1962 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1));
1963 }
1964
1965 if (VT.isRISCVVectorTuple()) {
1966 assert(C->isNullValue() && "Can only zero this target type!");
1967 return DAG.getNode(
1968 ISD::BITCAST, getCurSDLoc(), VT,
1969 DAG.getNode(
1971 EVT::getVectorVT(*DAG.getContext(), MVT::i8,
1972 VT.getSizeInBits().getKnownMinValue() / 8, true),
1973 DAG.getConstant(0, getCurSDLoc(), MVT::getIntegerVT(8))));
1974 }
1975
1976 VectorType *VecTy = cast<VectorType>(V->getType());
1977
1978 // Now that we know the number and type of the elements, get that number of
1979 // elements into the Ops array based on what kind of constant it is.
1980 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1982 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1983 for (unsigned i = 0; i != NumElements; ++i)
1984 Ops.push_back(getValue(CV->getOperand(i)));
1985
1986 return DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1987 }
1988
1990 EVT EltVT =
1991 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1992
1993 SDValue Op;
1994 if (EltVT.isFloatingPoint())
1995 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1996 else
1997 Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1998
1999 return DAG.getSplat(VT, getCurSDLoc(), Op);
2000 }
2001
2002 llvm_unreachable("Unknown vector constant");
2003 }
2004
2005 // If this is a static alloca, generate it as the frameindex instead of
2006 // computation.
2007 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
2009 FuncInfo.StaticAllocaMap.find(AI);
2010 if (SI != FuncInfo.StaticAllocaMap.end())
2011 return DAG.getFrameIndex(
2012 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
2013 }
2014
2015 // If this is an instruction which fast-isel has deferred, select it now.
2016 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
2017 Register InReg = FuncInfo.InitializeRegForValue(Inst);
2018
2019 std::optional<CallingConv::ID> CallConv;
2020 auto *CB = dyn_cast<CallBase>(Inst);
2021 if (CB && !CB->isInlineAsm())
2022 CallConv = CB->getCallingConv();
2023
2024 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
2025 Inst->getType(), CallConv);
2026 SDValue Chain = DAG.getEntryNode();
2027 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
2028 }
2029
2030 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
2031 return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
2032
2033 if (const auto *BB = dyn_cast<BasicBlock>(V))
2034 return DAG.getBasicBlock(FuncInfo.getMBB(BB));
2035
2036 llvm_unreachable("Can't get register for value!");
2037}
2038
2039void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
2041 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
2042 bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
2043 bool IsSEH = isAsynchronousEHPersonality(Pers);
2044 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
2045 if (IsSEH) {
2046 // For SEH, EHCont Guard needs to know that this catchpad is a target.
2047 CatchPadMBB->setIsEHContTarget(true);
2049 } else
2050 CatchPadMBB->setIsEHScopeEntry();
2051 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
2052 if (IsMSVCCXX || IsCoreCLR)
2053 CatchPadMBB->setIsEHFuncletEntry();
2054}
2055
2056void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
2057 // Update machine-CFG edge.
2058 MachineBasicBlock *TargetMBB = FuncInfo.getMBB(I.getSuccessor());
2059 FuncInfo.MBB->addSuccessor(TargetMBB);
2060
2061 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2062 bool IsSEH = isAsynchronousEHPersonality(Pers);
2063 if (IsSEH) {
2064 // If this is not a fall-through branch or optimizations are switched off,
2065 // emit the branch.
2066 if (TargetMBB != NextBlock(FuncInfo.MBB) ||
2067 TM.getOptLevel() == CodeGenOptLevel::None)
2068 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2069 getControlRoot(), DAG.getBasicBlock(TargetMBB)));
2070 return;
2071 }
2072
2073 // For non-SEH, EHCont Guard needs to know that this catchret is a target.
2074 TargetMBB->setIsEHContTarget(true);
2075 DAG.getMachineFunction().setHasEHContTarget(true);
2076
2077 // Figure out the funclet membership for the catchret's successor.
2078 // This will be used by the FuncletLayout pass to determine how to order the
2079 // BB's.
2080 // A 'catchret' returns to the outer scope's color.
2081 Value *ParentPad = I.getCatchSwitchParentPad();
2082 const BasicBlock *SuccessorColor;
2083 if (isa<ConstantTokenNone>(ParentPad))
2084 SuccessorColor = &FuncInfo.Fn->getEntryBlock();
2085 else
2086 SuccessorColor = cast<Instruction>(ParentPad)->getParent();
2087 assert(SuccessorColor && "No parent funclet for catchret!");
2088 MachineBasicBlock *SuccessorColorMBB = FuncInfo.getMBB(SuccessorColor);
2089 assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
2090
2091 // Create the terminator node.
2092 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
2093 getControlRoot(), DAG.getBasicBlock(TargetMBB),
2094 DAG.getBasicBlock(SuccessorColorMBB));
2095 DAG.setRoot(Ret);
2096}
2097
2098void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
2099 // Don't emit any special code for the cleanuppad instruction. It just marks
2100 // the start of an EH scope/funclet.
2101 FuncInfo.MBB->setIsEHScopeEntry();
2102 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2103 if (Pers != EHPersonality::Wasm_CXX) {
2104 FuncInfo.MBB->setIsEHFuncletEntry();
2105 FuncInfo.MBB->setIsCleanupFuncletEntry();
2106 }
2107}
2108
2109/// When an invoke or a cleanupret unwinds to the next EH pad, there are
2110/// many places it could ultimately go. In the IR, we have a single unwind
2111/// destination, but in the machine CFG, we enumerate all the possible blocks.
2112/// This function skips over imaginary basic blocks that hold catchswitch
2113/// instructions, and finds all the "real" machine
2114/// basic block destinations. As those destinations may not be successors of
2115/// EHPadBB, here we also calculate the edge probability to those destinations.
2116/// The passed-in Prob is the edge probability to EHPadBB.
2118 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2119 BranchProbability Prob,
2120 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2121 &UnwindDests) {
2122 EHPersonality Personality =
2124 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2125 bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2126 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2127 bool IsSEH = isAsynchronousEHPersonality(Personality);
2128
2129 while (EHPadBB) {
2131 BasicBlock *NewEHPadBB = nullptr;
2132 if (isa<LandingPadInst>(Pad)) {
2133 // Stop on landingpads. They are not funclets.
2134 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2135 break;
2136 } else if (isa<CleanupPadInst>(Pad)) {
2137 // Stop on cleanup pads. Cleanups are always funclet entries for all known
2138 // personalities except Wasm. And in Wasm this becomes a catch_all(_ref),
2139 // which always catches an exception.
2140 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2141 UnwindDests.back().first->setIsEHScopeEntry();
2142 // In Wasm, EH scopes are not funclets
2143 if (!IsWasmCXX)
2144 UnwindDests.back().first->setIsEHFuncletEntry();
2145 break;
2146 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2147 // Add the catchpad handlers to the possible destinations.
2148 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2149 UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob);
2150 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2151 if (IsMSVCCXX || IsCoreCLR)
2152 UnwindDests.back().first->setIsEHFuncletEntry();
2153 if (!IsSEH)
2154 UnwindDests.back().first->setIsEHScopeEntry();
2155 }
2156 NewEHPadBB = CatchSwitch->getUnwindDest();
2157 } else {
2158 continue;
2159 }
2160
2161 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2162 if (BPI && NewEHPadBB)
2163 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2164 EHPadBB = NewEHPadBB;
2165 }
2166}
2167
2168void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
2169 // Update successor info.
2171 auto UnwindDest = I.getUnwindDest();
2172 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2173 BranchProbability UnwindDestProb =
2174 (BPI && UnwindDest)
2175 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
2177 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
2178 for (auto &UnwindDest : UnwindDests) {
2179 UnwindDest.first->setIsEHPad();
2180 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2181 }
2182 FuncInfo.MBB->normalizeSuccProbs();
2183
2184 // Create the terminator node.
2185 MachineBasicBlock *CleanupPadMBB =
2186 FuncInfo.getMBB(I.getCleanupPad()->getParent());
2187 SDValue Ret = DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other,
2188 getControlRoot(), DAG.getBasicBlock(CleanupPadMBB));
2189 DAG.setRoot(Ret);
2190}
2191
2192void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2193 report_fatal_error("visitCatchSwitch not yet implemented!");
2194}
2195
2196void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2197 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2198 auto &DL = DAG.getDataLayout();
2199 SDValue Chain = getControlRoot();
2202
2203 // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2204 // lower
2205 //
2206 // %val = call <ty> @llvm.experimental.deoptimize()
2207 // ret <ty> %val
2208 //
2209 // differently.
2210 if (I.getParent()->getTerminatingDeoptimizeCall()) {
2212 return;
2213 }
2214
2215 if (!FuncInfo.CanLowerReturn) {
2216 Register DemoteReg = FuncInfo.DemoteRegister;
2217
2218 // Emit a store of the return value through the virtual register.
2219 // Leave Outs empty so that LowerReturn won't try to load return
2220 // registers the usual way.
2221 MVT PtrValueVT = TLI.getPointerTy(DL, DL.getAllocaAddrSpace());
2222 SDValue RetPtr =
2223 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVT);
2224 SDValue RetOp = getValue(I.getOperand(0));
2225
2226 SmallVector<EVT, 4> ValueVTs, MemVTs;
2227 SmallVector<uint64_t, 4> Offsets;
2228 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2229 &Offsets, 0);
2230 unsigned NumValues = ValueVTs.size();
2231
2232 SmallVector<SDValue, 4> Chains(NumValues);
2233 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2234 for (unsigned i = 0; i != NumValues; ++i) {
2235 // An aggregate return value cannot wrap around the address space, so
2236 // offsets to its parts don't wrap either.
2237 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2238 TypeSize::getFixed(Offsets[i]));
2239
2240 SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2241 if (MemVTs[i] != ValueVTs[i])
2242 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2243 Chains[i] = DAG.getStore(
2244 Chain, getCurSDLoc(), Val,
2245 // FIXME: better loc info would be nice.
2246 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2247 commonAlignment(BaseAlign, Offsets[i]));
2248 }
2249
2250 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2251 MVT::Other, Chains);
2252 } else if (I.getNumOperands() != 0) {
2254 ComputeValueTypes(DL, I.getOperand(0)->getType(), Types);
2255 unsigned NumValues = Types.size();
2256 if (NumValues) {
2257 SDValue RetOp = getValue(I.getOperand(0));
2258
2259 const Function *F = I.getParent()->getParent();
2260
2261 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2262 I.getOperand(0)->getType(), F->getCallingConv(),
2263 /*IsVarArg*/ false, DL);
2264
2265 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2266 if (F->getAttributes().hasRetAttr(Attribute::SExt))
2267 ExtendKind = ISD::SIGN_EXTEND;
2268 else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2269 ExtendKind = ISD::ZERO_EXTEND;
2270
2271 LLVMContext &Context = F->getContext();
2272 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2273
2274 for (unsigned j = 0; j != NumValues; ++j) {
2275 EVT VT = TLI.getValueType(DL, Types[j]);
2276
2277 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2278 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2279
2280 CallingConv::ID CC = F->getCallingConv();
2281
2282 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2283 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2284 SmallVector<SDValue, 4> Parts(NumParts);
2286 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2287 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2288
2289 // 'inreg' on function refers to return value
2290 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2291 if (RetInReg)
2292 Flags.setInReg();
2293
2294 if (I.getOperand(0)->getType()->isPointerTy()) {
2295 Flags.setPointer();
2296 Flags.setPointerAddrSpace(
2297 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2298 }
2299
2300 if (NeedsRegBlock) {
2301 Flags.setInConsecutiveRegs();
2302 if (j == NumValues - 1)
2303 Flags.setInConsecutiveRegsLast();
2304 }
2305
2306 // Propagate extension type if any
2307 if (ExtendKind == ISD::SIGN_EXTEND)
2308 Flags.setSExt();
2309 else if (ExtendKind == ISD::ZERO_EXTEND)
2310 Flags.setZExt();
2311 else if (F->getAttributes().hasRetAttr(Attribute::NoExt))
2312 Flags.setNoExt();
2313
2314 for (unsigned i = 0; i < NumParts; ++i) {
2315 Outs.push_back(ISD::OutputArg(Flags,
2316 Parts[i].getValueType().getSimpleVT(),
2317 VT, Types[j], 0, 0));
2318 OutVals.push_back(Parts[i]);
2319 }
2320 }
2321 }
2322 }
2323
2324 // Push in swifterror virtual register as the last element of Outs. This makes
2325 // sure swifterror virtual register will be returned in the swifterror
2326 // physical register.
2327 const Function *F = I.getParent()->getParent();
2328 if (TLI.supportSwiftError() &&
2329 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2330 assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2331 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2332 Flags.setSwiftError();
2333 Outs.push_back(ISD::OutputArg(Flags, /*vt=*/TLI.getPointerTy(DL),
2334 /*argvt=*/EVT(TLI.getPointerTy(DL)),
2335 PointerType::getUnqual(*DAG.getContext()),
2336 /*origidx=*/1, /*partOffs=*/0));
2337 // Create SDNode for the swifterror virtual register.
2338 OutVals.push_back(
2339 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2340 &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2341 EVT(TLI.getPointerTy(DL))));
2342 }
2343
2344 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2345 CallingConv::ID CallConv =
2346 DAG.getMachineFunction().getFunction().getCallingConv();
2347 Chain = DAG.getTargetLoweringInfo().LowerReturn(
2348 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2349
2350 // Verify that the target's LowerReturn behaved as expected.
2351 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2352 "LowerReturn didn't return a valid chain!");
2353
2354 // Update the DAG with the new chain value resulting from return lowering.
2355 DAG.setRoot(Chain);
2356}
2357
2358/// CopyToExportRegsIfNeeded - If the given value has virtual registers
2359/// created for it, emit nodes to copy the value into the virtual
2360/// registers.
2362 // Skip empty types
2363 if (V->getType()->isEmptyTy())
2364 return;
2365
2367 if (VMI != FuncInfo.ValueMap.end()) {
2368 assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2369 "Unused value assigned virtual registers!");
2370 CopyValueToVirtualRegister(V, VMI->second);
2371 }
2372}
2373
2374/// ExportFromCurrentBlock - If this condition isn't known to be exported from
2375/// the current basic block, add it to ValueMap now so that we'll get a
2376/// CopyTo/FromReg.
2378 // No need to export constants.
2379 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2380
2381 // Already exported?
2382 if (FuncInfo.isExportedInst(V)) return;
2383
2384 Register Reg = FuncInfo.InitializeRegForValue(V);
2386}
2387
2389 const BasicBlock *FromBB) {
2390 // The operands of the setcc have to be in this block. We don't know
2391 // how to export them from some other block.
2392 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2393 // Can export from current BB.
2394 if (VI->getParent() == FromBB)
2395 return true;
2396
2397 // Is already exported, noop.
2398 return FuncInfo.isExportedInst(V);
2399 }
2400
2401 // If this is an argument, we can export it if the BB is the entry block or
2402 // if it is already exported.
2403 if (isa<Argument>(V)) {
2404 if (FromBB->isEntryBlock())
2405 return true;
2406
2407 // Otherwise, can only export this if it is already exported.
2408 return FuncInfo.isExportedInst(V);
2409 }
2410
2411 // Otherwise, constants can always be exported.
2412 return true;
2413}
2414
2415/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2417SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2418 const MachineBasicBlock *Dst) const {
2420 const BasicBlock *SrcBB = Src->getBasicBlock();
2421 const BasicBlock *DstBB = Dst->getBasicBlock();
2422 if (!BPI) {
2423 // If BPI is not available, set the default probability as 1 / N, where N is
2424 // the number of successors.
2425 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2426 return BranchProbability(1, SuccSize);
2427 }
2428 return BPI->getEdgeProbability(SrcBB, DstBB);
2429}
2430
2431void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2432 MachineBasicBlock *Dst,
2433 BranchProbability Prob) {
2434 if (!FuncInfo.BPI)
2435 Src->addSuccessorWithoutProb(Dst);
2436 else {
2437 if (Prob.isUnknown())
2438 Prob = getEdgeProbability(Src, Dst);
2439 Src->addSuccessor(Dst, Prob);
2440 }
2441}
2442
2443static bool InBlock(const Value *V, const BasicBlock *BB) {
2444 if (const Instruction *I = dyn_cast<Instruction>(V))
2445 return I->getParent() == BB;
2446 return true;
2447}
2448
2449/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2450/// This function emits a branch and is used at the leaves of an OR or an
2451/// AND operator tree.
2452void
2455 MachineBasicBlock *FBB,
2456 MachineBasicBlock *CurBB,
2457 MachineBasicBlock *SwitchBB,
2458 BranchProbability TProb,
2459 BranchProbability FProb,
2460 bool InvertCond) {
2461 const BasicBlock *BB = CurBB->getBasicBlock();
2462
2463 // If the leaf of the tree is a comparison, merge the condition into
2464 // the caseblock.
2465 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2466 // The operands of the cmp have to be in this block. We don't know
2467 // how to export them from some other block. If this is the first block
2468 // of the sequence, no exporting is needed.
2469 if (CurBB == SwitchBB ||
2470 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2471 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2472 ISD::CondCode Condition;
2473 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2474 ICmpInst::Predicate Pred =
2475 InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2476 Condition = getICmpCondCode(Pred);
2477 } else {
2478 const FCmpInst *FC = cast<FCmpInst>(Cond);
2479 FCmpInst::Predicate Pred =
2480 InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2481 Condition = getFCmpCondCode(Pred);
2482 if (TM.Options.NoNaNsFPMath)
2483 Condition = getFCmpCodeWithoutNaN(Condition);
2484 }
2485
2486 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2487 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2488 SL->SwitchCases.push_back(CB);
2489 return;
2490 }
2491 }
2492
2493 // Create a CaseBlock record representing this branch.
2494 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2495 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2496 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2497 SL->SwitchCases.push_back(CB);
2498}
2499
2500// Collect dependencies on V recursively. This is used for the cost analysis in
2501// `shouldKeepJumpConditionsTogether`.
2505 unsigned Depth = 0) {
2506 // Return false if we have an incomplete count.
2508 return false;
2509
2510 auto *I = dyn_cast<Instruction>(V);
2511 if (I == nullptr)
2512 return true;
2513
2514 if (Necessary != nullptr) {
2515 // This instruction is necessary for the other side of the condition so
2516 // don't count it.
2517 if (Necessary->contains(I))
2518 return true;
2519 }
2520
2521 // Already added this dep.
2522 if (!Deps->try_emplace(I, false).second)
2523 return true;
2524
2525 for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx)
2526 if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary,
2527 Depth + 1))
2528 return false;
2529 return true;
2530}
2531
2534 Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs,
2536 if (I.getNumSuccessors() != 2)
2537 return false;
2538
2539 if (!I.isConditional())
2540 return false;
2541
2542 if (Params.BaseCost < 0)
2543 return false;
2544
2545 // Baseline cost.
2546 InstructionCost CostThresh = Params.BaseCost;
2547
2548 BranchProbabilityInfo *BPI = nullptr;
2549 if (Params.LikelyBias || Params.UnlikelyBias)
2550 BPI = FuncInfo.BPI;
2551 if (BPI != nullptr) {
2552 // See if we are either likely to get an early out or compute both lhs/rhs
2553 // of the condition.
2554 BasicBlock *IfFalse = I.getSuccessor(0);
2555 BasicBlock *IfTrue = I.getSuccessor(1);
2556
2557 std::optional<bool> Likely;
2558 if (BPI->isEdgeHot(I.getParent(), IfTrue))
2559 Likely = true;
2560 else if (BPI->isEdgeHot(I.getParent(), IfFalse))
2561 Likely = false;
2562
2563 if (Likely) {
2564 if (Opc == (*Likely ? Instruction::And : Instruction::Or))
2565 // Its likely we will have to compute both lhs and rhs of condition
2566 CostThresh += Params.LikelyBias;
2567 else {
2568 if (Params.UnlikelyBias < 0)
2569 return false;
2570 // Its likely we will get an early out.
2571 CostThresh -= Params.UnlikelyBias;
2572 }
2573 }
2574 }
2575
2576 if (CostThresh <= 0)
2577 return false;
2578
2579 // Collect "all" instructions that lhs condition is dependent on.
2580 // Use map for stable iteration (to avoid non-determanism of iteration of
2581 // SmallPtrSet). The `bool` value is just a dummy.
2583 collectInstructionDeps(&LhsDeps, Lhs);
2584 // Collect "all" instructions that rhs condition is dependent on AND are
2585 // dependencies of lhs. This gives us an estimate on which instructions we
2586 // stand to save by splitting the condition.
2587 if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps))
2588 return false;
2589 // Add the compare instruction itself unless its a dependency on the LHS.
2590 if (const auto *RhsI = dyn_cast<Instruction>(Rhs))
2591 if (!LhsDeps.contains(RhsI))
2592 RhsDeps.try_emplace(RhsI, false);
2593
2594 InstructionCost CostOfIncluding = 0;
2595 // See if this instruction will need to computed independently of whether RHS
2596 // is.
2597 Value *BrCond = I.getCondition();
2598 auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) {
2599 for (const auto *U : Ins->users()) {
2600 // If user is independent of RHS calculation we don't need to count it.
2601 if (auto *UIns = dyn_cast<Instruction>(U))
2602 if (UIns != BrCond && !RhsDeps.contains(UIns))
2603 return false;
2604 }
2605 return true;
2606 };
2607
2608 // Prune instructions from RHS Deps that are dependencies of unrelated
2609 // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly
2610 // arbitrary and just meant to cap the how much time we spend in the pruning
2611 // loop. Its highly unlikely to come into affect.
2612 const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth;
2613 // Stop after a certain point. No incorrectness from including too many
2614 // instructions.
2615 for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) {
2616 const Instruction *ToDrop = nullptr;
2617 for (const auto &InsPair : RhsDeps) {
2618 if (!ShouldCountInsn(InsPair.first)) {
2619 ToDrop = InsPair.first;
2620 break;
2621 }
2622 }
2623 if (ToDrop == nullptr)
2624 break;
2625 RhsDeps.erase(ToDrop);
2626 }
2627
2628 for (const auto &InsPair : RhsDeps) {
2629 // Finally accumulate latency that we can only attribute to computing the
2630 // RHS condition. Use latency because we are essentially trying to calculate
2631 // the cost of the dependency chain.
2632 // Possible TODO: We could try to estimate ILP and make this more precise.
2633 CostOfIncluding += TTI->getInstructionCost(
2634 InsPair.first, TargetTransformInfo::TCK_Latency);
2635
2636 if (CostOfIncluding > CostThresh)
2637 return false;
2638 }
2639 return true;
2640}
2641
2644 MachineBasicBlock *FBB,
2645 MachineBasicBlock *CurBB,
2646 MachineBasicBlock *SwitchBB,
2648 BranchProbability TProb,
2649 BranchProbability FProb,
2650 bool InvertCond) {
2651 // Skip over not part of the tree and remember to invert op and operands at
2652 // next level.
2653 Value *NotCond;
2654 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2655 InBlock(NotCond, CurBB->getBasicBlock())) {
2656 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2657 !InvertCond);
2658 return;
2659 }
2660
2662 const Value *BOpOp0, *BOpOp1;
2663 // Compute the effective opcode for Cond, taking into account whether it needs
2664 // to be inverted, e.g.
2665 // and (not (or A, B)), C
2666 // gets lowered as
2667 // and (and (not A, not B), C)
2669 if (BOp) {
2670 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2671 ? Instruction::And
2672 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2673 ? Instruction::Or
2675 if (InvertCond) {
2676 if (BOpc == Instruction::And)
2677 BOpc = Instruction::Or;
2678 else if (BOpc == Instruction::Or)
2679 BOpc = Instruction::And;
2680 }
2681 }
2682
2683 // If this node is not part of the or/and tree, emit it as a branch.
2684 // Note that all nodes in the tree should have same opcode.
2685 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2686 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2687 !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2688 !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2689 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2690 TProb, FProb, InvertCond);
2691 return;
2692 }
2693
2694 // Create TmpBB after CurBB.
2695 MachineFunction::iterator BBI(CurBB);
2696 MachineFunction &MF = DAG.getMachineFunction();
2698 CurBB->getParent()->insert(++BBI, TmpBB);
2699
2700 if (Opc == Instruction::Or) {
2701 // Codegen X | Y as:
2702 // BB1:
2703 // jmp_if_X TBB
2704 // jmp TmpBB
2705 // TmpBB:
2706 // jmp_if_Y TBB
2707 // jmp FBB
2708 //
2709
2710 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2711 // The requirement is that
2712 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2713 // = TrueProb for original BB.
2714 // Assuming the original probabilities are A and B, one choice is to set
2715 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2716 // A/(1+B) and 2B/(1+B). This choice assumes that
2717 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2718 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2719 // TmpBB, but the math is more complicated.
2720
2721 auto NewTrueProb = TProb / 2;
2722 auto NewFalseProb = TProb / 2 + FProb;
2723 // Emit the LHS condition.
2724 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2725 NewFalseProb, InvertCond);
2726
2727 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2728 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2730 // Emit the RHS condition into TmpBB.
2731 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2732 Probs[1], InvertCond);
2733 } else {
2734 assert(Opc == Instruction::And && "Unknown merge op!");
2735 // Codegen X & Y as:
2736 // BB1:
2737 // jmp_if_X TmpBB
2738 // jmp FBB
2739 // TmpBB:
2740 // jmp_if_Y TBB
2741 // jmp FBB
2742 //
2743 // This requires creation of TmpBB after CurBB.
2744
2745 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2746 // The requirement is that
2747 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2748 // = FalseProb for original BB.
2749 // Assuming the original probabilities are A and B, one choice is to set
2750 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2751 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2752 // TrueProb for BB1 * FalseProb for TmpBB.
2753
2754 auto NewTrueProb = TProb + FProb / 2;
2755 auto NewFalseProb = FProb / 2;
2756 // Emit the LHS condition.
2757 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2758 NewFalseProb, InvertCond);
2759
2760 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2761 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2763 // Emit the RHS condition into TmpBB.
2764 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2765 Probs[1], InvertCond);
2766 }
2767}
2768
2769/// If the set of cases should be emitted as a series of branches, return true.
2770/// If we should emit this as a bunch of and/or'd together conditions, return
2771/// false.
2772bool
2773SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2774 if (Cases.size() != 2) return true;
2775
2776 // If this is two comparisons of the same values or'd or and'd together, they
2777 // will get folded into a single comparison, so don't emit two blocks.
2778 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2779 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2780 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2781 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2782 return false;
2783 }
2784
2785 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2786 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2787 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2788 Cases[0].CC == Cases[1].CC &&
2789 isa<Constant>(Cases[0].CmpRHS) &&
2790 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2791 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2792 return false;
2793 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2794 return false;
2795 }
2796
2797 return true;
2798}
2799
2800void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2802
2803 // Update machine-CFG edges.
2804 MachineBasicBlock *Succ0MBB = FuncInfo.getMBB(I.getSuccessor(0));
2805
2806 if (I.isUnconditional()) {
2807 // Update machine-CFG edges.
2808 BrMBB->addSuccessor(Succ0MBB);
2809
2810 // If this is not a fall-through branch or optimizations are switched off,
2811 // emit the branch.
2812 if (Succ0MBB != NextBlock(BrMBB) ||
2814 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2815 getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2816 setValue(&I, Br);
2817 DAG.setRoot(Br);
2818 }
2819
2820 return;
2821 }
2822
2823 // If this condition is one of the special cases we handle, do special stuff
2824 // now.
2825 const Value *CondVal = I.getCondition();
2826 MachineBasicBlock *Succ1MBB = FuncInfo.getMBB(I.getSuccessor(1));
2827
2828 // If this is a series of conditions that are or'd or and'd together, emit
2829 // this as a sequence of branches instead of setcc's with and/or operations.
2830 // As long as jumps are not expensive (exceptions for multi-use logic ops,
2831 // unpredictable branches, and vector extracts because those jumps are likely
2832 // expensive for any target), this should improve performance.
2833 // For example, instead of something like:
2834 // cmp A, B
2835 // C = seteq
2836 // cmp D, E
2837 // F = setle
2838 // or C, F
2839 // jnz foo
2840 // Emit:
2841 // cmp A, B
2842 // je foo
2843 // cmp D, E
2844 // jle foo
2845 bool IsUnpredictable = I.hasMetadata(LLVMContext::MD_unpredictable);
2846 const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2847 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2848 BOp->hasOneUse() && !IsUnpredictable) {
2849 Value *Vec;
2850 const Value *BOp0, *BOp1;
2852 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2853 Opcode = Instruction::And;
2854 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2855 Opcode = Instruction::Or;
2856
2857 if (Opcode &&
2858 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2859 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) &&
2861 FuncInfo, I, Opcode, BOp0, BOp1,
2862 DAG.getTargetLoweringInfo().getJumpConditionMergingParams(
2863 Opcode, BOp0, BOp1))) {
2864 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2865 getEdgeProbability(BrMBB, Succ0MBB),
2866 getEdgeProbability(BrMBB, Succ1MBB),
2867 /*InvertCond=*/false);
2868 // If the compares in later blocks need to use values not currently
2869 // exported from this block, export them now. This block should always
2870 // be the first entry.
2871 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2872
2873 // Allow some cases to be rejected.
2874 if (ShouldEmitAsBranches(SL->SwitchCases)) {
2875 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2876 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2877 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2878 }
2879
2880 // Emit the branch for this block.
2881 visitSwitchCase(SL->SwitchCases[0], BrMBB);
2882 SL->SwitchCases.erase(SL->SwitchCases.begin());
2883 return;
2884 }
2885
2886 // Okay, we decided not to do this, remove any inserted MBB's and clear
2887 // SwitchCases.
2888 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2889 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2890
2891 SL->SwitchCases.clear();
2892 }
2893 }
2894
2895 // Create a CaseBlock record representing this branch.
2896 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2897 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc(),
2899 IsUnpredictable);
2900
2901 // Use visitSwitchCase to actually insert the fast branch sequence for this
2902 // cond branch.
2903 visitSwitchCase(CB, BrMBB);
2904}
2905
2906/// visitSwitchCase - Emits the necessary code to represent a single node in
2907/// the binary search tree resulting from lowering a switch instruction.
2909 MachineBasicBlock *SwitchBB) {
2910 SDValue Cond;
2911 SDValue CondLHS = getValue(CB.CmpLHS);
2912 SDLoc dl = CB.DL;
2913
2914 if (CB.CC == ISD::SETTRUE) {
2915 // Branch or fall through to TrueBB.
2916 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2917 SwitchBB->normalizeSuccProbs();
2918 if (CB.TrueBB != NextBlock(SwitchBB)) {
2919 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2920 DAG.getBasicBlock(CB.TrueBB)));
2921 }
2922 return;
2923 }
2924
2925 auto &TLI = DAG.getTargetLoweringInfo();
2926 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2927
2928 // Build the setcc now.
2929 if (!CB.CmpMHS) {
2930 // Fold "(X == true)" to X and "(X == false)" to !X to
2931 // handle common cases produced by branch lowering.
2932 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2933 CB.CC == ISD::SETEQ)
2934 Cond = CondLHS;
2935 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2936 CB.CC == ISD::SETEQ) {
2937 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2938 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2939 } else {
2940 SDValue CondRHS = getValue(CB.CmpRHS);
2941
2942 // If a pointer's DAG type is larger than its memory type then the DAG
2943 // values are zero-extended. This breaks signed comparisons so truncate
2944 // back to the underlying type before doing the compare.
2945 if (CondLHS.getValueType() != MemVT) {
2946 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2947 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2948 }
2949 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2950 }
2951 } else {
2952 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2953
2954 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2955 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2956
2957 SDValue CmpOp = getValue(CB.CmpMHS);
2958 EVT VT = CmpOp.getValueType();
2959
2960 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2961 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2962 ISD::SETLE);
2963 } else {
2964 SDValue SUB = DAG.getNode(ISD::SUB, dl,
2965 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2966 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2967 DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2968 }
2969 }
2970
2971 // Update successor info
2972 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2973 // TrueBB and FalseBB are always different unless the incoming IR is
2974 // degenerate. This only happens when running llc on weird IR.
2975 if (CB.TrueBB != CB.FalseBB)
2976 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2977 SwitchBB->normalizeSuccProbs();
2978
2979 // If the lhs block is the next block, invert the condition so that we can
2980 // fall through to the lhs instead of the rhs block.
2981 if (CB.TrueBB == NextBlock(SwitchBB)) {
2982 std::swap(CB.TrueBB, CB.FalseBB);
2983 SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2984 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2985 }
2986
2987 SDNodeFlags Flags;
2989 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, MVT::Other, getControlRoot(),
2990 Cond, DAG.getBasicBlock(CB.TrueBB), Flags);
2991
2992 setValue(CurInst, BrCond);
2993
2994 // Insert the false branch. Do this even if it's a fall through branch,
2995 // this makes it easier to do DAG optimizations which require inverting
2996 // the branch condition.
2997 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2998 DAG.getBasicBlock(CB.FalseBB));
2999
3000 DAG.setRoot(BrCond);
3001}
3002
3003/// visitJumpTable - Emit JumpTable node in the current MBB
3005 // Emit the code for the jump table
3006 assert(JT.SL && "Should set SDLoc for SelectionDAG!");
3007 assert(JT.Reg && "Should lower JT Header first!");
3008 EVT PTy = DAG.getTargetLoweringInfo().getJumpTableRegTy(DAG.getDataLayout());
3009 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy);
3010 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
3011 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
3012 Index.getValue(1), Table, Index);
3013 DAG.setRoot(BrJumpTable);
3014}
3015
3016/// visitJumpTableHeader - This function emits necessary code to produce index
3017/// in the JumpTable from switch case.
3019 JumpTableHeader &JTH,
3020 MachineBasicBlock *SwitchBB) {
3021 assert(JT.SL && "Should set SDLoc for SelectionDAG!");
3022 const SDLoc &dl = *JT.SL;
3023
3024 // Subtract the lowest switch case value from the value being switched on.
3025 SDValue SwitchOp = getValue(JTH.SValue);
3026 EVT VT = SwitchOp.getValueType();
3027 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
3028 DAG.getConstant(JTH.First, dl, VT));
3029
3030 // The SDNode we just created, which holds the value being switched on minus
3031 // the smallest case value, needs to be copied to a virtual register so it
3032 // can be used as an index into the jump table in a subsequent basic block.
3033 // This value may be smaller or larger than the target's pointer type, and
3034 // therefore require extension or truncating.
3035 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3036 SwitchOp =
3037 DAG.getZExtOrTrunc(Sub, dl, TLI.getJumpTableRegTy(DAG.getDataLayout()));
3038
3039 Register JumpTableReg =
3040 FuncInfo.CreateReg(TLI.getJumpTableRegTy(DAG.getDataLayout()));
3041 SDValue CopyTo =
3042 DAG.getCopyToReg(getControlRoot(), dl, JumpTableReg, SwitchOp);
3043 JT.Reg = JumpTableReg;
3044
3045 if (!JTH.FallthroughUnreachable) {
3046 // Emit the range check for the jump table, and branch to the default block
3047 // for the switch statement if the value being switched on exceeds the
3048 // largest case in the switch.
3049 SDValue CMP = DAG.getSetCC(
3050 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3051 Sub.getValueType()),
3052 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
3053
3054 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3055 MVT::Other, CopyTo, CMP,
3056 DAG.getBasicBlock(JT.Default));
3057
3058 // Avoid emitting unnecessary branches to the next block.
3059 if (JT.MBB != NextBlock(SwitchBB))
3060 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3061 DAG.getBasicBlock(JT.MBB));
3062
3063 DAG.setRoot(BrCond);
3064 } else {
3065 // Avoid emitting unnecessary branches to the next block.
3066 if (JT.MBB != NextBlock(SwitchBB))
3067 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
3068 DAG.getBasicBlock(JT.MBB)));
3069 else
3070 DAG.setRoot(CopyTo);
3071 }
3072}
3073
3074/// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
3075/// variable if there exists one.
3077 SDValue &Chain) {
3078 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3079 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3080 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3084 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
3085 if (Global) {
3086 MachinePointerInfo MPInfo(Global);
3090 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
3091 DAG.setNodeMemRefs(Node, {MemRef});
3092 }
3093 if (PtrTy != PtrMemTy)
3094 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
3095 return SDValue(Node, 0);
3096}
3097
3098/// Codegen a new tail for a stack protector check ParentMBB which has had its
3099/// tail spliced into a stack protector check success bb.
3100///
3101/// For a high level explanation of how this fits into the stack protector
3102/// generation see the comment on the declaration of class
3103/// StackProtectorDescriptor.
3105 MachineBasicBlock *ParentBB) {
3106
3107 // First create the loads to the guard/stack slot for the comparison.
3108 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3109 auto &DL = DAG.getDataLayout();
3110 EVT PtrTy = TLI.getFrameIndexTy(DL);
3111 EVT PtrMemTy = TLI.getPointerMemTy(DL, DL.getAllocaAddrSpace());
3112
3113 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3114 int FI = MFI.getStackProtectorIndex();
3115
3116 SDValue Guard;
3117 SDLoc dl = getCurSDLoc();
3118 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3119 const Module &M = *ParentBB->getParent()->getFunction().getParent();
3120 Align Align = DL.getPrefTypeAlign(
3121 PointerType::get(M.getContext(), DL.getAllocaAddrSpace()));
3122
3123 // Generate code to load the content of the guard slot.
3124 SDValue GuardVal = DAG.getLoad(
3125 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3126 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3128
3129 if (TLI.useStackGuardXorFP())
3130 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
3131
3132 // If we're using function-based instrumentation, call the guard check
3133 // function
3135 // Get the guard check function from the target and verify it exists since
3136 // we're using function-based instrumentation
3137 const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M);
3138 assert(GuardCheckFn && "Guard check function is null");
3139
3140 // The target provides a guard check function to validate the guard value.
3141 // Generate a call to that function with the content of the guard slot as
3142 // argument.
3143 FunctionType *FnTy = GuardCheckFn->getFunctionType();
3144 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3145
3147 TargetLowering::ArgListEntry Entry(GuardVal, FnTy->getParamType(0));
3148 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3149 Entry.IsInReg = true;
3150 Args.push_back(Entry);
3151
3154 .setChain(DAG.getEntryNode())
3155 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3156 getValue(GuardCheckFn), std::move(Args));
3157
3158 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
3159 DAG.setRoot(Result.second);
3160 return;
3161 }
3162
3163 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3164 // Otherwise, emit a volatile load to retrieve the stack guard value.
3165 SDValue Chain = DAG.getEntryNode();
3166 if (TLI.useLoadStackGuardNode(M)) {
3167 Guard = getLoadStackGuard(DAG, dl, Chain);
3168 } else {
3169 if (const Value *IRGuard = TLI.getSDagStackGuard(M)) {
3170 SDValue GuardPtr = getValue(IRGuard);
3171 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
3172 MachinePointerInfo(IRGuard, 0), Align,
3174 } else {
3175 LLVMContext &Ctx = *DAG.getContext();
3176 Ctx.diagnose(DiagnosticInfoGeneric("unable to lower stackguard"));
3177 Guard = DAG.getPOISON(PtrMemTy);
3178 }
3179 }
3180
3181 // Perform the comparison via a getsetcc.
3182 SDValue Cmp = DAG.getSetCC(
3183 dl, TLI.getSetCCResultType(DL, *DAG.getContext(), Guard.getValueType()),
3184 Guard, GuardVal, ISD::SETNE);
3185
3186 // If the guard/stackslot do not equal, branch to failure MBB.
3187 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3188 MVT::Other, GuardVal.getOperand(0),
3189 Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
3190 // Otherwise branch to success MBB.
3191 SDValue Br = DAG.getNode(ISD::BR, dl,
3192 MVT::Other, BrCond,
3193 DAG.getBasicBlock(SPD.getSuccessMBB()));
3194
3195 DAG.setRoot(Br);
3196}
3197
3198/// Codegen the failure basic block for a stack protector check.
3199///
3200/// A failure stack protector machine basic block consists simply of a call to
3201/// __stack_chk_fail().
3202///
3203/// For a high level explanation of how this fits into the stack protector
3204/// generation see the comment on the declaration of class
3205/// StackProtectorDescriptor.
3208
3209 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3210 MachineBasicBlock *ParentBB = SPD.getParentMBB();
3211 const Module &M = *ParentBB->getParent()->getFunction().getParent();
3212 SDValue Chain;
3213
3214 // For -Oz builds with a guard check function, we use function-based
3215 // instrumentation. Otherwise, if we have a guard check function, we call it
3216 // in the failure block.
3217 auto *GuardCheckFn = TLI.getSSPStackGuardCheck(M);
3218 if (GuardCheckFn && !SPD.shouldEmitFunctionBasedCheckStackProtector()) {
3219 // First create the loads to the guard/stack slot for the comparison.
3220 auto &DL = DAG.getDataLayout();
3221 EVT PtrTy = TLI.getFrameIndexTy(DL);
3222 EVT PtrMemTy = TLI.getPointerMemTy(DL, DL.getAllocaAddrSpace());
3223
3224 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3225 int FI = MFI.getStackProtectorIndex();
3226
3227 SDLoc dl = getCurSDLoc();
3228 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3229 Align Align = DL.getPrefTypeAlign(
3230 PointerType::get(M.getContext(), DL.getAllocaAddrSpace()));
3231
3232 // Generate code to load the content of the guard slot.
3233 SDValue GuardVal = DAG.getLoad(
3234 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3235 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3237
3238 if (TLI.useStackGuardXorFP())
3239 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
3240
3241 // The target provides a guard check function to validate the guard value.
3242 // Generate a call to that function with the content of the guard slot as
3243 // argument.
3244 FunctionType *FnTy = GuardCheckFn->getFunctionType();
3245 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3246
3248 TargetLowering::ArgListEntry Entry(GuardVal, FnTy->getParamType(0));
3249 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3250 Entry.IsInReg = true;
3251 Args.push_back(Entry);
3252
3255 .setChain(DAG.getEntryNode())
3256 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3257 getValue(GuardCheckFn), std::move(Args));
3258
3259 Chain = TLI.LowerCallTo(CLI).second;
3260 } else {
3262 CallOptions.setDiscardResult(true);
3263 Chain = TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
3264 {}, CallOptions, getCurSDLoc())
3265 .second;
3266 }
3267
3268 // Emit a trap instruction if we are required to do so.
3269 const TargetOptions &TargetOpts = DAG.getTarget().Options;
3270 if (TargetOpts.TrapUnreachable && !TargetOpts.NoTrapAfterNoreturn)
3271 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3272
3273 DAG.setRoot(Chain);
3274}
3275
3276/// visitBitTestHeader - This function emits necessary code to produce value
3277/// suitable for "bit tests"
3279 MachineBasicBlock *SwitchBB) {
3280 SDLoc dl = getCurSDLoc();
3281
3282 // Subtract the minimum value.
3283 SDValue SwitchOp = getValue(B.SValue);
3284 EVT VT = SwitchOp.getValueType();
3285 SDValue RangeSub =
3286 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
3287
3288 // Determine the type of the test operands.
3289 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3290 bool UsePtrType = false;
3291 if (!TLI.isTypeLegal(VT)) {
3292 UsePtrType = true;
3293 } else {
3294 for (const BitTestCase &Case : B.Cases)
3295 if (!isUIntN(VT.getSizeInBits(), Case.Mask)) {
3296 // Switch table case range are encoded into series of masks.
3297 // Just use pointer type, it's guaranteed to fit.
3298 UsePtrType = true;
3299 break;
3300 }
3301 }
3302 SDValue Sub = RangeSub;
3303 if (UsePtrType) {
3304 VT = TLI.getPointerTy(DAG.getDataLayout());
3305 Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
3306 }
3307
3308 B.RegVT = VT.getSimpleVT();
3309 B.Reg = FuncInfo.CreateReg(B.RegVT);
3310 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
3311
3312 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
3313
3314 if (!B.FallthroughUnreachable)
3315 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
3316 addSuccessorWithProb(SwitchBB, MBB, B.Prob);
3317 SwitchBB->normalizeSuccProbs();
3318
3319 SDValue Root = CopyTo;
3320 if (!B.FallthroughUnreachable) {
3321 // Conditional branch to the default block.
3322 SDValue RangeCmp = DAG.getSetCC(dl,
3323 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3324 RangeSub.getValueType()),
3325 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
3326 ISD::SETUGT);
3327
3328 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3329 DAG.getBasicBlock(B.Default));
3330 }
3331
3332 // Avoid emitting unnecessary branches to the next block.
3333 if (MBB != NextBlock(SwitchBB))
3334 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
3335
3336 DAG.setRoot(Root);
3337}
3338
3339/// visitBitTestCase - this function produces one "bit test"
3341 MachineBasicBlock *NextMBB,
3342 BranchProbability BranchProbToNext,
3343 Register Reg, BitTestCase &B,
3344 MachineBasicBlock *SwitchBB) {
3345 SDLoc dl = getCurSDLoc();
3346 MVT VT = BB.RegVT;
3347 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
3348 SDValue Cmp;
3349 unsigned PopCount = llvm::popcount(B.Mask);
3350 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3351 if (PopCount == 1) {
3352 // Testing for a single bit; just compare the shift count with what it
3353 // would need to be to shift a 1 bit in that position.
3354 Cmp = DAG.getSetCC(
3355 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3356 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
3357 ISD::SETEQ);
3358 } else if (PopCount == BB.Range) {
3359 // There is only one zero bit in the range, test for it directly.
3360 Cmp = DAG.getSetCC(
3361 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3362 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
3363 } else {
3364 // Make desired shift
3365 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
3366 DAG.getConstant(1, dl, VT), ShiftOp);
3367
3368 // Emit bit tests and jumps
3369 SDValue AndOp = DAG.getNode(ISD::AND, dl,
3370 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
3371 Cmp = DAG.getSetCC(
3372 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3373 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
3374 }
3375
3376 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
3377 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
3378 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
3379 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3380 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
3381 // one as they are relative probabilities (and thus work more like weights),
3382 // and hence we need to normalize them to let the sum of them become one.
3383 SwitchBB->normalizeSuccProbs();
3384
3385 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
3386 MVT::Other, getControlRoot(),
3387 Cmp, DAG.getBasicBlock(B.TargetBB));
3388
3389 // Avoid emitting unnecessary branches to the next block.
3390 if (NextMBB != NextBlock(SwitchBB))
3391 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3392 DAG.getBasicBlock(NextMBB));
3393
3394 DAG.setRoot(BrAnd);
3395}
3396
3397void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3398 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3399
3400 // Retrieve successors. Look through artificial IR level blocks like
3401 // catchswitch for successors.
3402 MachineBasicBlock *Return = FuncInfo.getMBB(I.getSuccessor(0));
3403 const BasicBlock *EHPadBB = I.getSuccessor(1);
3404 MachineBasicBlock *EHPadMBB = FuncInfo.getMBB(EHPadBB);
3405
3406 // Deopt and ptrauth bundles are lowered in helper functions, and we don't
3407 // have to do anything here to lower funclet bundles.
3408 failForInvalidBundles(I, "invokes",
3414
3415 const Value *Callee(I.getCalledOperand());
3416 const Function *Fn = dyn_cast<Function>(Callee);
3417 if (isa<InlineAsm>(Callee))
3418 visitInlineAsm(I, EHPadBB);
3419 else if (Fn && Fn->isIntrinsic()) {
3420 switch (Fn->getIntrinsicID()) {
3421 default:
3422 llvm_unreachable("Cannot invoke this intrinsic");
3423 case Intrinsic::donothing:
3424 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3425 case Intrinsic::seh_try_begin:
3426 case Intrinsic::seh_scope_begin:
3427 case Intrinsic::seh_try_end:
3428 case Intrinsic::seh_scope_end:
3429 if (EHPadMBB)
3430 // a block referenced by EH table
3431 // so dtor-funclet not removed by opts
3432 EHPadMBB->setMachineBlockAddressTaken();
3433 break;
3434 case Intrinsic::experimental_patchpoint_void:
3435 case Intrinsic::experimental_patchpoint:
3436 visitPatchpoint(I, EHPadBB);
3437 break;
3438 case Intrinsic::experimental_gc_statepoint:
3440 break;
3441 // wasm_throw, wasm_rethrow: This is usually done in visitTargetIntrinsic,
3442 // but these intrinsics are special because they can be invoked, so we
3443 // manually lower it to a DAG node here.
3444 case Intrinsic::wasm_throw: {
3446 std::array<SDValue, 4> Ops = {
3447 getControlRoot(), // inchain for the terminator node
3448 DAG.getTargetConstant(Intrinsic::wasm_throw, getCurSDLoc(),
3450 getValue(I.getArgOperand(0)), // tag
3451 getValue(I.getArgOperand(1)) // thrown value
3452 };
3453 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3454 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3455 break;
3456 }
3457 case Intrinsic::wasm_rethrow: {
3458 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3459 std::array<SDValue, 2> Ops = {
3460 getControlRoot(), // inchain for the terminator node
3461 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3462 TLI.getPointerTy(DAG.getDataLayout()))};
3463 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3464 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3465 break;
3466 }
3467 }
3468 } else if (I.hasDeoptState()) {
3469 // Currently we do not lower any intrinsic calls with deopt operand bundles.
3470 // Eventually we will support lowering the @llvm.experimental.deoptimize
3471 // intrinsic, and right now there are no plans to support other intrinsics
3472 // with deopt state.
3473 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3474 } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
3476 } else {
3477 LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3478 }
3479
3480 // If the value of the invoke is used outside of its defining block, make it
3481 // available as a virtual register.
3482 // We already took care of the exported value for the statepoint instruction
3483 // during call to the LowerStatepoint.
3484 if (!isa<GCStatepointInst>(I)) {
3486 }
3487
3489 BranchProbabilityInfo *BPI = FuncInfo.BPI;
3490 BranchProbability EHPadBBProb =
3491 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3493 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3494
3495 // Update successor info.
3496 addSuccessorWithProb(InvokeMBB, Return);
3497 for (auto &UnwindDest : UnwindDests) {
3498 UnwindDest.first->setIsEHPad();
3499 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3500 }
3501 InvokeMBB->normalizeSuccProbs();
3502
3503 // Drop into normal successor.
3504 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3505 DAG.getBasicBlock(Return)));
3506}
3507
3508/// The intrinsics currently supported by callbr are implicit control flow
3509/// intrinsics such as amdgcn.kill.
3510/// - they should be called (no "dontcall-" attributes)
3511/// - they do not touch memory on the target (= !TLI.getTgtMemIntrinsic())
3512/// - they do not need custom argument handling (no
3513/// TLI.CollectTargetIntrinsicOperands())
3514void SelectionDAGBuilder::visitCallBrIntrinsic(const CallBrInst &I) {
3515 TargetLowering::IntrinsicInfo Info;
3516 assert(!DAG.getTargetLoweringInfo().getTgtMemIntrinsic(
3517 Info, I, DAG.getMachineFunction(), I.getIntrinsicID()) &&
3518 "Intrinsic touches memory");
3519
3520 auto [HasChain, OnlyLoad] = getTargetIntrinsicCallProperties(I);
3521
3523 getTargetIntrinsicOperands(I, HasChain, OnlyLoad);
3524 SDVTList VTs = getTargetIntrinsicVTList(I, HasChain);
3525
3526 // Create the node.
3527 SDValue Result =
3528 getTargetNonMemIntrinsicNode(*I.getType(), HasChain, Ops, VTs);
3529 Result = handleTargetIntrinsicRet(I, HasChain, OnlyLoad, Result);
3530
3531 setValue(&I, Result);
3532}
3533
3534void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3535 MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3536
3537 if (I.isInlineAsm()) {
3538 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3539 // have to do anything here to lower funclet bundles.
3540 failForInvalidBundles(I, "callbrs",
3542 visitInlineAsm(I);
3543 } else {
3544 assert(!I.hasOperandBundles() &&
3545 "Can't have operand bundles for intrinsics");
3546 visitCallBrIntrinsic(I);
3547 }
3549
3550 // Retrieve successors.
3551 SmallPtrSet<BasicBlock *, 8> Dests;
3552 Dests.insert(I.getDefaultDest());
3553 MachineBasicBlock *Return = FuncInfo.getMBB(I.getDefaultDest());
3554
3555 // Update successor info.
3556 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3557 // TODO: For most of the cases where there is an intrinsic callbr, we're
3558 // having exactly one indirect target, which will be unreachable. As soon as
3559 // this changes, we might need to enhance
3560 // Target->setIsInlineAsmBrIndirectTarget or add something similar for
3561 // intrinsic indirect branches.
3562 if (I.isInlineAsm()) {
3563 for (BasicBlock *Dest : I.getIndirectDests()) {
3564 MachineBasicBlock *Target = FuncInfo.getMBB(Dest);
3565 Target->setIsInlineAsmBrIndirectTarget();
3566 // If we introduce a type of asm goto statement that is permitted to use
3567 // an indirect call instruction to jump to its labels, then we should add
3568 // a call to Target->setMachineBlockAddressTaken() here, to mark the
3569 // target block as requiring a BTI.
3570
3571 Target->setLabelMustBeEmitted();
3572 // Don't add duplicate machine successors.
3573 if (Dests.insert(Dest).second)
3574 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3575 }
3576 }
3577 CallBrMBB->normalizeSuccProbs();
3578
3579 // Drop into default successor.
