LLVM  10.0.0svn
SelectionDAG.h
Go to the documentation of this file.
1 //===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the SelectionDAG class, and transitively defines the
10 // SDNode class and subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CODEGEN_SELECTIONDAG_H
15 #define LLVM_CODEGEN_SELECTIONDAG_H
16 
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/FoldingSet.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/ilist.h"
27 #include "llvm/ADT/iterator.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Metadata.h"
41 #include "llvm/Support/Allocator.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CodeGen.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstdint>
52 #include <functional>
53 #include <map>
54 #include <string>
55 #include <tuple>
56 #include <utility>
57 #include <vector>
58 
59 namespace llvm {
60 
61 class BlockAddress;
62 class Constant;
63 class ConstantFP;
64 class ConstantInt;
65 class DataLayout;
66 struct fltSemantics;
67 class GlobalValue;
68 struct KnownBits;
69 class LLVMContext;
70 class MachineBasicBlock;
71 class MachineConstantPoolValue;
72 class MCSymbol;
73 class OptimizationRemarkEmitter;
74 class SDDbgValue;
75 class SDDbgLabel;
76 class SelectionDAG;
77 class SelectionDAGTargetInfo;
78 class TargetLibraryInfo;
79 class TargetLowering;
80 class TargetMachine;
81 class TargetSubtargetInfo;
82 class Value;
83 
84 class SDVTListNode : public FoldingSetNode {
85  friend struct FoldingSetTrait<SDVTListNode>;
86 
87  /// A reference to an Interned FoldingSetNodeID for this node.
88  /// The Allocator in SelectionDAG holds the data.
89  /// SDVTList contains all types which are frequently accessed in SelectionDAG.
90  /// The size of this list is not expected to be big so it won't introduce
91  /// a memory penalty.
92  FoldingSetNodeIDRef FastID;
93  const EVT *VTs;
94  unsigned int NumVTs;
95  /// The hash value for SDVTList is fixed, so cache it to avoid
96  /// hash calculation.
97  unsigned HashValue;
98 
99 public:
100  SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) :
101  FastID(ID), VTs(VT), NumVTs(Num) {
102  HashValue = ID.ComputeHash();
103  }
104 
106  SDVTList result = {VTs, NumVTs};
107  return result;
108  }
109 };
110 
111 /// Specialize FoldingSetTrait for SDVTListNode
112 /// to avoid computing temp FoldingSetNodeID and hash value.
113 template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> {
114  static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) {
115  ID = X.FastID;
116  }
117 
118  static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID,
119  unsigned IDHash, FoldingSetNodeID &TempID) {
120  if (X.HashValue != IDHash)
121  return false;
122  return ID == X.FastID;
123  }
124 
125  static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) {
126  return X.HashValue;
127  }
128 };
129 
130 template <> struct ilist_alloc_traits<SDNode> {
131  static void deleteNode(SDNode *) {
132  llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
133  }
134 };
135 
136 /// Keeps track of dbg_value information through SDISel. We do
137 /// not build SDNodes for these so as not to perturb the generated code;
138 /// instead the info is kept off to the side in this structure. Each SDNode may
139 /// have one or more associated dbg_value entries. This information is kept in
140 /// DbgValMap.
141 /// Byval parameters are handled separately because they don't use alloca's,
142 /// which busts the normal mechanism. There is good reason for handling all
143 /// parameters separately: they may not have code generated for them, they
144 /// should always go at the beginning of the function regardless of other code
145 /// motion, and debug info for them is potentially useful even if the parameter
146 /// is unused. Right now only byval parameters are handled separately.
147 class SDDbgInfo {
148  BumpPtrAllocator Alloc;
150  SmallVector<SDDbgValue*, 32> ByvalParmDbgValues;
151  SmallVector<SDDbgLabel*, 4> DbgLabels;
153  DbgValMapType DbgValMap;
154 
155 public:
156  SDDbgInfo() = default;
157  SDDbgInfo(const SDDbgInfo &) = delete;
158  SDDbgInfo &operator=(const SDDbgInfo &) = delete;
159 
160  void add(SDDbgValue *V, const SDNode *Node, bool isParameter) {
161  if (isParameter) {
162  ByvalParmDbgValues.push_back(V);
163  } else DbgValues.push_back(V);
164  if (Node)
165  DbgValMap[Node].push_back(V);
166  }
167 
168  void add(SDDbgLabel *L) {
169  DbgLabels.push_back(L);
170  }
171 
172  /// Invalidate all DbgValues attached to the node and remove
173  /// it from the Node-to-DbgValues map.
174  void erase(const SDNode *Node);
175 
176  void clear() {
177  DbgValMap.clear();
178  DbgValues.clear();
179  ByvalParmDbgValues.clear();
180  DbgLabels.clear();
181  Alloc.Reset();
182  }
183 
184  BumpPtrAllocator &getAlloc() { return Alloc; }
185 
186  bool empty() const {
187  return DbgValues.empty() && ByvalParmDbgValues.empty() && DbgLabels.empty();
188  }
189 
191  auto I = DbgValMap.find(Node);
192  if (I != DbgValMap.end())
193  return I->second;
194  return ArrayRef<SDDbgValue*>();
195  }
196 
199 
200  DbgIterator DbgBegin() { return DbgValues.begin(); }
201  DbgIterator DbgEnd() { return DbgValues.end(); }
202  DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); }
203  DbgIterator ByvalParmDbgEnd() { return ByvalParmDbgValues.end(); }
204  DbgLabelIterator DbgLabelBegin() { return DbgLabels.begin(); }
205  DbgLabelIterator DbgLabelEnd() { return DbgLabels.end(); }
206 };
207 
208 void checkForCycles(const SelectionDAG *DAG, bool force = false);
209 
210 /// This is used to represent a portion of an LLVM function in a low-level
211 /// Data Dependence DAG representation suitable for instruction selection.
212 /// This DAG is constructed as the first step of instruction selection in order
213 /// to allow implementation of machine specific optimizations
214 /// and code simplifications.
215 ///
216 /// The representation used by the SelectionDAG is a target-independent
217 /// representation, which has some similarities to the GCC RTL representation,
218 /// but is significantly more simple, powerful, and is a graph form instead of a
219 /// linear form.
220 ///
222  const TargetMachine &TM;
223  const SelectionDAGTargetInfo *TSI = nullptr;
224  const TargetLowering *TLI = nullptr;
225  const TargetLibraryInfo *LibInfo = nullptr;
226  MachineFunction *MF;
227  Pass *SDAGISelPass = nullptr;
229  CodeGenOpt::Level OptLevel;
230 
231  LegacyDivergenceAnalysis * DA = nullptr;
232  FunctionLoweringInfo * FLI = nullptr;
233 
234  /// The function-level optimization remark emitter. Used to emit remarks
235  /// whenever manipulating the DAG.
237 
238  /// The starting token.
239  SDNode EntryNode;
240 
241  /// The root of the entire DAG.
242  SDValue Root;
243 
244  /// A linked list of nodes in the current DAG.
245  ilist<SDNode> AllNodes;
246 
247  /// The AllocatorType for allocating SDNodes. We use
248  /// pool allocation with recycling.
250  sizeof(LargestSDNode),
251  alignof(MostAlignedSDNode)>;
252 
253  /// Pool allocation for nodes.
254  NodeAllocatorType NodeAllocator;
255 
256  /// This structure is used to memoize nodes, automatically performing
257  /// CSE with existing nodes when a duplicate is requested.
258  FoldingSet<SDNode> CSEMap;
259 
260  /// Pool allocation for machine-opcode SDNode operands.
261  BumpPtrAllocator OperandAllocator;
262  ArrayRecycler<SDUse> OperandRecycler;
263 
264  /// Pool allocation for misc. objects that are created once per SelectionDAG.
265  BumpPtrAllocator Allocator;
266 
267  /// Tracks dbg_value and dbg_label information through SDISel.
268  SDDbgInfo *DbgInfo;
269 
272 
273  struct CallSiteDbgInfo {
274  CallSiteInfo CSInfo;
275  MDNode *HeapAllocSite = nullptr;
276  };
277 
279 
280  uint16_t NextPersistentId = 0;
281 
282 public:
283  /// Clients of various APIs that cause global effects on
284  /// the DAG can optionally implement this interface. This allows the clients
285  /// to handle the various sorts of updates that happen.
286  ///
287  /// A DAGUpdateListener automatically registers itself with DAG when it is
288  /// constructed, and removes itself when destroyed in RAII fashion.
292 
294  : Next(D.UpdateListeners), DAG(D) {
295  DAG.UpdateListeners = this;
296  }
297 
298  virtual ~DAGUpdateListener() {
299  assert(DAG.UpdateListeners == this &&
300  "DAGUpdateListeners must be destroyed in LIFO order");
301  DAG.UpdateListeners = Next;
302  }
303 
304  /// The node N that was deleted and, if E is not null, an
305  /// equivalent node E that replaced it.
306  virtual void NodeDeleted(SDNode *N, SDNode *E);
307 
308  /// The node N that was updated.
309  virtual void NodeUpdated(SDNode *N);
310 
311  /// The node N that was inserted.
312  virtual void NodeInserted(SDNode *N);
313  };
314 
316  std::function<void(SDNode *, SDNode *)> Callback;
317 
319  std::function<void(SDNode *, SDNode *)> Callback)
320  : DAGUpdateListener(DAG), Callback(std::move(Callback)) {}
321 
322  void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); }
323 
324  private:
325  virtual void anchor();
326  };
327 
328  /// When true, additional steps are taken to
329  /// ensure that getConstant() and similar functions return DAG nodes that
330  /// have legal types. This is important after type legalization since
331  /// any illegally typed nodes generated after this point will not experience
332  /// type legalization.
333  bool NewNodesMustHaveLegalTypes = false;
334 
335 private:
336  /// DAGUpdateListener is a friend so it can manipulate the listener stack.
337  friend struct DAGUpdateListener;
338 
339  /// Linked list of registered DAGUpdateListener instances.
340  /// This stack is maintained by DAGUpdateListener RAII.
341  DAGUpdateListener *UpdateListeners = nullptr;
342 
343  /// Implementation of setSubgraphColor.
344  /// Return whether we had to truncate the search.
345  bool setSubgraphColorHelper(SDNode *N, const char *Color,
346  DenseSet<SDNode *> &visited,
347  int level, bool &printed);
348 
349  template <typename SDNodeT, typename... ArgTypes>
350  SDNodeT *newSDNode(ArgTypes &&... Args) {
351  return new (NodeAllocator.template Allocate<SDNodeT>())
352  SDNodeT(std::forward<ArgTypes>(Args)...);
353  }
354 
355  /// Build a synthetic SDNodeT with the given args and extract its subclass
356  /// data as an integer (e.g. for use in a folding set).
