LLVM 20.0.0git
AArch64PromoteConstant.cpp
Go to the documentation of this file.
1//==- AArch64PromoteConstant.cpp - Promote constant to global for AArch64 --==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the AArch64PromoteConstant pass which promotes constants
10// to global variables when this is likely to be more efficient. Currently only
11// types related to constant vector (i.e., constant vector, array of constant
12// vectors, constant structure with a constant vector field, etc.) are promoted
13// to global variables. Constant vectors are likely to be lowered in target
14// constant pool during instruction selection already; therefore, the access
15// will remain the same (memory load), but the structure types are not split
16// into different constant pool accesses for each field. A bonus side effect is
17// that created globals may be merged by the global merge pass.
18//
19// FIXME: This pass may be useful for other targets too.
20//===----------------------------------------------------------------------===//
21
22#include "AArch64.h"
23#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/IR/BasicBlock.h"
27#include "llvm/IR/Constant.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/Dominators.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/GlobalValue.h"
33#include "llvm/IR/IRBuilder.h"
35#include "llvm/IR/Instruction.h"
38#include "llvm/IR/Module.h"
39#include "llvm/IR/Type.h"
41#include "llvm/Pass.h"
44#include "llvm/Support/Debug.h"
46#include <cassert>
47#include <utility>
48
49using namespace llvm;
50
51#define DEBUG_TYPE "aarch64-promote-const"
52
53// Stress testing mode - disable heuristics.
54static cl::opt<bool> Stress("aarch64-stress-promote-const", cl::Hidden,
55 cl::desc("Promote all vector constants"));
56
57STATISTIC(NumPromoted, "Number of promoted constants");
58STATISTIC(NumPromotedUses, "Number of promoted constants uses");
59
60//===----------------------------------------------------------------------===//
61// AArch64PromoteConstant
62//===----------------------------------------------------------------------===//
63
64namespace {
65
66/// Promotes interesting constant into global variables.
67/// The motivating example is:
68/// static const uint16_t TableA[32] = {
69/// 41944, 40330, 38837, 37450, 36158, 34953, 33826, 32768,
70/// 31776, 30841, 29960, 29128, 28340, 27595, 26887, 26215,
71/// 25576, 24967, 24386, 23832, 23302, 22796, 22311, 21846,
72/// 21400, 20972, 20561, 20165, 19785, 19419, 19066, 18725,
73/// };
74///
75/// uint8x16x4_t LoadStatic(void) {
76/// uint8x16x4_t ret;
77/// ret.val[0] = vld1q_u16(TableA + 0);
78/// ret.val[1] = vld1q_u16(TableA + 8);
79/// ret.val[2] = vld1q_u16(TableA + 16);
80/// ret.val[3] = vld1q_u16(TableA + 24);
81/// return ret;
82/// }
83///
84/// The constants in this example are folded into the uses. Thus, 4 different
85/// constants are created.
86///
87/// As their type is vector the cheapest way to create them is to load them
88/// for the memory.
89///
90/// Therefore the final assembly final has 4 different loads. With this pass
91/// enabled, only one load is issued for the constants.
92class AArch64PromoteConstant : public ModulePass {
93public:
94 struct PromotedConstant {
95 bool ShouldConvert = false;
96 GlobalVariable *GV = nullptr;
97 };
99
100 struct UpdateRecord {
101 Constant *C;
103 unsigned Op;
104
105 UpdateRecord(Constant *C, Instruction *User, unsigned Op)
106 : C(C), User(User), Op(Op) {}
107 };
108
109 static char ID;
110
111 AArch64PromoteConstant() : ModulePass(ID) {
113 }
114
115 StringRef getPassName() const override { return "AArch64 Promote Constant"; }
116
117 /// Iterate over the functions and promote the interesting constants into
118 /// global variables with module scope.
119 bool runOnModule(Module &M) override {
120 LLVM_DEBUG(dbgs() << getPassName() << '\n');
121 if (skipModule(M))
122 return false;
123 bool Changed = false;
124 PromotionCacheTy PromotionCache;
125 for (auto &MF : M) {
126 Changed |= runOnFunction(MF, PromotionCache);
127 }
128 return Changed;
129 }
130
131private:
132 /// Look for interesting constants used within the given function.
133 /// Promote them into global variables, load these global variables within
134 /// the related function, so that the number of inserted load is minimal.
