LLVM  16.0.0git
Instructions.h
Go to the documentation of this file.
1 //===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file exposes the class definitions of all of the subclasses of the
10 // Instruction class. This is meant to be an easy way to get access to all
11 // instruction subclasses.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_IR_INSTRUCTIONS_H
16 #define LLVM_IR_INSTRUCTIONS_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/Bitfields.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/ADT/iterator.h"
27 #include "llvm/IR/CFG.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/OperandTraits.h"
33 #include "llvm/IR/Use.h"
34 #include "llvm/IR/User.h"
37 #include <cassert>
38 #include <cstddef>
39 #include <cstdint>
40 #include <iterator>
41 
42 namespace llvm {
43 
44 class APFloat;
45 class APInt;
46 class BasicBlock;
47 class BlockAddress;
48 class ConstantInt;
49 class DataLayout;
50 class StringRef;
51 class Type;
52 class Value;
53 
54 //===----------------------------------------------------------------------===//
55 // AllocaInst Class
56 //===----------------------------------------------------------------------===//
57 
58 /// an instruction to allocate memory on the stack
59 class AllocaInst : public UnaryInstruction {
60  Type *AllocatedType;
61 
62  using AlignmentField = AlignmentBitfieldElementT<0>;
63  using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
65  static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
66  SwiftErrorField>(),
67  "Bitfields must be contiguous");
68 
69 protected:
70  // Note: Instruction needs to be a friend here to call cloneImpl.
71  friend class Instruction;
72 
73  AllocaInst *cloneImpl() const;
74 
75 public:
76  explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
77  const Twine &Name, Instruction *InsertBefore);
78  AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
79  const Twine &Name, BasicBlock *InsertAtEnd);
80 
81  AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
82  Instruction *InsertBefore);
83  AllocaInst(Type *Ty, unsigned AddrSpace,
84  const Twine &Name, BasicBlock *InsertAtEnd);
85 
86  AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
87  const Twine &Name = "", Instruction *InsertBefore = nullptr);
88  AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
89  const Twine &Name, BasicBlock *InsertAtEnd);
90 
91  /// Return true if there is an allocation size parameter to the allocation
92  /// instruction that is not 1.
93  bool isArrayAllocation() const;
94 
95  /// Get the number of elements allocated. For a simple allocation of a single
96  /// element, this will return a constant 1 value.
97  const Value *getArraySize() const { return getOperand(0); }
98  Value *getArraySize() { return getOperand(0); }
99 
100  /// Overload to return most specific pointer type.
101  PointerType *getType() const {
102  return cast<PointerType>(Instruction::getType());
103  }
104 
105  /// Return the address space for the allocation.
106  unsigned getAddressSpace() const {
107  return getType()->getAddressSpace();
108  }
109 
110  /// Get allocation size in bits. Returns None if size can't be determined,
111  /// e.g. in case of a VLA.
113 
114  /// Return the type that is being allocated by the instruction.
115  Type *getAllocatedType() const { return AllocatedType; }
116  /// for use only in special circumstances that need to generically
117  /// transform a whole instruction (eg: IR linking and vectorization).
118  void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
119 
120  /// Return the alignment of the memory that is being allocated by the
121  /// instruction.
122  Align getAlign() const {
123  return Align(1ULL << getSubclassData<AlignmentField>());
124  }
125 
127  setSubclassData<AlignmentField>(Log2(Align));
128  }
129 
130  /// Return true if this alloca is in the entry block of the function and is a
131  /// constant size. If so, the code generator will fold it into the
132  /// prolog/epilog code, so it is basically free.
133  bool isStaticAlloca() const;
134 
135  /// Return true if this alloca is used as an inalloca argument to a call. Such
136  /// allocas are never considered static even if they are in the entry block.
137  bool isUsedWithInAlloca() const {
138  return getSubclassData<UsedWithInAllocaField>();
139  }
140 
141  /// Specify whether this alloca is used to represent the arguments to a call.
142  void setUsedWithInAlloca(bool V) {
143  setSubclassData<UsedWithInAllocaField>(V);
144  }
145 
146  /// Return true if this alloca is used as a swifterror argument to a call.
147  bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); }
148  /// Specify whether this alloca is used to represent a swifterror.
149  void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
150 
151  // Methods for support type inquiry through isa, cast, and dyn_cast:
152  static bool classof(const Instruction *I) {
153  return (I->getOpcode() == Instruction::Alloca);
154  }
155  static bool classof(const Value *V) {
156  return isa<Instruction>(V) && classof(cast<Instruction>(V));
157  }
158 
159 private:
160  // Shadow Instruction::setInstructionSubclassData with a private forwarding
161  // method so that subclasses cannot accidentally use it.
162  template <typename Bitfield>
163  void setSubclassData(typename Bitfield::Type Value) {
164  Instruction::setSubclassData<Bitfield>(Value);
165  }
166 };
167 
168 //===----------------------------------------------------------------------===//
169 // LoadInst Class
170 //===----------------------------------------------------------------------===//
171 
172 /// An instruction for reading from memory. This uses the SubclassData field in
173 /// Value to store whether or not the load is volatile.
174 class LoadInst : public UnaryInstruction {
175  using VolatileField = BoolBitfieldElementT<0>;
178  static_assert(
179  Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
180  "Bitfields must be contiguous");
181 
182  void AssertOK();
183 
184 protected:
185  // Note: Instruction needs to be a friend here to call cloneImpl.
186  friend class Instruction;
187 
188  LoadInst *cloneImpl() const;
189 
190 public:
191  LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
192  Instruction *InsertBefore);
193  LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
194  LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
195  Instruction *InsertBefore);
196  LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
197  BasicBlock *InsertAtEnd);
198  LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
199  Align Align, Instruction *InsertBefore = nullptr);
200  LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
201  Align Align, BasicBlock *InsertAtEnd);
202  LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
203  Align Align, AtomicOrdering Order,
205  Instruction *InsertBefore = nullptr);
206  LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
208  BasicBlock *InsertAtEnd);
209 
210  /// Return true if this is a load from a volatile memory location.
211  bool isVolatile() const { return getSubclassData<VolatileField>(); }
212 
213  /// Specify whether this is a volatile load or not.
214  void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
215 
216  /// Return the alignment of the access that is being performed.
217  Align getAlign() const {
218  return Align(1ULL << (getSubclassData<AlignmentField>()));
219  }
220 
222  setSubclassData<AlignmentField>(Log2(Align));
223  }
224 
225  /// Returns the ordering constraint of this load instruction.
227  return getSubclassData<OrderingField>();
228  }
229  /// Sets the ordering constraint of this load instruction. May not be Release
230  /// or AcquireRelease.
231  void setOrdering(AtomicOrdering Ordering) {
232  setSubclassData<OrderingField>(Ordering);
233  }
234 
235  /// Returns the synchronization scope ID of this load instruction.
237  return SSID;
238  }
239 
240  /// Sets the synchronization scope ID of this load instruction.
242  this->SSID = SSID;
243  }
244 
245  /// Sets the ordering constraint and the synchronization scope ID of this load
246  /// instruction.
247  void setAtomic(AtomicOrdering Ordering,
249  setOrdering(Ordering);
250  setSyncScopeID(SSID);
251  }
252 
253  bool isSimple() const { return !isAtomic() && !isVolatile(); }
254 
255  bool isUnordered() const {
256  return (getOrdering() == AtomicOrdering::NotAtomic ||
258  !isVolatile();
259  }
260 
262  const Value *getPointerOperand() const { return getOperand(0); }
263  static unsigned getPointerOperandIndex() { return 0U; }
265 
266  /// Returns the address space of the pointer operand.
267  unsigned getPointerAddressSpace() const {
269  }
270 
271  // Methods for support type inquiry through isa, cast, and dyn_cast:
272  static bool classof(const Instruction *I) {
273  return I->getOpcode() == Instruction::Load;
274  }
275  static bool classof(const Value *V) {
276  return isa<Instruction>(V) && classof(cast<Instruction>(V));
277  }
278 
279 private:
280  // Shadow Instruction::setInstructionSubclassData with a private forwarding
281  // method so that subclasses cannot accidentally use it.
282  template <typename Bitfield>
283  void setSubclassData(typename Bitfield::Type Value) {
284  Instruction::setSubclassData<Bitfield>(Value);
285  }
286 
287  /// The synchronization scope ID of this load instruction. Not quite enough
288  /// room in SubClassData for everything, so synchronization scope ID gets its
289  /// own field.
290  SyncScope::ID SSID;
291 };
292 
293 //===----------------------------------------------------------------------===//
294 // StoreInst Class
295 //===----------------------------------------------------------------------===//
296 
297 /// An instruction for storing to memory.
298 class StoreInst : public Instruction {
299  using VolatileField = BoolBitfieldElementT<0>;
302  static_assert(
303  Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
304  "Bitfields must be contiguous");
305 
306  void AssertOK();
307 
308 protected:
309  // Note: Instruction needs to be a friend here to call cloneImpl.
310  friend class Instruction;
311 
312  StoreInst *cloneImpl() const;
313 
314 public:
315  StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
316  StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
317  StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore);
318  StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
319  StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
320  Instruction *InsertBefore = nullptr);
321  StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
322  BasicBlock *InsertAtEnd);
323  StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
325  Instruction *InsertBefore = nullptr);
326  StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
327  AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
328 
329  // allocate space for exactly two operands
330  void *operator new(size_t S) { return User::operator new(S, 2); }
331  void operator delete(void *Ptr) { User::operator delete(Ptr); }
332 
333  /// Return true if this is a store to a volatile memory location.
334  bool isVolatile() const { return getSubclassData<VolatileField>(); }
335 
336  /// Specify whether this is a volatile store or not.
337  void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
338 
339  /// Transparently provide more efficient getOperand methods.
341 
342  Align getAlign() const {
343  return Align(1ULL << (getSubclassData<AlignmentField>()));
344  }
345 
347  setSubclassData<AlignmentField>(Log2(Align));
348  }
349 
350  /// Returns the ordering constraint of this store instruction.
352  return getSubclassData<OrderingField>();
353  }
354 
355  /// Sets the ordering constraint of this store instruction. May not be
356  /// Acquire or AcquireRelease.
357  void setOrdering(AtomicOrdering Ordering) {
358  setSubclassData<OrderingField>(Ordering);
359  }
360 
361  /// Returns the synchronization scope ID of this store instruction.
363  return SSID;
364  }
365 
366  /// Sets the synchronization scope ID of this store instruction.
368  this->SSID = SSID;
369  }
370 
371  /// Sets the ordering constraint and the synchronization scope ID of this
372  /// store instruction.
373  void setAtomic(AtomicOrdering Ordering,
375  setOrdering(Ordering);
376  setSyncScopeID(SSID);
377  }
378 
379  bool isSimple() const { return !isAtomic() && !isVolatile(); }
380 
381  bool isUnordered() const {
382  return (getOrdering() == AtomicOrdering::NotAtomic ||
384  !isVolatile();
385  }
386 
387  Value *getValueOperand() { return getOperand(0); }
388  const Value *getValueOperand() const { return getOperand(0); }
389 
391  const Value *getPointerOperand() const { return getOperand(1); }
392  static unsigned getPointerOperandIndex() { return 1U; }
394 
395  /// Returns the address space of the pointer operand.
396  unsigned getPointerAddressSpace() const {
398  }
399 
400  // Methods for support type inquiry through isa, cast, and dyn_cast:
401  static bool classof(const Instruction *I) {
402  return I->getOpcode() == Instruction::Store;
403  }
404  static bool classof(const Value *V) {
405  return isa<Instruction>(V) && classof(cast<Instruction>(V));
406  }
407 
408 private:
409  // Shadow Instruction::setInstructionSubclassData with a private forwarding
410  // method so that subclasses cannot accidentally use it.
411  template <typename Bitfield>
412  void setSubclassData(typename Bitfield::Type Value) {
413  Instruction::setSubclassData<Bitfield>(Value);
414  }
415 
416  /// The synchronization scope ID of this store instruction. Not quite enough
417  /// room in SubClassData for everything, so synchronization scope ID gets its
418  /// own field.
419  SyncScope::ID SSID;
420 };
421 
422 template <>
423 struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
424 };
425 
427 
428 //===----------------------------------------------------------------------===//
429 // FenceInst Class
430 //===----------------------------------------------------------------------===//
431 
432 /// An instruction for ordering other memory operations.
433 class FenceInst : public Instruction {
434  using OrderingField = AtomicOrderingBitfieldElementT<0>;
435 
436  void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
437 
438 protected:
439  // Note: Instruction needs to be a friend here to call cloneImpl.
440  friend class Instruction;
441 
442  FenceInst *cloneImpl() const;
443 
444 public:
445  // Ordering may only be Acquire, Release, AcquireRelease, or
446  // SequentiallyConsistent.
449  Instruction *InsertBefore = nullptr);
451  BasicBlock *InsertAtEnd);
452 
453  // allocate space for exactly zero operands
454  void *operator new(size_t S) { return User::operator new(S, 0); }
455  void operator delete(void *Ptr) { User::operator delete(Ptr); }
456 
457  /// Returns the ordering constraint of this fence instruction.
459  return getSubclassData<OrderingField>();
460  }
461 
462  /// Sets the ordering constraint of this fence instruction. May only be
463  /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
464  void setOrdering(AtomicOrdering Ordering) {
465  setSubclassData<OrderingField>(Ordering);
466  }
467 
468  /// Returns the synchronization scope ID of this fence instruction.
470  return SSID;
471  }
472 
473  /// Sets the synchronization scope ID of this fence instruction.
475  this->SSID = SSID;
476  }
477 
478  // Methods for support type inquiry through isa, cast, and dyn_cast:
479  static bool classof(const Instruction *I) {
480  return I->getOpcode() == Instruction::Fence;
481  }
482  static bool classof(const Value *V) {
483  return isa<Instruction>(V) && classof(cast<Instruction>(V));
484  }
485 
486 private:
487  // Shadow Instruction::setInstructionSubclassData with a private forwarding
488  // method so that subclasses cannot accidentally use it.
489  template <typename Bitfield>
490  void setSubclassData(typename Bitfield::Type Value) {
491  Instruction::setSubclassData<Bitfield>(Value);
492  }
493 
494  /// The synchronization scope ID of this fence instruction. Not quite enough
495  /// room in SubClassData for everything, so synchronization scope ID gets its
496  /// own field.
497  SyncScope::ID SSID;
498 };
499 
500 //===----------------------------------------------------------------------===//
501 // AtomicCmpXchgInst Class
502 //===----------------------------------------------------------------------===//
503 
504 /// An instruction that atomically checks whether a
505 /// specified value is in a memory location, and, if it is, stores a new value
506 /// there. The value returned by this instruction is a pair containing the
507 /// original value as first element, and an i1 indicating success (true) or
508 /// failure (false) as second element.
509 ///
511  void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
512  AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
513  SyncScope::ID SSID);
514 
515  template <unsigned Offset>
516  using AtomicOrderingBitfieldElement =
517  typename Bitfield::Element<AtomicOrdering, Offset, 3,
519 
520 protected:
521  // Note: Instruction needs to be a friend here to call cloneImpl.
522  friend class Instruction;
523 
524  AtomicCmpXchgInst *cloneImpl() const;
525 
526 public:
527  AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
528  AtomicOrdering SuccessOrdering,
529  AtomicOrdering FailureOrdering, SyncScope::ID SSID,
530  Instruction *InsertBefore = nullptr);
531  AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
532  AtomicOrdering SuccessOrdering,
533  AtomicOrdering FailureOrdering, SyncScope::ID SSID,
534  BasicBlock *InsertAtEnd);
535 
536  // allocate space for exactly three operands
537  void *operator new(size_t S) { return User::operator new(S, 3); }
538  void operator delete(void *Ptr) { User::operator delete(Ptr); }
539 
542  using SuccessOrderingField =
544  using FailureOrderingField =
546  using AlignmentField =
548  static_assert(
551  "Bitfields must be contiguous");
552 
553  /// Return the alignment of the memory that is being allocated by the
554  /// instruction.
555  Align getAlign() const {
556  return Align(1ULL << getSubclassData<AlignmentField>());
557  }
558 
560  setSubclassData<AlignmentField>(Log2(Align));
561  }
562 
563  /// Return true if this is a cmpxchg from a volatile memory
564  /// location.
565  ///
566  bool isVolatile() const { return getSubclassData<VolatileField>(); }
567 
568  /// Specify whether this is a volatile cmpxchg.
569  ///
570  void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
571 
572  /// Return true if this cmpxchg may spuriously fail.
573  bool isWeak() const { return getSubclassData<WeakField>(); }
574 
575  void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
576 
577  /// Transparently provide more efficient getOperand methods.
579 
580  static bool isValidSuccessOrdering(AtomicOrdering Ordering) {
581  return Ordering != AtomicOrdering::NotAtomic &&
582  Ordering != AtomicOrdering::Unordered;
583  }
584 
585  static bool isValidFailureOrdering(AtomicOrdering Ordering) {
586  return Ordering != AtomicOrdering::NotAtomic &&
587  Ordering != AtomicOrdering::Unordered &&
588  Ordering != AtomicOrdering::AcquireRelease &&
589  Ordering != AtomicOrdering::Release;
590  }
591 
592  /// Returns the success ordering constraint of this cmpxchg instruction.
594  return getSubclassData<SuccessOrderingField>();
595  }
596 
597  /// Sets the success ordering constraint of this cmpxchg instruction.
599  assert(isValidSuccessOrdering(Ordering) &&
600  "invalid CmpXchg success ordering");
601  setSubclassData<SuccessOrderingField>(Ordering);
602  }
603 
604  /// Returns the failure ordering constraint of this cmpxchg instruction.
606  return getSubclassData<FailureOrderingField>();
607  }
608 
609  /// Sets the failure ordering constraint of this cmpxchg instruction.
611  assert(isValidFailureOrdering(Ordering) &&
612  "invalid CmpXchg failure ordering");
613  setSubclassData<FailureOrderingField>(Ordering);
614  }
615 
616  /// Returns a single ordering which is at least as strong as both the
617  /// success and failure orderings for this cmpxchg.
626  }
627  return getSuccessOrdering();
628  }
629 
630  /// Returns the synchronization scope ID of this cmpxchg instruction.
632  return SSID;
633  }
634 
635  /// Sets the synchronization scope ID of this cmpxchg instruction.
