LLVM 19.0.0git
MathExtras.h
Go to the documentation of this file.
1//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains some functions that are useful for math stuff.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_SUPPORT_MATHEXTRAS_H
14#define LLVM_SUPPORT_MATHEXTRAS_H
15
16#include "llvm/ADT/bit.h"
18#include <cassert>
19#include <climits>
20#include <cstdint>
21#include <cstring>
22#include <limits>
23#include <type_traits>
24
25namespace llvm {
26
27/// Mathematical constants.
28namespace numbers {
29// TODO: Track C++20 std::numbers.
30// TODO: Favor using the hexadecimal FP constants (requires C++17).
31constexpr double e = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113
32 egamma = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620
33 ln2 = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162
34 ln10 = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392
35 log2e = 1.4426950408889634074, // (0x1.71547652b82feP+0)
36 log10e = .43429448190325182765, // (0x1.bcb7b1526e50eP-2)
37 pi = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796
38 inv_pi = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541
39 sqrtpi = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161
40 inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197
41 sqrt2 = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219
42 inv_sqrt2 = .70710678118654752440, // (0x1.6a09e667f3bcdP-1)
43 sqrt3 = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194
44 inv_sqrt3 = .57735026918962576451, // (0x1.279a74590331cP-1)
45 phi = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622
46constexpr float ef = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113
47 egammaf = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620
48 ln2f = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162
49 ln10f = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392
50 log2ef = 1.44269504F, // (0x1.715476P+0)
51 log10ef = .434294482F, // (0x1.bcb7b2P-2)
52 pif = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796
53 inv_pif = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541
54 sqrtpif = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161
55 inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197
56 sqrt2f = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193
57 inv_sqrt2f = .707106781F, // (0x1.6a09e6P-1)
58 sqrt3f = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194
59 inv_sqrt3f = .577350269F, // (0x1.279a74P-1)
60 phif = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622
61} // namespace numbers
62
63/// Create a bitmask with the N right-most bits set to 1, and all other
64/// bits set to 0. Only unsigned types are allowed.
65template <typename T> T maskTrailingOnes(unsigned N) {
66 static_assert(std::is_unsigned_v<T>, "Invalid type!");
67 const unsigned Bits = CHAR_BIT * sizeof(T);
68 assert(N <= Bits && "Invalid bit index");
69 if (N == 0)
70 return 0;
71 return T(-1) >> (Bits - N);
72}
73
74/// Create a bitmask with the N left-most bits set to 1, and all other
75/// bits set to 0. Only unsigned types are allowed.
76template <typename T> T maskLeadingOnes(unsigned N) {
77 return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
78}
79
80/// Create a bitmask with the N right-most bits set to 0, and all other
81/// bits set to 1. Only unsigned types are allowed.
82template <typename T> T maskTrailingZeros(unsigned N) {
83 return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N);
84}
85
86/// Create a bitmask with the N left-most bits set to 0, and all other
87/// bits set to 1. Only unsigned types are allowed.
88template <typename T> T maskLeadingZeros(unsigned N) {
89 return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
90}
91
92/// Macro compressed bit reversal table for 256 bits.
93///
94/// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
95static const unsigned char BitReverseTable256[256] = {
96#define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
97#define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
98#define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
99 R6(0), R6(2), R6(1), R6(3)
100#undef R2
101#undef R4
102#undef R6
103};
104
105/// Reverse the bits in \p Val.
106template <typename T> T reverseBits(T Val) {
107#if __has_builtin(__builtin_bitreverse8)
108 if constexpr (std::is_same_v<T, uint8_t>)
109 return __builtin_bitreverse8(Val);
110#endif
111#if __has_builtin(__builtin_bitreverse16)
112 if constexpr (std::is_same_v<T, uint16_t>)
113 return __builtin_bitreverse16(Val);
114#endif
115#if __has_builtin(__builtin_bitreverse32)
116 if constexpr (std::is_same_v<T, uint32_t>)
117 return __builtin_bitreverse32(Val);
118#endif
119#if __has_builtin(__builtin_bitreverse64)
120 if constexpr (std::is_same_v<T, uint64_t>)
121 return __builtin_bitreverse64(Val);
122#endif
123
124 unsigned char in[sizeof(Val)];
125 unsigned char out[sizeof(Val)];
126 std::memcpy(in, &Val, sizeof(Val));
127 for (unsigned i = 0; i < sizeof(Val); ++i)
128 out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
129 std::memcpy(&Val, out, sizeof(Val));
130 return Val;
131}
132
133// NOTE: The following support functions use the _32/_64 extensions instead of
134// type overloading so that signed and unsigned integers can be used without
135// ambiguity.
