LLVM 19.0.0git
VNCoercion.cpp
Go to the documentation of this file.
4#include "llvm/IR/IRBuilder.h"
7
8#define DEBUG_TYPE "vncoerce"
9
10namespace llvm {
11namespace VNCoercion {
12
14 return Ty->isStructTy() || Ty->isArrayTy() || isa<ScalableVectorType>(Ty);
15}
16
17/// Return true if coerceAvailableValueToLoadType will succeed.
19 const DataLayout &DL) {
20 Type *StoredTy = StoredVal->getType();
21
22 if (StoredTy == LoadTy)
23 return true;
24
25 // If the loaded/stored value is a first class array/struct, or scalable type,
26 // don't try to transform them. We need to be able to bitcast to integer.
29 return false;
30
31 uint64_t StoreSize = DL.getTypeSizeInBits(StoredTy).getFixedValue();
32
33 // The store size must be byte-aligned to support future type casts.
34 if (llvm::alignTo(StoreSize, 8) != StoreSize)
35 return false;
36
37 // The store has to be at least as big as the load.
38 if (StoreSize < DL.getTypeSizeInBits(LoadTy).getFixedValue())
39 return false;
40
41 bool StoredNI = DL.isNonIntegralPointerType(StoredTy->getScalarType());
42 bool LoadNI = DL.isNonIntegralPointerType(LoadTy->getScalarType());
43 // Don't coerce non-integral pointers to integers or vice versa.
44 if (StoredNI != LoadNI) {
45 // As a special case, allow coercion of memset used to initialize
46 // an array w/null. Despite non-integral pointers not generally having a
47 // specific bit pattern, we do assume null is zero.
48 if (auto *CI = dyn_cast<Constant>(StoredVal))
49 return CI->isNullValue();
50 return false;
51 } else if (StoredNI && LoadNI &&
52 StoredTy->getPointerAddressSpace() !=
53 LoadTy->getPointerAddressSpace()) {
54 return false;
55 }
56
57
58 // The implementation below uses inttoptr for vectors of unequal size; we
59 // can't allow this for non integral pointers. We could teach it to extract
60 // exact subvectors if desired.
61 if (StoredNI && StoreSize != DL.getTypeSizeInBits(LoadTy).getFixedValue())
62 return false;
63
64 if (StoredTy->isTargetExtTy() || LoadTy->isTargetExtTy())
65 return false;
66
67 return true;
68}
69
70/// If we saw a store of a value to memory, and
71/// then a load from a must-aliased pointer of a different type, try to coerce
72/// the stored value. LoadedTy is the type of the load we want to replace.
73/// IRB is IRBuilder used to insert new instructions.
74///
75/// If we can't do it, return null.
77 IRBuilderBase &Helper,
78 const DataLayout &DL) {
79 assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) &&
80 "precondition violation - materialization can't fail");
81 if (auto *C = dyn_cast<Constant>(StoredVal))
82 StoredVal = ConstantFoldConstant(C, DL);
83
84 // If this is already the right type, just return it.
85 Type *StoredValTy = StoredVal->getType();
86
87 uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy).getFixedValue();
88 uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy).getFixedValue();
89
90 // If the store and reload are the same size, we can always reuse it.
91 if (StoredValSize == LoadedValSize) {
92 // Pointer to Pointer -> use bitcast.
93 if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) {
94 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
95 } else {
96 // Convert source pointers to integers, which can be bitcast.
97 if (StoredValTy->isPtrOrPtrVectorTy()) {
98 StoredValTy = DL.getIntPtrType(StoredValTy);
99 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
100 }
101
102 Type *TypeToCastTo = LoadedTy;
103 if (TypeToCastTo->isPtrOrPtrVectorTy())
104 TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
105
106 if (StoredValTy != TypeToCastTo)
107 StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo);
108
109 // Cast to pointer if the load needs a pointer type.
110 if (LoadedTy->isPtrOrPtrVectorTy())
111 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
112 }
113
114 if (auto *C = dyn_cast<ConstantExpr>(StoredVal))
115 StoredVal = ConstantFoldConstant(C, DL);
116
117 return StoredVal;
118 }
119 // If the loaded value is smaller than the available value, then we can
120 // extract out a piece from it. If the available value is too small, then we
121 // can't do anything.
122 assert(StoredValSize >= LoadedValSize &&
123 "canCoerceMustAliasedValueToLoad fail");
124
125 // Convert source pointers to integers, which can be manipulated.
126 if (StoredValTy->isPtrOrPtrVectorTy()) {
127 StoredValTy = DL.getIntPtrType(StoredValTy);
128 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
129 }
130
131 // Convert vectors and fp to integer, which can be manipulated.
132 if (!StoredValTy->isIntegerTy()) {
133 StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize);
134 StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy);
135 }
136
137 // If this is a big-endian system, we need to shift the value down to the low
138 // bits so that a truncate will work.