135 bool runOnFunction(Function &F, PromotionCacheTy &PromotionCache);
136
137 // This transformation requires dominator info
138 void getAnalysisUsage(AnalysisUsage &AU) const override {
139 AU.setPreservesCFG();
142 }
143
144 /// Type to store a list of Uses.
146 /// Map an insertion point to all the uses it dominates.
147 using InsertionPoints = DenseMap<Instruction *, Uses>;
148
149 /// Find the closest point that dominates the given Use.
150 Instruction *findInsertionPoint(Instruction &User, unsigned OpNo);
151
152 /// Check if the given insertion point is dominated by an existing
153 /// insertion point.
154 /// If true, the given use is added to the list of dominated uses for
155 /// the related existing point.
156 /// \param NewPt the insertion point to be checked
157 /// \param User the user of the constant
158 /// \param OpNo the operand number of the use
159 /// \param InsertPts existing insertion points
160 /// \pre NewPt and all instruction in InsertPts belong to the same function
161 /// \return true if one of the insertion point in InsertPts dominates NewPt,
162 /// false otherwise
163 bool isDominated(Instruction *NewPt, Instruction *User, unsigned OpNo,
164 InsertionPoints &InsertPts);
165
166 /// Check if the given insertion point can be merged with an existing
167 /// insertion point in a common dominator.
168 /// If true, the given use is added to the list of the created insertion
169 /// point.
170 /// \param NewPt the insertion point to be checked
171 /// \param User the user of the constant
172 /// \param OpNo the operand number of the use
173 /// \param InsertPts existing insertion points
174 /// \pre NewPt and all instruction in InsertPts belong to the same function
175 /// \pre isDominated returns false for the exact same parameters.
176 /// \return true if it exists an insertion point in InsertPts that could
177 /// have been merged with NewPt in a common dominator,
178 /// false otherwise
179 bool tryAndMerge(Instruction *NewPt, Instruction *User, unsigned OpNo,
180 InsertionPoints &InsertPts);
181
182 /// Compute the minimal insertion points to dominates all the interesting
183 /// uses of value.
184 /// Insertion points are group per function and each insertion point
185 /// contains a list of all the uses it dominates within the related function
186 /// \param User the user of the constant
187 /// \param OpNo the operand number of the constant
188 /// \param[out] InsertPts output storage of the analysis
189 void computeInsertionPoint(Instruction *User, unsigned OpNo,
190 InsertionPoints &InsertPts);
191
192 /// Insert a definition of a new global variable at each point contained in
193 /// InsPtsPerFunc and update the related uses (also contained in
194 /// InsPtsPerFunc).
195 void insertDefinitions(Function &F, GlobalVariable &GV,
196 InsertionPoints &InsertPts);
197
198 /// Do the constant promotion indicated by the Updates records, keeping track
199 /// of globals in PromotionCache.
200 void promoteConstants(Function &F, SmallVectorImpl<UpdateRecord> &Updates,
201 PromotionCacheTy &PromotionCache);
202
203 /// Transfer the list of dominated uses of IPI to NewPt in InsertPts.
204 /// Append Use to this list and delete the entry of IPI in InsertPts.
205 static void appendAndTransferDominatedUses(Instruction *NewPt,
206 Instruction *User, unsigned OpNo,
208 InsertionPoints &InsertPts) {
209 // Record the dominated use.
210 IPI->second.emplace_back(User, OpNo);
211 // Transfer the dominated uses of IPI to NewPt
212 // Inserting into the DenseMap may invalidate existing iterator.
213 // Keep a copy of the key to find the iterator to erase. Keep a copy of the
214 // value so that we don't have to dereference IPI->second.
215 Instruction *OldInstr = IPI->first;
216 Uses OldUses = std::move(IPI->second);
217 InsertPts[NewPt] = std::move(OldUses);
218 // Erase IPI.
219 InsertPts.erase(OldInstr);
220 }
221};
222
223} // end anonymous namespace
224
225char AArch64PromoteConstant::ID = 0;
226
227INITIALIZE_PASS_BEGIN(AArch64PromoteConstant, "aarch64-promote-const",
228 "AArch64 Promote Constant Pass", false, false)
230INITIALIZE_PASS_END(AArch64PromoteConstant, "aarch64-promote-const",
231 "AArch64 Promote Constant Pass", false, false)
232
234 return new AArch64PromoteConstant();
235}
236
237/// Check if the given type uses a vector type.