637  this->SSID = SSID;
638  }
639 
641  const Value *getPointerOperand() const { return getOperand(0); }
642  static unsigned getPointerOperandIndex() { return 0U; }
643 
645  const Value *getCompareOperand() const { return getOperand(1); }
646 
648  const Value *getNewValOperand() const { return getOperand(2); }
649 
650  /// Returns the address space of the pointer operand.
651  unsigned getPointerAddressSpace() const {
653  }
654 
655  /// Returns the strongest permitted ordering on failure, given the
656  /// desired ordering on success.
657  ///
658  /// If the comparison in a cmpxchg operation fails, there is no atomic store
659  /// so release semantics cannot be provided. So this function drops explicit
660  /// Release requests from the AtomicOrdering. A SequentiallyConsistent
661  /// operation would remain SequentiallyConsistent.
662  static AtomicOrdering
664  switch (SuccessOrdering) {
665  default:
666  llvm_unreachable("invalid cmpxchg success ordering");
675  }
676  }
677 
678  // Methods for support type inquiry through isa, cast, and dyn_cast:
679  static bool classof(const Instruction *I) {
680  return I->getOpcode() == Instruction::AtomicCmpXchg;
681  }
682  static bool classof(const Value *V) {
683  return isa<Instruction>(V) && classof(cast<Instruction>(V));
684  }
685 
686 private:
687  // Shadow Instruction::setInstructionSubclassData with a private forwarding
688  // method so that subclasses cannot accidentally use it.
689  template <typename Bitfield>
690  void setSubclassData(typename Bitfield::Type Value) {
691  Instruction::setSubclassData<Bitfield>(Value);
692  }
693 
694  /// The synchronization scope ID of this cmpxchg instruction. Not quite
695  /// enough room in SubClassData for everything, so synchronization scope ID
696  /// gets its own field.
697  SyncScope::ID SSID;
698 };
699 
700 template <>
702  public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
703 };
704 
706 
707 //===----------------------------------------------------------------------===//
708 // AtomicRMWInst Class
709 //===----------------------------------------------------------------------===//
710 
711 /// an instruction that atomically reads a memory location,
712 /// combines it with another value, and then stores the result back. Returns
713 /// the old value.
714 ///
715 class AtomicRMWInst : public Instruction {
716 protected:
717  // Note: Instruction needs to be a friend here to call cloneImpl.
718  friend class Instruction;
719 
720  AtomicRMWInst *cloneImpl() const;
721 
722 public:
723  /// This enumeration lists the possible modifications atomicrmw can make. In
724  /// the descriptions, 'p' is the pointer to the instruction's memory location,
725  /// 'old' is the initial value of *p, and 'v' is the other value passed to the
726  /// instruction. These instructions always return 'old'.
727  enum BinOp : unsigned {
728  /// *p = v
730  /// *p = old + v
732  /// *p = old - v
734  /// *p = old & v
736  /// *p = ~(old & v)
738  /// *p = old | v
739  Or,
740  /// *p = old ^ v
742  /// *p = old >signed v ? old : v
744  /// *p = old <signed v ? old : v
746  /// *p = old >unsigned v ? old : v
748  /// *p = old <unsigned v ? old : v
750 
751  /// *p = old + v
753 
754  /// *p = old - v
756 
757  /// *p = maxnum(old, v)
758  /// \p maxnum matches the behavior of \p llvm.maxnum.*.
760 
761  /// *p = minnum(old, v)
762  /// \p minnum matches the behavior of \p llvm.minnum.*.
764 
765  FIRST_BINOP = Xchg,
766  LAST_BINOP = FMin,
767  BAD_BINOP
768  };
769 
770 private:
771  template <unsigned Offset>
772  using AtomicOrderingBitfieldElement =
775 
776  template <unsigned Offset>
777  using BinOpBitfieldElement =
779 
780 public:
781  AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
782  AtomicOrdering Ordering, SyncScope::ID SSID,
783  Instruction *InsertBefore = nullptr);
784  AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
785  AtomicOrdering Ordering, SyncScope::ID SSID,
786  BasicBlock *InsertAtEnd);
787 
788  // allocate space for exactly two operands
789  void *operator new(size_t S) { return User::operator new(S, 2); }
790  void operator delete(void *Ptr) { User::operator delete(Ptr); }
791 
793  using AtomicOrderingField =
795  using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
799  "Bitfields must be contiguous");
800 
801  BinOp getOperation() const { return getSubclassData<OperationField>(); }
802 
803  static StringRef getOperationName(BinOp Op);
804 
805  static bool isFPOperation(BinOp Op) {
806  switch (Op) {
807  case AtomicRMWInst::FAdd:
808  case AtomicRMWInst::FSub:
809  case AtomicRMWInst::FMax:
810  case AtomicRMWInst::FMin:
811  return true;
812  default:
813  return false;
814  }
815  }
816 
818  setSubclassData<OperationField>(Operation);
819  }
820 
821  /// Return the alignment of the memory that is being allocated by the
822  /// instruction.
823  Align getAlign() const {
824  return Align(1ULL << getSubclassData<AlignmentField>());
825  }
826 
828  setSubclassData<AlignmentField>(Log2(Align));
829  }
830 
831  /// Return true if this is a RMW on a volatile memory location.
832  ///
833  bool isVolatile() const { return getSubclassData<VolatileField>(); }
834 
835  /// Specify whether this is a volatile RMW or not.
836  ///
837  void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
838 
839  /// Transparently provide more efficient getOperand methods.
841 
842  /// Returns the ordering constraint of this rmw instruction.
844  return getSubclassData<AtomicOrderingField>();
845  }
846 
847  /// Sets the ordering constraint of this rmw instruction.
848  void setOrdering(AtomicOrdering Ordering) {
849  assert(Ordering != AtomicOrdering::NotAtomic &&
850  "atomicrmw instructions can only be atomic.");
851  assert(Ordering != AtomicOrdering::Unordered &&
852  "atomicrmw instructions cannot be unordered.");
853  setSubclassData<AtomicOrderingField>(Ordering);
854  }
855 
856  /// Returns the synchronization scope ID of this rmw instruction.
858  return SSID;
859  }
860 
861  /// Sets the synchronization scope ID of this rmw instruction.
863  this->SSID = SSID;
864  }
865 
866  Value *getPointerOperand() { return getOperand(0); }
867  const Value *getPointerOperand() const { return getOperand(0); }
868  static unsigned getPointerOperandIndex() { return 0U; }
869 
870  Value *getValOperand() { return getOperand(1); }
871  const Value *getValOperand() const { return getOperand(1); }
872 
873  /// Returns the address space of the pointer operand.
874  unsigned getPointerAddressSpace() const {
876  }
877 
879  return isFPOperation(getOperation());
880  }
881 
882  // Methods for support type inquiry through isa, cast, and dyn_cast:
883  static bool classof(const Instruction *I) {
884  return I->getOpcode() == Instruction::AtomicRMW;
885  }
886  static bool classof(const Value *V) {
887  return isa<Instruction>(V) && classof(cast<Instruction>(V));
888  }
889 
890 private:
891  void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
892  AtomicOrdering Ordering, SyncScope::ID SSID);
893 
894  // Shadow Instruction::setInstructionSubclassData with a private forwarding
895  // method so that subclasses cannot accidentally use it.
896  template <typename Bitfield>
897  void setSubclassData(typename Bitfield::Type Value) {
898  Instruction::setSubclassData<Bitfield>(Value);
899  }
900 
901  /// The synchronization scope ID of this rmw instruction. Not quite enough
902  /// room in SubClassData for everything, so synchronization scope ID gets its
903  /// own field.
904  SyncScope::ID SSID;
905 };
906 
907 template <>
909  : public FixedNumOperandTraits<AtomicRMWInst,2> {
910 };
911 
913 
914 //===----------------------------------------------------------------------===//
915 // GetElementPtrInst Class
916 //===----------------------------------------------------------------------===//
917 
918 // checkGEPType - Simple wrapper function to give a better assertion failure
919 // message on bad indexes for a gep instruction.
920 //
922  assert(Ty && "Invalid GetElementPtrInst indices for type!");
923  return Ty;
924 }
925 
926 /// an instruction for type-safe pointer arithmetic to
927 /// access elements of arrays and structs
928 ///
930  Type *SourceElementType;
931  Type *ResultElementType;
932 
934 
935  /// Constructors - Create a getelementptr instruction with a base pointer an
936  /// list of indices. The first ctor can optionally insert before an existing
937  /// instruction, the second appends the new instruction to the specified
938  /// BasicBlock.
939  inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
940  ArrayRef<Value *> IdxList, unsigned Values,
941  const Twine &NameStr, Instruction *InsertBefore);
942  inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
943  ArrayRef<Value *> IdxList, unsigned Values,
944  const Twine &NameStr, BasicBlock *InsertAtEnd);
945 
946  void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
947 
948 protected:
949  // Note: Instruction needs to be a friend here to call cloneImpl.
950  friend class Instruction;
951 
952  GetElementPtrInst *cloneImpl() const;
953 
954 public:
955  static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
956  ArrayRef<Value *> IdxList,
957  const Twine &NameStr = "",
958  Instruction *InsertBefore = nullptr) {
959  unsigned Values = 1 + unsigned(IdxList.size());
960  assert(PointeeType && "Must specify element type");
961  assert(cast<PointerType>(Ptr->getType()->getScalarType())
962  ->isOpaqueOrPointeeTypeMatches(PointeeType));
963  return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
964  NameStr, InsertBefore);
965  }
966 
967  static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
968  ArrayRef<Value *> IdxList,
969  const Twine &NameStr,
970  BasicBlock *InsertAtEnd) {
971  unsigned Values = 1 + unsigned(IdxList.size());
972  assert(PointeeType && "Must specify element type");
973  assert(cast<PointerType>(Ptr->getType()->getScalarType())
974  ->isOpaqueOrPointeeTypeMatches(PointeeType));
975  return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
976  NameStr, InsertAtEnd);
977  }
978 
979  /// Create an "inbounds" getelementptr. See the documentation for the
980  /// "inbounds" flag in LangRef.html for details.
981  static GetElementPtrInst *
982  CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
983  const Twine &NameStr = "",
984  Instruction *InsertBefore = nullptr) {
986  Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
987  GEP->setIsInBounds(true);
988  return GEP;
989  }
990 
992  ArrayRef<Value *> IdxList,
993  const Twine &NameStr,
994  BasicBlock *InsertAtEnd) {
996  Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
997  GEP->setIsInBounds(true);
998  return GEP;
999  }
1000 
1001  /// Transparently provide more efficient getOperand methods.
1003 
1004  Type *getSourceElementType() const { return SourceElementType; }
1005 
1006  void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
1007  void setResultElementType(Type *Ty) { ResultElementType = Ty; }
1008 
1010  assert(cast<PointerType>(getType()->getScalarType())
1011  ->isOpaqueOrPointeeTypeMatches(ResultElementType));
1012  return ResultElementType;
1013  }
1014 
1015  /// Returns the address space of this instruction's pointer type.
1016  unsigned getAddressSpace() const {
1017  // Note that this is always the same as the pointer operand's address space
1018  // and that is cheaper to compute, so cheat here.
1019  return getPointerAddressSpace();
1020  }
1021 
1022  /// Returns the result type of a getelementptr with the given source
1023  /// element type and indexes.
1024  ///
1025  /// Null is returned if the indices are invalid for the specified
1026  /// source element type.
1027  static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1028  static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1029  static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1030 
1031  /// Return the type of the element at the given index of an indexable
1032  /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
1033  ///
1034  /// Returns null if the type can't be indexed, or the given index is not
1035  /// legal for the given type.
1036  static Type *getTypeAtIndex(Type *Ty, Value *Idx);
1037  static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
1038 
1039  inline op_iterator idx_begin() { return op_begin()+1; }
1040  inline const_op_iterator idx_begin() const { return op_begin()+1; }
1041  inline op_iterator idx_end() { return op_end(); }
1042  inline const_op_iterator idx_end() const { return op_end(); }
1043 
1045  return make_range(idx_begin(), idx_end());
1046  }
1047 
1049  return make_range(idx_begin(), idx_end());
1050  }
1051 
1053  return getOperand(0);
1054  }
1055  const Value *getPointerOperand() const {
1056  return getOperand(0);
1057  }
1058  static unsigned getPointerOperandIndex() {
1059  return 0U; // get index for modifying correct operand.
1060  }
1061 
1062  /// Method to return the pointer operand as a
1063  /// PointerType.
1065  return getPointerOperand()->getType();
1066  }
1067 
1068  /// Returns the address space of the pointer operand.
1069  unsigned getPointerAddressSpace() const {
1071  }
1072 
1073  /// Returns the pointer type returned by the GEP
1074  /// instruction, which may be a vector of pointers.
1076  ArrayRef<Value *> IdxList) {
1077  PointerType *OrigPtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1078  unsigned AddrSpace = OrigPtrTy->getAddressSpace();
1079  Type *ResultElemTy = checkGEPType(getIndexedType(ElTy, IdxList));
1080  Type *PtrTy = OrigPtrTy->isOpaque()
1081  ? PointerType::get(OrigPtrTy->getContext(), AddrSpace)
1082  : PointerType::get(ResultElemTy, AddrSpace);
1083  // Vector GEP
1084  if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) {
1085  ElementCount EltCount = PtrVTy->getElementCount();
1086  return VectorType::get(PtrTy, EltCount);
1087  }
1088  for (Value *Index : IdxList)
1089  if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
1090  ElementCount EltCount = IndexVTy->getElementCount();
1091  return VectorType::get(PtrTy, EltCount);
1092  }
1093  // Scalar GEP
1094  return PtrTy;
1095  }
1096 
1097  unsigned getNumIndices() const { // Note: always non-negative
1098  return getNumOperands() - 1;
1099  }
1100 
1101  bool hasIndices() const {
1102  return getNumOperands() > 1;
1103  }
1104 
1105  /// Return true if all of the indices of this GEP are
1106  /// zeros. If so, the result pointer and the first operand have the same
1107  /// value, just potentially different types.
1108  bool hasAllZeroIndices() const;
1109 
1110  /// Return true if all of the indices of this GEP are
1111  /// constant integers. If so, the result pointer and the first operand have
1112  /// a constant offset between them.
1113  bool hasAllConstantIndices() const;
1114 
1115  /// Set or clear the inbounds flag on this GEP instruction.
1116  /// See LangRef.html for the meaning of inbounds on a getelementptr.
1117  void setIsInBounds(bool b = true);
1118 
1119  /// Determine whether the GEP has the inbounds flag.
1120  bool isInBounds() const;
1121 
1122  /// Accumulate the constant address offset of this GEP if possible.
1123  ///
1124  /// This routine accepts an APInt into which it will accumulate the constant
1125  /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1126  /// all-constant, it returns false and the value of the offset APInt is
1127  /// undefined (it is *not* preserved!). The APInt passed into this routine
1128  /// must be at least as wide as the IntPtr type for the address space of
1129  /// the base GEP pointer.
1130  bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1131  bool collectOffset(const DataLayout &DL, unsigned BitWidth,
1132  MapVector<Value *, APInt> &VariableOffsets,
1133  APInt &ConstantOffset) const;
1134  // Methods for support type inquiry through isa, cast, and dyn_cast:
1135  static bool classof(const Instruction *I) {
1136  return (I->getOpcode() == Instruction::GetElementPtr);
1137  }
1138  static bool classof(const Value *V) {
1139  return isa<Instruction>(V) && classof(cast<Instruction>(V));
1140  }
1141 };
1142 
1143 template <>
1145  public VariadicOperandTraits<GetElementPtrInst, 1> {
1146 };
1147 
1148 GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1149  ArrayRef<Value *> IdxList, unsigned Values,
1150  const Twine &NameStr,
1151  Instruction *InsertBefore)
1152  : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1153  OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1154  Values, InsertBefore),
1155  SourceElementType(PointeeType),
1156  ResultElementType(getIndexedType(PointeeType, IdxList)) {
1157  assert(cast<PointerType>(getType()->getScalarType())
1158  ->isOpaqueOrPointeeTypeMatches(ResultElementType));
1159  init(Ptr, IdxList, NameStr);
1160 }
1161 
1162 GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1163  ArrayRef<Value *> IdxList, unsigned Values,
1164  const Twine &NameStr,
1165  BasicBlock *InsertAtEnd)
1166  : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1167  OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1168  Values, InsertAtEnd),
1169  SourceElementType(PointeeType),
1170  ResultElementType(getIndexedType(PointeeType, IdxList)) {
1171  assert(cast<PointerType>(getType()->getScalarType())
1172  ->isOpaqueOrPointeeTypeMatches(ResultElementType));
1173  init(Ptr, IdxList, NameStr);
1174 }
1175 
1176 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)
1177 
1178 //===----------------------------------------------------------------------===//
1179 // ICmpInst Class
1180 //===----------------------------------------------------------------------===//
1181 
1182 /// This instruction compares its operands according to the predicate given
1183 /// to the constructor. It only operates on integers or pointers. The operands
1184 /// must be identical types.
1185 /// Represent an integer comparison operator.
1186 class ICmpInst: public CmpInst {
1187  void AssertOK() {
1188  assert(isIntPredicate() &&
1189  "Invalid ICmp predicate value");
1190  assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1191  "Both operands to ICmp instruction are not of the same type!");
1192  // Check that the operands are the right type
1193  assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
1194  getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
1195  "Invalid operand types for ICmp instruction");
1196  }
1197 
1198 protected:
1199  // Note: Instruction needs to be a friend here to call cloneImpl.
1200  friend class Instruction;
1201 
1202  /// Clone an identical ICmpInst
1203  ICmpInst *cloneImpl() const;
1204 
1205 public:
1206  /// Constructor with insert-before-instruction semantics.
1208  Instruction *InsertBefore, ///< Where to insert
1209  Predicate pred, ///< The predicate to use for the comparison
1210  Value *LHS, ///< The left-hand-side of the expression
1211  Value *RHS, ///< The right-hand-side of the expression
1212  const Twine &NameStr = "" ///< Name of the instruction
1213  ) : CmpInst(makeCmpResultType(LHS->getType()),
1214  Instruction::ICmp, pred, LHS, RHS, NameStr,
1215  InsertBefore) {
1216 #ifndef NDEBUG
1217  AssertOK();
1218 #endif
1219  }
1220 
1221  /// Constructor with insert-at-end semantics.
