31#include "llvm/Config/llvm-config.h"
95 cl::desc(
"Print addresses of instructions when dumping"));
99 cl::desc(
"Pretty print debug locations of instructions when dumping"));
103 cl::desc(
"Pretty print perf data (branch weights, etc) when dumping"));
107 cl::desc(
"Preserve use-list order when writing LLVM assembly."));
126 return VAM->getValue();
139 for (
const Value *
Op :
C->operands())
146 unsigned ID = OM.size() + 1;
153 auto OrderConstantValue = [&OM](
const Value *V) {
158 auto OrderConstantFromMetadata = [&](
Metadata *MD) {
160 OrderConstantValue(VAM->getValue());
162 for (
const auto *VAM : AL->getArgs())
163 OrderConstantValue(VAM->getValue());
168 if (
G.hasInitializer())
184 for (
const Use &U :
F.operands())
190 if (
F.isDeclaration())
203 OrderConstantFromMetadata(DVR.getRawLocation());
204 if (DVR.isDbgAssign())
205 OrderConstantFromMetadata(DVR.getRawAddress());
208 for (
const Value *
Op :
I.operands()) {
221static std::vector<unsigned>
224 using Entry = std::pair<const Use *, unsigned>;
228 if (OM.lookup(U.getUser()))
229 List.
push_back(std::make_pair(&U, List.size()));
240 ID = OM.lookup(BA->getBasicBlock());
241 llvm::sort(List, [&](
const Entry &L,
const Entry &R) {
242 const Use *LU = L.first;
243 const Use *RU = R.first;
247 auto LID = OM.lookup(LU->getUser());
248 auto RID = OM.lookup(RU->getUser());
268 return LU->getOperandNo() < RU->getOperandNo();
269 return LU->getOperandNo() > RU->getOperandNo();
277 std::vector<unsigned> Shuffle(List.size());
278 for (
size_t I = 0,
E = List.size();
I !=
E; ++
I)
279 Shuffle[
I] = List[
I].second;
286 for (
const auto &Pair : OM) {
287 const Value *V = Pair.first;
288 if (V->use_empty() || std::next(V->use_begin()) == V->use_end())
291 std::vector<unsigned> Shuffle =
298 F =
I->getFunction();
303 ULOM[
F][V] = std::move(Shuffle);
310 return MA->getParent() ? MA->getParent()->getParent() :
nullptr;
313 return BB->getParent() ? BB->getParent()->getParent() :
nullptr;
316 const Function *M =
I->getParent() ?
I->getParent()->getParent() :
nullptr;
317 return M ? M->getParent() :
nullptr;
321 return GV->getParent();
346 default: Out <<
"cc" << cc;
break;
369 Out <<
"aarch64_sve_vector_pcs";
372 Out <<
"aarch64_sme_preservemost_from_x0";
375 Out <<
"aarch64_sme_preservemost_from_x1";
378 Out <<
"aarch64_sme_preservemost_from_x2";
406 Out <<
"amdgpu_cs_chain";
409 Out <<
"amdgpu_cs_chain_preserve";
414 Out <<
"amdgpu_gfx_whole_wave";
418 Out <<
"riscv_vector_cc";
420#define CC_VLS_CASE(ABI_VLEN) \
421 case CallingConv::RISCV_VLSCall_##ABI_VLEN: \
422 Out << "riscv_vls_cc(" #ABI_VLEN ")"; \
438 Out <<
"cheriot_compartmentcallcc";
441 Out <<
"cheriot_compartmentcalleecc";
444 Out <<
"cheriot_librarycallcc";
458 assert(!Name.empty() &&
"Cannot get empty name!");
461 bool NeedsQuotes = isdigit(
static_cast<unsigned char>(Name[0]));
463 for (
unsigned char C : Name) {
468 if (!isalnum(
C) &&
C !=
'-' &&
C !=
'.' &&
C !=
'_') {
522 Out << Mask.size() <<
" x i32> ";
523 if (
all_of(Mask, [](
int Elt) {
return Elt == 0; })) {
524 Out <<
"zeroinitializer";
530 for (
int Elt : Mask) {
545 TypePrinting(
const Module *M =
nullptr) : DeferredM(
M) {}
547 TypePrinting(
const TypePrinting &) =
delete;
548 TypePrinting &operator=(
const TypePrinting &) =
delete;
551 TypeFinder &getNamedTypes();
554 std::vector<StructType *> &getNumberedTypes();
560 void printStructBody(StructType *Ty, raw_ostream &OS);
563 void incorporateTypes();
568 TypeFinder NamedTypes;
571 DenseMap<StructType *, unsigned> Type2Number;
573 std::vector<StructType *> NumberedTypes;
583std::vector<StructType *> &TypePrinting::getNumberedTypes() {
589 if (NumberedTypes.size() == Type2Number.size())
590 return NumberedTypes;
592 NumberedTypes.resize(Type2Number.size());
593 for (
const auto &
P : Type2Number) {
594 assert(
P.second < NumberedTypes.size() &&
"Didn't get a dense numbering?");
595 assert(!NumberedTypes[
P.second] &&
"Didn't get a unique numbering?");
596 NumberedTypes[
P.second] =
P.first;
598 return NumberedTypes;
601bool TypePrinting::empty() {
603 return NamedTypes.
empty() && Type2Number.empty();
606void TypePrinting::incorporateTypes() {
610 NamedTypes.
run(*DeferredM,
false);
615 unsigned NextNumber = 0;
617 std::vector<StructType *>::iterator NextToUse = NamedTypes.
begin();
618 for (StructType *STy : NamedTypes) {
620 if (STy->isLiteral())
623 if (STy->getName().empty())
624 Type2Number[STy] = NextNumber++;
629 NamedTypes.erase(NextToUse, NamedTypes.end());
634void TypePrinting::print(
Type *Ty, raw_ostream &OS) {
636 case Type::VoidTyID: OS <<
"void";
return;
637 case Type::HalfTyID: OS <<
"half";
return;
638 case Type::BFloatTyID: OS <<
"bfloat";
return;
639 case Type::FloatTyID: OS <<
"float";
return;
640 case Type::DoubleTyID: OS <<
"double";
return;
641 case Type::X86_FP80TyID: OS <<
"x86_fp80";
return;
642 case Type::FP128TyID: OS <<
"fp128";
return;
643 case Type::PPC_FP128TyID: OS <<
"ppc_fp128";
return;
644 case Type::LabelTyID: OS <<
"label";
return;
645 case Type::MetadataTyID:
648 case Type::X86_AMXTyID: OS <<
"x86_amx";
return;
649 case Type::TokenTyID: OS <<
"token";
return;
650 case Type::IntegerTyID:
651 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
654 case Type::FunctionTyID: {
656 print(FTy->getReturnType(), OS);
659 for (
Type *Ty : FTy->params()) {
668 case Type::StructTyID: {
672 return printStructBody(STy, OS);
678 const auto I = Type2Number.find(STy);
679 if (
I != Type2Number.end())
680 OS <<
'%' <<
I->second;
682 OS <<
"%\"type " << STy <<
'\"';
685 case Type::PointerTyID: {
692 case Type::ArrayTyID: {
694 OS <<
'[' << ATy->getNumElements() <<
" x ";
695 print(ATy->getElementType(), OS);
699 case Type::FixedVectorTyID:
700 case Type::ScalableVectorTyID: {
702 ElementCount
EC = PTy->getElementCount();
706 OS <<
EC.getKnownMinValue() <<
" x ";
707 print(PTy->getElementType(), OS);
711 case Type::TypedPointerTyID: {
717 case Type::TargetExtTyID:
724 Inner->print(OS,
false,
true);
727 OS <<
", " << IntParam;
734void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
778 const Function* TheFunction =
nullptr;
779 bool FunctionProcessed =
false;
780 bool ShouldInitializeAllMetadata;
785 ProcessFunctionHookFn;
800 unsigned mdnNext = 0;
808 unsigned ModulePathNext = 0;
812 unsigned GUIDNext = 0;
816 unsigned TypeIdNext = 0;
821 unsigned TypeIdCompatibleVtableNext = 0;
830 bool ShouldInitializeAllMetadata =
false);
838 bool ShouldInitializeAllMetadata =
false);
855 void createMetadataSlot(
const MDNode *
N)
override;
859 int getLocalSlot(
const Value *V);
861 int getMetadataSlot(
const MDNode *
N)
override;
866 int getTypeIdCompatibleVtableSlot(
StringRef Id);
872 FunctionProcessed =
false;
880 void purgeFunction();
887 unsigned mdn_size()
const {
return mdnMap.size(); }
895 unsigned as_size()
const {
return asMap.size(); }
911 void CreateMetadataSlot(
const MDNode *
N);
914 void CreateFunctionSlot(
const Value *V);
919 inline void CreateModulePathSlot(
StringRef Path);
922 void CreateTypeIdCompatibleVtableSlot(
StringRef Id);
926 void processModule();
934 void processGlobalObjectMetadata(
const GlobalObject &GO);
937 void processFunctionMetadata(
const Function &
F);
943 void processDbgRecordMetadata(
const DbgRecord &DVR);
950 : M(M), F(F), Machine(&Machine) {}
953 bool ShouldInitializeAllMetadata)
954 : ShouldCreateStorage(M),
955 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
960 if (!ShouldCreateStorage)
963 ShouldCreateStorage =
false;
965 std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
966 Machine = MachineStorage.get();
967 if (ProcessModuleHookFn)
968 Machine->setProcessHook(ProcessModuleHookFn);
969 if (ProcessFunctionHookFn)
970 Machine->setProcessHook(ProcessFunctionHookFn);
983 Machine->purgeFunction();
984 Machine->incorporateFunction(&F);
989 assert(F &&
"No function incorporated");
990 return Machine->getLocalSlot(V);
996 ProcessModuleHookFn = Fn;
1002 ProcessFunctionHookFn = Fn;
1032#define ST_DEBUG(X) dbgs() << X
1040 : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
1045 : TheModule(
F ?
F->
getParent() : nullptr), TheFunction(
F),
1046 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
1049 : TheModule(nullptr), ShouldInitializeAllMetadata(
false), TheIndex(Index) {}
1054 TheModule =
nullptr;
1057 if (TheFunction && !FunctionProcessed)
1064 int NumSlots = processIndex();
1071void SlotTracker::processModule() {
1072 ST_DEBUG(
"begin processModule!\n");
1077 CreateModuleSlot(&Var);
1078 processGlobalObjectMetadata(Var);
1079 auto Attrs = Var.getAttributes();
1080 if (Attrs.hasAttributes())
1081 CreateAttributeSetSlot(Attrs);
1086 CreateModuleSlot(&
A);
1089 for (
const GlobalIFunc &
I : TheModule->ifuncs()) {
1091 CreateModuleSlot(&
I);
1092 processGlobalObjectMetadata(
I);
1096 for (
const NamedMDNode &NMD : TheModule->named_metadata()) {
1097 for (
const MDNode *
N : NMD.operands())
1098 CreateMetadataSlot(
N);
1101 for (
const Function &
F : *TheModule) {
1104 CreateModuleSlot(&
F);
1106 if (ShouldInitializeAllMetadata)
1107 processFunctionMetadata(
F);
1111 AttributeSet FnAttrs =
F.getAttributes().getFnAttrs();
1113 CreateAttributeSetSlot(FnAttrs);
1116 if (ProcessModuleHookFn)
1117 ProcessModuleHookFn(
this, TheModule, ShouldInitializeAllMetadata);
1123void SlotTracker::processFunction() {
1124 ST_DEBUG(
"begin processFunction!\n");
1128 if (!ShouldInitializeAllMetadata)
1129 processFunctionMetadata(*TheFunction);
1133 AE = TheFunction->arg_end(); AI != AE; ++AI)
1135 CreateFunctionSlot(&*AI);
1137 ST_DEBUG(
"Inserting Instructions:\n");
1140 for (
auto &BB : *TheFunction) {
1142 CreateFunctionSlot(&BB);
1144 for (
auto &
I : BB) {
1145 if (!
I.getType()->isVoidTy() && !
I.hasName())
1146 CreateFunctionSlot(&
I);
1153 if (
Attrs.hasAttributes())
1154 CreateAttributeSetSlot(Attrs);
1159 if (ProcessFunctionHookFn)
1160 ProcessFunctionHookFn(
this, TheFunction, ShouldInitializeAllMetadata);
1162 FunctionProcessed =
true;
1164 ST_DEBUG(
"end processFunction!\n");
1168int SlotTracker::processIndex() {
1175 std::vector<StringRef> ModulePaths;
1176 for (
auto &[ModPath,
_] : TheIndex->modulePaths())
1177 ModulePaths.push_back(ModPath);
1179 for (
auto &ModPath : ModulePaths)
1180 CreateModulePathSlot(ModPath);
1183 GUIDNext = ModulePathNext;
1185 for (
auto &GlobalList : *TheIndex)
1186 CreateGUIDSlot(GlobalList.first);
1189 TypeIdCompatibleVtableNext = GUIDNext;
1190 for (
auto &TId : TheIndex->typeIdCompatibleVtableMap())
1191 CreateTypeIdCompatibleVtableSlot(TId.first);
1194 TypeIdNext = TypeIdCompatibleVtableNext;
1195 for (
const auto &TID : TheIndex->typeIds())
1196 CreateTypeIdSlot(TID.second.first);
1202void SlotTracker::processGlobalObjectMetadata(
const GlobalObject &GO) {
1205 for (
auto &MD : MDs)
1206 CreateMetadataSlot(MD.second);
1209void SlotTracker::processFunctionMetadata(
const Function &
F) {
1210 processGlobalObjectMetadata(
F);
1211 for (
auto &BB :
F) {
1212 for (
auto &
I : BB) {
1213 for (
const DbgRecord &DR :
I.getDbgRecordRange())
1214 processDbgRecordMetadata(DR);
1215 processInstructionMetadata(
I);
1220void SlotTracker::processDbgRecordMetadata(
const DbgRecord &DR) {
1231 CreateMetadataSlot(
Empty);
1232 if (DVR->getRawVariable())
1233 CreateMetadataSlot(DVR->getRawVariable());
1234 if (DVR->isDbgAssign()) {
1235 if (
auto *AssignID = DVR->getRawAssignID())
1238 CreateMetadataSlot(
Empty);
1241 CreateMetadataSlot(DLR->getRawLabel());
1249void SlotTracker::processInstructionMetadata(
const Instruction &
I) {
1252 if (Function *
F = CI->getCalledFunction())
1253 if (
F->isIntrinsic())
1254 for (
auto &
Op :
I.operands())
1257 CreateMetadataSlot(
N);
1261 I.getAllMetadata(MDs);
1262 for (
auto &MD : MDs)
1263 CreateMetadataSlot(MD.second);
1270 ST_DEBUG(
"begin purgeFunction!\n");
1272 TheFunction =
nullptr;
1273 FunctionProcessed =
false;
1284 return MI == mMap.end() ? -1 : (int)
MI->second;
1290 ProcessModuleHookFn = Fn;
1296 ProcessFunctionHookFn = Fn;
1309 return MI == mdnMap.end() ? -1 : (int)
MI->second;
1320 return FI == fMap.end() ? -1 : (int)FI->second;
1329 return AI == asMap.end() ? -1 : (int)AI->second;
1337 auto I = ModulePathMap.find(Path);
1338 return I == ModulePathMap.end() ? -1 : (int)
I->second;
1347 return I == GUIDMap.end() ? -1 : (int)
I->second;
1355 auto I = TypeIdMap.find(Id);
1356 return I == TypeIdMap.end() ? -1 : (int)
I->second;
1364 auto I = TypeIdCompatibleVtableMap.find(Id);
1365 return I == TypeIdCompatibleVtableMap.end() ? -1 : (int)
I->second;
1369void SlotTracker::CreateModuleSlot(
const GlobalValue *V) {
1370 assert(V &&
"Can't insert a null Value into SlotTracker!");
1371 assert(!V->getType()->isVoidTy() &&
"Doesn't need a slot!");
1372 assert(!V->hasName() &&
"Doesn't need a slot!");
1374 unsigned DestSlot = mNext++;
1377 ST_DEBUG(
" Inserting value [" << V->getType() <<
"] = " << V <<
" slot=" <<
1387void SlotTracker::CreateFunctionSlot(
const Value *V) {
1388 assert(!V->getType()->isVoidTy() && !V->hasName() &&
"Doesn't need a slot!");
1390 unsigned DestSlot = fNext++;
1394 ST_DEBUG(
" Inserting value [" << V->getType() <<
"] = " << V <<
" slot=" <<
1395 DestSlot <<
" [o]\n");
1399void SlotTracker::CreateMetadataSlot(
const MDNode *
N) {
1400 assert(
N &&
"Can't insert a null Value into SlotTracker!");
1406 unsigned DestSlot = mdnNext;
1407 if (!mdnMap.insert(std::make_pair(
N, DestSlot)).second)
1412 for (
unsigned i = 0, e =
N->getNumOperands(); i != e; ++i)
1414 CreateMetadataSlot(
Op);
1417void SlotTracker::CreateAttributeSetSlot(
AttributeSet AS) {
1420 if (asMap.try_emplace(AS, asNext).second)
1425void SlotTracker::CreateModulePathSlot(
StringRef Path) {
1426 ModulePathMap[
Path] = ModulePathNext++;
1431 GUIDMap[
GUID] = GUIDNext++;
1435void SlotTracker::CreateTypeIdSlot(
StringRef Id) {
1436 TypeIdMap[
Id] = TypeIdNext++;
1440void SlotTracker::CreateTypeIdCompatibleVtableSlot(
StringRef Id) {
1441 TypeIdCompatibleVtableMap[
Id] = TypeIdCompatibleVtableNext++;
1446struct AsmWriterContext {
1447 TypePrinting *TypePrinter =
nullptr;
1448 SlotTracker *
Machine =
nullptr;
1451 AsmWriterContext(TypePrinting *TP, SlotTracker *ST,
const Module *M =
nullptr)
1454 static AsmWriterContext &getEmpty() {
1455 static AsmWriterContext EmptyCtx(
nullptr,
nullptr);
1461 virtual void onWriteMetadataAsOperand(
const Metadata *) {}
1463 virtual ~AsmWriterContext() =
default;
1472 AsmWriterContext &WriterCtx,
1473 bool PrintType =
false);
1476 AsmWriterContext &WriterCtx,
1477 bool FromValue =
false);
1481 Out << FPO->getFastMathFlags();
1484 if (OBO->hasNoUnsignedWrap())
1486 if (OBO->hasNoSignedWrap())
1492 if (PDI->isDisjoint())
1495 if (
GEP->isInBounds())
1497 else if (
GEP->hasNoUnsignedSignedWrap())
1499 if (
GEP->hasNoUnsignedWrap())
1502 Out <<
" inrange(" <<
InRange->getLower() <<
", " <<
InRange->getUpper()
1506 if (NNI->hasNonNeg())
1509 if (TI->hasNoUnsignedWrap())
1511 if (TI->hasNoSignedWrap())
1514 if (ICmp->hasSameSign())
1530 bool isNaN = APF.
