LLVM 17.0.0git
APInt.h
Go to the documentation of this file.
1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements a class to represent arbitrary precision
11/// integral constant values and operations on them.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ADT_APINT_H
16#define LLVM_ADT_APINT_H
17
20#include <cassert>
21#include <climits>
22#include <cstring>
23#include <optional>
24#include <utility>
25
26namespace llvm {
27class FoldingSetNodeID;
28class StringRef;
29class hash_code;
30class raw_ostream;
31
32template <typename T> class SmallVectorImpl;
33template <typename T> class ArrayRef;
34template <typename T, typename Enable> struct DenseMapInfo;
35
36class APInt;
37
38inline APInt operator-(APInt);
39
40//===----------------------------------------------------------------------===//
41// APInt Class
42//===----------------------------------------------------------------------===//
43
44/// Class for arbitrary precision integers.
45///
46/// APInt is a functional replacement for common case unsigned integer type like
47/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
48/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
49/// than 64-bits of precision. APInt provides a variety of arithmetic operators
50/// and methods to manipulate integer values of any bit-width. It supports both
51/// the typical integer arithmetic and comparison operations as well as bitwise
52/// manipulation.
53///
54/// The class has several invariants worth noting:
55/// * All bit, byte, and word positions are zero-based.
56/// * Once the bit width is set, it doesn't change except by the Truncate,
57/// SignExtend, or ZeroExtend operations.
58/// * All binary operators must be on APInt instances of the same bit width.
59/// Attempting to use these operators on instances with different bit
60/// widths will yield an assertion.
61/// * The value is stored canonically as an unsigned value. For operations
62/// where it makes a difference, there are both signed and unsigned variants
63/// of the operation. For example, sdiv and udiv. However, because the bit
64/// widths must be the same, operations such as Mul and Add produce the same
65/// results regardless of whether the values are interpreted as signed or
66/// not.
67/// * In general, the class tries to follow the style of computation that LLVM
68/// uses in its IR. This simplifies its use for LLVM.
69/// * APInt supports zero-bit-width values, but operations that require bits
70/// are not defined on it (e.g. you cannot ask for the sign of a zero-bit
71/// integer). This means that operations like zero extension and logical
72/// shifts are defined, but sign extension and ashr is not. Zero bit values
73/// compare and hash equal to themselves, and countLeadingZeros returns 0.
74///
75class [[nodiscard]] APInt {
76public:
78
79 /// This enum is used to hold the constants we needed for APInt.
80 enum : unsigned {
81 /// Byte size of a word.
82 APINT_WORD_SIZE = sizeof(WordType),
83 /// Bits in a word.
84 APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
85 };
86
87 enum class Rounding {
88 DOWN,
89 TOWARD_ZERO,
90 UP,
91 };
92
93 static constexpr WordType WORDTYPE_MAX = ~WordType(0);
94
95 /// \name Constructors
96 /// @{
97
98 /// Create a new APInt of numBits width, initialized as val.
99 ///
100 /// If isSigned is true then val is treated as if it were a signed value
101 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
102 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
103 /// the range of val are zero filled).
104 ///
105 /// \param numBits the bit width of the constructed APInt
106 /// \param val the initial value of the APInt
107 /// \param isSigned how to treat signedness of val
108 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
109 : BitWidth(numBits) {
110 if (isSingleWord()) {
111 U.VAL = val;
113 } else {
114 initSlowCase(val, isSigned);
115 }
116 }
117
118 /// Construct an APInt of numBits width, initialized as bigVal[].
119 ///
120 /// Note that bigVal.size() can be smaller or larger than the corresponding
121 /// bit width but any extraneous bits will be dropped.
122 ///
123 /// \param numBits the bit width of the constructed APInt
124 /// \param bigVal a sequence of words to form the initial value of the APInt
125 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
126
127 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
128 /// deprecated because this constructor is prone to ambiguity with the
129 /// APInt(unsigned, uint64_t, bool) constructor.
130 ///
131 /// If this overload is ever deleted, care should be taken to prevent calls
132 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
133 /// constructor.
134 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
135
136 /// Construct an APInt from a string representation.
137 ///
138 /// This constructor interprets the string \p str in the given radix. The
139 /// interpretation stops when the first character that is not suitable for the
140 /// radix is encountered, or the end of the string. Acceptable radix values
141 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
142 /// string to require more bits than numBits.
143 ///
144 /// \param numBits the bit width of the constructed APInt
145 /// \param str the string to be interpreted
146 /// \param radix the radix to use for the conversion
147 APInt(unsigned numBits, StringRef str, uint8_t radix);
148
149 /// Default constructor that creates an APInt with a 1-bit zero value.
150 explicit APInt() { U.VAL = 0; }
151
152 /// Copy Constructor.
153 APInt(const APInt &that) : BitWidth(that.BitWidth) {
154 if (isSingleWord())
155 U.VAL = that.U.VAL;
156 else
157 initSlowCase(that);
158 }
159
160 /// Move Constructor.
161 APInt(APInt &&that) : BitWidth(that.BitWidth) {
162 memcpy(&U, &that.U, sizeof(U));
163 that.BitWidth = 0;
164 }
165
166 /// Destructor.
168 if (needsCleanup())
169 delete[] U.pVal;
170 }
171
172 /// @}
173 /// \name Value Generators
174 /// @{
175
176 /// Get the '0' value for the specified bit-width.
