LLVM 23.0.0git
ELFObjectFile.cpp
Go to the documentation of this file.
1//===- ELFObjectFile.cpp - ELF object file implementation -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Part of the ELFObjectFile class implementation.
10//
11//===----------------------------------------------------------------------===//
12
17#include "llvm/Object/ELF.h"
19#include "llvm/Object/Error.h"
29#include <algorithm>
30#include <cstddef>
31#include <cstdint>
32#include <memory>
33#include <optional>
34#include <string>
35#include <utility>
36
37using namespace llvm;
38using namespace object;
39
41 {"None", "NOTYPE", ELF::STT_NOTYPE},
42 {"Object", "OBJECT", ELF::STT_OBJECT},
43 {"Function", "FUNC", ELF::STT_FUNC},
44 {"Section", "SECTION", ELF::STT_SECTION},
45 {"File", "FILE", ELF::STT_FILE},
46 {"Common", "COMMON", ELF::STT_COMMON},
47 {"TLS", "TLS", ELF::STT_TLS},
48 {"Unknown", "<unknown>: 7", 7},
49 {"Unknown", "<unknown>: 8", 8},
50 {"Unknown", "<unknown>: 9", 9},
51 {"GNU_IFunc", "IFUNC", ELF::STT_GNU_IFUNC},
52 {"OS Specific", "<OS specific>: 11", 11},
53 {"OS Specific", "<OS specific>: 12", 12},
54 {"Proc Specific", "<processor specific>: 13", 13},
55 {"Proc Specific", "<processor specific>: 14", 14},
56 {"Proc Specific", "<processor specific>: 15", 15}
57};
58
61
62template <class ELFT>
64createPtr(MemoryBufferRef Object, bool InitContent) {
65 auto Ret = ELFObjectFile<ELFT>::create(Object, InitContent);
66 if (Error E = Ret.takeError())
67 return std::move(E);
68 return std::make_unique<ELFObjectFile<ELFT>>(std::move(*Ret));
69}
70
71Expected<std::unique_ptr<ObjectFile>>
73 std::pair<unsigned char, unsigned char> Ident =
74 getElfArchType(Obj.getBuffer());
75 std::size_t MaxAlignment =
76 1ULL << llvm::countr_zero(
77 reinterpret_cast<uintptr_t>(Obj.getBufferStart()));
78
79 if (MaxAlignment < 2)
80 return createError("Insufficient alignment");
81
82 if (Ident.first == ELF::ELFCLASS32) {
83 if (Ident.second == ELF::ELFDATA2LSB)
84 return createPtr<ELF32LE>(Obj, InitContent);
85 else if (Ident.second == ELF::ELFDATA2MSB)
86 return createPtr<ELF32BE>(Obj, InitContent);
87 else
88 return createError("Invalid ELF data");
89 } else if (Ident.first == ELF::ELFCLASS64) {
90 if (Ident.second == ELF::ELFDATA2LSB)
91 return createPtr<ELF64LE>(Obj, InitContent);
92 else if (Ident.second == ELF::ELFDATA2MSB)
93 return createPtr<ELF64BE>(Obj, InitContent);
94 else
95 return createError("Invalid ELF data");
96 }
97 return createError("Invalid ELF class");
98}
99
100SubtargetFeatures ELFObjectFileBase::getMIPSFeatures() const {
101 SubtargetFeatures Features;
102 unsigned PlatformFlags = getPlatformFlags();
103
104 switch (PlatformFlags & ELF::EF_MIPS_ARCH) {
106 break;
108 Features.AddFeature("mips2");
109 break;
111 Features.AddFeature("mips3");
112 break;
114 Features.AddFeature("mips4");
115 break;
117 Features.AddFeature("mips5");
118 break;
120 Features.AddFeature("mips32");
121 break;
123 Features.AddFeature("mips64");
124 break;
126 Features.AddFeature("mips32r2");
127 break;
129 Features.AddFeature("mips64r2");
130 break;
132 Features.AddFeature("mips32r6");
133 break;
135 Features.AddFeature("mips64r6");
136 break;
137 default:
138 llvm_unreachable("Unknown EF_MIPS_ARCH value");
139 }
140
141 switch (PlatformFlags & ELF::EF_MIPS_MACH) {
143 // No feature associated with this value.
144 break;
146 Features.AddFeature("cnmips");
147 break;
148 default:
149 llvm_unreachable("Unknown EF_MIPS_ARCH value");
150 }
151
152 if (PlatformFlags & ELF::EF_MIPS_ARCH_ASE_M16)
153 Features.AddFeature("mips16");
154 if (PlatformFlags & ELF::EF_MIPS_MICROMIPS)
155 Features.AddFeature("micromips");
156
157 return Features;
158}
159
160SubtargetFeatures ELFObjectFileBase::getARMFeatures() const {
161 SubtargetFeatures Features;
162 ARMAttributeParser Attributes;
164 consumeError(std::move(E));
165 return SubtargetFeatures();
166 }
167
168 // both ARMv7-M and R have to support thumb hardware div
169 bool isV7 = false;
170 std::optional<unsigned> Attr =
171 Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
172 if (Attr)
173 isV7 = *Attr == ARMBuildAttrs::v7;
174
175 Attr = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile);
176 if (Attr) {
177 switch (*Attr) {
179 Features.AddFeature("aclass");
180 break;
182 Features.AddFeature("rclass");
183 if (isV7)
184 Features.AddFeature("hwdiv");
185 break;
187 Features.AddFeature("mclass");
188 if (isV7)
189 Features.AddFeature("hwdiv");
190 break;
191 }
192 }
193
194 Attr = Attributes.getAttributeValue(ARMBuildAttrs::THUMB_ISA_use);
195 if (Attr) {
196 switch (*Attr) {
197 default:
198 break;
200 Features.AddFeature("thumb", false);
201 Features.AddFeature("thumb2", false);
202 break;
204 Features.AddFeature("thumb2");
205 break;
206 }
207 }
208
209 Attr = Attributes.getAttributeValue(ARMBuildAttrs::FP_arch);
210 if (Attr) {
211 switch (*Attr) {
212 default:
213 break;
215 Features.AddFeature("vfp2sp", false);
216 Features.AddFeature("vfp3d16sp", false);
217 Features.AddFeature("vfp4d16sp", false);
218 break;
220 Features.AddFeature("vfp2");
221 break;
224 Features.AddFeature("vfp3");
225 break;
228 Features.AddFeature("vfp4");
229 break;
230 }
231 }
232