isNaN();
1532 if (!isInf && !isNaN) {
1541 ((StrVal[0] ==
'-' || StrVal[0] ==
'+') &&
isDigit(StrVal[1]))) &&
1542 "[-+]?[0-9] regex does not match!");
1554 static_assert(
sizeof(double) ==
sizeof(
uint64_t),
1555 "assuming that double is 64 bits!");
1613 AsmWriterContext &WriterCtx) {
1615 Type *Ty = CI->getType();
1617 if (Ty->isVectorTy()) {
1619 WriterCtx.TypePrinter->print(Ty->getScalarType(), Out);
1623 if (Ty->getScalarType()->isIntegerTy(1))
1624 Out << (CI->getZExtValue() ?
"true" :
"false");
1626 Out << CI->getValue();
1628 if (Ty->isVectorTy())
1635 Type *Ty = CFP->getType();
1637 if (Ty->isVectorTy()) {
1639 WriterCtx.TypePrinter->print(Ty->getScalarType(), Out);
1645 if (Ty->isVectorTy())
1652 Out <<
"zeroinitializer";
1657 Out <<
"blockaddress(";
1666 Out <<
"dso_local_equivalent ";
1681 unsigned NumOpsToWrite = 2;
1682 if (!CPA->getOperand(2)->isNullValue())
1684 if (!CPA->getOperand(3)->isNullValue())
1688 for (
unsigned i = 0, e = NumOpsToWrite; i != e; ++i) {
1700 for (
const Value *
Op : CA->operands()) {
1711 if (CA->isString()) {
1720 for (
uint64_t i = 0, e = CA->getNumElements(); i != e; ++i) {
1730 if (CS->getType()->isPacked())
1733 if (CS->getNumOperands() != 0) {
1736 for (
const Value *
Op : CS->operands()) {
1743 if (CS->getType()->isPacked())
1767 for (
unsigned i = 0, e = CVVTy->getNumElements(); i != e; ++i) {
1802 if (CE->getOpcode() == Instruction::ShuffleVector) {
1803 if (
auto *SplatVal = CE->getSplatValue()) {
1813 Out << CE->getOpcodeName();
1818 WriterCtx.TypePrinter->print(
GEP->getSourceElementType(), Out);
1823 for (
const Value *
Op : CE->operands()) {
1830 WriterCtx.TypePrinter->print(CE->getType(), Out);
1833 if (CE->getOpcode() == Instruction::ShuffleVector)
1840 Out <<
"<placeholder or erroneous Constant>";
1844 AsmWriterContext &WriterCtx) {
1852 Value *V = MDV->getValue();
1856 WriterCtx.onWriteMetadataAsOperand(MD);
1865struct MDFieldPrinter {
1868 AsmWriterContext &WriterCtx;
1870 explicit MDFieldPrinter(raw_ostream &Out)
1871 : Out(Out), WriterCtx(AsmWriterContext::getEmpty()) {}
1872 MDFieldPrinter(raw_ostream &Out, AsmWriterContext &Ctx)
1873 : Out(Out), WriterCtx(Ctx) {}
1875 void printTag(
const DINode *
N);
1876 void printMacinfoType(
const DIMacroNode *
N);
1877 void printChecksum(
const DIFile::ChecksumInfo<StringRef> &
N);
1878 void printString(StringRef Name, StringRef
Value,
1879 bool ShouldSkipEmpty =
true);
1880 void printMetadata(StringRef Name,
const Metadata *MD,
1881 bool ShouldSkipNull =
true);
1882 void printMetadataOrInt(StringRef Name,
const Metadata *MD,
bool IsUnsigned,
1883 bool ShouldSkipZero =
true);
1884 template <
class IntTy>
1885 void printInt(StringRef Name, IntTy
Int,
bool ShouldSkipZero =
true);
1886 void printAPInt(StringRef Name,
const APInt &
Int,
bool IsUnsigned,
1887 bool ShouldSkipZero);
1888 void printBool(StringRef Name,
bool Value,
1889 std::optional<bool>
Default = std::nullopt);
1892 template <
class IntTy,
class Stringifier>
1893 void printDwarfEnum(StringRef Name, IntTy
Value, Stringifier
toString,
1894 bool ShouldSkipZero =
true);
1896 void printNameTableKind(StringRef Name,
1903void MDFieldPrinter::printTag(
const DINode *
N) {
1904 Out <<
FS <<
"tag: ";
1912void MDFieldPrinter::printMacinfoType(
const DIMacroNode *
N) {
1913 Out <<
FS <<
"type: ";
1918 Out <<
N->getMacinfoType();
1921void MDFieldPrinter::printChecksum(
1924 printString(
"checksum", Checksum.
Value,
false);
1928 bool ShouldSkipEmpty) {
1929 if (ShouldSkipEmpty &&
Value.empty())
1932 Out <<
FS <<
Name <<
": \"";
1938 AsmWriterContext &WriterCtx) {
1944 WriterCtx.onWriteMetadataAsOperand(MD);
1948 bool ShouldSkipNull) {
1949 if (ShouldSkipNull && !MD)
1952 Out <<
FS <<
Name <<
": ";
1957 bool IsUnsigned,
bool ShouldSkipZero) {
1964 printInt(Name, CV->getZExtValue(), ShouldSkipZero);
1966 printInt(Name, CV->getSExtValue(), ShouldSkipZero);
1968 printMetadata(Name, MD);
1971template <
class IntTy>
1972void MDFieldPrinter::printInt(
StringRef Name, IntTy
Int,
bool ShouldSkipZero) {
1973 if (ShouldSkipZero && !
Int)
1980 bool IsUnsigned,
bool ShouldSkipZero) {
1981 if (ShouldSkipZero &&
Int.isZero())
1984 Out <<
FS <<
Name <<
": ";
1985 Int.print(Out, !IsUnsigned);
1989 std::optional<bool>
Default) {
1992 Out <<
FS <<
Name <<
": " << (
Value ?
"true" :
"false");
1999 Out <<
FS <<
Name <<
": ";
2005 for (
auto F : SplitFlags) {
2007 assert(!StringF.empty() &&
"Expected valid flag");
2008 Out << FlagsFS << StringF;
2010 if (Extra || SplitFlags.empty())
2011 Out << FlagsFS << Extra;
2014void MDFieldPrinter::printDISPFlags(
StringRef Name,
2018 Out <<
FS <<
Name <<
": ";
2029 for (
auto F : SplitFlags) {
2031 assert(!StringF.empty() &&
"Expected valid flag");
2032 Out << FlagsFS << StringF;
2034 if (Extra || SplitFlags.empty())
2035 Out << FlagsFS << Extra;
2038void MDFieldPrinter::printEmissionKind(
StringRef Name,
2043void MDFieldPrinter::printNameTableKind(
StringRef Name,
2050void MDFieldPrinter::printFixedPointKind(
StringRef Name,
2055template <
class IntTy,
class Stringifier>
2057 Stringifier
toString,
bool ShouldSkipZero) {
2058 if (ShouldSkipZero && !
Value)
2061 Out <<
FS <<
Name <<
": ";
2070 AsmWriterContext &WriterCtx) {
2071 Out <<
"!GenericDINode(";
2072 MDFieldPrinter
Printer(Out, WriterCtx);
2074 Printer.printString(
"header",
N->getHeader());
2075 if (
N->getNumDwarfOperands()) {
2076 Out <<
Printer.FS <<
"operands: {";
2078 for (
auto &
I :
N->dwarf_operands()) {
2088 AsmWriterContext &WriterCtx) {
2089 Out <<
"!DILocation(";
2090 MDFieldPrinter
Printer(Out, WriterCtx);
2092 Printer.printInt(
"line",
DL->getLine(),
false);
2093 Printer.printInt(
"column",
DL->getColumn());
2094 Printer.printMetadata(
"scope",
DL->getRawScope(),
false);
2095 Printer.printMetadata(
"inlinedAt",
DL->getRawInlinedAt());
2096 Printer.printBool(
"isImplicitCode",
DL->isImplicitCode(),
2098 Printer.printInt(
"atomGroup",
DL->getAtomGroup());
2099 Printer.printInt<
unsigned>(
"atomRank",
DL->getAtomRank());
2104 AsmWriterContext &WriterCtx) {
2105 Out <<
"!DIAssignID()";
2106 MDFieldPrinter
Printer(Out, WriterCtx);
2110 AsmWriterContext &WriterCtx) {
2111 Out <<
"!DISubrange(";
2112 MDFieldPrinter
Printer(Out, WriterCtx);
2114 Printer.printMetadataOrInt(
"count",
N->getRawCountNode(),
2120 Printer.printMetadataOrInt(
"lowerBound",
N->getRawLowerBound(),
2123 Printer.printMetadataOrInt(
"upperBound",
N->getRawUpperBound(),
2126 Printer.printMetadataOrInt(
"stride",
N->getRawStride(),
2134 AsmWriterContext &WriterCtx) {
2135 Out <<
"!DIGenericSubrange(";
2136 MDFieldPrinter
Printer(Out, WriterCtx);
2138 auto GetConstant = [&](
Metadata *Bound) -> std::optional<int64_t> {
2141 return std::nullopt;
2142 if (BE->isConstant() &&
2144 *BE->isConstant()) {
2145 return static_cast<int64_t
>(BE->getElement(1));
2147 return std::nullopt;
2150 auto *
Count =
N->getRawCountNode();
2151 if (
auto ConstantCount = GetConstant(
Count))
2152 Printer.printInt(
"count", *ConstantCount,
2157 auto *LBound =
N->getRawLowerBound();
2158 if (
auto ConstantLBound = GetConstant(LBound))
2159 Printer.printInt(
"lowerBound", *ConstantLBound,
2162 Printer.printMetadata(
"lowerBound", LBound,
true);
2164 auto *UBound =
N->getRawUpperBound();
2165 if (
auto ConstantUBound = GetConstant(UBound))
2166 Printer.printInt(
"upperBound", *ConstantUBound,
2169 Printer.printMetadata(
"upperBound", UBound,
true);
2171 auto *Stride =
N->getRawStride();
2172 if (
auto ConstantStride = GetConstant(Stride))
2173 Printer.printInt(
"stride", *ConstantStride,
2176 Printer.printMetadata(
"stride", Stride,
true);
2182 AsmWriterContext &) {
2183 Out <<
"!DIEnumerator(";
2185 Printer.printString(
"name",
N->getName(),
false);
2186 Printer.printAPInt(
"value",
N->getValue(),
N->isUnsigned(),
2188 if (
N->isUnsigned())
2189 Printer.printBool(
"isUnsigned",
true);
2194 AsmWriterContext &WriterCtx) {
2195 Out <<
"!DIBasicType(";
2196 MDFieldPrinter
Printer(Out, WriterCtx);
2197 if (
N->getTag() != dwarf::DW_TAG_base_type)
2199 Printer.printString(
"name",
N->getName());
2200 Printer.printMetadataOrInt(
"size",
N->getRawSizeInBits(),
true);
2201 Printer.printInt(
"align",
N->getAlignInBits());
2202 Printer.printInt(
"dataSize",
N->getDataSizeInBits());
2203 Printer.printDwarfEnum(
"encoding",
N->getEncoding(),
2205 Printer.printInt(
"num_extra_inhabitants",
N->getNumExtraInhabitants());
2206 Printer.printDIFlags(
"flags",
N->getFlags());
2211 AsmWriterContext &WriterCtx) {
2212 Out <<
"!DIFixedPointType(";
2213 MDFieldPrinter
Printer(Out, WriterCtx);
2214 if (
N->getTag() != dwarf::DW_TAG_base_type)
2216 Printer.printString(
"name",
N->getName());
2217 Printer.printMetadataOrInt(
"size",
N->getRawSizeInBits(),
true);
2218 Printer.printInt(
"align",
N->getAlignInBits());
2219 Printer.printDwarfEnum(
"encoding",
N->getEncoding(),
2221 Printer.printDIFlags(
"flags",
N->getFlags());
2222 Printer.printFixedPointKind(
"kind",
N->getKind());
2223 if (
N->isRational()) {
2224 bool IsUnsigned = !