177 static APInt getZero(unsigned numBits) { return APInt(numBits, 0); }
178
179 /// NOTE: This is soft-deprecated. Please use `getZero()` instead.
180 static APInt getNullValue(unsigned numBits) { return getZero(numBits); }
181
182 /// Return an APInt zero bits wide.
183 static APInt getZeroWidth() { return getZero(0); }
184
185 /// Gets maximum unsigned value of APInt for specific bit width.
186 static APInt getMaxValue(unsigned numBits) { return getAllOnes(numBits); }
187
188 /// Gets maximum signed value of APInt for a specific bit width.
189 static APInt getSignedMaxValue(unsigned numBits) {
190 APInt API = getAllOnes(numBits);
191 API.clearBit(numBits - 1);
192 return API;
193 }
194
195 /// Gets minimum unsigned value of APInt for a specific bit width.
196 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
197
198 /// Gets minimum signed value of APInt for a specific bit width.
199 static APInt getSignedMinValue(unsigned numBits) {
200 APInt API(numBits, 0);
201 API.setBit(numBits - 1);
202 return API;
203 }
204
205 /// Get the SignMask for a specific bit width.
206 ///
207 /// This is just a wrapper function of getSignedMinValue(), and it helps code
208 /// readability when we want to get a SignMask.
209 static APInt getSignMask(unsigned BitWidth) {
210 return getSignedMinValue(BitWidth);
211 }
212
213 /// Return an APInt of a specified width with all bits set.
214 static APInt getAllOnes(unsigned numBits) {
215 return APInt(numBits, WORDTYPE_MAX, true);
216 }
217
218 /// NOTE: This is soft-deprecated. Please use `getAllOnes()` instead.
219 static APInt getAllOnesValue(unsigned numBits) { return getAllOnes(numBits); }
220
221 /// Return an APInt with exactly one bit set in the result.
222 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
223 APInt Res(numBits, 0);
224 Res.setBit(BitNo);
225 return Res;
226 }
227
228 /// Get a value with a block of bits set.
229 ///
230 /// Constructs an APInt value that has a contiguous range of bits set. The
231 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
232 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
233 /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than
234 /// \p hiBit.
235 ///
236 /// \param numBits the intended bit width of the result
237 /// \param loBit the index of the lowest bit set.
238 /// \param hiBit the index of the highest bit set.
239 ///
240 /// \returns An APInt value with the requested bits set.
241 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
242 APInt Res(numBits, 0);
243 Res.setBits(loBit, hiBit);
244 return Res;
245 }
246
247 /// Wrap version of getBitsSet.
248 /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet.
249 /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example,
250 /// with parameters (32, 28, 4), you would get 0xF000000F.
251 /// If \p hiBit is equal to \p loBit, you would get a result with all bits
252 /// set.
253 static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit,
254 unsigned hiBit) {
255 APInt Res(numBits, 0);
256 Res.setBitsWithWrap(loBit, hiBit);
257 return Res;
258 }
259
260 /// Constructs an APInt value that has a contiguous range of bits set. The
261 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
262 /// bits will be zero. For example, with parameters(32, 12) you would get
263 /// 0xFFFFF000.
264 ///
265 /// \param numBits the intended bit width of the result
266 /// \param loBit the index of the lowest bit to set.
267 ///
268 /// \returns An APInt value with the requested bits set.
269 static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
270 APInt Res(numBits, 0);
271 Res.setBitsFrom(loBit);
272 return Res;
273 }
274
275 /// Constructs an APInt value that has the top hiBitsSet bits set.
276 ///
277 /// \param numBits the bitwidth of the result
278 /// \param hiBitsSet the number of high-order bits set in the result.
279 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
280 APInt Res(numBits, 0);
281 Res.setHighBits(hiBitsSet);
282 return Res;
283 }
284
285 /// Constructs an APInt value that has the bottom loBitsSet bits set.
286 ///
287 /// \param numBits the bitwidth of the result
288 /// \param loBitsSet the number of low-order bits set in the result.
289 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
290 APInt Res(numBits, 0);
291 Res.setLowBits(loBitsSet);
292 return Res;
293 }
294
295 /// Return a value containing V broadcasted over NewLen bits.
296 static APInt getSplat(unsigned NewLen, const APInt &V);
297
298 /// @}
299 /// \name Value Tests
300 /// @{
301
302 /// Determine if this APInt just has one word to store value.
303 ///
304 /// \returns true if the number of bits <= 64, false otherwise.
305 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
306
307 /// Determine sign of this APInt.
308 ///
309 /// This tests the high bit of this APInt to determine if it is set.
310 ///
311 /// \returns true if this APInt is negative, false otherwise
312 bool isNegative() const { return (*this)[BitWidth - 1]; }
313
314 /// Determine if this APInt Value is non-negative (>= 0)
315 ///
316 /// This tests the high bit of the APInt to determine if it is unset.
317 bool isNonNegative() const { return !isNegative(); }
318
319 /// Determine if sign bit of this APInt is set.
320 ///
321 /// This tests the high bit of this APInt to determine if it is set.
322 ///
323 /// \returns true if this APInt has its sign bit set, false otherwise.