238static bool isConstantUsingVectorTy(const Type *CstTy) {
239 if (CstTy->isVectorTy())
240 return true;
241 if (CstTy->isStructTy()) {
242 for (unsigned EltIdx = 0, EndEltIdx = CstTy->getStructNumElements();
243 EltIdx < EndEltIdx; ++EltIdx)
245 return true;
246 } else if (CstTy->isArrayTy())
248 return false;
249}
250
251// Returns true if \p C contains only ConstantData leafs and no global values,
252// block addresses or constant expressions. Traverses ConstantAggregates.
254 if (isa<ConstantData>(C))
255 return true;
256
257 if (isa<GlobalValue>(C) || isa<BlockAddress>(C) || isa<ConstantExpr>(C))
258 return false;
259
260 return all_of(C->operands(), [](const Use &U) {
261 return containsOnlyConstantData(cast<Constant>(&U));
262 });
263}
264
265/// Check if the given use (Instruction + OpIdx) of Cst should be converted into
266/// a load of a global variable initialized with Cst.
267/// A use should be converted if it is legal to do so.
268/// For instance, it is not legal to turn the mask operand of a shuffle vector
269/// into a load of a global variable.
270static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr,
271 unsigned OpIdx) {
272 // shufflevector instruction expects a const for the mask argument, i.e., the
273 // third argument. Do not promote this use in that case.
274 if (isa<const ShuffleVectorInst>(Instr) && OpIdx == 2)
275 return false;
276
277 // extractvalue instruction expects a const idx.
278 if (isa<const ExtractValueInst>(Instr) && OpIdx > 0)
279 return false;
280
281 // extractvalue instruction expects a const idx.
282 if (isa<const InsertValueInst>(Instr) && OpIdx > 1)
283 return false;
284
285 if (isa<const AllocaInst>(Instr) && OpIdx > 0)
286 return false;
287
288 // Alignment argument must be constant.
289 if (isa<const LoadInst>(Instr) && OpIdx > 0)
290 return false;
291
292 // Alignment argument must be constant.
293 if (isa<const StoreInst>(Instr) && OpIdx > 1)
294 return false;
295
296 // Index must be constant.
297 if (isa<const GetElementPtrInst>(Instr) && OpIdx > 0)
298 return false;
299
300 // Personality function and filters must be constant.
301 // Give up on that instruction.
302 if (isa<const LandingPadInst>(Instr))
303 return false;
304
305 // Switch instruction expects constants to compare to.
306 if (isa<const SwitchInst>(Instr))
307 return false;
308
309 // Expected address must be a constant.
310 if (isa<const IndirectBrInst>(Instr))
311 return false;
312
313 // Do not mess with intrinsics.
314 if (isa<const IntrinsicInst>(Instr))
315 return false;
316
317 // Do not mess with inline asm.
318 const CallInst *CI = dyn_cast<const CallInst>(Instr);
319 return !(CI && CI->isInlineAsm());
320}
321
322/// Check if the given Cst should be converted into
323/// a load of a global variable initialized with Cst.
324/// A constant should be converted if it is likely that the materialization of
325/// the constant will be tricky. Thus, we give up on zero or undef values.
326///
327/// \todo Currently, accept only vector related types.
328/// Also we give up on all simple vector type to keep the existing
329/// behavior. Otherwise, we should push here all the check of the lowering of
330/// BUILD_VECTOR. By giving up, we lose the potential benefit of merging
331/// constant via global merge and the fact that the same constant is stored
332/// only once with this method (versus, as many function that uses the constant
333/// for the regular approach, even for float).
334/// Again, the simplest solution would be to promote every
335/// constant and rematerialize them when they are actually cheap to create.
336static bool shouldConvertImpl(const Constant *Cst) {
337 if (isa<const UndefValue>(Cst))
338 return false;
339
340 // FIXME: In some cases, it may be interesting to promote in memory
341 // a zero initialized constant.
342 // E.g., when the type of Cst require more instructions than the
343 // adrp/add/load sequence or when this sequence can be shared by several
344 // instances of Cst.
345 // Ideally, we could promote this into a global and rematerialize the constant
346 // when it was a bad idea.
