LLVM 22.0.0git
Instructions.h
Go to the documentation of this file.
1//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file exposes the class definitions of all of the subclasses of the
10// Instruction class. This is meant to be an easy way to get access to all
11// instruction subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/Bitfields.h"
20#include "llvm/ADT/MapVector.h"
21#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/Twine.h"
24#include "llvm/ADT/iterator.h"
26#include "llvm/IR/CFG.h"
28#include "llvm/IR/Constant.h"
31#include "llvm/IR/InstrTypes.h"
32#include "llvm/IR/Instruction.h"
33#include "llvm/IR/Intrinsics.h"
36#include "llvm/IR/Use.h"
37#include "llvm/IR/User.h"
41#include <cassert>
42#include <cstddef>
43#include <cstdint>
44#include <iterator>
45#include <optional>
46
47namespace llvm {
48
49class APFloat;
50class APInt;
51class BasicBlock;
52class ConstantInt;
53class DataLayout;
54struct KnownBits;
55class StringRef;
56class Type;
57class Value;
58class UnreachableInst;
59
60//===----------------------------------------------------------------------===//
61// AllocaInst Class
62//===----------------------------------------------------------------------===//
63
64/// an instruction to allocate memory on the stack
66 Type *AllocatedType;
67
68 using AlignmentField = AlignmentBitfieldElementT<0>;
69 using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
71 static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
72 SwiftErrorField>(),
73 "Bitfields must be contiguous");
74
75protected:
76 // Note: Instruction needs to be a friend here to call cloneImpl.
77 friend class Instruction;
78
80
81public:
82 LLVM_ABI explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
83 const Twine &Name, InsertPosition InsertBefore);
84
85 LLVM_ABI AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
86 InsertPosition InsertBefore);
87
88 LLVM_ABI AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
89 Align Align, const Twine &Name = "",
90 InsertPosition InsertBefore = nullptr);
91
92 /// Return true if there is an allocation size parameter to the allocation
93 /// instruction that is not 1.
94 LLVM_ABI bool isArrayAllocation() const;
95
96 /// Get the number of elements allocated. For a simple allocation of a single
97 /// element, this will return a constant 1 value.
98 const Value *getArraySize() const { return getOperand(0); }
99 Value *getArraySize() { return getOperand(0); }
100
101 /// Overload to return most specific pointer type.
105
106 /// Return the address space for the allocation.
107 unsigned getAddressSpace() const {
108 return getType()->getAddressSpace();
109 }
110
111 /// Get allocation size in bytes. Returns std::nullopt if size can't be
112 /// determined, e.g. in case of a VLA.
113 LLVM_ABI std::optional<TypeSize>
114 getAllocationSize(const DataLayout &DL) const;
115
116 /// Get allocation size in bits. Returns std::nullopt if size can't be
117 /// determined, e.g. in case of a VLA.
118 LLVM_ABI std::optional<TypeSize>
120
121 /// Return the type that is being allocated by the instruction.
122 Type *getAllocatedType() const { return AllocatedType; }
123 /// for use only in special circumstances that need to generically
124 /// transform a whole instruction (eg: IR linking and vectorization).
125 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
126
127 /// Return the alignment of the memory that is being allocated by the
128 /// instruction.
129 Align getAlign() const {
130 return Align(1ULL << getSubclassData<AlignmentField>());
131 }
132
134 setSubclassData<AlignmentField>(Log2(Align));
135 }
136
137 /// Return true if this alloca is in the entry block of the function and is a
138 /// constant size. If so, the code generator will fold it into the
139 /// prolog/epilog code, so it is basically free.
140 LLVM_ABI bool isStaticAlloca() const;
141
142 /// Return true if this alloca is used as an inalloca argument to a call. Such
143 /// allocas are never considered static even if they are in the entry block.
147
148 /// Specify whether this alloca is used to represent the arguments to a call.
149 void setUsedWithInAlloca(bool V) {
150 setSubclassData<UsedWithInAllocaField>(V);
151 }
152
153 /// Return true if this alloca is used as a swifterror argument to a call.
155 /// Specify whether this alloca is used to represent a swifterror.
156 void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
157
158 // Methods for support type inquiry through isa, cast, and dyn_cast:
159 static bool classof(const Instruction *I) {
160 return (I->getOpcode() == Instruction::Alloca);
161 }
162 static bool classof(const Value *V) {
164 }
165
166private:
167 // Shadow Instruction::setInstructionSubclassData with a private forwarding
168 // method so that subclasses cannot accidentally use it.
169 template <typename Bitfield>
170 void setSubclassData(typename Bitfield::Type Value) {
172 }
173};
174
175//===----------------------------------------------------------------------===//
176// LoadInst Class
177//===----------------------------------------------------------------------===//
178
179/// An instruction for reading from memory. This uses the SubclassData field in
180/// Value to store whether or not the load is volatile.
182 using VolatileField = BoolBitfieldElementT<0>;
185 static_assert(
187 "Bitfields must be contiguous");
188
189 void AssertOK();
190
191protected:
192 // Note: Instruction needs to be a friend here to call cloneImpl.
193 friend class Instruction;
194
195 LLVM_ABI LoadInst *cloneImpl() const;
196
197public:
198 LLVM_ABI LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
199 InsertPosition InsertBefore);
200 LLVM_ABI LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
201 InsertPosition InsertBefore);
202 LLVM_ABI LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
203 Align Align, InsertPosition InsertBefore = nullptr);
204 LLVM_ABI LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
207 InsertPosition InsertBefore = nullptr);
208
209 /// Return true if this is a load from a volatile memory location.
211
212 /// Specify whether this is a volatile load or not.
213 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
214
215 /// Return the alignment of the access that is being performed.
216 Align getAlign() const {
217 return Align(1ULL << (getSubclassData<AlignmentField>()));
218 }
219
221 setSubclassData<AlignmentField>(Log2(Align));
222 }
223
224 /// Returns the ordering constraint of this load instruction.
228 /// Sets the ordering constraint of this load instruction. May not be Release
229 /// or AcquireRelease.
231 setSubclassData<OrderingField>(Ordering);
232 }
233
234 /// Returns the synchronization scope ID of this load instruction.
236 return SSID;
237 }
238
239 /// Sets the synchronization scope ID of this load instruction.
241 this->SSID = SSID;
242 }
243
244 /// Sets the ordering constraint and the synchronization scope ID of this load
245 /// instruction.
248 setOrdering(Ordering);
249 setSyncScopeID(SSID);
250 }
251
252 bool isSimple() const { return !isAtomic() && !isVolatile(); }
253
254 bool isUnordered() const {
257 !isVolatile();
258 }
259
261 const Value *getPointerOperand() const { return getOperand(0); }
262 static unsigned getPointerOperandIndex() { return 0U; }
264
265 /// Returns the address space of the pointer operand.
266 unsigned getPointerAddressSpace() const {
268 }
269
270 // Methods for support type inquiry through isa, cast, and dyn_cast:
271 static bool classof(const Instruction *I) {
272 return I->getOpcode() == Instruction::Load;
273 }
274 static bool classof(const Value *V) {
276 }
277
278private:
279 // Shadow Instruction::setInstructionSubclassData with a private forwarding
280 // method so that subclasses cannot accidentally use it.
281 template <typename Bitfield>
282 void setSubclassData(typename Bitfield::Type Value) {
284 }
285
286 /// The synchronization scope ID of this load instruction. Not quite enough
287 /// room in SubClassData for everything, so synchronization scope ID gets its
288 /// own field.
289 SyncScope::ID SSID;
290};
291
292//===----------------------------------------------------------------------===//
293// StoreInst Class
294//===----------------------------------------------------------------------===//
295
296/// An instruction for storing to memory.
297class StoreInst : public Instruction {
298 using VolatileField = BoolBitfieldElementT<0>;
301 static_assert(
303 "Bitfields must be contiguous");
304
305 void AssertOK();
306
307 constexpr static IntrusiveOperandsAllocMarker AllocMarker{2};
308
309protected:
310 // Note: Instruction needs to be a friend here to call cloneImpl.
311 friend class Instruction;
312
314
315public:
316 LLVM_ABI StoreInst(Value *Val, Value *Ptr, InsertPosition InsertBefore);
317 LLVM_ABI StoreInst(Value *Val, Value *Ptr, bool isVolatile,
318 InsertPosition InsertBefore);
320 InsertPosition InsertBefore = nullptr);
322 AtomicOrdering Order,
324 InsertPosition InsertBefore = nullptr);
325
326 // allocate space for exactly two operands
327 void *operator new(size_t S) { return User::operator new(S, AllocMarker); }
328 void operator delete(void *Ptr) { User::operator delete(Ptr); }
329
330 /// Return true if this is a store to a volatile memory location.
332
333 /// Specify whether this is a volatile store or not.
334 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
335
336 /// Transparently provide more efficient getOperand methods.
338
339 Align getAlign() const {
340 return Align(1ULL << (getSubclassData<AlignmentField>()));
341 }
342
344 setSubclassData<AlignmentField>(Log2(Align));
345 }
346
347 /// Returns the ordering constraint of this store instruction.
351
352 /// Sets the ordering constraint of this store instruction. May not be
353 /// Acquire or AcquireRelease.
355 setSubclassData<OrderingField>(Ordering);
356 }
357
358 /// Returns the synchronization scope ID of this store instruction.
360 return SSID;
361 }
362
363 /// Sets the synchronization scope ID of this store instruction.
365 this->SSID = SSID;
366 }
367
368 /// Sets the ordering constraint and the synchronization scope ID of this
369 /// store instruction.
372 setOrdering(Ordering);
373 setSyncScopeID(SSID);
374 }
375
376 bool isSimple() const { return !isAtomic() && !isVolatile(); }
377
378 bool isUnordered() const {
381 !isVolatile();
382 }
383
385 const Value *getValueOperand() const { return getOperand(0); }
386
388 const Value *getPointerOperand() const { return getOperand(1); }
389 static unsigned getPointerOperandIndex() { return 1U; }
391
392 /// Returns the address space of the pointer operand.
393 unsigned getPointerAddressSpace() const {
395 }
396
397 // Methods for support type inquiry through isa, cast, and dyn_cast:
398 static bool classof(const Instruction *I) {
399 return I->getOpcode() == Instruction::Store;
400 }
401 static bool classof(const Value *V) {
403 }
404
405private:
406 // Shadow Instruction::setInstructionSubclassData with a private forwarding
407 // method so that subclasses cannot accidentally use it.
408 template <typename Bitfield>
409 void setSubclassData(typename Bitfield::Type Value) {
411 }
412
413 /// The synchronization scope ID of this store instruction. Not quite enough
414 /// room in SubClassData for everything, so synchronization scope ID gets its
415 /// own field.
416 SyncScope::ID SSID;
417};
418
419template <>
420struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
421};
422
424
425//===----------------------------------------------------------------------===//
426// FenceInst Class
427//===----------------------------------------------------------------------===//
428
429/// An instruction for ordering other memory operations.
430class FenceInst : public Instruction {
431 using OrderingField = AtomicOrderingBitfieldElementT<0>;
432
433 constexpr static IntrusiveOperandsAllocMarker AllocMarker{0};
434
435 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
436
437protected:
438 // Note: Instruction needs to be a friend here to call cloneImpl.
439 friend class Instruction;
440
442
443public:
444 // Ordering may only be Acquire, Release, AcquireRelease, or
445 // SequentiallyConsistent.
448 InsertPosition InsertBefore = nullptr);
449
450 // allocate space for exactly zero operands
451 void *operator new(size_t S) { return User::operator new(S, AllocMarker); }
452 void operator delete(void *Ptr) { User::operator delete(Ptr); }
453
454 /// Returns the ordering constraint of this fence instruction.
458
459 /// Sets the ordering constraint of this fence instruction. May only be
460 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
462 setSubclassData<OrderingField>(Ordering);
463 }
464
465 /// Returns the synchronization scope ID of this fence instruction.
467 return SSID;
468 }
469
470 /// Sets the synchronization scope ID of this fence instruction.
472 this->SSID = SSID;
473 }
474
475 // Methods for support type inquiry through isa, cast, and dyn_cast:
476 static bool classof(const Instruction *I) {
477 return I->getOpcode() == Instruction::Fence;
478 }
479 static bool classof(const Value *V) {
481 }
482
483private:
484 // Shadow Instruction::setInstructionSubclassData with a private forwarding
485 // method so that subclasses cannot accidentally use it.
486 template <typename Bitfield>
487 void setSubclassData(typename Bitfield::Type Value) {
489 }
490
491 /// The synchronization scope ID of this fence instruction. Not quite enough
492 /// room in SubClassData for everything, so synchronization scope ID gets its
493 /// own field.
494 SyncScope::ID SSID;
495};
496
497//===----------------------------------------------------------------------===//
498// AtomicCmpXchgInst Class
499//===----------------------------------------------------------------------===//
500
501/// An instruction that atomically checks whether a
502/// specified value is in a memory location, and, if it is, stores a new value
503/// there. The value returned by this instruction is a pair containing the
504/// original value as first element, and an i1 indicating success (true) or
505/// failure (false) as second element.
506///
508 void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
509 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
510 SyncScope::ID SSID);
511
512 template <unsigned Offset>
513 using AtomicOrderingBitfieldElement =
516
517 constexpr static IntrusiveOperandsAllocMarker AllocMarker{3};
518
519protected:
520 // Note: Instruction needs to be a friend here to call cloneImpl.
521 friend class Instruction;
522
524
525public:
526 LLVM_ABI AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
527 Align Alignment, AtomicOrdering SuccessOrdering,
528 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
529 InsertPosition InsertBefore = nullptr);
530
531 // allocate space for exactly three operands
532 void *operator new(size_t S) { return User::operator new(S, AllocMarker); }
533 void operator delete(void *Ptr) { User::operator delete(Ptr); }
534
543 static_assert(
546 "Bitfields must be contiguous");
547
548 /// Return the alignment of the memory that is being allocated by the
549 /// instruction.
550 Align getAlign() const {
551 return Align(1ULL << getSubclassData<AlignmentField>());
552 }
553
555 setSubclassData<AlignmentField>(Log2(Align));
556 }
557
558 /// Return true if this is a cmpxchg from a volatile memory
559 /// location.
560 ///
562
563 /// Specify whether this is a volatile cmpxchg.
564 ///
565 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
566
567 /// Return true if this cmpxchg may spuriously fail.
568 bool isWeak() const { return getSubclassData<WeakField>(); }
569
570 void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
571
572 /// Transparently provide more efficient getOperand methods.
574
576 return Ordering != AtomicOrdering::NotAtomic &&
577 Ordering != AtomicOrdering::Unordered;
578 }
579
581 return Ordering != AtomicOrdering::NotAtomic &&
582 Ordering != AtomicOrdering::Unordered &&
583 Ordering != AtomicOrdering::AcquireRelease &&
584 Ordering != AtomicOrdering::Release;
585 }
586
587 /// Returns the success ordering constraint of this cmpxchg instruction.
591
592 /// Sets the success ordering constraint of this cmpxchg instruction.
594 assert(isValidSuccessOrdering(Ordering) &&
595 "invalid CmpXchg success ordering");
596 setSubclassData<SuccessOrderingField>(Ordering);
597 }
598
599 /// Returns the failure ordering constraint of this cmpxchg instruction.
603
604 /// Sets the failure ordering constraint of this cmpxchg instruction.
606 assert(isValidFailureOrdering(Ordering) &&
607 "invalid CmpXchg failure ordering");
608 setSubclassData<FailureOrderingField>(Ordering);
609 }
610
611 /// Returns a single ordering which is at least as strong as both the
612 /// success and failure orderings for this cmpxchg.
624
625 /// Returns the synchronization scope ID of this cmpxchg instruction.
627 return SSID;
628 }
629
630 /// Sets the synchronization scope ID of this cmpxchg instruction.
632 this->SSID = SSID;
633 }
634
636 const Value *getPointerOperand() const { return getOperand(0); }
637 static unsigned getPointerOperandIndex() { return 0U; }
638
640 const Value *getCompareOperand() const { return getOperand(1); }
641
643 const Value *getNewValOperand() const { return getOperand(2); }
644
645 /// Returns the address space of the pointer operand.
646 unsigned getPointerAddressSpace() const {
648 }
649
650 /// Returns the strongest permitted ordering on failure, given the
651 /// desired ordering on success.
652 ///
653 /// If the comparison in a cmpxchg operation fails, there is no atomic store
654 /// so release semantics cannot be provided. So this function drops explicit
655 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
656 /// operation would remain SequentiallyConsistent.
657 static AtomicOrdering
659 switch (SuccessOrdering) {
660 default:
661 llvm_unreachable("invalid cmpxchg success ordering");
670 }
671 }
672
673 // Methods for support type inquiry through isa, cast, and dyn_cast:
674 static bool classof(const Instruction *I) {
675 return I->getOpcode() == Instruction::AtomicCmpXchg;
676 }
677 static bool classof(const Value *V) {
679 }
680
681private:
682 // Shadow Instruction::setInstructionSubclassData with a private forwarding
683 // method so that subclasses cannot accidentally use it.
684 template <typename Bitfield>
685 void setSubclassData(typename Bitfield::Type Value) {
687 }
688
689 /// The synchronization scope ID of this cmpxchg instruction. Not quite
690 /// enough room in SubClassData for everything, so synchronization scope ID
691 /// gets its own field.
692 SyncScope::ID SSID;
693};
694
695template <>
697 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
698};
699
701
702//===----------------------------------------------------------------------===//
703// AtomicRMWInst Class
704//===----------------------------------------------------------------------===//
705
706/// an instruction that atomically reads a memory location,
707/// combines it with another value, and then stores the result back. Returns
708/// the old value.
709///
711protected:
712 // Note: Instruction needs to be a friend here to call cloneImpl.
713 friend class Instruction;
714
716
717public:
718 /// This enumeration lists the possible modifications atomicrmw can make. In
719 /// the descriptions, 'p' is the pointer to the instruction's memory location,
720 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
721 /// instruction. These instructions always return 'old'.
722 enum BinOp : unsigned {
723 /// *p = v
725 /// *p = old + v
727 /// *p = old - v
729 /// *p = old & v
731 /// *p = ~(old & v)
733 /// *p = old | v
735 /// *p = old ^ v
737 /// *p = old >signed v ? old : v
739 /// *p = old <signed v ? old : v
741 /// *p = old >unsigned v ? old : v
743 /// *p = old <unsigned v ? old : v
745
746 /// *p = old + v
748
749 /// *p = old - v
751
752 /// *p = maxnum(old, v)
753 /// \p maxnum matches the behavior of \p llvm.maxnum.*.
755
756 /// *p = minnum(old, v)
757 /// \p minnum matches the behavior of \p llvm.minnum.*.
759
760 /// *p = maximum(old, v)
761 /// \p maximum matches the behavior of \p llvm.maximum.*.
763
764 /// *p = minimum(old, v)
765 /// \p minimum matches the behavior of \p llvm.minimum.*.
767
768 /// Increment one up to a maximum value.
769 /// *p = (old u>= v) ? 0 : (old + 1)
771
772 /// Decrement one until a minimum value or zero.
773 /// *p = ((old == 0) || (old u> v)) ? v : (old - 1)
775
776 /// Subtract only if no unsigned overflow.
777 /// *p = (old u>= v) ? old - v : old
779
780 /// *p = usub.sat(old, v)
781 /// \p usub.sat matches the behavior of \p llvm.usub.sat.*.
783
787 };
788
789private:
790 template <unsigned Offset>
791 using AtomicOrderingBitfieldElement =
794
795 template <unsigned Offset>
796 using BinOpBitfieldElement =
798
799 constexpr static IntrusiveOperandsAllocMarker AllocMarker{2};
800
801public:
802 LLVM_ABI AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
803 Align Alignment, AtomicOrdering Ordering,
804 SyncScope::ID SSID,
805 InsertPosition InsertBefore = nullptr);
806
807 // allocate space for exactly two operands
808 void *operator new(size_t S) { return User::operator new(S, AllocMarker); }
809 void operator delete(void *Ptr) { User::operator delete(Ptr); }
810
814 using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
818 "Bitfields must be contiguous");
819
821
822 LLVM_ABI static StringRef getOperationName(BinOp Op);
823
824 static bool isFPOperation(BinOp Op) {
825 switch (Op) {
832 return true;
833 default:
834 return false;
835 }
836 }
837
839 setSubclassData<OperationField>(Operation);
840 }
841
842 /// Return the alignment of the memory that is being allocated by the
843 /// instruction.
844 Align getAlign() const {
845 return Align(1ULL << getSubclassData<AlignmentField>());
846 }
847
849 setSubclassData<AlignmentField>(Log2(Align));
850 }
851
852 /// Return true if this is a RMW on a volatile memory location.
853 ///
855
856 /// Specify whether this is a volatile RMW or not.
857 ///
858 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
859
860 /// Transparently provide more efficient getOperand methods.
862
863 /// Returns the ordering constraint of this rmw instruction.
867
868 /// Sets the ordering constraint of this rmw instruction.
870 assert(Ordering != AtomicOrdering::NotAtomic &&
871 "atomicrmw instructions can only be atomic.");
872 assert(Ordering != AtomicOrdering::Unordered &&
873 "atomicrmw instructions cannot be unordered.");
874 setSubclassData<AtomicOrderingField>(Ordering);
875 }
876
877 /// Returns the synchronization scope ID of this rmw instruction.
879 return SSID;
880 }
881
882 /// Sets the synchronization scope ID of this rmw instruction.
884 this->SSID = SSID;
885 }
886
888 const Value *getPointerOperand() const { return getOperand(0); }
889 static unsigned getPointerOperandIndex() { return 0U; }
890
892 const Value *getValOperand() const { return getOperand(1); }
893
894 /// Returns the address space of the pointer operand.
895 unsigned getPointerAddressSpace() const {
897 }
898
900 return isFPOperation(getOperation());
901 }
902
903 // Methods for support type inquiry through isa, cast, and dyn_cast:
904 static bool classof(const Instruction *I) {
905 return I->getOpcode() == Instruction::AtomicRMW;
906 }
907 static bool classof(const Value *V) {
909 }
910
911private:
912 void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
913 AtomicOrdering Ordering, SyncScope::ID SSID);
914
915 // Shadow Instruction::setInstructionSubclassData with a private forwarding
916 // method so that subclasses cannot accidentally use it.
917 template <typename Bitfield>
918 void setSubclassData(typename Bitfield::Type Value) {
920 }
921
922 /// The synchronization scope ID of this rmw instruction. Not quite enough
923 /// room in SubClassData for everything, so synchronization scope ID gets its
924 /// own field.
925 SyncScope::ID SSID;
926};
927
928template <>
930 : public FixedNumOperandTraits<AtomicRMWInst,2> {
931};
932
934
935//===----------------------------------------------------------------------===//
936// GetElementPtrInst Class
937//===----------------------------------------------------------------------===//
938
939// checkGEPType - Simple wrapper function to give a better assertion failure
940// message on bad indexes for a gep instruction.
941//
943 assert(Ty && "Invalid GetElementPtrInst indices for type!");
944 return Ty;
945}
946
947/// an instruction for type-safe pointer arithmetic to
948/// access elements of arrays and structs
949///
950class GetElementPtrInst : public Instruction {
951 Type *SourceElementType;
952 Type *ResultElementType;
953
954 GetElementPtrInst(const GetElementPtrInst &GEPI, AllocInfo AllocInfo);
955
956 /// Constructors - Create a getelementptr instruction with a base pointer an
957 /// list of indices. The first and second ctor can optionally insert before an
958 /// existing instruction, the third appends the new instruction to the
959 /// specified BasicBlock.
960 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
962 const Twine &NameStr, InsertPosition InsertBefore);
963
964 LLVM_ABI void init(Value *Ptr, ArrayRef<Value *> IdxList,
965 const Twine &NameStr);
966
967protected:
968 // Note: Instruction needs to be a friend here to call cloneImpl.
969 friend class Instruction;
970
971 LLVM_ABI GetElementPtrInst *cloneImpl() const;
972
973public:
974 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
975 ArrayRef<Value *> IdxList,
976 const Twine &NameStr = "",
977 InsertPosition InsertBefore = nullptr) {
978 unsigned Values = 1 + unsigned(IdxList.size());
979 assert(PointeeType && "Must specify element type");
980 IntrusiveOperandsAllocMarker AllocMarker{Values};
981 return new (AllocMarker) GetElementPtrInst(
982 PointeeType, Ptr, IdxList, AllocMarker, NameStr, InsertBefore);
983 }
984
985 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
987 const Twine &NameStr = "",
988 InsertPosition InsertBefore = nullptr) {
989 GetElementPtrInst *GEP =
990 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
991 GEP->setNoWrapFlags(NW);
992 return GEP;
993 }
994
995 /// Create an "inbounds" getelementptr. See the documentation for the
996 /// "inbounds" flag in LangRef.html for details.
997 static GetElementPtrInst *
998 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
999 const Twine &NameStr = "",
1000 InsertPosition InsertBefore = nullptr) {
1001 return Create(PointeeType, Ptr, IdxList, GEPNoWrapFlags::inBounds(),
1002 NameStr, InsertBefore);
1003 }
1004
1005 /// Transparently provide more efficient getOperand methods.
1007
1008 Type *getSourceElementType() const { return SourceElementType; }
1009
1010 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
1011 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
1012
1014 return ResultElementType;
1015 }
1016
1017 /// Returns the address space of this instruction's pointer type.
1018 unsigned getAddressSpace() const {
1019 // Note that this is always the same as the pointer operand's address space
1020 // and that is cheaper to compute, so cheat here.
1021 return getPointerAddressSpace();
1022 }
1023
1024 /// Returns the result type of a getelementptr with the given source
1025 /// element type and indexes.
1026 ///
1027 /// Null is returned if the indices are invalid for the specified
1028 /// source element type.
1029 LLVM_ABI static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1031 LLVM_ABI static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1032
1033 /// Return the type of the element at the given index of an indexable
1034 /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
1035 ///
1036 /// Returns null if the type can't be indexed, or the given index is not
1037 /// legal for the given type.