233 Attr = Attributes.getAttributeValue(ARMBuildAttrs::Advanced_SIMD_arch);
234 if (Attr) {
235 switch (*Attr) {
236 default:
237 break;
239 Features.AddFeature("neon", false);
240 Features.AddFeature("fp16", false);
241 break;
243 Features.AddFeature("neon");
244 break;
246 Features.AddFeature("neon");
247 Features.AddFeature("fp16");
248 break;
249 }
250 }
251
252 Attr = Attributes.getAttributeValue(ARMBuildAttrs::MVE_arch);
253 if (Attr) {
254 switch (*Attr) {
255 default:
256 break;
258 Features.AddFeature("mve", false);
259 Features.AddFeature("mve.fp", false);
260 break;
262 Features.AddFeature("mve.fp", false);
263 Features.AddFeature("mve");
264 break;
266 Features.AddFeature("mve.fp");
267 break;
268 }
269 }
270
271 Attr = Attributes.getAttributeValue(ARMBuildAttrs::DIV_use);
272 if (Attr) {
273 switch (*Attr) {
274 default:
275 break;
277 Features.AddFeature("hwdiv", false);
278 Features.AddFeature("hwdiv-arm", false);
279 break;
281 Features.AddFeature("hwdiv");
282 Features.AddFeature("hwdiv-arm");
283 break;
284 }
285 }
286
287 return Features;
288}
289
290static std::optional<std::string> hexagonAttrToFeatureString(unsigned Attr) {
291 switch (Attr) {
292 case 5:
293 return "v5";
294 case 55:
295 return "v55";
296 case 60:
297 return "v60";
298 case 62:
299 return "v62";
300 case 65:
301 return "v65";
302 case 67:
303 return "v67";
304 case 68:
305 return "v68";
306 case 69:
307 return "v69";
308 case 71:
309 return "v71";
310 case 73:
311 return "v73";
312 case 75:
313 return "v75";
314 case 79:
315 return "v79";
316 case 81:
317 return "v81";
318 default:
319 return {};
320 }
321}
322
323SubtargetFeatures ELFObjectFileBase::getHexagonFeatures() const {
324 SubtargetFeatures Features;
325 HexagonAttributeParser Parser;
326 if (Error E = getBuildAttributes(Parser)) {
327 // Return no attributes if none can be read.
328 // This behavior is important for backwards compatibility.
329 consumeError(std::move(E));
330 return Features;
331 }
332 std::optional<unsigned> Attr;
333
334 if ((Attr = Parser.getAttributeValue(HexagonAttrs::ARCH))) {
335 if (std::optional<std::string> FeatureString =
337 Features.AddFeature(*FeatureString);
338 }
339
340 if ((Attr = Parser.getAttributeValue(HexagonAttrs::HVXARCH))) {
341 std::optional<std::string> FeatureString =
343 // There is no corresponding hvx arch for v5 and v55.
344 if (FeatureString && *Attr >= 60)
345 Features.AddFeature("hvx" + *FeatureString);
346 }
347
348 if ((Attr = Parser.getAttributeValue(HexagonAttrs::HVXIEEEFP)))
349 if (*Attr)
350 Features.AddFeature("hvx-ieee-fp");
351
352 if ((Attr = Parser.getAttributeValue(HexagonAttrs::HVXQFLOAT)))
353 if (*Attr)
354 Features.AddFeature("hvx-qfloat");
355
356 if ((Attr = Parser.getAttributeValue(HexagonAttrs::ZREG)))
357 if (*Attr)
358 Features.AddFeature("zreg");
359
360 if ((Attr = Parser.getAttributeValue(HexagonAttrs::AUDIO)))
361 if (*Attr)
362 Features.AddFeature("audio");
363
364 if ((Attr = Parser.getAttributeValue(HexagonAttrs::CABAC)))
365 if (*Attr)
366 Features.AddFeature("cabac");
367
368 return Features;
369}
370
371Expected<SubtargetFeatures> ELFObjectFileBase::getRISCVFeatures() const {
372 SubtargetFeatures Features;
373 unsigned PlatformFlags = getPlatformFlags();
374
375 if (PlatformFlags & ELF::EF_RISCV_RVC) {
376 Features.AddFeature("zca");
377 }
378
379 RISCVAttributeParser Attributes;
381 return std::move(E);
382 }
383
384 std::optional<StringRef> Attr =
385 Attributes.getAttributeString(RISCVAttrs::ARCH);
386 if (Attr) {
387 auto ParseResult = RISCVISAInfo::parseNormalizedArchString(*Attr);
388 if (!ParseResult)
389 return ParseResult.takeError();
390 auto &ISAInfo = *ParseResult;
391
392 if (ISAInfo->getXLen() == 32)
393 Features.AddFeature("64bit", false);
394 else if (ISAInfo->getXLen() == 64)
395 Features.AddFeature("64bit");
396 else
397 llvm_unreachable("XLEN should be 32 or 64.");
398
399 Features.addFeaturesVector(ISAInfo->toFeatures());
400 }
401
402 return Features;
403}
404
405SubtargetFeatures ELFObjectFileBase::getLoongArchFeatures() const {
406 SubtargetFeatures Features;
407
410 break;
412 Features.AddFeature("d");
413 // D implies F according to LoongArch ISA spec.
414 [[fallthrough]];
416 Features.AddFeature("f");
417 break;
418 }
419
420 return Features;
421}
422
424 switch (getEMachine()) {
425 case ELF::EM_MIPS:
426 return getMIPSFeatures();
427 case ELF::EM_ARM:
428 return getARMFeatures();
429 case ELF::EM_RISCV:
430 return getRISCVFeatures();
432 return getLoongArchFeatures();
433 case ELF::EM_HEXAGON:
434 return getHexagonFeatures();
435 default:
436 return SubtargetFeatures();
437 }
438}
439
440std::optional<StringRef> ELFObjectFileBase::tryGetCPUName() const {
441 switch (getEMachine()) {
442 case ELF::EM_AMDGPU:
443 return getAMDGPUCPUName();
444 case ELF::EM_CUDA:
445 return getNVPTXCPUName();
446 case ELF::EM_PPC:
447 case ELF::EM_PPC64:
448 return StringRef("future");
449 case ELF::EM_BPF:
450 return StringRef("v4");
451 default:
452 return std::nullopt;
453 }
454}
455
456StringRef ELFObjectFileBase::getAMDGPUCPUName() const {
458 unsigned CPU = getPlatformFlags() & ELF::EF_AMDGPU_MACH;
459
460 switch (CPU) {
461 // Radeon HD 2000/3000 Series (R600).
