41 cl::desc(
"Use ConstantInt's native fixed-length vector splat support."));
44 cl::desc(
"Use ConstantFP's native fixed-length vector splat support."));
47 cl::desc(
"Use ConstantInt's native scalable vector splat support."));
50 cl::desc(
"Use ConstantFP's native scalable vector splat support."));
59 return CFP->isZero() && CFP->isNegative();
64 return SplatCFP->isNegativeZeroValue();
67 if (
getType()->isFPOrFPVectorTy())
84 return SplatCFP->isZero();
99 return CFP->isExactlyValue(+0.0);
110 return CI->isMinusOne();
114 return CFP->getValueAPF().bitcastToAPInt().isAllOnes();
119 return SplatVal->isAllOnesValue();
131 return CFP->getValueAPF().bitcastToAPInt().isOne();
136 return SplatVal->isOneValue();
144 return !CI->isOneValue();
148 return !CFP->getValueAPF().bitcastToAPInt().isOne();
152 for (
unsigned I = 0, E = VTy->getNumElements();
I != E; ++
I) {
163 return SplatVal->isNotOneValue();
172 return CI->isMinValue(
true);
176 return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
181 return SplatVal->isMinSignedValue();
189 return CI->isMaxValue(
true);
193 return CFP->getValueAPF().bitcastToAPInt().isMaxSignedValue();
198 return SplatVal->isMaxSignedValue();
206 return !CI->isMinValue(
true);
210 return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
214 for (
unsigned I = 0, E = VTy->getNumElements();
I != E; ++
I) {
225 return SplatVal->isNotMinSignedValue();
233 return CFP->getValueAPF().isFiniteNonZero();
236 for (
unsigned I = 0, E = VTy->getNumElements();
I != E; ++
I) {
238 if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
246 return SplatCFP->isFiniteNonZeroFP();
254 return CFP->getValueAPF().isNormal();
257 for (
unsigned I = 0, E = VTy->getNumElements();
I != E; ++
I) {
259 if (!CFP || !CFP->getValueAPF().isNormal())
267 return SplatCFP->isNormalFP();
275 return CFP->getValueAPF().getExactInverse(
nullptr);
278 for (
unsigned I = 0, E = VTy->getNumElements();
I != E; ++
I) {
280 if (!CFP || !CFP->getValueAPF().getExactInverse(
nullptr))
288 return SplatCFP->hasExactInverseFP();
299 for (
unsigned I = 0, E = VTy->getNumElements();
I != E; ++
I) {
301 if (!CFP || !CFP->isNaN())
309 return SplatCFP->isNaN();
326 if (!(VTy->getElementType()->isIntegerTy() ||
327 VTy->getElementType()->isFloatingPointTy()))
352 if (
Constant *Elem =
C->getAggregateElement(i))
382 for (
unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
391 switch (Ty->getTypeID()) {
393 return ConstantInt::get(Ty, 0);
401 return ConstantFP::get(Ty->getContext(),
424 Constant *
C = ConstantInt::get(Ty->getContext(), V);
439 return ConstantInt::get(Ty->getContext(),
442 if (Ty->isFloatingPointTy()) {
444 return ConstantFP::get(Ty->getContext(), FL);
454 "Must be an aggregate/vector constant");
457 return Elt < CC->getNumOperands() ? CC->getOperand(Elt) :
nullptr;
460 return Elt < CAZ->getElementCount().getKnownMinValue()
461 ? CAZ->getElementValue(Elt)
465 return Elt < cast<VectorType>(
getType())
468 ? ConstantInt::get(
getContext(), CI->getValue())
472 return Elt < cast<VectorType>(
getType())
475 ? ConstantFP::get(
getContext(), CFP->getValue())
483 return Elt < PV->getNumElements() ? PV->getElementValue(Elt) :
nullptr;
486 return Elt < UV->getNumElements() ? UV->getElementValue(Elt) :
nullptr;
489 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
499 if (CI->getValue().getActiveBits() > 64)
512#define HANDLE_CONSTANT(Name) \
513 case Value::Name##Val: \
514 cast<Name>(this)->destroyConstantImpl(); \
516#include "llvm/IR/Value.def"
530 dbgs() <<
"While deleting: " << *
this
531 <<
"\n\nUse still stuck around after Def is destroyed: " << *V
547 switch (
C->getValueID()) {
548 case Constant::ConstantIntVal:
551 case Constant::ConstantFPVal:
554 case Constant::ConstantAggregateZeroVal:
557 case Constant::ConstantArrayVal:
560 case Constant::ConstantStructVal:
563 case Constant::ConstantVectorVal:
566 case Constant::ConstantPointerNullVal:
569 case Constant::ConstantDataArrayVal:
572 case Constant::ConstantDataVectorVal:
575 case Constant::ConstantTokenNoneVal:
578 case Constant::BlockAddressVal:
581 case Constant::DSOLocalEquivalentVal:
584 case Constant::NoCFIValueVal:
587 case Constant::ConstantPtrAuthVal:
590 case Constant::UndefValueVal:
593 case Constant::PoisonValueVal:
596 case Constant::ConstantExprVal:
626 while (!WorkList.
empty()) {
635 if (Visited.
insert(ConstOp).second)
643 auto DLLImportPredicate = [](
const GlobalValue *GV) {
644 return GV->isThreadLocal();
650 auto DLLImportPredicate = [](
const GlobalValue *GV) {
651 return GV->hasDLLImportStorageClass();
669 return getRelocationInfo() == GlobalRelocation;
673 return getRelocationInfo() != NoRelocation;
676Constant::PossibleRelocationsTy Constant::getRelocationInfo()
const {
678 return GlobalRelocation;
681 return BA->getFunction()->getRelocationInfo();
684 if (CE->getOpcode() == Instruction::Sub) {
688 (LHS->getOpcode() == Instruction::PtrToInt ||
689 LHS->getOpcode() == Instruction::PtrToAddr) &&
690 (RHS->getOpcode() == Instruction::PtrToInt ||
691 RHS->getOpcode() == Instruction::PtrToAddr)) {
709 if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal())
710 return LocalRelocation;
712 if (RHSGV->isDSOLocal())
713 return LocalRelocation;
720 PossibleRelocationsTy
Result = NoRelocation;
736 if (!
User)
return false;
749 if (RemoveDeadUsers) {
753 const_cast<Constant *
>(
C)->destroyConstant();
779 if (LastNonDeadUser == E)
782 I = std::next(LastNonDeadUser);
790bool Constant::hasNLiveUses(
unsigned N)
const {
791 unsigned NumUses = 0;
805 assert(
C && Replacement &&
"Expected non-nullptr constant arguments");
806 Type *Ty =
C->getType();
808 assert(Ty == Replacement->
getType() &&
"Expected matching types");
817 unsigned NumElts = VTy->getNumElements();
819 for (
unsigned i = 0; i != NumElts; ++i) {
820 Constant *EltC =
C->getAggregateElement(i);
822 "Expected matching types");
823 NewC[i] = EltC &&
match(EltC,
m_Undef()) ? Replacement : EltC;
829 assert(
C &&
Other &&
"Expected non-nullptr constant arguments");
833 Type *Ty =
C->getType();
841 Type *EltTy = VTy->getElementType();
842 unsigned NumElts = VTy->getNumElements();
847 bool FoundExtraUndef =
false;
849 for (
unsigned I = 0;
I != NumElts; ++
I) {
850 NewC[
I] =
C->getAggregateElement(
I);
852 assert(NewC[
I] && OtherEltC &&
"Unknown vector element");
855 FoundExtraUndef =
true;
881ConstantInt::ConstantInt(
Type *Ty,
const APInt &V)
885 "Invalid constant for type");
907 assert(Ty->isIntOrIntVectorTy(1) &&
"Type not i1 or vector of i1.");
915 assert(Ty->isIntOrIntVectorTy(1) &&
"Type not i1 or vector of i1.");
930 std::unique_ptr<ConstantInt> &Slot =
937 Slot.reset(
new ConstantInt(ITy, V));
947 std::unique_ptr<ConstantInt> &Slot =
948 Context.pImpl->IntSplatConstants[std::make_pair(EC, V)];
958 assert(Slot->getType() == VTy);
976 return get(Ty->getContext(),
981 ConstantInt *
C = get(Ty->getContext(), V);
982 assert(
C->getType() == Ty->getScalarType() &&
983 "ConstantInt type doesn't match the type implied by its value!");
993 return get(Ty->getContext(),
APInt(Ty->getBitWidth(), Str, radix));