N->isSigned();
2225 Printer.printAPInt(
"numerator",
N->getNumerator(), IsUnsigned,
false);
2226 Printer.printAPInt(
"denominator",
N->getDenominator(), IsUnsigned,
false);
2228 Printer.printInt(
"factor",
N->getFactor());
2234 AsmWriterContext &WriterCtx) {
2235 Out <<
"!DIStringType(";
2236 MDFieldPrinter
Printer(Out, WriterCtx);
2237 if (
N->getTag() != dwarf::DW_TAG_string_type)
2239 Printer.printString(
"name",
N->getName());
2240 Printer.printMetadata(
"stringLength",
N->getRawStringLength());
2241 Printer.printMetadata(
"stringLengthExpression",
N->getRawStringLengthExp());
2242 Printer.printMetadata(
"stringLocationExpression",
2243 N->getRawStringLocationExp());
2244 Printer.printMetadataOrInt(
"size",
N->getRawSizeInBits(),
true);
2245 Printer.printInt(
"align",
N->getAlignInBits());
2246 Printer.printDwarfEnum(
"encoding",
N->getEncoding(),
2252 AsmWriterContext &WriterCtx) {
2253 Out <<
"!DIDerivedType(";
2254 MDFieldPrinter
Printer(Out, WriterCtx);
2256 Printer.printString(
"name",
N->getName());
2257 Printer.printMetadata(
"scope",
N->getRawScope());
2258 Printer.printMetadata(
"file",
N->getRawFile());
2259 Printer.printInt(
"line",
N->getLine());
2260 Printer.printMetadata(
"baseType",
N->getRawBaseType(),
2262 Printer.printMetadataOrInt(
"size",
N->getRawSizeInBits(),
true);
2263 Printer.printInt(
"align",
N->getAlignInBits());
2264 Printer.printMetadataOrInt(
"offset",
N->getRawOffsetInBits(),
true);
2265 Printer.printDIFlags(
"flags",
N->getFlags());
2266 Printer.printMetadata(
"extraData",
N->getRawExtraData());
2267 if (
const auto &DWARFAddressSpace =
N->getDWARFAddressSpace())
2268 Printer.printInt(
"dwarfAddressSpace", *DWARFAddressSpace,
2270 Printer.printMetadata(
"annotations",
N->getRawAnnotations());
2271 if (
auto PtrAuthData =
N->getPtrAuthData()) {
2272 Printer.printInt(
"ptrAuthKey", PtrAuthData->key());
2273 Printer.printBool(
"ptrAuthIsAddressDiscriminated",
2274 PtrAuthData->isAddressDiscriminated());
2275 Printer.printInt(
"ptrAuthExtraDiscriminator",
2276 PtrAuthData->extraDiscriminator());
2277 Printer.printBool(
"ptrAuthIsaPointer", PtrAuthData->isaPointer());
2278 Printer.printBool(
"ptrAuthAuthenticatesNullValues",
2279 PtrAuthData->authenticatesNullValues());
2285 AsmWriterContext &WriterCtx) {
2286 Out <<
"!DISubrangeType(";
2287 MDFieldPrinter
Printer(Out, WriterCtx);
2288 Printer.printString(
"name",
N->getName());
2289 Printer.printMetadata(
"scope",
N->getRawScope());
2290 Printer.printMetadata(
"file",
N->getRawFile());
2291 Printer.printInt(
"line",
N->getLine());
2292 Printer.printMetadataOrInt(
"size",
N->getRawSizeInBits(),
true);
2293 Printer.printInt(
"align",
N->getAlignInBits());
2294 Printer.printDIFlags(
"flags",
N->getFlags());
2295 Printer.printMetadata(
"baseType",
N->getRawBaseType(),
2297 Printer.printMetadata(
"lowerBound",
N->getRawLowerBound());
2298 Printer.printMetadata(
"upperBound",
N->getRawUpperBound());
2299 Printer.printMetadata(
"stride",
N->getRawStride());
2300 Printer.printMetadata(
"bias",
N->getRawBias());
2305 AsmWriterContext &WriterCtx) {
2306 Out <<
"!DICompositeType(";
2307 MDFieldPrinter
Printer(Out, WriterCtx);
2309 Printer.printString(
"name",
N->getName());
2310 Printer.printMetadata(
"scope",
N->getRawScope());
2311 Printer.printMetadata(
"file",
N->getRawFile());
2312 Printer.printInt(
"line",
N->getLine());
2313 Printer.printMetadata(
"baseType",
N->getRawBaseType());
2314 Printer.printMetadataOrInt(
"size",
N->getRawSizeInBits(),
true);
2315 Printer.printInt(
"align",
N->getAlignInBits());
2316 Printer.printMetadataOrInt(
"offset",
N->getRawOffsetInBits(),
true);
2317 Printer.printInt(
"num_extra_inhabitants",
N->getNumExtraInhabitants());
2318 Printer.printDIFlags(
"flags",
N->getFlags());
2319 Printer.printMetadata(
"elements",
N->getRawElements());
2320 Printer.printDwarfEnum(
"runtimeLang",
N->getRuntimeLang(),
2322 Printer.printMetadata(
"vtableHolder",
N->getRawVTableHolder());
2323 Printer.printMetadata(
"templateParams",
N->getRawTemplateParams());
2324 Printer.printString(
"identifier",
N->getIdentifier());
2325 Printer.printMetadata(
"discriminator",
N->getRawDiscriminator());
2326 Printer.printMetadata(
"dataLocation",
N->getRawDataLocation());
2327 Printer.printMetadata(
"associated",
N->getRawAssociated());
2328 Printer.printMetadata(
"allocated",
N->getRawAllocated());
2329 if (
auto *RankConst =
N->getRankConst())
2330 Printer.printInt(
"rank", RankConst->getSExtValue(),
2333 Printer.printMetadata(
"rank",
N->getRawRank(),
true);
2334 Printer.printMetadata(
"annotations",
N->getRawAnnotations());
2335 if (
auto *Specification =
N->getRawSpecification())
2336 Printer.printMetadata(
"specification", Specification);
2338 if (
auto EnumKind =
N->getEnumKind())
2342 Printer.printMetadata(
"bitStride",
N->getRawBitStride());
2347 AsmWriterContext &WriterCtx) {
2348 Out <<
"!DISubroutineType(";
2349 MDFieldPrinter
Printer(Out, WriterCtx);
2350 Printer.printDIFlags(
"flags",
N->getFlags());
2352 Printer.printMetadata(
"types",
N->getRawTypeArray(),
2360 Printer.printString(
"filename",
N->getFilename(),
2362 Printer.printString(
"directory",
N->getDirectory(),
2365 if (
N->getChecksum())
2366 Printer.printChecksum(*
N->getChecksum());
2368 Printer.printString(
"source", *
N->getSource(),
2374 AsmWriterContext &WriterCtx) {
2375 Out <<
"!DICompileUnit(";
2376 MDFieldPrinter
Printer(Out, WriterCtx);
2382 "sourceLanguageName",
2394 Printer.printMetadata(
"file",
N->getRawFile(),
false);
2395 Printer.printString(
"producer",
N->getProducer());
2396 Printer.printBool(
"isOptimized",
N->isOptimized());
2397 Printer.printString(
"flags",
N->getFlags());
2398 Printer.printInt(
"runtimeVersion",
N->getRuntimeVersion(),
2400 Printer.printString(
"splitDebugFilename",
N->getSplitDebugFilename());
2401 Printer.printEmissionKind(
"emissionKind",
N->getEmissionKind());
2402 Printer.printMetadata(
"enums",
N->getRawEnumTypes());
2403 Printer.printMetadata(
"retainedTypes",
N->getRawRetainedTypes());
2404 Printer.printMetadata(
"globals",
N->getRawGlobalVariables());
2405 Printer.printMetadata(
"imports",
N->getRawImportedEntities());
2406 Printer.printMetadata(
"macros",
N->getRawMacros());
2407 Printer.printInt(
"dwoId",
N->getDWOId());
2408 Printer.printBool(
"splitDebugInlining",
N->getSplitDebugInlining(),
true);
2409 Printer.printBool(
"debugInfoForProfiling",
N->getDebugInfoForProfiling(),
2411 Printer.printNameTableKind(
"nameTableKind",
N->getNameTableKind());
2412 Printer.printBool(
"rangesBaseAddress",
N->getRangesBaseAddress(),
false);
2413 Printer.printString(
"sysroot",
N->getSysRoot());
2414 Printer.printString(
"sdk",
N->getSDK());
2419 AsmWriterContext &WriterCtx) {
2420 Out <<
"!DISubprogram(";
2421 MDFieldPrinter
Printer(Out, WriterCtx);
2422 Printer.printString(
"name",
N->getName());
2423 Printer.printString(
"linkageName",
N->getLinkageName());
2424 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2425 Printer.printMetadata(
"file",
N->getRawFile());
2426 Printer.printInt(
"line",
N->getLine());
2427 Printer.printMetadata(
"type",
N->getRawType());
2428 Printer.printInt(
"scopeLine",
N->getScopeLine());
2429 Printer.printMetadata(
"containingType",
N->getRawContainingType());
2430 if (
N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
2431 N->getVirtualIndex() != 0)
2432 Printer.printInt(
"virtualIndex",
N->getVirtualIndex(),
false);
2433 Printer.printInt(
"thisAdjustment",
N->getThisAdjustment());
2434 Printer.printDIFlags(
"flags",
N->getFlags());
2435 Printer.printDISPFlags(
"spFlags",
N->getSPFlags());
2436 Printer.printMetadata(
"unit",
N->getRawUnit());
2437 Printer.printMetadata(
"templateParams",
N->getRawTemplateParams());
2438 Printer.printMetadata(
"declaration",
N->getRawDeclaration());
2439 Printer.printMetadata(
"retainedNodes",
N->getRawRetainedNodes());
2440 Printer.printMetadata(
"thrownTypes",
N->getRawThrownTypes());
2441 Printer.printMetadata(
"annotations",
N->getRawAnnotations());
2442 Printer.printString(
"targetFuncName",
N->getTargetFuncName());
2443 Printer.printBool(
"keyInstructions",
N->getKeyInstructionsEnabled(),
false);
2448 AsmWriterContext &WriterCtx) {
2449 Out <<
"!DILexicalBlock(";
2450 MDFieldPrinter
Printer(Out, WriterCtx);
2451 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2452 Printer.printMetadata(
"file",
N->getRawFile());
2453 Printer.printInt(
"line",
N->getLine());
2454 Printer.printInt(
"column",
N->getColumn());
2460 AsmWriterContext &WriterCtx) {
2461 Out <<
"!DILexicalBlockFile(";
2462 MDFieldPrinter
Printer(Out, WriterCtx);
2463 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2464 Printer.printMetadata(
"file",
N->getRawFile());
2465 Printer.printInt(
"discriminator",
N->getDiscriminator(),
2471 AsmWriterContext &WriterCtx) {
2472 Out <<
"!DINamespace(";
2473 MDFieldPrinter
Printer(Out, WriterCtx);
2474 Printer.printString(
"name",
N->getName());
2475 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2476 Printer.printBool(
"exportSymbols",
N->getExportSymbols(),
false);
2481 AsmWriterContext &WriterCtx) {
2482 Out <<
"!DICommonBlock(";
2483 MDFieldPrinter
Printer(Out, WriterCtx);
2484 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2485 Printer.printMetadata(
"declaration",
N->getRawDecl(),
false);
2486 Printer.printString(
"name",
N->getName());
2487 Printer.printMetadata(
"file",
N->getRawFile());
2488 Printer.printInt(
"line",
N->getLineNo());
2493 AsmWriterContext &WriterCtx) {
2495 MDFieldPrinter
Printer(Out, WriterCtx);
2497 Printer.printInt(
"line",
N->getLine());
2498 Printer.printString(
"name",
N->getName());
2499 Printer.printString(
"value",
N->getValue());
2504 AsmWriterContext &WriterCtx) {
2505 Out <<
"!DIMacroFile(";
2506 MDFieldPrinter
Printer(Out, WriterCtx);
2507 Printer.printInt(
"line",
N->getLine());
2508 Printer.printMetadata(
"file",
N->getRawFile(),
false);
2509 Printer.printMetadata(
"nodes",
N->getRawElements());
2514 AsmWriterContext &WriterCtx) {
2515 Out <<
"!DIModule(";
2516 MDFieldPrinter
Printer(Out, WriterCtx);
2517 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2518 Printer.printString(
"name",
N->getName());
2519 Printer.printString(
"configMacros",
N->getConfigurationMacros());
2520 Printer.printString(
"includePath",
N->getIncludePath());
2521 Printer.printString(
"apinotes",
N->getAPINotesFile());
2522 Printer.printMetadata(
"file",
N->getRawFile());
2523 Printer.printInt(
"line",
N->getLineNo());
2524 Printer.printBool(
"isDecl",
N->getIsDecl(),
false);
2530 AsmWriterContext &WriterCtx) {
2531 Out <<
"!DITemplateTypeParameter(";
2532 MDFieldPrinter
Printer(Out, WriterCtx);
2533 Printer.printString(
"name",
N->getName());
2534 Printer.printMetadata(
"type",
N->getRawType(),
false);
2535 Printer.printBool(
"defaulted",
N->isDefault(),
false);
2541 AsmWriterContext &WriterCtx) {
2542 Out <<
"!DITemplateValueParameter(";
2543 MDFieldPrinter
Printer(Out, WriterCtx);
2544 if (
N->getTag() != dwarf::DW_TAG_template_value_parameter)
2546 Printer.printString(
"name",
N->getName());
2547 Printer.printMetadata(
"type",
N->getRawType());
2548 Printer.printBool(
"defaulted",
N->isDefault(),
false);
2549 Printer.printMetadata(
"value",
N->getValue(),
false);
2554 AsmWriterContext &WriterCtx) {
2555 Out <<
"!DIGlobalVariable(";
2556 MDFieldPrinter
Printer(Out, WriterCtx);
2557 Printer.printString(
"name",
N->getName());
2558 Printer.printString(
"linkageName",
N->getLinkageName());
2559 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2560 Printer.printMetadata(
"file",
N->getRawFile());
2561 Printer.printInt(
"line",
N->getLine());
2562 Printer.printMetadata(
"type",
N->getRawType());
2563 Printer.printBool(
"isLocal",
N->isLocalToUnit());
2564 Printer.printBool(
"isDefinition",
N->isDefinition());
2565 Printer.printMetadata(
"declaration",
N->getRawStaticDataMemberDeclaration());
2566 Printer.printMetadata(
"templateParams",
N->getRawTemplateParams());
2567 Printer.printInt(
"align",
N->getAlignInBits());
2568 Printer.printMetadata(
"annotations",
N->getRawAnnotations());
2573 AsmWriterContext &WriterCtx) {
2574 Out <<
"!DILocalVariable(";
2575 MDFieldPrinter
Printer(Out, WriterCtx);
2576 Printer.printString(
"name",
N->getName());
2577 Printer.printInt(
"arg",
N->getArg());
2578 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2579 Printer.printMetadata(
"file",
N->getRawFile());
2580 Printer.printInt(
"line",
N->getLine());
2581 Printer.printMetadata(
"type",
N->getRawType());
2582 Printer.printDIFlags(
"flags",
N->getFlags());
2583 Printer.printInt(
"align",
N->getAlignInBits());
2584 Printer.printMetadata(
"annotations",
N->getRawAnnotations());
2589 AsmWriterContext &WriterCtx) {
2591 MDFieldPrinter
Printer(Out, WriterCtx);
2592 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2593 Printer.printString(
"name",
N->getName());
2594 Printer.printMetadata(
"file",
N->getRawFile());
2595 Printer.printInt(
"line",
N->getLine());
2596 Printer.printInt(
"column",
N->getColumn());
2597 Printer.printBool(
"isArtificial",
N->isArtificial(),
false);
2598 if (
N->getCoroSuspendIdx())
2599 Printer.printInt(
"coroSuspendIdx", *
N->getCoroSuspendIdx(),
2605 AsmWriterContext &WriterCtx) {
2606 Out <<
"!DIExpression(";
2611 assert(!OpStr.empty() &&
"Expected valid opcode");
2615 Out << FS <<
Op.getArg(0);
2618 for (
unsigned A = 0, AE =
Op.getNumArgs();
A != AE; ++
A)