324 bool isSignBitSet() const { return (*this)[BitWidth - 1]; }
325
326 /// Determine if sign bit of this APInt is clear.
327 ///
328 /// This tests the high bit of this APInt to determine if it is clear.
329 ///
330 /// \returns true if this APInt has its sign bit clear, false otherwise.
331 bool isSignBitClear() const { return !isSignBitSet(); }
332
333 /// Determine if this APInt Value is positive.
334 ///
335 /// This tests if the value of this APInt is positive (> 0). Note
336 /// that 0 is not a positive value.
337 ///
338 /// \returns true if this APInt is positive.
339 bool isStrictlyPositive() const { return isNonNegative() && !isZero(); }
340
341 /// Determine if this APInt Value is non-positive (<= 0).
342 ///
343 /// \returns true if this APInt is non-positive.
344 bool isNonPositive() const { return !isStrictlyPositive(); }
345
346 /// Determine if this APInt Value only has the specified bit set.
347 ///
348 /// \returns true if this APInt only has the specified bit set.
349 bool isOneBitSet(unsigned BitNo) const {
350 return (*this)[BitNo] && countPopulation() == 1;
351 }
352
353 /// Determine if all bits are set. This is true for zero-width values.
354 bool isAllOnes() const {
355 if (BitWidth == 0)
356 return true;
357 if (isSingleWord())
358 return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
359 return countTrailingOnesSlowCase() == BitWidth;
360 }
361
362 /// NOTE: This is soft-deprecated. Please use `isAllOnes()` instead.
363 bool isAllOnesValue() const { return isAllOnes(); }
364
365 /// Determine if this value is zero, i.e. all bits are clear.
366 bool isZero() const {
367 if (isSingleWord())
368 return U.VAL == 0;
369 return countLeadingZerosSlowCase() == BitWidth;
370 }
371
372 /// NOTE: This is soft-deprecated. Please use `isZero()` instead.
373 bool isNullValue() const { return isZero(); }
374
375 /// Determine if this is a value of 1.
376 ///
377 /// This checks to see if the value of this APInt is one.
378 bool isOne() const {
379 if (isSingleWord())
380 return U.VAL == 1;
381 return countLeadingZerosSlowCase() == BitWidth - 1;
382 }
383
384 /// NOTE: This is soft-deprecated. Please use `isOne()` instead.
385 bool isOneValue() const { return isOne(); }
386
387 /// Determine if this is the largest unsigned value.
388 ///
389 /// This checks to see if the value of this APInt is the maximum unsigned
390 /// value for the APInt's bit width.
391 bool isMaxValue() const { return isAllOnes(); }
392
393 /// Determine if this is the largest signed value.
394 ///
395 /// This checks to see if the value of this APInt is the maximum signed
396 /// value for the APInt's bit width.
397 bool isMaxSignedValue() const {
398 if (isSingleWord()) {
399 assert(BitWidth && "zero width values not allowed");
400 return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
401 }
402 return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
403 }
404
405 /// Determine if this is the smallest unsigned value.
406 ///
407 /// This checks to see if the value of this APInt is the minimum unsigned
408 /// value for the APInt's bit width.
409 bool isMinValue() const { return isZero(); }
410
411 /// Determine if this is the smallest signed value.
412 ///
413 /// This checks to see if the value of this APInt is the minimum signed
414 /// value for the APInt's bit width.
415 bool isMinSignedValue() const {
416 if (isSingleWord()) {
417 assert(BitWidth && "zero width values not allowed");
418 return U.VAL == (WordType(1) << (BitWidth - 1));
419 }
420 return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
421 }
422
423 /// Check if this APInt has an N-bits unsigned integer value.
424 bool isIntN(unsigned N) const { return getActiveBits() <= N; }
425
426 /// Check if this APInt has an N-bits signed integer value.
427 bool isSignedIntN(unsigned N) const { return getSignificantBits() <= N; }
428
429 /// Check if this APInt's value is a power of two greater than zero.
430 ///
431 /// \returns true if the argument APInt value is a power of two > 0.
432 bool isPowerOf2() const {
433 if (isSingleWord()) {
434 assert(BitWidth && "zero width values not allowed");
435 return isPowerOf2_64(U.VAL);
436 }
437 return countPopulationSlowCase() == 1;
438 }
439
440 /// Check if this APInt's negated value is a power of two greater than zero.
441 bool isNegatedPowerOf2() const {
442 assert(BitWidth && "zero width values not allowed");
443 if (isNonNegative())
444 return false;
445 // NegatedPowerOf2 - shifted mask in the top bits.
446 unsigned LO = countLeadingOnes();
447 unsigned TZ = countTrailingZeros();
448 return (LO + TZ) == BitWidth;
449 }
450
451 /// Check if the APInt's value is returned by getSignMask.
452 ///
453 /// \returns true if this is the value returned by getSignMask.
454 bool isSignMask() const { return isMinSignedValue(); }
455
456 /// Convert APInt to a boolean value.
457 ///
458 /// This converts the APInt to a boolean value as a test against zero.
459 bool getBoolValue() const { return !isZero(); }
460
461 /// If this value is smaller than the specified limit, return it, otherwise
462 /// return the limit value. This causes the value to saturate to the limit.
464 return ugt(Limit) ? Limit : getZExtValue();
465 }
466
467 /// Check if the APInt consists of a repeated bit pattern.