997void ConstantInt::destroyConstantImpl() {
1010 FV.
convert(Ty->getScalarType()->getFltSemantics(),
1022 ConstantFP *
C = get(Ty->getContext(), V);
1023 assert(
C->getType() == Ty->getScalarType() &&
1024 "ConstantFP type doesn't match the type implied by its value!");
1036 APFloat FV(Ty->getScalarType()->getFltSemantics(), Str);
1047 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1049 Constant *
C = get(Ty->getContext(), NaN);
1058 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1060 Constant *
C = get(Ty->getContext(), NaN);
1069 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1071 Constant *
C = get(Ty->getContext(), NaN);
1080 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1082 Constant *
C = get(Ty->getContext(), NegZero);
1095 std::unique_ptr<ConstantFP> &Slot = pImpl->
FPConstants[V];
1099 Slot.reset(
new ConstantFP(Ty, V));
1109 std::unique_ptr<ConstantFP> &Slot =
1110 Context.pImpl->FPSplatConstants[std::make_pair(EC, V)];
1120 assert(Slot->getType() == VTy);
1126 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1137 assert(&V.getSemantics() == &Ty->getScalarType()->getFltSemantics() &&
1138 "FP type Mismatch");
1142 return Val.bitwiseIsEqual(V);
1146void ConstantFP::destroyConstantImpl() {
1181 return VT->getElementCount();
1214 return AT->getNumElements();
1217 return Ty->getStructNumElements();
1250template <
typename ItTy,
typename EltTy>
1252 for (; Start != End; ++Start)
1258template <
typename SequentialTy,
typename ElementTy>
1260 assert(!V.empty() &&
"Cannot get empty int sequence.");
1268 return SequentialTy::get(V[0]->getContext(), Elts);
1271template <
typename SequentialTy,
typename ElementTy>
1273 assert(!V.empty() &&
"Cannot get empty FP sequence.");
1278 Elts.
push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
1281 return SequentialTy::getFP(V[0]->
getType(), Elts);
1284template <
typename SequenceTy>
1291 if (CI->getType()->isIntegerTy(8))
1293 else if (CI->getType()->isIntegerTy(16))
1295 else if (CI->getType()->isIntegerTy(32))
1297 else if (CI->getType()->isIntegerTy(64))
1300 if (CFP->getType()->isHalfTy() || CFP->getType()->isBFloatTy())
1302 else if (CFP->getType()->isFloatTy())
1304 else if (CFP->getType()->isDoubleTy())
1321 for (
unsigned I = 0, E = V.size();
I != E; ++
I)
1323 "Initializer for struct element doesn't match!");
1330 assert(V.size() ==
T->getNumElements() &&
1331 "Invalid initializer for constant array");
1337 return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
1346 assert(
C->getType() == Ty->getElementType() &&
1347 "Wrong type in array element initializer");
1376 unsigned VecSize = V.size();
1378 for (
unsigned i = 0; i != VecSize; ++i)
1379 EltTypes[i] = V[i]->
getType();
1388 "ConstantStruct::getTypeForElements cannot be called on empty list");
1395 assert((
T->isOpaque() || V.size() ==
T->getNumElements()) &&
1396 "Invalid initializer for constant struct");
1401 assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
1402 "Incorrect # elements specified to ConstantStruct::get");
1407 bool isPoison =
false;
1412 isZero = V[0]->isNullValue();
1416 if (!
C->isNullValue())
1432 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1439 "Invalid initializer for constant vector");
1447 return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1451 assert(!V.empty() &&
"Vectors can't be empty");
1457 bool isZero =
C->isNullValue();
1464 for (
unsigned i = 1, e = V.size(); i != e; ++i)
1466 isZero =
isUndef = isPoison = isSplatFP = isSplatInt =
false;
1478 return ConstantFP::get(
C->getContext(),
T->getElementCount(),
1481 return ConstantInt::get(
C->getContext(),
T->getElementCount(),
1495 if (!EC.isScalable()) {
1497 if (!V->isNullValue()) {
1499 return ConstantInt::get(V->getContext(), EC,
1502 return ConstantFP::get(V->getContext(), EC,
1517 if (!V->isNullValue()) {
1519 return ConstantInt::get(V->getContext(), EC,
1522 return ConstantFP::get(V->getContext(), EC,
1528 if (V->isNullValue())
1549 pImpl->
TheNoneToken.reset(
new ConstantTokenNone(Context));
1554void ConstantTokenNone::destroyConstantImpl() {
1572 bool OnlyIfReduced,
Type *SrcTy)
const {
1579 Type *OnlyIfReducedTy = OnlyIfReduced ? Ty :
nullptr;
1581 case Instruction::Trunc:
1582 case Instruction::ZExt:
1583 case Instruction::SExt:
1584 case Instruction::FPTrunc:
1585 case Instruction::FPExt:
1586 case Instruction::UIToFP:
1587 case Instruction::SIToFP:
1588 case Instruction::FPToUI:
1589 case Instruction::FPToSI:
1590 case Instruction::PtrToAddr:
1591 case Instruction::PtrToInt:
1592 case Instruction::IntToPtr:
1593 case Instruction::BitCast:
1594 case Instruction::AddrSpaceCast:
1596 case Instruction::InsertElement:
1599 case Instruction::ExtractElement:
1601 case Instruction::ShuffleVector:
1604 case Instruction::GetElementPtr: {
1608 SrcTy ? SrcTy : GEPO->getSourceElementType(),
Ops[0],
Ops.slice(1),
1609 GEPO->getNoWrapFlags(), GEPO->getInRange(), OnlyIfReducedTy);
1623 unsigned NumBits = Ty->getIntegerBitWidth();
1624 if (Ty->isIntegerTy(1))
1625 return Val == 0 || Val == 1;
1630 unsigned NumBits = Ty->getIntegerBitWidth();
1631 if (Ty->isIntegerTy(1))
1632 return Val == 0 || Val == 1 || Val == -1;
1633 return isIntN(NumBits, Val);
1640 switch (Ty->getTypeID()) {
1698 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1699 "Cannot create an aggregate zero of non-aggregate type!");
1701 std::unique_ptr<ConstantAggregateZero> &Entry =
1702 Ty->getContext().pImpl->CAZConstants[Ty];
1704 Entry.reset(
new ConstantAggregateZero(Ty));
1710void ConstantAggregateZero::destroyConstantImpl() {
1715void ConstantArray::destroyConstantImpl() {
1724void ConstantStruct::destroyConstantImpl() {
1729void ConstantVector::destroyConstantImpl() {
1734 assert(this->
getType()->isVectorTy() &&
"Only valid for vectors!");
1740 return ConstantInt::get(
getContext(), CI->getValue());
1742 return ConstantFP::get(
getContext(), CFP->getValue());
1744 return CV->getSplatValue();
1746 return CV->getSplatValue(AllowPoison);
1751 if (Shuf && Shuf->getOpcode() == Instruction::ShuffleVector &&
1755 if (IElt && IElt->getOpcode() == Instruction::InsertElement &&
1759 Constant *SplatVal = IElt->getOperand(1);
1762 if (Index && Index->getValue() == 0 &&
1800 return CI->getValue();
1818 return ConstantRange::getFull(
BitWidth);
1826 for (
unsigned I = 0, E = CDV->getNumElements();
I < E; ++
I)
