LLVM  9.0.0svn
BitcodeWriter.cpp
Go to the documentation of this file.
1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
10 //
11 //===----------------------------------------------------------------------===//
12 
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/Bitcode/BitCodes.h"
30 #include "llvm/Config/llvm-config.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalIFunc.h"
43 #include "llvm/IR/GlobalObject.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/UseListOrder.h"
57 #include "llvm/IR/Value.h"
60 #include "llvm/Object/IRSymtab.h"
62 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/Endian.h"
65 #include "llvm/Support/Error.h"
68 #include "llvm/Support/SHA1.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstddef>
74 #include <cstdint>
75 #include <iterator>
76 #include <map>
77 #include <memory>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 static cl::opt<unsigned>
85  IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
86  cl::desc("Number of metadatas above which we emit an index "
87  "to enable lazy-loading"));
88 
90  "write-relbf-to-summary", cl::Hidden, cl::init(false),
91  cl::desc("Write relative block frequency to function summary "));
92 
94 
95 namespace {
96 
97 /// These are manifest constants used by the bitcode writer. They do not need to
98 /// be kept in sync with the reader, but need to be consistent within this file.
99 enum {
100  // VALUE_SYMTAB_BLOCK abbrev id's.
101  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
102  VST_ENTRY_7_ABBREV,
103  VST_ENTRY_6_ABBREV,
104  VST_BBENTRY_6_ABBREV,
105 
106  // CONSTANTS_BLOCK abbrev id's.
107  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
108  CONSTANTS_INTEGER_ABBREV,
109  CONSTANTS_CE_CAST_Abbrev,
110  CONSTANTS_NULL_Abbrev,
111 
112  // FUNCTION_BLOCK abbrev id's.
113  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
114  FUNCTION_INST_UNOP_ABBREV,
115  FUNCTION_INST_UNOP_FLAGS_ABBREV,
116  FUNCTION_INST_BINOP_ABBREV,
117  FUNCTION_INST_BINOP_FLAGS_ABBREV,
118  FUNCTION_INST_CAST_ABBREV,
119  FUNCTION_INST_RET_VOID_ABBREV,
120  FUNCTION_INST_RET_VAL_ABBREV,
121  FUNCTION_INST_UNREACHABLE_ABBREV,
122  FUNCTION_INST_GEP_ABBREV,
123 };
124 
125 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
126 /// file type.
127 class BitcodeWriterBase {
128 protected:
129  /// The stream created and owned by the client.
130  BitstreamWriter &Stream;
131 
132  StringTableBuilder &StrtabBuilder;
133 
134 public:
135  /// Constructs a BitcodeWriterBase object that writes to the provided
136  /// \p Stream.
137  BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
138  : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
139 
140 protected:
141  void writeBitcodeHeader();
142  void writeModuleVersion();
143 };
144 
145 void BitcodeWriterBase::writeModuleVersion() {
146  // VERSION: [version#]
147  Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
148 }
149 
150 /// Base class to manage the module bitcode writing, currently subclassed for
151 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
152 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
153 protected:
154  /// The Module to write to bitcode.
155  const Module &M;
156 
157  /// Enumerates ids for all values in the module.
158  ValueEnumerator VE;
159 
160  /// Optional per-module index to write for ThinLTO.
161  const ModuleSummaryIndex *Index;
162 
163  /// Map that holds the correspondence between GUIDs in the summary index,
164  /// that came from indirect call profiles, and a value id generated by this
165  /// class to use in the VST and summary block records.
166  std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
167 
168  /// Tracks the last value id recorded in the GUIDToValueMap.
169  unsigned GlobalValueId;
170 
171  /// Saves the offset of the VSTOffset record that must eventually be
172  /// backpatched with the offset of the actual VST.
173  uint64_t VSTOffsetPlaceholder = 0;
174 
175 public:
176  /// Constructs a ModuleBitcodeWriterBase object for the given Module,
177  /// writing to the provided \p Buffer.
178  ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
179  BitstreamWriter &Stream,
180  bool ShouldPreserveUseListOrder,
181  const ModuleSummaryIndex *Index)
182  : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
183  VE(M, ShouldPreserveUseListOrder), Index(Index) {
184  // Assign ValueIds to any callee values in the index that came from
185  // indirect call profiles and were recorded as a GUID not a Value*
186  // (which would have been assigned an ID by the ValueEnumerator).
187  // The starting ValueId is just after the number of values in the
188  // ValueEnumerator, so that they can be emitted in the VST.
189  GlobalValueId = VE.getValues().size();
190  if (!Index)
191  return;
192  for (const auto &GUIDSummaryLists : *Index)
193  // Examine all summaries for this GUID.
194  for (auto &Summary : GUIDSummaryLists.second.SummaryList)
195  if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
196  // For each call in the function summary, see if the call
197  // is to a GUID (which means it is for an indirect call,
198  // otherwise we would have a Value for it). If so, synthesize
199  // a value id.
200  for (auto &CallEdge : FS->calls())
201  if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
202  assignValueId(CallEdge.first.getGUID());
203  }
204 
205 protected:
206  void writePerModuleGlobalValueSummary();
207 
208 private:
209  void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
210  GlobalValueSummary *Summary,
211  unsigned ValueID,
212  unsigned FSCallsAbbrev,
213  unsigned FSCallsProfileAbbrev,
214  const Function &F);
215  void writeModuleLevelReferences(const GlobalVariable &V,
216  SmallVector<uint64_t, 64> &NameVals,
217  unsigned FSModRefsAbbrev);
218 
219  void assignValueId(GlobalValue::GUID ValGUID) {
220  GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
221  }
222 
223  unsigned getValueId(GlobalValue::GUID ValGUID) {
224  const auto &VMI = GUIDToValueIdMap.find(ValGUID);
225  // Expect that any GUID value had a value Id assigned by an
226  // earlier call to assignValueId.
227  assert(VMI != GUIDToValueIdMap.end() &&
228  "GUID does not have assigned value Id");
229  return VMI->second;
230  }
231 
232  // Helper to get the valueId for the type of value recorded in VI.
233  unsigned getValueId(ValueInfo VI) {
234  if (!VI.haveGVs() || !VI.getValue())
235  return getValueId(VI.getGUID());
236  return VE.getValueID(VI.getValue());
237  }
238 
239  std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
240 };
241 
242 /// Class to manage the bitcode writing for a module.
243 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
244  /// Pointer to the buffer allocated by caller for bitcode writing.
245  const SmallVectorImpl<char> &Buffer;
246 
247  /// True if a module hash record should be written.
248  bool GenerateHash;
249 
250  /// If non-null, when GenerateHash is true, the resulting hash is written
251  /// into ModHash.
252  ModuleHash *ModHash;
253 
254  SHA1 Hasher;
255 
256  /// The start bit of the identification block.
257  uint64_t BitcodeStartBit;
258 
259 public:
260  /// Constructs a ModuleBitcodeWriter object for the given Module,
261  /// writing to the provided \p Buffer.
262  ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
263  StringTableBuilder &StrtabBuilder,
264  BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
265  const ModuleSummaryIndex *Index, bool GenerateHash,
266  ModuleHash *ModHash = nullptr)
267  : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
268  ShouldPreserveUseListOrder, Index),
269  Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
270  BitcodeStartBit(Stream.GetCurrentBitNo()) {}
271 
272  /// Emit the current module to the bitstream.
273  void write();
274 
275 private:
276  uint64_t bitcodeStartBit() { return BitcodeStartBit; }
277 
278  size_t addToStrtab(StringRef Str);
279 
280  void writeAttributeGroupTable();
281  void writeAttributeTable();
282  void writeTypeTable();
283  void writeComdats();
284  void writeValueSymbolTableForwardDecl();
285  void writeModuleInfo();
286  void writeValueAsMetadata(const ValueAsMetadata *MD,
289  unsigned Abbrev);
290  unsigned createDILocationAbbrev();
292  unsigned &Abbrev);
293  unsigned createGenericDINodeAbbrev();
294  void writeGenericDINode(const GenericDINode *N,
295  SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
297  unsigned Abbrev);
298  void writeDIEnumerator(const DIEnumerator *N,
299  SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
301  unsigned Abbrev);
302  void writeDIDerivedType(const DIDerivedType *N,
303  SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
305  SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
308  unsigned Abbrev);
310  unsigned Abbrev);
311  void writeDICompileUnit(const DICompileUnit *N,
312  SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
313  void writeDISubprogram(const DISubprogram *N,
314  SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
316  SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
319  unsigned Abbrev);
321  unsigned Abbrev);
323  unsigned Abbrev);
325  unsigned Abbrev);
327  unsigned Abbrev);
330  unsigned Abbrev);
333  unsigned Abbrev);
336  unsigned Abbrev);
338  SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
339  void writeDILabel(const DILabel *N,
340  SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
341  void writeDIExpression(const DIExpression *N,
342  SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
345  unsigned Abbrev);
347  SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
350  unsigned Abbrev);
351  unsigned createNamedMetadataAbbrev();
352  void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
353  unsigned createMetadataStringsAbbrev();
354  void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
356  void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
358  std::vector<unsigned> *MDAbbrevs = nullptr,
359  std::vector<uint64_t> *IndexPos = nullptr);
360  void writeModuleMetadata();
361  void writeFunctionMetadata(const Function &F);
362  void writeFunctionMetadataAttachment(const Function &F);
363  void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
364  void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
365  const GlobalObject &GO);
366  void writeModuleMetadataKinds();
367  void writeOperandBundleTags();
368  void writeSyncScopeNames();
369  void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
370  void writeModuleConstants();
371  bool pushValueAndType(const Value *V, unsigned InstID,
373  void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
374  void pushValue(const Value *V, unsigned InstID,
376  void pushValueSigned(const Value *V, unsigned InstID,
378  void writeInstruction(const Instruction &I, unsigned InstID,
380  void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
381  void writeGlobalValueSymbolTable(
382  DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
383  void writeUseList(UseListOrder &&Order);
384  void writeUseListBlock(const Function *F);
385  void
386  writeFunction(const Function &F,
387  DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
388  void writeBlockInfo();
389  void writeModuleHash(size_t BlockStartPos);
390 
391  unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
392  return unsigned(SSID);
393  }
394 };
395 
396 /// Class to manage the bitcode writing for a combined index.
397 class IndexBitcodeWriter : public BitcodeWriterBase {
398  /// The combined index to write to bitcode.
399  const ModuleSummaryIndex &Index;
400 
401  /// When writing a subset of the index for distributed backends, client
402  /// provides a map of modules to the corresponding GUIDs/summaries to write.
403  const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
404 
405  /// Map that holds the correspondence between the GUID used in the combined
406  /// index and a value id generated by this class to use in references.
407  std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
408 
409  /// Tracks the last value id recorded in the GUIDToValueMap.
410  unsigned GlobalValueId = 0;
411 
412 public:
413  /// Constructs a IndexBitcodeWriter object for the given combined index,
414  /// writing to the provided \p Buffer. When writing a subset of the index
415  /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
416  IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
417  const ModuleSummaryIndex &Index,
418  const std::map<std::string, GVSummaryMapTy>
419  *ModuleToSummariesForIndex = nullptr)
420  : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
421  ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
422  // Assign unique value ids to all summaries to be written, for use
423  // in writing out the call graph edges. Save the mapping from GUID
424  // to the new global value id to use when writing those edges, which
425  // are currently saved in the index in terms of GUID.
426  forEachSummary([&](GVInfo I, bool) {
427  GUIDToValueIdMap[I.first] = ++GlobalValueId;
428  });
429  }
430 
431  /// The below iterator returns the GUID and associated summary.
432  using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
433 
434  /// Calls the callback for each value GUID and summary to be written to
435  /// bitcode. This hides the details of whether they are being pulled from the
436  /// entire index or just those in a provided ModuleToSummariesForIndex map.
437  template<typename Functor>
438  void forEachSummary(Functor Callback) {
439  if (ModuleToSummariesForIndex) {
440  for (auto &M : *ModuleToSummariesForIndex)
441  for (auto &Summary : M.second) {
442  Callback(Summary, false);
443  // Ensure aliasee is handled, e.g. for assigning a valueId,
444  // even if we are not importing the aliasee directly (the
445  // imported alias will contain a copy of aliasee).
446  if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
447  Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
448  }
449  } else {
450  for (auto &Summaries : Index)
451  for (auto &Summary : Summaries.second.SummaryList)
452  Callback({Summaries.first, Summary.get()}, false);
453  }
454  }
455 
456  /// Calls the callback for each entry in the modulePaths StringMap that
457  /// should be written to the module path string table. This hides the details
458  /// of whether they are being pulled from the entire index or just those in a
459  /// provided ModuleToSummariesForIndex map.
460  template <typename Functor> void forEachModule(Functor Callback) {
461  if (ModuleToSummariesForIndex) {
462  for (const auto &M : *ModuleToSummariesForIndex) {
463  const auto &MPI = Index.modulePaths().find(M.first);
464  if (MPI == Index.modulePaths().end()) {
465  // This should only happen if the bitcode file was empty, in which
466  // case we shouldn't be importing (the ModuleToSummariesForIndex
467  // would only include the module we are writing and index for).
468  assert(ModuleToSummariesForIndex->size() == 1);
469  continue;
470  }
471  Callback(*MPI);
472  }
473  } else {
474  for (const auto &MPSE : Index.modulePaths())
475  Callback(MPSE);
476  }
477  }
478 
479  /// Main entry point for writing a combined index to bitcode.
480  void write();
481 
482 private:
483  void writeModStrings();
484  void writeCombinedGlobalValueSummary();
485 
486  Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
487  auto VMI = GUIDToValueIdMap.find(ValGUID);
488  if (VMI == GUIDToValueIdMap.end())
489  return None;
490  return VMI->second;
491  }
492 
493  std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
494 };
495 
496 } // end anonymous namespace
497 
498 static unsigned getEncodedCastOpcode(unsigned Opcode) {
499  switch (Opcode) {
500  default: llvm_unreachable("Unknown cast instruction!");
501  case Instruction::Trunc : return bitc::CAST_TRUNC;
502  case Instruction::ZExt : return bitc::CAST_ZEXT;
503  case Instruction::SExt : return bitc::CAST_SEXT;
504  case Instruction::FPToUI : return bitc::CAST_FPTOUI;
505  case Instruction::FPToSI : return bitc::CAST_FPTOSI;
506  case Instruction::UIToFP : return bitc::CAST_UITOFP;
507  case Instruction::SIToFP : return bitc::CAST_SITOFP;
508  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
509  case Instruction::FPExt : return bitc::CAST_FPEXT;
510  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
511  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
512  case Instruction::BitCast : return bitc::CAST_BITCAST;
513  case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
514  }
515 }
516 
517 static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
518  switch (Opcode) {
519  default: llvm_unreachable("Unknown binary instruction!");
520  case Instruction::FNeg: return bitc::UNOP_NEG;
521  }
522 }
523 
524 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
525  switch (Opcode) {
526  default: llvm_unreachable("Unknown binary instruction!");
527  case Instruction::Add:
528  case Instruction::FAdd: return bitc::BINOP_ADD;
529  case Instruction::Sub:
530  case Instruction::FSub: return bitc::BINOP_SUB;
531  case Instruction::Mul:
532  case Instruction::FMul: return bitc::BINOP_MUL;
533  case Instruction::UDiv: return bitc::BINOP_UDIV;
534  case Instruction::FDiv:
535  case Instruction::SDiv: return bitc::BINOP_SDIV;
536  case Instruction::URem: return bitc::BINOP_UREM;
537  case Instruction::FRem:
538  case Instruction::SRem: return bitc::BINOP_SREM;
539  case Instruction::Shl: return bitc::BINOP_SHL;
540  case Instruction::LShr: return bitc::BINOP_LSHR;
541  case Instruction::AShr: return bitc::BINOP_ASHR;
542  case Instruction::And: return bitc::BINOP_AND;
543  case Instruction::Or: return bitc::BINOP_OR;
544  case Instruction::Xor: return bitc::BINOP_XOR;
545  }
546 }
547 
549  switch (Op) {
550  default: llvm_unreachable("Unknown RMW operation!");
551  case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
552  case AtomicRMWInst::Add: return bitc::RMW_ADD;
553  case AtomicRMWInst::Sub: return bitc::RMW_SUB;
554  case AtomicRMWInst::And: return bitc::RMW_AND;
555  case AtomicRMWInst::Nand: return bitc::RMW_NAND;
556  case AtomicRMWInst::Or: return bitc::RMW_OR;
557  case AtomicRMWInst::Xor: return bitc::RMW_XOR;
558  case AtomicRMWInst::Max: return bitc::RMW_MAX;
559  case AtomicRMWInst::Min: return bitc::RMW_MIN;
560  case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
561  case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
562  case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
563  case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
564  }
565 }
566 
567 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
568  switch (Ordering) {
576  }
577  llvm_unreachable("Invalid ordering");
578 }
579 
580 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
581  StringRef Str, unsigned AbbrevToUse) {
583 
584  // Code: [strchar x N]
585  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
586  if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
587  AbbrevToUse = 0;
588  Vals.push_back(Str[i]);
589  }
590 
591  // Emit the finished record.
