LLVM  12.0.0git
SampleProfile.cpp
Go to the documentation of this file.
1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SampleProfileLoader transformation. This pass
10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
12 // profile information in the given profile.
13 //
14 // This pass generates branch weight annotations on the IR:
15 //
16 // - prof: Represents branch weights. This annotation is added to branches
17 // to indicate the weights of each edge coming out of the branch.
18 // The weight of each edge is the weight of the target block for
19 // that edge. The weight of a block B is computed as the maximum
20 // number of samples found in B.
21 //
22 //===----------------------------------------------------------------------===//
23 
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/None.h"
29 #include "llvm/ADT/SCCIterator.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/StringMap.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/Twine.h"
42 #include "llvm/Analysis/LoopInfo.h"
48 #include "llvm/IR/BasicBlock.h"
49 #include "llvm/IR/CFG.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DiagnosticInfo.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/InstrTypes.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/LLVMContext.h"
61 #include "llvm/IR/MDBuilder.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/PassManager.h"
65 #include "llvm/InitializePasses.h"
66 #include "llvm/Pass.h"
70 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/ErrorOr.h"
77 #include "llvm/Transforms/IPO.h"
82 #include <algorithm>
83 #include <cassert>
84 #include <cstdint>
85 #include <functional>
86 #include <limits>
87 #include <map>
88 #include <memory>
89 #include <queue>
90 #include <string>
91 #include <system_error>
92 #include <utility>
93 #include <vector>
94 
95 using namespace llvm;
96 using namespace sampleprof;
98 #define DEBUG_TYPE "sample-profile"
99 #define CSINLINE_DEBUG DEBUG_TYPE "-inline"
100 
101 STATISTIC(NumCSInlined,
102  "Number of functions inlined with context sensitive profile");
103 STATISTIC(NumCSNotInlined,
104  "Number of functions not inlined with context sensitive profile");
105 
106 // Command line option to specify the file to read samples from. This is
107 // mainly used for debugging.
109  "sample-profile-file", cl::init(""), cl::value_desc("filename"),
110  cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
111 
112 // The named file contains a set of transformations that may have been applied
113 // to the symbol names between the program from which the sample data was
114 // collected and the current program's symbols.
116  "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
117  cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);
118 
120  "sample-profile-max-propagate-iterations", cl::init(100),
121  cl::desc("Maximum number of iterations to go through when propagating "
122  "sample block/edge weights through the CFG."));
123 
125  "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
126  cl::desc("Emit a warning if less than N% of records in the input profile "
127  "are matched to the IR."));
128 
130  "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
131  cl::desc("Emit a warning if less than N% of samples in the input profile "
132  "are matched to the IR."));
133 
135  "no-warn-sample-unused", cl::init(false), cl::Hidden,
136  cl::desc("Use this option to turn off/on warnings about function with "
137  "samples but without debug information to use those samples. "));
138 
140  "profile-sample-accurate", cl::Hidden, cl::init(false),
141  cl::desc("If the sample profile is accurate, we will mark all un-sampled "
142  "callsite and function as having 0 samples. Otherwise, treat "
143  "un-sampled callsites and functions conservatively as unknown. "));
144 
146  "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore,
147  cl::init(true),
148  cl::desc("For symbols in profile symbol list, regard their profiles to "
149  "be accurate. It may be overriden by profile-sample-accurate. "));
150 
152  "sample-profile-merge-inlinee", cl::Hidden, cl::init(true),
153  cl::desc("Merge past inlinee's profile to outline version if sample "
154  "profile loader decided not to inline a call site. It will "
155  "only be enabled when top-down order of profile loading is "
156  "enabled. "));
157 
159  "sample-profile-top-down-load", cl::Hidden, cl::init(true),
160  cl::desc("Do profile annotation and inlining for functions in top-down "
161  "order of call graph during sample profile loading. It only "
162  "works for new pass manager. "));
163 
165  "sample-profile-inline-size", cl::Hidden, cl::init(false),
166  cl::desc("Inline cold call sites in profile loader if it's beneficial "
167  "for code size."));
168 
170  "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45),
171  cl::desc("Threshold for inlining cold callsites"));
172 
173 namespace {
174 
175 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
176 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
177 using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
178 using EdgeWeightMap = DenseMap<Edge, uint64_t>;
179 using BlockEdgeMap =
181 
182 class SampleProfileLoader;
183 
184 class SampleCoverageTracker {
185 public:
186  SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){};
187 
188  bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
189  uint32_t Discriminator, uint64_t Samples);
190  unsigned computeCoverage(unsigned Used, unsigned Total) const;
191  unsigned countUsedRecords(const FunctionSamples *FS,
192  ProfileSummaryInfo *PSI) const;
193  unsigned countBodyRecords(const FunctionSamples *FS,
194  ProfileSummaryInfo *PSI) const;
195  uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
196  uint64_t countBodySamples(const FunctionSamples *FS,
197  ProfileSummaryInfo *PSI) const;
198 
199  void clear() {
200  SampleCoverage.clear();
201  TotalUsedSamples = 0;
202  }
203 
204 private:
205  using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
206  using FunctionSamplesCoverageMap =
208 
209  /// Coverage map for sampling records.
210  ///
211  /// This map keeps a record of sampling records that have been matched to
212  /// an IR instruction. This is used to detect some form of staleness in
213  /// profiles (see flag -sample-profile-check-coverage).
214  ///
215  /// Each entry in the map corresponds to a FunctionSamples instance. This is
216  /// another map that counts how many times the sample record at the
217  /// given location has been used.
218  FunctionSamplesCoverageMap SampleCoverage;
219 
220  /// Number of samples used from the profile.
221  ///
222  /// When a sampling record is used for the first time, the samples from
223  /// that record are added to this accumulator. Coverage is later computed
224  /// based on the total number of samples available in this function and
225  /// its callsites.
226  ///
227  /// Note that this accumulator tracks samples used from a single function
228  /// and all the inlined callsites. Strictly, we should have a map of counters
229  /// keyed by FunctionSamples pointers, but these stats are cleared after
230  /// every function, so we just need to keep a single counter.
231  uint64_t TotalUsedSamples = 0;
232 
233  SampleProfileLoader &SPLoader;
234 };
235 
236 class GUIDToFuncNameMapper {
237 public:
238  GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader,
239  DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap)
240  : CurrentReader(Reader), CurrentModule(M),
241  CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) {
242  if (!CurrentReader.useMD5())
243  return;
244 
245  for (const auto &F : CurrentModule) {
246  StringRef OrigName = F.getName();
247  CurrentGUIDToFuncNameMap.insert(
248  {Function::getGUID(OrigName), OrigName});
249 
250  // Local to global var promotion used by optimization like thinlto
251  // will rename the var and add suffix like ".llvm.xxx" to the
252  // original local name. In sample profile, the suffixes of function
253  // names are all stripped. Since it is possible that the mapper is
254  // built in post-thin-link phase and var promotion has been done,
255  // we need to add the substring of function name without the suffix
256  // into the GUIDToFuncNameMap.
258  if (CanonName != OrigName)
259  CurrentGUIDToFuncNameMap.insert(
260  {Function::getGUID(CanonName), CanonName});
261  }
262 
263  // Update GUIDToFuncNameMap for each function including inlinees.
264  SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap);
265  }
266 
267  ~GUIDToFuncNameMapper() {
268  if (!CurrentReader.useMD5())
269  return;
270 
271  CurrentGUIDToFuncNameMap.clear();
272 
273  // Reset GUIDToFuncNameMap for of each function as they're no
274  // longer valid at this point.
275  SetGUIDToFuncNameMapForAll(nullptr);
276  }
277 
278 private:
279  void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) {
280  std::queue<FunctionSamples *> FSToUpdate;
281  for (auto &IFS : CurrentReader.getProfiles()) {
282  FSToUpdate.push(&IFS.second);
283  }
284 
285  while (!FSToUpdate.empty()) {
286  FunctionSamples *FS = FSToUpdate.front();
287  FSToUpdate.pop();
288  FS->GUIDToFuncNameMap = Map;
289  for (const auto &ICS : FS->getCallsiteSamples()) {
290  const FunctionSamplesMap &FSMap = ICS.second;
291  for (auto &IFS : FSMap) {
292  FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second);
293  FSToUpdate.push(&FS);
294  }
295  }
296  }
297  }
298 
299  SampleProfileReader &CurrentReader;
300  Module &CurrentModule;
301  DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap;
302 };
303 
304 /// Sample profile pass.
305 ///
306 /// This pass reads profile data from the file specified by
307 /// -sample-profile-file and annotates every affected function with the
308 /// profile information found in that file.
309 class SampleProfileLoader {
310 public:
311  SampleProfileLoader(
312  StringRef Name, StringRef RemapName, bool IsThinLTOPreLink,
313  std::function<AssumptionCache &(Function &)> GetAssumptionCache,
314  std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo,
315  std::function<const TargetLibraryInfo &(Function &)> GetTLI)
316  : GetAC(std::move(GetAssumptionCache)),
317  GetTTI(std::move(GetTargetTransformInfo)), GetTLI(std::move(GetTLI)),
318  CoverageTracker(*this), Filename(std::string(Name)),
319  RemappingFilename(std::string(RemapName)),
320  IsThinLTOPreLink(IsThinLTOPreLink) {}
321 
322  bool doInitialization(Module &M);
323  bool runOnModule(Module &M, ModuleAnalysisManager *AM,
324  ProfileSummaryInfo *_PSI, CallGraph *CG);
325 
326  void dump() { Reader->dump(); }
327 
328 protected:
329  friend class SampleCoverageTracker;
330 
332  unsigned getFunctionLoc(Function &F);
333  bool emitAnnotations(Function &F);
334  ErrorOr<uint64_t> getInstWeight(const Instruction &I);
335  ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
336  const FunctionSamples *findCalleeFunctionSamples(const CallBase &I) const;
337  std::vector<const FunctionSamples *>
338  findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
339  mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap;
340  const FunctionSamples *findFunctionSamples(const Instruction &I) const;
341  bool inlineCallInstruction(CallBase &CB);
342  bool inlineHotFunctions(Function &F,
343  DenseSet<GlobalValue::GUID> &InlinedGUIDs);
344  // Inline cold/small functions in addition to hot ones
345  bool shouldInlineColdCallee(CallBase &CallInst);
346  void emitOptimizationRemarksForInlineCandidates(
347  const SmallVectorImpl<CallBase *> &Candidates, const Function &F,
348  bool Hot);
349  void printEdgeWeight(raw_ostream &OS, Edge E);
350  void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
351  void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
352  bool computeBlockWeights(Function &F);
353  void findEquivalenceClasses(Function &F);
354  template <bool IsPostDom>
355  void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
357 
358  void propagateWeights(Function &F);
359  uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
360  void buildEdges(Function &F);
361  std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG);
362  bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
363  void computeDominanceAndLoopInfo(Function &F);
364  void clearFunctionData();
365  bool callsiteIsHot(const FunctionSamples *CallsiteFS,
366  ProfileSummaryInfo *PSI);
367 
368  /// Map basic blocks to their computed weights.
369  ///
370  /// The weight of a basic block is defined to be the maximum
371  /// of all the instruction weights in that block.