2619 Out << FS <<
Op.getArg(
A);
2623 for (
const auto &
I :
N->getElements())
2630 AsmWriterContext &WriterCtx,
2631 bool FromValue =
false) {
2633 "Unexpected DIArgList metadata outside of value argument");
2634 Out <<
"!DIArgList(";
2636 MDFieldPrinter
Printer(Out, WriterCtx);
2637 for (
const Metadata *Arg :
N->getArgs()) {
2646 AsmWriterContext &WriterCtx) {
2647 Out <<
"!DIGlobalVariableExpression(";
2648 MDFieldPrinter
Printer(Out, WriterCtx);
2649 Printer.printMetadata(
"var",
N->getVariable());
2650 Printer.printMetadata(
"expr",
N->getExpression());
2655 AsmWriterContext &WriterCtx) {
2656 Out <<
"!DIObjCProperty(";
2657 MDFieldPrinter
Printer(Out, WriterCtx);
2658 Printer.printString(
"name",
N->getName());
2659 Printer.printMetadata(
"file",
N->getRawFile());
2660 Printer.printInt(
"line",
N->getLine());
2661 Printer.printString(
"setter",
N->getSetterName());
2662 Printer.printString(
"getter",
N->getGetterName());
2663 Printer.printInt(
"attributes",
N->getAttributes());
2664 Printer.printMetadata(
"type",
N->getRawType());
2669 AsmWriterContext &WriterCtx) {
2670 Out <<
"!DIImportedEntity(";
2671 MDFieldPrinter
Printer(Out, WriterCtx);
2673 Printer.printString(
"name",
N->getName());
2674 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2675 Printer.printMetadata(
"entity",
N->getRawEntity());
2676 Printer.printMetadata(
"file",
N->getRawFile());
2677 Printer.printInt(
"line",
N->getLine());
2678 Printer.printMetadata(
"elements",
N->getRawElements());
2683 AsmWriterContext &Ctx) {
2684 if (
Node->isDistinct())
2686 else if (
Node->isTemporary())
2687 Out <<
"<temporary!> ";
2689 switch (
Node->getMetadataID()) {
2692#define HANDLE_MDNODE_LEAF(CLASS) \
2693 case Metadata::CLASS##Kind: \
2694 write##CLASS(Out, cast<CLASS>(Node), Ctx); \
2696#include "llvm/IR/Metadata.def"
2703 AsmWriterContext &WriterCtx,
2706 WriterCtx.TypePrinter->print(V->getType(), Out);
2717 assert(WriterCtx.TypePrinter &&
"Constants require TypePrinting!");
2724 if (IA->hasSideEffects())
2725 Out <<
"sideeffect ";
2726 if (IA->isAlignStack())
2727 Out <<
"alignstack ";
2730 Out <<
"inteldialect ";
2749 auto *
Machine = WriterCtx.Machine;
2753 Slot =
Machine->getGlobalSlot(GV);
2756 Slot =
Machine->getLocalSlot(V);
2763 Slot =
Machine->getLocalSlot(V);
2770 Slot =
Machine->getGlobalSlot(GV);
2773 Slot =
Machine->getLocalSlot(V);
2782 Out << Prefix << Slot;
2788 AsmWriterContext &WriterCtx,
2802 std::unique_ptr<SlotTracker> MachineStorage;
2804 if (!WriterCtx.Machine) {
2805 MachineStorage = std::make_unique<SlotTracker>(WriterCtx.Context);
2806 WriterCtx.Machine = MachineStorage.get();
2816 Out <<
"<" <<
N <<
">";
2830 assert(WriterCtx.TypePrinter &&
"TypePrinter required for metadata values");
2832 "Unexpected function-local metadata outside of value argument");
2839class AssemblyWriter {
2840 formatted_raw_ostream &Out;
2841 const Module *TheModule =
nullptr;
2842 const ModuleSummaryIndex *TheIndex =
nullptr;
2843 std::unique_ptr<SlotTracker> SlotTrackerStorage;
2845 TypePrinting TypePrinter;
2846 AssemblyAnnotationWriter *AnnotationWriter =
nullptr;
2847 SetVector<const Comdat *> Comdats;
2849 bool ShouldPreserveUseListOrder;
2854 DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2858 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
const Module *M,
2859 AssemblyAnnotationWriter *AAW,
bool IsForDebug,
2860 bool ShouldPreserveUseListOrder =
false);
2862 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2863 const ModuleSummaryIndex *Index,
bool IsForDebug);
2866 return AsmWriterContext(&TypePrinter, &
Machine, TheModule);
2869 void printMDNodeBody(
const MDNode *MD);
2870 void printNamedMDNode(
const NamedMDNode *NMD);
2872 void printModule(
const Module *M);
2874 void writeOperand(
const Value *
Op,
bool PrintType);
2875 void writeParamOperand(
const Value *Operand, AttributeSet Attrs);
2876 void writeOperandBundles(
const CallBase *
Call);
2877 void writeSyncScope(
const LLVMContext &
Context,
2879 void writeAtomic(
const LLVMContext &
Context,
2882 void writeAtomicCmpXchg(
const LLVMContext &
Context,
2887 void writeAllMDNodes();
2888 void writeMDNode(
unsigned Slot,
const MDNode *Node);
2889 void writeAttribute(
const Attribute &Attr,
bool InAttrGroup =
false);
2890 void writeAttributeSet(
const AttributeSet &AttrSet,
bool InAttrGroup =
false);
2891 void writeAllAttributeGroups();
2893 void printTypeIdentities();
2894 void printGlobal(
const GlobalVariable *GV);
2895 void printAlias(
const GlobalAlias *GA);
2896 void printIFunc(
const GlobalIFunc *GI);
2897 void printComdat(
const Comdat *
C);
2898 void printFunction(
const Function *
F);
2899 void printArgument(
const Argument *FA, AttributeSet Attrs);
2901 void printInstructionLine(
const Instruction &
I);
2902 void printInstruction(
const Instruction &
I);
2903 void printDbgMarker(
const DbgMarker &DPI);
2904 void printDbgVariableRecord(
const DbgVariableRecord &DVR);
2905 void printDbgLabelRecord(
const DbgLabelRecord &DLR);
2906 void printDbgRecord(
const DbgRecord &DR);
2907 void printDbgRecordLine(
const DbgRecord &DR);
2909 void printUseListOrder(
const Value *V, ArrayRef<unsigned> Shuffle);
2910 void printUseLists(
const Function *
F);
2912 void printModuleSummaryIndex();
2913 void printSummaryInfo(
unsigned Slot,
const ValueInfo &VI);
2914 void printSummary(
const GlobalValueSummary &Summary);
2915 void printAliasSummary(
const AliasSummary *AS);
2916 void printGlobalVarSummary(
const GlobalVarSummary *GS);
2917 void printFunctionSummary(
const FunctionSummary *FS);
2918 void printTypeIdSummary(
const TypeIdSummary &TIS);
2920 void printTypeTestResolution(
const TypeTestResolution &TTRes);
2921 void printArgs(ArrayRef<uint64_t> Args);
2922 void printWPDRes(
const WholeProgramDevirtResolution &WPDRes);
2923 void printTypeIdInfo(
const FunctionSummary::TypeIdInfo &TIDInfo);
2924 void printVFuncId(
const FunctionSummary::VFuncId VFId);
2932 void printMetadataAttachments(
2933 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2934 StringRef Separator);
2938 void printInfoComment(
const Value &V);
2942 void printGCRelocateComment(
const GCRelocateInst &Relocate);
2949 bool IsForDebug,
bool ShouldPreserveUseListOrder)
2950 : Out(
o), TheModule(
M),
Machine(Mac), TypePrinter(
M), AnnotationWriter(AAW),
2951 IsForDebug(IsForDebug),
2952 ShouldPreserveUseListOrder(
2955 : ShouldPreserveUseListOrder) {
2958 for (
const GlobalObject &GO : TheModule->global_objects())
2965 : Out(
o), TheIndex(Index),
Machine(Mac), TypePrinter(nullptr),
2966 IsForDebug(IsForDebug),
2969void AssemblyWriter::writeOperand(
const Value *Operand,
bool PrintType) {
2971 Out <<
"<null operand!>";
2978void AssemblyWriter::writeSyncScope(
const LLVMContext &
Context,
2986 Context.getSyncScopeNames(SSNs);
2988 Out <<
" syncscope(\"";
2996void AssemblyWriter::writeAtomic(
const LLVMContext &
Context,
2999 if (Ordering == AtomicOrdering::NotAtomic)
3002 writeSyncScope(
Context, SSID);
3006void AssemblyWriter::writeAtomicCmpXchg(
const LLVMContext &
Context,
3010 assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
3011 FailureOrdering != AtomicOrdering::NotAtomic);
3013 writeSyncScope(
Context, SSID);
3018void AssemblyWriter::writeParamOperand(
const Value *Operand,
3019 AttributeSet Attrs) {
3021 Out <<
"<null operand!>";
3026 TypePrinter.print(Operand->
getType(), Out);
3028 if (
Attrs.hasAttributes()) {
3030 writeAttributeSet(Attrs);
3038void AssemblyWriter::writeOperandBundles(
const CallBase *
Call) {
3054 ListSeparator InnerLS;
3056 for (
const auto &Input : BU.
Inputs) {
3058 if (Input ==
nullptr)
3059 Out <<
"<null operand bundle!>";
3070void AssemblyWriter::printModule(
const Module *M) {
3073 if (ShouldPreserveUseListOrder)
3076 if (!
M->getModuleIdentifier().empty() &&
3079 M->getModuleIdentifier().find(
'\n') == std::string::npos)
3080 Out <<
"; ModuleID = '" <<
M->getModuleIdentifier() <<
"'\n";
3082 if (!
M->getSourceFileName().empty()) {
3083 Out <<
"source_filename = \"";
3088 const std::string &
DL =
M->getDataLayoutStr();
3090 Out <<
"target datalayout = \"" <<
DL <<
"\"\n";
3091 if (!
M->getTargetTriple().empty())
3092 Out <<
"target triple = \"" <<
M->getTargetTriple().str() <<
"\"\n";
3094 if (!
M->getModuleInlineAsm().empty()) {
3098 StringRef
Asm =
M->getModuleInlineAsm();
3101 std::tie(Front, Asm) =
Asm.split(
'\n');
3105 Out <<
"module asm \"";
3108 }
while (!
Asm.empty());
3111 printTypeIdentities();
3114 if (!Comdats.empty())
3116 for (
const Comdat *
C : Comdats) {
3118 if (
C != Comdats.back())
3123 if (!
M->global_empty()) Out <<
'\n';
3124 for (
const GlobalVariable &GV :
M->globals()) {
3125 printGlobal(&GV); Out <<
'\n';
3129 if (!
M->alias_empty()) Out <<
"\n";
3130 for (
const GlobalAlias &GA :
M->aliases())
3134 if (!
M->ifunc_empty()) Out <<
"\n";
3135 for (
const GlobalIFunc &GI :
M->ifuncs())
3139 for (
const Function &
F : *M) {
3145 printUseLists(
nullptr);
3150 writeAllAttributeGroups();
3154 if (!
M->named_metadata_empty()) Out <<
'\n';
3156 for (
const NamedMDNode &Node :
M->named_metadata())
3157 printNamedMDNode(&Node);
3166void AssemblyWriter::printModuleSummaryIndex() {
3168 int NumSlots =
Machine.initializeIndexIfNeeded();
3174 std::vector<std::pair<std::string, ModuleHash>> moduleVec;
3175 std::string RegularLTOModuleName =
3177 moduleVec.resize(TheIndex->modulePaths().size());
3178 for (
auto &[ModPath, ModHash] : TheIndex->modulePaths())
3179 moduleVec[
Machine.getModulePathSlot(ModPath)] = std::make_pair(
3182 ModPath.empty() ? RegularLTOModuleName : std::string(ModPath), ModHash);
3185 for (
auto &ModPair : moduleVec) {
3186 Out <<
"^" << i++ <<
" = module: (";
3189 Out <<
"\", hash: (";
3191 for (
auto Hash : ModPair.second)
3198 for (
auto &GlobalList : *TheIndex) {
3199 auto GUID = GlobalList.first;
3200 for (
auto &Summary : GlobalList.second.getSummaryList())
3205 for (
auto &GlobalList : *TheIndex) {
3206 auto GUID = GlobalList.first;
3207 auto VI = TheIndex->getValueInfo(GlobalList);
3208 printSummaryInfo(
Machine.getGUIDSlot(GUID), VI);
3212 for (
const auto &TID : TheIndex->typeIds()) {
3213 Out <<
"^" <<
Machine.getTypeIdSlot(TID.second.first)
3214 <<
" = typeid: (name: \"" << TID.second.first <<
"\"";
3215 printTypeIdSummary(TID.second.second);
3216 Out <<
") ; guid = " << TID.first <<
"\n";
3220 for (
auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
3222 Out <<
"^" <<
Machine.getTypeIdCompatibleVtableSlot(TId.first)
3223 <<
" = typeidCompatibleVTable: (name: \"" << TId.first <<
"\"";
3224 printTypeIdCompatibleVtableSummary(TId.second);
3225 Out <<
") ; guid = " <<
GUID <<
"\n";
3229 if (TheIndex->getFlags()) {
3230 Out <<
"^" << NumSlots <<
" = flags: " << TheIndex->getFlags() <<
"\n";
3234 Out <<
"^" << NumSlots <<
" = blockcount: " << TheIndex->getBlockCount()
3244 return "singleImpl";
3246 return "branchFunnel";
3257 return "uniformRetVal";
3259 return "uniqueRetVal";
3261 return "virtualConstProp";
3284void AssemblyWriter::printTypeTestResolution(
const TypeTestResolution &TTRes) {
3291 Out <<
", alignLog2: " << TTRes.
AlignLog2;
3293 Out <<
", sizeM1: " << TTRes.
SizeM1;
3296 Out <<
", bitMask: " << (unsigned)TTRes.
BitMask;
3303void AssemblyWriter::printTypeIdSummary(
const TypeIdSummary &TIS) {
3304 Out <<
", summary: (";
3305 printTypeTestResolution(TIS.
TTRes);
3306 if (!TIS.
WPDRes.empty()) {
3307 Out <<
", wpdResolutions: (";
3309 for (
auto &WPDRes : TIS.
WPDRes) {
3311 Out <<
"(offset: " << WPDRes.first <<
", ";
3312 printWPDRes(WPDRes.second);
3320void AssemblyWriter::printTypeIdCompatibleVtableSummary(
3322 Out <<
", summary: (";
3324 for (
auto &
P : TI) {
3326 Out <<
"(offset: " <<
P.AddressPointOffset <<
", ";
3327 Out <<
"^" <<
Machine.getGUIDSlot(
P.VTableVI.getGUID());
3333void AssemblyWriter::printArgs(ArrayRef<uint64_t> Args) {
3337void AssemblyWriter::printWPDRes(
const WholeProgramDevirtResolution &WPDRes) {
3338 Out <<
"wpdRes: (kind: ";
3345 Out <<
", resByArg: (";
3347 for (
auto &ResByArg : WPDRes.
ResByArg) {
3349 printArgs(ResByArg.first);
3350 Out <<
", byArg: (kind: ";
3352 if (ResByArg.second.TheKind ==
3354 ResByArg.second.TheKind ==
3356 Out <<
", info: " << ResByArg.second.Info;
3360 if (ResByArg.second.Byte || ResByArg.second.Bit)
3361 Out <<
", byte: " << ResByArg.second.Byte
3362 <<
", bit: " << ResByArg.second.Bit;
3383void AssemblyWriter::printAliasSummary(
const AliasSummary *AS) {
3384 Out <<
", aliasee: ";
3394void AssemblyWriter::printGlobalVarSummary(
const GlobalVarSummary *GS) {
3395 auto VTableFuncs =
GS->vTableFuncs();
3396 Out <<
", varFlags: (readonly: " <<
GS->VarFlags.MaybeReadOnly <<
", "
3397 <<
"writeonly: " <<
GS->VarFlags.MaybeWriteOnly <<
", "
3398 <<
"constant: " <<
GS->VarFlags.Constant;
3399 if (!VTableFuncs.empty())
3401 <<
"vcall_visibility: " <<
GS->VarFlags.VCallVisibility;
3404 if (!VTableFuncs.empty()) {
3405 Out <<
", vTableFuncs: (";
3407 for (
auto &
P : VTableFuncs) {
3409 Out <<
"(virtFunc: ^" <<
Machine.getGUIDSlot(
P.FuncVI.getGUID())
3410 <<
", offset: " <<
P.VTableOffset;
3428 return "linkonce_odr";
3438 return "extern_weak";
3440 return "available_externally";
3469 return "definition";
3471 return "declaration";
3476void AssemblyWriter::printFunctionSummary(
const FunctionSummary *FS) {
3477 Out <<
", insts: " <<
FS->instCount();
3478 if (
FS->fflags().anyFlagSet())
3479 Out <<
", " <<
FS->fflags();
3481 if (!
