LLVM 17.0.0git
PostOrderIterator.h
Go to the documentation of this file.
1//===- llvm/ADT/PostOrderIterator.h - PostOrder iterator --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file builds on the ADT/GraphTraits.h file to build a generic graph
11/// post order iterator. This should work over any graph type that has a
12/// GraphTraits specialization.
13///
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_ADT_POSTORDERITERATOR_H
17#define LLVM_ADT_POSTORDERITERATOR_H
18
23#include <iterator>
24#include <optional>
25#include <set>
26#include <utility>
27#include <vector>
28
29namespace llvm {
30
31// The po_iterator_storage template provides access to the set of already
32// visited nodes during the po_iterator's depth-first traversal.
33//
34// The default implementation simply contains a set of visited nodes, while
35// the External=true version uses a reference to an external set.
36//
37// It is possible to prune the depth-first traversal in several ways:
38//
39// - When providing an external set that already contains some graph nodes,
40// those nodes won't be visited again. This is useful for restarting a
41// post-order traversal on a graph with nodes that aren't dominated by a
42// single node.
43//
44// - By providing a custom SetType class, unwanted graph nodes can be excluded
45// by having the insert() function return false. This could for example
46// confine a CFG traversal to blocks in a specific loop.
47//
48// - Finally, by specializing the po_iterator_storage template itself, graph
49// edges can be pruned by returning false in the insertEdge() function. This
50// could be used to remove loop back-edges from the CFG seen by po_iterator.
51//
52// A specialized po_iterator_storage class can observe both the pre-order and
53// the post-order. The insertEdge() function is called in a pre-order, while
54// the finishPostorder() function is called just before the po_iterator moves
55// on to the next node.
56
57/// Default po_iterator_storage implementation with an internal set object.
58template<class SetType, bool External>
60 SetType Visited;
61
62public:
63 // Return true if edge destination should be visited.
64 template <typename NodeRef>
65 bool insertEdge(std::optional<NodeRef> From, NodeRef To) {
66 return Visited.insert(To).second;
67 }
68
69 // Called after all children of BB have been visited.
70 template <typename NodeRef> void finishPostorder(NodeRef BB) {}
71};
72
73/// Specialization of po_iterator_storage that references an external set.
74template<class SetType>
75class po_iterator_storage<SetType, true> {
76 SetType &Visited;
77
78public:
79 po_iterator_storage(SetType &VSet) : Visited(VSet) {}
80 po_iterator_storage(const po_iterator_storage &S) : Visited(S.Visited) {}
81
82 // Return true if edge destination should be visited, called with From = 0 for
83 // the root node.
84 // Graph edges can be pruned by specializing this function.
85 template <class NodeRef>
86 bool insertEdge(std::optional<NodeRef> From, NodeRef To) {
87 return Visited.insert(To).second;
88 }
89
90 // Called after all children of BB have been visited.
91 template <class NodeRef> void finishPostorder(NodeRef BB) {}
92};
93
94template <class GraphT,
95 class SetType = SmallPtrSet<typename GraphTraits<GraphT>::NodeRef, 8>,
96 bool ExtStorage = false, class GT = GraphTraits<GraphT>>
97class po_iterator : public po_iterator_storage<SetType, ExtStorage> {
98public:
99 using iterator_category = std::forward_iterator_tag;
100 using value_type = typename GT::NodeRef;
101 using difference_type = std::ptrdiff_t;
103 using reference = const value_type &;
104
105private:
106 using NodeRef = typename GT::NodeRef;
107 using ChildItTy = typename GT::ChildIteratorType;
108
109 /// Used to maintain the ordering.
110 /// First element is basic block pointer, second is iterator for the next
111 /// child to visit, third is the end iterator.
113
114 po_iterator(NodeRef BB) {
115 this->insertEdge(std::optional<NodeRef>(), BB);
116 VisitStack.emplace_back(BB, GT::child_begin(BB), GT::child_end(BB));
117 traverseChild();
118 }
119
120 po_iterator() = default; // End is when stack is empty.
121
122 po_iterator(NodeRef BB, SetType &S)
123 : po_iterator_storage<SetType, ExtStorage>(S) {
124 if (this->insertEdge(std::optional<NodeRef>(), BB)) {
125 VisitStack.emplace_back(BB, GT::child_begin(BB), GT::child_end(BB));
126 traverseChild();
127 }
128 }
129
130 po_iterator(SetType &S)
131 : po_iterator_storage<SetType, ExtStorage>(S) {
132 } // End is when stack is empty.