1827 CR = CR.
unionWith(CDV->getElementAsAPInt(
I));
1833 for (
unsigned I = 0, E = CV->getNumOperands();
I < E; ++
I) {
1836 return ConstantRange::getFull(
BitWidth);
1841 return ConstantRange::getFull(
BitWidth);
1847 return ConstantRange::getFull(
BitWidth);
1854 std::unique_ptr<ConstantPointerNull> &Entry =
1857 Entry.reset(
new ConstantPointerNull(Ty));
1863void ConstantPointerNull::destroyConstantImpl() {
1872 "Target extension type not allowed to have a zeroinitializer");
1873 std::unique_ptr<ConstantTargetNone> &Entry =
1874 Ty->getContext().pImpl->CTNConstants[Ty];
1876 Entry.reset(
new ConstantTargetNone(Ty));
1882void ConstantTargetNone::destroyConstantImpl() {
1889 Entry.reset(
new UndefValue(Ty));
1895void UndefValue::destroyConstantImpl() {
1908 Entry.reset(
new PoisonValue(Ty));
1914void PoisonValue::destroyConstantImpl() {
1922 BA =
new BlockAddress(Ty, BB);
1939 BB->setHasAddressTaken(
true);
1947 assert(BA &&
"Refcount and block address map disagree!");
1952void BlockAddress::destroyConstantImpl() {
1984 Equiv =
new DSOLocalEquivalent(GV);
1987 "DSOLocalFunction does not match the expected global value");
1991DSOLocalEquivalent::DSOLocalEquivalent(
GlobalValue *GV)
1997void DSOLocalEquivalent::destroyConstantImpl() {
2002Value *DSOLocalEquivalent::handleOperandChangeImpl(
Value *From,
Value *To) {
2008 DSOLocalEquivalent *&NewEquiv =
2042 NC =
new NoCFIValue(GV);
2044 assert(
NC->getGlobalValue() == GV &&
2045 "NoCFIValue does not match the expected global value");
2055void NoCFIValue::destroyConstantImpl() {
2064 assert(GV &&
"Can only replace the operands with a global value");
2109void ConstantPtrAuth::destroyConstantImpl() {
2113Value *ConstantPtrAuth::handleOperandChangeImpl(
Value *From,
Value *ToV) {
2120 unsigned NumUpdated = 0;
2123 unsigned OperandNo = 0;
2127 OperandNo = (
O - OperandList);
2135 Values,
this, From, To, NumUpdated, OperandNo);
2140 if (!CastV || CastV->getOpcode() != Instruction::IntToPtr)
2147 return IntVal->getValue() ==
Value;
2151 const Value *Discriminator,
2169 const Value *AddrDiscriminator =
nullptr;
2175 if (!
match(Discriminator,
2181 AddrDiscriminator = Discriminator;
2188 AddrDiscriminator = Cast->getPointerOperand();
2203 APInt Off2(
DL.getIndexTypeSizeInBits(AddrDiscriminator->
getType()), 0);
2207 return Base1 == Base2 && Off1 == Off2;
2216 bool OnlyIfReduced =
false) {
2217 assert(Ty->isFirstClassType() &&
"Cannot cast to an aggregate type!");
2234 bool OnlyIfReduced) {
2238 "Cast opcode not supported as constant expression");
2239 assert(
C && Ty &&
"Null arguments to getCast");
2245 case Instruction::Trunc:
2247 case Instruction::PtrToAddr:
2249 case Instruction::PtrToInt:
2251 case Instruction::IntToPtr:
2253 case Instruction::BitCast:
2255 case Instruction::AddrSpaceCast:
2261 if (
C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2268 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2271 if (Ty->isIntOrIntVectorTy())
2275 if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
2284 assert(Ty->isPtrOrPtrVectorTy() &&
"Invalid cast");
2297 assert((fromVec == toVec) &&
"Cannot convert from scalar to/from vector");
2298 assert(
C->getType()->isIntOrIntVectorTy() &&
"Trunc operand must be integer");
2299 assert(Ty->isIntOrIntVectorTy() &&
"Trunc produces only integral");
2300 assert(
C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
2301 "SrcTy must be larger than DestTy for Trunc!");
2307 bool OnlyIfReduced) {
2308 assert(
C->getType()->isPtrOrPtrVectorTy() &&
2309 "PtrToAddr source must be pointer or pointer vector");
2311 "PtrToAddr destination must be integer or integer vector");
2316 "Invalid cast between a different number of vector elements");
2317 return getFoldedCast(Instruction::PtrToAddr,
C, DstTy, OnlyIfReduced);
2321 bool OnlyIfReduced) {
2322 assert(
C->getType()->isPtrOrPtrVectorTy() &&
2323 "PtrToInt source must be pointer or pointer vector");
2325 "PtrToInt destination must be integer or integer vector");
2330 "Invalid cast between a different number of vector elements");
2331 return getFoldedCast(Instruction::PtrToInt,
C, DstTy, OnlyIfReduced);
2335 bool OnlyIfReduced) {
2336 assert(
C->getType()->isIntOrIntVectorTy() &&
2337 "IntToPtr source must be integer or integer vector");
2339 "IntToPtr destination must be a pointer or pointer vector");
2344 "Invalid cast between a different number of vector elements");
2345 return getFoldedCast(Instruction::IntToPtr,
C, DstTy, OnlyIfReduced);
2349 bool OnlyIfReduced) {
2351 "Invalid constantexpr bitcast!");
2355 if (
C->getType() == DstTy)
return C;
2357 return getFoldedCast(Instruction::BitCast,
C, DstTy, OnlyIfReduced);
2361 bool OnlyIfReduced) {
2363 "Invalid constantexpr addrspacecast!");
2364 return getFoldedCast(Instruction::AddrSpaceCast,
C, DstTy, OnlyIfReduced);
2368 unsigned Flags,
Type *OnlyIfReducedTy) {
2371 "Invalid opcode in binary constant expression");
2373 "Binop not supported as constant expression");
2375 "Operand types in binary constant expression should match");
2379 case Instruction::Add:
2380 case Instruction::Sub:
2381 case Instruction::Mul:
2383 "Tried to create an integer operation on a non-integer type!");
2385 case Instruction::And:
2386 case Instruction::Or:
2387 case Instruction::Xor:
2389 "Tried to create a logical operation on a non-integral type!");
2399 if (OnlyIfReducedTy == C1->
getType())
2411 case Instruction::UDiv:
2412 case Instruction::SDiv:
2413 case Instruction::URem:
2414 case Instruction::SRem:
2415 case Instruction::FAdd:
2416 case Instruction::FSub:
2417 case Instruction::FMul:
2418 case Instruction::FDiv:
2419 case Instruction::FRem:
2420 case Instruction::And:
2421 case Instruction::Or:
2422 case Instruction::LShr:
2423 case Instruction::AShr:
2424 case Instruction::Shl:
2425 case Instruction::Mul:
2427 case Instruction::Add:
2428 case Instruction::Sub:
2429 case Instruction::Xor:
2438 case Instruction::UDiv:
2439 case Instruction::SDiv:
2440 case Instruction::URem:
2441 case Instruction::SRem:
2442 case Instruction::FAdd:
2443 case Instruction::FSub:
2444 case Instruction::FMul:
2445 case Instruction::FDiv:
2446 case Instruction::FRem:
2447 case Instruction::And:
2448 case Instruction::Or:
2449 case Instruction::LShr:
2450 case Instruction::AShr:
2451 case Instruction::Shl:
2452 case Instruction::Mul:
2454 case Instruction::Add:
2455 case Instruction::Sub:
2456 case Instruction::Xor:
2465 case Instruction::ZExt:
2466 case Instruction::SExt:
2467 case Instruction::FPTrunc:
2468 case Instruction::FPExt:
2469 case Instruction::UIToFP:
2470 case Instruction::SIToFP:
2471 case Instruction::FPToUI:
2472 case Instruction::FPToSI:
2474 case Instruction::Trunc:
2475 case Instruction::PtrToAddr:
2476 case Instruction::PtrToInt:
2477 case Instruction::IntToPtr:
2478 case Instruction::BitCast:
2479 case Instruction::AddrSpaceCast:
2488 case Instruction::ZExt:
2489 case Instruction::SExt:
2490 case Instruction::FPTrunc:
2491 case Instruction::FPExt:
2492 case Instruction::UIToFP:
2493 case Instruction::SIToFP:
2494 case Instruction::FPToUI:
2495 case Instruction::FPToSI:
2497 case Instruction::Trunc:
2498 case Instruction::PtrToAddr:
2499 case Instruction::PtrToInt:
2500 case Instruction::IntToPtr:
2501 case Instruction::BitCast:
2502 case Instruction::AddrSpaceCast:
2528 Constant *Indices[2] = {Zero, One};
2536 std::optional<ConstantRange>
InRange,
2537 Type *OnlyIfReducedTy) {
2538 assert(Ty &&
"Must specify element type");
2549 if (OnlyIfReducedTy == ReqTy)
2554 EltCount = VecTy->getElementCount();
2557 std::vector<Constant*> ArgVec;