372  BlockWeightMap BlockWeights;
373 
374  /// Map edges to their computed weights.
375  ///
376  /// Edge weights are computed by propagating basic block weights in
377  /// SampleProfile::propagateWeights.
378  EdgeWeightMap EdgeWeights;
379 
380  /// Set of visited blocks during propagation.
382 
383  /// Set of visited edges during propagation.
384  SmallSet<Edge, 32> VisitedEdges;
385 
386  /// Equivalence classes for block weights.
387  ///
388  /// Two blocks BB1 and BB2 are in the same equivalence class if they
389  /// dominate and post-dominate each other, and they are in the same loop
390  /// nest. When this happens, the two blocks are guaranteed to execute
391  /// the same number of times.
392  EquivalenceClassMap EquivalenceClass;
393 
394  /// Map from function name to Function *. Used to find the function from
395  /// the function name. If the function name contains suffix, additional
396  /// entry is added to map from the stripped name to the function if there
397  /// is one-to-one mapping.
399 
400  /// Dominance, post-dominance and loop information.
401  std::unique_ptr<DominatorTree> DT;
402  std::unique_ptr<PostDominatorTree> PDT;
403  std::unique_ptr<LoopInfo> LI;
404 
405  std::function<AssumptionCache &(Function &)> GetAC;
406  std::function<TargetTransformInfo &(Function &)> GetTTI;
407  std::function<const TargetLibraryInfo &(Function &)> GetTLI;
408 
409  /// Predecessors for each basic block in the CFG.
410  BlockEdgeMap Predecessors;
411 
412  /// Successors for each basic block in the CFG.
413  BlockEdgeMap Successors;
414 
415  SampleCoverageTracker CoverageTracker;
416 
417  /// Profile reader object.
418  std::unique_ptr<SampleProfileReader> Reader;
419 
420  /// Samples collected for the body of this function.
421  FunctionSamples *Samples = nullptr;
422 
423  /// Name of the profile file to load.
424  std::string Filename;
425 
426  /// Name of the profile remapping file to load.
427  std::string RemappingFilename;
428 
429  /// Flag indicating whether the profile input loaded successfully.
430  bool ProfileIsValid = false;
431 
432  /// Flag indicating if the pass is invoked in ThinLTO compile phase.
433  ///
434  /// In this phase, in annotation, we should not promote indirect calls.
435  /// Instead, we will mark GUIDs that needs to be annotated to the function.
436  bool IsThinLTOPreLink;
437 
438  /// Profile Summary Info computed from sample profile.
439  ProfileSummaryInfo *PSI = nullptr;
440 
441  /// Profle Symbol list tells whether a function name appears in the binary
442  /// used to generate the current profile.
443  std::unique_ptr<ProfileSymbolList> PSL;
444 
445  /// Total number of samples collected in this profile.
446  ///
447  /// This is the sum of all the samples collected in all the functions executed
448  /// at runtime.
449  uint64_t TotalCollectedSamples = 0;
450 
451  /// Optimization Remark Emitter used to emit diagnostic remarks.
452  OptimizationRemarkEmitter *ORE = nullptr;
453 
454  // Information recorded when we declined to inline a call site
455  // because we have determined it is too cold is accumulated for
456  // each callee function. Initially this is just the entry count.
457  struct NotInlinedProfileInfo {
458  uint64_t entryCount;
459  };
461 
462  // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
463  // all the function symbols defined or declared in current module.
464  DenseMap<uint64_t, StringRef> GUIDToFuncNameMap;
465 
466  // All the Names used in FunctionSamples including outline function
467  // names, inline instance names and call target names.
468  StringSet<> NamesInProfile;
469 
470  // For symbol in profile symbol list, whether to regard their profiles
471  // to be accurate. It is mainly decided by existance of profile symbol
472  // list and -profile-accurate-for-symsinlist flag, but it can be
473  // overriden by -profile-sample-accurate or profile-sample-accurate
474  // attribute.
475  bool ProfAccForSymsInList;
476 };
477 
478 class SampleProfileLoaderLegacyPass : public ModulePass {
479 public:
480  // Class identification, replacement for typeinfo
481  static char ID;
482 
483  SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
484  bool IsThinLTOPreLink = false)
485  : ModulePass(ID), SampleLoader(
486  Name, SampleProfileRemappingFile, IsThinLTOPreLink,
487  [&](Function &F) -> AssumptionCache & {
488  return ACT->getAssumptionCache(F);
489  },
490  [&](Function &F) -> TargetTransformInfo & {
491  return TTIWP->getTTI(F);
492  },
493  [&](Function &F) -> TargetLibraryInfo & {
494  return TLIWP->getTLI(F);
495  }) {
498  }
499 
500  void dump() { SampleLoader.dump(); }
501 
502  bool doInitialization(Module &M) override {
503  return SampleLoader.doInitialization(M);
504  }
505 
506  StringRef getPassName() const override { return "Sample profile pass"; }
507  bool runOnModule(Module &M) override;
508 
509  void getAnalysisUsage(AnalysisUsage &AU) const override {
514  }
515 
516 private:
517  SampleProfileLoader SampleLoader;
518  AssumptionCacheTracker *ACT = nullptr;
519  TargetTransformInfoWrapperPass *TTIWP = nullptr;
520  TargetLibraryInfoWrapperPass *TLIWP = nullptr;
521 };
522 
523 } // end anonymous namespace
524 
525 /// Return true if the given callsite is hot wrt to hot cutoff threshold.
526 ///
527 /// Functions that were inlined in the original binary will be represented
528 /// in the inline stack in the sample profile. If the profile shows that
529 /// the original inline decision was "good" (i.e., the callsite is executed
530 /// frequently), then we will recreate the inline decision and apply the
531 /// profile from the inlined callsite.
532 ///
533 /// To decide whether an inlined callsite is hot, we compare the callsite
534 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
535 /// regarded as hot if the count is above the cutoff value.
536 ///
537 /// When ProfileAccurateForSymsInList is enabled and profile symbol list
538 /// is present, functions in the profile symbol list but without profile will
539 /// be regarded as cold and much less inlining will happen in CGSCC inlining
540 /// pass, so we tend to lower the hot criteria here to allow more early
541 /// inlining to happen for warm callsites and it is helpful for performance.
542 bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS,
543  ProfileSummaryInfo *PSI) {
544  if (!CallsiteFS)
545  return false; // The callsite was not inlined in the original binary.
546 
547  assert(PSI && "PSI is expected to be non null");
548  uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
549  if (ProfAccForSymsInList)
550  return !PSI->isColdCount(CallsiteTotalSamples);
551  else
552  return PSI->isHotCount(CallsiteTotalSamples);
553 }
554 
555 /// Mark as used the sample record for the given function samples at
556 /// (LineOffset, Discriminator).
557 ///
558 /// \returns true if this is the first time we mark the given record.
559 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
560  uint32_t LineOffset,
561  uint32_t Discriminator,
562  uint64_t Samples) {
563  LineLocation Loc(LineOffset, Discriminator);
564  unsigned &Count = SampleCoverage[FS][Loc];
565  bool FirstTime = (++Count == 1);
566  if (FirstTime)
567  TotalUsedSamples += Samples;
568  return FirstTime;
569 }
570 
571 /// Return the number of sample records that were applied from this profile.
572 ///
573 /// This count does not include records from cold inlined callsites.
574 unsigned
575 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
576  ProfileSummaryInfo *PSI) const {
577  auto I = SampleCoverage.find(FS);
578 
579  // The size of the coverage map for FS represents the number of records
580  // that were marked used at least once.
581  unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
582 
583  // If there are inlined callsites in this function, count the samples found
584  // in the respective bodies. However, do not bother counting callees with 0
585  // total samples, these are callees that were never invoked at runtime.
586  for (const auto &I : FS->getCallsiteSamples())
587  for (const auto &J : I.second) {
588  const FunctionSamples *CalleeSamples = &J.second;
589  if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
590  Count += countUsedRecords(CalleeSamples, PSI);
591  }
592 
593  return Count;
594 }
595 
596 /// Return the number of sample records in the body of this profile.
597 ///
598 /// This count does not include records from cold inlined callsites.
599 unsigned
600 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
601  ProfileSummaryInfo *PSI) const {
602  unsigned Count = FS->getBodySamples().size();
603 
604  // Only count records in hot callsites.
605  for (const auto &I : FS->getCallsiteSamples())
606  for (const auto &J : I.second) {
607  const FunctionSamples *CalleeSamples = &J.second;
608  if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
609  Count += countBodyRecords(CalleeSamples, PSI);
610  }
611 
612  return Count;
613 }
614 
615 /// Return the number of samples collected in the body of this profile.
616 ///
617 /// This count does not include samples from cold inlined callsites.
618 uint64_t
619 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
620  ProfileSummaryInfo *PSI) const {
621  uint64_t Total = 0;
622  for (const auto &I : FS->getBodySamples())
623  Total += I.second.getSamples();
624 
625  // Only count samples in hot callsites.
626  for (const auto &I : FS->getCallsiteSamples())
627  for (const auto &J : I.second) {
628  const FunctionSamples *CalleeSamples = &J.second;
629  if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
630  Total += countBodySamples(CalleeSamples, PSI);
631  }
632 
633  return Total;
634 }
635 
636 /// Return the fraction of sample records used in this profile.
637 ///
638 /// The returned value is an unsigned integer in the range 0-100 indicating
639 /// the percentage of sample records that were used while applying this
640 /// profile to the associated function.
641 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
642  unsigned Total) const {
643  assert(Used <= Total &&
644  "number of used records cannot exceed the total number of records");
645  return Total > 0 ? Used * 100 / Total : 100;
646 }
647 
648 /// Clear all the per-function data used to load samples and propagate weights.
649 void SampleProfileLoader::clearFunctionData() {
650  BlockWeights.clear();
651  EdgeWeights.clear();
652  VisitedBlocks.clear();
653  VisitedEdges.clear();
654  EquivalenceClass.clear();
655  DT = nullptr;
656  PDT = nullptr;
657  LI = nullptr;
658  Predecessors.clear();
659  Successors.clear();
660  CoverageTracker.clear();
661 }
662 
663 #ifndef NDEBUG
664 /// Print the weight of edge \p E on stream \p OS.
665 ///
666 /// \param OS Stream to emit the output to.
667 /// \param E Edge to print.
668 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
669  OS << "weight[" << E.first->getName() << "->" << E.second->getName()
670  << "]: " << EdgeWeights[E] << "\n";
671 }
672 
673 /// Print the equivalence class of block \p BB on stream \p OS.
674 ///
675 /// \param OS Stream to emit the output to.
676 /// \param BB Block to print.
677 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
678  const BasicBlock *BB) {
679  const BasicBlock *Equiv = EquivalenceClass[BB];
680  OS << "equivalence[" << BB->getName()
681  << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
682 }
683 
684 /// Print the weight of block \p BB on stream \p OS.
685 ///
686 /// \param OS Stream to emit the output to.
687 /// \param BB Block to print.