133
134 void traverseChild() {
135 while (true) {
136 auto &Entry = VisitStack.back();
137 if (std::get<1>(Entry) == std::get<2>(Entry))
138 break;
139 NodeRef BB = *std::get<1>(Entry)++;
140 if (this->insertEdge(std::optional<NodeRef>(std::get<0>(Entry)), BB)) {
141 // If the block is not visited...
142 VisitStack.emplace_back(BB, GT::child_begin(BB), GT::child_end(BB));
143 }
144 }
145 }
146
147public:
148 // Provide static "constructors"...
149 static po_iterator begin(const GraphT &G) {
150 return po_iterator(GT::getEntryNode(G));
151 }
152 static po_iterator end(const GraphT &G) { return po_iterator(); }
153
154 static po_iterator begin(const GraphT &G, SetType &S) {
155 return po_iterator(GT::getEntryNode(G), S);
156 }
157 static po_iterator end(const GraphT &G, SetType &S) { return po_iterator(S); }
158
159 bool operator==(const po_iterator &x) const {
160 return VisitStack == x.VisitStack;
161 }
162 bool operator!=(const po_iterator &x) const { return !(*this == x); }
163
164 reference operator*() const { return std::get<0>(VisitStack.back()); }
165
166 // This is a nonstandard operator-> that dereferences the pointer an extra
167 // time... so that you can actually call methods ON the BasicBlock, because
168 // the contained type is a pointer. This allows BBIt->getTerminator() f.e.
169 //
170 NodeRef operator->() const { return **this; }
171
172 po_iterator &operator++() { // Preincrement
173 this->finishPostorder(std::get<0>(VisitStack.back()));
174 VisitStack.pop_back();
175 if (!VisitStack.empty())
176 traverseChild();
177 return *this;
178 }
179
180 po_iterator operator++(int) { // Postincrement
181 po_iterator tmp = *this;
182 ++*this;
183 return tmp;
184 }
185};
186
187// Provide global constructors that automatically figure out correct types...
188//
189template <class T>
191template <class T>
193
194template <class T> iterator_range<po_iterator<T>> post_order(const T &G) {
195 return make_range(po_begin(G), po_end(G));
196}
197
198// Provide global definitions of external postorder iterators...
199template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>>
200struct po_ext_iterator : public po_iterator<T, SetType, true> {
202 po_iterator<T, SetType, true>(V) {}
203};
204
205template<class T, class SetType>
208}
209
210template<class T, class SetType>
213}
214
215template <class T, class SetType>
217 return make_range(po_ext_begin(G, S), po_ext_end(G, S));
218}
219
220// Provide global definitions of inverse post order iterators...
221template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>,
222 bool External = false>
223struct ipo_iterator : public po_iterator<Inverse<T>, SetType, External> {
224 ipo_iterator(const po_iterator<Inverse<T>, SetType, External> &V) :
225 po_iterator<Inverse<T>, SetType, External> (V) {}
226};
227
228template <class T>
231}
232
233template <class T>
235 return ipo_iterator<T>::end(G);
236}
237
238template <class T>
240 return make_range(ipo_begin(G), ipo_end(G));
241}
242
243// Provide global definitions of external inverse postorder iterators...
244template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>>
245struct ipo_ext_iterator : public ipo_iterator<T, SetType, true> {
247 ipo_iterator<T, SetType, true>(V) {}
248 ipo_ext_iterator(const po_iterator<Inverse<T>, SetType, true> &V) :
249 ipo_iterator<T, SetType, true>(V) {}
250};
251
252template <class T, class SetType>
255}
256
257template <class T, class SetType>
260}
261
262template <class T, class SetType>
263iterator_range<ipo_ext_iterator<T, SetType>>
264inverse_post_order_ext(const T &G, SetType &S) {
265 return make_range(ipo_ext_begin(G, S), ipo_ext_end(G, S));
266}
267
268//===--------------------------------------------------------------------===//
269// Reverse Post Order CFG iterator code
270//===--------------------------------------------------------------------===//
271//
272// This is used to visit basic blocks in a method in reverse post order. This
273// class is awkward to use because I don't know a good incremental algorithm to
274// computer RPO from a graph. Because of this, the construction of the
275// ReversePostOrderTraversal object is expensive (it must walk the entire graph
276// with a postorder iterator to build the data structures). The moral of this
277// story is: Don't create more ReversePostOrderTraversal classes than necessary.