3580 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3581 MVT::Other, getControlRoot(),
3582 DAG.getBasicBlock(Return)));
3583}
3584
3585void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3586 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3587}
3588
3589void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3590 assert(FuncInfo.MBB->isEHPad() &&
3591 "Call to landingpad not in landing pad!");
3592
3593 // If there aren't registers to copy the values into (e.g., during SjLj
3594 // exceptions), then don't bother to create these DAG nodes.
3595 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3596 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3597 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3598 TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3599 return;
3600
3601 // If landingpad's return type is token type, we don't create DAG nodes
3602 // for its exception pointer and selector value. The extraction of exception
3603 // pointer or selector value from token type landingpads is not currently
3604 // supported.
3605 if (LP.getType()->isTokenTy())
3606 return;
3607
3608 SmallVector<EVT, 2> ValueVTs;
3609 SDLoc dl = getCurSDLoc();
3610 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3611 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3612
3613 // Get the two live-in registers as SDValues. The physregs have already been
3614 // copied into virtual registers.
3615 SDValue Ops[2];
3616 if (FuncInfo.ExceptionPointerVirtReg) {
3617 Ops[0] = DAG.getZExtOrTrunc(
3618 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3619 FuncInfo.ExceptionPointerVirtReg,
3620 TLI.getPointerTy(DAG.getDataLayout())),
3621 dl, ValueVTs[0]);
3622 } else {
3623 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3624 }
3625 Ops[1] = DAG.getZExtOrTrunc(
3626 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3627 FuncInfo.ExceptionSelectorVirtReg,
3628 TLI.getPointerTy(DAG.getDataLayout())),
3629 dl, ValueVTs[1]);
3630
3631 // Merge into one.
3632 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3633 DAG.getVTList(ValueVTs), Ops);
3634 setValue(&LP, Res);
3635}
3636
3639 // Update JTCases.
3640 for (JumpTableBlock &JTB : SL->JTCases)
3641 if (JTB.first.HeaderBB == First)
3642 JTB.first.HeaderBB = Last;
3643
3644 // Update BitTestCases.
3645 for (BitTestBlock &BTB : SL->BitTestCases)
3646 if (BTB.Parent == First)
3647 BTB.Parent = Last;
3648}
3649
3650void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3651 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3652
3653 // Update machine-CFG edges with unique successors.
3655 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3656 BasicBlock *BB = I.getSuccessor(i);
3657 bool Inserted = Done.insert(BB).second;
3658 if (!Inserted)
3659 continue;
3660
3661 MachineBasicBlock *Succ = FuncInfo.getMBB(BB);
3662 addSuccessorWithProb(IndirectBrMBB, Succ);
3663 }
3664 IndirectBrMBB->normalizeSuccProbs();
3665
3666 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3667 MVT::Other, getControlRoot(),
3668 getValue(I.getAddress())));
3669}
3670
3671void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3672 if (!I.shouldLowerToTrap(DAG.getTarget().Options.TrapUnreachable,
3673 DAG.getTarget().Options.NoTrapAfterNoreturn))
3674 return;
3675
3676 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3677}
3678
3679void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3680 SDNodeFlags Flags;
3681 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3682 Flags.copyFMF(*FPOp);
3683
3684 SDValue Op = getValue(I.getOperand(0));
3685 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3686 Op, Flags);
3687 setValue(&I, UnNodeValue);
3688}
3689
3690void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3691 SDNodeFlags Flags;
3692 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3693 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3694 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3695 }
3696 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3697 Flags.setExact(ExactOp->isExact());
3698 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I))
3699 Flags.setDisjoint(DisjointOp->isDisjoint());
3700 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3701 Flags.copyFMF(*FPOp);
3702
3703 SDValue Op1 = getValue(I.getOperand(0));
3704 SDValue Op2 = getValue(I.getOperand(1));
3705 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3706 Op1, Op2, Flags);
3707 setValue(&I, BinNodeValue);
3708}
3709
3710void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3711 SDValue Op1 = getValue(I.getOperand(0));
3712 SDValue Op2 = getValue(I.getOperand(1));
3713
3714 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3715 Op1.getValueType(), DAG.getDataLayout());
3716
3717 // Coerce the shift amount to the right type if we can. This exposes the
3718 // truncate or zext to optimization early.
3719 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3721 "Unexpected shift type");
3722 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3723 }
3724
3725 bool nuw = false;
3726 bool nsw = false;
3727 bool exact = false;
3728
3729 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3730
3731 if (const OverflowingBinaryOperator *OFBinOp =
3733 nuw = OFBinOp->hasNoUnsignedWrap();
3734 nsw = OFBinOp->hasNoSignedWrap();
3735 }
3736 if (const PossiblyExactOperator *ExactOp =
3738 exact = ExactOp->isExact();
3739 }
3740 SDNodeFlags Flags;
3741 Flags.setExact(exact);
3742 Flags.setNoSignedWrap(nsw);
3743 Flags.setNoUnsignedWrap(nuw);
3744 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3745 Flags);
3746 setValue(&I, Res);
3747}
3748
3749void SelectionDAGBuilder::visitSDiv(const User &I) {
3750 SDValue Op1 = getValue(I.getOperand(0));
3751 SDValue Op2 = getValue(I.getOperand(1));
3752
3753 SDNodeFlags Flags;
3754 Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3755 cast<PossiblyExactOperator>(&I)->isExact());
3756 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3757 Op2, Flags));
3758}
3759
3760void SelectionDAGBuilder::visitICmp(const ICmpInst &I) {
3761 ICmpInst::Predicate predicate = I.getPredicate();
3762 SDValue Op1 = getValue(I.getOperand(0));
3763 SDValue Op2 = getValue(I.getOperand(1));
3764 ISD::CondCode Opcode = getICmpCondCode(predicate);
3765
3766 auto &TLI = DAG.getTargetLoweringInfo();
3767 EVT MemVT =
3768 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3769
3770 // If a pointer's DAG type is larger than its memory type then the DAG values
3771 // are zero-extended. This breaks signed comparisons so truncate back to the
3772 // underlying type before doing the compare.
3773 if (Op1.getValueType() != MemVT) {
3774 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3775 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3776 }
3777
3778 SDNodeFlags Flags;
3779 Flags.setSameSign(I.hasSameSign());
3780 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3781
3782 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3783 I.getType());
3784 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3785}
3786
3787void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) {
3788 FCmpInst::Predicate predicate = I.getPredicate();
3789 SDValue Op1 = getValue(I.getOperand(0));
3790 SDValue Op2 = getValue(I.getOperand(1));
3791
3792 ISD::CondCode Condition = getFCmpCondCode(predicate);
3793 auto *FPMO = cast<FPMathOperator>(&I);
3794 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3795 Condition = getFCmpCodeWithoutNaN(Condition);
3796
3797 SDNodeFlags Flags;
3798 Flags.copyFMF(*FPMO);
3799 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3800
3801 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3802 I.getType());
3803 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3804}
3805
3806// Check if the condition of the select has one use or two users that are both
3807// selects with the same condition.
3808static bool hasOnlySelectUsers(const Value *Cond) {
3809 return llvm::all_of(Cond->users(), [](const Value *V) {
3810 return isa<SelectInst>(V);
3811 });
3812}
3813
3814void SelectionDAGBuilder::visitSelect(const User &I) {
3815 SmallVector<EVT, 4> ValueVTs;
3816 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3817 ValueVTs);
3818 unsigned NumValues = ValueVTs.size();
3819 if (NumValues == 0) return;
3820
3821 SmallVector<SDValue, 4> Values(NumValues);
3822 SDValue Cond = getValue(I.getOperand(0));
3823 SDValue LHSVal = getValue(I.getOperand(1));
3824 SDValue RHSVal = getValue(I.getOperand(2));
3825 SmallVector<SDValue, 1> BaseOps(1, Cond);
3827 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3828
3829 bool IsUnaryAbs = false;
3830 bool Negate = false;
3831
3832 SDNodeFlags Flags;
3833 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3834 Flags.copyFMF(*FPOp);
3835
3836 Flags.setUnpredictable(
3837 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3838
3839 // Min/max matching is only viable if all output VTs are the same.
3840 if (all_equal(ValueVTs)) {
3841 EVT VT = ValueVTs[0];
3842 LLVMContext &Ctx = *DAG.getContext();
3843 auto &TLI = DAG.getTargetLoweringInfo();
3844
3845 // We care about the legality of the operation after it has been type
3846 // legalized.
3847 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3848 VT = TLI.getTypeToTransformTo(Ctx, VT);
3849
3850 // If the vselect is legal, assume we want to leave this as a vector setcc +
3851 // vselect. Otherwise, if this is going to be scalarized, we want to see if
3852 // min/max is legal on the scalar type.
3853 bool UseScalarMinMax = VT.isVector() &&
3855
3856 // ValueTracking's select pattern matching does not account for -0.0,
3857 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3858 // -0.0 is less than +0.0.
3859 const Value *LHS, *RHS;
3860 auto SPR = matchSelectPattern(&I, LHS, RHS);
3862 switch (SPR.Flavor) {
3863 case SPF_UMAX: Opc = ISD::UMAX; break;
3864 case SPF_UMIN: Opc = ISD::UMIN; break;
3865 case SPF_SMAX: Opc = ISD::SMAX; break;
3866 case SPF_SMIN: Opc = ISD::SMIN; break;
3867 case SPF_FMINNUM:
3868 switch (SPR.NaNBehavior) {
3869 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3870 case SPNB_RETURNS_NAN: break;
3871 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3872 case SPNB_RETURNS_ANY:
3873 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3874 (UseScalarMinMax &&
3875 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3876 Opc = ISD::FMINNUM;
3877 break;
3878 }
3879 break;
3880 case SPF_FMAXNUM:
3881 switch (SPR.NaNBehavior) {
3882 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3883 case SPNB_RETURNS_NAN: break;
3884 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3885 case SPNB_RETURNS_ANY:
3886 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3887 (UseScalarMinMax &&
3888 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3889 Opc = ISD::FMAXNUM;
3890 break;
3891 }
3892 break;
3893 case SPF_NABS:
3894 Negate = true;
3895 [[fallthrough]];
3896 case SPF_ABS:
3897 IsUnaryAbs = true;
3898 Opc = ISD::ABS;
3899 break;
3900 default: break;
3901 }
3902
3903 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3904 (TLI.isOperationLegalOrCustom(Opc, VT) ||
3905 (UseScalarMinMax &&
3907 // If the underlying comparison instruction is used by any other
3908 // instruction, the consumed instructions won't be destroyed, so it is
3909 // not profitable to convert to a min/max.
3911 OpCode = Opc;
3912 LHSVal = getValue(LHS);
3913 RHSVal = getValue(RHS);
3914 BaseOps.clear();
3915 }
3916
3917 if (IsUnaryAbs) {
3918 OpCode = Opc;
3919 LHSVal = getValue(LHS);
3920 BaseOps.clear();
3921 }
3922 }
3923
3924 if (IsUnaryAbs) {
3925 for (unsigned i = 0; i != NumValues; ++i) {
3926 SDLoc dl = getCurSDLoc();
3927 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3928 Values[i] =
3929 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3930 if (Negate)
3931 Values[i] = DAG.getNegative(Values[i], dl, VT);
3932 }
3933 } else {
3934 for (unsigned i = 0; i != NumValues; ++i) {
3935 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3936 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3937 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3938 Values[i] = DAG.getNode(
3939 OpCode, getCurSDLoc(),
3940 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3941 }
3942 }
3943
3945 DAG.getVTList(ValueVTs), Values));
3946}
3947
3948void SelectionDAGBuilder::visitTrunc(const User &I) {
3949 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3950 SDValue N = getValue(I.getOperand(0));
3951 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3952 I.getType());
3953 SDNodeFlags Flags;
3954 if (auto *Trunc = dyn_cast<TruncInst>(&I)) {
3955 Flags.setNoSignedWrap(Trunc->hasNoSignedWrap());
3956 Flags.setNoUnsignedWrap(Trunc->hasNoUnsignedWrap());
3957 }
3958
3959 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N, Flags));
3960}
3961
3962void SelectionDAGBuilder::visitZExt(const User &I) {
3963 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3964 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3965 SDValue N = getValue(I.getOperand(0));
3966 auto &TLI = DAG.getTargetLoweringInfo();
3967 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3968
3969 SDNodeFlags Flags;
3970 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3971 Flags.setNonNeg(PNI->hasNonNeg());
3972
3973 // Eagerly use nonneg information to canonicalize towards sign_extend if
3974 // that is the target's preference.
3975 // TODO: Let the target do this later.
3976 if (Flags.hasNonNeg() &&
3977 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) {
3978 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3979 return;
3980 }
3981
3982 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags));
3983}
3984
3985void SelectionDAGBuilder::visitSExt(const User &I) {
3986 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3987 // SExt also can't be a cast to bool for same reason. So, nothing much to do
3988 SDValue N = getValue(I.getOperand(0));
3989 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3990 I.getType());
3991 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3992}
3993
3994void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3995 // FPTrunc is never a no-op cast, no need to check
3996 SDValue N = getValue(I.getOperand(0));
3997 SDLoc dl = getCurSDLoc();
3998 SDNodeFlags Flags;
3999 if (auto *TruncInst = dyn_cast<FPMathOperator>(&I))
4000 Flags.copyFMF(*TruncInst);
4001 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4002 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4003 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
4004 DAG.getTargetConstant(
4005 0, dl, TLI.getPointerTy(DAG.getDataLayout())),
4006 Flags));
4007}
4008
4009void SelectionDAGBuilder::visitFPExt(const User &I) {
4010 // FPExt is never a no-op cast, no need to check
4011 SDValue N = getValue(I.getOperand(0));
4012 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4013 I.getType());
4014 SDNodeFlags Flags;
4015 if (auto *TruncInst = dyn_cast<FPMathOperator>(&I))
4016 Flags.copyFMF(*TruncInst);
4017 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N, Flags));
4018}
4019
4020void SelectionDAGBuilder::visitFPToUI(const User &I) {
4021 // FPToUI is never a no-op cast, no need to check
4022 SDValue N = getValue(I.getOperand(0));
4023 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4024 I.getType());
4025 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
4026}
4027
4028void SelectionDAGBuilder::visitFPToSI(const User &I) {
4029 // FPToSI is never a no-op cast, no need to check
4030 SDValue N = getValue(I.getOperand(0));
4031 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4032 I.getType());
4033 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
4034}
4035
4036void SelectionDAGBuilder::visitUIToFP(const User &I) {
4037 // UIToFP is never a no-op cast, no need to check
4038 SDValue N = getValue(I.getOperand(0));
4039 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4040 I.getType());
4041 SDNodeFlags Flags;
4042 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
4043 Flags.setNonNeg(PNI->hasNonNeg());
4044
4045 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags));
4046}
4047
4048void SelectionDAGBuilder::visitSIToFP(const User &I) {
4049 // SIToFP is never a no-op cast, no need to check
4050 SDValue N = getValue(I.getOperand(0));
4051 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4052 I.getType());
4053 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
4054}
4055
4056void SelectionDAGBuilder::visitPtrToAddr(const User &I) {
4057 SDValue N = getValue(I.getOperand(0));
4058 // By definition the type of the ptrtoaddr must be equal to the address type.
4059 const auto &TLI = DAG.getTargetLoweringInfo();
4060 EVT AddrVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4061 // The address width must be smaller or equal to the pointer representation
4062 // width, so we lower ptrtoaddr as a truncate (possibly folded to a no-op).
4063 N = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), AddrVT, N);
4064 setValue(&I, N);
4065}
4066
4067void SelectionDAGBuilder::visitPtrToInt(const User &I) {
4068 // What to do depends on the size of the integer and the size of the pointer.
4069 // We can either truncate, zero extend, or no-op, accordingly.
4070 SDValue N = getValue(I.getOperand(0));
4071 auto &TLI = DAG.getTargetLoweringInfo();
4072 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4073 I.getType());
4074 EVT PtrMemVT =
4075 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
4076 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
4077 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
4078 setValue(&I, N);
4079}
4080
4081void SelectionDAGBuilder::visitIntToPtr(const User &I) {
4082 // What to do depends on the size of the integer and the size of the pointer.
4083 // We can either truncate, zero extend, or no-op, accordingly.
4084 SDValue N = getValue(I.getOperand(0));
4085 auto &TLI = DAG.getTargetLoweringInfo();
4086 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4087 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4088 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
4089 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
4090 setValue(&I, N);
4091}
4092
4093void SelectionDAGBuilder::visitBitCast(const User &I) {
4094 SDValue N = getValue(I.getOperand(0));
4095 SDLoc dl = getCurSDLoc();
4096 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4097 I.getType());
4098
4099 // BitCast assures us that source and destination are the same size so this is
4100 // either a BITCAST or a no-op.
4101 if (DestVT != N.getValueType())
4102 setValue(&I, DAG.getNode(ISD::BITCAST, dl,
4103 DestVT, N)); // convert types.
4104 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
4105 // might fold any kind of constant expression to an integer constant and that
4106 // is not what we are looking for. Only recognize a bitcast of a genuine
4107 // constant integer as an opaque constant.
4108 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
4109 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
4110 /*isOpaque*/true));
4111 else
4112 setValue(&I, N); // noop cast.
4113}
4114
4115void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
4116 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4117 const Value *SV = I.getOperand(0);
4118 SDValue N = getValue(SV);
4119 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4120
4121 unsigned SrcAS = SV->getType()->getPointerAddressSpace();
4122 unsigned DestAS = I.getType()->getPointerAddressSpace();
4123
4124 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
4125 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
4126
4127 setValue(&I, N);
4128}
4129
4130void SelectionDAGBuilder::visitInsertElement(const User &I) {
4131 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4132 SDValue InVec = getValue(I.getOperand(0));
4133 SDValue InVal = getValue(I.getOperand(1));
4134 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
4135 TLI.getVectorIdxTy(DAG.getDataLayout()));
4137 TLI.getValueType(DAG.getDataLayout(), I.getType()),
4138 InVec, InVal, InIdx));
4139}
4140
4141void SelectionDAGBuilder::visitExtractElement(const User &I) {
4142 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4143 SDValue InVec = getValue(I.getOperand(0));
4144 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
4145 TLI.getVectorIdxTy(DAG.getDataLayout()));
4147 TLI.getValueType(DAG.getDataLayout(), I.getType()),
4148 InVec, InIdx));
4149}
4150
4151void SelectionDAGBuilder::visitShuffleVector(const User &I) {
4152 SDValue Src1 = getValue(I.getOperand(0));
4153 SDValue Src2 = getValue(I.getOperand(1));
4154 ArrayRef<int> Mask;
4155 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
4156 Mask = SVI->getShuffleMask();
4157 else
4158 Mask = cast<ConstantExpr>(I).getShuffleMask();
4159 SDLoc DL = getCurSDLoc();
4160 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4161 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4162 EVT SrcVT = Src1.getValueType();
4163
4164 if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
4165 VT.isScalableVector()) {
4166 // Canonical splat form of first element of first input vector.
4167 SDValue FirstElt =
4168 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
4169 DAG.getVectorIdxConstant(0, DL));
4170 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
4171 return;
4172 }
4173
4174 // For now, we only handle splats for scalable vectors.
4175 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
4176 // for targets that support a SPLAT_VECTOR for non-scalable vector types.
4177 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
4178
4179 unsigned SrcNumElts = SrcVT.getVectorNumElements();
4180 unsigned MaskNumElts = Mask.size();
4181
4182 if (SrcNumElts == MaskNumElts) {
4183 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
4184 return;
4185 }
4186
4187 // Normalize the shuffle vector since mask and vector length don't match.
4188 if (SrcNumElts < MaskNumElts) {
4189 // Mask is longer than the source vectors. We can use concatenate vector to
4190 // make the mask and vectors lengths match.
4191
4192 if (MaskNumElts % SrcNumElts == 0) {
4193 // Mask length is a multiple of the source vector length.
4194 // Check if the shuffle is some kind of concatenation of the input
4195 // vectors.
4196 unsigned NumConcat = MaskNumElts / SrcNumElts;
4197 bool IsConcat = true;
4198 SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
4199 for (unsigned i = 0; i != MaskNumElts; ++i) {
4200 int Idx = Mask[i];
4201 if (Idx < 0)
4202 continue;
4203 // Ensure the indices in each SrcVT sized piece are sequential and that
4204 // the same source is used for the whole piece.
4205 if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
4206 (ConcatSrcs[i / SrcNumElts] >= 0 &&
4207 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
4208 IsConcat = false;
4209 break;
4210 }
4211 // Remember which source this index came from.
4212 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
4213 }
4214
4215 // The shuffle is concatenating multiple vectors together. Just emit
4216 // a CONCAT_VECTORS operation.
4217 if (IsConcat) {
4218 SmallVector<SDValue, 8> ConcatOps;
4219 for (auto Src : ConcatSrcs) {
4220 if (Src < 0)
4221 ConcatOps.push_back(DAG.getUNDEF(SrcVT));
4222 else if (Src == 0)
4223 ConcatOps.push_back(Src1);
4224 else
4225 ConcatOps.push_back(Src2);
4226 }
4227 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
4228 return;
4229 }
4230 }
4231
4232 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
4233 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4234 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
4235 PaddedMaskNumElts);
4236
4237 // Pad both vectors with undefs to make them the same length as the mask.
4238 SDValue UndefVal = DAG.getUNDEF(SrcVT);
4239
4240 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
4241 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
4242 MOps1[0] = Src1;
4243 MOps2[0] = Src2;
4244
4245 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
4246 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
4247
4248 // Readjust mask for new input vector length.
4249 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4250 for (unsigned i = 0; i != MaskNumElts; ++i) {
4251 int Idx = Mask[i];
4252 if (Idx >= (int)SrcNumElts)
4253 Idx -= SrcNumElts - PaddedMaskNumElts;
4254 MappedOps[i] = Idx;
4255 }
4256
4257 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
4258
4259 // If the concatenated vector was padded, extract a subvector with the
4260 // correct number of elements.
4261 if (MaskNumElts != PaddedMaskNumElts)
4262 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
4263 DAG.getVectorIdxConstant(0, DL));
4264
4265 setValue(&I, Result);
4266 return;
4267 }
4268
4269 assert(SrcNumElts > MaskNumElts);
4270
4271 // Analyze the access pattern of the vector to see if we can extract
4272 // two subvectors and do the shuffle.
4273 int StartIdx[2] = {-1, -1}; // StartIdx to extract from
4274 bool CanExtract = true;
4275 for (int Idx : Mask) {
4276 unsigned Input = 0;
4277 if (Idx < 0)
4278 continue;
4279
4280 if (Idx >= (int)SrcNumElts) {
4281 Input = 1;
4282 Idx -= SrcNumElts;
4283 }
4284
4285 // If all the indices come from the same MaskNumElts sized portion of
4286 // the sources we can use extract. Also make sure the extract wouldn't
4287 // extract past the end of the source.
4288 int NewStartIdx = alignDown(Idx, MaskNumElts);
4289 if (NewStartIdx + MaskNumElts > SrcNumElts ||
4290 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
4291 CanExtract = false;
4292 // Make sure we always update StartIdx as we use it to track if all
4293 // elements are undef.
4294 StartIdx[Input] = NewStartIdx;
4295 }
4296
4297 if (StartIdx[0] < 0 && StartIdx[1] < 0) {
4298 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
4299 return;
4300 }
4301 if (CanExtract) {
4302 // Extract appropriate subvector and generate a vector shuffle
4303 for (unsigned Input = 0; Input < 2; ++Input) {
4304 SDValue &Src = Input == 0 ? Src1 : Src2;
4305 if (StartIdx[Input] < 0)
4306 Src = DAG.getUNDEF(VT);
4307 else {
4308 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
4309 DAG.getVectorIdxConstant(StartIdx[Input], DL));
4310 }
4311 }
4312
4313 // Calculate new mask.
4314 SmallVector<int, 8> MappedOps(Mask);
4315 for (int &Idx : MappedOps) {
4316 if (Idx >= (int)SrcNumElts)
4317 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
4318 else if (Idx >= 0)
4319 Idx -= StartIdx[0];
4320 }
4321
4322 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
4323 return;
4324 }
4325
4326 // We can't use either concat vectors or extract subvectors so fall back to
4327 // replacing the shuffle with extract and build vector.
4328 // to insert and build vector.
4329 EVT EltVT = VT.getVectorElementType();
4331 for (int Idx : Mask) {
4332 SDValue Res;
4333
4334 if (Idx < 0) {
4335 Res = DAG.getUNDEF(EltVT);
4336 } else {
4337 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
4338 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
4339
4340 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
4341 DAG.getVectorIdxConstant(Idx, DL));
4342 }
4343
4344 Ops.push_back(Res);
4345 }
4346
4347 setValue(&I, DAG.getBuildVector(VT, DL, Ops));
4348}
4349
4350void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
4351 ArrayRef<unsigned> Indices = I.getIndices();
4352 const Value *Op0 = I.getOperand(0);
4353 const Value *Op1 = I.getOperand(1);
4354 Type *AggTy = I.getType();
4355 Type *ValTy = Op1->getType();
4356 bool IntoUndef = isa<UndefValue>(Op0);
4357 bool FromUndef = isa<UndefValue>(Op1);
4358
4359 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4360
4361 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4362 SmallVector<EVT, 4> AggValueVTs;
4363 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
4364 SmallVector<EVT, 4> ValValueVTs;
4365 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4366
4367 unsigned NumAggValues = AggValueVTs.size();
4368 unsigned NumValValues = ValValueVTs.size();
4369 SmallVector<SDValue, 4> Values(NumAggValues);
4370
4371 // Ignore an insertvalue that produces an empty object
4372 if (!NumAggValues) {
4373 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4374 return;
4375 }
4376
4377 SDValue Agg = getValue(Op0);
4378 unsigned i = 0;
4379 // Copy the beginning value(s) from the original aggregate.
4380 for (; i != LinearIndex; ++i)
4381 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4382 SDValue(Agg.getNode(), Agg.getResNo() + i);
4383 // Copy values from the inserted value(s).
4384 if (NumValValues) {
4385 SDValue Val = getValue(Op1);
4386 for (; i != LinearIndex + NumValValues; ++i)
4387 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4388 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
4389 }
4390 // Copy remaining value(s) from the original aggregate.
4391 for (; i != NumAggValues; ++i)
4392 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4393 SDValue(Agg.getNode(), Agg.getResNo() + i);
4394
4396 DAG.getVTList(AggValueVTs), Values));
4397}
4398
4399void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
4400 ArrayRef<unsigned> Indices = I.getIndices();
4401 const Value *Op0 = I.getOperand(0);
4402 Type *AggTy = Op0->getType();
4403 Type *ValTy = I.getType();
4404 bool OutOfUndef = isa<UndefValue>(Op0);
4405
4406 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4407
4408 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4409 SmallVector<EVT, 4> ValValueVTs;
4410 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4411
4412 unsigned NumValValues = ValValueVTs.size();
4413
4414 // Ignore a extractvalue that produces an empty object
4415 if (!NumValValues) {
4416 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4417 return;
4418 }
4419
4420 SmallVector<SDValue, 4> Values(NumValValues);
4421
4422 SDValue Agg = getValue(Op0);
4423 // Copy out the selected value(s).
4424 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4425 Values[i - LinearIndex] =
4426 OutOfUndef ?
4427 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
4428 SDValue(Agg.getNode(), Agg.getResNo() + i);
4429
4431 DAG.getVTList(ValValueVTs), Values));
4432}
4433
4434void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
4435 Value *Op0 = I.getOperand(0);
4436 // Note that the pointer operand may be a vector of pointers. Take the scalar
4437 // element which holds a pointer.
4438 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
4439 SDValue N = getValue(Op0);
4440 SDLoc dl = getCurSDLoc();
4441 auto &TLI = DAG.getTargetLoweringInfo();
4442 GEPNoWrapFlags NW = cast<GEPOperator>(I).getNoWrapFlags();
4443
4444 // For a vector GEP, keep the prefix scalar as long as possible, then
4445 // convert any scalars encountered after the first vector operand to vectors.
4446 bool IsVectorGEP = I.getType()->isVectorTy();
4447 ElementCount VectorElementCount =
4448 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
4450
4452 GTI != E; ++GTI) {
4453 const Value *Idx = GTI.getOperand();
4454 if (StructType *StTy = GTI.getStructTypeOrNull()) {
4455 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
4456 if (Field) {
4457 // N = N + Offset
4458 uint64_t Offset =
4459 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
4460
4461 // In an inbounds GEP with an offset that is nonnegative even when
4462 // interpreted as signed, assume there is no unsigned overflow.
4463 SDNodeFlags Flags;
4464 if (NW.hasNoUnsignedWrap() ||
4465 (int64_t(Offset) >= 0 && NW.hasNoUnsignedSignedWrap()))
4467 Flags.setInBounds(NW.isInBounds());
4468
4469 N = DAG.getMemBasePlusOffset(
4470 N, DAG.getConstant(Offset, dl, N.getValueType()), dl, Flags);
4471 }
4472 } else {
4473 // IdxSize is the width of the arithmetic according to IR semantics.
4474 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4475 // (and fix up the result later).
4476 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4477 MVT IdxTy = MVT::getIntegerVT(IdxSize);
4478 TypeSize ElementSize =
4479 GTI.getSequentialElementStride(DAG.getDataLayout());
4480 // We intentionally mask away the high bits here; ElementSize may not
4481 // fit in IdxTy.
4482 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue(),
4483 /*isSigned=*/false, /*implicitTrunc=*/true);
4484 bool ElementScalable = ElementSize.isScalable();
4485
4486 // If this is a scalar constant or a splat vector of constants,
4487 // handle it quickly.
4488 const auto *C = dyn_cast<Constant>(Idx);
4489 if (C && isa<VectorType>(C->getType()))
4490 C = C->getSplatValue();
4491
4492 const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4493 if (CI && CI->isZero())
4494 continue;
4495 if (CI && !ElementScalable) {
4496 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4497 LLVMContext &Context = *DAG.getContext();
4498 SDValue OffsVal;
4499 if (N.getValueType().isVector())
4500 OffsVal = DAG.getConstant(
4501 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4502 else
4503 OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4504
4505 // In an inbounds GEP with an offset that is nonnegative even when
4506 // interpreted as signed, assume there is no unsigned overflow.
4507 SDNodeFlags Flags;
4508 if (NW.hasNoUnsignedWrap() ||
4509 (Offs.isNonNegative() && NW.hasNoUnsignedSignedWrap()))
4510 Flags.setNoUnsignedWrap(true);
4511 Flags.setInBounds(NW.isInBounds());
4512
4513 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4514
4515 N = DAG.getMemBasePlusOffset(N, OffsVal, dl, Flags);
4516 continue;
4517 }
4518
4519 // N = N + Idx * ElementMul;
4520 SDValue IdxN = getValue(Idx);
4521
4522 if (IdxN.getValueType().isVector() != N.getValueType().isVector()) {
4523 if (N.getValueType().isVector()) {
4524 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4525 VectorElementCount);
4526 IdxN = DAG.getSplat(VT, dl, IdxN);
4527 } else {
4528 EVT VT =
4529 EVT::getVectorVT(*Context, N.getValueType(), VectorElementCount);
4530 N = DAG.getSplat(VT, dl, N);
4531 }
4532 }
4533
4534 // If the index is smaller or larger than intptr_t, truncate or extend
4535 // it.
4536 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4537
4538 SDNodeFlags ScaleFlags;
4539 // The multiplication of an index by the type size does not wrap the
4540 // pointer index type in a signed sense (mul nsw).
4542
4543 // The multiplication of an index by the type size does not wrap the
4544 // pointer index type in an unsigned sense (mul nuw).
4545 ScaleFlags.setNoUnsignedWrap(NW.hasNoUnsignedWrap());
4546
4547 if (ElementScalable) {
4548 EVT VScaleTy = N.getValueType().getScalarType();
4549 SDValue VScale = DAG.getNode(
4550 ISD::VSCALE, dl, VScaleTy,
4551 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4552 if (N.getValueType().isVector())
4553 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4554 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale,
4555 ScaleFlags);
4556 } else {
4557 // If this is a multiply by a power of two, turn it into a shl
4558 // immediately. This is a very common case.
4559 if (ElementMul != 1) {
4560 if (ElementMul.isPowerOf2()) {
4561 unsigned Amt = ElementMul.logBase2();
4562 IdxN = DAG.getNode(
4563 ISD::SHL, dl, N.getValueType(), IdxN,
4564 DAG.getShiftAmountConstant(Amt, N.getValueType(), dl),
4565 ScaleFlags);
4566 } else {
4567 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4568 IdxN.getValueType());
4569 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, Scale,
4570 ScaleFlags);
4571 }
4572 }
4573 }
4574
4575 // The successive addition of the current address, truncated to the
4576 // pointer index type and interpreted as an unsigned number, and each
4577 // offset, also interpreted as an unsigned number, does not wrap the
4578 // pointer index type (add nuw).
4579 SDNodeFlags AddFlags;
4580 AddFlags.setNoUnsignedWrap(NW.hasNoUnsignedWrap());
4581 AddFlags.setInBounds(NW.isInBounds());
4582
4583 N = DAG.getMemBasePlusOffset(N, IdxN, dl, AddFlags);
4584 }
4585 }
4586
4587 if (IsVectorGEP && !N.getValueType().isVector()) {
4588 EVT VT = EVT::getVectorVT(*Context, N.getValueType(), VectorElementCount);
4589 N = DAG.getSplat(VT, dl, N);
4590 }
4591
4592 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4593 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4594 if (IsVectorGEP) {
4595 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4596 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4597 }
4598
4599 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4600 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4601
4602 setValue(&I, N);
4603}
4604
4605void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4606 // If this is a fixed sized alloca in the entry block of the function,
4607 // allocate it statically on the stack.
4608 if (FuncInfo.StaticAllocaMap.count(&I))
4609 return; // getValue will auto-populate this.
4610
4611 SDLoc dl = getCurSDLoc();
4612 Type *Ty = I.getAllocatedType();
4613 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4614 auto &DL = DAG.getDataLayout();
4615 TypeSize TySize = DL.getTypeAllocSize(Ty);
4616 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4617
4618 SDValue AllocSize = getValue(I.getArraySize());
4619
4620 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace());
4621 if (AllocSize.getValueType() != IntPtr)
4622 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4623
4624 AllocSize = DAG.getNode(
4625 ISD::MUL, dl, IntPtr, AllocSize,
4626 DAG.getZExtOrTrunc(DAG.getTypeSize(dl, MVT::i64, TySize), dl, IntPtr));
4627
4628 // Handle alignment. If the requested alignment is less than or equal to
4629 // the stack alignment, ignore it. If the size is greater than or equal to
4630 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4631 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4632 if (*Alignment <= StackAlign)
4633 Alignment = std::nullopt;
4634
4635 const uint64_t StackAlignMask = StackAlign.value() - 1U;
4636 // Round the size of the allocation up to the stack alignment size
4637 // by add SA-1 to the size. This doesn't overflow because we're computing
4638 // an address inside an alloca.
4639 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4640 DAG.getConstant(StackAlignMask, dl, IntPtr),
4642
4643 // Mask out the low bits for alignment purposes.
4644 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4645 DAG.getSignedConstant(~StackAlignMask, dl, IntPtr));
4646
4647 SDValue Ops[] = {
4648 getRoot(), AllocSize,
4649 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4650 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4651 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4652 setValue(&I, DSA);
4653 DAG.setRoot(DSA.getValue(1));
4654
4655 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4656}
4657
4658static const MDNode *getRangeMetadata(const Instruction &I) {
4659 return I.getMetadata(LLVMContext::MD_range);
4660}
4661
4662static std::optional<ConstantRange> getRange(const Instruction &I) {
4663 if (const auto *CB = dyn_cast<CallBase>(&I))
4664 if (std::optional<ConstantRange> CR = CB->getRange())
4665 return CR;
4666 if (const MDNode *Range = getRangeMetadata(I))
4668 return std::nullopt;
4669}
4670
4672 if (const auto *CB = dyn_cast<CallBase>(&I))
4673 return CB->getRetNoFPClass();
4674 return fcNone;
4675}
4676
4677void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4678 if (I.isAtomic())
4679 return visitAtomicLoad(I);
4680
4681 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4682 const Value *SV = I.getOperand(0);
4683 if (TLI.supportSwiftError()) {
4684 // Swifterror values can come from either a function parameter with
4685 // swifterror attribute or an alloca with swifterror attribute.
4686 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4687 if (Arg->hasSwiftErrorAttr())
4688 return visitLoadFromSwiftError(I);
4689 }
4690
4691 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4692 if (Alloca->isSwiftError())
4693 return visitLoadFromSwiftError(I);
4694 }
4695 }
4696
4697 SDValue Ptr = getValue(SV);
4698
4699 Type *Ty = I.getType();
4700 SmallVector<EVT, 4> ValueVTs, MemVTs;
4702 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4703 unsigned NumValues = ValueVTs.size();
4704 if (NumValues == 0)
4705 return;
4706
4707 Align Alignment = I.getAlign();
4708 AAMDNodes AAInfo = I.getAAMetadata();
4709 const MDNode *Ranges = getRangeMetadata(I);
4710 bool isVolatile = I.isVolatile();
4711 MachineMemOperand::Flags MMOFlags =
4712 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4713
4714 SDValue Root;
4715 bool ConstantMemory = false;
4716 if (isVolatile)
4717 // Serialize volatile loads with other side effects.
4718 Root = getRoot();
4719 else if (NumValues > MaxParallelChains)
4720 Root = getMemoryRoot();
4721 else if (BatchAA &&
4722 BatchAA->pointsToConstantMemory(MemoryLocation(
4723 SV,
4724 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4725 AAInfo))) {
4726 // Do not serialize (non-volatile) loads of constant memory with anything.
4727 Root = DAG.getEntryNode();
4728 ConstantMemory = true;
4730 } else {
4731 // Do not serialize non-volatile loads against each other.
4732 Root = DAG.getRoot();
4733 }
4734
4735 SDLoc dl = getCurSDLoc();
4736
4737 if (isVolatile)
4738 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4739
4740 SmallVector<SDValue, 4> Values(NumValues);
4741 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4742
4743 unsigned ChainI = 0;
4744 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4745 // Serializing loads here may result in excessive register pressure, and
4746 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4747 // could recover a bit by hoisting nodes upward in the chain by recognizing
4748 // they are side-effect free or do not alias. The optimizer should really
4749 // avoid this case by converting large object/array copies to llvm.memcpy
4750 // (MaxParallelChains should always remain as failsafe).
4751 if (ChainI == MaxParallelChains) {
4752 assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4753 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4754 ArrayRef(Chains.data(), ChainI));
4755 Root = Chain;
4756 ChainI = 0;
4757 }
4758
4759 // TODO: MachinePointerInfo only supports a fixed length offset.
4760 MachinePointerInfo PtrInfo =
4761 !Offsets[i].isScalable() || Offsets[i].isZero()
4762 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4763 : MachinePointerInfo();
4764
4765 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4766 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4767 MMOFlags, AAInfo, Ranges);
4768 Chains[ChainI] = L.getValue(1);
4769
4770 if (MemVTs[i] != ValueVTs[i])
4771 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4772
4773 Values[i] = L;
4774 }
4775
4776 if (!ConstantMemory) {
4777 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4778 ArrayRef(Chains.data(), ChainI));
4779 if (isVolatile)
4780 DAG.setRoot(Chain);
4781 else
4782 PendingLoads.push_back(Chain);
4783 }
4784
4785 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4786 DAG.getVTList(ValueVTs), Values));
4787}
4788
4789void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4790 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4791 "call visitStoreToSwiftError when backend supports swifterror");
4792
4793 SmallVector<EVT, 4> ValueVTs;
4794 SmallVector<uint64_t, 4> Offsets;
4795 const Value *SrcV = I.getOperand(0);
4796 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4797 SrcV->getType(), ValueVTs, /*MemVTs=*/nullptr, &Offsets, 0);
4798 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4799 "expect a single EVT for swifterror");
4800
4801 SDValue Src = getValue(SrcV);
4802 // Create a virtual register, then update the virtual register.
4803 Register VReg =
4804 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4805 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4806 // Chain can be getRoot or getControlRoot.
4807 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4808 SDValue(Src.getNode(), Src.getResNo()));
4809 DAG.setRoot(CopyNode);
4810}
4811
4812void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4813 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4814 "call visitLoadFromSwiftError when backend supports swifterror");
4815
4816 assert(!I.isVolatile() &&
4817 !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4818 !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4819 "Support volatile, non temporal, invariant for load_from_swift_error");
4820
4821 const Value *SV = I.getOperand(0);
4822 Type *Ty = I.getType();
4823 assert(
4824 (!BatchAA ||
4825 !BatchAA->pointsToConstantMemory(MemoryLocation(
4826 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4827 I.getAAMetadata()))) &&
4828 "load_from_swift_error should not be constant memory");
4829
4830 SmallVector<EVT, 4> ValueVTs;
4831 SmallVector<uint64_t, 4> Offsets;
4832 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4833 ValueVTs, /*MemVTs=*/nullptr, &Offsets, 0);
4834 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4835 "expect a single EVT for swifterror");
4836
4837 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4838 SDValue L = DAG.getCopyFromReg(
4839 getRoot(), getCurSDLoc(),
4840 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4841
4842 setValue(&I, L);
4843}
4844
4845void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4846 if (I.isAtomic())
4847 return visitAtomicStore(I);
4848
4849 const Value *SrcV = I.getOperand(0);
4850 const Value *PtrV = I.getOperand(1);
4851
4852 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4853 if (TLI.supportSwiftError()) {
4854 // Swifterror values can come from either a function parameter with
4855 // swifterror attribute or an alloca with swifterror attribute.
4856 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4857 if (Arg->hasSwiftErrorAttr())
4858 return visitStoreToSwiftError(I);
4859 }
4860
4861 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4862 if (Alloca->isSwiftError())
4863 return visitStoreToSwiftError(I);
4864 }
4865 }
4866
4867 SmallVector<EVT, 4> ValueVTs, MemVTs;
4869 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4870 SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4871 unsigned NumValues = ValueVTs.size();
4872 if (NumValues == 0)
4873 return;
4874
4875 // Get the lowered operands. Note that we do this after
4876 // checking if NumResults is zero, because with zero results
4877 // the operands won't have values in the map.
4878 SDValue Src = getValue(SrcV);
4879 SDValue Ptr = getValue(PtrV);
4880
4881 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4882 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4883 SDLoc dl = getCurSDLoc();
4884 Align Alignment = I.getAlign();
4885 AAMDNodes AAInfo = I.getAAMetadata();
4886
4887 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4888
4889 unsigned ChainI = 0;
4890 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4891 // See visitLoad comments.
4892 if (ChainI == MaxParallelChains) {
4893 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4894 ArrayRef(Chains.data(), ChainI));
4895 Root = Chain;
4896 ChainI = 0;
4897 }
4898
4899 // TODO: MachinePointerInfo only supports a fixed length offset.
4900 MachinePointerInfo PtrInfo =
4901 !Offsets[i].isScalable() || Offsets[i].isZero()
4902 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4903 : MachinePointerInfo();
4904
4905 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4906 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4907 if (MemVTs[i] != ValueVTs[i])
4908 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4909 SDValue St =
4910 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4911 Chains[ChainI] = St;
4912 }
4913
4914 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4915 ArrayRef(Chains.data(), ChainI));
4916 setValue(&I, StoreNode);
4917 DAG.setRoot(StoreNode);
4918}
4919
4920void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4921 bool IsCompressing) {
4922 SDLoc sdl = getCurSDLoc();
4923
4924 Value *Src0Operand = I.getArgOperand(0);
4925 Value *PtrOperand = I.getArgOperand(1);
4926 Value *MaskOperand = I.getArgOperand(2);
4927 Align Alignment = I.getParamAlign(1).valueOrOne();
4928
4929 SDValue Ptr = getValue(PtrOperand);
4930 SDValue Src0 = getValue(Src0Operand);
4931 SDValue Mask = getValue(MaskOperand);
4932 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4933
4934 EVT VT = Src0.getValueType();
4935
4936 auto MMOFlags = MachineMemOperand::MOStore;
4937 if (I.hasMetadata(LLVMContext::MD_nontemporal))
4939
4940 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4941 MachinePointerInfo(PtrOperand), MMOFlags,
4942 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4943
4944 const auto &TLI = DAG.getTargetLoweringInfo();
4945
4946 SDValue StoreNode =
4947 !IsCompressing && TTI->hasConditionalLoadStoreForType(
4948 I.getArgOperand(0)->getType(), /*IsStore=*/true)
4949 ? TLI.visitMaskedStore(DAG, sdl, getMemoryRoot(), MMO, Ptr, Src0,
4950 Mask)
4951 : DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask,
4952 VT, MMO, ISD::UNINDEXED, /*Truncating=*/false,
4953 IsCompressing);
4954 DAG.setRoot(StoreNode);
4955 setValue(&I, StoreNode);
4956}
4957
4958// Get a uniform base for the Gather/Scatter intrinsic.
4959// The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4960// We try to represent it as a base pointer + vector of indices.
4961// Usually, the vector of pointers comes from a 'getelementptr' instruction.
4962// The first operand of the GEP may be a single pointer or a vector of pointers
4963// Example:
4964// %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4965// or
4966// %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind
4967// %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4968//
4969// When the first GEP operand is a single pointer - it is the uniform base we
4970// are looking for. If first operand of the GEP is a splat vector - we
4971// extract the splat value and use it as a uniform base.
4972// In all other cases the function returns 'false'.
4973static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4974 SDValue &Scale, SelectionDAGBuilder *SDB,
4975 const BasicBlock *CurBB, uint64_t ElemSize) {
4976 SelectionDAG& DAG = SDB->DAG;
4977 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4978 const DataLayout &DL = DAG.getDataLayout();
4979
4980 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4981
4982 // Handle splat constant pointer.
4983 if (auto *C = dyn_cast<Constant>(Ptr)) {
4984 C = C->getSplatValue();
4985 if (!C)
4986 return false;
4987
4988 Base = SDB->getValue(C);
4989
4990 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4991 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4992 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4993 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4994 return true;
4995 }
4996
4998 if (!GEP || GEP->getParent() != CurBB)
4999 return false;
5000
5001 if (GEP->getNumOperands() != 2)
5002 return false;
5003
5004 const Value *BasePtr = GEP->getPointerOperand();
5005 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
5006
5007 // Make sure the base is scalar and the index is a vector.
5008 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
5009 return false;
5010
5011 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
5012 if (ScaleVal.isScalable())
5013 return false;
5014
5015 // Target may not support the required addressing mode.
5016 if (ScaleVal != 1 &&
5017 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
5018 return false;
5019
5020 Base = SDB->getValue(BasePtr);
5021 Index = SDB->getValue(IndexVal);
5022
5023 Scale =
5024 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
5025 return true;
5026}
5027
5028void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
5029 SDLoc sdl = getCurSDLoc();
5030
5031 // llvm.masked.scatter.*(Src0, Ptrs, Mask)
5032 const Value *Ptr = I.getArgOperand(1);
5033 SDValue Src0 = getValue(I.getArgOperand(0));
5034 SDValue Mask = getValue(I.getArgOperand(2));
5035 EVT VT = Src0.getValueType();
5036 Align Alignment = I.getParamAlign(1).valueOrOne();
5037 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5038
5039 SDValue Base;
5040 SDValue Index;
5041 SDValue Scale;
5042 bool UniformBase = getUniformBase(Ptr, Base, Index, Scale, this,
5043 I.getParent(), VT.getScalarStoreSize());
5044
5045 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
5046 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5047 MachinePointerInfo(AS), MachineMemOperand::MOStore,
5048 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
5049 if (!UniformBase) {
5050 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5051 Index = getValue(Ptr);
5052 Scale =
5053 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5054 }
5055
5056 EVT IdxVT = Index.getValueType();
5057 EVT EltTy = IdxVT.getVectorElementType();
5058 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
5059 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
5060 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
5061 }
5062
5063 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
5064 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
5065 Ops, MMO, ISD::SIGNED_SCALED, false);
5066 DAG.setRoot(Scatter);
5067 setValue(&I, Scatter);
5068}
5069
5070void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
5071 SDLoc sdl = getCurSDLoc();
5072
5073 Value *PtrOperand = I.getArgOperand(0);
5074 Value *MaskOperand = I.getArgOperand(1);
5075 Value *Src0Operand = I.getArgOperand(2);
5076 Align Alignment = I.getParamAlign(0).valueOrOne();
5077
5078 SDValue Ptr = getValue(PtrOperand);
5079 SDValue Src0 = getValue(Src0Operand);
5080 SDValue Mask = getValue(MaskOperand);
5081 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
5082
5083 EVT VT = Src0.getValueType();
5084 AAMDNodes AAInfo = I.getAAMetadata();
5085 const MDNode *Ranges = getRangeMetadata(I);
5086
5087 // Do not serialize masked loads of constant memory with anything.
5088 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
5089 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML);
5090
5091 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
5092
5093 auto MMOFlags = MachineMemOperand::MOLoad;
5094 if (I.hasMetadata(LLVMContext::MD_nontemporal))
5096 if (I.hasMetadata(LLVMContext::MD_invariant_load))
5098
5099 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5100 MachinePointerInfo(PtrOperand), MMOFlags,
5101 LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges);
5102
5103 const auto &TLI = DAG.getTargetLoweringInfo();
5104
5105 // The Load/Res may point to different values and both of them are output
5106 // variables.
5107 SDValue Load;
5108 SDValue Res;
5109 if (!IsExpanding &&
5110 TTI->hasConditionalLoadStoreForType(Src0Operand->getType(),
5111 /*IsStore=*/false))
5112 Res = TLI.visitMaskedLoad(DAG, sdl, InChain, MMO, Load, Ptr, Src0, Mask);
5113 else
5114 Res = Load =
5115 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
5116 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
5117 if (AddToChain)
5118 PendingLoads.push_back(Load.getValue(1));
5119 setValue(&I, Res);
5120}
5121
5122void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
5123 SDLoc sdl = getCurSDLoc();
5124
5125 // @llvm.masked.gather.*(Ptrs, Mask, Src0)
5126 const Value *Ptr = I.getArgOperand(0);
5127 SDValue Src0 = getValue(I.getArgOperand(2));
5128 SDValue Mask = getValue(I.getArgOperand(1));
5129
5130 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5131 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5132 Align Alignment = I.getParamAlign(0).valueOrOne();
5133
5134 const MDNode *Ranges = getRangeMetadata(I);
5135
5136 SDValue Root = DAG.getRoot();
5137 SDValue Base;
5138 SDValue Index;
5139 SDValue Scale;
5140 bool UniformBase = getUniformBase(Ptr, Base, Index, Scale, this,
5141 I.getParent(), VT.getScalarStoreSize());
5142 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
5143 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5144 MachinePointerInfo(AS), MachineMemOperand::MOLoad,
5145 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(),
5146 Ranges);
5147
5148 if (!UniformBase) {
5149 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5150 Index = getValue(Ptr);
5151 Scale =
5152 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5153 }
5154
5155 EVT IdxVT = Index.getValueType();
5156 EVT EltTy = IdxVT.getVectorElementType();
5157 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
5158 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
5159 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
5160 }
5161
5162 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
5163 SDValue Gather =
5164 DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, Ops, MMO,
5166
5167 PendingLoads.push_back(Gather.getValue(1));
5168 setValue(&I, Gather);
5169}
5170
5171void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
5172 SDLoc dl = getCurSDLoc();
5173 AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
5174 AtomicOrdering FailureOrdering = I.getFailureOrdering();
5175 SyncScope::ID SSID = I.getSyncScopeID();
5176
5177 SDValue InChain = getRoot();
5178
5179 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
5180 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
5181
5182 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5183 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5184
5185 MachineFunction &MF = DAG.getMachineFunction();
5186 MachineMemOperand *MMO = MF.getMachineMemOperand(
5187 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5188 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
5189 FailureOrdering);
5190
5191 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
5192 dl, MemVT, VTs, InChain,
5193 getValue(I.getPointerOperand()),
5194 getValue(I.getCompareOperand()),
5195 getValue(I.getNewValOperand()), MMO);
5196
5197 SDValue OutChain = L.getValue(2);
5198
5199 setValue(&I, L);
5200 DAG.setRoot(OutChain);
5201}
5202
5203void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
5204 SDLoc dl = getCurSDLoc();
5206 switch (I.getOperation()) {
5207 default: llvm_unreachable("Unknown atomicrmw operation");
5208 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
5209 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break;
5210 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break;
5211 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break;
5212 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
5213 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break;
5214 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break;
5215 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break;
5216 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break;
5217 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
5218 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
5219 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
5220 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
5221 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
5222 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
5224 NT = ISD::ATOMIC_LOAD_FMAXIMUM;
5225 break;
5227 NT = ISD::ATOMIC_LOAD_FMINIMUM;
5228 break;
5230 NT = ISD::ATOMIC_LOAD_UINC_WRAP;
5231 break;
5233 NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
5234 break;
5236 NT = ISD::ATOMIC_LOAD_USUB_COND;
5237 break;
5239 NT = ISD::ATOMIC_LOAD_USUB_SAT;
5240 break;
5241 }
5242 AtomicOrdering Ordering = I.getOrdering();
5243 SyncScope::ID SSID = I.getSyncScopeID();
5244
5245 SDValue InChain = getRoot();
5246
5247 auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
5248 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5249 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5250
5251 MachineFunction &MF = DAG.getMachineFunction();
5252 MachineMemOperand *MMO = MF.getMachineMemOperand(
5253 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5254 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
5255
5256 SDValue L =
5257 DAG.getAtomic(NT, dl, MemVT, InChain,
5258 getValue(I.getPointerOperand()), getValue(I.getValOperand()),
5259 MMO);
5260
5261 SDValue OutChain = L.getValue(1);
5262
5263 setValue(&I, L);
5264 DAG.setRoot(OutChain);
5265}
5266
5267void SelectionDAGBuilder::visitFence(const FenceInst &I) {
5268 SDLoc dl = getCurSDLoc();
5269 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5270 SDValue Ops[3];
5271 Ops[0] = getRoot();
5272 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
5273 TLI.getFenceOperandTy(DAG.getDataLayout()));
5274 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
5275 TLI.getFenceOperandTy(DAG.getDataLayout()));
5276 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
5277 setValue(&I, N);
5278 DAG.setRoot(N);
5279}
5280
5281void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
5282 SDLoc dl = getCurSDLoc();
5283 AtomicOrdering Order = I.getOrdering();
5284 SyncScope::ID SSID = I.getSyncScopeID();
5285
5286 SDValue InChain = getRoot();
5287
5288 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5289 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5290 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
5291
5292 if (!TLI.supportsUnalignedAtomics() &&
5293 I.getAlign().value() < MemVT.getSizeInBits() / 8)
5294 report_fatal_error("Cannot generate unaligned atomic load");
5295
5296 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
5297
5298 const MDNode *Ranges = getRangeMetadata(I);
5299 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5300 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5301 I.getAlign(), AAMDNodes(), Ranges, SSID, Order);
5302
5303 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
5304
5305 SDValue Ptr = getValue(I.getPointerOperand());
5306 SDValue L =
5307 DAG.getAtomicLoad(ISD::NON_EXTLOAD, dl, MemVT, MemVT, InChain, Ptr, MMO);
5308
5309 SDValue OutChain = L.getValue(1);
5310 if (MemVT != VT)
5311 L = DAG.getPtrExtOrTrunc(L, dl, VT);
5312
5313 setValue(&I, L);
5314 DAG.setRoot(OutChain);
5315}
5316
5317void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
5318 SDLoc dl = getCurSDLoc();
5319
5320 AtomicOrdering Ordering = I.getOrdering();
5321 SyncScope::ID SSID = I.getSyncScopeID();
5322
5323 SDValue InChain = getRoot();
5324
5325 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5326 EVT MemVT =
5327 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
5328
5329 if (!TLI.supportsUnalignedAtomics() &&
5330 I.getAlign().value() < MemVT.getSizeInBits() / 8)
5331 report_fatal_error("Cannot generate unaligned atomic store");
5332
5333 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
5334
5335 MachineFunction &MF = DAG.getMachineFunction();
5336 MachineMemOperand *MMO = MF.getMachineMemOperand(
5337 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5338 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
5339
5340 SDValue Val = getValue(I.getValueOperand());
5341 if (Val.getValueType() != MemVT)
5342 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
5343 SDValue Ptr = getValue(I.getPointerOperand());
5344
5345 SDValue OutChain =
5346 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
5347
5348 setValue(&I, OutChain);
5349 DAG.setRoot(OutChain);
5350}
5351
5352/// Check if this intrinsic call depends on the chain (1st return value)
5353/// and if it only *loads* memory.