688 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
689  const BasicBlock *BB) const {
690  const auto &I = BlockWeights.find(BB);
691  uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
692  OS << "weight[" << BB->getName() << "]: " << W << "\n";
693 }
694 #endif
695 
696 /// Get the weight for an instruction.
697 ///
698 /// The "weight" of an instruction \p Inst is the number of samples
699 /// collected on that instruction at runtime. To retrieve it, we
700 /// need to compute the line number of \p Inst relative to the start of its
701 /// function. We use HeaderLineno to compute the offset. We then
702 /// look up the samples collected for \p Inst using BodySamples.
703 ///
704 /// \param Inst Instruction to query.
705 ///
706 /// \returns the weight of \p Inst.
707 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
708  const DebugLoc &DLoc = Inst.getDebugLoc();
709  if (!DLoc)
710  return std::error_code();
711 
712  const FunctionSamples *FS = findFunctionSamples(Inst);
713  if (!FS)
714  return std::error_code();
715 
716  // Ignore all intrinsics, phinodes and branch instructions.
717  // Branch and phinodes instruction usually contains debug info from sources outside of
718  // the residing basic block, thus we ignore them during annotation.
719  if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst))
720  return std::error_code();
721 
722  // If a direct call/invoke instruction is inlined in profile
723  // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
724  // it means that the inlined callsite has no sample, thus the call
725  // instruction should have 0 count.
726  if (auto *CB = dyn_cast<CallBase>(&Inst))
727  if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB))
728  return 0;
729 
730  const DILocation *DIL = DLoc;
731  uint32_t LineOffset = FunctionSamples::getOffset(DIL);
732  uint32_t Discriminator = DIL->getBaseDiscriminator();
733  ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
734  if (R) {
735  bool FirstMark =
736  CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
737  if (FirstMark) {
738  ORE->emit([&]() {
739  OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
740  Remark << "Applied " << ore::NV("NumSamples", *R);
741  Remark << " samples from profile (offset: ";
742  Remark << ore::NV("LineOffset", LineOffset);
743  if (Discriminator) {
744  Remark << ".";
745  Remark << ore::NV("Discriminator", Discriminator);
746  }
747  Remark << ")";
748  return Remark;
749  });
750  }
751  LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "."
752  << DIL->getBaseDiscriminator() << ":" << Inst
753  << " (line offset: " << LineOffset << "."
754  << DIL->getBaseDiscriminator() << " - weight: " << R.get()
755  << ")\n");
756  }
757  return R;
758 }
759 
760 /// Compute the weight of a basic block.
761 ///
762 /// The weight of basic block \p BB is the maximum weight of all the
763 /// instructions in BB.
764 ///
765 /// \param BB The basic block to query.
766 ///
767 /// \returns the weight for \p BB.
768 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
769  uint64_t Max = 0;
770  bool HasWeight = false;
771  for (auto &I : BB->getInstList()) {
772  const ErrorOr<uint64_t> &R = getInstWeight(I);
773  if (R) {
774  Max = std::max(Max, R.get());
775  HasWeight = true;
776  }
777  }
778  return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
779 }
780 
781 /// Compute and store the weights of every basic block.
782 ///
783 /// This populates the BlockWeights map by computing
784 /// the weights of every basic block in the CFG.
785 ///
786 /// \param F The function to query.
787 bool SampleProfileLoader::computeBlockWeights(Function &F) {
788  bool Changed = false;
789  LLVM_DEBUG(dbgs() << "Block weights\n");
790  for (const auto &BB : F) {
791  ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
792  if (Weight) {
793  BlockWeights[&BB] = Weight.get();
794  VisitedBlocks.insert(&BB);
795  Changed = true;
796  }
797  LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
798  }
799 
800  return Changed;
801 }
802 
803 /// Get the FunctionSamples for a call instruction.
804 ///
805 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
806 /// instance in which that call instruction is calling to. It contains
807 /// all samples that resides in the inlined instance. We first find the
808 /// inlined instance in which the call instruction is from, then we
809 /// traverse its children to find the callsite with the matching
810 /// location.
811 ///
812 /// \param Inst Call/Invoke instruction to query.
813 ///
814 /// \returns The FunctionSamples pointer to the inlined instance.
815 const FunctionSamples *
816 SampleProfileLoader::findCalleeFunctionSamples(const CallBase &Inst) const {
817  const DILocation *DIL = Inst.getDebugLoc();
818  if (!DIL) {
819  return nullptr;
820  }
821 
822  StringRef CalleeName;
823  if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
824  if (Function *Callee = CI->getCalledFunction())
825  CalleeName = Callee->getName();
826 
827  const FunctionSamples *FS = findFunctionSamples(Inst);
828  if (FS == nullptr)
829  return nullptr;
830 
832  DIL->getBaseDiscriminator()),
833  CalleeName);
834 }
835 
836 /// Returns a vector of FunctionSamples that are the indirect call targets
837 /// of \p Inst. The vector is sorted by the total number of samples. Stores
838 /// the total call count of the indirect call in \p Sum.
839 std::vector<const FunctionSamples *>
840 SampleProfileLoader::findIndirectCallFunctionSamples(
841  const Instruction &Inst, uint64_t &Sum) const {
842  const DILocation *DIL = Inst.getDebugLoc();
843  std::vector<const FunctionSamples *> R;
844 
845  if (!DIL) {
846  return R;
847  }
848 
849  const FunctionSamples *FS = findFunctionSamples(Inst);
850  if (FS == nullptr)
851  return R;
852 
853  uint32_t LineOffset = FunctionSamples::getOffset(DIL);
854  uint32_t Discriminator = DIL->getBaseDiscriminator();
855 
856  auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
857  Sum = 0;
858  if (T)
859  for (const auto &T_C : T.get())
860  Sum += T_C.second;
863  if (M->empty())
864  return R;
865  for (const auto &NameFS : *M) {
866  Sum += NameFS.second.getEntrySamples();
867  R.push_back(&NameFS.second);
868  }
869  llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) {
870  if (L->getEntrySamples() != R->getEntrySamples())
871  return L->getEntrySamples() > R->getEntrySamples();
872  return FunctionSamples::getGUID(L->getName()) <
874  });
875  }
876  return R;
877 }
878 
879 /// Get the FunctionSamples for an instruction.
880 ///
881 /// The FunctionSamples of an instruction \p Inst is the inlined instance
882 /// in which that instruction is coming from. We traverse the inline stack
883 /// of that instruction, and match it with the tree nodes in the profile.
884 ///
885 /// \param Inst Instruction to query.
886 ///
887 /// \returns the FunctionSamples pointer to the inlined instance.
888 const FunctionSamples *
889 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
890  const DILocation *DIL = Inst.getDebugLoc();
891  if (!DIL)
892  return Samples;
893 
894  auto it = DILocation2SampleMap.try_emplace(DIL,nullptr);
895  if (it.second)
896  it.first->second = Samples->findFunctionSamples(DIL);
897  return it.first->second;
898 }
899 
900 bool SampleProfileLoader::inlineCallInstruction(CallBase &CB) {
901  Function *CalledFunction = CB.getCalledFunction();
902  assert(CalledFunction);
903  DebugLoc DLoc = CB.getDebugLoc();
904  BasicBlock *BB = CB.getParent();
905  InlineParams Params = getInlineParams();
906  Params.ComputeFullInlineCost = true;
907  // Checks if there is anything in the reachable portion of the callee at
908  // this callsite that makes this inlining potentially illegal. Need to
909  // set ComputeFullInlineCost, otherwise getInlineCost may return early
910  // when cost exceeds threshold without checking all IRs in the callee.
911  // The acutal cost does not matter because we only checks isNever() to
912  // see if it is legal to inline the callsite.
913  InlineCost Cost =
914  getInlineCost(CB, Params, GetTTI(*CalledFunction), GetAC, GetTLI);
915  if (Cost.isNever()) {
916  ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB)
917  << "incompatible inlining");
918  return false;
919  }
920  InlineFunctionInfo IFI(nullptr, GetAC);
921  if (InlineFunction(CB, IFI).isSuccess()) {
922  // The call to InlineFunction erases I, so we can't pass it here.
923  emitInlinedInto(*ORE, DLoc, BB, *CalledFunction, *BB->getParent(), Cost,
924  true, CSINLINE_DEBUG);
925  return true;
926  }
927  return false;
928 }
929 
930 bool SampleProfileLoader::shouldInlineColdCallee(CallBase &CallInst) {
931  if (!ProfileSizeInline)
932  return false;
933 
934  Function *Callee = CallInst.getCalledFunction();
935  if (Callee == nullptr)
936  return false;
937 
938  InlineCost Cost = getInlineCost(CallInst, getInlineParams(), GetTTI(*Callee),
939  GetAC, GetTLI);
940 
941  return Cost.getCost() <= SampleColdCallSiteThreshold;
942 }
943 
944 void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates(
945  const SmallVectorImpl<CallBase *> &Candidates, const Function &F,
946  bool Hot) {
947  for (auto I : Candidates) {
948  Function *CalledFunction = I->getCalledFunction();
949  if (CalledFunction) {
950  ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt",
951  I->getDebugLoc(), I->getParent())
952  << "previous inlining reattempted for "
953  << (Hot ? "hotness: '" : "size: '")
954  << ore::NV("Callee", CalledFunction) << "' into '"
955  << ore::NV("Caller", &F) << "'");
956  }
957  }
958 }
959 
960 /// Iteratively inline hot callsites of a function.
961 ///
962 /// Iteratively traverse all callsites of the function \p F, and find if
963 /// the corresponding inlined instance exists and is hot in profile. If
964 /// it is hot enough, inline the callsites and adds new callsites of the
965 /// callee into the caller. If the call is an indirect call, first promote
966 /// it to direct call. Each indirect call is limited with a single target.
967 ///
968 /// \param F function to perform iterative inlining.
969 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
970 /// inlined in the profiled binary.
971 ///
972 /// \returns True if there is any inline happened.
973 bool SampleProfileLoader::inlineHotFunctions(
974  Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
975  DenseSet<Instruction *> PromotedInsns;
976 
977  // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure
978  // Profile symbol list is ignored when profile-sample-accurate is on.
979  assert((!ProfAccForSymsInList ||
981  !F.hasFnAttribute("profile-sample-accurate"))) &&
982  "ProfAccForSymsInList should be false when profile-sample-accurate "
983  "is enabled");
984 
985  DenseMap<CallBase *, const FunctionSamples *> localNotInlinedCallSites;
986  bool Changed = false;
987  while (true) {
988  bool LocalChanged = false;
990  for (auto &BB : F) {
991  bool Hot = false;
992  SmallVector<CallBase *, 10> AllCandidates;
993  SmallVector<CallBase *, 10> ColdCandidates;
994  for (auto &I : BB.getInstList()) {
995  const FunctionSamples *FS = nullptr;
996  if (auto *CB = dyn_cast<CallBase>(&I)) {
997  if (!isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(*CB))) {
998  AllCandidates.push_back(CB);
999  if (FS->getEntrySamples() > 0)
1000  localNotInlinedCallSites.try_emplace(CB, FS);
1001  if (callsiteIsHot(FS, PSI))
1002  Hot = true;
1003  else if (shouldInlineColdCallee(*CB))
1004  ColdCandidates.push_back(CB);
1005  }
1006  }
1007  }
1008  if (Hot) {
1009  CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end());
1010  emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true);
1011  } else {
1012  CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end());
1013  emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false);
1014  }
1015  }
1016  for (CallBase *I : CIS) {
1017  Function *CalledFunction = I->getCalledFunction();
1018  // Do not inline recursive calls.