357  ///
358  /// The args to this function are the same as the args to SDNodeT's
359  /// constructor, except the second arg (assumed to be a const DebugLoc&) is
360  /// omitted.
361  template <typename SDNodeT, typename... ArgTypes>
362  static uint16_t getSyntheticNodeSubclassData(unsigned IROrder,
363  ArgTypes &&... Args) {
364  // The compiler can reduce this expression to a constant iff we pass an
365  // empty DebugLoc. Thankfully, the debug location doesn't have any bearing
366  // on the subclass data.
367  return SDNodeT(IROrder, DebugLoc(), std::forward<ArgTypes>(Args)...)
368  .getRawSubclassData();
369  }
370 
371  template <typename SDNodeTy>
372  static uint16_t getSyntheticNodeSubclassData(unsigned Opc, unsigned Order,
373  SDVTList VTs, EVT MemoryVT,
374  MachineMemOperand *MMO) {
375  return SDNodeTy(Opc, Order, DebugLoc(), VTs, MemoryVT, MMO)
376  .getRawSubclassData();
377  }
378 
379  void createOperands(SDNode *Node, ArrayRef<SDValue> Vals);
380 
381  void removeOperands(SDNode *Node) {
382  if (!Node->OperandList)
383  return;
384  OperandRecycler.deallocate(
385  ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands),
386  Node->OperandList);
387  Node->NumOperands = 0;
388  Node->OperandList = nullptr;
389  }
390  void CreateTopologicalOrder(std::vector<SDNode*>& Order);
391 public:
392  explicit SelectionDAG(const TargetMachine &TM, CodeGenOpt::Level);
393  SelectionDAG(const SelectionDAG &) = delete;
394  SelectionDAG &operator=(const SelectionDAG &) = delete;
395  ~SelectionDAG();
396 
397  /// Prepare this SelectionDAG to process code in the given MachineFunction.
398  void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE,
399  Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
400  LegacyDivergenceAnalysis * Divergence);
401 
403  FLI = FuncInfo;
404  }
405 
406  /// Clear state and free memory necessary to make this
407  /// SelectionDAG ready to process a new block.
408  void clear();
409 
410  MachineFunction &getMachineFunction() const { return *MF; }
411  const Pass *getPass() const { return SDAGISelPass; }
412 
413  const DataLayout &getDataLayout() const { return MF->getDataLayout(); }
414  const TargetMachine &getTarget() const { return TM; }
415  const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); }
416  const TargetLowering &getTargetLoweringInfo() const { return *TLI; }
417  const TargetLibraryInfo &getLibInfo() const { return *LibInfo; }
418  const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; }
419  const LegacyDivergenceAnalysis *getDivergenceAnalysis() const { return DA; }
420  LLVMContext *getContext() const {return Context; }
421  OptimizationRemarkEmitter &getORE() const { return *ORE; }
422 
423  /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
424  void viewGraph(const std::string &Title);
425  void viewGraph();
426 
427 #ifndef NDEBUG
428  std::map<const SDNode *, std::string> NodeGraphAttrs;
429 #endif
430 
431  /// Clear all previously defined node graph attributes.
432  /// Intended to be used from a debugging tool (eg. gdb).
433  void clearGraphAttrs();
434 
435  /// Set graph attributes for a node. (eg. "color=red".)
436  void setGraphAttrs(const SDNode *N, const char *Attrs);
437 
438  /// Get graph attributes for a node. (eg. "color=red".)
439  /// Used from getNodeAttributes.
440  const std::string getGraphAttrs(const SDNode *N) const;
441 
442  /// Convenience for setting node color attribute.
443  void setGraphColor(const SDNode *N, const char *Color);
444 
445  /// Convenience for setting subgraph color attribute.
446  void setSubgraphColor(SDNode *N, const char *Color);
447 
449 
450  allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
451  allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
452 
454 
455  allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
456  allnodes_iterator allnodes_end() { return AllNodes.end(); }
457 
459  return AllNodes.size();
460  }
461 
463  return make_range(allnodes_begin(), allnodes_end());
464  }
466  return make_range(allnodes_begin(), allnodes_end());
467  }
468 
469  /// Return the root tag of the SelectionDAG.
470  const SDValue &getRoot() const { return Root; }
471 
472  /// Return the token chain corresponding to the entry of the function.
474  return SDValue(const_cast<SDNode *>(&EntryNode), 0);
475  }
476 
477  /// Set the current root tag of the SelectionDAG.
478  ///
480  assert((!N.getNode() || N.getValueType() == MVT::Other) &&
481  "DAG root value is not a chain!");
482  if (N.getNode())
483  checkForCycles(N.getNode(), this);
484  Root = N;
485  if (N.getNode())
486  checkForCycles(this);
487  return Root;
488  }
489 
490 #ifndef NDEBUG
491  void VerifyDAGDiverence();
492 #endif
493 
494  /// This iterates over the nodes in the SelectionDAG, folding
495  /// certain types of nodes together, or eliminating superfluous nodes. The
496  /// Level argument controls whether Combine is allowed to produce nodes and
497  /// types that are illegal on the target.
498  void Combine(CombineLevel Level, AliasAnalysis *AA,
499  CodeGenOpt::Level OptLevel);
500 
501  /// This transforms the SelectionDAG into a SelectionDAG that
502  /// only uses types natively supported by the target.
503  /// Returns "true" if it made any changes.
504  ///
505  /// Note that this is an involved process that may invalidate pointers into
506  /// the graph.
507  bool LegalizeTypes();
508 
509  /// This transforms the SelectionDAG into a SelectionDAG that is
510  /// compatible with the target instruction selector, as indicated by the
511  /// TargetLowering object.
512  ///
513  /// Note that this is an involved process that may invalidate pointers into
514  /// the graph.
515  void Legalize();
516 
517  /// Transforms a SelectionDAG node and any operands to it into a node
518  /// that is compatible with the target instruction selector, as indicated by
519  /// the TargetLowering object.
520  ///
521  /// \returns true if \c N is a valid, legal node after calling this.
522  ///
523  /// This essentially runs a single recursive walk of the \c Legalize process
524  /// over the given node (and its operands). This can be used to incrementally
525  /// legalize the DAG. All of the nodes which are directly replaced,
526  /// potentially including N, are added to the output parameter \c
527  /// UpdatedNodes so that the delta to the DAG can be understood by the
528  /// caller.
529  ///
530  /// When this returns false, N has been legalized in a way that make the
531  /// pointer passed in no longer valid. It may have even been deleted from the
532  /// DAG, and so it shouldn't be used further. When this returns true, the
533  /// N passed in is a legal node, and can be immediately processed as such.
534  /// This may still have done some work on the DAG, and will still populate
535  /// UpdatedNodes with any new nodes replacing those originally in the DAG.
536  bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes);
537 
538  /// This transforms the SelectionDAG into a SelectionDAG
539  /// that only uses vector math operations supported by the target. This is
540  /// necessary as a separate step from Legalize because unrolling a vector
541  /// operation can introduce illegal types, which requires running
542  /// LegalizeTypes again.
543  ///
544  /// This returns true if it made any changes; in that case, LegalizeTypes
545  /// is called again before Legalize.
546  ///
547  /// Note that this is an involved process that may invalidate pointers into
548  /// the graph.
549  bool LegalizeVectors();
550 
551  /// This method deletes all unreachable nodes in the SelectionDAG.
552  void RemoveDeadNodes();
553 
554  /// Remove the specified node from the system. This node must
555  /// have no referrers.
556  void DeleteNode(SDNode *N);
557 
558  /// Return an SDVTList that represents the list of values specified.
559  SDVTList getVTList(EVT VT);
560  SDVTList getVTList(EVT VT1, EVT VT2);
561  SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3);
562  SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4);
563  SDVTList getVTList(ArrayRef<EVT> VTs);
564 
565  //===--------------------------------------------------------------------===//
566  // Node creation methods.
567 
568  /// Create a ConstantSDNode wrapping a constant value.
569  /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
570  ///
571  /// If only legal types can be produced, this does the necessary
572  /// transformations (e.g., if the vector element type is illegal).
573  /// @{
574  SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
575  bool isTarget = false, bool isOpaque = false);
576  SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
577  bool isTarget = false, bool isOpaque = false);
578 
579  SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget = false,
580  bool IsOpaque = false) {
582  VT, IsTarget, IsOpaque);
583  }
584 
585  SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
586  bool isTarget = false, bool isOpaque = false);
587  SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL,
588  bool isTarget = false);
589  SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL,
590  bool LegalTypes = true);
591 
592  SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT,
593  bool isOpaque = false) {
594  return getConstant(Val, DL, VT, true, isOpaque);
595  }
596  SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT,
597  bool isOpaque = false) {
598  return getConstant(Val, DL, VT, true, isOpaque);
599  }
600  SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
601  bool isOpaque = false) {
602  return getConstant(Val, DL, VT, true, isOpaque);
603  }
604 
605  /// Create a true or false constant of type \p VT using the target's
606  /// BooleanContent for type \p OpVT.
607  SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT);
608  /// @}
609 
610  /// Create a ConstantFPSDNode wrapping a constant value.
611  /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
612  ///
613  /// If only legal types can be produced, this does the necessary
614  /// transformations (e.g., if the vector element type is illegal).
615  /// The forms that take a double should only be used for simple constants
616  /// that can be exactly represented in VT. No checks are made.
617  /// @{
618  SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT,
619  bool isTarget = false);
620  SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT,
621  bool isTarget = false);
622  SDValue getConstantFP(const ConstantFP &V, const SDLoc &DL, EVT VT,
623  bool isTarget = false);
624  SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) {
625  return getConstantFP(Val, DL, VT, true);
626  }
627  SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) {
628  return getConstantFP(Val, DL, VT, true);
629  }
630  SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) {
631  return getConstantFP(Val, DL, VT, true);
632  }
633  /// @}
634 
635  SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
636  int64_t offset = 0, bool isTargetGA = false,
637  unsigned TargetFlags = 0);
639  int64_t offset = 0, unsigned TargetFlags = 0) {
640  return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags);
641  }
642  SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false);
644  return getFrameIndex(FI, VT, true);
645  }
646  SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false,
647  unsigned TargetFlags = 0);
648  SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags = 0) {
649  return getJumpTable(JTI, VT, true, TargetFlags);
650  }
651  SDValue getConstantPool(const Constant *C, EVT VT, unsigned Align = 0,
652  int Offs = 0, bool isT = false,
653  unsigned TargetFlags = 0);
654  SDValue getTargetConstantPool(const Constant *C, EVT VT, unsigned Align = 0,
655  int Offset = 0, unsigned TargetFlags = 0) {
656  return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
657  }
658  SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT,
659  unsigned Align = 0, int Offs = 0, bool isT=false,
660  unsigned TargetFlags = 0);
662  unsigned Align = 0, int Offset = 0,
663  unsigned TargetFlags = 0) {
664  return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
665  }
666  SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0,
667  unsigned TargetFlags = 0);
668  // When generating a branch to a BB, we don't in general know enough
669  // to provide debug info for the BB at that time, so keep this one around.