136
137/// Return the high 32 bits of a 64 bit value.
138constexpr inline uint32_t Hi_32(uint64_t Value) {
139 return static_cast<uint32_t>(Value >> 32);
140}
141
142/// Return the low 32 bits of a 64 bit value.
143constexpr inline uint32_t Lo_32(uint64_t Value) {
144 return static_cast<uint32_t>(Value);
145}
146
147/// Make a 64-bit integer from a high / low pair of 32-bit integers.
149 return ((uint64_t)High << 32) | (uint64_t)Low;
150}
151
152/// Checks if an integer fits into the given bit width.
153template <unsigned N> constexpr inline bool isInt(int64_t x) {
154 if constexpr (N == 0)
155 return 0 == x;
156 if constexpr (N == 8)
157 return static_cast<int8_t>(x) == x;
158 if constexpr (N == 16)
159 return static_cast<int16_t>(x) == x;
160 if constexpr (N == 32)
161 return static_cast<int32_t>(x) == x;
162 if constexpr (N < 64)
163 return -(INT64_C(1) << (N - 1)) <= x && x < (INT64_C(1) << (N - 1));
164 (void)x; // MSVC v19.25 warns that x is unused.
165 return true;
166}
167
168/// Checks if a signed integer is an N bit number shifted left by S.
169template <unsigned N, unsigned S>
170constexpr inline bool isShiftedInt(int64_t x) {
171 static_assert(S < 64, "isShiftedInt<N, S> with S >= 64 is too much.");
172 static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide.");
173 return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
174}
175
176/// Checks if an unsigned integer fits into the given bit width.
177template <unsigned N> constexpr inline bool isUInt(uint64_t x) {
178 if constexpr (N == 0)
179 return 0 == x;
180 if constexpr (N == 8)
181 return static_cast<uint8_t>(x) == x;
182 if constexpr (N == 16)
183 return static_cast<uint16_t>(x) == x;
184 if constexpr (N == 32)
185 return static_cast<uint32_t>(x) == x;
186 if constexpr (N < 64)
187 return x < (UINT64_C(1) << (N));
188 (void)x; // MSVC v19.25 warns that x is unused.
189 return true;
190}
191
192/// Checks if a unsigned integer is an N bit number shifted left by S.
193template <unsigned N, unsigned S>
194constexpr inline bool isShiftedUInt(uint64_t x) {
195 static_assert(S < 64, "isShiftedUInt<N, S> with S >= 64 is too much.");
196 static_assert(N + S <= 64,
197 "isShiftedUInt<N, S> with N + S > 64 is too wide.");
198 // S must be strictly less than 64. So 1 << S is not undefined behavior.
199 return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
200}
201
202/// Gets the maximum value for a N-bit unsigned integer.
204 assert(N <= 64 && "integer width out of range");
205
206 // uint64_t(1) << 64 is undefined behavior, so we can't do
207 // (uint64_t(1) << N) - 1
208 // without checking first that N != 64. But this works and doesn't have a
209 // branch for N != 0.
210 // Unfortunately, shifting a uint64_t right by 64 bit is undefined
211 // behavior, so the condition on N == 0 is necessary. Fortunately, most
212 // optimizers do not emit branches for this check.
213 if (N == 0)
214 return 0;
215 return UINT64_MAX >> (64 - N);
216}
217
218/// Gets the minimum value for a N-bit signed integer.