1019  if (CalledFunction == &F)
1020  continue;
1021  if (I->isIndirectCall()) {
1022  if (PromotedInsns.count(I))
1023  continue;
1024  uint64_t Sum;
1025  for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
1026  if (IsThinLTOPreLink) {
1027  FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
1029  continue;
1030  }
1031  auto CalleeFunctionName = FS->getFuncName();
1032  // If it is a recursive call, we do not inline it as it could bloat
1033  // the code exponentially. There is way to better handle this, e.g.
1034  // clone the caller first, and inline the cloned caller if it is
1035  // recursive. As llvm does not inline recursive calls, we will
1036  // simply ignore it instead of handling it explicitly.
1037  if (CalleeFunctionName == F.getName())
1038  continue;
1039 
1040  if (!callsiteIsHot(FS, PSI))
1041  continue;
1042 
1043  const char *Reason = "Callee function not available";
1044  auto R = SymbolMap.find(CalleeFunctionName);
1045  if (R != SymbolMap.end() && R->getValue() &&
1046  !R->getValue()->isDeclaration() &&
1047  R->getValue()->getSubprogram() &&
1048  R->getValue()->hasFnAttribute("use-sample-profile") &&
1049  isLegalToPromote(*I, R->getValue(), &Reason)) {
1050  uint64_t C = FS->getEntrySamples();
1051  auto &DI =
1052  pgo::promoteIndirectCall(*I, R->getValue(), C, Sum, false, ORE);
1053  Sum -= C;
1054  PromotedInsns.insert(I);
1055  // If profile mismatches, we should not attempt to inline DI.
1056  if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
1057  inlineCallInstruction(cast<CallBase>(DI))) {
1058  localNotInlinedCallSites.erase(I);
1059  LocalChanged = true;
1060  ++NumCSInlined;
1061  }
1062  } else {
1063  LLVM_DEBUG(dbgs()
1064  << "\nFailed to promote indirect call to "
1065  << CalleeFunctionName << " because " << Reason << "\n");
1066  }
1067  }
1068  } else if (CalledFunction && CalledFunction->getSubprogram() &&
1069  !CalledFunction->isDeclaration()) {
1070  if (inlineCallInstruction(*I)) {
1071  localNotInlinedCallSites.erase(I);
1072  LocalChanged = true;
1073  ++NumCSInlined;
1074  }
1075  } else if (IsThinLTOPreLink) {
1076  findCalleeFunctionSamples(*I)->findInlinedFunctions(
1077  InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
1078  }
1079  }
1080  if (LocalChanged) {
1081  Changed = true;
1082  } else {
1083  break;
1084  }
1085  }
1086 
1087  // Accumulate not inlined callsite information into notInlinedSamples
1088  for (const auto &Pair : localNotInlinedCallSites) {
1089  CallBase *I = Pair.getFirst();
1090  Function *Callee = I->getCalledFunction();
1091  if (!Callee || Callee->isDeclaration())
1092  continue;
1093 
1094  ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline",
1095  I->getDebugLoc(), I->getParent())
1096  << "previous inlining not repeated: '"
1097  << ore::NV("Callee", Callee) << "' into '"
1098  << ore::NV("Caller", &F) << "'");
1099 
1100  ++NumCSNotInlined;
1101  const FunctionSamples *FS = Pair.getSecond();
1102  if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) {
1103  continue;
1104  }
1105 
1106  if (ProfileMergeInlinee) {
1107  // Use entry samples as head samples during the merge, as inlinees
1108  // don't have head samples.
1109  assert(FS->getHeadSamples() == 0 && "Expect 0 head sample for inlinee");
1110  const_cast<FunctionSamples *>(FS)->addHeadSamples(FS->getEntrySamples());
1111 
1112  // Note that we have to do the merge right after processing function.
1113  // This allows OutlineFS's profile to be used for annotation during
1114  // top-down processing of functions' annotation.
1115  FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee);
1116  OutlineFS->merge(*FS);
1117  } else {
1118  auto pair =
1119  notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0});
1120  pair.first->second.entryCount += FS->getEntrySamples();
1121  }
1122  }
1123  return Changed;
1124 }
1125 
1126 /// Find equivalence classes for the given block.
1127 ///
1128 /// This finds all the blocks that are guaranteed to execute the same
1129 /// number of times as \p BB1. To do this, it traverses all the
1130 /// descendants of \p BB1 in the dominator or post-dominator tree.
1131 ///
1132 /// A block BB2 will be in the same equivalence class as \p BB1 if
1133 /// the following holds:
1134 ///
1135 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
1136 /// is a descendant of \p BB1 in the dominator tree, then BB2 should
1137 /// dominate BB1 in the post-dominator tree.
1138 ///
1139 /// 2- Both BB2 and \p BB1 must be in the same loop.
1140 ///
1141 /// For every block BB2 that meets those two requirements, we set BB2's
1142 /// equivalence class to \p BB1.
1143 ///
1144 /// \param BB1 Block to check.
1145 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree.
1146 /// \param DomTree Opposite dominator tree. If \p Descendants is filled
1147 /// with blocks from \p BB1's dominator tree, then
1148 /// this is the post-dominator tree, and vice versa.
1149 template <bool IsPostDom>
1150 void SampleProfileLoader::findEquivalencesFor(
1151  BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
1153  const BasicBlock *EC = EquivalenceClass[BB1];
1154  uint64_t Weight = BlockWeights[EC];
1155  for (const auto *BB2 : Descendants) {
1156  bool IsDomParent = DomTree->dominates(BB2, BB1);
1157  bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
1158  if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
1159  EquivalenceClass[BB2] = EC;
1160  // If BB2 is visited, then the entire EC should be marked as visited.
1161  if (VisitedBlocks.count(BB2)) {
1162  VisitedBlocks.insert(EC);
1163  }
1164 
1165  // If BB2 is heavier than BB1, make BB2 have the same weight
1166  // as BB1.
1167  //
1168  // Note that we don't worry about the opposite situation here
1169  // (when BB2 is lighter than BB1). We will deal with this
1170  // during the propagation phase. Right now, we just want to
1171  // make sure that BB1 has the largest weight of all the
1172  // members of its equivalence set.
1173  Weight = std::max(Weight, BlockWeights[BB2]);
1174  }
1175  }
1176  if (EC == &EC->getParent()->getEntryBlock()) {
1177  BlockWeights[EC] = Samples->getHeadSamples() + 1;
1178  } else {
1179  BlockWeights[EC] = Weight;
1180  }
1181 }
1182 
1183 /// Find equivalence classes.
1184 ///
1185 /// Since samples may be missing from blocks, we can fill in the gaps by setting
1186 /// the weights of all the blocks in the same equivalence class to the same
1187 /// weight. To compute the concept of equivalence, we use dominance and loop
1188 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
1189 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
1190 ///
1191 /// \param F The function to query.
1192 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
1193  SmallVector<BasicBlock *, 8> DominatedBBs;
1194  LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
1195  // Find equivalence sets based on dominance and post-dominance information.
1196  for (auto &BB : F) {
1197  BasicBlock *BB1 = &BB;
1198 
1199  // Compute BB1's equivalence class once.
1200  if (EquivalenceClass.count(BB1)) {
1201  LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1202  continue;
1203  }
1204 
1205  // By default, blocks are in their own equivalence class.
1206  EquivalenceClass[BB1] = BB1;
1207 
1208  // Traverse all the blocks dominated by BB1. We are looking for
1209  // every basic block BB2 such that:
1210  //
1211  // 1- BB1 dominates BB2.
1212  // 2- BB2 post-dominates BB1.
1213  // 3- BB1 and BB2 are in the same loop nest.
1214  //
1215  // If all those conditions hold, it means that BB2 is executed
1216  // as many times as BB1, so they are placed in the same equivalence
1217  // class by making BB2's equivalence class be BB1.
1218  DominatedBBs.clear();
1219  DT->getDescendants(BB1, DominatedBBs);
1220  findEquivalencesFor(BB1, DominatedBBs, PDT.get());
1221 
1222  LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1223  }
1224 
1225  // Assign weights to equivalence classes.
1226  //
1227  // All the basic blocks in the same equivalence class will execute
1228  // the same number of times. Since we know that the head block in
1229  // each equivalence class has the largest weight, assign that weight
1230  // to all the blocks in that equivalence class.
1231  LLVM_DEBUG(
1232  dbgs() << "\nAssign the same weight to all blocks in the same class\n");
1233  for (auto &BI : F) {
1234  const BasicBlock *BB = &BI;
1235  const BasicBlock *EquivBB = EquivalenceClass[BB];
1236  if (BB != EquivBB)
1237  BlockWeights[BB] = BlockWeights[EquivBB];
1238  LLVM_DEBUG(printBlockWeight(dbgs(), BB));
1239  }
1240 }
1241 
1242 /// Visit the given edge to decide if it has a valid weight.
1243 ///
1244 /// If \p E has not been visited before, we copy to \p UnknownEdge
1245 /// and increment the count of unknown edges.
1246 ///
1247 /// \param E Edge to visit.
1248 /// \param NumUnknownEdges Current number of unknown edges.
1249 /// \param UnknownEdge Set if E has not been visited before.
1250 ///
1251 /// \returns E's weight, if known. Otherwise, return 0.
1252 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
1253  Edge *UnknownEdge) {
1254  if (!VisitedEdges.count(E)) {
1255  (*NumUnknownEdges)++;
1256  *UnknownEdge = E;
1257  return 0;
1258  }
1259 
1260  return EdgeWeights[E];
1261 }
1262 
1263 /// Propagate weights through incoming/outgoing edges.
1264 ///
1265 /// If the weight of a basic block is known, and there is only one edge
1266 /// with an unknown weight, we can calculate the weight of that edge.
1267 ///
1268 /// Similarly, if all the edges have a known count, we can calculate the
1269 /// count of the basic block, if needed.
1270 ///
1271 /// \param F Function to process.
1272 /// \param UpdateBlockCount Whether we should update basic block counts that
1273 /// has already been annotated.
1274 ///
1275 /// \returns True if new weights were assigned to edges or blocks.
1276 bool SampleProfileLoader::propagateThroughEdges(Function &F,
1277  bool UpdateBlockCount) {
1278  bool Changed = false;
1279  LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
1280  for (const auto &BI : F) {
1281  const BasicBlock *BB = &BI;
1282  const BasicBlock *EC = EquivalenceClass[BB];
1283 
1284  // Visit all the predecessor and successor edges to determine
1285  // which ones have a weight assigned already. Note that it doesn't
1286  // matter that we only keep track of a single unknown edge. The
1287  // only case we are interested in handling is when only a single
1288  // edge is unknown (see setEdgeOrBlockWeight).
1289  for (unsigned i = 0; i < 2; i++) {
1290  uint64_t TotalWeight = 0;
1291  unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1292  Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1293 
1294  if (i == 0) {
1295  // First, visit all predecessor edges.