670  SDValue getBasicBlock(MachineBasicBlock *MBB);
671  SDValue getBasicBlock(MachineBasicBlock *MBB, SDLoc dl);
672  SDValue getExternalSymbol(const char *Sym, EVT VT);
673  SDValue getExternalSymbol(const char *Sym, const SDLoc &dl, EVT VT);
674  SDValue getTargetExternalSymbol(const char *Sym, EVT VT,
675  unsigned TargetFlags = 0);
676  SDValue getMCSymbol(MCSymbol *Sym, EVT VT);
677 
678  SDValue getValueType(EVT);
679  SDValue getRegister(unsigned Reg, EVT VT);
680  SDValue getRegisterMask(const uint32_t *RegMask);
681  SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label);
682  SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root,
683  MCSymbol *Label);
684  SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset = 0,
685  bool isTarget = false, unsigned TargetFlags = 0);
687  int64_t Offset = 0, unsigned TargetFlags = 0) {
688  return getBlockAddress(BA, VT, Offset, true, TargetFlags);
689  }
690 
691  SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg,
692  SDValue N) {
693  return getNode(ISD::CopyToReg, dl, MVT::Other, Chain,
694  getRegister(Reg, N.getValueType()), N);
695  }
696 
697  // This version of the getCopyToReg method takes an extra operand, which
698  // indicates that there is potentially an incoming glue value (if Glue is not
699  // null) and that there should be a glue result.
700  SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N,
701  SDValue Glue) {
702  SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
703  SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue };
704  return getNode(ISD::CopyToReg, dl, VTs,
705  makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
706  }
707 
708  // Similar to last getCopyToReg() except parameter Reg is a SDValue
709  SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N,
710  SDValue Glue) {
711  SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
712  SDValue Ops[] = { Chain, Reg, N, Glue };
713  return getNode(ISD::CopyToReg, dl, VTs,
714  makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
715  }
716 
717  SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT) {
718  SDVTList VTs = getVTList(VT, MVT::Other);
719  SDValue Ops[] = { Chain, getRegister(Reg, VT) };
720  return getNode(ISD::CopyFromReg, dl, VTs, Ops);
721  }
722 
723  // This version of the getCopyFromReg method takes an extra operand, which
724  // indicates that there is potentially an incoming glue value (if Glue is not
725  // null) and that there should be a glue result.
726  SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT,
727  SDValue Glue) {
728  SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue);
729  SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue };
730  return getNode(ISD::CopyFromReg, dl, VTs,
731  makeArrayRef(Ops, Glue.getNode() ? 3 : 2));
732  }
733 
735 
736  /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
737  /// which must be a vector type, must match the number of mask elements
738  /// NumElts. An integer mask element equal to -1 is treated as undefined.
739  SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
741 
742  /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
743  /// which must be a vector type, must match the number of operands in Ops.
744  /// The operands must have the same type as (or, for integers, a type wider
745  /// than) VT's element type.
747  // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
748  return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
749  }
750 
751  /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
752  /// which must be a vector type, must match the number of operands in Ops.
753  /// The operands must have the same type as (or, for integers, a type wider
754  /// than) VT's element type.
756  // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
757  return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
758  }
759 
760  /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
761  /// elements. VT must be a vector type. Op's type must be the same as (or,
762  /// for integers, a type wider than) VT's element type.
764  // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
765  if (Op.getOpcode() == ISD::UNDEF) {
766  assert((VT.getVectorElementType() == Op.getValueType() ||
767  (VT.isInteger() &&
769  "A splatted value must have a width equal or (for integers) "
770  "greater than the vector element type!");
771  return getNode(ISD::UNDEF, SDLoc(), VT);
772  }
773 
775  return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
776  }
777 
778  /// Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
779  /// the shuffle node in input but with swapped operands.
780  ///
781  /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
782  SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV);
783 
784  /// Convert Op, which must be of float type, to the
785  /// float type VT, by either extending or rounding (by truncation).
786  SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT);
787 
788  /// Convert Op, which must be of integer type, to the
789  /// integer type VT, by either any-extending or truncating it.
790  SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
791 
792  /// Convert Op, which must be of integer type, to the
793  /// integer type VT, by either sign-extending or truncating it.
794  SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
795 
796  /// Convert Op, which must be of integer type, to the
797  /// integer type VT, by either zero-extending or truncating it.
798  SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
799 
800  /// Return the expression required to zero extend the Op
801  /// value assuming it was the smaller SrcTy value.
802  SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT);
803 
804  /// Convert Op, which must be of integer type, to the integer type VT, by
805  /// either truncating it or performing either zero or sign extension as
806  /// appropriate extension for the pointer's semantics.
807  SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
808 
809  /// Return the expression required to extend the Op as a pointer value
810  /// assuming it was the smaller SrcTy value. This may be either a zero extend
811  /// or a sign extend.
812  SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT);
813 
814  /// Convert Op, which must be of integer type, to the integer type VT,
815  /// by using an extension appropriate for the target's
816  /// BooleanContent for type OpVT or truncating it.
817  SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT);
818 
819  /// Create a bitwise NOT operation as (XOR Val, -1).
820  SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT);
821 
822  /// Create a logical NOT operation as (XOR Val, BooleanOne).
823  SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT);
824 
825  /// Create an add instruction with appropriate flags when used for
826  /// addressing some offset of an object. i.e. if a load is split into multiple
827  /// components, create an add nuw from the base pointer to the offset.
828  SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, int64_t Offset) {
829  EVT VT = Op.getValueType();
830  return getObjectPtrOffset(SL, Op, getConstant(Offset, SL, VT));
831  }
832 
834  EVT VT = Op.getValueType();
835 
836  // The object itself can't wrap around the address space, so it shouldn't be
837  // possible for the adds of the offsets to the split parts to overflow.
838  SDNodeFlags Flags;
839  Flags.setNoUnsignedWrap(true);
840  return getNode(ISD::ADD, SL, VT, Op, Offset, Flags);
841  }
842 
843  /// Return a new CALLSEQ_START node, that starts new call frame, in which
844  /// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and
845  /// OutSize specifies part of the frame set up prior to the sequence.
846  SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize,
847  const SDLoc &DL) {
848  SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
849  SDValue Ops[] = { Chain,
850  getIntPtrConstant(InSize, DL, true),
851  getIntPtrConstant(OutSize, DL, true) };
852  return getNode(ISD::CALLSEQ_START, DL, VTs, Ops);
853  }
854 
855  /// Return a new CALLSEQ_END node, which always must have a
856  /// glue result (to ensure it's not CSE'd).
857  /// CALLSEQ_END does not have a useful SDLoc.
859  SDValue InGlue, const SDLoc &DL) {
860  SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue);
862  Ops.push_back(Chain);
863  Ops.push_back(Op1);
864  Ops.push_back(Op2);
865  if (InGlue.getNode())
866  Ops.push_back(InGlue);
867  return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops);
868  }
869 
870  /// Return true if the result of this operation is always undefined.
871  bool isUndef(unsigned Opcode, ArrayRef<SDValue> Ops);
872 
873  /// Return an UNDEF node. UNDEF does not have a useful SDLoc.
875  return getNode(ISD::UNDEF, SDLoc(), VT);
876  }
877 
878  /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
880  return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT);
881  }
882 
883  /// Gets or creates the specified node.
884  ///
885  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
886  ArrayRef<SDUse> Ops);
887  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
888  ArrayRef<SDValue> Ops, const SDNodeFlags Flags = SDNodeFlags());
889  SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys,
890  ArrayRef<SDValue> Ops);
891  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
892  ArrayRef<SDValue> Ops);
893 
894  // Specialize based on number of operands.
895  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT);
896  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue Operand,
897  const SDNodeFlags Flags = SDNodeFlags());
898  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
899  SDValue N2, const SDNodeFlags Flags = SDNodeFlags());
900  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
901  SDValue N2, SDValue N3,
902  const SDNodeFlags Flags = SDNodeFlags());
903  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
904  SDValue N2, SDValue N3, SDValue N4);
905  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
906  SDValue N2, SDValue N3, SDValue N4, SDValue N5);
907 
908  // Specialize again based on number of operands for nodes with a VTList
909  // rather than a single VT.
910  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList);
911  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N);
912  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
913  SDValue N2);
914  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
915  SDValue N2, SDValue N3);
916  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
917  SDValue N2, SDValue N3, SDValue N4);
918  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
919  SDValue N2, SDValue N3, SDValue N4, SDValue N5);
920 
921  /// Compute a TokenFactor to force all the incoming stack arguments to be
922  /// loaded from the stack. This is used in tail call lowering to protect
923  /// stack arguments from being clobbered.
924  SDValue getStackArgumentTokenFactor(SDValue Chain);
925 
926  SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
927  SDValue Size, unsigned Align, bool isVol, bool AlwaysInline,
928  bool isTailCall, MachinePointerInfo DstPtrInfo,
929  MachinePointerInfo SrcPtrInfo);
930 
931  SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
932  SDValue Size, unsigned Align, bool isVol, bool isTailCall,
933  MachinePointerInfo DstPtrInfo,
934  MachinePointerInfo SrcPtrInfo);
935 
936  SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
937  SDValue Size, unsigned Align, bool isVol, bool isTailCall,
938  MachinePointerInfo DstPtrInfo);
939 
940  SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
941  unsigned DstAlign, SDValue Src, unsigned SrcAlign,
942  SDValue Size, Type *SizeTy, unsigned ElemSz,
943  bool isTailCall, MachinePointerInfo DstPtrInfo,
944  MachinePointerInfo SrcPtrInfo);
945 
946  SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
947  unsigned DstAlign, SDValue Src, unsigned SrcAlign,
948  SDValue Size, Type *SizeTy, unsigned ElemSz,
949  bool isTailCall, MachinePointerInfo DstPtrInfo,
950  MachinePointerInfo SrcPtrInfo);
951 
952  SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
953  unsigned DstAlign, SDValue Value, SDValue Size,
954  Type *SizeTy, unsigned ElemSz, bool isTailCall,
955  MachinePointerInfo DstPtrInfo);
956 
957  /// Helper function to make it easier to build SetCC's if you just have an
958  /// ISD::CondCode instead of an SDValue.