463 return "r600";
465 return "r630";
467 return "rs880";
469 return "rv670";
470
471 // Radeon HD 4000 Series (R700).
473 return "rv710";
475 return "rv730";
477 return "rv770";
478
479 // Radeon HD 5000 Series (Evergreen).
481 return "cedar";
483 return "cypress";
485 return "juniper";
487 return "redwood";
489 return "sumo";
490
491 // Radeon HD 6000 Series (Northern Islands).
493 return "barts";
495 return "caicos";
497 return "cayman";
499 return "turks";
500
501 // AMDGCN GFX6.
503 return "gfx600";
505 return "gfx601";
507 return "gfx602";
508
509 // AMDGCN GFX7.
511 return "gfx700";
513 return "gfx701";
515 return "gfx702";
517 return "gfx703";
519 return "gfx704";
521 return "gfx705";
522
523 // AMDGCN GFX8.
525 return "gfx801";
527 return "gfx802";
529 return "gfx803";
531 return "gfx805";
533 return "gfx810";
534
535 // AMDGCN GFX9.
537 return "gfx900";
539 return "gfx902";
541 return "gfx904";
543 return "gfx906";
545 return "gfx908";
547 return "gfx909";
549 return "gfx90a";
551 return "gfx90c";
553 return "gfx942";
555 return "gfx950";
556
557 // AMDGCN GFX10.
559 return "gfx1010";
561 return "gfx1011";
563 return "gfx1012";
565 return "gfx1013";
567 return "gfx1030";
569 return "gfx1031";
571 return "gfx1032";
573 return "gfx1033";
575 return "gfx1034";
577 return "gfx1035";
579 return "gfx1036";
580
581 // AMDGCN GFX11.
583 return "gfx1100";
585 return "gfx1101";
587 return "gfx1102";
589 return "gfx1103";
591 return "gfx1150";
593 return "gfx1151";
595 return "gfx1152";
597 return "gfx1153";
598
599 // AMDGCN GFX12.
601 return "gfx1200";
603 return "gfx1201";
605 return "gfx1250";
607 return "gfx1251";
608
609 // AMDGCN GFX13.
611 return "gfx1310";
612
613 // Generic AMDGCN targets
615 return "gfx9-generic";
617 return "gfx9-4-generic";
619 return "gfx10-1-generic";
621 return "gfx10-3-generic";
623 return "gfx11-generic";
625 return "gfx12-generic";
626 default:
627 llvm_unreachable("Unknown EF_AMDGPU_MACH value");
628 }
629}
630
631StringRef ELFObjectFileBase::getNVPTXCPUName() const {
637
638 switch (SM) {
639 // Fermi architecture.
641 return "sm_20";
643 return "sm_21";
644
645 // Kepler architecture.
647 return "sm_30";
649 return "sm_32";
651 return "sm_35";
653 return "sm_37";
654
655 // Maxwell architecture.
657 return "sm_50";
659 return "sm_52";
661 return "sm_53";
662
663 // Pascal architecture.
665 return "sm_60";
667 return "sm_61";
669 return "sm_62";
670
671 // Volta architecture.
673 return "sm_70";
675 return "sm_72";
676
677 // Turing architecture.
679 return "sm_75";
680
681 // Ampere architecture.
683 return "sm_80";
685 return "sm_86";
687 return "sm_87";
689 return "sm_88";
690
691 // Ada architecture.
693 return "sm_89";
694
695 // Hopper architecture.
698 : "sm_90";
699
700 // Blackwell architecture.
702 return getPlatformFlags() & ELF::EF_CUDA_ACCELERATORS ? "sm_100a"
703 : "sm_100";
705 return getPlatformFlags() & ELF::EF_CUDA_ACCELERATORS ? "sm_101a"
706 : "sm_101";
708 return getPlatformFlags() & ELF::EF_CUDA_ACCELERATORS ? "sm_103a"
709 : "sm_103";
711 return getPlatformFlags() & ELF::EF_CUDA_ACCELERATORS ? "sm_110a"
712 : "sm_110";
713
714 // Rubin architecture.
716 return getPlatformFlags() & ELF::EF_CUDA_ACCELERATORS ? "sm_120a"
717 : "sm_120";
719 return getPlatformFlags() & ELF::EF_CUDA_ACCELERATORS ? "sm_121a"
720 : "sm_121";
721 default:
722 llvm_unreachable("Unknown EF_CUDA_SM value");
723 }
724}
725
726// FIXME Encode from a tablegen description or target parser.
728 if (TheTriple.getSubArch() != Triple::NoSubArch)
729 return;
730
731 ARMAttributeParser Attributes;
732 if (Error E = getBuildAttributes(Attributes)) {
733 // TODO Propagate Error.
734 consumeError(std::move(E));
735 return;
736 }
737
738 std::string Triple;
739 // Default to ARM, but use the triple if it's been set.