1296  NumTotalEdges = Predecessors[BB].size();
1297  for (auto *Pred : Predecessors[BB]) {
1298  Edge E = std::make_pair(Pred, BB);
1299  TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1300  if (E.first == E.second)
1301  SelfReferentialEdge = E;
1302  }
1303  if (NumTotalEdges == 1) {
1304  SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1305  }
1306  } else {
1307  // On the second round, visit all successor edges.
1308  NumTotalEdges = Successors[BB].size();
1309  for (auto *Succ : Successors[BB]) {
1310  Edge E = std::make_pair(BB, Succ);
1311  TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1312  }
1313  if (NumTotalEdges == 1) {
1314  SingleEdge = std::make_pair(BB, Successors[BB][0]);
1315  }
1316  }
1317 
1318  // After visiting all the edges, there are three cases that we
1319  // can handle immediately:
1320  //
1321  // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1322  // In this case, we simply check that the sum of all the edges
1323  // is the same as BB's weight. If not, we change BB's weight
1324  // to match. Additionally, if BB had not been visited before,
1325  // we mark it visited.
1326  //
1327  // - Only one edge is unknown and BB has already been visited.
1328  // In this case, we can compute the weight of the edge by
1329  // subtracting the total block weight from all the known
1330  // edge weights. If the edges weight more than BB, then the
1331  // edge of the last remaining edge is set to zero.
1332  //
1333  // - There exists a self-referential edge and the weight of BB is
1334  // known. In this case, this edge can be based on BB's weight.
1335  // We add up all the other known edges and set the weight on
1336  // the self-referential edge as we did in the previous case.
1337  //
1338  // In any other case, we must continue iterating. Eventually,
1339  // all edges will get a weight, or iteration will stop when
1340  // it reaches SampleProfileMaxPropagateIterations.
1341  if (NumUnknownEdges <= 1) {
1342  uint64_t &BBWeight = BlockWeights[EC];
1343  if (NumUnknownEdges == 0) {
1344  if (!VisitedBlocks.count(EC)) {
1345  // If we already know the weight of all edges, the weight of the
1346  // basic block can be computed. It should be no larger than the sum
1347  // of all edge weights.
1348  if (TotalWeight > BBWeight) {
1349  BBWeight = TotalWeight;
1350  Changed = true;
1351  LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
1352  << " known. Set weight for block: ";
1353  printBlockWeight(dbgs(), BB););
1354  }
1355  } else if (NumTotalEdges == 1 &&
1356  EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1357  // If there is only one edge for the visited basic block, use the
1358  // block weight to adjust edge weight if edge weight is smaller.
1359  EdgeWeights[SingleEdge] = BlockWeights[EC];
1360  Changed = true;
1361  }
1362  } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1363  // If there is a single unknown edge and the block has been
1364  // visited, then we can compute E's weight.
1365  if (BBWeight >= TotalWeight)
1366  EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1367  else
1368  EdgeWeights[UnknownEdge] = 0;
1369  const BasicBlock *OtherEC;
1370  if (i == 0)
1371  OtherEC = EquivalenceClass[UnknownEdge.first];
1372  else
1373  OtherEC = EquivalenceClass[UnknownEdge.second];
1374  // Edge weights should never exceed the BB weights it connects.
1375  if (VisitedBlocks.count(OtherEC) &&
1376  EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1377  EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1378  VisitedEdges.insert(UnknownEdge);
1379  Changed = true;
1380  LLVM_DEBUG(dbgs() << "Set weight for edge: ";
1381  printEdgeWeight(dbgs(), UnknownEdge));
1382  }
1383  } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1384  // If a block Weights 0, all its in/out edges should weight 0.
1385  if (i == 0) {
1386  for (auto *Pred : Predecessors[BB]) {
1387  Edge E = std::make_pair(Pred, BB);
1388  EdgeWeights[E] = 0;
1389  VisitedEdges.insert(E);
1390  }
1391  } else {
1392  for (auto *Succ : Successors[BB]) {
1393  Edge E = std::make_pair(BB, Succ);
1394  EdgeWeights[E] = 0;
1395  VisitedEdges.insert(E);
1396  }
1397  }
1398  } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1399  uint64_t &BBWeight = BlockWeights[BB];
1400  // We have a self-referential edge and the weight of BB is known.
1401  if (BBWeight >= TotalWeight)
1402  EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1403  else
1404  EdgeWeights[SelfReferentialEdge] = 0;
1405  VisitedEdges.insert(SelfReferentialEdge);
1406  Changed = true;
1407  LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
1408  printEdgeWeight(dbgs(), SelfReferentialEdge));
1409  }
1410  if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1411  BlockWeights[EC] = TotalWeight;
1412  VisitedBlocks.insert(EC);
1413  Changed = true;
1414  }
1415  }
1416  }
1417 
1418  return Changed;
1419 }
1420 
1421 /// Build in/out edge lists for each basic block in the CFG.
1422 ///
1423 /// We are interested in unique edges. If a block B1 has multiple
1424 /// edges to another block B2, we only add a single B1->B2 edge.
1425 void SampleProfileLoader::buildEdges(Function &F) {
1426  for (auto &BI : F) {
1427  BasicBlock *B1 = &BI;
1428 
1429  // Add predecessors for B1.
1431  if (!Predecessors[B1].empty())
1432  llvm_unreachable("Found a stale predecessors list in a basic block.");
1433  for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1434  BasicBlock *B2 = *PI;
1435  if (Visited.insert(B2).second)
1436  Predecessors[B1].push_back(B2);
1437  }
1438 
1439  // Add successors for B1.
1440  Visited.clear();
1441  if (!Successors[B1].empty())
1442  llvm_unreachable("Found a stale successors list in a basic block.");
1443  for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1444  BasicBlock *B2 = *SI;
1445  if (Visited.insert(B2).second)
1446  Successors[B1].push_back(B2);
1447  }
1448  }
1449 }
1450 
1451 /// Returns the sorted CallTargetMap \p M by count in descending order.
1453  const SampleRecord::CallTargetMap & M) {
1455  for (const auto &I : SampleRecord::SortCallTargets(M)) {
1456  R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second});
1457  }
1458  return R;
1459 }
1460 
1461 /// Propagate weights into edges
1462 ///
1463 /// The following rules are applied to every block BB in the CFG:
1464 ///
1465 /// - If BB has a single predecessor/successor, then the weight
1466 /// of that edge is the weight of the block.
1467 ///
1468 /// - If all incoming or outgoing edges are known except one, and the
1469 /// weight of the block is already known, the weight of the unknown
1470 /// edge will be the weight of the block minus the sum of all the known
1471 /// edges. If the sum of all the known edges is larger than BB's weight,
1472 /// we set the unknown edge weight to zero.
1473 ///
1474 /// - If there is a self-referential edge, and the weight of the block is
1475 /// known, the weight for that edge is set to the weight of the block
1476 /// minus the weight of the other incoming edges to that block (if
1477 /// known).
1478 void SampleProfileLoader::propagateWeights(Function &F) {
1479  bool Changed = true;
1480  unsigned I = 0;
1481 
1482  // If BB weight is larger than its corresponding loop's header BB weight,
1483  // use the BB weight to replace the loop header BB weight.
1484  for (auto &BI : F) {
1485  BasicBlock *BB = &BI;
1486  Loop *L = LI->getLoopFor(BB);
1487  if (!L) {
1488  continue;
1489  }
1490  BasicBlock *Header = L->getHeader();
1491  if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1492  BlockWeights[Header] = BlockWeights[BB];
1493  }
1494  }
1495 
1496  // Before propagation starts, build, for each block, a list of
1497  // unique predecessors and successors. This is necessary to handle
1498  // identical edges in multiway branches. Since we visit all blocks and all
1499  // edges of the CFG, it is cleaner to build these lists once at the start
1500  // of the pass.
1501  buildEdges(F);
1502 
1503  // Propagate until we converge or we go past the iteration limit.
1504  while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1505  Changed = propagateThroughEdges(F, false);
1506  }
1507 
1508  // The first propagation propagates BB counts from annotated BBs to unknown
1509  // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1510  // to propagate edge weights.
1511  VisitedEdges.clear();
1512  Changed = true;
1513  while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1514  Changed = propagateThroughEdges(F, false);
1515  }
1516 
1517  // The 3rd propagation pass allows adjust annotated BB weights that are
1518  // obviously wrong.
1519  Changed = true;
1520  while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1521  Changed = propagateThroughEdges(F, true);
1522  }
1523 
1524  // Generate MD_prof metadata for every branch instruction using the
1525  // edge weights computed during propagation.
1526  LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1527  LLVMContext &Ctx = F.getContext();
1528  MDBuilder MDB(Ctx);
1529  for (auto &BI : F) {
1530  BasicBlock *BB = &BI;
1531 
1532  if (BlockWeights[BB]) {
1533  for (auto &I : BB->getInstList()) {
1534  if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1535  continue;
1536  if (!cast<CallBase>(I).getCalledFunction()) {
1537  const DebugLoc &DLoc = I.getDebugLoc();
1538  if (!DLoc)
1539  continue;
1540  const DILocation *DIL = DLoc;
1541  uint32_t LineOffset = FunctionSamples::getOffset(DIL);
1542  uint32_t Discriminator = DIL->getBaseDiscriminator();
1543 
1544  const FunctionSamples *FS = findFunctionSamples(I);
1545  if (!FS)
1546  continue;
1547  auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1548  if (!T || T.get().empty())
1549  continue;
1550  SmallVector<InstrProfValueData, 2> SortedCallTargets =
1552  uint64_t Sum;
1553  findIndirectCallFunctionSamples(I, Sum);
1554  annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1555  SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1556  SortedCallTargets.size());
1557  } else if (!isa<IntrinsicInst>(&I)) {
1558  I.setMetadata(LLVMContext::MD_prof,
1559  MDB.createBranchWeights(
1560  {static_cast<uint32_t>(BlockWeights[BB])}));
1561  }
1562  }
1563  }
1564  Instruction *TI = BB->getTerminator();
1565  if (TI->getNumSuccessors() == 1)
1566  continue;
1567  if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1568  continue;
1569 
1570  DebugLoc BranchLoc = TI->getDebugLoc();
1571  LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
1572  << ((BranchLoc) ? Twine(BranchLoc.getLine())
1573  : Twine("<UNKNOWN LOCATION>"))
1574  << ".\n");
1575  SmallVector<uint32_t, 4> Weights;
1576  uint32_t MaxWeight = 0;
1577  Instruction *MaxDestInst;
1578  for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1579  BasicBlock *Succ = TI->getSuccessor(I);
1580  Edge E = std::make_pair(BB, Succ);
1581  uint64_t Weight = EdgeWeights[E];
1582  LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1583  // Use uint32_t saturated arithmetic to adjust the incoming weights,
1584  // if needed. Sample counts in profiles are 64-bit unsigned values,
1585  // but internally branch weights are expressed as 32-bit values.
1586  if (Weight > std::numeric_limits<uint32_t>::max()) {
1587  LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1589  }
1590  // Weight is added by one to avoid propagation errors introduced by
1591  // 0 weights.