2558 ArgVec.reserve(1 + Idxs.
size());
2559 ArgVec.push_back(
C);
2561 for (; GTI != GTE; ++GTI) {
2566 "getelementptr index type missmatch");
2568 if (GTI.isStruct() && Idx->getType()->isVectorTy()) {
2569 Idx = Idx->getSplatValue();
2570 }
else if (GTI.isSequential() && EltCount.isNonZero() &&
2571 !Idx->getType()->isVectorTy()) {
2574 ArgVec.push_back(Idx);
2585 Type *OnlyIfReducedTy) {
2587 "Tried to create extractelement operation on non-vector type!");
2589 "Extractelement index must be an integer type!");
2595 if (OnlyIfReducedTy == ReqTy)
2609 "Tried to create insertelement operation on non-vector type!");
2611 "Insertelement types must match!");
2613 "Insertelement index must be i32 type!");
2618 if (OnlyIfReducedTy == Val->
getType())
2622 Constant *ArgVec[] = { Val, Elt, Idx };
2631 Type *OnlyIfReducedTy) {
2633 "Invalid shuffle vector constant expr operands!");
2638 unsigned NElts = Mask.size();
2640 Type *EltTy = V1VTy->getElementType();
2644 if (OnlyIfReducedTy == ShufTy)
2656 assert(
C->getType()->isIntOrIntVectorTy() &&
2657 "Cannot NEG a nonintegral value!");
2658 return getSub(ConstantInt::get(
C->getType(), 0),
C,
false, HasNSW);
2662 assert(
C->getType()->isIntOrIntVectorTy() &&
2663 "Cannot NOT a nonintegral value!");
2668 bool HasNUW,
bool HasNSW) {
2671 return get(Instruction::Add, C1, C2, Flags);
2675 bool HasNUW,
bool HasNSW) {
2678 return get(Instruction::Sub, C1, C2, Flags);
2682 return get(Instruction::Xor, C1, C2);
2686 Type *Ty =
C->getType();
2689 return ConstantInt::get(Ty, IVal->
logBase2());
2697 for (
unsigned I = 0, E = VecTy->getNumElements();
I != E; ++
I) {
2715 bool AllowRHSConstant,
bool NSZ) {
2721 case Instruction::Add:
2722 case Instruction::Or:
2723 case Instruction::Xor:
2725 case Instruction::Mul:
2726 return ConstantInt::get(Ty, 1);
2727 case Instruction::And:
2729 case Instruction::FAdd:
2731 case Instruction::FMul:
2732 return ConstantFP::get(Ty, 1.0);
2739 if (!AllowRHSConstant)
2743 case Instruction::Sub:
2744 case Instruction::Shl:
2745 case Instruction::LShr:
2746 case Instruction::AShr:
2747 case Instruction::FSub:
2749 case Instruction::SDiv:
2750 case Instruction::UDiv:
2751 return ConstantInt::get(Ty, 1);
2752 case Instruction::FDiv:
2753 return ConstantFP::get(Ty, 1.0);
2761 case Intrinsic::umax:
2763 case Intrinsic::umin:
2765 case Intrinsic::smax:
2768 case Intrinsic::smin:
2777 bool AllowRHSConstant,
bool NSZ) {
2778 if (
I->isBinaryOp())
2786 bool AllowLHSConstant) {
2791 case Instruction::Or:
2794 case Instruction::And:
2795 case Instruction::Mul:
2800 if (!AllowLHSConstant)
2806 case Instruction::Shl:
2807 case Instruction::LShr:
2808 case Instruction::AShr:
2809 case Instruction::SDiv:
2810 case Instruction::UDiv:
2811 case Instruction::URem:
2812 case Instruction::SRem:
2818void ConstantExpr::destroyConstantImpl() {
2826GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2830 SrcElementTy(SrcElementTy),
2835 for (
unsigned i = 0, E = IdxList.
size(); i != E; ++i)
2836 OperandList[i+1] = IdxList[i];
2840 return SrcElementTy;
2844 return ResElementTy;
2856 return ATy->getElementType();
2865 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2868 switch (
IT->getBitWidth()) {
2882 return AT->getNumElements();
2891const char *ConstantDataSequential::getElementPointer(
uint64_t Elt)
const {
2922 *Ty->getContext().pImpl->CDSConstants.try_emplace(Elements).first;
2928 std::unique_ptr<ConstantDataSequential> *Entry = &Slot.second;
2929 for (; *Entry; Entry = &(*Entry)->Next)
2930 if ((*Entry)->getType() == Ty)
2931 return Entry->get();
2938 return Entry->get();
2944 return Entry->get();
2947void ConstantDataSequential::destroyConstantImpl() {
2954 assert(Slot != CDSConstants.
end() &&
"CDS not found in uniquing table");
2956 std::unique_ptr<ConstantDataSequential> *Entry = &Slot->getValue();
2959 if (!(*Entry)->Next) {
2962 assert(Entry->get() ==
this &&
"Hash mismatch in ConstantDataSequential");
2970 std::unique_ptr<ConstantDataSequential> &
Node = *Entry;
2971 assert(
Node &&
"Didn't find entry in its uniquing hash table!");
2973 if (
Node.get() ==
this) {
2989 assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
2990 "Element type is not a 16-bit float type");
2992 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
2996 assert(ElementType->isFloatTy() &&
"Element type is not a 32-bit float type");
2998 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3002 assert(ElementType->isDoubleTy() &&
3003 "Element type is not a 64-bit float type");
3005 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3017 ElementVals.