1038 LLVM_ABI static Type *getTypeAtIndex(Type *Ty, Value *Idx);
1039 LLVM_ABI static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
1040
1041 inline op_iterator idx_begin() { return op_begin()+1; }
1042 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1043 inline op_iterator idx_end() { return op_end(); }
1044 inline const_op_iterator idx_end() const { return op_end(); }
1045
1049
1051 return make_range(idx_begin(), idx_end());
1052 }
1053
1055 return getOperand(0);
1056 }
1057 const Value *getPointerOperand() const {
1058 return getOperand(0);
1059 }
1060 static unsigned getPointerOperandIndex() {
1061 return 0U; // get index for modifying correct operand.
1062 }
1063
1064 /// Method to return the pointer operand as a
1065 /// PointerType.
1067 return getPointerOperand()->getType();
1068 }
1069
1070 /// Returns the address space of the pointer operand.
1071 unsigned getPointerAddressSpace() const {
1073 }
1074
1075 /// Returns the pointer type returned by the GEP
1076 /// instruction, which may be a vector of pointers.
1078 // Vector GEP
1079 Type *Ty = Ptr->getType();
1080 if (Ty->isVectorTy())
1081 return Ty;
1082
1083 for (Value *Index : IdxList)
1084 if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
1085 ElementCount EltCount = IndexVTy->getElementCount();
1086 return VectorType::get(Ty, EltCount);
1087 }
1088 // Scalar GEP
1089 return Ty;
1090 }
1091
1092 unsigned getNumIndices() const { // Note: always non-negative
1093 return getNumOperands() - 1;
1094 }
1095
1096 bool hasIndices() const {
1097 return getNumOperands() > 1;
1098 }
1099
1100 /// Return true if all of the indices of this GEP are
1101 /// zeros. If so, the result pointer and the first operand have the same
1102 /// value, just potentially different types.
1103 LLVM_ABI bool hasAllZeroIndices() const;
1104
1105 /// Return true if all of the indices of this GEP are
1106 /// constant integers. If so, the result pointer and the first operand have
1107 /// a constant offset between them.
1108 LLVM_ABI bool hasAllConstantIndices() const;
1109
1110 /// Set nowrap flags for GEP instruction.
1112
1113 /// Set or clear the inbounds flag on this GEP instruction.
1114 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1115 /// TODO: Remove this method in favor of setNoWrapFlags().
1116 LLVM_ABI void setIsInBounds(bool b = true);
1117
1118 /// Get the nowrap flags for the GEP instruction.
1120
1121 /// Determine whether the GEP has the inbounds flag.
1122 LLVM_ABI bool isInBounds() const;
1123
1124 /// Determine whether the GEP has the nusw flag.
1125 LLVM_ABI bool hasNoUnsignedSignedWrap() const;
1126
1127 /// Determine whether the GEP has the nuw flag.
1128 LLVM_ABI bool hasNoUnsignedWrap() const;
1129
1130 /// Accumulate the constant address offset of this GEP if possible.
1131 ///
1132 /// This routine accepts an APInt into which it will accumulate the constant
1133 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1134 /// all-constant, it returns false and the value of the offset APInt is
1135 /// undefined (it is *not* preserved!). The APInt passed into this routine
1136 /// must be at least as wide as the IntPtr type for the address space of
1137 /// the base GEP pointer.
1139 APInt &Offset) const;
1140 LLVM_ABI bool
1141 collectOffset(const DataLayout &DL, unsigned BitWidth,
1142 SmallMapVector<Value *, APInt, 4> &VariableOffsets,
1143 APInt &ConstantOffset) const;
1144 // Methods for support type inquiry through isa, cast, and dyn_cast:
1145 static bool classof(const Instruction *I) {
1146 return (I->getOpcode() == Instruction::GetElementPtr);
1147 }
1148 static bool classof(const Value *V) {
1150 }
1151};
1152
1153template <>
1155 : public VariadicOperandTraits<GetElementPtrInst> {};
1156
1157GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1158 ArrayRef<Value *> IdxList,
1159 AllocInfo AllocInfo, const Twine &NameStr,
1160 InsertPosition InsertBefore)
1161 : Instruction(getGEPReturnType(Ptr, IdxList), GetElementPtr, AllocInfo,
1162 InsertBefore),
1163 SourceElementType(PointeeType),
1164 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1165 init(Ptr, IdxList, NameStr);
1166}
1167
1168DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)
1169
1170//===----------------------------------------------------------------------===//
1171// ICmpInst Class
1172//===----------------------------------------------------------------------===//
1173
1174/// This instruction compares its operands according to the predicate given
1175/// to the constructor. It only operates on integers or pointers. The operands
1176/// must be identical types.
1177/// Represent an integer comparison operator.
1178class ICmpInst: public CmpInst {
1179 void AssertOK() {
1181 "Invalid ICmp predicate value");
1182 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1183 "Both operands to ICmp instruction are not of the same type!");
1184 // Check that the operands are the right type
1185 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
1186 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
1187 "Invalid operand types for ICmp instruction");
1188 }
1189
1190 enum { SameSign = (1 << 0) };
1191
1192protected:
1193 // Note: Instruction needs to be a friend here to call cloneImpl.
1194 friend class Instruction;
1195
1196 /// Clone an identical ICmpInst
1197 LLVM_ABI ICmpInst *cloneImpl() const;
1198
1199public:
1200 /// Constructor with insertion semantics.
1201 ICmpInst(InsertPosition InsertBefore, ///< Where to insert
1202 Predicate pred, ///< The predicate to use for the comparison
1203 Value *LHS, ///< The left-hand-side of the expression
1204 Value *RHS, ///< The right-hand-side of the expression
1205 const Twine &NameStr = "" ///< Name of the instruction
1206 )
1207 : CmpInst(makeCmpResultType(LHS->getType()), Instruction::ICmp, pred, LHS,
1208 RHS, NameStr, InsertBefore) {
1209#ifndef NDEBUG
1210 AssertOK();
1211#endif
1212 }
1213
1214 /// Constructor with no-insertion semantics
1216 Predicate pred, ///< The predicate to use for the comparison
1217 Value *LHS, ///< The left-hand-side of the expression
1218 Value *RHS, ///< The right-hand-side of the expression
1219 const Twine &NameStr = "" ///< Name of the instruction
1221 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1222#ifndef NDEBUG
1223 AssertOK();
1224#endif
1225 }
1226
1227 /// @returns the predicate along with samesign information.
1229 return {getPredicate(), hasSameSign()};
1230 }
1231
1232 /// @returns the inverse predicate along with samesign information: static
1233 /// variant.
1235 return {getInversePredicate(Pred), Pred.hasSameSign()};
1236 }
1237
1238 /// @returns the inverse predicate along with samesign information.
1242
1243 /// @returns the swapped predicate along with samesign information: static
1244 /// variant.
1246 return {getSwappedPredicate(Pred), Pred.hasSameSign()};
1247 }
1248
1249 /// @returns the swapped predicate along with samesign information.
1253
1254 /// @returns the non-strict predicate along with samesign information: static
1255 /// variant.
1257 return {getNonStrictPredicate(Pred), Pred.hasSameSign()};
1258 }
1259
1260 /// For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
1261 /// @returns the non-strict predicate along with samesign information.
1265
1266 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1267 /// @returns the predicate that would be the result if the operand were
1268 /// regarded as signed.
1269 /// Return the signed version of the predicate.
1273
1274 /// Return the signed version of the predicate: static variant.
1275 LLVM_ABI static Predicate getSignedPredicate(Predicate Pred);
1276
1277 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1278 /// @returns the predicate that would be the result if the operand were
1279 /// regarded as unsigned.
1280 /// Return the unsigned version of the predicate.
1284
1285 /// Return the unsigned version of the predicate: static variant.
1286 LLVM_ABI static Predicate getUnsignedPredicate(Predicate Pred);
1287
1288 /// For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ
1289 /// @returns the unsigned version of the signed predicate pred or
1290 /// the signed version of the signed predicate pred.
1291 /// Static variant.
1292 LLVM_ABI static Predicate getFlippedSignednessPredicate(Predicate Pred);
1293
1294 /// For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ
1295 /// @returns the unsigned version of the signed predicate pred or
1296 /// the signed version of the signed predicate pred.
1300
1301 /// Determine if Pred1 implies Pred2 is true, false, or if nothing can be
1302 /// inferred about the implication, when two compares have matching operands.
1303 LLVM_ABI static std::optional<bool>
1304 isImpliedByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2);
1305
1306 void setSameSign(bool B = true) {
1307 SubclassOptionalData = (SubclassOptionalData & ~SameSign) | (B * SameSign);
1308 }
1309
1310 /// An icmp instruction, which can be marked as "samesign", indicating that
1311 /// the two operands have the same sign. This means that we can convert
1312 /// "slt" to "ult" and vice versa, which enables more optimizations.
1313 bool hasSameSign() const { return SubclassOptionalData & SameSign; }
1314
1315 /// Return true if this predicate is either EQ or NE. This also
1316 /// tests for commutativity.
1317 static bool isEquality(Predicate P) {
1318 return P == ICMP_EQ || P == ICMP_NE;
1319 }
1320
1321 /// Return true if this predicate is either EQ or NE. This also
1322 /// tests for commutativity.
1323 bool isEquality() const {
1324 return isEquality(getPredicate());
1325 }
1326
1327 /// @returns true if the predicate is commutative
1328 /// Determine if this relation is commutative.
1329 static bool isCommutative(Predicate P) { return isEquality(P); }
1330
1331 /// @returns true if the predicate of this ICmpInst is commutative
1332 /// Determine if this relation is commutative.
1333 bool isCommutative() const { return isCommutative(getPredicate()); }
1334
1335 /// Return true if the predicate is relational (not EQ or NE).
1336 ///
1337 bool isRelational() const {
1338 return !isEquality();
1339 }
1340
1341 /// Return true if the predicate is relational (not EQ or NE).
1342 ///
1343 static bool isRelational(Predicate P) {
1344 return !isEquality(P);
1345 }
1346
1347 /// Return true if the predicate is SGT or UGT.
1348 ///
1349 static bool isGT(Predicate P) {
1350 return P == ICMP_SGT || P == ICMP_UGT;
1351 }
1352
1353 /// Return true if the predicate is SLT or ULT.
1354 ///
1355 static bool isLT(Predicate P) {
1356 return P == ICMP_SLT || P == ICMP_ULT;
1357 }
1358
1359 /// Return true if the predicate is SGE or UGE.
1360 ///
1361 static bool isGE(Predicate P) {
1362 return P == ICMP_SGE || P == ICMP_UGE;
1363 }
1364
1365 /// Return true if the predicate is SLE or ULE.
1366 ///
1367 static bool isLE(Predicate P) {
1368 return P == ICMP_SLE || P == ICMP_ULE;
1369 }
1370
1371 /// Returns the sequence of all ICmp predicates.
1372 ///
1373 static auto predicates() { return ICmpPredicates(); }
1374
1375 /// Exchange the two operands to this instruction in such a way that it does
1376 /// not modify the semantics of the instruction. The predicate value may be
1377 /// changed to retain the same result if the predicate is order dependent
1378 /// (e.g. ult).
1379 /// Swap operands and adjust predicate.
1382 Op<0>().swap(Op<1>());
1383 }
1384
1385 /// Return result of `LHS Pred RHS` comparison.
1386 LLVM_ABI static bool compare(const APInt &LHS, const APInt &RHS,
1387 ICmpInst::Predicate Pred);
1388
1389 /// Return result of `LHS Pred RHS`, if it can be determined from the
1390 /// KnownBits. Otherwise return nullopt.
1391 LLVM_ABI static std::optional<bool>
1392 compare(const KnownBits &LHS, const KnownBits &RHS, ICmpInst::Predicate Pred);
1393
1394 // Methods for support type inquiry through isa, cast, and dyn_cast:
1395 static bool classof(const Instruction *I) {
1396 return I->getOpcode() == Instruction::ICmp;
1397 }
1398 static bool classof(const Value *V) {
1400 }
1401};
1402
1403//===----------------------------------------------------------------------===//
1404// FCmpInst Class
1405//===----------------------------------------------------------------------===//
1406
1407/// This instruction compares its operands according to the predicate given
1408/// to the constructor. It only operates on floating point values or packed
1409/// vectors of floating point values. The operands must be identical types.
1410/// Represents a floating point comparison operator.
1411class FCmpInst: public CmpInst {
1412 void AssertOK() {
1413 assert(isFPPredicate() && "Invalid FCmp predicate value");
1414 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1415 "Both operands to FCmp instruction are not of the same type!");
1416 // Check that the operands are the right type
1417 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
1418 "Invalid operand types for FCmp instruction");
1419 }
1420
1421protected:
1422 // Note: Instruction needs to be a friend here to call cloneImpl.
1423 friend class Instruction;
1424
1425 /// Clone an identical FCmpInst
1426 LLVM_ABI FCmpInst *cloneImpl() const;
1427
1428public:
1429 /// Constructor with insertion semantics.
1430 FCmpInst(InsertPosition InsertBefore, ///< Where to insert
1431 Predicate pred, ///< The predicate to use for the comparison
1432 Value *LHS, ///< The left-hand-side of the expression
1433 Value *RHS, ///< The right-hand-side of the expression
1434 const Twine &NameStr = "" ///< Name of the instruction
1435 )
1436 : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, pred, LHS,
1437 RHS, NameStr, InsertBefore) {
1438 AssertOK();
1439 }
1440
1441 /// Constructor with no-insertion semantics
1442 FCmpInst(Predicate Pred, ///< The predicate to use for the comparison
1443 Value *LHS, ///< The left-hand-side of the expression
1444 Value *RHS, ///< The right-hand-side of the expression
1445 const Twine &NameStr = "", ///< Name of the instruction
1446 Instruction *FlagsSource = nullptr)
1447 : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1448 RHS, NameStr, nullptr, FlagsSource) {
1449 AssertOK();
1450 }
1451
1452 /// @returns true if the predicate is EQ or NE.
1453 /// Determine if this is an equality predicate.
1454 static bool isEquality(Predicate Pred) {
1455 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1456 Pred == FCMP_UNE;
1457 }
1458
1459 /// @returns true if the predicate of this instruction is EQ or NE.
1460 /// Determine if this is an equality predicate.
1461 bool isEquality() const { return isEquality(getPredicate()); }
1462
1463 /// @returns true if the predicate is commutative.
1464 /// Determine if this is a commutative predicate.
1465 static bool isCommutative(Predicate Pred) {
1466 return isEquality(Pred) || Pred == FCMP_FALSE || Pred == FCMP_TRUE ||
1467 Pred == FCMP_ORD || Pred == FCMP_UNO;
1468 }
1469
1470 /// @returns true if the predicate of this instruction is commutative.
1471 /// Determine if this is a commutative predicate.
1472 bool isCommutative() const { return isCommutative(getPredicate()); }
1473
1474 /// @returns true if the predicate is relational (not EQ or NE).
1475 /// Determine if this a relational predicate.
1476 bool isRelational() const { return !isEquality(); }
1477
1478 /// Exchange the two operands to this instruction in such a way that it does
1479 /// not modify the semantics of the instruction. The predicate value may be
1480 /// changed to retain the same result if the predicate is order dependent
1481 /// (e.g. ult).
1482 /// Swap operands and adjust predicate.
1485 Op<0>().swap(Op<1>());
1486 }
1487
1488 /// Returns the sequence of all FCmp predicates.
1489 ///
1490 static auto predicates() { return FCmpPredicates(); }
1491
1492 /// Return result of `LHS Pred RHS` comparison.
1493 LLVM_ABI static bool compare(const APFloat &LHS, const APFloat &RHS,
1494 FCmpInst::Predicate Pred);
1495
1496 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1497 static bool classof(const Instruction *I) {
1498 return I->getOpcode() == Instruction::FCmp;
1499 }
1500 static bool classof(const Value *V) {
1502 }
1503};
1504
1505//===----------------------------------------------------------------------===//
1506/// This class represents a function call, abstracting a target
1507/// machine's calling convention. This class uses low bit of the SubClassData
1508/// field to indicate whether or not this is a tail call. The rest of the bits
1509/// hold the calling convention of the call.
1510///
1511class CallInst : public CallBase {
1512 CallInst(const CallInst &CI, AllocInfo AllocInfo);
1513
1514 /// Construct a CallInst from a range of arguments
1515 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1516 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1517 AllocInfo AllocInfo, InsertPosition InsertBefore);
1518
1519 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1520 const Twine &NameStr, AllocInfo AllocInfo,
1521 InsertPosition InsertBefore)
1522 : CallInst(Ty, Func, Args, {}, NameStr, AllocInfo, InsertBefore) {}
1523
1524 LLVM_ABI explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1525 AllocInfo AllocInfo, InsertPosition InsertBefore);
1526
1527 LLVM_ABI void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1528 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1529 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1530
1531 /// Compute the number of operands to allocate.
1532 static unsigned ComputeNumOperands(unsigned NumArgs,
1533 unsigned NumBundleInputs = 0) {
1534 // We need one operand for the called function, plus the input operand
1535 // counts provided.
1536 return 1 + NumArgs + NumBundleInputs;
1537 }
1538
1539protected:
1540 // Note: Instruction needs to be a friend here to call cloneImpl.
1541 friend class Instruction;
1542
1543 LLVM_ABI CallInst *cloneImpl() const;
1544
1545public:
1546 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1547 InsertPosition InsertBefore = nullptr) {
1548 IntrusiveOperandsAllocMarker AllocMarker{ComputeNumOperands(0)};
1549 return new (AllocMarker)
1550 CallInst(Ty, F, NameStr, AllocMarker, InsertBefore);
1551 }
1552
1553 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1554 const Twine &NameStr,
1555 InsertPosition InsertBefore = nullptr) {
1556 IntrusiveOperandsAllocMarker AllocMarker{ComputeNumOperands(Args.size())};
1557 return new (AllocMarker)
1558 CallInst(Ty, Func, Args, {}, NameStr, AllocMarker, InsertBefore);
1559 }
1560
1561 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1562 ArrayRef<OperandBundleDef> Bundles = {},
1563 const Twine &NameStr = "",
1564 InsertPosition InsertBefore = nullptr) {
1565 IntrusiveOperandsAndDescriptorAllocMarker AllocMarker{
1566 ComputeNumOperands(unsigned(Args.size()), CountBundleInputs(Bundles)),
1567 unsigned(Bundles.size() * sizeof(BundleOpInfo))};
1568
1569 return new (AllocMarker)
1570 CallInst(Ty, Func, Args, Bundles, NameStr, AllocMarker, InsertBefore);
1571 }
1572
1573 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1574 InsertPosition InsertBefore = nullptr) {
1575 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1576 InsertBefore);
1577 }
1578
1579 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1580 ArrayRef<OperandBundleDef> Bundles = {},
1581 const Twine &NameStr = "",
1582 InsertPosition InsertBefore = nullptr) {
1583 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1584 NameStr, InsertBefore);
1585 }
1586
1587 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1588 const Twine &NameStr,
1589 InsertPosition InsertBefore = nullptr) {
1590 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1591 InsertBefore);
1592 }
1593
1594 /// Create a clone of \p CI with a different set of operand bundles and
1595 /// insert it before \p InsertBefore.
1596 ///
1597 /// The returned call instruction is identical \p CI in every way except that
1598 /// the operand bundles for the new instruction are set to the operand bundles
1599 /// in \p Bundles.
1600 LLVM_ABI static CallInst *Create(CallInst *CI,
1602 InsertPosition InsertPt = nullptr);
1603
1604 // Note that 'musttail' implies 'tail'.
1612
1614 static_assert(
1616 "Bitfields must be contiguous");
1617
1621
1622 bool isTailCall() const {
1624 return Kind == TCK_Tail || Kind == TCK_MustTail;
1625 }
1626
1627 bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
1628
1629 bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
1630
1632 setSubclassData<TailCallKindField>(TCK);
1633 }
1634
1635 void setTailCall(bool IsTc = true) {
1637 }
1638
1639 /// Return true if the call can return twice
1640 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1641 void setCanReturnTwice() { addFnAttr(Attribute::ReturnsTwice); }
1642
1643 /// Return true if the call is for a noreturn trap intrinsic.
1645 switch (getIntrinsicID()) {
1646 case Intrinsic::trap:
1647 case Intrinsic::ubsantrap:
1648 return !hasFnAttr("trap-func-name");
1649 default:
1650 return false;
1651 }
1652 }
1653
1654 // Methods for support type inquiry through isa, cast, and dyn_cast:
1655 static bool classof(const Instruction *I) {
1656 return I->getOpcode() == Instruction::Call;
1657 }
1658 static bool classof(const Value *V) {
1660 }
1661
1662 /// Updates profile metadata by scaling it by \p S / \p T.
1664
1665private:
1666 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1667 // method so that subclasses cannot accidentally use it.
1668 template <typename Bitfield>
1669 void setSubclassData(typename Bitfield::Type Value) {
1671 }
1672};
1673
1674CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1675 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1676 AllocInfo AllocInfo, InsertPosition InsertBefore)
1677 : CallBase(Ty->getReturnType(), Instruction::Call, AllocInfo,
1678 InsertBefore) {
1680 unsigned(Args.size() + CountBundleInputs(Bundles) + 1));
1681 init(Ty, Func, Args, Bundles, NameStr);
1682}
1683
1684//===----------------------------------------------------------------------===//
1685// SelectInst Class
1686//===----------------------------------------------------------------------===//
1687
1688/// This class represents the LLVM 'select' instruction.
1689///
1690class SelectInst : public Instruction {
1691 constexpr static IntrusiveOperandsAllocMarker AllocMarker{3};
1692
1693 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1694 InsertPosition InsertBefore)
1695 : Instruction(S1->getType(), Instruction::Select, AllocMarker,
1696 InsertBefore) {
1697 init(C, S1, S2);
1698 setName(NameStr);
1699 }
1700
1701 void init(Value *C, Value *S1, Value *S2) {
1702 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select");
1703 Op<0>() = C;
1704 Op<1>() = S1;
1705 Op<2>() = S2;
1706 }
1707
1708protected:
1709 // Note: Instruction needs to be a friend here to call cloneImpl.
1710 friend class Instruction;
1711
1712 LLVM_ABI SelectInst *cloneImpl() const;
1713
1714public:
1715 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1716 const Twine &NameStr = "",
1717 InsertPosition InsertBefore = nullptr,
1718 const Instruction *MDFrom = nullptr) {
1719 SelectInst *Sel =
1720 new (AllocMarker) SelectInst(C, S1, S2, NameStr, InsertBefore);
1721 if (MDFrom)
1722 Sel->copyMetadata(*MDFrom);
1723 return Sel;
1724 }
1725
1726 const Value *getCondition() const { return Op<0>(); }
1727 const Value *getTrueValue() const { return Op<1>(); }
1728 const Value *getFalseValue() const { return Op<2>(); }
1729 Value *getCondition() { return Op<0>(); }
1730 Value *getTrueValue() { return Op<1>(); }
1731 Value *getFalseValue() { return Op<2>(); }
1732
1733 void setCondition(Value *V) { Op<0>() = V; }
1734 void setTrueValue(Value *V) { Op<1>() = V; }
1735 void setFalseValue(Value *V) { Op<2>() = V; }
1736
1737 /// Swap the true and false values of the select instruction.
1738 /// This doesn't swap prof metadata.
1739 void swapValues() { Op<1>().swap(Op<2>()); }
1740
1741 /// Return a string if the specified operands are invalid
1742 /// for a select operation, otherwise return null.
1743 LLVM_ABI static const char *areInvalidOperands(Value *Cond, Value *True,
1744 Value *False);
1745
1746 /// Transparently provide more efficient getOperand methods.
1748
1750 return static_cast<OtherOps>(Instruction::getOpcode());
1751 }
1752
1753 // Methods for support type inquiry through isa, cast, and dyn_cast:
1754 static bool classof(const Instruction *I) {
1755 return I->getOpcode() == Instruction::Select;
1756 }
1757 static bool classof(const Value *V) {
1759 }
1760};
1761
1762template <>
1763struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1764};
1765
1767
1768//===----------------------------------------------------------------------===//
1769// VAArgInst Class
1770//===----------------------------------------------------------------------===//
1771
1772/// This class represents the va_arg llvm instruction, which returns
1773/// an argument of the specified type given a va_list and increments that list
1774///
1776protected:
1777 // Note: Instruction needs to be a friend here to call cloneImpl.
1778 friend class Instruction;
1779
1780 LLVM_ABI VAArgInst *cloneImpl() const;
1781
1782public:
1783 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1784 InsertPosition InsertBefore = nullptr)
1785 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1786 setName(NameStr);
1787 }
1788
1790 const Value *getPointerOperand() const { return getOperand(0); }
1791 static unsigned getPointerOperandIndex() { return 0U; }
1792
1793 // Methods for support type inquiry through isa, cast, and dyn_cast:
1794 static bool classof(const Instruction *I) {
1795 return I->getOpcode() == VAArg;
1796 }
1797 static bool classof(const Value *V) {
1799 }
1800};
1801
1802//===----------------------------------------------------------------------===//
1803// ExtractElementInst Class
1804//===----------------------------------------------------------------------===//
1805
1806/// This instruction extracts a single (scalar)
1807/// element from a VectorType value
1808///
1809class ExtractElementInst : public Instruction {
1810 constexpr static IntrusiveOperandsAllocMarker AllocMarker{2};
1811
1812 LLVM_ABI ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1813 InsertPosition InsertBefore = nullptr);
1814
1815protected:
1816 // Note: Instruction needs to be a friend here to call cloneImpl.
1817 friend class Instruction;
1818
1819 LLVM_ABI ExtractElementInst *cloneImpl() const;
1820
1821public:
1822 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1823 const Twine &NameStr = "",
1824 InsertPosition InsertBefore = nullptr) {
1825 return new (AllocMarker)
1826 ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1827 }
1828
1829 /// Return true if an extractelement instruction can be
1830 /// formed with the specified operands.
1831 LLVM_ABI static bool isValidOperands(const Value *Vec, const Value *Idx);
1832
1834 Value *getIndexOperand() { return Op<1>(); }
1835 const Value *getVectorOperand() const { return Op<0>(); }
1836 const Value *getIndexOperand() const { return Op<1>(); }
1837
1841
1842 /// Transparently provide more efficient getOperand methods.