FS->calls().empty()) {
3482 Out <<
", calls: (";
3484 for (
auto &
Call :
FS->calls()) {
3486 Out <<
"(callee: ^" <<
Machine.getGUIDSlot(
Call.first.getGUID());
3487 if (
Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
3489 else if (
Call.second.RelBlockFreq)
3490 Out <<
", relbf: " <<
Call.second.RelBlockFreq;
3493 if (
Call.second.HasTailCall)
3500 if (
const auto *TIdInfo =
FS->getTypeIdInfo())
3501 printTypeIdInfo(*TIdInfo);
3505 auto AllocTypeName = [](uint8_t
Type) ->
const char * {
3507 case (uint8_t)AllocationType::None:
3509 case (uint8_t)AllocationType::NotCold:
3511 case (uint8_t)AllocationType::Cold:
3513 case (uint8_t)AllocationType::Hot:
3519 if (!
FS->allocs().empty()) {
3520 Out <<
", allocs: (";
3522 for (
auto &AI :
FS->allocs()) {
3524 Out <<
"(versions: (";
3526 for (
auto V : AI.Versions) {
3528 Out << AllocTypeName(V);
3530 Out <<
"), memProf: (";
3531 ListSeparator MIBFS;
3532 for (
auto &MIB : AI.MIBs) {
3534 Out <<
"(type: " << AllocTypeName((uint8_t)MIB.AllocType);
3535 Out <<
", stackIds: (";
3536 ListSeparator SIDFS;
3537 for (
auto Id : MIB.StackIdIndices) {
3539 Out << TheIndex->getStackIdAtIndex(Id);
3548 if (!
FS->callsites().empty()) {
3549 Out <<
", callsites: (";
3551 for (
auto &CI :
FS->callsites()) {
3554 Out <<
"(callee: ^" <<
Machine.getGUIDSlot(CI.Callee.getGUID());
3556 Out <<
"(callee: null";
3557 Out <<
", clones: (";
3559 for (
auto V : CI.Clones) {
3563 Out <<
"), stackIds: (";
3564 ListSeparator SIDFS;
3565 for (
auto Id : CI.StackIdIndices) {
3567 Out << TheIndex->getStackIdAtIndex(Id);
3574 auto PrintRange = [&](
const ConstantRange &
Range) {
3578 if (!
FS->paramAccesses().empty()) {
3579 Out <<
", params: (";
3581 for (
auto &PS :
FS->paramAccesses()) {
3583 Out <<
"(param: " << PS.ParamNo;
3584 Out <<
", offset: ";
3586 if (!PS.Calls.empty()) {
3587 Out <<
", calls: (";
3589 for (
auto &
Call : PS.Calls) {
3591 Out <<
"(callee: ^" <<
Machine.getGUIDSlot(
Call.Callee.getGUID());
3592 Out <<
", param: " <<
Call.ParamNo;
3593 Out <<
", offset: ";
3594 PrintRange(
Call.Offsets);
3605void AssemblyWriter::printTypeIdInfo(
3606 const FunctionSummary::TypeIdInfo &TIDInfo) {
3607 Out <<
", typeIdInfo: (";
3608 ListSeparator TIDFS;
3611 Out <<
"typeTests: (";
3614 auto TidIter = TheIndex->typeIds().equal_range(GUID);
3615 if (TidIter.first == TidIter.second) {
3621 for (
const auto &[GUID, TypeIdPair] :
make_range(TidIter)) {
3623 auto Slot =
Machine.getTypeIdSlot(TypeIdPair.first);
3641 "typeTestAssumeConstVCalls");
3646 "typeCheckedLoadConstVCalls");
3651void AssemblyWriter::printVFuncId(
const FunctionSummary::VFuncId VFId) {
3652 auto TidIter = TheIndex->typeIds().equal_range(VFId.
GUID);
3653 if (TidIter.first == TidIter.second) {
3654 Out <<
"vFuncId: (";
3655 Out <<
"guid: " << VFId.
GUID;
3656 Out <<
", offset: " << VFId.
Offset;
3662 for (
const auto &[GUID, TypeIdPair] :
make_range(TidIter)) {
3664 Out <<
"vFuncId: (";
3665 auto Slot =
Machine.getTypeIdSlot(TypeIdPair.first);
3668 Out <<
", offset: " << VFId.
Offset;
3673void AssemblyWriter::printNonConstVCalls(
3675 Out <<
Tag <<
": (";
3677 for (
auto &VFuncId : VCallList) {
3679 printVFuncId(VFuncId);
3684void AssemblyWriter::printConstVCalls(
3686 Out <<
Tag <<
": (";
3688 for (
auto &ConstVCall : VCallList) {
3691 printVFuncId(ConstVCall.VFunc);
3692 if (!ConstVCall.Args.empty()) {
3694 printArgs(ConstVCall.Args);
3701void AssemblyWriter::printSummary(
const GlobalValueSummary &Summary) {
3702 GlobalValueSummary::GVFlags GVFlags =
Summary.flags();
3705 Out <<
"(module: ^" <<
Machine.getModulePathSlot(
Summary.modulePath())
3708 Out <<
", visibility: "
3711 Out <<
", live: " << GVFlags.
Live;
3712 Out <<
", dsoLocal: " << GVFlags.
DSOLocal;
3714 Out <<
", importType: "
3725 auto RefList =
Summary.refs();
3726 if (!RefList.empty()) {
3729 for (
auto &
Ref : RefList) {
3731 if (
Ref.isReadOnly())
3733 else if (
Ref.isWriteOnly())
3734 Out <<
"writeonly ";
3735 Out <<
"^" <<
Machine.getGUIDSlot(
Ref.getGUID());
3743void AssemblyWriter::printSummaryInfo(
unsigned Slot,
const ValueInfo &VI) {
3744 Out <<
"^" <<
Slot <<
" = gv: (";
3745 if (
VI.hasName() && !
VI.name().empty())
3746 Out <<
"name: \"" <<
VI.name() <<
"\"";
3748 Out <<
"guid: " <<
VI.getGUID();
3749 if (!
VI.getSummaryList().empty()) {
3750 Out <<
", summaries: (";
3752 for (
auto &Summary :
VI.getSummaryList()) {
3754 printSummary(*Summary);
3759 if (
VI.hasName() && !
VI.name().empty())
3760 Out <<
" ; guid = " <<
VI.getGUID();
3767 Out <<
"<empty name> ";
3769 unsigned char FirstC =
static_cast<unsigned char>(Name[0]);
3770 if (isalpha(FirstC) || FirstC ==
'-' || FirstC ==
'$' || FirstC ==
'.' ||
3775 for (
unsigned i = 1, e = Name.size(); i != e; ++i) {
3776 unsigned char C = Name[i];
3777 if (isalnum(
C) ||
C ==
'-' ||
C ==
'$' ||
C ==
'.' ||
C ==
'_')
3785void AssemblyWriter::printNamedMDNode(
const NamedMDNode *NMD) {
3820 Out <<
"dso_local ";
3838 Out <<
"thread_local ";
3841 Out <<
"thread_local(localdynamic) ";
3844 Out <<
"thread_local(initialexec) ";
3847 Out <<
"thread_local(localexec) ";
3857 return "local_unnamed_addr";
3859 return "unnamed_addr";
3882void AssemblyWriter::printGlobal(
const GlobalVariable *GV) {
3884 Out <<
"; Materializable\n";
3905 Out << (GV->
isConstant() ?
"constant " :
"global ");
3914 Out <<
", section \"";
3919 Out <<
", partition \"";
3924 Out <<
", code_model \"";
3949 Out <<
", no_sanitize_address";
3951 Out <<
", no_sanitize_hwaddress";
3953 Out <<
", sanitize_memtag";
3955 Out <<
", sanitize_address_dyninit";
3960 Out <<
", align " <<
A->value();
3964 printMetadataAttachments(MDs,
", ");
3967 if (
Attrs.hasAttributes())
3968 Out <<
" #" <<
Machine.getAttributeGroupSlot(Attrs);
3970 printInfoComment(*GV);
3973void AssemblyWriter::printAlias(
const GlobalAlias *GA) {
3975 Out <<
"; Materializable\n";
3995 if (
const Constant *Aliasee = GA->
getAliasee()) {
3998 TypePrinter.print(GA->
getType(), Out);
3999 Out <<
" <<NULL ALIASEE>>";
4003 Out <<
", partition \"";
4008 printInfoComment(*GA);
4012void AssemblyWriter::printIFunc(
const GlobalIFunc *GI) {
4014 Out <<
"; Materializable\n";
4029 if (
const Constant *Resolver = GI->
getResolver()) {
4032 TypePrinter.print(GI->
getType(), Out);
4033 Out <<
" <<NULL RESOLVER>>";
4037 Out <<
", partition \"";
4044 printMetadataAttachments(MDs,
", ");
4047 printInfoComment(*GI);
4051void AssemblyWriter::printComdat(
const Comdat *
C) {
4055void AssemblyWriter::printTypeIdentities() {
4056 if (TypePrinter.empty())
4062 auto &NumberedTypes = TypePrinter.getNumberedTypes();
4063 for (
unsigned I = 0,
E = NumberedTypes.size();
I !=
E; ++
I) {
4064 Out <<
'%' <<
I <<
" = type ";
4068 TypePrinter.printStructBody(NumberedTypes[
I], Out);
4072 auto &NamedTypes = TypePrinter.getNamedTypes();
4073 for (StructType *NamedType : NamedTypes) {
4079 TypePrinter.printStructBody(NamedType, Out);
4085void AssemblyWriter::printFunction(
const Function *
F) {
4086 if (
F->isMaterializable())
4087 Out <<
"; Materializable\n";
4088 else if (AnnotationWriter)
4091 const AttributeList &
Attrs =
F->getAttributes();
4092 if (
Attrs.hasFnAttrs()) {
4093 AttributeSet AS =
Attrs.getFnAttrs();
4094 std::string AttrStr;
4097 if (!Attr.isStringAttribute()) {
4098 if (!AttrStr.empty()) AttrStr +=
' ';
4099 AttrStr += Attr.getAsString();
4103 if (!AttrStr.empty())
4104 Out <<
"; Function Attrs: " << AttrStr <<
'\n';
4108 Out <<
"; Unknown intrinsic\n";
4112 if (
F->isDeclaration()) {
4115 F->getAllMetadata(MDs);
4116 printMetadataAttachments(MDs,
" ");
4127 if (
F->getCallingConv() != CallingConv::C) {
4132 FunctionType *FT =
F->getFunctionType();
4133 if (
Attrs.hasRetAttrs())
4134 Out <<
Attrs.getAsString(AttributeList::ReturnIndex) <<
' ';
4135 TypePrinter.print(
F->getReturnType(), Out);
4142 if (
F->isDeclaration() && !IsForDebug) {
4145 for (
unsigned I = 0,
E = FT->getNumParams();
I !=
E; ++
I) {
4148 TypePrinter.print(FT->getParamType(
I), Out);
4150 AttributeSet ArgAttrs =
Attrs.getParamAttrs(
I);
4153 writeAttributeSet(ArgAttrs);
4159 for (
const Argument &Arg :
F->args()) {
4161 printArgument(&Arg,
Attrs.getParamAttrs(Arg.getArgNo()));
4166 if (FT->isVarArg()) {
4167 if (FT->getNumParams()) Out <<
", ";
4178 if (
F->getAddressSpace() != 0 || !
Mod ||
4179 Mod->getDataLayout().getProgramAddressSpace() != 0)
4180 Out <<
" addrspace(" <<
F->getAddressSpace() <<
")";
4181 if (
Attrs.hasFnAttrs())
4182 Out <<
" #" <<
Machine.getAttributeGroupSlot(
Attrs.getFnAttrs());
4183 if (
F->hasSection()) {
4184 Out <<
" section \"";
4188 if (
F->hasPartition()) {
4189 Out <<
" partition \"";
4194 if (MaybeAlign
A =
F->getAlign())
4195 Out <<
" align " <<
A->value();
4197 Out <<
" gc \"" <<
F->getGC() <<
'"';
4198 if (
F->hasPrefixData()) {
4200 writeOperand(
F->getPrefixData(),
true);
4202 if (
F->hasPrologueData()) {
4203 Out <<
" prologue ";
4204 writeOperand(
F->getPrologueData(),
true);
4206 if (
F->hasPersonalityFn()) {
4207 Out <<
" personality ";
4208 writeOperand(
F->getPersonalityFn(),
true);
4212 if (
auto *MDProf =
F->getMetadata(LLVMContext::MD_prof)) {
4214 MDProf->print(Out, TheModule,
true);
4218 if (
F->isDeclaration()) {
4222 F->getAllMetadata(MDs);
4223 printMetadataAttachments(MDs,
" ");
4227 for (
const BasicBlock &BB : *
F)
4241void AssemblyWriter::printArgument(
const Argument *Arg, AttributeSet Attrs) {
4243 TypePrinter.print(Arg->
getType(), Out);
4246 if (
Attrs.hasAttributes()) {
4248 writeAttributeSet(Attrs);
4257 assert(Slot != -1 &&
"expect argument in function here");
4258 Out <<
" %" <<
Slot;
4269 }
else if (!IsEntryBlock) {
4271 int Slot =
Machine.getLocalSlot(BB);
4278 if (!IsEntryBlock) {
4283 Out <<
" No predecessors!";
4289 writeOperand(Pred,
false);
4300 for (
const DbgRecord &DR :
I.getDbgRecordRange())
4301 printDbgRecordLine(DR);
4302 printInstructionLine(
I);
4309void AssemblyWriter::printInstructionLine(
const Instruction &
I) {
4310 printInstruction(
I);
4316void AssemblyWriter::printGCRelocateComment(
const GCRelocateInst &Relocate) {
4326void AssemblyWriter::printInfoComment(
const Value &V) {
4328 printGCRelocateComment(*Relocate);
4330 if (AnnotationWriter) {
4336 if (
I->getDebugLoc()) {
4338 I->getDebugLoc().print(Out);
4344 if (
auto *MD =
I->getMetadata(LLVMContext::MD_prof)) {
4346 MD->print(Out, TheModule,
true);
4358 if (Operand ==
nullptr) {
4359 Out <<
" <cannot get addrspace!>";
4363 bool PrintAddrSpace = CallAddrSpace != 0;
4364 if (!PrintAddrSpace) {
4369 if (!
Mod ||
Mod->getDataLayout().getProgramAddressSpace() != 0)
4370 PrintAddrSpace =
true;
4373 Out <<
" addrspace(" << CallAddrSpace <<
")";
4377void AssemblyWriter::printInstruction(
const Instruction &
I) {
4387 }
else if (!
I.getType()->isVoidTy()) {
4389 int SlotNum =
Machine.getLocalSlot(&
I);
4391 Out <<
"<badref> = ";
4393 Out <<
'%' << SlotNum <<
" = ";
4397 if (CI->isMustTailCall())
4399 else if (CI->isTailCall())
4401 else if (CI->isNoTailCall())
4406 Out <<
I.getOpcodeName();
4428 Out <<
' ' << CI->getPredicate();
4435 const Value *Operand =
I.getNumOperands() ?