append(Str.begin(), Str.end());
3019 return get(Context, ElementVals);
3027 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3032 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3037 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3042 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3047 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3052 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3064 assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
3065 "Element type is not a 16-bit float type");
3067 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3072 assert(ElementType->isFloatTy() &&
"Element type is not a 32-bit float type");
3074 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3079 assert(ElementType->isDoubleTy() &&
3080 "Element type is not a 64-bit float type");
3082 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3088 "Element type not compatible with ConstantData");
3090 if (CI->getType()->isIntegerTy(8)) {
3092 return get(V->getContext(), Elts);
3094 if (CI->getType()->isIntegerTy(16)) {
3096 return get(V->getContext(), Elts);
3098 if (CI->getType()->isIntegerTy(32)) {
3100 return get(V->getContext(), Elts);
3102 assert(CI->getType()->isIntegerTy(64) &&
"Unsupported ConstantData type");
3104 return get(V->getContext(), Elts);
3108 if (CFP->getType()->isHalfTy()) {
3110 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3111 return getFP(V->getType(), Elts);
3113 if (CFP->getType()->isBFloatTy()) {
3115 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3116 return getFP(V->getType(), Elts);
3118 if (CFP->getType()->isFloatTy()) {
3120 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3121 return getFP(V->getType(), Elts);
3123 if (CFP->getType()->isDoubleTy()) {
3125 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3126 return getFP(V->getType(), Elts);
3134 "Accessor can only be used when element is an integer");
3135 const char *EltPtr = getElementPointer(Elt);
3142 return *
reinterpret_cast<const uint8_t *
>(EltPtr);
3144 return *
reinterpret_cast<const uint16_t *
>(EltPtr);
3146 return *
reinterpret_cast<const uint32_t *
>(EltPtr);
3148 return *
reinterpret_cast<const uint64_t *
>(EltPtr);
3154 "Accessor can only be used when element is an integer");
3155 const char *EltPtr = getElementPointer(Elt);
3162 auto EltVal = *
reinterpret_cast<const uint8_t *
>(EltPtr);
3163 return APInt(8, EltVal);
3166 auto EltVal = *
reinterpret_cast<const uint16_t *
>(EltPtr);
3167 return APInt(16, EltVal);
3170 auto EltVal = *
reinterpret_cast<const uint32_t *
>(EltPtr);
3171 return APInt(32, EltVal);
3174 auto EltVal = *
reinterpret_cast<const uint64_t *
>(EltPtr);
3175 return APInt(64, EltVal);
3181 const char *EltPtr = getElementPointer(Elt);
3185 llvm_unreachable(
"Accessor can only be used when element is float/double!");
3187 auto EltVal = *
reinterpret_cast<const uint16_t *
>(EltPtr);
3191 auto EltVal = *
reinterpret_cast<const uint16_t *
>(EltPtr);
3195 auto EltVal = *
reinterpret_cast<const uint32_t *
>(EltPtr);
3199 auto EltVal = *
reinterpret_cast<const uint64_t *
>(EltPtr);
3207 "Accessor can only be used when element is a 'float'");
3208 return *
reinterpret_cast<const float *
>(getElementPointer(Elt));
3213 "Accessor can only be used when element is a 'float'");
3214 return *
reinterpret_cast<const double *
>(getElementPointer(Elt));
3236 if (Str.back() != 0)
return false;
3239 return !Str.drop_back().contains(0);
3242bool ConstantDataVector::isSplatData()
const {
3257 IsSplat = isSplatData();
3282 Value *Replacement =
nullptr;
3286#define HANDLE_CONSTANT(Name) \
3287 case Value::Name##Val: \
3288 Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \
3290#include "llvm/IR/Value.def"
3299 assert(Replacement !=
this &&
"I didn't contain From!");
3308Value *ConstantArray::handleOperandChangeImpl(
Value *From,
Value *To) {
3317 unsigned NumUpdated = 0;
3320 bool AllSame =
true;
3322 unsigned OperandNo = 0;
3326 OperandNo = (O - OperandList);
3331 AllSame &= Val == ToC;
3346 Values,
this, From, ToC, NumUpdated, OperandNo);
3349Value *ConstantStruct::handleOperandChangeImpl(
Value *From,
Value *To) {
3360 unsigned NumUpdated = 0;
3361 bool AllSame =
true;
3362 unsigned OperandNo = 0;
3366 OperandNo = (
O - OperandList);
3371 AllSame &= Val == ToC;
3382 Values,
this, From, ToC, NumUpdated, OperandNo);
3385Value *ConstantVector::handleOperandChangeImpl(
Value *From,
Value *To) {
3391 unsigned NumUpdated = 0;
3392 unsigned OperandNo = 0;
3408 Values,
this, From, ToC, NumUpdated, OperandNo);
3411Value *ConstantExpr::handleOperandChangeImpl(
Value *From,
Value *ToV) {
3416 unsigned NumUpdated = 0;
3417 unsigned OperandNo = 0;
3427 assert(NumUpdated &&
"I didn't contain From!");
3434 NewOps,
this, From, To, NumUpdated, OperandNo);
3442 case Instruction::Trunc:
3443 case Instruction::PtrToAddr:
3444 case Instruction::PtrToInt:
3445 case Instruction::IntToPtr:
3446 case Instruction::BitCast:
3447 case Instruction::AddrSpaceCast:
3450 case Instruction::InsertElement:
3452 case Instruction::ExtractElement:
3454 case Instruction::ShuffleVector:
3457 case Instruction::GetElementPtr: {
3460 Ops.slice(1), GO->getNoWrapFlags(),
"");
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file defines the StringMap class.
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static cl::opt< ITMode > IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::values(clEnumValN(DefaultIT, "arm-default-it", "Generate any type of IT block"), clEnumValN(RestrictedIT, "arm-restrict-it", "Disallow complex IT blocks")))
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static bool isAllZeros(StringRef Arr)
Return true if the array is empty or all zeros.
static cl::opt< bool > UseConstantIntForScalableSplat("use-constant-int-for-scalable-splat", cl::init(false), cl::Hidden, cl::desc("Use ConstantInt's native scalable vector splat support."))
static cl::opt< bool > UseConstantIntForFixedLengthSplat("use-constant-int-for-fixed-length-splat", cl::init(false), cl::Hidden, cl::desc("Use ConstantInt's native fixed-length vector splat support."))
static Constant * getFPSequenceIfElementsMatch(ArrayRef< Constant * > V)
static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt)
static Constant * getIntSequenceIfElementsMatch(ArrayRef< Constant * > V)
static Constant * getSequenceIfElementsMatch(Constant *C, ArrayRef< Constant * > V)
static bool ConstHasGlobalValuePredicate(const Constant *C, bool(*Predicate)(const GlobalValue *))
Check if C contains a GlobalValue for which Predicate is true.
static cl::opt< bool > UseConstantFPForScalableSplat("use-constant-fp-for-scalable-splat", cl::init(false), cl::Hidden, cl::desc("Use ConstantFP's native scalable vector splat support."))
static bool constantIsDead(const Constant *C, bool RemoveDeadUsers)
Return true if the specified constantexpr is dead.
static bool containsUndefinedElement(const Constant *C, function_ref< bool(const Constant *)> HasFn)
static Constant * getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty, bool OnlyIfReduced=false)
This is a utility function to handle folding of casts and lookup of the cast in the ExprConstants map...
static cl::opt< bool > UseConstantFPForFixedLengthSplat("use-constant-fp-for-fixed-length-splat", cl::init(false), cl::Hidden, cl::desc("Use ConstantFP's native fixed-length vector splat support."))
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static bool isSigned(unsigned int Opcode)
static char getTypeID(Type *Ty)
This file contains the declaration of the GlobalIFunc class, which represents a single indirect funct...
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
static bool isUndef(const MachineInstr &MI)
Merge contiguous icmps into a memcmp
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
uint64_t IntrinsicInst * II
static unsigned getNumElements(Type *Ty)
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static SymbolRef::Type getType(const Symbol *Sym)
static Function * getFunction(FunctionType *Ty, const Twine &Name, Module *M)
static const fltSemantics & IEEEsingle()
static const fltSemantics & BFloat()
static const fltSemantics & IEEEquad()
static const fltSemantics & IEEEdouble()
static const fltSemantics & x87DoubleExtended()
static constexpr roundingMode rmNearestTiesToEven
static const fltSemantics & IEEEhalf()
static const fltSemantics & PPCDoubleDouble()
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
static APFloat getSNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for SNaN values.