592  Stream.EmitRecord(Code, Vals, AbbrevToUse);
593 }
594 
596  switch (Kind) {
597  case Attribute::Alignment:
599  case Attribute::AllocSize:
601  case Attribute::AlwaysInline:
603  case Attribute::ArgMemOnly:
605  case Attribute::Builtin:
607  case Attribute::ByVal:
608  return bitc::ATTR_KIND_BY_VAL;
611  case Attribute::InAlloca:
613  case Attribute::Cold:
614  return bitc::ATTR_KIND_COLD;
615  case Attribute::InaccessibleMemOnly:
617  case Attribute::InaccessibleMemOrArgMemOnly:
619  case Attribute::InlineHint:
621  case Attribute::InReg:
622  return bitc::ATTR_KIND_IN_REG;
625  case Attribute::MinSize:
627  case Attribute::Naked:
628  return bitc::ATTR_KIND_NAKED;
629  case Attribute::Nest:
630  return bitc::ATTR_KIND_NEST;
631  case Attribute::NoAlias:
633  case Attribute::NoBuiltin:
635  case Attribute::NoCapture:
637  case Attribute::NoDuplicate:
639  case Attribute::NoImplicitFloat:
641  case Attribute::NoInline:
643  case Attribute::NoRecurse:
645  case Attribute::NonLazyBind:
647  case Attribute::NonNull:
649  case Attribute::Dereferenceable:
651  case Attribute::DereferenceableOrNull:
653  case Attribute::NoRedZone:
655  case Attribute::NoReturn:
657  case Attribute::NoCfCheck:
659  case Attribute::NoUnwind:
661  case Attribute::OptForFuzzing:
663  case Attribute::OptimizeForSize:
665  case Attribute::OptimizeNone:
667  case Attribute::ReadNone:
669  case Attribute::ReadOnly:
671  case Attribute::Returned:
673  case Attribute::ReturnsTwice:
675  case Attribute::SExt:
676  return bitc::ATTR_KIND_S_EXT;
677  case Attribute::Speculatable:
679  case Attribute::StackAlignment:
681  case Attribute::StackProtect:
683  case Attribute::StackProtectReq:
685  case Attribute::StackProtectStrong:
687  case Attribute::SafeStack:
689  case Attribute::ShadowCallStack:
691  case Attribute::StrictFP:
693  case Attribute::StructRet:
695  case Attribute::SanitizeAddress:
697  case Attribute::SanitizeHWAddress:
699  case Attribute::SanitizeThread:
701  case Attribute::SanitizeMemory:
703  case Attribute::SpeculativeLoadHardening:
705  case Attribute::SwiftError:
707  case Attribute::SwiftSelf:
709  case Attribute::UWTable:
711  case Attribute::WriteOnly:
713  case Attribute::ZExt:
714  return bitc::ATTR_KIND_Z_EXT;
715  case Attribute::ImmArg:
716  return bitc::ATTR_KIND_IMMARG;
718  llvm_unreachable("Can not encode end-attribute kinds marker.");
719  case Attribute::None:
720  llvm_unreachable("Can not encode none-attribute.");
721  }
722 
723  llvm_unreachable("Trying to encode unknown attribute");
724 }
725 
726 void ModuleBitcodeWriter::writeAttributeGroupTable() {
727  const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
728  VE.getAttributeGroups();
729  if (AttrGrps.empty()) return;
730 
732 
734  for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
735  unsigned AttrListIndex = Pair.first;
736  AttributeSet AS = Pair.second;
737  Record.push_back(VE.getAttributeGroupID(Pair));
738  Record.push_back(AttrListIndex);
739 
740  for (Attribute Attr : AS) {
741  if (Attr.isEnumAttribute()) {
742  Record.push_back(0);
743  Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
744  } else if (Attr.isIntAttribute()) {
745  Record.push_back(1);
746  Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
747  Record.push_back(Attr.getValueAsInt());
748  } else {
749  StringRef Kind = Attr.getKindAsString();
750  StringRef Val = Attr.getValueAsString();
751 
752  Record.push_back(Val.empty() ? 3 : 4);
753  Record.append(Kind.begin(), Kind.end());
754  Record.push_back(0);
755  if (!Val.empty()) {
756  Record.append(Val.begin(), Val.end());
757  Record.push_back(0);
758  }
759  }
760  }
761 
763  Record.clear();
764  }
765 
766  Stream.ExitBlock();
767 }
768 
769 void ModuleBitcodeWriter::writeAttributeTable() {
770  const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
771  if (Attrs.empty()) return;
772 
774 
776  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
777  AttributeList AL = Attrs[i];
778  for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) {
779  AttributeSet AS = AL.getAttributes(i);
780  if (AS.hasAttributes())
781  Record.push_back(VE.getAttributeGroupID({i, AS}));
782  }
783 
784  Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
785  Record.clear();
786  }
787 
788  Stream.ExitBlock();
789 }
790 
791 /// WriteTypeTable - Write out the type table for a module.
792 void ModuleBitcodeWriter::writeTypeTable() {
793  const ValueEnumerator::TypeList &TypeList = VE.getTypes();
794 
795  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
796  SmallVector<uint64_t, 64> TypeVals;
797 
798  uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
799 
800  // Abbrev for TYPE_CODE_POINTER.
801  auto Abbv = std::make_shared<BitCodeAbbrev>();
803  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
804  Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
805  unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
806 
807  // Abbrev for TYPE_CODE_FUNCTION.
808  Abbv = std::make_shared<BitCodeAbbrev>();
810  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
812  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
813  unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
814 
815  // Abbrev for TYPE_CODE_STRUCT_ANON.
816  Abbv = std::make_shared<BitCodeAbbrev>();
818  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
820  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
821  unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
822 
823  // Abbrev for TYPE_CODE_STRUCT_NAME.
824  Abbv = std::make_shared<BitCodeAbbrev>();
828  unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
829 
830  // Abbrev for TYPE_CODE_STRUCT_NAMED.
831  Abbv = std::make_shared<BitCodeAbbrev>();
833  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
835  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
836  unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
837 
838  // Abbrev for TYPE_CODE_ARRAY.
839  Abbv = std::make_shared<BitCodeAbbrev>();
841  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
842  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
843  unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
844 
845  // Emit an entry count so the reader can reserve space.
846  TypeVals.push_back(TypeList.size());
847  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
848  TypeVals.clear();
849 
850  // Loop over all of the types, emitting each in turn.
851  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
852  Type *T = TypeList[i];
853  int AbbrevToUse = 0;
854  unsigned Code = 0;
855 
856  switch (T->getTypeID()) {
857  case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
858  case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
859  case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
860  case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
861  case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
862  case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
864  case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
865  case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
866  case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
867  case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break;
868  case Type::IntegerTyID:
869  // INTEGER: [width]
871  TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
872  break;
873  case Type::PointerTyID: {
874  PointerType *PTy = cast<PointerType>(T);
875  // POINTER: [pointee type, address space]
877  TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
878  unsigned AddressSpace = PTy->getAddressSpace();
879  TypeVals.push_back(AddressSpace);
880  if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
881  break;
882  }
883  case Type::FunctionTyID: {
884  FunctionType *FT = cast<FunctionType>(T);
885  // FUNCTION: [isvararg, retty, paramty x N]
887  TypeVals.push_back(FT->isVarArg());
888  TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
889  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
890  TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
891  AbbrevToUse = FunctionAbbrev;
892  break;
893  }
894  case Type::StructTyID: {
895  StructType *ST = cast<StructType>(T);
896  // STRUCT: [ispacked, eltty x N]
897  TypeVals.push_back(ST->isPacked());
898  // Output all of the element types.
900  E = ST->element_end(); I != E; ++I)
901  TypeVals.push_back(VE.getTypeID(*I));
902 
903  if (ST->isLiteral()) {
905  AbbrevToUse = StructAnonAbbrev;
906  } else {
907  if (ST->isOpaque()) {
908  Code = bitc::TYPE_CODE_OPAQUE;
909  } else {
911  AbbrevToUse = StructNamedAbbrev;
912  }
913 
914  // Emit the name if it is present.
915  if (!ST->getName().empty())
917  StructNameAbbrev);
918  }
919  break;
920  }
921  case Type::ArrayTyID: {
922  ArrayType *AT = cast<ArrayType>(T);
923  // ARRAY: [numelts, eltty]
924  Code = bitc::TYPE_CODE_ARRAY;
925  TypeVals.push_back(AT->getNumElements());
926  TypeVals.push_back(VE.getTypeID(AT->getElementType()));
927  AbbrevToUse = ArrayAbbrev;
928  break;
929  }
930  case Type::VectorTyID: {
931  VectorType *VT = cast<VectorType>(T);
932  // VECTOR [numelts, eltty]
933  Code = bitc::TYPE_CODE_VECTOR;
934  TypeVals.push_back(VT->getNumElements());
935  TypeVals.push_back(VE.getTypeID(VT->getElementType()));
936  break;
937  }
938  }
939 
940  // Emit the finished record.
941  Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
942  TypeVals.clear();
943  }
944 
945  Stream.ExitBlock();
946 }
947 
948 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
949  switch (Linkage) {
951  return 0;
953  return 16;
955  return 2;
957  return 3;
959  return 18;
961  return 7;
963  return 8;
965  return 9;
967  return 17;
969  return 19;
971  return 12;
972  }
973  llvm_unreachable("Invalid linkage");
974 }
975 
976 static unsigned getEncodedLinkage(const GlobalValue &GV) {
977  return getEncodedLinkage(GV.getLinkage());
978 }
979 
981  uint64_t RawFlags = 0;
982  RawFlags |= Flags.ReadNone;
983  RawFlags |= (Flags.ReadOnly << 1);
984  RawFlags |= (Flags.NoRecurse << 2);
985  RawFlags |= (Flags.ReturnDoesNotAlias << 3);
986  RawFlags |= (Flags.NoInline << 4);
987  return RawFlags;
988 }
989 
990 // Decode the flags for GlobalValue in the summary
992  uint64_t RawFlags = 0;
993 
994  RawFlags |= Flags.NotEligibleToImport; // bool
995  RawFlags |= (Flags.Live << 1);
996  RawFlags |= (Flags.DSOLocal << 2);
997 
998  // Linkage don't need to be remapped at that time for the summary. Any future
999  // change to the getEncodedLinkage() function will need to be taken into
1000  // account here as well.
1001  RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1002 
1003  return RawFlags;
1004 }
1005 
1007  uint64_t RawFlags = Flags.ReadOnly;
1008  return RawFlags;
1009 }
1010 
1011 static unsigned getEncodedVisibility(const GlobalValue &GV) {
1012  switch (GV.getVisibility()) {
1013  case GlobalValue::DefaultVisibility: return 0;
1014  case GlobalValue::HiddenVisibility: return 1;
1015  case GlobalValue::ProtectedVisibility: return 2;
1016  }
1017  llvm_unreachable("Invalid visibility");
1018 }
1019 
1020 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1021  switch (GV.getDLLStorageClass()) {
1022  case GlobalValue::DefaultStorageClass: return 0;
1023  case GlobalValue::DLLImportStorageClass: return 1;
1024  case GlobalValue::DLLExportStorageClass: return 2;
1025  }
1026  llvm_unreachable("Invalid DLL storage class");
1027 }
1028 
1029 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1030  switch (GV.getThreadLocalMode()) {
1031  case GlobalVariable::NotThreadLocal: return 0;
1033  case GlobalVariable::LocalDynamicTLSModel: return 2;
1034  case GlobalVariable::InitialExecTLSModel: return 3;
1035  case GlobalVariable::LocalExecTLSModel: return 4;
1036  }
1037  llvm_unreachable("Invalid TLS model");
1038 }
1039 
1040 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1041  switch (C.getSelectionKind()) {
1042  case Comdat::Any:
1044  case Comdat::ExactMatch:
1046  case Comdat::Largest:
1048  case Comdat::NoDuplicates:
1050  case Comdat::SameSize:
1052  }
1053  llvm_unreachable("Invalid selection kind");
1054 }
1055 
1056 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1057  switch (GV.getUnnamedAddr()) {
1058  case GlobalValue::UnnamedAddr::None: return 0;
1059  case GlobalValue::UnnamedAddr::Local: return 2;
1060  case GlobalValue::UnnamedAddr::Global: return 1;
1061  }
1062  llvm_unreachable("Invalid unnamed_addr");
1063 }
1064 
1065 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1066  if (GenerateHash)
1067  Hasher.update(Str);
1068  return StrtabBuilder.add(Str);
1069 }
1070 
1071 void ModuleBitcodeWriter::writeComdats() {
1073  for (const Comdat *C : VE.getComdats()) {
1074  // COMDAT: [strtab offset, strtab size, selection_kind]
1075  Vals.push_back(addToStrtab(C->getName()));
1076  Vals.push_back(C->getName().size());
1078  Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1079  Vals.clear();
1080  }
1081 }
1082 
1083 /// Write a record that will eventually hold the word offset of the
1084 /// module-level VST. For now the offset is 0, which will be backpatched
1085 /// after the real VST is written. Saves the bit offset to backpatch.
1086 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1087  // Write a placeholder value in for the offset of the real VST,
1088  // which is written after the function blocks so that it can include
1089  // the offset of each function. The placeholder offset will be
1090  // updated when the real VST is written.
1091  auto Abbv = std::make_shared<BitCodeAbbrev>();
1093  // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1094  // hold the real VST offset. Must use fixed instead of VBR as we don't
1095  // know how many VBR chunks to reserve ahead of time.
1096  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1097  unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1098 
1099  // Emit the placeholder
1100  uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1101  Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1102 
1103  // Compute and save the bit offset to the placeholder, which will be
1104  // patched when the real VST is written. We can simply subtract the 32-bit
1105  // fixed size from the current bit number to get the location to backpatch.
1106  VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1107 }
1108 
1110 
1111 /// Determine the encoding to use for the given string name and length.
1113  bool isChar6 = true;
1114  for (char C : Str) {
1115  if (isChar6)
1116  isChar6 = BitCodeAbbrevOp::isChar6(C);
1117  if ((unsigned char)C & 128)
1118  // don't bother scanning the rest.
1119  return SE_Fixed8;
1120  }
1121  if (isChar6)
1122  return SE_Char6;
1123  return SE_Fixed7;
1124 }
1125 
1126 /// Emit top-level description of module, including target triple, inline asm,
1127 /// descriptors for global variables, and function prototype info.
1128 /// Returns the bit offset to backpatch with the location of the real VST.
1129 void ModuleBitcodeWriter::writeModuleInfo() {
1130  // Emit various pieces of data attached to a module.
1131  if (!M.getTargetTriple().empty())
1133  0 /*TODO*/);
1134  const std::string &DL = M.getDataLayoutStr();
1135  if (!DL.empty())
1136  writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1137  if (!M.getModuleInlineAsm().empty())
1139  0 /*TODO*/);
1140 
1141  // Emit information about sections and GC, computing how many there are. Also
1142  // compute the maximum alignment value.
1143  std::map<std::string, unsigned> SectionMap;
1144  std::map<std::string, unsigned> GCMap;
1145  unsigned MaxAlignment = 0;
1146  unsigned MaxGlobalType = 0;
1147  for (const GlobalValue &GV : M.globals()) {
1148  MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1149  MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1150  if (GV.hasSection()) {
1151  // Give section names unique ID's.
1152  unsigned &Entry = SectionMap[GV.getSection()];
1153  if (!Entry) {
1154  writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1155  0 /*TODO*/);
1156  Entry = SectionMap.size();
1157  }
1158  }
1159  }
1160  for (const Function &F : M) {
1161  MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1162  if (F.hasSection()) {
1163  // Give section names unique ID's.
1164  unsigned &Entry = SectionMap[F.getSection()];
1165  if (!Entry) {
1166  writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1167  0 /*TODO*/);
1168  Entry = SectionMap.size();
1169  }
1170  }
1171  if (F.hasGC()) {
1172  // Same for GC names.
1173  unsigned &Entry = GCMap[F.getGC()];
1174  if (!Entry) {
1175  writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1176  0 /*TODO*/);
1177  Entry = GCMap.size();
1178  }
1179  }
1180  }
1181 
1182  // Emit abbrev for globals, now that we know # sections and max alignment.
1183  unsigned SimpleGVarAbbrev = 0;
1184  if (!M.global_empty()) {
1185  // Add an abbrev for common globals with no visibility or thread localness.
1186  auto Abbv = std::make_shared<BitCodeAbbrev>();
1188  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1189  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1191  Log2_32_Ceil(MaxGlobalType+1)));
1192  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
1193  //| explicitType << 1
1194  //| constant
1195  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
1196  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1197  if (MaxAlignment == 0) // Alignment.
1198  Abbv->Add(BitCodeAbbrevOp(0));
1199  else {
1200  unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1202  Log2_32_Ceil(MaxEncAlignment+1)));
1203  }
1204  if (SectionMap.empty()) // Section.
1205  Abbv->Add(BitCodeAbbrevOp(0));
1206  else
1208  Log2_32_Ceil(SectionMap.size()+1)));
1209  // Don't bother emitting vis + thread local.
1210  SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1211  }
1212 
1214  // Emit the module's source file name.
1215  {
1216  StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1218  if (Bits == SE_Char6)
1219  AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1220  else if (Bits == SE_Fixed7)
1221  AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1222 
1223  // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1224  auto Abbv = std::make_shared<BitCodeAbbrev>();
1227  Abbv->Add(AbbrevOpToUse);
1228  unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1229 
1230  for (const auto P : M.getSourceFileName())
1231  Vals.push_back((unsigned char)P);
1232 
1233  // Emit the finished record.
1234  Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1235  Vals.clear();
1236  }
1237 
1238  // Emit the global variable information.