219inline int64_t minIntN(int64_t N) {
220 assert(N <= 64 && "integer width out of range");
221
222 if (N == 0)
223 return 0;
224 return UINT64_C(1) + ~(UINT64_C(1) << (N - 1));
225}
226
227/// Gets the maximum value for a N-bit signed integer.
228inline int64_t maxIntN(int64_t N) {
229 assert(N <= 64 && "integer width out of range");
230
231 // This relies on two's complement wraparound when N == 64, so we convert to
232 // int64_t only at the very end to avoid UB.
233 if (N == 0)
234 return 0;
235 return (UINT64_C(1) << (N - 1)) - 1;
236}
237
238/// Checks if an unsigned integer fits into the given (dynamic) bit width.
239inline bool isUIntN(unsigned N, uint64_t x) {
240 return N >= 64 || x <= maxUIntN(N);
241}
242
243/// Checks if an signed integer fits into the given (dynamic) bit width.
244inline bool isIntN(unsigned N, int64_t x) {
245 return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N));
246}
247
248/// Return true if the argument is a non-empty sequence of ones starting at the
249/// least significant bit with the remainder zero (32 bit version).
250/// Ex. isMask_32(0x0000FFFFU) == true.
251constexpr inline bool isMask_32(uint32_t Value) {
252 return Value && ((Value + 1) & Value) == 0;
253}
254
255/// Return true if the argument is a non-empty sequence of ones starting at the
256/// least significant bit with the remainder zero (64 bit version).
257constexpr inline bool isMask_64(uint64_t Value) {
258 return Value && ((Value + 1) & Value) == 0;
259}
260
261/// Return true if the argument contains a non-empty sequence of ones with the
262/// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
263constexpr inline bool isShiftedMask_32(uint32_t Value) {
264 return Value && isMask_32((Value - 1) | Value);
265}
266
267/// Return true if the argument contains a non-empty sequence of ones with the
268/// remainder zero (64 bit version.)
269constexpr inline bool isShiftedMask_64(uint64_t Value) {
270 return Value && isMask_64((Value - 1) | Value);
271}
272
273/// Return true if the argument is a power of two > 0.
274/// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
275constexpr inline bool isPowerOf2_32(uint32_t Value) {
277}
278
279/// Return true if the argument is a power of two > 0 (64 bit edition.)
280constexpr inline bool isPowerOf2_64(uint64_t Value) {
282}
283
284/// Return true if the argument contains a non-empty sequence of ones with the
285/// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
286/// If true, \p MaskIdx will specify the index of the lowest set bit and \p
287/// MaskLen is updated to specify the length of the mask, else neither are
288/// updated.
289inline bool isShiftedMask_32(uint32_t Value, unsigned &MaskIdx,
290 unsigned &MaskLen) {
292 return false;
293 MaskIdx = llvm::countr_zero(Value);
294 MaskLen = llvm::popcount(Value);
295 return true;
296}
297
298/// Return true if the argument contains a non-empty sequence of ones with the
299/// remainder zero (64 bit version.) If true, \p MaskIdx will specify the index
300/// of the lowest set bit and \p MaskLen is updated to specify the length of the
301/// mask, else neither are updated.
302inline bool isShiftedMask_64(uint64_t Value, unsigned &MaskIdx,
303 unsigned &MaskLen) {
305 return false;
306 MaskIdx = llvm::countr_zero(Value);
307 MaskLen = llvm::popcount(Value);
308 return true;
309}
310
311/// Compile time Log2.
312/// Valid only for positive powers of two.
313template <size_t kValue> constexpr inline size_t CTLog2() {
314 static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue),
315 "Value is not a valid power of 2");
316 return 1 + CTLog2<kValue / 2>();
317}
318
319template <> constexpr inline size_t CTLog2<1>() { return 0; }
320
321/// Return the floor log base 2 of the specified value, -1 if the value is zero.
322/// (32 bit edition.)
323/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
324inline unsigned Log2_32(uint32_t Value) {
325 return 31 - llvm::countl_zero(Value);
326}
327
328/// Return the floor log base 2 of the specified value, -1 if the value is zero.