1844
1845 // Methods for support type inquiry through isa, cast, and dyn_cast:
1846 static bool classof(const Instruction *I) {
1847 return I->getOpcode() == Instruction::ExtractElement;
1848 }
1849 static bool classof(const Value *V) {
1851 }
1852};
1853
1854template <>
1856 public FixedNumOperandTraits<ExtractElementInst, 2> {
1857};
1858
1860
1861//===----------------------------------------------------------------------===//
1862// InsertElementInst Class
1863//===----------------------------------------------------------------------===//
1864
1865/// This instruction inserts a single (scalar)
1866/// element into a VectorType value
1867///
1868class InsertElementInst : public Instruction {
1869 constexpr static IntrusiveOperandsAllocMarker AllocMarker{3};
1870
1871 LLVM_ABI InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1872 const Twine &NameStr = "",
1873 InsertPosition InsertBefore = nullptr);
1874
1875protected:
1876 // Note: Instruction needs to be a friend here to call cloneImpl.
1877 friend class Instruction;
1878
1879 LLVM_ABI InsertElementInst *cloneImpl() const;
1880
1881public:
1882 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1883 const Twine &NameStr = "",
1884 InsertPosition InsertBefore = nullptr) {
1885 return new (AllocMarker)
1886 InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1887 }
1888
1889 /// Return true if an insertelement instruction can be
1890 /// formed with the specified operands.
1891 LLVM_ABI static bool isValidOperands(const Value *Vec, const Value *NewElt,
1892 const Value *Idx);
1893
1894 /// Overload to return most specific vector type.
1895 ///
1898 }
1899
1900 /// Transparently provide more efficient getOperand methods.
1902
1903 // Methods for support type inquiry through isa, cast, and dyn_cast:
1904 static bool classof(const Instruction *I) {
1905 return I->getOpcode() == Instruction::InsertElement;
1906 }
1907 static bool classof(const Value *V) {
1909 }
1910};
1911
1912template <>
1914 public FixedNumOperandTraits<InsertElementInst, 3> {
1915};
1916
1918
1919//===----------------------------------------------------------------------===//
1920// ShuffleVectorInst Class
1921//===----------------------------------------------------------------------===//
1922
1923constexpr int PoisonMaskElem = -1;
1924
1925/// This instruction constructs a fixed permutation of two
1926/// input vectors.
1927///
1928/// For each element of the result vector, the shuffle mask selects an element
1929/// from one of the input vectors to copy to the result. Non-negative elements
1930/// in the mask represent an index into the concatenated pair of input vectors.
1931/// PoisonMaskElem (-1) specifies that the result element is poison.
1932///
1933/// For scalable vectors, all the elements of the mask must be 0 or -1. This
1934/// requirement may be relaxed in the future.
1936 constexpr static IntrusiveOperandsAllocMarker AllocMarker{2};
1937
1938 SmallVector<int, 4> ShuffleMask;
1939 Constant *ShuffleMaskForBitcode;
1940
1941protected:
1942 // Note: Instruction needs to be a friend here to call cloneImpl.
1943 friend class Instruction;
1944
1946
1947public:
1948 LLVM_ABI ShuffleVectorInst(Value *V1, Value *Mask, const Twine &NameStr = "",
1949 InsertPosition InsertBefore = nullptr);
1951 const Twine &NameStr = "",
1952 InsertPosition InsertBefore = nullptr);
1953 LLVM_ABI ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1954 const Twine &NameStr = "",
1955 InsertPosition InsertBefore = nullptr);
1957 const Twine &NameStr = "",
1958 InsertPosition InsertBefore = nullptr);
1959
1960 void *operator new(size_t S) { return User::operator new(S, AllocMarker); }
1961 void operator delete(void *Ptr) { return User::operator delete(Ptr); }
1962
1963 /// Swap the operands and adjust the mask to preserve the semantics
1964 /// of the instruction.
1965 LLVM_ABI void commute();
1966
1967 /// Return true if a shufflevector instruction can be
1968 /// formed with the specified operands.
1969 LLVM_ABI static bool isValidOperands(const Value *V1, const Value *V2,
1970 const Value *Mask);
1971 LLVM_ABI static bool isValidOperands(const Value *V1, const Value *V2,
1972 ArrayRef<int> Mask);
1973
1974 /// Overload to return most specific vector type.
1975 ///
1978 }
1979
1980 /// Transparently provide more efficient getOperand methods.
1982
1983 /// Return the shuffle mask value of this instruction for the given element
1984 /// index. Return PoisonMaskElem if the element is undef.
1985 int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
1986
1987 /// Convert the input shuffle mask operand to a vector of integers. Undefined
1988 /// elements of the mask are returned as PoisonMaskElem.
1989 LLVM_ABI static void getShuffleMask(const Constant *Mask,
1990 SmallVectorImpl<int> &Result);
1991
1992 /// Return the mask for this instruction as a vector of integers. Undefined
1993 /// elements of the mask are returned as PoisonMaskElem.
1995 Result.assign(ShuffleMask.begin(), ShuffleMask.end());
1996 }
1997
1998 /// Return the mask for this instruction, for use in bitcode.
1999 ///
2000 /// TODO: This is temporary until we decide a new bitcode encoding for
2001 /// shufflevector.
2002 Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
2003
2004 LLVM_ABI static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2005 Type *ResultTy);
2006
2007 LLVM_ABI void setShuffleMask(ArrayRef<int> Mask);
2008
2009 ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
2010
2011 /// Return true if this shuffle returns a vector with a different number of
2012 /// elements than its source vectors.
2013 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2014 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2015 bool changesLength() const {
2016 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2017 ->getElementCount()
2018 .getKnownMinValue();
2019 unsigned NumMaskElts = ShuffleMask.size();
2020 return NumSourceElts != NumMaskElts;
2021 }
2022
2023 /// Return true if this shuffle returns a vector with a greater number of
2024 /// elements than its source vectors.
2025 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2026 bool increasesLength() const {
2027 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2028 ->getElementCount()
2029 .getKnownMinValue();
2030 unsigned NumMaskElts = ShuffleMask.size();
2031 return NumSourceElts < NumMaskElts;
2032 }
2033
2034 /// Return true if this shuffle mask chooses elements from exactly one source
2035 /// vector.
2036 /// Example: <7,5,undef,7>
2037 /// This assumes that vector operands (of length \p NumSrcElts) are the same
2038 /// length as the mask.
2039 LLVM_ABI static bool isSingleSourceMask(ArrayRef<int> Mask, int NumSrcElts);
2040 static bool isSingleSourceMask(const Constant *Mask, int NumSrcElts) {
2041 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2042 SmallVector<int, 16> MaskAsInts;
2043 getShuffleMask(Mask, MaskAsInts);
2044 return isSingleSourceMask(MaskAsInts, NumSrcElts);
2045 }
2046
2047 /// Return true if this shuffle chooses elements from exactly one source
2048 /// vector without changing the length of that vector.
2049 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2050 /// TODO: Optionally allow length-changing shuffles.
2051 bool isSingleSource() const {
2052 return !changesLength() &&
2053 isSingleSourceMask(ShuffleMask, ShuffleMask.size());
2054 }
2055
2056 /// Return true if this shuffle mask chooses elements from exactly one source
2057 /// vector without lane crossings. A shuffle using this mask is not
2058 /// necessarily a no-op because it may change the number of elements from its
2059 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2060 /// Example: <undef,undef,2,3>
2061 LLVM_ABI static bool isIdentityMask(ArrayRef<int> Mask, int NumSrcElts);
2062 static bool isIdentityMask(const Constant *Mask, int NumSrcElts) {
2063 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2064
2065 // Not possible to express a shuffle mask for a scalable vector for this
2066 // case.
2067 if (isa<ScalableVectorType>(Mask->getType()))
2068 return false;
2069
2070 SmallVector<int, 16> MaskAsInts;
2071 getShuffleMask(Mask, MaskAsInts);
2072 return isIdentityMask(MaskAsInts, NumSrcElts);
2073 }
2074
2075 /// Return true if this shuffle chooses elements from exactly one source
2076 /// vector without lane crossings and does not change the number of elements
2077 /// from its input vectors.
2078 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2079 bool isIdentity() const {
2080 // Not possible to express a shuffle mask for a scalable vector for this
2081 // case.
2083 return false;
2084
2085 return !changesLength() && isIdentityMask(ShuffleMask, ShuffleMask.size());
2086 }
2087
2088 /// Return true if this shuffle lengthens exactly one source vector with
2089 /// undefs in the high elements.
2090 LLVM_ABI bool isIdentityWithPadding() const;
2091
2092 /// Return true if this shuffle extracts the first N elements of exactly one
2093 /// source vector.
2094 LLVM_ABI bool isIdentityWithExtract() const;
2095
2096 /// Return true if this shuffle concatenates its 2 source vectors. This
2097 /// returns false if either input is undefined. In that case, the shuffle is
2098 /// is better classified as an identity with padding operation.
2099 LLVM_ABI bool isConcat() const;
2100
2101 /// Return true if this shuffle mask chooses elements from its source vectors
2102 /// without lane crossings. A shuffle using this mask would be
2103 /// equivalent to a vector select with a constant condition operand.
2104 /// Example: <4,1,6,undef>
2105 /// This returns false if the mask does not choose from both input vectors.
2106 /// In that case, the shuffle is better classified as an identity shuffle.
2107 /// This assumes that vector operands are the same length as the mask
2108 /// (a length-changing shuffle can never be equivalent to a vector select).
2109 LLVM_ABI static bool isSelectMask(ArrayRef<int> Mask, int NumSrcElts);
2110 static bool isSelectMask(const Constant *Mask, int NumSrcElts) {
2111 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2112 SmallVector<int, 16> MaskAsInts;
2113 getShuffleMask(Mask, MaskAsInts);
2114 return isSelectMask(MaskAsInts, NumSrcElts);
2115 }
2116
2117 /// Return true if this shuffle chooses elements from its source vectors
2118 /// without lane crossings and all operands have the same number of elements.
2119 /// In other words, this shuffle is equivalent to a vector select with a
2120 /// constant condition operand.
2121 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2122 /// This returns false if the mask does not choose from both input vectors.
2123 /// In that case, the shuffle is better classified as an identity shuffle.
2124 /// TODO: Optionally allow length-changing shuffles.
2125 bool isSelect() const {
2126 return !changesLength() && isSelectMask(ShuffleMask, ShuffleMask.size());
2127 }
2128
2129 /// Return true if this shuffle mask swaps the order of elements from exactly
2130 /// one source vector.
2131 /// Example: <7,6,undef,4>
2132 /// This assumes that vector operands (of length \p NumSrcElts) are the same
2133 /// length as the mask.
2134 LLVM_ABI static bool isReverseMask(ArrayRef<int> Mask, int NumSrcElts);
2135 static bool isReverseMask(const Constant *Mask, int NumSrcElts) {
2136 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2137 SmallVector<int, 16> MaskAsInts;
2138 getShuffleMask(Mask, MaskAsInts);
2139 return isReverseMask(MaskAsInts, NumSrcElts);
2140 }
2141
2142 /// Return true if this shuffle swaps the order of elements from exactly
2143 /// one source vector.
2144 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2145 /// TODO: Optionally allow length-changing shuffles.
2146 bool isReverse() const {
2147 return !changesLength() && isReverseMask(ShuffleMask, ShuffleMask.size());
2148 }
2149
2150 /// Return true if this shuffle mask chooses all elements with the same value
2151 /// as the first element of exactly one source vector.
2152 /// Example: <4,undef,undef,4>
2153 /// This assumes that vector operands (of length \p NumSrcElts) are the same
2154 /// length as the mask.
2155 LLVM_ABI static bool isZeroEltSplatMask(ArrayRef<int> Mask, int NumSrcElts);
2156 static bool isZeroEltSplatMask(const Constant *Mask, int NumSrcElts) {
2157 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2158 SmallVector<int, 16> MaskAsInts;
2159 getShuffleMask(Mask, MaskAsInts);
2160 return isZeroEltSplatMask(MaskAsInts, NumSrcElts);
2161 }
2162
2163 /// Return true if all elements of this shuffle are the same value as the
2164 /// first element of exactly one source vector without changing the length
2165 /// of that vector.
2166 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2167 /// TODO: Optionally allow length-changing shuffles.
2168 /// TODO: Optionally allow splats from other elements.
2169 bool isZeroEltSplat() const {
2170 return !changesLength() &&
2171 isZeroEltSplatMask(ShuffleMask, ShuffleMask.size());
2172 }
2173
2174 /// Return true if this shuffle mask is a transpose mask.
2175 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2176 /// even- or odd-numbered vector elements from two n-dimensional source
2177 /// vectors and write each result into consecutive elements of an
2178 /// n-dimensional destination vector. Two shuffles are necessary to complete
2179 /// the transpose, one for the even elements and another for the odd elements.
2180 /// This description closely follows how the TRN1 and TRN2 AArch64
2181 /// instructions operate.
2182 ///
2183 /// For example, a simple 2x2 matrix can be transposed with:
2184 ///
2185 /// ; Original matrix
2186 /// m0 = < a, b >
2187 /// m1 = < c, d >
2188 ///
2189 /// ; Transposed matrix
2190 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2191 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2192 ///
2193 /// For matrices having greater than n columns, the resulting nx2 transposed
2194 /// matrix is stored in two result vectors such that one vector contains
2195 /// interleaved elements from all the even-numbered rows and the other vector
2196 /// contains interleaved elements from all the odd-numbered rows. For example,
2197 /// a 2x4 matrix can be transposed with:
2198 ///
2199 /// ; Original matrix
2200 /// m0 = < a, b, c, d >
2201 /// m1 = < e, f, g, h >
2202 ///
2203 /// ; Transposed matrix
2204 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2205 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2206 LLVM_ABI static bool isTransposeMask(ArrayRef<int> Mask, int NumSrcElts);
2207 static bool isTransposeMask(const Constant *Mask, int NumSrcElts) {
2208 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2209 SmallVector<int, 16> MaskAsInts;
2210 getShuffleMask(Mask, MaskAsInts);
2211 return isTransposeMask(MaskAsInts, NumSrcElts);
2212 }
2213
2214 /// Return true if this shuffle transposes the elements of its inputs without
2215 /// changing the length of the vectors. This operation may also be known as a
2216 /// merge or interleave. See the description for isTransposeMask() for the
2217 /// exact specification.
2218 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2219 bool isTranspose() const {
2220 return !changesLength() && isTransposeMask(ShuffleMask, ShuffleMask.size());
2221 }
2222
2223 /// Return true if this shuffle mask is a splice mask, concatenating the two
2224 /// inputs together and then extracts an original width vector starting from
2225 /// the splice index.
2226 /// Example: shufflevector <4 x n> A, <4 x n> B, <1,2,3,4>
2227 /// This assumes that vector operands (of length \p NumSrcElts) are the same
2228 /// length as the mask.
2229 LLVM_ABI static bool isSpliceMask(ArrayRef<int> Mask, int NumSrcElts,
2230 int &Index);
2231 static bool isSpliceMask(const Constant *Mask, int NumSrcElts, int &Index) {
2232 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2233 SmallVector<int, 16> MaskAsInts;
2234 getShuffleMask(Mask, MaskAsInts);
2235 return isSpliceMask(MaskAsInts, NumSrcElts, Index);
2236 }
2237
2238 /// Return true if this shuffle splices two inputs without changing the length
2239 /// of the vectors. This operation concatenates the two inputs together and
2240 /// then extracts an original width vector starting from the splice index.
2241 /// Example: shufflevector <4 x n> A, <4 x n> B, <1,2,3,4>
2242 bool isSplice(int &Index) const {
2243 return !changesLength() &&
2244 isSpliceMask(ShuffleMask, ShuffleMask.size(), Index);
2245 }
2246
2247 /// Return true if this shuffle mask is an extract subvector mask.
2248 /// A valid extract subvector mask returns a smaller vector from a single
2249 /// source operand. The base extraction index is returned as well.
2250 LLVM_ABI static bool isExtractSubvectorMask(ArrayRef<int> Mask,
2251 int NumSrcElts, int &Index);
2252 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2253 int &Index) {
2254 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2255 // Not possible to express a shuffle mask for a scalable vector for this
2256 // case.
2257 if (isa<ScalableVectorType>(Mask->getType()))
2258 return false;
2259 SmallVector<int, 16> MaskAsInts;
2260 getShuffleMask(Mask, MaskAsInts);
2261 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2262 }
2263
2264 /// Return true if this shuffle mask is an extract subvector mask.
2265 bool isExtractSubvectorMask(int &Index) const {
2266 // Not possible to express a shuffle mask for a scalable vector for this
2267 // case.
2269 return false;
2270
2271 int NumSrcElts =
2272 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2273 return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
2274 }
2275
2276 /// Return true if this shuffle mask is an insert subvector mask.
2277 /// A valid insert subvector mask inserts the lowest elements of a second
2278 /// source operand into an in-place first source operand.
2279 /// Both the sub vector width and the insertion index is returned.
2280 LLVM_ABI static bool isInsertSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2281 int &NumSubElts, int &Index);
2282 static bool isInsertSubvectorMask(const Constant *Mask, int NumSrcElts,
2283 int &NumSubElts, int &Index) {
2284 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2285 // Not possible to express a shuffle mask for a scalable vector for this
2286 // case.
2287 if (isa<ScalableVectorType>(Mask->getType()))
2288 return false;
2289 SmallVector<int, 16> MaskAsInts;
2290 getShuffleMask(Mask, MaskAsInts);
2291 return isInsertSubvectorMask(MaskAsInts, NumSrcElts, NumSubElts, Index);
2292 }
2293
2294 /// Return true if this shuffle mask is an insert subvector mask.
2295 bool isInsertSubvectorMask(int &NumSubElts, int &Index) const {
2296 // Not possible to express a shuffle mask for a scalable vector for this
2297 // case.
2299 return false;
2300
2301 int NumSrcElts =
2302 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2303 return isInsertSubvectorMask(ShuffleMask, NumSrcElts, NumSubElts, Index);
2304 }
2305
2306 /// Return true if this shuffle mask replicates each of the \p VF elements
2307 /// in a vector \p ReplicationFactor times.
2308 /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is:
2309 /// <0,0,0,1,1,1,2,2,2,3,3,3>
2310 LLVM_ABI static bool isReplicationMask(ArrayRef<int> Mask,
2311 int &ReplicationFactor, int &VF);
2312 static bool isReplicationMask(const Constant *Mask, int &ReplicationFactor,
2313 int &VF) {
2314 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2315 // Not possible to express a shuffle mask for a scalable vector for this
2316 // case.
2317 if (isa<ScalableVectorType>(Mask->getType()))
2318 return false;
2319 SmallVector<int, 16> MaskAsInts;
2320 getShuffleMask(Mask, MaskAsInts);
2321 return isReplicationMask(MaskAsInts, ReplicationFactor, VF);
2322 }
2323
2324 /// Return true if this shuffle mask is a replication mask.
2325 LLVM_ABI bool isReplicationMask(int &ReplicationFactor, int &VF) const;
2326
2327 /// Return true if this shuffle mask represents "clustered" mask of size VF,
2328 /// i.e. each index between [0..VF) is used exactly once in each submask of
2329 /// size VF.
2330 /// For example, the mask for \p VF=4 is:
2331 /// 0, 1, 2, 3, 3, 2, 0, 1 - "clustered", because each submask of size 4
2332 /// (0,1,2,3 and 3,2,0,1) uses indices [0..VF) exactly one time.
2333 /// 0, 1, 2, 3, 3, 3, 1, 0 - not "clustered", because
2334 /// element 3 is used twice in the second submask
2335 /// (3,3,1,0) and index 2 is not used at all.
2336 LLVM_ABI static bool isOneUseSingleSourceMask(ArrayRef<int> Mask, int VF);
2337
2338 /// Return true if this shuffle mask is a one-use-single-source("clustered")
2339 /// mask.
2340 LLVM_ABI bool isOneUseSingleSourceMask(int VF) const;
2341
2342 /// Change values in a shuffle permute mask assuming the two vector operands
2343 /// of length InVecNumElts have swapped position.
2345 unsigned InVecNumElts) {
2346 for (int &Idx : Mask) {
2347 if (Idx == -1)
2348 continue;
2349 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2350 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
2351 "shufflevector mask index out of range");
2352 }
2353 }
2354
2355 /// Return if this shuffle interleaves its two input vectors together.
2356 LLVM_ABI bool isInterleave(unsigned Factor);
2357
2358 /// Return true if the mask interleaves one or more input vectors together.
2359 ///
2360 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
2361 /// E.g. For a Factor of 2 (LaneLen=4):
2362 /// <0, 4, 1, 5, 2, 6, 3, 7>
2363 /// E.g. For a Factor of 3 (LaneLen=4):
2364 /// <4, 0, 9, 5, 1, 10, 6, 2, 11, 7, 3, 12>
2365 /// E.g. For a Factor of 4 (LaneLen=2):
2366 /// <0, 2, 6, 4, 1, 3, 7, 5>
2367 ///
2368 /// NumInputElts is the total number of elements in the input vectors.
2369 ///
2370 /// StartIndexes are the first indexes of each vector being interleaved,
2371 /// substituting any indexes that were undef
2372 /// E.g. <4, -1, 2, 5, 1, 3> (Factor=3): StartIndexes=<4, 0, 2>
2373 ///
2374 /// Note that this does not check if the input vectors are consecutive:
2375 /// It will return true for masks such as
2376 /// <0, 4, 6, 1, 5, 7> (Factor=3, LaneLen=2)
2377 LLVM_ABI static bool
2378 isInterleaveMask(ArrayRef<int> Mask, unsigned Factor, unsigned NumInputElts,
2379 SmallVectorImpl<unsigned> &StartIndexes);
2380 static bool isInterleaveMask(ArrayRef<int> Mask, unsigned Factor,
2381 unsigned NumInputElts) {
2382 SmallVector<unsigned, 8> StartIndexes;
2383 return isInterleaveMask(Mask, Factor, NumInputElts, StartIndexes);
2384 }
2385
2386 /// Check if the mask is a DE-interleave mask of the given factor
2387 /// \p Factor like:
2388 /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
2389 LLVM_ABI static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask,
2390 unsigned Factor,
2391 unsigned &Index);
2392 static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor) {
2393 unsigned Unused;
2394 return isDeInterleaveMaskOfFactor(Mask, Factor, Unused);
2395 }
2396
2397 /// Checks if the shuffle is a bit rotation of the first operand across
2398 /// multiple subelements, e.g:
2399 ///
2400 /// shuffle <8 x i8> %a, <8 x i8> poison, <8 x i32> <1, 0, 3, 2, 5, 4, 7, 6>
2401 ///
2402 /// could be expressed as
2403 ///
2404 /// rotl <4 x i16> %a, 8
2405 ///
2406 /// If it can be expressed as a rotation, returns the number of subelements to
2407 /// group by in NumSubElts and the number of bits to rotate left in RotateAmt.
2408 LLVM_ABI static bool isBitRotateMask(ArrayRef<int> Mask,
2409 unsigned EltSizeInBits,
2410 unsigned MinSubElts, unsigned MaxSubElts,
2411 unsigned &NumSubElts,
2412 unsigned &RotateAmt);
2413
2414 // Methods for support type inquiry through isa, cast, and dyn_cast:
2415 static bool classof(const Instruction *I) {
2416 return I->getOpcode() == Instruction::ShuffleVector;
2417 }
2418 static bool classof(const Value *V) {
2420 }
2421};
2422
2423template <>
2425 : public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
2426
2428
2429//===----------------------------------------------------------------------===//
2430// ExtractValueInst Class
2431//===----------------------------------------------------------------------===//
2432
2433/// This instruction extracts a struct member or array
2434/// element value from an aggregate value.
2435///
2436class ExtractValueInst : public UnaryInstruction {
2438
2439 ExtractValueInst(const ExtractValueInst &EVI);
2440
2441 /// Constructors - Create a extractvalue instruction with a base aggregate
2442 /// value and a list of indices. The first and second ctor can optionally
2443 /// insert before an existing instruction, the third appends the new
2444 /// instruction to the specified BasicBlock.
2445 inline ExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
2446 const Twine &NameStr, InsertPosition InsertBefore);
2447
2448 LLVM_ABI void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2449
2450protected:
2451 // Note: Instruction needs to be a friend here to call cloneImpl.
2452 friend class Instruction;
2453
2454 LLVM_ABI ExtractValueInst *cloneImpl() const;
2455
2456public:
2457 static ExtractValueInst *Create(Value *Agg, ArrayRef<unsigned> Idxs,
2458 const Twine &NameStr = "",
2459 InsertPosition InsertBefore = nullptr) {
2460 return new
2461 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2462 }
2463
2464 /// Returns the type of the element that would be extracted
2465 /// with an extractvalue instruction with the specified parameters.
2466 ///
2467 /// Null is returned if the indices are invalid for the specified type.
2468 LLVM_ABI static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2469
2470 using idx_iterator = const unsigned*;
2471
2472 inline idx_iterator idx_begin() const { return Indices.begin(); }
2473 inline idx_iterator idx_end() const { return Indices.end(); }
2475 return make_range(idx_begin(), idx_end());
2476 }
2477
2479 return getOperand(0);
2480 }
2482 return getOperand(0);
2483 }
2484 static unsigned getAggregateOperandIndex() {
2485 return 0U; // get index for modifying correct operand
2486 }
2487
2489 return Indices;
2490 }
2491
2492 unsigned getNumIndices() const {
2493 return (unsigned)Indices.size();
2494 }
2495
2496 bool hasIndices() const {
2497 return true;
2498 }
2499
2500 // Methods for support type inquiry through isa, cast, and dyn_cast:
2501 static bool classof(const Instruction *I) {
2502 return I->getOpcode() == Instruction::ExtractValue;
2503 }
2504 static bool classof(const Value *V) {
2506 }
2507};
2508
2509ExtractValueInst::ExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
2510 const Twine &NameStr,
2511 InsertPosition InsertBefore)
2512 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2513 ExtractValue, Agg, InsertBefore) {
2514 init(Idxs, NameStr);
2515}
2516
2517//===----------------------------------------------------------------------===//
2518// InsertValueInst Class
2519//===----------------------------------------------------------------------===//
2520
2521/// This instruction inserts a struct field of array element
2522/// value into an aggregate value.
2523///
2524class InsertValueInst : public Instruction {
2525 constexpr static IntrusiveOperandsAllocMarker AllocMarker{2};
2526
2528
2529 InsertValueInst(const InsertValueInst &IVI);
2530
2531 /// Constructors - Create a insertvalue instruction with a base aggregate
2532 /// value, a value to insert, and a list of indices. The first and second ctor
2533 /// can optionally insert before an existing instruction, the third appends
2534 /// the new instruction to the specified BasicBlock.