1239  for (const GlobalVariable &GV : M.globals()) {
1240  unsigned AbbrevToUse = 0;
1241 
1242  // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1243  // linkage, alignment, section, visibility, threadlocal,
1244  // unnamed_addr, externally_initialized, dllstorageclass,
1245  // comdat, attributes, DSO_Local]
1246  Vals.push_back(addToStrtab(GV.getName()));
1247  Vals.push_back(GV.getName().size());
1248  Vals.push_back(VE.getTypeID(GV.getValueType()));
1249  Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1250  Vals.push_back(GV.isDeclaration() ? 0 :
1251  (VE.getValueID(GV.getInitializer()) + 1));
1252  Vals.push_back(getEncodedLinkage(GV));
1253  Vals.push_back(Log2_32(GV.getAlignment())+1);
1254  Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
1255  if (GV.isThreadLocal() ||
1256  GV.getVisibility() != GlobalValue::DefaultVisibility ||
1257  GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1258  GV.isExternallyInitialized() ||
1259  GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1260  GV.hasComdat() ||
1261  GV.hasAttributes() ||
1262  GV.isDSOLocal()) {
1263  Vals.push_back(getEncodedVisibility(GV));
1265  Vals.push_back(getEncodedUnnamedAddr(GV));
1266  Vals.push_back(GV.isExternallyInitialized());
1268  Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1269 
1270  auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1271  Vals.push_back(VE.getAttributeListID(AL));
1272 
1273  Vals.push_back(GV.isDSOLocal());
1274  } else {
1275  AbbrevToUse = SimpleGVarAbbrev;
1276  }
1277 
1278  Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1279  Vals.clear();
1280  }
1281 
1282  // Emit the function proto information.
1283  for (const Function &F : M) {
1284  // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto,
1285  // linkage, paramattrs, alignment, section, visibility, gc,
1286  // unnamed_addr, prologuedata, dllstorageclass, comdat,
1287  // prefixdata, personalityfn, DSO_Local, addrspace]
1288  Vals.push_back(addToStrtab(F.getName()));
1289  Vals.push_back(F.getName().size());
1290  Vals.push_back(VE.getTypeID(F.getFunctionType()));
1291  Vals.push_back(F.getCallingConv());
1292  Vals.push_back(F.isDeclaration());
1293  Vals.push_back(getEncodedLinkage(F));
1294  Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1295  Vals.push_back(Log2_32(F.getAlignment())+1);
1296  Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
1298  Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1300  Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1301  : 0);
1303  Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1304  Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1305  : 0);
1306  Vals.push_back(
1307  F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1308 
1309  Vals.push_back(F.isDSOLocal());
1310  Vals.push_back(F.getAddressSpace());
1311 
1312  unsigned AbbrevToUse = 0;
1313  Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1314  Vals.clear();
1315  }
1316 
1317  // Emit the alias information.
1318  for (const GlobalAlias &A : M.aliases()) {
1319  // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1320  // visibility, dllstorageclass, threadlocal, unnamed_addr,
1321  // DSO_Local]
1322  Vals.push_back(addToStrtab(A.getName()));
1323  Vals.push_back(A.getName().size());
1324  Vals.push_back(VE.getTypeID(A.getValueType()));
1325  Vals.push_back(A.getType()->getAddressSpace());
1326  Vals.push_back(VE.getValueID(A.getAliasee()));
1327  Vals.push_back(getEncodedLinkage(A));
1332  Vals.push_back(A.isDSOLocal());
1333 
1334  unsigned AbbrevToUse = 0;
1335  Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1336  Vals.clear();
1337  }
1338 
1339  // Emit the ifunc information.
1340  for (const GlobalIFunc &I : M.ifuncs()) {
1341  // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1342  // val#, linkage, visibility, DSO_Local]
1343  Vals.push_back(addToStrtab(I.getName()));
1344  Vals.push_back(I.getName().size());
1345  Vals.push_back(VE.getTypeID(I.getValueType()));
1346  Vals.push_back(I.getType()->getAddressSpace());
1347  Vals.push_back(VE.getValueID(I.getResolver()));
1348  Vals.push_back(getEncodedLinkage(I));
1350  Vals.push_back(I.isDSOLocal());
1351  Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1352  Vals.clear();
1353  }
1354 
1355  writeValueSymbolTableForwardDecl();
1356 }
1357 
1358 static uint64_t getOptimizationFlags(const Value *V) {
1359  uint64_t Flags = 0;
1360 
1361  if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1362  if (OBO->hasNoSignedWrap())
1363  Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1364  if (OBO->hasNoUnsignedWrap())
1365  Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1366  } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1367  if (PEO->isExact())
1368  Flags |= 1 << bitc::PEO_EXACT;
1369  } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1370  if (FPMO->hasAllowReassoc())
1371  Flags |= bitc::AllowReassoc;
1372  if (FPMO->hasNoNaNs())
1373  Flags |= bitc::NoNaNs;
1374  if (FPMO->hasNoInfs())
1375  Flags |= bitc::NoInfs;
1376  if (FPMO->hasNoSignedZeros())
1377  Flags |= bitc::NoSignedZeros;
1378  if (FPMO->hasAllowReciprocal())
1379  Flags |= bitc::AllowReciprocal;
1380  if (FPMO->hasAllowContract())
1381  Flags |= bitc::AllowContract;
1382  if (FPMO->hasApproxFunc())
1383  Flags |= bitc::ApproxFunc;
1384  }
1385 
1386  return Flags;
1387 }
1388 
1389 void ModuleBitcodeWriter::writeValueAsMetadata(
1391  // Mimic an MDNode with a value as one operand.
1392  Value *V = MD->getValue();
1393  Record.push_back(VE.getTypeID(V->getType()));
1394  Record.push_back(VE.getValueID(V));
1395  Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1396  Record.clear();
1397 }
1398 
1400  SmallVectorImpl<uint64_t> &Record,
1401  unsigned Abbrev) {
1402  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1403  Metadata *MD = N->getOperand(i);
1404  assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1405  "Unexpected function-local metadata");
1406  Record.push_back(VE.getMetadataOrNullID(MD));
1407  }
1410  Record, Abbrev);
1411  Record.clear();
1412 }
1413 
1414 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1415  // Assume the column is usually under 128, and always output the inlined-at
1416  // location (it's never more expensive than building an array size 1).
1417  auto Abbv = std::make_shared<BitCodeAbbrev>();
1419  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1420  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1421  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1422  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1423  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1424  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1425  return Stream.EmitAbbrev(std::move(Abbv));
1426 }
1427 
1429  SmallVectorImpl<uint64_t> &Record,
1430  unsigned &Abbrev) {
1431  if (!Abbrev)
1432  Abbrev = createDILocationAbbrev();
1433 
1434  Record.push_back(N->isDistinct());
1435  Record.push_back(N->getLine());
1436  Record.push_back(N->getColumn());
1437  Record.push_back(VE.getMetadataID(N->getScope()));
1438  Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1439  Record.push_back(N->isImplicitCode());
1440 
1441  Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1442  Record.clear();
1443 }
1444 
1445 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1446  // Assume the column is usually under 128, and always output the inlined-at
1447  // location (it's never more expensive than building an array size 1).
1448  auto Abbv = std::make_shared<BitCodeAbbrev>();
1450  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1451  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1452  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1453  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1455  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1456  return Stream.EmitAbbrev(std::move(Abbv));
1457 }
1458 
1460  SmallVectorImpl<uint64_t> &Record,
1461  unsigned &Abbrev) {
1462  if (!Abbrev)
1463  Abbrev = createGenericDINodeAbbrev();
1464 
1465  Record.push_back(N->isDistinct());
1466  Record.push_back(N->getTag());
1467  Record.push_back(0); // Per-tag version field; unused for now.
1468 
1469  for (auto &I : N->operands())
1470  Record.push_back(VE.getMetadataOrNullID(I));
1471 
1472  Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1473  Record.clear();
1474 }
1475 
1476 static uint64_t rotateSign(int64_t I) {
1477  uint64_t U = I;
1478  return I < 0 ? ~(U << 1) : U << 1;
1479 }
1480 
1482  SmallVectorImpl<uint64_t> &Record,
1483  unsigned Abbrev) {
1484  const uint64_t Version = 1 << 1;
1485  Record.push_back((uint64_t)N->isDistinct() | Version);
1486  Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1487  Record.push_back(rotateSign(N->getLowerBound()));
1488 
1489  Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1490  Record.clear();
1491 }
1492 
1494  SmallVectorImpl<uint64_t> &Record,
1495  unsigned Abbrev) {
1496  Record.push_back((N->isUnsigned() << 1) | N->isDistinct());
1497  Record.push_back(rotateSign(N->getValue()));
1498  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1499 
1500  Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1501  Record.clear();
1502 }
1503 
1505  SmallVectorImpl<uint64_t> &Record,
1506  unsigned Abbrev) {
1507  Record.push_back(N->isDistinct());
1508  Record.push_back(N->getTag());
1509  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1510  Record.push_back(N->getSizeInBits());
1511  Record.push_back(N->getAlignInBits());
1512  Record.push_back(N->getEncoding());
1513  Record.push_back(N->getFlags());
1514 
1515  Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1516  Record.clear();
1517 }
1518 
1520  SmallVectorImpl<uint64_t> &Record,
1521  unsigned Abbrev) {
1522  Record.push_back(N->isDistinct());
1523  Record.push_back(N->getTag());
1524  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1525  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1526  Record.push_back(N->getLine());
1527  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1528  Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1529  Record.push_back(N->getSizeInBits());
1530  Record.push_back(N->getAlignInBits());
1531  Record.push_back(N->getOffsetInBits());
1532  Record.push_back(N->getFlags());
1533  Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1534 
1535  // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1536  // that there is no DWARF address space associated with DIDerivedType.
1537  if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1538  Record.push_back(*DWARFAddressSpace + 1);
1539  else
1540  Record.push_back(0);
1541 
1542  Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1543  Record.clear();
1544 }
1545 
1547  const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1548  unsigned Abbrev) {
1549  const unsigned IsNotUsedInOldTypeRef = 0x2;
1550  Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1551  Record.push_back(N->getTag());
1552  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1553  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1554  Record.push_back(N->getLine());
1555  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1556  Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1557  Record.push_back(N->getSizeInBits());
1558  Record.push_back(N->getAlignInBits());
1559  Record.push_back(N->getOffsetInBits());
1560  Record.push_back(N->getFlags());
1561  Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1562  Record.push_back(N->getRuntimeLang());
1564  Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1567 
1568  Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1569  Record.clear();
1570 }
1571 
1573  const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1574  unsigned Abbrev) {
1575  const unsigned HasNoOldTypeRefs = 0x2;
1576  Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1577  Record.push_back(N->getFlags());
1578  Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1579  Record.push_back(N->getCC());
1580 
1581  Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1582  Record.clear();
1583 }
1584 
1586  SmallVectorImpl<uint64_t> &Record,
1587  unsigned Abbrev) {
1588  Record.push_back(N->isDistinct());
1589  Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1590  Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1591  if (N->getRawChecksum()) {
1592  Record.push_back(N->getRawChecksum()->Kind);
1593  Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1594  } else {
1595  // Maintain backwards compatibility with the old internal representation of
1596  // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1597  Record.push_back(0);
1598  Record.push_back(VE.getMetadataOrNullID(nullptr));
1599  }
1600  auto Source = N->getRawSource();
1601  if (Source)
1602  Record.push_back(VE.getMetadataOrNullID(*Source));
1603 
1604  Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1605  Record.clear();
1606 }
1607 
1609  SmallVectorImpl<uint64_t> &Record,
1610  unsigned Abbrev) {
1611  assert(N->isDistinct() && "Expected distinct compile units");
1612  Record.push_back(/* IsDistinct */ true);
1613  Record.push_back(N->getSourceLanguage());
1614  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1615  Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1616  Record.push_back(N->isOptimized());
1617  Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1618  Record.push_back(N->getRuntimeVersion());
1620  Record.push_back(N->getEmissionKind());
1621  Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1622  Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1623  Record.push_back(/* subprograms */ 0);
1624  Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1625  Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1626  Record.push_back(N->getDWOId());
1627  Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1628  Record.push_back(N->getSplitDebugInlining());
1629  Record.push_back(N->getDebugInfoForProfiling());
1630  Record.push_back((unsigned)N->getNameTableKind());
1631 
1632  Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1633  Record.clear();
1634 }
1635 
1637  SmallVectorImpl<uint64_t> &Record,
1638  unsigned Abbrev) {
1639  const uint64_t HasUnitFlag = 1 << 1;
1640  const uint64_t HasSPFlagsFlag = 1 << 2;
1641  Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
1642  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1643  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1644  Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1645  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1646  Record.push_back(N->getLine());
1647  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1648  Record.push_back(N->getScopeLine());
1649  Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1650  Record.push_back(N->getSPFlags());
1651  Record.push_back(N->getVirtualIndex());
1652  Record.push_back(N->getFlags());
1653  Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1654  Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1655  Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1656  Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1657  Record.push_back(N->getThisAdjustment());
1658  Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1659 
1660  Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1661  Record.clear();
1662 }
1663 
1665  SmallVectorImpl<uint64_t> &Record,
1666  unsigned Abbrev) {
1667  Record.push_back(N->isDistinct());
1668  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1669  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1670  Record.push_back(N->getLine());
1671  Record.push_back(N->getColumn());
1672 
1673  Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1674  Record.clear();
1675 }
1676 
1679  unsigned Abbrev) {
1680  Record.push_back(N->isDistinct());
1681  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1682  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1683  Record.push_back(N->getDiscriminator());
1684 
1685  Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1686  Record.clear();
1687 }
1688 
1690  SmallVectorImpl<uint64_t> &Record,
1691  unsigned Abbrev) {
1692  Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1693  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1694  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1695 
1696  Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1697  Record.clear();
1698 }
1699 
1701  SmallVectorImpl<uint64_t> &Record,
1702  unsigned Abbrev) {
1703  Record.push_back(N->isDistinct());
1704  Record.push_back(N->getMacinfoType());
1705  Record.push_back(N->getLine());
1706  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1707  Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1708 
1709  Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1710  Record.clear();
1711 }
1712 
1714  SmallVectorImpl<uint64_t> &Record,
1715  unsigned Abbrev) {
1716  Record.push_back(N->isDistinct());
1717  Record.push_back(N->getMacinfoType());
1718  Record.push_back(N->getLine());
1719  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1720  Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1721 
1722  Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1723  Record.clear();
1724 }
1725 
1727  SmallVectorImpl<uint64_t> &Record,
1728  unsigned Abbrev) {
1729  Record.push_back(N->isDistinct());
1730  for (auto &I : N->operands())
1731  Record.push_back(VE.getMetadataOrNullID(I));
1732 
1733  Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1734  Record.clear();
1735 }
1736 
1739  unsigned Abbrev) {
1740  Record.push_back(N->isDistinct());
1741  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1742  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1743 
1744  Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1745  Record.clear();
1746 }
1747 
1750  unsigned Abbrev) {
1751  Record.push_back(N->isDistinct());
1752  Record.push_back(N->getTag());
1753  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1754  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1755  Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1756 
1757  Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1758  Record.clear();
1759 }
1760 
1762  const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1763  unsigned Abbrev) {
1764  const uint64_t Version = 2 << 1;
1765  Record.push_back((uint64_t)N->isDistinct() | Version);
1766  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1767  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1769  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1770  Record.push_back(N->getLine());
1771  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1772  Record.push_back(N->isLocalToUnit());
1773  Record.push_back(N->isDefinition());
1776  Record.push_back(N->getAlignInBits());
1777 
1778  Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1779  Record.clear();
1780 }
1781 
1783  const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1784  unsigned Abbrev) {
1785  // In order to support all possible bitcode formats in BitcodeReader we need
1786  // to distinguish the following cases:
1787  // 1) Record has no artificial tag (Record[1]),
1788  // has no obsolete inlinedAt field (Record[9]).
1789  // In this case Record size will be 8, HasAlignment flag is false.
1790  // 2) Record has artificial tag (Record[1]),
1791  // has no obsolete inlignedAt field (Record[9]).
1792  // In this case Record size will be 9, HasAlignment flag is false.
1793  // 3) Record has both artificial tag (Record[1]) and
1794  // obsolete inlignedAt field (Record[9]).
1795  // In this case Record size will be 10, HasAlignment flag is false.
1796  // 4) Record has neither artificial tag, nor inlignedAt field, but
1797  // HasAlignment flag is true and Record[8] contains alignment value.