740 if (TheTriple.isThumb())
741 Triple = "thumb";
742 else
743 Triple = "arm";
744
745 std::optional<unsigned> Attr =
746 Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
747 if (Attr) {
748 switch (*Attr) {
750 Triple += "v4";
751 break;
753 Triple += "v4t";
754 break;
756 Triple += "v5t";
757 break;
759 Triple += "v5te";
760 break;
762 Triple += "v5tej";
763 break;
765 Triple += "v6";
766 break;
768 Triple += "v6kz";
769 break;
771 Triple += "v6t2";
772 break;
774 Triple += "v6k";
775 break;
776 case ARMBuildAttrs::v7: {
777 std::optional<unsigned> ArchProfileAttr =
778 Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile);
779 if (ArchProfileAttr == ARMBuildAttrs::MicroControllerProfile)
780 Triple += "v7m";
781 else
782 Triple += "v7";
783 break;
784 }
786 Triple += "v6m";
787 break;
789 Triple += "v6sm";
790 break;
792 Triple += "v7em";
793 break;
795 Triple += "v8a";
796 break;
798 Triple += "v8r";
799 break;
801 Triple += "v8m.base";
802 break;
804 Triple += "v8m.main";
805 break;
807 Triple += "v8.1m.main";
808 break;
810 Triple += "v9a";
811 break;
812 }
813 }
814 if (!isLittleEndian())
815 Triple += "eb";
816
817 TheTriple.setArchName(Triple);
818}
819
820std::vector<ELFPltEntry>
822 std::string Err;
823 const auto Triple = makeTriple();
824 const auto *T = TargetRegistry::lookupTarget(Triple, Err);
825 if (!T)
826 return {};
827 uint32_t JumpSlotReloc = 0, GlobDatReloc = 0;
828 switch (Triple.getArch()) {
829 case Triple::x86:
830 JumpSlotReloc = ELF::R_386_JUMP_SLOT;
831 GlobDatReloc = ELF::R_386_GLOB_DAT;
832 break;
833 case Triple::x86_64:
834 JumpSlotReloc = ELF::R_X86_64_JUMP_SLOT;
835 GlobDatReloc = ELF::R_X86_64_GLOB_DAT;
836 break;
837 case Triple::aarch64:
839 JumpSlotReloc = ELF::R_AARCH64_JUMP_SLOT;
840 break;
841 case Triple::arm:
842 case Triple::armeb:
843 case Triple::thumb:
844 case Triple::thumbeb:
845 JumpSlotReloc = ELF::R_ARM_JUMP_SLOT;
846 break;
847 case Triple::hexagon:
848 JumpSlotReloc = ELF::R_HEX_JMP_SLOT;
849 GlobDatReloc = ELF::R_HEX_GLOB_DAT;
850 break;
851 case Triple::riscv32:
852 case Triple::riscv64:
853 JumpSlotReloc = ELF::R_RISCV_JUMP_SLOT;
854 break;
855 default:
856 return {};
857 }
858 std::unique_ptr<const MCInstrInfo> MII(T->createMCInstrInfo());
859 std::unique_ptr<const MCInstrAnalysis> MIA(
860 T->createMCInstrAnalysis(MII.get()));
861 if (!MIA)
862 return {};
863 std::vector<std::pair<uint64_t, uint64_t>> PltEntries;
864 std::optional<SectionRef> RelaPlt, RelaDyn;
865 uint64_t GotBaseVA = 0;
866 for (const SectionRef &Section : sections()) {
867 Expected<StringRef> NameOrErr = Section.getName();
868 if (!NameOrErr) {
869 consumeError(NameOrErr.takeError());
870 continue;
871 }
872 StringRef Name = *NameOrErr;
873
874 if (Name == ".rela.plt" || Name == ".rel.plt") {
875 RelaPlt = Section;
876 } else if (Name == ".rela.dyn" || Name == ".rel.dyn") {
877 RelaDyn = Section;
878 } else if (Name == ".got.plt") {
879 GotBaseVA = Section.getAddress();
880 } else if (Name == ".plt" || Name == ".plt.got") {
881 Expected<StringRef> PltContents = Section.getContents();
882 if (!PltContents) {
883 consumeError(PltContents.takeError());
884 return {};
885 }
887 PltEntries,
888 MIA->findPltEntries(Section.getAddress(),
889 arrayRefFromStringRef(*PltContents), STI));
890 }
891 }
892
893 // Build a map from GOT entry virtual address to PLT entry virtual address.
895 for (auto [Plt, GotPlt] : PltEntries) {
896 uint64_t GotPltEntry = GotPlt;
897 // An x86-32 PIC PLT uses jmp DWORD PTR [ebx-offset]. Add
898 // _GLOBAL_OFFSET_TABLE_ (EBX) to get the .got.plt (or .got) entry address.
899 // See X86MCTargetDesc.cpp:findPltEntries for the 1 << 32 bit.
900 if (GotPltEntry & (uint64_t(1) << 32) && getEMachine() == ELF::EM_386)
901 GotPltEntry = static_cast<int32_t>(GotPltEntry) + GotBaseVA;
902 GotToPlt.insert(std::make_pair(GotPltEntry, Plt));
903 }
904
905 // Find the relocations in the dynamic relocation table that point to
906 // locations in the GOT for which we know the corresponding PLT entry.
907 std::vector<ELFPltEntry> Result;
908 auto handleRels = [&](iterator_range<relocation_iterator> Rels,
909 uint32_t RelType, StringRef PltSec) {
910 for (const auto &R : Rels) {
911 if (R.getType() != RelType)
912 continue;
913 auto PltEntryIter = GotToPlt.find(R.getOffset());
914 if (PltEntryIter != GotToPlt.end()) {
915 symbol_iterator Sym = R.getSymbol();
916 if (Sym == symbol_end())
917 Result.push_back(
918 ELFPltEntry{PltSec, std::nullopt, PltEntryIter->second});
919 else
920 Result.push_back(ELFPltEntry{PltSec, Sym->getRawDataRefImpl(),
921 PltEntryIter->second});
922 }
923 }
924 };
925
926 if (RelaPlt)
927 handleRels(RelaPlt->relocations(), JumpSlotReloc, ".plt");
928
929 // If a symbol needing a PLT entry also needs a GLOB_DAT relocation, GNU ld's
930 // x86 port places the PLT entry in the .plt.got section.