959  SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS,
960  ISD::CondCode Cond) {
961  assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() &&
962  "Cannot compare scalars to vectors");
963  assert(LHS.getValueType().isVector() == VT.isVector() &&
964  "Cannot compare scalars to vectors");
965  assert(Cond != ISD::SETCC_INVALID &&
966  "Cannot create a setCC of an invalid node.");
967  return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond));
968  }
969 
970  /// Helper function to make it easier to build Select's if you just have
971  /// operands and don't want to check for vector.
972  SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS,
973  SDValue RHS) {
974  assert(LHS.getValueType() == RHS.getValueType() &&
975  "Cannot use select on differing types");
976  assert(VT.isVector() == LHS.getValueType().isVector() &&
977  "Cannot mix vectors and scalars");
978  auto Opcode = Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
979  return getNode(Opcode, DL, VT, Cond, LHS, RHS);
980  }
981 
982  /// Helper function to make it easier to build SelectCC's if you just have an
983  /// ISD::CondCode instead of an SDValue.
984  SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True,
985  SDValue False, ISD::CondCode Cond) {
986  return getNode(ISD::SELECT_CC, DL, True.getValueType(), LHS, RHS, True,
987  False, getCondCode(Cond));
988  }
989 
990  /// Try to simplify a select/vselect into 1 of its operands or a constant.
991  SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal);
992 
993  /// Try to simplify a shift into 1 of its operands or a constant.
994  SDValue simplifyShift(SDValue X, SDValue Y);
995 
996  /// Try to simplify a floating-point binary operation into 1 of its operands
997  /// or a constant.
998  SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y);
999 
1000  /// VAArg produces a result and token chain, and takes a pointer
1001  /// and a source value as input.
1002  SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1003  SDValue SV, unsigned Align);
1004 
1005  /// Gets a node for an atomic cmpxchg op. There are two
1006  /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
1007  /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
1008  /// a success flag (initially i1), and a chain.
1009  SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
1010  SDVTList VTs, SDValue Chain, SDValue Ptr,
1011  SDValue Cmp, SDValue Swp, MachineMemOperand *MMO);
1012 
1013  /// Gets a node for an atomic op, produces result (if relevant)
1014  /// and chain and takes 2 operands.
1015  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
1016  SDValue Ptr, SDValue Val, MachineMemOperand *MMO);
1017 
1018  /// Gets a node for an atomic op, produces result and chain and
1019  /// takes 1 operand.
1020  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT,
1021  SDValue Chain, SDValue Ptr, MachineMemOperand *MMO);
1022 
1023  /// Gets a node for an atomic op, produces result and chain and takes N
1024  /// operands.
1025  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
1026  SDVTList VTList, ArrayRef<SDValue> Ops,
1027  MachineMemOperand *MMO);
1028 
1029  /// Creates a MemIntrinsicNode that may produce a
1030  /// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
1031  /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
1032  /// less than FIRST_TARGET_MEMORY_OPCODE.
1033  SDValue getMemIntrinsicNode(
1034  unsigned Opcode, const SDLoc &dl, SDVTList VTList,
1035  ArrayRef<SDValue> Ops, EVT MemVT,
1036  MachinePointerInfo PtrInfo,
1037  unsigned Align = 0,
1040  unsigned Size = 0,
1041  const AAMDNodes &AAInfo = AAMDNodes());
1042 
1043  SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
1044  ArrayRef<SDValue> Ops, EVT MemVT,
1045  MachineMemOperand *MMO);
1046 
1047  /// Creates a LifetimeSDNode that starts (`IsStart==true`) or ends
1048  /// (`IsStart==false`) the lifetime of the portion of `FrameIndex` between
1049  /// offsets `Offset` and `Offset + Size`.
1050  SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain,
1051  int FrameIndex, int64_t Size, int64_t Offset = -1);
1052 
1053  /// Create a MERGE_VALUES node from the given operands.
1054  SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl);
1055 
1056  /// Loads are not normal binary operators: their result type is not
1057  /// determined by their operands, and they produce a value AND a token chain.
1058  ///
1059  /// This function will set the MOLoad flag on MMOFlags, but you can set it if
1060  /// you want. The MOStore flag must not be set.
1061  SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1062  MachinePointerInfo PtrInfo, unsigned Alignment = 0,
1064  const AAMDNodes &AAInfo = AAMDNodes(),
1065  const MDNode *Ranges = nullptr);
1066  SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1067  MachineMemOperand *MMO);
1068  SDValue
1069  getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain,
1070  SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT,
1071  unsigned Alignment = 0,
1073  const AAMDNodes &AAInfo = AAMDNodes());
1074  SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
1075  SDValue Chain, SDValue Ptr, EVT MemVT,
1076  MachineMemOperand *MMO);
1077  SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
1079  SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1080  const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1081  MachinePointerInfo PtrInfo, EVT MemVT, unsigned Alignment = 0,
1083  const AAMDNodes &AAInfo = AAMDNodes(),
1084  const MDNode *Ranges = nullptr);
1085  SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1086  const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1087  EVT MemVT, MachineMemOperand *MMO);
1088 
1089  /// Helper function to build ISD::STORE nodes.
1090  ///
1091  /// This function will set the MOStore flag on MMOFlags, but you can set it if
1092  /// you want. The MOLoad and MOInvariant flags must not be set.
1093  SDValue
1094  getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1095  MachinePointerInfo PtrInfo, unsigned Alignment = 0,
1097  const AAMDNodes &AAInfo = AAMDNodes());
1098  SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1099  MachineMemOperand *MMO);
1100  SDValue
1101  getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1102  MachinePointerInfo PtrInfo, EVT SVT, unsigned Alignment = 0,
1104  const AAMDNodes &AAInfo = AAMDNodes());
1105  SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1106  SDValue Ptr, EVT SVT, MachineMemOperand *MMO);
1107  SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base,
1108  SDValue Offset, ISD::MemIndexedMode AM);
1109 
1110  /// Returns sum of the base pointer and offset.
1111  SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, const SDLoc &DL);
1112 
1113  SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1114  SDValue Mask, SDValue Src0, EVT MemVT,
1116  bool IsExpanding = false);
1117  SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1118  SDValue Ptr, SDValue Mask, EVT MemVT,
1119  MachineMemOperand *MMO, bool IsTruncating = false,
1120  bool IsCompressing = false);
1121  SDValue getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
1123  ISD::MemIndexType IndexType);
1124  SDValue getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
1126  ISD::MemIndexType IndexType);
1127 
1128  /// Return (create a new or find existing) a target-specific node.
1129  /// TargetMemSDNode should be derived class from MemSDNode.
1130  template <class TargetMemSDNode>
1131  SDValue getTargetMemSDNode(SDVTList VTs, ArrayRef<SDValue> Ops,
1132  const SDLoc &dl, EVT MemVT,
1133  MachineMemOperand *MMO);
1134 
1135  /// Construct a node to track a Value* through the backend.
1136  SDValue getSrcValue(const Value *v);
1137 
1138  /// Return an MDNodeSDNode which holds an MDNode.
1139  SDValue getMDNode(const MDNode *MD);
1140 
1141  /// Return a bitcast using the SDLoc of the value operand, and casting to the
1142  /// provided type. Use getNode to set a custom SDLoc.
1143  SDValue getBitcast(EVT VT, SDValue V);
1144 
1145  /// Return an AddrSpaceCastSDNode.
1146  SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS,
1147  unsigned DestAS);
1148 
1149  /// Return the specified value casted to
1150  /// the target's desired shift amount type.
1151  SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op);
1152 
1153  /// Expand the specified \c ISD::VAARG node as the Legalize pass would.
1154  SDValue expandVAArg(SDNode *Node);
1155 
1156  /// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
1157  SDValue expandVACopy(SDNode *Node);
1158 
1159  /// Returs an GlobalAddress of the function from the current module with
1160  /// name matching the given ExternalSymbol. Additionally can provide the
1161  /// matched function.
1162  /// Panics the function doesn't exists.
1163  SDValue getSymbolFunctionGlobalAddress(SDValue Op,
1164  Function **TargetFunction = nullptr);
1165 
1166  /// *Mutate* the specified node in-place to have the
1167  /// specified operands. If the resultant node already exists in the DAG,
1168  /// this does not modify the specified node, instead it returns the node that
1169  /// already exists. If the resultant node does not exist in the DAG, the
1170  /// input node is returned. As a degenerate case, if you specify the same
1171  /// input operands as the node already has, the input node is returned.
1172  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op);
1173  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2);
1174  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1175  SDValue Op3);
1176  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1177  SDValue Op3, SDValue Op4);
1178  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1179  SDValue Op3, SDValue Op4, SDValue Op5);
1180  SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops);
1181 
1182  /// Creates a new TokenFactor containing \p Vals. If \p Vals contains 64k
1183  /// values or more, move values into new TokenFactors in 64k-1 blocks, until
1184  /// the final TokenFactor has less than 64k operands.
1185  SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl<SDValue> &Vals);
1186 
1187  /// *Mutate* the specified machine node's memory references to the provided
1188  /// list.
1189  void setNodeMemRefs(MachineSDNode *N,
1190  ArrayRef<MachineMemOperand *> NewMemRefs);
1191 
1192  // Propagates the change in divergence to users
1193  void updateDivergence(SDNode * N);
1194 
1195  /// These are used for target selectors to *mutate* the
1196  /// specified node to have the specified return type, Target opcode, and
1197  /// operands. Note that target opcodes are stored as
1198  /// ~TargetOpcode in the node opcode field. The resultant node is returned.
1199  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT);
1200  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, SDValue Op1);
1201  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1202  SDValue Op1, SDValue Op2);
1203  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1204  SDValue Op1, SDValue Op2, SDValue Op3);
1205  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1206  ArrayRef<SDValue> Ops);
1207  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2);
1208  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1209  EVT VT2, ArrayRef<SDValue> Ops);
1210  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1211  EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1212  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
1213  EVT VT2, SDValue Op1);
1214  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1215  EVT VT2, SDValue Op1, SDValue Op2);
1216  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, SDVTList VTs,
1217  ArrayRef<SDValue> Ops);
1218 
1219  /// This *mutates* the specified node to have the specified
1220  /// return type, opcode, and operands.