1592  Weights.push_back(static_cast<uint32_t>(Weight + 1));
1593  if (Weight != 0) {
1594  if (Weight > MaxWeight) {
1595  MaxWeight = Weight;
1596  MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1597  }
1598  }
1599  }
1600 
1601  misexpect::verifyMisExpect(TI, Weights, TI->getContext());
1602 
1603  uint64_t TempWeight;
1604  // Only set weights if there is at least one non-zero weight.
1605  // In any other case, let the analyzer set weights.
1606  // Do not set weights if the weights are present. In ThinLTO, the profile
1607  // annotation is done twice. If the first annotation already set the
1608  // weights, the second pass does not need to set it.
1609  if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1610  LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1611  TI->setMetadata(LLVMContext::MD_prof,
1612  MDB.createBranchWeights(Weights));
1613  ORE->emit([&]() {
1614  return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1615  << "most popular destination for conditional branches at "
1616  << ore::NV("CondBranchesLoc", BranchLoc);
1617  });
1618  } else {
1619  LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1620  }
1621  }
1622 }
1623 
1624 /// Get the line number for the function header.
1625 ///
1626 /// This looks up function \p F in the current compilation unit and
1627 /// retrieves the line number where the function is defined. This is
1628 /// line 0 for all the samples read from the profile file. Every line
1629 /// number is relative to this line.
1630 ///
1631 /// \param F Function object to query.
1632 ///
1633 /// \returns the line number where \p F is defined. If it returns 0,
1634 /// it means that there is no debug information available for \p F.
1635 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1636  if (DISubprogram *S = F.getSubprogram())
1637  return S->getLine();
1638 
1639  if (NoWarnSampleUnused)
1640  return 0;
1641 
1642  // If the start of \p F is missing, emit a diagnostic to inform the user
1643  // about the missed opportunity.
1645  "No debug information found in function " + F.getName() +
1646  ": Function profile not used",
1647  DS_Warning));
1648  return 0;
1649 }
1650 
1651 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1652  DT.reset(new DominatorTree);
1653  DT->recalculate(F);
1654 
1655  PDT.reset(new PostDominatorTree(F));
1656 
1657  LI.reset(new LoopInfo);
1658  LI->analyze(*DT);
1659 }
1660 
1661 /// Generate branch weight metadata for all branches in \p F.
1662 ///
1663 /// Branch weights are computed out of instruction samples using a
1664 /// propagation heuristic. Propagation proceeds in 3 phases:
1665 ///
1666 /// 1- Assignment of block weights. All the basic blocks in the function
1667 /// are initial assigned the same weight as their most frequently
1668 /// executed instruction.
1669 ///
1670 /// 2- Creation of equivalence classes. Since samples may be missing from
1671 /// blocks, we can fill in the gaps by setting the weights of all the
1672 /// blocks in the same equivalence class to the same weight. To compute
1673 /// the concept of equivalence, we use dominance and loop information.
1674 /// Two blocks B1 and B2 are in the same equivalence class if B1
1675 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
1676 ///
1677 /// 3- Propagation of block weights into edges. This uses a simple
1678 /// propagation heuristic. The following rules are applied to every
1679 /// block BB in the CFG:
1680 ///
1681 /// - If BB has a single predecessor/successor, then the weight
1682 /// of that edge is the weight of the block.
1683 ///
1684 /// - If all the edges are known except one, and the weight of the
1685 /// block is already known, the weight of the unknown edge will
1686 /// be the weight of the block minus the sum of all the known
1687 /// edges. If the sum of all the known edges is larger than BB's weight,
1688 /// we set the unknown edge weight to zero.
1689 ///
1690 /// - If there is a self-referential edge, and the weight of the block is
1691 /// known, the weight for that edge is set to the weight of the block
1692 /// minus the weight of the other incoming edges to that block (if
1693 /// known).
1694 ///
1695 /// Since this propagation is not guaranteed to finalize for every CFG, we
1696 /// only allow it to proceed for a limited number of iterations (controlled
1697 /// by -sample-profile-max-propagate-iterations).
1698 ///
1699 /// FIXME: Try to replace this propagation heuristic with a scheme
1700 /// that is guaranteed to finalize. A work-list approach similar to
1701 /// the standard value propagation algorithm used by SSA-CCP might
1702 /// work here.
1703 ///
1704 /// Once all the branch weights are computed, we emit the MD_prof
1705 /// metadata on BB using the computed values for each of its branches.
1706 ///
1707 /// \param F The function to query.
1708 ///
1709 /// \returns true if \p F was modified. Returns false, otherwise.
1710 bool SampleProfileLoader::emitAnnotations(Function &F) {
1711  bool Changed = false;
1712 
1713  if (getFunctionLoc(F) == 0)
1714  return false;
1715 
1716  LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
1717  << F.getName() << ": " << getFunctionLoc(F) << "\n");
1718 
1719  DenseSet<GlobalValue::GUID> InlinedGUIDs;
1720  Changed |= inlineHotFunctions(F, InlinedGUIDs);
1721 
1722  // Compute basic block weights.
1723  Changed |= computeBlockWeights(F);
1724 
1725  if (Changed) {
1726  // Add an entry count to the function using the samples gathered at the
1727  // function entry.
1728  // Sets the GUIDs that are inlined in the profiled binary. This is used
1729  // for ThinLink to make correct liveness analysis, and also make the IR
1730  // match the profiled binary before annotation.
1731  F.setEntryCount(
1732  ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
1733  &InlinedGUIDs);
1734 
1735  // Compute dominance and loop info needed for propagation.
1736  computeDominanceAndLoopInfo(F);
1737 
1738  // Find equivalence classes.
1739  findEquivalenceClasses(F);
1740 
1741  // Propagate weights to all edges.
1742  propagateWeights(F);
1743  }
1744 
1745  // If coverage checking was requested, compute it now.
1747  unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
1748  unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
1749  unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1750  if (Coverage < SampleProfileRecordCoverage) {
1752  F.getSubprogram()->getFilename(), getFunctionLoc(F),
1753  Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1754  Twine(Coverage) + "%) were applied",
1755  DS_Warning));
1756  }
1757  }
1758 
1760  uint64_t Used = CoverageTracker.getTotalUsedSamples();
1761  uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
1762  unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1763  if (Coverage < SampleProfileSampleCoverage) {
1765  F.getSubprogram()->getFilename(), getFunctionLoc(F),
1766  Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1767  Twine(Coverage) + "%) were applied",
1768  DS_Warning));
1769  }
1770  }
1771  return Changed;
1772 }
1773 
1775 
1776 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1777  "Sample Profile loader", false, false)
1782 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1783  "Sample Profile loader", false, false)
1784 
1785 std::vector<Function *>
1786 SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) {
1787  std::vector<Function *> FunctionOrderList;
1788  FunctionOrderList.reserve(M.size());
1789 
1790  if (!ProfileTopDownLoad || CG == nullptr) {
1791  if (ProfileMergeInlinee) {
1792  // Disable ProfileMergeInlinee if profile is not loaded in top down order,
1793  // because the profile for a function may be used for the profile
1794  // annotation of its outline copy before the profile merging of its
1795  // non-inlined inline instances, and that is not the way how
1796  // ProfileMergeInlinee is supposed to work.
1797  ProfileMergeInlinee = false;
1798  }
1799 
1800  for (Function &F : M)
1801  if (!F.isDeclaration() && F.hasFnAttribute("use-sample-profile"))
1802  FunctionOrderList.push_back(&F);
1803  return FunctionOrderList;
1804  }
1805 
1806  assert(&CG->getModule() == &M);
1808  while (!CGI.isAtEnd()) {
1809  for (CallGraphNode *node : *CGI) {
1810  auto F = node->getFunction();
1811  if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile"))
1812  FunctionOrderList.push_back(F);
1813  }
1814  ++CGI;
1815  }
1816 
1817  std::reverse(FunctionOrderList.begin(), FunctionOrderList.end());
1818  return FunctionOrderList;
1819 }
1820 
1821 bool SampleProfileLoader::doInitialization(Module &M) {
1822  auto &Ctx = M.getContext();
1823 
1824  std::unique_ptr<SampleProfileReaderItaniumRemapper> RemapReader;
1825  auto ReaderOrErr =
1826  SampleProfileReader::create(Filename, Ctx, RemappingFilename);
1827  if (std::error_code EC = ReaderOrErr.getError()) {
1828  std::string Msg = "Could not open profile: " + EC.message();
1829  Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1830  return false;
1831  }
1832  Reader = std::move(ReaderOrErr.get());
1833  Reader->collectFuncsFrom(M);
1834  ProfileIsValid = (Reader->read() == sampleprof_error::success);
1835  PSL = Reader->getProfileSymbolList();
1836 
1837  // While profile-sample-accurate is on, ignore symbol list.
1838  ProfAccForSymsInList =
1840  if (ProfAccForSymsInList) {
1841  NamesInProfile.clear();
1842  if (auto NameTable = Reader->getNameTable())
1843  NamesInProfile.insert(NameTable->begin(), NameTable->end());
1844  }
1845 
1846  return true;
1847 }
1848 
1850  return new SampleProfileLoaderLegacyPass();
1851 }
1852 
1854  return new SampleProfileLoaderLegacyPass(Name);
1855 }
1856 
1857 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
1858  ProfileSummaryInfo *_PSI, CallGraph *CG) {
1859  if (!ProfileIsValid)
1860  return false;
1861  GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap);
1862 
1863  PSI = _PSI;
1864  if (M.getProfileSummary(/* IsCS */ false) == nullptr) {
1865  M.setProfileSummary(Reader->getSummary().getMD(M.getContext()),
1867  PSI->refresh();
1868  }
1869  // Compute the total number of samples collected in this profile.
1870  for (const auto &I : Reader->getProfiles())
1871  TotalCollectedSamples += I.second.getTotalSamples();
1872 
1873  // Populate the symbol map.
1874  for (const auto &N_F : M.getValueSymbolTable()) {
1875  StringRef OrigName = N_F.getKey();
1876  Function *F = dyn_cast<Function>(N_F.getValue());
1877  if (F == nullptr)
1878  continue;
1879  SymbolMap[OrigName] = F;
1880  auto pos = OrigName.find('.');
1881  if (pos != StringRef::npos) {
1882  StringRef NewName = OrigName.substr(0, pos);
1883  auto r = SymbolMap.insert(std::make_pair(NewName, F));
1884  // Failiing to insert means there is already an entry in SymbolMap,
1885  // thus there are multiple functions that are mapped to the same
1886  // stripped name. In this case of name conflicting, set the value
1887  // to nullptr to avoid confusion.
1888  if (!r.second)
1889  r.first->second = nullptr;
1890  }
1891  }
1892 
1893  bool retval = false;
1894  for (auto F : buildFunctionOrder(M, CG)) {
1895  assert(!F->isDeclaration());
1896  clearFunctionData();
1897  retval |= runOnFunction(*F, AM);
1898  }
1899 
1900  // Account for cold calls not inlined....