1798  const uint64_t HasAlignmentFlag = 1 << 1;
1799  Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1800  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1801  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1802  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1803  Record.push_back(N->getLine());
1804  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1805  Record.push_back(N->getArg());
1806  Record.push_back(N->getFlags());
1807  Record.push_back(N->getAlignInBits());
1808 
1809  Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1810  Record.clear();
1811 }
1812 
1814  const DILabel *N, SmallVectorImpl<uint64_t> &Record,
1815  unsigned Abbrev) {
1816  Record.push_back((uint64_t)N->isDistinct());
1817  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1818  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1819  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1820  Record.push_back(N->getLine());
1821 
1822  Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
1823  Record.clear();
1824 }
1825 
1827  SmallVectorImpl<uint64_t> &Record,
1828  unsigned Abbrev) {
1829  Record.reserve(N->getElements().size() + 1);
1830  const uint64_t Version = 3 << 1;
1831  Record.push_back((uint64_t)N->isDistinct() | Version);
1832  Record.append(N->elements_begin(), N->elements_end());
1833 
1834  Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1835  Record.clear();
1836 }
1837 
1840  unsigned Abbrev) {
1841  Record.push_back(N->isDistinct());
1842  Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
1843  Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
1844 
1845  Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
1846  Record.clear();
1847 }
1848 
1850  SmallVectorImpl<uint64_t> &Record,
1851  unsigned Abbrev) {
1852  Record.push_back(N->isDistinct());
1853  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1854  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1855  Record.push_back(N->getLine());
1858  Record.push_back(N->getAttributes());
1859  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1860 
1861  Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1862  Record.clear();
1863 }
1864 
1866  const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1867  unsigned Abbrev) {
1868  Record.push_back(N->isDistinct());
1869  Record.push_back(N->getTag());
1870  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1871  Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1872  Record.push_back(N->getLine());
1873  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1874  Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
1875 
1876  Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1877  Record.clear();
1878 }
1879 
1880 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1881  auto Abbv = std::make_shared<BitCodeAbbrev>();
1884  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1885  return Stream.EmitAbbrev(std::move(Abbv));
1886 }
1887 
1888 void ModuleBitcodeWriter::writeNamedMetadata(
1889  SmallVectorImpl<uint64_t> &Record) {
1890  if (M.named_metadata_empty())
1891  return;
1892 
1893  unsigned Abbrev = createNamedMetadataAbbrev();
1894  for (const NamedMDNode &NMD : M.named_metadata()) {
1895  // Write name.
1896  StringRef Str = NMD.getName();
1897  Record.append(Str.bytes_begin(), Str.bytes_end());
1898  Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1899  Record.clear();
1900 
1901  // Write named metadata operands.
1902  for (const MDNode *N : NMD.operands())
1903  Record.push_back(VE.getMetadataID(N));
1904  Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1905  Record.clear();
1906  }
1907 }
1908 
1909 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1910  auto Abbv = std::make_shared<BitCodeAbbrev>();
1912  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
1913  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
1915  return Stream.EmitAbbrev(std::move(Abbv));
1916 }
1917 
1918 /// Write out a record for MDString.
1919 ///
1920 /// All the metadata strings in a metadata block are emitted in a single
1921 /// record. The sizes and strings themselves are shoved into a blob.
1922 void ModuleBitcodeWriter::writeMetadataStrings(
1924  if (Strings.empty())
1925  return;
1926 
1927  // Start the record with the number of strings.
1929  Record.push_back(Strings.size());
1930 
1931  // Emit the sizes of the strings in the blob.
1932  SmallString<256> Blob;
1933  {
1934  BitstreamWriter W(Blob);
1935  for (const Metadata *MD : Strings)
1936  W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
1937  W.FlushToWord();
1938  }
1939 
1940  // Add the offset to the strings to the record.
1941  Record.push_back(Blob.size());
1942 
1943  // Add the strings to the blob.
1944  for (const Metadata *MD : Strings)
1945  Blob.append(cast<MDString>(MD)->getString());
1946 
1947  // Emit the final record.
1948  Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
1949  Record.clear();
1950 }
1951 
1952 // Generates an enum to use as an index in the Abbrev array of Metadata record.
1953 enum MetadataAbbrev : unsigned {
1954 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
1955 #include "llvm/IR/Metadata.def"
1957 };
1958 
1959 void ModuleBitcodeWriter::writeMetadataRecords(
1961  std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
1962  if (MDs.empty())
1963  return;
1964 
1965  // Initialize MDNode abbreviations.
1966 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1967 #include "llvm/IR/Metadata.def"
1968 
1969  for (const Metadata *MD : MDs) {
1970  if (IndexPos)
1971  IndexPos->push_back(Stream.GetCurrentBitNo());
1972  if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1973  assert(N->isResolved() && "Expected forward references to be resolved");
1974 
1975  switch (N->getMetadataID()) {
1976  default:
1977  llvm_unreachable("Invalid MDNode subclass");
1978 #define HANDLE_MDNODE_LEAF(CLASS) \
1979  case Metadata::CLASS##Kind: \
1980  if (MDAbbrevs) \
1981  write##CLASS(cast<CLASS>(N), Record, \
1982  (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
1983  else \
1984  write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
1985  continue;
1986 #include "llvm/IR/Metadata.def"
1987  }
1988  }
1989  writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1990  }
1991 }
1992 
1993 void ModuleBitcodeWriter::writeModuleMetadata() {
1994  if (!VE.hasMDs() && M.named_metadata_empty())
1995  return;
1996 
1999 
2000  // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2001  // block and load any metadata.
2002  std::vector<unsigned> MDAbbrevs;
2003 
2005  MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2006  MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2007  createGenericDINodeAbbrev();
2008 
2009  auto Abbv = std::make_shared<BitCodeAbbrev>();
2011  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2012  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2013  unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2014 
2015  Abbv = std::make_shared<BitCodeAbbrev>();
2018  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2019  unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2020 
2021  // Emit MDStrings together upfront.
2022  writeMetadataStrings(VE.getMDStrings(), Record);
2023 
2024  // We only emit an index for the metadata record if we have more than a given
2025  // (naive) threshold of metadatas, otherwise it is not worth it.
2026  if (VE.getNonMDStrings().size() > IndexThreshold) {
2027  // Write a placeholder value in for the offset of the metadata index,
2028  // which is written after the records, so that it can include
2029  // the offset of each entry. The placeholder offset will be
2030  // updated after all records are emitted.
2031  uint64_t Vals[] = {0, 0};
2032  Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2033  }
2034 
2035  // Compute and save the bit offset to the current position, which will be
2036  // patched when we emit the index later. We can simply subtract the 64-bit
2037  // fixed size from the current bit number to get the location to backpatch.
2038  uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2039 
2040  // This index will contain the bitpos for each individual record.
2041  std::vector<uint64_t> IndexPos;
2042  IndexPos.reserve(VE.getNonMDStrings().size());
2043 
2044  // Write all the records
2045  writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2046 
2047  if (VE.getNonMDStrings().size() > IndexThreshold) {
2048  // Now that we have emitted all the records we will emit the index. But
2049  // first
2050  // backpatch the forward reference so that the reader can skip the records
2051  // efficiently.
2052  Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2053  Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2054 
2055  // Delta encode the index.
2056  uint64_t PreviousValue = IndexOffsetRecordBitPos;
2057  for (auto &Elt : IndexPos) {
2058  auto EltDelta = Elt - PreviousValue;
2059  PreviousValue = Elt;
2060  Elt = EltDelta;
2061  }
2062  // Emit the index record.
2063  Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2064  IndexPos.clear();
2065  }
2066 
2067  // Write the named metadata now.
2068  writeNamedMetadata(Record);
2069 
2070  auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2071  SmallVector<uint64_t, 4> Record;
2072  Record.push_back(VE.getValueID(&GO));
2073  pushGlobalMetadataAttachment(Record, GO);
2075  };
2076  for (const Function &F : M)
2077  if (F.isDeclaration() && F.hasMetadata())
2078  AddDeclAttachedMetadata(F);
2079  // FIXME: Only store metadata for declarations here, and move data for global
2080  // variable definitions to a separate block (PR28134).
2081  for (const GlobalVariable &GV : M.globals())
2082  if (GV.hasMetadata())
2083  AddDeclAttachedMetadata(GV);
2084 
2085  Stream.ExitBlock();
2086 }
2087 
2088 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2089  if (!VE.hasMDs())
2090  return;
2091 
2094  writeMetadataStrings(VE.getMDStrings(), Record);
2095  writeMetadataRecords(VE.getNonMDStrings(), Record);
2096  Stream.ExitBlock();
2097 }
2098 
2099 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2100  SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2101  // [n x [id, mdnode]]
2103  GO.getAllMetadata(MDs);
2104  for (const auto &I : MDs) {
2105  Record.push_back(I.first);
2106  Record.push_back(VE.getMetadataID(I.second));
2107  }
2108 }
2109 
2110 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2112 
2114 
2115  if (F.hasMetadata()) {
2116  pushGlobalMetadataAttachment(Record, F);
2117  Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2118  Record.clear();
2119  }
2120 
2121  // Write metadata attachments
2122  // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2124  for (const BasicBlock &BB : F)
2125  for (const Instruction &I : BB) {
2126  MDs.clear();
2127  I.getAllMetadataOtherThanDebugLoc(MDs);
2128 
2129  // If no metadata, ignore instruction.
2130  if (MDs.empty()) continue;
2131 
2132  Record.push_back(VE.getInstructionID(&I));
2133 
2134  for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2135  Record.push_back(MDs[i].first);
2136  Record.push_back(VE.getMetadataID(MDs[i].second));
2137  }
2138  Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2139  Record.clear();
2140  }
2141 
2142  Stream.ExitBlock();
2143 }
2144 
2145 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2147 
2148  // Write metadata kinds
2149  // METADATA_KIND - [n x [id, name]]
2151  M.getMDKindNames(Names);
2152 
2153  if (Names.empty()) return;
2154 
2156 
2157  for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2158  Record.push_back(MDKindID);
2159  StringRef KName = Names[MDKindID];
2160  Record.append(KName.begin(), KName.end());
2161 
2162  Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2163  Record.clear();
2164  }
2165 
2166  Stream.ExitBlock();
2167 }
2168 
2169 void ModuleBitcodeWriter::writeOperandBundleTags() {
2170  // Write metadata kinds
2171  //
2172  // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2173  //
2174  // OPERAND_BUNDLE_TAG - [strchr x N]
2175 
2177  M.getOperandBundleTags(Tags);
2178 
2179  if (Tags.empty())
2180  return;
2181 
2183 
2185 
2186  for (auto Tag : Tags) {
2187  Record.append(Tag.begin(), Tag.end());
2188 
2189  Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2190  Record.clear();
2191  }
2192 
2193  Stream.ExitBlock();
2194 }
2195 
2196 void ModuleBitcodeWriter::writeSyncScopeNames() {
2198  M.getContext().getSyncScopeNames(SSNs);
2199  if (SSNs.empty())
2200  return;
2201 
2203 
2205  for (auto SSN : SSNs) {
2206  Record.append(SSN.begin(), SSN.end());
2207  Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2208  Record.clear();
2209  }
2210 
2211  Stream.ExitBlock();
2212 }
2213 
2214 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
2215  if ((int64_t)V >= 0)
2216  Vals.push_back(V << 1);
2217  else
2218  Vals.push_back((-V << 1) | 1);
2219 }
2220 
2221 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2222  bool isGlobal) {
2223  if (FirstVal == LastVal) return;
2224 
2226 
2227  unsigned AggregateAbbrev = 0;
2228  unsigned String8Abbrev = 0;
2229  unsigned CString7Abbrev = 0;
2230  unsigned CString6Abbrev = 0;
2231  // If this is a constant pool for the module, emit module-specific abbrevs.
2232  if (isGlobal) {
2233  // Abbrev for CST_CODE_AGGREGATE.
2234  auto Abbv = std::make_shared<BitCodeAbbrev>();
2237  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2238  AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2239 
2240  // Abbrev for CST_CODE_STRING.
2241  Abbv = std::make_shared<BitCodeAbbrev>();
2244  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2245  String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2246  // Abbrev for CST_CODE_CSTRING.
2247  Abbv = std::make_shared<BitCodeAbbrev>();
2250  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2251  CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2252  // Abbrev for CST_CODE_CSTRING.
2253  Abbv = std::make_shared<BitCodeAbbrev>();
2257  CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2258  }
2259 
2261 
2262  const ValueEnumerator::ValueList &Vals = VE.getValues();
2263  Type *LastTy = nullptr;
2264  for (unsigned i = FirstVal; i != LastVal; ++i) {
2265  const Value *V = Vals[i].first;
2266  // If we need to switch types, do so now.
2267  if (V->getType() != LastTy) {
2268  LastTy = V->getType();
2269  Record.push_back(VE.getTypeID(LastTy));
2270  Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2271  CONSTANTS_SETTYPE_ABBREV);
2272  Record.clear();
2273  }
2274 
2275  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2276  Record.push_back(unsigned(IA->hasSideEffects()) |
2277  unsigned(IA->isAlignStack()) << 1 |
2278  unsigned(IA->getDialect()&1) << 2);
2279 
2280  // Add the asm string.
2281  const std::string &AsmStr = IA->getAsmString();
2282  Record.push_back(AsmStr.size());
2283  Record.append(AsmStr.begin(), AsmStr.end());
2284 
2285  // Add the constraint string.
2286  const std::string &ConstraintStr = IA->getConstraintString();
2287  Record.push_back(ConstraintStr.size());
2288  Record.append(ConstraintStr.begin(), ConstraintStr.end());
2289  Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2290  Record.clear();
2291  continue;
2292  }
2293  const Constant *C = cast<Constant>(V);
2294  unsigned Code = -1U;
2295  unsigned AbbrevToUse = 0;
2296  if (C->isNullValue()) {
2297  Code = bitc::CST_CODE_NULL;
2298  } else if (isa<UndefValue>(C)) {
2299  Code = bitc::CST_CODE_UNDEF;
2300  } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2301  if (IV->getBitWidth() <= 64) {
2302  uint64_t V = IV->getSExtValue();
2303  emitSignedInt64(Record, V);
2304  Code = bitc::CST_CODE_INTEGER;
2305  AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2306  } else { // Wide integers, > 64 bits in size.
2307  // We have an arbitrary precision integer value to write whose
2308  // bit width is > 64. However, in canonical unsigned integer
2309  // format it is likely that the high bits are going to be zero.
2310  // So, we only write the number of active words.
2311  unsigned NWords = IV->getValue().getActiveWords();
2312  const uint64_t *RawWords = IV->getValue().getRawData();
2313  for (unsigned i = 0; i != NWords; ++i) {
2314  emitSignedInt64(Record, RawWords[i]);
2315  }
2317  }
2318  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2319  Code = bitc::CST_CODE_FLOAT;
2320  Type *Ty = CFP->getType();
2321  if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2322  Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2323  } else if (Ty->isX86_FP80Ty()) {
2324  // api needed to prevent premature destruction
2325  // bits are not in the same order as a normal i80 APInt, compensate.
2326  APInt api = CFP->getValueAPF().bitcastToAPInt();
2327  const uint64_t *p = api.getRawData();
2328  Record.push_back((p[1] << 48) | (p[0] >> 16));
2329  Record.push_back(p[0] & 0xffffLL);
2330  } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2331  APInt api = CFP->getValueAPF().bitcastToAPInt();
2332  const uint64_t *p = api.getRawData();
2333  Record.push_back(p[0]);
2334  Record.push_back(p[1]);
2335  } else {
2336  assert(0 && "Unknown FP type!");
2337  }
2338  } else if (isa<ConstantDataSequential>(C) &&
2339  cast<ConstantDataSequential>(C)->isString()) {
2340  const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2341  // Emit constant strings specially.
2342  unsigned NumElts = Str->getNumElements();
2343  // If this is a null-terminated string, use the denser CSTRING encoding.
2344  if (Str->isCString()) {
2345  Code = bitc::CST_CODE_CSTRING;
2346  --NumElts; // Don't encode the null, which isn't allowed by char6.
2347  } else {
2348  Code = bitc::CST_CODE_STRING;
2349  AbbrevToUse = String8Abbrev;
2350  }
2351  bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2352  bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2353  for (unsigned i = 0; i != NumElts; ++i) {
2354  unsigned char V = Str->getElementAsInteger(i);
2355  Record.push_back(V);
2356  isCStr7 &= (V & 128) == 0;
2357  if (isCStrChar6)
2358  isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2359  }
2360 
2361  if (isCStrChar6)
2362  AbbrevToUse = CString6Abbrev;
2363  else if (isCStr7)
2364  AbbrevToUse = CString7Abbrev;
2365  } else if (const ConstantDataSequential *CDS =
2366  dyn_cast<ConstantDataSequential>(C)) {
2367  Code = bitc::CST_CODE_DATA;
2368  Type *EltTy = CDS->getType()->getElementType();
2369  if (isa<IntegerType>(EltTy)) {
2370  for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2371  Record.push_back(CDS->getElementAsInteger(i));
2372  } else {
2373  for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2374  Record.push_back(
2375  CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2376  }
2377  } else if (isa<ConstantAggregate>(C)) {
2378  Code = bitc::CST_CODE_AGGREGATE;
2379  for (const Value *Op : C->operands())
2380  Record.push_back(VE.getValueID(Op));
2381  AbbrevToUse = AggregateAbbrev;
2382  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2383  switch (CE->getOpcode()) {
2384  default:
2385  if (Instruction::isCast(CE->getOpcode())) {
2386  Code = bitc::CST_CODE_CE_CAST;
2387  Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2388  Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2389  Record.push_back(VE.getValueID(C->getOperand(0)));
2390  AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2391  } else {
2392  assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2393  Code = bitc::CST_CODE_CE_BINOP;
2394  Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2395  Record.push_back(VE.getValueID(C->getOperand(0)));
2396  Record.push_back(VE.getValueID(C->getOperand(1)));
2397  uint64_t Flags = getOptimizationFlags(CE);
2398  if (Flags != 0)
2399  Record.push_back(Flags);
2400  }
2401  break;
2402  case Instruction::FNeg: {
2403  assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2404  Code = bitc::CST_CODE_CE_UNOP;
2405  Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2406  Record.push_back(VE.getValueID(C->getOperand(0)));
2407  uint64_t Flags = getOptimizationFlags(CE);
2408  if (Flags != 0)
2409  Record.push_back(Flags);
2410  break;
2411  }
2412  case Instruction::GetElementPtr: {
2413  Code = bitc::CST_CODE_CE_GEP;
2414  const auto *GO = cast<GEPOperator>(C);
2415  Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2416  if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2418  Record.push_back((*Idx << 1) | GO->isInBounds());
2419  } else if (GO->isInBounds())
2421  for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2422  Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2423  Record.push_back(VE.getValueID(C->getOperand(i)));
2424  }
2425  break;
2426  }
2427  case Instruction::Select:
2428  Code = bitc::CST_CODE_CE_SELECT;
2429  Record.push_back(VE.getValueID(C->getOperand(0)));
2430  Record.push_back(VE.getValueID(C->getOperand(1)));
2431  Record.push_back(VE.getValueID(C->getOperand(2)));
2432  break;
2433  case Instruction::ExtractElement:
2435  Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2436  Record.push_back(VE.getValueID(C->getOperand(0)));
2437  Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2438  Record.push_back(VE.getValueID(C->getOperand(1)));
2439  break;
2440  case Instruction::InsertElement:
2442  Record.push_back(VE.getValueID(C->getOperand(0)));
2443  Record.push_back(VE.getValueID(C->getOperand(1)));
2444  Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2445  Record.push_back(VE.getValueID(C->getOperand(2)));
2446  break;
2447  case Instruction::ShuffleVector:
2448  // If the return type and argument types are the same, this is a
2449  // standard shufflevector instruction. If the types are different,
2450  // then the shuffle is widening or truncating the input vectors, and
2451  // the argument type must also be encoded.