329/// (64 bit edition.)
330inline unsigned Log2_64(uint64_t Value) {
331 return 63 - llvm::countl_zero(Value);
332}
333
334/// Return the ceil log base 2 of the specified value, 32 if the value is zero.
335/// (32 bit edition).
336/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
337inline unsigned Log2_32_Ceil(uint32_t Value) {
338 return 32 - llvm::countl_zero(Value - 1);
339}
340
341/// Return the ceil log base 2 of the specified value, 64 if the value is zero.
342/// (64 bit edition.)
343inline unsigned Log2_64_Ceil(uint64_t Value) {
344 return 64 - llvm::countl_zero(Value - 1);
345}
346
347/// A and B are either alignments or offsets. Return the minimum alignment that
348/// may be assumed after adding the two together.
349constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) {
350 // The largest power of 2 that divides both A and B.
351 //
352 // Replace "-Value" by "1+~Value" in the following commented code to avoid
353 // MSVC warning C4146
354 // return (A | B) & -(A | B);
355 return (A | B) & (1 + ~(A | B));
356}
357
358/// Returns the next power of two (in 64-bits) that is strictly greater than A.
359/// Returns zero on overflow.
360constexpr inline uint64_t NextPowerOf2(uint64_t A) {
361 A |= (A >> 1);
362 A |= (A >> 2);
363 A |= (A >> 4);
364 A |= (A >> 8);
365 A |= (A >> 16);
366 A |= (A >> 32);
367 return A + 1;
368}
369
370/// Returns the power of two which is greater than or equal to the given value.
371/// Essentially, it is a ceil operation across the domain of powers of two.
373 if (!A || A > UINT64_MAX / 2)
374 return 0;
375 return UINT64_C(1) << Log2_64_Ceil(A);
376}
377
378/// Returns the next integer (mod 2**64) that is greater than or equal to
379/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
380///
381/// Examples:
382/// \code
383/// alignTo(5, 8) = 8
384/// alignTo(17, 8) = 24
385/// alignTo(~0LL, 8) = 0
386/// alignTo(321, 255) = 510
387/// \endcode
389 assert(Align != 0u && "Align can't be 0.");
390 return (Value + Align - 1) / Align * Align;
391}
392
394 assert(Align != 0 && (Align & (Align - 1)) == 0 &&
395 "Align must be a power of 2");
396 // Replace unary minus to avoid compilation error on Windows:
397 // "unary minus operator applied to unsigned type, result still unsigned"
398 uint64_t negAlign = (~Align) + 1;
399 return (Value + Align - 1) & negAlign;
400}
401
402/// If non-zero \p Skew is specified, the return value will be a minimal integer
403/// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for
404/// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p
405/// Skew mod \p A'. \p Align must be non-zero.
406///
407/// Examples:
408/// \code
409/// alignTo(5, 8, 7) = 7
410/// alignTo(17, 8, 1) = 17
411/// alignTo(~0LL, 8, 3) = 3
412/// alignTo(321, 255, 42) = 552
413/// \endcode
415 assert(Align != 0u && "Align can't be 0.");
416 Skew %= Align;
417 return alignTo(Value - Skew, Align) + Skew;
418}
419
420/// Returns the next integer (mod 2**64) that is greater than or equal to
421/// \p Value and is a multiple of \c Align. \c Align must be non-zero.
422template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) {
423 static_assert(Align != 0u, "Align must be non-zero");
424 return (Value + Align - 1) / Align * Align;
425}
426
427/// Returns the integer ceil(Numerator / Denominator).
428inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) {
429 return alignTo(Numerator, Denominator) / Denominator;
430}
431
432/// Returns the integer nearest(Numerator / Denominator).
433inline uint64_t divideNearest(uint64_t Numerator, uint64_t Denominator) {
434 return (Numerator + (Denominator / 2)) / Denominator;
435}
436
437/// Returns the largest uint64_t less than or equal to \p Value and is
438/// \p Skew mod \p Align. \p Align must be non-zero
440 assert(Align != 0u && "Align can't be 0.");
441 Skew %= Align;
442 return (Value - Skew) / Align * Align + Skew;
443}
444
445/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
446/// Requires B <= 32.