468 ///
469 /// e.g. 0x01010101 satisfies isSplat(8).
470 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
471 /// width without remainder.
472 bool isSplat(unsigned SplatSizeInBits) const;
473
474 /// \returns true if this APInt value is a sequence of \param numBits ones
475 /// starting at the least significant bit with the remainder zero.
476 bool isMask(unsigned numBits) const {
477 assert(numBits != 0 && "numBits must be non-zero");
478 assert(numBits <= BitWidth && "numBits out of range");
479 if (isSingleWord())
480 return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
481 unsigned Ones = countTrailingOnesSlowCase();
482 return (numBits == Ones) &&
483 ((Ones + countLeadingZerosSlowCase()) == BitWidth);
484 }
485
486 /// \returns true if this APInt is a non-empty sequence of ones starting at
487 /// the least significant bit with the remainder zero.
488 /// Ex. isMask(0x0000FFFFU) == true.
489 bool isMask() const {
490 if (isSingleWord())
491 return isMask_64(U.VAL);
492 unsigned Ones = countTrailingOnesSlowCase();
493 return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
494 }
495
496 /// Return true if this APInt value contains a non-empty sequence of ones with
497 /// the remainder zero.
498 bool isShiftedMask() const {
499 if (isSingleWord())
500 return isShiftedMask_64(U.VAL);
501 unsigned Ones = countPopulationSlowCase();
502 unsigned LeadZ = countLeadingZerosSlowCase();
503 return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
504 }
505
506 /// Return true if this APInt value contains a non-empty sequence of ones with
507 /// the remainder zero. If true, \p MaskIdx will specify the index of the
508 /// lowest set bit and \p MaskLen is updated to specify the length of the
509 /// mask, else neither are updated.
510 bool isShiftedMask(unsigned &MaskIdx, unsigned &MaskLen) const {
511 if (isSingleWord())
512 return isShiftedMask_64(U.VAL, MaskIdx, MaskLen);
513 unsigned Ones = countPopulationSlowCase();
514 unsigned LeadZ = countLeadingZerosSlowCase();
515 unsigned TrailZ = countTrailingZerosSlowCase();
516 if ((Ones + LeadZ + TrailZ) != BitWidth)
517 return false;
518 MaskLen = Ones;
519 MaskIdx = TrailZ;
520 return true;
521 }
522
523 /// Compute an APInt containing numBits highbits from this APInt.
524 ///
525 /// Get an APInt with the same BitWidth as this APInt, just zero mask the low
526 /// bits and right shift to the least significant bit.
527 ///
528 /// \returns the high "numBits" bits of this APInt.
529 APInt getHiBits(unsigned numBits) const;
530
531 /// Compute an APInt containing numBits lowbits from this APInt.
532 ///
533 /// Get an APInt with the same BitWidth as this APInt, just zero mask the high
534 /// bits.
535 ///
536 /// \returns the low "numBits" bits of this APInt.
537 APInt getLoBits(unsigned numBits) const;
538
539 /// Determine if two APInts have the same value, after zero-extending
540 /// one of them (if needed!) to ensure that the bit-widths match.
541 static bool isSameValue(const APInt &I1, const APInt &I2) {
542 if (I1.getBitWidth() == I2.getBitWidth())
543 return I1 == I2;
544
545 if (I1.getBitWidth() > I2.getBitWidth())
546 return I1 == I2.zext(I1.getBitWidth());
547
548 return I1.zext(I2.getBitWidth()) == I2;
549 }
550
551 /// Overload to compute a hash_code for an APInt value.
553
554 /// This function returns a pointer to the internal storage of the APInt.
555 /// This is useful for writing out the APInt in binary form without any
556 /// conversions.
557 const uint64_t *getRawData() const {
558 if (isSingleWord())
559 return &U.VAL;
560 return &U.pVal[0];
561 }
562
563 /// @}
564 /// \name Unary Operators
565 /// @{
566
567 /// Postfix increment operator. Increment *this by 1.
568 ///
569 /// \returns a new APInt value representing the original value of *this.
571 APInt API(*this);
572 ++(*this);
573 return API;
574 }
575
576 /// Prefix increment operator.
577 ///
578 /// \returns *this incremented by one
579 APInt &operator++();
580
581 /// Postfix decrement operator. Decrement *this by 1.
582 ///
583 /// \returns a new APInt value representing the original value of *this.
585 APInt API(*this);
586 --(*this);
587 return API;
588 }
589
590 /// Prefix decrement operator.
591 ///
592 /// \returns *this decremented by one.
593 APInt &operator--();
594
595 /// Logical negation operation on this APInt returns true if zero, like normal
596 /// integers.
597 bool operator!() const { return isZero(); }
598
599 /// @}
600 /// \name Assignment Operators
601 /// @{
602
603 /// Copy assignment operator.
604 ///
605 /// \returns *this after assignment of RHS.
607 // The common case (both source or dest being inline) doesn't require
608 // allocation or deallocation.
609 if (isSingleWord() && RHS.isSingleWord()) {
610 U.VAL = RHS.U.VAL;
611 BitWidth = RHS.BitWidth;
612 return *this;
613 }
614
615 assignSlowCase(RHS);
616 return *this;
617 }
618
619 /// Move assignment operator.