5354/// Ignore the callsite's attributes. A specific call site may be marked with
5355/// readnone, but the lowering code will expect the chain based on the
5356/// definition.
5357std::pair<bool, bool>
5358SelectionDAGBuilder::getTargetIntrinsicCallProperties(const CallBase &I) {
5359 const Function *F = I.getCalledFunction();
5360 bool HasChain = !F->doesNotAccessMemory();
5361 bool OnlyLoad =
5362 HasChain && F->onlyReadsMemory() && F->willReturn() && F->doesNotThrow();
5363
5364 return {HasChain, OnlyLoad};
5365}
5366
5367SmallVector<SDValue, 8> SelectionDAGBuilder::getTargetIntrinsicOperands(
5368 const CallBase &I, bool HasChain, bool OnlyLoad,
5369 TargetLowering::IntrinsicInfo *TgtMemIntrinsicInfo) {
5370 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5371
5372 // Build the operand list.
5374 if (HasChain) { // If this intrinsic has side-effects, chainify it.
5375 if (OnlyLoad) {
5376 // We don't need to serialize loads against other loads.
5377 Ops.push_back(DAG.getRoot());
5378 } else {
5379 Ops.push_back(getRoot());
5380 }
5381 }
5382
5383 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
5384 if (!TgtMemIntrinsicInfo || TgtMemIntrinsicInfo->opc == ISD::INTRINSIC_VOID ||
5385 TgtMemIntrinsicInfo->opc == ISD::INTRINSIC_W_CHAIN)
5386 Ops.push_back(DAG.getTargetConstant(I.getIntrinsicID(), getCurSDLoc(),
5387 TLI.getPointerTy(DAG.getDataLayout())));
5388
5389 // Add all operands of the call to the operand list.
5390 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
5391 const Value *Arg = I.getArgOperand(i);
5392 if (!I.paramHasAttr(i, Attribute::ImmArg)) {
5393 Ops.push_back(getValue(Arg));
5394 continue;
5395 }
5396
5397 // Use TargetConstant instead of a regular constant for immarg.
5398 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
5399 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
5400 assert(CI->getBitWidth() <= 64 &&
5401 "large intrinsic immediates not handled");
5402 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
5403 } else {
5404 Ops.push_back(
5405 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
5406 }
5407 }
5408
5409 if (std::optional<OperandBundleUse> Bundle =
5410 I.getOperandBundle(LLVMContext::OB_deactivation_symbol)) {
5411 auto *Sym = Bundle->Inputs[0].get();
5412 SDValue SDSym = getValue(Sym);
5413 SDSym = DAG.getDeactivationSymbol(cast<GlobalValue>(Sym));
5414 Ops.push_back(SDSym);
5415 }
5416
5417 if (std::optional<OperandBundleUse> Bundle =
5418 I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
5419 Value *Token = Bundle->Inputs[0].get();
5420 SDValue ConvControlToken = getValue(Token);
5421 assert(Ops.back().getValueType() != MVT::Glue &&
5422 "Did not expect another glue node here.");
5423 ConvControlToken =
5424 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken);
5425 Ops.push_back(ConvControlToken);
5426 }
5427
5428 return Ops;
5429}
5430
5431SDVTList SelectionDAGBuilder::getTargetIntrinsicVTList(const CallBase &I,
5432 bool HasChain) {
5433 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5434
5435 SmallVector<EVT, 4> ValueVTs;
5436 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5437
5438 if (HasChain)
5439 ValueVTs.push_back(MVT::Other);
5440
5441 return DAG.getVTList(ValueVTs);
5442}
5443
5444/// Get an INTRINSIC node for a target intrinsic which does not touch memory.
5445SDValue SelectionDAGBuilder::getTargetNonMemIntrinsicNode(
5446 const Type &IntrinsicVT, bool HasChain, ArrayRef<SDValue> Ops,
5447 const SDVTList &VTs) {
5448 if (!HasChain)
5449 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
5450 if (!IntrinsicVT.isVoidTy())
5451 return DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
5452 return DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
5453}
5454
5455/// Set root, convert return type if necessary and check alignment.
5456SDValue SelectionDAGBuilder::handleTargetIntrinsicRet(const CallBase &I,
5457 bool HasChain,
5458 bool OnlyLoad,
5459 SDValue Result) {
5460 if (HasChain) {
5461 SDValue Chain = Result.getValue(Result.getNode()->getNumValues() - 1);
5462 if (OnlyLoad)
5463 PendingLoads.push_back(Chain);
5464 else
5465 DAG.setRoot(Chain);
5466 }
5467
5468 if (I.getType()->isVoidTy())
5469 return Result;
5470
5471 if (MaybeAlign Alignment = I.getRetAlign(); InsertAssertAlign && Alignment) {
5472 // Insert `assertalign` node if there's an alignment.
5473 Result = DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
5474 } else if (!isa<VectorType>(I.getType())) {
5475 Result = lowerRangeToAssertZExt(DAG, I, Result);
5476 }
5477
5478 return Result;
5479}
5480
5481/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
5482/// node.
5483void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
5484 unsigned Intrinsic) {
5485 auto [HasChain, OnlyLoad] = getTargetIntrinsicCallProperties(I);
5486
5487 // Info is set by getTgtMemIntrinsic
5488 TargetLowering::IntrinsicInfo Info;
5489 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5490 bool IsTgtMemIntrinsic =
5491 TLI.getTgtMemIntrinsic(Info, I, DAG.getMachineFunction(), Intrinsic);
5492
5493 SmallVector<SDValue, 8> Ops = getTargetIntrinsicOperands(
5494 I, HasChain, OnlyLoad, IsTgtMemIntrinsic ? &Info : nullptr);
5495 SDVTList VTs = getTargetIntrinsicVTList(I, HasChain);
5496
5497 // Propagate fast-math-flags from IR to node(s).
5498 SDNodeFlags Flags;
5499 if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
5500 Flags.copyFMF(*FPMO);
5501 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
5502
5503 // Create the node.
5505
5506 // In some cases, custom collection of operands from CallInst I may be needed.
5508 if (IsTgtMemIntrinsic) {
5509 // This is target intrinsic that touches memory
5510 //
5511 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
5512 // didn't yield anything useful.
5513 MachinePointerInfo MPI;
5514 if (Info.ptrVal)
5515 MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
5516 else if (Info.fallbackAddressSpace)
5517 MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
5518 EVT MemVT = Info.memVT;
5519 LocationSize Size = LocationSize::precise(Info.size);
5520 if (Size.hasValue() && !Size.getValue())
5522 Align Alignment = Info.align.value_or(DAG.getEVTAlign(MemVT));
5523 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5524 MPI, Info.flags, Size, Alignment, I.getAAMetadata(), /*Ranges=*/nullptr,
5525 Info.ssid, Info.order, Info.failureOrder);
5526 Result =
5527 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, MemVT, MMO);
5528 } else {
5529 Result = getTargetNonMemIntrinsicNode(*I.getType(), HasChain, Ops, VTs);
5530 }
5531
5532 Result = handleTargetIntrinsicRet(I, HasChain, OnlyLoad, Result);
5533
5534 setValue(&I, Result);
5535}
5536
5537/// GetSignificand - Get the significand and build it into a floating-point
5538/// number with exponent of 1:
5539///
5540/// Op = (Op & 0x007fffff) | 0x3f800000;
5541///
5542/// where Op is the hexadecimal representation of floating point value.
5544 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5545 DAG.getConstant(0x007fffff, dl, MVT::i32));
5546 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5547 DAG.getConstant(0x3f800000, dl, MVT::i32));
5548 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5549}
5550
5551/// GetExponent - Get the exponent:
5552///
5553/// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5554///
5555/// where Op is the hexadecimal representation of floating point value.
5557 const TargetLowering &TLI, const SDLoc &dl) {
5558 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5559 DAG.getConstant(0x7f800000, dl, MVT::i32));
5560 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
5561 DAG.getShiftAmountConstant(23, MVT::i32, dl));
5562 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5563 DAG.getConstant(127, dl, MVT::i32));
5564 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5565}
5566
5567/// getF32Constant - Get 32-bit floating point constant.
5568static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5569 const SDLoc &dl) {
5570 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5571 MVT::f32);
5572}
5573
5575 SelectionDAG &DAG) {
5576 // TODO: What fast-math-flags should be set on the floating-point nodes?
5577
5578 // IntegerPartOfX = ((int32_t)(t0);
5579 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5580
5581 // FractionalPartOfX = t0 - (float)IntegerPartOfX;
5582 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5583 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5584
5585 // IntegerPartOfX <<= 23;
5586 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5587 DAG.getShiftAmountConstant(23, MVT::i32, dl));
5588
5589 SDValue TwoToFractionalPartOfX;
5590 if (LimitFloatPrecision <= 6) {
5591 // For floating-point precision of 6:
5592 //
5593 // TwoToFractionalPartOfX =
5594 // 0.997535578f +
5595 // (0.735607626f + 0.252464424f * x) * x;
5596 //
5597 // error 0.0144103317, which is 6 bits
5598 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5599 getF32Constant(DAG, 0x3e814304, dl));
5600 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5601 getF32Constant(DAG, 0x3f3c50c8, dl));
5602 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5603 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5604 getF32Constant(DAG, 0x3f7f5e7e, dl));
5605 } else if (LimitFloatPrecision <= 12) {
5606 // For floating-point precision of 12:
5607 //
5608 // TwoToFractionalPartOfX =
5609 // 0.999892986f +
5610 // (0.696457318f +
5611 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
5612 //
5613 // error 0.000107046256, which is 13 to 14 bits
5614 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5615 getF32Constant(DAG, 0x3da235e3, dl));
5616 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5617 getF32Constant(DAG, 0x3e65b8f3, dl));
5618 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5619 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5620 getF32Constant(DAG, 0x3f324b07, dl));
5621 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5622 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5623 getF32Constant(DAG, 0x3f7ff8fd, dl));
5624 } else { // LimitFloatPrecision <= 18
5625 // For floating-point precision of 18:
5626 //
5627 // TwoToFractionalPartOfX =
5628 // 0.999999982f +
5629 // (0.693148872f +
5630 // (0.240227044f +
5631 // (0.554906021e-1f +
5632 // (0.961591928e-2f +
5633 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5634 // error 2.47208000*10^(-7), which is better than 18 bits
5635 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5636 getF32Constant(DAG, 0x3924b03e, dl));
5637 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5638 getF32Constant(DAG, 0x3ab24b87, dl));
5639 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5640 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5641 getF32Constant(DAG, 0x3c1d8c17, dl));
5642 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5643 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5644 getF32Constant(DAG, 0x3d634a1d, dl));
5645 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5646 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5647 getF32Constant(DAG, 0x3e75fe14, dl));
5648 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5649 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5650 getF32Constant(DAG, 0x3f317234, dl));
5651 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5652 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5653 getF32Constant(DAG, 0x3f800000, dl));
5654 }
5655
5656 // Add the exponent into the result in integer domain.
5657 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5658 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5659 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5660}
5661
5662/// expandExp - Lower an exp intrinsic. Handles the special sequences for
5663/// limited-precision mode.
5665 const TargetLowering &TLI, SDNodeFlags Flags) {
5666 if (Op.getValueType() == MVT::f32 &&
5668
5669 // Put the exponent in the right bit position for later addition to the
5670 // final result:
5671 //
5672 // t0 = Op * log2(e)
5673
5674 // TODO: What fast-math-flags should be set here?
5675 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5676 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5677 return getLimitedPrecisionExp2(t0, dl, DAG);
5678 }
5679
5680 // No special expansion.
5681 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5682}
5683
5684/// expandLog - Lower a log intrinsic. Handles the special sequences for
5685/// limited-precision mode.
5687 const TargetLowering &TLI, SDNodeFlags Flags) {
5688 // TODO: What fast-math-flags should be set on the floating-point nodes?
5689
5690 if (Op.getValueType() == MVT::f32 &&
5692 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5693
5694 // Scale the exponent by log(2).
5695 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5696 SDValue LogOfExponent =
5697 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5698 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5699
5700 // Get the significand and build it into a floating-point number with
5701 // exponent of 1.
5702 SDValue X = GetSignificand(DAG, Op1, dl);
5703
5704 SDValue LogOfMantissa;
5705 if (LimitFloatPrecision <= 6) {
5706 // For floating-point precision of 6:
5707 //
5708 // LogofMantissa =
5709 // -1.1609546f +
5710 // (1.4034025f - 0.23903021f * x) * x;
5711 //
5712 // error 0.0034276066, which is better than 8 bits
5713 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5714 getF32Constant(DAG, 0xbe74c456, dl));
5715 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5716 getF32Constant(DAG, 0x3fb3a2b1, dl));
5717 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5718 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5719 getF32Constant(DAG, 0x3f949a29, dl));
5720 } else if (LimitFloatPrecision <= 12) {
5721 // For floating-point precision of 12:
5722 //
5723 // LogOfMantissa =
5724 // -1.7417939f +
5725 // (2.8212026f +
5726 // (-1.4699568f +
5727 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5728 //
5729 // error 0.000061011436, which is 14 bits
5730 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5731 getF32Constant(DAG, 0xbd67b6d6, dl));
5732 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5733 getF32Constant(DAG, 0x3ee4f4b8, dl));
5734 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5735 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5736 getF32Constant(DAG, 0x3fbc278b, dl));
5737 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5738 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5739 getF32Constant(DAG, 0x40348e95, dl));
5740 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5741 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5742 getF32Constant(DAG, 0x3fdef31a, dl));
5743 } else { // LimitFloatPrecision <= 18
5744 // For floating-point precision of 18:
5745 //
5746 // LogOfMantissa =
5747 // -2.1072184f +
5748 // (4.2372794f +
5749 // (-3.7029485f +
5750 // (2.2781945f +
5751 // (-0.87823314f +
5752 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5753 //
5754 // error 0.0000023660568, which is better than 18 bits
5755 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5756 getF32Constant(DAG, 0xbc91e5ac, dl));
5757 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5758 getF32Constant(DAG, 0x3e4350aa, dl));
5759 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5760 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5761 getF32Constant(DAG, 0x3f60d3e3, dl));
5762 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5763 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5764 getF32Constant(DAG, 0x4011cdf0, dl));
5765 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5766 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5767 getF32Constant(DAG, 0x406cfd1c, dl));
5768 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5769 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5770 getF32Constant(DAG, 0x408797cb, dl));
5771 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5772 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5773 getF32Constant(DAG, 0x4006dcab, dl));
5774 }
5775
5776 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5777 }
5778
5779 // No special expansion.
5780 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5781}
5782
5783/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5784/// limited-precision mode.
5786 const TargetLowering &TLI, SDNodeFlags Flags) {
5787 // TODO: What fast-math-flags should be set on the floating-point nodes?
5788
5789 if (Op.getValueType() == MVT::f32 &&
5791 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5792
5793 // Get the exponent.
5794 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5795
5796 // Get the significand and build it into a floating-point number with
5797 // exponent of 1.
5798 SDValue X = GetSignificand(DAG, Op1, dl);
5799
5800 // Different possible minimax approximations of significand in
5801 // floating-point for various degrees of accuracy over [1,2].
5802 SDValue Log2ofMantissa;
5803 if (LimitFloatPrecision <= 6) {
5804 // For floating-point precision of 6:
5805 //
5806 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5807 //
5808 // error 0.0049451742, which is more than 7 bits
5809 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5810 getF32Constant(DAG, 0xbeb08fe0, dl));
5811 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5812 getF32Constant(DAG, 0x40019463, dl));
5813 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5814 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5815 getF32Constant(DAG, 0x3fd6633d, dl));
5816 } else if (LimitFloatPrecision <= 12) {
5817 // For floating-point precision of 12:
5818 //
5819 // Log2ofMantissa =
5820 // -2.51285454f +
5821 // (4.07009056f +
5822 // (-2.12067489f +
5823 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5824 //
5825 // error 0.0000876136000, which is better than 13 bits
5826 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5827 getF32Constant(DAG, 0xbda7262e, dl));
5828 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5829 getF32Constant(DAG, 0x3f25280b, dl));
5830 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5831 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5832 getF32Constant(DAG, 0x4007b923, dl));
5833 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5834 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5835 getF32Constant(DAG, 0x40823e2f, dl));
5836 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5837 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5838 getF32Constant(DAG, 0x4020d29c, dl));
5839 } else { // LimitFloatPrecision <= 18
5840 // For floating-point precision of 18:
5841 //
5842 // Log2ofMantissa =
5843 // -3.0400495f +
5844 // (6.1129976f +
5845 // (-5.3420409f +
5846 // (3.2865683f +
5847 // (-1.2669343f +
5848 // (0.27515199f -
5849 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5850 //
5851 // error 0.0000018516, which is better than 18 bits
5852 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5853 getF32Constant(DAG, 0xbcd2769e, dl));
5854 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5855 getF32Constant(DAG, 0x3e8ce0b9, dl));
5856 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5857 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5858 getF32Constant(DAG, 0x3fa22ae7, dl));
5859 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5860 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5861 getF32Constant(DAG, 0x40525723, dl));
5862 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5863 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5864 getF32Constant(DAG, 0x40aaf200, dl));
5865 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5866 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5867 getF32Constant(DAG, 0x40c39dad, dl));
5868 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5869 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5870 getF32Constant(DAG, 0x4042902c, dl));
5871 }
5872
5873 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5874 }
5875
5876 // No special expansion.
5877 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5878}
5879
5880/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5881/// limited-precision mode.
5883 const TargetLowering &TLI, SDNodeFlags Flags) {
5884 // TODO: What fast-math-flags should be set on the floating-point nodes?
5885
5886 if (Op.getValueType() == MVT::f32 &&
5888 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5889
5890 // Scale the exponent by log10(2) [0.30102999f].
5891 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5892 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5893 getF32Constant(DAG, 0x3e9a209a, dl));
5894
5895 // Get the significand and build it into a floating-point number with
5896 // exponent of 1.
5897 SDValue X = GetSignificand(DAG, Op1, dl);
5898
5899 SDValue Log10ofMantissa;
5900 if (LimitFloatPrecision <= 6) {
5901 // For floating-point precision of 6:
5902 //
5903 // Log10ofMantissa =
5904 // -0.50419619f +
5905 // (0.60948995f - 0.10380950f * x) * x;
5906 //
5907 // error 0.0014886165, which is 6 bits
5908 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5909 getF32Constant(DAG, 0xbdd49a13, dl));
5910 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5911 getF32Constant(DAG, 0x3f1c0789, dl));
5912 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5913 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5914 getF32Constant(DAG, 0x3f011300, dl));
5915 } else if (LimitFloatPrecision <= 12) {
5916 // For floating-point precision of 12:
5917 //
5918 // Log10ofMantissa =
5919 // -0.64831180f +
5920 // (0.91751397f +
5921 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5922 //
5923 // error 0.00019228036, which is better than 12 bits
5924 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5925 getF32Constant(DAG, 0x3d431f31, dl));
5926 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5927 getF32Constant(DAG, 0x3ea21fb2, dl));
5928 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5929 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5930 getF32Constant(DAG, 0x3f6ae232, dl));
5931 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5932 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5933 getF32Constant(DAG, 0x3f25f7c3, dl));
5934 } else { // LimitFloatPrecision <= 18
5935 // For floating-point precision of 18:
5936 //
5937 // Log10ofMantissa =
5938 // -0.84299375f +
5939 // (1.5327582f +
5940 // (-1.0688956f +
5941 // (0.49102474f +
5942 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5943 //
5944 // error 0.0000037995730, which is better than 18 bits
5945 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5946 getF32Constant(DAG, 0x3c5d51ce, dl));
5947 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5948 getF32Constant(DAG, 0x3e00685a, dl));
5949 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5950 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5951 getF32Constant(DAG, 0x3efb6798, dl));
5952 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5953 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5954 getF32Constant(DAG, 0x3f88d192, dl));
5955 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5956 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5957 getF32Constant(DAG, 0x3fc4316c, dl));
5958 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5959 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5960 getF32Constant(DAG, 0x3f57ce70, dl));
5961 }
5962
5963 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5964 }
5965
5966 // No special expansion.
5967 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5968}
5969
5970/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5971/// limited-precision mode.
5973 const TargetLowering &TLI, SDNodeFlags Flags) {
5974 if (Op.getValueType() == MVT::f32 &&
5976 return getLimitedPrecisionExp2(Op, dl, DAG);
5977
5978 // No special expansion.
5979 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5980}
5981
5982/// visitPow - Lower a pow intrinsic. Handles the special sequences for
5983/// limited-precision mode with x == 10.0f.
5985 SelectionDAG &DAG, const TargetLowering &TLI,
5986 SDNodeFlags Flags) {
5987 bool IsExp10 = false;
5988 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5991 APFloat Ten(10.0f);
5992 IsExp10 = LHSC->isExactlyValue(Ten);
5993 }
5994 }
5995
5996 // TODO: What fast-math-flags should be set on the FMUL node?
5997 if (IsExp10) {
5998 // Put the exponent in the right bit position for later addition to the
5999 // final result:
6000 //
6001 // #define LOG2OF10 3.3219281f
6002 // t0 = Op * LOG2OF10;
6003 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
6004 getF32Constant(DAG, 0x40549a78, dl));
6005 return getLimitedPrecisionExp2(t0, dl, DAG);
6006 }
6007
6008 // No special expansion.
6009 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
6010}
6011
6012/// ExpandPowI - Expand a llvm.powi intrinsic.
6014 SelectionDAG &DAG) {
6015 // If RHS is a constant, we can expand this out to a multiplication tree if
6016 // it's beneficial on the target, otherwise we end up lowering to a call to
6017 // __powidf2 (for example).
6019 unsigned Val = RHSC->getSExtValue();
6020
6021 // powi(x, 0) -> 1.0
6022 if (Val == 0)
6023 return DAG.getConstantFP(1.0, DL, LHS.getValueType());
6024
6026 Val, DAG.shouldOptForSize())) {
6027 // Get the exponent as a positive value.
6028 if ((int)Val < 0)
6029 Val = -Val;
6030 // We use the simple binary decomposition method to generate the multiply
6031 // sequence. There are more optimal ways to do this (for example,
6032 // powi(x,15) generates one more multiply than it should), but this has
6033 // the benefit of being both really simple and much better than a libcall.
6034 SDValue Res; // Logically starts equal to 1.0
6035 SDValue CurSquare = LHS;
6036 // TODO: Intrinsics should have fast-math-flags that propagate to these
6037 // nodes.
6038 while (Val) {
6039 if (Val & 1) {
6040 if (Res.getNode())
6041 Res =
6042 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
6043 else
6044 Res = CurSquare; // 1.0*CurSquare.
6045 }
6046
6047 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
6048 CurSquare, CurSquare);
6049 Val >>= 1;
6050 }
6051
6052 // If the original was negative, invert the result, producing 1/(x*x*x).
6053 if (RHSC->getSExtValue() < 0)
6054 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
6055 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
6056 return Res;
6057 }
6058 }
6059
6060 // Otherwise, expand to a libcall.
6061 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
6062}
6063
6064static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
6065 SDValue LHS, SDValue RHS, SDValue Scale,
6066 SelectionDAG &DAG, const TargetLowering &TLI) {
6067 EVT VT = LHS.getValueType();
6068 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
6069 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
6070 LLVMContext &Ctx = *DAG.getContext();
6071
6072 // If the type is legal but the operation isn't, this node might survive all
6073 // the way to operation legalization. If we end up there and we do not have
6074 // the ability to widen the type (if VT*2 is not legal), we cannot expand the
6075 // node.
6076
6077 // Coax the legalizer into expanding the node during type legalization instead
6078 // by bumping the size by one bit. This will force it to Promote, enabling the
6079 // early expansion and avoiding the need to expand later.
6080
6081 // We don't have to do this if Scale is 0; that can always be expanded, unless
6082 // it's a saturating signed operation. Those can experience true integer
6083 // division overflow, a case which we must avoid.
6084
6085 // FIXME: We wouldn't have to do this (or any of the early
6086 // expansion/promotion) if it was possible to expand a libcall of an
6087 // illegal type during operation legalization. But it's not, so things
6088 // get a bit hacky.
6089 unsigned ScaleInt = Scale->getAsZExtVal();
6090 if ((ScaleInt > 0 || (Saturating && Signed)) &&
6091 (TLI.isTypeLegal(VT) ||
6092 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
6094 Opcode, VT, ScaleInt);
6095 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
6096 EVT PromVT;
6097 if (VT.isScalarInteger())
6098 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
6099 else if (VT.isVector()) {
6100 PromVT = VT.getVectorElementType();
6101 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
6102 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
6103 } else
6104 llvm_unreachable("Wrong VT for DIVFIX?");
6105 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
6106 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
6107 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
6108 // For saturating operations, we need to shift up the LHS to get the
6109 // proper saturation width, and then shift down again afterwards.
6110 if (Saturating)
6111 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
6112 DAG.getConstant(1, DL, ShiftTy));
6113 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
6114 if (Saturating)
6115 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
6116 DAG.getConstant(1, DL, ShiftTy));
6117 return DAG.getZExtOrTrunc(Res, DL, VT);
6118 }
6119 }
6120
6121 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
6122}
6123
6124// getUnderlyingArgRegs - Find underlying registers used for a truncated,
6125// bitcasted, or split argument. Returns a list of <Register, size in bits>
6126static void
6127getUnderlyingArgRegs(SmallVectorImpl<std::pair<Register, TypeSize>> &Regs,
6128 const SDValue &N) {
6129 switch (N.getOpcode()) {
6130 case ISD::CopyFromReg: {
6131 SDValue Op = N.getOperand(1);
6132 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
6133 Op.getValueType().getSizeInBits());
6134 return;
6135 }
6136 case ISD::BITCAST:
6137 case ISD::AssertZext:
6138 case ISD::AssertSext:
6139 case ISD::TRUNCATE:
6140 getUnderlyingArgRegs(Regs, N.getOperand(0));
6141 return;
6142 case ISD::BUILD_PAIR:
6143 case ISD::BUILD_VECTOR:
6145 for (SDValue Op : N->op_values())
6146 getUnderlyingArgRegs(Regs, Op);
6147 return;
6148 default:
6149 return;
6150 }
6151}
6152
6153/// If the DbgValueInst is a dbg_value of a function argument, create the
6154/// corresponding DBG_VALUE machine instruction for it now. At the end of
6155/// instruction selection, they will be inserted to the entry BB.
6156/// We don't currently support this for variadic dbg_values, as they shouldn't
6157/// appear for function arguments or in the prologue.
6158bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
6159 const Value *V, DILocalVariable *Variable, DIExpression *Expr,
6160 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
6161 const Argument *Arg = dyn_cast<Argument>(V);
6162 if (!Arg)
6163 return false;
6164
6165 MachineFunction &MF = DAG.getMachineFunction();
6166 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6167
6168 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
6169 // we've been asked to pursue.
6170 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
6171 bool Indirect) {
6172 if (Reg.isVirtual() && MF.useDebugInstrRef()) {
6173 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
6174 // pointing at the VReg, which will be patched up later.
6175 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
6177 /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
6178 /* isKill */ false, /* isDead */ false,
6179 /* isUndef */ false, /* isEarlyClobber */ false,
6180 /* SubReg */ 0, /* isDebug */ true)});
6181
6182 auto *NewDIExpr = FragExpr;
6183 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
6184 // the DIExpression.
6185 if (Indirect)
6186 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
6188 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
6189 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
6190 } else {
6191 // Create a completely standard DBG_VALUE.
6192 auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
6193 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
6194 }
6195 };
6196
6197 if (Kind == FuncArgumentDbgValueKind::Value) {
6198 // ArgDbgValues are hoisted to the beginning of the entry block. So we
6199 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
6200 // the entry block.
6201 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
6202 if (!IsInEntryBlock)
6203 return false;
6204
6205 // ArgDbgValues are hoisted to the beginning of the entry block. So we
6206 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
6207 // variable that also is a param.
6208 //
6209 // Although, if we are at the top of the entry block already, we can still
6210 // emit using ArgDbgValue. This might catch some situations when the
6211 // dbg.value refers to an argument that isn't used in the entry block, so
6212 // any CopyToReg node would be optimized out and the only way to express
6213 // this DBG_VALUE is by using the physical reg (or FI) as done in this
6214 // method. ArgDbgValues are hoisted to the beginning of the entry block. So
6215 // we should only emit as ArgDbgValue if the Variable is an argument to the
6216 // current function, and the dbg.value intrinsic is found in the entry
6217 // block.
6218 bool VariableIsFunctionInputArg = Variable->isParameter() &&
6219 !DL->getInlinedAt();
6220 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
6221 if (!IsInPrologue && !VariableIsFunctionInputArg)
6222 return false;
6223
6224 // Here we assume that a function argument on IR level only can be used to
6225 // describe one input parameter on source level. If we for example have
6226 // source code like this
6227 //
6228 // struct A { long x, y; };
6229 // void foo(struct A a, long b) {
6230 // ...
6231 // b = a.x;
6232 // ...
6233 // }
6234 //
6235 // and IR like this
6236 //
6237 // define void @foo(i32 %a1, i32 %a2, i32 %b) {
6238 // entry:
6239 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
6240 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
6241 // call void @llvm.dbg.value(metadata i32 %b, "b",
6242 // ...
6243 // call void @llvm.dbg.value(metadata i32 %a1, "b"
6244 // ...
6245 //
6246 // then the last dbg.value is describing a parameter "b" using a value that
6247 // is an argument. But since we already has used %a1 to describe a parameter
6248 // we should not handle that last dbg.value here (that would result in an
6249 // incorrect hoisting of the DBG_VALUE to the function entry).
6250 // Notice that we allow one dbg.value per IR level argument, to accommodate
6251 // for the situation with fragments above.
6252 // If there is no node for the value being handled, we return true to skip
6253 // the normal generation of debug info, as it would kill existing debug
6254 // info for the parameter in case of duplicates.
6255 if (VariableIsFunctionInputArg) {
6256 unsigned ArgNo = Arg->getArgNo();
6257 if (ArgNo >= FuncInfo.DescribedArgs.size())
6258 FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
6259 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
6260 return !NodeMap[V].getNode();
6261 FuncInfo.DescribedArgs.set(ArgNo);
6262 }
6263 }
6264
6265 bool IsIndirect = false;
6266 std::optional<MachineOperand> Op;
6267 // Some arguments' frame index is recorded during argument lowering.
6268 int FI = FuncInfo.getArgumentFrameIndex(Arg);
6269 if (FI != std::numeric_limits<int>::max())
6271
6273 if (!Op && N.getNode()) {
6274 getUnderlyingArgRegs(ArgRegsAndSizes, N);
6275 Register Reg;
6276 if (ArgRegsAndSizes.size() == 1)
6277 Reg = ArgRegsAndSizes.front().first;
6278
6279 if (Reg && Reg.isVirtual()) {
6280 MachineRegisterInfo &RegInfo = MF.getRegInfo();
6281 Register PR = RegInfo.getLiveInPhysReg(Reg);
6282 if (PR)
6283 Reg = PR;
6284 }
6285 if (Reg) {
6287 IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6288 }
6289 }
6290
6291 if (!Op && N.getNode()) {
6292 // Check if frame index is available.
6293 SDValue LCandidate = peekThroughBitcasts(N);
6294 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
6295 if (FrameIndexSDNode *FINode =
6296 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6297 Op = MachineOperand::CreateFI(FINode->getIndex());
6298 }
6299
6300 if (!Op) {
6301 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
6302 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<Register, TypeSize>>
6303 SplitRegs) {
6304 unsigned Offset = 0;
6305 for (const auto &RegAndSize : SplitRegs) {
6306 // If the expression is already a fragment, the current register
6307 // offset+size might extend beyond the fragment. In this case, only
6308 // the register bits that are inside the fragment are relevant.
6309 int RegFragmentSizeInBits = RegAndSize.second;
6310 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
6311 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
6312 // The register is entirely outside the expression fragment,
6313 // so is irrelevant for debug info.
6314 if (Offset >= ExprFragmentSizeInBits)
6315 break;
6316 // The register is partially outside the expression fragment, only
6317 // the low bits within the fragment are relevant for debug info.
6318 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
6319 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
6320 }
6321 }
6322
6323 auto FragmentExpr = DIExpression::createFragmentExpression(
6324 Expr, Offset, RegFragmentSizeInBits);
6325 Offset += RegAndSize.second;
6326 // If a valid fragment expression cannot be created, the variable's
6327 // correct value cannot be determined and so it is set as poison.
6328 if (!FragmentExpr) {
6329 SDDbgValue *SDV = DAG.getConstantDbgValue(
6330 Variable, Expr, PoisonValue::get(V->getType()), DL, SDNodeOrder);
6331 DAG.AddDbgValue(SDV, false);
6332 continue;
6333 }
6334 MachineInstr *NewMI =
6335 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
6336 Kind != FuncArgumentDbgValueKind::Value);
6337 FuncInfo.ArgDbgValues.push_back(NewMI);
6338 }
6339 };
6340
6341 // Check if ValueMap has reg number.
6343 VMI = FuncInfo.ValueMap.find(V);
6344 if (VMI != FuncInfo.ValueMap.end()) {
6345 const auto &TLI = DAG.getTargetLoweringInfo();
6346 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
6347 V->getType(), std::nullopt);
6348 if (RFV.occupiesMultipleRegs()) {
6349 splitMultiRegDbgValue(RFV.getRegsAndSizes());
6350 return true;
6351 }
6352
6353 Op = MachineOperand::CreateReg(VMI->second, false);
6354 IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6355 } else if (ArgRegsAndSizes.size() > 1) {
6356 // This was split due to the calling convention, and no virtual register
6357 // mapping exists for the value.
6358 splitMultiRegDbgValue(ArgRegsAndSizes);
6359 return true;
6360 }
6361 }
6362
6363 if (!Op)
6364 return false;
6365
6366 assert(Variable->isValidLocationForIntrinsic(DL) &&
6367 "Expected inlined-at fields to agree");
6368 MachineInstr *NewMI = nullptr;
6369
6370 if (Op->isReg())
6371 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
6372 else
6373 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
6374 Variable, Expr);
6375
6376 // Otherwise, use ArgDbgValues.
6377 FuncInfo.ArgDbgValues.push_back(NewMI);
6378 return true;
6379}
6380
6381/// Return the appropriate SDDbgValue based on N.
6382SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
6383 DILocalVariable *Variable,
6384 DIExpression *Expr,
6385 const DebugLoc &dl,
6386 unsigned DbgSDNodeOrder) {
6387 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
6388 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
6389 // stack slot locations.
6390 //
6391 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
6392 // debug values here after optimization:
6393 //
6394 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
6395 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
6396 //
6397 // Both describe the direct values of their associated variables.
6398 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
6399 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6400 }
6401 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
6402 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6403}
6404
6405static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
6406 switch (Intrinsic) {
6407 case Intrinsic::smul_fix:
6408 return ISD::SMULFIX;
6409 case Intrinsic::umul_fix:
6410 return ISD::UMULFIX;
6411 case Intrinsic::smul_fix_sat:
6412 return ISD::SMULFIXSAT;
6413 case Intrinsic::umul_fix_sat:
6414 return ISD::UMULFIXSAT;
6415 case Intrinsic::sdiv_fix:
6416 return ISD::SDIVFIX;
6417 case Intrinsic::udiv_fix:
6418 return ISD::UDIVFIX;
6419 case Intrinsic::sdiv_fix_sat:
6420 return ISD::SDIVFIXSAT;
6421 case Intrinsic::udiv_fix_sat:
6422 return ISD::UDIVFIXSAT;
6423 default:
6424 llvm_unreachable("Unhandled fixed point intrinsic");
6425 }
6426}
6427
6428/// Given a @llvm.call.preallocated.setup, return the corresponding
6429/// preallocated call.
6430static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
6431 assert(cast<CallBase>(PreallocatedSetup)
6433 ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
6434 "expected call_preallocated_setup Value");
6435 for (const auto *U : PreallocatedSetup->users()) {
6436 auto *UseCall = cast<CallBase>(U);
6437 const Function *Fn = UseCall->getCalledFunction();
6438 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6439 return UseCall;
6440 }
6441 }
6442 llvm_unreachable("expected corresponding call to preallocated setup/arg");
6443}
6444
6445/// If DI is a debug value with an EntryValue expression, lower it using the
6446/// corresponding physical register of the associated Argument value
6447/// (guaranteed to exist by the verifier).
6448bool SelectionDAGBuilder::visitEntryValueDbgValue(
6449 ArrayRef<const Value *> Values, DILocalVariable *Variable,
6450 DIExpression *Expr, DebugLoc DbgLoc) {
6451 if (!Expr->isEntryValue() || !hasSingleElement(Values))
6452 return false;
6453
6454 // These properties are guaranteed by the verifier.
6455 const Argument *Arg = cast<Argument>(Values[0]);
6456 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
6457
6458 auto ArgIt = FuncInfo.ValueMap.find(Arg);
6459 if (ArgIt == FuncInfo.ValueMap.end()) {
6460 LLVM_DEBUG(
6461 dbgs() << "Dropping dbg.value: expression is entry_value but "
6462 "couldn't find an associated register for the Argument\n");
6463 return true;
6464 }
6465 Register ArgVReg = ArgIt->getSecond();
6466
6467 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
6468 if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6469 SDDbgValue *SDV = DAG.getVRegDbgValue(
6470 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder);
6471 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
6472 return true;
6473 }
6474 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
6475 "couldn't find a physical register\n");
6476 return true;
6477}
6478
6479/// Lower the call to the specified intrinsic function.
6480void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I,
6481 unsigned Intrinsic) {
6482 SDLoc sdl = getCurSDLoc();
6483 switch (Intrinsic) {
6484 case Intrinsic::experimental_convergence_anchor:
6485 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped));
6486 break;
6487 case Intrinsic::experimental_convergence_entry:
6488 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped));
6489 break;
6490 case Intrinsic::experimental_convergence_loop: {
6491 auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl);
6492 auto *Token = Bundle->Inputs[0].get();
6493 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped,
6494 getValue(Token)));
6495 break;
6496 }
6497 }
6498}
6499
6500void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I,
6501 unsigned IntrinsicID) {
6502 // For now, we're only lowering an 'add' histogram.
6503 // We can add others later, e.g. saturating adds, min/max.
6504 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add &&
6505 "Tried to lower unsupported histogram type");
6506 SDLoc sdl = getCurSDLoc();
6507 Value *Ptr = I.getOperand(0);
6508 SDValue Inc = getValue(I.getOperand(1));
6509 SDValue Mask = getValue(I.getOperand(2));
6510
6511 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6512 DataLayout TargetDL = DAG.getDataLayout();
6513 EVT VT = Inc.getValueType();
6514 Align Alignment = DAG.getEVTAlign(VT);
6515
6516 const MDNode *Ranges = getRangeMetadata(I);
6517
6518 SDValue Root = DAG.getRoot();
6519 SDValue Base;
6520 SDValue Index;
6521 SDValue Scale;
6522 bool UniformBase = getUniformBase(Ptr, Base, Index, Scale, this,
6523 I.getParent(), VT.getScalarStoreSize());
6524
6525 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
6526
6527 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6528 MachinePointerInfo(AS),
6530 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
6531
6532 if (!UniformBase) {
6533 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6534 Index = getValue(Ptr);
6535 Scale =
6536 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6537 }
6538
6539 EVT IdxVT = Index.getValueType();
6540 EVT EltTy = IdxVT.getVectorElementType();
6541 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
6542 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
6543 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
6544 }
6545
6546 SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32);
6547
6548 SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID};
6549 SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl,
6550 Ops, MMO, ISD::SIGNED_SCALED);
6551
6552 setValue(&I, Histogram);
6553 DAG.setRoot(Histogram);
6554}
6555
6556void SelectionDAGBuilder::visitVectorExtractLastActive(const CallInst &I,
6557 unsigned Intrinsic) {
6558 assert(Intrinsic == Intrinsic::experimental_vector_extract_last_active &&
6559 "Tried lowering invalid vector extract last");
6560 SDLoc sdl = getCurSDLoc();
6561 const DataLayout &Layout = DAG.getDataLayout();
6562 SDValue Data = getValue(I.getOperand(0));
6563 SDValue Mask = getValue(I.getOperand(1));
6564
6565 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6566 EVT ResVT = TLI.getValueType(Layout, I.getType());
6567
6568 EVT ExtVT = TLI.getVectorIdxTy(Layout);
6569 SDValue Idx = DAG.getNode(ISD::VECTOR_FIND_LAST_ACTIVE, sdl, ExtVT, Mask);
6570 SDValue Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl, ResVT, Data, Idx);
6571
6572 Value *Default = I.getOperand(2);
6574 SDValue PassThru = getValue(Default);
6575 EVT BoolVT = Mask.getValueType().getScalarType();
6576 SDValue AnyActive = DAG.getNode(ISD::VECREDUCE_OR, sdl, BoolVT, Mask);
6577 Result = DAG.getSelect(sdl, ResVT, AnyActive, Result, PassThru);
6578 }
6579
6580 setValue(&I, Result);
6581}
6582
6583/// Lower the call to the specified intrinsic function.
6584void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
6585 unsigned Intrinsic) {
6586 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6587 SDLoc sdl = getCurSDLoc();
6588 DebugLoc dl = getCurDebugLoc();
6589 SDValue Res;
6590
6591 SDNodeFlags Flags;
6592 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
6593 Flags.copyFMF(*FPOp);
6594
6595 switch (Intrinsic) {
6596 default:
6597 // By default, turn this into a target intrinsic node.
6598 visitTargetIntrinsic(I, Intrinsic);
6599 return;
6600 case Intrinsic::vscale: {
6601 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6602 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
6603 return;
6604 }
6605 case Intrinsic::vastart: visitVAStart(I); return;
6606 case Intrinsic::vaend: visitVAEnd(I); return;
6607 case Intrinsic::vacopy: visitVACopy(I); return;
6608 case Intrinsic::returnaddress:
6609 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
6610 TLI.getValueType(DAG.getDataLayout(), I.getType()),
6611 getValue(I.getArgOperand(0))));
6612 return;
6613 case Intrinsic::addressofreturnaddress:
6614 setValue(&I,
6615 DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
6616 TLI.getValueType(DAG.getDataLayout(), I.getType())));
6617 return;
6618 case Intrinsic::sponentry:
6619 setValue(&I,
6620 DAG.getNode(ISD::SPONENTRY, sdl,
6621 TLI.getValueType(DAG.getDataLayout(), I.getType())));
6622 return;
6623 case Intrinsic::frameaddress:
6624 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
6625 TLI.getFrameIndexTy(DAG.getDataLayout()),
6626 getValue(I.getArgOperand(0))));
6627 return;
6628 case Intrinsic::read_volatile_register:
6629 case Intrinsic::read_register: {
6630 Value *Reg = I.getArgOperand(0);
6631 SDValue Chain = getRoot();
6633 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6634 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6635 Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6636 DAG.getVTList(VT, MVT::Other), Chain, RegName);
6637 setValue(&I, Res);
6638 DAG.setRoot(Res.getValue(1));
6639 return;
6640 }
6641 case Intrinsic::write_register: {
6642 Value *Reg = I.getArgOperand(0);
6643 Value *RegValue = I.getArgOperand(1);
6644 SDValue Chain = getRoot();
6646 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6647 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6648 RegName, getValue(RegValue)));
6649 return;
6650 }
6651 case Intrinsic::memcpy:
6652 case Intrinsic::memcpy_inline: {
6653 const auto &MCI = cast<MemCpyInst>(I);
6654 SDValue Dst = getValue(I.getArgOperand(0));
6655 SDValue Src = getValue(I.getArgOperand(1));
6656 SDValue Size = getValue(I.getArgOperand(2));
6657 assert((!MCI.isForceInlined() || isa<ConstantSDNode>(Size)) &&
6658 "memcpy_inline needs constant size");
6659 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6660 Align DstAlign = MCI.getDestAlign().valueOrOne();
6661 Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6662 Align Alignment = std::min(DstAlign, SrcAlign);
6663 bool isVol = MCI.isVolatile();
6664 // FIXME: Support passing different dest/src alignments to the memcpy DAG
6665 // node.
6666 SDValue Root = isVol ? getRoot() : getMemoryRoot();
6667 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol,
6668 MCI.isForceInlined(), &I, std::nullopt,
6669 MachinePointerInfo(I.getArgOperand(0)),
6670 MachinePointerInfo(I.getArgOperand(1)),
6671 I.getAAMetadata(), BatchAA);
6672 updateDAGForMaybeTailCall(MC);
6673 return;
6674 }
6675 case Intrinsic::memset:
6676 case Intrinsic::memset_inline: {
6677 const auto &MSII = cast<MemSetInst>(I);
6678 SDValue Dst = getValue(I.getArgOperand(0));
6679 SDValue Value = getValue(I.getArgOperand(1));
6680 SDValue Size = getValue(I.getArgOperand(2));
6681 assert((!MSII.isForceInlined() || isa<ConstantSDNode>(Size)) &&
6682 "memset_inline needs constant size");
6683 // @llvm.memset defines 0 and 1 to both mean no alignment.
6684 Align DstAlign = MSII.getDestAlign().valueOrOne();
6685 bool isVol = MSII.isVolatile();
6686 SDValue Root = isVol ? getRoot() : getMemoryRoot();
6687 SDValue MC = DAG.getMemset(
6688 Root, sdl, Dst, Value, Size, DstAlign, isVol, MSII.isForceInlined(),
6689 &I, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6690 updateDAGForMaybeTailCall(MC);
6691 return;
6692 }
6693 case Intrinsic::memmove: {
6694 const auto &MMI = cast<MemMoveInst>(I);
6695 SDValue Op1 = getValue(I.getArgOperand(0));
6696 SDValue Op2 = getValue(I.getArgOperand(1));
6697 SDValue Op3 = getValue(I.getArgOperand(2));
6698 // @llvm.memmove defines 0 and 1 to both mean no alignment.
6699 Align DstAlign = MMI.getDestAlign().valueOrOne();
6700 Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6701 Align Alignment = std::min(DstAlign, SrcAlign);
6702 bool isVol = MMI.isVolatile();
6703 // FIXME: Support passing different dest/src alignments to the memmove DAG
6704 // node.
6705 SDValue Root = isVol ? getRoot() : getMemoryRoot();
6706 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &I,
6707 /* OverrideTailCall */ std::nullopt,
6708 MachinePointerInfo(I.getArgOperand(0)),
6709 MachinePointerInfo(I.getArgOperand(1)),
6710 I.getAAMetadata(), BatchAA);
6711 updateDAGForMaybeTailCall(MM);
6712 return;
6713 }
6714 case Intrinsic::memcpy_element_unordered_atomic: {
6715 auto &MI = cast<AnyMemCpyInst>(I);
6716 SDValue Dst = getValue(MI.getRawDest());
6717 SDValue Src = getValue(MI.getRawSource());
6718 SDValue Length = getValue(MI.getLength());
6719
6720 Type *LengthTy = MI.getLength()->getType();
6721 unsigned ElemSz = MI.getElementSizeInBytes();
6722 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6723 SDValue MC =
6724 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6725 isTC, MachinePointerInfo(MI.getRawDest()),
6726 MachinePointerInfo(MI.getRawSource()));
6727 updateDAGForMaybeTailCall(MC);
6728 return;
6729 }
6730 case Intrinsic::memmove_element_unordered_atomic: {
6731 auto &MI = cast<AnyMemMoveInst>(I);
6732 SDValue Dst = getValue(MI.getRawDest());
6733 SDValue Src = getValue(MI.getRawSource());
6734 SDValue Length = getValue(MI.getLength());
6735
6736 Type *LengthTy = MI.getLength()->getType();
6737 unsigned ElemSz = MI.getElementSizeInBytes();
6738 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6739 SDValue MC =
6740 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6741 isTC, MachinePointerInfo(MI.getRawDest()),
6742 MachinePointerInfo(MI.getRawSource()));
6743 updateDAGForMaybeTailCall(MC);
6744 return;
6745 }
6746 case Intrinsic::memset_element_unordered_atomic: {
6747 auto &MI = cast<AnyMemSetInst>(I);
6748 SDValue Dst = getValue(MI.getRawDest());
6749 SDValue Val = getValue(MI.getValue());
6750 SDValue Length = getValue(MI.getLength());
6751
6752 Type *LengthTy = MI.getLength()->getType();
6753 unsigned ElemSz = MI.getElementSizeInBytes();
6754 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6755 SDValue MC =
6756 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6757 isTC, MachinePointerInfo(MI.getRawDest()));
6758 updateDAGForMaybeTailCall(MC);
6759 return;
6760 }
6761 case Intrinsic::call_preallocated_setup: {
6762 const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6763 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6764 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6765 getRoot(), SrcValue);
6766 setValue(&I, Res);
6767 DAG.setRoot(Res);
6768 return;
6769 }
6770 case Intrinsic::call_preallocated_arg: {
6771 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6772 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6773 SDValue Ops[3];
6774 Ops[0] = getRoot();
6775 Ops[1] = SrcValue;
6776 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6777 MVT::i32); // arg index
6778 SDValue Res = DAG.getNode(
6779 ISD::PREALLOCATED_ARG, sdl,
6780 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6781 setValue(&I, Res);
6782 DAG.setRoot(Res.getValue(1));
6783 return;
6784 }
6785
6786 case Intrinsic::eh_typeid_for: {
6787 // Find the type id for the given typeinfo.
6788 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6789 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6790 Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6791 setValue(&I, Res);
6792 return;
6793 }
6794
6795 case Intrinsic::eh_return_i32:
6796 case Intrinsic::eh_return_i64:
6797 DAG.getMachineFunction().setCallsEHReturn(true);
6798 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6799 MVT::Other,
6801 getValue(I.getArgOperand(0)),
6802 getValue(I.getArgOperand(1))));
6803 return;
6804 case Intrinsic::eh_unwind_init:
6805 DAG.getMachineFunction().setCallsUnwindInit(true);
6806 return;
6807 case Intrinsic::eh_dwarf_cfa:
6808 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6809 TLI.getPointerTy(DAG.getDataLayout()),
6810 getValue(I.getArgOperand(0))));
6811 return;
6812 case Intrinsic::eh_sjlj_callsite: {
6813 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6814 assert(FuncInfo.getCurrentCallSite() == 0 && "Overlapping call sites!");
6815
6816 FuncInfo.setCurrentCallSite(CI->getZExtValue());
6817 return;
6818 }
6819 case Intrinsic::eh_sjlj_functioncontext: {
6820 // Get and store the index of the function context.