139 if (DL.isBigEndian()) {
140 uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy).getFixedValue() -
141 DL.getTypeStoreSizeInBits(LoadedTy).getFixedValue();
142 StoredVal = Helper.CreateLShr(
143 StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt));
144 }
145
146 // Truncate the integer to the right size now.
147 Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize);
148 StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy);
149
150 if (LoadedTy != NewIntTy) {
151 // If the result is a pointer, inttoptr.
152 if (LoadedTy->isPtrOrPtrVectorTy())
153 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
154 else
155 // Otherwise, bitcast.
156 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
157 }
158
159 if (auto *C = dyn_cast<Constant>(StoredVal))
160 StoredVal = ConstantFoldConstant(C, DL);
161
162 return StoredVal;
163}
164
165/// This function is called when we have a memdep query of a load that ends up
166/// being a clobbering memory write (store, memset, memcpy, memmove). This
167/// means that the write *may* provide bits used by the load but we can't be
168/// sure because the pointers don't must-alias.
169///
170/// Check this case to see if there is anything more we can do before we give
171/// up. This returns -1 if we have to give up, or a byte number in the stored
172/// value of the piece that feeds the load.
173static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
174 Value *WritePtr,
175 uint64_t WriteSizeInBits,
176 const DataLayout &DL) {
177 // If the loaded/stored value is a first class array/struct, or scalable type,
178 // don't try to transform them. We need to be able to bitcast to integer.
180 return -1;
181
182 int64_t StoreOffset = 0, LoadOffset = 0;
183 Value *StoreBase =
184 GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
185 Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
186 if (StoreBase != LoadBase)
187 return -1;
188
189 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedValue();
190
191 if ((WriteSizeInBits & 7) | (LoadSize & 7))
192 return -1;
193 uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes.
194 LoadSize /= 8;
195
196 // If the Load isn't completely contained within the stored bits, we don't
197 // have all the bits to feed it. We could do something crazy in the future
198 // (issue a smaller load then merge the bits in) but this seems unlikely to be
199 // valuable.
200 if (StoreOffset > LoadOffset ||
201 StoreOffset + int64_t(StoreSize) < LoadOffset + int64_t(LoadSize))
202 return -1;
203
204 // Okay, we can do this transformation. Return the number of bytes into the
205 // store that the load is.
206 return LoadOffset - StoreOffset;
207}
208
209/// This function is called when we have a
210/// memdep query of a load that ends up being a clobbering store.
212 StoreInst *DepSI, const DataLayout &DL) {
213 auto *StoredVal = DepSI->getValueOperand();
214
215 // Cannot handle reading from store of first-class aggregate or scalable type.
216 if (isFirstClassAggregateOrScalableType(StoredVal->getType()))
217 return -1;
218
219 if (!canCoerceMustAliasedValueToLoad(StoredVal, LoadTy, DL))
220 return -1;
221
222 Value *StorePtr = DepSI->getPointerOperand();
223 uint64_t StoreSize =
224 DL.getTypeSizeInBits(DepSI->getValueOperand()->getType()).getFixedValue();
225 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize,
226 DL);
227}
228
229/// This function is called when we have a
230/// memdep query of a load that ends up being clobbered by another load. See if
231/// the other load can feed into the second load.
232int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI,
233 const DataLayout &DL) {
234 // Cannot handle reading from store of first-class aggregate yet.
235 if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
236 return -1;
237
238 if (!canCoerceMustAliasedValueToLoad(DepLI, LoadTy, DL))
239 return -1;
240
241 Value *DepPtr = DepLI->getPointerOperand();
242 uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType()).getFixedValue();
243 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
244}
245
247 MemIntrinsic *MI, const DataLayout &DL) {
248 // If the mem operation is a non-constant size, we can't handle it.
249 ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
250 if (!SizeCst)
251 return -1;
252 uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8;
253
254 // If this is memset, we just need to see if the offset is valid in the size
255 // of the memset..
256 if (const auto *memset_inst = dyn_cast<MemSetInst>(MI)) {
257 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
258 auto *CI = dyn_cast<ConstantInt>(memset_inst->getValue());
259 if (!CI || !CI->isZero())
260 return -1;
261 }
262 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
263 MemSizeInBits, DL);
264 }
265
266 // If we have a memcpy/memmove, the only case we can handle is if this is a
267 // copy from constant memory. In that case, we can read directly from the
268 // constant memory.
269 MemTransferInst *MTI = cast<MemTransferInst>(MI);
270
271 Constant *Src = dyn_cast<Constant>(MTI->getSource());
272 if (!Src)
273 return -1;
274
275 GlobalVariable *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(Src));
276 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
277 return -1;
278
279 // See if the access is within the bounds of the transfer.