621#ifdef EXPENSIVE_CHECKS
622 // Some std::shuffle implementations still do self-assignment.
623 if (this == &that)
624 return *this;
625#endif
626 assert(this != &that && "Self-move not supported");
627 if (!isSingleWord())
628 delete[] U.pVal;
629
630 // Use memcpy so that type based alias analysis sees both VAL and pVal
631 // as modified.
632 memcpy(&U, &that.U, sizeof(U));
633
634 BitWidth = that.BitWidth;
635 that.BitWidth = 0;
636 return *this;
637 }
638
639 /// Assignment operator.
640 ///
641 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
642 /// the bit width, the excess bits are truncated. If the bit width is larger
643 /// than 64, the value is zero filled in the unspecified high order bits.
644 ///
645 /// \returns *this after assignment of RHS value.
647 if (isSingleWord()) {
648 U.VAL = RHS;
649 return clearUnusedBits();
650 }
651 U.pVal[0] = RHS;
652 memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
653 return *this;
654 }
655
656 /// Bitwise AND assignment operator.
657 ///
658 /// Performs a bitwise AND operation on this APInt and RHS. The result is
659 /// assigned to *this.
660 ///
661 /// \returns *this after ANDing with RHS.
663 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
664 if (isSingleWord())
665 U.VAL &= RHS.U.VAL;
666 else
667 andAssignSlowCase(RHS);
668 return *this;
669 }
670
671 /// Bitwise AND assignment operator.
672 ///
673 /// Performs a bitwise AND operation on this APInt and RHS. RHS is
674 /// logically zero-extended or truncated to match the bit-width of
675 /// the LHS.
677 if (isSingleWord()) {
678 U.VAL &= RHS;
679 return *this;
680 }
681 U.pVal[0] &= RHS;
682 memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
683 return *this;
684 }
685
686 /// Bitwise OR assignment operator.
687 ///
688 /// Performs a bitwise OR operation on this APInt and RHS. The result is
689 /// assigned *this;
690 ///
691 /// \returns *this after ORing with RHS.
693 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
694 if (isSingleWord())
695 U.VAL |= RHS.U.VAL;
696 else
697 orAssignSlowCase(RHS);
698 return *this;
699 }
700
701 /// Bitwise OR assignment operator.
702 ///
703 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
704 /// logically zero-extended or truncated to match the bit-width of
705 /// the LHS.
707 if (isSingleWord()) {
708 U.VAL |= RHS;
709 return clearUnusedBits();
710 }
711 U.pVal[0] |= RHS;
712 return *this;
713 }
714
715 /// Bitwise XOR assignment operator.
716 ///
717 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
718 /// assigned to *this.
719 ///
720 /// \returns *this after XORing with RHS.
722 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
723 if (isSingleWord())
724 U.VAL ^= RHS.U.VAL;
725 else
726 xorAssignSlowCase(RHS);
727 return *this;
728 }
729
730 /// Bitwise XOR assignment operator.
731 ///
732 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
733 /// logically zero-extended or truncated to match the bit-width of
734 /// the LHS.
736 if (isSingleWord()) {
737 U.VAL ^= RHS;
738 return clearUnusedBits();
739 }
740 U.pVal[0] ^= RHS;
741 return *this;
742 }
743
744 /// Multiplication assignment operator.
745 ///
746 /// Multiplies this APInt by RHS and assigns the result to *this.
747 ///
748 /// \returns *this
749 APInt &operator*=(const APInt &RHS);
750 APInt &operator*=(uint64_t RHS);
751
752 /// Addition assignment operator.
753 ///
754 /// Adds RHS to *this and assigns the result to *this.
755 ///
756 /// \returns *this
757 APInt &operator+=(const APInt &RHS);
759
760 /// Subtraction assignment operator.
761 ///
762 /// Subtracts RHS from *this and assigns the result to *this.
763 ///
764 /// \returns *this
765 APInt &operator-=(const APInt &RHS);
766 APInt &operator-=(uint64_t RHS);
767
768 /// Left-shift assignment function.
769 ///
770 /// Shifts *this left by shiftAmt and assigns the result to *this.
771 ///
772 /// \returns *this after shifting left by ShiftAmt
773 APInt &operator<<=(unsigned ShiftAmt) {
774 assert(ShiftAmt <= BitWidth && "Invalid shift amount");
775 if (isSingleWord()) {
776 if (ShiftAmt == BitWidth)
777 U.VAL = 0;
778 else
779 U.VAL <<= ShiftAmt;
780 return clearUnusedBits();
781 }
782 shlSlowCase(ShiftAmt);
783 return *this;
784 }
785
786 /// Left-shift assignment function.
787 ///
788 /// Shifts *this left by shiftAmt and assigns the result to *this.
789 ///
790 /// \returns *this after shifting left by ShiftAmt
791 APInt &operator<<=(const APInt &ShiftAmt);
792
793 /// @}
794 /// \name Binary Operators
795 /// @{
796
797 /// Multiplication operator.
798 ///
799 /// Multiplies this APInt by RHS and returns the result.
800 APInt operator*(const APInt &RHS) const;
801
802 /// Left logical shift operator.
803 ///
804 /// Shifts this APInt left by \p Bits and returns the result.
805 APInt operator<<(unsigned Bits) const { return shl(Bits); }
806
807 /// Left logical shift operator.
