LLVM 19.0.0git
SHA1.cpp
Go to the documentation of this file.
1//====- SHA1.cpp - Private copy of the SHA1 implementation ---*- C++ -* ======//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This code is taken from public domain
10// (http://oauth.googlecode.com/svn/code/c/liboauth/src/sha1.c and
11// http://cvsweb.netbsd.org/bsdweb.cgi/src/common/lib/libc/hash/sha1/sha1.c?rev=1.6)
12// and modified by wrapping it in a C++ interface for LLVM,
13// and removing unnecessary code.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Support/SHA1.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/StringRef.h"
20#include "llvm/Support/Endian.h"
22#include <string.h>
23
24using namespace llvm;
25
26static inline uint32_t rol(uint32_t Number, int Bits) {
27 return (Number << Bits) | (Number >> (32 - Bits));
28}
29
30static inline uint32_t blk0(uint32_t *Buf, int I) { return Buf[I]; }
31
32static inline uint32_t blk(uint32_t *Buf, int I) {
33 Buf[I & 15] = rol(Buf[(I + 13) & 15] ^ Buf[(I + 8) & 15] ^ Buf[(I + 2) & 15] ^
34 Buf[I & 15],
35 1);
36 return Buf[I & 15];
37}
38
39static inline void r0(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D,
40 uint32_t &E, int I, uint32_t *Buf) {
41 E += ((B & (C ^ D)) ^ D) + blk0(Buf, I) + 0x5A827999 + rol(A, 5);
42 B = rol(B, 30);
43}
44
45static inline void r1(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D,
46 uint32_t &E, int I, uint32_t *Buf) {
47 E += ((B & (C ^ D)) ^ D) + blk(Buf, I) + 0x5A827999 + rol(A, 5);
48 B = rol(B, 30);
49}
50
51static inline void r2(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D,
52 uint32_t &E, int I, uint32_t *Buf) {
53 E += (B ^ C ^ D) + blk(Buf, I) + 0x6ED9EBA1 + rol(A, 5);
54 B = rol(B, 30);
55}
56
57static inline void r3(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D,
58 uint32_t &E, int I, uint32_t *Buf) {
59 E += (((B | C) & D) | (B & C)) + blk(Buf, I) + 0x8F1BBCDC + rol(A, 5);
60 B = rol(B, 30);
61}
62
63static inline void r4(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D,
64 uint32_t &E, int I, uint32_t *Buf) {
65 E += (B ^ C ^ D) + blk(Buf, I) + 0xCA62C1D6 + rol(A, 5);
66 B = rol(B, 30);
67}
68
69/* code */
70#define SHA1_K0 0x5a827999
71#define SHA1_K20 0x6ed9eba1
72#define SHA1_K40 0x8f1bbcdc
73#define SHA1_K60 0xca62c1d6
74
75#define SEED_0 0x67452301
76#define SEED_1 0xefcdab89
77#define SEED_2 0x98badcfe
78#define SEED_3 0x10325476
79#define SEED_4 0xc3d2e1f0
80
81void SHA1::init() {
82 InternalState.State[0] = SEED_0;
83 InternalState.State[1] = SEED_1;
84 InternalState.State[2] = SEED_2;
85 InternalState.State[3] = SEED_3;
86 InternalState.State[4] = SEED_4;
87 InternalState.ByteCount = 0;
88 InternalState.BufferOffset = 0;
89}
90
91void SHA1::hashBlock() {
92 uint32_t A = InternalState.State[0];
93 uint32_t B = InternalState.State[1];
94 uint32_t C = InternalState.State[2];
95 uint32_t D = InternalState.State[3];
96 uint32_t E = InternalState.State[4];
97
98 // 4 rounds of 20 operations each. Loop unrolled.