2535 inline InsertValueInst(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2536 const Twine &NameStr, InsertPosition InsertBefore);
2537
2538 /// Constructors - These three constructors are convenience methods because
2539 /// one and two index insertvalue instructions are so common.
2540 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2541 const Twine &NameStr = "",
2542 InsertPosition InsertBefore = nullptr);
2543
2544 LLVM_ABI void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2545 const Twine &NameStr);
2546
2547protected:
2548 // Note: Instruction needs to be a friend here to call cloneImpl.
2549 friend class Instruction;
2550
2551 LLVM_ABI InsertValueInst *cloneImpl() const;
2552
2553public:
2554 // allocate space for exactly two operands
2555 void *operator new(size_t S) { return User::operator new(S, AllocMarker); }
2556 void operator delete(void *Ptr) { User::operator delete(Ptr); }
2557
2558 static InsertValueInst *Create(Value *Agg, Value *Val,
2559 ArrayRef<unsigned> Idxs,
2560 const Twine &NameStr = "",
2561 InsertPosition InsertBefore = nullptr) {
2562 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2563 }
2564
2565 /// Transparently provide more efficient getOperand methods.
2567
2568 using idx_iterator = const unsigned*;
2569
2570 inline idx_iterator idx_begin() const { return Indices.begin(); }
2571 inline idx_iterator idx_end() const { return Indices.end(); }
2573 return make_range(idx_begin(), idx_end());
2574 }
2575
2577 return getOperand(0);
2578 }
2580 return getOperand(0);
2581 }
2582 static unsigned getAggregateOperandIndex() {
2583 return 0U; // get index for modifying correct operand
2584 }
2585
2587 return getOperand(1);
2588 }
2590 return getOperand(1);
2591 }
2593 return 1U; // get index for modifying correct operand
2594 }
2595
2597 return Indices;
2598 }
2599
2600 unsigned getNumIndices() const {
2601 return (unsigned)Indices.size();
2602 }
2603
2604 bool hasIndices() const {
2605 return true;
2606 }
2607
2608 // Methods for support type inquiry through isa, cast, and dyn_cast:
2609 static bool classof(const Instruction *I) {
2610 return I->getOpcode() == Instruction::InsertValue;
2611 }
2612 static bool classof(const Value *V) {
2614 }
2615};
2616
2617template <>
2619 public FixedNumOperandTraits<InsertValueInst, 2> {
2620};
2621
2622InsertValueInst::InsertValueInst(Value *Agg, Value *Val,
2623 ArrayRef<unsigned> Idxs, const Twine &NameStr,
2624 InsertPosition InsertBefore)
2625 : Instruction(Agg->getType(), InsertValue, AllocMarker, InsertBefore) {
2626 init(Agg, Val, Idxs, NameStr);
2627}
2628
2629DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)
2630
2631//===----------------------------------------------------------------------===//
2632// PHINode Class
2633//===----------------------------------------------------------------------===//
2634
2635// PHINode - The PHINode class is used to represent the magical mystical PHI
2636// node, that can not exist in nature, but can be synthesized in a computer
2637// scientist's overactive imagination.
2638//
2639class PHINode : public Instruction {
2640 constexpr static HungOffOperandsAllocMarker AllocMarker{};
2641
2642 /// The number of operands actually allocated. NumOperands is
2643 /// the number actually in use.
2644 unsigned ReservedSpace;
2645
2646 PHINode(const PHINode &PN);
2647
2648 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2649 const Twine &NameStr = "",
2650 InsertPosition InsertBefore = nullptr)
2651 : Instruction(Ty, Instruction::PHI, AllocMarker, InsertBefore),
2652 ReservedSpace(NumReservedValues) {
2653 setName(NameStr);
2654 allocHungoffUses(ReservedSpace);
2655 }
2656
2657protected:
2658 // Note: Instruction needs to be a friend here to call cloneImpl.
2659 friend class Instruction;
2660
2661 LLVM_ABI PHINode *cloneImpl() const;
2662
2663 // allocHungoffUses - this is more complicated than the generic
2664 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2665 // values and pointers to the incoming blocks, all in one allocation.
2666 void allocHungoffUses(unsigned N) {
2667 User::allocHungoffUses(N, /*WithExtraValues=*/true);
2668 }
2669
2670public:
2671 /// Constructors - NumReservedValues is a hint for the number of incoming
2672 /// edges that this phi node will have (use 0 if you really have no idea).
2673 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2674 const Twine &NameStr = "",
2675 InsertPosition InsertBefore = nullptr) {
2676 return new (AllocMarker)
2677 PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2678 }
2679
2680 /// Provide fast operand accessors
2682
2683 // Block iterator interface. This provides access to the list of incoming
2684 // basic blocks, which parallels the list of incoming values.
2685 // Please note that we are not providing non-const iterators for blocks to
2686 // force all updates go through an interface function.
2687
2690
2692 return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
2693 }
2694
2696 return block_begin() + getNumOperands();
2697 }
2698
2702
2704
2706
2707 /// Return the number of incoming edges
2708 ///
2709 unsigned getNumIncomingValues() const { return getNumOperands(); }
2710
2711 /// Return incoming value number x
2712 ///
2713 Value *getIncomingValue(unsigned i) const {
2714 return getOperand(i);
2715 }
2716 void setIncomingValue(unsigned i, Value *V) {
2717 assert(V && "PHI node got a null value!");
2718 assert(getType() == V->getType() &&
2719 "All operands to PHI node must be the same type as the PHI node!");
2720 setOperand(i, V);
2721 }
2722
2723 static unsigned getOperandNumForIncomingValue(unsigned i) {
2724 return i;
2725 }
2726
2727 static unsigned getIncomingValueNumForOperand(unsigned i) {
2728 return i;
2729 }
2730
2731 /// Return incoming basic block number @p i.
2732 ///
2733 BasicBlock *getIncomingBlock(unsigned i) const {
2734 return block_begin()[i];
2735 }
2736
2737 /// Return incoming basic block corresponding
2738 /// to an operand of the PHI.
2739 ///
2741 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
2742 return getIncomingBlock(unsigned(&U - op_begin()));
2743 }
2744
2745 /// Return incoming basic block corresponding
2746 /// to value use iterator.
2747 ///
2751
2752 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2753 const_cast<block_iterator>(block_begin())[i] = BB;
2754 }
2755
2756 /// Copies the basic blocks from \p BBRange to the incoming basic block list
2757 /// of this PHINode, starting at \p ToIdx.
2759 uint32_t ToIdx = 0) {
2760 copy(BBRange, const_cast<block_iterator>(block_begin()) + ToIdx);
2761 }
2762
2763 /// Replace every incoming basic block \p Old to basic block \p New.
2765 assert(New && Old && "PHI node got a null basic block!");
2766 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2767 if (getIncomingBlock(Op) == Old)
2768 setIncomingBlock(Op, New);
2769 }
2770
2771 /// Add an incoming value to the end of the PHI list
2772 ///
2774 if (getNumOperands() == ReservedSpace)
2775 growOperands(); // Get more space!
2776 // Initialize some new operands.
2780 }
2781
2782 /// Remove an incoming value. This is useful if a
2783 /// predecessor basic block is deleted. The value removed is returned.
2784 ///
2785 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2786 /// is true), the PHI node is destroyed and any uses of it are replaced with
2787 /// dummy values. The only time there should be zero incoming values to a PHI
2788 /// node is when the block is dead, so this strategy is sound.
2789 LLVM_ABI Value *removeIncomingValue(unsigned Idx,
2790 bool DeletePHIIfEmpty = true);
2791
2792 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2793 int Idx = getBasicBlockIndex(BB);
2794 assert(Idx >= 0 && "Invalid basic block argument to remove!");
2795 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2796 }
2797
2798 /// Remove all incoming values for which the predicate returns true.
2799 /// The predicate accepts the incoming value index.
2800 LLVM_ABI void removeIncomingValueIf(function_ref<bool(unsigned)> Predicate,
2801 bool DeletePHIIfEmpty = true);
2802
2803 /// Return the first index of the specified basic
2804 /// block in the value list for this PHI. Returns -1 if no instance.
2805 ///
2806 int getBasicBlockIndex(const BasicBlock *BB) const {
2807 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2808 if (block_begin()[i] == BB)
2809 return i;
2810 return -1;
2811 }
2812
2814 int Idx = getBasicBlockIndex(BB);
2815 assert(Idx >= 0 && "Invalid basic block argument!");
2816 return getIncomingValue(Idx);
2817 }
2818
2819 /// Set every incoming value(s) for block \p BB to \p V.
2821 assert(BB && "PHI node got a null basic block!");
2822 bool Found = false;
2823 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2824 if (getIncomingBlock(Op) == BB) {
2825 Found = true;
2826 setIncomingValue(Op, V);
2827 }
2828 (void)Found;
2829 assert(Found && "Invalid basic block argument to set!");
2830 }
2831
2832 /// If the specified PHI node always merges together the
2833 /// same value, return the value, otherwise return null.
2834 LLVM_ABI Value *hasConstantValue() const;
2835
2836 /// Whether the specified PHI node always merges
2837 /// together the same value, assuming undefs are equal to a unique
2838 /// non-undef value.
2839 LLVM_ABI bool hasConstantOrUndefValue() const;
2840
2841 /// If the PHI node is complete which means all of its parent's predecessors
2842 /// have incoming value in this PHI, return true, otherwise return false.
2843 bool isComplete() const {
2845 [this](const BasicBlock *Pred) {
2846 return getBasicBlockIndex(Pred) >= 0;
2847 });
2848 }
2849
2850 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2851 static bool classof(const Instruction *I) {
2852 return I->getOpcode() == Instruction::PHI;
2853 }
2854 static bool classof(const Value *V) {
2856 }
2857
2858private:
2859 LLVM_ABI void growOperands();
2860};
2861
2862template <> struct OperandTraits<PHINode> : public HungoffOperandTraits {};
2863
2865
2866//===----------------------------------------------------------------------===//
2867// LandingPadInst Class
2868//===----------------------------------------------------------------------===//
2869
2870//===---------------------------------------------------------------------------
2871/// The landingpad instruction holds all of the information
2872/// necessary to generate correct exception handling. The landingpad instruction
2873/// cannot be moved from the top of a landing pad block, which itself is
2874/// accessible only from the 'unwind' edge of an invoke. This uses the
2875/// SubclassData field in Value to store whether or not the landingpad is a
2876/// cleanup.
2877///
2878class LandingPadInst : public Instruction {
2879 using CleanupField = BoolBitfieldElementT<0>;
2880
2881 constexpr static HungOffOperandsAllocMarker AllocMarker{};
2882
2883 /// The number of operands actually allocated. NumOperands is
2884 /// the number actually in use.
2885 unsigned ReservedSpace;
2886
2887 LandingPadInst(const LandingPadInst &LP);
2888
2889public:
2891
2892private:
2893 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2894 const Twine &NameStr, InsertPosition InsertBefore);
2895
2896 // Allocate space for exactly zero operands.
2897 void *operator new(size_t S) { return User::operator new(S, AllocMarker); }
2898
2899 LLVM_ABI void growOperands(unsigned Size);
2900 void init(unsigned NumReservedValues, const Twine &NameStr);
2901
2902protected:
2903 // Note: Instruction needs to be a friend here to call cloneImpl.
2904 friend class Instruction;
2905
2906 LLVM_ABI LandingPadInst *cloneImpl() const;
2907
2908public:
2909 void operator delete(void *Ptr) { User::operator delete(Ptr); }
2910
2911 /// Constructors - NumReservedClauses is a hint for the number of incoming
2912 /// clauses that this landingpad will have (use 0 if you really have no idea).
2913 LLVM_ABI static LandingPadInst *Create(Type *RetTy,
2914 unsigned NumReservedClauses,
2915 const Twine &NameStr = "",
2916 InsertPosition InsertBefore = nullptr);
2917
2918 /// Provide fast operand accessors
2920
2921 /// Return 'true' if this landingpad instruction is a
2922 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2923 /// doesn't catch the exception.
2924 bool isCleanup() const { return getSubclassData<CleanupField>(); }
2925
2926 /// Indicate that this landingpad instruction is a cleanup.
2928
2929 /// Add a catch or filter clause to the landing pad.
2930 LLVM_ABI void addClause(Constant *ClauseVal);
2931
2932 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2933 /// determine what type of clause this is.
2934 Constant *getClause(unsigned Idx) const {
2935 return cast<Constant>(getOperandList()[Idx]);
2936 }
2937
2938 /// Return 'true' if the clause and index Idx is a catch clause.
2939 bool isCatch(unsigned Idx) const {
2940 return !isa<ArrayType>(getOperandList()[Idx]->getType());
2941 }
2942
2943 /// Return 'true' if the clause and index Idx is a filter clause.
2944 bool isFilter(unsigned Idx) const {
2945 return isa<ArrayType>(getOperandList()[Idx]->getType());
2946 }
2947
2948 /// Get the number of clauses for this landing pad.
2949 unsigned getNumClauses() const { return getNumOperands(); }
2950
2951 /// Grow the size of the operand list to accommodate the new
2952 /// number of clauses.
2953 void reserveClauses(unsigned Size) { growOperands(Size); }
2954
2955 // Methods for support type inquiry through isa, cast, and dyn_cast:
2956 static bool classof(const Instruction *I) {
2957 return I->getOpcode() == Instruction::LandingPad;
2958 }
2959 static bool classof(const Value *V) {
2961 }
2962};
2963
2964template <>
2966
2968
2969//===----------------------------------------------------------------------===//
2970// ReturnInst Class
2971//===----------------------------------------------------------------------===//
2972
2973//===---------------------------------------------------------------------------
2974/// Return a value (possibly void), from a function. Execution
2975/// does not continue in this function any longer.
2976///
2977class ReturnInst : public Instruction {
2978 ReturnInst(const ReturnInst &RI, AllocInfo AllocInfo);
2979
2980private:
2981 // ReturnInst constructors:
2982 // ReturnInst() - 'ret void' instruction
2983 // ReturnInst( null) - 'ret void' instruction
2984 // ReturnInst(Value* X) - 'ret X' instruction
2985 // ReturnInst(null, Iterator It) - 'ret void' instruction, insert before I
2986 // ReturnInst(Value* X, Iterator It) - 'ret X' instruction, insert before I
2987 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2988 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2989 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2990 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2991 //
2992 // NOTE: If the Value* passed is of type void then the constructor behaves as
2993 // if it was passed NULL.
2994 LLVM_ABI explicit ReturnInst(LLVMContext &C, Value *retVal,
2996 InsertPosition InsertBefore);
2997
2998protected:
2999 // Note: Instruction needs to be a friend here to call cloneImpl.
3000 friend class Instruction;
3001
3002 LLVM_ABI ReturnInst *cloneImpl() const;
3003
3004public:
3005 static ReturnInst *Create(LLVMContext &C, Value *retVal = nullptr,
3006 InsertPosition InsertBefore = nullptr) {
3007 IntrusiveOperandsAllocMarker AllocMarker{retVal ? 1U : 0U};
3008 return new (AllocMarker) ReturnInst(C, retVal, AllocMarker, InsertBefore);
3009 }
3010
3011 static ReturnInst *Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
3012 IntrusiveOperandsAllocMarker AllocMarker{0};
3013 return new (AllocMarker) ReturnInst(C, nullptr, AllocMarker, InsertAtEnd);
3014 }
3015
3016 /// Provide fast operand accessors
3018
3019 /// Convenience accessor. Returns null if there is no return value.
3021 return getNumOperands() != 0 ? getOperand(0) : nullptr;
3022 }
3023
3024 unsigned getNumSuccessors() const { return 0; }
3025
3026 // Methods for support type inquiry through isa, cast, and dyn_cast:
3027 static bool classof(const Instruction *I) {
3028 return (I->getOpcode() == Instruction::Ret);
3029 }
3030 static bool classof(const Value *V) {
3032 }
3033
3034private:
3035 BasicBlock *getSuccessor(unsigned idx) const {
3036 llvm_unreachable("ReturnInst has no successors!");
3037 }
3038
3039 void setSuccessor(unsigned idx, BasicBlock *B) {
3040 llvm_unreachable("ReturnInst has no successors!");
3041 }
3042};
3043
3044template <>
3045struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {};
3046
3048
3049//===----------------------------------------------------------------------===//
3050// BranchInst Class
3051//===----------------------------------------------------------------------===//
3052
3053//===---------------------------------------------------------------------------
3054/// Conditional or Unconditional Branch instruction.
3055///
3056class BranchInst : public Instruction {
3057 /// Ops list - Branches are strange. The operands are ordered:
3058 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
3059 /// they don't have to check for cond/uncond branchness. These are mostly
3060 /// accessed relative from op_end().
3061 BranchInst(const BranchInst &BI, AllocInfo AllocInfo);
3062 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
3063 // BranchInst(BB *B) - 'br B'
3064 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
3065 // BranchInst(BB* B, Iter It) - 'br B' insert before I
3066 // BranchInst(BB* T, BB *F, Value *C, Iter It) - 'br C, T, F', insert before I
3067 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
3068 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
3069 // BranchInst(BB* B, BB *I) - 'br B' insert at end
3070 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
3071 LLVM_ABI explicit BranchInst(BasicBlock *IfTrue, AllocInfo AllocInfo,
3072 InsertPosition InsertBefore);
3073 LLVM_ABI BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3074 AllocInfo AllocInfo, InsertPosition InsertBefore);
3075
3076 void AssertOK();
3077
3078protected:
3079 // Note: Instruction needs to be a friend here to call cloneImpl.
3080 friend class Instruction;
3081
3082 LLVM_ABI BranchInst *cloneImpl() const;
3083
3084public:
3085 /// Iterator type that casts an operand to a basic block.
3086 ///
3087 /// This only makes sense because the successors are stored as adjacent
3088 /// operands for branch instructions.
3090 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3091 std::random_access_iterator_tag, BasicBlock *,
3092 ptrdiff_t, BasicBlock *, BasicBlock *> {
3094
3096 BasicBlock *operator->() const { return operator*(); }
3097 };
3098
3099 /// The const version of `succ_op_iterator`.
3101 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3102 std::random_access_iterator_tag,
3103 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3104 const BasicBlock *> {
3107
3108 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3109 const BasicBlock *operator->() const { return operator*(); }
3110 };
3111
3112 static BranchInst *Create(BasicBlock *IfTrue,
3113 InsertPosition InsertBefore = nullptr) {
3114 IntrusiveOperandsAllocMarker AllocMarker{1};
3115 return new (AllocMarker) BranchInst(IfTrue, AllocMarker, InsertBefore);
3116 }
3117
3118 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3119 Value *Cond,
3120 InsertPosition InsertBefore = nullptr) {
3121 IntrusiveOperandsAllocMarker AllocMarker{3};
3122 return new (AllocMarker)
3123 BranchInst(IfTrue, IfFalse, Cond, AllocMarker, InsertBefore);
3124 }
3125
3126 /// Transparently provide more efficient getOperand methods.
3128
3129 bool isUnconditional() const { return getNumOperands() == 1; }
3130 bool isConditional() const { return getNumOperands() == 3; }
3131
3133 assert(isConditional() && "Cannot get condition of an uncond branch!");
3134 return Op<-3>();
3135 }
3136
3138 assert(isConditional() && "Cannot set condition of unconditional branch!");
3139 Op<-3>() = V;
3140 }
3141
3142 unsigned getNumSuccessors() const { return 1+isConditional(); }
3143
3144 BasicBlock *getSuccessor(unsigned i) const {
3145 assert(i < getNumSuccessors() && "Successor # out of range for Branch!");
3146 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3147 }
3148
3149 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3150 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!");
3151 *(&Op<-1>() - idx) = NewSucc;
3152 }
3153
3154 /// Swap the successors of this branch instruction.
3155 ///
3156 /// Swaps the successors of the branch instruction. This also swaps any
3157 /// branch weight metadata associated with the instruction so that it
3158 /// continues to map correctly to each operand.
3159 LLVM_ABI void swapSuccessors();
3160
3166
3172
3173 // Methods for support type inquiry through isa, cast, and dyn_cast:
3174 static bool classof(const Instruction *I) {
3175 return (I->getOpcode() == Instruction::Br);
3176 }
3177 static bool classof(const Value *V) {
3179 }
3180};
3181
3182template <>
3183struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst> {};
3184
3186
3187//===----------------------------------------------------------------------===//
3188// SwitchInst Class
3189//===----------------------------------------------------------------------===//
3190
3191//===---------------------------------------------------------------------------
3192/// Multiway switch
3193///
3194class SwitchInst : public Instruction {
3195 constexpr static HungOffOperandsAllocMarker AllocMarker{};
3196
3197 unsigned ReservedSpace;
3198
3199 // Operand[0] = Value to switch on
3200 // Operand[1] = Default basic block destination
3201 // Operand[n] = BasicBlock to go to on match
3202 // Values are stored after the Uses similar to PHINode's basic blocks.
3203 SwitchInst(const SwitchInst &SI);
3204
3205 /// Create a new switch instruction, specifying a value to switch on and a
3206 /// default destination. The number of additional cases can be specified here
3207 /// to make memory allocation more efficient. This constructor can also
3208 /// auto-insert before another instruction.
3209 LLVM_ABI SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3210 InsertPosition InsertBefore);
3211
3212 // allocate space for exactly zero operands
3213 void *operator new(size_t S) { return User::operator new(S, AllocMarker); }
3214
3215 void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3216 void growOperands();
3217
3218protected:
3219 // Note: Instruction needs to be a friend here to call cloneImpl.
3220 friend class Instruction;
3221
3222 LLVM_ABI SwitchInst *cloneImpl() const;
3223
3224 void allocHungoffUses(unsigned N) {
3225 User::allocHungoffUses(N, /*WithExtraValues=*/true);
3226 }
3227
3228 ConstantInt *const *case_values() const {
3229 return reinterpret_cast<ConstantInt *const *>(op_begin() + ReservedSpace);
3230 }
3232 return reinterpret_cast<ConstantInt **>(op_begin() + ReservedSpace);
3233 }
3234
3235public:
3236 void operator delete(void *Ptr) { User::operator delete(Ptr); }
3237
3238 // -2
3239 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3240
3241 template <typename CaseHandleT> class CaseIteratorImpl;
3242
3243 /// A handle to a particular switch case. It exposes a convenient interface
3244 /// to both the case value and the successor block.
3245 ///
3246 /// We define this as a template and instantiate it to form both a const and
3247 /// non-const handle.
3248 template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3250 // Directly befriend both const and non-const iterators.
3251 friend class SwitchInst::CaseIteratorImpl<
3252 CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3253
3254 protected:
3255 // Expose the switch type we're parameterized with to the iterator.
3256 using SwitchInstType = SwitchInstT;
3257
3258 SwitchInstT *SI;
3260
3261 CaseHandleImpl() = default;
3263
3264 public:
3265 /// Resolves case value for current case.
3266 ConstantIntT *getCaseValue() const {
3267 assert((unsigned)Index < SI->getNumCases() &&
3268 "Index out the number of cases.");
3269 return SI->case_values()[Index];
3270 }
3271
3272 /// Resolves successor for current case.
3273 BasicBlockT *getCaseSuccessor() const {
3274 assert(((unsigned)Index < SI->getNumCases() ||
3275 (unsigned)Index == DefaultPseudoIndex) &&
3276 "Index out the number of cases.");
3277 return SI->getSuccessor(getSuccessorIndex());
3278 }
3279
3280 /// Returns number of current case.
3281 unsigned getCaseIndex() const { return Index; }
3282
3283 /// Returns successor index for current case successor.
3284 unsigned getSuccessorIndex() const {
3285 assert(((unsigned)Index == DefaultPseudoIndex ||
3286 (unsigned)Index < SI->getNumCases()) &&
3287 "Index out the number of cases.");
3288 return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3289 }
3290
3291 bool operator==(const CaseHandleImpl &RHS) const {
3292 assert(SI == RHS.SI && "Incompatible operators.");
3293 return Index == RHS.Index;
3294 }
3295 };
3296
3299
3301 : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3303
3304 public:
3306
3307 /// Sets the new value for current case.
3308 void setValue(ConstantInt *V) const {
3309 assert((unsigned)Index < SI->getNumCases() &&
3310 "Index out the number of cases.");
3311 SI->case_values()[Index] = V;
3312 }
3313
3314 /// Sets the new successor for current case.
3315 void setSuccessor(BasicBlock *S) const {
3316 SI->setSuccessor(getSuccessorIndex(), S);
3317 }
3318 };
3319
3320 template <typename CaseHandleT>
3322 : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3323 std::random_access_iterator_tag,
3324 const CaseHandleT> {
3325 using SwitchInstT = typename CaseHandleT::SwitchInstType;
3326
3327 CaseHandleT Case;
3328
3329 public:
3330 /// Default constructed iterator is in an invalid state until assigned to
3331 /// a case for a particular switch.
3332 CaseIteratorImpl() = default;
3333
3334 /// Initializes case iterator for given SwitchInst and for given
3335 /// case number.
3336 CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3337
3338 /// Initializes case iterator for given SwitchInst and for given
3339 /// successor index.
3341 unsigned SuccessorIndex) {
3342 assert(SuccessorIndex < SI->getNumSuccessors() &&
3343 "Successor index # out of range!");
3344 return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3346 }
3347
3348 /// Support converting to the const variant. This will be a no-op for const
3349 /// variant.
3351 return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3352 }
3353
3355 // Check index correctness after addition.
3356 // Note: Index == getNumCases() means end().
3357 assert(Case.Index + N >= 0 &&
3358 (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
3359 "Case.Index out the number of cases.");
3360 Case.Index += N;
3361 return *this;
3362 }
3364 // Check index correctness after subtraction.
3365 // Note: Case.Index == getNumCases() means end().