447template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) {
448 static_assert(B <= 32, "Bit width out of range.");
449 if constexpr (B == 0)
450 return 0;
451 return int32_t(X << (32 - B)) >> (32 - B);
452}
453
454/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
455/// Requires B <= 32.
456inline int32_t SignExtend32(uint32_t X, unsigned B) {
457 assert(B <= 32 && "Bit width out of range.");
458 if (B == 0)
459 return 0;
460 return int32_t(X << (32 - B)) >> (32 - B);
461}
462
463/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
464/// Requires B <= 64.
465template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) {
466 static_assert(B <= 64, "Bit width out of range.");
467 if constexpr (B == 0)
468 return 0;
469 return int64_t(x << (64 - B)) >> (64 - B);
470}
471
472/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
473/// Requires B <= 64.
474inline int64_t SignExtend64(uint64_t X, unsigned B) {
475 assert(B <= 64 && "Bit width out of range.");
476 if (B == 0)
477 return 0;
478 return int64_t(X << (64 - B)) >> (64 - B);
479}
480
481/// Subtract two unsigned integers, X and Y, of type T and return the absolute
482/// value of the result.
483template <typename T>
484std::enable_if_t<std::is_unsigned_v<T>, T> AbsoluteDifference(T X, T Y) {
485 return X > Y ? (X - Y) : (Y - X);
486}
487
488/// Add two unsigned integers, X and Y, of type T. Clamp the result to the
489/// maximum representable value of T on overflow. ResultOverflowed indicates if
490/// the result is larger than the maximum representable value of type T.
491template <typename T>
492std::enable_if_t<std::is_unsigned_v<T>, T>
493SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
494 bool Dummy;
495 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
496 // Hacker's Delight, p. 29
497 T Z = X + Y;
498 Overflowed = (Z < X || Z < Y);
499 if (Overflowed)
500 return std::numeric_limits<T>::max();
501 else
502 return Z;
503}
504
505/// Add multiple unsigned integers of type T. Clamp the result to the
506/// maximum representable value of T on overflow.
507template <class T, class... Ts>
508std::enable_if_t<std::is_unsigned_v<T>, T> SaturatingAdd(T X, T Y, T Z,
509 Ts... Args) {
510 bool Overflowed = false;
511 T XY = SaturatingAdd(X, Y, &Overflowed);
512 if (Overflowed)
513 return SaturatingAdd(std::numeric_limits<T>::max(), T(1), Args...);
514 return SaturatingAdd(XY, Z, Args...);
515}
516
517/// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the
518/// maximum representable value of T on overflow. ResultOverflowed indicates if
519/// the result is larger than the maximum representable value of type T.
520template <typename T>
521std::enable_if_t<std::is_unsigned_v<T>, T>
522SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
523 bool Dummy;
524 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
525
526 // Hacker's Delight, p. 30 has a different algorithm, but we don't use that
527 // because it fails for uint16_t (where multiplication can have undefined
528 // behavior due to promotion to int), and requires a division in addition
529 // to the multiplication.
530
531 Overflowed = false;
532
533 // Log2(Z) would be either Log2Z or Log2Z + 1.
534 // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
535 // will necessarily be less than Log2Max as desired.
536 int Log2Z = Log2_64(X) + Log2_64(Y);
537 const T Max = std::numeric_limits<T>::max();
538 int Log2Max = Log2_64(Max);
539 if (Log2Z < Log2Max) {
540 return X * Y;
541 }
542 if (Log2Z > Log2Max) {
543 Overflowed = true;
544 return Max;
545 }
546
547 // We're going to use the top bit, and maybe overflow one
548 // bit past it. Multiply all but the bottom bit then add
549 // that on at the end.