6821 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6822 AllocaInst *FnCtx =
6823 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6824 int FI = FuncInfo.StaticAllocaMap[FnCtx];
6826 return;
6827 }
6828 case Intrinsic::eh_sjlj_setjmp: {
6829 SDValue Ops[2];
6830 Ops[0] = getRoot();
6831 Ops[1] = getValue(I.getArgOperand(0));
6832 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6833 DAG.getVTList(MVT::i32, MVT::Other), Ops);
6834 setValue(&I, Op.getValue(0));
6835 DAG.setRoot(Op.getValue(1));
6836 return;
6837 }
6838 case Intrinsic::eh_sjlj_longjmp:
6839 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6840 getRoot(), getValue(I.getArgOperand(0))));
6841 return;
6842 case Intrinsic::eh_sjlj_setup_dispatch:
6843 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6844 getRoot()));
6845 return;
6846 case Intrinsic::masked_gather:
6847 visitMaskedGather(I);
6848 return;
6849 case Intrinsic::masked_load:
6850 visitMaskedLoad(I);
6851 return;
6852 case Intrinsic::masked_scatter:
6853 visitMaskedScatter(I);
6854 return;
6855 case Intrinsic::masked_store:
6856 visitMaskedStore(I);
6857 return;
6858 case Intrinsic::masked_expandload:
6859 visitMaskedLoad(I, true /* IsExpanding */);
6860 return;
6861 case Intrinsic::masked_compressstore:
6862 visitMaskedStore(I, true /* IsCompressing */);
6863 return;
6864 case Intrinsic::powi:
6865 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6866 getValue(I.getArgOperand(1)), DAG));
6867 return;
6868 case Intrinsic::log:
6869 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6870 return;
6871 case Intrinsic::log2:
6872 setValue(&I,
6873 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6874 return;
6875 case Intrinsic::log10:
6876 setValue(&I,
6877 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6878 return;
6879 case Intrinsic::exp:
6880 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6881 return;
6882 case Intrinsic::exp2:
6883 setValue(&I,
6884 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6885 return;
6886 case Intrinsic::pow:
6887 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6888 getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6889 return;
6890 case Intrinsic::sqrt:
6891 case Intrinsic::fabs:
6892 case Intrinsic::sin:
6893 case Intrinsic::cos:
6894 case Intrinsic::tan:
6895 case Intrinsic::asin:
6896 case Intrinsic::acos:
6897 case Intrinsic::atan:
6898 case Intrinsic::sinh:
6899 case Intrinsic::cosh:
6900 case Intrinsic::tanh:
6901 case Intrinsic::exp10:
6902 case Intrinsic::floor:
6903 case Intrinsic::ceil:
6904 case Intrinsic::trunc:
6905 case Intrinsic::rint:
6906 case Intrinsic::nearbyint:
6907 case Intrinsic::round:
6908 case Intrinsic::roundeven:
6909 case Intrinsic::canonicalize: {
6910 unsigned Opcode;
6911 // clang-format off
6912 switch (Intrinsic) {
6913 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6914 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
6915 case Intrinsic::fabs: Opcode = ISD::FABS; break;
6916 case Intrinsic::sin: Opcode = ISD::FSIN; break;
6917 case Intrinsic::cos: Opcode = ISD::FCOS; break;
6918 case Intrinsic::tan: Opcode = ISD::FTAN; break;
6919 case Intrinsic::asin: Opcode = ISD::FASIN; break;
6920 case Intrinsic::acos: Opcode = ISD::FACOS; break;
6921 case Intrinsic::atan: Opcode = ISD::FATAN; break;
6922 case Intrinsic::sinh: Opcode = ISD::FSINH; break;
6923 case Intrinsic::cosh: Opcode = ISD::FCOSH; break;
6924 case Intrinsic::tanh: Opcode = ISD::FTANH; break;
6925 case Intrinsic::exp10: Opcode = ISD::FEXP10; break;
6926 case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
6927 case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
6928 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
6929 case Intrinsic::rint: Opcode = ISD::FRINT; break;
6930 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6931 case Intrinsic::round: Opcode = ISD::FROUND; break;
6932 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6933 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6934 }
6935 // clang-format on
6936
6937 setValue(&I, DAG.getNode(Opcode, sdl,
6938 getValue(I.getArgOperand(0)).getValueType(),
6939 getValue(I.getArgOperand(0)), Flags));
6940 return;
6941 }
6942 case Intrinsic::atan2:
6943 setValue(&I, DAG.getNode(ISD::FATAN2, sdl,
6944 getValue(I.getArgOperand(0)).getValueType(),
6945 getValue(I.getArgOperand(0)),
6946 getValue(I.getArgOperand(1)), Flags));
6947 return;
6948 case Intrinsic::lround:
6949 case Intrinsic::llround:
6950 case Intrinsic::lrint:
6951 case Intrinsic::llrint: {
6952 unsigned Opcode;
6953 // clang-format off
6954 switch (Intrinsic) {
6955 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6956 case Intrinsic::lround: Opcode = ISD::LROUND; break;
6957 case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6958 case Intrinsic::lrint: Opcode = ISD::LRINT; break;
6959 case Intrinsic::llrint: Opcode = ISD::LLRINT; break;
6960 }
6961 // clang-format on
6962
6963 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6964 setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6965 getValue(I.getArgOperand(0))));
6966 return;
6967 }
6968 case Intrinsic::minnum:
6969 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6970 getValue(I.getArgOperand(0)).getValueType(),
6971 getValue(I.getArgOperand(0)),
6972 getValue(I.getArgOperand(1)), Flags));
6973 return;
6974 case Intrinsic::maxnum:
6975 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6976 getValue(I.getArgOperand(0)).getValueType(),
6977 getValue(I.getArgOperand(0)),
6978 getValue(I.getArgOperand(1)), Flags));
6979 return;
6980 case Intrinsic::minimum:
6981 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6982 getValue(I.getArgOperand(0)).getValueType(),
6983 getValue(I.getArgOperand(0)),
6984 getValue(I.getArgOperand(1)), Flags));
6985 return;
6986 case Intrinsic::maximum:
6987 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6988 getValue(I.getArgOperand(0)).getValueType(),
6989 getValue(I.getArgOperand(0)),
6990 getValue(I.getArgOperand(1)), Flags));
6991 return;
6992 case Intrinsic::minimumnum:
6993 setValue(&I, DAG.getNode(ISD::FMINIMUMNUM, sdl,
6994 getValue(I.getArgOperand(0)).getValueType(),
6995 getValue(I.getArgOperand(0)),
6996 getValue(I.getArgOperand(1)), Flags));
6997 return;
6998 case Intrinsic::maximumnum:
6999 setValue(&I, DAG.getNode(ISD::FMAXIMUMNUM, sdl,
7000 getValue(I.getArgOperand(0)).getValueType(),
7001 getValue(I.getArgOperand(0)),
7002 getValue(I.getArgOperand(1)), Flags));
7003 return;
7004 case Intrinsic::copysign:
7005 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
7006 getValue(I.getArgOperand(0)).getValueType(),
7007 getValue(I.getArgOperand(0)),
7008 getValue(I.getArgOperand(1)), Flags));
7009 return;
7010 case Intrinsic::ldexp:
7011 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
7012 getValue(I.getArgOperand(0)).getValueType(),
7013 getValue(I.getArgOperand(0)),
7014 getValue(I.getArgOperand(1)), Flags));
7015 return;
7016 case Intrinsic::modf:
7017 case Intrinsic::sincos:
7018 case Intrinsic::sincospi:
7019 case Intrinsic::frexp: {
7020 unsigned Opcode;
7021 switch (Intrinsic) {
7022 default:
7023 llvm_unreachable("unexpected intrinsic");
7024 case Intrinsic::sincos:
7025 Opcode = ISD::FSINCOS;
7026 break;
7027 case Intrinsic::sincospi:
7028 Opcode = ISD::FSINCOSPI;
7029 break;
7030 case Intrinsic::modf:
7031 Opcode = ISD::FMODF;
7032 break;
7033 case Intrinsic::frexp:
7034 Opcode = ISD::FFREXP;
7035 break;
7036 }
7037 SmallVector<EVT, 2> ValueVTs;
7038 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
7039 SDVTList VTs = DAG.getVTList(ValueVTs);
7040 setValue(
7041 &I, DAG.getNode(Opcode, sdl, VTs, getValue(I.getArgOperand(0)), Flags));
7042 return;
7043 }
7044 case Intrinsic::arithmetic_fence: {
7045 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
7046 getValue(I.getArgOperand(0)).getValueType(),
7047 getValue(I.getArgOperand(0)), Flags));
7048 return;
7049 }
7050 case Intrinsic::fma:
7051 setValue(&I, DAG.getNode(
7052 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
7053 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
7054 getValue(I.getArgOperand(2)), Flags));
7055 return;
7056#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
7057 case Intrinsic::INTRINSIC:
7058#include "llvm/IR/ConstrainedOps.def"
7059 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
7060 return;
7061#define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
7062#include "llvm/IR/VPIntrinsics.def"
7063 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
7064 return;
7065 case Intrinsic::fptrunc_round: {
7066 // Get the last argument, the metadata and convert it to an integer in the
7067 // call
7068 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
7069 std::optional<RoundingMode> RoundMode =
7070 convertStrToRoundingMode(cast<MDString>(MD)->getString());
7071
7072 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7073
7074 // Propagate fast-math-flags from IR to node(s).
7075 SDNodeFlags Flags;
7076 Flags.copyFMF(*cast<FPMathOperator>(&I));
7077 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
7078
7080 Result = DAG.getNode(
7081 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
7082 DAG.getTargetConstant((int)*RoundMode, sdl, MVT::i32));
7083 setValue(&I, Result);
7084
7085 return;
7086 }
7087 case Intrinsic::fmuladd: {
7088 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7089 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
7090 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7091 setValue(&I, DAG.getNode(ISD::FMA, sdl,
7092 getValue(I.getArgOperand(0)).getValueType(),
7093 getValue(I.getArgOperand(0)),
7094 getValue(I.getArgOperand(1)),
7095 getValue(I.getArgOperand(2)), Flags));
7096 } else if (TLI.isOperationLegalOrCustom(ISD::FMULADD, VT)) {
7097 // TODO: Support splitting the vector.
7098 setValue(&I, DAG.getNode(ISD::FMULADD, sdl,
7099 getValue(I.getArgOperand(0)).getValueType(),
7100 getValue(I.getArgOperand(0)),
7101 getValue(I.getArgOperand(1)),
7102 getValue(I.getArgOperand(2)), Flags));
7103 } else {
7104 // TODO: Intrinsic calls should have fast-math-flags.
7105 SDValue Mul = DAG.getNode(
7106 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
7107 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
7108 SDValue Add = DAG.getNode(ISD::FADD, sdl,
7109 getValue(I.getArgOperand(0)).getValueType(),
7110 Mul, getValue(I.getArgOperand(2)), Flags);
7111 setValue(&I, Add);
7112 }
7113 return;
7114 }
7115 case Intrinsic::convert_to_fp16:
7116 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
7117 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
7118 getValue(I.getArgOperand(0)),
7119 DAG.getTargetConstant(0, sdl,
7120 MVT::i32))));
7121 return;
7122 case Intrinsic::convert_from_fp16:
7123 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
7124 TLI.getValueType(DAG.getDataLayout(), I.getType()),
7125 DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
7126 getValue(I.getArgOperand(0)))));
7127 return;
7128 case Intrinsic::fptosi_sat: {
7129 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7130 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
7131 getValue(I.getArgOperand(0)),
7132 DAG.getValueType(VT.getScalarType())));
7133 return;
7134 }
7135 case Intrinsic::fptoui_sat: {
7136 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7137 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
7138 getValue(I.getArgOperand(0)),
7139 DAG.getValueType(VT.getScalarType())));
7140 return;
7141 }
7142 case Intrinsic::set_rounding:
7143 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
7144 {getRoot(), getValue(I.getArgOperand(0))});
7145 setValue(&I, Res);
7146 DAG.setRoot(Res.getValue(0));
7147 return;
7148 case Intrinsic::is_fpclass: {
7149 const DataLayout DLayout = DAG.getDataLayout();
7150 EVT DestVT = TLI.getValueType(DLayout, I.getType());
7151 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
7152 FPClassTest Test = static_cast<FPClassTest>(
7153 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
7154 MachineFunction &MF = DAG.getMachineFunction();
7155 const Function &F = MF.getFunction();
7156 SDValue Op = getValue(I.getArgOperand(0));
7157 SDNodeFlags Flags;
7158 Flags.setNoFPExcept(
7159 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
7160 // If ISD::IS_FPCLASS should be expanded, do it right now, because the
7161 // expansion can use illegal types. Making expansion early allows
7162 // legalizing these types prior to selection.
7163 if (!TLI.isOperationLegal(ISD::IS_FPCLASS, ArgVT) &&
7164 !TLI.isOperationCustom(ISD::IS_FPCLASS, ArgVT)) {
7165 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
7166 setValue(&I, Result);
7167 return;
7168 }
7169
7170 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
7171 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
7172 setValue(&I, V);
7173 return;
7174 }
7175 case Intrinsic::get_fpenv: {
7176 const DataLayout DLayout = DAG.getDataLayout();
7177 EVT EnvVT = TLI.getValueType(DLayout, I.getType());
7178 Align TempAlign = DAG.getEVTAlign(EnvVT);
7179 SDValue Chain = getRoot();
7180 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
7181 // and temporary storage in stack.
7182 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
7183 Res = DAG.getNode(
7184 ISD::GET_FPENV, sdl,
7185 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7186 MVT::Other),
7187 Chain);
7188 } else {
7189 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7190 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7191 auto MPI =
7192 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7193 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7195 TempAlign);
7196 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7197 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
7198 }
7199 setValue(&I, Res);
7200 DAG.setRoot(Res.getValue(1));
7201 return;
7202 }
7203 case Intrinsic::set_fpenv: {
7204 const DataLayout DLayout = DAG.getDataLayout();
7205 SDValue Env = getValue(I.getArgOperand(0));
7206 EVT EnvVT = Env.getValueType();
7207 Align TempAlign = DAG.getEVTAlign(EnvVT);
7208 SDValue Chain = getRoot();
7209 // If SET_FPENV is custom or legal, use it. Otherwise use loading
7210 // environment from memory.
7211 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
7212 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
7213 } else {
7214 // Allocate space in stack, copy environment bits into it and use this
7215 // memory in SET_FPENV_MEM.
7216 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7217 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7218 auto MPI =
7219 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7220 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
7222 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7224 TempAlign);
7225 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7226 }
7227 DAG.setRoot(Chain);
7228 return;
7229 }
7230 case Intrinsic::reset_fpenv:
7231 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
7232 return;
7233 case Intrinsic::get_fpmode:
7234 Res = DAG.getNode(
7235 ISD::GET_FPMODE, sdl,
7236 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7237 MVT::Other),
7238 DAG.getRoot());
7239 setValue(&I, Res);
7240 DAG.setRoot(Res.getValue(1));
7241 return;
7242 case Intrinsic::set_fpmode:
7243 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
7244 getValue(I.getArgOperand(0)));
7245 DAG.setRoot(Res);
7246 return;
7247 case Intrinsic::reset_fpmode: {
7248 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
7249 DAG.setRoot(Res);
7250 return;
7251 }
7252 case Intrinsic::pcmarker: {
7253 SDValue Tmp = getValue(I.getArgOperand(0));
7254 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
7255 return;
7256 }
7257 case Intrinsic::readcyclecounter: {
7258 SDValue Op = getRoot();
7259 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
7260 DAG.getVTList(MVT::i64, MVT::Other), Op);
7261 setValue(&I, Res);
7262 DAG.setRoot(Res.getValue(1));
7263 return;
7264 }
7265 case Intrinsic::readsteadycounter: {
7266 SDValue Op = getRoot();
7267 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
7268 DAG.getVTList(MVT::i64, MVT::Other), Op);
7269 setValue(&I, Res);
7270 DAG.setRoot(Res.getValue(1));
7271 return;
7272 }
7273 case Intrinsic::bitreverse:
7274 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
7275 getValue(I.getArgOperand(0)).getValueType(),
7276 getValue(I.getArgOperand(0))));
7277 return;
7278 case Intrinsic::bswap:
7279 setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
7280 getValue(I.getArgOperand(0)).getValueType(),
7281 getValue(I.getArgOperand(0))));
7282 return;
7283 case Intrinsic::cttz: {
7284 SDValue Arg = getValue(I.getArgOperand(0));
7285 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7286 EVT Ty = Arg.getValueType();
7287 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
7288 sdl, Ty, Arg));
7289 return;
7290 }
7291 case Intrinsic::ctlz: {
7292 SDValue Arg = getValue(I.getArgOperand(0));
7293 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7294 EVT Ty = Arg.getValueType();
7295 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
7296 sdl, Ty, Arg));
7297 return;
7298 }
7299 case Intrinsic::ctpop: {
7300 SDValue Arg = getValue(I.getArgOperand(0));
7301 EVT Ty = Arg.getValueType();
7302 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
7303 return;
7304 }
7305 case Intrinsic::fshl:
7306 case Intrinsic::fshr: {
7307 bool IsFSHL = Intrinsic == Intrinsic::fshl;
7308 SDValue X = getValue(I.getArgOperand(0));
7309 SDValue Y = getValue(I.getArgOperand(1));
7310 SDValue Z = getValue(I.getArgOperand(2));
7311 EVT VT = X.getValueType();
7312
7313 if (X == Y) {
7314 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
7315 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
7316 } else {
7317 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
7318 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
7319 }
7320 return;
7321 }
7322 case Intrinsic::sadd_sat: {
7323 SDValue Op1 = getValue(I.getArgOperand(0));
7324 SDValue Op2 = getValue(I.getArgOperand(1));
7325 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7326 return;
7327 }
7328 case Intrinsic::uadd_sat: {
7329 SDValue Op1 = getValue(I.getArgOperand(0));
7330 SDValue Op2 = getValue(I.getArgOperand(1));
7331 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7332 return;
7333 }
7334 case Intrinsic::ssub_sat: {
7335 SDValue Op1 = getValue(I.getArgOperand(0));
7336 SDValue Op2 = getValue(I.getArgOperand(1));
7337 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7338 return;
7339 }
7340 case Intrinsic::usub_sat: {
7341 SDValue Op1 = getValue(I.getArgOperand(0));
7342 SDValue Op2 = getValue(I.getArgOperand(1));
7343 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7344 return;
7345 }
7346 case Intrinsic::sshl_sat: {
7347 SDValue Op1 = getValue(I.getArgOperand(0));
7348 SDValue Op2 = getValue(I.getArgOperand(1));
7349 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7350 return;
7351 }
7352 case Intrinsic::ushl_sat: {
7353 SDValue Op1 = getValue(I.getArgOperand(0));
7354 SDValue Op2 = getValue(I.getArgOperand(1));
7355 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7356 return;
7357 }
7358 case Intrinsic::smul_fix:
7359 case Intrinsic::umul_fix:
7360 case Intrinsic::smul_fix_sat:
7361 case Intrinsic::umul_fix_sat: {
7362 SDValue Op1 = getValue(I.getArgOperand(0));
7363 SDValue Op2 = getValue(I.getArgOperand(1));
7364 SDValue Op3 = getValue(I.getArgOperand(2));
7365 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7366 Op1.getValueType(), Op1, Op2, Op3));
7367 return;
7368 }
7369 case Intrinsic::sdiv_fix:
7370 case Intrinsic::udiv_fix:
7371 case Intrinsic::sdiv_fix_sat:
7372 case Intrinsic::udiv_fix_sat: {
7373 SDValue Op1 = getValue(I.getArgOperand(0));
7374 SDValue Op2 = getValue(I.getArgOperand(1));
7375 SDValue Op3 = getValue(I.getArgOperand(2));
7377 Op1, Op2, Op3, DAG, TLI));
7378 return;
7379 }
7380 case Intrinsic::smax: {
7381 SDValue Op1 = getValue(I.getArgOperand(0));
7382 SDValue Op2 = getValue(I.getArgOperand(1));
7383 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
7384 return;
7385 }
7386 case Intrinsic::smin: {
7387 SDValue Op1 = getValue(I.getArgOperand(0));
7388 SDValue Op2 = getValue(I.getArgOperand(1));
7389 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
7390 return;
7391 }
7392 case Intrinsic::umax: {
7393 SDValue Op1 = getValue(I.getArgOperand(0));
7394 SDValue Op2 = getValue(I.getArgOperand(1));
7395 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
7396 return;
7397 }
7398 case Intrinsic::umin: {
7399 SDValue Op1 = getValue(I.getArgOperand(0));
7400 SDValue Op2 = getValue(I.getArgOperand(1));
7401 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
7402 return;
7403 }
7404 case Intrinsic::abs: {
7405 // TODO: Preserve "int min is poison" arg in SDAG?
7406 SDValue Op1 = getValue(I.getArgOperand(0));
7407 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
7408 return;
7409 }
7410 case Intrinsic::scmp: {
7411 SDValue Op1 = getValue(I.getArgOperand(0));
7412 SDValue Op2 = getValue(I.getArgOperand(1));
7413 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7414 setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2));
7415 break;
7416 }
7417 case Intrinsic::ucmp: {
7418 SDValue Op1 = getValue(I.getArgOperand(0));
7419 SDValue Op2 = getValue(I.getArgOperand(1));
7420 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7421 setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2));
7422 break;
7423 }
7424 case Intrinsic::stacksave: {
7425 SDValue Op = getRoot();
7426 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7427 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
7428 setValue(&I, Res);
7429 DAG.setRoot(Res.getValue(1));
7430 return;
7431 }
7432 case Intrinsic::stackrestore:
7433 Res = getValue(I.getArgOperand(0));
7434 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
7435 return;
7436 case Intrinsic::get_dynamic_area_offset: {
7437 SDValue Op = getRoot();
7438 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7439 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
7440 Op);
7441 DAG.setRoot(Op);
7442 setValue(&I, Res);
7443 return;
7444 }
7445 case Intrinsic::stackguard: {
7446 MachineFunction &MF = DAG.getMachineFunction();
7447 const Module &M = *MF.getFunction().getParent();
7448 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7449 SDValue Chain = getRoot();
7450 if (TLI.useLoadStackGuardNode(M)) {
7451 Res = getLoadStackGuard(DAG, sdl, Chain);
7452 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
7453 } else {
7454 const Value *Global = TLI.getSDagStackGuard(M);
7455 if (!Global) {
7456 LLVMContext &Ctx = *DAG.getContext();
7457 Ctx.diagnose(DiagnosticInfoGeneric("unable to lower stackguard"));
7458 setValue(&I, DAG.getPOISON(PtrTy));
7459 return;
7460 }
7461
7462 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
7463 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
7464 MachinePointerInfo(Global, 0), Align,
7466 }
7467 if (TLI.useStackGuardXorFP())
7468 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
7469 DAG.setRoot(Chain);
7470 setValue(&I, Res);
7471 return;
7472 }
7473 case Intrinsic::stackprotector: {
7474 // Emit code into the DAG to store the stack guard onto the stack.
7475 MachineFunction &MF = DAG.getMachineFunction();
7476 MachineFrameInfo &MFI = MF.getFrameInfo();
7477 const Module &M = *MF.getFunction().getParent();
7478 SDValue Src, Chain = getRoot();
7479
7480 if (TLI.useLoadStackGuardNode(M))
7481 Src = getLoadStackGuard(DAG, sdl, Chain);
7482 else
7483 Src = getValue(I.getArgOperand(0)); // The guard's value.
7484
7485 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
7486
7487 int FI = FuncInfo.StaticAllocaMap[Slot];
7488 MFI.setStackProtectorIndex(FI);
7489 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7490
7491 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
7492
7493 // Store the stack protector onto the stack.
7494 Res = DAG.getStore(
7495 Chain, sdl, Src, FIN,
7496 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
7497 MaybeAlign(), MachineMemOperand::MOVolatile);
7498 setValue(&I, Res);
7499 DAG.setRoot(Res);
7500 return;
7501 }
7502 case Intrinsic::objectsize:
7503 llvm_unreachable("llvm.objectsize.* should have been lowered already");
7504
7505 case Intrinsic::is_constant:
7506 llvm_unreachable("llvm.is.constant.* should have been lowered already");
7507
7508 case Intrinsic::annotation:
7509 case Intrinsic::ptr_annotation:
7510 case Intrinsic::launder_invariant_group:
7511 case Intrinsic::strip_invariant_group:
7512 // Drop the intrinsic, but forward the value
7513 setValue(&I, getValue(I.getOperand(0)));
7514 return;
7515
7516 case Intrinsic::type_test:
7517 case Intrinsic::public_type_test:
7518 setValue(&I, getValue(ConstantInt::getTrue(I.getType())));
7519 return;
7520
7521 case Intrinsic::assume:
7522 case Intrinsic::experimental_noalias_scope_decl:
7523 case Intrinsic::var_annotation:
7524 case Intrinsic::sideeffect:
7525 // Discard annotate attributes, noalias scope declarations, assumptions, and
7526 // artificial side-effects.
7527 return;
7528
7529 case Intrinsic::codeview_annotation: {
7530 // Emit a label associated with this metadata.
7531 MachineFunction &MF = DAG.getMachineFunction();
7532 MCSymbol *Label = MF.getContext().createTempSymbol("annotation", true);
7533 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7534 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
7535 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
7536 DAG.setRoot(Res);
7537 return;
7538 }
7539
7540 case Intrinsic::init_trampoline: {
7541 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
7542
7543 SDValue Ops[6];
7544 Ops[0] = getRoot();
7545 Ops[1] = getValue(I.getArgOperand(0));
7546 Ops[2] = getValue(I.getArgOperand(1));
7547 Ops[3] = getValue(I.getArgOperand(2));
7548 Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
7549 Ops[5] = DAG.getSrcValue(F);
7550
7551 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
7552
7553 DAG.setRoot(Res);
7554 return;
7555 }
7556 case Intrinsic::adjust_trampoline:
7557 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
7558 TLI.getPointerTy(DAG.getDataLayout()),
7559 getValue(I.getArgOperand(0))));
7560 return;
7561 case Intrinsic::gcroot: {
7562 assert(DAG.getMachineFunction().getFunction().hasGC() &&
7563 "only valid in functions with gc specified, enforced by Verifier");
7564 assert(GFI && "implied by previous");
7565 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
7566 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
7567
7568 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
7569 GFI->addStackRoot(FI->getIndex(), TypeMap);
7570 return;
7571 }
7572 case Intrinsic::gcread:
7573 case Intrinsic::gcwrite:
7574 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
7575 case Intrinsic::get_rounding:
7576 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7577 setValue(&I, Res);
7578 DAG.setRoot(Res.getValue(1));
7579 return;
7580
7581 case Intrinsic::expect:
7582 case Intrinsic::expect_with_probability:
7583 // Just replace __builtin_expect(exp, c) and
7584 // __builtin_expect_with_probability(exp, c, p) with EXP.
7585 setValue(&I, getValue(I.getArgOperand(0)));
7586 return;
7587
7588 case Intrinsic::ubsantrap:
7589 case Intrinsic::debugtrap:
7590 case Intrinsic::trap: {
7591 StringRef TrapFuncName =
7592 I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7593 if (TrapFuncName.empty()) {
7594 switch (Intrinsic) {
7595 case Intrinsic::trap:
7596 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7597 break;
7598 case Intrinsic::debugtrap:
7599 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7600 break;
7601 case Intrinsic::ubsantrap:
7602 DAG.setRoot(DAG.getNode(
7603 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7604 DAG.getTargetConstant(
7605 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7606 MVT::i32)));
7607 break;
7608 default: llvm_unreachable("unknown trap intrinsic");
7609 }
7610 DAG.addNoMergeSiteInfo(DAG.getRoot().getNode(),
7611 I.hasFnAttr(Attribute::NoMerge));
7612 return;
7613 }
7615 if (Intrinsic == Intrinsic::ubsantrap) {
7616 Value *Arg = I.getArgOperand(0);
7617 Args.emplace_back(Arg, getValue(Arg));
7618 }
7619
7620 TargetLowering::CallLoweringInfo CLI(DAG);
7621 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7622 CallingConv::C, I.getType(),
7623 DAG.getExternalSymbol(TrapFuncName.data(),
7624 TLI.getPointerTy(DAG.getDataLayout())),
7625 std::move(Args));
7626 CLI.NoMerge = I.hasFnAttr(Attribute::NoMerge);
7627 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7628 DAG.setRoot(Result.second);
7629 return;
7630 }
7631
7632 case Intrinsic::allow_runtime_check:
7633 case Intrinsic::allow_ubsan_check:
7634 setValue(&I, getValue(ConstantInt::getTrue(I.getType())));
7635 return;
7636
7637 case Intrinsic::uadd_with_overflow:
7638 case Intrinsic::sadd_with_overflow:
7639 case Intrinsic::usub_with_overflow:
7640 case Intrinsic::ssub_with_overflow:
7641 case Intrinsic::umul_with_overflow:
7642 case Intrinsic::smul_with_overflow: {
7644 switch (Intrinsic) {
7645 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
7646 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7647 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7648 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7649 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7650 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7651 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7652 }
7653 SDValue Op1 = getValue(I.getArgOperand(0));
7654 SDValue Op2 = getValue(I.getArgOperand(1));
7655
7656 EVT ResultVT = Op1.getValueType();
7657 EVT OverflowVT = MVT::i1;
7658 if (ResultVT.isVector())
7659 OverflowVT = EVT::getVectorVT(
7660 *Context, OverflowVT, ResultVT.getVectorElementCount());
7661
7662 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7663 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7664 return;
7665 }
7666 case Intrinsic::prefetch: {
7667 SDValue Ops[5];
7668 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7670 Ops[0] = DAG.getRoot();
7671 Ops[1] = getValue(I.getArgOperand(0));
7672 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
7673 MVT::i32);
7674 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl,
7675 MVT::i32);
7676 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl,
7677 MVT::i32);
7678 SDValue Result = DAG.getMemIntrinsicNode(
7679 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7680 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7681 /* align */ std::nullopt, Flags);
7682
7683 // Chain the prefetch in parallel with any pending loads, to stay out of
7684 // the way of later optimizations.
7685 PendingLoads.push_back(Result);
7686 Result = getRoot();
7687 DAG.setRoot(Result);
7688 return;
7689 }
7690 case Intrinsic::lifetime_start:
7691 case Intrinsic::lifetime_end: {
7692 bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7693 // Stack coloring is not enabled in O0, discard region information.
7694 if (TM.getOptLevel() == CodeGenOptLevel::None)
7695 return;
7696
7697 const AllocaInst *LifetimeObject = dyn_cast<AllocaInst>(I.getArgOperand(0));
7698 if (!LifetimeObject)
7699 return;
7700
7701 // First check that the Alloca is static, otherwise it won't have a
7702 // valid frame index.
7703 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7704 if (SI == FuncInfo.StaticAllocaMap.end())
7705 return;
7706
7707 const int FrameIndex = SI->second;
7708 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex);
7709 DAG.setRoot(Res);
7710 return;
7711 }
7712 case Intrinsic::pseudoprobe: {
7713 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7714 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7715 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7716 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7717 DAG.setRoot(Res);
7718 return;
7719 }
7720 case Intrinsic::invariant_start:
7721 // Discard region information.
7722 setValue(&I,
7723 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7724 return;
7725 case Intrinsic::invariant_end:
7726 // Discard region information.
7727 return;
7728 case Intrinsic::clear_cache: {
7729 SDValue InputChain = DAG.getRoot();
7730 SDValue StartVal = getValue(I.getArgOperand(0));
7731 SDValue EndVal = getValue(I.getArgOperand(1));
7732 Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other),
7733 {InputChain, StartVal, EndVal});
7734 setValue(&I, Res);
7735 DAG.setRoot(Res);
7736 return;
7737 }
7738 case Intrinsic::donothing:
7739 case Intrinsic::seh_try_begin:
7740 case Intrinsic::seh_scope_begin:
7741 case Intrinsic::seh_try_end:
7742 case Intrinsic::seh_scope_end:
7743 // ignore
7744 return;
7745 case Intrinsic::experimental_stackmap:
7746 visitStackmap(I);
7747 return;
7748 case Intrinsic::experimental_patchpoint_void:
7749 case Intrinsic::experimental_patchpoint:
7750 visitPatchpoint(I);
7751 return;
7752 case Intrinsic::experimental_gc_statepoint:
7754 return;
7755 case Intrinsic::experimental_gc_result:
7756 visitGCResult(cast<GCResultInst>(I));
7757 return;
7758 case Intrinsic::experimental_gc_relocate:
7759 visitGCRelocate(cast<GCRelocateInst>(I));
7760 return;
7761 case Intrinsic::instrprof_cover:
7762 llvm_unreachable("instrprof failed to lower a cover");
7763 case Intrinsic::instrprof_increment:
7764 llvm_unreachable("instrprof failed to lower an increment");
7765 case Intrinsic::instrprof_timestamp:
7766 llvm_unreachable("instrprof failed to lower a timestamp");
7767 case Intrinsic::instrprof_value_profile:
7768 llvm_unreachable("instrprof failed to lower a value profiling call");
7769 case Intrinsic::instrprof_mcdc_parameters:
7770 llvm_unreachable("instrprof failed to lower mcdc parameters");
7771 case Intrinsic::instrprof_mcdc_tvbitmap_update:
7772 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update");
7773 case Intrinsic::localescape: {
7774 MachineFunction &MF = DAG.getMachineFunction();
7775 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7776
7777 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7778 // is the same on all targets.
7779 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7780 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7781 if (isa<ConstantPointerNull>(Arg))
7782 continue; // Skip null pointers. They represent a hole in index space.
7783 AllocaInst *Slot = cast<AllocaInst>(Arg);
7784 assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7785 "can only escape static allocas");
7786 int FI = FuncInfo.StaticAllocaMap[Slot];
7787 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7789 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7790 TII->get(TargetOpcode::LOCAL_ESCAPE))
7791 .addSym(FrameAllocSym)
7792 .addFrameIndex(FI);
7793 }
7794
7795 return;
7796 }
7797
7798 case Intrinsic::localrecover: {
7799 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7800 MachineFunction &MF = DAG.getMachineFunction();
7801
7802 // Get the symbol that defines the frame offset.
7803 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7804 auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7805 unsigned IdxVal =
7806 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7807 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7809
7810 Value *FP = I.getArgOperand(1);
7811 SDValue FPVal = getValue(FP);
7812 EVT PtrVT = FPVal.getValueType();
7813
7814 // Create a MCSymbol for the label to avoid any target lowering
7815 // that would make this PC relative.
7816 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7817 SDValue OffsetVal =
7818 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7819
7820 // Add the offset to the FP.
7821 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7822 setValue(&I, Add);
7823
7824 return;
7825 }
7826
7827 case Intrinsic::fake_use: {
7828 Value *V = I.getArgOperand(0);
7829 SDValue Ops[2];
7830 // For Values not declared or previously used in this basic block, the
7831 // NodeMap will not have an entry, and `getValue` will assert if V has no
7832 // valid register value.
7833 auto FakeUseValue = [&]() -> SDValue {
7834 SDValue &N = NodeMap[V];
7835 if (N.getNode())
7836 return N;
7837
7838 // If there's a virtual register allocated and initialized for this
7839 // value, use it.
7840 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
7841 return copyFromReg;
7842 // FIXME: Do we want to preserve constants? It seems pointless.
7843 if (isa<Constant>(V))
7844 return getValue(V);
7845 return SDValue();
7846 }();
7847 if (!FakeUseValue || FakeUseValue.isUndef())
7848 return;
7849 Ops[0] = getRoot();
7850 Ops[1] = FakeUseValue;
7851 // Also, do not translate a fake use with an undef operand, or any other
7852 // empty SDValues.
7853 if (!Ops[1] || Ops[1].isUndef())
7854 return;
7855 DAG.setRoot(DAG.getNode(ISD::FAKE_USE, sdl, MVT::Other, Ops));
7856 return;
7857 }
7858
7859 case Intrinsic::reloc_none: {
7860 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7861 StringRef SymbolName = cast<MDString>(MD)->getString();
7862 SDValue Ops[2] = {
7863 getRoot(),
7864 DAG.getTargetExternalSymbol(
7865 SymbolName.data(), TLI.getProgramPointerTy(DAG.getDataLayout()))};
7866 DAG.setRoot(DAG.getNode(ISD::RELOC_NONE, sdl, MVT::Other, Ops));
7867 return;
7868 }
7869
7870 case Intrinsic::eh_exceptionpointer:
7871 case Intrinsic::eh_exceptioncode: {
7872 // Get the exception pointer vreg, copy from it, and resize it to fit.
7873 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7874 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7875 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7876 Register VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7877 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7878 if (Intrinsic == Intrinsic::eh_exceptioncode)
7879 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7880 setValue(&I, N);
7881 return;
7882 }
7883 case Intrinsic::xray_customevent: {
7884 // Here we want to make sure that the intrinsic behaves as if it has a
7885 // specific calling convention.
7886 const auto &Triple = DAG.getTarget().getTargetTriple();
7887 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7888 return;
7889
7891
7892 // We want to say that we always want the arguments in registers.
7893 SDValue LogEntryVal = getValue(I.getArgOperand(0));
7894 SDValue StrSizeVal = getValue(I.getArgOperand(1));
7895 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7896 SDValue Chain = getRoot();
7897 Ops.push_back(LogEntryVal);
7898 Ops.push_back(StrSizeVal);
7899 Ops.push_back(Chain);
7900
7901 // We need to enforce the calling convention for the callsite, so that
7902 // argument ordering is enforced correctly, and that register allocation can
7903 // see that some registers may be assumed clobbered and have to preserve
7904 // them across calls to the intrinsic.
7905 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7906 sdl, NodeTys, Ops);
7907 SDValue patchableNode = SDValue(MN, 0);
7908 DAG.setRoot(patchableNode);
7909 setValue(&I, patchableNode);
7910 return;
7911 }
7912 case Intrinsic::xray_typedevent: {
7913 // Here we want to make sure that the intrinsic behaves as if it has a
7914 // specific calling convention.
7915 const auto &Triple = DAG.getTarget().getTargetTriple();
7916 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7917 return;
7918
7920
7921 // We want to say that we always want the arguments in registers.
7922 // It's unclear to me how manipulating the selection DAG here forces callers
7923 // to provide arguments in registers instead of on the stack.
7924 SDValue LogTypeId = getValue(I.getArgOperand(0));
7925 SDValue LogEntryVal = getValue(I.getArgOperand(1));
7926 SDValue StrSizeVal = getValue(I.getArgOperand(2));
7927 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7928 SDValue Chain = getRoot();
7929 Ops.push_back(LogTypeId);
7930 Ops.push_back(LogEntryVal);
7931 Ops.push_back(StrSizeVal);
7932 Ops.push_back(Chain);
7933
7934 // We need to enforce the calling convention for the callsite, so that
7935 // argument ordering is enforced correctly, and that register allocation can
7936 // see that some registers may be assumed clobbered and have to preserve
7937 // them across calls to the intrinsic.
7938 MachineSDNode *MN = DAG.getMachineNode(
7939 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7940 SDValue patchableNode = SDValue(MN, 0);
7941 DAG.setRoot(patchableNode);
7942 setValue(&I, patchableNode);
7943 return;
7944 }
7945 case Intrinsic::experimental_deoptimize:
7947 return;
7948 case Intrinsic::stepvector:
7949 visitStepVector(I);
7950 return;
7951 case Intrinsic::vector_reduce_fadd:
7952 case Intrinsic::vector_reduce_fmul:
7953 case Intrinsic::vector_reduce_add:
7954 case Intrinsic::vector_reduce_mul:
7955 case Intrinsic::vector_reduce_and:
7956 case Intrinsic::vector_reduce_or:
7957 case Intrinsic::vector_reduce_xor:
7958 case Intrinsic::vector_reduce_smax:
7959 case Intrinsic::vector_reduce_smin:
7960 case Intrinsic::vector_reduce_umax:
7961 case Intrinsic::vector_reduce_umin:
7962 case Intrinsic::vector_reduce_fmax:
7963 case Intrinsic::vector_reduce_fmin:
7964 case Intrinsic::vector_reduce_fmaximum:
7965 case Intrinsic::vector_reduce_fminimum:
7966 visitVectorReduce(I, Intrinsic);
7967 return;
7968
7969 case Intrinsic::icall_branch_funnel: {
7971 Ops.push_back(getValue(I.getArgOperand(0)));
7972
7973 int64_t Offset;
7975 I.getArgOperand(1), Offset, DAG.getDataLayout()));
7976 if (!Base)
7978 "llvm.icall.branch.funnel operand must be a GlobalValue");
7979 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7980
7981 struct BranchFunnelTarget {
7982 int64_t Offset;
7984 };
7986
7987 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7989 I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7990 if (ElemBase != Base)
7991 report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7992 "to the same GlobalValue");
7993
7994 SDValue Val = getValue(I.getArgOperand(Op + 1));
7995 auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7996 if (!GA)
7998 "llvm.icall.branch.funnel operand must be a GlobalValue");
7999 Targets.push_back({Offset, DAG.getTargetGlobalAddress(
8000 GA->getGlobal(), sdl, Val.getValueType(),
8001 GA->getOffset())});
8002 }
8003 llvm::sort(Targets,
8004 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
8005 return T1.Offset < T2.Offset;
8006 });
8007
8008 for (auto &T : Targets) {
8009 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
8010 Ops.push_back(T.Target);
8011 }
8012
8013 Ops.push_back(DAG.getRoot()); // Chain
8014 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
8015 MVT::Other, Ops),
8016 0);
8017 DAG.setRoot(N);
8018 setValue(&I, N);
8019 HasTailCall = true;
8020 return;
8021 }
8022
8023 case Intrinsic::wasm_landingpad_index:
8024 // Information this intrinsic contained has been transferred to
8025 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
8026 // delete it now.
8027 return;
8028
8029 case Intrinsic::aarch64_settag:
8030 case Intrinsic::aarch64_settag_zero: {
8031 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8032 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
8034 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
8035 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
8036 ZeroMemory);
8037 DAG.setRoot(Val);
8038 setValue(&I, Val);
8039 return;
8040 }
8041 case Intrinsic::amdgcn_cs_chain: {
8042 // At this point we don't care if it's amdgpu_cs_chain or
8043 // amdgpu_cs_chain_preserve.
8045
8046 Type *RetTy = I.getType();
8047 assert(RetTy->isVoidTy() && "Should not return");
8048
8049 SDValue Callee = getValue(I.getOperand(0));
8050
8051 // We only have 2 actual args: one for the SGPRs and one for the VGPRs.
8052 // We'll also tack the value of the EXEC mask at the end.
8054 Args.reserve(3);
8055
8056 for (unsigned Idx : {2, 3, 1}) {
8057 TargetLowering::ArgListEntry Arg(getValue(I.getOperand(Idx)),
8058 I.getOperand(Idx)->getType());
8059 Arg.setAttributes(&I, Idx);
8060 Args.push_back(Arg);
8061 }
8062
8063 assert(Args[0].IsInReg && "SGPR args should be marked inreg");
8064 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg");
8065 Args[2].IsInReg = true; // EXEC should be inreg
8066
8067 // Forward the flags and any additional arguments.
8068 for (unsigned Idx = 4; Idx < I.arg_size(); ++Idx) {
8069 TargetLowering::ArgListEntry Arg(getValue(I.getOperand(Idx)),
8070 I.getOperand(Idx)->getType());
8071 Arg.setAttributes(&I, Idx);
8072 Args.push_back(Arg);
8073 }
8074
8075 TargetLowering::CallLoweringInfo CLI(DAG);
8076 CLI.setDebugLoc(getCurSDLoc())
8077 .setChain(getRoot())
8078 .setCallee(CC, RetTy, Callee, std::move(Args))
8079 .setNoReturn(true)
8080 .setTailCall(true)
8081 .setConvergent(I.isConvergent());
8082 CLI.CB = &I;
8083 std::pair<SDValue, SDValue> Result =
8084 lowerInvokable(CLI, /*EHPadBB*/ nullptr);
8085 (void)Result;
8086 assert(!Result.first.getNode() && !Result.second.getNode() &&
8087 "Should've lowered as tail call");
8088
8089 HasTailCall = true;
8090 return;
8091 }
8092 case Intrinsic::amdgcn_call_whole_wave: {
8094 bool isTailCall = I.isTailCall();
8095
8096 // The first argument is the callee. Skip it when assembling the call args.
8097 for (unsigned Idx = 1; Idx < I.arg_size(); ++Idx) {
8098 TargetLowering::ArgListEntry Arg(getValue(I.getArgOperand(Idx)),
8099 I.getArgOperand(Idx)->getType());
8100 Arg.setAttributes(&I, Idx);
8101
8102 // If we have an explicit sret argument that is an Instruction, (i.e., it
8103 // might point to function-local memory), we can't meaningfully tail-call.
8104 if (Arg.IsSRet && isa<Instruction>(I.getArgOperand(Idx)))
8105 isTailCall = false;
8106
8107 Args.push_back(Arg);
8108 }
8109
8110 SDValue ConvControlToken;
8111 if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
8112 auto *Token = Bundle->Inputs[0].get();
8113 ConvControlToken = getValue(Token);
8114 }
8115
8116 TargetLowering::CallLoweringInfo CLI(DAG);
8117 CLI.setDebugLoc(getCurSDLoc())
8118 .setChain(getRoot())
8119 .setCallee(CallingConv::AMDGPU_Gfx_WholeWave, I.getType(),
8120 getValue(I.getArgOperand(0)), std::move(Args))
8121 .setTailCall(isTailCall && canTailCall(I))
8122 .setIsPreallocated(
8123 I.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8124 .setConvergent(I.isConvergent())
8125 .setConvergenceControlToken(ConvControlToken);
8126 CLI.CB = &I;
8127
8128 std::pair<SDValue, SDValue> Result =
8129 lowerInvokable(CLI, /*EHPadBB=*/nullptr);
8130
8131 if (Result.first.getNode())
8132 setValue(&I, Result.first);
8133 return;
8134 }
8135 case Intrinsic::ptrmask: {
8136 SDValue Ptr = getValue(I.getOperand(0));
8137 SDValue Mask = getValue(I.getOperand(1));
8138
8139 // On arm64_32, pointers are 32 bits when stored in memory, but
8140 // zero-extended to 64 bits when in registers. Thus the mask is 32 bits to
8141 // match the index type, but the pointer is 64 bits, so the mask must be
8142 // zero-extended up to 64 bits to match the pointer.
8143 EVT PtrVT =
8144 TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
8145 EVT MemVT =
8146 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
8147 assert(PtrVT == Ptr.getValueType());
8148 if (Mask.getValueType().getFixedSizeInBits() < MemVT.getFixedSizeInBits()) {
8149 // For AMDGPU buffer descriptors the mask is 48 bits, but the pointer is
8150 // 128-bit, so we have to pad the mask with ones for unused bits.
8151 auto HighOnes = DAG.getNode(
8152 ISD::SHL, sdl, PtrVT, DAG.getAllOnesConstant(sdl, PtrVT),
8153 DAG.getShiftAmountConstant(Mask.getValueType().getFixedSizeInBits(),
8154 PtrVT, sdl));
8155 Mask = DAG.getNode(ISD::OR, sdl, PtrVT,
8156 DAG.getZExtOrTrunc(Mask, sdl, PtrVT), HighOnes);
8157 } else if (Mask.getValueType() != PtrVT)
8158 Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT);
8159
8160 assert(Mask.getValueType() == PtrVT);
8161 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask));
8162 return;
8163 }
8164 case Intrinsic::threadlocal_address: {
8165 setValue(&I, getValue(I.getOperand(0)));
8166 return;
8167 }
8168 case Intrinsic::get_active_lane_mask: {
8169 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8170 SDValue Index = getValue(I.getOperand(0));
8171 SDValue TripCount = getValue(I.getOperand(1));
8172 EVT ElementVT = Index.getValueType();
8173
8174 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
8175 setValue(&I, DAG.getNode(ISD::GET_ACTIVE_LANE_MASK, sdl, CCVT, Index,
8176 TripCount));
8177 return;
8178 }
8179
8180 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
8181 CCVT.getVectorElementCount());
8182
8183 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
8184 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
8185 SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
8186 SDValue VectorInduction = DAG.getNode(
8187 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
8188 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
8189 VectorTripCount, ISD::CondCode::SETULT);
8190 setValue(&I, SetCC);
8191 return;
8192 }
8193 case Intrinsic::experimental_get_vector_length: {
8194 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
8195 "Expected positive VF");
8196 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
8197 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
8198
8199 SDValue Count = getValue(I.getOperand(0));
8200 EVT CountVT = Count.getValueType();
8201
8202 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
8203 visitTargetIntrinsic(I, Intrinsic);
8204 return;
8205 }
8206
8207 // Expand to a umin between the trip count and the maximum elements the type
8208 // can hold.
8209 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8210
8211 // Extend the trip count to at least the result VT.
8212 if (CountVT.bitsLT(VT)) {
8213 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
8214 CountVT = VT;
8215 }
8216
8217 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
8218 ElementCount::get(VF, IsScalable));
8219
8220 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
8221 // Clip to the result type if needed.
8222 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
8223
8224 setValue(&I, Trunc);
8225 return;
8226 }
8227 case Intrinsic::vector_partial_reduce_add: {
8228 SDValue Acc = getValue(I.getOperand(0));
8229 SDValue Input = getValue(I.getOperand(1));
8230 setValue(&I,
8231 DAG.getNode(ISD::PARTIAL_REDUCE_UMLA, sdl, Acc.getValueType(), Acc,
8232 Input, DAG.getConstant(1, sdl, Input.getValueType())));
8233 return;
8234 }
8235 case Intrinsic::vector_partial_reduce_fadd: {
8236 SDValue Acc = getValue(I.getOperand(0));
8237 SDValue Input = getValue(I.getOperand(1));
8238 setValue(&I, DAG.getNode(
8239 ISD::PARTIAL_REDUCE_FMLA, sdl, Acc.getValueType(), Acc,
8240 Input, DAG.getConstantFP(1.0, sdl, Input.getValueType())));
8241 return;
8242 }
8243 case Intrinsic::experimental_cttz_elts: {
8244 auto DL = getCurSDLoc();
8245 SDValue Op = getValue(I.getOperand(0));
8246 EVT OpVT = Op.getValueType();
8247
8248 if (!TLI.shouldExpandCttzElements(OpVT)) {
8249 visitTargetIntrinsic(I, Intrinsic);
8250 return;
8251 }
8252
8253 if (OpVT.getScalarType() != MVT::i1) {
8254 // Compare the input vector elements to zero & use to count trailing zeros
8255 SDValue AllZero = DAG.getConstant(0, DL, OpVT);
8256 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
8257 OpVT.getVectorElementCount());
8258 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE);
8259 }
8260
8261 // If the zero-is-poison flag is set, we can assume the upper limit
8262 // of the result is VF-1.
8263 bool ZeroIsPoison =
8264 !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero();
8265 ConstantRange VScaleRange(1, true); // Dummy value.
8266 if (isa<ScalableVectorType>(I.getOperand(0)->getType()))
8267 VScaleRange = getVScaleRange(I.getCaller(), 64);
8268 unsigned EltWidth = TLI.getBitWidthForCttzElements(
8269 I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange);
8270
8271 MVT NewEltTy = MVT::getIntegerVT(EltWidth);
8272
8273 // Create the new vector type & get the vector length
8274 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy,
8275 OpVT.getVectorElementCount());
8276
8277 SDValue VL =
8278 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount());
8279
8280 SDValue StepVec = DAG.getStepVector(DL, NewVT);
8281 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL);
8282 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec);
8283 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op);
8284 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext);
8285 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And);
8286 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max);
8287
8288 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
8289 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy);
8290
8291 setValue(&I, Ret);
8292 return;
8293 }
8294 case Intrinsic::vector_insert: {
8295 SDValue Vec = getValue(I.getOperand(0));
8296 SDValue SubVec = getValue(I.getOperand(1));
8297 SDValue Index = getValue(I.getOperand(2));
8298
8299 // The intrinsic's index type is i64, but the SDNode requires an index type
8300 // suitable for the target. Convert the index as required.
8301 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8302 if (Index.getValueType() != VectorIdxTy)
8303 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8304
8305 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8306 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
8307 Index));
8308 return;
8309 }
8310 case Intrinsic::vector_extract: {
8311 SDValue Vec = getValue(I.getOperand(0));
8312 SDValue Index = getValue(I.getOperand(1));
8313 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8314
8315 // The intrinsic's index type is i64, but the SDNode requires an index type
8316 // suitable for the target. Convert the index as required.
8317 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8318 if (Index.getValueType() != VectorIdxTy)
8319 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8320
8321 setValue(&I,
8322 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
8323 return;
8324 }
8325 case Intrinsic::experimental_vector_match: {
8326 SDValue Op1 = getValue(I.getOperand(0));
8327 SDValue Op2 = getValue(I.getOperand(1));
8328 SDValue Mask = getValue(I.getOperand(2));
8329 EVT Op1VT = Op1.getValueType();
8330 EVT Op2VT = Op2.getValueType();
8331 EVT ResVT = Mask.getValueType();
8332 unsigned SearchSize = Op2VT.getVectorNumElements();
8333
8334 // If the target has native support for this vector match operation, lower
8335 // the intrinsic untouched; otherwise, expand it below.