I.getOperand(0) :
nullptr;
4441 writeOperand(BI.getCondition(),
true);
4443 writeOperand(BI.getSuccessor(0),
true);
4445 writeOperand(BI.getSuccessor(1),
true);
4451 writeOperand(
SI.getCondition(),
true);
4453 writeOperand(
SI.getDefaultDest(),
true);
4455 for (
auto Case :
SI.cases()) {
4457 writeOperand(Case.getCaseValue(),
true);
4459 writeOperand(Case.getCaseSuccessor(),
true);
4465 writeOperand(Operand,
true);
4469 for (
unsigned i = 1, e =
I.getNumOperands(); i != e; ++i) {
4471 writeOperand(
I.getOperand(i),
true);
4476 TypePrinter.print(
I.getType(), Out);
4480 for (
const auto &[V,
Block] :
4481 zip_equal(PN->incoming_values(), PN->blocks())) {
4483 writeOperand(V,
false);
4485 writeOperand(
Block,
false);
4490 writeOperand(
I.getOperand(0),
true);
4495 writeOperand(
I.getOperand(0),
true); Out <<
", ";
4496 writeOperand(
I.getOperand(1),
true);
4501 TypePrinter.print(
I.getType(), Out);
4502 if (LPI->isCleanup() || LPI->getNumClauses() != 0)
4505 if (LPI->isCleanup())
4508 for (
unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
4509 if (i != 0 || LPI->isCleanup()) Out <<
"\n";
4510 if (LPI->isCatch(i))
4515 writeOperand(LPI->getClause(i),
true);
4519 writeOperand(CatchSwitch->getParentPad(),
false);
4522 for (
const BasicBlock *PadBB : CatchSwitch->handlers()) {
4524 writeOperand(PadBB,
true);
4527 if (
const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
4528 writeOperand(UnwindDest,
true);
4533 writeOperand(FPI->getParentPad(),
false);
4536 for (
const Value *
Op : FPI->arg_operands()) {
4538 writeOperand(
Op,
true);
4545 writeOperand(CRI->getOperand(0),
false);
4548 writeOperand(CRI->getOperand(1),
true);
4551 writeOperand(CRI->getOperand(0),
false);
4554 if (CRI->hasUnwindDest())
4555 writeOperand(CRI->getOperand(1),
true);
4560 if (CI->getCallingConv() != CallingConv::C) {
4565 Operand = CI->getCalledOperand();
4566 FunctionType *FTy = CI->getFunctionType();
4567 Type *RetTy = FTy->getReturnType();
4568 const AttributeList &PAL = CI->getAttributes();
4570 if (PAL.hasRetAttrs())
4571 Out <<
' ' << PAL.getAsString(AttributeList::ReturnIndex);
4580 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4582 writeOperand(Operand,
false);
4585 for (
unsigned op = 0, Eop = CI->arg_size();
op < Eop; ++
op) {
4587 writeParamOperand(CI->getArgOperand(
op), PAL.getParamAttrs(
op));
4592 if (CI->isMustTailCall() && CI->getParent() &&
4593 CI->getParent()->getParent() &&
4594 CI->getParent()->getParent()->isVarArg()) {
4595 if (CI->arg_size() > 0)
4601 if (PAL.hasFnAttrs())
4602 Out <<
" #" <<
Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4604 writeOperandBundles(CI);
4606 Operand =
II->getCalledOperand();
4607 FunctionType *FTy =
II->getFunctionType();
4608 Type *RetTy = FTy->getReturnType();
4609 const AttributeList &PAL =
II->getAttributes();
4612 if (
II->getCallingConv() != CallingConv::C) {
4617 if (PAL.hasRetAttrs())
4618 Out <<
' ' << PAL.getAsString(AttributeList::ReturnIndex);
4628 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4630 writeOperand(Operand,
false);
4633 for (
unsigned op = 0, Eop =
II->arg_size();
op < Eop; ++
op) {
4635 writeParamOperand(
II->getArgOperand(
op), PAL.getParamAttrs(
op));
4639 if (PAL.hasFnAttrs())
4640 Out <<
" #" <<
Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4642 writeOperandBundles(
II);
4645 writeOperand(
II->getNormalDest(),
true);
4647 writeOperand(
II->getUnwindDest(),
true);
4649 Operand = CBI->getCalledOperand();
4650 FunctionType *FTy = CBI->getFunctionType();
4651 Type *RetTy = FTy->getReturnType();
4652 const AttributeList &PAL = CBI->getAttributes();
4655 if (CBI->getCallingConv() != CallingConv::C) {
4660 if (PAL.hasRetAttrs())
4661 Out <<
' ' << PAL.getAsString(AttributeList::ReturnIndex);
4668 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4670 writeOperand(Operand,
false);
4672 ListSeparator ArgLS;
4673 for (
unsigned op = 0, Eop = CBI->arg_size();
op < Eop; ++
op) {
4675 writeParamOperand(CBI->getArgOperand(
op), PAL.getParamAttrs(
op));
4679 if (PAL.hasFnAttrs())
4680 Out <<
" #" <<
Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4682 writeOperandBundles(CBI);
4685 writeOperand(CBI->getDefaultDest(),
true);
4687 ListSeparator DestLS;
4688 for (
const BasicBlock *Dest : CBI->getIndirectDests()) {
4690 writeOperand(Dest,
true);
4695 if (AI->isUsedWithInAlloca())
4697 if (AI->isSwiftError())
4698 Out <<
"swifterror ";
4699 TypePrinter.print(AI->getAllocatedType(), Out);
4705 if (!AI->getArraySize() || AI->isArrayAllocation() ||
4706 !AI->getArraySize()->getType()->isIntegerTy(32)) {
4708 writeOperand(AI->getArraySize(),
true);
4710 if (MaybeAlign
A = AI->getAlign()) {
4711 Out <<
", align " <<
A->value();
4714 unsigned AddrSpace = AI->getAddressSpace();
4716 Out <<
", addrspace(" << AddrSpace <<
')';
4720 writeOperand(Operand,
true);
4723 TypePrinter.print(
I.getType(), Out);
4727 writeOperand(Operand,
true);
4730 TypePrinter.print(
I.getType(), Out);
4731 }
else if (Operand) {
4734 TypePrinter.print(
GEP->getSourceElementType(), Out);
4738 TypePrinter.print(LI->getType(), Out);
4745 bool PrintAllTypes =
false;
4753 PrintAllTypes =
true;
4755 for (
unsigned i = 1,
E =
I.getNumOperands(); i !=
E; ++i) {
4756 Operand =
I.getOperand(i);
4759 if (Operand && Operand->
getType() != TheType) {
4760 PrintAllTypes =
true;
4766 if (!PrintAllTypes) {
4768 TypePrinter.print(TheType, Out);
4773 for (
const Value *
Op :
I.operands()) {
4775 writeOperand(
Op, PrintAllTypes);
4782 writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4783 if (MaybeAlign
A = LI->getAlign())
4784 Out <<
", align " <<
A->value();
4787 writeAtomic(
SI->getContext(),
SI->getOrdering(),
SI->getSyncScopeID());
4788 if (MaybeAlign
A =
SI->getAlign())
4789 Out <<
", align " <<
A->value();
4791 writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4792 CXI->getFailureOrdering(), CXI->getSyncScopeID());
4793 Out <<
", align " << CXI->getAlign().value();
4795 writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4796 RMWI->getSyncScopeID());
4797 Out <<
", align " << RMWI->getAlign().value();
4799 writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4807 printMetadataAttachments(InstMD,
", ");
4810 printInfoComment(
I);
4813void AssemblyWriter::printDbgMarker(
const DbgMarker &Marker) {
4817 printDbgRecord(DPR);
4821 Out <<
" DbgMarker -> { ";
4826void AssemblyWriter::printDbgRecord(
const DbgRecord &DR) {
4828 printDbgVariableRecord(*DVR);
4830 printDbgLabelRecord(*DLR);
4835void AssemblyWriter::printDbgVariableRecord(
const DbgVariableRecord &DVR) {
4839 case DbgVariableRecord::LocationType::Value:
4842 case DbgVariableRecord::LocationType::Declare:
4845 case DbgVariableRecord::LocationType::Assign:
4850 "Tried to print a DbgVariableRecord with an invalid LocationType!");
4881void AssemblyWriter::printDbgRecordLine(
const DbgRecord &DR) {
4888void AssemblyWriter::printDbgLabelRecord(
const DbgLabelRecord &Label) {
4890 Out <<
"#dbg_label(";
4897void AssemblyWriter::printMetadataAttachments(
4898 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4899 StringRef Separator) {
4903 if (MDNames.empty())
4904 MDs[0].second->getContext().getMDKindNames(MDNames);
4907 for (
const auto &
I : MDs) {
4908 unsigned Kind =
I.first;
4910 if (Kind < MDNames.size()) {
4914 Out <<
"!<unknown kind #" <<
Kind <<
">";
4920void AssemblyWriter::writeMDNode(
unsigned Slot,
const MDNode *Node) {
4921 Out <<
'!' <<
Slot <<
" = ";
4922 printMDNodeBody(Node);
4926void AssemblyWriter::writeAllMDNodes() {
4932 for (
unsigned i = 0, e = Nodes.
size(); i != e; ++i) {
4933 writeMDNode(i, Nodes[i]);
4937void AssemblyWriter::printMDNodeBody(
const MDNode *Node) {
4942void AssemblyWriter::writeAttribute(
const Attribute &Attr,
bool InAttrGroup) {
4948 Out << Attribute::getNameFromAttrKind(Attr.
getKindAsEnum());
4951 TypePrinter.print(Ty, Out);
4956void AssemblyWriter::writeAttributeSet(
const AttributeSet &AttrSet,
4958 ListSeparator
LS(
" ");
4959 for (
const auto &Attr : AttrSet) {
4961 writeAttribute(Attr, InAttrGroup);
4965void AssemblyWriter::writeAllAttributeGroups() {
4966 std::vector<std::pair<AttributeSet, unsigned>> asVec;
4967 asVec.resize(
Machine.as_size());
4970 asVec[
I.second] =
I;
4972 for (
const auto &
I : asVec)
4973 Out <<
"attributes #" <<
I.second <<
" = { "
4974 <<
I.first.getAsString(
true) <<
" }\n";
4977void AssemblyWriter::printUseListOrder(
const Value *V,
4978 ArrayRef<unsigned> Shuffle) {
4983 Out <<
"uselistorder";
4986 writeOperand(BB->getParent(),
false);
4988 writeOperand(BB,
false);
4991 writeOperand(V,
true);
4994 assert(Shuffle.
size() >= 2 &&
"Shuffle too small");
4998void AssemblyWriter::printUseLists(
const Function *
F) {
4999 auto It = UseListOrders.find(
F);
5000 if (It == UseListOrders.end())
5003 Out <<
"\n; uselistorder directives\n";
5004 for (
const auto &Pair : It->second)
5005 printUseListOrder(Pair.first, Pair.second);
5013 bool ShouldPreserveUseListOrder,
5014 bool IsForDebug)
const {
5017 AssemblyWriter W(OS, SlotTable, this->
getParent(), AAW,
5019 ShouldPreserveUseListOrder);
5020 W.printFunction(
this);
5024 bool ShouldPreserveUseListOrder,
5025 bool IsForDebug)
const {
5028 AssemblyWriter W(OS, SlotTable, this->
getModule(), AAW,
5030 ShouldPreserveUseListOrder);
5031 W.printBasicBlock(
this);
5035 bool ShouldPreserveUseListOrder,
bool IsForDebug)
const {
5038 AssemblyWriter W(OS, SlotTable,
this, AAW, IsForDebug,
5039 ShouldPreserveUseListOrder);
5040 W.printModule(
this);
5046 AssemblyWriter W(OS, SlotTable,
getParent(),
nullptr, IsForDebug);
5047 W.printNamedMDNode(
this);
5051 bool IsForDebug)
const {
5052 std::optional<SlotTracker> LocalST;
5058 SlotTable = &*LocalST;
5062 AssemblyWriter W(OS, *SlotTable,
getParent(),
nullptr, IsForDebug);
5063 W.printNamedMDNode(
this);
5068 ROS <<
" = comdat ";
5075 ROS <<
"exactmatch";
5081 ROS <<
"nodeduplicate";
5093 TP.print(
const_cast<Type*
>(
this), OS);
5102 TP.printStructBody(STy, OS);
5108 if (
Function *
F = CI->getCalledFunction())
5109 if (
F->isIntrinsic())
5110 for (
auto &
Op :
I.operands())
5120 print(ROS, MST, IsForDebug);
5126 print(ROS, MST, IsForDebug);
5130 bool IsForDebug)
const {
5138 AssemblyWriter W(OS, SlotTable,
getModuleFromDPI(
this),
nullptr, IsForDebug);
5139 W.printDbgMarker(*
this);
5145 print(ROS, MST, IsForDebug);
5149 bool IsForDebug)
const {
5155 ?
Marker->getParent()->getParent()
5159 AssemblyWriter W(OS, SlotTable,
getModuleFromDPI(
this),
nullptr, IsForDebug);
5160 W.printDbgVariableRecord(*
this);
5164 bool IsForDebug)
const {
5170 Marker->getParent() ?
Marker->getParent()->getParent() :
nullptr;
5174 AssemblyWriter W(OS, SlotTable,
getModuleFromDPI(
this),
nullptr, IsForDebug);
5175 W.printDbgLabelRecord(*
this);
5179 bool ShouldInitializeAllMetadata =
false;
5183 ShouldInitializeAllMetadata =
true;
5186 print(ROS, MST, IsForDebug);
5190 bool IsForDebug)
const {
5195 auto IncorporateFunction = [&](
const Function *
F) {
5201 IncorporateFunction(
I->getParent() ?
I->getParent()->getParent() :
nullptr);
5203 W.printInstruction(*
I);
5205 IncorporateFunction(BB->getParent());
5206 AssemblyWriter W(OS, SlotTable,
getModuleFromVal(BB),
nullptr, IsForDebug);
5207 W.printBasicBlock(BB);
5209 AssemblyWriter W(OS, SlotTable, GV->
getParent(),
nullptr, IsForDebug);
5223 TypePrinting TypePrinter;
5224 TypePrinter.print(
C->getType(), OS);
5226 AsmWriterContext WriterCtx(&TypePrinter, MST.
getMachine());
5242 AsmWriterContext WriterCtx(
nullptr,
Machine, M);
5251 TypePrinting TypePrinter(MST.
getModule());
5282 AsmWriterContext &WriterCtx) {
5295struct MDTreeAsmWriterContext :
public AsmWriterContext {
5298 using EntryTy = std::pair<unsigned, std::string>;
5302 SmallPtrSet<const Metadata *, 4> Visited;
5304 raw_ostream &MainOS;
5306 MDTreeAsmWriterContext(TypePrinting *TP, SlotTracker *ST,
const Module *M,
5307 raw_ostream &OS,
const Metadata *InitMD)
5308 : AsmWriterContext(TP,
ST,
M),
Level(0
U), Visited({InitMD}), MainOS(OS) {}
5310 void onWriteMetadataAsOperand(
const Metadata *MD)
override {
5311 if (!Visited.
insert(MD).second)
5315 raw_string_ostream
SS(Str);
5320 unsigned InsertIdx = Buffer.
size() - 1;
5323 Buffer[InsertIdx].second = std::move(
SS.str());
5327 ~MDTreeAsmWriterContext()
override {
5328 for (
const auto &Entry : Buffer) {
5330 unsigned NumIndent =
Entry.first * 2U;
5339 bool OnlyAsOperand,
bool PrintAsTree =
false) {
5342 TypePrinting TypePrinter(M);
5344 std::unique_ptr<AsmWriterContext> WriterCtx;
5345 if (PrintAsTree && !OnlyAsOperand)
5346 WriterCtx = std::make_unique<MDTreeAsmWriterContext>(
5350 std::make_unique<AsmWriterContext>(&TypePrinter, MST.
getMachine(), M);
5379 const Module *M,
bool )
const {
5398 AssemblyWriter W(OS, SlotTable,
this, IsForDebug);
5399 W.printModuleSummaryIndex();
5403 unsigned UB)
const {
5409 if (
I.second >= LB &&
I.second < UB)
5410 L.push_back(std::make_pair(
I.second,
I.first));
5413#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
static void writeDIMacro(raw_ostream &Out, const DIMacro *N, AsmWriterContext &WriterCtx)
static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD, AsmWriterContext &WriterCtx)
static void writeDIGlobalVariableExpression(raw_ostream &Out, const DIGlobalVariableExpression *N, AsmWriterContext &WriterCtx)
static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N, AsmWriterContext &WriterCtx)
static void writeDIFixedPointType(raw_ostream &Out, const DIFixedPointType *N, AsmWriterContext &WriterCtx)
static void printDSOLocation(const GlobalValue &GV, formatted_raw_ostream &Out)
static const char * getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K)
static void writeDISubrangeType(raw_ostream &Out, const DISubrangeType *N, AsmWriterContext &WriterCtx)
static void writeAPFloatInternal(raw_ostream &Out, const APFloat &APF)
static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD, ModuleSlotTracker &MST, const Module *M, bool OnlyAsOperand, bool PrintAsTree=false)
static void writeDIStringType(raw_ostream &Out, const DIStringType *N, AsmWriterContext &WriterCtx)
static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT)
static cl::opt< bool > PreserveAssemblyUseListOrder("preserve-ll-uselistorder", cl::Hidden, cl::init(false), cl::desc("Preserve use-list order when writing LLVM assembly."))