550 T Z = (X >> 1) * Y;
551 if (Z & ~(Max >> 1)) {
552 Overflowed = true;
553 return Max;
554 }
555 Z <<= 1;
556 if (X & 1)
557 return SaturatingAdd(Z, Y, ResultOverflowed);
558
559 return Z;
560}
561
562/// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to
563/// the product. Clamp the result to the maximum representable value of T on
564/// overflow. ResultOverflowed indicates if the result is larger than the
565/// maximum representable value of type T.
566template <typename T>
567std::enable_if_t<std::is_unsigned_v<T>, T>
568SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) {
569 bool Dummy;
570 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
571
572 T Product = SaturatingMultiply(X, Y, &Overflowed);
573 if (Overflowed)
574 return Product;
575
576 return SaturatingAdd(A, Product, &Overflowed);
577}
578
579/// Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
580extern const float huge_valf;
581
582/// Add two signed integers, computing the two's complement truncated result,
583/// returning true if overflow occurred.
584template <typename T>
585std::enable_if_t<std::is_signed_v<T>, T> AddOverflow(T X, T Y, T &Result) {
586#if __has_builtin(__builtin_add_overflow)
587 return __builtin_add_overflow(X, Y, &Result);
588#else
589 // Perform the unsigned addition.
590 using U = std::make_unsigned_t<T>;
591 const U UX = static_cast<U>(X);
592 const U UY = static_cast<U>(Y);
593 const U UResult = UX + UY;
594
595 // Convert to signed.
596 Result = static_cast<T>(UResult);
597
598 // Adding two positive numbers should result in a positive number.
599 if (X > 0 && Y > 0)
600 return Result <= 0;
601 // Adding two negatives should result in a negative number.
602 if (X < 0 && Y < 0)
603 return Result >= 0;
604 return false;
605#endif
606}
607
608/// Subtract two signed integers, computing the two's complement truncated
609/// result, returning true if an overflow ocurred.
610template <typename T>
611std::enable_if_t<std::is_signed_v<T>, T> SubOverflow(T X, T Y, T &Result) {
612#if __has_builtin(__builtin_sub_overflow)
613 return __builtin_sub_overflow(X, Y, &Result);
614#else
615 // Perform the unsigned addition.
616 using U = std::make_unsigned_t<T>;
617 const U UX = static_cast<U>(X);
618 const U UY = static_cast<U>(Y);
619 const U UResult = UX - UY;
620
621 // Convert to signed.
622 Result = static_cast<T>(UResult);
623
624 // Subtracting a positive number from a negative results in a negative number.
625 if (X <= 0 && Y > 0)
626 return Result >= 0;
627 // Subtracting a negative number from a positive results in a positive number.
628 if (X >= 0 && Y < 0)
629 return Result <= 0;
630 return false;
631#endif
632}
633
634/// Multiply two signed integers, computing the two's complement truncated
635/// result, returning true if an overflow ocurred.
636template <typename T>
637std::enable_if_t<std::is_signed_v<T>, T> MulOverflow(T X, T Y, T &Result) {
638 // Perform the unsigned multiplication on absolute values.
639 using U = std::make_unsigned_t<T>;
640 const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X);
641 const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y);
642 const U UResult = UX * UY;
643
644 // Convert to signed.
645 const bool IsNegative = (X < 0) ^ (Y < 0);
646 Result = IsNegative ? (0 - UResult) : UResult;
647
648 // If any of the args was 0, result is 0 and no overflow occurs.
649 if (UX == 0 || UY == 0)
650 return false;
651
652 // UX and UY are in [1, 2^n], where n is the number of digits.
653 // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for
654 // positive) divided by an argument compares to the other.
655 if (IsNegative)
656 return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY;
657 else
658 return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY;
659}
660
661} // namespace llvm
662
663#endif
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
#define R6(n)
#define T
uint64_t High
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file implements the C++20 <bit> header.
LLVM Value Representation.