1221  SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
1222  ArrayRef<SDValue> Ops);
1223 
1224  /// Mutate the specified strict FP node to its non-strict equivalent,
1225  /// unlinking the node from its chain and dropping the metadata arguments.
1226  /// The node must be a strict FP node.
1227  SDNode *mutateStrictFPToFP(SDNode *Node);
1228 
1229  /// These are used for target selectors to create a new node
1230  /// with specified return type(s), MachineInstr opcode, and operands.
1231  ///
1232  /// Note that getMachineNode returns the resultant node. If there is already
1233  /// a node of the specified opcode and operands, it returns that node instead
1234  /// of the current one.
1235  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT);
1236  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1237  SDValue Op1);
1238  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1239  SDValue Op1, SDValue Op2);
1240  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1241  SDValue Op1, SDValue Op2, SDValue Op3);
1242  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1243  ArrayRef<SDValue> Ops);
1244  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1245  EVT VT2, SDValue Op1, SDValue Op2);
1246  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1247  EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
1248  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1249  EVT VT2, ArrayRef<SDValue> Ops);
1250  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1251  EVT VT2, EVT VT3, SDValue Op1, SDValue Op2);
1252  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1253  EVT VT2, EVT VT3, SDValue Op1, SDValue Op2,
1254  SDValue Op3);
1255  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1256  EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1257  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1258  ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops);
1259  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs,
1260  ArrayRef<SDValue> Ops);
1261 
1262  /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
1263  SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1264  SDValue Operand);
1265 
1266  /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
1267  SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1268  SDValue Operand, SDValue Subreg);
1269 
1270  /// Get the specified node if it's already available, or else return NULL.
1271  SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef<SDValue> Ops,
1272  const SDNodeFlags Flags = SDNodeFlags());
1273 
1274  /// Creates a SDDbgValue node.
1275  SDDbgValue *getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N,
1276  unsigned R, bool IsIndirect, const DebugLoc &DL,
1277  unsigned O);
1278 
1279  /// Creates a constant SDDbgValue node.
1280  SDDbgValue *getConstantDbgValue(DIVariable *Var, DIExpression *Expr,
1281  const Value *C, const DebugLoc &DL,
1282  unsigned O);
1283 
1284  /// Creates a FrameIndex SDDbgValue node.
1285  SDDbgValue *getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr,
1286  unsigned FI, bool IsIndirect,
1287  const DebugLoc &DL, unsigned O);
1288 
1289  /// Creates a VReg SDDbgValue node.
1290  SDDbgValue *getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
1291  unsigned VReg, bool IsIndirect,
1292  const DebugLoc &DL, unsigned O);
1293 
1294  /// Creates a SDDbgLabel node.
1295  SDDbgLabel *getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O);
1296 
1297  /// Transfer debug values from one node to another, while optionally
1298  /// generating fragment expressions for split-up values. If \p InvalidateDbg
1299  /// is set, debug values are invalidated after they are transferred.
1300  void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits = 0,
1301  unsigned SizeInBits = 0, bool InvalidateDbg = true);
1302 
1303  /// Remove the specified node from the system. If any of its
1304  /// operands then becomes dead, remove them as well. Inform UpdateListener
1305  /// for each node deleted.
1306  void RemoveDeadNode(SDNode *N);
1307 
1308  /// This method deletes the unreachable nodes in the
1309  /// given list, and any nodes that become unreachable as a result.
1310  void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes);
1311 
1312  /// Modify anything using 'From' to use 'To' instead.
1313  /// This can cause recursive merging of nodes in the DAG. Use the first
1314  /// version if 'From' is known to have a single result, use the second
1315  /// if you have two nodes with identical results (or if 'To' has a superset
1316  /// of the results of 'From'), use the third otherwise.
1317  ///
1318  /// These methods all take an optional UpdateListener, which (if not null) is
1319  /// informed about nodes that are deleted and modified due to recursive
1320  /// changes in the dag.
1321  ///
1322  /// These functions only replace all existing uses. It's possible that as
1323  /// these replacements are being performed, CSE may cause the From node
1324  /// to be given new uses. These new uses of From are left in place, and
1325  /// not automatically transferred to To.
1326  ///
1327  void ReplaceAllUsesWith(SDValue From, SDValue To);
1328  void ReplaceAllUsesWith(SDNode *From, SDNode *To);
1329  void ReplaceAllUsesWith(SDNode *From, const SDValue *To);
1330 
1331  /// Replace any uses of From with To, leaving
1332  /// uses of other values produced by From.getNode() alone.
1333  void ReplaceAllUsesOfValueWith(SDValue From, SDValue To);
1334 
1335  /// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
1336  /// This correctly handles the case where
1337  /// there is an overlap between the From values and the To values.
1338  void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
1339  unsigned Num);
1340 
1341  /// If an existing load has uses of its chain, create a token factor node with
1342  /// that chain and the new memory node's chain and update users of the old
1343  /// chain to the token factor. This ensures that the new memory node will have
1344  /// the same relative memory dependency position as the old load. Returns the
1345  /// new merged load chain.
1346  SDValue makeEquivalentMemoryOrdering(LoadSDNode *Old, SDValue New);
1347 
1348  /// Topological-sort the AllNodes list and a
1349  /// assign a unique node id for each node in the DAG based on their
1350  /// topological order. Returns the number of nodes.
1351  unsigned AssignTopologicalOrder();
1352 
1353  /// Move node N in the AllNodes list to be immediately
1354  /// before the given iterator Position. This may be used to update the
1355  /// topological ordering when the list of nodes is modified.
1357  AllNodes.insert(Position, AllNodes.remove(N));
1358  }
1359 
1360  /// Returns an APFloat semantics tag appropriate for the given type. If VT is
1361  /// a vector type, the element semantics are returned.
1363  switch (VT.getScalarType().getSimpleVT().SimpleTy) {
1364  default: llvm_unreachable("Unknown FP format");
1365  case MVT::f16: return APFloat::IEEEhalf();
1366  case MVT::f32: return APFloat::IEEEsingle();
1367  case MVT::f64: return APFloat::IEEEdouble();
1368  case MVT::f80: return APFloat::x87DoubleExtended();
1369  case MVT::f128: return APFloat::IEEEquad();
1370  case MVT::ppcf128: return APFloat::PPCDoubleDouble();
1371  }
1372  }
1373 
1374  /// Add a dbg_value SDNode. If SD is non-null that means the
1375  /// value is produced by SD.
1376  void AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter);
1377 
1378  /// Add a dbg_label SDNode.
1379  void AddDbgLabel(SDDbgLabel *DB);
1380 
1381  /// Get the debug values which reference the given SDNode.
1382  ArrayRef<SDDbgValue*> GetDbgValues(const SDNode* SD) const {
1383  return DbgInfo->getSDDbgValues(SD);
1384  }
1385 
1386 public:
1387  /// Return true if there are any SDDbgValue nodes associated
1388  /// with this SelectionDAG.
1389  bool hasDebugValues() const { return !DbgInfo->empty(); }
1390 
1391  SDDbgInfo::DbgIterator DbgBegin() const { return DbgInfo->DbgBegin(); }
1392  SDDbgInfo::DbgIterator DbgEnd() const { return DbgInfo->DbgEnd(); }
1393 
1395  return DbgInfo->ByvalParmDbgBegin();
1396  }
1398  return DbgInfo->ByvalParmDbgEnd();
1399  }
1400 
1402  return DbgInfo->DbgLabelBegin();
1403  }
1405  return DbgInfo->DbgLabelEnd();
1406  }
1407 
1408  /// To be invoked on an SDNode that is slated to be erased. This
1409  /// function mirrors \c llvm::salvageDebugInfo.
1410  void salvageDebugInfo(SDNode &N);
1411 
1412  void dump() const;
1413 
1414  /// Create a stack temporary, suitable for holding the specified value type.
1415  /// If minAlign is specified, the slot size will have at least that alignment.
1416  SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1);
1417 
1418  /// Create a stack temporary suitable for holding either of the specified
1419  /// value types.
1420  SDValue CreateStackTemporary(EVT VT1, EVT VT2);
1421 
1422  SDValue FoldSymbolOffset(unsigned Opcode, EVT VT,
1423  const GlobalAddressSDNode *GA,
1424  const SDNode *N2);
1425 
1426  SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1427  SDNode *N1, SDNode *N2);
1428 
1429  SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1430  const ConstantSDNode *C1,
1431  const ConstantSDNode *C2);
1432 
1433  SDValue FoldConstantVectorArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1434  ArrayRef<SDValue> Ops,
1435  const SDNodeFlags Flags = SDNodeFlags());
1436 
1437  /// Fold floating-point operations with 2 operands when both operands are
1438  /// constants and/or undefined.
1439  SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT,
1440  SDValue N1, SDValue N2);
1441 
1442  /// Constant fold a setcc to true or false.
1443  SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond,
1444  const SDLoc &dl);
1445 
1446  /// See if the specified operand can be simplified with the knowledge that
1447  /// only the bits specified by DemandedBits are used. If so, return the
1448  /// simpler operand, otherwise return a null SDValue.
1449  ///
1450  /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
1451  /// simplify nodes with multiple uses more aggressively.)
1452  SDValue GetDemandedBits(SDValue V, const APInt &DemandedBits);
1453 
1454  /// See if the specified operand can be simplified with the knowledge that
1455  /// only the bits specified by DemandedBits are used in the elements specified
1456  /// by DemandedElts. If so, return the simpler operand, otherwise return a
1457  /// null SDValue.
1458  ///
1459  /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
1460  /// simplify nodes with multiple uses more aggressively.)
1461  SDValue GetDemandedBits(SDValue V, const APInt &DemandedBits,
1462  const APInt &DemandedElts);
1463 
1464  /// Return true if the sign bit of Op is known to be zero.
1465  /// We use this predicate to simplify operations downstream.
1466  bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
1467 
1468  /// Return true if 'Op & Mask' is known to be zero. We
1469  /// use this predicate to simplify operations downstream. Op and Mask are
1470  /// known to be the same type.
1471  bool MaskedValueIsZero(SDValue Op, const APInt &Mask,
1472  unsigned Depth = 0) const;
1473 
1474  /// Return true if 'Op & Mask' is known to be zero in DemandedElts. We
1475  /// use this predicate to simplify operations downstream. Op and Mask are
1476  /// known to be the same type.