99 r0(A, B, C, D, E, 0, InternalState.Buffer.L);
100 r0(E, A, B, C, D, 1, InternalState.Buffer.L);
101 r0(D, E, A, B, C, 2, InternalState.Buffer.L);
102 r0(C, D, E, A, B, 3, InternalState.Buffer.L);
103 r0(B, C, D, E, A, 4, InternalState.Buffer.L);
104 r0(A, B, C, D, E, 5, InternalState.Buffer.L);
105 r0(E, A, B, C, D, 6, InternalState.Buffer.L);
106 r0(D, E, A, B, C, 7, InternalState.Buffer.L);
107 r0(C, D, E, A, B, 8, InternalState.Buffer.L);
108 r0(B, C, D, E, A, 9, InternalState.Buffer.L);
109 r0(A, B, C, D, E, 10, InternalState.Buffer.L);
110 r0(E, A, B, C, D, 11, InternalState.Buffer.L);
111 r0(D, E, A, B, C, 12, InternalState.Buffer.L);
112 r0(C, D, E, A, B, 13, InternalState.Buffer.L);
113 r0(B, C, D, E, A, 14, InternalState.Buffer.L);
114 r0(A, B, C, D, E, 15, InternalState.Buffer.L);
115 r1(E, A, B, C, D, 16, InternalState.Buffer.L);
116 r1(D, E, A, B, C, 17, InternalState.Buffer.L);
117 r1(C, D, E, A, B, 18, InternalState.Buffer.L);
118 r1(B, C, D, E, A, 19, InternalState.Buffer.L);
119
120 r2(A, B, C, D, E, 20, InternalState.Buffer.L);
121 r2(E, A, B, C, D, 21, InternalState.Buffer.L);
122 r2(D, E, A, B, C, 22, InternalState.Buffer.L);
123 r2(C, D, E, A, B, 23, InternalState.Buffer.L);
124 r2(B, C, D, E, A, 24, InternalState.Buffer.L);
125 r2(A, B, C, D, E, 25, InternalState.Buffer.L);
126 r2(E, A, B, C, D, 26, InternalState.Buffer.L);
127 r2(D, E, A, B, C, 27, InternalState.Buffer.L);
128 r2(C, D, E, A, B, 28, InternalState.Buffer.L);
129 r2(B, C, D, E, A, 29, InternalState.Buffer.L);
130 r2(A, B, C, D, E, 30, InternalState.Buffer.L);
131 r2(E, A, B, C, D, 31, InternalState.Buffer.L);
132 r2(D, E, A, B, C, 32, InternalState.Buffer.L);
133 r2(C, D, E, A, B, 33, InternalState.Buffer.L);
134 r2(B, C, D, E, A, 34, InternalState.Buffer.L);
135 r2(A, B, C, D, E, 35, InternalState.Buffer.L);
136 r2(E, A, B, C, D, 36, InternalState.Buffer.L);
137 r2(D, E, A, B, C, 37, InternalState.Buffer.L);
138 r2(C, D, E, A, B, 38, InternalState.Buffer.L);
139 r2(B, C, D, E, A, 39, InternalState.Buffer.L);
140
141 r3(A, B, C, D, E, 40, InternalState.Buffer.L);
142 r3(E, A, B, C, D, 41, InternalState.Buffer.L);
143 r3(D, E, A, B, C, 42, InternalState.Buffer.L);
144 r3(C, D, E, A, B, 43, InternalState.Buffer.L);
145 r3(B, C, D, E, A, 44, InternalState.Buffer.L);
146 r3(A, B, C, D, E, 45, InternalState.Buffer.L);
147 r3(E, A, B, C, D, 46, InternalState.Buffer.L);
148 r3(D, E, A, B, C, 47, InternalState.Buffer.L);
149 r3(C, D, E, A, B, 48, InternalState.Buffer.L);
150 r3(B, C, D, E, A, 49, InternalState.Buffer.L);
151 r3(A, B, C, D, E, 50, InternalState.Buffer.L);
152 r3(E, A, B, C, D, 51, InternalState.Buffer.L);
153 r3(D, E, A, B, C, 52, InternalState.Buffer.L);
154 r3(C, D, E, A, B, 53, InternalState.Buffer.L);
155 r3(B, C, D, E, A, 54, InternalState.Buffer.L);
156 r3(A, B, C, D, E, 55, InternalState.Buffer.L);
157 r3(E, A, B, C, D, 56, InternalState.Buffer.L);
158 r3(D, E, A, B, C, 57, InternalState.Buffer.L);
159 r3(C, D, E, A, B, 58, InternalState.Buffer.L);
160 r3(B, C, D, E, A, 59, InternalState.Buffer.L);
161
162 r4(A, B, C, D, E, 60, InternalState.Buffer.L);
163 r4(E, A, B, C, D, 61, InternalState.Buffer.L);