8336 if (!TLI.shouldExpandVectorMatch(Op1VT, SearchSize)) {
8337 visitTargetIntrinsic(I, Intrinsic);
8338 return;
8339 }
8340
8341 SDValue Ret = DAG.getConstant(0, sdl, ResVT);
8342
8343 for (unsigned i = 0; i < SearchSize; ++i) {
8344 SDValue Op2Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl,
8345 Op2VT.getVectorElementType(), Op2,
8346 DAG.getVectorIdxConstant(i, sdl));
8347 SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, sdl, Op1VT, Op2Elem);
8348 SDValue Cmp = DAG.getSetCC(sdl, ResVT, Op1, Splat, ISD::SETEQ);
8349 Ret = DAG.getNode(ISD::OR, sdl, ResVT, Ret, Cmp);
8350 }
8351
8352 setValue(&I, DAG.getNode(ISD::AND, sdl, ResVT, Ret, Mask));
8353 return;
8354 }
8355 case Intrinsic::vector_reverse:
8356 visitVectorReverse(I);
8357 return;
8358 case Intrinsic::vector_splice:
8359 visitVectorSplice(I);
8360 return;
8361 case Intrinsic::callbr_landingpad:
8362 visitCallBrLandingPad(I);
8363 return;
8364 case Intrinsic::vector_interleave2:
8365 visitVectorInterleave(I, 2);
8366 return;
8367 case Intrinsic::vector_interleave3:
8368 visitVectorInterleave(I, 3);
8369 return;
8370 case Intrinsic::vector_interleave4:
8371 visitVectorInterleave(I, 4);
8372 return;
8373 case Intrinsic::vector_interleave5:
8374 visitVectorInterleave(I, 5);
8375 return;
8376 case Intrinsic::vector_interleave6:
8377 visitVectorInterleave(I, 6);
8378 return;
8379 case Intrinsic::vector_interleave7:
8380 visitVectorInterleave(I, 7);
8381 return;
8382 case Intrinsic::vector_interleave8:
8383 visitVectorInterleave(I, 8);
8384 return;
8385 case Intrinsic::vector_deinterleave2:
8386 visitVectorDeinterleave(I, 2);
8387 return;
8388 case Intrinsic::vector_deinterleave3:
8389 visitVectorDeinterleave(I, 3);
8390 return;
8391 case Intrinsic::vector_deinterleave4:
8392 visitVectorDeinterleave(I, 4);
8393 return;
8394 case Intrinsic::vector_deinterleave5:
8395 visitVectorDeinterleave(I, 5);
8396 return;
8397 case Intrinsic::vector_deinterleave6:
8398 visitVectorDeinterleave(I, 6);
8399 return;
8400 case Intrinsic::vector_deinterleave7:
8401 visitVectorDeinterleave(I, 7);
8402 return;
8403 case Intrinsic::vector_deinterleave8:
8404 visitVectorDeinterleave(I, 8);
8405 return;
8406 case Intrinsic::experimental_vector_compress:
8407 setValue(&I, DAG.getNode(ISD::VECTOR_COMPRESS, sdl,
8408 getValue(I.getArgOperand(0)).getValueType(),
8409 getValue(I.getArgOperand(0)),
8410 getValue(I.getArgOperand(1)),
8411 getValue(I.getArgOperand(2)), Flags));
8412 return;
8413 case Intrinsic::experimental_convergence_anchor:
8414 case Intrinsic::experimental_convergence_entry:
8415 case Intrinsic::experimental_convergence_loop:
8416 visitConvergenceControl(I, Intrinsic);
8417 return;
8418 case Intrinsic::experimental_vector_histogram_add: {
8419 visitVectorHistogram(I, Intrinsic);
8420 return;
8421 }
8422 case Intrinsic::experimental_vector_extract_last_active: {
8423 visitVectorExtractLastActive(I, Intrinsic);
8424 return;
8425 }
8426 case Intrinsic::loop_dependence_war_mask:
8427 setValue(&I,
8429 EVT::getEVT(I.getType()), getValue(I.getOperand(0)),
8430 getValue(I.getOperand(1)), getValue(I.getOperand(2))));
8431 return;
8432 case Intrinsic::loop_dependence_raw_mask:
8433 setValue(&I,
8435 EVT::getEVT(I.getType()), getValue(I.getOperand(0)),
8436 getValue(I.getOperand(1)), getValue(I.getOperand(2))));
8437 return;
8438 }
8439}
8440
8441void SelectionDAGBuilder::pushFPOpOutChain(SDValue Result,
8443 assert(Result.getNode()->getNumValues() == 2);
8444 SDValue OutChain = Result.getValue(1);
8445 assert(OutChain.getValueType() == MVT::Other);
8446
8447 // Instead of updating the root immediately, push the produced chain to the
8448 // appropriate list, deferring the update until the root is requested. In this
8449 // case, the nodes from the lists are chained using TokenFactor, indicating
8450 // that the operations are independent.
8451 //
8452 // In particular, the root is updated before any call that might access the
8453 // floating-point environment, except for constrained intrinsics.
8454 switch (EB) {
8457 PendingConstrainedFP.push_back(OutChain);
8458 break;
8460 PendingConstrainedFPStrict.push_back(OutChain);
8461 break;
8462 }
8463}
8464
8465void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
8466 const ConstrainedFPIntrinsic &FPI) {
8467 SDLoc sdl = getCurSDLoc();
8468
8469 // We do not need to serialize constrained FP intrinsics against
8470 // each other or against (nonvolatile) loads, so they can be
8471 // chained like loads.
8473 SDValue Chain = getFPOperationRoot(EB);
8475 Opers.push_back(Chain);
8476 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I)
8477 Opers.push_back(getValue(FPI.getArgOperand(I)));
8478
8479 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8480 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
8481 SDVTList VTs = DAG.getVTList(VT, MVT::Other);
8482
8483 SDNodeFlags Flags;
8485 Flags.setNoFPExcept(true);
8486
8487 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
8488 Flags.copyFMF(*FPOp);
8489
8490 unsigned Opcode;
8491 switch (FPI.getIntrinsicID()) {
8492 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
8493#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
8494 case Intrinsic::INTRINSIC: \
8495 Opcode = ISD::STRICT_##DAGN; \
8496 break;
8497#include "llvm/IR/ConstrainedOps.def"
8498 case Intrinsic::experimental_constrained_fmuladd: {
8499 Opcode = ISD::STRICT_FMA;
8500 // Break fmuladd into fmul and fadd.
8501 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
8502 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
8503 Opers.pop_back();
8504 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
8505 pushFPOpOutChain(Mul, EB);
8506 Opcode = ISD::STRICT_FADD;
8507 Opers.clear();
8508 Opers.push_back(Mul.getValue(1));
8509 Opers.push_back(Mul.getValue(0));
8510 Opers.push_back(getValue(FPI.getArgOperand(2)));
8511 }
8512 break;
8513 }
8514 }
8515
8516 // A few strict DAG nodes carry additional operands that are not
8517 // set up by the default code above.
8518 switch (Opcode) {
8519 default: break;
8521 Opers.push_back(
8522 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
8523 break;
8524 case ISD::STRICT_FSETCC:
8525 case ISD::STRICT_FSETCCS: {
8526 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
8527 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
8528 if (TM.Options.NoNaNsFPMath)
8529 Condition = getFCmpCodeWithoutNaN(Condition);
8530 Opers.push_back(DAG.getCondCode(Condition));
8531 break;
8532 }
8533 }
8534
8535 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
8536 pushFPOpOutChain(Result, EB);
8537
8538 SDValue FPResult = Result.getValue(0);
8539 setValue(&FPI, FPResult);
8540}
8541
8542static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
8543 std::optional<unsigned> ResOPC;
8544 switch (VPIntrin.getIntrinsicID()) {
8545 case Intrinsic::vp_ctlz: {
8546 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8547 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
8548 break;
8549 }
8550 case Intrinsic::vp_cttz: {
8551 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8552 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
8553 break;
8554 }
8555 case Intrinsic::vp_cttz_elts: {
8556 bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8557 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS;
8558 break;
8559 }
8560#define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \
8561 case Intrinsic::VPID: \
8562 ResOPC = ISD::VPSD; \
8563 break;
8564#include "llvm/IR/VPIntrinsics.def"
8565 }
8566
8567 if (!ResOPC)
8569 "Inconsistency: no SDNode available for this VPIntrinsic!");
8570
8571 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
8572 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
8573 if (VPIntrin.getFastMathFlags().allowReassoc())
8574 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
8575 : ISD::VP_REDUCE_FMUL;
8576 }
8577
8578 return *ResOPC;
8579}
8580
8581void SelectionDAGBuilder::visitVPLoad(
8582 const VPIntrinsic &VPIntrin, EVT VT,
8583 const SmallVectorImpl<SDValue> &OpValues) {
8584 SDLoc DL = getCurSDLoc();
8585 Value *PtrOperand = VPIntrin.getArgOperand(0);
8586 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8587 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8588 const MDNode *Ranges = getRangeMetadata(VPIntrin);
8589 SDValue LD;
8590 // Do not serialize variable-length loads of constant memory with
8591 // anything.
8592 if (!Alignment)
8593 Alignment = DAG.getEVTAlign(VT);
8594 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8595 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML);
8596 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8597 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8598 MachineMemOperand::Flags MMOFlags =
8599 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8600 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8601 MachinePointerInfo(PtrOperand), MMOFlags,
8602 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8603 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8604 MMO, false /*IsExpanding */);
8605 if (AddToChain)
8606 PendingLoads.push_back(LD.getValue(1));
8607 setValue(&VPIntrin, LD);
8608}
8609
8610void SelectionDAGBuilder::visitVPLoadFF(
8611 const VPIntrinsic &VPIntrin, EVT VT, EVT EVLVT,
8612 const SmallVectorImpl<SDValue> &OpValues) {
8613 assert(OpValues.size() == 3 && "Unexpected number of operands");
8614 SDLoc DL = getCurSDLoc();
8615 Value *PtrOperand = VPIntrin.getArgOperand(0);
8616 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8617 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8618 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
8619 SDValue LD;
8620 // Do not serialize variable-length loads of constant memory with
8621 // anything.
8622 if (!Alignment)
8623 Alignment = DAG.getEVTAlign(VT);
8624 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8625 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML);
8626 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8627 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8628 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
8629 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8630 LD = DAG.getLoadFFVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8631 MMO);
8632 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, EVLVT, LD.getValue(1));
8633 if (AddToChain)
8634 PendingLoads.push_back(LD.getValue(2));
8635 setValue(&VPIntrin, DAG.getMergeValues({LD.getValue(0), Trunc}, DL));
8636}
8637
8638void SelectionDAGBuilder::visitVPGather(
8639 const VPIntrinsic &VPIntrin, EVT VT,
8640 const SmallVectorImpl<SDValue> &OpValues) {
8641 SDLoc DL = getCurSDLoc();
8642 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8643 Value *PtrOperand = VPIntrin.getArgOperand(0);
8644 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8645 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8646 const MDNode *Ranges = getRangeMetadata(VPIntrin);
8647 SDValue LD;
8648 if (!Alignment)
8649 Alignment = DAG.getEVTAlign(VT.getScalarType());
8650 unsigned AS =
8651 PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8652 MachineMemOperand::Flags MMOFlags =
8653 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8654 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8655 MachinePointerInfo(AS), MMOFlags, LocationSize::beforeOrAfterPointer(),
8656 *Alignment, AAInfo, Ranges);
8657 SDValue Base, Index, Scale;
8658 bool UniformBase =
8659 getUniformBase(PtrOperand, Base, Index, Scale, this, VPIntrin.getParent(),
8660 VT.getScalarStoreSize());
8661 if (!UniformBase) {
8662 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8663 Index = getValue(PtrOperand);
8664 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8665 }
8666 EVT IdxVT = Index.getValueType();
8667 EVT EltTy = IdxVT.getVectorElementType();
8668 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8669 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8670 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8671 }
8672 LD = DAG.getGatherVP(
8673 DAG.getVTList(VT, MVT::Other), VT, DL,
8674 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
8676 PendingLoads.push_back(LD.getValue(1));
8677 setValue(&VPIntrin, LD);
8678}
8679
8680void SelectionDAGBuilder::visitVPStore(
8681 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8682 SDLoc DL = getCurSDLoc();
8683 Value *PtrOperand = VPIntrin.getArgOperand(1);
8684 EVT VT = OpValues[0].getValueType();
8685 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8686 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8687 SDValue ST;
8688 if (!Alignment)
8689 Alignment = DAG.getEVTAlign(VT);
8690 SDValue Ptr = OpValues[1];
8691 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
8692 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8693 MachineMemOperand::Flags MMOFlags =
8694 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8695 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8696 MachinePointerInfo(PtrOperand), MMOFlags,
8697 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8698 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
8699 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
8700 /* IsTruncating */ false, /*IsCompressing*/ false);
8701 DAG.setRoot(ST);
8702 setValue(&VPIntrin, ST);
8703}
8704
8705void SelectionDAGBuilder::visitVPScatter(
8706 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8707 SDLoc DL = getCurSDLoc();
8708 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8709 Value *PtrOperand = VPIntrin.getArgOperand(1);
8710 EVT VT = OpValues[0].getValueType();
8711 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8712 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8713 SDValue ST;
8714 if (!Alignment)
8715 Alignment = DAG.getEVTAlign(VT.getScalarType());
8716 unsigned AS =
8717 PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8718 MachineMemOperand::Flags MMOFlags =
8719 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8720 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8721 MachinePointerInfo(AS), MMOFlags, LocationSize::beforeOrAfterPointer(),
8722 *Alignment, AAInfo);
8723 SDValue Base, Index, Scale;
8724 bool UniformBase =
8725 getUniformBase(PtrOperand, Base, Index, Scale, this, VPIntrin.getParent(),
8726 VT.getScalarStoreSize());
8727 if (!UniformBase) {
8728 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8729 Index = getValue(PtrOperand);
8730 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8731 }
8732 EVT IdxVT = Index.getValueType();
8733 EVT EltTy = IdxVT.getVectorElementType();
8734 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8735 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8736 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8737 }
8738 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
8739 {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8740 OpValues[2], OpValues[3]},
8741 MMO, ISD::SIGNED_SCALED);
8742 DAG.setRoot(ST);
8743 setValue(&VPIntrin, ST);
8744}
8745
8746void SelectionDAGBuilder::visitVPStridedLoad(
8747 const VPIntrinsic &VPIntrin, EVT VT,
8748 const SmallVectorImpl<SDValue> &OpValues) {
8749 SDLoc DL = getCurSDLoc();
8750 Value *PtrOperand = VPIntrin.getArgOperand(0);
8751 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8752 if (!Alignment)
8753 Alignment = DAG.getEVTAlign(VT.getScalarType());
8754 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8755 const MDNode *Ranges = getRangeMetadata(VPIntrin);
8756 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8757 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML);
8758 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8759 unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8760 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8761 MachineMemOperand::Flags MMOFlags =
8762 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8763 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8764 MachinePointerInfo(AS), MMOFlags, LocationSize::beforeOrAfterPointer(),
8765 *Alignment, AAInfo, Ranges);
8766
8767 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
8768 OpValues[2], OpValues[3], MMO,
8769 false /*IsExpanding*/);
8770
8771 if (AddToChain)
8772 PendingLoads.push_back(LD.getValue(1));
8773 setValue(&VPIntrin, LD);
8774}
8775
8776void SelectionDAGBuilder::visitVPStridedStore(
8777 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8778 SDLoc DL = getCurSDLoc();
8779 Value *PtrOperand = VPIntrin.getArgOperand(1);
8780 EVT VT = OpValues[0].getValueType();
8781 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8782 if (!Alignment)
8783 Alignment = DAG.getEVTAlign(VT.getScalarType());
8784 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8785 unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8786 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8787 MachineMemOperand::Flags MMOFlags =
8788 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8789 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8790 MachinePointerInfo(AS), MMOFlags, LocationSize::beforeOrAfterPointer(),
8791 *Alignment, AAInfo);
8792
8793 SDValue ST = DAG.getStridedStoreVP(
8794 getMemoryRoot(), DL, OpValues[0], OpValues[1],
8795 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8796 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
8797 /*IsCompressing*/ false);
8798
8799 DAG.setRoot(ST);
8800 setValue(&VPIntrin, ST);
8801}
8802
8803void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
8804 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8805 SDLoc DL = getCurSDLoc();
8806
8807 ISD::CondCode Condition;
8809 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
8810 if (IsFP) {
8811 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
8812 // flags, but calls that don't return floating-point types can't be
8813 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
8814 Condition = getFCmpCondCode(CondCode);
8815 if (TM.Options.NoNaNsFPMath)
8816 Condition = getFCmpCodeWithoutNaN(Condition);
8817 } else {
8818 Condition = getICmpCondCode(CondCode);
8819 }
8820
8821 SDValue Op1 = getValue(VPIntrin.getOperand(0));
8822 SDValue Op2 = getValue(VPIntrin.getOperand(1));
8823 // #2 is the condition code
8824 SDValue MaskOp = getValue(VPIntrin.getOperand(3));
8825 SDValue EVL = getValue(VPIntrin.getOperand(4));
8826 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8827 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8828 "Unexpected target EVL type");
8829 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
8830
8831 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8832 VPIntrin.getType());
8833 setValue(&VPIntrin,
8834 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8835}
8836
8837void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8838 const VPIntrinsic &VPIntrin) {
8839 SDLoc DL = getCurSDLoc();
8840 unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
8841
8842 auto IID = VPIntrin.getIntrinsicID();
8843
8844 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
8845 return visitVPCmp(*CmpI);
8846
8847 SmallVector<EVT, 4> ValueVTs;
8848 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8849 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
8850 SDVTList VTs = DAG.getVTList(ValueVTs);
8851
8852 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
8853
8854 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8855 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8856 "Unexpected target EVL type");
8857
8858 // Request operands.
8859 SmallVector<SDValue, 7> OpValues;
8860 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
8861 auto Op = getValue(VPIntrin.getArgOperand(I));
8862 if (I == EVLParamPos)
8863 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
8864 OpValues.push_back(Op);
8865 }
8866
8867 switch (Opcode) {
8868 default: {
8869 SDNodeFlags SDFlags;
8870 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8871 SDFlags.copyFMF(*FPMO);
8872 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
8873 setValue(&VPIntrin, Result);
8874 break;
8875 }
8876 case ISD::VP_LOAD:
8877 visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8878 break;
8879 case ISD::VP_LOAD_FF:
8880 visitVPLoadFF(VPIntrin, ValueVTs[0], ValueVTs[1], OpValues);
8881 break;
8882 case ISD::VP_GATHER:
8883 visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8884 break;
8885 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8886 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8887 break;
8888 case ISD::VP_STORE:
8889 visitVPStore(VPIntrin, OpValues);
8890 break;
8891 case ISD::VP_SCATTER:
8892 visitVPScatter(VPIntrin, OpValues);
8893 break;
8894 case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8895 visitVPStridedStore(VPIntrin, OpValues);
8896 break;
8897 case ISD::VP_FMULADD: {
8898 assert(OpValues.size() == 5 && "Unexpected number of operands");
8899 SDNodeFlags SDFlags;
8900 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8901 SDFlags.copyFMF(*FPMO);
8902 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
8903 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
8904 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
8905 } else {
8906 SDValue Mul = DAG.getNode(
8907 ISD::VP_FMUL, DL, VTs,
8908 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8909 SDValue Add =
8910 DAG.getNode(ISD::VP_FADD, DL, VTs,
8911 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8912 setValue(&VPIntrin, Add);
8913 }
8914 break;
8915 }
8916 case ISD::VP_IS_FPCLASS: {
8917 const DataLayout DLayout = DAG.getDataLayout();
8918 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
8919 auto Constant = OpValues[1]->getAsZExtVal();
8920 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
8921 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
8922 {OpValues[0], Check, OpValues[2], OpValues[3]});
8923 setValue(&VPIntrin, V);
8924 return;
8925 }
8926 case ISD::VP_INTTOPTR: {
8927 SDValue N = OpValues[0];
8928 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
8929 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
8930 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8931 OpValues[2]);
8932 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8933 OpValues[2]);
8934 setValue(&VPIntrin, N);
8935 break;
8936 }
8937 case ISD::VP_PTRTOINT: {
8938 SDValue N = OpValues[0];
8939 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8940 VPIntrin.getType());
8941 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8942 VPIntrin.getOperand(0)->getType());
8943 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8944 OpValues[2]);
8945 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8946 OpValues[2]);
8947 setValue(&VPIntrin, N);
8948 break;
8949 }
8950 case ISD::VP_ABS:
8951 case ISD::VP_CTLZ:
8952 case ISD::VP_CTLZ_ZERO_UNDEF:
8953 case ISD::VP_CTTZ:
8954 case ISD::VP_CTTZ_ZERO_UNDEF:
8955 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
8956 case ISD::VP_CTTZ_ELTS: {
8957 SDValue Result =
8958 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8959 setValue(&VPIntrin, Result);
8960 break;
8961 }
8962 }
8963}
8964
8965SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8966 const BasicBlock *EHPadBB,
8967 MCSymbol *&BeginLabel) {
8968 MachineFunction &MF = DAG.getMachineFunction();
8969
8970 // Insert a label before the invoke call to mark the try range. This can be
8971 // used to detect deletion of the invoke via the MachineModuleInfo.
8972 BeginLabel = MF.getContext().createTempSymbol();
8973
8974 // For SjLj, keep track of which landing pads go with which invokes
8975 // so as to maintain the ordering of pads in the LSDA.
8976 unsigned CallSiteIndex = FuncInfo.getCurrentCallSite();
8977 if (CallSiteIndex) {
8978 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8979 LPadToCallSiteMap[FuncInfo.getMBB(EHPadBB)].push_back(CallSiteIndex);
8980
8981 // Now that the call site is handled, stop tracking it.
8982 FuncInfo.setCurrentCallSite(0);
8983 }
8984
8985 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8986}
8987
8988SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8989 const BasicBlock *EHPadBB,
8990 MCSymbol *BeginLabel) {
8991 assert(BeginLabel && "BeginLabel should've been set");
8992
8993 MachineFunction &MF = DAG.getMachineFunction();
8994
8995 // Insert a label at the end of the invoke call to mark the try range. This
8996 // can be used to detect deletion of the invoke via the MachineModuleInfo.
8997 MCSymbol *EndLabel = MF.getContext().createTempSymbol();
8998 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8999
9000 // Inform MachineModuleInfo of range.
9001 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
9002 // There is a platform (e.g. wasm) that uses funclet style IR but does not
9003 // actually use outlined funclets and their LSDA info style.
9004 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
9005 assert(II && "II should've been set");
9006 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
9007 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
9008 } else if (!isScopedEHPersonality(Pers)) {
9009 assert(EHPadBB);
9010 MF.addInvoke(FuncInfo.getMBB(EHPadBB), BeginLabel, EndLabel);
9011 }
9012
9013 return Chain;
9014}
9015
9016std::pair<SDValue, SDValue>
9018 const BasicBlock *EHPadBB) {
9019 MCSymbol *BeginLabel = nullptr;
9020
9021 if (EHPadBB) {
9022 // Both PendingLoads and PendingExports must be flushed here;
9023 // this call might not return.
9024 (void)getRoot();
9025 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
9026 CLI.setChain(getRoot());
9027 }
9028
9029 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9030 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
9031
9032 assert((CLI.IsTailCall || Result.second.getNode()) &&
9033 "Non-null chain expected with non-tail call!");
9034 assert((Result.second.getNode() || !Result.first.getNode()) &&
9035 "Null value expected with tail call!");
9036
9037 if (!Result.second.getNode()) {
9038 // As a special case, a null chain means that a tail call has been emitted
9039 // and the DAG root is already updated.
9040 HasTailCall = true;
9041
9042 // Since there's no actual continuation from this block, nothing can be
9043 // relying on us setting vregs for them.
9044 PendingExports.clear();
9045 } else {
9046 DAG.setRoot(Result.second);
9047 }
9048
9049 if (EHPadBB) {
9050 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
9051 BeginLabel));
9052 Result.second = getRoot();
9053 }
9054
9055 return Result;
9056}
9057
9059 bool isMustTailCall = CB.isMustTailCall();
9060
9061 // Avoid emitting tail calls in functions with the disable-tail-calls
9062 // attribute.
9063 const Function *Caller = CB.getParent()->getParent();
9064 if (!isMustTailCall &&
9065 Caller->getFnAttribute("disable-tail-calls").getValueAsBool())
9066 return false;
9067
9068 // We can't tail call inside a function with a swifterror argument. Lowering
9069 // does not support this yet. It would have to move into the swifterror
9070 // register before the call.
9071 if (DAG.getTargetLoweringInfo().supportSwiftError() &&
9072 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
9073 return false;
9074
9075 // Check if target-independent constraints permit a tail call here.
9076 // Target-dependent constraints are checked within TLI->LowerCallTo.
9077 return isInTailCallPosition(CB, DAG.getTarget());
9078}
9079
9081 bool isTailCall, bool isMustTailCall,
9082 const BasicBlock *EHPadBB,
9083 const TargetLowering::PtrAuthInfo *PAI) {
9084 auto &DL = DAG.getDataLayout();
9085 FunctionType *FTy = CB.getFunctionType();
9086 Type *RetTy = CB.getType();
9087
9089 Args.reserve(CB.arg_size());
9090
9091 const Value *SwiftErrorVal = nullptr;
9092 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9093
9094 if (isTailCall)
9095 isTailCall = canTailCall(CB);
9096
9097 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
9098 const Value *V = *I;
9099
9100 // Skip empty types
9101 if (V->getType()->isEmptyTy())
9102 continue;
9103
9104 SDValue ArgNode = getValue(V);
9105 TargetLowering::ArgListEntry Entry(ArgNode, V->getType());
9106 Entry.setAttributes(&CB, I - CB.arg_begin());
9107
9108 // Use swifterror virtual register as input to the call.
9109 if (Entry.IsSwiftError && TLI.supportSwiftError()) {
9110 SwiftErrorVal = V;
9111 // We find the virtual register for the actual swifterror argument.
9112 // Instead of using the Value, we use the virtual register instead.
9113 Entry.Node =
9114 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
9115 EVT(TLI.getPointerTy(DL)));
9116 }
9117
9118 Args.push_back(Entry);
9119
9120 // If we have an explicit sret argument that is an Instruction, (i.e., it
9121 // might point to function-local memory), we can't meaningfully tail-call.
9122 if (Entry.IsSRet && isa<Instruction>(V))
9123 isTailCall = false;
9124 }
9125
9126 // If call site has a cfguardtarget operand bundle, create and add an
9127 // additional ArgListEntry.
9128 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
9129 Value *V = Bundle->Inputs[0];
9131 Entry.IsCFGuardTarget = true;
9132 Args.push_back(Entry);
9133 }
9134
9135 // Disable tail calls if there is an swifterror argument. Targets have not
9136 // been updated to support tail calls.
9137 if (TLI.supportSwiftError() && SwiftErrorVal)
9138 isTailCall = false;
9139
9140 ConstantInt *CFIType = nullptr;
9141 if (CB.isIndirectCall()) {
9142 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
9143 if (!TLI.supportKCFIBundles())
9145 "Target doesn't support calls with kcfi operand bundles.");
9146 CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
9147 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
9148 }
9149 }
9150
9151 SDValue ConvControlToken;
9152 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) {
9153 auto *Token = Bundle->Inputs[0].get();
9154 ConvControlToken = getValue(Token);
9155 }
9156
9157 GlobalValue *DeactivationSymbol = nullptr;
9159 DeactivationSymbol = cast<GlobalValue>(Bundle->Inputs[0].get());
9160 }
9161
9164 .setChain(getRoot())
9165 .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
9166 .setTailCall(isTailCall)
9170 .setCFIType(CFIType)
9171 .setConvergenceControlToken(ConvControlToken)
9172 .setDeactivationSymbol(DeactivationSymbol);
9173
9174 // Set the pointer authentication info if we have it.
9175 if (PAI) {
9176 if (!TLI.supportPtrAuthBundles())
9178 "This target doesn't support calls with ptrauth operand bundles.");
9179 CLI.setPtrAuth(*PAI);
9180 }
9181
9182 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9183
9184 if (Result.first.getNode()) {
9185 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
9186 Result.first = lowerNoFPClassToAssertNoFPClass(DAG, CB, Result.first);
9187 setValue(&CB, Result.first);
9188 }
9189
9190 // The last element of CLI.InVals has the SDValue for swifterror return.
9191 // Here we copy it to a virtual register and update SwiftErrorMap for
9192 // book-keeping.
9193 if (SwiftErrorVal && TLI.supportSwiftError()) {
9194 // Get the last element of InVals.
9195 SDValue Src = CLI.InVals.back();
9196 Register VReg =
9197 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
9198 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
9199 DAG.setRoot(CopyNode);
9200 }
9201}
9202
9203static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
9204 SelectionDAGBuilder &Builder) {
9205 // Check to see if this load can be trivially constant folded, e.g. if the
9206 // input is from a string literal.
9207 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
9208 // Cast pointer to the type we really want to load.
9209 Type *LoadTy =
9210 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
9211 if (LoadVT.isVector())
9212 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
9213 if (const Constant *LoadCst =
9214 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
9215 LoadTy, Builder.DAG.getDataLayout()))
9216 return Builder.getValue(LoadCst);
9217 }
9218
9219 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
9220 // still constant memory, the input chain can be the entry node.
9221 SDValue Root;
9222 bool ConstantMemory = false;
9223
9224 // Do not serialize (non-volatile) loads of constant memory with anything.
9225 if (Builder.BatchAA && Builder.BatchAA->pointsToConstantMemory(PtrVal)) {
9226 Root = Builder.DAG.getEntryNode();
9227 ConstantMemory = true;
9228 } else {
9229 // Do not serialize non-volatile loads against each other.
9230 Root = Builder.DAG.getRoot();
9231 }
9232
9233 SDValue Ptr = Builder.getValue(PtrVal);
9234 SDValue LoadVal =
9235 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
9236 MachinePointerInfo(PtrVal), Align(1));
9237
9238 if (!ConstantMemory)
9239 Builder.PendingLoads.push_back(LoadVal.getValue(1));
9240 return LoadVal;
9241}
9242
9243/// Record the value for an instruction that produces an integer result,
9244/// converting the type where necessary.
9245void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
9246 SDValue Value,
9247 bool IsSigned) {
9248 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
9249 I.getType(), true);
9250 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
9251 setValue(&I, Value);
9252}
9253
9254/// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
9255/// true and lower it. Otherwise return false, and it will be lowered like a
9256/// normal call.
9257/// The caller already checked that \p I calls the appropriate LibFunc with a
9258/// correct prototype.
9259bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
9260 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
9261 const Value *Size = I.getArgOperand(2);
9262 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
9263 if (CSize && CSize->getZExtValue() == 0) {
9264 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
9265 I.getType(), true);
9266 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
9267 return true;
9268 }
9269
9270 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9271 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
9272 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
9273 getValue(Size), &I);
9274 if (Res.first.getNode()) {
9275 processIntegerCallValue(I, Res.first, true);
9276 PendingLoads.push_back(Res.second);
9277 return true;
9278 }
9279
9280 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
9281 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
9282 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
9283 return false;
9284
9285 // If the target has a fast compare for the given size, it will return a
9286 // preferred load type for that size. Require that the load VT is legal and
9287 // that the target supports unaligned loads of that type. Otherwise, return
9288 // INVALID.
9289 auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
9290 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9291 MVT LVT = TLI.hasFastEqualityCompare(NumBits);
9292 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
9293 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
9294 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
9295 // TODO: Check alignment of src and dest ptrs.
9296 unsigned DstAS = LHS->getType()->getPointerAddressSpace();
9297 unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
9298 if (!TLI.isTypeLegal(LVT) ||
9299 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
9300 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
9302 }
9303
9304 return LVT;
9305 };
9306
9307 // This turns into unaligned loads. We only do this if the target natively
9308 // supports the MVT we'll be loading or if it is small enough (<= 4) that
9309 // we'll only produce a small number of byte loads.
9310 MVT LoadVT;
9311 unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
9312 switch (NumBitsToCompare) {
9313 default:
9314 return false;
9315 case 16:
9316 LoadVT = MVT::i16;
9317 break;
9318 case 32:
9319 LoadVT = MVT::i32;
9320 break;
9321 case 64:
9322 case 128:
9323 case 256:
9324 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
9325 break;
9326 }
9327
9328 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
9329 return false;
9330
9331 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
9332 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
9333
9334 // Bitcast to a wide integer type if the loads are vectors.
9335 if (LoadVT.isVector()) {
9336 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
9337 LoadL = DAG.getBitcast(CmpVT, LoadL);
9338 LoadR = DAG.getBitcast(CmpVT, LoadR);
9339 }
9340
9341 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
9342 processIntegerCallValue(I, Cmp, false);
9343 return true;
9344}
9345
9346/// See if we can lower a memchr call into an optimized form. If so, return
9347/// true and lower it. Otherwise return false, and it will be lowered like a
9348/// normal call.
9349/// The caller already checked that \p I calls the appropriate LibFunc with a
9350/// correct prototype.
9351bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
9352 const Value *Src = I.getArgOperand(0);
9353 const Value *Char = I.getArgOperand(1);
9354 const Value *Length = I.getArgOperand(2);
9355
9356 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9357 std::pair<SDValue, SDValue> Res =
9358 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
9359 getValue(Src), getValue(Char), getValue(Length),
9360 MachinePointerInfo(Src));
9361 if (Res.first.getNode()) {
9362 setValue(&I, Res.first);
9363 PendingLoads.push_back(Res.second);
9364 return true;
9365 }
9366
9367 return false;
9368}
9369
9370/// See if we can lower a mempcpy call into an optimized form. If so, return
9371/// true and lower it. Otherwise return false, and it will be lowered like a
9372/// normal call.
9373/// The caller already checked that \p I calls the appropriate LibFunc with a
9374/// correct prototype.
9375bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
9376 SDValue Dst = getValue(I.getArgOperand(0));
9377 SDValue Src = getValue(I.getArgOperand(1));
9378 SDValue Size = getValue(I.getArgOperand(2));
9379
9380 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
9381 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
9382 // DAG::getMemcpy needs Alignment to be defined.
9383 Align Alignment = std::min(DstAlign, SrcAlign);
9384
9385 SDLoc sdl = getCurSDLoc();
9386
9387 // In the mempcpy context we need to pass in a false value for isTailCall
9388 // because the return pointer needs to be adjusted by the size of
9389 // the copied memory.
9390 SDValue Root = getMemoryRoot();
9391 SDValue MC = DAG.getMemcpy(
9392 Root, sdl, Dst, Src, Size, Alignment, false, false, /*CI=*/nullptr,
9393 std::nullopt, MachinePointerInfo(I.getArgOperand(0)),
9394 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata());
9395 assert(MC.getNode() != nullptr &&
9396 "** memcpy should not be lowered as TailCall in mempcpy context **");
9397 DAG.setRoot(MC);
9398
9399 // Check if Size needs to be truncated or extended.
9400 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
9401
9402 // Adjust return pointer to point just past the last dst byte.
9403 SDValue DstPlusSize = DAG.getMemBasePlusOffset(Dst, Size, sdl);
9404 setValue(&I, DstPlusSize);
9405 return true;
9406}
9407
9408/// See if we can lower a strcpy call into an optimized form. If so, return
9409/// true and lower it, otherwise return false and it will be lowered like a
9410/// normal call.
9411/// The caller already checked that \p I calls the appropriate LibFunc with a
9412/// correct prototype.
9413bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
9414 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9415
9416 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9417 std::pair<SDValue, SDValue> Res =
9419 getValue(Arg0), getValue(Arg1),
9420 MachinePointerInfo(Arg0),
9421 MachinePointerInfo(Arg1), isStpcpy);
9422 if (Res.first.getNode()) {
9423 setValue(&I, Res.first);
9424 DAG.setRoot(Res.second);
9425 return true;
9426 }
9427
9428 return false;
9429}
9430
9431/// See if we can lower a strcmp call into an optimized form. If so, return
9432/// true and lower it, otherwise return false and it will be lowered like a
9433/// normal call.
9434/// The caller already checked that \p I calls the appropriate LibFunc with a
9435/// correct prototype.
9436bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
9437 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9438
9439 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9440 std::pair<SDValue, SDValue> Res =
9441 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
9442 getValue(Arg0), getValue(Arg1),
9443 MachinePointerInfo(Arg0),
9444 MachinePointerInfo(Arg1));
9445 if (Res.first.getNode()) {
9446 processIntegerCallValue(I, Res.first, true);
9447 PendingLoads.push_back(Res.second);
9448 return true;
9449 }
9450
9451 return false;
9452}
9453
9454/// See if we can lower a strlen call into an optimized form. If so, return
9455/// true and lower it, otherwise return false and it will be lowered like a
9456/// normal call.
9457/// The caller already checked that \p I calls the appropriate LibFunc with a
9458/// correct prototype.
9459bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
9460 const Value *Arg0 = I.getArgOperand(0);
9461
9462 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9463 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForStrlen(
9464 DAG, getCurSDLoc(), DAG.getRoot(), getValue(Arg0), &I);
9465 if (Res.first.getNode()) {
9466 processIntegerCallValue(I, Res.first, false);
9467 PendingLoads.push_back(Res.second);
9468 return true;
9469 }
9470
9471 return false;
9472}
9473
9474/// See if we can lower a strnlen call into an optimized form. If so, return
9475/// true and lower it, otherwise return false and it will be lowered like a
9476/// normal call.
9477/// The caller already checked that \p I calls the appropriate LibFunc with a
9478/// correct prototype.
9479bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
9480 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9481
9482 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9483 std::pair<SDValue, SDValue> Res =
9484 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
9485 getValue(Arg0), getValue(Arg1),
9486 MachinePointerInfo(Arg0));
9487 if (Res.first.getNode()) {
9488 processIntegerCallValue(I, Res.first, false);
9489 PendingLoads.push_back(Res.second);
9490 return true;
9491 }
9492
9493 return false;
9494}
9495
9496/// See if we can lower a unary floating-point operation into an SDNode with
9497/// the specified Opcode. If so, return true and lower it, otherwise return
9498/// false and it will be lowered like a normal call.
9499/// The caller already checked that \p I calls the appropriate LibFunc with a
9500/// correct prototype.
9501bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
9502 unsigned Opcode) {
9503 // We already checked this call's prototype; verify it doesn't modify errno.
9504 // Do not perform optimizations for call sites that require strict
9505 // floating-point semantics.
9506 if (!I.onlyReadsMemory() || I.isStrictFP())
9507 return false;
9508
9509 SDNodeFlags Flags;
9510 Flags.copyFMF(cast<FPMathOperator>(I));
9511
9512 SDValue Tmp = getValue(I.getArgOperand(0));
9513 setValue(&I,
9514 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
9515 return true;
9516}
9517
9518/// See if we can lower a binary floating-point operation into an SDNode with
9519/// the specified Opcode. If so, return true and lower it. Otherwise return
9520/// false, and it will be lowered like a normal call.
9521/// The caller already checked that \p I calls the appropriate LibFunc with a
9522/// correct prototype.
9523bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
9524 unsigned Opcode) {
9525 // We already checked this call's prototype; verify it doesn't modify errno.
9526 // Do not perform optimizations for call sites that require strict
9527 // floating-point semantics.
9528 if (!I.onlyReadsMemory() || I.isStrictFP())
9529 return false;
9530
9531 SDNodeFlags Flags;
9532 Flags.copyFMF(cast<FPMathOperator>(I));
9533
9534 SDValue Tmp0 = getValue(I.getArgOperand(0));
9535 SDValue Tmp1 = getValue(I.getArgOperand(1));
9536 EVT VT = Tmp0.getValueType();
9537 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
9538 return true;
9539}
9540
9541void SelectionDAGBuilder::visitCall(const CallInst &I) {
9542 // Handle inline assembly differently.
9543 if (I.isInlineAsm()) {
9544 visitInlineAsm(I);
9545 return;
9546 }
9547
9549
9550 if (Function *F = I.getCalledFunction()) {
9551 if (F->isDeclaration()) {
9552 // Is this an LLVM intrinsic?
9553 if (unsigned IID = F->getIntrinsicID()) {
9554 visitIntrinsicCall(I, IID);
9555 return;
9556 }
9557 }
9558
9559 // Check for well-known libc/libm calls. If the function is internal, it
9560 // can't be a library call. Don't do the check if marked as nobuiltin for
9561 // some reason.
9562 // This code should not handle libcalls that are already canonicalized to
9563 // intrinsics by the middle-end.
9564 LibFunc Func;
9565 if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() &&
9566 LibInfo->getLibFunc(*F, Func) && LibInfo->hasOptimizedCodeGen(Func)) {
9567 switch (Func) {
9568 default: break;
9569 case LibFunc_bcmp:
9570 if (visitMemCmpBCmpCall(I))
9571 return;
9572 break;
9573 case LibFunc_copysign:
9574 case LibFunc_copysignf:
9575 case LibFunc_copysignl:
9576 // We already checked this call's prototype; verify it doesn't modify
9577 // errno.
9578 if (I.onlyReadsMemory()) {
9579 SDValue LHS = getValue(I.getArgOperand(0));
9580 SDValue RHS = getValue(I.getArgOperand(1));
9582 LHS.getValueType(), LHS, RHS));
9583 return;
9584 }
9585 break;
9586 case LibFunc_fabs:
9587 case LibFunc_fabsf:
9588 case LibFunc_fabsl:
9589 // TODO: Remove this, already canonicalized by the middle-end.
9590 if (visitUnaryFloatCall(I, ISD::FABS))
9591 return;
9592 break;
9593 case LibFunc_fmin:
9594 case LibFunc_fminf:
9595 case LibFunc_fminl:
9596 // TODO: Remove this, already canonicalized by the middle-end.
9597 if (visitBinaryFloatCall(I, ISD::FMINNUM))
9598 return;
9599 break;
9600 case LibFunc_fmax:
9601 case LibFunc_fmaxf:
9602 case LibFunc_fmaxl:
9603 // TODO: Remove this, already canonicalized by the middle-end.
9604 if (visitBinaryFloatCall(I, ISD::FMAXNUM))
9605 return;
9606 break;
9607 case LibFunc_fminimum_num:
9608 case LibFunc_fminimum_numf:
9609 case LibFunc_fminimum_numl:
9610 // TODO: Remove this, already canonicalized by the middle-end.
9611 if (visitBinaryFloatCall(I, ISD::FMINIMUMNUM))
9612 return;
9613 break;
9614 case LibFunc_fmaximum_num:
9615 case LibFunc_fmaximum_numf:
9616 case LibFunc_fmaximum_numl:
9617 // TODO: Remove this, already canonicalized by the middle-end.
9618 if (visitBinaryFloatCall(I, ISD::FMAXIMUMNUM))
9619 return;
9620 break;
9621 case LibFunc_sin:
9622 case LibFunc_sinf:
9623 case LibFunc_sinl:
9624 if (visitUnaryFloatCall(I, ISD::FSIN))
9625 return;
9626 break;
9627 case LibFunc_cos:
9628 case LibFunc_cosf:
9629 case LibFunc_cosl:
9630 if (visitUnaryFloatCall(I, ISD::FCOS))
9631 return;
9632 break;
9633 case LibFunc_tan:
9634 case LibFunc_tanf:
9635 case LibFunc_tanl:
9636 if (visitUnaryFloatCall(I, ISD::FTAN))
9637 return;
9638 break;
9639 case LibFunc_asin:
9640 case LibFunc_asinf:
9641 case LibFunc_asinl:
9642 if (visitUnaryFloatCall(I, ISD::FASIN))
9643 return;
9644 break;
9645 case LibFunc_acos:
9646 case LibFunc_acosf:
9647 case LibFunc_acosl:
9648 if (visitUnaryFloatCall(I, ISD::FACOS))
9649 return;
9650 break;
9651 case LibFunc_atan:
9652 case LibFunc_atanf:
9653 case LibFunc_atanl:
9654 if (visitUnaryFloatCall(I, ISD::FATAN))
9655 return;
9656 break;
9657 case LibFunc_atan2:
9658 case LibFunc_atan2f:
9659 case LibFunc_atan2l:
9660 if (visitBinaryFloatCall(I, ISD::FATAN2))
9661 return;
9662 break;
9663 case LibFunc_sinh:
9664 case LibFunc_sinhf:
9665 case LibFunc_sinhl:
9666 if (visitUnaryFloatCall(I, ISD::FSINH))
9667 return;
9668 break;
9669 case LibFunc_cosh:
9670 case LibFunc_coshf:
9671 case LibFunc_coshl:
9672 if (visitUnaryFloatCall(I, ISD::FCOSH))
9673 return;
9674 break;
9675 case LibFunc_tanh:
9676 case LibFunc_tanhf:
9677 case LibFunc_tanhl:
9678 if (visitUnaryFloatCall(I, ISD::FTANH))
9679 return;
9680 break;
9681 case LibFunc_sqrt:
9682 case LibFunc_sqrtf:
9683 case LibFunc_sqrtl:
9684 case LibFunc_sqrt_finite:
9685 case LibFunc_sqrtf_finite:
9686 case LibFunc_sqrtl_finite:
9687 if (visitUnaryFloatCall(I, ISD::FSQRT))
9688 return;
9689 break;
9690 case LibFunc_floor:
9691 case LibFunc_floorf:
9692 case LibFunc_floorl:
9693 // TODO: Remove this, already canonicalized by the middle-end.
9694 if (visitUnaryFloatCall(I, ISD::FFLOOR))
9695 return;
9696 break;
9697 case LibFunc_ceil:
9698 case LibFunc_ceilf:
9699 case LibFunc_ceill:
9700 // TODO: Remove this, already canonicalized by the middle-end.
9701 if (visitUnaryFloatCall(I, ISD::FCEIL))
9702 return;
9703 break;
9704 case LibFunc_rint:
9705 case LibFunc_rintf:
9706 case LibFunc_rintl:
9707 // TODO: Remove this, already canonicalized by the middle-end.
9708 if (visitUnaryFloatCall(I, ISD::FRINT))
9709 return;
9710 break;
9711 case LibFunc_round:
9712 case LibFunc_roundf:
9713 case LibFunc_roundl:
9714 // TODO: Remove this, already canonicalized by the middle-end.
9715 if (visitUnaryFloatCall(I, ISD::FROUND))
9716 return;
9717 break;
9718 case LibFunc_trunc:
9719 case LibFunc_truncf:
9720 case LibFunc_truncl:
9721 // TODO: Remove this, already canonicalized by the middle-end.
9722 if (visitUnaryFloatCall(I, ISD::FTRUNC))
9723 return;
9724 break;
9725 case LibFunc_log2:
9726 case LibFunc_log2f:
9727 case LibFunc_log2l:
9728 if (visitUnaryFloatCall(I, ISD::FLOG2))
9729 return;
9730 break;
9731 case LibFunc_exp2:
9732 case LibFunc_exp2f:
9733 case LibFunc_exp2l:
9734 if (visitUnaryFloatCall(I, ISD::FEXP2))
9735 return;
9736 break;
9737 case LibFunc_exp10:
9738 case LibFunc_exp10f:
9739 case LibFunc_exp10l:
9740 if (visitUnaryFloatCall(I, ISD::FEXP10))
9741 return;
9742 break;
9743 case LibFunc_ldexp:
9744 case LibFunc_ldexpf:
9745 case LibFunc_ldexpl:
9746 if (visitBinaryFloatCall(I, ISD::FLDEXP))
9747 return;
9748 break;
9749 case LibFunc_memcmp:
9750 if (visitMemCmpBCmpCall(I))
9751 return;
9752 break;
9753 case LibFunc_mempcpy:
9754 if (visitMemPCpyCall(I))
9755 return;
9756 break;
9757 case LibFunc_memchr:
9758 if (visitMemChrCall(I))
9759 return;
9760 break;
9761 case LibFunc_strcpy:
9762 if (visitStrCpyCall(I, false))
9763 return;
9764 break;
9765 case LibFunc_stpcpy:
9766 if (visitStrCpyCall(I, true))
9767 return;
9768 break;
9769 case LibFunc_strcmp:
9770 if (visitStrCmpCall(I))
9771 return;
9772 break;
9773 case LibFunc_strlen:
9774 if (visitStrLenCall(I))
9775 return;
9776 break;
9777 case LibFunc_strnlen:
9778 if (visitStrNLenCall(I))
9779 return;
9780 break;
9781 }
9782 }
9783 }
9784
9785 if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
9786 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr);
9787 return;
9788 }
9789
9790 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
9791 // have to do anything here to lower funclet bundles.
9792 // CFGuardTarget bundles are lowered in LowerCallTo.
9794 I, "calls",
9799
9800 SDValue Callee = getValue(I.getCalledOperand());
9801
9802 if (I.hasDeoptState())
9803 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
9804 else
9805 // Check if we can potentially perform a tail call. More detailed checking
9806 // is be done within LowerCallTo, after more information about the call is
9807 // known.
9808 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
9809}
9810
9812 const CallBase &CB, const BasicBlock *EHPadBB) {
9813 auto PAB = CB.getOperandBundle("ptrauth");
9814 const Value *CalleeV = CB.getCalledOperand();
9815
9816 // Gather the call ptrauth data from the operand bundle:
9817 // [ i32 <key>, i64 <discriminator> ]
9818 const auto *Key = cast<ConstantInt>(PAB->Inputs[0]);
9819 const Value *Discriminator = PAB->Inputs[1];
9820
9821 assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key");
9822 assert(Discriminator->getType()->isIntegerTy(64) &&
9823 "Invalid ptrauth discriminator");
9824
9825 // Look through ptrauth constants to find the raw callee.
9826 // Do a direct unauthenticated call if we found it and everything matches.
9827 if (const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CalleeV))
9828 if (CalleeCPA->isKnownCompatibleWith(Key, Discriminator,
9829 DAG.getDataLayout()))
9830 return LowerCallTo(CB, getValue(CalleeCPA->getPointer()), CB.isTailCall(),
9831 CB.isMustTailCall(), EHPadBB);
9832
9833 // Functions should never be ptrauth-called directly.
9834 assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call");
9835
9836 // Otherwise, do an authenticated indirect call.
9837 TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(),
9838 getValue(Discriminator)};
9839
9840 LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(),
9841 EHPadBB, &PAI);
9842}
9843
9844namespace {
9845
9846/// AsmOperandInfo - This contains information for each constraint that we are
9847/// lowering.
9848class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
9849public:
9850 /// CallOperand - If this is the result output operand or a clobber
9851 /// this is null, otherwise it is the incoming operand to the CallInst.
9852 /// This gets modified as the asm is processed.
9853 SDValue CallOperand;
9854
9855 /// AssignedRegs - If this is a register or register class operand, this
9856 /// contains the set of register corresponding to the operand.
9857 RegsForValue AssignedRegs;
9858
9859 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
9860 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
9861 }
9862
9863 /// Whether or not this operand accesses memory
9864 bool hasMemory(const TargetLowering &TLI) const {
9865 // Indirect operand accesses access memory.
9866 if (isIndirect)
9867 return true;
9868
9869 for (const auto &Code : Codes)
9871 return true;
9872
9873 return false;
9874 }
9875};
9876
9877
9878} // end anonymous namespace
9879
9880/// Make sure that the output operand \p OpInfo and its corresponding input
9881/// operand \p MatchingOpInfo have compatible constraint types (otherwise error
9882/// out).
9883static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
9884 SDISelAsmOperandInfo &MatchingOpInfo,
9885 SelectionDAG &DAG) {
9886 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9887 return;
9888
9890 const auto &TLI = DAG.getTargetLoweringInfo();
9891
9892 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9893 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
9894 OpInfo.ConstraintVT);
9895 std::pair<unsigned, const TargetRegisterClass *> InputRC =
9896 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
9897 MatchingOpInfo.ConstraintVT);
9898 const bool OutOpIsIntOrFP =
9899 OpInfo.ConstraintVT.isInteger() || OpInfo.ConstraintVT.isFloatingPoint();
9900 const bool InOpIsIntOrFP = MatchingOpInfo.ConstraintVT.isInteger() ||
9901 MatchingOpInfo.ConstraintVT.isFloatingPoint();
9902 if ((OutOpIsIntOrFP != InOpIsIntOrFP) || (MatchRC.second != InputRC.second)) {
9903 // FIXME: error out in a more elegant fashion
9904 report_fatal_error("Unsupported asm: input constraint"
9905 " with a matching output constraint of"
9906 " incompatible type!");
9907 }
9908 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9909}
9910
9911/// Get a direct memory input to behave well as an indirect operand.
9912/// This may introduce stores, hence the need for a \p Chain.
9913/// \return The (possibly updated) chain.
9914static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
9915 SDISelAsmOperandInfo &OpInfo,
9916 SelectionDAG &DAG) {
9917 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9918
9919 // If we don't have an indirect input, put it in the constpool if we can,
9920 // otherwise spill it to a stack slot.
9921 // TODO: This isn't quite right. We need to handle these according to
9922 // the addressing mode that the constraint wants. Also, this may take
9923 // an additional register for the computation and we don't want that
9924 // either.
9925
9926 // If the operand is a float, integer, or vector constant, spill to a
9927 // constant pool entry to get its address.