2452  if (C->getType() == C->getOperand(0)->getType()) {
2454  } else {
2456  Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2457  }
2458  Record.push_back(VE.getValueID(C->getOperand(0)));
2459  Record.push_back(VE.getValueID(C->getOperand(1)));
2460  Record.push_back(VE.getValueID(C->getOperand(2)));
2461  break;
2462  case Instruction::ICmp:
2463  case Instruction::FCmp:
2464  Code = bitc::CST_CODE_CE_CMP;
2465  Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2466  Record.push_back(VE.getValueID(C->getOperand(0)));
2467  Record.push_back(VE.getValueID(C->getOperand(1)));
2468  Record.push_back(CE->getPredicate());
2469  break;
2470  }
2471  } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2473  Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2474  Record.push_back(VE.getValueID(BA->getFunction()));
2475  Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2476  } else {
2477 #ifndef NDEBUG
2478  C->dump();
2479 #endif
2480  llvm_unreachable("Unknown constant!");
2481  }
2482  Stream.EmitRecord(Code, Record, AbbrevToUse);
2483  Record.clear();
2484  }
2485 
2486  Stream.ExitBlock();
2487 }
2488 
2489 void ModuleBitcodeWriter::writeModuleConstants() {
2490  const ValueEnumerator::ValueList &Vals = VE.getValues();
2491 
2492  // Find the first constant to emit, which is the first non-globalvalue value.
2493  // We know globalvalues have been emitted by WriteModuleInfo.
2494  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2495  if (!isa<GlobalValue>(Vals[i].first)) {
2496  writeConstants(i, Vals.size(), true);
2497  return;
2498  }
2499  }
2500 }
2501 
2502 /// pushValueAndType - The file has to encode both the value and type id for
2503 /// many values, because we need to know what type to create for forward
2504 /// references. However, most operands are not forward references, so this type
2505 /// field is not needed.
2506 ///
2507 /// This function adds V's value ID to Vals. If the value ID is higher than the
2508 /// instruction ID, then it is a forward reference, and it also includes the
2509 /// type ID. The value ID that is written is encoded relative to the InstID.
2510 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2511  SmallVectorImpl<unsigned> &Vals) {
2512  unsigned ValID = VE.getValueID(V);
2513  // Make encoding relative to the InstID.
2514  Vals.push_back(InstID - ValID);
2515  if (ValID >= InstID) {
2516  Vals.push_back(VE.getTypeID(V->getType()));
2517  return true;
2518  }
2519  return false;
2520 }
2521 
2522 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
2523  unsigned InstID) {
2526 
2527  for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2528  const auto &Bundle = CS.getOperandBundleAt(i);
2529  Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2530 
2531  for (auto &Input : Bundle.Inputs)
2532  pushValueAndType(Input, InstID, Record);
2533 
2535  Record.clear();
2536  }
2537 }
2538 
2539 /// pushValue - Like pushValueAndType, but where the type of the value is
2540 /// omitted (perhaps it was already encoded in an earlier operand).
2541 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2542  SmallVectorImpl<unsigned> &Vals) {
2543  unsigned ValID = VE.getValueID(V);
2544  Vals.push_back(InstID - ValID);
2545 }
2546 
2547 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2548  SmallVectorImpl<uint64_t> &Vals) {
2549  unsigned ValID = VE.getValueID(V);
2550  int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2551  emitSignedInt64(Vals, diff);
2552 }
2553 
2554 /// WriteInstruction - Emit an instruction to the specified stream.
2555 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2556  unsigned InstID,
2557  SmallVectorImpl<unsigned> &Vals) {
2558  unsigned Code = 0;
2559  unsigned AbbrevToUse = 0;
2560  VE.setInstructionID(&I);
2561  switch (I.getOpcode()) {
2562  default:
2563  if (Instruction::isCast(I.getOpcode())) {
2565  if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2566  AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2567  Vals.push_back(VE.getTypeID(I.getType()));
2569  } else {
2570  assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2572  if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2573  AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2574  pushValue(I.getOperand(1), InstID, Vals);
2576  uint64_t Flags = getOptimizationFlags(&I);
2577  if (Flags != 0) {
2578  if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2579  AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2580  Vals.push_back(Flags);
2581  }
2582  }
2583  break;
2584  case Instruction::FNeg: {
2586  if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2587  AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2589  uint64_t Flags = getOptimizationFlags(&I);
2590  if (Flags != 0) {
2591  if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2592  AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2593  Vals.push_back(Flags);
2594  }
2595  break;
2596  }
2597  case Instruction::GetElementPtr: {
2598  Code = bitc::FUNC_CODE_INST_GEP;
2599  AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2600  auto &GEPInst = cast<GetElementPtrInst>(I);
2601  Vals.push_back(GEPInst.isInBounds());
2602  Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2603  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2604  pushValueAndType(I.getOperand(i), InstID, Vals);
2605  break;
2606  }
2607  case Instruction::ExtractValue: {
2609  pushValueAndType(I.getOperand(0), InstID, Vals);
2610  const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2611  Vals.append(EVI->idx_begin(), EVI->idx_end());
2612  break;
2613  }
2614  case Instruction::InsertValue: {
2616  pushValueAndType(I.getOperand(0), InstID, Vals);
2617  pushValueAndType(I.getOperand(1), InstID, Vals);
2618  const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2619  Vals.append(IVI->idx_begin(), IVI->idx_end());
2620  break;
2621  }
2622  case Instruction::Select:
2624  pushValueAndType(I.getOperand(1), InstID, Vals);
2625  pushValue(I.getOperand(2), InstID, Vals);
2626  pushValueAndType(I.getOperand(0), InstID, Vals);
2627  break;
2628  case Instruction::ExtractElement:
2630  pushValueAndType(I.getOperand(0), InstID, Vals);
2631  pushValueAndType(I.getOperand(1), InstID, Vals);
2632  break;
2633  case Instruction::InsertElement:
2635  pushValueAndType(I.getOperand(0), InstID, Vals);
2636  pushValue(I.getOperand(1), InstID, Vals);
2637  pushValueAndType(I.getOperand(2), InstID, Vals);
2638  break;
2639  case Instruction::ShuffleVector:
2641  pushValueAndType(I.getOperand(0), InstID, Vals);
2642  pushValue(I.getOperand(1), InstID, Vals);
2643  pushValue(I.getOperand(2), InstID, Vals);
2644  break;
2645  case Instruction::ICmp:
2646  case Instruction::FCmp: {
2647  // compare returning Int1Ty or vector of Int1Ty
2649  pushValueAndType(I.getOperand(0), InstID, Vals);
2650  pushValue(I.getOperand(1), InstID, Vals);
2651  Vals.push_back(cast<CmpInst>(I).getPredicate());
2652  uint64_t Flags = getOptimizationFlags(&I);
2653  if (Flags != 0)
2654  Vals.push_back(Flags);
2655  break;
2656  }
2657 
2658  case Instruction::Ret:
2659  {
2660  Code = bitc::FUNC_CODE_INST_RET;
2661  unsigned NumOperands = I.getNumOperands();
2662  if (NumOperands == 0)
2663  AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2664  else if (NumOperands == 1) {
2665  if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2666  AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2667  } else {
2668  for (unsigned i = 0, e = NumOperands; i != e; ++i)
2669  pushValueAndType(I.getOperand(i), InstID, Vals);
2670  }
2671  }
2672  break;
2673  case Instruction::Br:
2674  {
2675  Code = bitc::FUNC_CODE_INST_BR;
2676  const BranchInst &II = cast<BranchInst>(I);
2677  Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2678  if (II.isConditional()) {
2679  Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2680  pushValue(II.getCondition(), InstID, Vals);
2681  }
2682  }
2683  break;
2684  case Instruction::Switch:
2685  {
2687  const SwitchInst &SI = cast<SwitchInst>(I);
2688  Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2689  pushValue(SI.getCondition(), InstID, Vals);
2690  Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2691  for (auto Case : SI.cases()) {
2692  Vals.push_back(VE.getValueID(Case.getCaseValue()));
2693  Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2694  }
2695  }
2696  break;
2697  case Instruction::IndirectBr:
2699  Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2700  // Encode the address operand as relative, but not the basic blocks.
2701  pushValue(I.getOperand(0), InstID, Vals);
2702  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2703  Vals.push_back(VE.getValueID(I.getOperand(i)));
2704  break;
2705 
2706  case Instruction::Invoke: {
2707  const InvokeInst *II = cast<InvokeInst>(&I);
2708  const Value *Callee = II->getCalledValue();
2709  FunctionType *FTy = II->getFunctionType();
2710 
2711  if (II->hasOperandBundles())
2712  writeOperandBundles(II, InstID);
2713 
2715 
2716  Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2717  Vals.push_back(II->getCallingConv() | 1 << 13);
2718  Vals.push_back(VE.getValueID(II->getNormalDest()));
2719  Vals.push_back(VE.getValueID(II->getUnwindDest()));
2720  Vals.push_back(VE.getTypeID(FTy));
2721  pushValueAndType(Callee, InstID, Vals);
2722 
2723  // Emit value #'s for the fixed parameters.
2724  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2725  pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2726 
2727  // Emit type/value pairs for varargs params.
2728  if (FTy->isVarArg()) {
2729  for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2730  i != e; ++i)
2731  pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2732  }
2733  break;
2734  }
2735  case Instruction::Resume:
2737  pushValueAndType(I.getOperand(0), InstID, Vals);
2738  break;
2739  case Instruction::CleanupRet: {
2741  const auto &CRI = cast<CleanupReturnInst>(I);
2742  pushValue(CRI.getCleanupPad(), InstID, Vals);
2743  if (CRI.hasUnwindDest())
2744  Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2745  break;
2746  }
2747  case Instruction::CatchRet: {
2749  const auto &CRI = cast<CatchReturnInst>(I);
2750  pushValue(CRI.getCatchPad(), InstID, Vals);
2751  Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2752  break;
2753  }
2754  case Instruction::CleanupPad:
2755  case Instruction::CatchPad: {
2756  const auto &FuncletPad = cast<FuncletPadInst>(I);
2757  Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2759  pushValue(FuncletPad.getParentPad(), InstID, Vals);
2760 
2761  unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2762  Vals.push_back(NumArgOperands);
2763  for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2764  pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2765  break;
2766  }
2767  case Instruction::CatchSwitch: {
2769  const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2770 
2771  pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2772 
2773  unsigned NumHandlers = CatchSwitch.getNumHandlers();
2774  Vals.push_back(NumHandlers);
2775  for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2776  Vals.push_back(VE.getValueID(CatchPadBB));
2777 
2778  if (CatchSwitch.hasUnwindDest())
2779  Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2780  break;
2781  }
2782  case Instruction::CallBr: {
2783  const CallBrInst *CBI = cast<CallBrInst>(&I);
2784  const Value *Callee = CBI->getCalledValue();
2785  FunctionType *FTy = CBI->getFunctionType();
2786 
2787  if (CBI->hasOperandBundles())
2788  writeOperandBundles(CBI, InstID);
2789 
2791 
2792  Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
2793 
2794  Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
2796 
2797  Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
2798  Vals.push_back(CBI->getNumIndirectDests());
2799  for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
2800  Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
2801 
2802  Vals.push_back(VE.getTypeID(FTy));
2803  pushValueAndType(Callee, InstID, Vals);
2804 
2805  // Emit value #'s for the fixed parameters.
2806  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2807  pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2808 
2809  // Emit type/value pairs for varargs params.
2810  if (FTy->isVarArg()) {
2811  for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands();
2812  i != e; ++i)
2813  pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2814  }
2815  break;
2816  }
2817  case Instruction::Unreachable:
2819  AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2820  break;
2821 
2822  case Instruction::PHI: {
2823  const PHINode &PN = cast<PHINode>(I);
2824  Code = bitc::FUNC_CODE_INST_PHI;
2825  // With the newer instruction encoding, forward references could give
2826  // negative valued IDs. This is most common for PHIs, so we use
2827  // signed VBRs.
2829  Vals64.push_back(VE.getTypeID(PN.getType()));
2830  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2831  pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2832  Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2833  }
2834  // Emit a Vals64 vector and exit.
2835  Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2836  Vals64.clear();
2837  return;
2838  }
2839 
2840  case Instruction::LandingPad: {
2841  const LandingPadInst &LP = cast<LandingPadInst>(I);
2843  Vals.push_back(VE.getTypeID(LP.getType()));
2844  Vals.push_back(LP.isCleanup());
2845  Vals.push_back(LP.getNumClauses());
2846  for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2847  if (LP.isCatch(I))
2849  else
2851  pushValueAndType(LP.getClause(I), InstID, Vals);
2852  }
2853  break;
2854  }
2855 
2856  case Instruction::Alloca: {
2858  const AllocaInst &AI = cast<AllocaInst>(I);
2859  Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2860  Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2861  Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2862  unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2863  assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2864  "not enough bits for maximum alignment");
2865  assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2866  AlignRecord |= AI.isUsedWithInAlloca() << 5;
2867  AlignRecord |= 1 << 6;
2868  AlignRecord |= AI.isSwiftError() << 7;
2869  Vals.push_back(AlignRecord);
2870  break;
2871  }
2872 
2873  case Instruction::Load:
2874  if (cast<LoadInst>(I).isAtomic()) {
2876  pushValueAndType(I.getOperand(0), InstID, Vals);
2877  } else {
2879  if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2880  AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2881  }
2882  Vals.push_back(VE.getTypeID(I.getType()));
2883  Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2884  Vals.push_back(cast<LoadInst>(I).isVolatile());
2885  if (cast<LoadInst>(I).isAtomic()) {
2886  Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2887  Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2888  }
2889  break;
2890  case Instruction::Store:
2891  if (cast<StoreInst>(I).isAtomic())
2893  else
2895  pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2896  pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2897  Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2898  Vals.push_back(cast<StoreInst>(I).isVolatile());
2899  if (cast<StoreInst>(I).isAtomic()) {
2900  Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2901  Vals.push_back(
2902  getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2903  }
2904  break;
2905  case Instruction::AtomicCmpXchg:
2907  pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2908  pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2909  pushValue(I.getOperand(2), InstID, Vals); // newval.
2910  Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2911  Vals.push_back(
2912  getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2913  Vals.push_back(
2914  getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2915  Vals.push_back(
2916  getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2917  Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2918  break;
2919  case Instruction::AtomicRMW:
2921  pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2922  pushValue(I.getOperand(1), InstID, Vals); // val.
2923  Vals.push_back(
2924  getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2925  Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2926  Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2927  Vals.push_back(
2928  getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2929  break;
2930  case Instruction::Fence:
2932  Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2933  Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2934  break;
2935  case Instruction::Call: {
2936  const CallInst &CI = cast<CallInst>(I);
2937  FunctionType *FTy = CI.getFunctionType();
2938 
2939  if (CI.hasOperandBundles())
2940  writeOperandBundles(&CI, InstID);
2941 
2943 
2945 
2946  unsigned Flags = getOptimizationFlags(&I);
2949  unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2951  unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
2952  unsigned(Flags != 0) << bitc::CALL_FMF);
2953  if (Flags != 0)
2954  Vals.push_back(Flags);
2955 
2956  Vals.push_back(VE.getTypeID(FTy));
2957  pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
2958 
2959  // Emit value #'s for the fixed parameters.
2960  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2961  // Check for labels (can happen with asm labels).
2962  if (FTy->getParamType(i)->isLabelTy())
2963  Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2964  else
2965  pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2966  }
2967 
2968  // Emit type/value pairs for varargs params.
2969  if (FTy->isVarArg()) {
2970  for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2971  i != e; ++i)
2972  pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2973  }
2974  break;
2975  }
2976  case Instruction::VAArg:
2978  Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
2979  pushValue(I.getOperand(0), InstID, Vals); // valist.
2980  Vals.push_back(VE.getTypeID(I.getType())); // restype.
2981  break;
2982  }
2983 
2984  Stream.EmitRecord(Code, Vals, AbbrevToUse);
2985  Vals.clear();
2986 }
2987 
2988 /// Write a GlobalValue VST to the module. The purpose of this data structure is
2989 /// to allow clients to efficiently find the function body.
2990 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
2991  DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
2992  // Get the offset of the VST we are writing, and backpatch it into
2993  // the VST forward declaration record.