347 if (Cst->isZeroValue())
348 return false;
349
350 if (Stress)
351 return true;
352
353 // FIXME: see function \todo
354 if (Cst->getType()->isVectorTy())
355 return false;
356 return isConstantUsingVectorTy(Cst->getType());
357}
358
359static bool
362 auto Converted = PromotionCache.insert(
363 std::make_pair(&C, AArch64PromoteConstant::PromotedConstant()));
364 if (Converted.second)
365 Converted.first->second.ShouldConvert = shouldConvertImpl(&C);
366 return Converted.first->second.ShouldConvert;
367}
368
369Instruction *AArch64PromoteConstant::findInsertionPoint(Instruction &User,
370 unsigned OpNo) {
371 // If this user is a phi, the insertion point is in the related
372 // incoming basic block.
373 if (PHINode *PhiInst = dyn_cast<PHINode>(&User))
374 return PhiInst->getIncomingBlock(OpNo)->getTerminator();
375
376 return &User;
377}
378
379bool AArch64PromoteConstant::isDominated(Instruction *NewPt, Instruction *User,
380 unsigned OpNo,
381 InsertionPoints &InsertPts) {
382 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
383 *NewPt->getParent()->getParent()).getDomTree();
384
385 // Traverse all the existing insertion points and check if one is dominating
386 // NewPt. If it is, remember that.
387 for (auto &IPI : InsertPts) {
388 if (NewPt == IPI.first || DT.dominates(IPI.first, NewPt) ||
389 // When IPI.first is a terminator instruction, DT may think that
390 // the result is defined on the edge.
391 // Here we are testing the insertion point, not the definition.
392 (IPI.first->getParent() != NewPt->getParent() &&
393 DT.dominates(IPI.first->getParent(), NewPt->getParent()))) {
394 // No need to insert this point. Just record the dominated use.
395 LLVM_DEBUG(dbgs() << "Insertion point dominated by:\n");
396 LLVM_DEBUG(IPI.first->print(dbgs()));
397 LLVM_DEBUG(dbgs() << '\n');
398 IPI.second.emplace_back(User, OpNo);
399 return true;
400 }
401 }
402 return false;
403}
404
405bool AArch64PromoteConstant::tryAndMerge(Instruction *NewPt, Instruction *User,
406 unsigned OpNo,
407 InsertionPoints &InsertPts) {
408 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
409 *NewPt->getParent()->getParent()).getDomTree();
410 BasicBlock *NewBB = NewPt->getParent();
411
412 // Traverse all the existing insertion point and check if one is dominated by
413 // NewPt and thus useless or can be combined with NewPt into a common
414 // dominator.
415 for (InsertionPoints::iterator IPI = InsertPts.begin(),
416 EndIPI = InsertPts.end();
417 IPI != EndIPI; ++IPI) {
418 BasicBlock *CurBB = IPI->first->getParent();
419 if (NewBB == CurBB) {
420 // Instructions are in the same block.
421 // By construction, NewPt is dominating the other.
422 // Indeed, isDominated returned false with the exact same arguments.
423 LLVM_DEBUG(dbgs() << "Merge insertion point with:\n");
424 LLVM_DEBUG(IPI->first->print(dbgs()));
425 LLVM_DEBUG(dbgs() << "\nat considered insertion point.\n");
426 appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts);
427 return true;
428 }
429
430 // Look for a common dominator
431 BasicBlock *CommonDominator = DT.findNearestCommonDominator(NewBB, CurBB);
432 // If none exists, we cannot merge these two points.
433 if (!CommonDominator)
434 continue;
435
436 if (CommonDominator != NewBB) {
437 // By construction, the CommonDominator cannot be CurBB.
438 assert(CommonDominator != CurBB &&
439 "Instruction has not been rejected during isDominated check!");
440 // Take the last instruction of the CommonDominator as insertion point
441 NewPt = CommonDominator->getTerminator();
442 }
443 // else, CommonDominator is the block of NewBB, hence NewBB is the last
444 // possible insertion point in that block.