9928 const Value *OpVal = OpInfo.CallOperandVal;
9929 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
9931 OpInfo.CallOperand = DAG.getConstantPool(
9932 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
9933 return Chain;
9934 }
9935
9936 // Otherwise, create a stack slot and emit a store to it before the asm.
9937 Type *Ty = OpVal->getType();
9938 auto &DL = DAG.getDataLayout();
9939 TypeSize TySize = DL.getTypeAllocSize(Ty);
9942 int StackID = 0;
9943 if (TySize.isScalable())
9944 StackID = TFI->getStackIDForScalableVectors();
9945 int SSFI = MF.getFrameInfo().CreateStackObject(TySize.getKnownMinValue(),
9946 DL.getPrefTypeAlign(Ty), false,
9947 nullptr, StackID);
9948 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
9949 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9951 TLI.getMemValueType(DL, Ty));
9952 OpInfo.CallOperand = StackSlot;
9953
9954 return Chain;
9955}
9956
9957/// GetRegistersForValue - Assign registers (virtual or physical) for the
9958/// specified operand. We prefer to assign virtual registers, to allow the
9959/// register allocator to handle the assignment process. However, if the asm
9960/// uses features that we can't model on machineinstrs, we have SDISel do the
9961/// allocation. This produces generally horrible, but correct, code.
9962///
9963/// OpInfo describes the operand
9964/// RefOpInfo describes the matching operand if any, the operand otherwise
9965static std::optional<unsigned>
9967 SDISelAsmOperandInfo &OpInfo,
9968 SDISelAsmOperandInfo &RefOpInfo) {
9969 LLVMContext &Context = *DAG.getContext();
9970 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9971
9975
9976 // No work to do for memory/address operands.
9977 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9978 OpInfo.ConstraintType == TargetLowering::C_Address)
9979 return std::nullopt;
9980
9981 // If this is a constraint for a single physreg, or a constraint for a
9982 // register class, find it.
9983 unsigned AssignedReg;
9984 const TargetRegisterClass *RC;
9985 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
9986 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9987 // RC is unset only on failure. Return immediately.
9988 if (!RC)
9989 return std::nullopt;
9990
9991 // Get the actual register value type. This is important, because the user
9992 // may have asked for (e.g.) the AX register in i32 type. We need to
9993 // remember that AX is actually i16 to get the right extension.
9994 const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
9995
9996 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9997 // If this is an FP operand in an integer register (or visa versa), or more
9998 // generally if the operand value disagrees with the register class we plan
9999 // to stick it in, fix the operand type.
10000 //
10001 // If this is an input value, the bitcast to the new type is done now.
10002 // Bitcast for output value is done at the end of visitInlineAsm().
10003 if ((OpInfo.Type == InlineAsm::isOutput ||
10004 OpInfo.Type == InlineAsm::isInput) &&
10005 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
10006 // Try to convert to the first EVT that the reg class contains. If the
10007 // types are identical size, use a bitcast to convert (e.g. two differing
10008 // vector types). Note: output bitcast is done at the end of
10009 // visitInlineAsm().
10010 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
10011 // Exclude indirect inputs while they are unsupported because the code
10012 // to perform the load is missing and thus OpInfo.CallOperand still
10013 // refers to the input address rather than the pointed-to value.
10014 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
10015 OpInfo.CallOperand =
10016 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
10017 OpInfo.ConstraintVT = RegVT;
10018 // If the operand is an FP value and we want it in integer registers,
10019 // use the corresponding integer type. This turns an f64 value into
10020 // i64, which can be passed with two i32 values on a 32-bit machine.
10021 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
10022 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
10023 if (OpInfo.Type == InlineAsm::isInput)
10024 OpInfo.CallOperand =
10025 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
10026 OpInfo.ConstraintVT = VT;
10027 }
10028 }
10029 }
10030
10031 // No need to allocate a matching input constraint since the constraint it's
10032 // matching to has already been allocated.
10033 if (OpInfo.isMatchingInputConstraint())
10034 return std::nullopt;
10035
10036 EVT ValueVT = OpInfo.ConstraintVT;
10037 if (OpInfo.ConstraintVT == MVT::Other)
10038 ValueVT = RegVT;
10039
10040 // Initialize NumRegs.
10041 unsigned NumRegs = 1;
10042 if (OpInfo.ConstraintVT != MVT::Other)
10043 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
10044
10045 // If this is a constraint for a specific physical register, like {r17},
10046 // assign it now.
10047
10048 // If this associated to a specific register, initialize iterator to correct
10049 // place. If virtual, make sure we have enough registers
10050
10051 // Initialize iterator if necessary
10054
10055 // Do not check for single registers.
10056 if (AssignedReg) {
10057 I = std::find(I, RC->end(), AssignedReg);
10058 if (I == RC->end()) {
10059 // RC does not contain the selected register, which indicates a
10060 // mismatch between the register and the required type/bitwidth.
10061 return {AssignedReg};
10062 }
10063 }
10064
10065 for (; NumRegs; --NumRegs, ++I) {
10066 assert(I != RC->end() && "Ran out of registers to allocate!");
10067 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
10068 Regs.push_back(R);
10069 }
10070
10071 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
10072 return std::nullopt;
10073}
10074
10075static unsigned
10077 const std::vector<SDValue> &AsmNodeOperands) {
10078 // Scan until we find the definition we already emitted of this operand.
10079 unsigned CurOp = InlineAsm::Op_FirstOperand;
10080 for (; OperandNo; --OperandNo) {
10081 // Advance to the next operand.
10082 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
10083 const InlineAsm::Flag F(OpFlag);
10084 assert(
10085 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) &&
10086 "Skipped past definitions?");
10087 CurOp += F.getNumOperandRegisters() + 1;
10088 }
10089 return CurOp;
10090}
10091
10092namespace {
10093
10094class ExtraFlags {
10095 unsigned Flags = 0;
10096
10097public:
10098 explicit ExtraFlags(const CallBase &Call) {
10099 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
10100 if (IA->hasSideEffects())
10102 if (IA->isAlignStack())
10104 if (Call.isConvergent())
10106 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
10107 }
10108
10109 void update(const TargetLowering::AsmOperandInfo &OpInfo) {
10110 // Ideally, we would only check against memory constraints. However, the
10111 // meaning of an Other constraint can be target-specific and we can't easily
10112 // reason about it. Therefore, be conservative and set MayLoad/MayStore
10113 // for Other constraints as well.
10116 if (OpInfo.Type == InlineAsm::isInput)
10118 else if (OpInfo.Type == InlineAsm::isOutput)
10120 else if (OpInfo.Type == InlineAsm::isClobber)
10122 }
10123 }
10124
10125 unsigned get() const { return Flags; }
10126};
10127
10128} // end anonymous namespace
10129
10130static bool isFunction(SDValue Op) {
10131 if (Op && Op.getOpcode() == ISD::GlobalAddress) {
10132 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
10133 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
10134
10135 // In normal "call dllimport func" instruction (non-inlineasm) it force
10136 // indirect access by specifing call opcode. And usually specially print
10137 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
10138 // not do in this way now. (In fact, this is similar with "Data Access"
10139 // action). So here we ignore dllimport function.
10140 if (Fn && !Fn->hasDLLImportStorageClass())
10141 return true;
10142 }
10143 }
10144 return false;
10145}
10146
10147/// visitInlineAsm - Handle a call to an InlineAsm object.
10148void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
10149 const BasicBlock *EHPadBB) {
10150 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
10151
10152 /// ConstraintOperands - Information about all of the constraints.
10153 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
10154
10155 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10157 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
10158
10159 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
10160 // AsmDialect, MayLoad, MayStore).
10161 bool HasSideEffect = IA->hasSideEffects();
10162 ExtraFlags ExtraInfo(Call);
10163
10164 for (auto &T : TargetConstraints) {
10165 ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
10166 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
10167
10168 if (OpInfo.CallOperandVal)
10169 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
10170
10171 if (!HasSideEffect)
10172 HasSideEffect = OpInfo.hasMemory(TLI);
10173
10174 // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
10175 // FIXME: Could we compute this on OpInfo rather than T?
10176
10177 // Compute the constraint code and ConstraintType to use.
10179
10180 if (T.ConstraintType == TargetLowering::C_Immediate &&
10181 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
10182 // We've delayed emitting a diagnostic like the "n" constraint because
10183 // inlining could cause an integer showing up.
10184 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
10185 "' expects an integer constant "
10186 "expression");
10187
10188 ExtraInfo.update(T);
10189 }
10190
10191 // We won't need to flush pending loads if this asm doesn't touch
10192 // memory and is nonvolatile.
10193 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
10194
10195 bool EmitEHLabels = isa<InvokeInst>(Call);
10196 if (EmitEHLabels) {
10197 assert(EHPadBB && "InvokeInst must have an EHPadBB");
10198 }
10199 bool IsCallBr = isa<CallBrInst>(Call);
10200
10201 if (IsCallBr || EmitEHLabels) {
10202 // If this is a callbr or invoke we need to flush pending exports since
10203 // inlineasm_br and invoke are terminators.
10204 // We need to do this before nodes are glued to the inlineasm_br node.
10205 Chain = getControlRoot();
10206 }
10207
10208 MCSymbol *BeginLabel = nullptr;
10209 if (EmitEHLabels) {
10210 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
10211 }
10212
10213 int OpNo = -1;
10214 SmallVector<StringRef> AsmStrs;
10215 IA->collectAsmStrs(AsmStrs);
10216
10217 // Second pass over the constraints: compute which constraint option to use.
10218 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10219 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
10220 OpNo++;
10221
10222 // If this is an output operand with a matching input operand, look up the
10223 // matching input. If their types mismatch, e.g. one is an integer, the
10224 // other is floating point, or their sizes are different, flag it as an
10225 // error.
10226 if (OpInfo.hasMatchingInput()) {
10227 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
10228 patchMatchingInput(OpInfo, Input, DAG);
10229 }
10230
10231 // Compute the constraint code and ConstraintType to use.
10232 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
10233
10234 if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
10235 OpInfo.Type == InlineAsm::isClobber) ||
10236 OpInfo.ConstraintType == TargetLowering::C_Address)
10237 continue;
10238
10239 // In Linux PIC model, there are 4 cases about value/label addressing:
10240 //
10241 // 1: Function call or Label jmp inside the module.
10242 // 2: Data access (such as global variable, static variable) inside module.
10243 // 3: Function call or Label jmp outside the module.
10244 // 4: Data access (such as global variable) outside the module.
10245 //
10246 // Due to current llvm inline asm architecture designed to not "recognize"
10247 // the asm code, there are quite troubles for us to treat mem addressing
10248 // differently for same value/adress used in different instuctions.
10249 // For example, in pic model, call a func may in plt way or direclty
10250 // pc-related, but lea/mov a function adress may use got.
10251 //
10252 // Here we try to "recognize" function call for the case 1 and case 3 in
10253 // inline asm. And try to adjust the constraint for them.
10254 //
10255 // TODO: Due to current inline asm didn't encourage to jmp to the outsider
10256 // label, so here we don't handle jmp function label now, but we need to
10257 // enhance it (especilly in PIC model) if we meet meaningful requirements.
10258 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
10259 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
10260 TM.getCodeModel() != CodeModel::Large) {
10261 OpInfo.isIndirect = false;
10262 OpInfo.ConstraintType = TargetLowering::C_Address;
10263 }
10264
10265 // If this is a memory input, and if the operand is not indirect, do what we
10266 // need to provide an address for the memory input.
10267 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
10268 !OpInfo.isIndirect) {
10269 assert((OpInfo.isMultipleAlternative ||
10270 (OpInfo.Type == InlineAsm::isInput)) &&
10271 "Can only indirectify direct input operands!");
10272
10273 // Memory operands really want the address of the value.
10274 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
10275
10276 // There is no longer a Value* corresponding to this operand.
10277 OpInfo.CallOperandVal = nullptr;
10278
10279 // It is now an indirect operand.
10280 OpInfo.isIndirect = true;
10281 }
10282
10283 }
10284
10285 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
10286 std::vector<SDValue> AsmNodeOperands;
10287 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
10288 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
10289 IA->getAsmString().data(), TLI.getProgramPointerTy(DAG.getDataLayout())));
10290
10291 // If we have a !srcloc metadata node associated with it, we want to attach
10292 // this to the ultimately generated inline asm machineinstr. To do this, we
10293 // pass in the third operand as this (potentially null) inline asm MDNode.
10294 const MDNode *SrcLoc = Call.getMetadata("srcloc");
10295 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
10296
10297 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
10298 // bits as operand 3.
10299 AsmNodeOperands.push_back(DAG.getTargetConstant(
10300 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10301
10302 // Third pass: Loop over operands to prepare DAG-level operands.. As part of
10303 // this, assign virtual and physical registers for inputs and otput.
10304 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10305 // Assign Registers.
10306 SDISelAsmOperandInfo &RefOpInfo =
10307 OpInfo.isMatchingInputConstraint()
10308 ? ConstraintOperands[OpInfo.getMatchedOperand()]
10309 : OpInfo;
10310 const auto RegError =
10311 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
10312 if (RegError) {
10313 const MachineFunction &MF = DAG.getMachineFunction();
10314 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10315 const char *RegName = TRI.getName(*RegError);
10316 emitInlineAsmError(Call, "register '" + Twine(RegName) +
10317 "' allocated for constraint '" +
10318 Twine(OpInfo.ConstraintCode) +
10319 "' does not match required type");
10320 return;
10321 }
10322
10323 auto DetectWriteToReservedRegister = [&]() {
10324 const MachineFunction &MF = DAG.getMachineFunction();
10325 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10326 for (Register Reg : OpInfo.AssignedRegs.Regs) {
10327 if (Reg.isPhysical() && TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
10328 const char *RegName = TRI.getName(Reg);
10329 emitInlineAsmError(Call, "write to reserved register '" +
10330 Twine(RegName) + "'");
10331 return true;
10332 }
10333 }
10334 return false;
10335 };
10336 assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
10337 (OpInfo.Type == InlineAsm::isInput &&
10338 !OpInfo.isMatchingInputConstraint())) &&
10339 "Only address as input operand is allowed.");
10340
10341 switch (OpInfo.Type) {
10343 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
10344 const InlineAsm::ConstraintCode ConstraintID =
10345 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10347 "Failed to convert memory constraint code to constraint id.");
10348
10349 // Add information to the INLINEASM node to know about this output.
10350 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
10351 OpFlags.setMemConstraint(ConstraintID);
10352 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
10353 MVT::i32));
10354 AsmNodeOperands.push_back(OpInfo.CallOperand);
10355 } else {
10356 // Otherwise, this outputs to a register (directly for C_Register /
10357 // C_RegisterClass, and a target-defined fashion for
10358 // C_Immediate/C_Other). Find a register that we can use.
10359 if (OpInfo.AssignedRegs.Regs.empty()) {
10360 emitInlineAsmError(
10361 Call, "couldn't allocate output register for constraint '" +
10362 Twine(OpInfo.ConstraintCode) + "'");
10363 return;
10364 }
10365
10366 if (DetectWriteToReservedRegister())
10367 return;
10368
10369 // Add information to the INLINEASM node to know that this register is
10370 // set.
10371 OpInfo.AssignedRegs.AddInlineAsmOperands(
10372 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
10374 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
10375 }
10376 break;
10377
10378 case InlineAsm::isInput:
10379 case InlineAsm::isLabel: {
10380 SDValue InOperandVal = OpInfo.CallOperand;
10381
10382 if (OpInfo.isMatchingInputConstraint()) {
10383 // If this is required to match an output register we have already set,
10384 // just use its register.
10385 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
10386 AsmNodeOperands);
10387 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
10388 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) {
10389 if (OpInfo.isIndirect) {
10390 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
10391 emitInlineAsmError(Call, "inline asm not supported yet: "
10392 "don't know how to handle tied "
10393 "indirect register inputs");
10394 return;
10395 }
10396
10398 MachineFunction &MF = DAG.getMachineFunction();
10399 MachineRegisterInfo &MRI = MF.getRegInfo();
10400 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10401 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
10402 Register TiedReg = R->getReg();
10403 MVT RegVT = R->getSimpleValueType(0);
10404 const TargetRegisterClass *RC =
10405 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg)
10406 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
10407 : TRI.getMinimalPhysRegClass(TiedReg);
10408 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i)
10409 Regs.push_back(MRI.createVirtualRegister(RC));
10410
10411 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
10412
10413 SDLoc dl = getCurSDLoc();
10414 // Use the produced MatchedRegs object to
10415 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
10416 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
10417 OpInfo.getMatchedOperand(), dl, DAG,
10418 AsmNodeOperands);
10419 break;
10420 }
10421
10422 assert(Flag.isMemKind() && "Unknown matching constraint!");
10423 assert(Flag.getNumOperandRegisters() == 1 &&
10424 "Unexpected number of operands");
10425 // Add information to the INLINEASM node to know about this input.
10426 // See InlineAsm.h isUseOperandTiedToDef.
10427 Flag.clearMemConstraint();
10428 Flag.setMatchingOp(OpInfo.getMatchedOperand());
10429 AsmNodeOperands.push_back(DAG.getTargetConstant(
10430 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10431 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
10432 break;
10433 }
10434
10435 // Treat indirect 'X' constraint as memory.
10436 if (OpInfo.ConstraintType == TargetLowering::C_Other &&
10437 OpInfo.isIndirect)
10438 OpInfo.ConstraintType = TargetLowering::C_Memory;
10439
10440 if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
10441 OpInfo.ConstraintType == TargetLowering::C_Other) {
10442 std::vector<SDValue> Ops;
10443 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
10444 Ops, DAG);
10445 if (Ops.empty()) {
10446 if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
10447 if (isa<ConstantSDNode>(InOperandVal)) {
10448 emitInlineAsmError(Call, "value out of range for constraint '" +
10449 Twine(OpInfo.ConstraintCode) + "'");
10450 return;
10451 }
10452
10453 emitInlineAsmError(Call,
10454 "invalid operand for inline asm constraint '" +
10455 Twine(OpInfo.ConstraintCode) + "'");
10456 return;
10457 }
10458
10459 // Add information to the INLINEASM node to know about this input.
10460 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size());
10461 AsmNodeOperands.push_back(DAG.getTargetConstant(
10462 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10463 llvm::append_range(AsmNodeOperands, Ops);
10464 break;
10465 }
10466
10467 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
10468 assert((OpInfo.isIndirect ||
10469 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
10470 "Operand must be indirect to be a mem!");
10471 assert(InOperandVal.getValueType() ==
10472 TLI.getPointerTy(DAG.getDataLayout()) &&
10473 "Memory operands expect pointer values");
10474
10475 const InlineAsm::ConstraintCode ConstraintID =
10476 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10478 "Failed to convert memory constraint code to constraint id.");
10479
10480 // Add information to the INLINEASM node to know about this input.
10481 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10482 ResOpType.setMemConstraint(ConstraintID);
10483 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
10484 getCurSDLoc(),
10485 MVT::i32));
10486 AsmNodeOperands.push_back(InOperandVal);
10487 break;
10488 }
10489
10490 if (OpInfo.ConstraintType == TargetLowering::C_Address) {
10491 const InlineAsm::ConstraintCode ConstraintID =
10492 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10494 "Failed to convert memory constraint code to constraint id.");
10495
10496 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10497
10498 SDValue AsmOp = InOperandVal;
10499 if (isFunction(InOperandVal)) {
10500 auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
10501 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1);
10502 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
10503 InOperandVal.getValueType(),
10504 GA->getOffset());
10505 }
10506
10507 // Add information to the INLINEASM node to know about this input.
10508 ResOpType.setMemConstraint(ConstraintID);
10509
10510 AsmNodeOperands.push_back(
10511 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
10512
10513 AsmNodeOperands.push_back(AsmOp);
10514 break;
10515 }
10516
10517 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
10518 OpInfo.ConstraintType != TargetLowering::C_Register) {
10519 emitInlineAsmError(Call, "unknown asm constraint '" +
10520 Twine(OpInfo.ConstraintCode) + "'");
10521 return;
10522 }
10523
10524 // TODO: Support this.
10525 if (OpInfo.isIndirect) {
10526 emitInlineAsmError(
10527 Call, "Don't know how to handle indirect register inputs yet "
10528 "for constraint '" +
10529 Twine(OpInfo.ConstraintCode) + "'");
10530 return;
10531 }
10532
10533 // Copy the input into the appropriate registers.
10534 if (OpInfo.AssignedRegs.Regs.empty()) {
10535 emitInlineAsmError(Call,
10536 "couldn't allocate input reg for constraint '" +
10537 Twine(OpInfo.ConstraintCode) + "'");
10538 return;
10539 }
10540
10541 if (DetectWriteToReservedRegister())
10542 return;
10543
10544 SDLoc dl = getCurSDLoc();
10545
10546 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
10547 &Call);
10548
10549 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
10550 0, dl, DAG, AsmNodeOperands);
10551 break;
10552 }
10554 // Add the clobbered value to the operand list, so that the register
10555 // allocator is aware that the physreg got clobbered.
10556 if (!OpInfo.AssignedRegs.Regs.empty())
10558 false, 0, getCurSDLoc(), DAG,
10559 AsmNodeOperands);
10560 break;
10561 }
10562 }
10563
10564 // Finish up input operands. Set the input chain and add the flag last.
10565 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
10566 if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
10567
10568 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
10569 Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
10570 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
10571 Glue = Chain.getValue(1);
10572
10573 // Do additional work to generate outputs.
10574
10575 SmallVector<EVT, 1> ResultVTs;
10576 SmallVector<SDValue, 1> ResultValues;
10577 SmallVector<SDValue, 8> OutChains;
10578
10579 llvm::Type *CallResultType = Call.getType();
10580 ArrayRef<Type *> ResultTypes;
10581 if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
10582 ResultTypes = StructResult->elements();
10583 else if (!CallResultType->isVoidTy())
10584 ResultTypes = ArrayRef(CallResultType);
10585
10586 auto CurResultType = ResultTypes.begin();
10587 auto handleRegAssign = [&](SDValue V) {
10588 assert(CurResultType != ResultTypes.end() && "Unexpected value");
10589 assert((*CurResultType)->isSized() && "Unexpected unsized type");
10590 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
10591 ++CurResultType;
10592 // If the type of the inline asm call site return value is different but has
10593 // same size as the type of the asm output bitcast it. One example of this
10594 // is for vectors with different width / number of elements. This can
10595 // happen for register classes that can contain multiple different value
10596 // types. The preg or vreg allocated may not have the same VT as was
10597 // expected.
10598 //
10599 // This can also happen for a return value that disagrees with the register
10600 // class it is put in, eg. a double in a general-purpose register on a
10601 // 32-bit machine.
10602 if (ResultVT != V.getValueType() &&
10603 ResultVT.getSizeInBits() == V.getValueSizeInBits())
10604 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
10605 else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
10606 V.getValueType().isInteger()) {
10607 // If a result value was tied to an input value, the computed result
10608 // may have a wider width than the expected result. Extract the
10609 // relevant portion.
10610 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
10611 }
10612 assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
10613 ResultVTs.push_back(ResultVT);
10614 ResultValues.push_back(V);
10615 };
10616
10617 // Deal with output operands.
10618 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10619 if (OpInfo.Type == InlineAsm::isOutput) {
10620 SDValue Val;
10621 // Skip trivial output operands.
10622 if (OpInfo.AssignedRegs.Regs.empty())
10623 continue;
10624
10625 switch (OpInfo.ConstraintType) {
10628 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
10629 Chain, &Glue, &Call);
10630 break;
10633 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
10634 OpInfo, DAG);
10635 break;
10637 break; // Already handled.
10639 break; // Silence warning.
10641 assert(false && "Unexpected unknown constraint");
10642 }
10643
10644 // Indirect output manifest as stores. Record output chains.
10645 if (OpInfo.isIndirect) {
10646 const Value *Ptr = OpInfo.CallOperandVal;
10647 assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
10648 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
10649 MachinePointerInfo(Ptr));
10650 OutChains.push_back(Store);
10651 } else {
10652 // generate CopyFromRegs to associated registers.
10653 assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
10654 if (Val.getOpcode() == ISD::MERGE_VALUES) {
10655 for (const SDValue &V : Val->op_values())
10656 handleRegAssign(V);
10657 } else
10658 handleRegAssign(Val);
10659 }
10660 }
10661 }
10662
10663 // Set results.
10664 if (!ResultValues.empty()) {
10665 assert(CurResultType == ResultTypes.end() &&
10666 "Mismatch in number of ResultTypes");
10667 assert(ResultValues.size() == ResultTypes.size() &&
10668 "Mismatch in number of output operands in asm result");
10669
10671 DAG.getVTList(ResultVTs), ResultValues);
10672 setValue(&Call, V);
10673 }
10674
10675 // Collect store chains.
10676 if (!OutChains.empty())
10677 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
10678
10679 if (EmitEHLabels) {
10680 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
10681 }
10682
10683 // Only Update Root if inline assembly has a memory effect.
10684 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
10685 EmitEHLabels)
10686 DAG.setRoot(Chain);
10687}
10688
10689void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
10690 const Twine &Message) {
10691 LLVMContext &Ctx = *DAG.getContext();
10692 Ctx.diagnose(DiagnosticInfoInlineAsm(Call, Message));
10693
10694 // Make sure we leave the DAG in a valid state
10695 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10696 SmallVector<EVT, 1> ValueVTs;
10697 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
10698
10699 if (ValueVTs.empty())
10700 return;
10701
10703 for (const EVT &VT : ValueVTs)
10704 Ops.push_back(DAG.getUNDEF(VT));
10705
10706 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
10707}
10708
10709void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
10710 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
10711 MVT::Other, getRoot(),
10712 getValue(I.getArgOperand(0)),
10713 DAG.getSrcValue(I.getArgOperand(0))));
10714}
10715
10716void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
10717 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10718 const DataLayout &DL = DAG.getDataLayout();
10719 SDValue V = DAG.getVAArg(
10720 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
10721 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
10722 DL.getABITypeAlign(I.getType()).value());
10723 DAG.setRoot(V.getValue(1));
10724
10725 if (I.getType()->isPointerTy())
10726 V = DAG.getPtrExtOrTrunc(
10727 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
10728 setValue(&I, V);
10729}
10730
10731void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
10732 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
10733 MVT::Other, getRoot(),
10734 getValue(I.getArgOperand(0)),
10735 DAG.getSrcValue(I.getArgOperand(0))));
10736}
10737
10738void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
10739 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
10740 MVT::Other, getRoot(),
10741 getValue(I.getArgOperand(0)),
10742 getValue(I.getArgOperand(1)),
10743 DAG.getSrcValue(I.getArgOperand(0)),
10744 DAG.getSrcValue(I.getArgOperand(1))));
10745}
10746
10748 const Instruction &I,
10749 SDValue Op) {
10750 std::optional<ConstantRange> CR = getRange(I);
10751
10752 if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped())
10753 return Op;
10754
10755 APInt Lo = CR->getUnsignedMin();
10756 if (!Lo.isMinValue())
10757 return Op;
10758
10759 APInt Hi = CR->getUnsignedMax();
10760 unsigned Bits = std::max(Hi.getActiveBits(),
10761 static_cast<unsigned>(IntegerType::MIN_INT_BITS));
10762
10763 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
10764
10765 SDLoc SL = getCurSDLoc();
10766
10767 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
10768 DAG.getValueType(SmallVT));
10769 unsigned NumVals = Op.getNode()->getNumValues();
10770 if (NumVals == 1)
10771 return ZExt;
10772
10774
10775 Ops.push_back(ZExt);
10776 for (unsigned I = 1; I != NumVals; ++I)
10777 Ops.push_back(Op.getValue(I));
10778
10779 return DAG.getMergeValues(Ops, SL);
10780}
10781
10783 SelectionDAG &DAG, const Instruction &I, SDValue Op) {
10784 FPClassTest Classes = getNoFPClass(I);
10785 if (Classes == fcNone)
10786 return Op;
10787
10788 SDLoc SL = getCurSDLoc();
10789 SDValue TestConst = DAG.getTargetConstant(Classes, SDLoc(), MVT::i32);
10790
10791 if (Op.getOpcode() != ISD::MERGE_VALUES) {
10792 return DAG.getNode(ISD::AssertNoFPClass, SL, Op.getValueType(), Op,
10793 TestConst);
10794 }
10795
10796 SmallVector<SDValue, 8> Ops(Op.getNumOperands());
10797 for (unsigned I = 0, E = Ops.size(); I != E; ++I) {
10798 SDValue MergeOp = Op.getOperand(I);
10799 Ops[I] = DAG.getNode(ISD::AssertNoFPClass, SL, MergeOp.getValueType(),
10800 MergeOp, TestConst);
10801 }
10802
10803 return DAG.getMergeValues(Ops, SL);
10804}
10805
10806/// Populate a CallLowerinInfo (into \p CLI) based on the properties of
10807/// the call being lowered.
10808///
10809/// This is a helper for lowering intrinsics that follow a target calling
10810/// convention or require stack pointer adjustment. Only a subset of the
10811/// intrinsic's operands need to participate in the calling convention.
10814 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
10815 AttributeSet RetAttrs, bool IsPatchPoint) {
10817 Args.reserve(NumArgs);
10818
10819 // Populate the argument list.
10820 // Attributes for args start at offset 1, after the return attribute.
10821 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
10822 ArgI != ArgE; ++ArgI) {
10823 const Value *V = Call->getOperand(ArgI);
10824
10825 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
10826
10827 TargetLowering::ArgListEntry Entry(getValue(V), V->getType());
10828 Entry.setAttributes(Call, ArgI);
10829 Args.push_back(Entry);
10830 }
10831
10833 .setChain(getRoot())
10834 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
10835 RetAttrs)
10836 .setDiscardResult(Call->use_empty())
10837 .setIsPatchPoint(IsPatchPoint)
10839 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
10840}
10841
10842/// Add a stack map intrinsic call's live variable operands to a stackmap
10843/// or patchpoint target node's operand list.
10844///
10845/// Constants are converted to TargetConstants purely as an optimization to
10846/// avoid constant materialization and register allocation.
10847///
10848/// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
10849/// generate addess computation nodes, and so FinalizeISel can convert the
10850/// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
10851/// address materialization and register allocation, but may also be required
10852/// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
10853/// alloca in the entry block, then the runtime may assume that the alloca's
10854/// StackMap location can be read immediately after compilation and that the
10855/// location is valid at any point during execution (this is similar to the
10856/// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
10857/// only available in a register, then the runtime would need to trap when
10858/// execution reaches the StackMap in order to read the alloca's location.
10859static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
10861 SelectionDAGBuilder &Builder) {
10862 SelectionDAG &DAG = Builder.DAG;
10863 for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
10864 SDValue Op = Builder.getValue(Call.getArgOperand(I));
10865
10866 // Things on the stack are pointer-typed, meaning that they are already
10867 // legal and can be emitted directly to target nodes.
10869 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
10870 } else {
10871 // Otherwise emit a target independent node to be legalised.
10872 Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
10873 }
10874 }
10875}
10876
10877/// Lower llvm.experimental.stackmap.
10878void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
10879 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
10880 // [live variables...])
10881
10882 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
10883
10884 SDValue Chain, InGlue, Callee;
10886
10887 SDLoc DL = getCurSDLoc();
10889
10890 // The stackmap intrinsic only records the live variables (the arguments
10891 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
10892 // intrinsic, this won't be lowered to a function call. This means we don't
10893 // have to worry about calling conventions and target specific lowering code.
10894 // Instead we perform the call lowering right here.
10895 //
10896 // chain, flag = CALLSEQ_START(chain, 0, 0)
10897 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
10898 // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
10899 //
10900 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
10901 InGlue = Chain.getValue(1);
10902
10903 // Add the STACKMAP operands, starting with DAG house-keeping.
10904 Ops.push_back(Chain);
10905 Ops.push_back(InGlue);
10906
10907 // Add the <id>, <numShadowBytes> operands.
10908 //
10909 // These do not require legalisation, and can be emitted directly to target
10910 // constant nodes.
10912 assert(ID.getValueType() == MVT::i64);
10913 SDValue IDConst =
10914 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType());
10915 Ops.push_back(IDConst);
10916
10917 SDValue Shad = getValue(CI.getArgOperand(1));
10918 assert(Shad.getValueType() == MVT::i32);
10919 SDValue ShadConst =
10920 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType());
10921 Ops.push_back(ShadConst);
10922
10923 // Add the live variables.
10924 addStackMapLiveVars(CI, 2, DL, Ops, *this);
10925
10926 // Create the STACKMAP node.
10927 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10928 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
10929 InGlue = Chain.getValue(1);
10930
10931 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
10932
10933 // Stackmaps don't generate values, so nothing goes into the NodeMap.
10934
10935 // Set the root to the target-lowered call chain.
10936 DAG.setRoot(Chain);
10937
10938 // Inform the Frame Information that we have a stackmap in this function.
10939 FuncInfo.MF->getFrameInfo().setHasStackMap();
10940}
10941
10942/// Lower llvm.experimental.patchpoint directly to its target opcode.
10943void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
10944 const BasicBlock *EHPadBB) {
10945 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>,
10946 // i32 <numBytes>,
10947 // i8* <target>,
10948 // i32 <numArgs>,
10949 // [Args...],
10950 // [live variables...])
10951
10953 bool IsAnyRegCC = CC == CallingConv::AnyReg;
10954 bool HasDef = !CB.getType()->isVoidTy();
10955 SDLoc dl = getCurSDLoc();
10957
10958 // Handle immediate and symbolic callees.
10959 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
10960 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10961 /*isTarget=*/true);
10962 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
10963 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10964 SDLoc(SymbolicCallee),
10965 SymbolicCallee->getValueType(0));
10966
10967 // Get the real number of arguments participating in the call <numArgs>
10969 unsigned NumArgs = NArgVal->getAsZExtVal();
10970
10971 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
10972 // Intrinsics include all meta-operands up to but not including CC.
10973 unsigned NumMetaOpers = PatchPointOpers::CCPos;
10974 assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
10975 "Not enough arguments provided to the patchpoint intrinsic");
10976
10977 // For AnyRegCC the arguments are lowered later on manually.
10978 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10979 Type *ReturnTy =
10980 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
10981
10982 TargetLowering::CallLoweringInfo CLI(DAG);
10983 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
10984 ReturnTy, CB.getAttributes().getRetAttrs(), true);
10985 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
10986
10987 SDNode *CallEnd = Result.second.getNode();
10988 if (CallEnd->getOpcode() == ISD::EH_LABEL)
10989 CallEnd = CallEnd->getOperand(0).getNode();
10990 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
10991 CallEnd = CallEnd->getOperand(0).getNode();
10992
10993 /// Get a call instruction from the call sequence chain.
10994 /// Tail calls are not allowed.
10995 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
10996 "Expected a callseq node.");
10997 SDNode *Call = CallEnd->getOperand(0).getNode();
10998 bool HasGlue = Call->getGluedNode();
10999
11000 // Replace the target specific call node with the patchable intrinsic.
11002
11003 // Push the chain.
11004 Ops.push_back(*(Call->op_begin()));
11005
11006 // Optionally, push the glue (if any).
11007 if (HasGlue)
11008 Ops.push_back(*(Call->op_end() - 1));
11009
11010 // Push the register mask info.
11011 if (HasGlue)
11012 Ops.push_back(*(Call->op_end() - 2));
11013 else
11014 Ops.push_back(*(Call->op_end() - 1));
11015
11016 // Add the <id> and <numBytes> constants.
11018 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64));
11020 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32));
11021
11022 // Add the callee.
11023 Ops.push_back(Callee);
11024
11025 // Adjust <numArgs> to account for any arguments that have been passed on the
11026 // stack instead.
11027 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
11028 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
11029 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
11030 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
11031
11032 // Add the calling convention
11033 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
11034
11035 // Add the arguments we omitted previously. The register allocator should
11036 // place these in any free register.
11037 if (IsAnyRegCC)
11038 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
11039 Ops.push_back(getValue(CB.getArgOperand(i)));
11040
11041 // Push the arguments from the call instruction.
11042 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
11043 Ops.append(Call->op_begin() + 2, e);
11044
11045 // Push live variables for the stack map.
11046 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
11047
11048 SDVTList NodeTys;
11049 if (IsAnyRegCC && HasDef) {
11050 // Create the return types based on the intrinsic definition
11051 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11052 SmallVector<EVT, 3> ValueVTs;
11053 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
11054 assert(ValueVTs.size() == 1 && "Expected only one return value type.");
11055
11056 // There is always a chain and a glue type at the end
11057 ValueVTs.push_back(MVT::Other);
11058 ValueVTs.push_back(MVT::Glue);
11059 NodeTys = DAG.getVTList(ValueVTs);
11060 } else
11061 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
11062
11063 // Replace the target specific call node with a PATCHPOINT node.
11064 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
11065
11066 // Update the NodeMap.
11067 if (HasDef) {
11068 if (IsAnyRegCC)
11069 setValue(&CB, SDValue(PPV.getNode(), 0));
11070 else
11071 setValue(&CB, Result.first);
11072 }
11073
11074 // Fixup the consumers of the intrinsic. The chain and glue may be used in the
11075 // call sequence. Furthermore the location of the chain and glue can change
11076 // when the AnyReg calling convention is used and the intrinsic returns a
11077 // value.
11078 if (IsAnyRegCC && HasDef) {
11079 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
11080 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
11081 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
11082 } else
11083 DAG.ReplaceAllUsesWith(Call, PPV.getNode());
11084 DAG.DeleteNode(Call);
11085
11086 // Inform the Frame Information that we have a patchpoint in this function.
11087 FuncInfo.MF->getFrameInfo().setHasPatchPoint();
11088}
11089
11090void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
11091 unsigned Intrinsic) {
11092 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11093 SDValue Op1 = getValue(I.getArgOperand(0));
11094 SDValue Op2;
11095 if (I.arg_size() > 1)
11096 Op2 = getValue(I.getArgOperand(1));
11097 SDLoc dl = getCurSDLoc();
11098 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11099 SDValue Res;
11100 SDNodeFlags SDFlags;
11101 if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
11102 SDFlags.copyFMF(*FPMO);
11103
11104 switch (Intrinsic) {
11105 case Intrinsic::vector_reduce_fadd:
11106 if (SDFlags.hasAllowReassociation())
11107 Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
11108 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
11109 SDFlags);
11110 else
11111 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
11112 break;
11113 case Intrinsic::vector_reduce_fmul:
11114 if (SDFlags.hasAllowReassociation())
11115 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
11116 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
11117 SDFlags);
11118 else
11119 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
11120 break;
11121 case Intrinsic::vector_reduce_add:
11122 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
11123 break;
11124 case Intrinsic::vector_reduce_mul:
11125 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
11126 break;
11127 case Intrinsic::vector_reduce_and:
11128 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
11129 break;
11130 case Intrinsic::vector_reduce_or:
11131 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
11132 break;
11133 case Intrinsic::vector_reduce_xor:
11134 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
11135 break;
11136 case Intrinsic::vector_reduce_smax:
11137 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
11138 break;
11139 case Intrinsic::vector_reduce_smin:
11140 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
11141 break;
11142 case Intrinsic::vector_reduce_umax:
11143 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
11144 break;
11145 case Intrinsic::vector_reduce_umin:
11146 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
11147 break;
11148 case Intrinsic::vector_reduce_fmax:
11149 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
11150 break;
11151 case Intrinsic::vector_reduce_fmin:
11152 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
11153 break;
11154 case Intrinsic::vector_reduce_fmaximum:
11155 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
11156 break;
11157 case Intrinsic::vector_reduce_fminimum:
11158 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
11159 break;
11160 default:
11161 llvm_unreachable("Unhandled vector reduce intrinsic");
11162 }
11163 setValue(&I, Res);
11164}
11165
11166/// Returns an AttributeList representing the attributes applied to the return
11167/// value of the given call.
11170 if (CLI.RetSExt)
11171 Attrs.push_back(Attribute::SExt);
11172 if (CLI.RetZExt)
11173 Attrs.push_back(Attribute::ZExt);
11174 if (CLI.IsInReg)
11175 Attrs.push_back(Attribute::InReg);
11176
11177 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
11178 Attrs);
11179}
11180
11181/// TargetLowering::LowerCallTo - This is the default LowerCallTo
11182/// implementation, which just calls LowerCall.
11183/// FIXME: When all targets are
11184/// migrated to using LowerCall, this hook should be integrated into SDISel.
11185std::pair<SDValue, SDValue>
11187 LLVMContext &Context = CLI.RetTy->getContext();
11188
11189 // Handle the incoming return values from the call.
11190 CLI.Ins.clear();
11191 SmallVector<Type *, 4> RetOrigTys;
11193 auto &DL = CLI.DAG.getDataLayout();
11194 ComputeValueTypes(DL, CLI.OrigRetTy, RetOrigTys, &Offsets);
11195
11196 SmallVector<EVT, 4> RetVTs;
11197 if (CLI.RetTy != CLI.OrigRetTy) {
11198 assert(RetOrigTys.size() == 1 &&
11199 "Only supported for non-aggregate returns");
11200 RetVTs.push_back(getValueType(DL, CLI.RetTy));
11201 } else {
11202 for (Type *Ty : RetOrigTys)
11203 RetVTs.push_back(getValueType(DL, Ty));
11204 }
11205
11206 if (CLI.IsPostTypeLegalization) {
11207 // If we are lowering a libcall after legalization, split the return type.
11208 SmallVector<Type *, 4> OldRetOrigTys;
11209 SmallVector<EVT, 4> OldRetVTs;
11210 SmallVector<TypeSize, 4> OldOffsets;
11211 RetOrigTys.swap(OldRetOrigTys);
11212 RetVTs.swap(OldRetVTs);
11213 Offsets.swap(OldOffsets);
11214
11215 for (size_t i = 0, e = OldRetVTs.size(); i != e; ++i) {
11216 EVT RetVT = OldRetVTs[i];
11217 uint64_t Offset = OldOffsets[i];
11218 MVT RegisterVT = getRegisterType(Context, RetVT);
11219 unsigned NumRegs = getNumRegisters(Context, RetVT);
11220 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
11221 RetOrigTys.append(NumRegs, OldRetOrigTys[i]);
11222 RetVTs.append(NumRegs, RegisterVT);
11223 for (unsigned j = 0; j != NumRegs; ++j)
11224 Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ));
11225 }
11226 }
11227
11229 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
11230
11231 bool CanLowerReturn =
11233 CLI.IsVarArg, Outs, Context, CLI.RetTy);
11234
11235 SDValue DemoteStackSlot;
11236 int DemoteStackIdx = -100;
11237 if (!CanLowerReturn) {
11238 // FIXME: equivalent assert?
11239 // assert(!CS.hasInAllocaArgument() &&
11240 // "sret demotion is incompatible with inalloca");
11241 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
11242 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
11244 DemoteStackIdx =
11245 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
11246 Type *StackSlotPtrType = PointerType::get(Context, DL.getAllocaAddrSpace());
11247
11248 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
11249 ArgListEntry Entry(DemoteStackSlot, StackSlotPtrType);
11250 Entry.IsSRet = true;
11251 Entry.Alignment = Alignment;
11252 CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
11253 CLI.NumFixedArgs += 1;
11254 CLI.getArgs()[0].IndirectType = CLI.RetTy;
11255 CLI.RetTy = CLI.OrigRetTy = Type::getVoidTy(Context);
11256
11257 // sret demotion isn't compatible with tail-calls, since the sret argument
11258 // points into the callers stack frame.
11259 CLI.IsTailCall = false;
11260 } else {
11261 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
11262 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
11263 for (unsigned I = 0, E = RetVTs.size(); I != E; ++I) {
11264 ISD::ArgFlagsTy Flags;
11265 if (NeedsRegBlock) {
11266 Flags.setInConsecutiveRegs();
11267 if (I == RetVTs.size() - 1)
11268 Flags.setInConsecutiveRegsLast();
11269 }
11270 EVT VT = RetVTs[I];
11271 MVT RegisterVT = getRegisterTypeForCallingConv(Context, CLI.CallConv, VT);
11272 unsigned NumRegs =
11273 getNumRegistersForCallingConv(Context, CLI.CallConv, VT);
11274 for (unsigned i = 0; i != NumRegs; ++i) {
11275 ISD::InputArg Ret(Flags, RegisterVT, VT, RetOrigTys[I],
11277 if (CLI.RetTy->isPointerTy()) {
11278 Ret.Flags.setPointer();
11280 cast<PointerType>(CLI.RetTy)->getAddressSpace());
11281 }
11282 if (CLI.RetSExt)
11283 Ret.Flags.setSExt();
11284 if (CLI.RetZExt)
11285 Ret.Flags.setZExt();
11286 if (CLI.IsInReg)
11287 Ret.Flags.setInReg();
11288 CLI.Ins.push_back(Ret);
11289 }
11290 }
11291 }
11292
11293 // We push in swifterror return as the last element of CLI.Ins.
11294 ArgListTy &Args = CLI.getArgs();
11295 if (supportSwiftError()) {
11296 for (const ArgListEntry &Arg : Args) {
11297 if (Arg.IsSwiftError) {
11298 ISD::ArgFlagsTy Flags;
11299 Flags.setSwiftError();
11301 PointerType::getUnqual(Context),
11302 /*Used=*/true, ISD::InputArg::NoArgIndex, 0);
11303 CLI.Ins.push_back(Ret);
11304 }
11305 }
11306 }
11307
11308 // Handle all of the outgoing arguments.
11309 CLI.Outs.clear();
11310 CLI.OutVals.clear();
11311 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
11312 SmallVector<Type *, 4> OrigArgTys;
11313 ComputeValueTypes(DL, Args[i].OrigTy, OrigArgTys);
11314 // FIXME: Split arguments if CLI.IsPostTypeLegalization
11315 Type *FinalType = Args[i].Ty;
11316 if (Args[i].IsByVal)
11317 FinalType = Args[i].IndirectType;
11318 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
11319 FinalType, CLI.CallConv, CLI.IsVarArg, DL);
11320 for (unsigned Value = 0, NumValues = OrigArgTys.size(); Value != NumValues;
11321 ++Value) {
11322 Type *OrigArgTy = OrigArgTys[Value];
11323 Type *ArgTy = OrigArgTy;
11324 if (Args[i].Ty != Args[i].OrigTy) {
11325 assert(Value == 0 && "Only supported for non-aggregate arguments");
11326 ArgTy = Args[i].Ty;
11327 }
11328
11329 EVT VT = getValueType(DL, ArgTy);
11330 SDValue Op = SDValue(Args[i].Node.getNode(),
11331 Args[i].Node.getResNo() + Value);
11332 ISD::ArgFlagsTy Flags;
11333
11334 // Certain targets (such as MIPS), may have a different ABI alignment
11335 // for a type depending on the context. Give the target a chance to
11336 // specify the alignment it wants.
11337 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
11338 Flags.setOrigAlign(OriginalAlignment);
11339
11340 if (i >= CLI.NumFixedArgs)
11341 Flags.setVarArg();
11342 if (ArgTy->isPointerTy()) {
11343 Flags.setPointer();
11344 Flags.setPointerAddrSpace(cast<PointerType>(ArgTy)->getAddressSpace());
11345 }
11346 if (Args[i].IsZExt)
11347 Flags.setZExt();
11348 if (Args[i].IsSExt)
11349 Flags.setSExt();
11350 if (Args[i].IsNoExt)
11351 Flags.setNoExt();
11352 if (Args[i].IsInReg) {
11353 // If we are using vectorcall calling convention, a structure that is
11354 // passed InReg - is surely an HVA
11356 isa<StructType>(FinalType)) {
11357 // The first value of a structure is marked
11358 if (0 == Value)
11359 Flags.setHvaStart();
11360 Flags.setHva();
11361 }
11362 // Set InReg Flag
11363 Flags.setInReg();
11364 }
11365 if (Args[i].IsSRet)
11366 Flags.setSRet();
11367 if (Args[i].IsSwiftSelf)
11368 Flags.setSwiftSelf();
11369 if (Args[i].IsSwiftAsync)
11370 Flags.setSwiftAsync();
11371 if (Args[i].IsSwiftError)
11372 Flags.setSwiftError();
11373 if (Args[i].IsCFGuardTarget)
11374 Flags.setCFGuardTarget();
11375 if (Args[i].IsByVal)
11376 Flags.setByVal();
11377 if (Args[i].IsByRef)
11378 Flags.setByRef();
11379 if (Args[i].IsPreallocated) {
11380 Flags.setPreallocated();
11381 // Set the byval flag for CCAssignFn callbacks that don't know about
11382 // preallocated. This way we can know how many bytes we should've
11383 // allocated and how many bytes a callee cleanup function will pop. If
11384 // we port preallocated to more targets, we'll have to add custom
11385 // preallocated handling in the various CC lowering callbacks.
11386 Flags.setByVal();
11387 }
11388 if (Args[i].IsInAlloca) {
11389 Flags.setInAlloca();
11390 // Set the byval flag for CCAssignFn callbacks that don't know about
11391 // inalloca. This way we can know how many bytes we should've allocated
11392 // and how many bytes a callee cleanup function will pop. If we port
11393 // inalloca to more targets, we'll have to add custom inalloca handling
11394 // in the various CC lowering callbacks.
11395 Flags.setByVal();
11396 }
11397 Align MemAlign;
11398 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
11399 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
11400 Flags.setByValSize(FrameSize);
11401
11402 // info is not there but there are cases it cannot get right.
11403 if (auto MA = Args[i].Alignment)
11404 MemAlign = *MA;
11405 else
11406 MemAlign = getByValTypeAlignment(Args[i].IndirectType, DL);
11407 } else if (auto MA = Args[i].Alignment) {
11408 MemAlign = *MA;
11409 } else {
11410 MemAlign = OriginalAlignment;
11411 }
11412 Flags.setMemAlign(MemAlign);
11413 if (Args[i].IsNest)
11414 Flags.setNest();
11415 if (NeedsRegBlock)
11416 Flags.setInConsecutiveRegs();
11417
11418 MVT PartVT = getRegisterTypeForCallingConv(Context, CLI.CallConv, VT);
11419 unsigned NumParts =
11420 getNumRegistersForCallingConv(Context, CLI.CallConv, VT);
11421 SmallVector<SDValue, 4> Parts(NumParts);
11422 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
11423
11424 if (Args[i].IsSExt)
11425 ExtendKind = ISD::SIGN_EXTEND;
11426 else if (Args[i].IsZExt)
11427 ExtendKind = ISD::ZERO_EXTEND;
11428
11429 // Conservatively only handle 'returned' on non-vectors that can be lowered,
11430 // for now.
11431 if (Args[i].IsReturned && !Op.getValueType().isVector() &&
11433 assert((CLI.RetTy == Args[i].Ty ||
11434 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
11436 Args[i].Ty->getPointerAddressSpace())) &&
11437 RetVTs.size() == NumValues && "unexpected use of 'returned'");
11438 // Before passing 'returned' to the target lowering code, ensure that
11439 // either the register MVT and the actual EVT are the same size or that
11440 // the return value and argument are extended in the same way; in these
11441 // cases it's safe to pass the argument register value unchanged as the
11442 // return register value (although it's at the target's option whether
11443 // to do so)
11444 // TODO: allow code generation to take advantage of partially preserved
11445 // registers rather than clobbering the entire register when the
11446 // parameter extension method is not compatible with the return
11447 // extension method
11448 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
11449 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
11450 CLI.RetZExt == Args[i].IsZExt))
11451 Flags.setReturned();
11452 }
11453
11454 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
11455 CLI.CallConv, ExtendKind);
11456
11457 for (unsigned j = 0; j != NumParts; ++j) {
11458 // if it isn't first piece, alignment must be 1
11459 // For scalable vectors the scalable part is currently handled
11460 // by individual targets, so we just use the known minimum size here.
11461 ISD::OutputArg MyFlags(
11462 Flags, Parts[j].getValueType().getSimpleVT(), VT, OrigArgTy, i,
11463 j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
11464 if (NumParts > 1 && j == 0)
11465 MyFlags.Flags.setSplit();
11466 else if (j != 0) {
11467 MyFlags.Flags.setOrigAlign(Align(1));
11468 if (j == NumParts - 1)
11469 MyFlags.Flags.setSplitEnd();
11470 }
11471
11472 CLI.Outs.push_back(MyFlags);
11473 CLI.OutVals.push_back(Parts[j]);
11474 }
11475
11476 if (NeedsRegBlock && Value == NumValues - 1)
11477 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
11478 }
11479 }
11480
11482 CLI.Chain = LowerCall(CLI, InVals);
11483
11484 // Update CLI.InVals to use outside of this function.
11485 CLI.InVals = InVals;
11486
11487 // Verify that the target's LowerCall behaved as expected.
11488 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
11489 "LowerCall didn't return a valid chain!");
11490 assert((!CLI.IsTailCall || InVals.empty()) &&
11491 "LowerCall emitted a return value for a tail call!");
11492 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
11493 "LowerCall didn't emit the correct number of values!");
11494
11495 // For a tail call, the return value is merely live-out and there aren't
11496 // any nodes in the DAG representing it. Return a special value to
11497 // indicate that a tail call has been emitted and no more Instructions
11498 // should be processed in the current block.