1223  BasicBlock &InsertAtEnd, ///< Block to insert into.
1224  Predicate pred, ///< The predicate to use for the comparison
1225  Value *LHS, ///< The left-hand-side of the expression
1226  Value *RHS, ///< The right-hand-side of the expression
1227  const Twine &NameStr = "" ///< Name of the instruction
1228  ) : CmpInst(makeCmpResultType(LHS->getType()),
1229  Instruction::ICmp, pred, LHS, RHS, NameStr,
1230  &InsertAtEnd) {
1231 #ifndef NDEBUG
1232  AssertOK();
1233 #endif
1234  }
1235 
1236  /// Constructor with no-insertion semantics
1238  Predicate pred, ///< The predicate to use for the comparison
1239  Value *LHS, ///< The left-hand-side of the expression
1240  Value *RHS, ///< The right-hand-side of the expression
1241  const Twine &NameStr = "" ///< Name of the instruction
1242  ) : CmpInst(makeCmpResultType(LHS->getType()),
1243  Instruction::ICmp, pred, LHS, RHS, NameStr) {
1244 #ifndef NDEBUG
1245  AssertOK();
1246 #endif
1247  }
1248 
1249  /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1250  /// @returns the predicate that would be the result if the operand were
1251  /// regarded as signed.
1252  /// Return the signed version of the predicate
1254  return getSignedPredicate(getPredicate());
1255  }
1256 
1257  /// This is a static version that you can use without an instruction.
1258  /// Return the signed version of the predicate.
1259  static Predicate getSignedPredicate(Predicate pred);
1260 
1261  /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1262  /// @returns the predicate that would be the result if the operand were
1263  /// regarded as unsigned.
1264  /// Return the unsigned version of the predicate
1266  return getUnsignedPredicate(getPredicate());
1267  }
1268 
1269  /// This is a static version that you can use without an instruction.
1270  /// Return the unsigned version of the predicate.
1271  static Predicate getUnsignedPredicate(Predicate pred);
1272 
1273  /// Return true if this predicate is either EQ or NE. This also
1274  /// tests for commutativity.
1275  static bool isEquality(Predicate P) {
1276  return P == ICMP_EQ || P == ICMP_NE;
1277  }
1278 
1279  /// Return true if this predicate is either EQ or NE. This also
1280  /// tests for commutativity.
1281  bool isEquality() const {
1282  return isEquality(getPredicate());
1283  }
1284 
1285  /// @returns true if the predicate of this ICmpInst is commutative
1286  /// Determine if this relation is commutative.
1287  bool isCommutative() const { return isEquality(); }
1288 
1289  /// Return true if the predicate is relational (not EQ or NE).
1290  ///
1291  bool isRelational() const {
1292  return !isEquality();
1293  }
1294 
1295  /// Return true if the predicate is relational (not EQ or NE).
1296  ///
1297  static bool isRelational(Predicate P) {
1298  return !isEquality(P);
1299  }
1300 
1301  /// Return true if the predicate is SGT or UGT.
1302  ///
1303  static bool isGT(Predicate P) {
1304  return P == ICMP_SGT || P == ICMP_UGT;
1305  }
1306 
1307  /// Return true if the predicate is SLT or ULT.
1308  ///
1309  static bool isLT(Predicate P) {
1310  return P == ICMP_SLT || P == ICMP_ULT;
1311  }
1312 
1313  /// Return true if the predicate is SGE or UGE.
1314  ///
1315  static bool isGE(Predicate P) {
1316  return P == ICMP_SGE || P == ICMP_UGE;
1317  }
1318 
1319  /// Return true if the predicate is SLE or ULE.
1320  ///
1321  static bool isLE(Predicate P) {
1322  return P == ICMP_SLE || P == ICMP_ULE;
1323  }
1324 
1325  /// Returns the sequence of all ICmp predicates.
1326  ///
1327  static auto predicates() { return ICmpPredicates(); }
1328 
1329  /// Exchange the two operands to this instruction in such a way that it does
1330  /// not modify the semantics of the instruction. The predicate value may be
1331  /// changed to retain the same result if the predicate is order dependent
1332  /// (e.g. ult).
1333  /// Swap operands and adjust predicate.
1334  void swapOperands() {
1335  setPredicate(getSwappedPredicate());
1336  Op<0>().swap(Op<1>());
1337  }
1338 
1339  /// Return result of `LHS Pred RHS` comparison.
1340  static bool compare(const APInt &LHS, const APInt &RHS,
1341  ICmpInst::Predicate Pred);
1342 
1343  // Methods for support type inquiry through isa, cast, and dyn_cast:
1344  static bool classof(const Instruction *I) {
1345  return I->getOpcode() == Instruction::ICmp;
1346  }
1347  static bool classof(const Value *V) {
1348  return isa<Instruction>(V) && classof(cast<Instruction>(V));
1349  }
1350 };
1351 
1352 //===----------------------------------------------------------------------===//
1353 // FCmpInst Class
1354 //===----------------------------------------------------------------------===//
1355 
1356 /// This instruction compares its operands according to the predicate given
1357 /// to the constructor. It only operates on floating point values or packed
1358 /// vectors of floating point values. The operands must be identical types.
1359 /// Represents a floating point comparison operator.
1360 class FCmpInst: public CmpInst {
1361  void AssertOK() {
1362  assert(isFPPredicate() && "Invalid FCmp predicate value");
1363  assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1364  "Both operands to FCmp instruction are not of the same type!");
1365  // Check that the operands are the right type
1366  assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
1367  "Invalid operand types for FCmp instruction");
1368  }
1369 
1370 protected:
1371  // Note: Instruction needs to be a friend here to call cloneImpl.
1372  friend class Instruction;
1373 
1374  /// Clone an identical FCmpInst
1375  FCmpInst *cloneImpl() const;
1376 
1377 public:
1378  /// Constructor with insert-before-instruction semantics.
1380  Instruction *InsertBefore, ///< Where to insert
1381  Predicate pred, ///< The predicate to use for the comparison
1382  Value *LHS, ///< The left-hand-side of the expression
1383  Value *RHS, ///< The right-hand-side of the expression
1384  const Twine &NameStr = "" ///< Name of the instruction
1386  Instruction::FCmp, pred, LHS, RHS, NameStr,
1387  InsertBefore) {
1388  AssertOK();
1389  }
1390 
1391  /// Constructor with insert-at-end semantics.
1393  BasicBlock &InsertAtEnd, ///< Block to insert into.
1394  Predicate pred, ///< The predicate to use for the comparison
1395  Value *LHS, ///< The left-hand-side of the expression
1396  Value *RHS, ///< The right-hand-side of the expression
1397  const Twine &NameStr = "" ///< Name of the instruction
1399  Instruction::FCmp, pred, LHS, RHS, NameStr,
1400  &InsertAtEnd) {
1401  AssertOK();
1402  }
1403 
1404  /// Constructor with no-insertion semantics
1406  Predicate Pred, ///< The predicate to use for the comparison
1407  Value *LHS, ///< The left-hand-side of the expression
1408  Value *RHS, ///< The right-hand-side of the expression
1409  const Twine &NameStr = "", ///< Name of the instruction
1410  Instruction *FlagsSource = nullptr
1411  ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1412  RHS, NameStr, nullptr, FlagsSource) {
1413  AssertOK();
1414  }
1415 
1416  /// @returns true if the predicate of this instruction is EQ or NE.
1417  /// Determine if this is an equality predicate.
1418  static bool isEquality(Predicate Pred) {
1419  return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1420  Pred == FCMP_UNE;
1421  }
1422 
1423  /// @returns true if the predicate of this instruction is EQ or NE.
1424  /// Determine if this is an equality predicate.
1425  bool isEquality() const { return isEquality(getPredicate()); }
1426 
1427  /// @returns true if the predicate of this instruction is commutative.
1428  /// Determine if this is a commutative predicate.
1429  bool isCommutative() const {
1430  return isEquality() ||
1431  getPredicate() == FCMP_FALSE ||
1432  getPredicate() == FCMP_TRUE ||
1433  getPredicate() == FCMP_ORD ||
1434  getPredicate() == FCMP_UNO;
1435  }
1436 
1437  /// @returns true if the predicate is relational (not EQ or NE).
1438  /// Determine if this a relational predicate.
1439  bool isRelational() const { return !isEquality(); }
1440 
1441  /// Exchange the two operands to this instruction in such a way that it does
1442  /// not modify the semantics of the instruction. The predicate value may be
1443  /// changed to retain the same result if the predicate is order dependent
1444  /// (e.g. ult).
1445  /// Swap operands and adjust predicate.
1446  void swapOperands() {
1448  Op<0>().swap(Op<1>());
1449  }
1450 
1451  /// Returns the sequence of all FCmp predicates.
1452  ///
1453  static auto predicates() { return FCmpPredicates(); }
1454 
1455  /// Return result of `LHS Pred RHS` comparison.
1456  static bool compare(const APFloat &LHS, const APFloat &RHS,
1457  FCmpInst::Predicate Pred);
1458 
1459  /// Methods for support type inquiry through isa, cast, and dyn_cast:
1460  static bool classof(const Instruction *I) {
1461  return I->getOpcode() == Instruction::FCmp;
1462  }
1463  static bool classof(const Value *V) {
1464  return isa<Instruction>(V) && classof(cast<Instruction>(V));
1465  }
1466 };
1467 
1468 //===----------------------------------------------------------------------===//
1469 /// This class represents a function call, abstracting a target
1470 /// machine's calling convention. This class uses low bit of the SubClassData
1471 /// field to indicate whether or not this is a tail call. The rest of the bits
1472 /// hold the calling convention of the call.
1473 ///
1474 class CallInst : public CallBase {
1475  CallInst(const CallInst &CI);
1476 
1477  /// Construct a CallInst given a range of arguments.
1478  /// Construct a CallInst from a range of arguments
1479  inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1480  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1481  Instruction *InsertBefore);
1482 
1483  inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1484  const Twine &NameStr, Instruction *InsertBefore)
1485  : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1486 
1487  /// Construct a CallInst given a range of arguments.
1488  /// Construct a CallInst from a range of arguments
1489  inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1490  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1491  BasicBlock *InsertAtEnd);
1492 
1493  explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1494  Instruction *InsertBefore);
1495 
1496  CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1497  BasicBlock *InsertAtEnd);
1498 
1499  void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1500  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1501  void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1502 
1503  /// Compute the number of operands to allocate.
1504  static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1505  // We need one operand for the called function, plus the input operand
1506  // counts provided.
1507  return 1 + NumArgs + NumBundleInputs;
1508  }
1509 
1510 protected:
1511  // Note: Instruction needs to be a friend here to call cloneImpl.
1512  friend class Instruction;
1513 
1514  CallInst *cloneImpl() const;
1515 
1516 public:
1517  static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1518  Instruction *InsertBefore = nullptr) {
1519  return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1520  }
1521 
1523  const Twine &NameStr,
1524  Instruction *InsertBefore = nullptr) {
1525  return new (ComputeNumOperands(Args.size()))
1526  CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1527  }
1528 
1530  ArrayRef<OperandBundleDef> Bundles = None,
1531  const Twine &NameStr = "",
1532  Instruction *InsertBefore = nullptr) {
1533  const int NumOperands =
1534  ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1535  const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1536 
1537  return new (NumOperands, DescriptorBytes)
1538  CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1539  }
1540 
1541  static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1542  BasicBlock *InsertAtEnd) {
1543  return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1544  }
1545 
1547  const Twine &NameStr, BasicBlock *InsertAtEnd) {
1548  return new (ComputeNumOperands(Args.size()))
1549  CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1550  }
1551 
1554  const Twine &NameStr, BasicBlock *InsertAtEnd) {
1555  const int NumOperands =
1556  ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1557  const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1558 
1559  return new (NumOperands, DescriptorBytes)
1560  CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1561  }
1562 
1563  static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1564  Instruction *InsertBefore = nullptr) {
1565  return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1566  InsertBefore);
1567  }
1568 
1570  ArrayRef<OperandBundleDef> Bundles = None,
1571  const Twine &NameStr = "",
1572  Instruction *InsertBefore = nullptr) {
1573  return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1574  NameStr, InsertBefore);
1575  }
1576 
1578  const Twine &NameStr,
1579  Instruction *InsertBefore = nullptr) {
1580  return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1581  InsertBefore);
1582  }
1583 
1584  static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1585  BasicBlock *InsertAtEnd) {
1586  return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1587  InsertAtEnd);
1588  }
1589 
1591  const Twine &NameStr, BasicBlock *InsertAtEnd) {
1592  return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1593  InsertAtEnd);
1594  }
1595 
1598  const Twine &NameStr, BasicBlock *InsertAtEnd) {
1599  return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1600  NameStr, InsertAtEnd);
1601  }
1602 
1603  /// Create a clone of \p CI with a different set of operand bundles and
1604  /// insert it before \p InsertPt.
1605  ///
1606  /// The returned call instruction is identical \p CI in every way except that
1607  /// the operand bundles for the new instruction are set to the operand bundles
1608  /// in \p Bundles.
1609  static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1610  Instruction *InsertPt = nullptr);
1611 
1612  /// Generate the IR for a call to malloc:
1613  /// 1. Compute the malloc call's argument as the specified type's size,
1614  /// possibly multiplied by the array size if the array size is not
1615  /// constant 1.
1616  /// 2. Call malloc with that argument.
1617  /// 3. Bitcast the result of the malloc call to the specified type.
1618  static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1619  Type *AllocTy, Value *AllocSize,
1620  Value *ArraySize = nullptr,
1621  Function *MallocF = nullptr,
1622  const Twine &Name = "");
1623  static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1624  Type *AllocTy, Value *AllocSize,
1625  Value *ArraySize = nullptr,
1626  Function *MallocF = nullptr,
1627  const Twine &Name = "");
1628  static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1629  Type *AllocTy, Value *AllocSize,
1630  Value *ArraySize = nullptr,
1631  ArrayRef<OperandBundleDef> Bundles = None,
1632  Function *MallocF = nullptr,
1633  const Twine &Name = "");
1634  static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1635  Type *AllocTy, Value *AllocSize,
1636  Value *ArraySize = nullptr,
1637  ArrayRef<OperandBundleDef> Bundles = None,
1638  Function *MallocF = nullptr,
1639  const Twine &Name = "");
1640  /// Generate the IR for a call to the builtin free function.
1641  static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1642  static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1645  Instruction *InsertBefore);
1648  BasicBlock *InsertAtEnd);
1649 
1650  // Note that 'musttail' implies 'tail'.
1651  enum TailCallKind : unsigned {
1657  };
1658 
1660  static_assert(
1661  Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(),
1662  "Bitfields must be contiguous");
1663 
1665  return getSubclassData<TailCallKindField>();
1666  }
1667 
1668  bool isTailCall() const {
1670  return Kind == TCK_Tail || Kind == TCK_MustTail;
1671  }
1672 
1673  bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
1674 
1675  bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
1676 
1678  setSubclassData<TailCallKindField>(TCK);
1679  }
1680 
1681  void setTailCall(bool IsTc = true) {
1682  setTailCallKind(IsTc ? TCK_Tail : TCK_None);
1683  }
1684 
1685  /// Return true if the call can return twice
1686  bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1687  void setCanReturnTwice() { addFnAttr(Attribute::ReturnsTwice); }
1688 
1689  // Methods for support type inquiry through isa, cast, and dyn_cast:
1690  static bool classof(const Instruction *I) {
1691  return I->getOpcode() == Instruction::Call;
1692  }
1693  static bool classof(const Value *V) {
1694  return isa<Instruction>(V) && classof(cast<Instruction>(V));
1695  }
1696 
1697  /// Updates profile metadata by scaling it by \p S / \p T.
1699 
1700 private:
1701  // Shadow Instruction::setInstructionSubclassData with a private forwarding
1702  // method so that subclasses cannot accidentally use it.
1703  template <typename Bitfield>
1704  void setSubclassData(typename Bitfield::Type Value) {
1705  Instruction::setSubclassData<Bitfield>(Value);
1706  }
1707 };
1708 
1709 CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1710  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1711  BasicBlock *InsertAtEnd)
1712  : CallBase(Ty->getReturnType(), Instruction::Call,
1713  OperandTraits<CallBase>::op_end(this) -
1714  (Args.size() + CountBundleInputs(Bundles) + 1),
1715  unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1716  InsertAtEnd) {
1717  init(Ty, Func, Args, Bundles, NameStr);
1718 }
1719 
1720 CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1721  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1722  Instruction *InsertBefore)
1723  : CallBase(Ty->getReturnType(), Instruction::Call,
1724  OperandTraits<CallBase>::op_end(this) -
1725  (Args.size() + CountBundleInputs(Bundles) + 1),
1726  unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1727  InsertBefore) {
1728  init(Ty, Func, Args, Bundles, NameStr);
1729 }
1730 
1731 //===----------------------------------------------------------------------===//
1732 // SelectInst Class
1733 //===----------------------------------------------------------------------===//
1734 
1735 /// This class represents the LLVM 'select' instruction.
1736 ///
1737 class SelectInst : public Instruction {
1738  SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1739  Instruction *InsertBefore)
1741  &Op<0>(), 3, InsertBefore) {
1742  init(C, S1, S2);
1743  setName(NameStr);
1744  }
1745 
1746  SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1747  BasicBlock *InsertAtEnd)
1749  &Op<0>(), 3, InsertAtEnd) {
1750  init(C, S1, S2);
1751  setName(NameStr);
1752  }
1753 
1754  void init(Value *C, Value *S1, Value *S2) {
1755  assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select");
1756  Op<0>() = C;
1757  Op<1>() = S1;
1758  Op<2>() = S2;
1759  }
1760 
1761 protected:
1762  // Note: Instruction needs to be a friend here to call cloneImpl.
1763  friend class Instruction;
1764 
1765  SelectInst *cloneImpl() const;
1766 
1767 public:
1768  static SelectInst *Create(Value *C, Value *S1, Value *S2,
1769  const Twine &NameStr = "",
1770  Instruction *InsertBefore = nullptr,
1771  Instruction *MDFrom = nullptr) {
1772  SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1773  if (MDFrom)
1774  Sel->copyMetadata(*MDFrom);
1775  return Sel;
1776  }
1777 
1778  static SelectInst *Create(Value *C, Value *S1, Value *S2,
1779  const Twine &NameStr,
1780  BasicBlock *InsertAtEnd) {
1781  return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1782  }
1783 
1784  const Value *getCondition() const { return Op<0>(); }
1785  const Value *getTrueValue() const { return Op<1>(); }
1786  const Value *getFalseValue() const { return Op<2>(); }
1787  Value *getCondition() { return Op<0>(); }
1788  Value *getTrueValue() { return Op<1>(); }
1789  Value *getFalseValue() { return Op<2>(); }
1790 
1791  void setCondition(Value *V) { Op<0>() = V; }
1792  void setTrueValue(Value *V) { Op<1>() = V; }
1793  void setFalseValue(Value *V) { Op<2>() = V; }
1794 
1795  /// Swap the true and false values of the select instruction.