808 ///
809 /// Shifts this APInt left by \p Bits and returns the result.
810 APInt operator<<(const APInt &Bits) const { return shl(Bits); }
811
812 /// Arithmetic right-shift function.
813 ///
814 /// Arithmetic right-shift this APInt by shiftAmt.
815 APInt ashr(unsigned ShiftAmt) const {
816 APInt R(*this);
817 R.ashrInPlace(ShiftAmt);
818 return R;
819 }
820
821 /// Arithmetic right-shift this APInt by ShiftAmt in place.
822 void ashrInPlace(unsigned ShiftAmt) {
823 assert(ShiftAmt <= BitWidth && "Invalid shift amount");
824 if (isSingleWord()) {
825 int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
826 if (ShiftAmt == BitWidth)
827 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
828 else
829 U.VAL = SExtVAL >> ShiftAmt;
831 return;
832 }
833 ashrSlowCase(ShiftAmt);
834 }
835
836 /// Logical right-shift function.
837 ///
838 /// Logical right-shift this APInt by shiftAmt.
839 APInt lshr(unsigned shiftAmt) const {
840 APInt R(*this);
841 R.lshrInPlace(shiftAmt);
842 return R;
843 }
844
845 /// Logical right-shift this APInt by ShiftAmt in place.
846 void lshrInPlace(unsigned ShiftAmt) {
847 assert(ShiftAmt <= BitWidth && "Invalid shift amount");
848 if (isSingleWord()) {
849 if (ShiftAmt == BitWidth)
850 U.VAL = 0;
851 else
852 U.VAL >>= ShiftAmt;
853 return;
854 }
855 lshrSlowCase(ShiftAmt);
856 }
857
858 /// Left-shift function.
859 ///
860 /// Left-shift this APInt by shiftAmt.
861 APInt shl(unsigned shiftAmt) const {
862 APInt R(*this);
863 R <<= shiftAmt;
864 return R;
865 }
866
867 /// relative logical shift right
868 APInt relativeLShr(int RelativeShift) const {
869 return RelativeShift > 0 ? lshr(RelativeShift) : shl(-RelativeShift);
870 }
871
872 /// relative logical shift left
873 APInt relativeLShl(int RelativeShift) const {
874 return relativeLShr(-RelativeShift);
875 }
876
877 /// relative arithmetic shift right
878 APInt relativeAShr(int RelativeShift) const {
879 return RelativeShift > 0 ? ashr(RelativeShift) : shl(-RelativeShift);
880 }
881
882 /// relative arithmetic shift left
883 APInt relativeAShl(int RelativeShift) const {
884 return relativeAShr(-RelativeShift);
885 }
886
887 /// Rotate left by rotateAmt.
888 APInt rotl(unsigned rotateAmt) const;
889
890 /// Rotate right by rotateAmt.
891 APInt rotr(unsigned rotateAmt) const;
892
893 /// Arithmetic right-shift function.
894 ///
895 /// Arithmetic right-shift this APInt by shiftAmt.
896 APInt ashr(const APInt &ShiftAmt) const {
897 APInt R(*this);
898 R.ashrInPlace(ShiftAmt);
899 return R;
900 }
901
902 /// Arithmetic right-shift this APInt by shiftAmt in place.
903 void ashrInPlace(const APInt &shiftAmt);
904
905 /// Logical right-shift function.
906 ///
907 /// Logical right-shift this APInt by shiftAmt.
908 APInt lshr(const APInt &ShiftAmt) const {
909 APInt R(*this);
910 R.lshrInPlace(ShiftAmt);
911 return R;
912 }
913
914 /// Logical right-shift this APInt by ShiftAmt in place.
915 void lshrInPlace(const APInt &ShiftAmt);
916
917 /// Left-shift function.
918 ///
919 /// Left-shift this APInt by shiftAmt.
920 APInt shl(const APInt &ShiftAmt) const {
921 APInt R(*this);
922 R <<= ShiftAmt;
923 return R;
924 }
925
926 /// Rotate left by rotateAmt.
927 APInt rotl(const APInt &rotateAmt) const;
928
929 /// Rotate right by rotateAmt.
930 APInt rotr(const APInt &rotateAmt) const;
931
932 /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is
933 /// equivalent to:
934 /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
935 APInt concat(const APInt &NewLSB) const {
936 /// If the result will be small, then both the merged values are small.
937 unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
938 if (NewWidth <= APINT_BITS_PER_WORD)
939 return APInt(NewWidth, (U.VAL << NewLSB.getBitWidth()) | NewLSB.U.VAL);
940 return concatSlowCase(NewLSB);
941 }
942
943 /// Unsigned division operation.
944 ///
945 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
946 /// RHS are treated as unsigned quantities for purposes of this division.
947 ///
948 /// \returns a new APInt value containing the division result, rounded towards
949 /// zero.
950 APInt udiv(const APInt &RHS) const;
951 APInt udiv(uint64_t RHS) const;
952
953 /// Signed division function for APInt.
954 ///
955 /// Signed divide this APInt by APInt RHS.
956 ///
957 /// The result is rounded towards zero.
958 APInt sdiv(const APInt &RHS) const;
959 APInt sdiv(int64_t RHS) const;
960
961 /// Unsigned remainder operation.