164 r4(D, E, A, B, C, 62, InternalState.Buffer.L);
165 r4(C, D, E, A, B, 63, InternalState.Buffer.L);
166 r4(B, C, D, E, A, 64, InternalState.Buffer.L);
167 r4(A, B, C, D, E, 65, InternalState.Buffer.L);
168 r4(E, A, B, C, D, 66, InternalState.Buffer.L);
169 r4(D, E, A, B, C, 67, InternalState.Buffer.L);
170 r4(C, D, E, A, B, 68, InternalState.Buffer.L);
171 r4(B, C, D, E, A, 69, InternalState.Buffer.L);
172 r4(A, B, C, D, E, 70, InternalState.Buffer.L);
173 r4(E, A, B, C, D, 71, InternalState.Buffer.L);
174 r4(D, E, A, B, C, 72, InternalState.Buffer.L);
175 r4(C, D, E, A, B, 73, InternalState.Buffer.L);
176 r4(B, C, D, E, A, 74, InternalState.Buffer.L);
177 r4(A, B, C, D, E, 75, InternalState.Buffer.L);
178 r4(E, A, B, C, D, 76, InternalState.Buffer.L);
179 r4(D, E, A, B, C, 77, InternalState.Buffer.L);
180 r4(C, D, E, A, B, 78, InternalState.Buffer.L);
181 r4(B, C, D, E, A, 79, InternalState.Buffer.L);
182
183 InternalState.State[0] += A;
184 InternalState.State[1] += B;
185 InternalState.State[2] += C;
186 InternalState.State[3] += D;
187 InternalState.State[4] += E;
188}
189
190void SHA1::addUncounted(uint8_t Data) {
191 if constexpr (sys::IsBigEndianHost)
192 InternalState.Buffer.C[InternalState.BufferOffset] = Data;
193 else
194 InternalState.Buffer.C[InternalState.BufferOffset ^ 3] = Data;
195
196 InternalState.BufferOffset++;
197 if (InternalState.BufferOffset == BLOCK_LENGTH) {
198 hashBlock();
199 InternalState.BufferOffset = 0;
200 }
201}
202
203void SHA1::writebyte(uint8_t Data) {
204 ++InternalState.ByteCount;
205 addUncounted(Data);
206}
207
209 InternalState.ByteCount += Data.size();
210
211 // Finish the current block.
212 if (InternalState.BufferOffset > 0) {
213 const size_t Remainder = std::min<size_t>(
214 Data.size(), BLOCK_LENGTH - InternalState.BufferOffset);
215 for (size_t I = 0; I < Remainder; ++I)
216 addUncounted(Data[I]);
217 Data = Data.drop_front(Remainder);
218 }
219
220 // Fast buffer filling for large inputs.
221 while (Data.size() >= BLOCK_LENGTH) {
222 assert(InternalState.BufferOffset == 0);
223 static_assert(BLOCK_LENGTH % 4 == 0);
224 constexpr size_t BLOCK_LENGTH_32 = BLOCK_LENGTH / 4;
225 for (size_t I = 0; I < BLOCK_LENGTH_32; ++I)
226 InternalState.Buffer.L[I] = support::endian::read32be(&Data[I * 4]);
227 hashBlock();
228 Data = Data.drop_front(BLOCK_LENGTH);
229 }
230
231 // Finish the remainder.
232 for (uint8_t C : Data)
233 addUncounted(C);
234}
235
237 update(
238 ArrayRef<uint8_t>((uint8_t *)const_cast<char *>(Str.data()), Str.size()));
239}
240
241void SHA1::pad() {
242 // Implement SHA-1 padding (fips180-2 5.1.1)
243
244 // Pad with 0x80 followed by 0x00 until the end of the block
245 addUncounted(0x80);
246 while (InternalState.BufferOffset != 56)
247 addUncounted(0x00);
248
249 // Append length in the last 8 bytes
250 addUncounted(0); // We're only using 32 bit lengths
251 addUncounted(0); // But SHA-1 supports 64 bit lengths
252 addUncounted(0); // So zero pad the top bits
253 addUncounted(InternalState.ByteCount >> 29); // Shifting to multiply by 8
254 addUncounted(InternalState.ByteCount >>
255 21); // as SHA-1 supports bitstreams as well as
256 addUncounted(InternalState.ByteCount >> 13); // byte.