1901  for (const std::pair<Function *, NotInlinedProfileInfo> &pair :
1902  notInlinedCallInfo)
1903  updateProfileCallee(pair.first, pair.second.entryCount);
1904 
1905  return retval;
1906 }
1907 
1908 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1909  ACT = &getAnalysis<AssumptionCacheTracker>();
1910  TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1911  TLIWP = &getAnalysis<TargetLibraryInfoWrapperPass>();
1912  ProfileSummaryInfo *PSI =
1913  &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1914  return SampleLoader.runOnModule(M, nullptr, PSI, nullptr);
1915 }
1916 
1918 
1919  DILocation2SampleMap.clear();
1920  // By default the entry count is initialized to -1, which will be treated
1921  // conservatively by getEntryCount as the same as unknown (None). This is
1922  // to avoid newly added code to be treated as cold. If we have samples
1923  // this will be overwritten in emitAnnotations.
1924  uint64_t initialEntryCount = -1;
1925 
1926  ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL;
1927  if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) {
1928  // initialize all the function entry counts to 0. It means all the
1929  // functions without profile will be regarded as cold.
1930  initialEntryCount = 0;
1931  // profile-sample-accurate is a user assertion which has a higher precedence
1932  // than symbol list. When profile-sample-accurate is on, ignore symbol list.
1933  ProfAccForSymsInList = false;
1934  }
1935 
1936  // PSL -- profile symbol list include all the symbols in sampled binary.
1937  // If ProfileAccurateForSymsInList is enabled, PSL is used to treat
1938  // old functions without samples being cold, without having to worry
1939  // about new and hot functions being mistakenly treated as cold.
1940  if (ProfAccForSymsInList) {
1941  // Initialize the entry count to 0 for functions in the list.
1942  if (PSL->contains(F.getName()))
1943  initialEntryCount = 0;
1944 
1945  // Function in the symbol list but without sample will be regarded as
1946  // cold. To minimize the potential negative performance impact it could
1947  // have, we want to be a little conservative here saying if a function
1948  // shows up in the profile, no matter as outline function, inline instance
1949  // or call targets, treat the function as not being cold. This will handle
1950  // the cases such as most callsites of a function are inlined in sampled
1951  // binary but not inlined in current build (because of source code drift,
1952  // imprecise debug information, or the callsites are all cold individually
1953  // but not cold accumulatively...), so the outline function showing up as
1954  // cold in sampled binary will actually not be cold after current build.
1956  if (NamesInProfile.count(CanonName))
1957  initialEntryCount = -1;
1958  }
1959 
1960  F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
1961  std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1962  if (AM) {
1963  auto &FAM =
1965  .getManager();
1966  ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1967  } else {
1968  OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F);
1969  ORE = OwnedORE.get();
1970  }
1971  Samples = Reader->getSamplesFor(F);
1972  if (Samples && !Samples->empty())
1973  return emitAnnotations(F);
1974  return false;
1975 }
1976 
1978  ModuleAnalysisManager &AM) {
1980  AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1981 
1982  auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1983  return FAM.getResult<AssumptionAnalysis>(F);
1984  };
1985  auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1986  return FAM.getResult<TargetIRAnalysis>(F);
1987  };
1988  auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
1989  return FAM.getResult<TargetLibraryAnalysis>(F);
1990  };
1991 
1992  SampleProfileLoader SampleLoader(
1993  ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1994  ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
1995  : ProfileRemappingFileName,
1996  IsThinLTOPreLink, GetAssumptionCache, GetTTI, GetTLI);
1997 
1998  if (!SampleLoader.doInitialization(M))
1999  return PreservedAnalyses::all();
2000 
2002  CallGraph &CG = AM.getResult<CallGraphAnalysis>(M);
2003  if (!SampleLoader.runOnModule(M, &AM, PSI, &CG))
2004  return PreservedAnalyses::all();
2005 
2006  return PreservedAnalyses::none();
2007 }
const Function & getFunction() const
Definition: Function.h:135
uint64_t CallInst * C
static cl::opt< bool > ProfileTopDownLoad("sample-profile-top-down-load", cl::Hidden, cl::init(true), cl::desc("Do profile annotation and inlining for functions in top-down " "order of call graph during sample profile loading. It only " "works for new pass manager. "))
const FunctionSamplesMap * findFunctionSamplesMapAt(const LineLocation &Loc) const
Returns the FunctionSamplesMap at the given Loc.
Definition: SampleProf.h:424
This builds on the llvm/ADT/GraphTraits.h file to find the strongly connected components (SCCs) of a ...
static uint64_t getGUID(StringRef Name)
Definition: SampleProf.h:645
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:687
Thresholds to tune inline cost analysis.
Definition: InlineCost.h:160
Represents either an error or a value T.
Definition: ErrorOr.h:56
LLVM_NODISCARD std::enable_if_t< !is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type > dyn_cast(const Y &Val)
Definition: Casting.h:334
InlineResult InlineFunction(CallBase &CB, InlineFunctionInfo &IFI, AAResults *CalleeAAR=nullptr, bool InsertLifetime=true, Function *ForwardVarArgsTo=nullptr)
This function inlines the called function into the basic block of the caller.
void refresh()
If no summary is present, attempt to refresh.
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
DiagnosticInfoOptimizationBase::Argument NV
bool isNever() const
Definition: InlineCost.h:103
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:769
This class represents lattice values for constants.
Definition: AllocatorList.h:23
StringRef getFuncName() const
Return the original function name.
Definition: SampleProf.h:570
DEBUG_TYPE to vector
sample profile
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:67
static ErrorOr< std::unique_ptr< SampleProfileReader > > create(const std::string Filename, LLVMContext &C, const std::string RemapFilename="")
Create a sample profile reader appropriate to the file format.
BasicBlock * getSuccessor(unsigned Idx) const
Return the specified successor. This instruction must be a terminator.
amdgpu Simplify well known AMD library false FunctionCallee Value const Twine & Name
bool isLegalToPromote(const CallBase &CB, Function *Callee, const char **FailureReason=nullptr)
Return true if the given indirect call site can be made to call Callee.
Implements a dense probed hash-table based set.
Definition: DenseSet.h:255
virtual void collectFuncsFrom(const Module &M)
const ValueSymbolTable & getValueSymbolTable() const
Get the symbol table of global variable and function identifiers.
Definition: Module.h:579
Analysis providing profile information.
This class represents a function call, abstracting a target machine&#39;s calling convention.
An immutable pass that tracks lazily created AssumptionCache objects.
Metadata * getProfileSummary(bool IsCS)
Returns profile summary metadata.
Definition: Module.cpp:585
A cache of @llvm.assume calls within a function.
Analysis pass providing the TargetTransformInfo.
static cl::opt< bool > ProfileAccurateForSymsInList("profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore, cl::init(true), cl::desc("For symbols in profile symbol list, regard their profiles to " "be accurate. It may be overriden by profile-sample-accurate. "))
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:826
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition: Function.h:330
unsigned getLine() const
Definition: DebugLoc.cpp:25
DenseMap< uint64_t, StringRef > * GUIDToFuncNameMap
GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for all the function symbols define...
Definition: SampleProf.h:640
ErrorOr< uint64_t > findSamplesAt(uint32_t LineOffset, uint32_t Discriminator) const
Return the number of samples collected at the given location.
Definition: SampleProf.h:397
STATISTIC(NumFunctions, "Total number of functions")
A debug info location.
Definition: DebugLoc.h:33
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1100
F(f)
void findInlinedFunctions(DenseSet< GlobalValue::GUID > &S, const Module *M, uint64_t Threshold) const
Recursively traverses all children, if the total sample count of the corresponding function is no les...
Definition: SampleProf.h:538
InlineCost getInlineCost(CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI, function_ref< AssumptionCache &(Function &)> GetAssumptionCache, function_ref< const TargetLibraryInfo &(Function &)> GetTLI, function_ref< BlockFrequencyInfo &(Function &)> GetBFI=nullptr, ProfileSummaryInfo *PSI=nullptr, OptimizationRemarkEmitter *ORE=nullptr)
Get an InlineCost object representing the cost of inlining this callsite.
This class captures the data input to the InlineFunction call, and records the auxiliary results prod...
Definition: Cloning.h:172
static SmallVector< InstrProfValueData, 2 > GetSortedValueDataFromCallTargets(const SampleRecord::CallTargetMap &M)
Returns the sorted CallTargetMap M by count in descending order.
A node in the call graph for a module.
Definition: CallGraph.h:174
Represents the cost of inlining a function.
Definition: InlineCost.h:67
PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM)
Representation of the samples collected for a function.
Definition: SampleProf.h:357
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:207
static const SortedCallTargetSet SortCallTargets(const CallTargetMap &Targets)
Sort call targets in descending order of call frequency.
Definition: SampleProf.h:316
AnalysisUsage & addRequired()
Definition: BitVector.h:959
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:80
void setEntryCount(ProfileCount Count, const DenseSet< GlobalValue::GUID > *Imports=nullptr)
Set the entry count for this function.
Definition: Function.cpp:1607
An analysis pass based on legacy pass manager to deliver ProfileSummaryInfo.
bool isColdCount(uint64_t C) const
Returns true if count C is considered cold.
static cl::opt< std::string > SampleProfileRemappingFile("sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"), cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden)
LLVMContext & getContext() const
Get the global data context.
Definition: Module.h:253
Diagnostic information for optimization analysis remarks.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:43
static StringRef getName(Value *V)
LLVM_NODISCARD StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition: StringRef.h:612
StringRef getFilename() const
static constexpr size_t npos
Definition: StringRef.h:59
BlockT * getHeader() const
Definition: LoopInfo.h:104
static cl::opt< bool > ProfileMergeInlinee("sample-profile-merge-inlinee", cl::Hidden, cl::init(true), cl::desc("Merge past inlinee's profile to outline version if sample " "profile loader decided not to inline a call site. It will " "only be enabled when top-down order of profile loading is " "enabled. "))
Interval::succ_iterator succ_begin(Interval *I)
succ_begin/succ_end - define methods so that Intervals may be used just like BasicBlocks can with the...
Definition: Interval.h:102
scc_iterator< T > scc_begin(const T &G)
Construct the begin iterator for a deduced graph type T.
Definition: SCCIterator.h:228
Subprogram description.
const Instruction * getFirstNonPHIOrDbgOrLifetime() const
Returns a pointer to the first instruction in this block that is not a PHINode, a debug intrinsic...
Definition: BasicBlock.cpp:228
This file provides interfaces used to build and manipulate a call graph, which is a very useful tool ...
bool empty() const
Definition: Module.h:619
CallBase & promoteIndirectCall(CallBase &CB, Function *F, uint64_t Count, uint64_t TotalCount, bool AttachProfToDirectCall, OptimizationRemarkEmitter *ORE)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:32
void verifyMisExpect(llvm::Instruction *I, const llvm::SmallVector< uint32_t, 4 > &Weights, llvm::LLVMContext &Ctx)
verifyMisExpect - compares PGO counters to the thresholds used for llvm.expect and warns if the PGO c...
Definition: MisExpect.cpp:96
bool extractProfTotalWeight(uint64_t &TotalVal) const
Retrieve total raw weight values of a branch.
Definition: Metadata.cpp:1339
static cl::opt< std::string > SampleProfileFile("sample-profile-file", cl::init(""), cl::value_desc("filename"), cl::desc("Profile file loaded by -sample-profile"), cl::Hidden)
Debug location.