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
static LLVM_ABI APFloat getAllOnesValue(const fltSemantics &Semantics)
Returns a float which is bitcasted from an all one value int.
const fltSemantics & getSemantics() const
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
unsigned logBase2() const
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
Class to represent array types.
static LLVM_ABI ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches,...
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
BinaryConstantExpr - This class is private to Constants.cpp, and is used behind the scenes to impleme...
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
The address of a basic block.
static LLVM_ABI BlockAddress * lookup(const BasicBlock *BB)
Lookup an existing BlockAddress constant for the given BasicBlock.
BasicBlock * getBasicBlock() const
static LLVM_ABI BlockAddress * get(Function *F, BasicBlock *BB)
Return a BlockAddress for the specified function and basic block.
CastConstantExpr - This class is private to Constants.cpp, and is used behind the scenes to implement...
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
static LLVM_ABI bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
All zero aggregate value.
LLVM_ABI ElementCount getElementCount() const
Return the number of elements in the array, vector, or struct.
LLVM_ABI Constant * getSequentialElement() const
If this CAZ has array or vector type, return a zero with the right element type.
LLVM_ABI Constant * getElementValue(Constant *C) const
Return a zero of the right value for the specified GEP index if we can, otherwise return null (e....
LLVM_ABI Constant * getStructElement(unsigned Elt) const
If this CAZ has struct type, return a zero with the right element type for the specified element.
static LLVM_ABI ConstantAggregateZero * get(Type *Ty)
Base class for aggregate constants (with operands).
LLVM_ABI ConstantAggregate(Type *T, ValueTy VT, ArrayRef< Constant * > V, AllocInfo AllocInfo)
ConstantArray - Constant Array Declarations.
static LLVM_ABI Constant * get(ArrayType *T, ArrayRef< Constant * > V)
ArrayType * getType() const
Specialize the getType() method to always return an ArrayType, which reduces the amount of casting ne...
An array constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
static LLVM_ABI Constant * getString(LLVMContext &Context, StringRef Initializer, bool AddNull=true)
This method constructs a CDS and initializes it with a text string.
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
static LLVM_ABI Constant * getFP(Type *ElementType, ArrayRef< uint16_t > Elts)
getFP() constructors - Return a constant of array type with a float element type taken from argument ...
LLVM_ABI APFloat getElementAsAPFloat(uint64_t i) const
If this is a sequential container of floating point type, return the specified element as an APFloat.
LLVM_ABI uint64_t getElementAsInteger(uint64_t i) const
If this is a sequential container of integers (of any size), return the specified element in the low ...
StringRef getAsString() const
If this array is isString(), then this method returns the array as a StringRef.
LLVM_ABI Constant * getElementAsConstant(uint64_t i) const
Return a Constant for a specified index's element.
LLVM_ABI uint64_t getElementByteSize() const
Return the size (in bytes) of each element in the array/vector.
LLVM_ABI float getElementAsFloat(uint64_t i) const
If this is an sequential container of floats, return the specified element as a float.
LLVM_ABI bool isString(unsigned CharSize=8) const
This method returns true if this is an array of CharSize integers.
LLVM_ABI uint64_t getNumElements() const
Return the number of elements in the array or vector.
LLVM_ABI APInt getElementAsAPInt(uint64_t i) const
If this is a sequential container of integers (of any size), return the specified element as an APInt...
static LLVM_ABI Constant * getImpl(StringRef Bytes, Type *Ty)
This is the underlying implementation of all of the ConstantDataSequential::get methods.
LLVM_ABI double getElementAsDouble(uint64_t i) const
If this is an sequential container of doubles, return the specified element as a double.
LLVM_ABI Type * getElementType() const
Return the element type of the array/vector.
LLVM_ABI bool isCString() const
This method returns true if the array "isString", ends with a null byte, and does not contains any ot...
LLVM_ABI StringRef getRawDataValues() const
Return the raw, underlying, bytes of this data.
static LLVM_ABI bool isElementTypeCompatible(Type *Ty)
Return true if a ConstantDataSequential can be formed with a vector or array of the specified element...
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
LLVM_ABI Constant * getSplatValue() const
If this is a splat constant, meaning that all of the elements have the same value,...
static LLVM_ABI Constant * getSplat(unsigned NumElts, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
LLVM_ABI bool isSplat() const
Returns true if this is a splat constant, meaning that all elements have the same value.
static LLVM_ABI Constant * get(LLVMContext &Context, ArrayRef< uint8_t > Elts)
get() constructors - Return a constant with vector type with an element count and element type matchi...
static LLVM_ABI Constant * getFP(Type *ElementType, ArrayRef< uint16_t > Elts)
getFP() constructors - Return a constant of vector type with a float element type taken from argument...
Base class for constants with no operands.
A constant value that is initialized with an expression using other constant values.
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
ConstantExpr(Type *ty, unsigned Opcode, AllocInfo AllocInfo)
static LLVM_ABI Constant * getAlignOf(Type *Ty)
getAlignOf constant expr - computes the alignment of a type in a target independent way (Note: the re...
friend struct ConstantExprKeyType
static LLVM_ABI Constant * getPointerCast(Constant *C, Type *Ty)
Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant expression.
static LLVM_ABI Constant * getTruncOrBitCast(Constant *C, Type *Ty)
static LLVM_ABI Constant * getPointerBitCastOrAddrSpaceCast(Constant *C, Type *Ty)
Create a BitCast or AddrSpaceCast for a pointer type depending on the address space.
LLVM_ABI bool isCast() const
Return true if this is a convert constant expression.
static LLVM_ABI Constant * getIdentity(Instruction *I, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary or intrinsic Instruction.
static LLVM_ABI bool isDesirableCastOp(unsigned Opcode)
Whether creating a constant expression for this cast is desirable.
LLVM_ABI Constant * getShuffleMaskForBitcode() const
Assert that this is a shufflevector and return the mask.
static LLVM_ABI Constant * getBinOpAbsorber(unsigned Opcode, Type *Ty, bool AllowLHSConstant=false)
Return the absorbing element for the given binary operation, i.e.
static LLVM_ABI Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getNot(Constant *C)
LLVM_ABI const char * getOpcodeName() const
Return a string representation for an opcode.
static LLVM_ABI Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getPtrToInt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getPtrToAddr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getSizeOf(Type *Ty)
getSizeOf constant expr - computes the (alloc) size of a type (in address-units, not bits) in a targe...
static bool isSupportedGetElementPtr(const Type *SrcElemTy)
Whether creating a constant expression for this getelementptr type is supported.
static LLVM_ABI Constant * getIntrinsicIdentity(Intrinsic::ID, Type *Ty)
static LLVM_ABI Constant * getXor(Constant *C1, Constant *C2)
static LLVM_ABI Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a binary or shift operator constant expression, folding if possible.
static LLVM_ABI bool isDesirableBinOp(unsigned Opcode)
Whether creating a constant expression for this binary operator is desirable.
LLVM_ABI ArrayRef< int > getShuffleMask() const
Assert that this is a shufflevector and return the mask.
static LLVM_ABI bool isSupportedBinOp(unsigned Opcode)
Whether creating a constant expression for this binary operator is supported.
static LLVM_ABI Constant * getAddrSpaceCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
unsigned getOpcode() const
Return the opcode at the root of this constant expression.
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static LLVM_ABI bool isSupportedCastOp(unsigned Opcode)
Whether creating a constant expression for this cast is supported.
static LLVM_ABI Constant * getNeg(Constant *C, bool HasNSW=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExactLogBase2(Constant *C)
If C is a scalar/fixed width vector of known powers of 2, then this function returns a new scalar/fix...
Constant * getWithOperands(ArrayRef< Constant * > Ops) const
This returns the current constant expression with the operands replaced with the specified values.
LLVM_ABI Instruction * getAsInstruction() const
Returns an Instruction which implements the same operation as this ConstantExpr.