static std::vector< unsigned > predictValueUseListOrder(const Value *V, unsigned ID, const OrderMap &OM)
static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N, AsmWriterContext &WriterCtx)
static void orderValue(const Value *V, OrderMap &OM)
static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N, AsmWriterContext &WriterCtx)
static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA)
static const char * getWholeProgDevirtResByArgKindName(WholeProgramDevirtResolution::ByArg::Kind K)
static void writeMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, AsmWriterContext &Ctx)
static void writeDIModule(raw_ostream &Out, const DIModule *N, AsmWriterContext &WriterCtx)
static void writeDIFile(raw_ostream &Out, const DIFile *N, AsmWriterContext &)
static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N, AsmWriterContext &WriterCtx)
static void writeOptimizationInfo(raw_ostream &Out, const User *U)
static bool isReferencingMDNode(const Instruction &I)
#define CC_VLS_CASE(ABI_VLEN)
static void writeDILabel(raw_ostream &Out, const DILabel *N, AsmWriterContext &WriterCtx)
static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N, AsmWriterContext &WriterCtx)
static void printMetadataIdentifier(StringRef Name, formatted_raw_ostream &Out)
static void printShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef< int > Mask)
static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N, AsmWriterContext &WriterCtx)
static const Module * getModuleFromDPI(const DbgMarker *Marker)
static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType, ModuleSlotTracker &MST)
static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N, AsmWriterContext &WriterCtx)
static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N, AsmWriterContext &WriterCtx)
static const char * getSummaryKindName(GlobalValueSummary::SummaryKind SK)
static OrderMap orderModule(const Module *M)
static const char * getVisibilityName(GlobalValue::VisibilityTypes Vis)
static void printCallingConv(unsigned cc, raw_ostream &Out)
static cl::opt< bool > PrintInstDebugLocs("print-inst-debug-locs", cl::Hidden, cl::desc("Pretty print debug locations of instructions when dumping"))
static void printMetadataImplRec(raw_ostream &ROS, const Metadata &MD, AsmWriterContext &WriterCtx)
Recursive version of printMetadataImpl.
static SlotTracker * createSlotTracker(const Value *V)
static void writeDILocation(raw_ostream &Out, const DILocation *DL, AsmWriterContext &WriterCtx)
static void writeDINamespace(raw_ostream &Out, const DINamespace *N, AsmWriterContext &WriterCtx)
DenseMap< const Function *, MapVector< const Value *, std::vector< unsigned > > > UseListOrderMap
static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N, AsmWriterContext &WriterCtx)
static UseListOrderMap predictUseListOrder(const Module *M)
static void printThreadLocalModel(GlobalVariable::ThreadLocalMode TLM, formatted_raw_ostream &Out)
static std::string getLinkageName(GlobalValue::LinkageTypes LT)
static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N, AsmWriterContext &WriterCtx)
static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N, AsmWriterContext &WriterCtx)
static const char * getTTResKindName(TypeTestResolution::Kind K)
static void writeDITemplateTypeParameter(raw_ostream &Out, const DITemplateTypeParameter *N, AsmWriterContext &WriterCtx)
static const char * getImportTypeName(GlobalValueSummary::ImportKind IK)
static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N, AsmWriterContext &WriterCtx)
static const Module * getModuleFromVal(const Value *V)
static void printLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix)
Turn the specified name into an 'LLVM name', which is either prefixed with % (if the string only cont...
static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I, raw_ostream &Out)
static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N, AsmWriterContext &WriterCtx)
static void writeDISubrange(raw_ostream &Out, const DISubrange *N, AsmWriterContext &WriterCtx)
static void writeDILexicalBlockFile(raw_ostream &Out, const DILexicalBlockFile *N, AsmWriterContext &WriterCtx)
static void writeConstantInternal(raw_ostream &Out, const Constant *CV, AsmWriterContext &WriterCtx)
static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N, AsmWriterContext &)
static void writeAsOperandInternal(raw_ostream &Out, const Value *V, AsmWriterContext &WriterCtx, bool PrintType=false)
static void printVisibility(GlobalValue::VisibilityTypes Vis, formatted_raw_ostream &Out)
static cl::opt< bool > PrintProfData("print-prof-data", cl::Hidden, cl::desc("Pretty print perf data (branch weights, etc) when dumping"))
static void writeMDTuple(raw_ostream &Out, const MDTuple *Node, AsmWriterContext &WriterCtx)
static void writeDIExpression(raw_ostream &Out, const DIExpression *N, AsmWriterContext &WriterCtx)
static cl::opt< bool > PrintInstAddrs("print-inst-addrs", cl::Hidden, cl::desc("Print addresses of instructions when dumping"))
static void writeDIAssignID(raw_ostream &Out, const DIAssignID *DL, AsmWriterContext &WriterCtx)
static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N, AsmWriterContext &WriterCtx)
static void maybePrintComdat(formatted_raw_ostream &Out, const GlobalObject &GO)
static void printDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT, formatted_raw_ostream &Out)
static bool printWithoutType(const Value &V, raw_ostream &O, SlotTracker *Machine, const Module *M)
Print without a type, skipping the TypePrinting object.
static void writeDIArgList(raw_ostream &Out, const DIArgList *N, AsmWriterContext &WriterCtx, bool FromValue=false)
static void writeDITemplateValueParameter(raw_ostream &Out, const DITemplateValueParameter *N, AsmWriterContext &WriterCtx)
static const Value * skipMetadataWrapper(const Value *V)
Look for a value that might be wrapped as metadata, e.g.
static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N, AsmWriterContext &WriterCtx)
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
dxil pretty DXIL Metadata Pretty Printer
This file defines the DenseMap class.
This file contains constants used for implementing Dwarf debug support.
This file contains the declaration of the GlobalIFunc class, which represents a single indirect funct...
GlobalValue::SanitizerMetadata SanitizerMetadata
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This file contains an interface for creating legacy passes to print out IR in various granularities.
Module.h This file contains the declarations for the Module class.
This defines the Use class.
Machine Check Debug Module
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
ModuleSummaryIndex.h This file contains the declarations the classes that hold the module index and s...
static bool processFunction(Function &F, NVPTXTargetMachine &TM)
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
Function const char TargetMachine * Machine
if(auto Err=PB.parsePassPipeline(MPM, Passes)) return wrap(std MPM run * Mod
static StringRef getName(Value *V)
This file provides utility classes that use RAII to save and restore values.
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallString class.
This file defines the SmallVector class.
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
static UseListOrderStack predictUseListOrder(const Module &M)
static const fltSemantics & IEEEsingle()
static const fltSemantics & BFloat()
static const fltSemantics & IEEEquad()
static const fltSemantics & IEEEdouble()
static const fltSemantics & x87DoubleExtended()
static constexpr roundingMode rmNearestTiesToEven
static const fltSemantics & IEEEhalf()
static const fltSemantics & PPCDoubleDouble()
static APFloat getSNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for SNaN values.
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
LLVM_ABI double convertToDouble() const
Converts this APFloat to host double value.
void toString(SmallVectorImpl< char > &Str, unsigned FormatPrecision=0, unsigned FormatMaxPadding=3, bool TruncateZero=true) const
const fltSemantics & getSemantics() const
APInt bitcastToAPInt() const
Class for arbitrary precision integers.
LLVM_ABI APInt getLoBits(unsigned numBits) const
Compute an APInt containing numBits lowbits from this APInt.
uint64_t getZExtValue() const
Get zero extended value.
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
Abstract interface of slot tracker storage.
virtual ~AbstractSlotTrackerStorage()
const GlobalValueSummary & getAliasee() const
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
virtual void emitBasicBlockStartAnnot(const BasicBlock *, formatted_raw_ostream &)
emitBasicBlockStartAnnot - This may be implemented to emit a string right after the basic block label...
virtual void emitBasicBlockEndAnnot(const BasicBlock *, formatted_raw_ostream &)
emitBasicBlockEndAnnot - This may be implemented to emit a string right after the basic block.
virtual void emitFunctionAnnot(const Function *, formatted_raw_ostream &)
emitFunctionAnnot - This may be implemented to emit a string right before the start of a function.
virtual void emitInstructionAnnot(const Instruction *, formatted_raw_ostream &)
emitInstructionAnnot - This may be implemented to emit a string right before an instruction is emitte...
virtual void printInfoComment(const Value &, formatted_raw_ostream &)
printInfoComment - This may be implemented to emit a comment to the right of an instruction or global...
virtual ~AssemblyAnnotationWriter()
static LLVM_ABI StringRef getOperationName(BinOp Op)
This class holds the attributes for a particular argument, parameter, function, or return value.
bool hasAttributes() const
Return true if attributes exists in this set.
LLVM_ABI std::string getAsString(bool InAttrGrp=false) const
The Attribute is converted to a string of equivalent mnemonic.
LLVM_ABI Attribute::AttrKind getKindAsEnum() const
Return the attribute's kind as an enum (Attribute::AttrKind).
LLVM_ABI bool isTypeAttribute() const
Return true if the attribute is a type attribute.
LLVM_ABI Type * getValueAsType() const
Return the attribute's value as a Type.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW=nullptr, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the basic block to an output stream with an optional AssemblyAnnotationWriter.
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
LLVM_ABI const Module * getModule() const
Return the module owning the function this basic block belongs to, or nullptr if the function does no...
OperandBundleUse getOperandBundleAt(unsigned Index) const
Return the operand bundle at a specific index.
unsigned getNumOperandBundles() const
Return the number of operand bundles associated with this User.
AttributeList getAttributes() const
Return the attributes for this call.
bool hasOperandBundles() const
Return true if this User has any operand bundles.
LLVM_ABI void print(raw_ostream &OS, bool IsForDebug=false) const
LLVM_ABI void dump() const
@ Largest
The linker will choose the largest COMDAT.
@ SameSize
The data referenced by the COMDAT must be the same size.
@ Any
The linker may choose any COMDAT.
@ NoDeduplicate
No deduplication is performed.
@ ExactMatch
The data referenced by the COMDAT must be the same.
SelectionKind getSelectionKind() const
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
This is an important base class in LLVM.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
List of ValueAsMetadata, to be used as an argument to a dbg.value intrinsic.
Basic type, like 'int' or 'float'.
static LLVM_ABI const char * nameTableKindString(DebugNameTableKind PK)
static LLVM_ABI const char * emissionKindString(DebugEmissionKind EK)
A lightweight wrapper around an expression operand.
static LLVM_ABI const char * fixedPointKindString(FixedPointKind)
A pair of DIGlobalVariable and DIExpression.
An imported module (C++ using directive or similar).
Macro Info DWARF-like metadata node.
Represents a module in the programming language, for example, a Clang module, or a Fortran module.
Tagged DWARF-like metadata node.
static LLVM_ABI DIFlags splitFlags(DIFlags Flags, SmallVectorImpl< DIFlags > &SplitFlags)
Split up a flags bitfield.
static LLVM_ABI StringRef getFlagString(DIFlags Flag)
Wrapper structure that holds a language name and its version.
uint32_t getVersion() const
Returns language version. Only valid for versioned language names.
bool hasVersionedName() const
uint16_t getName() const
Returns a versioned or unversioned language name.
String type, Fortran CHARACTER(n)
Subprogram description. Uses SubclassData1.
static LLVM_ABI DISPFlags splitFlags(DISPFlags Flags, SmallVectorImpl< DISPFlags > &SplitFlags)
Split up a flags bitfield for easier printing.
static LLVM_ABI StringRef getFlagString(DISPFlags Flag)
DISPFlags
Debug info subprogram flags.
Type array for a subprogram.
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false) const
Per-instruction record of debug-info.
LLVM_ABI void dump() const
Instruction * MarkedInstr
Link back to the Instruction that owns this marker.
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false) const
Implement operator<< on DbgMarker.
LLVM_ABI const BasicBlock * getParent() const
simple_ilist< DbgRecord > StoredDbgRecords
List of DbgRecords, the non-instruction equivalent of llvm.dbg.
Base class for non-instruction debug metadata records that have positions within IR.
DebugLoc getDebugLoc() const
LLVM_ABI void dump() const
DbgMarker * Marker
Marker that this DbgRecord is linked into.
Record of a variable value-assignment, aka a non instruction representation of the dbg....
LocationType getType() const
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false) const
MDNode * getRawExpression() const
MDNode * getRawAddressExpression() const
Metadata * getRawAssignID() const
MDNode * getRawVariable() const
Metadata * getRawLocation() const
Returns the metadata operand for the first location description.
Metadata * getRawAddress() const
MDNode * getAsMDNode() const
Return this as a bar MDNode.
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT > iterator
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW=nullptr, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the function to an output stream with an optional AssemblyAnnotationWriter.
const Function & getFunction() const
const Argument * const_arg_iterator
LLVM_ABI Value * getBasePtr() const
LLVM_ABI Value * getDerivedPtr() const
Generic tagged DWARF-like metadata node.
const Constant * getAliasee() const
const Constant * getResolver() const
StringRef getSection() const
Get the custom section of this global if it has one.
LLVM_ABI void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode * > > &MDs) const
Appends all metadata attached to this value to MDs, sorting by KindID.
const Comdat * getComdat() const
bool hasSection() const
Check if this global has a custom object file section.
SummaryKind
Sububclass discriminator (for dyn_cast<> et al.)
bool hasPartition() const
static LLVM_ABI GUID getGUIDAssumingExternalLinkage(StringRef GlobalName)
Return a 64-bit global unique ID constructed from the name of a global symbol.
LLVM_ABI const SanitizerMetadata & getSanitizerMetadata() const
bool hasExternalLinkage() const
VisibilityTypes getVisibility() const
bool isImplicitDSOLocal() const
LinkageTypes getLinkage() const
uint64_t GUID
Declare a type to represent a global unique identifier for a global value.
ThreadLocalMode getThreadLocalMode() const
DLLStorageClassTypes
Storage classes of global values for PE targets.
@ DLLExportStorageClass
Function to be accessible from DLL.
@ DLLImportStorageClass
Function to be imported from DLL.
bool hasSanitizerMetadata() const
LLVM_ABI StringRef getPartition() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
VisibilityTypes
An enumeration for the kinds of visibility of global values.
@ DefaultVisibility
The GV is visible.
@ HiddenVisibility
The GV is hidden.
@ ProtectedVisibility
The GV is protected.
LLVM_ABI bool isMaterializable() const
If this function's Module is being lazily streamed in functions from disk or some other source,...
UnnamedAddr getUnnamedAddr() const
LinkageTypes
An enumeration for the kinds of linkage for global values.
@ PrivateLinkage
Like Internal, but omit from symbol table.
@ CommonLinkage
Tentative definitions.
@ InternalLinkage
Rename collisions when linking (static functions).
@ LinkOnceAnyLinkage
Keep one copy of function when linking (inline)
@ WeakODRLinkage
Same, but only replaced by something equivalent.
@ ExternalLinkage
Externally visible function.
@ WeakAnyLinkage
Keep one copy of named function when linking (weak)
@ AppendingLinkage
Special purpose, only applies to global arrays.
@ AvailableExternallyLinkage
Available for inspection, not emission.
@ ExternalWeakLinkage
ExternalWeak linkage description.
@ LinkOnceODRLinkage
Same, but only replaced by something equivalent.
DLLStorageClassTypes getDLLStorageClass() const
Type * getValueType() const
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isExternallyInitialized() const
bool hasInitializer() const
Definitions have initializers, declarations don't.
AttributeSet getAttributes() const
Return the attribute set for this global.
std::optional< CodeModel::Model > getCodeModel() const
Get the custom code model of this global if it has one.