1477  bool MaskedValueIsZero(SDValue Op, const APInt &Mask,
1478  const APInt &DemandedElts, unsigned Depth = 0) const;
1479 
1480  /// Return true if '(Op & Mask) == Mask'.
1481  /// Op and Mask are known to be the same type.
1482  bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask,
1483  unsigned Depth = 0) const;
1484 
1485  /// Determine which bits of Op are known to be either zero or one and return
1486  /// them in Known. For vectors, the known bits are those that are shared by
1487  /// every vector element.
1488  /// Targets can implement the computeKnownBitsForTargetNode method in the
1489  /// TargetLowering class to allow target nodes to be understood.
1490  KnownBits computeKnownBits(SDValue Op, unsigned Depth = 0) const;
1491 
1492  /// Determine which bits of Op are known to be either zero or one and return
1493  /// them in Known. The DemandedElts argument allows us to only collect the
1494  /// known bits that are shared by the requested vector elements.
1495  /// Targets can implement the computeKnownBitsForTargetNode method in the
1496  /// TargetLowering class to allow target nodes to be understood.
1497  KnownBits computeKnownBits(SDValue Op, const APInt &DemandedElts,
1498  unsigned Depth = 0) const;
1499 
1500  /// Used to represent the possible overflow behavior of an operation.
1501  /// Never: the operation cannot overflow.
1502  /// Always: the operation will always overflow.
1503  /// Sometime: the operation may or may not overflow.
1508  };
1509 
1510  /// Determine if the result of the addition of 2 node can overflow.
1511  OverflowKind computeOverflowKind(SDValue N0, SDValue N1) const;
1512 
1513  /// Test if the given value is known to have exactly one bit set. This differs
1514  /// from computeKnownBits in that it doesn't necessarily determine which bit
1515  /// is set.
1516  bool isKnownToBeAPowerOfTwo(SDValue Val) const;
1517 
1518  /// Return the number of times the sign bit of the register is replicated into
1519  /// the other bits. We know that at least 1 bit is always equal to the sign
1520  /// bit (itself), but other cases can give us information. For example,
1521  /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1522  /// to each other, so we return 3. Targets can implement the
1523  /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
1524  /// target nodes to be understood.
1525  unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
1526 
1527  /// Return the number of times the sign bit of the register is replicated into
1528  /// the other bits. We know that at least 1 bit is always equal to the sign
1529  /// bit (itself), but other cases can give us information. For example,
1530  /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1531  /// to each other, so we return 3. The DemandedElts argument allows
1532  /// us to only collect the minimum sign bits of the requested vector elements.
1533  /// Targets can implement the ComputeNumSignBitsForTarget method in the
1534  /// TargetLowering class to allow target nodes to be understood.
1535  unsigned ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
1536  unsigned Depth = 0) const;
1537 
1538  /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
1539  /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
1540  /// is guaranteed to have the same semantics as an ADD. This handles the
1541  /// equivalence:
1542  /// X|Cst == X+Cst iff X&Cst = 0.
1543  bool isBaseWithConstantOffset(SDValue Op) const;
1544 
1545  /// Test whether the given SDValue is known to never be NaN. If \p SNaN is
1546  /// true, returns if \p Op is known to never be a signaling NaN (it may still
1547  /// be a qNaN).
1548  bool isKnownNeverNaN(SDValue Op, bool SNaN = false, unsigned Depth = 0) const;
1549 
1550  /// \returns true if \p Op is known to never be a signaling NaN.
1551  bool isKnownNeverSNaN(SDValue Op, unsigned Depth = 0) const {
1552  return isKnownNeverNaN(Op, true, Depth);
1553  }
1554 
1555  /// Test whether the given floating point SDValue is known to never be
1556  /// positive or negative zero.
1557  bool isKnownNeverZeroFloat(SDValue Op) const;
1558 
1559  /// Test whether the given SDValue is known to contain non-zero value(s).
1560  bool isKnownNeverZero(SDValue Op) const;
1561 
1562  /// Test whether two SDValues are known to compare equal. This
1563  /// is true if they are the same value, or if one is negative zero and the
1564  /// other positive zero.
1565  bool isEqualTo(SDValue A, SDValue B) const;
1566 
1567  /// Return true if A and B have no common bits set. As an example, this can
1568  /// allow an 'add' to be transformed into an 'or'.
1569  bool haveNoCommonBitsSet(SDValue A, SDValue B) const;
1570 
1571  /// Test whether \p V has a splatted value for all the demanded elements.
1572  ///
1573  /// On success \p UndefElts will indicate the elements that have UNDEF
1574  /// values instead of the splat value, this is only guaranteed to be correct
1575  /// for \p DemandedElts.
1576  ///
1577  /// NOTE: The function will return true for a demanded splat of UNDEF values.
1578  bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts);
1579 
1580  /// Test whether \p V has a splatted value.
1581  bool isSplatValue(SDValue V, bool AllowUndefs = false);
1582 
1583  /// If V is a splatted value, return the source vector and its splat index.
1584  SDValue getSplatSourceVector(SDValue V, int &SplatIndex);
1585 
1586  /// If V is a splat vector, return its scalar source operand by extracting
1587  /// that element from the source vector.
1589 
1590  /// Match a binop + shuffle pyramid that represents a horizontal reduction
1591  /// over the elements of a vector starting from the EXTRACT_VECTOR_ELT node /p
1592  /// Extract. The reduction must use one of the opcodes listed in /p
1593  /// CandidateBinOps and on success /p BinOp will contain the matching opcode.
1594  /// Returns the vector that is being reduced on, or SDValue() if a reduction
1595  /// was not matched. If \p AllowPartials is set then in the case of a
1596  /// reduction pattern that only matches the first few stages, the extracted
1597  /// subvector of the start of the reduction is returned.
1598  SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
1599  ArrayRef<ISD::NodeType> CandidateBinOps,
1600  bool AllowPartials = false);
1601 
1602  /// Utility function used by legalize and lowering to
1603  /// "unroll" a vector operation by splitting out the scalars and operating
1604  /// on each element individually. If the ResNE is 0, fully unroll the vector
1605  /// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
1606  /// If the ResNE is greater than the width of the vector op, unroll the
1607  /// vector op and fill the end of the resulting vector with UNDEFS.
1608  SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0);
1609 
1610  /// Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
1611  /// This is a separate function because those opcodes have two results.
1612  std::pair<SDValue, SDValue> UnrollVectorOverflowOp(SDNode *N,
1613  unsigned ResNE = 0);
1614 
1615  /// Return true if loads are next to each other and can be
1616  /// merged. Check that both are nonvolatile and if LD is loading
1617  /// 'Bytes' bytes from a location that is 'Dist' units away from the
1618  /// location that the 'Base' load is loading from.
1619  bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base,
1620  unsigned Bytes, int Dist) const;
1621 
1622  /// Infer alignment of a load / store address. Return 0 if
1623  /// it cannot be inferred.
1624  unsigned InferPtrAlignment(SDValue Ptr) const;
1625 
1626  /// Compute the VTs needed for the low/hi parts of a type
1627  /// which is split (or expanded) into two not necessarily identical pieces.
1628  std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const;
1629 
1630  /// Split the vector with EXTRACT_SUBVECTOR using the provides
1631  /// VTs and return the low/high part.
1632  std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL,
1633  const EVT &LoVT, const EVT &HiVT);
1634 
1635  /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
1636  std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) {
1637  EVT LoVT, HiVT;
1638  std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType());
1639  return SplitVector(N, DL, LoVT, HiVT);
1640  }
1641 
1642  /// Split the node's operand with EXTRACT_SUBVECTOR and
1643  /// return the low/high part.
1644  std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo)
1645  {
1646  return SplitVector(N->getOperand(OpNo), SDLoc(N));
1647  }
1648 
1649  /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
1650  SDValue WidenVector(const SDValue &N, const SDLoc &DL);
1651 
1652  /// Append the extracted elements from Start to Count out of the vector Op
1653  /// in Args. If Count is 0, all of the elements will be extracted.
1654  void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args,
1655  unsigned Start = 0, unsigned Count = 0);
1656 
1657  /// Compute the default alignment value for the given type.
1658  unsigned getEVTAlignment(EVT MemoryVT) const;
1659 
1660  /// Test whether the given value is a constant int or similar node.
1661  SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N);
1662 
1663  /// Test whether the given value is a constant FP or similar node.
1665 
1666  /// \returns true if \p N is any kind of constant or build_vector of
1667  /// constants, int or float. If a vector, it may not necessarily be a splat.
1669  return isConstantIntBuildVectorOrConstantInt(N) ||
1671  }
1672 
1673  void addCallSiteInfo(const SDNode *CallNode, CallSiteInfoImpl &&CallInfo) {
1674  SDCallSiteDbgInfo[CallNode].CSInfo = std::move(CallInfo);
1675  }
1676 
1677  CallSiteInfo getSDCallSiteInfo(const SDNode *CallNode) {
1678  auto I = SDCallSiteDbgInfo.find(CallNode);
1679  if (I != SDCallSiteDbgInfo.end())
1680  return std::move(I->second).CSInfo;
1681  return CallSiteInfo();
1682  }
1683 
1684  void addHeapAllocSite(const SDNode *Node, MDNode *MD) {
1685  SDCallSiteDbgInfo[Node].HeapAllocSite = MD;
1686  }
1687 
1688  /// Return the HeapAllocSite type associated with the SDNode, if it exists.
1689  MDNode *getHeapAllocSite(const SDNode *Node) {
1690  auto It = SDCallSiteDbgInfo.find(Node);
1691  if (It == SDCallSiteDbgInfo.end())
1692  return nullptr;
1693  return It->second.HeapAllocSite;
1694  }
1695 
1696 private:
1697  void InsertNode(SDNode *N);
1698  bool RemoveNodeFromCSEMaps(SDNode *N);
1699  void AddModifiedNodeToCSEMaps(SDNode *N);
1700  SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
1701  SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
1702  void *&InsertPos);
1703  SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1704  void *&InsertPos);
1705  SDNode *UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &loc);
1706 
1707  void DeleteNodeNotInCSEMaps(SDNode *N);
1708  void DeallocateNode(SDNode *N);
1709 
1710  void allnodes_clear();
1711 
1712  /// Look up the node specified by ID in CSEMap. If it exists, return it. If
1713  /// not, return the insertion token that will make insertion faster. This
1714  /// overload is for nodes other than Constant or ConstantFP, use the other one
1715  /// for those.