Definition: Value.h:74
#define UINT64_MAX
Definition: DataTypes.h:77
constexpr float inv_sqrtpif
Definition: MathExtras.h:55
constexpr double sqrt2
Definition: MathExtras.h:41
constexpr double inv_sqrt2
Definition: MathExtras.h:42
constexpr double inv_pi
Definition: MathExtras.h:38
constexpr double sqrtpi
Definition: MathExtras.h:39
constexpr float pif
Definition: MathExtras.h:52
constexpr float sqrtpif
Definition: MathExtras.h:54
constexpr float log10ef
Definition: MathExtras.h:51
constexpr float ln10f
Definition: MathExtras.h:49
constexpr double ln2
Definition: MathExtras.h:33
constexpr double inv_sqrt3
Definition: MathExtras.h:44
constexpr double egamma
Definition: MathExtras.h:32
constexpr float phif
Definition: MathExtras.h:60
constexpr float sqrt3f
Definition: MathExtras.h:58
constexpr double ln10
Definition: MathExtras.h:34
constexpr double inv_sqrtpi
Definition: MathExtras.h:40
constexpr float log2ef
Definition: MathExtras.h:50
constexpr double e
Definition: MathExtras.h:31
constexpr double phi
Definition: MathExtras.h:45
constexpr float sqrt2f
Definition: MathExtras.h:56
constexpr double sqrt3
Definition: MathExtras.h:43
constexpr float inv_pif
Definition: MathExtras.h:53
constexpr float inv_sqrt2f
Definition: MathExtras.h:57
constexpr double log10e
Definition: MathExtras.h:36
constexpr double log2e
Definition: MathExtras.h:35
constexpr float egammaf
Definition: MathExtras.h:47
constexpr double pi
Definition: MathExtras.h:37
constexpr float ln2f
Definition: MathExtras.h:48
constexpr float ef
Definition: MathExtras.h:46
constexpr float inv_sqrt3f
Definition: MathExtras.h:59
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition: MathExtras.h:337
std::enable_if_t< std::is_signed_v< T >, T > MulOverflow(T X, T Y, T &Result)
Multiply two signed integers, computing the two's complement truncated result, returning true if an o...
Definition: MathExtras.h:637
int64_t maxIntN(int64_t N)
Gets the maximum value for a N-bit signed integer.
Definition: MathExtras.h:228
uint64_t alignToPowerOf2(uint64_t Value, uint64_t Align)
Definition: MathExtras.h:393
int popcount(T Value) noexcept
Count the number of set bits in a value.
Definition: bit.h:385
constexpr size_t CTLog2()
Compile time Log2.
Definition: MathExtras.h:313
uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition: MathExtras.h:428
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
Definition: MathExtras.h:153
bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
Definition: MathExtras.h:239
constexpr size_t CTLog2< 1 >()
Definition: MathExtras.h:319
unsigned Log2_64_Ceil(uint64_t Value)
Return the ceil log base 2 of the specified value, 64 if the value is zero.
Definition: MathExtras.h:343
constexpr bool isMask_32(uint32_t Value)
Return true if the argument is a non-empty sequence of ones starting at the least significant bit wit...
Definition: MathExtras.h:251
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition: MathExtras.h:280
constexpr bool isShiftedMask_32(uint32_t Value)
Return true if the argument contains a non-empty sequence of ones with the remainder zero (32 bit ver...
Definition: MathExtras.h:263
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition: MathExtras.h:330
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
Definition: MathExtras.h:372
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition: bit.h:215
constexpr bool isShiftedMask_64(uint64_t Value)
Return true if the argument contains a non-empty sequence of ones with the remainder zero (64 bit ver...
Definition: MathExtras.h:269
std::enable_if_t< std::is_unsigned_v< T >, T > AbsoluteDifference(T X, T Y)
Subtract two unsigned integers, X and Y, of type T and return the absolute value of the result.
Definition: MathExtras.h:484
constexpr bool has_single_bit(T Value) noexcept
Definition: bit.h:146
uint64_t divideNearest(uint64_t Numerator, uint64_t Denominator)
Returns the integer nearest(Numerator / Denominator).
Definition: MathExtras.h:433
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition: MathExtras.h:324
int countl_zero(T Val)
Count number of 0's from the most significant bit to the least stopping at the first 1.
Definition: bit.h:281
T maskLeadingZeros(unsigned N)
Create a bitmask with the N left-most bits set to 0, and all other bits set to 1.