445 LLVM_DEBUG(dbgs() << "Merge insertion point with:\n");
446 LLVM_DEBUG(IPI->first->print(dbgs()));
447 LLVM_DEBUG(dbgs() << '\n');
448 LLVM_DEBUG(NewPt->print(dbgs()));
449 LLVM_DEBUG(dbgs() << '\n');
450 appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts);
451 return true;
452 }
453 return false;
454}
455
456void AArch64PromoteConstant::computeInsertionPoint(
457 Instruction *User, unsigned OpNo, InsertionPoints &InsertPts) {
458 LLVM_DEBUG(dbgs() << "Considered use, opidx " << OpNo << ":\n");
460 LLVM_DEBUG(dbgs() << '\n');
461
462 Instruction *InsertionPoint = findInsertionPoint(*User, OpNo);
463
464 LLVM_DEBUG(dbgs() << "Considered insertion point:\n");
465 LLVM_DEBUG(InsertionPoint->print(dbgs()));
466 LLVM_DEBUG(dbgs() << '\n');
467
468 if (isDominated(InsertionPoint, User, OpNo, InsertPts))
469 return;
470 // This insertion point is useful, check if we can merge some insertion
471 // point in a common dominator or if NewPt dominates an existing one.
472 if (tryAndMerge(InsertionPoint, User, OpNo, InsertPts))
473 return;
474
475 LLVM_DEBUG(dbgs() << "Keep considered insertion point\n");
476
477 // It is definitely useful by its own
478 InsertPts[InsertionPoint].emplace_back(User, OpNo);
479}
480
482 AArch64PromoteConstant::PromotedConstant &PC) {
483 assert(PC.ShouldConvert &&
484 "Expected that we should convert this to a global");
485 if (PC.GV)
486 return;
487 PC.GV = new GlobalVariable(
488 *F.getParent(), C.getType(), true, GlobalValue::InternalLinkage, nullptr,
489 "_PromotedConst", nullptr, GlobalVariable::NotThreadLocal);
490 PC.GV->setInitializer(&C);
491 LLVM_DEBUG(dbgs() << "Global replacement: ");
492 LLVM_DEBUG(PC.GV->print(dbgs()));
493 LLVM_DEBUG(dbgs() << '\n');
494 ++NumPromoted;
495}
496
497void AArch64PromoteConstant::insertDefinitions(Function &F,
498 GlobalVariable &PromotedGV,
499 InsertionPoints &InsertPts) {
500#ifndef NDEBUG
501 // Do more checking for debug purposes.
502 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
503#endif
504 assert(!InsertPts.empty() && "Empty uses does not need a definition");
505
506 for (const auto &IPI : InsertPts) {
507 // Create the load of the global variable.
508 IRBuilder<> Builder(IPI.first);
509 LoadInst *LoadedCst =
510 Builder.CreateLoad(PromotedGV.getValueType(), &PromotedGV);
511 LLVM_DEBUG(dbgs() << "**********\n");
512 LLVM_DEBUG(dbgs() << "New def: ");
513 LLVM_DEBUG(LoadedCst->print(dbgs()));
514 LLVM_DEBUG(dbgs() << '\n');
515
516 // Update the dominated uses.
517 for (auto Use : IPI.second) {
518#ifndef NDEBUG
519 assert(DT.dominates(LoadedCst,
520 findInsertionPoint(*Use.first, Use.second)) &&
521 "Inserted definition does not dominate all its uses!");
522#endif
523 LLVM_DEBUG({
524 dbgs() << "Use to update " << Use.second << ":";
525 Use.first->print(dbgs());
526 dbgs() << '\n';
527 });
528 Use.first->setOperand(Use.second, LoadedCst);
529 ++NumPromotedUses;
530 }
531 }
532}
533
534void AArch64PromoteConstant::promoteConstants(
536 PromotionCacheTy &PromotionCache) {
537 // Promote the constants.
538 for (auto U = Updates.begin(), E = Updates.end(); U != E;) {
539 LLVM_DEBUG(dbgs() << "** Compute insertion points **\n");
540 auto First = U;
541 Constant *C = First->C;
542 InsertionPoints InsertPts;
543 do {
544 computeInsertionPoint(U->User, U->Op, InsertPts);
545 } while (++U != E && U->C == C);
546
547 auto &Promotion = PromotionCache[C];
548 ensurePromotedGV(F, *C, Promotion);
549 insertDefinitions(F, *Promotion.GV, InsertPts);
550 }
551}
552
553bool AArch64PromoteConstant::runOnFunction(Function &F,
554 PromotionCacheTy &PromotionCache) {
555 // Look for instructions using constant vector. Promote that constant to a
556 // global variable. Create as few loads of this variable as possible and
557 // update the uses accordingly.
559 for (Instruction &I : instructions(&F)) {
560 // Traverse the operand, looking for constant vectors. Replace them by a
561 // load of a global variable of constant vector type.