3366 assert(Case.Index - N >= 0 &&
3367 (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
3368 "Case.Index out the number of cases.");
3369 Case.Index -= N;
3370 return *this;
3371 }
3373 assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
3374 return Case.Index - RHS.Case.Index;
3375 }
3376 bool operator==(const CaseIteratorImpl &RHS) const {
3377 return Case == RHS.Case;
3378 }
3379 bool operator<(const CaseIteratorImpl &RHS) const {
3380 assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
3381 return Case.Index < RHS.Case.Index;
3382 }
3383 const CaseHandleT &operator*() const { return Case; }
3384 };
3385
3388
3389 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3390 unsigned NumCases,
3391 InsertPosition InsertBefore = nullptr) {
3392 return new SwitchInst(Value, Default, NumCases, InsertBefore);
3393 }
3394
3395 /// Provide fast operand accessors
3397
3398 // Accessor Methods for Switch stmt
3399 Value *getCondition() const { return getOperand(0); }
3400 void setCondition(Value *V) { setOperand(0, V); }
3401
3403 return cast<BasicBlock>(getOperand(1));
3404 }
3405
3406 /// Returns true if the default branch must result in immediate undefined
3407 /// behavior, false otherwise.
3409 return isa<UnreachableInst>(getDefaultDest()->getFirstNonPHIOrDbg());
3410 }
3411
3412 void setDefaultDest(BasicBlock *DefaultCase) {
3413 setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3414 }
3415
3416 /// Return the number of 'cases' in this switch instruction, excluding the
3417 /// default case.
3418 unsigned getNumCases() const { return getNumOperands() - 2; }
3419
3420 /// Returns a read/write iterator that points to the first case in the
3421 /// SwitchInst.
3423 return CaseIt(this, 0);
3424 }
3425
3426 /// Returns a read-only iterator that points to the first case in the
3427 /// SwitchInst.
3429 return ConstCaseIt(this, 0);
3430 }
3431
3432 /// Returns a read/write iterator that points one past the last in the
3433 /// SwitchInst.
3435 return CaseIt(this, getNumCases());
3436 }
3437
3438 /// Returns a read-only iterator that points one past the last in the
3439 /// SwitchInst.
3441 return ConstCaseIt(this, getNumCases());
3442 }
3443
3444 /// Iteration adapter for range-for loops.
3448
3449 /// Constant iteration adapter for range-for loops.
3453
3454 /// Returns an iterator that points to the default case.
3455 /// Note: this iterator allows to resolve successor only. Attempt
3456 /// to resolve case value causes an assertion.
3457 /// Also note, that increment and decrement also causes an assertion and
3458 /// makes iterator invalid.
3460 return CaseIt(this, DefaultPseudoIndex);
3461 }
3463 return ConstCaseIt(this, DefaultPseudoIndex);
3464 }
3465
3466 /// Search all of the case values for the specified constant. If it is
3467 /// explicitly handled, return the case iterator of it, otherwise return
3468 /// default case iterator to indicate that it is handled by the default
3469 /// handler.
3471 return CaseIt(
3472 this,
3473 const_cast<const SwitchInst *>(this)->findCaseValue(C)->getCaseIndex());
3474 }
3476 ConstCaseIt I = llvm::find_if(cases(), [C](const ConstCaseHandle &Case) {
3477 return Case.getCaseValue() == C;
3478 });
3479 if (I != case_end())
3480 return I;
3481
3482 return case_default();
3483 }
3484
3485 /// Finds the unique case value for a given successor. Returns null if the
3486 /// successor is not found, not unique, or is the default case.
3488 if (BB == getDefaultDest())
3489 return nullptr;
3490
3491 ConstantInt *CI = nullptr;
3492 for (auto Case : cases()) {
3493 if (Case.getCaseSuccessor() != BB)
3494 continue;
3495
3496 if (CI)
3497 return nullptr; // Multiple cases lead to BB.
3498
3499 CI = Case.getCaseValue();
3500 }
3501
3502 return CI;
3503 }
3504
3505 /// Add an entry to the switch instruction.
3506 /// Note:
3507 /// This action invalidates case_end(). Old case_end() iterator will
3508 /// point to the added case.
3509 LLVM_ABI void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3510
3511 /// This method removes the specified case and its successor from the switch
3512 /// instruction. Note that this operation may reorder the remaining cases at
3513 /// index idx and above.
3514 /// Note:
3515 /// This action invalidates iterators for all cases following the one removed,
3516 /// including the case_end() iterator. It returns an iterator for the next
3517 /// case.
3518 LLVM_ABI CaseIt removeCase(CaseIt I);
3519
3520 unsigned getNumSuccessors() const { return getNumOperands() - 1; }
3521 BasicBlock *getSuccessor(unsigned idx) const {
3522 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!");
3523 return cast<BasicBlock>(getOperand(idx + 1));
3524 }
3525 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3526 assert(idx < getNumSuccessors() && "Successor # out of range for switch!");
3527 setOperand(idx + 1, NewSucc);
3528 }
3529
3530 // Methods for support type inquiry through isa, cast, and dyn_cast:
3531 static bool classof(const Instruction *I) {
3532 return I->getOpcode() == Instruction::Switch;
3533 }
3534 static bool classof(const Value *V) {
3536 }
3537};
3538
3539/// A wrapper class to simplify modification of SwitchInst cases along with
3540/// their prof branch_weights metadata.
3542 SwitchInst &SI;
3543 std::optional<SmallVector<uint32_t, 8>> Weights;
3544 bool Changed = false;
3545
3546protected:
3547 LLVM_ABI void init();
3548
3549public:
3550 using CaseWeightOpt = std::optional<uint32_t>;
3551 SwitchInst *operator->() { return &SI; }
3552 SwitchInst &operator*() { return SI; }
3553 operator SwitchInst *() { return &SI; }
3554
3556
3558 if (Changed && Weights.has_value() && Weights->size() >= 2)
3559 setBranchWeights(SI, Weights.value(), /*IsExpected=*/false);
3560 }
3561
3562 /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3563 /// correspondent branch weight.
3565
3566 /// Replace the default destination by given case. Delegate the call to
3567 /// the underlying SwitchInst::setDefaultDest and remove correspondent branch
3568 /// weight.
3570
3571 /// Delegate the call to the underlying SwitchInst::addCase() and set the
3572 /// specified branch weight for the added case.
3573 LLVM_ABI void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3574
3575 /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3576 /// this object to not touch the underlying SwitchInst in destructor.
3578
3579 LLVM_ABI void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3581
3583 unsigned idx);
3584};
3585
3586template <> struct OperandTraits<SwitchInst> : public HungoffOperandTraits {};
3587
3589
3590//===----------------------------------------------------------------------===//
3591// IndirectBrInst Class
3592//===----------------------------------------------------------------------===//
3593
3594//===---------------------------------------------------------------------------
3595/// Indirect Branch Instruction.
3596///
3597class IndirectBrInst : public Instruction {
3598 constexpr static HungOffOperandsAllocMarker AllocMarker{};
3599
3600 unsigned ReservedSpace;
3601
3602 // Operand[0] = Address to jump to
3603 // Operand[n+1] = n-th destination
3604 IndirectBrInst(const IndirectBrInst &IBI);
3605
3606 /// Create a new indirectbr instruction, specifying an
3607 /// Address to jump to. The number of expected destinations can be specified
3608 /// here to make memory allocation more efficient. This constructor can also
3609 /// autoinsert before another instruction.
3610 LLVM_ABI IndirectBrInst(Value *Address, unsigned NumDests,
3611 InsertPosition InsertBefore);
3612
3613 // allocate space for exactly zero operands
3614 void *operator new(size_t S) { return User::operator new(S, AllocMarker); }
3615
3616 void init(Value *Address, unsigned NumDests);
3617 void growOperands();
3618
3619protected:
3620 // Note: Instruction needs to be a friend here to call cloneImpl.
3621 friend class Instruction;
3622
3623 LLVM_ABI IndirectBrInst *cloneImpl() const;
3624
3625public:
3626 void operator delete(void *Ptr) { User::operator delete(Ptr); }
3627
3628 /// Iterator type that casts an operand to a basic block.
3629 ///
3630 /// This only makes sense because the successors are stored as adjacent
3631 /// operands for indirectbr instructions.
3633 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3634 std::random_access_iterator_tag, BasicBlock *,
3635 ptrdiff_t, BasicBlock *, BasicBlock *> {
3637
3639 BasicBlock *operator->() const { return operator*(); }
3640 };
3641
3642 /// The const version of `succ_op_iterator`.
3644 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3645 std::random_access_iterator_tag,
3646 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3647 const BasicBlock *> {
3650
3651 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3652 const BasicBlock *operator->() const { return operator*(); }
3653 };
3654
3655 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3656 InsertPosition InsertBefore = nullptr) {
3657 return new IndirectBrInst(Address, NumDests, InsertBefore);
3658 }
3659
3660 /// Provide fast operand accessors.
3662
3663 // Accessor Methods for IndirectBrInst instruction.
3664 Value *getAddress() { return getOperand(0); }
3665 const Value *getAddress() const { return getOperand(0); }
3666 void setAddress(Value *V) { setOperand(0, V); }
3667
3668 /// return the number of possible destinations in this
3669 /// indirectbr instruction.
3670 unsigned getNumDestinations() const { return getNumOperands()-1; }
3671
3672 /// Return the specified destination.
3673 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3674 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3675
3676 /// Add a destination.
3677 ///
3678 LLVM_ABI void addDestination(BasicBlock *Dest);
3679
3680 /// This method removes the specified successor from the
3681 /// indirectbr instruction.
3682 LLVM_ABI void removeDestination(unsigned i);
3683
3684 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3685 BasicBlock *getSuccessor(unsigned i) const {
3686 return cast<BasicBlock>(getOperand(i+1));
3687 }
3688 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3689 setOperand(i + 1, NewSucc);
3690 }
3691
3696
3701
3702 // Methods for support type inquiry through isa, cast, and dyn_cast:
3703 static bool classof(const Instruction *I) {
3704 return I->getOpcode() == Instruction::IndirectBr;
3705 }
3706 static bool classof(const Value *V) {
3708 }
3709};
3710
3711template <>
3713
3715
3716//===----------------------------------------------------------------------===//
3717// InvokeInst Class
3718//===----------------------------------------------------------------------===//
3719
3720/// Invoke instruction. The SubclassData field is used to hold the
3721/// calling convention of the call.
3722///
3723class InvokeInst : public CallBase {
3724 /// The number of operands for this call beyond the called function,
3725 /// arguments, and operand bundles.
3726 static constexpr int NumExtraOperands = 2;
3727
3728 /// The index from the end of the operand array to the normal destination.
3729 static constexpr int NormalDestOpEndIdx = -3;
3730
3731 /// The index from the end of the operand array to the unwind destination.
3732 static constexpr int UnwindDestOpEndIdx = -2;
3733
3734 InvokeInst(const InvokeInst &BI, AllocInfo AllocInfo);
3735
3736 /// Construct an InvokeInst given a range of arguments.
3737 ///
3738 /// Construct an InvokeInst from a range of arguments
3739 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3740 BasicBlock *IfException, ArrayRef<Value *> Args,
3742 const Twine &NameStr, InsertPosition InsertBefore);
3743
3744 LLVM_ABI void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3745 BasicBlock *IfException, ArrayRef<Value *> Args,
3746 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3747
3748 /// Compute the number of operands to allocate.
3749 static unsigned ComputeNumOperands(unsigned NumArgs,
3750 size_t NumBundleInputs = 0) {
3751 // We need one operand for the called function, plus our extra operands and
3752 // the input operand counts provided.
3753 return 1 + NumExtraOperands + NumArgs + unsigned(NumBundleInputs);
3754 }
3755
3756protected:
3757 // Note: Instruction needs to be a friend here to call cloneImpl.
3758 friend class Instruction;
3759
3760 LLVM_ABI InvokeInst *cloneImpl() const;
3761
3762public:
3763 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3764 BasicBlock *IfException, ArrayRef<Value *> Args,
3765 const Twine &NameStr,
3766 InsertPosition InsertBefore = nullptr) {
3767 IntrusiveOperandsAllocMarker AllocMarker{
3768 ComputeNumOperands(unsigned(Args.size()))};
3769 return new (AllocMarker) InvokeInst(Ty, Func, IfNormal, IfException, Args,
3770 {}, AllocMarker, NameStr, InsertBefore);
3771 }
3772
3773 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3774 BasicBlock *IfException, ArrayRef<Value *> Args,
3775 ArrayRef<OperandBundleDef> Bundles = {},
3776 const Twine &NameStr = "",
3777 InsertPosition InsertBefore = nullptr) {
3778 IntrusiveOperandsAndDescriptorAllocMarker AllocMarker{
3779 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)),
3780 unsigned(Bundles.size() * sizeof(BundleOpInfo))};
3781
3782 return new (AllocMarker)
3783 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, AllocMarker,
3784 NameStr, InsertBefore);
3785 }
3786
3787 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3788 BasicBlock *IfException, ArrayRef<Value *> Args,
3789 const Twine &NameStr,
3790 InsertPosition InsertBefore = nullptr) {
3791 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3792 IfException, Args, {}, NameStr, InsertBefore);
3793 }
3794
3795 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3796 BasicBlock *IfException, ArrayRef<Value *> Args,
3797 ArrayRef<OperandBundleDef> Bundles = {},
3798 const Twine &NameStr = "",
3799 InsertPosition InsertBefore = nullptr) {
3800 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3801 IfException, Args, Bundles, NameStr, InsertBefore);
3802 }
3803
3804 /// Create a clone of \p II with a different set of operand bundles and
3805 /// insert it before \p InsertBefore.
3806 ///
3807 /// The returned invoke instruction is identical to \p II in every way except
3808 /// that the operand bundles for the new instruction are set to the operand
3809 /// bundles in \p Bundles.
3810 LLVM_ABI static InvokeInst *Create(InvokeInst *II,
3812 InsertPosition InsertPt = nullptr);
3813
3814 // get*Dest - Return the destination basic blocks...
3822 Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3823 }
3825 Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3826 }
3827
3828 /// Get the landingpad instruction from the landing pad
3829 /// block (the unwind destination).
3830 LLVM_ABI LandingPadInst *getLandingPadInst() const;
3831
3832 BasicBlock *getSuccessor(unsigned i) const {
3833 assert(i < 2 && "Successor # out of range for invoke!");
3834 return i == 0 ? getNormalDest() : getUnwindDest();
3835 }
3836
3837 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3838 assert(i < 2 && "Successor # out of range for invoke!");
3839 if (i == 0)
3840 setNormalDest(NewSucc);
3841 else
3842 setUnwindDest(NewSucc);
3843 }
3844
3845 unsigned getNumSuccessors() const { return 2; }
3846
3847 /// Updates profile metadata by scaling it by \p S / \p T.
3848 LLVM_ABI void updateProfWeight(uint64_t S, uint64_t T);
3849
3850 // Methods for support type inquiry through isa, cast, and dyn_cast:
3851 static bool classof(const Instruction *I) {
3852 return (I->getOpcode() == Instruction::Invoke);
3853 }
3854 static bool classof(const Value *V) {
3856 }
3857
3858private:
3859 // Shadow Instruction::setInstructionSubclassData with a private forwarding
3860 // method so that subclasses cannot accidentally use it.
3861 template <typename Bitfield>
3862 void setSubclassData(typename Bitfield::Type Value) {
3864 }
3865};
3866
3867InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3868 BasicBlock *IfException, ArrayRef<Value *> Args,
3870 const Twine &NameStr, InsertPosition InsertBefore)
3871 : CallBase(Ty->getReturnType(), Instruction::Invoke, AllocInfo,
3872 InsertBefore) {
3873 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3874}
3875
3876//===----------------------------------------------------------------------===//
3877// CallBrInst Class
3878//===----------------------------------------------------------------------===//
3879
3880/// CallBr instruction, tracking function calls that may not return control but
3881/// instead transfer it to a third location. The SubclassData field is used to
3882/// hold the calling convention of the call.
3883///
3884class CallBrInst : public CallBase {
3885
3886 unsigned NumIndirectDests;
3887
3888 CallBrInst(const CallBrInst &BI, AllocInfo AllocInfo);
3889
3890 /// Construct a CallBrInst given a range of arguments.
3891 ///
3892 /// Construct a CallBrInst from a range of arguments
3893 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3894 ArrayRef<BasicBlock *> IndirectDests,
3896 AllocInfo AllocInfo, const Twine &NameStr,
3897 InsertPosition InsertBefore);
3898
3899 LLVM_ABI void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
3900 ArrayRef<BasicBlock *> IndirectDests,
3902 const Twine &NameStr);
3903
3904 /// Compute the number of operands to allocate.
3905 static unsigned ComputeNumOperands(int NumArgs, int NumIndirectDests,
3906 int NumBundleInputs = 0) {
3907 // We need one operand for the called function, plus our extra operands and
3908 // the input operand counts provided.
3909 return unsigned(2 + NumIndirectDests + NumArgs + NumBundleInputs);
3910 }
3911
3912protected:
3913 // Note: Instruction needs to be a friend here to call cloneImpl.
3914 friend class Instruction;
3915
3916 LLVM_ABI CallBrInst *cloneImpl() const;
3917
3918public:
3919 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3920 BasicBlock *DefaultDest,
3921 ArrayRef<BasicBlock *> IndirectDests,
3922 ArrayRef<Value *> Args, const Twine &NameStr,
3923 InsertPosition InsertBefore = nullptr) {
3924 IntrusiveOperandsAllocMarker AllocMarker{
3925 ComputeNumOperands(Args.size(), IndirectDests.size())};
3926 return new (AllocMarker)
3927 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, {}, AllocMarker,
3928 NameStr, InsertBefore);
3929 }
3930
3931 static CallBrInst *
3932 Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3933 ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
3934 ArrayRef<OperandBundleDef> Bundles = {}, const Twine &NameStr = "",
3935 InsertPosition InsertBefore = nullptr) {
3936 IntrusiveOperandsAndDescriptorAllocMarker AllocMarker{
3937 ComputeNumOperands(Args.size(), IndirectDests.size(),
3938 CountBundleInputs(Bundles)),
3939 unsigned(Bundles.size() * sizeof(BundleOpInfo))};
3940
3941 return new (AllocMarker)
3942 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3943 AllocMarker, NameStr, InsertBefore);
3944 }
3945
3946 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
3947 ArrayRef<BasicBlock *> IndirectDests,
3948 ArrayRef<Value *> Args, const Twine &NameStr,
3949 InsertPosition InsertBefore = nullptr) {
3950 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
3951 IndirectDests, Args, NameStr, InsertBefore);
3952 }
3953
3954 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
3955 ArrayRef<BasicBlock *> IndirectDests,
3956 ArrayRef<Value *> Args,
3957 ArrayRef<OperandBundleDef> Bundles = {},
3958 const Twine &NameStr = "",
3959 InsertPosition InsertBefore = nullptr) {
3960 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
3961 IndirectDests, Args, Bundles, NameStr, InsertBefore);
3962 }
3963
3964 /// Create a clone of \p CBI with a different set of operand bundles and
3965 /// insert it before \p InsertBefore.
3966 ///
3967 /// The returned callbr instruction is identical to \p CBI in every way
3968 /// except that the operand bundles for the new instruction are set to the
3969 /// operand bundles in \p Bundles.
3970 LLVM_ABI static CallBrInst *Create(CallBrInst *CBI,
3972 InsertPosition InsertBefore = nullptr);
3973
3974 /// Return the number of callbr indirect dest labels.
3975 ///
3976 unsigned getNumIndirectDests() const { return NumIndirectDests; }
3977
3978 /// getIndirectDestLabel - Return the i-th indirect dest label.
3979 ///
3980 Value *getIndirectDestLabel(unsigned i) const {
3981 assert(i < getNumIndirectDests() && "Out of bounds!");
3982 return getOperand(i + arg_size() + getNumTotalBundleOperands() + 1);
3983 }
3984
3985 Value *getIndirectDestLabelUse(unsigned i) const {
3986 assert(i < getNumIndirectDests() && "Out of bounds!");
3987 return getOperandUse(i + arg_size() + getNumTotalBundleOperands() + 1);
3988 }
3989
3990 // Return the destination basic blocks...
3992 return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
3993 }
3994 BasicBlock *getIndirectDest(unsigned i) const {
3996 }
3998 SmallVector<BasicBlock *, 16> IndirectDests;
3999 for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
4000 IndirectDests.push_back(getIndirectDest(i));
4001 return IndirectDests;
4002 }
4004 *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
4005 }
4006 void setIndirectDest(unsigned i, BasicBlock *B) {
4007 *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
4008 }
4009
4010 BasicBlock *getSuccessor(unsigned i) const {
4011 assert(i < getNumSuccessors() + 1 &&
4012 "Successor # out of range for callbr!");
4013 return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4014 }
4015
4016 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4017 assert(i < getNumIndirectDests() + 1 &&
4018 "Successor # out of range for callbr!");
4019 return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
4020 }
4021
4022 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4023
4024 // Methods for support type inquiry through isa, cast, and dyn_cast:
4025 static bool classof(const Instruction *I) {
4026 return (I->getOpcode() == Instruction::CallBr);
4027 }
4028 static bool classof(const Value *V) {
4030 }
4031
4032private:
4033 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4034 // method so that subclasses cannot accidentally use it.
4035 template <typename Bitfield>
4036 void setSubclassData(typename Bitfield::Type Value) {
4038 }
4039};
4040
4041CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4042 ArrayRef<BasicBlock *> IndirectDests,
4043 ArrayRef<Value *> Args,
4045 const Twine &NameStr, InsertPosition InsertBefore)
4046 : CallBase(Ty->getReturnType(), Instruction::CallBr, AllocInfo,
4047 InsertBefore) {
4048 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4049}
4050
4051//===----------------------------------------------------------------------===//
4052// ResumeInst Class
4053//===----------------------------------------------------------------------===//
4054
4055//===---------------------------------------------------------------------------
4056/// Resume the propagation of an exception.
4057///
4058class ResumeInst : public Instruction {
4059 constexpr static IntrusiveOperandsAllocMarker AllocMarker{1};
4060
4061 ResumeInst(const ResumeInst &RI);
4062
4063 LLVM_ABI explicit ResumeInst(Value *Exn,
4064 InsertPosition InsertBefore = nullptr);
4065
4066protected:
4067 // Note: Instruction needs to be a friend here to call cloneImpl.
4068 friend class Instruction;
4069
4070 LLVM_ABI ResumeInst *cloneImpl() const;
4071
4072public:
4073 static ResumeInst *Create(Value *Exn, InsertPosition InsertBefore = nullptr) {
4074 return new (AllocMarker) ResumeInst(Exn, InsertBefore);
4075 }
4076
4077 /// Provide fast operand accessors
4079
4080 /// Convenience accessor.
4081 Value *getValue() const { return Op<0>(); }
4082
4083 unsigned getNumSuccessors() const { return 0; }
4084
4085 // Methods for support type inquiry through isa, cast, and dyn_cast:
4086 static bool classof(const Instruction *I) {
4087 return I->getOpcode() == Instruction::Resume;
4088 }
4089 static bool classof(const Value *V) {
4091 }
4092
4093private:
4094 BasicBlock *getSuccessor(unsigned idx) const {
4095 llvm_unreachable("ResumeInst has no successors!");
4096 }
4097
4098 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4099 llvm_unreachable("ResumeInst has no successors!");
4100 }
4101};
4102
4103template <>
4105 public FixedNumOperandTraits<ResumeInst, 1> {
4106};
4107
4109
4110//===----------------------------------------------------------------------===//
4111// CatchSwitchInst Class
4112//===----------------------------------------------------------------------===//
4113class CatchSwitchInst : public Instruction {
4114 using UnwindDestField = BoolBitfieldElementT<0>;
4115
4116 constexpr static HungOffOperandsAllocMarker AllocMarker{};
4117
4118 /// The number of operands actually allocated. NumOperands is
4119 /// the number actually in use.
4120 unsigned ReservedSpace;
4121
4122 // Operand[0] = Outer scope
4123 // Operand[1] = Unwind block destination
4124 // Operand[n] = BasicBlock to go to on match
4125 CatchSwitchInst(const CatchSwitchInst &CSI);
4126
4127 /// Create a new switch instruction, specifying a
4128 /// default destination. The number of additional handlers can be specified
4129 /// here to make memory allocation more efficient.
4130 /// This constructor can also autoinsert before another instruction.
4131 LLVM_ABI CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4132 unsigned NumHandlers, const Twine &NameStr,
4133 InsertPosition InsertBefore);
4134
4135 // allocate space for exactly zero operands
4136 void *operator new(size_t S) { return User::operator new(S, AllocMarker); }
4137
4138 void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4139 void growOperands(unsigned Size);
4140
4141protected:
4142 // Note: Instruction needs to be a friend here to call cloneImpl.
4143 friend class Instruction;
4144
4145 LLVM_ABI CatchSwitchInst *cloneImpl() const;
4146
4147public:
4148 void operator delete(void *Ptr) { return User::operator delete(Ptr); }
4149
4150 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4151 unsigned NumHandlers,
4152 const Twine &NameStr = "",
4153 InsertPosition InsertBefore = nullptr) {
4154 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4155 InsertBefore);
4156 }
4157
4158 /// Provide fast operand accessors
4160
4161 // Accessor Methods for CatchSwitch stmt
4162 Value *getParentPad() const { return getOperand(0); }
4163 void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4164
4165 // Accessor Methods for CatchSwitch stmt
4167 bool unwindsToCaller() const { return !hasUnwindDest(); }
4169 if (hasUnwindDest())
4170 return cast<BasicBlock>(getOperand(1));
4171 return nullptr;
4172 }
4173 void setUnwindDest(BasicBlock *UnwindDest) {
4174 assert(UnwindDest);
4176 setOperand(1, UnwindDest);
4177 }
4178
4179 /// return the number of 'handlers' in this catchswitch
4180 /// instruction, except the default handler
4181 unsigned getNumHandlers() const {
4182 if (hasUnwindDest())
4183 return getNumOperands() - 2;
4184 return getNumOperands() - 1;
4185 }
4186
4187private:
4188 static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4189 static const BasicBlock *handler_helper(const Value *V) {
4190 return cast<BasicBlock>(V);
4191 }
4192
4193public:
4194 using DerefFnTy = BasicBlock *(*)(Value *);
4197 using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4201
4202 /// Returns an iterator that points to the first handler in CatchSwitchInst.
4204 op_iterator It = op_begin() + 1;
4205 if (hasUnwindDest())
4206 ++It;
4207 return handler_iterator(It, DerefFnTy(handler_helper));
4208 }
4209
4210 /// Returns an iterator that points to the first handler in the
4211 /// CatchSwitchInst.