278//
279// Because it does the traversal in its constructor, it won't invalidate when
280// BasicBlocks are removed, *but* it may contain erased blocks. Some places
281// rely on this behavior (i.e. GVN).
282//
283// This class should be used like this:
284// {
285// ReversePostOrderTraversal<Function*> RPOT(FuncPtr); // Expensive to create
286// for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
287// ...
288// }
289// for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
290// ...
291// }
292// }
293//
294
295template<class GraphT, class GT = GraphTraits<GraphT>>
297 using NodeRef = typename GT::NodeRef;
298
300 VecTy Blocks; // Block list in normal PO order
301
302 void Initialize(const GraphT &G) {
303 std::copy(po_begin(G), po_end(G), std::back_inserter(Blocks));
304 }
305
306public:
309
310 ReversePostOrderTraversal(const GraphT &G) { Initialize(G); }
311
312 // Because we want a reverse post order, use reverse iterators from the vector
313 rpo_iterator begin() { return Blocks.rbegin(); }
314 const_rpo_iterator begin() const { return Blocks.rbegin(); }
315 rpo_iterator end() { return Blocks.rend(); }
316 const_rpo_iterator end() const { return Blocks.rend(); }
317};
318
319} // end namespace llvm
320
321#endif // LLVM_ADT_POSTORDERITERATOR_H
basic Basic Alias true
BlockVerifier::State From
DenseMap< Block *, BlockRelaxAux > Blocks
Definition: ELF_riscv.cpp:491
This file defines the little GraphTraits<X> template class that should be specialized by classes that...
#define G(x, y, z)
Definition: MD5.cpp:56
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
const_rpo_iterator end() const
const_rpo_iterator begin() const
ReversePostOrderTraversal(const GraphT &G)
typename VecTy::reverse_iterator rpo_iterator
typename VecTy::const_reverse_iterator const_rpo_iterator
bool empty() const
Definition: SmallVector.h:94
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:941
std::reverse_iterator< const_iterator > const_reverse_iterator
Definition: SmallVector.h:257
std::reverse_iterator< iterator > reverse_iterator
Definition: SmallVector.h:258
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1200
A range adaptor for a pair of iterators.
po_iterator_storage(const po_iterator_storage &S)
bool insertEdge(std::optional< NodeRef > From, NodeRef To)
Default po_iterator_storage implementation with an internal set object.
bool insertEdge(std::optional< NodeRef > From, NodeRef To)
void finishPostorder(NodeRef BB)
static po_iterator end(const GraphT &G, SetType &S)
reference operator*() const
std::ptrdiff_t difference_type
static po_iterator end(const GraphT &G)
const value_type & reference
std::forward_iterator_tag iterator_category
NodeRef operator->() const
typename GT::NodeRef value_type
static po_iterator begin(const GraphT &G)
po_iterator & operator++()
po_iterator operator++(int)
bool operator==(const po_iterator &x) const
bool operator!=(const po_iterator &x) const
static po_iterator begin(const GraphT &G, SetType &S)
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
ipo_iterator< T > ipo_end(const T &G)
iterator_range< po_ext_iterator< T, SetType > > post_order_ext(const T &G, SetType &S)
iterator_range< ipo_ext_iterator< T, SetType > > inverse_post_order_ext(const T &G, SetType &S)
ipo_ext_iterator< T, SetType > ipo_ext_begin(const T &G, SetType &S)
iterator_range< ipo_iterator< T > > inverse_post_order(const T &G)
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
iterator_range< po_iterator< T > > post_order(const T &G)
po_ext_iterator< T, SetType > po_ext_end(T G, SetType &S)
po_iterator< T > po_begin(const T &G)
ipo_ext_iterator< T, SetType > ipo_ext_end(const T &G, SetType &S)
ipo_iterator< T > ipo_begin(const T &G)
po_iterator< T > po_end(const T &G)
po_ext_iterator< T, SetType > po_ext_begin(T G, SetType &S)
ipo_ext_iterator(const ipo_iterator< T, SetType, true > &V)
ipo_ext_iterator(const po_iterator< Inverse< T >, SetType, true > &V)
ipo_iterator(const po_iterator< Inverse< T >, SetType, External > &V)
po_ext_iterator(const po_iterator< T, SetType, true > &V)