MaybeAlign getAlign() const
Returns the alignment of the given variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
A helper class to return the specified delimiter string after the first invocation of operator String...
LLVM_ABI void printTree(raw_ostream &OS, const Module *M=nullptr) const
Print in tree shape.
LLVM_ABI void dumpTree() const
User-friendly dump in tree shape.
This class implements a map that also provides access to all stored values in a deterministic order.
Manage lifetime of a slot tracker for printing IR.
const Module * getModule() const
ModuleSlotTracker(SlotTracker &Machine, const Module *M, const Function *F=nullptr)
Wrap a preinitialized SlotTracker.
virtual ~ModuleSlotTracker()
Destructor to clean up storage.
std::vector< std::pair< unsigned, const MDNode * > > MachineMDNodeListType
int getLocalSlot(const Value *V)
Return the slot number of the specified local value.
void collectMDNodes(MachineMDNodeListType &L, unsigned LB, unsigned UB) const
SlotTracker * getMachine()
Lazily creates a slot tracker.
void setProcessHook(std::function< void(AbstractSlotTrackerStorage *, const Module *, bool)>)
void incorporateFunction(const Function &F)
Incorporate the given function.
Class to hold module path string table and global value map, and encapsulate methods for operating on...
static constexpr const char * getRegularLTOModuleName()
LLVM_ABI void dump() const
Dump to stderr (for debugging).
LLVM_ABI void print(raw_ostream &OS, bool IsForDebug=false) const
Print to an output stream.
A Module instance is used to store all the information related to an LLVM module.
iterator_range< alias_iterator > aliases()
iterator_range< global_iterator > globals()
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the module to an output stream with an optional AssemblyAnnotationWriter.
void dump() const
Dump the module to stderr (for debugging).
LLVM_ABI void dump() const
LLVM_ABI StringRef getName() const
LLVM_ABI void print(raw_ostream &ROS, bool IsForDebug=false) const
iterator_range< op_iterator > operands()
unsigned getAddressSpace() const
Return the address space of the Pointer type.
This class provides computation of slot numbers for LLVM Assembly writing.
DenseMap< const Value *, unsigned > ValueMap
ValueMap - A mapping of Values to slot numbers.
int getMetadataSlot(const MDNode *N) override
getMetadataSlot - Get the slot number of a MDNode.
~SlotTracker() override=default
int getTypeIdCompatibleVtableSlot(StringRef Id)
int getModulePathSlot(StringRef Path)
unsigned mdn_size() const
SlotTracker(const SlotTracker &)=delete
void purgeFunction()
After calling incorporateFunction, use this method to remove the most recently incorporated function ...
int getTypeIdSlot(StringRef Id)
void initializeIfNeeded()
These functions do the actual initialization.
int getGlobalSlot(const GlobalValue *V)
getGlobalSlot - Get the slot number of a global value.
const Function * getFunction() const
unsigned getNextMetadataSlot() override
DenseMap< GlobalValue::GUID, unsigned >::iterator guid_iterator
GUID map iterators.
void incorporateFunction(const Function *F)
If you'd like to deal with a function instead of just a module, use this method to get its data into ...
int getLocalSlot(const Value *V)
Return the slot number of the specified value in it's type plane.
int getAttributeGroupSlot(AttributeSet AS)
SlotTracker(const Module *M, bool ShouldInitializeAllMetadata=false)
Construct from a module.
void createMetadataSlot(const MDNode *N) override
getMetadataSlot - Get the slot number of a MDNode.
void setProcessHook(std::function< void(AbstractSlotTrackerStorage *, const Module *, bool)>)
DenseMap< const MDNode *, unsigned >::iterator mdn_iterator
MDNode map iterators.
SlotTracker & operator=(const SlotTracker &)=delete
int getGUIDSlot(GlobalValue::GUID GUID)
int initializeIndexIfNeeded()
DenseMap< AttributeSet, unsigned >::iterator as_iterator
AttributeSet map iterators.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringMap - This is an unconventional map that is specialized for handling keys that are "strings",...
StringRef - Represent a constant reference to a string, i.e.
constexpr bool empty() const
empty - Check if the string is empty.
ArrayRef< Type * > elements() const
unsigned getNumElements() const
Random access to the elements.
bool isLiteral() const
Return true if this type is uniqued by structural equivalence, false if it is a struct definition.
bool isOpaque() const
Return true if this is a type with an identity that has no body specified yet.
LLVM_ABI StringRef getName() const
Return the name for this struct type if it has an identity.
ArrayRef< Type * > type_params() const
Return the type parameters for this particular target extension type.
ArrayRef< unsigned > int_params() const
Return the integer parameters for this particular target extension type.
TypeFinder - Walk over a module, identifying all of the types that are used by the module.
void run(const Module &M, bool onlyNamed)
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
LLVM_ABI StringRef getTargetExtName() const
Type(LLVMContext &C, TypeID tid)
LLVM_ABI void dump() const
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false, bool NoDetails=false) const
Print the current type.
TypeID getTypeID() const
Return the type id for the type.
Type * getElementType() const
unsigned getAddressSpace() const
Return the address space of the Pointer type.
A Use represents the edge between a Value definition and its users.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false) const
Implement operator<< on Value.
LLVM_ABI void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode * > > &MDs) const
Appends all metadata attached to this value to MDs, sorting by KindID.
iterator_range< user_iterator > users()
LLVM_ABI void printAsOperand(raw_ostream &O, bool PrintType=true, const Module *M=nullptr) const
Print the name of this Value out to the specified raw_ostream.
iterator_range< use_iterator > uses()
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
LLVM_ABI void dump() const
Support for debugging, callable in GDB: V->dump()
This class implements an extremely fast bulk output stream that can only output to a stream.
raw_ostream & indent(unsigned NumSpaces)
indent - Insert 'NumSpaces' spaces.
LLVM_ABI StringRef SourceLanguageNameString(SourceLanguageName Lang)
LLVM_ABI StringRef EnumKindString(unsigned EnumKind)
LLVM_ABI StringRef LanguageString(unsigned Language)
LLVM_ABI StringRef AttributeEncodingString(unsigned Encoding)
LLVM_ABI StringRef ConventionString(unsigned Convention)
LLVM_ABI StringRef MacinfoString(unsigned Encoding)
LLVM_ABI StringRef OperationEncodingString(unsigned Encoding)
LLVM_ABI StringRef TagString(unsigned Tag)
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
This file contains the declaration of the Comdat class, which represents a single COMDAT in LLVM.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ AArch64_VectorCall
Used between AArch64 Advanced SIMD functions.
@ X86_64_SysV
The C convention as specified in the x86-64 supplement to the System V ABI, used on most non-Windows ...
@ RISCV_VectorCall
Calling convention used for RISC-V V-extension.
@ AMDGPU_CS
Used for Mesa/AMDPAL compute shaders.
@ AMDGPU_VS
Used for Mesa vertex shaders, or AMDPAL last shader stage before rasterization (vertex shader if tess...
@ AVR_SIGNAL
Used for AVR signal routines.
@ Swift
Calling convention for Swift.
@ AMDGPU_KERNEL
Used for AMDGPU code object kernels.
@ AArch64_SVE_VectorCall
Used between AArch64 SVE functions.
@ ARM_APCS
ARM Procedure Calling Standard (obsolete, but still used on some targets).
@ CHERIoT_CompartmentCall
Calling convention used for CHERIoT when crossing a protection boundary.
@ CFGuard_Check
Special calling convention on Windows for calling the Control Guard Check ICall funtion.
@ AVR_INTR
Used for AVR interrupt routines.
@ PreserveMost
Used for runtime calls that preserves most registers.
@ AnyReg
OBSOLETED - Used for stack based JavaScript calls.
@ AMDGPU_Gfx
Used for AMD graphics targets.
@ DUMMY_HHVM
Placeholders for HHVM calling conventions (deprecated, removed).
@ AMDGPU_CS_ChainPreserve
Used on AMDGPUs to give the middle-end more control over argument placement.
@ AMDGPU_HS
Used for Mesa/AMDPAL hull shaders (= tessellation control shaders).
@ ARM_AAPCS
ARM Architecture Procedure Calling Standard calling convention (aka EABI).
@ CHERIoT_CompartmentCallee
Calling convention used for the callee of CHERIoT_CompartmentCall.
@ AMDGPU_GS
Used for Mesa/AMDPAL geometry shaders.
@ AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2
Preserve X2-X15, X19-X29, SP, Z0-Z31, P0-P15.
@ CHERIoT_LibraryCall
Calling convention used for CHERIoT for cross-library calls to a stateless compartment.
@ CXX_FAST_TLS
Used for access functions.
@ X86_INTR
x86 hardware interrupt context.
@ AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0
Preserve X0-X13, X19-X29, SP, Z0-Z31, P0-P15.
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
@ GHC
Used by the Glasgow Haskell Compiler (GHC).
@ AMDGPU_PS
Used for Mesa/AMDPAL pixel shaders.
@ Cold
Attempts to make code in the caller as efficient as possible under the assumption that the call is no...
@ AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1
Preserve X1-X15, X19-X29, SP, Z0-Z31, P0-P15.
@ X86_ThisCall
Similar to X86_StdCall.
@ PTX_Device
Call to a PTX device function.
@ SPIR_KERNEL
Used for SPIR kernel functions.
@ PreserveAll
Used for runtime calls that preserves (almost) all registers.
@ X86_StdCall
stdcall is mostly used by the Win32 API.
@ SPIR_FUNC
Used for SPIR non-kernel device functions.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ MSP430_INTR
Used for MSP430 interrupt routines.
@ X86_VectorCall
MSVC calling convention that passes vectors and vector aggregates in SSE registers.
@ Intel_OCL_BI
Used for Intel OpenCL built-ins.
@ PreserveNone
Used for runtime calls that preserves none general registers.
@ AMDGPU_ES
Used for AMDPAL shader stage before geometry shader if geometry is in use.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ Win64
The C convention as implemented on Windows/x86-64 and AArch64.
@ PTX_Kernel
Call to a PTX kernel. Passes all arguments in parameter space.
@ SwiftTail
This follows the Swift calling convention in how arguments are passed but guarantees tail calls will ...
@ GRAAL
Used by GraalVM. Two additional registers are reserved.
@ AMDGPU_LS
Used for AMDPAL vertex shader if tessellation is in use.
@ ARM_AAPCS_VFP
Same as ARM_AAPCS, but uses hard floating point ABI.
@ X86_RegCall
Register calling convention used for parameters transfer optimization.
@ M68k_RTD
Used for M68k rtd-based CC (similar to X86's stdcall).
@ C
The default llvm calling convention, compatible with C.
@ X86_FastCall
'fast' analog of X86_StdCall.
@ System
Synchronized with respect to all concurrently executing threads.
initializer< Ty > init(const Ty &Val)
@ DW_OP_LLVM_convert
Only used in LLVM metadata.
Context & getContext() const
This is an optimization pass for GlobalISel generic memory operations.
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
FunctionAddr VTableAddr Value
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Printable print(const GCNRegPressure &RP, const GCNSubtarget *ST=nullptr, unsigned DynamicVGPRBlockSize=0)
detail::zippy< detail::zip_first, T, U, Args... > zip_equal(T &&t, U &&u, Args &&...args)
zip iterator that assumes that all iteratees have the same length.
InterleavedRange< Range > interleaved(const Range &R, StringRef Separator=", ", StringRef Prefix="", StringRef Suffix="")
Output range R as a sequence of interleaved elements.
const char * getHotnessName(CalleeInfo::HotnessType HT)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI void printEscapedString(StringRef Name, raw_ostream &Out)
Print each character of the specified string, escaping it if it is not printable or if it is an escap...
const char * toIRString(AtomicOrdering ao)
String used by LLVM IR to represent atomic ordering.
auto dyn_cast_or_null(const Y &Val)
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
char hexdigit(unsigned X, bool LowerCase=false)
hexdigit - Return the hexadecimal character for the given number X (which should be less than 16).
bool isDigit(char C)
Checks if character C is one of the 10 decimal digits.
FunctionAddr VTableAddr Count
bool is_sorted(R &&Range, Compare C)
Wrapper function around std::is_sorted to check if elements in a range R are sorted with respect to a...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
FormattedNumber format_hex(uint64_t N, unsigned Width, bool Upper=false)
format_hex - Output N as a fixed width hexadecimal.
FormattedNumber format_hex_no_prefix(uint64_t N, unsigned Width, bool Upper=false)
format_hex_no_prefix - Output N as a fixed width hexadecimal.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
constexpr int PoisonMaskElem
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ Ref
The access may reference the value stored in memory.
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
std::string toString(const APInt &I, unsigned Radix, bool Signed, bool formatAsCLiteral=false, bool UpperCase=true, bool InsertSeparators=false)
LLVM_ABI Printable printBasicBlock(const BasicBlock *BB)
Print BasicBlock BB as an operand or print "<nullptr>" if BB is a nullptr.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
auto predecessors(const MachineBasicBlock *BB)
bool pred_empty(const BasicBlock *BB)
std::vector< TypeIdOffsetVtableInfo > TypeIdCompatibleVtableInfo
List of vtable definitions decorated by a particular type identifier, and their corresponding offsets...
@ Default
The result values are uniform if and only if all operands are uniform.
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
LLVM_ABI void printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name)
Print out a name of an LLVM value without any prefixes.
A single checksum, represented by a Kind and a Value (a string).
T Value
The string value of the checksum.
StringRef getKindAsString() const
std::vector< ConstVCall > TypeCheckedLoadConstVCalls
std::vector< VFuncId > TypeCheckedLoadVCalls
std::vector< ConstVCall > TypeTestAssumeConstVCalls
List of virtual calls made by this function using (respectively) llvm.assume(llvm....
std::vector< GlobalValue::GUID > TypeTests
List of type identifiers used by this function in llvm.type.test intrinsics referenced by something o...
std::vector< VFuncId > TypeTestAssumeVCalls
List of virtual calls made by this function using (respectively) llvm.assume(llvm....
unsigned DSOLocal
Indicates that the linker resolved the symbol to a definition from within the same linkage unit.
unsigned CanAutoHide
In the per-module summary, indicates that the global value is linkonce_odr and global unnamed addr (s...
unsigned ImportType
This field is written by the ThinLTO indexing step to postlink combined summary.
unsigned NotEligibleToImport
Indicate if the global value cannot be imported (e.g.
unsigned Linkage
The linkage type of the associated global value.
unsigned Visibility
Indicates the visibility.
unsigned Live
In per-module summary, indicate that the global value must be considered a live root for index-based ...
StringRef getTagName() const
Return the tag of this operand bundle as a string.
A utility class that uses RAII to save and restore the value of a variable.
std::map< uint64_t, WholeProgramDevirtResolution > WPDRes
Mapping from byte offset to whole-program devirt resolution for that (typeid, byte offset) pair.
Kind
Specifies which kind of type check we should emit for this byte array.
@ Unknown
Unknown (analysis not performed, don't lower)
@ Single
Single element (last example in "Short Inline Bit Vectors")
@ Inline
Inlined bit vector ("Short Inline Bit Vectors")
@ Unsat
Unsatisfiable type (i.e. no global has this type metadata)
@ AllOnes
All-ones bit vector ("Eliminating Bit Vector Checks for All-Ones Bit Vectors")
@ ByteArray
Test a byte array (first example)
unsigned SizeM1BitWidth
Range of size-1 expressed as a bit width.
enum llvm::TypeTestResolution::Kind TheKind
@ UniformRetVal
Uniform return value optimization.
@ VirtualConstProp
Virtual constant propagation.
@ UniqueRetVal
Unique return value optimization.
@ Indir
Just do a regular virtual call.
enum llvm::WholeProgramDevirtResolution::Kind TheKind
std::map< std::vector< uint64_t >, ByArg > ResByArg
Resolutions for calls with all constant integer arguments (excluding the first argument,...
std::string SingleImplName
@ SingleImpl
Single implementation devirtualization.
@ Indir
Just do a regular virtual call.
@ BranchFunnel
When retpoline mitigation is enabled, use a branch funnel that is defined in the merged module.
Function object to check whether the second component of a container supported by std::get (like std:...