1796  /// This doesn't swap prof metadata.
1797  void swapValues() { Op<1>().swap(Op<2>()); }
1798 
1799  /// Return a string if the specified operands are invalid
1800  /// for a select operation, otherwise return null.
1801  static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1802 
1803  /// Transparently provide more efficient getOperand methods.
1805 
1807  return static_cast<OtherOps>(Instruction::getOpcode());
1808  }
1809 
1810  // Methods for support type inquiry through isa, cast, and dyn_cast:
1811  static bool classof(const Instruction *I) {
1812  return I->getOpcode() == Instruction::Select;
1813  }
1814  static bool classof(const Value *V) {
1815  return isa<Instruction>(V) && classof(cast<Instruction>(V));
1816  }
1817 };
1818 
1819 template <>
1820 struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1821 };
1822 
1824 
1825 //===----------------------------------------------------------------------===//
1826 // VAArgInst Class
1827 //===----------------------------------------------------------------------===//
1828 
1829 /// This class represents the va_arg llvm instruction, which returns
1830 /// an argument of the specified type given a va_list and increments that list
1831 ///
1832 class VAArgInst : public UnaryInstruction {
1833 protected:
1834  // Note: Instruction needs to be a friend here to call cloneImpl.
1835  friend class Instruction;
1836 
1837  VAArgInst *cloneImpl() const;
1838 
1839 public:
1840  VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1841  Instruction *InsertBefore = nullptr)
1842  : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1843  setName(NameStr);
1844  }
1845 
1846  VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1847  BasicBlock *InsertAtEnd)
1848  : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1849  setName(NameStr);
1850  }
1851 
1852  Value *getPointerOperand() { return getOperand(0); }
1853  const Value *getPointerOperand() const { return getOperand(0); }
1854  static unsigned getPointerOperandIndex() { return 0U; }
1855 
1856  // Methods for support type inquiry through isa, cast, and dyn_cast:
1857  static bool classof(const Instruction *I) {
1858  return I->getOpcode() == VAArg;
1859  }
1860  static bool classof(const Value *V) {
1861  return isa<Instruction>(V) && classof(cast<Instruction>(V));
1862  }
1863 };
1864 
1865 //===----------------------------------------------------------------------===//
1866 // ExtractElementInst Class
1867 //===----------------------------------------------------------------------===//
1868 
1869 /// This instruction extracts a single (scalar)
1870 /// element from a VectorType value
1871 ///
1873  ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1874  Instruction *InsertBefore = nullptr);
1875  ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1876  BasicBlock *InsertAtEnd);
1877 
1878 protected:
1879  // Note: Instruction needs to be a friend here to call cloneImpl.
1880  friend class Instruction;
1881 
1882  ExtractElementInst *cloneImpl() const;
1883 
1884 public:
1885  static ExtractElementInst *Create(Value *Vec, Value *Idx,
1886  const Twine &NameStr = "",
1887  Instruction *InsertBefore = nullptr) {
1888  return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1889  }
1890 
1891  static ExtractElementInst *Create(Value *Vec, Value *Idx,
1892  const Twine &NameStr,
1893  BasicBlock *InsertAtEnd) {
1894  return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1895  }
1896 
1897  /// Return true if an extractelement instruction can be
1898  /// formed with the specified operands.
1899  static bool isValidOperands(const Value *Vec, const Value *Idx);
1900 
1901  Value *getVectorOperand() { return Op<0>(); }
1902  Value *getIndexOperand() { return Op<1>(); }
1903  const Value *getVectorOperand() const { return Op<0>(); }
1904  const Value *getIndexOperand() const { return Op<1>(); }
1905 
1907  return cast<VectorType>(getVectorOperand()->getType());
1908  }
1909 
1910  /// Transparently provide more efficient getOperand methods.
1912 
1913  // Methods for support type inquiry through isa, cast, and dyn_cast:
1914  static bool classof(const Instruction *I) {
1915  return I->getOpcode() == Instruction::ExtractElement;
1916  }
1917  static bool classof(const Value *V) {
1918  return isa<Instruction>(V) && classof(cast<Instruction>(V));
1919  }
1920 };
1921 
1922 template <>
1924  public FixedNumOperandTraits<ExtractElementInst, 2> {
1925 };
1926 
1928 
1929 //===----------------------------------------------------------------------===//
1930 // InsertElementInst Class
1931 //===----------------------------------------------------------------------===//
1932 
1933 /// This instruction inserts a single (scalar)
1934 /// element into a VectorType value
1935 ///
1937  InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1938  const Twine &NameStr = "",
1939  Instruction *InsertBefore = nullptr);
1940  InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1941  BasicBlock *InsertAtEnd);
1942 
1943 protected:
1944  // Note: Instruction needs to be a friend here to call cloneImpl.
1945  friend class Instruction;
1946 
1947  InsertElementInst *cloneImpl() const;
1948 
1949 public:
1950  static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1951  const Twine &NameStr = "",
1952  Instruction *InsertBefore = nullptr) {
1953  return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1954  }
1955 
1956  static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1957  const Twine &NameStr,
1958  BasicBlock *InsertAtEnd) {
1959  return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1960  }
1961 
1962  /// Return true if an insertelement instruction can be
1963  /// formed with the specified operands.
1964  static bool isValidOperands(const Value *Vec, const Value *NewElt,
1965  const Value *Idx);
1966 
1967  /// Overload to return most specific vector type.
1968  ///
1969  VectorType *getType() const {
1970  return cast<VectorType>(Instruction::getType());
1971  }
1972 
1973  /// Transparently provide more efficient getOperand methods.
1975 
1976  // Methods for support type inquiry through isa, cast, and dyn_cast:
1977  static bool classof(const Instruction *I) {
1978  return I->getOpcode() == Instruction::InsertElement;
1979  }
1980  static bool classof(const Value *V) {
1981  return isa<Instruction>(V) && classof(cast<Instruction>(V));
1982  }
1983 };
1984 
1985 template <>
1987  public FixedNumOperandTraits<InsertElementInst, 3> {
1988 };
1989 
1991 
1992 //===----------------------------------------------------------------------===//
1993 // ShuffleVectorInst Class
1994 //===----------------------------------------------------------------------===//
1995 
1996 constexpr int UndefMaskElem = -1;
1997 
1998 /// This instruction constructs a fixed permutation of two
1999 /// input vectors.
2000 ///
2001 /// For each element of the result vector, the shuffle mask selects an element
2002 /// from one of the input vectors to copy to the result. Non-negative elements
2003 /// in the mask represent an index into the concatenated pair of input vectors.
2004 /// UndefMaskElem (-1) specifies that the result element is undefined.
2005 ///
2006 /// For scalable vectors, all the elements of the mask must be 0 or -1. This
2007 /// requirement may be relaxed in the future.
2009  SmallVector<int, 4> ShuffleMask;
2010  Constant *ShuffleMaskForBitcode;
2011 
2012 protected:
2013  // Note: Instruction needs to be a friend here to call cloneImpl.
2014  friend class Instruction;
2015 
2016  ShuffleVectorInst *cloneImpl() const;
2017 
2018 public:
2019  ShuffleVectorInst(Value *V1, Value *Mask, const Twine &NameStr = "",
2020  Instruction *InsertBefore = nullptr);
2021  ShuffleVectorInst(Value *V1, Value *Mask, const Twine &NameStr,
2022  BasicBlock *InsertAtEnd);
2023  ShuffleVectorInst(Value *V1, ArrayRef<int> Mask, const Twine &NameStr = "",
2024  Instruction *InsertBefore = nullptr);
2025  ShuffleVectorInst(Value *V1, ArrayRef<int> Mask, const Twine &NameStr,
2026  BasicBlock *InsertAtEnd);
2028  const Twine &NameStr = "",
2029  Instruction *InsertBefor = nullptr);
2031  const Twine &NameStr, BasicBlock *InsertAtEnd);
2033  const Twine &NameStr = "",
2034  Instruction *InsertBefor = nullptr);
2036  const Twine &NameStr, BasicBlock *InsertAtEnd);
2037 
2038  void *operator new(size_t S) { return User::operator new(S, 2); }
2039  void operator delete(void *Ptr) { return User::operator delete(Ptr); }
2040 
2041  /// Swap the operands and adjust the mask to preserve the semantics
2042  /// of the instruction.
2043  void commute();
2044 
2045  /// Return true if a shufflevector instruction can be
2046  /// formed with the specified operands.
2047  static bool isValidOperands(const Value *V1, const Value *V2,
2048  const Value *Mask);
2049  static bool isValidOperands(const Value *V1, const Value *V2,
2051 
2052  /// Overload to return most specific vector type.
2053  ///
2054  VectorType *getType() const {
2055  return cast<VectorType>(Instruction::getType());
2056  }
2057 
2058  /// Transparently provide more efficient getOperand methods.
2060 
2061  /// Return the shuffle mask value of this instruction for the given element
2062  /// index. Return UndefMaskElem if the element is undef.
2063  int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
2064 
2065  /// Convert the input shuffle mask operand to a vector of integers. Undefined
2066  /// elements of the mask are returned as UndefMaskElem.
2067  static void getShuffleMask(const Constant *Mask,
2068  SmallVectorImpl<int> &Result);
2069 
2070  /// Return the mask for this instruction as a vector of integers. Undefined
2071  /// elements of the mask are returned as UndefMaskElem.
2072  void getShuffleMask(SmallVectorImpl<int> &Result) const {
2073  Result.assign(ShuffleMask.begin(), ShuffleMask.end());
2074  }
2075 
2076  /// Return the mask for this instruction, for use in bitcode.
2077  ///
2078  /// TODO: This is temporary until we decide a new bitcode encoding for
2079  /// shufflevector.
2080  Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
2081 
2082  static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2083  Type *ResultTy);
2084 
2085  void setShuffleMask(ArrayRef<int> Mask);
2086 
2087  ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
2088 
2089  /// Return true if this shuffle returns a vector with a different number of
2090  /// elements than its source vectors.
2091  /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2092  /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2093  bool changesLength() const {
2094  unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2095  ->getElementCount()
2096  .getKnownMinValue();
2097  unsigned NumMaskElts = ShuffleMask.size();
2098  return NumSourceElts != NumMaskElts;
2099  }
2100 
2101  /// Return true if this shuffle returns a vector with a greater number of
2102  /// elements than its source vectors.
2103  /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2104  bool increasesLength() const {
2105  unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2106  ->getElementCount()
2107  .getKnownMinValue();
2108  unsigned NumMaskElts = ShuffleMask.size();
2109  return NumSourceElts < NumMaskElts;
2110  }
2111 
2112  /// Return true if this shuffle mask chooses elements from exactly one source
2113  /// vector.
2114  /// Example: <7,5,undef,7>
2115  /// This assumes that vector operands are the same length as the mask.
2116  static bool isSingleSourceMask(ArrayRef<int> Mask);
2117  static bool isSingleSourceMask(const Constant *Mask) {
2118  assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2119  SmallVector<int, 16> MaskAsInts;
2120  getShuffleMask(Mask, MaskAsInts);
2121  return isSingleSourceMask(MaskAsInts);
2122  }
2123 
2124  /// Return true if this shuffle chooses elements from exactly one source
2125  /// vector without changing the length of that vector.
2126  /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2127  /// TODO: Optionally allow length-changing shuffles.
2128  bool isSingleSource() const {
2129  return !changesLength() && isSingleSourceMask(ShuffleMask);
2130  }
2131 
2132  /// Return true if this shuffle mask chooses elements from exactly one source
2133  /// vector without lane crossings. A shuffle using this mask is not
2134  /// necessarily a no-op because it may change the number of elements from its
2135  /// input vectors or it may provide demanded bits knowledge via undef lanes.
2136  /// Example: <undef,undef,2,3>
2137  static bool isIdentityMask(ArrayRef<int> Mask);
2138  static bool isIdentityMask(const Constant *Mask) {
2139  assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2140 
2141  // Not possible to express a shuffle mask for a scalable vector for this
2142  // case.
2143  if (isa<ScalableVectorType>(Mask->getType()))
2144  return false;
2145 
2146  SmallVector<int, 16> MaskAsInts;
2147  getShuffleMask(Mask, MaskAsInts);
2148  return isIdentityMask(MaskAsInts);
2149  }
2150 
2151  /// Return true if this shuffle chooses elements from exactly one source
2152  /// vector without lane crossings and does not change the number of elements
2153  /// from its input vectors.
2154  /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2155  bool isIdentity() const {
2156  // Not possible to express a shuffle mask for a scalable vector for this
2157  // case.
2158  if (isa<ScalableVectorType>(getType()))
2159  return false;
2160 
2161  return !changesLength() && isIdentityMask(ShuffleMask);
2162  }
2163 
2164  /// Return true if this shuffle lengthens exactly one source vector with
2165  /// undefs in the high elements.
2166  bool isIdentityWithPadding() const;
2167 
2168  /// Return true if this shuffle extracts the first N elements of exactly one
2169  /// source vector.
2170  bool isIdentityWithExtract() const;
2171 
2172  /// Return true if this shuffle concatenates its 2 source vectors. This
2173  /// returns false if either input is undefined. In that case, the shuffle is
2174  /// is better classified as an identity with padding operation.
2175  bool isConcat() const;
2176 
2177  /// Return true if this shuffle mask chooses elements from its source vectors
2178  /// without lane crossings. A shuffle using this mask would be
2179  /// equivalent to a vector select with a constant condition operand.
2180  /// Example: <4,1,6,undef>
2181  /// This returns false if the mask does not choose from both input vectors.
2182  /// In that case, the shuffle is better classified as an identity shuffle.
2183  /// This assumes that vector operands are the same length as the mask
2184  /// (a length-changing shuffle can never be equivalent to a vector select).
2185  static bool isSelectMask(ArrayRef<int> Mask);
2186  static bool isSelectMask(const Constant *Mask) {
2187  assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2188  SmallVector<int, 16> MaskAsInts;
2189  getShuffleMask(Mask, MaskAsInts);
2190  return isSelectMask(MaskAsInts);
2191  }
2192 
2193  /// Return true if this shuffle chooses elements from its source vectors
2194  /// without lane crossings and all operands have the same number of elements.
2195  /// In other words, this shuffle is equivalent to a vector select with a
2196  /// constant condition operand.
2197  /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2198  /// This returns false if the mask does not choose from both input vectors.
2199  /// In that case, the shuffle is better classified as an identity shuffle.
2200  /// TODO: Optionally allow length-changing shuffles.
2201  bool isSelect() const {
2202  return !changesLength() && isSelectMask(ShuffleMask);
2203  }
2204 
2205  /// Return true if this shuffle mask swaps the order of elements from exactly
2206  /// one source vector.
2207  /// Example: <7,6,undef,4>
2208  /// This assumes that vector operands are the same length as the mask.
2209  static bool isReverseMask(ArrayRef<int> Mask);
2210  static bool isReverseMask(const Constant *Mask) {
2211  assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2212  SmallVector<int, 16> MaskAsInts;
2213  getShuffleMask(Mask, MaskAsInts);
2214  return isReverseMask(MaskAsInts);
2215  }
2216 
2217  /// Return true if this shuffle swaps the order of elements from exactly
2218  /// one source vector.
2219  /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2220  /// TODO: Optionally allow length-changing shuffles.
2221  bool isReverse() const {
2222  return !changesLength() && isReverseMask(ShuffleMask);
2223  }
2224 
2225  /// Return true if this shuffle mask chooses all elements with the same value
2226  /// as the first element of exactly one source vector.
2227  /// Example: <4,undef,undef,4>
2228  /// This assumes that vector operands are the same length as the mask.
2229  static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2230  static bool isZeroEltSplatMask(const Constant *Mask) {
2231  assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2232  SmallVector<int, 16> MaskAsInts;
2233  getShuffleMask(Mask, MaskAsInts);
2234  return isZeroEltSplatMask(MaskAsInts);
2235  }
2236 
2237  /// Return true if all elements of this shuffle are the same value as the
2238  /// first element of exactly one source vector without changing the length
2239  /// of that vector.
2240  /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2241  /// TODO: Optionally allow length-changing shuffles.
2242  /// TODO: Optionally allow splats from other elements.
2243  bool isZeroEltSplat() const {
2244  return !changesLength() && isZeroEltSplatMask(ShuffleMask);
2245  }
2246 
2247  /// Return true if this shuffle mask is a transpose mask.
2248  /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2249  /// even- or odd-numbered vector elements from two n-dimensional source
2250  /// vectors and write each result into consecutive elements of an
2251  /// n-dimensional destination vector. Two shuffles are necessary to complete
2252  /// the transpose, one for the even elements and another for the odd elements.
2253  /// This description closely follows how the TRN1 and TRN2 AArch64
2254  /// instructions operate.
2255  ///
2256  /// For example, a simple 2x2 matrix can be transposed with:
2257  ///
2258  /// ; Original matrix
2259  /// m0 = < a, b >
2260  /// m1 = < c, d >
2261  ///
2262  /// ; Transposed matrix
2263  /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2264  /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2265  ///
2266  /// For matrices having greater than n columns, the resulting nx2 transposed
2267  /// matrix is stored in two result vectors such that one vector contains
2268  /// interleaved elements from all the even-numbered rows and the other vector
2269  /// contains interleaved elements from all the odd-numbered rows. For example,
2270  /// a 2x4 matrix can be transposed with:
2271  ///
2272  /// ; Original matrix
2273  /// m0 = < a, b, c, d >
2274  /// m1 = < e, f, g, h >
2275  ///
2276  /// ; Transposed matrix
2277  /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2278  /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2279  static bool isTransposeMask(ArrayRef<int> Mask);
2280  static bool isTransposeMask(const Constant *Mask) {
2281  assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2282  SmallVector<int, 16> MaskAsInts;
2283  getShuffleMask(Mask, MaskAsInts);
2284  return isTransposeMask(MaskAsInts);
2285  }
2286 
2287  /// Return true if this shuffle transposes the elements of its inputs without
2288  /// changing the length of the vectors. This operation may also be known as a
2289  /// merge or interleave. See the description for isTransposeMask() for the
2290  /// exact specification.