11499 if (CLI.IsTailCall) {
11500 CLI.DAG.setRoot(CLI.Chain);
11501 return std::make_pair(SDValue(), SDValue());
11502 }
11503
11504#ifndef NDEBUG
11505 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
11506 assert(InVals[i].getNode() && "LowerCall emitted a null value!");
11507 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
11508 "LowerCall emitted a value with the wrong type!");
11509 }
11510#endif
11511
11512 SmallVector<SDValue, 4> ReturnValues;
11513 if (!CanLowerReturn) {
11514 // The instruction result is the result of loading from the
11515 // hidden sret parameter.
11516 MVT PtrVT = getPointerTy(DL, DL.getAllocaAddrSpace());
11517
11518 unsigned NumValues = RetVTs.size();
11519 ReturnValues.resize(NumValues);
11520 SmallVector<SDValue, 4> Chains(NumValues);
11521
11522 // An aggregate return value cannot wrap around the address space, so
11523 // offsets to its parts don't wrap either.
11525 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
11526 for (unsigned i = 0; i < NumValues; ++i) {
11528 DemoteStackSlot, CLI.DAG.getConstant(Offsets[i], CLI.DL, PtrVT),
11530 SDValue L = CLI.DAG.getLoad(
11531 RetVTs[i], CLI.DL, CLI.Chain, Add,
11533 DemoteStackIdx, Offsets[i]),
11534 HiddenSRetAlign);
11535 ReturnValues[i] = L;
11536 Chains[i] = L.getValue(1);
11537 }
11538
11539 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
11540 } else {
11541 // Collect the legal value parts into potentially illegal values
11542 // that correspond to the original function's return values.
11543 std::optional<ISD::NodeType> AssertOp;
11544 if (CLI.RetSExt)
11545 AssertOp = ISD::AssertSext;
11546 else if (CLI.RetZExt)
11547 AssertOp = ISD::AssertZext;
11548 unsigned CurReg = 0;
11549 for (EVT VT : RetVTs) {
11550 MVT RegisterVT = getRegisterTypeForCallingConv(Context, CLI.CallConv, VT);
11551 unsigned NumRegs =
11552 getNumRegistersForCallingConv(Context, CLI.CallConv, VT);
11553
11554 ReturnValues.push_back(getCopyFromParts(
11555 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr,
11556 CLI.Chain, CLI.CallConv, AssertOp));
11557 CurReg += NumRegs;
11558 }
11559
11560 // For a function returning void, there is no return value. We can't create
11561 // such a node, so we just return a null return value in that case. In
11562 // that case, nothing will actually look at the value.
11563 if (ReturnValues.empty())
11564 return std::make_pair(SDValue(), CLI.Chain);
11565 }
11566
11567 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
11568 CLI.DAG.getVTList(RetVTs), ReturnValues);
11569 return std::make_pair(Res, CLI.Chain);
11570}
11571
11572/// Places new result values for the node in Results (their number
11573/// and types must exactly match those of the original return values of
11574/// the node), or leaves Results empty, which indicates that the node is not
11575/// to be custom lowered after all.
11578 SelectionDAG &DAG) const {
11579 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
11580
11581 if (!Res.getNode())
11582 return;
11583
11584 // If the original node has one result, take the return value from
11585 // LowerOperation as is. It might not be result number 0.
11586 if (N->getNumValues() == 1) {
11587 Results.push_back(Res);
11588 return;
11589 }
11590
11591 // If the original node has multiple results, then the return node should
11592 // have the same number of results.
11593 assert((N->getNumValues() == Res->getNumValues()) &&
11594 "Lowering returned the wrong number of results!");
11595
11596 // Places new result values base on N result number.
11597 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
11598 Results.push_back(Res.getValue(I));
11599}
11600
11602 llvm_unreachable("LowerOperation not implemented for this target!");
11603}
11604
11606 Register Reg,
11607 ISD::NodeType ExtendType) {
11609 assert((Op.getOpcode() != ISD::CopyFromReg ||
11610 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
11611 "Copy from a reg to the same reg!");
11612 assert(!Reg.isPhysical() && "Is a physreg");
11613
11614 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11615 // If this is an InlineAsm we have to match the registers required, not the
11616 // notional registers required by the type.
11617
11618 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
11619 std::nullopt); // This is not an ABI copy.
11620 SDValue Chain = DAG.getEntryNode();
11621
11622 if (ExtendType == ISD::ANY_EXTEND) {
11623 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
11624 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
11625 ExtendType = PreferredExtendIt->second;
11626 }
11627 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
11628 PendingExports.push_back(Chain);
11629}
11630
11632
11633/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
11634/// entry block, return true. This includes arguments used by switches, since
11635/// the switch may expand into multiple basic blocks.
11636static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
11637 // With FastISel active, we may be splitting blocks, so force creation
11638 // of virtual registers for all non-dead arguments.
11639 if (FastISel)
11640 return A->use_empty();
11641
11642 const BasicBlock &Entry = A->getParent()->front();
11643 for (const User *U : A->users())
11644 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
11645 return false; // Use not in entry block.
11646
11647 return true;
11648}
11649
11651 DenseMap<const Argument *,
11652 std::pair<const AllocaInst *, const StoreInst *>>;
11653
11654/// Scan the entry block of the function in FuncInfo for arguments that look
11655/// like copies into a local alloca. Record any copied arguments in
11656/// ArgCopyElisionCandidates.
11657static void
11659 FunctionLoweringInfo *FuncInfo,
11660 ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
11661 // Record the state of every static alloca used in the entry block. Argument
11662 // allocas are all used in the entry block, so we need approximately as many
11663 // entries as we have arguments.
11664 enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
11666 unsigned NumArgs = FuncInfo->Fn->arg_size();
11667 StaticAllocas.reserve(NumArgs * 2);
11668
11669 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
11670 if (!V)
11671 return nullptr;
11672 V = V->stripPointerCasts();
11673 const auto *AI = dyn_cast<AllocaInst>(V);
11674 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
11675 return nullptr;
11676 auto Iter = StaticAllocas.insert({AI, Unknown});
11677 return &Iter.first->second;
11678 };
11679
11680 // Look for stores of arguments to static allocas. Look through bitcasts and
11681 // GEPs to handle type coercions, as long as the alloca is fully initialized
11682 // by the store. Any non-store use of an alloca escapes it and any subsequent
11683 // unanalyzed store might write it.
11684 // FIXME: Handle structs initialized with multiple stores.
11685 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
11686 // Look for stores, and handle non-store uses conservatively.
11687 const auto *SI = dyn_cast<StoreInst>(&I);
11688 if (!SI) {
11689 // We will look through cast uses, so ignore them completely.
11690 if (I.isCast())
11691 continue;
11692 // Ignore debug info and pseudo op intrinsics, they don't escape or store
11693 // to allocas.
11694 if (I.isDebugOrPseudoInst())
11695 continue;
11696 // This is an unknown instruction. Assume it escapes or writes to all
11697 // static alloca operands.
11698 for (const Use &U : I.operands()) {
11699 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
11700 *Info = StaticAllocaInfo::Clobbered;
11701 }
11702 continue;
11703 }
11704
11705 // If the stored value is a static alloca, mark it as escaped.
11706 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
11707 *Info = StaticAllocaInfo::Clobbered;
11708
11709 // Check if the destination is a static alloca.
11710 const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
11711 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
11712 if (!Info)
11713 continue;
11714 const AllocaInst *AI = cast<AllocaInst>(Dst);
11715
11716 // Skip allocas that have been initialized or clobbered.
11717 if (*Info != StaticAllocaInfo::Unknown)
11718 continue;
11719
11720 // Check if the stored value is an argument, and that this store fully
11721 // initializes the alloca.
11722 // If the argument type has padding bits we can't directly forward a pointer
11723 // as the upper bits may contain garbage.
11724 // Don't elide copies from the same argument twice.
11725 const Value *Val = SI->getValueOperand()->stripPointerCasts();
11726 const auto *Arg = dyn_cast<Argument>(Val);
11727 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
11728 Arg->getType()->isEmptyTy() ||
11729 DL.getTypeStoreSize(Arg->getType()) !=
11730 DL.getTypeAllocSize(AI->getAllocatedType()) ||
11731 !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
11732 ArgCopyElisionCandidates.count(Arg)) {
11733 *Info = StaticAllocaInfo::Clobbered;
11734 continue;
11735 }
11736
11737 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
11738 << '\n');
11739
11740 // Mark this alloca and store for argument copy elision.
11741 *Info = StaticAllocaInfo::Elidable;
11742 ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
11743
11744 // Stop scanning if we've seen all arguments. This will happen early in -O0
11745 // builds, which is useful, because -O0 builds have large entry blocks and
11746 // many allocas.
11747 if (ArgCopyElisionCandidates.size() == NumArgs)
11748 break;
11749 }
11750}
11751
11752/// Try to elide argument copies from memory into a local alloca. Succeeds if
11753/// ArgVal is a load from a suitable fixed stack object.
11756 DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
11757 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
11758 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
11759 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
11760 // Check if this is a load from a fixed stack object.
11761 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
11762 if (!LNode)
11763 return;
11764 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
11765 if (!FINode)
11766 return;
11767
11768 // Check that the fixed stack object is the right size and alignment.
11769 // Look at the alignment that the user wrote on the alloca instead of looking
11770 // at the stack object.
11771 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
11772 assert(ArgCopyIter != ArgCopyElisionCandidates.end());
11773 const AllocaInst *AI = ArgCopyIter->second.first;
11774 int FixedIndex = FINode->getIndex();
11775 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
11776 int OldIndex = AllocaIndex;
11777 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
11778 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
11779 LLVM_DEBUG(
11780 dbgs() << " argument copy elision failed due to bad fixed stack "
11781 "object size\n");
11782 return;
11783 }
11784 Align RequiredAlignment = AI->getAlign();
11785 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
11786 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca "
11787 "greater than stack argument alignment ("
11788 << DebugStr(RequiredAlignment) << " vs "
11789 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
11790 return;
11791 }
11792
11793 // Perform the elision. Delete the old stack object and replace its only use
11794 // in the variable info map. Mark the stack object as mutable and aliased.
11795 LLVM_DEBUG({
11796 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
11797 << " Replacing frame index " << OldIndex << " with " << FixedIndex
11798 << '\n';
11799 });
11800 MFI.RemoveStackObject(OldIndex);
11801 MFI.setIsImmutableObjectIndex(FixedIndex, false);
11802 MFI.setIsAliasedObjectIndex(FixedIndex, true);
11803 AllocaIndex = FixedIndex;
11804 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
11805 for (SDValue ArgVal : ArgVals)
11806 Chains.push_back(ArgVal.getValue(1));
11807
11808 // Avoid emitting code for the store implementing the copy.
11809 const StoreInst *SI = ArgCopyIter->second.second;
11810 ElidedArgCopyInstrs.insert(SI);
11811
11812 // Check for uses of the argument again so that we can avoid exporting ArgVal
11813 // if it is't used by anything other than the store.
11814 for (const Value *U : Arg.users()) {
11815 if (U != SI) {
11816 ArgHasUses = true;
11817 break;
11818 }
11819 }
11820}
11821
11822void SelectionDAGISel::LowerArguments(const Function &F) {
11823 SelectionDAG &DAG = SDB->DAG;
11824 SDLoc dl = SDB->getCurSDLoc();
11825 const DataLayout &DL = DAG.getDataLayout();
11827
11828 // In Naked functions we aren't going to save any registers.
11829 if (F.hasFnAttribute(Attribute::Naked))
11830 return;
11831
11832 if (!FuncInfo->CanLowerReturn) {
11833 // Put in an sret pointer parameter before all the other parameters.
11834 MVT ValueVT = TLI->getPointerTy(DL, DL.getAllocaAddrSpace());
11835
11836 ISD::ArgFlagsTy Flags;
11837 Flags.setSRet();
11838 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVT);
11839 ISD::InputArg RetArg(Flags, RegisterVT, ValueVT, F.getReturnType(), true,
11841 Ins.push_back(RetArg);
11842 }
11843
11844 // Look for stores of arguments to static allocas. Mark such arguments with a
11845 // flag to ask the target to give us the memory location of that argument if
11846 // available.
11847 ArgCopyElisionMapTy ArgCopyElisionCandidates;
11849 ArgCopyElisionCandidates);
11850
11851 // Set up the incoming argument description vector.
11852 for (const Argument &Arg : F.args()) {
11853 unsigned ArgNo = Arg.getArgNo();
11855 ComputeValueTypes(DAG.getDataLayout(), Arg.getType(), Types);
11856 bool isArgValueUsed = !Arg.use_empty();
11857 unsigned PartBase = 0;
11858 Type *FinalType = Arg.getType();
11859 if (Arg.hasAttribute(Attribute::ByVal))
11860 FinalType = Arg.getParamByValType();
11861 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
11862 FinalType, F.getCallingConv(), F.isVarArg(), DL);
11863 for (unsigned Value = 0, NumValues = Types.size(); Value != NumValues;
11864 ++Value) {
11865 Type *ArgTy = Types[Value];
11866 EVT VT = TLI->getValueType(DL, ArgTy);
11867 ISD::ArgFlagsTy Flags;
11868
11869 if (ArgTy->isPointerTy()) {
11870 Flags.setPointer();
11871 Flags.setPointerAddrSpace(cast<PointerType>(ArgTy)->getAddressSpace());
11872 }
11873 if (Arg.hasAttribute(Attribute::ZExt))
11874 Flags.setZExt();
11875 if (Arg.hasAttribute(Attribute::SExt))
11876 Flags.setSExt();
11877 if (Arg.hasAttribute(Attribute::InReg)) {
11878 // If we are using vectorcall calling convention, a structure that is
11879 // passed InReg - is surely an HVA
11880 if (F.getCallingConv() == CallingConv::X86_VectorCall &&
11881 isa<StructType>(Arg.getType())) {
11882 // The first value of a structure is marked
11883 if (0 == Value)
11884 Flags.setHvaStart();
11885 Flags.setHva();
11886 }
11887 // Set InReg Flag
11888 Flags.setInReg();
11889 }
11890 if (Arg.hasAttribute(Attribute::StructRet))
11891 Flags.setSRet();
11892 if (Arg.hasAttribute(Attribute::SwiftSelf))
11893 Flags.setSwiftSelf();
11894 if (Arg.hasAttribute(Attribute::SwiftAsync))
11895 Flags.setSwiftAsync();
11896 if (Arg.hasAttribute(Attribute::SwiftError))
11897 Flags.setSwiftError();
11898 if (Arg.hasAttribute(Attribute::ByVal))
11899 Flags.setByVal();
11900 if (Arg.hasAttribute(Attribute::ByRef))
11901 Flags.setByRef();
11902 if (Arg.hasAttribute(Attribute::InAlloca)) {
11903 Flags.setInAlloca();
11904 // Set the byval flag for CCAssignFn callbacks that don't know about
11905 // inalloca. This way we can know how many bytes we should've allocated
11906 // and how many bytes a callee cleanup function will pop. If we port
11907 // inalloca to more targets, we'll have to add custom inalloca handling
11908 // in the various CC lowering callbacks.
11909 Flags.setByVal();
11910 }
11911 if (Arg.hasAttribute(Attribute::Preallocated)) {
11912 Flags.setPreallocated();
11913 // Set the byval flag for CCAssignFn callbacks that don't know about
11914 // preallocated. This way we can know how many bytes we should've
11915 // allocated and how many bytes a callee cleanup function will pop. If
11916 // we port preallocated to more targets, we'll have to add custom
11917 // preallocated handling in the various CC lowering callbacks.
11918 Flags.setByVal();
11919 }
11920
11921 // Certain targets (such as MIPS), may have a different ABI alignment
11922 // for a type depending on the context. Give the target a chance to
11923 // specify the alignment it wants.
11924 const Align OriginalAlignment(
11925 TLI->getABIAlignmentForCallingConv(ArgTy, DL));
11926 Flags.setOrigAlign(OriginalAlignment);
11927
11928 Align MemAlign;
11929 Type *ArgMemTy = nullptr;
11930 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
11931 Flags.isByRef()) {
11932 if (!ArgMemTy)
11933 ArgMemTy = Arg.getPointeeInMemoryValueType();
11934
11935 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
11936
11937 // For in-memory arguments, size and alignment should be passed from FE.
11938 // BE will guess if this info is not there but there are cases it cannot
11939 // get right.
11940 if (auto ParamAlign = Arg.getParamStackAlign())
11941 MemAlign = *ParamAlign;
11942 else if ((ParamAlign = Arg.getParamAlign()))
11943 MemAlign = *ParamAlign;
11944 else
11945 MemAlign = TLI->getByValTypeAlignment(ArgMemTy, DL);
11946 if (Flags.isByRef())
11947 Flags.setByRefSize(MemSize);
11948 else
11949 Flags.setByValSize(MemSize);
11950 } else if (auto ParamAlign = Arg.getParamStackAlign()) {
11951 MemAlign = *ParamAlign;
11952 } else {
11953 MemAlign = OriginalAlignment;
11954 }
11955 Flags.setMemAlign(MemAlign);
11956
11957 if (Arg.hasAttribute(Attribute::Nest))
11958 Flags.setNest();
11959 if (NeedsRegBlock)
11960 Flags.setInConsecutiveRegs();
11961 if (ArgCopyElisionCandidates.count(&Arg))
11962 Flags.setCopyElisionCandidate();
11963 if (Arg.hasAttribute(Attribute::Returned))
11964 Flags.setReturned();
11965
11966 MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
11967 *CurDAG->getContext(), F.getCallingConv(), VT);
11968 unsigned NumRegs = TLI->getNumRegistersForCallingConv(
11969 *CurDAG->getContext(), F.getCallingConv(), VT);
11970 for (unsigned i = 0; i != NumRegs; ++i) {
11971 // For scalable vectors, use the minimum size; individual targets
11972 // are responsible for handling scalable vector arguments and
11973 // return values.
11974 ISD::InputArg MyFlags(
11975 Flags, RegisterVT, VT, ArgTy, isArgValueUsed, ArgNo,
11976 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
11977 if (NumRegs > 1 && i == 0)
11978 MyFlags.Flags.setSplit();
11979 // if it isn't first piece, alignment must be 1
11980 else if (i > 0) {
11981 MyFlags.Flags.setOrigAlign(Align(1));
11982 if (i == NumRegs - 1)
11983 MyFlags.Flags.setSplitEnd();
11984 }
11985 Ins.push_back(MyFlags);
11986 }
11987 if (NeedsRegBlock && Value == NumValues - 1)
11988 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11989 PartBase += VT.getStoreSize().getKnownMinValue();
11990 }
11991 }
11992
11993 // Call the target to set up the argument values.
11995 SDValue NewRoot = TLI->LowerFormalArguments(
11996 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
11997
11998 // Verify that the target's LowerFormalArguments behaved as expected.
11999 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
12000 "LowerFormalArguments didn't return a valid chain!");
12001 assert(InVals.size() == Ins.size() &&
12002 "LowerFormalArguments didn't emit the correct number of values!");
12003 LLVM_DEBUG({
12004 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
12005 assert(InVals[i].getNode() &&
12006 "LowerFormalArguments emitted a null value!");
12007 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
12008 "LowerFormalArguments emitted a value with the wrong type!");
12009 }
12010 });
12011
12012 // Update the DAG with the new chain value resulting from argument lowering.
12013 DAG.setRoot(NewRoot);
12014
12015 // Set up the argument values.
12016 unsigned i = 0;
12017 if (!FuncInfo->CanLowerReturn) {
12018 // Create a virtual register for the sret pointer, and put in a copy
12019 // from the sret argument into it.
12020 MVT VT = TLI->getPointerTy(DL, DL.getAllocaAddrSpace());
12021 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
12022 std::optional<ISD::NodeType> AssertOp;
12023 SDValue ArgValue =
12024 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot,
12025 F.getCallingConv(), AssertOp);
12026
12027 MachineFunction& MF = SDB->DAG.getMachineFunction();
12028 MachineRegisterInfo& RegInfo = MF.getRegInfo();
12029 Register SRetReg =
12030 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
12031 FuncInfo->DemoteRegister = SRetReg;
12032 NewRoot =
12033 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
12034 DAG.setRoot(NewRoot);
12035
12036 // i indexes lowered arguments. Bump it past the hidden sret argument.
12037 ++i;
12038 }
12039
12041 DenseMap<int, int> ArgCopyElisionFrameIndexMap;
12042 for (const Argument &Arg : F.args()) {
12043 SmallVector<SDValue, 4> ArgValues;
12044 SmallVector<EVT, 4> ValueVTs;
12045 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
12046 unsigned NumValues = ValueVTs.size();
12047 if (NumValues == 0)
12048 continue;
12049
12050 bool ArgHasUses = !Arg.use_empty();
12051
12052 // Elide the copying store if the target loaded this argument from a
12053 // suitable fixed stack object.
12054 if (Ins[i].Flags.isCopyElisionCandidate()) {
12055 unsigned NumParts = 0;
12056 for (EVT VT : ValueVTs)
12057 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
12058 F.getCallingConv(), VT);
12059
12060 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
12061 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
12062 ArrayRef(&InVals[i], NumParts), ArgHasUses);
12063 }
12064
12065 // If this argument is unused then remember its value. It is used to generate
12066 // debugging information.
12067 bool isSwiftErrorArg =
12068 TLI->supportSwiftError() &&
12069 Arg.hasAttribute(Attribute::SwiftError);
12070 if (!ArgHasUses && !isSwiftErrorArg) {
12071 SDB->setUnusedArgValue(&Arg, InVals[i]);
12072
12073 // Also remember any frame index for use in FastISel.
12074 if (FrameIndexSDNode *FI =
12076 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
12077 }
12078
12079 for (unsigned Val = 0; Val != NumValues; ++Val) {
12080 EVT VT = ValueVTs[Val];
12081 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
12082 F.getCallingConv(), VT);
12083 unsigned NumParts = TLI->getNumRegistersForCallingConv(
12084 *CurDAG->getContext(), F.getCallingConv(), VT);
12085
12086 // Even an apparent 'unused' swifterror argument needs to be returned. So
12087 // we do generate a copy for it that can be used on return from the
12088 // function.
12089 if (ArgHasUses || isSwiftErrorArg) {
12090 std::optional<ISD::NodeType> AssertOp;
12091 if (Arg.hasAttribute(Attribute::SExt))
12092 AssertOp = ISD::AssertSext;
12093 else if (Arg.hasAttribute(Attribute::ZExt))
12094 AssertOp = ISD::AssertZext;
12095
12096 SDValue OutVal =
12097 getCopyFromParts(DAG, dl, &InVals[i], NumParts, PartVT, VT, nullptr,
12098 NewRoot, F.getCallingConv(), AssertOp);
12099
12100 FPClassTest NoFPClass = Arg.getNoFPClass();
12101 if (NoFPClass != fcNone) {
12102 SDValue SDNoFPClass = DAG.getTargetConstant(
12103 static_cast<uint64_t>(NoFPClass), dl, MVT::i32);
12104 OutVal = DAG.getNode(ISD::AssertNoFPClass, dl, OutVal.getValueType(),
12105 OutVal, SDNoFPClass);
12106 }
12107 ArgValues.push_back(OutVal);
12108 }
12109
12110 i += NumParts;
12111 }
12112
12113 // We don't need to do anything else for unused arguments.
12114 if (ArgValues.empty())
12115 continue;
12116
12117 // Note down frame index.
12118 if (FrameIndexSDNode *FI =
12119 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
12120 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
12121
12122 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
12123 SDB->getCurSDLoc());
12124
12125 SDB->setValue(&Arg, Res);
12126 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
12127 // We want to associate the argument with the frame index, among
12128 // involved operands, that correspond to the lowest address. The
12129 // getCopyFromParts function, called earlier, is swapping the order of
12130 // the operands to BUILD_PAIR depending on endianness. The result of
12131 // that swapping is that the least significant bits of the argument will
12132 // be in the first operand of the BUILD_PAIR node, and the most
12133 // significant bits will be in the second operand.
12134 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
12135 if (LoadSDNode *LNode =
12136 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
12137 if (FrameIndexSDNode *FI =
12138 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
12139 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
12140 }
12141
12142 // Analyses past this point are naive and don't expect an assertion.
12143 if (Res.getOpcode() == ISD::AssertZext)
12144 Res = Res.getOperand(0);
12145
12146 // Update the SwiftErrorVRegDefMap.
12147 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
12148 Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
12149 if (Reg.isVirtual())
12150 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
12151 Reg);
12152 }
12153
12154 // If this argument is live outside of the entry block, insert a copy from
12155 // wherever we got it to the vreg that other BB's will reference it as.
12156 if (Res.getOpcode() == ISD::CopyFromReg) {
12157 // If we can, though, try to skip creating an unnecessary vreg.
12158 // FIXME: This isn't very clean... it would be nice to make this more
12159 // general.
12160 Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
12161 if (Reg.isVirtual()) {
12162 FuncInfo->ValueMap[&Arg] = Reg;
12163 continue;
12164 }
12165 }
12166 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
12167 FuncInfo->InitializeRegForValue(&Arg);
12168 SDB->CopyToExportRegsIfNeeded(&Arg);
12169 }
12170 }
12171
12172 if (!Chains.empty()) {
12173 Chains.push_back(NewRoot);
12174 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
12175 }
12176
12177 DAG.setRoot(NewRoot);
12178
12179 assert(i == InVals.size() && "Argument register count mismatch!");
12180
12181 // If any argument copy elisions occurred and we have debug info, update the
12182 // stale frame indices used in the dbg.declare variable info table.
12183 if (!ArgCopyElisionFrameIndexMap.empty()) {
12184 for (MachineFunction::VariableDbgInfo &VI :
12185 MF->getInStackSlotVariableDbgInfo()) {
12186 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
12187 if (I != ArgCopyElisionFrameIndexMap.end())
12188 VI.updateStackSlot(I->second);
12189 }
12190 }
12191
12192 // Finally, if the target has anything special to do, allow it to do so.
12194}
12195
12196/// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
12197/// ensure constants are generated when needed. Remember the virtual registers
12198/// that need to be added to the Machine PHI nodes as input. We cannot just
12199/// directly add them, because expansion might result in multiple MBB's for one
12200/// BB. As such, the start of the BB might correspond to a different MBB than
12201/// the end.
12202void
12203SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
12204 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12205
12206 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
12207
12208 // Check PHI nodes in successors that expect a value to be available from this
12209 // block.
12210 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
12211 if (!isa<PHINode>(SuccBB->begin())) continue;
12212 MachineBasicBlock *SuccMBB = FuncInfo.getMBB(SuccBB);
12213
12214 // If this terminator has multiple identical successors (common for
12215 // switches), only handle each succ once.
12216 if (!SuccsHandled.insert(SuccMBB).second)
12217 continue;
12218
12220
12221 // At this point we know that there is a 1-1 correspondence between LLVM PHI
12222 // nodes and Machine PHI nodes, but the incoming operands have not been
12223 // emitted yet.
12224 for (const PHINode &PN : SuccBB->phis()) {
12225 // Ignore dead phi's.
12226 if (PN.use_empty())
12227 continue;
12228
12229 // Skip empty types
12230 if (PN.getType()->isEmptyTy())
12231 continue;
12232
12233 Register Reg;
12234 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
12235
12236 if (const auto *C = dyn_cast<Constant>(PHIOp)) {
12237 Register &RegOut = ConstantsOut[C];
12238 if (!RegOut) {
12239 RegOut = FuncInfo.CreateRegs(&PN);
12240 // We need to zero/sign extend ConstantInt phi operands to match
12241 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
12242 ISD::NodeType ExtendType = ISD::ANY_EXTEND;
12243 if (auto *CI = dyn_cast<ConstantInt>(C))
12244 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
12246 CopyValueToVirtualRegister(C, RegOut, ExtendType);
12247 }
12248 Reg = RegOut;
12249 } else {
12251 FuncInfo.ValueMap.find(PHIOp);
12252 if (I != FuncInfo.ValueMap.end())
12253 Reg = I->second;
12254 else {
12255 assert(isa<AllocaInst>(PHIOp) &&
12256 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
12257 "Didn't codegen value into a register!??");
12258 Reg = FuncInfo.CreateRegs(&PN);
12260 }
12261 }
12262
12263 // Remember that this register needs to added to the machine PHI node as
12264 // the input for this MBB.
12265 SmallVector<EVT, 4> ValueVTs;
12266 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
12267 for (EVT VT : ValueVTs) {
12268 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
12269 for (unsigned i = 0; i != NumRegisters; ++i)
12270 FuncInfo.PHINodesToUpdate.emplace_back(&*MBBI++, Reg + i);
12271 Reg += NumRegisters;
12272 }
12273 }
12274 }
12275
12276 ConstantsOut.clear();
12277}
12278
12279MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
12281 if (++I == FuncInfo.MF->end())
12282 return nullptr;
12283 return &*I;
12284}
12285
12286/// During lowering new call nodes can be created (such as memset, etc.).
12287/// Those will become new roots of the current DAG, but complications arise
12288/// when they are tail calls. In such cases, the call lowering will update
12289/// the root, but the builder still needs to know that a tail call has been
12290/// lowered in order to avoid generating an additional return.
12291void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
12292 // If the node is null, we do have a tail call.
12293 if (MaybeTC.getNode() != nullptr)
12294 DAG.setRoot(MaybeTC);
12295 else
12296 HasTailCall = true;
12297}
12298
12299void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
12300 MachineBasicBlock *SwitchMBB,
12301 MachineBasicBlock *DefaultMBB) {
12302 MachineFunction *CurMF = FuncInfo.MF;
12303 MachineBasicBlock *NextMBB = nullptr;
12305 if (++BBI != FuncInfo.MF->end())
12306 NextMBB = &*BBI;
12307
12308 unsigned Size = W.LastCluster - W.FirstCluster + 1;
12309
12310 BranchProbabilityInfo *BPI = FuncInfo.BPI;
12311
12312 if (Size == 2 && W.MBB == SwitchMBB) {
12313 // If any two of the cases has the same destination, and if one value
12314 // is the same as the other, but has one bit unset that the other has set,
12315 // use bit manipulation to do two compares at once. For example:
12316 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
12317 // TODO: This could be extended to merge any 2 cases in switches with 3
12318 // cases.
12319 // TODO: Handle cases where W.CaseBB != SwitchBB.
12320 CaseCluster &Small = *W.FirstCluster;
12321 CaseCluster &Big = *W.LastCluster;
12322
12323 if (Small.Low == Small.High && Big.Low == Big.High &&
12324 Small.MBB == Big.MBB) {
12325 const APInt &SmallValue = Small.Low->getValue();
12326 const APInt &BigValue = Big.Low->getValue();
12327
12328 // Check that there is only one bit different.
12329 APInt CommonBit = BigValue ^ SmallValue;
12330 if (CommonBit.isPowerOf2()) {
12331 SDValue CondLHS = getValue(Cond);
12332 EVT VT = CondLHS.getValueType();
12333 SDLoc DL = getCurSDLoc();
12334
12335 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
12336 DAG.getConstant(CommonBit, DL, VT));
12337 SDValue Cond = DAG.getSetCC(
12338 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
12339 ISD::SETEQ);
12340
12341 // Update successor info.
12342 // Both Small and Big will jump to Small.BB, so we sum up the
12343 // probabilities.
12344 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
12345 if (BPI)
12346 addSuccessorWithProb(
12347 SwitchMBB, DefaultMBB,
12348 // The default destination is the first successor in IR.
12349 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
12350 else
12351 addSuccessorWithProb(SwitchMBB, DefaultMBB);
12352
12353 // Insert the true branch.
12354 SDValue BrCond =
12355 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
12356 DAG.getBasicBlock(Small.MBB));
12357 // Insert the false branch.
12358 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
12359 DAG.getBasicBlock(DefaultMBB));
12360
12361 DAG.setRoot(BrCond);
12362 return;
12363 }
12364 }
12365 }
12366
12367 if (TM.getOptLevel() != CodeGenOptLevel::None) {
12368 // Here, we order cases by probability so the most likely case will be
12369 // checked first. However, two clusters can have the same probability in
12370 // which case their relative ordering is non-deterministic. So we use Low
12371 // as a tie-breaker as clusters are guaranteed to never overlap.
12372 llvm::sort(W.FirstCluster, W.LastCluster + 1,
12373 [](const CaseCluster &a, const CaseCluster &b) {
12374 return a.Prob != b.Prob ?
12375 a.Prob > b.Prob :
12376 a.Low->getValue().slt(b.Low->getValue());
12377 });
12378
12379 // Rearrange the case blocks so that the last one falls through if possible
12380 // without changing the order of probabilities.
12381 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
12382 --I;
12383 if (I->Prob > W.LastCluster->Prob)
12384 break;
12385 if (I->Kind == CC_Range && I->MBB == NextMBB) {
12386 std::swap(*I, *W.LastCluster);
12387 break;
12388 }
12389 }
12390 }
12391
12392 // Compute total probability.
12393 BranchProbability DefaultProb = W.DefaultProb;
12394 BranchProbability UnhandledProbs = DefaultProb;
12395 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
12396 UnhandledProbs += I->Prob;
12397
12398 MachineBasicBlock *CurMBB = W.MBB;
12399 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
12400 bool FallthroughUnreachable = false;
12401 MachineBasicBlock *Fallthrough;
12402 if (I == W.LastCluster) {
12403 // For the last cluster, fall through to the default destination.
12404 Fallthrough = DefaultMBB;
12405 FallthroughUnreachable = isa<UnreachableInst>(
12406 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
12407 } else {
12408 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
12409 CurMF->insert(BBI, Fallthrough);
12410 // Put Cond in a virtual register to make it available from the new blocks.
12412 }
12413 UnhandledProbs -= I->Prob;
12414
12415 switch (I->Kind) {
12416 case CC_JumpTable: {
12417 // FIXME: Optimize away range check based on pivot comparisons.
12418 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
12419 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
12420
12421 // The jump block hasn't been inserted yet; insert it here.
12422 MachineBasicBlock *JumpMBB = JT->MBB;
12423 CurMF->insert(BBI, JumpMBB);
12424
12425 auto JumpProb = I->Prob;
12426 auto FallthroughProb = UnhandledProbs;
12427
12428 // If the default statement is a target of the jump table, we evenly
12429 // distribute the default probability to successors of CurMBB. Also
12430 // update the probability on the edge from JumpMBB to Fallthrough.
12431 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
12432 SE = JumpMBB->succ_end();
12433 SI != SE; ++SI) {
12434 if (*SI == DefaultMBB) {
12435 JumpProb += DefaultProb / 2;
12436 FallthroughProb -= DefaultProb / 2;
12437 JumpMBB->setSuccProbability(SI, DefaultProb / 2);
12438 JumpMBB->normalizeSuccProbs();
12439 break;
12440 }
12441 }
12442
12443 // If the default clause is unreachable, propagate that knowledge into
12444 // JTH->FallthroughUnreachable which will use it to suppress the range
12445 // check.
12446 //
12447 // However, don't do this if we're doing branch target enforcement,
12448 // because a table branch _without_ a range check can be a tempting JOP
12449 // gadget - out-of-bounds inputs that are impossible in correct
12450 // execution become possible again if an attacker can influence the
12451 // control flow. So if an attacker doesn't already have a BTI bypass
12452 // available, we don't want them to be able to get one out of this
12453 // table branch.
12454 if (FallthroughUnreachable) {
12455 Function &CurFunc = CurMF->getFunction();
12456 if (!CurFunc.hasFnAttribute("branch-target-enforcement"))
12457 JTH->FallthroughUnreachable = true;
12458 }
12459
12460 if (!JTH->FallthroughUnreachable)
12461 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
12462 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
12463 CurMBB->normalizeSuccProbs();
12464
12465 // The jump table header will be inserted in our current block, do the
12466 // range check, and fall through to our fallthrough block.
12467 JTH->HeaderBB = CurMBB;
12468 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
12469
12470 // If we're in the right place, emit the jump table header right now.
12471 if (CurMBB == SwitchMBB) {
12472 visitJumpTableHeader(*JT, *JTH, SwitchMBB);
12473 JTH->Emitted = true;
12474 }
12475 break;
12476 }
12477 case CC_BitTests: {
12478 // FIXME: Optimize away range check based on pivot comparisons.
12479 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
12480
12481 // The bit test blocks haven't been inserted yet; insert them here.
12482 for (BitTestCase &BTC : BTB->Cases)
12483 CurMF->insert(BBI, BTC.ThisBB);
12484
12485 // Fill in fields of the BitTestBlock.
12486 BTB->Parent = CurMBB;
12487 BTB->Default = Fallthrough;
12488
12489 BTB->DefaultProb = UnhandledProbs;
12490 // If the cases in bit test don't form a contiguous range, we evenly
12491 // distribute the probability on the edge to Fallthrough to two
12492 // successors of CurMBB.
12493 if (!BTB->ContiguousRange) {
12494 BTB->Prob += DefaultProb / 2;
12495 BTB->DefaultProb -= DefaultProb / 2;
12496 }
12497
12498 if (FallthroughUnreachable)
12499 BTB->FallthroughUnreachable = true;
12500
12501 // If we're in the right place, emit the bit test header right now.
12502 if (CurMBB == SwitchMBB) {
12503 visitBitTestHeader(*BTB, SwitchMBB);
12504 BTB->Emitted = true;
12505 }
12506 break;
12507 }
12508 case CC_Range: {
12509 const Value *RHS, *LHS, *MHS;
12510 ISD::CondCode CC;
12511 if (I->Low == I->High) {
12512 // Check Cond == I->Low.
12513 CC = ISD::SETEQ;
12514 LHS = Cond;
12515 RHS=I->Low;
12516 MHS = nullptr;
12517 } else {
12518 // Check I->Low <= Cond <= I->High.
12519 CC = ISD::SETLE;
12520 LHS = I->Low;
12521 MHS = Cond;
12522 RHS = I->High;
12523 }
12524
12525 // If Fallthrough is unreachable, fold away the comparison.
12526 if (FallthroughUnreachable)
12527 CC = ISD::SETTRUE;
12528
12529 // The false probability is the sum of all unhandled cases.
12530 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
12531 getCurSDLoc(), I->Prob, UnhandledProbs);
12532
12533 if (CurMBB == SwitchMBB)
12534 visitSwitchCase(CB, SwitchMBB);
12535 else
12536 SL->SwitchCases.push_back(CB);
12537
12538 break;
12539 }
12540 }
12541 CurMBB = Fallthrough;
12542 }
12543}
12544
12545void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
12546 const SwitchWorkListItem &W,
12547 Value *Cond,
12548 MachineBasicBlock *SwitchMBB) {
12549 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
12550 "Clusters not sorted?");
12551 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
12552
12553 auto [LastLeft, FirstRight, LeftProb, RightProb] =
12554 SL->computeSplitWorkItemInfo(W);
12555
12556 // Use the first element on the right as pivot since we will make less-than
12557 // comparisons against it.
12558 CaseClusterIt PivotCluster = FirstRight;
12559 assert(PivotCluster > W.FirstCluster);
12560 assert(PivotCluster <= W.LastCluster);
12561
12562 CaseClusterIt FirstLeft = W.FirstCluster;
12563 CaseClusterIt LastRight = W.LastCluster;
12564
12565 const ConstantInt *Pivot = PivotCluster->Low;
12566
12567 // New blocks will be inserted immediately after the current one.
12569 ++BBI;
12570
12571 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
12572 // we can branch to its destination directly if it's squeezed exactly in
12573 // between the known lower bound and Pivot - 1.
12574 MachineBasicBlock *LeftMBB;
12575 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
12576 FirstLeft->Low == W.GE &&
12577 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
12578 LeftMBB = FirstLeft->MBB;
12579 } else {
12580 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12581 FuncInfo.MF->insert(BBI, LeftMBB);
12582 WorkList.push_back(
12583 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
12584 // Put Cond in a virtual register to make it available from the new blocks.
12586 }
12587
12588 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
12589 // single cluster, RHS.Low == Pivot, and we can branch to its destination
12590 // directly if RHS.High equals the current upper bound.
12591 MachineBasicBlock *RightMBB;
12592 if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
12593 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
12594 RightMBB = FirstRight->MBB;
12595 } else {
12596 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12597 FuncInfo.MF->insert(BBI, RightMBB);
12598 WorkList.push_back(
12599 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
12600 // Put Cond in a virtual register to make it available from the new blocks.
12602 }
12603
12604 // Create the CaseBlock record that will be used to lower the branch.
12605 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
12606 getCurSDLoc(), LeftProb, RightProb);
12607
12608 if (W.MBB == SwitchMBB)
12609 visitSwitchCase(CB, SwitchMBB);
12610 else
12611 SL->SwitchCases.push_back(CB);
12612}
12613
12614// Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
12615// from the swith statement.
12617 BranchProbability PeeledCaseProb) {
12618 if (PeeledCaseProb == BranchProbability::getOne())
12620 BranchProbability SwitchProb = PeeledCaseProb.getCompl();
12621
12622 uint32_t Numerator = CaseProb.getNumerator();
12623 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
12624 return BranchProbability(Numerator, std::max(Numerator, Denominator));
12625}
12626
12627// Try to peel the top probability case if it exceeds the threshold.
12628// Return current MachineBasicBlock for the switch statement if the peeling
12629// does not occur.
12630// If the peeling is performed, return the newly created MachineBasicBlock
12631// for the peeled switch statement. Also update Clusters to remove the peeled
12632// case. PeeledCaseProb is the BranchProbability for the peeled case.
12633MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
12634 const SwitchInst &SI, CaseClusterVector &Clusters,
12635 BranchProbability &PeeledCaseProb) {
12636 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12637 // Don't perform if there is only one cluster or optimizing for size.
12638 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
12639 TM.getOptLevel() == CodeGenOptLevel::None ||
12640 SwitchMBB->getParent()->getFunction().hasMinSize())
12641 return SwitchMBB;
12642
12643 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
12644 unsigned PeeledCaseIndex = 0;
12645 bool SwitchPeeled = false;
12646 for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
12647 CaseCluster &CC = Clusters[Index];
12648 if (CC.Prob < TopCaseProb)
12649 continue;
12650 TopCaseProb = CC.Prob;
12651 PeeledCaseIndex = Index;
12652 SwitchPeeled = true;
12653 }
12654 if (!SwitchPeeled)
12655 return SwitchMBB;
12656
12657 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
12658 << TopCaseProb << "\n");
12659
12660 // Record the MBB for the peeled switch statement.
12661 MachineFunction::iterator BBI(SwitchMBB);
12662 ++BBI;
12663 MachineBasicBlock *PeeledSwitchMBB =
12664 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
12665 FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
12666
12667 ExportFromCurrentBlock(SI.getCondition());
12668 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
12669 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
12670 nullptr, nullptr, TopCaseProb.getCompl()};
12671 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
12672
12673 Clusters.erase(PeeledCaseIt);
12674 for (CaseCluster &CC : Clusters) {
12675 LLVM_DEBUG(
12676 dbgs() << "Scale the probablity for one cluster, before scaling: "
12677 << CC.Prob << "\n");
12678 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
12679 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
12680 }
12681 PeeledCaseProb = TopCaseProb;
12682 return PeeledSwitchMBB;
12683}
12684
12685void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
12686 // Extract cases from the switch.
12687 BranchProbabilityInfo *BPI = FuncInfo.BPI;
12688 CaseClusterVector Clusters;
12689 Clusters.reserve(SI.getNumCases());
12690 for (auto I : SI.cases()) {
12691 MachineBasicBlock *Succ = FuncInfo.getMBB(I.getCaseSuccessor());
12692 const ConstantInt *CaseVal = I.getCaseValue();
12693 BranchProbability Prob =
12694 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
12695 : BranchProbability(1, SI.getNumCases() + 1);
12696 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
12697 }
12698
12699 MachineBasicBlock *DefaultMBB = FuncInfo.getMBB(SI.getDefaultDest());
12700
12701 // Cluster adjacent cases with the same destination. We do this at all
12702 // optimization levels because it's cheap to do and will make codegen faster
12703 // if there are many clusters.
12704 sortAndRangeify(Clusters);
12705
12706 // The branch probablity of the peeled case.
12707 BranchProbability PeeledCaseProb = BranchProbability::getZero();
12708 MachineBasicBlock *PeeledSwitchMBB =
12709 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
12710
12711 // If there is only the default destination, jump there directly.
12712 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12713 if (Clusters.empty()) {
12714 assert(PeeledSwitchMBB == SwitchMBB);
12715 SwitchMBB->addSuccessor(DefaultMBB);
12716 if (DefaultMBB != NextBlock(SwitchMBB)) {
12717 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
12718 getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
12719 }
12720 return;
12721 }
12722
12723 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(),
12724 DAG.getBFI());
12725 SL->findBitTestClusters(Clusters, &SI);
12726
12727 LLVM_DEBUG({
12728 dbgs() << "Case clusters: ";
12729 for (const CaseCluster &C : Clusters) {
12730 if (C.Kind == CC_JumpTable)
12731 dbgs() << "JT:";
12732 if (C.Kind == CC_BitTests)
12733 dbgs() << "BT:";
12734
12735 C.Low->getValue().print(dbgs(), true);
12736 if (C.Low != C.High) {
12737 dbgs() << '-';
12738 C.High->getValue().print(dbgs(), true);
12739 }
12740 dbgs() << ' ';
12741 }
12742 dbgs() << '\n';
12743 });
12744
12745 assert(!Clusters.empty());
12746 SwitchWorkList WorkList;
12747 CaseClusterIt First = Clusters.begin();
12748 CaseClusterIt Last = Clusters.end() - 1;
12749 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
12750 // Scale the branchprobability for DefaultMBB if the peel occurs and
12751 // DefaultMBB is not replaced.
12752 if (PeeledCaseProb != BranchProbability::getZero() &&
12753 DefaultMBB == FuncInfo.getMBB(SI.getDefaultDest()))
12754 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
12755 WorkList.push_back(
12756 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
12757
12758 while (!WorkList.empty()) {
12759 SwitchWorkListItem W = WorkList.pop_back_val();
12760 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
12761
12762 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None &&
12763 !DefaultMBB->getParent()->getFunction().hasMinSize()) {
12764 // For optimized builds, lower large range as a balanced binary tree.
12765 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
12766 continue;
12767 }
12768
12769 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
12770 }
12771}
12772
12773void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
12774 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12775 auto DL = getCurSDLoc();
12776 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12777 setValue(&I, DAG.getStepVector(DL, ResultVT));
12778}
12779
12780void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
12781 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12782 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12783
12784 SDLoc DL = getCurSDLoc();
12785 SDValue V = getValue(I.getOperand(0));
12786 assert(VT == V.getValueType() && "Malformed vector.reverse!");
12787
12788 if (VT.isScalableVector()) {
12789 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
12790 return;
12791 }
12792
12793 // Use VECTOR_SHUFFLE for the fixed-length vector
12794 // to maintain existing behavior.
12795 SmallVector<int, 8> Mask;
12796 unsigned NumElts = VT.getVectorMinNumElements();
12797 for (unsigned i = 0; i != NumElts; ++i)
12798 Mask.push_back(NumElts - 1 - i);
12799
12800 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
12801}
12802
12803void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I,
12804 unsigned Factor) {
12805 auto DL = getCurSDLoc();
12806 SDValue InVec = getValue(I.getOperand(0));
12807
12808 SmallVector<EVT, 4> ValueVTs;
12809 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12810 ValueVTs);
12811
12812 EVT OutVT = ValueVTs[0];
12813 unsigned OutNumElts = OutVT.getVectorMinNumElements();
12814
12815 SmallVector<SDValue, 4> SubVecs(Factor);
12816 for (unsigned i = 0; i != Factor; ++i) {
12817 assert(ValueVTs[i] == OutVT && "Expected VTs to be the same");
12818 SubVecs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12819 DAG.getVectorIdxConstant(OutNumElts * i, DL));
12820 }
12821
12822 // Use VECTOR_SHUFFLE for fixed-length vectors with factor of 2 to benefit
12823 // from existing legalisation and combines.
12824 if (OutVT.isFixedLengthVector() && Factor == 2) {
12825 SDValue Even = DAG.getVectorShuffle(OutVT, DL, SubVecs[0], SubVecs[1],
12826 createStrideMask(0, 2, OutNumElts));
12827 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, SubVecs[0], SubVecs[1],
12828 createStrideMask(1, 2, OutNumElts));
12829 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
12830 setValue(&I, Res);
12831 return;
12832 }
12833
12834 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
12835 DAG.getVTList(ValueVTs), SubVecs);
12836 setValue(&I, Res);
12837}
12838
12839void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I,
12840 unsigned Factor) {
12841 auto DL = getCurSDLoc();
12842 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12843 EVT InVT = getValue(I.getOperand(0)).getValueType();
12844 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12845
12846 SmallVector<SDValue, 8> InVecs(Factor);
12847 for (unsigned i = 0; i < Factor; ++i) {
12848 InVecs[i] = getValue(I.getOperand(i));
12849 assert(InVecs[i].getValueType() == InVecs[0].getValueType() &&
12850 "Expected VTs to be the same");
12851 }
12852
12853 // Use VECTOR_SHUFFLE for fixed-length vectors with factor of 2 to benefit
12854 // from existing legalisation and combines.
12855 if (OutVT.isFixedLengthVector() && Factor == 2) {
12856 unsigned NumElts = InVT.getVectorMinNumElements();
12857 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVecs);
12858 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
12859 createInterleaveMask(NumElts, 2)));
12860 return;
12861 }
12862
12863 SmallVector<EVT, 8> ValueVTs(Factor, InVT);
12864 SDValue Res =
12865 DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, DAG.getVTList(ValueVTs), InVecs);
12866
12868 for (unsigned i = 0; i < Factor; ++i)
12869 Results[i] = Res.getValue(i);
12870
12871 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Results);
12872 setValue(&I, Res);
12873}
12874
12875void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
12876 SmallVector<EVT, 4> ValueVTs;
12877 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12878 ValueVTs);
12879 unsigned NumValues = ValueVTs.size();
12880 if (NumValues == 0) return;
12881
12882 SmallVector<SDValue, 4> Values(NumValues);
12883 SDValue Op = getValue(I.getOperand(0));
12884
12885 for (unsigned i = 0; i != NumValues; ++i)
12886 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
12887 SDValue(Op.getNode(), Op.getResNo() + i));
12888
12890 DAG.getVTList(ValueVTs), Values));
12891}
12892
12893void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
12894 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12895 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12896
12897 SDLoc DL = getCurSDLoc();
12898 SDValue V1 = getValue(I.getOperand(0));
12899 SDValue V2 = getValue(I.getOperand(1));
12900 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
12901
12902 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
12903 if (VT.isScalableVector()) {
12904 setValue(
12905 &I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
12906 DAG.getSignedConstant(
12907 Imm, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
12908 return;
12909 }
12910
12911 unsigned NumElts = VT.getVectorNumElements();
12912
12913 uint64_t Idx = (NumElts + Imm) % NumElts;
12914
12915 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
12916 SmallVector<int, 8> Mask;
12917 for (unsigned i = 0; i < NumElts; ++i)
12918 Mask.push_back(Idx + i);
12919 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
12920}
12921
12922// Consider the following MIR after SelectionDAG, which produces output in
12923// phyregs in the first case or virtregs in the second case.
12924//
12925// INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
12926// %5:gr32 = COPY $ebx
12927// %6:gr32 = COPY $edx
12928// %1:gr32 = COPY %6:gr32
12929// %0:gr32 = COPY %5:gr32
12930//
12931// INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
12932// %1:gr32 = COPY %6:gr32
12933// %0:gr32 = COPY %5:gr32
12934//
12935// Given %0, we'd like to return $ebx in the first case and %5 in the second.
12936// Given %1, we'd like to return $edx in the first case and %6 in the second.
12937//
12938// If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
12939// to a single virtreg (such as %0). The remaining outputs monotonically
12940// increase in virtreg number from there. If a callbr has no outputs, then it
12941// should not have a corresponding callbr landingpad; in fact, the callbr
12942// landingpad would not even be able to refer to such a callbr.
12944 MachineInstr *MI = MRI.def_begin(Reg)->getParent();
12945 // There is definitely at least one copy.
12946 assert(MI->getOpcode() == TargetOpcode::COPY &&
12947 "start of copy chain MUST be COPY");
12948 Reg = MI->getOperand(1).getReg();
12949
12950 // If the copied register in the first copy must be virtual.
12951 assert(Reg.isVirtual() && "expected COPY of virtual register");
12952 MI = MRI.def_begin(Reg)->getParent();
12953
12954 // There may be an optional second copy.
12955 if (MI->getOpcode() == TargetOpcode::COPY) {
12956 assert(Reg.isVirtual() && "expected COPY of virtual register");
12957 Reg = MI->getOperand(1).getReg();
12958 assert(Reg.isPhysical() && "expected COPY of physical register");
12959 } else {
12960 // The start of the chain must be an INLINEASM_BR.
12961 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12962 "end of copy chain MUST be INLINEASM_BR");
12963 }
12964
12965 return Reg;
12966}
12967
12968// We must do this walk rather than the simpler
12969// setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
12970// otherwise we will end up with copies of virtregs only valid along direct
12971// edges.
12972void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
12973 SmallVector<EVT, 8> ResultVTs;
12974 SmallVector<SDValue, 8> ResultValues;
12975 const auto *CBR =
12976 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
12977
12978 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12979 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
12980 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12981
12982 Register InitialDef = FuncInfo.ValueMap[CBR];
12983 SDValue Chain = DAG.getRoot();
12984
12985 // Re-parse the asm constraints string.
12986 TargetLowering::AsmOperandInfoVector TargetConstraints =
12987 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
12988 for (auto &T : TargetConstraints) {
12989 SDISelAsmOperandInfo OpInfo(T);
12990 if (OpInfo.Type != InlineAsm::isOutput)
12991 continue;
12992
12993 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
12994 // individual constraint.