562 for (Use &U : I.operands()) {
563 Constant *Cst = dyn_cast<Constant>(U);
564 // There is no point in promoting global values as they are already
565 // global. Do not promote constants containing constant expression, global
566 // values or blockaddresses either, as they may require some code
567 // expansion.
568 if (!Cst || isa<GlobalValue>(Cst) || !containsOnlyConstantData(Cst))
569 continue;
570
571 // Check if this constant is worth promoting.
572 if (!shouldConvert(*Cst, PromotionCache))
573 continue;
574
575 // Check if this use should be promoted.
576 unsigned OpNo = &U - I.op_begin();
577 if (!shouldConvertUse(Cst, &I, OpNo))
578 continue;
579
580 Updates.emplace_back(Cst, &I, OpNo);
581 }
582 }
583
584 if (Updates.empty())
585 return false;
586
587 promoteConstants(F, Updates, PromotionCache);
588 return true;
589}
static bool isConstantUsingVectorTy(const Type *CstTy)
Check if the given type uses a vector type.
aarch64 promote const
static bool containsOnlyConstantData(const Constant *C)
static void ensurePromotedGV(Function &F, Constant &C, AArch64PromoteConstant::PromotedConstant &PC)
static bool shouldConvert(Constant &C, AArch64PromoteConstant::PromotionCacheTy &PromotionCache)
static cl::opt< bool > Stress("aarch64-stress-promote-const", cl::Hidden, cl::desc("Promote all vector constants"))
static bool shouldConvertImpl(const Constant *Cst)
Check if the given Cst should be converted into a load of a global variable initialized with Cst.
static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr, unsigned OpIdx)
Check if the given use (Instruction + OpIdx) of Cst should be converted into a load of a global varia...
Expand Atomic instructions
This file contains the declarations for the subclasses of Constant, which represent the different fla...
#define LLVM_DEBUG(...)
Definition: Debug.h:106
This file defines the DenseMap class.
static bool runOnFunction(Function &F, bool PostInlining)
Module.h This file contains the declarations for the Module class.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:57
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
Remove Loads Into Fake Uses
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:166
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:256
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:219
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:239
bool isInlineAsm() const
Check if this call is an inline asm statement.
Definition: InstrTypes.h:1416
This class represents a function call, abstracting a target machine's calling convention.
This is an important base class in LLVM.
Definition: Constant.h:42
bool isZeroValue() const
Return true if the value is negative zero or null value.
Definition: Constants.cpp:76
This class represents an Operation in the Expression.
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT > iterator
Definition: DenseMap.h:71
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:211
Legacy analysis pass which computes a DominatorTree.
Definition: Dominators.h:317
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
Instruction * findNearestCommonDominator(Instruction *I1, Instruction *I2) const
Find the nearest instruction I that dominates both I1 and I2, in the sense that a result produced bef...
Definition: Dominators.cpp:344
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:122
@ InternalLinkage
Rename collisions when linking (static functions).
Definition: GlobalValue.h:59
Type * getValueType() const
Definition: GlobalValue.h:296
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2697
An instruction for reading from memory.
Definition: Instructions.h:176
ModulePass class - This class is used to implement unstructured interprocedural optimizations and ana...
Definition: Pass.h:251
bool skipModule(Module &M) const
Optional passes call this function to check whether the pass should be skipped.
Definition: Pass.cpp:63
virtual bool runOnModule(Module &M)=0
runOnModule - Virtual method overriden by subclasses to process the module being operated on.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
Pass interface - Implemented by all 'passes'.
Definition: Pass.h:94
virtual void getAnalysisUsage(AnalysisUsage &) const
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
Definition: Pass.cpp:98
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
bool empty() const
Definition: SmallVector.h:81
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:937
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
Type * getStructElementType(unsigned N) const
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:270
bool isArrayTy() const
True if this is an instance of ArrayType.
Definition: Type.h:261
Type * getArrayElementType() const
Definition: Type.h:411
unsigned getStructNumElements() const
bool isStructTy() const
True if this is an instance of StructType.
Definition: Type.h:258
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
void print(raw_ostream &O, bool IsForDebug=false) const
Implement operator<< on Value.
Definition: AsmWriter.cpp:5061
const ParentTy * getParent() const
Definition: ilist_node.h:32
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1739
void initializeAArch64PromoteConstantPass(PassRegistry &)
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
ModulePass * createAArch64PromoteConstantPass()