2291  /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2292  bool isTranspose() const {
2293  return !changesLength() && isTransposeMask(ShuffleMask);
2294  }
2295 
2296  /// Return true if this shuffle mask is a splice mask, concatenating the two
2297  /// inputs together and then extracts an original width vector starting from
2298  /// the splice index.
2299  /// Example: shufflevector <4 x n> A, <4 x n> B, <1,2,3,4>
2300  static bool isSpliceMask(ArrayRef<int> Mask, int &Index);
2301  static bool isSpliceMask(const Constant *Mask, int &Index) {
2302  assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2303  SmallVector<int, 16> MaskAsInts;
2304  getShuffleMask(Mask, MaskAsInts);
2305  return isSpliceMask(MaskAsInts, Index);
2306  }
2307 
2308  /// Return true if this shuffle splices two inputs without changing the length
2309  /// of the vectors. This operation concatenates the two inputs together and
2310  /// then extracts an original width vector starting from the splice index.
2311  /// Example: shufflevector <4 x n> A, <4 x n> B, <1,2,3,4>
2312  bool isSplice(int &Index) const {
2313  return !changesLength() && isSpliceMask(ShuffleMask, Index);
2314  }
2315 
2316  /// Return true if this shuffle mask is an extract subvector mask.
2317  /// A valid extract subvector mask returns a smaller vector from a single
2318  /// source operand. The base extraction index is returned as well.
2319  static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2320  int &Index);
2321  static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2322  int &Index) {
2323  assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2324  // Not possible to express a shuffle mask for a scalable vector for this
2325  // case.
2326  if (isa<ScalableVectorType>(Mask->getType()))
2327  return false;
2328  SmallVector<int, 16> MaskAsInts;
2329  getShuffleMask(Mask, MaskAsInts);
2330  return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2331  }
2332 
2333  /// Return true if this shuffle mask is an extract subvector mask.
2334  bool isExtractSubvectorMask(int &Index) const {
2335  // Not possible to express a shuffle mask for a scalable vector for this
2336  // case.
2337  if (isa<ScalableVectorType>(getType()))
2338  return false;
2339 
2340  int NumSrcElts =
2341  cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2342  return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
2343  }
2344 
2345  /// Return true if this shuffle mask is an insert subvector mask.
2346  /// A valid insert subvector mask inserts the lowest elements of a second
2347  /// source operand into an in-place first source operand operand.
2348  /// Both the sub vector width and the insertion index is returned.
2349  static bool isInsertSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2350  int &NumSubElts, int &Index);
2351  static bool isInsertSubvectorMask(const Constant *Mask, int NumSrcElts,
2352  int &NumSubElts, int &Index) {
2353  assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2354  // Not possible to express a shuffle mask for a scalable vector for this
2355  // case.
2356  if (isa<ScalableVectorType>(Mask->getType()))
2357  return false;
2358  SmallVector<int, 16> MaskAsInts;
2359  getShuffleMask(Mask, MaskAsInts);
2360  return isInsertSubvectorMask(MaskAsInts, NumSrcElts, NumSubElts, Index);
2361  }
2362 
2363  /// Return true if this shuffle mask is an insert subvector mask.
2364  bool isInsertSubvectorMask(int &NumSubElts, int &Index) const {
2365  // Not possible to express a shuffle mask for a scalable vector for this
2366  // case.
2367  if (isa<ScalableVectorType>(getType()))
2368  return false;
2369 
2370  int NumSrcElts =
2371  cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2372  return isInsertSubvectorMask(ShuffleMask, NumSrcElts, NumSubElts, Index);
2373  }
2374 
2375  /// Return true if this shuffle mask replicates each of the \p VF elements
2376  /// in a vector \p ReplicationFactor times.
2377  /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is:
2378  /// <0,0,0,1,1,1,2,2,2,3,3,3>
2379  static bool isReplicationMask(ArrayRef<int> Mask, int &ReplicationFactor,
2380  int &VF);
2381  static bool isReplicationMask(const Constant *Mask, int &ReplicationFactor,
2382  int &VF) {
2383  assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2384  // Not possible to express a shuffle mask for a scalable vector for this
2385  // case.
2386  if (isa<ScalableVectorType>(Mask->getType()))
2387  return false;
2388  SmallVector<int, 16> MaskAsInts;
2389  getShuffleMask(Mask, MaskAsInts);
2390  return isReplicationMask(MaskAsInts, ReplicationFactor, VF);
2391  }
2392 
2393  /// Return true if this shuffle mask is a replication mask.
2394  bool isReplicationMask(int &ReplicationFactor, int &VF) const;
2395 
2396  /// Return true if this shuffle mask represents "clustered" mask of size VF,
2397  /// i.e. each index between [0..VF) is used exactly once in each submask of
2398  /// size VF.
2399  /// For example, the mask for \p VF=4 is:
2400  /// 0, 1, 2, 3, 3, 2, 0, 1 - "clustered", because each submask of size 4
2401  /// (0,1,2,3 and 3,2,0,1) uses indices [0..VF) exactly one time.
2402  /// 0, 1, 2, 3, 3, 3, 1, 0 - not "clustered", because
2403  /// element 3 is used twice in the second submask
2404  /// (3,3,1,0) and index 2 is not used at all.
2405  static bool isOneUseSingleSourceMask(ArrayRef<int> Mask, int VF);
2406 
2407  /// Return true if this shuffle mask is a one-use-single-source("clustered")
2408  /// mask.
2409  bool isOneUseSingleSourceMask(int VF) const;
2410 
2411  /// Change values in a shuffle permute mask assuming the two vector operands
2412  /// of length InVecNumElts have swapped position.
2414  unsigned InVecNumElts) {
2415  for (int &Idx : Mask) {
2416  if (Idx == -1)
2417  continue;
2418  Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2419  assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
2420  "shufflevector mask index out of range");
2421  }
2422  }
2423 
2424  // Methods for support type inquiry through isa, cast, and dyn_cast:
2425  static bool classof(const Instruction *I) {
2426  return I->getOpcode() == Instruction::ShuffleVector;
2427  }
2428  static bool classof(const Value *V) {
2429  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2430  }
2431 };
2432 
2433 template <>
2435  : public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
2436 
2438 
2439 //===----------------------------------------------------------------------===//
2440 // ExtractValueInst Class
2441 //===----------------------------------------------------------------------===//
2442 
2443 /// This instruction extracts a struct member or array
2444 /// element value from an aggregate value.
2445 ///
2447  SmallVector<unsigned, 4> Indices;
2448 
2449  ExtractValueInst(const ExtractValueInst &EVI);
2450 
2451  /// Constructors - Create a extractvalue instruction with a base aggregate
2452  /// value and a list of indices. The first ctor can optionally insert before
2453  /// an existing instruction, the second appends the new instruction to the
2454  /// specified BasicBlock.
2455  inline ExtractValueInst(Value *Agg,
2456  ArrayRef<unsigned> Idxs,
2457  const Twine &NameStr,
2458  Instruction *InsertBefore);
2459  inline ExtractValueInst(Value *Agg,
2460  ArrayRef<unsigned> Idxs,
2461  const Twine &NameStr, BasicBlock *InsertAtEnd);
2462 
2463  void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2464 
2465 protected:
2466  // Note: Instruction needs to be a friend here to call cloneImpl.
2467  friend class Instruction;
2468 
2469  ExtractValueInst *cloneImpl() const;
2470 
2471 public:
2473  ArrayRef<unsigned> Idxs,
2474  const Twine &NameStr = "",
2475  Instruction *InsertBefore = nullptr) {
2476  return new
2477  ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2478  }
2479 
2481  ArrayRef<unsigned> Idxs,
2482  const Twine &NameStr,
2483  BasicBlock *InsertAtEnd) {
2484  return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2485  }
2486 
2487  /// Returns the type of the element that would be extracted
2488  /// with an extractvalue instruction with the specified parameters.
2489  ///
2490  /// Null is returned if the indices are invalid for the specified type.
2491  static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2492 
2493  using idx_iterator = const unsigned*;
2494 
2495  inline idx_iterator idx_begin() const { return Indices.begin(); }
2496  inline idx_iterator idx_end() const { return Indices.end(); }
2498  return make_range(idx_begin(), idx_end());
2499  }
2500 
2502  return getOperand(0);
2503  }
2504  const Value *getAggregateOperand() const {
2505  return getOperand(0);
2506  }
2507  static unsigned getAggregateOperandIndex() {
2508  return 0U; // get index for modifying correct operand
2509  }
2510 
2512  return Indices;
2513  }
2514 
2515  unsigned getNumIndices() const {
2516  return (unsigned)Indices.size();
2517  }
2518 
2519  bool hasIndices() const {
2520  return true;
2521  }
2522 
2523  // Methods for support type inquiry through isa, cast, and dyn_cast:
2524  static bool classof(const Instruction *I) {
2525  return I->getOpcode() == Instruction::ExtractValue;
2526  }
2527  static bool classof(const Value *V) {
2528  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2529  }
2530 };
2531 
2532 ExtractValueInst::ExtractValueInst(Value *Agg,
2533  ArrayRef<unsigned> Idxs,
2534  const Twine &NameStr,
2535  Instruction *InsertBefore)
2536  : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2537  ExtractValue, Agg, InsertBefore) {
2538  init(Idxs, NameStr);
2539 }
2540 
2541 ExtractValueInst::ExtractValueInst(Value *Agg,
2542  ArrayRef<unsigned> Idxs,
2543  const Twine &NameStr,
2544  BasicBlock *InsertAtEnd)
2545  : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2546  ExtractValue, Agg, InsertAtEnd) {
2547  init(Idxs, NameStr);
2548 }
2549 
2550 //===----------------------------------------------------------------------===//
2551 // InsertValueInst Class
2552 //===----------------------------------------------------------------------===//
2553 
2554 /// This instruction inserts a struct field of array element
2555 /// value into an aggregate value.
2556 ///
2558  SmallVector<unsigned, 4> Indices;
2559 
2560  InsertValueInst(const InsertValueInst &IVI);
2561 
2562  /// Constructors - Create a insertvalue instruction with a base aggregate
2563  /// value, a value to insert, and a list of indices. The first ctor can
2564  /// optionally insert before an existing instruction, the second appends
2565  /// the new instruction to the specified BasicBlock.
2566  inline InsertValueInst(Value *Agg, Value *Val,
2567  ArrayRef<unsigned> Idxs,
2568  const Twine &NameStr,
2569  Instruction *InsertBefore);
2570  inline InsertValueInst(Value *Agg, Value *Val,
2571  ArrayRef<unsigned> Idxs,
2572  const Twine &NameStr, BasicBlock *InsertAtEnd);
2573 
2574  /// Constructors - These two constructors are convenience methods because one
2575  /// and two index insertvalue instructions are so common.
2576  InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2577  const Twine &NameStr = "",
2578  Instruction *InsertBefore = nullptr);
2579  InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2580  BasicBlock *InsertAtEnd);
2581 
2582  void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2583  const Twine &NameStr);
2584 
2585 protected:
2586  // Note: Instruction needs to be a friend here to call cloneImpl.
2587  friend class Instruction;
2588 
2589  InsertValueInst *cloneImpl() const;
2590 
2591 public:
2592  // allocate space for exactly two operands
2593  void *operator new(size_t S) { return User::operator new(S, 2); }
2594  void operator delete(void *Ptr) { User::operator delete(Ptr); }
2595 
2596  static InsertValueInst *Create(Value *Agg, Value *Val,
2597  ArrayRef<unsigned> Idxs,
2598  const Twine &NameStr = "",
2599  Instruction *InsertBefore = nullptr) {
2600  return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2601  }
2602 
2603  static InsertValueInst *Create(Value *Agg, Value *Val,
2604  ArrayRef<unsigned> Idxs,
2605  const Twine &NameStr,
2606  BasicBlock *InsertAtEnd) {
2607  return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2608  }
2609 
2610  /// Transparently provide more efficient getOperand methods.
2612 
2613  using idx_iterator = const unsigned*;
2614 
2615  inline idx_iterator idx_begin() const { return Indices.begin(); }
2616  inline idx_iterator idx_end() const { return Indices.end(); }
2618  return make_range(idx_begin(), idx_end());
2619  }
2620 
2622  return getOperand(0);
2623  }
2624  const Value *getAggregateOperand() const {
2625  return getOperand(0);
2626  }
2627  static unsigned getAggregateOperandIndex() {
2628  return 0U; // get index for modifying correct operand
2629  }
2630 
2632  return getOperand(1);
2633  }
2635  return getOperand(1);
2636  }
2637  static unsigned getInsertedValueOperandIndex() {
2638  return 1U; // get index for modifying correct operand
2639  }
2640 
2642  return Indices;
2643  }
2644 
2645  unsigned getNumIndices() const {
2646  return (unsigned)Indices.size();
2647  }
2648 
2649  bool hasIndices() const {
2650  return true;
2651  }
2652 
2653  // Methods for support type inquiry through isa, cast, and dyn_cast:
2654  static bool classof(const Instruction *I) {
2655  return I->getOpcode() == Instruction::InsertValue;
2656  }
2657  static bool classof(const Value *V) {
2658  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2659  }
2660 };
2661 
2662 template <>
2664  public FixedNumOperandTraits<InsertValueInst, 2> {
2665 };
2666 
2667 InsertValueInst::InsertValueInst(Value *Agg,
2668  Value *Val,
2669  ArrayRef<unsigned> Idxs,
2670  const Twine &NameStr,
2671  Instruction *InsertBefore)
2672  : Instruction(Agg->getType(), InsertValue,
2673  OperandTraits<InsertValueInst>::op_begin(this),
2674  2, InsertBefore) {
2675  init(Agg, Val, Idxs, NameStr);
2676 }
2677 
2678 InsertValueInst::InsertValueInst(Value *Agg,
2679  Value *Val,
2680  ArrayRef<unsigned> Idxs,
2681  const Twine &NameStr,
2682  BasicBlock *InsertAtEnd)
2683  : Instruction(Agg->getType(), InsertValue,
2684  OperandTraits<InsertValueInst>::op_begin(this),
2685  2, InsertAtEnd) {
2686  init(Agg, Val, Idxs, NameStr);
2687 }
2688 
2690 
2691 //===----------------------------------------------------------------------===//
2692 // PHINode Class
2693 //===----------------------------------------------------------------------===//
2694 
2695 // PHINode - The PHINode class is used to represent the magical mystical PHI
2696 // node, that can not exist in nature, but can be synthesized in a computer
2697 // scientist's overactive imagination.
2698 //
2699 class PHINode : public Instruction {
2700  /// The number of operands actually allocated. NumOperands is
2701  /// the number actually in use.
2702  unsigned ReservedSpace;
2703 
2704  PHINode(const PHINode &PN);
2705 
2706  explicit PHINode(Type *Ty, unsigned NumReservedValues,
2707  const Twine &NameStr = "",
2708  Instruction *InsertBefore = nullptr)
2709  : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2710  ReservedSpace(NumReservedValues) {
2711  assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!");
2712  setName(NameStr);
2713  allocHungoffUses(ReservedSpace);
2714  }
2715 
2716  PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2717  BasicBlock *InsertAtEnd)
2718  : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2719  ReservedSpace(NumReservedValues) {
2720  assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!");
2721  setName(NameStr);
2722  allocHungoffUses(ReservedSpace);
2723  }
2724 
2725 protected:
2726  // Note: Instruction needs to be a friend here to call cloneImpl.
2727  friend class Instruction;
2728 
2729  PHINode *cloneImpl() const;
2730 
2731  // allocHungoffUses - this is more complicated than the generic
2732  // User::allocHungoffUses, because we have to allocate Uses for the incoming
2733  // values and pointers to the incoming blocks, all in one allocation.
2734  void allocHungoffUses(unsigned N) {
2735  User::allocHungoffUses(N, /* IsPhi */ true);
2736  }
2737 
2738 public:
2739  /// Constructors - NumReservedValues is a hint for the number of incoming
2740  /// edges that this phi node will have (use 0 if you really have no idea).
2741  static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2742  const Twine &NameStr = "",
2743  Instruction *InsertBefore = nullptr) {
2744  return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2745  }
2746 
2747  static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2748  const Twine &NameStr, BasicBlock *InsertAtEnd) {
2749  return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2750  }
2751 
2752  /// Provide fast operand accessors
2754 
2755  // Block iterator interface. This provides access to the list of incoming
2756  // basic blocks, which parallels the list of incoming values.
2757 
2760 
2762  return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
2763  }
2764 
2766  return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
2767  }
2768 
2770  return block_begin() + getNumOperands();
2771  }
2772 
2774  return block_begin() + getNumOperands();
2775  }
2776 
2778  return make_range(block_begin(), block_end());
2779  }
2780 
2782  return make_range(block_begin(), block_end());
2783  }
2784 
2785  op_range incoming_values() { return operands(); }
2786 
2787  const_op_range incoming_values() const { return operands(); }
2788 
2789  /// Return the number of incoming edges
2790  ///
2791  unsigned getNumIncomingValues() const { return getNumOperands(); }
2792 
2793  /// Return incoming value number x
2794  ///
2795  Value *getIncomingValue(unsigned i) const {
2796  return getOperand(i);
2797  }
2798  void setIncomingValue(unsigned i, Value *V) {
2799  assert(V && "PHI node got a null value!");
2800  assert(getType() == V->getType() &&
2801  "All operands to PHI node must be the same type as the PHI node!");
2802  setOperand(i, V);
2803  }
2804 
2805  static unsigned getOperandNumForIncomingValue(unsigned i) {
2806  return i;
2807  }
2808 
2809  static unsigned getIncomingValueNumForOperand(unsigned i) {
2810  return i;
2811  }
2812 
2813  /// Return incoming basic block number @p i.
2814  ///
2815  BasicBlock *getIncomingBlock(unsigned i) const {
2816  return block_begin()[i];
2817  }
2818 
2819  /// Return incoming basic block corresponding
2820  /// to an operand of the PHI.
2821  ///
2822  BasicBlock *getIncomingBlock(const Use &U) const {
2823  assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
2824  return getIncomingBlock(unsigned(&U - op_begin()));
2825  }
2826 
2827  /// Return incoming basic block corresponding
2828  /// to value use iterator.