2994  uint64_t VSTOffset = Stream.GetCurrentBitNo();
2995  // The BitcodeStartBit was the stream offset of the identification block.
2996  VSTOffset -= bitcodeStartBit();
2997  assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2998  // Note that we add 1 here because the offset is relative to one word
2999  // before the start of the identification block, which was historically
3000  // always the start of the regular bitcode header.
3001  Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
3002 
3004 
3005  auto Abbv = std::make_shared<BitCodeAbbrev>();
3007  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3008  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3009  unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3010 
3011  for (const Function &F : M) {
3012  uint64_t Record[2];
3013 
3014  if (F.isDeclaration())
3015  continue;
3016 
3017  Record[0] = VE.getValueID(&F);
3018 
3019  // Save the word offset of the function (from the start of the
3020  // actual bitcode written to the stream).
3021  uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3022  assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3023  // Note that we add 1 here because the offset is relative to one word
3024  // before the start of the identification block, which was historically
3025  // always the start of the regular bitcode header.
3026  Record[1] = BitcodeIndex / 32 + 1;
3027 
3028  Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
3029  }
3030 
3031  Stream.ExitBlock();
3032 }
3033 
3034 /// Emit names for arguments, instructions and basic blocks in a function.
3035 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3036  const ValueSymbolTable &VST) {
3037  if (VST.empty())
3038  return;
3039 
3041 
3042  // FIXME: Set up the abbrev, we know how many values there are!
3043  // FIXME: We know if the type names can use 7-bit ascii.
3044  SmallVector<uint64_t, 64> NameVals;
3045 
3046  for (const ValueName &Name : VST) {
3047  // Figure out the encoding to use for the name.
3049 
3050  unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3051  NameVals.push_back(VE.getValueID(Name.getValue()));
3052 
3053  // VST_CODE_ENTRY: [valueid, namechar x N]
3054  // VST_CODE_BBENTRY: [bbid, namechar x N]
3055  unsigned Code;
3056  if (isa<BasicBlock>(Name.getValue())) {
3057  Code = bitc::VST_CODE_BBENTRY;
3058  if (Bits == SE_Char6)
3059  AbbrevToUse = VST_BBENTRY_6_ABBREV;
3060  } else {
3061  Code = bitc::VST_CODE_ENTRY;
3062  if (Bits == SE_Char6)
3063  AbbrevToUse = VST_ENTRY_6_ABBREV;
3064  else if (Bits == SE_Fixed7)
3065  AbbrevToUse = VST_ENTRY_7_ABBREV;
3066  }
3067 
3068  for (const auto P : Name.getKey())
3069  NameVals.push_back((unsigned char)P);
3070 
3071  // Emit the finished record.
3072  Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3073  NameVals.clear();
3074  }
3075 
3076  Stream.ExitBlock();
3077 }
3078 
3079 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3080  assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3081  unsigned Code;
3082  if (isa<BasicBlock>(Order.V))
3083  Code = bitc::USELIST_CODE_BB;
3084  else
3086 
3087  SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3088  Record.push_back(VE.getValueID(Order.V));
3089  Stream.EmitRecord(Code, Record);
3090 }
3091 
3092 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3094  "Expected to be preserving use-list order");
3095 
3096  auto hasMore = [&]() {
3097  return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3098  };
3099  if (!hasMore())
3100  // Nothing to do.
3101  return;
3102 
3104  while (hasMore()) {
3105  writeUseList(std::move(VE.UseListOrders.back()));
3106  VE.UseListOrders.pop_back();
3107  }
3108  Stream.ExitBlock();
3109 }
3110 
3111 /// Emit a function body to the module stream.
3112 void ModuleBitcodeWriter::writeFunction(
3113  const Function &F,
3114  DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3115  // Save the bitcode index of the start of this function block for recording
3116  // in the VST.
3117  FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3118 
3120  VE.incorporateFunction(F);
3121 
3123 
3124  // Emit the number of basic blocks, so the reader can create them ahead of
3125  // time.
3126  Vals.push_back(VE.getBasicBlocks().size());
3128  Vals.clear();
3129 
3130  // If there are function-local constants, emit them now.
3131  unsigned CstStart, CstEnd;
3132  VE.getFunctionConstantRange(CstStart, CstEnd);
3133  writeConstants(CstStart, CstEnd, false);
3134 
3135  // If there is function-local metadata, emit it now.
3136  writeFunctionMetadata(F);
3137 
3138  // Keep a running idea of what the instruction ID is.
3139  unsigned InstID = CstEnd;
3140 
3141  bool NeedsMetadataAttachment = F.hasMetadata();
3142 
3143  DILocation *LastDL = nullptr;
3144  // Finally, emit all the instructions, in order.
3145  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
3146  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
3147  I != E; ++I) {
3148  writeInstruction(*I, InstID, Vals);
3149 
3150  if (!I->getType()->isVoidTy())
3151  ++InstID;
3152 
3153  // If the instruction has metadata, write a metadata attachment later.
3154  NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
3155 
3156  // If the instruction has a debug location, emit it.
3157  DILocation *DL = I->getDebugLoc();
3158  if (!DL)
3159  continue;
3160 
3161  if (DL == LastDL) {
3162  // Just repeat the same debug loc as last time.
3164  continue;
3165  }
3166 
3167  Vals.push_back(DL->getLine());
3168  Vals.push_back(DL->getColumn());
3169  Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3170  Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3171  Vals.push_back(DL->isImplicitCode());
3172  Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3173  Vals.clear();
3174 
3175  LastDL = DL;
3176  }
3177 
3178  // Emit names for all the instructions etc.
3179  if (auto *Symtab = F.getValueSymbolTable())
3180  writeFunctionLevelValueSymbolTable(*Symtab);
3181 
3182  if (NeedsMetadataAttachment)
3183  writeFunctionMetadataAttachment(F);
3184  if (VE.shouldPreserveUseListOrder())
3185  writeUseListBlock(&F);
3186  VE.purgeFunction();
3187  Stream.ExitBlock();
3188 }
3189 
3190 // Emit blockinfo, which defines the standard abbreviations etc.
3191 void ModuleBitcodeWriter::writeBlockInfo() {
3192  // We only want to emit block info records for blocks that have multiple
3193  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3194  // Other blocks can define their abbrevs inline.
3195  Stream.EnterBlockInfoBlock();
3196 
3197  { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3198  auto Abbv = std::make_shared<BitCodeAbbrev>();
3199  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3200  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3202  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3204  VST_ENTRY_8_ABBREV)
3205  llvm_unreachable("Unexpected abbrev ordering!");
3206  }
3207 
3208  { // 7-bit fixed width VST_CODE_ENTRY strings.
3209  auto Abbv = std::make_shared<BitCodeAbbrev>();
3211  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3213  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3215  VST_ENTRY_7_ABBREV)
3216  llvm_unreachable("Unexpected abbrev ordering!");
3217  }
3218  { // 6-bit char6 VST_CODE_ENTRY strings.
3219  auto Abbv = std::make_shared<BitCodeAbbrev>();
3221  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3225  VST_ENTRY_6_ABBREV)
3226  llvm_unreachable("Unexpected abbrev ordering!");
3227  }
3228  { // 6-bit char6 VST_CODE_BBENTRY strings.
3229  auto Abbv = std::make_shared<BitCodeAbbrev>();
3231  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3235  VST_BBENTRY_6_ABBREV)
3236  llvm_unreachable("Unexpected abbrev ordering!");
3237  }
3238 
3239  { // SETTYPE abbrev for CONSTANTS_BLOCK.
3240  auto Abbv = std::make_shared<BitCodeAbbrev>();
3244  if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3245  CONSTANTS_SETTYPE_ABBREV)
3246  llvm_unreachable("Unexpected abbrev ordering!");
3247  }
3248 
3249  { // INTEGER abbrev for CONSTANTS_BLOCK.
3250  auto Abbv = std::make_shared<BitCodeAbbrev>();
3252  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3253  if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3254  CONSTANTS_INTEGER_ABBREV)
3255  llvm_unreachable("Unexpected abbrev ordering!");
3256  }
3257 
3258  { // CE_CAST abbrev for CONSTANTS_BLOCK.
3259  auto Abbv = std::make_shared<BitCodeAbbrev>();
3261  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
3262  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
3264  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3265 
3266  if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3267  CONSTANTS_CE_CAST_Abbrev)
3268  llvm_unreachable("Unexpected abbrev ordering!");
3269  }
3270  { // NULL abbrev for CONSTANTS_BLOCK.
3271  auto Abbv = std::make_shared<BitCodeAbbrev>();
3273  if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3274  CONSTANTS_NULL_Abbrev)
3275  llvm_unreachable("Unexpected abbrev ordering!");
3276  }
3277 
3278  // FIXME: This should only use space for first class types!
3279 
3280  { // INST_LOAD abbrev for FUNCTION_BLOCK.
3281  auto Abbv = std::make_shared<BitCodeAbbrev>();
3283  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3284  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3286  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3287  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3288  if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3289  FUNCTION_INST_LOAD_ABBREV)
3290  llvm_unreachable("Unexpected abbrev ordering!");
3291  }
3292  { // INST_UNOP abbrev for FUNCTION_BLOCK.
3293  auto Abbv = std::make_shared<BitCodeAbbrev>();
3295  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3296  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3297  if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3298  FUNCTION_INST_UNOP_ABBREV)
3299  llvm_unreachable("Unexpected abbrev ordering!");
3300  }
3301  { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3302  auto Abbv = std::make_shared<BitCodeAbbrev>();
3304  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3305  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3306  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3307  if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3308  FUNCTION_INST_UNOP_FLAGS_ABBREV)
3309  llvm_unreachable("Unexpected abbrev ordering!");
3310  }
3311  { // INST_BINOP abbrev for FUNCTION_BLOCK.
3312  auto Abbv = std::make_shared<BitCodeAbbrev>();
3314  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3315  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3316  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3317  if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3318  FUNCTION_INST_BINOP_ABBREV)
3319  llvm_unreachable("Unexpected abbrev ordering!");
3320  }
3321  { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3322  auto Abbv = std::make_shared<BitCodeAbbrev>();
3324  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3325  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3326  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3327  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3328  if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3329  FUNCTION_INST_BINOP_FLAGS_ABBREV)
3330  llvm_unreachable("Unexpected abbrev ordering!");
3331  }
3332  { // INST_CAST abbrev for FUNCTION_BLOCK.
3333  auto Abbv = std::make_shared<BitCodeAbbrev>();
3335  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
3336  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3338  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3339  if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3340  FUNCTION_INST_CAST_ABBREV)
3341  llvm_unreachable("Unexpected abbrev ordering!");
3342  }
3343 
3344  { // INST_RET abbrev for FUNCTION_BLOCK.
3345  auto Abbv = std::make_shared<BitCodeAbbrev>();
3347  if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3348  FUNCTION_INST_RET_VOID_ABBREV)
3349  llvm_unreachable("Unexpected abbrev ordering!");
3350  }
3351  { // INST_RET abbrev for FUNCTION_BLOCK.
3352  auto Abbv = std::make_shared<BitCodeAbbrev>();
3354  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3355  if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3356  FUNCTION_INST_RET_VAL_ABBREV)
3357  llvm_unreachable("Unexpected abbrev ordering!");
3358  }
3359  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3360  auto Abbv = std::make_shared<BitCodeAbbrev>();
3362  if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3363  FUNCTION_INST_UNREACHABLE_ABBREV)
3364  llvm_unreachable("Unexpected abbrev ordering!");
3365  }
3366  {
3367  auto Abbv = std::make_shared<BitCodeAbbrev>();
3369  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3370  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3371  Log2_32_Ceil(VE.getTypes().size() + 1)));
3373  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3374  if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3375  FUNCTION_INST_GEP_ABBREV)
3376  llvm_unreachable("Unexpected abbrev ordering!");
3377  }
3378 
3379  Stream.ExitBlock();
3380 }
3381 
3382 /// Write the module path strings, currently only used when generating
3383 /// a combined index file.
3384 void IndexBitcodeWriter::writeModStrings() {
3386 
3387  // TODO: See which abbrev sizes we actually need to emit
3388 
3389  // 8-bit fixed-width MST_ENTRY strings.
3390  auto Abbv = std::make_shared<BitCodeAbbrev>();
3392  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3394  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3395  unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3396 
3397  // 7-bit fixed width MST_ENTRY strings.
3398  Abbv = std::make_shared<BitCodeAbbrev>();
3400  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3402  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3403  unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3404 
3405  // 6-bit char6 MST_ENTRY strings.
3406  Abbv = std::make_shared<BitCodeAbbrev>();
3408  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3411  unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3412 
3413  // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3414  Abbv = std::make_shared<BitCodeAbbrev>();
3416  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3417  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3418  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3419  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3420  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3421  unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3422 
3424  forEachModule(
3425  [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3426  StringRef Key = MPSE.getKey();
3427  const auto &Value = MPSE.getValue();
3429  unsigned AbbrevToUse = Abbrev8Bit;
3430  if (Bits == SE_Char6)
3431  AbbrevToUse = Abbrev6Bit;
3432  else if (Bits == SE_Fixed7)
3433  AbbrevToUse = Abbrev7Bit;
3434 
3435  Vals.push_back(Value.first);
3436  Vals.append(Key.begin(), Key.end());
3437 
3438  // Emit the finished record.
3439  Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3440 
3441  // Emit an optional hash for the module now
3442  const auto &Hash = Value.second;
3443  if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3444  Vals.assign(Hash.begin(), Hash.end());
3445  // Emit the hash record.
3446  Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3447  }
3448 
3449  Vals.clear();
3450  });
3451  Stream.ExitBlock();
3452 }
3453 
3454 /// Write the function type metadata related records that need to appear before
3455 /// a function summary entry (whether per-module or combined).
3457  FunctionSummary *FS) {
3458  if (!FS->type_tests().empty())
3459  Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3460 
3462 
3463  auto WriteVFuncIdVec = [&](uint64_t Ty,
3465  if (VFs.empty())
3466  return;
3467  Record.clear();
3468  for (auto &VF : VFs) {
3469  Record.push_back(VF.GUID);
3470  Record.push_back(VF.Offset);
3471  }
3472  Stream.EmitRecord(Ty, Record);
3473  };
3474 
3475  WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3476  FS->type_test_assume_vcalls());
3477  WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3478  FS->type_checked_load_vcalls());
3479 
3480  auto WriteConstVCallVec = [&](uint64_t Ty,
3482  for (auto &VC : VCs) {
3483  Record.clear();
3484  Record.push_back(VC.VFunc.GUID);
3485  Record.push_back(VC.VFunc.Offset);
3486  Record.insert(Record.end(), VC.Args.begin(), VC.Args.end());
3487  Stream.EmitRecord(Ty, Record);
3488  }
3489  };
3490 
3491  WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3493  WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3495 }
3496 
3497 /// Collect type IDs from type tests used by function.
3498 static void
3500  std::set<GlobalValue::GUID> &ReferencedTypeIds) {
3501  if (!FS->type_tests().empty())
3502  for (auto &TT : FS->type_tests())
3503  ReferencedTypeIds.insert(TT);
3504 
3505  auto GetReferencedTypesFromVFuncIdVec =
3507  for (auto &VF : VFs)
3508  ReferencedTypeIds.insert(VF.GUID);
3509  };
3510 
3511  GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
3512  GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
3513 
3514  auto GetReferencedTypesFromConstVCallVec =
3516  for (auto &VC : VCs)
3517  ReferencedTypeIds.insert(VC.VFunc.GUID);
3518  };
3519 
3520  GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
3521  GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
3522 }
3523 
3525  SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3526  const WholeProgramDevirtResolution::ByArg &ByArg) {
3527  NameVals.push_back(args.size());
3528  NameVals.insert(NameVals.end(), args.begin(), args.end());
3529 
3530  NameVals.push_back(ByArg.TheKind);
3531  NameVals.push_back(ByArg.Info);
3532  NameVals.push_back(ByArg.Byte);
3533  NameVals.push_back(ByArg.Bit);
3534 }
3535 
3537  SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3538  uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3539  NameVals.push_back(Id);
3540 
3541  NameVals.push_back(Wpd.TheKind);
3542  NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3543  NameVals.push_back(Wpd.SingleImplName.size());
3544 
3545  NameVals.push_back(Wpd.ResByArg.size());
3546  for (auto &A : Wpd.ResByArg)
3547  writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3548 }
3549 
3551  StringTableBuilder &StrtabBuilder,
3552  const std::string &Id,
3553  const TypeIdSummary &Summary) {
3554  NameVals.push_back(StrtabBuilder.add(Id));
3555  NameVals.push_back(Id.size());
3556 
3557  NameVals.push_back(Summary.TTRes.TheKind);
3558  NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3559  NameVals.push_back(Summary.TTRes.AlignLog2);
3560  NameVals.push_back(Summary.TTRes.SizeM1);
3561  NameVals.push_back(Summary.TTRes.BitMask);
3562  NameVals.push_back(Summary.TTRes.InlineBits);
3563 
3564  for (auto &W : Summary.WPDRes)
3565  writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3566  W.second);
3567 }
3568 
3569 // Helper to emit a single function summary record.