Definition: MathExtras.h:88
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition: MathExtras.h:275
T maskTrailingOnes(unsigned N)
Create a bitmask with the N right-most bits set to 1, and all other bits set to 0.
Definition: MathExtras.h:65
T maskTrailingZeros(unsigned N)
Create a bitmask with the N right-most bits set to 0, and all other bits set to 1.
Definition: MathExtras.h:82
constexpr uint32_t Hi_32(uint64_t Value)
Return the high 32 bits of a 64 bit value.
Definition: MathExtras.h:138
constexpr bool isMask_64(uint64_t Value)
Return true if the argument is a non-empty sequence of ones starting at the least significant bit wit...
Definition: MathExtras.h:257
std::enable_if_t< std::is_unsigned_v< T >, T > SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed=nullptr)
Multiply two unsigned integers, X and Y, and add the unsigned integer, A to the product.
Definition: MathExtras.h:568
constexpr bool isUInt(uint64_t x)
Checks if an unsigned integer fits into the given bit width.
Definition: MathExtras.h:177
constexpr uint32_t Lo_32(uint64_t Value)
Return the low 32 bits of a 64 bit value.
Definition: MathExtras.h:143
const float huge_valf
Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
Definition: MathExtras.cpp:28
std::enable_if_t< std::is_unsigned_v< T >, T > SaturatingMultiply(T X, T Y, bool *ResultOverflowed=nullptr)
Multiply two unsigned integers, X and Y, of type T.
Definition: MathExtras.h:522
bool isIntN(unsigned N, int64_t x)
Checks if an signed integer fits into the given (dynamic) bit width.
Definition: MathExtras.h:244
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
constexpr uint64_t MinAlign(uint64_t A, uint64_t B)
A and B are either alignments or offsets.
Definition: MathExtras.h:349
int64_t minIntN(int64_t N)
Gets the minimum value for a N-bit signed integer.
Definition: MathExtras.h:219
constexpr bool isShiftedInt(int64_t x)
Checks if a signed integer is an N bit number shifted left by S.
Definition: MathExtras.h:170
constexpr int32_t SignExtend32(uint32_t X)
Sign-extend the number in the bottom B bits of X to a 32-bit integer.
Definition: MathExtras.h:447
T maskLeadingOnes(unsigned N)
Create a bitmask with the N left-most bits set to 1, and all other bits set to 0.
Definition: MathExtras.h:76
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
Definition: MathExtras.h:465
std::enable_if_t< std::is_signed_v< T >, T > AddOverflow(T X, T Y, T &Result)
Add two signed integers, computing the two's complement truncated result, returning true if overflow ...
Definition: MathExtras.h:585
uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew=0)
Returns the largest uint64_t less than or equal to Value and is Skew mod Align.
Definition: MathExtras.h:439
std::enable_if_t< std::is_signed_v< T >, T > SubOverflow(T X, T Y, T &Result)
Subtract two signed integers, computing the two's complement truncated result, returning true if an o...
Definition: MathExtras.h:611
static const unsigned char BitReverseTable256[256]
Macro compressed bit reversal table for 256 bits.
Definition: MathExtras.h:95
T reverseBits(T Val)
Reverse the bits in Val.
Definition: MathExtras.h:106
std::enable_if_t< std::is_unsigned_v< T >, T > SaturatingAdd(T X, T Y, bool *ResultOverflowed=nullptr)
Add two unsigned integers, X and Y, of type T.
Definition: MathExtras.h:493
constexpr bool isShiftedUInt(uint64_t x)
Checks if a unsigned integer is an N bit number shifted left by S.
Definition: MathExtras.h:194
constexpr uint64_t Make_64(uint32_t High, uint32_t Low)
Make a 64-bit integer from a high / low pair of 32-bit integers.
Definition: MathExtras.h:148
uint64_t maxUIntN(uint64_t N)
Gets the maximum value for a N-bit unsigned integer.
Definition: MathExtras.h:203
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
Definition: MathExtras.h:360
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39