280 int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
281 MemSizeInBits, DL);
282 if (Offset == -1)
283 return Offset;
284
285 // Otherwise, see if we can constant fold a load from the constant with the
286 // offset applied as appropriate.
287 unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
288 if (ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset), DL))
289 return Offset;
290 return -1;
291}
292
294 Type *LoadTy, IRBuilderBase &Builder,
295 const DataLayout &DL) {
296 LLVMContext &Ctx = SrcVal->getType()->getContext();
297
298 // If two pointers are in the same address space, they have the same size,
299 // so we don't need to do any truncation, etc. This avoids introducing
300 // ptrtoint instructions for pointers that may be non-integral.
301 if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() &&
302 cast<PointerType>(SrcVal->getType())->getAddressSpace() ==
303 cast<PointerType>(LoadTy)->getAddressSpace()) {
304 return SrcVal;
305 }
306
307 uint64_t StoreSize =
308 (DL.getTypeSizeInBits(SrcVal->getType()).getFixedValue() + 7) / 8;
309 uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy).getFixedValue() + 7) / 8;
310 // Compute which bits of the stored value are being used by the load. Convert
311 // to an integer type to start with.
312 if (SrcVal->getType()->isPtrOrPtrVectorTy())
313 SrcVal =
314 Builder.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType()));
315 if (!SrcVal->getType()->isIntegerTy())
316 SrcVal =
317 Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8));
318
319 // Shift the bits to the least significant depending on endianness.
320 unsigned ShiftAmt;
321 if (DL.isLittleEndian())
322 ShiftAmt = Offset * 8;
323 else
324 ShiftAmt = (StoreSize - LoadSize - Offset) * 8;
325 if (ShiftAmt)
326 SrcVal = Builder.CreateLShr(SrcVal,
327 ConstantInt::get(SrcVal->getType(), ShiftAmt));
328
329 if (LoadSize != StoreSize)
330 SrcVal = Builder.CreateTruncOrBitCast(SrcVal,
331 IntegerType::get(Ctx, LoadSize * 8));
332 return SrcVal;
333}
334
335Value *getValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy,
336 Instruction *InsertPt, const DataLayout &DL) {
337
338#ifndef NDEBUG
339 unsigned SrcValSize = DL.getTypeStoreSize(SrcVal->getType()).getFixedValue();
340 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedValue();
341 assert(Offset + LoadSize <= SrcValSize);
342#endif
343 IRBuilder<> Builder(InsertPt);
344 SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL);
345 return coerceAvailableValueToLoadType(SrcVal, LoadTy, Builder, DL);
346}
347
349 Type *LoadTy, const DataLayout &DL) {
350#ifndef NDEBUG
351 unsigned SrcValSize = DL.getTypeStoreSize(SrcVal->getType()).getFixedValue();
352 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedValue();
353 assert(Offset + LoadSize <= SrcValSize);
354#endif
355 return ConstantFoldLoadFromConst(SrcVal, LoadTy, APInt(32, Offset), DL);
356}
357
358/// This function is called when we have a
359/// memdep query of a load that ends up being a clobbering mem intrinsic.
361 Type *LoadTy, Instruction *InsertPt,
362 const DataLayout &DL) {
363 LLVMContext &Ctx = LoadTy->getContext();
364 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedValue() / 8;
365 IRBuilder<> Builder(InsertPt);
366
367 // We know that this method is only called when the mem transfer fully
368 // provides the bits for the load.
369 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
370 // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
371 // independently of what the offset is.
372 Value *Val = MSI->getValue();
373 if (LoadSize != 1)
374 Val =
375 Builder.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8));
376 Value *OneElt = Val;
377
378 // Splat the value out to the right number of bits.
379 for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) {
380 // If we can double the number of bytes set, do it.
381 if (NumBytesSet * 2 <= LoadSize) {
382 Value *ShVal = Builder.CreateShl(
383 Val, ConstantInt::get(Val->getType(), NumBytesSet * 8));
384 Val = Builder.CreateOr(Val, ShVal);
385 NumBytesSet <<= 1;
386 continue;
387 }
388
389 // Otherwise insert one byte at a time.
390 Value *ShVal =
391 Builder.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8));
392 Val = Builder.CreateOr(OneElt, ShVal);
393 ++NumBytesSet;
394 }
395
396 return coerceAvailableValueToLoadType(Val, LoadTy, Builder, DL);
397 }
398
399 // Otherwise, this is a memcpy/memmove from a constant global.
400 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
401 Constant *Src = cast<Constant>(MTI->getSource());
402 unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
403 return ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset),
404 DL);
405}
406
408 Type *LoadTy, const DataLayout &DL) {
409 LLVMContext &Ctx = LoadTy->getContext();
410 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedValue() / 8;
411
412 // We know that this method is only called when the mem transfer fully
413 // provides the bits for the load.