2829  ///
2831  return getIncomingBlock(I.getUse());
2832  }
2833 
2834  void setIncomingBlock(unsigned i, BasicBlock *BB) {
2835  assert(BB && "PHI node got a null basic block!");
2836  block_begin()[i] = BB;
2837  }
2838 
2839  /// Replace every incoming basic block \p Old to basic block \p New.
2841  assert(New && Old && "PHI node got a null basic block!");
2842  for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2843  if (getIncomingBlock(Op) == Old)
2844  setIncomingBlock(Op, New);
2845  }
2846 
2847  /// Add an incoming value to the end of the PHI list
2848  ///
2850  if (getNumOperands() == ReservedSpace)
2851  growOperands(); // Get more space!
2852  // Initialize some new operands.
2853  setNumHungOffUseOperands(getNumOperands() + 1);
2854  setIncomingValue(getNumOperands() - 1, V);
2855  setIncomingBlock(getNumOperands() - 1, BB);
2856  }
2857 
2858  /// Remove an incoming value. This is useful if a
2859  /// predecessor basic block is deleted. The value removed is returned.
2860  ///
2861  /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2862  /// is true), the PHI node is destroyed and any uses of it are replaced with
2863  /// dummy values. The only time there should be zero incoming values to a PHI
2864  /// node is when the block is dead, so this strategy is sound.
2865  ///
2866  Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2867 
2868  Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2869  int Idx = getBasicBlockIndex(BB);
2870  assert(Idx >= 0 && "Invalid basic block argument to remove!");
2871  return removeIncomingValue(Idx, DeletePHIIfEmpty);
2872  }
2873 
2874  /// Return the first index of the specified basic
2875  /// block in the value list for this PHI. Returns -1 if no instance.
2876  ///
2877  int getBasicBlockIndex(const BasicBlock *BB) const {
2878  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2879  if (block_begin()[i] == BB)
2880  return i;
2881  return -1;
2882  }
2883 
2885  int Idx = getBasicBlockIndex(BB);
2886  assert(Idx >= 0 && "Invalid basic block argument!");
2887  return getIncomingValue(Idx);
2888  }
2889 
2890  /// Set every incoming value(s) for block \p BB to \p V.
2892  assert(BB && "PHI node got a null basic block!");
2893  bool Found = false;
2894  for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2895  if (getIncomingBlock(Op) == BB) {
2896  Found = true;
2897  setIncomingValue(Op, V);
2898  }
2899  (void)Found;
2900  assert(Found && "Invalid basic block argument to set!");
2901  }
2902 
2903  /// If the specified PHI node always merges together the
2904  /// same value, return the value, otherwise return null.
2905  Value *hasConstantValue() const;
2906 
2907  /// Whether the specified PHI node always merges
2908  /// together the same value, assuming undefs are equal to a unique
2909  /// non-undef value.
2910  bool hasConstantOrUndefValue() const;
2911 
2912  /// If the PHI node is complete which means all of its parent's predecessors
2913  /// have incoming value in this PHI, return true, otherwise return false.
2914  bool isComplete() const {
2916  [this](const BasicBlock *Pred) {
2917  return getBasicBlockIndex(Pred) >= 0;
2918  });
2919  }
2920 
2921  /// Methods for support type inquiry through isa, cast, and dyn_cast:
2922  static bool classof(const Instruction *I) {
2923  return I->getOpcode() == Instruction::PHI;
2924  }
2925  static bool classof(const Value *V) {
2926  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2927  }
2928 
2929 private:
2930  void growOperands();
2931 };
2932 
2933 template <>
2935 };
2936 
2938 
2939 //===----------------------------------------------------------------------===//
2940 // LandingPadInst Class
2941 //===----------------------------------------------------------------------===//
2942 
2943 //===---------------------------------------------------------------------------
2944 /// The landingpad instruction holds all of the information
2945 /// necessary to generate correct exception handling. The landingpad instruction
2946 /// cannot be moved from the top of a landing pad block, which itself is
2947 /// accessible only from the 'unwind' edge of an invoke. This uses the
2948 /// SubclassData field in Value to store whether or not the landingpad is a
2949 /// cleanup.
2950 ///
2951 class LandingPadInst : public Instruction {
2952  using CleanupField = BoolBitfieldElementT<0>;
2953 
2954  /// The number of operands actually allocated. NumOperands is
2955  /// the number actually in use.
2956  unsigned ReservedSpace;
2957 
2958  LandingPadInst(const LandingPadInst &LP);
2959 
2960 public:
2962 
2963 private:
2964  explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2965  const Twine &NameStr, Instruction *InsertBefore);
2966  explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2967  const Twine &NameStr, BasicBlock *InsertAtEnd);
2968 
2969  // Allocate space for exactly zero operands.
2970  void *operator new(size_t S) { return User::operator new(S); }
2971 
2972  void growOperands(unsigned Size);
2973  void init(unsigned NumReservedValues, const Twine &NameStr);
2974 
2975 protected:
2976  // Note: Instruction needs to be a friend here to call cloneImpl.
2977  friend class Instruction;
2978 
2979  LandingPadInst *cloneImpl() const;
2980 
2981 public:
2982  void operator delete(void *Ptr) { User::operator delete(Ptr); }
2983 
2984  /// Constructors - NumReservedClauses is a hint for the number of incoming
2985  /// clauses that this landingpad will have (use 0 if you really have no idea).
2986  static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2987  const Twine &NameStr = "",
2988  Instruction *InsertBefore = nullptr);
2989  static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2990  const Twine &NameStr, BasicBlock *InsertAtEnd);
2991 
2992  /// Provide fast operand accessors
2994 
2995  /// Return 'true' if this landingpad instruction is a
2996  /// cleanup. I.e., it should be run when unwinding even if its landing pad
2997  /// doesn't catch the exception.
2998  bool isCleanup() const { return getSubclassData<CleanupField>(); }
2999 
3000  /// Indicate that this landingpad instruction is a cleanup.
3001  void setCleanup(bool V) { setSubclassData<CleanupField>(V); }
3002 
3003  /// Add a catch or filter clause to the landing pad.
3004  void addClause(Constant *ClauseVal);
3005 
3006  /// Get the value of the clause at index Idx. Use isCatch/isFilter to
3007  /// determine what type of clause this is.
3008  Constant *getClause(unsigned Idx) const {
3009  return cast<Constant>(getOperandList()[Idx]);
3010  }
3011 
3012  /// Return 'true' if the clause and index Idx is a catch clause.
3013  bool isCatch(unsigned Idx) const {
3014  return !isa<ArrayType>(getOperandList()[Idx]->getType());
3015  }
3016 
3017  /// Return 'true' if the clause and index Idx is a filter clause.
3018  bool isFilter(unsigned Idx) const {
3019  return isa<ArrayType>(getOperandList()[Idx]->getType());
3020  }
3021 
3022  /// Get the number of clauses for this landing pad.
3023  unsigned getNumClauses() const { return getNumOperands(); }
3024 
3025  /// Grow the size of the operand list to accommodate the new
3026  /// number of clauses.
3027  void reserveClauses(unsigned Size) { growOperands(Size); }
3028 
3029  // Methods for support type inquiry through isa, cast, and dyn_cast:
3030  static bool classof(const Instruction *I) {
3031  return I->getOpcode() == Instruction::LandingPad;
3032  }
3033  static bool classof(const Value *V) {
3034  return isa<Instruction>(V) && classof(cast<Instruction>(V));
3035  }
3036 };
3037 
3038 template <>
3040 };
3041 
3043 
3044 //===----------------------------------------------------------------------===//
3045 // ReturnInst Class
3046 //===----------------------------------------------------------------------===//
3047 
3048 //===---------------------------------------------------------------------------
3049 /// Return a value (possibly void), from a function. Execution
3050 /// does not continue in this function any longer.
3051 ///
3052 class ReturnInst : public Instruction {
3053  ReturnInst(const ReturnInst &RI);
3054 
3055 private:
3056  // ReturnInst constructors:
3057  // ReturnInst() - 'ret void' instruction
3058  // ReturnInst( null) - 'ret void' instruction
3059  // ReturnInst(Value* X) - 'ret X' instruction
3060  // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
3061  // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
3062  // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
3063  // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
3064  //
3065  // NOTE: If the Value* passed is of type void then the constructor behaves as
3066  // if it was passed NULL.
3067  explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
3068  Instruction *InsertBefore = nullptr);
3069  ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
3070  explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
3071 
3072 protected:
3073  // Note: Instruction needs to be a friend here to call cloneImpl.
3074  friend class Instruction;
3075 
3076  ReturnInst *cloneImpl() const;
3077 
3078 public:
3079  static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
3080  Instruction *InsertBefore = nullptr) {
3081  return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
3082  }
3083 
3084  static ReturnInst* Create(LLVMContext &C, Value *retVal,
3085  BasicBlock *InsertAtEnd) {
3086  return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
3087  }
3088 
3089  static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
3090  return new(0) ReturnInst(C, InsertAtEnd);
3091  }
3092 
3093  /// Provide fast operand accessors
3095 
3096  /// Convenience accessor. Returns null if there is no return value.
3098  return getNumOperands() != 0 ? getOperand(0) : nullptr;
3099  }
3100 
3101  unsigned getNumSuccessors() const { return 0; }
3102 
3103  // Methods for support type inquiry through isa, cast, and dyn_cast:
3104  static bool classof(const Instruction *I) {
3105  return (I->getOpcode() == Instruction::Ret);
3106  }
3107  static bool classof(const Value *V) {
3108  return isa<Instruction>(V) && classof(cast<Instruction>(V));
3109  }
3110 
3111 private:
3112  BasicBlock *getSuccessor(unsigned idx) const {
3113  llvm_unreachable("ReturnInst has no successors!");
3114  }
3115 
3116  void setSuccessor(unsigned idx, BasicBlock *B) {
3117  llvm_unreachable("ReturnInst has no successors!");
3118  }
3119 };
3120 
3121 template <>
3122 struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
3123 };
3124 
3126 
3127 //===----------------------------------------------------------------------===//
3128 // BranchInst Class
3129 //===----------------------------------------------------------------------===//
3130 
3131 //===---------------------------------------------------------------------------
3132 /// Conditional or Unconditional Branch instruction.
3133 ///
3134 class BranchInst : public Instruction {
3135  /// Ops list - Branches are strange. The operands are ordered:
3136  /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
3137  /// they don't have to check for cond/uncond branchness. These are mostly
3138  /// accessed relative from op_end().
3139  BranchInst(const BranchInst &BI);
3140  // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
3141  // BranchInst(BB *B) - 'br B'
3142  // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
3143  // BranchInst(BB* B, Inst *I) - 'br B' insert before I
3144  // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
3145  // BranchInst(BB* B, BB *I) - 'br B' insert at end
3146  // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
3147  explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
3148  BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3149  Instruction *InsertBefore = nullptr);
3150  BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
3151  BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3152  BasicBlock *InsertAtEnd);
3153 
3154  void AssertOK();
3155 
3156 protected:
3157  // Note: Instruction needs to be a friend here to call cloneImpl.
3158  friend class Instruction;
3159 
3160  BranchInst *cloneImpl() const;
3161 
3162 public:
3163  /// Iterator type that casts an operand to a basic block.
3164  ///
3165  /// This only makes sense because the successors are stored as adjacent
3166  /// operands for branch instructions.
3168  : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3169  std::random_access_iterator_tag, BasicBlock *,
3170  ptrdiff_t, BasicBlock *, BasicBlock *> {
3172 
3173  BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3174  BasicBlock *operator->() const { return operator*(); }
3175  };
3176 
3177  /// The const version of `succ_op_iterator`.
3179  : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3180  std::random_access_iterator_tag,
3181  const BasicBlock *, ptrdiff_t, const BasicBlock *,
3182  const BasicBlock *> {
3184  : iterator_adaptor_base(I) {}
3185 
3186  const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3187  const BasicBlock *operator->() const { return operator*(); }
3188  };
3189 
3190  static BranchInst *Create(BasicBlock *IfTrue,
3191  Instruction *InsertBefore = nullptr) {
3192  return new(1) BranchInst(IfTrue, InsertBefore);
3193  }
3194 
3195  static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3196  Value *Cond, Instruction *InsertBefore = nullptr) {
3197  return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3198  }
3199 
3200  static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3201  return new(1) BranchInst(IfTrue, InsertAtEnd);
3202  }
3203 
3204  static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3205  Value *Cond, BasicBlock *InsertAtEnd) {
3206  return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3207  }
3208 
3209  /// Transparently provide more efficient getOperand methods.
3211 
3212  bool isUnconditional() const { return getNumOperands() == 1; }
3213  bool isConditional() const { return getNumOperands() == 3; }
3214 
3215  Value *getCondition() const {
3216  assert(isConditional() && "Cannot get condition of an uncond branch!");
3217  return Op<-3>();
3218  }
3219 
3220  void setCondition(Value *V) {
3221  assert(isConditional() && "Cannot set condition of unconditional branch!");
3222  Op<-3>() = V;
3223  }
3224 
3225  unsigned getNumSuccessors() const { return 1+isConditional(); }
3226 
3227  BasicBlock *getSuccessor(unsigned i) const {
3228  assert(i < getNumSuccessors() && "Successor # out of range for Branch!");
3229  return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3230  }
3231 
3232  void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3233  assert(idx < getNumSuccessors() && "Successor # out of range for Branch!");
3234  *(&Op<-1>() - idx) = NewSucc;
3235  }
3236 
3237  /// Swap the successors of this branch instruction.
3238  ///
3239  /// Swaps the successors of the branch instruction. This also swaps any
3240  /// branch weight metadata associated with the instruction so that it
3241  /// continues to map correctly to each operand.
3242  void swapSuccessors();
3243 
3245  return make_range(
3246  succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3247  succ_op_iterator(value_op_end()));
3248  }
3249 
3252  std::next(value_op_begin(), isConditional() ? 1 : 0)),
3253  const_succ_op_iterator(value_op_end()));
3254  }
3255 
3256  // Methods for support type inquiry through isa, cast, and dyn_cast:
3257  static bool classof(const Instruction *I) {
3258  return (I->getOpcode() == Instruction::Br);
3259  }
3260  static bool classof(const Value *V) {
3261  return isa<Instruction>(V) && classof(cast<Instruction>(V));
3262  }
3263 };
3264 
3265 template <>
3266 struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3267 };
3268 
3270 
3271 //===----------------------------------------------------------------------===//
3272 // SwitchInst Class
3273 //===----------------------------------------------------------------------===//
3274 
3275 //===---------------------------------------------------------------------------
3276 /// Multiway switch
3277 ///
3278 class SwitchInst : public Instruction {
3279  unsigned ReservedSpace;
3280 
3281  // Operand[0] = Value to switch on
3282  // Operand[1] = Default basic block destination
3283  // Operand[2n ] = Value to match
3284  // Operand[2n+1] = BasicBlock to go to on match
3285  SwitchInst(const SwitchInst &SI);
3286 
3287  /// Create a new switch instruction, specifying a value to switch on and a
3288  /// default destination. The number of additional cases can be specified here
3289  /// to make memory allocation more efficient. This constructor can also
3290  /// auto-insert before another instruction.
3291  SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3292  Instruction *InsertBefore);
3293 
3294  /// Create a new switch instruction, specifying a value to switch on and a
3295  /// default destination. The number of additional cases can be specified here
3296  /// to make memory allocation more efficient. This constructor also
3297  /// auto-inserts at the end of the specified BasicBlock.
3298  SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3299  BasicBlock *InsertAtEnd);
3300 
3301  // allocate space for exactly zero operands
3302  void *operator new(size_t S) { return User::operator new(S); }
3303 
3304  void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3305  void growOperands();
3306 
3307 protected:
3308  // Note: Instruction needs to be a friend here to call cloneImpl.
3309  friend class Instruction;
3310 
3311  SwitchInst *cloneImpl() const;
3312 
3313 public:
3314  void operator delete(void *Ptr) { User::operator delete(Ptr); }
3315 
3316  // -2
3317  static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3318 
3319  template <typename CaseHandleT> class CaseIteratorImpl;
3320 
3321  /// A handle to a particular switch case. It exposes a convenient interface
3322  /// to both the case value and the successor block.
3323  ///
3324  /// We define this as a template and instantiate it to form both a const and
3325  /// non-const handle.
3326  template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3328  // Directly befriend both const and non-const iterators.
3329  friend class SwitchInst::CaseIteratorImpl<
3330  CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3331 
3332  protected:
3333  // Expose the switch type we're parameterized with to the iterator.
3334  using SwitchInstType = SwitchInstT;
3335 
3336  SwitchInstT *SI;
3338 
3339  CaseHandleImpl() = default;
3340  CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3341 
3342  public:
3343  /// Resolves case value for current case.
3344  ConstantIntT *getCaseValue() const {
3345  assert((unsigned)Index < SI->getNumCases() &&
3346  "Index out the number of cases.");
3347  return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3348  }
3349 
3350  /// Resolves successor for current case.
3351  BasicBlockT *getCaseSuccessor() const {
3352  assert(((unsigned)Index < SI->getNumCases() ||
3353  (unsigned)Index == DefaultPseudoIndex) &&
3354  "Index out the number of cases.");
3355  return SI->getSuccessor(getSuccessorIndex());
3356  }
3357 
3358  /// Returns number of current case.
3359  unsigned getCaseIndex() const { return Index; }
3360 
3361  /// Returns successor index for current case successor.
3362  unsigned getSuccessorIndex() const {
3363  assert(((unsigned)Index == DefaultPseudoIndex ||
3364  (unsigned)Index < SI->getNumCases()) &&
3365  "Index out the number of cases.");
3366  return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3367  }
3368 
3369  bool operator==(const CaseHandleImpl &RHS) const {
3370  assert(SI == RHS.SI && "Incompatible operators.");
3371  return Index == RHS.Index;
3372  }
3373  };
3374 
3375  using ConstCaseHandle =
3377 
3379  : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3381 
3382  public:
3384 
3385  /// Sets the new value for current case.
3386  void setValue(ConstantInt *V) const {
3387  assert((unsigned)Index < SI->getNumCases() &&
3388  "Index out the number of cases.");
3389  SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3390  }
3391 
3392  /// Sets the new successor for current case.
3393  void setSuccessor(BasicBlock *S) const {
3394  SI->setSuccessor(getSuccessorIndex(), S);
3395  }
3396  };
3397 
3398  template <typename CaseHandleT>
3399  class CaseIteratorImpl
3400  : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3401  std::random_access_iterator_tag,
3402  const CaseHandleT> {
3403  using SwitchInstT = typename CaseHandleT::SwitchInstType;
3404 
3405  CaseHandleT Case;
3406 
3407  public:
3408  /// Default constructed iterator is in an invalid state until assigned to
3409  /// a case for a particular switch.