1716  SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
1717 
1718  /// Look up the node specified by ID in CSEMap. If it exists, return it. If
1719  /// not, return the insertion token that will make insertion faster. Performs
1720  /// additional processing for constant nodes.
1721  SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL,
1722  void *&InsertPos);
1723 
1724  /// List of non-single value types.
1725  FoldingSet<SDVTListNode> VTListMap;
1726 
1727  /// Maps to auto-CSE operations.
1728  std::vector<CondCodeSDNode*> CondCodeNodes;
1729 
1730  std::vector<SDNode*> ValueTypeNodes;
1731  std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes;
1732  StringMap<SDNode*> ExternalSymbols;
1733 
1734  std::map<std::pair<std::string, unsigned>, SDNode *> TargetExternalSymbols;
1736 };
1737 
1738 template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
1740 
1742  return nodes_iterator(G->allnodes_begin());
1743  }
1744 
1746  return nodes_iterator(G->allnodes_end());
1747  }
1748 };
1749 
1750 template <class TargetMemSDNode>
1752  ArrayRef<SDValue> Ops,
1753  const SDLoc &dl, EVT MemVT,
1754  MachineMemOperand *MMO) {
1755  /// Compose node ID and try to find an existing node.
1757  unsigned Opcode =
1758  TargetMemSDNode(dl.getIROrder(), DebugLoc(), VTs, MemVT, MMO).getOpcode();
1759  ID.AddInteger(Opcode);
1760  ID.AddPointer(VTs.VTs);
1761  for (auto& Op : Ops) {
1762  ID.AddPointer(Op.getNode());
1763  ID.AddInteger(Op.getResNo());
1764  }
1765  ID.AddInteger(MemVT.getRawBits());
1766  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
1767  ID.AddInteger(getSyntheticNodeSubclassData<TargetMemSDNode>(
1768  dl.getIROrder(), VTs, MemVT, MMO));
1769 
1770  void *IP = nullptr;
1771  if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
1772  cast<TargetMemSDNode>(E)->refineAlignment(MMO);
1773  return SDValue(E, 0);
1774  }
1775 
1776  /// Existing node was not found. Create a new one.
1777  auto *N = newSDNode<TargetMemSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
1778  MemVT, MMO);
1779  createOperands(N, Ops);
1780  CSEMap.InsertNode(N, IP);
1781  InsertNode(N);
1782  return SDValue(N, 0);
1783 }
1784 
1785 } // end namespace llvm
1786 
1787 #endif // LLVM_CODEGEN_SELECTIONDAG_H
Pass interface - Implemented by all &#39;passes&#39;.
Definition: Pass.h:80
uint64_t CallInst * C
static const fltSemantics & IEEEquad() LLVM_READNONE
Definition: APFloat.cpp:161
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, OptimizationRemarkEmitter *ORE=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
void AddPointer(const void *Ptr)
Add* - Add various data types to Bit data.
Definition: FoldingSet.cpp:51
void add(SDDbgLabel *L)
Definition: SelectionDAG.h:168
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
EVT getValueType() const
Return the ValueType of the referenced return value.
OverflowKind
Used to represent the possible overflow behavior of an operation.
static MSP430CC::CondCodes getCondCode(unsigned Cond)
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT, SDValue Glue)
Definition: SelectionDAG.h:726
static APInt getAllOnesValue(unsigned numBits)
Get the all-ones value.
Definition: APInt.h:561
const TargetLibraryInfo & getLibInfo() const
Definition: SelectionDAG.h:417
LLVMContext & Context
Keeps track of dbg_value information through SDISel.
Definition: SelectionDAG.h:147
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond)
Helper function to make it easier to build SetCC&#39;s if you just have an ISD::CondCode instead of an SD...
Definition: SelectionDAG.h:959
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it&#39;s not CSE&#39;d)...
Definition: SelectionDAG.h:858
Atomic ordering constants.
This class represents lattice values for constants.
Definition: AllocatorList.h:23
static void removeOperands(MachineInstr &MI, unsigned i)
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition: ValueTypes.h:259
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:41
DbgIterator ByvalParmDbgEnd()
Definition: SelectionDAG.h:203
const Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
Implements a dense probed hash-table based set.
Definition: DenseSet.h:249
This provides a very simple, boring adaptor for a begin and end iterator into a range type...
Clients of various APIs that cause global effects on the DAG can optionally implement this interface...
Definition: SelectionDAG.h:289
unsigned Reg
This file contains the declarations for metadata subclasses.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition: ValueTypes.h:252
ArrayRef< SDDbgValue * > getSDDbgValues(const SDNode *Node) const
Definition: SelectionDAG.h:190
static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID)
Definition: SelectionDAG.h:118
bool salvageDebugInfo(Instruction &I)
Assuming the instruction I is going to be deleted, attempt to salvage debug users of I by writing the...
Definition: Local.cpp:1605
static const fltSemantics & EVTToAPFloatSemantics(EVT VT)
Returns an APFloat semantics tag appropriate for the given type.
Recycle small arrays allocated from a BumpPtrAllocator.
Definition: ArrayRecycler.h:28
SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT)
Definition: SelectionDAG.h:630
A debug info location.
Definition: DebugLoc.h:33
Metadata node.
Definition: Metadata.h:863
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition: ValueTypes.h:140
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS)
Helper function to make it easier to build Select&#39;s if you just have operands and don&#39;t want to check...
Definition: SelectionDAG.h:972
DbgIterator DbgBegin()
Definition: SelectionDAG.h:200
SDDbgInfo::DbgLabelIterator DbgLabelBegin() const
SDNode * getNode() const
get the SDNode which holds the desired result
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
Definition: SelectionDAG.h:479
SmallVectorImpl< SDDbgLabel * >::iterator DbgLabelIterator
Definition: SelectionDAG.h:198
The address of the GOT.
Definition: ISDOpcodes.h:65
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition: ISDOpcodes.h:466
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition: ISDOpcodes.h:38
This file defines the MallocAllocator and BumpPtrAllocator interfaces.
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
The address of a basic block.
Definition: Constants.h:839
A description of a memory reference used in the backend.
Definition: BitVector.h:937
bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return true if the given value is known to have exactly one bit set when defined. ...
SDDbgInfo::DbgIterator DbgEnd() const
SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT)
Definition: SelectionDAG.h:627
void Reset()
Deallocate all but the current slab and reset the current pointer to the beginning of it...
Definition: Allocator.h:194
ArrayRef< T > makeArrayRef(const T &OneElt)
Construct an ArrayRef from a single element.
Definition: ArrayRef.h:450
CallSiteInfo getSDCallSiteInfo(const SDNode *CallNode)
static Optional< unsigned > getOpcode(ArrayRef< VPValue *> Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition: VPlanSLP.cpp:196
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:41
CopyToReg - This node has three operands: a chain, a register number to set to this value...
Definition: ISDOpcodes.h:169
SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags=0)
Definition: SelectionDAG.h:648
SimpleValueType SimpleTy
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return true if &#39;V & Mask&#39; is known to be zero.
CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of a call sequence, and carry arbitrary information that target might want to know.
Definition: ISDOpcodes.h:744
void AddInteger(signed I)
Definition: FoldingSet.cpp:60
SmallVectorImpl< SDDbgValue * >::iterator DbgIterator
Definition: SelectionDAG.h:197
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
Definition: SelectionDAG.h:473
const DataLayout & getDataLayout() const
Definition: SelectionDAG.h:413
SmallVectorImpl< ArgRegPair > CallSiteInfoImpl
void setFunctionLoweringInfo(FunctionLoweringInfo *FuncInfo)
Definition: SelectionDAG.h:402
SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
Definition: SelectionDAG.h:600
Position
Position to insert a new instruction relative to an existing instruction.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
This file implements a class to represent arbitrary precision integral constant values and operations...
This represents a list of ValueType&#39;s that has been intern&#39;d by a SelectionDAG.
iterator_range< allnodes_iterator > allnodes()
Definition: SelectionDAG.h:462
static int64_t getConstant(const MachineInstr *MI)
void InsertNode(T *N, void *InsertPos)
InsertNode - Insert the specified node into the folding set, knowing that it is not already in the fo...
Definition: FoldingSet.h:451
unsigned getScalarSizeInBits() const
Definition: ValueTypes.h:297
void checkForCycles(const SelectionDAG *DAG, bool force=false)
MachineFunction & getMachineFunction() const
Definition: SelectionDAG.h:410
DAGUpdateListener *const Next
Definition: SelectionDAG.h:290
SDValue getTargetFrameIndex(int FI, EVT VT)
Definition: SelectionDAG.h:643
const TargetMachine & getTarget() const
Definition: SelectionDAG.h:414
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition: ISDOpcodes.h:460
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:200
bool isSplatValue(const Value *V, unsigned Depth=0)
Return true if the input value is known to be a vector with all identical elements (potentially inclu...
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:32
MemIndexType
MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER&#39;s index parameter when calcula...
Definition: ISDOpcodes.h:968
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
Definition: SelectionDAG.h:874
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out...
Definition: ISDOpcodes.h:1012
static const fltSemantics & IEEEdouble() LLVM_READNONE
Definition: APFloat.cpp:158
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
Definition: SelectionDAG.h:592
allnodes_iterator allnodes_end()
Definition: SelectionDAG.h:456
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements. ...
Definition: SelectionDAG.h:763
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
SDDbgInfo::DbgIterator DbgBegin() const
allnodes_iterator allnodes_begin()
Definition: SelectionDAG.h:455
SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT)
Definition: SelectionDAG.h:624
static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG)
WidenVector - Given a value in the V64 register class, produce the equivalent value in the V128 regis...
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDUse > Ops)
Return an ISD::BUILD_VECTOR node.
Definition: SelectionDAG.h:755
UNDEF - An undefined node.
Definition: ISDOpcodes.h:177
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the specified, possibly variable...
Definition: ISDOpcodes.h:358
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:150
unsigned ComputeHash() const
ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef, used to lookup the node in th...
Definition: FoldingSet.cpp:29
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Definition: FoldingSet.h:305
BumpPtrAllocatorImpl BumpPtrAllocator
The standard BumpPtrAllocator which just uses the default template parameters.
Definition: Allocator.h:434
Use delete by default for iplist and ilist.
Definition: ilist.h:40
unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return the number of times the sign bit of the register is replicated into the other bits...
DAGNodeDeletedListener(SelectionDAG &DAG, std::function< void(SDNode *, SDNode *)> Callback)
Definition: SelectionDAG.h:318
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:432
FoldingSetTrait - This trait class is used to define behavior of how to "profile" (in the FoldingSet ...