414 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
415 auto *Val = dyn_cast<ConstantInt>(MSI->getValue());
416 if (!Val)
417 return nullptr;
418
419 Val = ConstantInt::get(Ctx, APInt::getSplat(LoadSize * 8, Val->getValue()));
420 return ConstantFoldLoadFromConst(Val, LoadTy, DL);
421 }
422
423 // Otherwise, this is a memcpy/memmove from a constant global.
424 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
425 Constant *Src = cast<Constant>(MTI->getSource());
426 unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
427 return ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset),
428 DL);
429}
430} // namespace VNCoercion
431} // namespace llvm
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
IRTranslator LLVM IR MI
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Class for arbitrary precision integers.
Definition: APInt.h:76
static APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
Definition: APInt.cpp:620
This is the shared class of boolean and integer constants.
Definition: Constants.h:80
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:154
This is an important base class in LLVM.
Definition: Constant.h:41
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
Common base class shared among various IRBuilders.
Definition: IRBuilder.h:94
Value * CreateZExtOrBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2137
Value * CreateIntToPtr(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2122
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1437
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2127
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1416
Value * CreatePtrToInt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2117
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1497
Value * CreateTruncOrBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2153
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2666
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:278
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
An instruction for reading from memory.
Definition: Instructions.h:184
Value * getPointerOperand()
Definition: Instructions.h:280
This is the common base class for memset/memcpy/memmove.
This class wraps the llvm.memset and llvm.memset.inline intrinsics.
Value * getSource() const
This is just like getRawSource, but it strips off any cast instructions that feed it,...
This class wraps the llvm.memcpy/memmove intrinsics.
An instruction for storing to memory.
Definition: Instructions.h:317
Value * getValueOperand()
Definition: Instructions.h:414
Value * getPointerOperand()
Definition: Instructions.h:417
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isArrayTy() const
True if this is an instance of ArrayType.
Definition: Type.h:252
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:255
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
bool isStructTy() const
True if this is an instance of StructType.
Definition: Type.h:249
bool isTargetExtTy() const
Return true if this is a target extension type.
Definition: Type.h:207
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:129
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
Definition: Type.h:262
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:228
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition: Type.h:348
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
Value * getValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy, Instruction *InsertPt, const DataLayout &DL)
If analyzeLoadFromClobberingStore/Load returned an offset, this function can be used to actually perf...
Definition: VNCoercion.cpp:335
static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr, Value *WritePtr, uint64_t WriteSizeInBits, const DataLayout &DL)
This function is called when we have a memdep query of a load that ends up being a clobbering memory ...
Definition: VNCoercion.cpp:173
Value * coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy, IRBuilderBase &IRB, const DataLayout &DL)
If we saw a store of a value to memory, and then a load from a must-aliased pointer of a different ty...
Definition: VNCoercion.cpp:76
static Value * getStoreValueForLoadHelper(Value *SrcVal, unsigned Offset, Type *LoadTy, IRBuilderBase &Builder, const DataLayout &DL)
Definition: VNCoercion.cpp:293
int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr, StoreInst *DepSI, const DataLayout &DL)
This function determines whether a value for the pointer LoadPtr can be extracted from the store at D...
Definition: VNCoercion.cpp:211
Value * getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, Type *LoadTy, Instruction *InsertPt, const DataLayout &DL)
If analyzeLoadFromClobberingMemInst returned an offset, this function can be used to actually perform...
Definition: VNCoercion.cpp:360
Constant * getConstantValueForLoad(Constant *SrcVal, unsigned Offset, Type *LoadTy, const DataLayout &DL)
Definition: VNCoercion.cpp:348
int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI, const DataLayout &DL)
This function determines whether a value for the pointer LoadPtr can be extracted from the load at De...
Definition: VNCoercion.cpp:232
Constant * getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, Type *LoadTy, const DataLayout &DL)
Definition: VNCoercion.cpp:407
int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr, MemIntrinsic *DepMI, const DataLayout &DL)
This function determines whether a value for the pointer LoadPtr can be extracted from the memory int...
Definition: VNCoercion.cpp:246
static bool isFirstClassAggregateOrScalableType(Type *Ty)
Definition: VNCoercion.cpp:13
bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy, const DataLayout &DL)
Return true if CoerceAvailableValueToLoadType would succeed if it was called.
Definition: VNCoercion.cpp:18
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:456
Value * GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, const DataLayout &DL, bool AllowNonInbounds=true)
Analyze the specified pointer to see if it can be expressed as a base pointer plus a constant offset.
const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=6)
This method strips off any GEP address adjustments and pointer casts from the specified value,...
Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
Constant * ConstantFoldLoadFromConst(Constant *C, Type *Ty, const APInt &Offset, const DataLayout &DL)
Extract value of C at the given Offset reinterpreted as Ty.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...