3410  CaseIteratorImpl() = default;
3411 
3412  /// Initializes case iterator for given SwitchInst and for given
3413  /// case number.
3414  CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3415 
3416  /// Initializes case iterator for given SwitchInst and for given
3417  /// successor index.
3419  unsigned SuccessorIndex) {
3420  assert(SuccessorIndex < SI->getNumSuccessors() &&
3421  "Successor index # out of range!");
3422  return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3423  : CaseIteratorImpl(SI, DefaultPseudoIndex);
3424  }
3425 
3426  /// Support converting to the const variant. This will be a no-op for const
3427  /// variant.
3429  return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3430  }
3431 
3433  // Check index correctness after addition.
3434  // Note: Index == getNumCases() means end().
3435  assert(Case.Index + N >= 0 &&
3436  (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
3437  "Case.Index out the number of cases.");
3438  Case.Index += N;
3439  return *this;
3440  }
3442  // Check index correctness after subtraction.
3443  // Note: Case.Index == getNumCases() means end().
3444  assert(Case.Index - N >= 0 &&
3445  (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
3446  "Case.Index out the number of cases.");
3447  Case.Index -= N;
3448  return *this;
3449  }
3451  assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
3452  return Case.Index - RHS.Case.Index;
3453  }
3454  bool operator==(const CaseIteratorImpl &RHS) const {
3455  return Case == RHS.Case;
3456  }
3457  bool operator<(const CaseIteratorImpl &RHS) const {
3458  assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
3459  return Case.Index < RHS.Case.Index;
3460  }
3461  const CaseHandleT &operator*() const { return Case; }
3462  };
3463 
3466 
3468  unsigned NumCases,
3469  Instruction *InsertBefore = nullptr) {
3470  return new SwitchInst(Value, Default, NumCases, InsertBefore);
3471  }
3472 
3474  unsigned NumCases, BasicBlock *InsertAtEnd) {
3475  return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3476  }
3477 
3478  /// Provide fast operand accessors
3480 
3481  // Accessor Methods for Switch stmt
3482  Value *getCondition() const { return getOperand(0); }
3483  void setCondition(Value *V) { setOperand(0, V); }
3484 
3486  return cast<BasicBlock>(getOperand(1));
3487  }
3488 
3489  void setDefaultDest(BasicBlock *DefaultCase) {
3490  setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3491  }
3492 
3493  /// Return the number of 'cases' in this switch instruction, excluding the
3494  /// default case.
3495  unsigned getNumCases() const {
3496  return getNumOperands()/2 - 1;
3497  }
3498 
3499  /// Returns a read/write iterator that points to the first case in the
3500  /// SwitchInst.
3502  return CaseIt(this, 0);
3503  }
3504 
3505  /// Returns a read-only iterator that points to the first case in the
3506  /// SwitchInst.
3508  return ConstCaseIt(this, 0);
3509  }
3510 
3511  /// Returns a read/write iterator that points one past the last in the
3512  /// SwitchInst.
3514  return CaseIt(this, getNumCases());
3515  }
3516 
3517  /// Returns a read-only iterator that points one past the last in the
3518  /// SwitchInst.
3520  return ConstCaseIt(this, getNumCases());
3521  }
3522 
3523  /// Iteration adapter for range-for loops.
3525  return make_range(case_begin(), case_end());
3526  }
3527 
3528  /// Constant iteration adapter for range-for loops.
3530  return make_range(case_begin(), case_end());
3531  }
3532 
3533  /// Returns an iterator that points to the default case.
3534  /// Note: this iterator allows to resolve successor only. Attempt
3535  /// to resolve case value causes an assertion.
3536  /// Also note, that increment and decrement also causes an assertion and
3537  /// makes iterator invalid.
3539  return CaseIt(this, DefaultPseudoIndex);
3540  }
3542  return ConstCaseIt(this, DefaultPseudoIndex);
3543  }
3544 
3545  /// Search all of the case values for the specified constant. If it is
3546  /// explicitly handled, return the case iterator of it, otherwise return
3547  /// default case iterator to indicate that it is handled by the default
3548  /// handler.
3550  return CaseIt(
3551  this,
3552  const_cast<const SwitchInst *>(this)->findCaseValue(C)->getCaseIndex());
3553  }
3555  ConstCaseIt I = llvm::find_if(cases(), [C](const ConstCaseHandle &Case) {
3556  return Case.getCaseValue() == C;
3557  });
3558  if (I != case_end())
3559  return I;
3560 
3561  return case_default();
3562  }
3563 
3564  /// Finds the unique case value for a given successor. Returns null if the
3565  /// successor is not found, not unique, or is the default case.
3567  if (BB == getDefaultDest())
3568  return nullptr;
3569 
3570  ConstantInt *CI = nullptr;
3571  for (auto Case : cases()) {
3572  if (Case.getCaseSuccessor() != BB)
3573  continue;
3574 
3575  if (CI)
3576  return nullptr; // Multiple cases lead to BB.
3577 
3578  CI = Case.getCaseValue();
3579  }
3580 
3581  return CI;
3582  }
3583 
3584  /// Add an entry to the switch instruction.
3585  /// Note:
3586  /// This action invalidates case_end(). Old case_end() iterator will
3587  /// point to the added case.
3588  void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3589 
3590  /// This method removes the specified case and its successor from the switch
3591  /// instruction. Note that this operation may reorder the remaining cases at
3592  /// index idx and above.
3593  /// Note:
3594  /// This action invalidates iterators for all cases following the one removed,
3595  /// including the case_end() iterator. It returns an iterator for the next
3596  /// case.
3597  CaseIt removeCase(CaseIt I);
3598 
3599  unsigned getNumSuccessors() const { return getNumOperands()/2; }
3600  BasicBlock *getSuccessor(unsigned idx) const {
3601  assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!");
3602  return cast<BasicBlock>(getOperand(idx*2+1));
3603  }
3604  void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3605  assert(idx < getNumSuccessors() && "Successor # out of range for switch!");
3606  setOperand(idx * 2 + 1, NewSucc);
3607  }
3608 
3609  // Methods for support type inquiry through isa, cast, and dyn_cast:
3610  static bool classof(const Instruction *I) {
3611  return I->getOpcode() == Instruction::Switch;
3612  }
3613  static bool classof(const Value *V) {
3614  return isa<Instruction>(V) && classof(cast<Instruction>(V));
3615  }
3616 };
3617 
3618 /// A wrapper class to simplify modification of SwitchInst cases along with
3619 /// their prof branch_weights metadata.
3621  SwitchInst &SI;
3623  bool Changed = false;
3624 
3625 protected:
3626  static MDNode *getProfBranchWeightsMD(const SwitchInst &SI);
3627 
3629 
3630  void init();
3631 
3632 public:
3634  SwitchInst *operator->() { return &SI; }
3635  SwitchInst &operator*() { return SI; }
3636  operator SwitchInst *() { return &SI; }
3637 
3639 
3641  if (Changed)
3642  SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
3643  }
3644 
3645  /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3646  /// correspondent branch weight.
3648 
3649  /// Delegate the call to the underlying SwitchInst::addCase() and set the
3650  /// specified branch weight for the added case.
3651  void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3652 
3653  /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3654  /// this object to not touch the underlying SwitchInst in destructor.
3656 
3657  void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3658  CaseWeightOpt getSuccessorWeight(unsigned idx);
3659 
3660  static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
3661 };
3662 
3663 template <>
3665 };
3666 
3668 
3669 //===----------------------------------------------------------------------===//
3670 // IndirectBrInst Class
3671 //===----------------------------------------------------------------------===//
3672 
3673 //===---------------------------------------------------------------------------
3674 /// Indirect Branch Instruction.
3675 ///
3676 class IndirectBrInst : public Instruction {
3677  unsigned ReservedSpace;
3678 
3679  // Operand[0] = Address to jump to
3680  // Operand[n+1] = n-th destination
3681  IndirectBrInst(const IndirectBrInst &IBI);
3682 
3683  /// Create a new indirectbr instruction, specifying an
3684  /// Address to jump to. The number of expected destinations can be specified
3685  /// here to make memory allocation more efficient. This constructor can also
3686  /// autoinsert before another instruction.
3687  IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3688 
3689  /// Create a new indirectbr instruction, specifying an
3690  /// Address to jump to. The number of expected destinations can be specified
3691  /// here to make memory allocation more efficient. This constructor also
3692  /// autoinserts at the end of the specified BasicBlock.
3693  IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3694 
3695  // allocate space for exactly zero operands
3696  void *operator new(size_t S) { return User::operator new(S); }
3697 
3698  void init(Value *Address, unsigned NumDests);
3699  void growOperands();
3700 
3701 protected:
3702  // Note: Instruction needs to be a friend here to call cloneImpl.
3703  friend class Instruction;
3704 
3705  IndirectBrInst *cloneImpl() const;
3706 
3707 public:
3708  void operator delete(void *Ptr) { User::operator delete(Ptr); }
3709 
3710  /// Iterator type that casts an operand to a basic block.
3711  ///
3712  /// This only makes sense because the successors are stored as adjacent
3713  /// operands for indirectbr instructions.
3715  : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3716  std::random_access_iterator_tag, BasicBlock *,
3717  ptrdiff_t, BasicBlock *, BasicBlock *> {
3718  explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3719 
3720  BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3721  BasicBlock *operator->() const { return operator*(); }
3722  };
3723 
3724  /// The const version of `succ_op_iterator`.
3726  : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3727  std::random_access_iterator_tag,
3728  const BasicBlock *, ptrdiff_t, const BasicBlock *,
3729  const BasicBlock *> {
3730  explicit const_succ_op_iterator(const_value_op_iterator I)
3731  : iterator_adaptor_base(I) {}
3732 
3733  const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3734  const BasicBlock *operator->() const { return operator*(); }
3735  };
3736 
3737  static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3738  Instruction *InsertBefore = nullptr) {
3739  return new IndirectBrInst(Address, NumDests, InsertBefore);
3740  }
3741 
3742  static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3743  BasicBlock *InsertAtEnd) {
3744  return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3745  }
3746 
3747  /// Provide fast operand accessors.
3749 
3750  // Accessor Methods for IndirectBrInst instruction.
3751  Value *getAddress() { return getOperand(0); }
3752  const Value *getAddress() const { return getOperand(0); }
3753  void setAddress(Value *V) { setOperand(0, V); }
3754 
3755  /// return the number of possible destinations in this
3756  /// indirectbr instruction.
3757  unsigned getNumDestinations() const { return getNumOperands()-1; }
3758 
3759  /// Return the specified destination.
3760  BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3761  const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3762 
3763  /// Add a destination.
3764  ///
3765  void addDestination(BasicBlock *Dest);
3766 
3767  /// This method removes the specified successor from the
3768  /// indirectbr instruction.
3769  void removeDestination(unsigned i);
3770 
3771  unsigned getNumSuccessors() const { return getNumOperands()-1; }
3772  BasicBlock *getSuccessor(unsigned i) const {
3773  return cast<BasicBlock>(getOperand(i+1));
3774  }
3775  void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3776  setOperand(i + 1, NewSucc);
3777  }
3778 
3780  return make_range(succ_op_iterator(std::next(value_op_begin())),
3781  succ_op_iterator(value_op_end()));
3782  }
3783 
3785  return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3786  const_succ_op_iterator(value_op_end()));
3787  }
3788 
3789  // Methods for support type inquiry through isa, cast, and dyn_cast:
3790  static bool classof(const Instruction *I) {
3791  return I->getOpcode() == Instruction::IndirectBr;
3792  }
3793  static bool classof(const Value *V) {
3794  return isa<Instruction>(V) && classof(cast<Instruction>(V));
3795  }
3796 };
3797 
3798 template <>
3800 };
3801 
3803 
3804 //===----------------------------------------------------------------------===//
3805 // InvokeInst Class
3806 //===----------------------------------------------------------------------===//
3807 
3808 /// Invoke instruction. The SubclassData field is used to hold the
3809 /// calling convention of the call.
3810 ///
3811 class InvokeInst : public CallBase {
3812  /// The number of operands for this call beyond the called function,
3813  /// arguments, and operand bundles.
3814  static constexpr int NumExtraOperands = 2;
3815 
3816  /// The index from the end of the operand array to the normal destination.
3817  static constexpr int NormalDestOpEndIdx = -3;
3818 
3819  /// The index from the end of the operand array to the unwind destination.
3820  static constexpr int UnwindDestOpEndIdx = -2;
3821 
3822  InvokeInst(const InvokeInst &BI);
3823 
3824  /// Construct an InvokeInst given a range of arguments.
3825  ///
3826  /// Construct an InvokeInst from a range of arguments
3827  inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3828  BasicBlock *IfException, ArrayRef<Value *> Args,
3829  ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3830  const Twine &NameStr, Instruction *InsertBefore);
3831 
3832  inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3833  BasicBlock *IfException, ArrayRef<Value *> Args,
3834  ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3835  const Twine &NameStr, BasicBlock *InsertAtEnd);
3836 
3837  void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3838  BasicBlock *IfException, ArrayRef<Value *> Args,
3839  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3840 
3841  /// Compute the number of operands to allocate.
3842  static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
3843  // We need one operand for the called function, plus our extra operands and
3844  // the input operand counts provided.
3845  return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3846  }
3847 
3848 protected:
3849  // Note: Instruction needs to be a friend here to call cloneImpl.
3850  friend class Instruction;
3851 
3852  InvokeInst *cloneImpl() const;
3853 
3854 public:
3855  static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3856  BasicBlock *IfException, ArrayRef<Value *> Args,
3857  const Twine &NameStr,
3858  Instruction *InsertBefore = nullptr) {
3859  int NumOperands = ComputeNumOperands(Args.size());
3860  return new (NumOperands)
3861  InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3862  NameStr, InsertBefore);
3863  }
3864 
3865  static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3866  BasicBlock *IfException, ArrayRef<Value *> Args,
3867  ArrayRef<OperandBundleDef> Bundles = None,
3868  const Twine &NameStr = "",
3869  Instruction *InsertBefore = nullptr) {
3870  int NumOperands =
3871  ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3872  unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3873 
3874  return new (NumOperands, DescriptorBytes)
3875  InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3876  NameStr, InsertBefore);
3877  }
3878 
3879  static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3880  BasicBlock *IfException, ArrayRef<Value *> Args,
3881  const Twine &NameStr, BasicBlock *InsertAtEnd) {
3882  int NumOperands = ComputeNumOperands(Args.size());
3883  return new (NumOperands)
3884  InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3885  NameStr, InsertAtEnd);
3886  }
3887 
3888  static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3889  BasicBlock *IfException, ArrayRef<Value *> Args,
3891  const Twine &NameStr, BasicBlock *InsertAtEnd) {
3892  int NumOperands =
3893  ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3894  unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3895 
3896  return new (NumOperands, DescriptorBytes)
3897  InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3898  NameStr, InsertAtEnd);
3899  }
3900 
3901  static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3902  BasicBlock *IfException, ArrayRef<Value *> Args,
3903  const Twine &NameStr,
3904  Instruction *InsertBefore = nullptr) {
3905  return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3906  IfException, Args, None, NameStr, InsertBefore);
3907  }
3908 
3909  static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3910  BasicBlock *IfException, ArrayRef<Value *> Args,
3911  ArrayRef<OperandBundleDef> Bundles = None,
3912  const Twine &NameStr = "",
3913  Instruction *InsertBefore = nullptr) {
3914  return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3915  IfException, Args, Bundles, NameStr, InsertBefore);
3916  }
3917 
3918  static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3919  BasicBlock *IfException, ArrayRef<Value *> Args,
3920  const Twine &NameStr, BasicBlock *InsertAtEnd) {
3921  return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3922  IfException, Args, NameStr, InsertAtEnd);
3923  }
3924 
3925  static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3926  BasicBlock *IfException, ArrayRef<Value *> Args,
3928  const Twine &NameStr, BasicBlock *InsertAtEnd) {
3929  return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3930  IfException, Args, Bundles, NameStr, InsertAtEnd);
3931  }
3932 
3933  /// Create a clone of \p II with a different set of operand bundles and
3934  /// insert it before \p InsertPt.
3935  ///
3936  /// The returned invoke instruction is identical to \p II in every way except
3937  /// that the operand bundles for the new instruction are set to the operand
3938  /// bundles in \p Bundles.
3939  static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3940  Instruction *InsertPt = nullptr);
3941 
3942  // get*Dest - Return the destination basic blocks...
3944  return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
3945  }
3947  return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
3948  }
3950  Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3951  }
3953  Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3954  }
3955 
3956  /// Get the landingpad instruction from the landing pad
3957  /// block (the unwind destination).
3958  LandingPadInst *getLandingPadInst() const;
3959 
3960  BasicBlock *getSuccessor(unsigned i) const {
3961  assert(i < 2 && "Successor # out of range for invoke!");
3962  return i == 0 ? getNormalDest() : getUnwindDest();
3963  }
3964 
3965  void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3966  assert(i < 2 && "Successor # out of range for invoke!");
3967  if (i == 0)
3968  setNormalDest(NewSucc);
3969  else
3970  setUnwindDest(NewSucc);
3971  }
3972 
3973  unsigned getNumSuccessors() const { return 2; }
3974 
3975  // Methods for support type inquiry through isa, cast, and dyn_cast:
3976  static bool classof(const Instruction *I) {
3977  return (I->getOpcode() == Instruction::Invoke);
3978  }
3979  static bool classof(const Value *V) {
3980  return isa<Instruction>(V) && classof(cast<Instruction>(V));
3981  }
3982 
3983 private:
3984  // Shadow Instruction::setInstructionSubclassData with a private forwarding
3985  // method so that subclasses cannot accidentally use it.
3986  template <typename Bitfield>
3987  void setSubclassData(typename Bitfield::Type Value) {
3988  Instruction::setSubclassData<Bitfield>(Value);
3989  }
3990 };
3991 
3992 InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3993  BasicBlock *IfException, ArrayRef<Value *> Args,
3994  ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3995  const Twine &NameStr, Instruction *InsertBefore)
3996  : CallBase(Ty->getReturnType(), Instruction::Invoke,
3997  OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3998  InsertBefore) {
3999  init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
4000 }
4001 
4002 InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
4003  BasicBlock *IfException, ArrayRef<Value *> Args,
4004  ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4005  const Twine &NameStr, BasicBlock *InsertAtEnd)
4006  : CallBase(Ty->getReturnType(), Instruction::Invoke,
4007  OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4008  InsertAtEnd) {
4009  init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
4010 }
4011 
4012 //===----------------------------------------------------------------------===//
4013 // CallBrInst Class
4014 //===----------------------------------------------------------------------===//
4015 
4016 /// CallBr instruction, tracking function calls that may not return control but
4017 /// instead transfer it to a third location. The SubclassData field is used to
4018 /// hold the calling convention of the call.