962 ///
963 /// Perform an unsigned remainder operation on this APInt with RHS being the
964 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
965 /// of this operation.
966 ///
967 /// \returns a new APInt value containing the remainder result
968 APInt urem(const APInt &RHS) const;
969 uint64_t urem(uint64_t RHS) const;
970
971 /// Function for signed remainder operation.
972 ///
973 /// Signed remainder operation on APInt.
974 ///
975 /// Note that this is a true remainder operation and not a modulo operation
976 /// because the sign follows the sign of the dividend which is *this.
977 APInt srem(const APInt &RHS) const;
978 int64_t srem(int64_t RHS) const;
979
980 /// Dual division/remainder interface.
981 ///
982 /// Sometimes it is convenient to divide two APInt values and obtain both the
983 /// quotient and remainder. This function does both operations in the same
984 /// computation making it a little more efficient. The pair of input arguments
985 /// may overlap with the pair of output arguments. It is safe to call
986 /// udivrem(X, Y, X, Y), for example.
987 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
988 APInt &Remainder);
989 static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
990 uint64_t &Remainder);
991
992 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
993 APInt &Remainder);
994 static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
995 int64_t &Remainder);
996
997 // Operations that return overflow indicators.
998 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
999 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
1000 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
1001 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
1002 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
1003 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
1004 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
1005 APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
1006 APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1007
1008 // Operations that saturate
1009 APInt sadd_sat(const APInt &RHS) const;
1010 APInt uadd_sat(const APInt &RHS) const;
1011 APInt ssub_sat(const APInt &RHS) const;
1012 APInt usub_sat(const APInt &RHS) const;
1013 APInt smul_sat(const APInt &RHS) const;
1014 APInt umul_sat(const APInt &RHS) const;
1015 APInt sshl_sat(const APInt &RHS) const;
1016 APInt ushl_sat(const APInt &RHS) const;
1017
1018 /// Array-indexing support.
1019 ///
1020 /// \returns the bit value at bitPosition
1021 bool operator[](unsigned bitPosition) const {
1022 assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
1023 return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1024 }
1025
1026 /// @}
1027 /// \name Comparison Operators
1028 /// @{
1029
1030 /// Equality operator.
1031 ///
1032 /// Compares this APInt with RHS for the validity of the equality
1033 /// relationship.
1034 bool operator==(const APInt &RHS) const {
1035 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
1036 if (isSingleWord())
1037 return U.VAL == RHS.U.VAL;
1038 return equalSlowCase(RHS);
1039 }
1040
1041 /// Equality operator.
1042 ///
1043 /// Compares this APInt with a uint64_t for the validity of the equality
1044 /// relationship.
1045 ///
1046 /// \returns true if *this == Val
1047 bool operator==(uint64_t Val) const {
1048 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1049 }
1050
1051 /// Equality comparison.
1052 ///
1053 /// Compares this APInt with RHS for the validity of the equality
1054 /// relationship.
1055 ///
1056 /// \returns true if *this == Val
1057 bool eq(const APInt &RHS) const { return (*this) == RHS; }
1058
1059 /// Inequality operator.
1060 ///
1061 /// Compares this APInt with RHS for the validity of the inequality
1062 /// relationship.
1063 ///
1064 /// \returns true if *this != Val
1065 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1066
1067 /// Inequality operator.
1068 ///
1069 /// Compares this APInt with a uint64_t for the validity of the inequality
1070 /// relationship.
1071 ///
1072 /// \returns true if *this != Val
1073 bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1074
1075 /// Inequality comparison
1076 ///
1077 /// Compares this APInt with RHS for the validity of the inequality
1078 /// relationship.
1079 ///
1080 /// \returns true if *this != Val
1081 bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1082
1083 /// Unsigned less than comparison
1084 ///
1085 /// Regards both *this and RHS as unsigned quantities and compares them for
1086 /// the validity of the less-than relationship.
1087 ///
1088 /// \returns true if *this < RHS when both are considered unsigned.
1089 bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1090
1091 /// Unsigned less than comparison
1092 ///
1093 /// Regards both *this as an unsigned quantity and compares it with RHS for
1094 /// the validity of the less-than relationship.
1095 ///
1096 /// \returns true if *this < RHS when considered unsigned.
1097 bool ult(uint64_t RHS) const {
1098 // Only need to check active bits if not a single word.
1099 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1100 }
1101
1102 /// Signed less than comparison
1103 ///
1104 /// Regards both *this and RHS as signed quantities and compares them for
1105 /// validity of the less-than relationship.
1106 ///
1107 /// \returns true if *this < RHS when both are considered signed.
1108 bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1109
1110 /// Signed less than comparison
1111 ///
1112 /// Regards both *this as a signed quantity and compares it with RHS for
1113 /// the validity of the less-than relationship.
1114 ///
1115 /// \returns true if *this < RHS when considered signed.
1116 bool slt(int64_t RHS) const {
1117 return (!isSingleWord() && getSignificantBits() > 64)
1118 ? isNegative()
1119 : getSExtValue() < RHS;
1120 }
1121
1122 /// Unsigned less or equal comparison
1123 ///
1124 /// Regards both *this and RHS as unsigned quantities and compares them for
1125 /// validity of the less-or-equal relationship.
1126 ///
1127 /// \returns true if *this <= RHS when both are considered unsigned.