Definition: FoldingSet.h:249
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
static nodes_iterator nodes_begin(SelectionDAG *G)
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:45
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
const SelectionDAGTargetInfo & getSelectionDAGInfo() const
Definition: SelectionDAG.h:418
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:64
Allocate memory in an ever growing pool, as if by bump-pointer.
Definition: Allocator.h:140
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition: ValueTypes.h:272
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:41
bool hasDebugValues() const
Return true if there are any SDDbgValue nodes associated with this SelectionDAG.
SDValue getTargetConstantPool(MachineConstantPoolValue *C, EVT VT, unsigned Align=0, int Offset=0, unsigned TargetFlags=0)
Definition: SelectionDAG.h:661
const SDValue & getOperand(unsigned Num) const
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
Definition: ISDOpcodes.h:987
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
Definition: ValueTypes.h:246
DbgLabelIterator DbgLabelEnd()
Definition: SelectionDAG.h:205
bool empty() const
Definition: SelectionDAG.h:186
bool isKnownNeverSNaN(SDValue Op, unsigned Depth=0) const
const LegacyDivergenceAnalysis * getDivergenceAnalysis() const
Definition: SelectionDAG.h:419
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:263
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
Definition: SelectionDAG.h:846
std::pair< SDValue, SDValue > SplitVectorOperand(const SDNode *N, unsigned OpNo)
Split the node&#39;s operand with EXTRACT_SUBVECTOR and return the low/high part.
CombineLevel
Definition: DAGCombine.h:15
This file declares a class to represent arbitrary precision floating point values and provide a varie...
BumpPtrAllocator & getAlloc()
Definition: SelectionDAG.h:184
void RepositionNode(allnodes_iterator Position, SDNode *N)
Move node N in the AllNodes list to be immediately before the given iterator Position.
SDDbgInfo::DbgIterator ByvalParmDbgEnd() const
Base class for variables.
static const fltSemantics & x87DoubleExtended() LLVM_READNONE
Definition: APFloat.cpp:164
std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL)
Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
Targets can subclass this to parameterize the SelectionDAG lowering and instruction selection process...
const Pass * getPass() const
Definition: SelectionDAG.h:411
Extended Value Type.
Definition: ValueTypes.h:33
Abstract base class for all machine specific constantpool value subclasses.
SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
Definition: SelectionDAG.h:579
static Constant * simplifyFPBinop(Value *Op0, Value *Op1)
iterator_range< allnodes_const_iterator > allnodes() const
Definition: SelectionDAG.h:465
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N, SDValue Glue)
Definition: SelectionDAG.h:700
An intrusive list with ownership and callbacks specified/controlled by ilist_traits, only with API safe for polymorphic types.
Definition: ilist.h:388
This class contains a discriminated union of information about pointers in memory operands...
FoldingSet - This template class is used to instantiate a specialized implementation of the folding s...
Definition: FoldingSet.h:473
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:40
SmallVector< ArgRegPair, 1 > CallSiteInfo
Vector of call argument and its forwarding register.
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, unsigned TargetFlags=0)
Definition: SelectionDAG.h:686
The memory access writes data.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, SDValue Offset)
Definition: SelectionDAG.h:833
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
static bool isUndef(ArrayRef< int > Mask)
static const fltSemantics & IEEEsingle() LLVM_READNONE
Definition: APFloat.cpp:155
Basic Register Allocator
const TargetLowering & getTargetLoweringInfo() const
Definition: SelectionDAG.h:416
SDValue getTargetConstantPool(const Constant *C, EVT VT, unsigned Align=0, int Offset=0, unsigned TargetFlags=0)
Definition: SelectionDAG.h:654
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:297
Iterator for intrusive lists based on ilist_node.
MDNode * getHeapAllocSite(const SDNode *Node)
Return the HeapAllocSite type associated with the SDNode, if it exists.
void setNoUnsignedWrap(bool b)
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
Definition: SelectionDAG.h:638
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
Color
A "color", which is either even or odd.
BlockVerifier::State From
static const fltSemantics & IEEEhalf() LLVM_READNONE
Definition: APFloat.cpp:152
ilist< SDNode >::size_type allnodes_size() const
Definition: SelectionDAG.h:458
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition: ValueTypes.h:264
static nodes_iterator nodes_end(SelectionDAG *G)
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
Definition: SelectionDAG.h:221
SDValue getTargetMemSDNode(SDVTList VTs, ArrayRef< SDValue > Ops, const SDLoc &dl, EVT MemVT, MachineMemOperand *MMO)
Return (create a new or find existing) a target-specific node.
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:837
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
Definition: SelectionDAG.h:746
Provides information about what library functions are available for the current target.
void addCallSiteInfo(const SDNode *CallNode, CallSiteInfoImpl &&CallInfo)
const DebugLoc & getDebugLoc() const
const DataFlowGraph & G
Definition: RDFGraph.cpp:202
An SDNode that represents everything that will be needed to construct a MachineInstr.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition: Metadata.h:643
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
Represents one node in the SelectionDAG.
DbgIterator DbgEnd()
Definition: SelectionDAG.h:201
allnodes_const_iterator allnodes_begin() const
Definition: SelectionDAG.h:450
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N)
Definition: SelectionDAG.h:691
DWARF expression.
A range adaptor for a pair of iterators.
StringMap - This is an unconventional map that is specialized for handling keys that are "strings"...
Definition: StringMap.h:219
Class for arbitrary precision integers.
Definition: APInt.h:69
std::function< void(SDNode *, SDNode *)> Callback
Definition: SelectionDAG.h:316
Select(COND, TRUEVAL, FALSEVAL).
Definition: ISDOpcodes.h:451
typename SuperClass::iterator iterator
Definition: SmallVector.h:319
SDDbgInfo::DbgLabelIterator DbgLabelEnd() const
static void clear(coro::Shape &Shape)
Definition: Coroutines.cpp:225
Flags
Flags values. These may be or&#39;d together.
AlignedCharArrayUnion< AtomicSDNode, TargetIndexSDNode, BlockAddressSDNode, GlobalAddressSDNode > LargestSDNode
A representation of the largest SDNode, for use in sizeof().
The memory access reads data.
TargetSubtargetInfo - Generic base class for all target subtargets.
bool isConstantValueOfAnyType(SDValue N)
SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
Definition: SelectionDAG.h:596
std::map< const SDNode *, std::string > NodeGraphAttrs
Definition: SelectionDAG.h:428
static const fltSemantics & PPCDoubleDouble() LLVM_READNONE
Definition: APFloat.cpp:170
These are IR-level optimization flags that may be propagated to SDNodes.
allnodes_const_iterator allnodes_end() const
Definition: SelectionDAG.h:451
void addHeapAllocSite(const SDNode *Node, MDNode *MD)
SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num)
Definition: SelectionDAG.h:100
const MachinePointerInfo & getPointerInfo() const
bool isVector() const
Return true if this is a vector value type.
Definition: ValueTypes.h:150
FoldingSetNodeIDRef - This class describes a reference to an interned FoldingSetNodeID, which can be a useful to store node id data rather than using plain FoldingSetNodeIDs, since the 32-element SmallVector is often much larger than necessary, and the possibility of heap allocation means it requires a non-trivial destructor call.
Definition: FoldingSet.h:277
Holds the information from a dbg_label node through SDISel.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT)
Definition: SelectionDAG.h:717
Node - This class is used to maintain the singly linked bucket list in a folding set.
Definition: FoldingSet.h:135
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:55
static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID)
Definition: SelectionDAG.h:125
#define I(x, y, z)
Definition: MD5.cpp:58
bool haveNoCommonBitsSet(const Value *LHS, const Value *RHS, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return true if LHS and RHS have no common bits set.
#define N
const TargetSubtargetInfo & getSubtarget() const
Definition: SelectionDAG.h:415
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
iterator end()
Definition: DenseMap.h:82
SDDbgInfo::DbgIterator ByvalParmDbgBegin() const
uint32_t Size
Definition: Profile.cpp:46
unsigned getOpcode() const
bool isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, unsigned Depth=0)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N, SDValue Glue)
Definition: SelectionDAG.h:709
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition: ISDOpcodes.h:174
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
Definition: SelectionDAG.h:470
SDValue getGLOBAL_OFFSET_TABLE(EVT VT)
Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
Definition: SelectionDAG.h:879
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
LLVM Value Representation.
Definition: Value.h:73
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond)
Helper function to make it easier to build SelectCC&#39;s if you just have an ISD::CondCode instead of an...
Definition: SelectionDAG.h:984
SDVTList getSDVTList()
Definition: SelectionDAG.h:105
std::underlying_type< E >::type Mask()
Get a bitmask with 1s in all places up to the high-order bit of E&#39;s largest value.
Definition: BitmaskEnum.h:80
DefaultFoldingSetTrait - This class provides default implementations for FoldingSetTrait implementati...
Definition: FoldingSet.h:220
OptimizationRemarkEmitter & getORE() const
Definition: SelectionDAG.h:421
static void deleteNode(SDNode *)
Definition: SelectionDAG.h:131
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:65
void add(SDDbgValue *V, const SDNode *Node, bool isParameter)
Definition: SelectionDAG.h:160
void deallocate(Capacity Cap, T *Ptr)
Deallocate an array with the specified Capacity.
print Print MemDeps of function
ArrayRef< SDDbgValue * > GetDbgValues(const SDNode *SD) const
Get the debug values which reference the given SDNode.
SetCC operator - This evaluates to a true value iff the condition is true.
Definition: ISDOpcodes.h:474
static SDNode * isConstantFPBuildVectorOrConstantFP(SDValue N)
DbgIterator ByvalParmDbgBegin()
Definition: SelectionDAG.h:202
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, int64_t Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object...
Definition: SelectionDAG.h:828
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation...
Holds the information from a dbg_value node through SDISel.
static void Profile(const SDVTListNode &X, FoldingSetNodeID &ID)
Definition: SelectionDAG.h:114
DbgLabelIterator DbgLabelBegin()
Definition: SelectionDAG.h:204
The optimization diagnostic interface.
void NodeDeleted(SDNode *N, SDNode *E) override
The node N that was deleted and, if E is not null, an equivalent node E that replaced it...
Definition: SelectionDAG.h:322
LLVMContext * getContext() const
Definition: SelectionDAG.h:420
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
unsigned getIROrder() const
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
Definition: ISDOpcodes.h:950
This class is used to represent ISD::LOAD nodes.