931 if (RelaDyn)
932 handleRels(RelaDyn->relocations(), GlobDatReloc, ".plt.got");
933
934 return Result;
935}
936
937template <class ELFT>
939 const ELFFile<ELFT> &EF, std::optional<unsigned> TextSectionIndex,
940 std::vector<PGOAnalysisMap> *PGOAnalyses) {
941 using Elf_Shdr = typename ELFT::Shdr;
942 bool IsRelocatable = EF.getHeader().e_type == ELF::ET_REL;
943 std::vector<BBAddrMap> BBAddrMaps;
944 if (PGOAnalyses)
945 PGOAnalyses->clear();
946
947 const auto &Sections = cantFail(EF.sections());
948 auto IsMatch = [&](const Elf_Shdr &Sec) -> Expected<bool> {
949 if (Sec.sh_type != ELF::SHT_LLVM_BB_ADDR_MAP)
950 return false;
951 if (!TextSectionIndex)
952 return true;
953 Expected<const Elf_Shdr *> TextSecOrErr = EF.getSection(Sec.sh_link);
954 if (!TextSecOrErr)
955 return createError("unable to get the linked-to section for " +
956 describe(EF, Sec) + ": " +
957 toString(TextSecOrErr.takeError()));
958 assert(*TextSecOrErr >= Sections.begin() &&
959 "Text section pointer outside of bounds");
960 if (*TextSectionIndex !=
961 (unsigned)std::distance(Sections.begin(), *TextSecOrErr))
962 return false;
963 return true;
964 };
965
967 EF.getSectionAndRelocations(IsMatch);
968 if (!SectionRelocMapOrErr)
969 return SectionRelocMapOrErr.takeError();
970
971 for (auto const &[Sec, RelocSec] : *SectionRelocMapOrErr) {
972 if (IsRelocatable && !RelocSec)
973 return createError("unable to get relocation section for " +
974 describe(EF, *Sec));
975 Expected<std::vector<BBAddrMap>> BBAddrMapOrErr =
976 EF.decodeBBAddrMap(*Sec, RelocSec, PGOAnalyses);
977 if (!BBAddrMapOrErr) {
978 if (PGOAnalyses)
979 PGOAnalyses->clear();
980 return createError("unable to read " + describe(EF, *Sec) + ": " +
981 toString(BBAddrMapOrErr.takeError()));
982 }
983 std::move(BBAddrMapOrErr->begin(), BBAddrMapOrErr->end(),
984 std::back_inserter(BBAddrMaps));
985 }
986 if (PGOAnalyses)
987 assert(PGOAnalyses->size() == BBAddrMaps.size() &&
988 "The same number of BBAddrMaps and PGOAnalysisMaps should be "
989 "returned when PGO information is requested");
990 return BBAddrMaps;
991}
992
993template <class ELFT>
994static Expected<std::vector<VersionEntry>>
997 using Elf_Shdr = typename ELFT::Shdr;
998 const Elf_Shdr *VerSec = nullptr;
999 const Elf_Shdr *VerNeedSec = nullptr;
1000 const Elf_Shdr *VerDefSec = nullptr;
1001 // The user should ensure sections() can't fail here.
1002 for (const Elf_Shdr &Sec : cantFail(EF.sections())) {
1003 if (Sec.sh_type == ELF::SHT_GNU_versym)
1004 VerSec = &Sec;
1005 else if (Sec.sh_type == ELF::SHT_GNU_verdef)
1006 VerDefSec = &Sec;
1007 else if (Sec.sh_type == ELF::SHT_GNU_verneed)
1008 VerNeedSec = &Sec;
1009 }
1010 if (!VerSec)
1011 return std::vector<VersionEntry>();
1012
1014 EF.loadVersionMap(VerNeedSec, VerDefSec);
1015 if (!MapOrErr)
1016 return MapOrErr.takeError();
1017
1018 std::vector<VersionEntry> Ret;
1019 size_t I = 0;
1020 for (const ELFSymbolRef &Sym : Symbols) {
1021 ++I;
1023 EF.template getEntry<typename ELFT::Versym>(*VerSec, I);
1024 if (!VerEntryOrErr)
1025 return createError("unable to read an entry with index " + Twine(I) +
1026 " from " + describe(EF, *VerSec) + ": " +
1027 toString(VerEntryOrErr.takeError()));
1028
1029 Expected<uint32_t> FlagsOrErr = Sym.getFlags();
1030 if (!FlagsOrErr)
1031 return createError("unable to read flags for symbol with index " +
1032 Twine(I) + ": " + toString(FlagsOrErr.takeError()));
1033
1034 bool IsDefault;
1036 (*VerEntryOrErr)->vs_index, IsDefault, *MapOrErr,
1037 (*FlagsOrErr) & SymbolRef::SF_Undefined);
1038 if (!VerOrErr)
1039 return createError("unable to get a version for entry " + Twine(I) +
1040 " of " + describe(EF, *VerSec) + ": " +
1041 toString(VerOrErr.takeError()));
1042
1043 Ret.push_back({(*VerOrErr).str(), IsDefault});
1044 }
1045
1046 return Ret;
1047}
1048
1049Expected<std::vector<VersionEntry>>
1052 if (const auto *Obj = dyn_cast<ELF32LEObjectFile>(this))
1053 return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
1054 if (const auto *Obj = dyn_cast<ELF32BEObjectFile>(this))
1055 return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
1056 if (const auto *Obj = dyn_cast<ELF64LEObjectFile>(this))
1057 return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
1058 return readDynsymVersionsImpl(cast<ELF64BEObjectFile>(this)->getELFFile(),
1059 Symbols);
1060}
1061
1063 std::optional<unsigned> TextSectionIndex,
1064 std::vector<PGOAnalysisMap> *PGOAnalyses) const {
1065 if (const auto *Obj = dyn_cast<ELF32LEObjectFile>(this))
1066 return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex, PGOAnalyses);
1067 if (const auto *Obj = dyn_cast<ELF64LEObjectFile>(this))
1068 return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex, PGOAnalyses);
1069 if (const auto *Obj = dyn_cast<ELF32BEObjectFile>(this))
1070 return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex, PGOAnalyses);
1071 return readBBAddrMapImpl(cast<ELF64BEObjectFile>(this)->getELFFile(),
1072 TextSectionIndex, PGOAnalyses);
1073}
1074
1076 auto Data = Sec.getRawDataRefImpl();
1077 if (const auto *Obj = dyn_cast<ELF32LEObjectFile>(this))
1078 return Obj->getCrelDecodeProblem(Data);
1079 if (const auto *Obj = dyn_cast<ELF32BEObjectFile>(this))
1080 return Obj->getCrelDecodeProblem(Data);
1081 if (const auto *Obj = dyn_cast<ELF64LEObjectFile>(this))
1082 return Obj->getCrelDecodeProblem(Data);
1083 return cast<ELF64BEObjectFile>(this)->getCrelDecodeProblem(Data);
1084}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Kernel Attributes
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static Expected< std::unique_ptr< ELFObjectFile< ELFT > > > createPtr(MemoryBufferRef Object, bool InitContent)
static Expected< std::vector< BBAddrMap > > readBBAddrMapImpl(const ELFFile< ELFT > &EF, std::optional< unsigned > TextSectionIndex, std::vector< PGOAnalysisMap > *PGOAnalyses)
static std::optional< std::string > hexagonAttrToFeatureString(unsigned Attr)
static Expected< std::vector< VersionEntry > > readDynsymVersionsImpl(const ELFFile< ELFT > &EF, ELFObjectFileBase::elf_symbol_iterator_range Symbols)
#define I(x, y, z)
Definition MD5.cpp:57
#define T
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
iterator end()
Definition DenseMap.h:81
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:241
std::optional< unsigned > getAttributeValue(unsigned tag) const override
Lightweight error class with error context and mandatory checking.