ConstantFP - Floating Point Values [float, double].
static LLVM_ABI Constant * getSNaN(Type *Ty, bool Negative=false, APInt *Payload=nullptr)
static LLVM_ABI Constant * getInfinity(Type *Ty, bool Negative=false)
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
static LLVM_ABI Constant * getNaN(Type *Ty, bool Negative=false, uint64_t Payload=0)
LLVM_ABI bool isExactlyValue(const APFloat &V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
static LLVM_ABI bool isValueValidForType(Type *Ty, const APFloat &V)
Return true if Ty is big enough to represent V.
static LLVM_ABI Constant * getQNaN(Type *Ty, bool Negative=false, APInt *Payload=nullptr)
This is the shared class of boolean and integer constants.
static LLVM_ABI bool isValueValidForType(Type *Ty, uint64_t V)
This static method returns true if the type Ty is big enough to represent the value V.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
A constant pointer value that points to null.
static LLVM_ABI ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
PointerType * getType() const
Specialize the getType() method to always return an PointerType, which reduces the amount of casting ...
A signed pointer, in the ptrauth sense.
Constant * getAddrDiscriminator() const
The address discriminator if any, or the null constant.
friend struct ConstantPtrAuthKeyType
LLVM_ABI bool isKnownCompatibleWith(const Value *Key, const Value *Discriminator, const DataLayout &DL) const
Check whether an authentication operation with key Key and (possibly blended) discriminator Discrimin...
LLVM_ABI bool hasSpecialAddressDiscriminator(uint64_t Value) const
Whether the address uses a special address discriminator.
static LLVM_ABI ConstantPtrAuth * get(Constant *Ptr, ConstantInt *Key, ConstantInt *Disc, Constant *AddrDisc)
Return a pointer signed with the specified parameters.
LLVM_ABI ConstantPtrAuth * getWithSameSchema(Constant *Pointer) const
Produce a new ptrauth expression signing the given value using the same schema as is stored in one.
ConstantInt * getKey() const
The Key ID, an i32 constant.
bool hasAddressDiscriminator() const
Whether there is any non-null address discriminator.
ConstantInt * getDiscriminator() const
The integer discriminator, an i64 constant, or 0.
This class represents a range of values.
LLVM_ABI ConstantRange unionWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the union of this range with another range.
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
static LLVM_ABI StructType * getTypeForElements(ArrayRef< Constant * > V, bool Packed=false)
Return an anonymous struct type to use for a constant with the specified set of elements.
StructType * getType() const
Specialization - reduce amount of casting.
static LLVM_ABI ConstantTargetNone * get(TargetExtType *T)
Static factory methods - Return objects of the specified value.
TargetExtType * getType() const
Specialize the getType() method to always return an TargetExtType, which reduces the amount of castin...
A constant token which is empty.
static LLVM_ABI ConstantTokenNone * get(LLVMContext &Context)
Return the ConstantTokenNone.
void remove(ConstantClass *CP)
Remove this constant from the map.
ConstantClass * replaceOperandsInPlace(ArrayRef< Constant * > Operands, ConstantClass *CP, Value *From, Constant *To, unsigned NumUpdated=0, unsigned OperandNo=~0u)
Constant Vector Declarations.
FixedVectorType * getType() const
Specialize the getType() method to always return a FixedVectorType, which reduces the amount of casti...
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
static LLVM_ABI Constant * getIntegerValue(Type *Ty, const APInt &V)
Return the value for an integer or pointer constant, or a vector thereof, with the given scalar value...
LLVM_ABI bool hasExactInverseFP() const
Return true if this scalar has an exact multiplicative inverse or this vector has an exact multiplica...
static LLVM_ABI Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
LLVM_ABI bool containsUndefElement() const
Return true if this is a vector constant that includes any strictly undef (not poison) elements.
static LLVM_ABI Constant * mergeUndefsWith(Constant *C, Constant *Other)
Merges undefs of a Constant with another Constant, along with the undefs already present.
LLVM_ABI ConstantRange toConstantRange() const
Convert constant to an approximate constant range.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
LLVM_ABI bool hasZeroLiveUses() const
Return true if the constant has no live uses.
LLVM_ABI bool isOneValue() const
Returns true if the value is one.
LLVM_ABI bool isManifestConstant() const
Return true if a constant is ConstantData or a ConstantAggregate or ConstantExpr that contain only Co...
LLVM_ABI bool isNegativeZeroValue() const
Return true if the value is what would be returned by getZeroValueForNegation.
LLVM_ABI bool isAllOnesValue() const
Return true if this is the value that would be returned by getAllOnesValue.
Constant(Type *ty, ValueTy vty, AllocInfo AllocInfo)
LLVM_ABI bool isMaxSignedValue() const
Return true if the value is the largest signed value.
LLVM_ABI bool hasOneLiveUse() const
Return true if the constant has exactly one live use.
LLVM_ABI bool needsRelocation() const
This method classifies the entry according to whether or not it may generate a relocation entry (eith...
LLVM_ABI bool isDLLImportDependent() const
Return true if the value is dependent on a dllimport variable.
LLVM_ABI const APInt & getUniqueInteger() const
If C is a constant integer then return its value, otherwise C must be a vector of constant integers,...
LLVM_ABI bool containsConstantExpression() const
Return true if this is a fixed width vector constant that includes any constant expressions.
LLVM_ABI bool isFiniteNonZeroFP() const
Return true if this is a finite and non-zero floating-point scalar constant or a fixed width vector c...
LLVM_ABI void removeDeadConstantUsers() const
If there are any dead constant users dangling off of this constant, remove them.
LLVM_ABI bool isNormalFP() const
Return true if this is a normal (as opposed to denormal, infinity, nan, or zero) floating-point scala...
LLVM_ABI bool needsDynamicRelocation() const
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI bool isNaN() const
Return true if this is a floating-point NaN constant or a vector floating-point constant with all NaN...
LLVM_ABI bool isMinSignedValue() const
Return true if the value is the smallest signed value.
LLVM_ABI bool isConstantUsed() const
Return true if the constant has users other than constant expressions and other dangling things.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isThreadDependent() const
Return true if the value can vary between threads.
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
LLVM_ABI void destroyConstant()
Called if some element of this constant is no longer valid.
LLVM_ABI bool isNotMinSignedValue() const
Return true if the value is not the smallest signed value, or, for vectors, does not contain smallest...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
LLVM_ABI bool isNotOneValue() const
Return true if the value is not the one value, or, for vectors, does not contain one value elements.
LLVM_ABI bool isElementWiseEqual(Value *Y) const
Return true if this constant and a constant 'Y' are element-wise equal.
LLVM_ABI bool containsUndefOrPoisonElement() const
Return true if this is a vector constant that includes any undef or poison elements.
LLVM_ABI bool containsPoisonElement() const
Return true if this is a vector constant that includes any poison elements.
LLVM_ABI void handleOperandChange(Value *, Value *)
This method is a special form of User::replaceUsesOfWith (which does not work on constants) that does...
Wrapper for a function that represents a value that functionally represents the original function.
GlobalValue * getGlobalValue() const
static LLVM_ABI DSOLocalEquivalent * get(GlobalValue *GV)
Return a DSOLocalEquivalent for the specified global value.
A parsed version of the target data layout string in and methods for querying it.
static constexpr ElementCount getFixed(ScalarTy MinVal)
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
Represents flags for the getelementptr instruction/expression.
GetElementPtrConstantExpr - This class is private to Constants.cpp, and is used behind the scenes to ...
std::optional< ConstantRange > getInRange() const
Type * getResultElementType() const
Type * getSourceElementType() const
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static Type * getGEPReturnType(Value *Ptr, ArrayRef< Value * > IdxList)
Returns the pointer type returned by the GEP instruction, which may be a vector of pointers.
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
PointerType * getType() const
Global values are always pointers.