4213 const_op_iterator It = op_begin() + 1;
4214 if (hasUnwindDest())
4215 ++It;
4216 return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4217 }
4218
4219 /// Returns a read-only iterator that points one past the last
4220 /// handler in the CatchSwitchInst.
4222 return handler_iterator(op_end(), DerefFnTy(handler_helper));
4223 }
4224
4225 /// Returns an iterator that points one past the last handler in the
4226 /// CatchSwitchInst.
4228 return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4229 }
4230
4231 /// iteration adapter for range-for loops.
4235
4236 /// iteration adapter for range-for loops.
4240
4241 /// Add an entry to the switch instruction...
4242 /// Note:
4243 /// This action invalidates handler_end(). Old handler_end() iterator will
4244 /// point to the added handler.
4245 LLVM_ABI void addHandler(BasicBlock *Dest);
4246
4247 LLVM_ABI void removeHandler(handler_iterator HI);
4248
4249 unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4250 BasicBlock *getSuccessor(unsigned Idx) const {
4251 assert(Idx < getNumSuccessors() &&
4252 "Successor # out of range for catchswitch!");
4253 return cast<BasicBlock>(getOperand(Idx + 1));
4254 }
4255 void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4256 assert(Idx < getNumSuccessors() &&
4257 "Successor # out of range for catchswitch!");
4258 setOperand(Idx + 1, NewSucc);
4259 }
4260
4261 // Methods for support type inquiry through isa, cast, and dyn_cast:
4262 static bool classof(const Instruction *I) {
4263 return I->getOpcode() == Instruction::CatchSwitch;
4264 }
4265 static bool classof(const Value *V) {
4267 }
4268};
4269
4270template <>
4272
4274
4275//===----------------------------------------------------------------------===//
4276// CleanupPadInst Class
4277//===----------------------------------------------------------------------===//
4278class CleanupPadInst : public FuncletPadInst {
4279private:
4280 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4281 AllocInfo AllocInfo, const Twine &NameStr,
4282 InsertPosition InsertBefore)
4283 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, AllocInfo,
4284 NameStr, InsertBefore) {}
4285
4286public:
4287 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = {},
4288 const Twine &NameStr = "",
4289 InsertPosition InsertBefore = nullptr) {
4290 IntrusiveOperandsAllocMarker AllocMarker{unsigned(1 + Args.size())};
4291 return new (AllocMarker)
4292 CleanupPadInst(ParentPad, Args, AllocMarker, NameStr, InsertBefore);
4293 }
4294
4295 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4296 static bool classof(const Instruction *I) {
4297 return I->getOpcode() == Instruction::CleanupPad;
4298 }
4299 static bool classof(const Value *V) {
4301 }
4302};
4303
4304//===----------------------------------------------------------------------===//
4305// CatchPadInst Class
4306//===----------------------------------------------------------------------===//
4307class CatchPadInst : public FuncletPadInst {
4308private:
4309 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4310 AllocInfo AllocInfo, const Twine &NameStr,
4311 InsertPosition InsertBefore)
4312 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, AllocInfo,
4313 NameStr, InsertBefore) {}
4314
4315public:
4316 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4317 const Twine &NameStr = "",
4318 InsertPosition InsertBefore = nullptr) {
4319 IntrusiveOperandsAllocMarker AllocMarker{unsigned(1 + Args.size())};
4320 return new (AllocMarker)
4321 CatchPadInst(CatchSwitch, Args, AllocMarker, NameStr, InsertBefore);
4322 }
4323
4324 /// Convenience accessors
4328 void setCatchSwitch(Value *CatchSwitch) {
4329 assert(CatchSwitch);
4330 Op<-1>() = CatchSwitch;
4331 }
4332
4333 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4334 static bool classof(const Instruction *I) {
4335 return I->getOpcode() == Instruction::CatchPad;
4336 }
4337 static bool classof(const Value *V) {
4339 }
4340};
4341
4342//===----------------------------------------------------------------------===//
4343// CatchReturnInst Class
4344//===----------------------------------------------------------------------===//
4345
4346class CatchReturnInst : public Instruction {
4347 constexpr static IntrusiveOperandsAllocMarker AllocMarker{2};
4348
4349 CatchReturnInst(const CatchReturnInst &RI);
4350 LLVM_ABI CatchReturnInst(Value *CatchPad, BasicBlock *BB,
4351 InsertPosition InsertBefore);
4352
4353 void init(Value *CatchPad, BasicBlock *BB);
4354
4355protected:
4356 // Note: Instruction needs to be a friend here to call cloneImpl.
4357 friend class Instruction;
4358
4359 LLVM_ABI CatchReturnInst *cloneImpl() const;
4360
4361public:
4362 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4363 InsertPosition InsertBefore = nullptr) {
4364 assert(CatchPad);
4365 assert(BB);
4366 return new (AllocMarker) CatchReturnInst(CatchPad, BB, InsertBefore);
4367 }
4368
4369 /// Provide fast operand accessors
4371
4372 /// Convenience accessors.
4374 void setCatchPad(CatchPadInst *CatchPad) {
4375 assert(CatchPad);
4376 Op<0>() = CatchPad;
4377 }
4378
4380 void setSuccessor(BasicBlock *NewSucc) {
4381 assert(NewSucc);
4382 Op<1>() = NewSucc;
4383 }
4384 unsigned getNumSuccessors() const { return 1; }
4385
4386 /// Get the parentPad of this catchret's catchpad's catchswitch.
4387 /// The successor block is implicitly a member of this funclet.
4391
4392 // Methods for support type inquiry through isa, cast, and dyn_cast:
4393 static bool classof(const Instruction *I) {
4394 return (I->getOpcode() == Instruction::CatchRet);
4395 }
4396 static bool classof(const Value *V) {
4398 }
4399
4400private:
4401 BasicBlock *getSuccessor(unsigned Idx) const {
4402 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
4403 return getSuccessor();
4404 }
4405
4406 void setSuccessor(unsigned Idx, BasicBlock *B) {
4407 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
4408 setSuccessor(B);
4409 }
4410};
4411
4412template <>
4414 : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4415
4417
4418//===----------------------------------------------------------------------===//
4419// CleanupReturnInst Class
4420//===----------------------------------------------------------------------===//
4421
4422class CleanupReturnInst : public Instruction {
4423 using UnwindDestField = BoolBitfieldElementT<0>;
4424
4425private:
4426 CleanupReturnInst(const CleanupReturnInst &RI, AllocInfo AllocInfo);
4427 LLVM_ABI CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
4429 InsertPosition InsertBefore = nullptr);
4430
4431 void init(Value *CleanupPad, BasicBlock *UnwindBB);
4432
4433protected:
4434 // Note: Instruction needs to be a friend here to call cloneImpl.
4435 friend class Instruction;
4436
4437 LLVM_ABI CleanupReturnInst *cloneImpl() const;
4438
4439public:
4440 static CleanupReturnInst *Create(Value *CleanupPad,
4441 BasicBlock *UnwindBB = nullptr,
4442 InsertPosition InsertBefore = nullptr) {
4443 assert(CleanupPad);
4444 unsigned Values = 1;
4445 if (UnwindBB)
4446 ++Values;
4447 IntrusiveOperandsAllocMarker AllocMarker{Values};
4448 return new (AllocMarker)
4449 CleanupReturnInst(CleanupPad, UnwindBB, AllocMarker, InsertBefore);
4450 }
4451
4452 /// Provide fast operand accessors
4454
4456 bool unwindsToCaller() const { return !hasUnwindDest(); }
4457
4458 /// Convenience accessor.
4460 return cast<CleanupPadInst>(Op<0>());
4461 }
4462 void setCleanupPad(CleanupPadInst *CleanupPad) {
4463 assert(CleanupPad);
4464 Op<0>() = CleanupPad;
4465 }
4466
4467 unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4468
4470 return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4471 }
4472 void setUnwindDest(BasicBlock *NewDest) {
4473 assert(NewDest);
4475 Op<1>() = NewDest;
4476 }
4477
4478 // Methods for support type inquiry through isa, cast, and dyn_cast:
4479 static bool classof(const Instruction *I) {
4480 return (I->getOpcode() == Instruction::CleanupRet);
4481 }
4482 static bool classof(const Value *V) {
4484 }
4485
4486private:
4487 BasicBlock *getSuccessor(unsigned Idx) const {
4488 assert(Idx == 0);
4489 return getUnwindDest();
4490 }
4491
4492 void setSuccessor(unsigned Idx, BasicBlock *B) {
4493 assert(Idx == 0);
4494 setUnwindDest(B);
4495 }
4496
4497 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4498 // method so that subclasses cannot accidentally use it.
4499 template <typename Bitfield>
4500 void setSubclassData(typename Bitfield::Type Value) {
4502 }
4503};
4504
4505template <>
4507 : public VariadicOperandTraits<CleanupReturnInst> {};
4508
4510
4511//===----------------------------------------------------------------------===//
4512// UnreachableInst Class
4513//===----------------------------------------------------------------------===//
4514
4515//===---------------------------------------------------------------------------
4516/// This function has undefined behavior. In particular, the
4517/// presence of this instruction indicates some higher level knowledge that the
4518/// end of the block cannot be reached.
4519///
4521 constexpr static IntrusiveOperandsAllocMarker AllocMarker{0};
4522
4523protected:
4524 // Note: Instruction needs to be a friend here to call cloneImpl.
4525 friend class Instruction;
4526
4528
4529public:
4531 InsertPosition InsertBefore = nullptr);
4532
4533 // allocate space for exactly zero operands
4534 void *operator new(size_t S) { return User::operator new(S, AllocMarker); }
4535 void operator delete(void *Ptr) { User::operator delete(Ptr); }
4536
4537 unsigned getNumSuccessors() const { return 0; }
4538
4539 // Methods for support type inquiry through isa, cast, and dyn_cast:
4540 static bool classof(const Instruction *I) {
4541 return I->getOpcode() == Instruction::Unreachable;
4542 }
4543 static bool classof(const Value *V) {
4545 }
4546
4547 // Whether to do target lowering in SelectionDAG.
4548 LLVM_ABI bool shouldLowerToTrap(bool TrapUnreachable,
4549 bool NoTrapAfterNoreturn) const;
4550
4551private:
4552 BasicBlock *getSuccessor(unsigned idx) const {
4553 llvm_unreachable("UnreachableInst has no successors!");
4554 }
4555
4556 void setSuccessor(unsigned idx, BasicBlock *B) {
4557 llvm_unreachable("UnreachableInst has no successors!");
4558 }
4559};
4560
4561//===----------------------------------------------------------------------===//
4562// TruncInst Class
4563//===----------------------------------------------------------------------===//
4564
4565/// This class represents a truncation of integer types.
4566class TruncInst : public CastInst {
4567protected:
4568 // Note: Instruction needs to be a friend here to call cloneImpl.
4569 friend class Instruction;
4570
4571 /// Clone an identical TruncInst
4572 LLVM_ABI TruncInst *cloneImpl() const;
4573
4574public:
4575 enum { AnyWrap = 0, NoUnsignedWrap = (1 << 0), NoSignedWrap = (1 << 1) };
4576
4577 /// Constructor with insert-before-instruction semantics
4578 LLVM_ABI
4579 TruncInst(Value *S, ///< The value to be truncated
4580 Type *Ty, ///< The (smaller) type to truncate to
4581 const Twine &NameStr = "", ///< A name for the new instruction
4582 InsertPosition InsertBefore =
4583 nullptr ///< Where to insert the new instruction
4584 );
4585
4586 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4587 static bool classof(const Instruction *I) {
4588 return I->getOpcode() == Trunc;
4589 }
4590 static bool classof(const Value *V) {
4592 }
4593
4602
4603 /// Test whether this operation is known to never
4604 /// undergo unsigned overflow, aka the nuw property.
4605 bool hasNoUnsignedWrap() const {
4607 }
4608
4609 /// Test whether this operation is known to never
4610 /// undergo signed overflow, aka the nsw property.
4611 bool hasNoSignedWrap() const {
4612 return (SubclassOptionalData & NoSignedWrap) != 0;
4613 }
4614
4615 /// Returns the no-wrap kind of the operation.
4616 unsigned getNoWrapKind() const {
4617 unsigned NoWrapKind = 0;
4618 if (hasNoUnsignedWrap())
4619 NoWrapKind |= NoUnsignedWrap;
4620
4621 if (hasNoSignedWrap())
4622 NoWrapKind |= NoSignedWrap;
4623
4624 return NoWrapKind;
4625 }
4626};
4627
4628//===----------------------------------------------------------------------===//
4629// ZExtInst Class
4630//===----------------------------------------------------------------------===//
4631
4632/// This class represents zero extension of integer types.
4633class ZExtInst : public CastInst {
4634protected:
4635 // Note: Instruction needs to be a friend here to call cloneImpl.
4636 friend class Instruction;
4637
4638 /// Clone an identical ZExtInst
4639 LLVM_ABI ZExtInst *cloneImpl() const;
4640
4641public:
4642 /// Constructor with insert-before-instruction semantics
4643 LLVM_ABI
4644 ZExtInst(Value *S, ///< The value to be zero extended
4645 Type *Ty, ///< The type to zero extend to
4646 const Twine &NameStr = "", ///< A name for the new instruction
4647 InsertPosition InsertBefore =
4648 nullptr ///< Where to insert the new instruction
4649 );
4650
4651 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4652 static bool classof(const Instruction *I) {
4653 return I->getOpcode() == ZExt;
4654 }
4655 static bool classof(const Value *V) {
4657 }
4658};
4659
4660//===----------------------------------------------------------------------===//
4661// SExtInst Class
4662//===----------------------------------------------------------------------===//
4663
4664/// This class represents a sign extension of integer types.
4665class SExtInst : public CastInst {
4666protected:
4667 // Note: Instruction needs to be a friend here to call cloneImpl.
4668 friend class Instruction;
4669
4670 /// Clone an identical SExtInst
4671 LLVM_ABI SExtInst *cloneImpl() const;
4672
4673public:
4674 /// Constructor with insert-before-instruction semantics
4675 LLVM_ABI
4676 SExtInst(Value *S, ///< The value to be sign extended
4677 Type *Ty, ///< The type to sign extend to
4678 const Twine &NameStr = "", ///< A name for the new instruction
4679 InsertPosition InsertBefore =
4680 nullptr ///< Where to insert the new instruction
4681 );
4682
4683 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4684 static bool classof(const Instruction *I) {
4685 return I->getOpcode() == SExt;
4686 }
4687 static bool classof(const Value *V) {
4689 }
4690};
4691
4692//===----------------------------------------------------------------------===//
4693// FPTruncInst Class
4694//===----------------------------------------------------------------------===//
4695
4696/// This class represents a truncation of floating point types.
4697class FPTruncInst : public CastInst {
4698protected:
4699 // Note: Instruction needs to be a friend here to call cloneImpl.
4700 friend class Instruction;
4701
4702 /// Clone an identical FPTruncInst
4704
4705public: /// Constructor with insert-before-instruction semantics
4706 LLVM_ABI
4707 FPTruncInst(Value *S, ///< The value to be truncated
4708 Type *Ty, ///< The type to truncate to
4709 const Twine &NameStr = "", ///< A name for the new instruction
4710 InsertPosition InsertBefore =
4711 nullptr ///< Where to insert the new instruction
4712 );
4713
4714 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4715 static bool classof(const Instruction *I) {
4716 return I->getOpcode() == FPTrunc;
4717 }
4718 static bool classof(const Value *V) {
4720 }
4721};
4722
4723//===----------------------------------------------------------------------===//
4724// FPExtInst Class
4725//===----------------------------------------------------------------------===//
4726
4727/// This class represents an extension of floating point types.
4728class FPExtInst : public CastInst {
4729protected:
4730 // Note: Instruction needs to be a friend here to call cloneImpl.
4731 friend class Instruction;
4732
4733 /// Clone an identical FPExtInst
4734 LLVM_ABI FPExtInst *cloneImpl() const;
4735
4736public:
4737 /// Constructor with insert-before-instruction semantics
4738 LLVM_ABI
4739 FPExtInst(Value *S, ///< The value to be extended
4740 Type *Ty, ///< The type to extend to
4741 const Twine &NameStr = "", ///< A name for the new instruction
4742 InsertPosition InsertBefore =
4743 nullptr ///< Where to insert the new instruction
4744 );
4745
4746 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4747 static bool classof(const Instruction *I) {
4748 return I->getOpcode() == FPExt;
4749 }
4750 static bool classof(const Value *V) {
4752 }
4753};
4754
4755//===----------------------------------------------------------------------===//
4756// UIToFPInst Class
4757//===----------------------------------------------------------------------===//
4758
4759/// This class represents a cast unsigned integer to floating point.
4760class UIToFPInst : public CastInst {
4761protected:
4762 // Note: Instruction needs to be a friend here to call cloneImpl.
4763 friend class Instruction;
4764
4765 /// Clone an identical UIToFPInst
4766 LLVM_ABI UIToFPInst *cloneImpl() const;
4767
4768public:
4769 /// Constructor with insert-before-instruction semantics
4770 LLVM_ABI
4771 UIToFPInst(Value *S, ///< The value to be converted
4772 Type *Ty, ///< The type to convert to
4773 const Twine &NameStr = "", ///< A name for the new instruction
4774 InsertPosition InsertBefore =
4775 nullptr ///< Where to insert the new instruction
4776 );
4777
4778 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4779 static bool classof(const Instruction *I) {
4780 return I->getOpcode() == UIToFP;
4781 }
4782 static bool classof(const Value *V) {
4784 }
4785};
4786
4787//===----------------------------------------------------------------------===//
4788// SIToFPInst Class
4789//===----------------------------------------------------------------------===//
4790
4791/// This class represents a cast from signed integer to floating point.
4792class SIToFPInst : public CastInst {
4793protected:
4794 // Note: Instruction needs to be a friend here to call cloneImpl.
4795 friend class Instruction;
4796
4797 /// Clone an identical SIToFPInst
4798 LLVM_ABI SIToFPInst *cloneImpl() const;
4799
4800public:
4801 /// Constructor with insert-before-instruction semantics
4802 LLVM_ABI
4803 SIToFPInst(Value *S, ///< The value to be converted
4804 Type *Ty, ///< The type to convert to
4805 const Twine &NameStr = "", ///< A name for the new instruction
4806 InsertPosition InsertBefore =
4807 nullptr ///< Where to insert the new instruction
4808 );
4809
4810 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4811 static bool classof(const Instruction *I) {
4812 return I->getOpcode() == SIToFP;
4813 }
4814 static bool classof(const Value *V) {
4816 }
4817};
4818
4819//===----------------------------------------------------------------------===//
4820// FPToUIInst Class
4821//===----------------------------------------------------------------------===//
4822
4823/// This class represents a cast from floating point to unsigned integer
4824class FPToUIInst : public CastInst {
4825protected:
4826 // Note: Instruction needs to be a friend here to call cloneImpl.
4827 friend class Instruction;
4828
4829 /// Clone an identical FPToUIInst
4830 LLVM_ABI FPToUIInst *cloneImpl() const;
4831
4832public:
4833 /// Constructor with insert-before-instruction semantics
4834 LLVM_ABI
4835 FPToUIInst(Value *S, ///< The value to be converted
4836 Type *Ty, ///< The type to convert to
4837 const Twine &NameStr = "", ///< A name for the new instruction
4838 InsertPosition InsertBefore =
4839 nullptr ///< Where to insert the new instruction
4840 );
4841
4842 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4843 static bool classof(const Instruction *I) {
4844 return I->getOpcode() == FPToUI;
4845 }
4846 static bool classof(const Value *V) {
4848 }
4849};
4850
4851//===----------------------------------------------------------------------===//
4852// FPToSIInst Class
4853//===----------------------------------------------------------------------===//
4854
4855/// This class represents a cast from floating point to signed integer.
4856class FPToSIInst : public CastInst {
4857protected:
4858 // Note: Instruction needs to be a friend here to call cloneImpl.
4859 friend class Instruction;
4860
4861 /// Clone an identical FPToSIInst
4862 LLVM_ABI FPToSIInst *cloneImpl() const;
4863
4864public:
4865 /// Constructor with insert-before-instruction semantics
4866 LLVM_ABI
4867 FPToSIInst(Value *S, ///< The value to be converted
4868 Type *Ty, ///< The type to convert to
4869 const Twine &NameStr = "", ///< A name for the new instruction
4870 InsertPosition InsertBefore =
4871 nullptr ///< Where to insert the new instruction
4872 );
4873
4874 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4875 static bool classof(const Instruction *I) {
4876 return I->getOpcode() == FPToSI;
4877 }
4878 static bool classof(const Value *V) {
4880 }
4881};
4882
4883//===----------------------------------------------------------------------===//
4884// IntToPtrInst Class
4885//===----------------------------------------------------------------------===//
4886
4887/// This class represents a cast from an integer to a pointer.
4888class IntToPtrInst : public CastInst {
4889public:
4890 // Note: Instruction needs to be a friend here to call cloneImpl.
4891 friend class Instruction;
4892
4893 /// Constructor with insert-before-instruction semantics
4894 LLVM_ABI
4895 IntToPtrInst(Value *S, ///< The value to be converted
4896 Type *Ty, ///< The type to convert to
4897 const Twine &NameStr = "", ///< A name for the new instruction
4898 InsertPosition InsertBefore =
4899 nullptr ///< Where to insert the new instruction
4900 );
4901
4902 /// Clone an identical IntToPtrInst.
4904
4905 /// Returns the address space of this instruction's pointer type.
4906 unsigned getAddressSpace() const {
4907 return getType()->getPointerAddressSpace();
4908 }
4909
4910 // Methods for support type inquiry through isa, cast, and dyn_cast:
4911 static bool classof(const Instruction *I) {
4912 return I->getOpcode() == IntToPtr;
4913 }
4914 static bool classof(const Value *V) {
4916 }
4917};
4918
4919//===----------------------------------------------------------------------===//
4920// PtrToIntInst Class
4921//===----------------------------------------------------------------------===//
4922
4923/// This class represents a cast from a pointer to an integer.
4924class PtrToIntInst : public CastInst {
4925protected:
4926 // Note: Instruction needs to be a friend here to call cloneImpl.
4927 friend class Instruction;
4928
4929 /// Clone an identical PtrToIntInst.
4931
4932public:
4933 /// Constructor with insert-before-instruction semantics
4934 LLVM_ABI
4935 PtrToIntInst(Value *S, ///< The value to be converted
4936 Type *Ty, ///< The type to convert to
4937 const Twine &NameStr = "", ///< A name for the new instruction
4938 InsertPosition InsertBefore =
4939 nullptr ///< Where to insert the new instruction
4940 );
4941
4942 /// Gets the pointer operand.
4944 /// Gets the pointer operand.
4945 const Value *getPointerOperand() const { return getOperand(0); }
4946 /// Gets the operand index of the pointer operand.
4947 static unsigned getPointerOperandIndex() { return 0U; }
4948
4949 /// Returns the address space of the pointer operand.
4950 unsigned getPointerAddressSpace() const {
4952 }
4953
4954 // Methods for support type inquiry through isa, cast, and dyn_cast:
4955 static bool classof(const Instruction *I) {
4956 return I->getOpcode() == PtrToInt;
4957 }
4958 static bool classof(const Value *V) {
4960 }
4961};
4962
4963/// This class represents a cast from a pointer to an address (non-capturing
4964/// ptrtoint).
4965class PtrToAddrInst : public CastInst {
4966protected:
4967 // Note: Instruction needs to be a friend here to call cloneImpl.
4968 friend class Instruction;
4969
4970 /// Clone an identical PtrToAddrInst.
4971 PtrToAddrInst *cloneImpl() const;
4972
4973public:
4974 /// Constructor with insert-before-instruction semantics
4975 PtrToAddrInst(Value *S, ///< The value to be converted
4976 Type *Ty, ///< The type to convert to
4977 const Twine &NameStr = "", ///< A name for the new instruction
4978 InsertPosition InsertBefore =
4979 nullptr ///< Where to insert the new instruction
4980 );
4981
4982 /// Gets the pointer operand.
4984 /// Gets the pointer operand.
4985 const Value *getPointerOperand() const { return getOperand(0); }
4986 /// Gets the operand index of the pointer operand.
4987 static unsigned getPointerOperandIndex() { return 0U; }
4988
4989 /// Returns the address space of the pointer operand.
4990 unsigned getPointerAddressSpace() const {
4992 }
4993
4994 // Methods for support type inquiry through isa, cast, and dyn_cast:
4995 static bool classof(const Instruction *I) {
4996 return I->getOpcode() == PtrToAddr;
4997 }
4998 static bool classof(const Value *V) {
5000 }
5001};
5002
5003//===----------------------------------------------------------------------===//
5004// BitCastInst Class
5005//===----------------------------------------------------------------------===//
5006
5007/// This class represents a no-op cast from one type to another.
5008class BitCastInst : public CastInst {
5009protected:
5010 // Note: Instruction needs to be a friend here to call cloneImpl.
5011 friend class Instruction;
5012
5013 /// Clone an identical BitCastInst.
5015
5016public:
5017 /// Constructor with insert-before-instruction semantics
5018 LLVM_ABI
5019 BitCastInst(Value *S, ///< The value to be casted
5020 Type *Ty, ///< The type to casted to
5021 const Twine &NameStr = "", ///< A name for the new instruction
5022 InsertPosition InsertBefore =
5023 nullptr ///< Where to insert the new instruction
5024 );
5025
5026 // Methods for support type inquiry through isa, cast, and dyn_cast:
5027 static bool classof(const Instruction *I) {
5028 return I->getOpcode() == BitCast;
5029 }
5030 static bool classof(const Value *V) {
5032 }
5033};
5034
5035//===----------------------------------------------------------------------===//
5036// AddrSpaceCastInst Class
5037//===----------------------------------------------------------------------===//
5038
5039/// This class represents a conversion between pointers from one address space
5040/// to another.
5042protected:
5043 // Note: Instruction needs to be a friend here to call cloneImpl.
5044 friend class Instruction;
5045
5046 /// Clone an identical AddrSpaceCastInst.