Definition Error.h:159
Tagged union holding either a T or a Error.
Definition Error.h:485
Error takeError()
Take ownership of the stored error.
Definition Error.h:612
Generic base class for all target subtargets.
static LLVM_ABI llvm::Expected< std::unique_ptr< RISCVISAInfo > > parseNormalizedArchString(StringRef Arch)
Parse RISC-V ISA info from an arch string that is already in normalized form (as defined in the psABI...
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Manages the enabling and disabling of subtarget specific features.
LLVM_ABI void AddFeature(StringRef String, bool Enable=true)
Adds Features.
LLVM_ABI void addFeaturesVector(const ArrayRef< std::string > OtherFeatures)
Triple - Helper class for working with autoconf configuration names.
Definition Triple.h:47
LLVM_ABI void setArchName(StringRef Str)
Set the architecture (first) component of the triple by name.
Definition Triple.cpp:1691
bool isThumb() const
Tests whether the target is Thumb (little and big endian).
Definition Triple.h:938
SubArchType getSubArch() const
get the parsed subarchitecture type for this triple.
Definition Triple.h:421
ArchType getArch() const
Get the parsed architecture type of this triple.
Definition Triple.h:418
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
A range adaptor for a pair of iterators.
DataRefImpl getRawDataRefImpl() const
MemoryBufferRef Data
Definition Binary.h:38
bool isLittleEndian() const
Definition Binary.h:157
const Elf_Ehdr & getHeader() const
Definition ELF.h:325
Expected< std::vector< BBAddrMap > > decodeBBAddrMap(const Elf_Shdr &Sec, const Elf_Shdr *RelaSec=nullptr, std::vector< PGOAnalysisMap > *PGOAnalyses=nullptr) const
Returns a vector of BBAddrMap structs corresponding to each function within the text section that the...
Definition ELF.cpp:1011
Expected< StringRef > getSymbolVersionByIndex(uint32_t SymbolVersionIndex, bool &IsDefault, SmallVector< std::optional< VersionEntry >, 0 > &VersionMap, std::optional< bool > IsSymHidden) const
Definition ELF.h:1084
Expected< Elf_Shdr_Range > sections() const
Definition ELF.h:1002
Expected< MapVector< const Elf_Shdr *, const Elf_Shdr * > > getSectionAndRelocations(std::function< Expected< bool >(const Elf_Shdr &)> IsMatch) const
Returns a map from every section matching IsMatch to its relocation section, or nullptr if it has no ...
Definition ELF.cpp:1024
Expected< SmallVector< std::optional< VersionEntry >, 0 > > loadVersionMap(const Elf_Shdr *VerNeedSec, const Elf_Shdr *VerDefSec) const
Definition ELF.h:771
Expected< const Elf_Shdr * > getSection(const Elf_Sym &Sym, const Elf_Shdr *SymTab, DataRegion< Elf_Word > ShndxTable) const
Definition ELF.h:629
virtual uint8_t getEIdentABIVersion() const =0
virtual Error getBuildAttributes(ELFAttributeParser &Attributes) const =0
std::vector< ELFPltEntry > getPltEntries(const MCSubtargetInfo &STI) const
Expected< std::vector< VersionEntry > > readDynsymVersions() const
Returns a vector containing a symbol version for each dynamic symbol.
virtual elf_symbol_iterator_range getDynamicSymbolIterators() const =0
StringRef getCrelDecodeProblem(SectionRef Sec) const
Expected< SubtargetFeatures > getFeatures() const override
std::optional< StringRef > tryGetCPUName() const override
iterator_range< elf_symbol_iterator > elf_symbol_iterator_range
virtual uint16_t getEMachine() const =0
virtual unsigned getPlatformFlags() const =0
Returns platform-specific object flags, if any.
ELFObjectFileBase(unsigned int Type, MemoryBufferRef Source)
void setARMSubArch(Triple &TheTriple) const override
Expected< std::vector< BBAddrMap > > readBBAddrMap(std::optional< unsigned > TextSectionIndex=std::nullopt, std::vector< PGOAnalysisMap > *PGOAnalyses=nullptr) const
Returns a vector of all BB address maps in the object file.
static Expected< ELFObjectFile< ELFT > > create(MemoryBufferRef Object, bool InitContent=true)
static Expected< std::unique_ptr< ObjectFile > > createELFObjectFile(MemoryBufferRef Object, bool InitContent=true)
Triple makeTriple() const
Create a triple from the data in this object file.