3570 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3571  SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3572  unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3573  const Function &F) {
3574  NameVals.push_back(ValueID);
3575 
3576  FunctionSummary *FS = cast<FunctionSummary>(Summary);
3578 
3579  NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3580  NameVals.push_back(FS->instCount());
3581  NameVals.push_back(getEncodedFFlags(FS->fflags()));
3582  NameVals.push_back(FS->refs().size());
3583  NameVals.push_back(FS->immutableRefCount());
3584 
3585  for (auto &RI : FS->refs())
3586  NameVals.push_back(VE.getValueID(RI.getValue()));
3587 
3588  bool HasProfileData =
3589  F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
3590  for (auto &ECI : FS->calls()) {
3591  NameVals.push_back(getValueId(ECI.first));
3592  if (HasProfileData)
3593  NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3594  else if (WriteRelBFToSummary)
3595  NameVals.push_back(ECI.second.RelBlockFreq);
3596  }
3597 
3598  unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3599  unsigned Code =
3600  (HasProfileData ? bitc::FS_PERMODULE_PROFILE
3602  : bitc::FS_PERMODULE));
3603 
3604  // Emit the finished record.
3605  Stream.EmitRecord(Code, NameVals, FSAbbrev);
3606  NameVals.clear();
3607 }
3608 
3609 // Collect the global value references in the given variable's initializer,
3610 // and emit them in a summary record.
3611 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
3612  const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3613  unsigned FSModRefsAbbrev) {
3614  auto VI = Index->getValueInfo(V.getGUID());
3615  if (!VI || VI.getSummaryList().empty()) {
3616  // Only declarations should not have a summary (a declaration might however
3617  // have a summary if the def was in module level asm).
3618  assert(V.isDeclaration());
3619  return;
3620  }
3621  auto *Summary = VI.getSummaryList()[0].get();
3622  NameVals.push_back(VE.getValueID(&V));
3623  GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3624  NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3625  NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
3626 
3627  unsigned SizeBeforeRefs = NameVals.size();
3628  for (auto &RI : VS->refs())
3629  NameVals.push_back(VE.getValueID(RI.getValue()));
3630  // Sort the refs for determinism output, the vector returned by FS->refs() has
3631  // been initialized from a DenseSet.
3632  llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3633 
3635  FSModRefsAbbrev);
3636  NameVals.clear();
3637 }
3638 
3639 // Current version for the summary.
3640 // This is bumped whenever we introduce changes in the way some record are
3641 // interpreted, like flags for instance.
3642 static const uint64_t INDEX_VERSION = 6;
3643 
3644 /// Emit the per-module summary section alongside the rest of
3645 /// the module's bitcode.
3646 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
3647  // By default we compile with ThinLTO if the module has a summary, but the
3648  // client can request full LTO with a module flag.
3649  bool IsThinLTO = true;
3650  if (auto *MD =
3651  mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
3652  IsThinLTO = MD->getZExtValue();
3655  4);
3656 
3657  Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3658 
3659  // Write the index flags.
3660  uint64_t Flags = 0;
3661  // Bits 1-3 are set only in the combined index, skip them.
3662  if (Index->enableSplitLTOUnit())
3663  Flags |= 0x8;
3665 
3666  if (Index->begin() == Index->end()) {
3667  Stream.ExitBlock();
3668  return;
3669  }
3670 
3671  for (const auto &GVI : valueIds()) {
3673  ArrayRef<uint64_t>{GVI.second, GVI.first});
3674  }
3675 
3676  // Abbrev for FS_PERMODULE_PROFILE.
3677  auto Abbv = std::make_shared<BitCodeAbbrev>();
3679  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3680  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3681  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3682  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
3683  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3684  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt
3685  // numrefs x valueid, n x (valueid, hotness)
3687  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3688  unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3689 
3690  // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
3691  Abbv = std::make_shared<BitCodeAbbrev>();
3692  if (WriteRelBFToSummary)
3694  else
3695  Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3696  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3697  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3698  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3699  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
3700  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3701  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt
3702  // numrefs x valueid, n x (valueid [, rel_block_freq])
3704  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3705  unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3706 
3707  // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3708  Abbv = std::make_shared<BitCodeAbbrev>();
3710  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3711  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3712  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
3713  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3714  unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3715 
3716  // Abbrev for FS_ALIAS.
3717  Abbv = std::make_shared<BitCodeAbbrev>();
3718  Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3719  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3720  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3721  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3722  unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3723 
3724  SmallVector<uint64_t, 64> NameVals;
3725  // Iterate over the list of functions instead of the Index to
3726  // ensure the ordering is stable.
3727  for (const Function &F : M) {
3728  // Summary emission does not support anonymous functions, they have to
3729  // renamed using the anonymous function renaming pass.
3730  if (!F.hasName())
3731  report_fatal_error("Unexpected anonymous function when writing summary");
3732 
3733  ValueInfo VI = Index->getValueInfo(F.getGUID());
3734  if (!VI || VI.getSummaryList().empty()) {
3735  // Only declarations should not have a summary (a declaration might
3736  // however have a summary if the def was in module level asm).
3737  assert(F.isDeclaration());
3738  continue;
3739  }
3740  auto *Summary = VI.getSummaryList()[0].get();
3741  writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3742  FSCallsAbbrev, FSCallsProfileAbbrev, F);
3743  }
3744 
3745  // Capture references from GlobalVariable initializers, which are outside
3746  // of a function scope.
3747  for (const GlobalVariable &G : M.globals())
3748  writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
3749 
3750  for (const GlobalAlias &A : M.aliases()) {
3751  auto *Aliasee = A.getBaseObject();
3752  if (!Aliasee->hasName())
3753  // Nameless function don't have an entry in the summary, skip it.
3754  continue;
3755  auto AliasId = VE.getValueID(&A);
3756  auto AliaseeId = VE.getValueID(Aliasee);
3757  NameVals.push_back(AliasId);
3758  auto *Summary = Index->getGlobalValueSummary(A);
3759  AliasSummary *AS = cast<AliasSummary>(Summary);
3760  NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3761  NameVals.push_back(AliaseeId);
3762  Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3763  NameVals.clear();
3764  }
3765 
3766  Stream.ExitBlock();
3767 }
3768 
3769 /// Emit the combined summary section into the combined index file.
3770 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3772  Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3773 
3774  // Write the index flags.
3775  uint64_t Flags = 0;
3776  if (Index.withGlobalValueDeadStripping())
3777  Flags |= 0x1;
3778  if (Index.skipModuleByDistributedBackend())
3779  Flags |= 0x2;
3780  if (Index.hasSyntheticEntryCounts())
3781  Flags |= 0x4;
3782  if (Index.enableSplitLTOUnit())
3783  Flags |= 0x8;
3784  if (Index.partiallySplitLTOUnits())
3785  Flags |= 0x10;
3787 
3788  for (const auto &GVI : valueIds()) {
3790  ArrayRef<uint64_t>{GVI.second, GVI.first});
3791  }
3792 
3793  // Abbrev for FS_COMBINED.
3794  auto Abbv = std::make_shared<BitCodeAbbrev>();
3795  Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3796  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3797  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3798  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3799  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3800  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
3801  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount
3802  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3803  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt
3804  // numrefs x valueid, n x (valueid)
3806  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3807  unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3808 
3809  // Abbrev for FS_COMBINED_PROFILE.
3810  Abbv = std::make_shared<BitCodeAbbrev>();
3812  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3813  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3814  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3815  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3816  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
3817  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3818  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt
3819  // numrefs x valueid, n x (valueid, hotness)
3821  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3822  unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3823 
3824  // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3825  Abbv = std::make_shared<BitCodeAbbrev>();
3827  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3828  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3829  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3830  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
3831  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3832  unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3833 
3834  // Abbrev for FS_COMBINED_ALIAS.
3835  Abbv = std::make_shared<BitCodeAbbrev>();
3837  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3838  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3839  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3840  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3841  unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3842 
3843  // The aliases are emitted as a post-pass, and will point to the value
3844  // id of the aliasee. Save them in a vector for post-processing.
3846 
3847  // Save the value id for each summary for alias emission.
3849 
3850  SmallVector<uint64_t, 64> NameVals;
3851 
3852  // Set that will be populated during call to writeFunctionTypeMetadataRecords
3853  // with the type ids referenced by this index file.
3854  std::set<GlobalValue::GUID> ReferencedTypeIds;
3855 
3856  // For local linkage, we also emit the original name separately
3857  // immediately after the record.
3858  auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
3859  if (!GlobalValue::isLocalLinkage(S.linkage()))
3860  return;
3861  NameVals.push_back(S.getOriginalName());
3862  Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
3863  NameVals.clear();
3864  };
3865 
3866  forEachSummary([&](GVInfo I, bool IsAliasee) {
3867  GlobalValueSummary *S = I.second;
3868  assert(S);
3869 
3870  auto ValueId = getValueId(I.first);
3871  assert(ValueId);
3872  SummaryToValueIdMap[S] = *ValueId;
3873 
3874  // If this is invoked for an aliasee, we want to record the above
3875  // mapping, but then not emit a summary entry (if the aliasee is
3876  // to be imported, we will invoke this separately with IsAliasee=false).
3877  if (IsAliasee)
3878  return;
3879 
3880  if (auto *AS = dyn_cast<AliasSummary>(S)) {
3881  // Will process aliases as a post-pass because the reader wants all
3882  // global to be loaded first.
3883  Aliases.push_back(AS);
3884  return;
3885  }
3886 
3887  if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
3888  NameVals.push_back(*ValueId);
3889  NameVals.push_back(Index.getModuleId(VS->modulePath()));
3890  NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3891  NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
3892  for (auto &RI : VS->refs()) {
3893  auto RefValueId = getValueId(RI.getGUID());
3894  if (!RefValueId)
3895  continue;
3896  NameVals.push_back(*RefValueId);
3897  }
3898 
3899  // Emit the finished record.
3901  FSModRefsAbbrev);
3902  NameVals.clear();
3903  MaybeEmitOriginalName(*S);
3904  return;
3905  }
3906 
3907  auto *FS = cast<FunctionSummary>(S);
3909  getReferencedTypeIds(FS, ReferencedTypeIds);
3910 
3911  NameVals.push_back(*ValueId);
3912  NameVals.push_back(Index.getModuleId(FS->modulePath()));
3913  NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3914  NameVals.push_back(FS->instCount());
3915  NameVals.push_back(getEncodedFFlags(FS->fflags()));
3916  NameVals.push_back(FS->entryCount());
3917 
3918  // Fill in below
3919  NameVals.push_back(0); // numrefs
3920  NameVals.push_back(0); // immutablerefcnt
3921 
3922  unsigned Count = 0, ImmutableRefCnt = 0;
3923  for (auto &RI : FS->refs()) {
3924  auto RefValueId = getValueId(RI.getGUID());
3925  if (!RefValueId)
3926  continue;
3927  NameVals.push_back(*RefValueId);
3928  if (RI.isReadOnly())
3929  ImmutableRefCnt++;
3930  Count++;
3931  }
3932  NameVals[6] = Count;
3933  NameVals[7] = ImmutableRefCnt;
3934 
3935  bool HasProfileData = false;
3936  for (auto &EI : FS->calls()) {
3937  HasProfileData |=
3938  EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
3939  if (HasProfileData)
3940  break;
3941  }
3942 
3943  for (auto &EI : FS->calls()) {
3944  // If this GUID doesn't have a value id, it doesn't have a function
3945  // summary and we don't need to record any calls to it.
3946  GlobalValue::GUID GUID = EI.first.getGUID();
3947  auto CallValueId = getValueId(GUID);
3948  if (!CallValueId) {
3949  // For SamplePGO, the indirect call targets for local functions will
3950  // have its original name annotated in profile. We try to find the
3951  // corresponding PGOFuncName as the GUID.
3952  GUID = Index.getGUIDFromOriginalID(GUID);
3953  if (GUID == 0)
3954  continue;
3955  CallValueId = getValueId(GUID);
3956  if (!CallValueId)
3957  continue;
3958  // The mapping from OriginalId to GUID may return a GUID
3959  // that corresponds to a static variable. Filter it out here.
3960  // This can happen when
3961  // 1) There is a call to a library function which does not have
3962  // a CallValidId;
3963  // 2) There is a static variable with the OriginalGUID identical
3964  // to the GUID of the library function in 1);
3965  // When this happens, the logic for SamplePGO kicks in and
3966  // the static variable in 2) will be found, which needs to be
3967  // filtered out.
3968  auto *GVSum = Index.getGlobalValueSummary(GUID, false);
3969  if (GVSum &&
3970  GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind)
3971  continue;
3972  }
3973  NameVals.push_back(*CallValueId);
3974  if (HasProfileData)
3975  NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
3976  }
3977 
3978  unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3979  unsigned Code =
3980  (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
3981 
3982  // Emit the finished record.
3983  Stream.EmitRecord(Code, NameVals, FSAbbrev);
3984  NameVals.clear();
3985  MaybeEmitOriginalName(*S);
3986  });
3987 
3988  for (auto *AS : Aliases) {
3989  auto AliasValueId = SummaryToValueIdMap[AS];
3990  assert(AliasValueId);
3991  NameVals.push_back(AliasValueId);
3992  NameVals.push_back(Index.getModuleId(AS->modulePath()));
3993  NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3994  auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
3995  assert(AliaseeValueId);
3996  NameVals.push_back(AliaseeValueId);
3997 
3998  // Emit the finished record.
3999  Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
4000  NameVals.clear();
4001  MaybeEmitOriginalName(*AS);
4002 
4003  if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
4004  getReferencedTypeIds(FS, ReferencedTypeIds);
4005  }
4006 
4007  if (!Index.cfiFunctionDefs().empty()) {
4008  for (auto &S : Index.cfiFunctionDefs()) {
4009  NameVals.push_back(StrtabBuilder.add(S));
4010  NameVals.push_back(S.size());
4011  }
4012  Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
4013  NameVals.clear();
4014  }
4015 
4016  if (!Index.cfiFunctionDecls().empty()) {
4017  for (auto &S : Index.cfiFunctionDecls()) {
4018  NameVals.push_back(StrtabBuilder.add(S));
4019  NameVals.push_back(S.size());
4020  }
4021  Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
4022  NameVals.clear();
4023  }
4024 
4025  // Walk the GUIDs that were referenced, and write the
4026  // corresponding type id records.
4027  for (auto &T : ReferencedTypeIds) {
4028  auto TidIter = Index.typeIds().equal_range(T);
4029  for (auto It = TidIter.first; It != TidIter.second; ++It) {
4030  writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
4031  It->second.second);
4032  Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
4033  NameVals.clear();
4034  }
4035  }
4036 
4037  Stream.ExitBlock();
4038 }
4039 
4040 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4041 /// current llvm version, and a record for the epoch number.
4044 
4045  // Write the "user readable" string identifying the bitcode producer
4046  auto Abbv = std::make_shared<BitCodeAbbrev>();
4050  auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4052  "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4053 
4054  // Write the epoch version
4055  Abbv = std::make_shared<BitCodeAbbrev>();
4057  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4058  auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4060  Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4061  Stream.ExitBlock();
4062 }
4063 
4064 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
4065  // Emit the module's hash.
4066  // MODULE_CODE_HASH: [5*i32]
4067  if (GenerateHash) {
4068  uint32_t Vals[5];
4069  Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
4070  Buffer.size() - BlockStartPos));
4071  StringRef Hash = Hasher.result();
4072  for (int Pos = 0; Pos < 20; Pos += 4) {
4073  Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4074  }
4075 
4076  // Emit the finished record.
4077  Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4078 
4079  if (ModHash)
4080  // Save the written hash value.
4081  llvm::copy(Vals, std::begin(*ModHash));
4082  }
4083 }
4084 
4086  writeIdentificationBlock(Stream);
4087 
4089  size_t BlockStartPos = Buffer.size();
4090 
4091  writeModuleVersion();
4092 
4093  // Emit blockinfo, which defines the standard abbreviations etc.
4094  writeBlockInfo();
4095 
4096  // Emit information about attribute groups.
4097  writeAttributeGroupTable();
4098 
4099  // Emit information about parameter attributes.
4100  writeAttributeTable();
4101 
4102  // Emit information describing all of the types in the module.
4103  writeTypeTable();
4104 
4105  writeComdats();
4106 
4107  // Emit top-level description of module, including target triple, inline asm,
4108  // descriptors for global variables, and function prototype info.
4109  writeModuleInfo();
4110 
4111  // Emit constants.
4112  writeModuleConstants();
4113 
4114  // Emit metadata kind names.
4115  writeModuleMetadataKinds();
4116 
4117  // Emit metadata.
4118  writeModuleMetadata();
4119 
4120  // Emit module-level use-lists.
4121  if (VE.shouldPreserveUseListOrder())
4122  writeUseListBlock(nullptr);
4123 
4124  writeOperandBundleTags();
4125  writeSyncScopeNames();
4126 
4127  // Emit function bodies.
4128  DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4129  for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
4130  if (!F->isDeclaration())
4131  writeFunction(*F, FunctionToBitcodeIndex);
4132 
4133  // Need to write after the above call to WriteFunction which populates
4134  // the summary information in the index.
4135  if (Index)
4136  writePerModuleGlobalValueSummary();
4137 
4138  writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4139 
4140  writeModuleHash(BlockStartPos);
4141 
4142  Stream.ExitBlock();
4143 }
4144 
4146  uint32_t &Position) {
4147  support::endian::write32le(&Buffer[Position], Value);
4148  Position += 4;
4149 }
4150 
4151 /// If generating a bc file on darwin, we have to emit a
4152 /// header and trailer to make it compatible with the system archiver. To do
4153 /// this we emit the following header, and then emit a trailer that pads the
4154 /// file out to be a multiple of 16 bytes.