5048
5049public:
5050 /// Constructor with insert-before-instruction semantics
5052 Value *S, ///< The value to be casted
5053 Type *Ty, ///< The type to casted to
5054 const Twine &NameStr = "", ///< A name for the new instruction
5055 InsertPosition InsertBefore =
5056 nullptr ///< Where to insert the new instruction
5057 );
5058
5059 // Methods for support type inquiry through isa, cast, and dyn_cast:
5060 static bool classof(const Instruction *I) {
5061 return I->getOpcode() == AddrSpaceCast;
5062 }
5063 static bool classof(const Value *V) {
5065 }
5066
5067 /// Gets the pointer operand.
5069 return getOperand(0);
5070 }
5071
5072 /// Gets the pointer operand.
5073 const Value *getPointerOperand() const {
5074 return getOperand(0);
5075 }
5076
5077 /// Gets the operand index of the pointer operand.
5078 static unsigned getPointerOperandIndex() {
5079 return 0U;
5080 }
5081
5082 /// Returns the address space of the pointer operand.
5083 unsigned getSrcAddressSpace() const {
5085 }
5086
5087 /// Returns the address space of the result.
5088 unsigned getDestAddressSpace() const {
5089 return getType()->getPointerAddressSpace();
5090 }
5091};
5092
5093//===----------------------------------------------------------------------===//
5094// Helper functions
5095//===----------------------------------------------------------------------===//
5096
5097/// A helper function that returns the pointer operand of a load or store
5098/// instruction. Returns nullptr if not load or store.
5099inline const Value *getLoadStorePointerOperand(const Value *V) {
5100 if (auto *Load = dyn_cast<LoadInst>(V))
5101 return Load->getPointerOperand();
5102 if (auto *Store = dyn_cast<StoreInst>(V))
5103 return Store->getPointerOperand();
5104 return nullptr;
5105}
5107 return const_cast<Value *>(
5108 getLoadStorePointerOperand(static_cast<const Value *>(V)));
5109}
5110
5111/// A helper function that returns the pointer operand of a load, store
5112/// or GEP instruction. Returns nullptr if not load, store, or GEP.
5113inline const Value *getPointerOperand(const Value *V) {
5114 if (auto *Ptr = getLoadStorePointerOperand(V))
5115 return Ptr;
5116 if (auto *Gep = dyn_cast<GetElementPtrInst>(V))
5117 return Gep->getPointerOperand();
5118 return nullptr;
5119}
5121 return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V)));
5122}
5123
5124/// A helper function that returns the alignment of load or store instruction.
5127 "Expected Load or Store instruction");
5128 if (auto *LI = dyn_cast<LoadInst>(I))
5129 return LI->getAlign();
5130 return cast<StoreInst>(I)->getAlign();
5131}
5132
5133/// A helper function that set the alignment of load or store instruction.
5134inline void setLoadStoreAlignment(Value *I, Align NewAlign) {
5136 "Expected Load or Store instruction");
5137 if (auto *LI = dyn_cast<LoadInst>(I))
5138 LI->setAlignment(NewAlign);
5139 else
5140 cast<StoreInst>(I)->setAlignment(NewAlign);
5141}
5142
5143/// A helper function that returns the address space of the pointer operand of
5144/// load or store instruction.
5145inline unsigned getLoadStoreAddressSpace(const Value *I) {
5147 "Expected Load or Store instruction");
5148 if (auto *LI = dyn_cast<LoadInst>(I))
5149 return LI->getPointerAddressSpace();
5150 return cast<StoreInst>(I)->getPointerAddressSpace();
5151}
5152
5153/// A helper function that returns the type of a load or store instruction.
5154inline Type *getLoadStoreType(const Value *I) {
5156 "Expected Load or Store instruction");
5157 if (auto *LI = dyn_cast<LoadInst>(I))
5158 return LI->getType();
5159 return cast<StoreInst>(I)->getValueOperand()->getType();
5160}
5161
5162/// A helper function that returns an atomic operation's sync scope; returns
5163/// std::nullopt if it is not an atomic operation.
5164inline std::optional<SyncScope::ID> getAtomicSyncScopeID(const Instruction *I) {
5165 if (!I->isAtomic())
5166 return std::nullopt;
5167 if (auto *AI = dyn_cast<LoadInst>(I))
5168 return AI->getSyncScopeID();
5169 if (auto *AI = dyn_cast<StoreInst>(I))
5170 return AI->getSyncScopeID();
5171 if (auto *AI = dyn_cast<FenceInst>(I))
5172 return AI->getSyncScopeID();
5173 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I))
5174 return AI->getSyncScopeID();
5175 if (auto *AI = dyn_cast<AtomicRMWInst>(I))
5176 return AI->getSyncScopeID();
5177 llvm_unreachable("unhandled atomic operation");
5178}
5179
5180/// A helper function that sets an atomic operation's sync scope.
5182 assert(I->isAtomic());
5183 if (auto *AI = dyn_cast<LoadInst>(I))
5184 AI->setSyncScopeID(SSID);
5185 else if (auto *AI = dyn_cast<StoreInst>(I))
5186 AI->setSyncScopeID(SSID);
5187 else if (auto *AI = dyn_cast<FenceInst>(I))
5188 AI->setSyncScopeID(SSID);
5189 else if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I))
5190 AI->setSyncScopeID(SSID);
5191 else if (auto *AI = dyn_cast<AtomicRMWInst>(I))
5192 AI->setSyncScopeID(SSID);
5193 else
5194 llvm_unreachable("unhandled atomic operation");
5195}
5196
5197//===----------------------------------------------------------------------===//
5198// FreezeInst Class
5199//===----------------------------------------------------------------------===//
5200
5201/// This class represents a freeze function that returns random concrete
5202/// value if an operand is either a poison value or an undef value
5204protected:
5205 // Note: Instruction needs to be a friend here to call cloneImpl.
5206 friend class Instruction;
5207
5208 /// Clone an identical FreezeInst
5209 LLVM_ABI FreezeInst *cloneImpl() const;
5210
5211public:
5212 LLVM_ABI explicit FreezeInst(Value *S, const Twine &NameStr = "",
5213 InsertPosition InsertBefore = nullptr);
5214
5215 // Methods for support type inquiry through isa, cast, and dyn_cast:
5216 static inline bool classof(const Instruction *I) {
5217 return I->getOpcode() == Freeze;
5218 }
5219 static inline bool classof(const Value *V) {
5221 }
5222};
5223
5224} // end namespace llvm
5225
5226#endif // LLVM_IR_INSTRUCTIONS_H
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
constexpr LLT S1
static bool isReverseMask(ArrayRef< int > M, EVT VT)
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
always inline
Atomic ordering constants.
static const Function * getParent(const Value *V)
This file implements methods to test, set and extract typed bits from packed unsigned integers.
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_ABI
Definition Compiler.h:213
Hexagon Common GEP
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This defines the Use class.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
This file implements a map that provides insertion order iteration.
#define T
uint64_t IntrinsicInst * II
#define DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CLASS, VALUECLASS)
Macro for generating out-of-class operand accessor definitions.
#define P(N)
PowerPC Reduce CR logical Operation
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition APInt.h:78
const Value * getPointerOperand() const
Gets the pointer operand.
LLVM_ABI AddrSpaceCastInst * cloneImpl() const
Clone an identical AddrSpaceCastInst.
Value * getPointerOperand()
Gets the pointer operand.
static bool classof(const Instruction *I)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Value *V)
unsigned getSrcAddressSpace() const
Returns the address space of the pointer operand.
LLVM_ABI AddrSpaceCastInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
unsigned getDestAddressSpace() const
Returns the address space of the result.
static unsigned getPointerOperandIndex()
Gets the operand index of the pointer operand.
LLVM_ABI std::optional< TypeSize > getAllocationSizeInBits(const DataLayout &DL) const
Get allocation size in bits.
static bool classof(const Value *V)
bool isSwiftError() const
Return true if this alloca is used as a swifterror argument to a call.
void setSwiftError(bool V)
Specify whether this alloca is used to represent a swifterror.
LLVM_ABI bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size.
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
void setAllocatedType(Type *Ty)
for use only in special circumstances that need to generically transform a whole instruction (eg: IR ...
static bool classof(const Instruction *I)
PointerType * getType() const
Overload to return most specific pointer type.
void setUsedWithInAlloca(bool V)
Specify whether this alloca is used to represent the arguments to a call.
LLVM_ABI AllocaInst * cloneImpl() const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
bool isUsedWithInAlloca() const
Return true if this alloca is used as an inalloca argument to a call.
Value * getArraySize()
unsigned getAddressSpace() const
Return the address space for the allocation.
LLVM_ABI std::optional< TypeSize > getAllocationSize(const DataLayout &DL) const
Get allocation size in bytes.
LLVM_ABI bool isArrayAllocation() const
Return true if there is an allocation size parameter to the allocation instruction that is not 1.
void setAlignment(Align Align)
const Value * getArraySize() const
Get the number of elements allocated.
LLVM_ABI AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, const Twine &Name, InsertPosition InsertBefore)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
An instruction that atomically checks whether a specified value is in a memory location,...
BoolBitfieldElementT< 0 > VolatileField
const Value * getCompareOperand() const
AlignmentBitfieldElementT< FailureOrderingField::NextBit > AlignmentField
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this cmpxchg instruction.
AtomicOrdering getMergedOrdering() const
Returns a single ordering which is at least as strong as both the success and failure orderings for t...
void setWeak(bool IsWeak)
bool isVolatile() const
Return true if this is a cmpxchg from a volatile memory location.
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
BoolBitfieldElementT< VolatileField::NextBit > WeakField
void setFailureOrdering(AtomicOrdering Ordering)
Sets the failure ordering constraint of this cmpxchg instruction.
AtomicOrderingBitfieldElementT< SuccessOrderingField::NextBit > FailureOrderingField
static bool isValidFailureOrdering(AtomicOrdering Ordering)
AtomicOrderingBitfieldElementT< WeakField::NextBit > SuccessOrderingField
AtomicOrdering getFailureOrdering() const
Returns the failure ordering constraint of this cmpxchg instruction.
void setSuccessOrdering(AtomicOrdering Ordering)
Sets the success ordering constraint of this cmpxchg instruction.
static AtomicOrdering getStrongestFailureOrdering(AtomicOrdering SuccessOrdering)
Returns the strongest permitted ordering on failure, given the desired ordering on success.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
LLVM_ABI AtomicCmpXchgInst * cloneImpl() const
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
const Value * getPointerOperand() const
static bool classof(const Value *V)
bool isWeak() const
Return true if this cmpxchg may spuriously fail.
void setAlignment(Align Align)
void setVolatile(bool V)
Specify whether this is a volatile cmpxchg.
static bool isValidSuccessOrdering(AtomicOrdering Ordering)
AtomicOrdering getSuccessOrdering() const
Returns the success ordering constraint of this cmpxchg instruction.
static unsigned getPointerOperandIndex()
const Value * getNewValOperand() const
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this cmpxchg instruction.
LLVM_ABI AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, SyncScope::ID SSID, InsertPosition InsertBefore=nullptr)
static bool classof(const Instruction *I)
an instruction that atomically reads a memory location, combines it with another value,...
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
static bool isFPOperation(BinOp Op)
LLVM_ABI AtomicRMWInst * cloneImpl() const
static unsigned getPointerOperandIndex()
bool isVolatile() const
Return true if this is a RMW on a volatile memory location.
void setVolatile(bool V)
Specify whether this is a volatile RMW or not.
BinOpBitfieldElement< AtomicOrderingField::NextBit > OperationField
BinOp
This enumeration lists the possible modifications atomicrmw can make.
@ Add
*p = old + v
@ FAdd
*p = old + v
@ USubCond
Subtract only if no unsigned overflow.
@ FMinimum
*p = minimum(old, v) minimum matches the behavior of llvm.minimum.
@ Min
*p = old <signed v ? old : v
@ Sub
*p = old - v
@ And
*p = old & v
@ Xor
*p = old ^ v
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ FMaximum
*p = maximum(old, v) maximum matches the behavior of llvm.maximum.
@ FSub
*p = old - v
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ UMax
*p = old >unsigned v ? old : v
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
@ Nand
*p = ~(old & v)
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this rmw instruction.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
Value * getPointerOperand()
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this rmw instruction.
bool isFloatingPointOperation() const
static bool classof(const Instruction *I)
const Value * getPointerOperand() const
void setOperation(BinOp Operation)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Value *V)
BinOp getOperation() const
const Value * getValOperand() const
LLVM_ABI AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, AtomicOrdering Ordering, SyncScope::ID SSID, InsertPosition InsertBefore=nullptr)
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this rmw instruction.
void setAlignment(Align Align)
AtomicOrdering getOrdering() const
Returns the ordering constraint of this rmw instruction.
AlignmentBitfieldElementT< OperationField::NextBit > AlignmentField
BoolBitfieldElementT< 0 > VolatileField
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
AtomicOrderingBitfieldElementT< VolatileField::NextBit > AtomicOrderingField
LLVM Basic Block Representation.
Definition BasicBlock.h:62
static bool classof(const Instruction *I)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Value *V)
LLVM_ABI BitCastInst * cloneImpl() const
Clone an identical BitCastInst.
LLVM_ABI BitCastInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Conditional or Unconditional Branch instruction.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
iterator_range< succ_op_iterator > successors()
static BranchInst * Create(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, InsertPosition InsertBefore=nullptr)
void setCondition(Value *V)
static bool classof(const Instruction *I)
LLVM_ABI BranchInst * cloneImpl() const
bool isConditional() const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
unsigned getNumSuccessors() const
static bool classof(const Value *V)
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
Value * getCondition() const
iterator_range< const_succ_op_iterator > successors() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
void addFnAttr(Attribute::AttrKind Kind)
Adds the attribute to the function.
bool hasFnAttr(Attribute::AttrKind Kind) const
Determine whether this call has the given attribute.
CallBase(AttributeList const &A, FunctionType *FT, ArgsTy &&... Args)
FunctionType * FTy
LLVM_ABI Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
static unsigned CountBundleInputs(ArrayRef< OperandBundleDef > Bundles)
Return the total number of values used in Bundles.
unsigned arg_size() const
unsigned getNumTotalBundleOperands() const
Return the total number operands (not operand bundles) used by every operand bundle in this OperandBu...
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
static bool classof(const Value *V)
static CallBrInst * Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef< BasicBlock * > IndirectDests, ArrayRef< Value * > Args, ArrayRef< OperandBundleDef > Bundles={}, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static bool classof(const Instruction *I)
static CallBrInst * Create(FunctionCallee Func, BasicBlock *DefaultDest, ArrayRef< BasicBlock * > IndirectDests, ArrayRef< Value * > Args, ArrayRef< OperandBundleDef > Bundles={}, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
SmallVector< BasicBlock *, 16 > getIndirectDests() const
static CallBrInst * Create(FunctionCallee Func, BasicBlock *DefaultDest, ArrayRef< BasicBlock * > IndirectDests, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
void setSuccessor(unsigned i, BasicBlock *NewSucc)
BasicBlock * getSuccessor(unsigned i) const
Value * getIndirectDestLabelUse(unsigned i) const
BasicBlock * getIndirectDest(unsigned i) const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
void setDefaultDest(BasicBlock *B)
unsigned getNumSuccessors() const
void setIndirectDest(unsigned i, BasicBlock *B)
Value * getIndirectDestLabel(unsigned i) const
getIndirectDestLabel - Return the i-th indirect dest label.
BasicBlock * getDefaultDest() const
unsigned getNumIndirectDests() const
Return the number of callbr indirect dest labels.
static CallBrInst * Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef< BasicBlock * > IndirectDests, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
LLVM_ABI CallBrInst * cloneImpl() const
This class represents a function call, abstracting a target machine's calling convention.
bool isNoTailCall() const
LLVM_ABI void updateProfWeight(uint64_t S, uint64_t T)
Updates profile metadata by scaling it by S / T.
static bool classof(const Value *V)
bool isTailCall() const
void setCanReturnTwice()
void setTailCallKind(TailCallKind TCK)
Bitfield::Element< TailCallKind, 0, 2, TCK_LAST > TailCallKindField
static CallInst * Create(FunctionType *Ty, Value *Func, ArrayRef< Value * > Args, ArrayRef< OperandBundleDef > Bundles={}, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static CallInst * Create(FunctionType *Ty, Value *Func, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
bool canReturnTwice() const
Return true if the call can return twice.
TailCallKind getTailCallKind() const
LLVM_ABI CallInst * cloneImpl() const
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
void setTailCall(bool IsTc=true)
bool isMustTailCall() const
static CallInst * Create(FunctionCallee Func, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
static bool classof(const Instruction *I)
bool isNonContinuableTrap() const
Return true if the call is for a noreturn trap intrinsic.
static CallInst * Create(FunctionCallee Func, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static CallInst * Create(FunctionCallee Func, ArrayRef< Value * > Args, ArrayRef< OperandBundleDef > Bundles={}, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
CastInst(Type *Ty, unsigned iType, Value *S, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics for subclasses.
Definition InstrTypes.h:451
CatchSwitchInst * getCatchSwitch() const
Convenience accessors.
void setCatchSwitch(Value *CatchSwitch)
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
static CatchPadInst * Create(Value *CatchSwitch, ArrayRef< Value * > Args, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static bool classof(const Value *V)
static bool classof(const Instruction *I)
BasicBlock * getSuccessor() const
CatchPadInst * getCatchPad() const
Convenience accessors.
void setSuccessor(BasicBlock *NewSucc)
static bool classof(const Value *V)
static CatchReturnInst * Create(Value *CatchPad, BasicBlock *BB, InsertPosition InsertBefore=nullptr)
unsigned getNumSuccessors() const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
void setCatchPad(CatchPadInst *CatchPad)
LLVM_ABI CatchReturnInst * cloneImpl() const
Value * getCatchSwitchParentPad() const
Get the parentPad of this catchret's catchpad's catchswitch.
void setUnwindDest(BasicBlock *UnwindDest)
static bool classof(const Instruction *I)
BasicBlock *(*)(Value *) DerefFnTy
const BasicBlock *(*)(const Value *) ConstDerefFnTy
unsigned getNumSuccessors() const
const_handler_iterator handler_begin() const
Returns an iterator that points to the first handler in the CatchSwitchInst.
mapped_iterator< const_op_iterator, ConstDerefFnTy > const_handler_iterator
LLVM_ABI CatchSwitchInst * cloneImpl() const
mapped_iterator< op_iterator, DerefFnTy > handler_iterator
unsigned getNumHandlers() const
return the number of 'handlers' in this catchswitch instruction, except the default handler
iterator_range< handler_iterator > handler_range
void setSuccessor(unsigned Idx, BasicBlock *NewSucc)
Value * getParentPad() const
iterator_range< const_handler_iterator > const_handler_range
friend class Instruction
Iterator for Instructions in a `BasicBlock.
void setParentPad(Value *ParentPad)
bool unwindsToCaller() const
static bool classof(const Value *V)
handler_iterator handler_end()
Returns a read-only iterator that points one past the last handler in the CatchSwitchInst.
BasicBlock * getUnwindDest() const
BasicBlock * getSuccessor(unsigned Idx) const
const_handler_iterator handler_end() const
Returns an iterator that points one past the last handler in the CatchSwitchInst.
bool hasUnwindDest() const
handler_iterator handler_begin()
Returns an iterator that points to the first handler in CatchSwitchInst.
static CatchSwitchInst * Create(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumHandlers, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
handler_range handlers()
iteration adapter for range-for loops.
const_handler_range handlers() const
iteration adapter for range-for loops.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
static bool classof(const Value *V)
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
static CleanupPadInst * Create(Value *ParentPad, ArrayRef< Value * > Args={}, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static bool classof(const Instruction *I)
CleanupPadInst * getCleanupPad() const
Convenience accessor.
unsigned getNumSuccessors() const
BasicBlock * getUnwindDest() const
void setCleanupPad(CleanupPadInst *CleanupPad)
static bool classof(const Value *V)
void setUnwindDest(BasicBlock *NewDest)
static CleanupReturnInst * Create(Value *CleanupPad, BasicBlock *UnwindBB=nullptr, InsertPosition InsertBefore=nullptr)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
LLVM_ABI CleanupReturnInst * cloneImpl() const
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition InstrTypes.h:982
void setPredicate(Predicate P)
Set the predicate for this instruction to the specified value.
Definition InstrTypes.h:768
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition InstrTypes.h:679
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
Definition InstrTypes.h:693
@ ICMP_SLT
signed less than
Definition InstrTypes.h:705
@ ICMP_SLE
signed less or equal
Definition InstrTypes.h:706
@ ICMP_UGE
unsigned greater or equal
Definition InstrTypes.h:700
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_SGT
signed greater than
Definition InstrTypes.h:703
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
Definition InstrTypes.h:684
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
Definition InstrTypes.h:687
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
Definition InstrTypes.h:685
@ ICMP_NE
not equal
Definition InstrTypes.h:698
@ ICMP_SGE
signed greater or equal
Definition InstrTypes.h:704
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Definition InstrTypes.h:692
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:702
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
Definition InstrTypes.h:678
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition InstrTypes.h:686
static auto ICmpPredicates()
Returns the sequence of all ICmp predicates.
Definition InstrTypes.h:722
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition InstrTypes.h:827
static auto FCmpPredicates()
Returns the sequence of all FCmp predicates.
Definition InstrTypes.h:715
Predicate getNonStrictPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
Definition InstrTypes.h:871
bool isFPPredicate() const
Definition InstrTypes.h:782
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition InstrTypes.h:789
Predicate getPredicate() const
Return the predicate for this instruction.
Definition InstrTypes.h:765
static bool isIntPredicate(Predicate P)
Definition InstrTypes.h:776
LLVM_ABI CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred, Value *LHS, Value *RHS, const Twine &Name="", InsertPosition InsertBefore=nullptr, Instruction *FlagsSource=nullptr)
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
Definition Constants.h:87
This is an important base class in LLVM.
Definition Constant.h:43
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
This instruction extracts a single (scalar) element from a VectorType value.
const Value * getVectorOperand() const
LLVM_ABI ExtractElementInst * cloneImpl() const
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
static bool classof(const Value *V)
static ExtractElementInst * Create(Value *Vec, Value *Idx, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
const Value * getIndexOperand() const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Instruction *I)
VectorType * getVectorOperandType() const
static LLVM_ABI bool isValidOperands(const Value *Vec, const Value *Idx)
Return true if an extractelement instruction can be formed with the specified operands.
ArrayRef< unsigned > getIndices() const
unsigned getNumIndices() const
static bool classof(const Value *V)
static bool classof(const Instruction *I)
LLVM_ABI ExtractValueInst * cloneImpl() const
const unsigned * idx_iterator
iterator_range< idx_iterator > indices() const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
idx_iterator idx_end() const
static ExtractValueInst * Create(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
const Value * getAggregateOperand() const
static unsigned getAggregateOperandIndex()
idx_iterator idx_begin() const
bool isRelational() const
FCmpInst(Predicate Pred, Value *LHS, Value *RHS, const Twine &NameStr="", Instruction *FlagsSource=nullptr)
Constructor with no-insertion semantics.
bool isEquality() const
static bool classof(const Value *V)
bool isCommutative() const
static bool isCommutative(Predicate Pred)
static LLVM_ABI bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
static bool isEquality(Predicate Pred)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
static auto predicates()
Returns the sequence of all FCmp predicates.
LLVM_ABI FCmpInst * cloneImpl() const
Clone an identical FCmpInst.
void swapOperands()
Exchange the two operands to this instruction in such a way that it does not modify the semantics of ...
FCmpInst(InsertPosition InsertBefore, Predicate pred, Value *LHS, Value *RHS, const Twine &NameStr="")
Constructor with insertion semantics.
static bool classof(const Value *V)
LLVM_ABI FPExtInst * cloneImpl() const
Clone an identical FPExtInst.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
LLVM_ABI FPExtInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
static bool classof(const Value *V)
LLVM_ABI FPToSIInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
LLVM_ABI FPToSIInst * cloneImpl() const
Clone an identical FPToSIInst.
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Value *V)
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
friend class Instruction
Iterator for Instructions in a `BasicBlock.
LLVM_ABI FPToUIInst * cloneImpl() const
Clone an identical FPToUIInst.
LLVM_ABI FPToUIInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
LLVM_ABI FPTruncInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
static bool classof(const Value *V)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
LLVM_ABI FPTruncInst * cloneImpl() const
Clone an identical FPTruncInst.
static bool classof(const Value *V)
LLVM_ABI FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System, InsertPosition InsertBefore=nullptr)
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this fence instruction.
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this fence instruction.
LLVM_ABI FenceInst * cloneImpl() const
static bool classof(const Instruction *I)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this fence instruction.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this fence instruction.
static bool classof(const Value *V)
LLVM_ABI FreezeInst(Value *S, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
LLVM_ABI FreezeInst * cloneImpl() const
Clone an identical FreezeInst.
static bool classof(const Instruction *I)
friend class CatchPadInst
friend class Instruction
Iterator for Instructions in a `BasicBlock.
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Class to represent function types.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
LLVM_ABI bool isInBounds() const
Determine whether the GEP has the inbounds flag.
LLVM_ABI bool hasNoUnsignedSignedWrap() const
Determine whether the GEP has the nusw flag.
static LLVM_ABI Type * getTypeAtIndex(Type *Ty, Value *Idx)
Return the type of the element at the given index of an indexable type.
LLVM_ABI bool hasAllZeroIndices() const
Return true if all of the indices of this GEP are zeros.
static Type * getGEPReturnType(Value *Ptr, ArrayRef< Value * > IdxList)
Returns the pointer type returned by the GEP instruction, which may be a vector of pointers.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
void setResultElementType(Type *Ty)
LLVM_ABI bool hasNoUnsignedWrap() const
Determine whether the GEP has the nuw flag.
LLVM_ABI bool hasAllConstantIndices() const
Return true if all of the indices of this GEP are constant integers.
unsigned getAddressSpace() const
Returns the address space of this instruction's pointer type.
iterator_range< const_op_iterator > indices() const
Type * getResultElementType() const
static bool classof(const Instruction *I)
static bool classof(const Value *V)
iterator_range< op_iterator > indices()
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI void setIsInBounds(bool b=true)
Set or clear the inbounds flag on this GEP instruction.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
void setSourceElementType(Type *Ty)
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
Type * getSourceElementType() const
static GetElementPtrInst * CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Create an "inbounds" getelementptr.
Type * getPointerOperandType() const
Method to return the pointer operand as a PointerType.