section_iterator_range sections() const
Definition ObjectFile.h:331
ObjectFile(unsigned int Type, MemoryBufferRef Source)
DataRefImpl getRawDataRefImpl() const
Definition ObjectFile.h:603
virtual basic_symbol_iterator symbol_end() const =0
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ EM_PPC64
Definition ELF.h:154
@ EM_386
Definition ELF.h:141
@ EM_CUDA
Definition ELF.h:291
@ EM_LOONGARCH
Definition ELF.h:327
@ EM_BPF
Definition ELF.h:324
@ EM_PPC
Definition ELF.h:153
@ EM_HEXAGON
Definition ELF.h:262
@ EM_MIPS
Definition ELF.h:146
@ EM_RISCV
Definition ELF.h:322
@ EM_ARM
Definition ELF.h:161
@ EM_AMDGPU
Definition ELF.h:321
@ SHT_GNU_verneed
Definition ELF.h:1198
@ SHT_GNU_verdef
Definition ELF.h:1197
@ SHT_LLVM_BB_ADDR_MAP
Definition ELF.h:1185
@ SHT_GNU_versym
Definition ELF.h:1199
@ EF_MIPS_ARCH
Definition ELF.h:580
@ EF_MIPS_MICROMIPS
Definition ELF.h:563
@ EF_MIPS_ARCH_32R6
Definition ELF.h:578
@ EF_MIPS_MACH_NONE
Definition ELF.h:541
@ EF_MIPS_ARCH_64
Definition ELF.h:575
@ EF_MIPS_ARCH_32
Definition ELF.h:574
@ EF_MIPS_MACH_OCTEON
Definition ELF.h:549
@ EF_MIPS_ARCH_4
Definition ELF.h:572
@ EF_MIPS_ARCH_5
Definition ELF.h:573
@ EF_MIPS_ARCH_2
Definition ELF.h:570
@ EF_MIPS_ARCH_32R2
Definition ELF.h:576
@ EF_MIPS_ARCH_64R2
Definition ELF.h:577
@ EF_MIPS_ARCH_ASE_M16
Definition ELF.h:564
@ EF_MIPS_MACH
Definition ELF.h:560
@ EF_MIPS_ARCH_1
Definition ELF.h:569
@ EF_MIPS_ARCH_64R6
Definition ELF.h:579
@ EF_MIPS_ARCH_3
Definition ELF.h:571
@ ELFDATA2MSB
Definition ELF.h:341
@ ELFDATA2LSB
Definition ELF.h:340
@ EF_LOONGARCH_ABI_SINGLE_FLOAT
Definition ELF.h:1068
@ EF_LOONGARCH_ABI_DOUBLE_FLOAT
Definition ELF.h:1069
@ EF_LOONGARCH_ABI_SOFT_FLOAT
Definition ELF.h:1067
@ EF_LOONGARCH_ABI_MODIFIER_MASK
Definition ELF.h:1070
@ STT_FUNC
Definition ELF.h:1418
@ STT_NOTYPE
Definition ELF.h:1416
@ STT_SECTION
Definition ELF.h:1419
@ STT_FILE
Definition ELF.h:1420
@ STT_COMMON
Definition ELF.h:1421
@ STT_GNU_IFUNC
Definition ELF.h:1423
@ STT_OBJECT
Definition ELF.h:1417
@ STT_TLS
Definition ELF.h:1422
@ EF_CUDA_SM21
Definition ELF.h:945
@ EF_CUDA_SM90
Definition ELF.h:964
@ EF_CUDA_SM86
Definition ELF.h:960
@ EF_CUDA_SM60
Definition ELF.h:953
@ EF_CUDA_SM
Definition ELF.h:935
@ EF_CUDA_SM89
Definition ELF.h:963
@ EF_CUDA_SM37
Definition ELF.h:949
@ EF_CUDA_SM32
Definition ELF.h:947
@ EF_CUDA_SM72
Definition ELF.h:957
@ EF_CUDA_SM50
Definition ELF.h:950
@ EF_CUDA_ACCELERATORS
Definition ELF.h:987
@ EF_CUDA_SM121
Definition ELF.h:970
@ EF_CUDA_SM61
Definition ELF.h:954
@ EF_CUDA_SM_MASK
Definition ELF.h:938
@ EF_CUDA_SM52
Definition ELF.h:951
@ EF_CUDA_SM35
Definition ELF.h:948
@ EF_CUDA_SM120
Definition ELF.h:969
@ EF_CUDA_SM100
Definition ELF.h:965
@ EF_CUDA_SM62
Definition ELF.h:955
@ EF_CUDA_SM101
Definition ELF.h:966
@ EF_CUDA_SM30
Definition ELF.h:946
@ EF_CUDA_SM_OFFSET
Definition ELF.h:941
@ EF_CUDA_ACCELERATORS_V1
Definition ELF.h:979
@ EF_CUDA_SM75
Definition ELF.h:958
@ EF_CUDA_SM103
Definition ELF.h:967
@ EF_CUDA_SM87
Definition ELF.h:961
@ EF_CUDA_SM20
Definition ELF.h:944
@ EF_CUDA_SM88
Definition ELF.h:962
@ EF_CUDA_SM80
Definition ELF.h:959
@ EF_CUDA_SM53
Definition ELF.h:952
@ EF_CUDA_SM70
Definition ELF.h:956
@ EF_CUDA_SM110
Definition ELF.h:968
@ ELFCLASS64
Definition ELF.h:334
@ ELFCLASS32
Definition ELF.h:333
@ ET_REL
Definition ELF.h:119
@ EF_AMDGPU_MACH_AMDGCN_GFX703
Definition ELF.h:811
@ EF_AMDGPU_MACH_AMDGCN_GFX1035
Definition ELF.h:835
@ EF_AMDGPU_MACH_AMDGCN_GFX1031
Definition ELF.h:829
@ EF_AMDGPU_MACH_R600_CAYMAN
Definition ELF.h:793
@ EF_AMDGPU_MACH_AMDGCN_GFX704
Definition ELF.h:812
@ EF_AMDGPU_MACH_AMDGCN_GFX902
Definition ELF.h:819
@ EF_AMDGPU_MACH_AMDGCN_GFX810
Definition ELF.h:817
@ EF_AMDGPU_MACH_AMDGCN_GFX950
Definition ELF.h:853
@ EF_AMDGPU_MACH_AMDGCN_GFX1036
Definition ELF.h:843
@ EF_AMDGPU_MACH_AMDGCN_GFX1102
Definition ELF.h:845
@ EF_AMDGPU_MACH_R600_RV730
Definition ELF.h:782
@ EF_AMDGPU_MACH_R600_RV710
Definition ELF.h:781
@ EF_AMDGPU_MACH_AMDGCN_GFX908
Definition ELF.h:822
@ EF_AMDGPU_MACH_AMDGCN_GFX1011
Definition ELF.h:826
@ EF_AMDGPU_MACH_R600_CYPRESS
Definition ELF.h:786
@ EF_AMDGPU_MACH_AMDGCN_GFX1032
Definition ELF.h:830