4019 ///
4020 class CallBrInst : public CallBase {
4021 
4022  unsigned NumIndirectDests;
4023 
4024  CallBrInst(const CallBrInst &BI);
4025 
4026  /// Construct a CallBrInst given a range of arguments.
4027  ///
4028  /// Construct a CallBrInst from a range of arguments
4029  inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4030  ArrayRef<BasicBlock *> IndirectDests,
4032  ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4033  const Twine &NameStr, Instruction *InsertBefore);
4034 
4035  inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4036  ArrayRef<BasicBlock *> IndirectDests,
4038  ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4039  const Twine &NameStr, BasicBlock *InsertAtEnd);
4040 
4041  void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
4043  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
4044 
4045  /// Compute the number of operands to allocate.
4046  static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
4047  int NumBundleInputs = 0) {
4048  // We need one operand for the called function, plus our extra operands and
4049  // the input operand counts provided.
4050  return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
4051  }
4052 
4053 protected:
4054  // Note: Instruction needs to be a friend here to call cloneImpl.
4055  friend class Instruction;
4056 
4057  CallBrInst *cloneImpl() const;
4058 
4059 public:
4060  static CallBrInst *Create(FunctionType *Ty, Value *Func,
4061  BasicBlock *DefaultDest,
4062  ArrayRef<BasicBlock *> IndirectDests,
4063  ArrayRef<Value *> Args, const Twine &NameStr,
4064  Instruction *InsertBefore = nullptr) {
4065  int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
4066  return new (NumOperands)
4067  CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
4068  NumOperands, NameStr, InsertBefore);
4069  }
4070 
4071  static CallBrInst *Create(FunctionType *Ty, Value *Func,
4072  BasicBlock *DefaultDest,
4073  ArrayRef<BasicBlock *> IndirectDests,
4075  ArrayRef<OperandBundleDef> Bundles = None,
4076  const Twine &NameStr = "",
4077  Instruction *InsertBefore = nullptr) {
4078  int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
4079  CountBundleInputs(Bundles));
4080  unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
4081 
4082  return new (NumOperands, DescriptorBytes)
4083  CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
4084  NumOperands, NameStr, InsertBefore);
4085  }
4086 
4087  static CallBrInst *Create(FunctionType *Ty, Value *Func,
4088  BasicBlock *DefaultDest,
4089  ArrayRef<BasicBlock *> IndirectDests,
4090  ArrayRef<Value *> Args, const Twine &NameStr,
4091  BasicBlock *InsertAtEnd) {
4092  int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
4093  return new (NumOperands)
4094  CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
4095  NumOperands, NameStr, InsertAtEnd);
4096  }
4097 
4098  static CallBrInst *Create(FunctionType *Ty, Value *Func,
4099  BasicBlock *DefaultDest,
4100  ArrayRef<BasicBlock *> IndirectDests,
4103  const Twine &NameStr, BasicBlock *InsertAtEnd) {
4104  int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
4105  CountBundleInputs(Bundles));
4106  unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
4107 
4108  return new (NumOperands, DescriptorBytes)
4109  CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
4110  NumOperands, NameStr, InsertAtEnd);
4111  }
4112 
4113  static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4114  ArrayRef<BasicBlock *> IndirectDests,
4115  ArrayRef<Value *> Args, const Twine &NameStr,
4116  Instruction *InsertBefore = nullptr) {
4117  return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4118  IndirectDests, Args, NameStr, InsertBefore);
4119  }
4120 
4121  static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4122  ArrayRef<BasicBlock *> IndirectDests,
4124  ArrayRef<OperandBundleDef> Bundles = None,
4125  const Twine &NameStr = "",
4126  Instruction *InsertBefore = nullptr) {
4127  return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4128  IndirectDests, Args, Bundles, NameStr, InsertBefore);
4129  }
4130 
4131  static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4132  ArrayRef<BasicBlock *> IndirectDests,
4133  ArrayRef<Value *> Args, const Twine &NameStr,
4134  BasicBlock *InsertAtEnd) {
4135  return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4136  IndirectDests, Args, NameStr, InsertAtEnd);
4137  }
4138 
4140  BasicBlock *DefaultDest,
4141  ArrayRef<BasicBlock *> IndirectDests,
4144  const Twine &NameStr, BasicBlock *InsertAtEnd) {
4145  return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4146  IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
4147  }
4148 
4149  /// Create a clone of \p CBI with a different set of operand bundles and
4150  /// insert it before \p InsertPt.
4151  ///
4152  /// The returned callbr instruction is identical to \p CBI in every way
4153  /// except that the operand bundles for the new instruction are set to the
4154  /// operand bundles in \p Bundles.
4155  static CallBrInst *Create(CallBrInst *CBI,
4157  Instruction *InsertPt = nullptr);
4158 
4159  /// Return the number of callbr indirect dest labels.
4160  ///
4161  unsigned getNumIndirectDests() const { return NumIndirectDests; }
4162 
4163  /// getIndirectDestLabel - Return the i-th indirect dest label.
4164  ///
4165  Value *getIndirectDestLabel(unsigned i) const {
4166  assert(i < getNumIndirectDests() && "Out of bounds!");
4167  return getOperand(i + arg_size() + getNumTotalBundleOperands() + 1);
4168  }
4169 
4170  Value *getIndirectDestLabelUse(unsigned i) const {
4171  assert(i < getNumIndirectDests() && "Out of bounds!");
4172  return getOperandUse(i + arg_size() + getNumTotalBundleOperands() + 1);
4173  }
4174 
4175  // Return the destination basic blocks...
4177  return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
4178  }
4179  BasicBlock *getIndirectDest(unsigned i) const {
4180  return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
4181  }
4183  SmallVector<BasicBlock *, 16> IndirectDests;
4184  for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
4185  IndirectDests.push_back(getIndirectDest(i));
4186  return IndirectDests;
4187  }
4189  *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
4190  }
4191  void setIndirectDest(unsigned i, BasicBlock *B) {
4192  *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
4193  }
4194 
4195  BasicBlock *getSuccessor(unsigned i) const {
4196  assert(i < getNumSuccessors() + 1 &&
4197  "Successor # out of range for callbr!");
4198  return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4199  }
4200 
4201  void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4202  assert(i < getNumIndirectDests() + 1 &&
4203  "Successor # out of range for callbr!");
4204  return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
4205  }
4206 
4207  unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4208 
4209  // Methods for support type inquiry through isa, cast, and dyn_cast:
4210  static bool classof(const Instruction *I) {
4211  return (I->getOpcode() == Instruction::CallBr);
4212  }
4213  static bool classof(const Value *V) {
4214  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4215  }
4216 
4217 private:
4218  // Shadow Instruction::setInstructionSubclassData with a private forwarding
4219  // method so that subclasses cannot accidentally use it.
4220  template <typename Bitfield>
4221  void setSubclassData(typename Bitfield::Type Value) {
4222  Instruction::setSubclassData<Bitfield>(Value);
4223  }
4224 };
4225 
4226 CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4227  ArrayRef<BasicBlock *> IndirectDests,
4228  ArrayRef<Value *> Args,
4229  ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4230  const Twine &NameStr, Instruction *InsertBefore)
4231  : CallBase(Ty->getReturnType(), Instruction::CallBr,
4232  OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4233  InsertBefore) {
4234  init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4235 }
4236 
4237 CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4238  ArrayRef<BasicBlock *> IndirectDests,
4239  ArrayRef<Value *> Args,
4240  ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4241  const Twine &NameStr, BasicBlock *InsertAtEnd)
4242  : CallBase(Ty->getReturnType(), Instruction::CallBr,
4243  OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4244  InsertAtEnd) {
4245  init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4246 }
4247 
4248 //===----------------------------------------------------------------------===//
4249 // ResumeInst Class
4250 //===----------------------------------------------------------------------===//
4251 
4252 //===---------------------------------------------------------------------------
4253 /// Resume the propagation of an exception.
4254 ///
4255 class ResumeInst : public Instruction {
4256  ResumeInst(const ResumeInst &RI);
4257 
4258  explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4259  ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4260 
4261 protected:
4262  // Note: Instruction needs to be a friend here to call cloneImpl.
4263  friend class Instruction;
4264 
4265  ResumeInst *cloneImpl() const;
4266 
4267 public:
4268  static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4269  return new(1) ResumeInst(Exn, InsertBefore);
4270  }
4271 
4272  static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4273  return new(1) ResumeInst(Exn, InsertAtEnd);
4274  }
4275 
4276  /// Provide fast operand accessors
4278 
4279  /// Convenience accessor.
4280  Value *getValue() const { return Op<0>(); }
4281 
4282  unsigned getNumSuccessors() const { return 0; }
4283 
4284  // Methods for support type inquiry through isa, cast, and dyn_cast:
4285  static bool classof(const Instruction *I) {
4286  return I->getOpcode() == Instruction::Resume;
4287  }
4288  static bool classof(const Value *V) {
4289  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4290  }
4291 
4292 private:
4293  BasicBlock *getSuccessor(unsigned idx) const {
4294  llvm_unreachable("ResumeInst has no successors!");
4295  }
4296 
4297  void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4298  llvm_unreachable("ResumeInst has no successors!");
4299  }
4300 };
4301 
4302 template <>
4304  public FixedNumOperandTraits<ResumeInst, 1> {
4305 };
4306 
4308 
4309 //===----------------------------------------------------------------------===//
4310 // CatchSwitchInst Class
4311 //===----------------------------------------------------------------------===//
4313  using UnwindDestField = BoolBitfieldElementT<0>;
4314 
4315  /// The number of operands actually allocated. NumOperands is
4316  /// the number actually in use.
4317  unsigned ReservedSpace;
4318 
4319  // Operand[0] = Outer scope
4320  // Operand[1] = Unwind block destination
4321  // Operand[n] = BasicBlock to go to on match
4322  CatchSwitchInst(const CatchSwitchInst &CSI);
4323 
4324  /// Create a new switch instruction, specifying a
4325  /// default destination. The number of additional handlers can be specified
4326  /// here to make memory allocation more efficient.
4327  /// This constructor can also autoinsert before another instruction.
4328  CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4329  unsigned NumHandlers, const Twine &NameStr,
4330  Instruction *InsertBefore);
4331 
4332  /// Create a new switch instruction, specifying a
4333  /// default destination. The number of additional handlers can be specified
4334  /// here to make memory allocation more efficient.
4335  /// This constructor also autoinserts at the end of the specified BasicBlock.
4336  CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4337  unsigned NumHandlers, const Twine &NameStr,
4338  BasicBlock *InsertAtEnd);
4339 
4340  // allocate space for exactly zero operands
4341  void *operator new(size_t S) { return User::operator new(S); }
4342 
4343  void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4344  void growOperands(unsigned Size);
4345 
4346 protected:
4347  // Note: Instruction needs to be a friend here to call cloneImpl.
4348  friend class Instruction;
4349 
4350  CatchSwitchInst *cloneImpl() const;
4351 
4352 public:
4353  void operator delete(void *Ptr) { return User::operator delete(Ptr); }
4354 
4355  static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4356  unsigned NumHandlers,
4357  const Twine &NameStr = "",
4358  Instruction *InsertBefore = nullptr) {
4359  return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4360  InsertBefore);
4361  }
4362 
4363  static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4364  unsigned NumHandlers, const Twine &NameStr,
4365  BasicBlock *InsertAtEnd) {
4366  return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4367  InsertAtEnd);
4368  }
4369 
4370  /// Provide fast operand accessors
4372 
4373  // Accessor Methods for CatchSwitch stmt
4374  Value *getParentPad() const { return getOperand(0); }
4375  void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4376 
4377  // Accessor Methods for CatchSwitch stmt
4378  bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4379  bool unwindsToCaller() const { return !hasUnwindDest(); }
4381  if (hasUnwindDest())
4382  return cast<BasicBlock>(getOperand(1));
4383  return nullptr;
4384  }
4385  void setUnwindDest(BasicBlock *UnwindDest) {
4386  assert(UnwindDest);
4387  assert(hasUnwindDest());
4388  setOperand(1, UnwindDest);
4389  }
4390 
4391  /// return the number of 'handlers' in this catchswitch
4392  /// instruction, except the default handler
4393  unsigned getNumHandlers() const {
4394  if (hasUnwindDest())
4395  return getNumOperands() - 2;
4396  return getNumOperands() - 1;
4397  }
4398 
4399 private:
4400  static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4401  static const BasicBlock *handler_helper(const Value *V) {
4402  return cast<BasicBlock>(V);
4403  }
4404 
4405 public:
4406  using DerefFnTy = BasicBlock *(*)(Value *);
4409  using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4410  using const_handler_iterator =
4413 
4414  /// Returns an iterator that points to the first handler in CatchSwitchInst.
4416  op_iterator It = op_begin() + 1;
4417  if (hasUnwindDest())
4418  ++It;
4419  return handler_iterator(It, DerefFnTy(handler_helper));
4420  }
4421 
4422  /// Returns an iterator that points to the first handler in the
4423  /// CatchSwitchInst.
4425  const_op_iterator It = op_begin() + 1;
4426  if (hasUnwindDest())
4427  ++It;
4428  return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4429  }
4430 
4431  /// Returns a read-only iterator that points one past the last
4432  /// handler in the CatchSwitchInst.
4434  return handler_iterator(op_end(), DerefFnTy(handler_helper));
4435  }
4436 
4437  /// Returns an iterator that points one past the last handler in the
4438  /// CatchSwitchInst.
4440  return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4441  }
4442 
4443  /// iteration adapter for range-for loops.
4445  return make_range(handler_begin(), handler_end());
4446  }
4447 
4448  /// iteration adapter for range-for loops.
4450  return make_range(handler_begin(), handler_end());
4451  }
4452 
4453  /// Add an entry to the switch instruction...
4454  /// Note:
4455  /// This action invalidates handler_end(). Old handler_end() iterator will
4456  /// point to the added handler.
4457  void addHandler(BasicBlock *Dest);
4458 
4459  void removeHandler(handler_iterator HI);
4460 
4461  unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4462  BasicBlock *getSuccessor(unsigned Idx) const {
4463  assert(Idx < getNumSuccessors() &&
4464  "Successor # out of range for catchswitch!");
4465  return cast<BasicBlock>(getOperand(Idx + 1));
4466  }
4467  void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4468  assert(Idx < getNumSuccessors() &&
4469  "Successor # out of range for catchswitch!");
4470  setOperand(Idx + 1, NewSucc);
4471  }
4472 
4473  // Methods for support type inquiry through isa, cast, and dyn_cast:
4474  static bool classof(const Instruction *I) {
4475  return I->getOpcode() == Instruction::CatchSwitch;
4476  }
4477  static bool classof(const Value *V) {
4478  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4479  }
4480 };
4481 
4482 template <>
4484 
4486 
4487 //===----------------------------------------------------------------------===//
4488 // CleanupPadInst Class
4489 //===----------------------------------------------------------------------===//
4491 private:
4492  explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4493  unsigned Values, const Twine &NameStr,
4494  Instruction *InsertBefore)
4495  : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4496  NameStr, InsertBefore) {}
4497  explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4498  unsigned Values, const Twine &NameStr,
4499  BasicBlock *InsertAtEnd)
4500  : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4501  NameStr, InsertAtEnd) {}
4502 
4503 public:
4505  const Twine &NameStr = "",
4506  Instruction *InsertBefore = nullptr) {
4507  unsigned Values = 1 + Args.size();
4508  return new (Values)
4509  CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
4510  }
4511 
4513  const Twine &NameStr, BasicBlock *InsertAtEnd) {
4514  unsigned Values = 1 + Args.size();
4515  return new (Values)
4516  CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
4517  }
4518 
4519  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4520  static bool classof(const Instruction *I) {
4521  return I->getOpcode() == Instruction::CleanupPad;
4522  }
4523  static bool classof(const Value *V) {
4524  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4525  }
4526 };
4527 
4528 //===----------------------------------------------------------------------===//
4529 // CatchPadInst Class
4530 //===----------------------------------------------------------------------===//
4532 private:
4533  explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4534  unsigned Values, const Twine &NameStr,
4535  Instruction *InsertBefore)
4536  : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4537  NameStr, InsertBefore) {}
4538  explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4539  unsigned Values, const Twine &NameStr,
4540  BasicBlock *InsertAtEnd)
4541  : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4542  NameStr, InsertAtEnd) {}
4543 
4544 public:
4546  const Twine &NameStr = "",
4547  Instruction *InsertBefore = nullptr) {
4548  unsigned Values = 1 + Args.size();
4549  return new (Values)
4550  CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4551  }
4552 
4554  const Twine &NameStr, BasicBlock *InsertAtEnd) {
4555  unsigned Values = 1 + Args.size();
4556  return new (Values)
4557  CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
4558  }
4559 
4560  /// Convenience accessors
4562  return cast<CatchSwitchInst>(Op<-1>());
4563  }
4564  void setCatchSwitch(Value *CatchSwitch) {
4565  assert(CatchSwitch);
4566  Op<-1>() = CatchSwitch;
4567  }
4568 
4569  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4570  static bool classof(const Instruction *I) {
4571  return I->getOpcode() == Instruction::CatchPad;
4572  }
4573  static bool classof(const Value *V) {
4574  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4575  }
4576 };
4577 
4578 //===----------------------------------------------------------------------===//
4579 // CatchReturnInst Class
4580 //===----------------------------------------------------------------------===//
4581 
4583  CatchReturnInst(const CatchReturnInst &RI);
4584  CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
4585  CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
4586 
4587  void init(Value *CatchPad, BasicBlock *BB);
4588 
4589 protected:
4590  // Note: Instruction needs to be a friend here to call cloneImpl.
4591  friend class Instruction;
4592 
4593  CatchReturnInst *cloneImpl() const;
4594 
4595 public:
4597  Instruction *InsertBefore = nullptr) {
4598  assert(CatchPad);
4599  assert(BB);
4600  return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
4601  }
4602