12995 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
12996
12997 switch (OpInfo.ConstraintType) {
13000 // Fill in OpInfo.AssignedRegs.Regs.
13001 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
13002
13003 // getRegistersForValue may produce 1 to many registers based on whether
13004 // the OpInfo.ConstraintVT is legal on the target or not.
13005 for (Register &Reg : OpInfo.AssignedRegs.Regs) {
13006 Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
13007 if (OriginalDef.isPhysical())
13008 FuncInfo.MBB->addLiveIn(OriginalDef);
13009 // Update the assigned registers to use the original defs.
13010 Reg = OriginalDef;
13011 }
13012
13013 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
13014 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
13015 ResultValues.push_back(V);
13016 ResultVTs.push_back(OpInfo.ConstraintVT);
13017 break;
13018 }
13020 SDValue Flag;
13021 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
13022 OpInfo, DAG);
13023 ++InitialDef;
13024 ResultValues.push_back(V);
13025 ResultVTs.push_back(OpInfo.ConstraintVT);
13026 break;
13027 }
13028 default:
13029 break;
13030 }
13031 }
13033 DAG.getVTList(ResultVTs), ResultValues);
13034 setValue(&I, V);
13035}
unsigned const MachineRegisterInfo * MRI
return SDValue()
static unsigned getIntrinsicID(const SDNode *N)
unsigned RegSize
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static msgpack::DocNode getNode(msgpack::DocNode DN, msgpack::Type Type, MCValue Val)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
Function Alias Analysis Results
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
Definition CSEInfo.cpp:27
This file contains the declarations for the subclasses of Constant, which represent the different fla...
dxil translate DXIL Translate Metadata
static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI)
Returns an AttributeList representing the attributes applied to the return value of the given call.
Definition FastISel.cpp:942
#define Check(C,...)
static Value * getCondition(Instruction *I)
Hexagon Common GEP
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
static void getRegistersForValue(MachineFunction &MF, MachineIRBuilder &MIRBuilder, GISelAsmOperandInfo &OpInfo, GISelAsmOperandInfo &RefOpInfo)
Assign virtual/physical registers for the specified register operand.
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define RegName(no)
lazy value info
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
Machine Check Debug Module
static bool isUndef(const MachineInstr &MI)
Register Reg
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
static const Function * getCalledFunction(const Value *V)
This file provides utility analysis objects describing memory locations.
This file provides utility for Memory Model Relaxation Annotations (MMRAs).
This file contains the declarations for metadata subclasses.
Type::TypeID TypeID
#define T
#define T1
static MCRegister getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
static unsigned getAddressSpace(const Value *V, unsigned MaxLookup)
MachineInstr unsigned OpIdx
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t High
uint64_t IntrinsicInst * II
OptimizedStructLayoutField Field
#define P(N)
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
This file contains some templates that are useful if you are working with the STL at all.
static bool hasOnlySelectUsers(const Value *Cond)
static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, SDValue &Chain)
Create a LOAD_STACK_GUARD node, and let it carry the target specific global variable if there exists ...
static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, SDValue &Scale, SelectionDAGBuilder *SDB, const BasicBlock *CurBB, uint64_t ElemSize)
static void failForInvalidBundles(const CallBase &I, StringRef Name, ArrayRef< uint32_t > AllowedBundles)
static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, const SDLoc &DL, SmallVectorImpl< SDValue > &Ops, SelectionDAGBuilder &Builder)
Add a stack map intrinsic call's live variable operands to a stackmap or patchpoint target node's ope...
static const unsigned MaxParallelChains
static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
visitPow - Lower a pow intrinsic.
static const CallBase * FindPreallocatedCall(const Value *PreallocatedSetup)
Given a @llvm.call.preallocated.setup, return the corresponding preallocated call.
static cl::opt< unsigned > SwitchPeelThreshold("switch-peel-threshold", cl::Hidden, cl::init(66), cl::desc("Set the case probability threshold for peeling the case from a " "switch statement. A value greater than 100 will void this " "optimization"))
static cl::opt< bool > InsertAssertAlign("insert-assert-align", cl::init(true), cl::desc("Insert the experimental `assertalign` node."), cl::ReallyHidden)
static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin)
static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, DILocalVariable *Variable, DebugLoc DL, unsigned Order, SmallVectorImpl< Value * > &Values, DIExpression *Expression)
static unsigned findMatchingInlineAsmOperand(unsigned OperandNo, const std::vector< SDValue > &AsmNodeOperands)
static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, SDISelAsmOperandInfo &MatchingOpInfo, SelectionDAG &DAG)
Make sure that the output operand OpInfo and its corresponding input operand MatchingOpInfo have comp...
static void findUnwindDestinations(FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, BranchProbability Prob, SmallVectorImpl< std::pair< MachineBasicBlock *, BranchProbability > > &UnwindDests)
When an invoke or a cleanupret unwinds to the next EH pad, there are many places it could ultimately ...
static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic)
static BranchProbability scaleCaseProbality(BranchProbability CaseProb, BranchProbability PeeledCaseProb)
static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandExp2 - Lower an exp2 intrinsic.
static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue Scale, SelectionDAG &DAG, const TargetLowering &TLI)
static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, const SDLoc &dl)
getF32Constant - Get 32-bit floating point constant.
static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, const SDLoc &DL, EVT PartVT)
static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog10 - Lower a log10 intrinsic.
DenseMap< const Argument *, std::pair< const AllocaInst *, const StoreInst * > > ArgCopyElisionMapTy
static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, const Value *V, std::optional< CallingConv::ID > CallConv)
getCopyToPartsVector - Create a series of nodes that contain the specified value split into legal par...
static void getUnderlyingArgRegs(SmallVectorImpl< std::pair< Register, TypeSize > > &Regs, const SDValue &N)
static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, const Value *V, std::optional< CallingConv::ID > CallConv=std::nullopt, ISD::NodeType ExtendKind=ISD::ANY_EXTEND)
getCopyToParts - Create a series of nodes that contain the specified value split into legal parts.
static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, SelectionDAGBuilder &Builder)
static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog2 - Lower a log2 intrinsic.
static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, SDISelAsmOperandInfo &OpInfo, SelectionDAG &DAG)
Get a direct memory input to behave well as an indirect operand.
static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel)
isOnlyUsedInEntryBlock - If the specified argument is only used in the entry block,...
static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, const Twine &ErrMsg)
static bool collectInstructionDeps(SmallMapVector< const Instruction *, bool, 8 > *Deps, const Value *V, SmallMapVector< const Instruction *, bool, 8 > *Necessary=nullptr, unsigned Depth=0)
static void findArgumentCopyElisionCandidates(const DataLayout &DL, FunctionLoweringInfo *FuncInfo, ArgCopyElisionMapTy &ArgCopyElisionCandidates)
Scan the entry block of the function in FuncInfo for arguments that look like copies into a local all...
static bool isFunction(SDValue Op)
static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, const SDLoc &dl)
GetExponent - Get the exponent:
static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg)
static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, SelectionDAG &DAG)
ExpandPowI - Expand a llvm.powi intrinsic.
static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog - Lower a log intrinsic.
static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, SDValue InChain, std::optional< CallingConv::ID > CC=std::nullopt, std::optional< ISD::NodeType > AssertOp=std::nullopt)
getCopyFromParts - Create a value that contains the specified legal parts combined into the value the...
static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, SelectionDAG &DAG)
static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl)
GetSignificand - Get the significand and build it into a floating-point number with exponent of 1:
static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandExp - Lower an exp intrinsic.
static const MDNode * getRangeMetadata(const Instruction &I)
static cl::opt< unsigned, true > LimitFPPrecision("limit-float-precision", cl::desc("Generate low-precision inline sequences " "for some float libcalls"), cl::location(LimitFloatPrecision), cl::Hidden, cl::init(0))
static void tryToElideArgumentCopy(FunctionLoweringInfo &FuncInfo, SmallVectorImpl< SDValue > &Chains, DenseMap< int, int > &ArgCopyElisionFrameIndexMap, SmallPtrSetImpl< const Instruction * > &ElidedArgCopyInstrs, ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, ArrayRef< SDValue > ArgVals, bool &ArgHasUses)
Try to elide argument copies from memory into a local alloca.
static unsigned LimitFloatPrecision
LimitFloatPrecision - Generate low-precision inline sequences for some float libcalls (6,...
static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, SDValue InChain, std::optional< CallingConv::ID > CC)
getCopyFromPartsVector - Create a value that contains the specified legal parts combined into the val...
static bool InBlock(const Value *V, const BasicBlock *BB)
static FPClassTest getNoFPClass(const Instruction &I)
static LLVM_ATTRIBUTE_ALWAYS_INLINE MVT::SimpleValueType getSimpleVT(const unsigned char *MatcherTable, unsigned &MatcherIndex)
getSimpleVT - Decode a value in MatcherTable, if it's a VBR encoded value, use GetVBR to decode it.
This file defines the SmallPtrSet class.
This file contains some functions that are useful when dealing with strings.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
This pass exposes codegen information to IR-level passes.
Value * RHS
Value * LHS
static const fltSemantics & IEEEsingle()
Definition APFloat.h:296
Class for arbitrary precision integers.
Definition APInt.h:78
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition APInt.h:335
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:441
an instruction to allocate memory on the stack
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
This class represents an incoming formal argument to a Function.
Definition Argument.h:32
LLVM_ABI bool hasAttribute(Attribute::AttrKind Kind) const
Check if an argument has a given attribute.
Definition Function.cpp:339
unsigned getArgNo() const
Return the index of this formal argument in its containing function.
Definition Argument.h:50
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
iterator end() const
Definition ArrayRef.h:131
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
iterator begin() const
Definition ArrayRef.h:130
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:137
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
@ Add
*p = old + v
@ FAdd
*p = old + v
@ USubCond
Subtract only if no unsigned overflow.
@ FMinimum
*p = minimum(old, v) minimum matches the behavior of llvm.minimum.
@ Min
*p = old <signed v ? old : v
@ Sub
*p = old - v
@ And
*p = old & v
@ Xor
*p = old ^ v
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ FMaximum
*p = maximum(old, v) maximum matches the behavior of llvm.maximum.
@ FSub
*p = old - v
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ UMax
*p = old >unsigned v ? old : v
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
@ Nand
*p = ~(old & v)
This class holds the attributes for a particular argument, parameter, function, or return value.
Definition Attributes.h:361
LLVM Basic Block Representation.
Definition BasicBlock.h:62
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
InstListType::const_iterator const_iterator
Definition BasicBlock.h:171
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
LLVM_ABI InstListType::const_iterator getFirstNonPHIOrDbg(bool SkipPseudoOp=true) const
Returns a pointer to the first instruction in this block that is not a PHINode or a debug intrinsic,...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
This class represents a no-op cast from one type to another.
The address of a basic block.
Definition Constants.h:904
Conditional or Unconditional Branch instruction.
Analysis providing branch probability information.
LLVM_ABI BranchProbability getEdgeProbability(const BasicBlock *Src, unsigned IndexInSuccessors) const
Get an edge's probability, relative to other out-edges of the Src.
LLVM_ABI bool isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const
Test if an edge is hot relative to other out-edges of the Src.
static uint32_t getDenominator()
static BranchProbability getOne()
static BranchProbability getUnknown()
uint32_t getNumerator() const
LLVM_ABI uint64_t scale(uint64_t Num) const
Scale a large integer.
BranchProbability getCompl() const
static BranchProbability getZero()
static void normalizeProbabilities(ProbabilityIter Begin, ProbabilityIter End)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
CallingConv::ID getCallingConv() const
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
unsigned countOperandBundlesOfType(StringRef Name) const
Return the number of operand bundles with the tag Name attached to this instruction.
Value * getCalledOperand() const
Value * getArgOperand(unsigned i) const
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
bool isConvergent() const
Determine if the invoke is convergent.
FunctionType * getFunctionType() const
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
LLVM_ABI bool isTailCall() const
Tests if this call site is marked as a tail call.
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
This class represents a function call, abstracting a target machine's calling convention.
This class is the base class for the comparison instructions.
Definition InstrTypes.h:664
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
ConstantDataSequential - A vector or array constant whose element type is a simple 1/2/4/8-byte integ...
Definition Constants.h:598
A constant value that is initialized with an expression using other constant values.
Definition Constants.h:1130
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:282
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition Constants.h:219
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition Constants.h:168
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:159
A signed pointer, in the ptrauth sense.
Definition Constants.h:1037
uint64_t getZExtValue() const
Constant Vector Declarations.
Definition Constants.h:522
This is an important base class in LLVM.
Definition Constant.h:43
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI unsigned getNonMetadataArgCount() const
DWARF expression.
LLVM_ABI bool isEntryValue() const
Check if the expression consists of exactly one entry value operand.
static bool fragmentsOverlap(const FragmentInfo &A, const FragmentInfo &B)
Check if fragments overlap between a pair of FragmentInfos.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI std::optional< FragmentInfo > getFragmentInfo(expr_op_iterator Start, expr_op_iterator End)
Retrieve the details of this fragment expression.
LLVM_ABI uint64_t getNumLocationOperands() const
Return the number of unique location operands referred to (via DW_OP_LLVM_arg) in this expression; th...
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
static LLVM_ABI const DIExpression * convertToUndefExpression(const DIExpression *Expr)
Removes all elements from Expr that do not apply to an undef debug value, which includes every operat...
static LLVM_ABI DIExpression * prepend(const DIExpression *Expr, uint8_t Flags, int64_t Offset=0)
Prepend DIExpr with a deref and offset operation and optionally turn it into a stack value or/and an ...
static LLVM_ABI DIExpression * prependOpcodes(const DIExpression *Expr, SmallVectorImpl< uint64_t > &Ops, bool StackValue=false, bool EntryValue=false)
Prepend DIExpr with the given opcodes and optionally turn it into a stack value.
Base class for variables.
LLVM_ABI std::optional< uint64_t > getSizeInBits() const
Determines the size of the variable's type.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
bool isBigEndian() const
Definition DataLayout.h:208
Records a position in IR for a source label (DILabel).
Base class for non-instruction debug metadata records that have positions within IR.
DebugLoc getDebugLoc() const
Record of a variable value-assignment, aka a non instruction representation of the dbg....
LLVM_ABI Value * getVariableLocationOp(unsigned OpIdx) const
DIExpression * getExpression() const
DILocalVariable * getVariable() const
LLVM_ABI iterator_range< location_op_iterator > location_ops() const
Get the locations corresponding to the variable referenced by the debug info intrinsic.
A debug info location.
Definition DebugLoc.h:123
LLVM_ABI DILocation * getInlinedAt() const
Definition DebugLoc.cpp:67
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT > iterator
Definition DenseMap.h:74
bool empty() const
Definition DenseMap.h:109
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT, true > const_iterator
Definition DenseMap.h:75
iterator end()
Definition DenseMap.h:81
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:241
void reserve(size_type NumEntries)
Grow the densemap so that it can contain at least NumEntries items before resizing again.
Definition DenseMap.h:114
Diagnostic information for inline asm reporting.
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Definition TypeSize.h:315
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
Lightweight error class with error context and mandatory checking.
Definition Error.h:159
Class representing an expression and its matching format.
This instruction extracts a struct member or array element value from an aggregate value.
This instruction compares its operands according to the predicate given to the constructor.
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
Definition FastISel.h:66
bool allowReassoc() const
Flag queries.
Definition FMF.h:64
An instruction for ordering other memory operations.
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition Type.cpp:802
This class represents a freeze function that returns random concrete value if an operand is either a ...
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
BranchProbabilityInfo * BPI
MachineBasicBlock * getMBB(const BasicBlock *BB) const
DenseMap< const AllocaInst *, int > StaticAllocaMap
StaticAllocaMap - Keep track of frame indices for fixed sized allocas in the entry block.
const LiveOutInfo * GetLiveOutRegInfo(Register Reg)
GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the register is a PHI destinat...
MachineBasicBlock * MBB
MBB - The current block.
Class to represent function types.
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Type * getParamType(unsigned i) const
Parameter type accessors.
Type * getReturnType() const
Data structure describing the variable locations in a function.
const BasicBlock & getEntryBlock() const
Definition Function.h:807
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition Function.h:209
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
Definition Function.h:244
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition Function.h:703
bool hasParamAttribute(unsigned ArgNo, Attribute::AttrKind Kind) const
check if an attributes is in the list of attributes.
Definition Function.cpp:742
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition Function.h:270
Constant * getPersonalityFn() const
Get the personality function associated with this function.
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
bool isIntrinsic() const
isIntrinsic - Returns true if the function's name starts with "llvm.".
Definition Function.h:249
size_t arg_size() const
Definition Function.h:899
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition Function.cpp:730
Garbage collection metadata for a single function.
Definition GCMetadata.h:80
bool hasNoUnsignedSignedWrap() const
bool hasNoUnsignedWrap() const
bool isInBounds() const
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static StringRef dropLLVMManglingEscape(StringRef Name)
If the given string begins with the GlobalValue name mangling escape character '\1',...
bool hasDLLImportStorageClass() const
Module * getParent()
Get the module that this global value is contained inside of...
This instruction compares its operands according to the predicate given to the constructor.
Indirect Branch Instruction.
This instruction inserts a struct field of array element value into an aggregate value.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
LLVM_ABI AAMDNodes getAAMetadata() const
Returns the AA metadata for this instruction.
@ MIN_INT_BITS
Minimum number of bits that can be specified.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
Invoke instruction.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
The landingpad instruction holds all of the information necessary to generate correct exception handl...
A helper class to return the specified delimiter string after the first invocation of operator String...
An instruction for reading from memory.
static LocationSize precise(uint64_t Value)
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
LLVM_ABI MCSymbol * createTempSymbol()
Create a temporary symbol with a unique name.
LLVM_ABI MCSymbol * getOrCreateFrameAllocSymbol(const Twine &FuncName, unsigned Idx)
Gets a symbol that will be defined to the final stack offset of a local variable after codegen.
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition MCSymbol.h:42
Metadata node.
Definition Metadata.h:1078
Machine Value Type.
@ INVALID_SIMPLE_VALUE_TYPE
uint64_t getScalarSizeInBits() const
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isInteger() const
Return true if this is an integer or a vector integer type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool bitsGE(MVT VT) const
Return true if this has no less bits than VT.
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
static MVT getIntegerVT(unsigned BitWidth)
void normalizeSuccProbs()
Normalize probabilities of all successors so that the sum of them becomes one.
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
LLVM_ABI void setSuccProbability(succ_iterator I, BranchProbability Prob)
Set successor probability of a given iterator.
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
SmallVectorImpl< MachineBasicBlock * >::iterator succ_iterator
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void setIsEHContTarget(bool V=true)
Indicates if this is a target of Windows EH Continuation Guard.
void setIsEHFuncletEntry(bool V=true)
Indicates if this is the entry block of an EH funclet.
MachineInstrBundleIterator< MachineInstr > iterator
void setIsEHScopeEntry(bool V=true)
Indicates if this is the entry block of an EH scope, i.e., the block that that used to have a catchpa...
void setMachineBlockAddressTaken()
Set this block to indicate that its address is used as something other than the target of a terminato...
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
void setIsImmutableObjectIndex(int ObjectIdx, bool IsImmutable)
Marks the immutability of an object.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
bool hasOpaqueSPAdjustment() const
Returns true if the function contains opaque dynamic stack adjustments.
int getStackProtectorIndex() const
Return the index for the stack protector object.
void setIsAliasedObjectIndex(int ObjectIdx, bool IsAliased)
Set "maybe pointed to by an LLVM IR value" for an object.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
void RemoveStackObject(int ObjectIdx)
Remove or mark dead a statically sized stack object.
void setFunctionContextIndex(int I)
const WinEHFuncInfo * getWinEHFuncInfo() const
getWinEHFuncInfo - Return information about how the current function uses Windows exception handling.
bool useDebugInstrRef() const
Returns true if the function's variable locations are tracked with instruction referencing.
void setCallSiteBeginLabel(MCSymbol *BeginLabel, unsigned Site)
Map the begin label for a call site.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MCContext & getContext() const
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
void addCodeViewAnnotation(MCSymbol *Label, MDNode *MD)
Record annotations associated with a particular label.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
void setHasEHContTarget(bool V)
void addInvoke(MachineBasicBlock *LandingPad, MCSymbol *BeginLabel, MCSymbol *EndLabel)
Provide the begin and end labels of an invoke style call and associate it with a try landing pad bloc...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const MachineInstrBuilder & addSym(MCSymbol *Sym, unsigned char TargetFlags=0) const
const MachineInstrBuilder & addFrameIndex(int Idx) const
Representation of each machine instruction.
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
static MachineOperand CreateFI(int Idx)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
LLVM_ABI MCRegister getLiveInPhysReg(Register VReg) const
getLiveInPhysReg - If VReg is a live-in virtual register, return the corresponding live-in physical r...
An SDNode that represents everything that will be needed to construct a MachineInstr.
bool contains(const KeyT &Key) const
Definition MapVector.h:146
std::pair< iterator, bool > try_emplace(const KeyT &Key, Ts &&...Args)
Definition MapVector.h:116
static MemoryLocation getAfter(const Value *Ptr, const AAMDNodes &AATags=AAMDNodes())
Return a location that may access any location after Ptr, while remaining within the underlying objec...
Metadata wrapper in the Value hierarchy.
Definition Metadata.h:183
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition Register.h:79
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition Register.h:83
Resume the propagation of an exception.
Return a value (possibly void), from a function.
Holds the information from a dbg_label node through SDISel.
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
SelectionDAGBuilder - This is the common target-independent lowering implementation that is parameter...
SDValue getValue(const Value *V)
getValue - Return an SDValue for the given Value.
DenseMap< const Constant *, Register > ConstantsOut
void addDanglingDebugInfo(SmallVectorImpl< Value * > &Values, DILocalVariable *Var, DIExpression *Expr, bool IsVariadic, DebugLoc DL, unsigned Order)
Register a dbg_value which relies on a Value which we have not yet seen.
void visitDbgInfo(const Instruction &I)
void clearDanglingDebugInfo()
Clear the dangling debug information map.
void LowerCallTo(const CallBase &CB, SDValue Callee, bool IsTailCall, bool IsMustTailCall, const BasicBlock *EHPadBB=nullptr, const TargetLowering::PtrAuthInfo *PAI=nullptr)
void clear()
Clear out the current SelectionDAG and the associated state and prepare this SelectionDAGBuilder obje...
void visitBitTestHeader(SwitchCG::BitTestBlock &B, MachineBasicBlock *SwitchBB)
visitBitTestHeader - This function emits necessary code to produce value suitable for "bit tests"
void LowerStatepoint(const GCStatepointInst &I, const BasicBlock *EHPadBB=nullptr)
std::unique_ptr< SDAGSwitchLowering > SL
SDValue lowerRangeToAssertZExt(SelectionDAG &DAG, const Instruction &I, SDValue Op)
bool HasTailCall
This is set to true if a call in the current block has been translated as a tail call.
bool ShouldEmitAsBranches(const std::vector< SwitchCG::CaseBlock > &Cases)
If the set of cases should be emitted as a series of branches, return true.
void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, BranchProbability TProb, BranchProbability FProb, bool InvertCond)
EmitBranchForMergedCondition - Helper method for FindMergedConditions.
void LowerDeoptimizeCall(const CallInst *CI)
void LowerCallSiteWithDeoptBundle(const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB)
SwiftErrorValueTracking & SwiftError
Information about the swifterror values used throughout the function.
SDValue getNonRegisterValue(const Value *V)
getNonRegisterValue - Return an SDValue for the given Value, but don't look in FuncInfo....
const TargetTransformInfo * TTI
DenseMap< MachineBasicBlock *, SmallVector< unsigned, 4 > > LPadToCallSiteMap
Map a landing pad to the call site indexes.
SDValue lowerNoFPClassToAssertNoFPClass(SelectionDAG &DAG, const Instruction &I, SDValue Op)
void handleDebugDeclare(Value *Address, DILocalVariable *Variable, DIExpression *Expression, DebugLoc DL)
bool shouldKeepJumpConditionsTogether(const FunctionLoweringInfo &FuncInfo, const BranchInst &I, Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, TargetLoweringBase::CondMergingParams Params) const
StatepointLoweringState StatepointLowering
State used while lowering a statepoint sequence (gc_statepoint, gc_relocate, and gc_result).
void visitBitTestCase(SwitchCG::BitTestBlock &BB, MachineBasicBlock *NextMBB, BranchProbability BranchProbToNext, Register Reg, SwitchCG::BitTestCase &B, MachineBasicBlock *SwitchBB)
visitBitTestCase - this function produces one "bit test"
bool canTailCall(const CallBase &CB) const
void populateCallLoweringInfo(TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, AttributeSet RetAttrs, bool IsPatchPoint)
Populate a CallLowerinInfo (into CLI) based on the properties of the call being lowered.
void CopyValueToVirtualRegister(const Value *V, Register Reg, ISD::NodeType ExtendType=ISD::ANY_EXTEND)
void salvageUnresolvedDbgValue(const Value *V, DanglingDebugInfo &DDI)
For the given dangling debuginfo record, perform last-ditch efforts to resolve the debuginfo to somet...
SmallVector< SDValue, 8 > PendingLoads
Loads are not emitted to the program immediately.
GCFunctionInfo * GFI
Garbage collection metadata for the function.
void init(GCFunctionInfo *gfi, BatchAAResults *BatchAA, AssumptionCache *AC, const TargetLibraryInfo *li, const TargetTransformInfo &TTI)
SDValue getRoot()
Similar to getMemoryRoot, but also flushes PendingConstrainedFP(Strict) items.
void ExportFromCurrentBlock(const Value *V)
ExportFromCurrentBlock - If this condition isn't known to be exported from the current basic block,...
void resolveOrClearDbgInfo()
Evict any dangling debug information, attempting to salvage it first.
std::pair< SDValue, SDValue > lowerInvokable(TargetLowering::CallLoweringInfo &CLI, const BasicBlock *EHPadBB=nullptr)
SDValue getMemoryRoot()
Return the current virtual root of the Selection DAG, flushing any PendingLoad items.
void resolveDanglingDebugInfo(const Value *V, SDValue Val)
If we saw an earlier dbg_value referring to V, generate the debug data structures now that we've seen...
void visit(const Instruction &I)
void dropDanglingDebugInfo(const DILocalVariable *Variable, const DIExpression *Expr)
If we have dangling debug info that describes Variable, or an overlapping part of variable considerin...
SDValue getCopyFromRegs(const Value *V, Type *Ty)
If there was virtual register allocated for the value V emit CopyFromReg of the specified type Ty.
void CopyToExportRegsIfNeeded(const Value *V)
CopyToExportRegsIfNeeded - If the given value has virtual registers created for it,...
void handleKillDebugValue(DILocalVariable *Var, DIExpression *Expr, DebugLoc DbgLoc, unsigned Order)
Create a record for a kill location debug intrinsic.
void visitJumpTable(SwitchCG::JumpTable &JT)
visitJumpTable - Emit JumpTable node in the current MBB
SDValue getFPOperationRoot(fp::ExceptionBehavior EB)
Return the current virtual root of the Selection DAG, flushing PendingConstrainedFP or PendingConstra...
void visitJumpTableHeader(SwitchCG::JumpTable &JT, SwitchCG::JumpTableHeader &JTH, MachineBasicBlock *SwitchBB)
visitJumpTableHeader - This function emits necessary code to produce index in the JumpTable from swit...
void LowerCallSiteWithPtrAuthBundle(const CallBase &CB, const BasicBlock *EHPadBB)
static const unsigned LowestSDNodeOrder
Lowest valid SDNodeOrder.
FunctionLoweringInfo & FuncInfo
Information about the function as a whole.
void setValue(const Value *V, SDValue NewN)
void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, Instruction::BinaryOps Opc, BranchProbability TProb, BranchProbability FProb, bool InvertCond)
const TargetLibraryInfo * LibInfo
bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB)
void visitSPDescriptorParent(StackProtectorDescriptor &SPD, MachineBasicBlock *ParentBB)
Codegen a new tail for a stack protector check ParentMBB which has had its tail spliced into a stack ...
bool handleDebugValue(ArrayRef< const Value * > Values, DILocalVariable *Var, DIExpression *Expr, DebugLoc DbgLoc, unsigned Order, bool IsVariadic)
For a given list of Values, attempt to create and record a SDDbgValue in the SelectionDAG.
SDValue getControlRoot()
Similar to getRoot, but instead of flushing all the PendingLoad items, flush all the PendingExports (...
void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last)
When an MBB was split during scheduling, update the references that need to refer to the last resulti...
SDValue getValueImpl(const Value *V)
getValueImpl - Helper function for getValue and getNonRegisterValue.
void visitSwitchCase(SwitchCG::CaseBlock &CB, MachineBasicBlock *SwitchBB)
visitSwitchCase - Emits the necessary code to represent a single node in the binary search tree resul...
void visitSPDescriptorFailure(StackProtectorDescriptor &SPD)
Codegen the failure basic block for a stack protector check.
std::unique_ptr< FunctionLoweringInfo > FuncInfo
SmallPtrSet< const Instruction *, 4 > ElidedArgCopyInstrs
const TargetLowering * TLI
MachineRegisterInfo * RegInfo
std::unique_ptr< SwiftErrorValueTracking > SwiftError
virtual void emitFunctionEntryCode()
std::unique_ptr< SelectionDAGBuilder > SDB
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrnlen(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src, SDValue MaxLength, MachinePointerInfo SrcPtrInfo) const
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrlen(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src, const CallInst *CI) const
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrcpy(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dest, SDValue Src, MachinePointerInfo DestPtrInfo, MachinePointerInfo SrcPtrInfo, bool isStpcpy) const
Emit target-specific code that performs a strcpy or stpcpy, in cases where that is faster than a libc...
virtual std::pair< SDValue, SDValue > EmitTargetCodeForMemchr(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Src, SDValue Char, SDValue Length, MachinePointerInfo SrcPtrInfo) const
Emit target-specific code that performs a memchr, in cases where that is faster than a libcall.
virtual std::pair< SDValue, SDValue > EmitTargetCodeForMemcmp(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Op1, SDValue Op2, SDValue Op3, const CallInst *CI) const
Emit target-specific code that performs a memcmp/bcmp, in cases where that is faster than a libcall.
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrcmp(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Op1, SDValue Op2, MachinePointerInfo Op1PtrInfo, MachinePointerInfo Op2PtrInfo) const
Emit target-specific code that performs a strcmp, in cases where that is faster than a libcall.
virtual SDValue EmitTargetCodeForSetTag(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Addr, SDValue Size, MachinePointerInfo DstPtrInfo, bool ZeroData) const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT, unsigned Opcode)
Convert Op, which must be of integer type, to the integer type VT, by either any/sign/zero-extending ...
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
const TargetSubtargetInfo & getSubtarget() const
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
const DataLayout & getDataLayout() const
SDValue getTargetFrameIndex(int FI, EVT VT)
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVMContext * getContext() const
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void swap(SmallVectorImpl &RHS)
void resize(size_type N)
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Encapsulates all of the information needed to generate a stack protector check, and signals to isel w...
MachineBasicBlock * getSuccessMBB()
MachineBasicBlock * getFailureMBB()
MachineBasicBlock * getParentMBB()
bool shouldEmitFunctionBasedCheckStackProtector() const
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr bool empty() const
empty - Check if the string is empty.
Definition StringRef.h:143
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition StringRef.h:140
Multiway switch.
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Provides information about what library functions are available for the current target.
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT) const
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
EVT getMemValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
LegalizeAction
This enum indicates whether operations are valid for a target, and if not, what action should be used...
virtual bool useStackGuardXorFP() const
If this function returns true, stack protection checks should XOR the frame pointer (or whichever poi...
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
virtual bool isLegalScaleForGatherScatter(uint64_t Scale, uint64_t ElemSize) const
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
virtual unsigned getNumRegisters(LLVMContext &Context, EVT VT, std::optional< MVT > RegisterVT=std::nullopt) const
Return the number of registers that this ValueType will eventually require.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
virtual bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const
Returns true if the index type for a masked gather/scatter requires extending.
virtual unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Certain targets such as MIPS require that some types such as vectors are always broken down into scal...
Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT, unsigned Scale) const
Some fixed point operations may be natively supported by the target but only for specific scales.
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const
When splitting a value of the specified type into parts, does the Lo or Hi part come first?
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
virtual Align getABIAlignmentForCallingConv(Type *ArgTy, const DataLayout &DL) const
Certain targets have context sensitive alignment requirements, where one type has the alignment requi...
MachineMemOperand::Flags getVPIntrinsicMemOperandFlags(const VPIntrinsic &VPIntrin) const
virtual bool shouldExpandGetActiveLaneMask(EVT VT, EVT OpVT) const
Return true if the @llvm.get.active.lane.mask intrinsic should be expanded using generic code in Sele...
virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallBase &, MachineFunction &, unsigned) const
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
MVT getProgramPointerTy(const DataLayout &DL) const
Return the type for code pointers, which is determined by the program address space specified through...
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
virtual bool shouldExpandVectorMatch(EVT VT, unsigned SearchSize) const
Return true if the @llvm.experimental.vector.match intrinsic should be expanded for vector type ‘VT’ ...
virtual MVT getFenceOperandTy(const DataLayout &DL) const
Return the type for operands of fence.
virtual bool shouldExpandGetVectorLength(EVT CountVT, unsigned VF, bool IsScalable) const
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual MVT hasFastEqualityCompare(unsigned NumBits) const
Return the preferred operand type if the target has a quick way to compare integer values of the give...
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
virtual bool shouldExpandCttzElements(EVT VT) const
Return true if the @llvm.experimental.cttz.elts intrinsic should be expanded using generic code in Se...
virtual bool signExtendConstant(const ConstantInt *C) const
Return true if this constant should be sign extended when promoting to a larger type.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
virtual Register getExceptionPointerRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception address on entry to an ...
bool supportsUnalignedAtomics() const
Whether the target supports unaligned atomic operations.
std::vector< ArgListEntry > ArgListTy
bool isBeneficialToExpandPowI(int64_t Exponent, bool OptForSize) const
Return true if it is beneficial to expand an @llvm.powi.
MVT getFrameIndexTy(const DataLayout &DL) const
Return the type for frame index, which is determined by the alloca address space specified through th...
virtual Register getExceptionSelectorRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception typeid on entry to a la...
virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
virtual MVT getVPExplicitVectorLengthTy() const
Returns the type to be used for the EVL/AVL operand of VP nodes: ISD::VP_ADD, ISD::VP_SUB,...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool supportKCFIBundles() const
Return true if the target supports kcfi operand bundles.
virtual bool supportPtrAuthBundles() const
Return true if the target supports ptrauth operand bundles.
virtual bool supportSwiftError() const
Return true if the target supports swifterror attribute.
virtual SDValue visitMaskedLoad(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue &NewLoad, SDValue Ptr, SDValue PassThru, SDValue Mask) const
virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val, const SDLoc &DL) const
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
std::vector< AsmOperandInfo > AsmOperandInfoVector
SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test, SDNodeFlags Flags, const SDLoc &DL, SelectionDAG &DAG) const
Expand check for floating point class.
virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const
This callback is used to prepare for a volatile or atomic load.
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, std::optional< CallingConv::ID > CC) const
Target-specific splitting of values into parts that fit a register storing a legal type.
virtual SDValue joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, std::optional< CallingConv::ID > CC) const
Target-specific combining of register parts into its original value.
virtual SDValue LowerCall(CallLoweringInfo &, SmallVectorImpl< SDValue > &) const
This hook must be implemented to lower calls into the specified DAG.
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue, const SDLoc &DL, const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const
This callback is invoked for operations that are unsupported by the target, which are registered to u...
virtual bool functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, bool isVarArg, const DataLayout &DL) const
For some targets, an LLVM struct type must be broken down into multiple simple types,...
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const
virtual SDValue visitMaskedStore(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue Ptr, SDValue Val, SDValue Mask) const
virtual bool useLoadStackGuardNode(const Module &M) const
If this function returns true, SelectionDAGBuilder emits a LOAD_STACK_GUARD node when it is lowering ...
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::LibcallImpl LibcallImpl, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
virtual void LowerOperationWrapper(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const
This callback is invoked by the type legalizer to legalize nodes with an illegal operand type but leg...
virtual bool isInlineAsmTargetBranch(const SmallVectorImpl< StringRef > &AsmStrs, unsigned OpNo) const
On x86, return true if the operand with index OpNo is a CALL or JUMP instruction, which can use eithe...
virtual MVT getJumpTableRegTy(const DataLayout &DL) const
virtual bool CanLowerReturn(CallingConv::ID, MachineFunction &, bool, const SmallVectorImpl< ISD::OutputArg > &, LLVMContext &, const Type *RetTy) const
This hook should be implemented to check whether the return values described by the Outs array can fi...
CodeGenOptLevel getOptLevel() const
Returns the optimization level: None, Less, Default, or Aggressive.
unsigned NoTrapAfterNoreturn
Do not emit a trap instruction for 'unreachable' IR instructions behind noreturn calls,...
unsigned TrapUnreachable
Emit target-specific trap instruction for 'unreachable' IR instructions.
unsigned getID() const
Return the register class ID number.
iterator begin() const
begin/end - Return all of the registers in this class.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetFrameLowering * getFrameLowering() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
@ TCK_Latency
The latency of instruction.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:343
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI bool isEmptyTy() const
Return true if this type is empty, that is, it has no elements or all of its elements are empty.
Definition Type.cpp:180
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:280
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:293
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
bool isTokenTy() const
Return true if this is 'token'.
Definition Type.h:234
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:300
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
Definition Type.h:225
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
op_iterator op_begin()
Definition User.h:284
Value * getOperand(unsigned i) const
Definition User.h:232
unsigned getNumOperands() const
Definition User.h:254
op_iterator op_end()
Definition User.h:286
This class represents the va_arg llvm instruction, which returns an argument of the specified type gi...
LLVM_ABI CmpInst::Predicate getPredicate() const
This is the common base class for vector predication intrinsics.
static LLVM_ABI std::optional< unsigned > getVectorLengthParamPos(Intrinsic::ID IntrinsicID)
LLVM_ABI MaybeAlign getPointerAlignment() const
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
iterator_range< user_iterator > users()
Definition Value.h:426
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:701
bool use_empty() const
Definition Value.h:346
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1099
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
Base class of all SIMD vector types.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:230
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:165
const ParentTy * getParent() const
Definition ilist_node.h:34
A raw_ostream that writes to an std::string.
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char SymbolName[]
Key for Kernel::Metadata::mSymbolName.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ AnyReg
OBSOLETED - Used for stack based JavaScript calls.
Definition CallingConv.h:60
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
@ X86_VectorCall
MSVC calling convention that passes vectors and vector aggregates in SSE registers.
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:256
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:780
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
Definition ISDOpcodes.h:504
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
Definition ISDOpcodes.h:45
@ LOOP_DEPENDENCE_RAW_MASK
@ EH_SJLJ_LONGJMP
OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer) This corresponds to the eh.sjlj.longjmp intrinsic.
Definition ISDOpcodes.h:163
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
Definition ISDOpcodes.h:593
@ BSWAP
Byte Swap and Counting operators.
Definition ISDOpcodes.h:771
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
Definition ISDOpcodes.h:387
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:393
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:841
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:511
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
Definition ISDOpcodes.h:215
@ EH_SJLJ_SETUP_DISPATCH
OUTCHAIN = EH_SJLJ_SETUP_DISPATCH(INCHAIN) The target initializes the dispatch table here.
Definition ISDOpcodes.h:167
@ GlobalAddress
Definition ISDOpcodes.h:88
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:868
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:577
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:410
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:744
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
Definition ISDOpcodes.h:521
@ FPTRUNC_ROUND
FPTRUNC_ROUND - This corresponds to the fptrunc_round intrinsic.
Definition ISDOpcodes.h:508
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
Definition ISDOpcodes.h:249
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
Definition ISDOpcodes.h:400
@ EH_RETURN
OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents 'eh_return' gcc dwarf builtin,...
Definition ISDOpcodes.h:151
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:832
@ ADDROFRETURNADDR
ADDROFRETURNADDR - Represents the llvm.addressofreturnaddress intrinsic.
Definition ISDOpcodes.h:117
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:779
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ VECTOR_INTERLEAVE
VECTOR_INTERLEAVE(VEC1, VEC2, ...) - Returns N vectors from N input vectors, where N is the factor to...
Definition ISDOpcodes.h:628
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:534
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
Definition ISDOpcodes.h:541
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:784
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
Definition ISDOpcodes.h:242
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:669
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition ISDOpcodes.h:225
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ GET_ROUNDING
Returns current rounding mode: -1 Undefined 0 Round to 0 1 Round to nearest, ties to even 2 Round to ...
Definition ISDOpcodes.h:958
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:762
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
Definition ISDOpcodes.h:78
@ PtrAuthGlobalAddress
A ptrauth constant.
Definition ISDOpcodes.h:100
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
Definition ISDOpcodes.h:607
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
Definition ISDOpcodes.h:48
@ READ_REGISTER
READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on the DAG, which implements the n...
Definition ISDOpcodes.h:134
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:569
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:838
@ LOCAL_RECOVER
LOCAL_RECOVER - Represents the llvm.localrecover intrinsic.
Definition ISDOpcodes.h:130
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:379
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:724
@ VECTOR_REVERSE
VECTOR_REVERSE(VECTOR) - Returns a vector, of the same type as VECTOR, whose elements are shuffled us...
Definition ISDOpcodes.h:633
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:406
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition ISDOpcodes.h:793
@ EH_DWARF_CFA
EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical Frame Address (CFA),...
Definition ISDOpcodes.h:145
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
Definition ISDOpcodes.h:110
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
Definition ISDOpcodes.h:493
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:914
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:736
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
Definition ISDOpcodes.h:200
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
Definition ISDOpcodes.h:732
@ STRICT_FADD
Constrained versions of the binary floating point operators.
Definition ISDOpcodes.h:420
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:558
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition ISDOpcodes.h:53
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
Definition ISDOpcodes.h:654
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:947
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
Definition ISDOpcodes.h:696
@ SPONENTRY
SPONENTRY - Represents the llvm.sponentry intrinsic.
Definition ISDOpcodes.h:122
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:933
@ EH_SJLJ_SETJMP
RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer) This corresponds to the eh.sjlj....
Definition ISDOpcodes.h:157
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:844
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
Definition ISDOpcodes.h:62
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:527
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ VECTOR_DEINTERLEAVE
VECTOR_DEINTERLEAVE(VEC1, VEC2, ...) - Returns N vectors from N input vectors, where N is the factor ...
Definition ISDOpcodes.h:617
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
Definition ISDOpcodes.h:208
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:549
@ LOOP_DEPENDENCE_WAR_MASK
Set rounding mode.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
Flag
These should be considered private to the implementation of the MCInstrDesc class.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
IntrinsicID_match m_VScale()
Matches a call to llvm.vscale().
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
Offsets
Offsets in bytes from the start of the input buffer.
std::pair< JumpTableHeader, JumpTable > JumpTableBlock
void sortAndRangeify(CaseClusterVector &Clusters)
Sort Clusters and merge adjacent cases.
std::vector< CaseCluster > CaseClusterVector
@ CC_Range
A cluster of adjacent case labels with the same destination, or just one case.
@ CC_JumpTable
A cluster of cases suitable for jump table lowering.
@ CC_BitTests
A cluster of cases suitable for bit test lowering.
SmallVector< SwitchWorkListItem, 4 > SwitchWorkList
CaseClusterVector::iterator CaseClusterIt
initializer< Ty > init(const Ty &Val)
LocationClass< Ty > location(Ty &L)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
Definition Dwarf.h:149
ExceptionBehavior
Exception behavior used for floating point operations.
Definition FPEnv.h:39
@ ebStrict
This corresponds to "fpexcept.strict".
Definition FPEnv.h:42
@ ebMayTrap
This corresponds to "fpexcept.maytrap".
Definition FPEnv.h:41
@ ebIgnore
This corresponds to "fpexcept.ignore".
Definition FPEnv.h:40
constexpr float log2ef
Definition MathExtras.h:51
constexpr double e
constexpr float ln2f
Definition MathExtras.h:49
NodeAddr< FuncNode * > Func
Definition RDFGraph.h:393
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
Definition Threading.h:280
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition MathExtras.h:344
@ Offset
Definition DWP.cpp:532
@ Length
Definition DWP.cpp:532
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
Definition Analysis.cpp:241
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1667
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
LLVM_ABI bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI)
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< EVT > *MemVTs=nullptr, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
Definition Analysis.cpp:119
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
@ Done
Definition Threading.h:60
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
Definition bit.h:293
LLVM_ABI void diagnoseDontCall(const CallInst &CI)
auto successors(const MachineBasicBlock *BB)
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
static ConstantRange getRange(Value *Op, SCCPSolver &Solver, const SmallPtrSetImpl< Value * > &InsertedValues)
Helper for getting ranges from Solver.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2148
Value * GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, const DataLayout &DL, bool AllowNonInbounds=true)
Analyze the specified pointer to see if it can be expressed as a base pointer plus a constant offset.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
Definition MathExtras.h:243
auto cast_or_null(const Y &Val)
Definition Casting.h:714
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
Definition MathExtras.h:546
gep_type_iterator gep_type_end(const User *GEP)
constexpr int popcount(T Value) noexcept
Count the number of set bits in a value.
Definition bit.h:154
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&...Ranges)
Returns a concatenated range across two or more ranges.
Definition STLExtras.h:1150
bool isScopedEHPersonality(EHPersonality Pers)
Returns true if this personality uses scope-style EH IR instructions: catchswitch,...
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition bit.h:202
void ComputeValueTypes(const DataLayout &DL, Type *Ty, SmallVectorImpl< Type * > &Types, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
Given an LLVM IR type, compute non-aggregate subtypes.
Definition Analysis.cpp:72
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
@ SPF_FMAXNUM
Floating point minnum.
@ SPF_UMIN
Signed minimum.
@ SPF_UMAX
Signed maximum.
@ SPF_SMAX
Unsigned minimum.
@ SPF_FMINNUM
Unsigned maximum.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
detail::zippy< detail::zip_first, T, U, Args... > zip_first(T &&t, U &&u, Args &&...args)
zip iterator that, for the sake of efficiency, assumes the first iteratee to be the shortest.
Definition STLExtras.h:852
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1634
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
generic_gep_type_iterator<> gep_type_iterator
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
auto succ_size(const MachineBasicBlock *BB)
bool hasSingleElement(ContainerTy &&C)
Returns true if the given container only contains a single element.
Definition STLExtras.h:300
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred)
getFCmpCondCode - Return the ISD condition code corresponding to the given LLVM IR floating-point con...
Definition Analysis.cpp:207
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI Value * salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, SmallVectorImpl< uint64_t > &Ops, SmallVectorImpl< Value * > &AdditionalValues)
Definition Local.cpp:2274
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ Global
Append to llvm.global_dtors.
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
Definition ModRef.h:74
bool isFuncletEHPersonality(EHPersonality Pers)
Returns true if this is a personality function that invokes handler funclets (which must return to it...
FunctionAddr VTableAddr uintptr_t uintptr_t Data
Definition InstrProf.h:189
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
@ And
Bitwise or logical AND of integers.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
@ SPNB_RETURNS_NAN
NaN behavior not applicable.
@ SPNB_RETURNS_OTHER
Given one NaN input, returns the NaN.
@ SPNB_RETURNS_ANY
Given one NaN input, returns the non-NaN.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
Definition Analysis.cpp:543
DWARFExpression::Operation Op
ISD::CondCode getFCmpCodeWithoutNaN(ISD::CondCode CC)
getFCmpCodeWithoutNaN - Given an ISD condition code comparing floats, return the equivalent code if w...
Definition Analysis.cpp:229
ArrayRef(const T &OneElt) -> ArrayRef< T >
bool isAsynchronousEHPersonality(EHPersonality Pers)
Returns true if this personality function catches asynchronous exceptions.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI std::optional< RoundingMode > convertStrToRoundingMode(StringRef)
Returns a valid RoundingMode enumerator when given a string that is valid as input in constrained int...
Definition FPEnv.cpp:25
gep_type_iterator gep_type_begin(const User *GEP)
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
Definition STLExtras.h:2132
GlobalValue * ExtractTypeInfo(Value *V)
ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
Definition Analysis.cpp:185
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1909
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:201
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
Definition STLExtras.h:2120
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
unsigned ComputeLinearIndex(Type *Ty, const unsigned *Indices, const unsigned *IndicesEnd, unsigned CurIndex=0)
Compute the linearized index of a member in a nested aggregate/struct/array.
Definition Analysis.cpp:33
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Definition bit.h:330
@ Default
The result values are uniform if and only if all operands are uniform.
Definition Uniformity.h:20
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
Definition Error.cpp:180
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define N
#define NC
Definition regutils.h:42
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
Definition Alignment.h:77
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
uint64_t getScalarStoreSize() const
Definition ValueTypes.h:402
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition ValueTypes.h:284
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition ValueTypes.h:147
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
Definition ValueTypes.h:359
static LLVM_ABI EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
bool isRISCVVectorTuple() const
Return true if this is a vector value type.
Definition ValueTypes.h:179
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
Definition ValueTypes.h:381
bool isFixedLengthVector() const
Definition ValueTypes.h:181
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
Definition ValueTypes.h:292
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
Definition ValueTypes.h:174
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
Definition ValueTypes.h:157
EVT changeVectorElementType(EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
Definition ValueTypes.h:102
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
void setPointerAddrSpace(unsigned AS)
InputArg - This struct carries flags and type information about a single incoming (formal) argument o...
static const unsigned NoArgIndex
Sentinel value for implicit machine-level input arguments.
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
ConstraintPrefix Type
Type - The basic type of the constraint: input/output/clobber/label.
Definition InlineAsm.h:128
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
Definition KnownBits.h:248
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getUnknownStack(MachineFunction &MF)
Stack memory without other information.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
A lightweight accessor for an operand bundle meant to be passed around by value.
This struct represents the registers (physical or virtual) that a particular set of values is assigne...
SmallVector< std::pair< Register, TypeSize >, 4 > getRegsAndSizes() const
Return a list of registers and their sizes.
RegsForValue()=default
SmallVector< unsigned, 4 > RegCount
This list holds the number of registers for each value.
SmallVector< EVT, 4 > ValueVTs
The value types of the values, which may not be legal, and may need be promoted or synthesized from o...
SmallVector< Register, 4 > Regs
This list holds the registers assigned to the values.
void AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, unsigned MatchingIdx, const SDLoc &dl, SelectionDAG &DAG, std::vector< SDValue > &Ops) const
Add this value to the specified inlineasm node operand list.
SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, const SDLoc &dl, SDValue &Chain, SDValue *Glue, const Value *V=nullptr) const
Emit a series of CopyFromReg nodes that copies from this value and returns the result as a ValueVTs v...
SmallVector< MVT, 4 > RegVTs
The value types of the registers.
void getCopyToRegs(SDValue Val, SelectionDAG &DAG, const SDLoc &dl, SDValue &Chain, SDValue *Glue, const Value *V=nullptr, ISD::NodeType PreferredExtendType=ISD::ANY_EXTEND) const
Emit a series of CopyToReg nodes that copies the specified value into the registers specified by this...
std::optional< CallingConv::ID > CallConv
Records if this value needs to be treated in an ABI dependant manner, different to normal type legali...
bool occupiesMultipleRegs() const
Check if the total RegCount is greater than one.
These are IR-level optimization flags that may be propagated to SDNodes.
void copyFMF(const FPMathOperator &FPMO)
Propagate the fast-math-flags from an IR FPMathOperator.
void setUnpredictable(bool b)
bool hasAllowReassociation() const
void setNoUnsignedWrap(bool b)
void setNoSignedWrap(bool b)
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
A MapVector that performs no allocations if smaller than a certain size.
Definition MapVector.h:276
This structure is used to communicate between SelectionDAGBuilder and SDISel for the code generation ...
SDLoc DL
The debug location of the instruction this CaseBlock was produced from.
static CaseCluster range(const ConstantInt *Low, const ConstantInt *High, MachineBasicBlock *MBB, BranchProbability Prob)
This contains information for each constraint that we are lowering.
TargetLowering::ConstraintType ConstraintType
Information about the constraint code, e.g.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setConvergent(bool Value=true)
CallLoweringInfo & setDeactivationSymbol(GlobalValue *Sym)
CallLoweringInfo & setCFIType(const ConstantInt *Type)
SmallVector< ISD::InputArg, 32 > Ins
Type * OrigRetTy
Original unlegalized return type.
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setIsPatchPoint(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setIsPreallocated(bool Value=true)
CallLoweringInfo & setConvergenceControlToken(SDValue Token)
SmallVector< ISD::OutputArg, 32 > Outs
Type * RetTy
Same as OrigRetTy, or partially legalized for soft float libcalls.
CallLoweringInfo & setChain(SDValue InChain)
CallLoweringInfo & setPtrAuth(PtrAuthInfo Value)
CallLoweringInfo & setCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList, AttributeSet ResultAttrs={})
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setDiscardResult(bool Value=true)
This structure contains the information necessary for lowering pointer-authenticating indirect calls.
void addIPToStateRange(const InvokeInst *II, MCSymbol *InvokeBegin, MCSymbol *InvokeEnd)