4155 ///
4156 /// struct bc_header {
4157 /// uint32_t Magic; // 0x0B17C0DE
4158 /// uint32_t Version; // Version, currently always 0.
4159 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4160 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
4161 /// uint32_t CPUType; // CPU specifier.
4162 /// ... potentially more later ...
4163 /// };
4165  const Triple &TT) {
4166  unsigned CPUType = ~0U;
4167 
4168  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4169  // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4170  // number from /usr/include/mach/machine.h. It is ok to reproduce the
4171  // specific constants here because they are implicitly part of the Darwin ABI.
4172  enum {
4173  DARWIN_CPU_ARCH_ABI64 = 0x01000000,
4174  DARWIN_CPU_TYPE_X86 = 7,
4175  DARWIN_CPU_TYPE_ARM = 12,
4176  DARWIN_CPU_TYPE_POWERPC = 18
4177  };
4178 
4179  Triple::ArchType Arch = TT.getArch();
4180  if (Arch == Triple::x86_64)
4181  CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4182  else if (Arch == Triple::x86)
4183  CPUType = DARWIN_CPU_TYPE_X86;
4184  else if (Arch == Triple::ppc)
4185  CPUType = DARWIN_CPU_TYPE_POWERPC;
4186  else if (Arch == Triple::ppc64)
4187  CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4188  else if (Arch == Triple::arm || Arch == Triple::thumb)
4189  CPUType = DARWIN_CPU_TYPE_ARM;
4190 
4191  // Traditional Bitcode starts after header.
4192  assert(Buffer.size() >= BWH_HeaderSize &&
4193  "Expected header size to be reserved");
4194  unsigned BCOffset = BWH_HeaderSize;
4195  unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4196 
4197  // Write the magic and version.
4198  unsigned Position = 0;
4199  writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4200  writeInt32ToBuffer(0, Buffer, Position); // Version.
4201  writeInt32ToBuffer(BCOffset, Buffer, Position);
4202  writeInt32ToBuffer(BCSize, Buffer, Position);
4203  writeInt32ToBuffer(CPUType, Buffer, Position);
4204 
4205  // If the file is not a multiple of 16 bytes, insert dummy padding.
4206  while (Buffer.size() & 15)
4207  Buffer.push_back(0);
4208 }
4209 
4210 /// Helper to write the header common to all bitcode files.
4211 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4212  // Emit the file header.
4213  Stream.Emit((unsigned)'B', 8);
4214  Stream.Emit((unsigned)'C', 8);
4215  Stream.Emit(0x0, 4);
4216  Stream.Emit(0xC, 4);
4217  Stream.Emit(0xE, 4);
4218  Stream.Emit(0xD, 4);
4219 }
4220 
4222  : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
4223  writeBitcodeHeader(*Stream);
4224 }
4225 
4227 
4228 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4229  Stream->EnterSubblock(Block, 3);
4230 
4231  auto Abbv = std::make_shared<BitCodeAbbrev>();
4232  Abbv->Add(BitCodeAbbrevOp(Record));
4234  auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4235 
4236  Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4237 
4238  Stream->ExitBlock();
4239 }
4240 
4242  assert(!WroteStrtab && !WroteSymtab);
4243 
4244  // If any module has module-level inline asm, we will require a registered asm
4245  // parser for the target so that we can create an accurate symbol table for
4246  // the module.
4247  for (Module *M : Mods) {
4248  if (M->getModuleInlineAsm().empty())
4249  continue;
4250 
4251  std::string Err;
4252  const Triple TT(M->getTargetTriple());
4253  const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4254  if (!T || !T->hasMCAsmParser())
4255  return;
4256  }
4257 
4258  WroteSymtab = true;
4259  SmallVector<char, 0> Symtab;
4260  // The irsymtab::build function may be unable to create a symbol table if the
4261  // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4262  // table is not required for correctness, but we still want to be able to
4263  // write malformed modules to bitcode files, so swallow the error.
4264  if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4265  consumeError(std::move(E));
4266  return;
4267  }
4268 
4270  {Symtab.data(), Symtab.size()});
4271 }
4272 
4274  assert(!WroteStrtab);
4275 
4276  std::vector<char> Strtab;
4277  StrtabBuilder.finalizeInOrder();
4278  Strtab.resize(StrtabBuilder.getSize());
4279  StrtabBuilder.write((uint8_t *)Strtab.data());
4280 
4282  {Strtab.data(), Strtab.size()});
4283 
4284  WroteStrtab = true;
4285 }
4286 
4288  writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4289  WroteStrtab = true;
4290 }
4291 
4293  bool ShouldPreserveUseListOrder,
4294  const ModuleSummaryIndex *Index,
4295  bool GenerateHash, ModuleHash *ModHash) {
4296  assert(!WroteStrtab);
4297 
4298  // The Mods vector is used by irsymtab::build, which requires non-const
4299  // Modules in case it needs to materialize metadata. But the bitcode writer
4300  // requires that the module is materialized, so we can cast to non-const here,
4301  // after checking that it is in fact materialized.
4302  assert(M.isMaterialized());
4303  Mods.push_back(const_cast<Module *>(&M));
4304 
4305  ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4306  ShouldPreserveUseListOrder, Index,
4307  GenerateHash, ModHash);
4308  ModuleWriter.write();
4309 }
4310 
4312  const ModuleSummaryIndex *Index,
4313  const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4314  IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4315  ModuleToSummariesForIndex);
4316  IndexWriter.write();
4317 }
4318 
4319 /// Write the specified module to the specified output stream.
4321  bool ShouldPreserveUseListOrder,
4322  const ModuleSummaryIndex *Index,
4323  bool GenerateHash, ModuleHash *ModHash) {
4324  SmallVector<char, 0> Buffer;
4325  Buffer.reserve(256*1024);
4326 
4327  // If this is darwin or another generic macho target, reserve space for the
4328  // header.
4329  Triple TT(M.getTargetTriple());
4330  if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4331  Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4332 
4333  BitcodeWriter Writer(Buffer);
4334  Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4335  ModHash);
4336  Writer.writeSymtab();
4337  Writer.writeStrtab();
4338 
4339  if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4340  emitDarwinBCHeaderAndTrailer(Buffer, TT);
4341 
4342  // Write the generated bitstream to "Out".
4343  Out.write((char*)&Buffer.front(), Buffer.size());
4344 }
4345 
4348 
4349  writeModuleVersion();
4350 
4351  // Write the module paths in the combined index.
4352  writeModStrings();
4353 
4354  // Write the summary combined index records.
4355  writeCombinedGlobalValueSummary();
4356 
4357  Stream.ExitBlock();
4358 }
4359 
4360 // Write the specified module summary index to the given raw output stream,
4361 // where it will be written in a new bitcode block. This is used when
4362 // writing the combined index file for ThinLTO. When writing a subset of the
4363 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4365  const ModuleSummaryIndex &Index, raw_ostream &Out,
4366  const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4367  SmallVector<char, 0> Buffer;
4368  Buffer.reserve(256 * 1024);
4369 
4370  BitcodeWriter Writer(Buffer);
4371  Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4372  Writer.writeStrtab();
4373 
4374  Out.write((char *)&Buffer.front(), Buffer.size());
4375 }
4376 
4377 namespace {
4378 
4379 /// Class to manage the bitcode writing for a thin link bitcode file.
4380 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4381  /// ModHash is for use in ThinLTO incremental build, generated while writing
4382  /// the module bitcode file.
4383  const ModuleHash *ModHash;
4384 
4385 public:
4386  ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4387  BitstreamWriter &Stream,
4388  const ModuleSummaryIndex &Index,
4389  const ModuleHash &ModHash)
4390  : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4391  /*ShouldPreserveUseListOrder=*/false, &Index),
4392  ModHash(&ModHash) {}
4393 
4394  void write();
4395 
4396 private:
4397  void writeSimplifiedModuleInfo();
4398 };
4399 
4400 } // end anonymous namespace
4401 
4402 // This function writes a simpilified module info for thin link bitcode file.
4403 // It only contains the source file name along with the name(the offset and
4404 // size in strtab) and linkage for global values. For the global value info
4405 // entry, in order to keep linkage at offset 5, there are three zeros used
4406 // as padding.
4407 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4409  // Emit the module's source file name.
4410  {
4413  if (Bits == SE_Char6)
4414  AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4415  else if (Bits == SE_Fixed7)
4416  AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4417 
4418  // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4419  auto Abbv = std::make_shared<BitCodeAbbrev>();
4422  Abbv->Add(AbbrevOpToUse);
4423  unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4424 
4425  for (const auto P : M.getSourceFileName())
4426  Vals.push_back((unsigned char)P);
4427 
4428  Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4429  Vals.clear();
4430  }
4431 
4432  // Emit the global variable information.
4433  for (const GlobalVariable &GV : M.globals()) {
4434  // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4435  Vals.push_back(StrtabBuilder.add(GV.getName()));
4436  Vals.push_back(GV.getName().size());
4437  Vals.push_back(0);
4438  Vals.push_back(0);
4439  Vals.push_back(0);
4440  Vals.push_back(getEncodedLinkage(GV));
4441 
4443  Vals.clear();
4444  }
4445 
4446  // Emit the function proto information.
4447  for (const Function &F : M) {
4448  // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage]
4449  Vals.push_back(StrtabBuilder.add(F.getName()));
4450  Vals.push_back(F.getName().size());
4451  Vals.push_back(0);
4452  Vals.push_back(0);
4453  Vals.push_back(0);
4454  Vals.push_back(getEncodedLinkage(F));
4455 
4456  Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
4457  Vals.clear();
4458  }
4459 
4460  // Emit the alias information.
4461  for (const GlobalAlias &A : M.aliases()) {
4462  // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
4463  Vals.push_back(StrtabBuilder.add(A.getName()));
4464  Vals.push_back(A.getName().size());
4465  Vals.push_back(0);
4466  Vals.push_back(0);
4467  Vals.push_back(0);
4468  Vals.push_back(getEncodedLinkage(A));
4469 
4470  Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
4471  Vals.clear();
4472  }
4473 
4474  // Emit the ifunc information.
4475  for (const GlobalIFunc &I : M.ifuncs()) {
4476  // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
4477  Vals.push_back(StrtabBuilder.add(I.getName()));
4478  Vals.push_back(I.getName().size());
4479  Vals.push_back(0);
4480  Vals.push_back(0);
4481  Vals.push_back(0);
4482  Vals.push_back(getEncodedLinkage(I));
4483 
4484  Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
4485  Vals.clear();
4486  }
4487 }
4488 
4491 
4492  writeModuleVersion();
4493 
4494  writeSimplifiedModuleInfo();
4495 
4496  writePerModuleGlobalValueSummary();
4497 
4498  // Write module hash.
4500 
4501  Stream.ExitBlock();
4502 }
4503 
4505  const ModuleSummaryIndex &Index,
4506  const ModuleHash &ModHash) {
4507  assert(!WroteStrtab);
4508 
4509  // The Mods vector is used by irsymtab::build, which requires non-const
4510  // Modules in case it needs to materialize metadata. But the bitcode writer
4511  // requires that the module is materialized, so we can cast to non-const here,
4512  // after checking that it is in fact materialized.
4513  assert(M.isMaterialized());
4514  Mods.push_back(const_cast<Module *>(&M));
4515 
4516  ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
4517  ModHash);
4518  ThinLinkWriter.write();
4519 }
4520 
4521 // Write the specified thin link bitcode file to the given raw output stream,
4522 // where it will be written in a new bitcode block. This is used when
4523 // writing the per-module index file for ThinLTO.
4525  const ModuleSummaryIndex &Index,
4526  const ModuleHash &ModHash) {
4527  SmallVector<char, 0> Buffer;
4528  Buffer.reserve(256 * 1024);
4529 
4530  BitcodeWriter Writer(Buffer);
4531  Writer.writeThinLinkBitcode(M, Index, ModHash);
4532  Writer.writeSymtab();
4533  Writer.writeStrtab();
4534 
4535  Out.write((char *)&Buffer.front(), Buffer.size());
4536 }
DIFlags getFlags() const
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
uint64_t CallInst * C
bool hasOperandBundles() const
Return true if this User has any operand bundles.
Definition: InstrTypes.h:1641
MDString * getRawName() const
7: Labels
Definition: Type.h:63
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition: MathExtras.h:551
void writeIndex(const ModuleSummaryIndex *Index, const std::map< std::string, GVSummaryMapTy > *ModuleToSummariesForIndex)
const std::string & getTargetTriple() const
Get the target triple which is a string describing the target host.
Definition: Module.h:240
ThreadLocalMode getThreadLocalMode() const
Definition: GlobalValue.h:254
ArrayRef< uint64_t > getElements() const
This class provides a symbol table of name/value pairs.
uint64_t getOffsetInBits() const
unsigned Live
In per-module summary, indicate that the global value must be considered a live root for index-based ...
static cl::opt< unsigned > IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), cl::desc("Number of metadatas above which we emit an index " "to enable lazy-loading"))
bool isDistinct() const
Definition: Metadata.h:942
This instruction extracts a struct member or array element value from an aggregate value...
Special purpose, only applies to global arrays.
Definition: GlobalValue.h:54
unsigned getLine() const
*p = old <signed v ? old : v
Definition: Instructions.h:721
iterator_range< CaseIt > cases()
Iteration adapter for range-for loops.
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
bool haveGVs() const
const_iterator begin(StringRef path, Style style=Style::native)
Get begin iterator over path.
Definition: Path.cpp:249
static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N, TypePrinting *, SlotTracker *, const Module *)
Definition: AsmWriter.cpp:1820
static uint64_t getOptimizationFlags(const Value *V)
unsigned getMetadataOrNullID(const Metadata *MD) const
Atomic ordering constants.
unsigned getValueID(const Value *V) const
const ValueList & getValues() const
uint64_t GUID
Declare a type to represent a global unique identifier for a global value.
Definition: GlobalValue.h:492
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:139
This class represents lattice values for constants.
Definition: AllocatorList.h:23
static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags)
Type * getParamType(unsigned i) const
Parameter type accessors.
Definition: DerivedTypes.h:134
const unsigned char * bytes_end() const
Definition: StringRef.h:108
StringMapEntry - This is used to represent one value that is inserted into a StringMap.
Definition: StringMap.h:125
unsigned getRuntimeVersion() const
unsigned Linkage
The linkage type of the associated global value.
bool hasMetadataOtherThanDebugLoc() const
Return true if this instruction has metadata attached to it other than a debug location.
Definition: Instruction.h:228
MDString * getRawName() const
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:65
static void getReferencedTypeIds(FunctionSummary *FS, std::set< GlobalValue::GUID > &ReferencedTypeIds)
Collect type IDs from type tests used by function.
2: 32-bit floating point type
Definition: Type.h:58
MDString * getRawName() const
iterator end()
Definition: Function.h:657
Same, but only replaced by something equivalent.
Definition: GlobalValue.h:53
amdgpu Simplify well known AMD library false FunctionCallee Value const Twine & Name
const GlobalValue * getValue() const
ArrayRef< VFuncId > type_test_assume_vcalls() const
Returns the list of virtual calls made by this function using llvm.assume(llvm.type.test) intrinsics that do not have all constant integer arguments.
Metadata * getRawFile() const
Global variable summary information to aid decisions and implementation of importing.
static unsigned getEncodedThreadLocalMode(const GlobalValue &GV)
std::pair< unsigned, AttributeSet > IndexAndAttrSet
Attribute groups as encoded in bitcode are almost AttributeSets, but they include the AttributeList i...
Available for inspection, not emission.
Definition: GlobalValue.h:49
DIFile * getFile() const
ArrayRef< ValueInfo > refs() const
Return the list of values referenced by this global value definition.
DITypeRef getBaseType() const
unsigned getDiscriminator() const
bool isFP128Ty() const
Return true if this is &#39;fp128&#39;.
Definition: Type.h:155
MDString * getRawValue() const
This class represents a function call, abstracting a target machine&#39;s calling convention.
This file contains the declarations for metadata subclasses.
void setInstructionID(const Instruction *I)
Value * getCondition() const
The two locations do not alias at all.
Definition: AliasAnalysis.h:83
bool shouldPreserveUseListOrder() const
StringEncoding
*p = old <unsigned v ? old : v
Definition: Instructions.h:725
void writeSymtab()
Attempt to write a symbol table to the bitcode file.
bool isSwiftError() const
Return true if this alloca is used as a swifterror argument to a call.
Definition: Instructions.h:135
This file contains the declaration of the Comdat class, which represents a single COMDAT in LLVM...
uint64_t Info
Additional information for the resolution:
Like Internal, but omit from symbol table.
Definition: GlobalValue.h:56
*p = old >unsigned v ? old : v
Definition: Instructions.h:723
Externally visible function.
Definition: GlobalValue.h:48
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:709
The data referenced by the COMDAT must be the same size.
Definition: Comdat.h:38
DICompositeTypeArray getEnumTypes() const
const std::string & getDataLayoutStr() const
Get the data layout string for the module&#39;s target platform.
Definition: Module.h:231
static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context)
Definition: AsmWriter.cpp:2016
uint64_t getDWOId() const
BasicBlock * getSuccessor(unsigned i) const
void write32le(void *P, uint32_t V)
Definition: Endian.h:418
13: Structures
Definition: Type.h:72
uint64_t GetCurrentBitNo() const
Retrieve the current position in the stream, in bits.
Metadata node.
Definition: Metadata.h:863
F(f)
4: 80-bit floating point type (X87)
Definition: Type.h:60