InsertElementConstantExpr - This class is private to Constants.cpp, and is used behind the scenes to ...
static InsertElementInst * Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
const char * getOpcodeName() const
LLVM_ABI void setIsExact(bool b=true)
Set or clear the exact flag on this instruction, which must be an operator which supports this flag.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
A wrapper class for inspecting calls to intrinsic functions.
DenseMap< unsigned, std::unique_ptr< ConstantInt > > IntOneConstants
DenseMap< unsigned, std::unique_ptr< ConstantInt > > IntZeroConstants
DenseMap< APFloat, std::unique_ptr< ConstantFP > > FPConstants
DenseMap< PointerType *, std::unique_ptr< ConstantPointerNull > > CPNConstants
DenseMap< Type *, std::unique_ptr< ConstantAggregateZero > > CAZConstants
ConstantInt * TheFalseVal
DenseMap< Type *, std::unique_ptr< PoisonValue > > PVConstants
DenseMap< APInt, std::unique_ptr< ConstantInt > > IntConstants
std::unique_ptr< ConstantTokenNone > TheNoneToken
VectorConstantsTy VectorConstants
DenseMap< const GlobalValue *, NoCFIValue * > NoCFIValues
DenseMap< const BasicBlock *, BlockAddress * > BlockAddresses
DenseMap< Type *, std::unique_ptr< UndefValue > > UVConstants
StringMap< std::unique_ptr< ConstantDataSequential > > CDSConstants
StructConstantsTy StructConstants
ConstantUniqueMap< ConstantPtrAuth > ConstantPtrAuths
DenseMap< TargetExtType *, std::unique_ptr< ConstantTargetNone > > CTNConstants
ConstantUniqueMap< ConstantExpr > ExprConstants
ArrayConstantsTy ArrayConstants
DenseMap< const GlobalValue *, DSOLocalEquivalent * > DSOLocalEquivalents
This is an important class for using LLVM in a threaded context.
LLVMContextImpl *const pImpl
Wrapper for a value that won't be replaced with a CFI jump table pointer in LowerTypeTestsModule.
static LLVM_ABI NoCFIValue * get(GlobalValue *GV)
Return a NoCFIValue for the specified function.
PointerType * getType() const
NoCFIValue is always a pointer.
GlobalValue * getGlobalValue() const
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
In order to facilitate speculative execution, many instructions do not invoke immediate undefined beh...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
LLVM_ABI PoisonValue * getStructElement(unsigned Elt) const
If this poison has struct type, return a poison with the right element type for the specified element...
LLVM_ABI PoisonValue * getSequentialElement() const
If this poison has array or vector type, return a poison with the right element type.
LLVM_ABI PoisonValue * getElementValue(Constant *C) const
Return an poison of the right value for the specified GEP index if we can, otherwise return null (e....
ShuffleVectorConstantExpr - This class is private to Constants.cpp, and is used behind the scenes to ...
This instruction constructs a fixed permutation of two input vectors.
static LLVM_ABI bool isValidOperands(const Value *V1, const Value *V2, const Value *Mask)
Return true if a shufflevector instruction can be formed with the specified operands.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringMap - This is an unconventional map that is specialized for handling keys that are "strings",...
iterator find(StringRef Key)
StringRef - Represent a constant reference to a string, i.e.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Class to represent struct types.
static LLVM_ABI StructType * get(LLVMContext &Context, ArrayRef< Type * > Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
Class to represent target extensions types, which are generally unintrospectable from target-independ...
@ HasZeroInit
zeroinitializer is valid for this target extension type.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
@ HalfTyID
16-bit floating point type
@ TargetExtTyID
Target extension type.
@ ScalableVectorTyID
Scalable SIMD vector type.
@ FloatTyID
32-bit floating point type
@ IntegerTyID
Arbitrary bit width integers.
@ FixedVectorTyID
Fixed width SIMD vector type.
@ BFloatTyID
16-bit floating point type (7-bit significand)
@ DoubleTyID
64-bit floating point type
@ X86_FP80TyID
80-bit floating point type (X87)
@ PPC_FP128TyID
128-bit floating point type (two 64-bits, PowerPC)
@ FP128TyID
128-bit floating point type (112-bit significand)
static LLVM_ABI Type * getFloatingPointTy(LLVMContext &C, const fltSemantics &S)
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI Type * getDoubleTy(LLVMContext &C)
static LLVM_ABI Type * getFloatTy(LLVMContext &C)
'undef' values are things that do not have specified contents.
LLVM_ABI UndefValue * getElementValue(Constant *C) const
Return an undef of the right value for the specified GEP index if we can, otherwise return null (e....
LLVM_ABI UndefValue * getStructElement(unsigned Elt) const
If this undef has struct type, return a undef with the right element type for the specified element.
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
LLVM_ABI unsigned getNumElements() const
Return the number of elements in the array, vector, or struct.
LLVM_ABI UndefValue * getSequentialElement() const
If this Undef has array or vector type, return a undef with the right element type.
A Use represents the edge between a Value definition and its users.
const Use * getOperandList() const
User(Type *ty, unsigned vty, AllocInfo AllocInfo)
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
iterator_range< value_op_iterator > operand_values()
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
user_iterator_impl< const User > const_user_iterator
user_iterator user_begin()
LLVM_ABI Value(Type *Ty, unsigned scid)
unsigned char SubclassOptionalData
Hold subclass data that can be dropped.
LLVM_ABI const Value * stripPointerCastsAndAliases() const
Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
LLVM_ABI const Value * stripInBoundsConstantOffsets() const
Strip off pointer casts and all-constant inbounds GEPs.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
unsigned getValueID() const
Return an ID for the concrete type of this object.
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
iterator_range< use_iterator > uses()
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
ValueTy
Concrete subclass of this.
Base class of all SIMD vector types.
static VectorType * getInteger(VectorType *VTy)
This static method gets a VectorType with the same number of elements as the input type,...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
constexpr ScalarTy getFixedValue() const
An efficient, type-erasing, non-owning reference to a callable.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
auto m_Undef()
Match an arbitrary undef constant.
initializer< Ty > init(const Ty &Val)
NodeAddr< UseNode * > Use
NodeAddr< NodeBase * > Node
NodeAddr< FuncNode * > Func
This is an optimization pass for GlobalISel generic memory operations.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Constant * ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, Constant *C1, Constant *C2)
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
gep_type_iterator gep_type_end(const User *GEP)
void deleteConstant(Constant *C)
LLVM_ABI Constant * ConstantFoldGetElementPtr(Type *Ty, Constant *C, std::optional< ConstantRange > InRange, ArrayRef< Value * > Idxs)
auto dyn_cast_or_null(const Y &Val)
LLVM_ABI Constant * ConstantFoldInsertElementInstruction(Constant *Val, Constant *Elt, Constant *Idx)
Attempt to constant fold an insertelement instruction with the specified operands and indices.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI Constant * ConstantFoldExtractElementInstruction(Constant *Val, Constant *Idx)
Attempt to constant fold an extractelement instruction with the specified operands and indices.
FunctionAddr VTableAddr uintptr_t uintptr_t Data
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
OutputIt copy(R &&Range, OutputIt Out)
constexpr unsigned BitWidth
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
gep_type_iterator gep_type_begin(const User *GEP)
constexpr bool isIntN(unsigned N, int64_t x)
Checks if an signed integer fits into the given (dynamic) bit width.
LLVM_ABI Constant * ConstantFoldCastInstruction(unsigned opcode, Constant *V, Type *DestTy)
LLVM_ABI Constant * ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2, ArrayRef< int > Mask)
Attempt to constant fold a shufflevector instruction with the specified operands and mask.
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
Implement std::hash so that hash_code can be used in STL containers.
Summary of memprof metadata on allocations.
Information about how a User object was allocated, to be passed into the User constructor.