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, GEPNoWrapFlags NW, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static unsigned getPointerOperandIndex()
LLVM_ABI bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const
Accumulate the constant address offset of this GEP if possible.
const_op_iterator idx_begin() const
LLVM_ABI GetElementPtrInst * cloneImpl() const
LLVM_ABI bool collectOffset(const DataLayout &DL, unsigned BitWidth, SmallMapVector< Value *, APInt, 4 > &VariableOffsets, APInt &ConstantOffset) const
LLVM_ABI void setNoWrapFlags(GEPNoWrapFlags NW)
Set nowrap flags for GEP instruction.
unsigned getNumIndices() const
LLVM_ABI GEPNoWrapFlags getNoWrapFlags() const
Get the nowrap flags for the GEP instruction.
const_op_iterator idx_end() const
const Value * getPointerOperand() const
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
bool hasSameSign() const
An icmp instruction, which can be marked as "samesign", indicating that the two operands have the sam...
static bool classof(const Value *V)
void setSameSign(bool B=true)
ICmpInst(InsertPosition InsertBefore, Predicate pred, Value *LHS, Value *RHS, const Twine &NameStr="")
Constructor with insertion semantics.
static bool isCommutative(Predicate P)
static CmpPredicate getSwappedCmpPredicate(CmpPredicate Pred)
CmpPredicate getCmpPredicate() const
bool isCommutative() const
static bool isGE(Predicate P)
Return true if the predicate is SGE or UGE.
CmpPredicate getSwappedCmpPredicate() const
static bool isLT(Predicate P)
Return true if the predicate is SLT or ULT.
LLVM_ABI ICmpInst * cloneImpl() const
Clone an identical ICmpInst.
CmpPredicate getInverseCmpPredicate() const
Predicate getNonStrictCmpPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
static bool isGT(Predicate P)
Return true if the predicate is SGT or UGT.
static bool classof(const Instruction *I)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Predicate getFlippedSignednessPredicate() const
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
static CmpPredicate getNonStrictCmpPredicate(CmpPredicate Pred)
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
static CmpPredicate getInverseCmpPredicate(CmpPredicate Pred)
bool isEquality() const
Return true if this predicate is either EQ or NE.
static LLVM_ABI Predicate getFlippedSignednessPredicate(Predicate Pred)
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
static bool isRelational(Predicate P)
Return true if the predicate is relational (not EQ or NE).
void swapOperands()
Exchange the two operands to this instruction in such a way that it does not modify the semantics of ...
static auto predicates()
Returns the sequence of all ICmp predicates.
ICmpInst(Predicate pred, Value *LHS, Value *RHS, const Twine &NameStr="")
Constructor with no-insertion semantics.
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
static bool isLE(Predicate P)
Return true if the predicate is SLE or ULE.
Indirect Branch Instruction.
static IndirectBrInst * Create(Value *Address, unsigned NumDests, InsertPosition InsertBefore=nullptr)
BasicBlock * getDestination(unsigned i)
Return the specified destination.
static bool classof(const Value *V)
const Value * getAddress() const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Instruction *I)
BasicBlock * getSuccessor(unsigned i) const
iterator_range< const_succ_op_iterator > successors() const
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
unsigned getNumDestinations() const
return the number of possible destinations in this indirectbr instruction.
const BasicBlock * getDestination(unsigned i) const
void setSuccessor(unsigned i, BasicBlock *NewSucc)
void setAddress(Value *V)
unsigned getNumSuccessors() const
iterator_range< succ_op_iterator > successors()
LLVM_ABI IndirectBrInst * cloneImpl() const
This instruction inserts a single (scalar) element into a VectorType value.
LLVM_ABI InsertElementInst * cloneImpl() const
static bool classof(const Value *V)
static InsertElementInst * Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
VectorType * getType() const
Overload to return most specific vector type.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Instruction *I)
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
This instruction inserts a struct field of array element value into an aggregate value.
Value * getInsertedValueOperand()
static bool classof(const Instruction *I)
static unsigned getAggregateOperandIndex()
const unsigned * idx_iterator
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Value *V)
unsigned getNumIndices() const
ArrayRef< unsigned > getIndices() const
iterator_range< idx_iterator > indices() const
static unsigned getInsertedValueOperandIndex()
LLVM_ABI InsertValueInst * cloneImpl() const
idx_iterator idx_end() const
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
const Value * getAggregateOperand() const
const Value * getInsertedValueOperand() const
idx_iterator idx_begin() const
BitfieldElement::Type getSubclassData() const
typename Bitfield::Element< unsigned, Offset, 6, Value::MaxAlignmentExponent > AlignmentBitfieldElementT
typename Bitfield::Element< AtomicOrdering, Offset, 3, AtomicOrdering::LAST > AtomicOrderingBitfieldElementT
typename Bitfield::Element< bool, Offset, 1 > BoolBitfieldElementT
LLVM_ABI bool isAtomic() const LLVM_READONLY
Return true if this instruction has an AtomicOrdering of unordered or higher.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
friend class BasicBlock
Various leaf nodes.
void setSubclassData(typename BitfieldElement::Type Value)
static bool classof(const Instruction *I)
LLVM_ABI IntToPtrInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI IntToPtrInst * cloneImpl() const
Clone an identical IntToPtrInst.
unsigned getAddressSpace() const
Returns the address space of this instruction's pointer type.
static bool classof(const Value *V)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Instruction *I)
BasicBlock * getUnwindDest() const
void setNormalDest(BasicBlock *B)
LLVM_ABI InvokeInst * cloneImpl() const
static bool classof(const Value *V)
static InvokeInst * Create(FunctionCallee Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
void setSuccessor(unsigned i, BasicBlock *NewSucc)
static InvokeInst * Create(FunctionCallee Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, ArrayRef< OperandBundleDef > Bundles={}, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
void setUnwindDest(BasicBlock *B)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
BasicBlock * getNormalDest() const
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, ArrayRef< OperandBundleDef > Bundles={}, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
unsigned getNumSuccessors() const
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
The landingpad instruction holds all of the information necessary to generate correct exception handl...
bool isCleanup() const
Return 'true' if this landingpad instruction is a cleanup.
LLVM_ABI LandingPadInst * cloneImpl() const
unsigned getNumClauses() const
Get the number of clauses for this landing pad.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
bool isCatch(unsigned Idx) const
Return 'true' if the clause and index Idx is a catch clause.
bool isFilter(unsigned Idx) const
Return 'true' if the clause and index Idx is a filter clause.
Constant * getClause(unsigned Idx) const
Get the value of the clause at index Idx.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Value *V)
void setCleanup(bool V)
Indicate that this landingpad instruction is a cleanup.
void reserveClauses(unsigned Size)
Grow the size of the operand list to accommodate the new number of clauses.
static bool classof(const Instruction *I)
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
const Value * getPointerOperand() const
void setAlignment(Align Align)
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
static bool classof(const Instruction *I)
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this load instruction.
static bool classof(const Value *V)
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this load instruction.
void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Sets the ordering constraint and the synchronization scope ID of this load instruction.
LLVM_ABI LoadInst * cloneImpl() const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this load instruction.
Type * getPointerOperandType() const
static unsigned getPointerOperandIndex()
bool isUnordered() const
void setVolatile(bool V)
Specify whether this is a volatile load or not.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this load instruction.
bool isSimple() const
LLVM_ABI LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, InsertPosition InsertBefore)
Align getAlign() const
Return the alignment of the access that is being performed.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition ArrayRef.h:298
BasicBlock * getIncomingBlock(Value::const_user_iterator I) const
Return incoming basic block corresponding to value use iterator.
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
bool isComplete() const
If the PHI node is complete which means all of its parent's predecessors have incoming value in this ...
iterator_range< const_block_iterator > blocks() const
op_range incoming_values()
static bool classof(const Value *V)
void allocHungoffUses(unsigned N)
const_block_iterator block_begin() const
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
BasicBlock ** block_iterator
void setIncomingBlock(unsigned i, BasicBlock *BB)
LLVM_ABI Value * removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty=true)
Remove an incoming value.
BasicBlock *const * const_block_iterator
friend class Instruction
Iterator for Instructions in a `BasicBlock.
void setIncomingValue(unsigned i, Value *V)
static unsigned getOperandNumForIncomingValue(unsigned i)
void copyIncomingBlocks(iterator_range< const_block_iterator > BBRange, uint32_t ToIdx=0)
Copies the basic blocks from BBRange to the incoming basic block list of this PHINode,...
const_block_iterator block_end() const
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
static unsigned getIncomingValueNumForOperand(unsigned i)
const_op_range incoming_values() const
Value * removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true)
LLVM_ABI PHINode * cloneImpl() const
void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New)
Replace every incoming basic block Old to basic block New.
BasicBlock * getIncomingBlock(const Use &U) const
Return incoming basic block corresponding to an operand of the PHI.
int getBasicBlockIndex(const BasicBlock *BB) const
Return the first index of the specified basic block in the value list for this PHI.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
Class to represent pointers.
unsigned getAddressSpace() const
Return the address space of the Pointer type.
PtrToAddrInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
static unsigned getPointerOperandIndex()
Gets the operand index of the pointer operand.
static bool classof(const Instruction *I)
PtrToAddrInst * cloneImpl() const
Clone an identical PtrToAddrInst.
static bool classof(const Value *V)
const Value * getPointerOperand() const
Gets the pointer operand.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Value * getPointerOperand()
Gets the pointer operand.
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
Value * getPointerOperand()
Gets the pointer operand.
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
static bool classof(const Value *V)
const Value * getPointerOperand() const
Gets the pointer operand.
static unsigned getPointerOperandIndex()
Gets the operand index of the pointer operand.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Instruction *I)
LLVM_ABI PtrToIntInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI PtrToIntInst * cloneImpl() const
Clone an identical PtrToIntInst.
Resume the propagation of an exception.
static ResumeInst * Create(Value *Exn, InsertPosition InsertBefore=nullptr)
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
Value * getValue() const
Convenience accessor.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Value *V)
unsigned getNumSuccessors() const
LLVM_ABI ResumeInst * cloneImpl() const
static bool classof(const Instruction *I)
Return a value (possibly void), from a function.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
unsigned getNumSuccessors() const
static bool classof(const Value *V)
static bool classof(const Instruction *I)
static ReturnInst * Create(LLVMContext &C, BasicBlock *InsertAtEnd)
Value * getReturnValue() const
Convenience accessor. Returns null if there is no return value.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static ReturnInst * Create(LLVMContext &C, Value *retVal=nullptr, InsertPosition InsertBefore=nullptr)
LLVM_ABI ReturnInst * cloneImpl() const
static bool classof(const Value *V)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
LLVM_ABI SExtInst * cloneImpl() const
Clone an identical SExtInst.
LLVM_ABI SExtInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI SIToFPInst * cloneImpl() const
Clone an identical SIToFPInst.
LLVM_ABI SIToFPInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Value *V)
This class represents the LLVM 'select' instruction.
void setFalseValue(Value *V)
const Value * getFalseValue() const
void setTrueValue(Value *V)
OtherOps getOpcode() const
Value * getCondition()
Value * getTrueValue()
void swapValues()
Swap the true and false values of the select instruction.
Value * getFalseValue()
const Value * getCondition() const
LLVM_ABI SelectInst * cloneImpl() const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
static LLVM_ABI const char * areInvalidOperands(Value *Cond, Value *True, Value *False)
Return a string if the specified operands are invalid for a select operation, otherwise return null.
static bool classof(const Value *V)
void setCondition(Value *V)
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, const Instruction *MDFrom=nullptr)
const Value * getTrueValue() const
static bool classof(const Instruction *I)
This instruction constructs a fixed permutation of two input vectors.
static bool classof(const Value *V)
static bool isInterleaveMask(ArrayRef< int > Mask, unsigned Factor, unsigned NumInputElts)
Constant * getShuffleMaskForBitcode() const
Return the mask for this instruction, for use in bitcode.
bool isSingleSource() const
Return true if this shuffle chooses elements from exactly one source vector without changing the leng...
static LLVM_ABI bool isZeroEltSplatMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses all elements with the same value as the first element of exa...
bool changesLength() const
Return true if this shuffle returns a vector with a different number of elements than its source vect...
bool isExtractSubvectorMask(int &Index) const
Return true if this shuffle mask is an extract subvector mask.
ArrayRef< int > getShuffleMask() const
static LLVM_ABI bool isSpliceMask(ArrayRef< int > Mask, int NumSrcElts, int &Index)
Return true if this shuffle mask is a splice mask, concatenating the two inputs together and then ext...
static bool isInsertSubvectorMask(const Constant *Mask, int NumSrcElts, int &NumSubElts, int &Index)
static bool isSingleSourceMask(const Constant *Mask, int NumSrcElts)
int getMaskValue(unsigned Elt) const
Return the shuffle mask value of this instruction for the given element index.
LLVM_ABI ShuffleVectorInst(Value *V1, Value *Mask, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
void getShuffleMask(SmallVectorImpl< int > &Result) const
Return the mask for this instruction as a vector of integers.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
static bool isDeInterleaveMaskOfFactor(ArrayRef< int > Mask, unsigned Factor)
static LLVM_ABI bool isSelectMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from its source vectors without lane crossings.
VectorType * getType() const
Overload to return most specific vector type.
bool isInsertSubvectorMask(int &NumSubElts, int &Index) const
Return true if this shuffle mask is an insert subvector mask.
bool increasesLength() const
Return true if this shuffle returns a vector with a greater number of elements than its source vector...
bool isZeroEltSplat() const
Return true if all elements of this shuffle are the same value as the first element of exactly one so...
static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts, int &Index)
static LLVM_ABI bool isSingleSourceMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector.
static LLVM_ABI void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
bool isSelect() const
Return true if this shuffle chooses elements from its source vectors without lane crossings and all o...
static LLVM_ABI bool isDeInterleaveMaskOfFactor(ArrayRef< int > Mask, unsigned Factor, unsigned &Index)
Check if the mask is a DE-interleave mask of the given factor Factor like: <Index,...
LLVM_ABI ShuffleVectorInst * cloneImpl() const
static LLVM_ABI bool isIdentityMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector without lane crossin...
static bool isSpliceMask(const Constant *Mask, int NumSrcElts, int &Index)
static LLVM_ABI bool isExtractSubvectorMask(ArrayRef< int > Mask, int NumSrcElts, int &Index)
Return true if this shuffle mask is an extract subvector mask.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
bool isTranspose() const
Return true if this shuffle transposes the elements of its inputs without changing the length of the ...
static void commuteShuffleMask(MutableArrayRef< int > Mask, unsigned InVecNumElts)
Change values in a shuffle permute mask assuming the two vector operands of length InVecNumElts have ...
static LLVM_ABI bool isTransposeMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask is a transpose mask.
bool isSplice(int &Index) const
Return true if this shuffle splices two inputs without changing the length of the vectors.
static bool isReverseMask(const Constant *Mask, int NumSrcElts)
static LLVM_ABI bool isInsertSubvectorMask(ArrayRef< int > Mask, int NumSrcElts, int &NumSubElts, int &Index)
Return true if this shuffle mask is an insert subvector mask.
static bool isSelectMask(const Constant *Mask, int NumSrcElts)
static bool classof(const Instruction *I)
static bool isZeroEltSplatMask(const Constant *Mask, int NumSrcElts)
bool isIdentity() const
Return true if this shuffle chooses elements from exactly one source vector without lane crossings an...
static bool isReplicationMask(const Constant *Mask, int &ReplicationFactor, int &VF)
static LLVM_ABI bool isReplicationMask(ArrayRef< int > Mask, int &ReplicationFactor, int &VF)
Return true if this shuffle mask replicates each of the VF elements in a vector ReplicationFactor tim...
static bool isIdentityMask(const Constant *Mask, int NumSrcElts)
static bool isTransposeMask(const Constant *Mask, int NumSrcElts)
static LLVM_ABI bool isInterleaveMask(ArrayRef< int > Mask, unsigned Factor, unsigned NumInputElts, SmallVectorImpl< unsigned > &StartIndexes)
Return true if the mask interleaves one or more input vectors together.
bool isReverse() const
Return true if this shuffle swaps the order of elements from exactly one source vector.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
static bool classof(const Instruction *I)
AtomicOrdering getOrdering() const
Returns the ordering constraint of this store instruction.
const Value * getPointerOperand() const
Align getAlign() const
Type * getPointerOperandType() const
void setVolatile(bool V)
Specify whether this is a volatile store or not.
void setAlignment(Align Align)
bool isSimple() const
const Value * getValueOperand() const
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this store instruction.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Value * getValueOperand()
static bool classof(const Value *V)
bool isUnordered() const
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this store instruction.
LLVM_ABI StoreInst * cloneImpl() const
LLVM_ABI StoreInst(Value *Val, Value *Ptr, InsertPosition InsertBefore)
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
static unsigned getPointerOperandIndex()
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this store instruction.
bool isVolatile() const
Return true if this is a store to a volatile memory location.
Value * getPointerOperand()
void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Sets the ordering constraint and the synchronization scope ID of this store instruction.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
LLVM_ABI void setSuccessorWeight(unsigned idx, CaseWeightOpt W)
LLVM_ABI Instruction::InstListType::iterator eraseFromParent()
Delegate the call to the underlying SwitchInst::eraseFromParent() and mark this object to not touch t...
LLVM_ABI void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W)
Delegate the call to the underlying SwitchInst::addCase() and set the specified branch weight for the...
SwitchInstProfUpdateWrapper(SwitchInst &SI)
LLVM_ABI CaseWeightOpt getSuccessorWeight(unsigned idx)
LLVM_ABI void replaceDefaultDest(SwitchInst::CaseIt I)
Replace the default destination by given case.
std::optional< uint32_t > CaseWeightOpt
LLVM_ABI SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I)
Delegate the call to the underlying SwitchInst::removeCase() and remove correspondent branch weight.
A handle to a particular switch case.
unsigned getCaseIndex() const
Returns number of current case.
BasicBlockT * getCaseSuccessor() const
Resolves successor for current case.
CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index)
bool operator==(const CaseHandleImpl &RHS) const
ConstantIntT * getCaseValue() const
Resolves case value for current case.
CaseHandle(SwitchInst *SI, ptrdiff_t Index)
void setValue(ConstantInt *V) const
Sets the new value for current case.
void setSuccessor(BasicBlock *S) const
Sets the new successor for current case.
const CaseHandleT & operator*() const
CaseIteratorImpl()=default
Default constructed iterator is in an invalid state until assigned to a case for a particular switch.
CaseIteratorImpl & operator-=(ptrdiff_t N)
bool operator==(const CaseIteratorImpl &RHS) const
CaseIteratorImpl & operator+=(ptrdiff_t N)
ptrdiff_t operator-(const CaseIteratorImpl &RHS) const
bool operator<(const CaseIteratorImpl &RHS) const
CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum)
Initializes case iterator for given SwitchInst and for given case number.
static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI, unsigned SuccessorIndex)
Initializes case iterator for given SwitchInst and for given successor index.
Multiway switch.
BasicBlock * getDefaultDest() const
void allocHungoffUses(unsigned N)
CaseIteratorImpl< ConstCaseHandle > ConstCaseIt
CaseIt case_end()
Returns a read/write iterator that points one past the last in the SwitchInst.
LLVM_ABI SwitchInst * cloneImpl() const
BasicBlock * getSuccessor(unsigned idx) const
ConstCaseIt findCaseValue(const ConstantInt *C) const
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
static SwitchInst * Create(Value *Value, BasicBlock *Default, unsigned NumCases, InsertPosition InsertBefore=nullptr)
void setCondition(Value *V)
bool defaultDestUnreachable() const
Returns true if the default branch must result in immediate undefined behavior, false otherwise.
ConstCaseIt case_begin() const
Returns a read-only iterator that points to the first case in the SwitchInst.
iterator_range< ConstCaseIt > cases() const
Constant iteration adapter for range-for loops.
static const unsigned DefaultPseudoIndex
CaseIteratorImpl< CaseHandle > CaseIt
ConstantInt * findCaseDest(BasicBlock *BB)
Finds the unique case value for a given successor.
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
CaseHandleImpl< const SwitchInst, const ConstantInt, const BasicBlock > ConstCaseHandle
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Value *V)
unsigned getNumSuccessors() const
CaseIt case_default()
Returns an iterator that points to the default case.
void setDefaultDest(BasicBlock *DefaultCase)
ConstantInt *const * case_values() const
unsigned getNumCases() const
Return the number of 'cases' in this switch instruction, excluding the default case.
CaseIt findCaseValue(const ConstantInt *C)
Search all of the case values for the specified constant.
Value * getCondition() const
ConstCaseIt case_default() const
CaseIt case_begin()
Returns a read/write iterator that points to the first case in the SwitchInst.
static bool classof(const Instruction *I)
iterator_range< CaseIt > cases()
Iteration adapter for range-for loops.
ConstantInt ** case_values()
ConstCaseIt case_end() const
Returns a read-only iterator that points one past the last in the SwitchInst.
void setHasNoSignedWrap(bool B)
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
LLVM_ABI TruncInst * cloneImpl() const
Clone an identical TruncInst.
void setHasNoUnsignedWrap(bool B)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
unsigned getNoWrapKind() const
Returns the no-wrap kind of the operation.
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
static bool classof(const Value *V)
LLVM_ABI TruncInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static bool classof(const Value *V)
LLVM_ABI UIToFPInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
LLVM_ABI UIToFPInst * cloneImpl() const
Clone an identical UIToFPInst.
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
UnaryInstruction(Type *Ty, unsigned iType, Value *V, InsertPosition InsertBefore=nullptr)
Definition InstrTypes.h:62
This function has undefined behavior.
LLVM_ABI UnreachableInst(LLVMContext &C, InsertPosition InsertBefore=nullptr)
unsigned getNumSuccessors() const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Value *V)
static bool classof(const Instruction *I)
LLVM_ABI UnreachableInst * cloneImpl() const
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
iterator_range< const_op_iterator > const_op_range
Definition User.h:283
Use * op_iterator
Definition User.h:280
const Use * getOperandList() const
Definition User.h:226
op_range operands()
Definition User.h:293
op_iterator op_begin()
Definition User.h:285
LLVM_ABI void allocHungoffUses(unsigned N, bool WithExtraValues=false)
Allocate the array of Uses, followed by a pointer (with bottom bit set) to the User.
Definition User.cpp:54
const Use & getOperandUse(unsigned i) const
Definition User.h:246
value_op_iterator value_op_end()
Definition User.h:314
void setOperand(unsigned i, Value *Val)
Definition User.h:238
const Use * const_op_iterator
Definition User.h:281
void setNumHungOffUseOperands(unsigned NumOps)
Subclasses with hung off uses need to manage the operand count themselves.
Definition User.h:266
iterator_range< op_iterator > op_range
Definition User.h:282
Value * getOperand(unsigned i) const
Definition User.h:233
value_op_iterator value_op_begin()
Definition User.h:311
unsigned getNumOperands() const
Definition User.h:255
op_iterator op_end()
Definition User.h:287
static bool classof(const Instruction *I)
Value * getPointerOperand()
VAArgInst(Value *List, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
const Value * getPointerOperand() const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Value *V)
static unsigned getPointerOperandIndex()
LLVM_ABI VAArgInst * cloneImpl() const
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
user_iterator_impl< const User > const_user_iterator
Definition Value.h:392
unsigned char SubclassOptionalData
Hold subclass data that can be dropped.
Definition Value.h:85
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
Definition Value.cpp:397
Base class of all SIMD vector types.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
LLVM_ABI ZExtInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static bool classof(const Value *V)
LLVM_ABI ZExtInst * cloneImpl() const
Clone an identical ZExtInst.
An efficient, type-erasing, non-owning reference to a callable.
typename base_list_type::iterator iterator
Definition ilist.h:121
CRTP base class which implements the entire standard iterator facade in terms of a minimal subset of ...
Definition iterator.h:80
A range adaptor for a pair of iterators.
CallInst * Call
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ System
Synchronized with respect to all concurrently executing threads.
Definition LLVMContext.h:58
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
@ Offset
Definition DWP.cpp:532
Type * checkGEPType(Type *Ty)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
auto cast_or_null(const Y &Val)
Definition Casting.h:714
void setAtomicSyncScopeID(Instruction *I, SyncScope::ID SSID)
A helper function that sets an atomic operation's sync scope.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
const Value * getPointerOperand(const Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
std::optional< SyncScope::ID > getAtomicSyncScopeID(const Instruction *I)
A helper function that returns an atomic operation's sync scope; returns std::nullopt if it is not an...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
constexpr int PoisonMaskElem
AtomicOrdering
Atomic ordering for LLVM's memory model.
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
OutputIt copy(R &&Range, OutputIt Out)
Definition STLExtras.h:1883
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1770
auto predecessors(const MachineBasicBlock *BB)
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
void setLoadStoreAlignment(Value *I, Align NewAlign)
A helper function that set the alignment of load or store instruction.
unsigned Log2(Align A)
Returns the log2 of the alignment.
Definition Alignment.h:197
@ Default
The result values are uniform if and only if all operands are uniform.
Definition Uniformity.h:20
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Summary of memprof metadata on allocations.
Describes an element of a Bitfield.
Definition Bitfields.h:176
static constexpr bool areContiguous()
Definition Bitfields.h:233
The const version of succ_op_iterator.
const BasicBlock * operator->() const
const_succ_op_iterator(const_value_op_iterator I)
const BasicBlock * operator*() const
Iterator type that casts an operand to a basic block.
succ_op_iterator(value_op_iterator I)
FixedNumOperandTraits - determine the allocation regime of the Use array when it is a prefix to the U...
HungoffOperandTraits - determine the allocation regime of the Use array when it is not a prefix to th...
The const version of succ_op_iterator.
const_succ_op_iterator(const_value_op_iterator I)
Iterator type that casts an operand to a basic block.
Compile-time customization of User operands.
Definition User.h:42
A MapVector that performs no allocations if smaller than a certain size.
Definition MapVector.h:276
Information about how a User object was allocated, to be passed into the User constructor.
Definition User.h:79
const unsigned NumOps
Definition User.h:81
Indicates this User has operands "hung off" in another allocation.
Definition User.h:57
Indicates this User has operands co-allocated.
Definition User.h:60
Iterator for directly iterating over the operand Values.
Definition User.h:304
VariadicOperandTraits - determine the allocation regime of the Use array when it is a prefix to the U...