ModulePass * createSampleProfileLoaderPass()
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree...
Definition: Dominators.h:144
uint64_t getHeadSamples() const
Return the total number of branch samples that have the function as the branch target.
Definition: SampleProf.h:471
unsigned getNumSuccessors() const
Return the number of successors that this instruction has.
static cl::opt< unsigned > SampleProfileRecordCoverage("sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), cl::desc("Emit a warning if less than N% of records in the input profile " "are matched to the IR."))
static PreservedAnalyses none()
Convenience factory function for the empty preserved set.
Definition: PassManager.h:157
Interval::succ_iterator succ_end(Interval *I)
Definition: Interval.h:105
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:150
const BasicBlock & getEntryBlock() const
Definition: Function.h:689
static bool runOnFunction(Function &F, bool PostInlining)
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:434
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
Wrapper pass for TargetTransformInfo.
A set of analyses that are preserved following a run of a transformation pass.
Definition: PassManager.h:154
* if(!EatIfPresent(lltok::kw_thread_local)) return false
ParseOptionalThreadLocal := /*empty.
LLVM Basic Block Representation.
Definition: BasicBlock.h:58
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:68
static cl::opt< unsigned > SampleProfileMaxPropagateIterations("sample-profile-max-propagate-iterations", cl::init(100), cl::desc("Maximum number of iterations to go through when propagating " "sample block/edge weights through the CFG."))
DISubprogram * getSubprogram() const
Get the attached subprogram.
Definition: Metadata.cpp:1528
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
#define CSINLINE_DEBUG
const BodySampleMap & getBodySamples() const
Return all the samples collected in the body of the function.
Definition: SampleProf.h:494
FunctionSamples * getSamplesFor(const Function &F)
Return the samples collected for function F.
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition: SmallSet.h:134
std::error_code read()
The interface to read sample profiles from the associated file.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:364
FunctionSamples * getOrCreateSamplesFor(const Function &F)
Return the samples collected for function F, create empty FunctionSamples if it doesn&#39;t exist...
Diagnostic information for applied optimization remarks.
Interval::pred_iterator pred_begin(Interval *I)
pred_begin/pred_end - define methods so that Intervals may be used just like BasicBlocks can with the...
Definition: Interval.h:112
static StringRef getCanonicalFnName(const Function &F)
Return the canonical name for a function, taking into account suffix elision policy attributes...
Definition: SampleProf.h:574
LLVM_NODISCARD size_t find(char C, size_t From=0) const
Search for the first character C in the string.
Definition: StringRef.h:318
Function::ProfileCount ProfileCount
Represent the analysis usage information of a pass.
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:115
DenseMap< SymbolStringPtr, JITEvaluatedSymbol > SymbolMap
A map from symbol names (as SymbolStringPtrs) to JITSymbols (address/flags pairs).
Definition: Core.h:51
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1433
void initializeSampleProfileLoaderLegacyPassPass(PassRegistry &)
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function. ...
Definition: Function.cpp:252
Used in the streaming interface as the general argument type.
void annotateValueSite(Module &M, Instruction &Inst, const InstrProfRecord &InstrProfR, InstrProfValueKind ValueKind, uint32_t SiteIndx, uint32_t MaxMDCount=3)
Get the value profile data for value site SiteIdx from InstrProfR and annotate the instruction Inst w...
Definition: InstrProf.cpp:935
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: PassManager.h:160
std::map< std::string, FunctionSamples, std::less<> > FunctionSamplesMap
Definition: SampleProf.h:349
Class to represent profile counts.
Definition: Function.h:267
MDNode * createBranchWeights(uint32_t TrueWeight, uint32_t FalseWeight)
Return metadata containing two branch weights.
Definition: MDBuilder.cpp:37
INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, "Assign register bank of generic virtual registers", false, false) RegBankSelect
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
Definition: Metadata.cpp:1224
Optional< bool > ComputeFullInlineCost
Compute inline cost even when the cost has exceeded the threshold.
Definition: InlineCost.h:187
constexpr bool empty(const T &RangeOrContainer)
Test whether RangeOrContainer is empty. Similar to C++17 std::empty.
Definition: STLExtras.h:266
const FunctionSamples * findFunctionSamplesAt(const LineLocation &Loc, StringRef CalleeName) const
Returns a pointer to FunctionSamples at the given callsite location Loc with callee CalleeName...
Definition: SampleProf.h:435
A function analysis which provides an AssumptionCache.
virtual std::unique_ptr< ProfileSymbolList > getProfileSymbolList()
const InstListType & getInstList() const
Return the underlying instruction list container.
Definition: BasicBlock.h:354
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements...
Definition: SmallPtrSet.h:439
Align max(MaybeAlign Lhs, Align Rhs)
Definition: Alignment.h:350
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Metadata * getMD(LLVMContext &Context, bool AddPartialField=true, bool AddPartialProfileRatioField=true)
Return summary information as metadata.
InlineParams getInlineParams()
Generate the parameters to tune the inline cost analysis based only on the commandline options...
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:883
Module.h This file contains the declarations for the Module class.
Provides information about what library functions are available for the current target.
static unsigned getOffset(const DILocation *DIL)
Returns the line offset to the start line of the subprogram.
Definition: SampleProf.cpp:172
static cl::opt< int > SampleColdCallSiteThreshold("sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45), cl::desc("Threshold for inlining cold callsites"))
virtual std::vector< StringRef > * getNameTable()
It includes all the names that have samples either in outline instance or inline instance.
static cl::opt< bool > ProfileSampleAccurate("profile-sample-accurate", cl::Hidden, cl::init(false), cl::desc("If the sample profile is accurate, we will mark all un-sampled " "callsite and function as having 0 samples. Otherwise, treat " "un-sampled callsites and functions conservatively as unknown. "))
ErrorOr< SampleRecord::CallTargetMap > findCallTargetMapAt(uint32_t LineOffset, uint32_t Discriminator) const
Returns the call target map collected at a given location.
Definition: SampleProf.h:410
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:132
StringMap - This is an unconventional map that is specialized for handling keys that are "strings"...
Definition: StringMap.h:106
StringMap< FunctionSamples > & getProfiles()
Return all the profiles.
amdgpu Simplify well known AMD library false FunctionCallee Callee
int getCost() const
Get the inline cost estimate.
Definition: InlineCost.h:108
GUID getGUID() const
Return a 64-bit global unique ID constructed from global value name (i.e.
Definition: GlobalValue.h:511
PostDominatorTree Class - Concrete subclass of DominatorTree that is used to compute the post-dominat...
static void clear(coro::Shape &Shape)
Definition: Coroutines.cpp:225
iterator insert(iterator I, T &&Elt)
Definition: SmallVector.h:513
bool dominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
dominates - Returns true iff A dominates B.
An analysis pass to compute the CallGraph for a Module.
Definition: CallGraph.h:312
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
The basic data container for the call graph of a Module of IR.
Definition: CallGraph.h:73
unsigned getBaseDiscriminator() const
Returns the base discriminator stored in the discriminator.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:363
#define DEBUG_TYPE
Represents the relative location of an instruction.
Definition: SampleProf.h:236
static cl::opt< unsigned > SampleProfileSampleCoverage("sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), cl::desc("Emit a warning if less than N% of samples in the input profile " "are matched to the IR."))
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:516
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:270
void emitInlinedInto(OptimizationRemarkEmitter &ORE, DebugLoc DLoc, const BasicBlock *Block, const Function &Callee, const Function &Caller, const InlineCost &IC, bool ForProfileContext=false, const char *PassName=nullptr)
Emit ORE message.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation.
Definition: InstrTypes.h:1314
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:107
#define I(x, y, z)
Definition: MD5.cpp:59
ModulePass class - This class is used to implement unstructured interprocedural optimizations and ana...
Definition: Pass.h:224
iterator end()
Definition: DenseMap.h:83
StringRef getName() const
Return the function name.
Definition: SampleProf.h:567
bool isHotCount(uint64_t C) const
Returns true if count C is considered hot.
size_type count(const_arg_type_t< ValueT > V) const
Return 1 if the specified key is in the set, 0 otherwise.
Definition: DenseSet.h:97
void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
void updateProfileCallee(Function *Callee, int64_t entryDelta, const ValueMap< const Value *, WeakTrackingVH > *VMap=nullptr)
Updates profile information by adjusting the entry count by adding entryDelta then scaling callsite i...
INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", "Sample Profile loader", false, false) INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass
bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
Definition: Globals.cpp:227
Provides ErrorOr<T> smart pointer.
Analysis pass providing the TargetLibraryInfo.
ProfileSummary & getSummary() const
Return the profile summary.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:572
uint64_t getTotalSamples() const
Return the total number of samples collected inside the function.
Definition: SampleProf.h:464
sample Sample Profile loader
const CallsiteSampleMap & getCallsiteSamples() const
Return all the callsite samples collected in the body of the function.
Definition: SampleProf.h:497
StringSet - A wrapper for StringMap that provides set-like functionality.
Definition: StringSet.h:22
Sample-based profile reader.
This class implements an extremely fast bulk output stream that can only output to a stream...
Definition: raw_ostream.h:46
print Print MemDeps of function
This file defines a set of templates that efficiently compute a dominator tree over a generic graph...
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:57
A container for analyses that lazily runs them and caches their results.
This pass exposes codegen information to IR-level passes.
uint64_t getEntrySamples() const
Return the sample count of the first instruction of the function.
Definition: SampleProf.h:475
auto reverse(ContainerTy &&C, std::enable_if_t< has_rbegin< ContainerTy >::value > *=nullptr)
Definition: STLExtras.h:341
static cl::opt< bool > NoWarnSampleUnused("no-warn-sample-unused", cl::init(false), cl::Hidden, cl::desc("Use this option to turn off/on warnings about function with " "samples but without debug information to use those samples. "))
This header defines various interfaces for pass management in LLVM.
static cl::opt< bool > ProfileSizeInline("sample-profile-inline-size", cl::Hidden, cl::init(false), cl::desc("Inline cold call sites in profile loader if it's beneficial " "for code size."))
Diagnostic information for the sample profiler.
void setProfileSummary(Metadata *M, ProfileSummary::Kind Kind)
Attach profile summary metadata to this module.
Definition: Module.cpp:578
#define LLVM_DEBUG(X)
Definition: Debug.h:122
void dump(raw_ostream &OS=dbgs())
Print all the profiles on stream OS.
sampleprof_error merge(const FunctionSamples &Other, uint64_t Weight=1)
Merge the samples in Other into this one.
Definition: SampleProf.h:515
uint64_t getOrCompHotCountThreshold() const
Returns HotCountThreshold if set.
The optimization diagnostic interface.
This file provides the interface for the sampled PGO loader pass.
reference get()
Definition: ErrorOr.h:150
Enumerate the SCCs of a directed graph in reverse topological order of the SCC DAG.
Definition: SCCIterator.h:42
const BasicBlock * getParent() const
Definition: Instruction.h:94
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
An analysis over an "outer" IR unit that provides access to an analysis manager over an "inner" IR un...
Definition: PassManager.h:953