257 addUncounted(InternalState.ByteCount >> 5);
258 addUncounted(InternalState.ByteCount << 3);
259}
260
261void SHA1::final(std::array<uint32_t, HASH_LENGTH / 4> &HashResult) {
262 // Pad to complete the last block
263 pad();
264
265 if constexpr (sys::IsBigEndianHost) {
266 // Just copy the current state
267 for (int i = 0; i < 5; i++) {
268 HashResult[i] = InternalState.State[i];
269 }
270 } else {
271 // Swap byte order back
272 for (int i = 0; i < 5; i++) {
273 HashResult[i] = llvm::byteswap(InternalState.State[i]);
274 }
275 }
276}
277
278std::array<uint8_t, 20> SHA1::final() {
279 union {
280 std::array<uint32_t, HASH_LENGTH / 4> HashResult;
281 std::array<uint8_t, HASH_LENGTH> ReturnResult;
282 };
283 static_assert(sizeof(HashResult) == sizeof(ReturnResult));
284 final(HashResult);
285 return ReturnResult;
286}
287
288std::array<uint8_t, 20> SHA1::result() {
289 auto StateToRestore = InternalState;
290
291 auto Hash = final();
292
293 // Restore the state
294 InternalState = StateToRestore;
295
296 // Return pointer to hash (20 characters)
297 return Hash;
298}
299
300std::array<uint8_t, 20> SHA1::hash(ArrayRef<uint8_t> Data) {
301 SHA1 Hash;
302 Hash.update(Data);
303 return Hash.final();
304}
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
#define I(x, y, z)
Definition: MD5.cpp:58
if(VerifyEach)
uint32_t Number
Definition: Profile.cpp:47
static void r0(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf)
Definition: SHA1.cpp:39
#define SEED_3
Definition: SHA1.cpp:78
static void r3(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf)
Definition: SHA1.cpp:57
#define SEED_4
Definition: SHA1.cpp:79
static uint32_t rol(uint32_t Number, int Bits)
Definition: SHA1.cpp:26
static void r2(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf)
Definition: SHA1.cpp:51
static uint32_t blk0(uint32_t *Buf, int I)
Definition: SHA1.cpp:30
#define SEED_0
Definition: SHA1.cpp:75
static void r4(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf)
Definition: SHA1.cpp:63
static void r1(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf)
Definition: SHA1.cpp:45
static uint32_t blk(uint32_t *Buf, int I)
Definition: SHA1.cpp:32
#define SEED_1
Definition: SHA1.cpp:76
#define SEED_2
Definition: SHA1.cpp:77
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
A class that wrap the SHA1 algorithm.
Definition: SHA1.h:26
std::array< uint8_t, 20 > final()
Return the current raw 160-bits SHA1 for the digested data since the last call to init().
Definition: SHA1.cpp:278
void update(ArrayRef< uint8_t > Data)
Digest more data.
Definition: SHA1.cpp:208
uint8_t C[BLOCK_LENGTH]
Definition: SHA1.h:63
static std::array< uint8_t, 20 > hash(ArrayRef< uint8_t > Data)
Returns a raw 160-bit SHA1 hash for the given data.
Definition: SHA1.cpp:300
std::array< uint8_t, 20 > result()
Return the current raw 160-bits SHA1 for the digested data since the last call to init().
Definition: SHA1.cpp:288
void init()
Reinitialize the internal state.
Definition: SHA1.cpp:81
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
uint32_t read32be(const void *P)
Definition: Endian.h:418
constexpr bool IsBigEndianHost
Definition: SwapByteOrder.h:26
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
constexpr T byteswap(T V) noexcept
Reverses the bytes in the given integer value V.
Definition: bit.h:101