@ EF_AMDGPU_MACH_R600_R600
Definition ELF.h:776
@ EF_AMDGPU_MACH_AMDGCN_GFX1250
Definition ELF.h:847
@ EF_AMDGPU_MACH_R600_TURKS
Definition ELF.h:794
@ EF_AMDGPU_MACH_R600_JUNIPER
Definition ELF.h:787
@ EF_AMDGPU_MACH_AMDGCN_GFX601
Definition ELF.h:807
@ EF_AMDGPU_MACH_AMDGCN_GFX942
Definition ELF.h:850
@ EF_AMDGPU_MACH_AMDGCN_GFX1152
Definition ELF.h:859
@ EF_AMDGPU_MACH_R600_R630
Definition ELF.h:777
@ EF_AMDGPU_MACH_R600_REDWOOD
Definition ELF.h:788
@ EF_AMDGPU_MACH_R600_RV770
Definition ELF.h:783
@ EF_AMDGPU_MACH_AMDGCN_GFX600
Definition ELF.h:806
@ EF_AMDGPU_MACH_AMDGCN_GFX602
Definition ELF.h:832
@ EF_AMDGPU_MACH_AMDGCN_GFX1101
Definition ELF.h:844
@ EF_AMDGPU_MACH_AMDGCN_GFX1100
Definition ELF.h:839
@ EF_AMDGPU_MACH_AMDGCN_GFX1310
Definition ELF.h:854
@ EF_AMDGPU_MACH_AMDGCN_GFX1033
Definition ELF.h:831
@ EF_AMDGPU_MACH_AMDGCN_GFX801
Definition ELF.h:814
@ EF_AMDGPU_MACH_AMDGCN_GFX705
Definition ELF.h:833
@ EF_AMDGPU_MACH_AMDGCN_GFX9_4_GENERIC
Definition ELF.h:865
@ EF_AMDGPU_MACH_AMDGCN_GFX1153
Definition ELF.h:862
@ EF_AMDGPU_MACH_AMDGCN_GFX1010
Definition ELF.h:825
@ EF_AMDGPU_MACH_R600_RV670
Definition ELF.h:779
@ EF_AMDGPU_MACH_AMDGCN_GFX701
Definition ELF.h:809
@ EF_AMDGPU_MACH_AMDGCN_GFX10_3_GENERIC
Definition ELF.h:857
@ EF_AMDGPU_MACH_AMDGCN_GFX1012
Definition ELF.h:827
@ EF_AMDGPU_MACH_AMDGCN_GFX1151
Definition ELF.h:848
@ EF_AMDGPU_MACH_AMDGCN_GFX1030
Definition ELF.h:828
@ EF_AMDGPU_MACH_R600_CEDAR
Definition ELF.h:785
@ EF_AMDGPU_MACH_AMDGCN_GFX1200
Definition ELF.h:846
@ EF_AMDGPU_MACH_AMDGCN_GFX700
Definition ELF.h:808
@ EF_AMDGPU_MACH_AMDGCN_GFX11_GENERIC
Definition ELF.h:858
@ EF_AMDGPU_MACH_AMDGCN_GFX803
Definition ELF.h:816
@ EF_AMDGPU_MACH_AMDGCN_GFX802
Definition ELF.h:815
@ EF_AMDGPU_MACH_AMDGCN_GFX90C
Definition ELF.h:824
@ EF_AMDGPU_MACH_AMDGCN_GFX900
Definition ELF.h:818
@ EF_AMDGPU_MACH_AMDGCN_GFX909
Definition ELF.h:823
@ EF_AMDGPU_MACH
Definition ELF.h:768
@ EF_AMDGPU_MACH_AMDGCN_GFX906
Definition ELF.h:821
@ EF_AMDGPU_MACH_AMDGCN_GFX9_GENERIC
Definition ELF.h:855
@ EF_AMDGPU_MACH_AMDGCN_GFX1103
Definition ELF.h:842
@ EF_AMDGPU_MACH_R600_CAICOS
Definition ELF.h:792
@ EF_AMDGPU_MACH_AMDGCN_GFX90A
Definition ELF.h:837
@ EF_AMDGPU_MACH_AMDGCN_GFX1034
Definition ELF.h:836
@ EF_AMDGPU_MACH_AMDGCN_GFX1013
Definition ELF.h:840
@ EF_AMDGPU_MACH_AMDGCN_GFX12_GENERIC
Definition ELF.h:863
@ EF_AMDGPU_MACH_AMDGCN_GFX10_1_GENERIC
Definition ELF.h:856
@ EF_AMDGPU_MACH_AMDGCN_GFX904
Definition ELF.h:820
@ EF_AMDGPU_MACH_AMDGCN_GFX1251
Definition ELF.h:864
@ EF_AMDGPU_MACH_R600_RS880
Definition ELF.h:778
@ EF_AMDGPU_MACH_AMDGCN_GFX805
Definition ELF.h:834
@ EF_AMDGPU_MACH_AMDGCN_GFX1201
Definition ELF.h:852
@ EF_AMDGPU_MACH_AMDGCN_GFX1150
Definition ELF.h:841
@ EF_AMDGPU_MACH_R600_SUMO
Definition ELF.h:789
@ EF_AMDGPU_MACH_R600_BARTS
Definition ELF.h:791
@ EF_AMDGPU_MACH_AMDGCN_GFX702
Definition ELF.h:810
@ ELFABIVERSION_CUDA_V1
Definition ELF.h:391
@ EF_RISCV_RVC
Definition ELF.h:710
Error createError(const Twine &Err)
Definition Error.h:86
constexpr int NumElfSymbolTypes
static std::string describe(const ELFFile< ELFT > &Obj, const typename ELFT::Shdr &Sec)
Definition ELF.h:147
std::pair< unsigned char, unsigned char > getElfArchType(StringRef Object)
Definition ELF.h:82
LLVM_ABI const llvm::EnumEntry< unsigned > ElfSymbolTypes[NumElfSymbolTypes]
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
ArrayRef< CharT > arrayRefFromStringRef(StringRef Input)
Construct a string ref from an array ref of unsigned chars.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2198
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition bit.h:202
void cantFail(Error Err, const char *Msg=nullptr)
Report a fatal error if Err is a failure value.
Definition Error.h:769
std::string toString(const APInt &I, unsigned Radix, bool Signed, bool formatAsCLiteral=false, bool UpperCase=true, bool InsertSeparators=false)
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
void consumeError(Error Err)
Consume a Error without doing anything.
Definition Error.h:1083
static const Target * lookupTarget(StringRef TripleStr, std::string &Error)
lookupTarget - Lookup a target based on a target triple.