1128 bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1129
1130 /// Unsigned less or equal comparison
1131 ///
1132 /// Regards both *this as an unsigned quantity and compares it with RHS for
1133 /// the validity of the less-or-equal relationship.
1134 ///
1135 /// \returns true if *this <= RHS when considered unsigned.
1136 bool ule(uint64_t RHS) const { return !ugt(RHS); }
1137
1138 /// Signed less or equal comparison
1139 ///
1140 /// Regards both *this and RHS as signed quantities and compares them for
1141 /// validity of the less-or-equal relationship.
1142 ///
1143 /// \returns true if *this <= RHS when both are considered signed.
1144 bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1145
1146 /// Signed less or equal comparison
1147 ///
1148 /// Regards both *this as a signed quantity and compares it with RHS for the
1149 /// validity of the less-or-equal relationship.
1150 ///
1151 /// \returns true if *this <= RHS when considered signed.
1152 bool sle(uint64_t RHS) const { return !sgt(RHS); }
1153
1154 /// Unsigned greater than comparison
1155 ///
1156 /// Regards both *this and RHS as unsigned quantities and compares them for
1157 /// the validity of the greater-than relationship.
1158 ///
1159 /// \returns true if *this > RHS when both are considered unsigned.
1160 bool ugt(const APInt &RHS) const { return !ule(RHS); }
1161
1162 /// Unsigned greater than comparison
1163 ///
1164 /// Regards both *this as an unsigned quantity and compares it with RHS for
1165 /// the validity of the greater-than relationship.
1166 ///
1167 /// \returns true if *this > RHS when considered unsigned.
1168 bool ugt(uint64_t RHS) const {
1169 // Only need to check active bits if not a single word.
1170 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1171 }
1172
1173 /// Signed greater than comparison
1174 ///
1175 /// Regards both *this and RHS as signed quantities and compares them for the
1176 /// validity of the greater-than relationship.
1177 ///
1178 /// \returns true if *this > RHS when both are considered signed.
1179 bool sgt(const APInt &RHS) const { return !sle(RHS); }
1180
1181 /// Signed greater than comparison
1182 ///
1183 /// Regards both *this as a signed quantity and compares it with RHS for
1184 /// the validity of the greater-than relationship.
1185 ///
1186 /// \returns true if *this > RHS when considered signed.
1187 bool sgt(int64_t RHS) const {
1188 return (!isSingleWord() && getSignificantBits() > 64)
1189 ? !isNegative()
1190 : getSExtValue() > RHS;
1191 }
1192
1193 /// Unsigned greater or equal comparison
1194 ///
1195 /// Regards both *this and RHS as unsigned quantities and compares them for
1196 /// validity of the greater-or-equal relationship.
1197 ///
1198 /// \returns true if *this >= RHS when both are considered unsigned.
1199 bool uge(const APInt &RHS) const { return !ult(RHS); }
1200
1201 /// Unsigned greater or equal comparison
1202 ///
1203 /// Regards both *this as an unsigned quantity and compares it with RHS for
1204 /// the validity of the greater-or-equal relationship.
1205 ///
1206 /// \returns true if *this >= RHS when considered unsigned.
1207 bool uge(uint64_t RHS) const { return !ult(RHS); }
1208
1209 /// Signed greater or equal comparison
1210 ///
1211 /// Regards both *this and RHS as signed quantities and compares them for
1212 /// validity of the greater-or-equal relationship.
1213 ///
1214 /// \returns true if *this >= RHS when both are considered signed.
1215 bool sge(const APInt &RHS) const { return !slt(RHS); }
1216
1217 /// Signed greater or equal comparison
1218 ///
1219 /// Regards both *this as a signed quantity and compares it with RHS for
1220 /// the validity of the greater-or-equal relationship.
1221 ///
1222 /// \returns true if *this >= RHS when considered signed.
1223 bool sge(int64_t RHS) const { return !slt(RHS); }
1224
1225 /// This operation tests if there are any pairs of corresponding bits
1226 /// between this APInt and RHS that are both set.
1227 bool intersects(const APInt &RHS) const {
1228 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1229 if (isSingleWord())
1230 return (U.VAL & RHS.U.VAL) != 0;
1231 return intersectsSlowCase(RHS);
1232 }
1233
1234 /// This operation checks that all bits set in this APInt are also set in RHS.
1235 bool isSubsetOf(const APInt &RHS) const {
1236 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1237 if (isSingleWord())
1238 return (U.VAL & ~RHS.U.VAL) == 0;
1239 return isSubsetOfSlowCase(RHS);
1240 }
1241
1242 /// @}
1243 /// \name Resizing Operators
1244 /// @{
1245
1246 /// Truncate to new width.
1247 ///
1248 /// Truncate the APInt to a specified width. It is an error to specify a width
1249 /// that is greater than the current width.
1250 APInt trunc(unsigned width) const;
1251
1252 /// Truncate to new width with unsigned saturation.
1253 ///
1254 /// If the APInt, treated as unsigned integer, can be losslessly truncated to
1255 /// the new bitwidth, then return truncated APInt. Else, return max value.
1256 APInt truncUSat(unsigned width) const;
1257
1258 /// Truncate to new width with signed saturation.
1259 ///
1260 /// If this APInt, treated as signed integer, can be losslessly truncated to
1261 /// the new bitwidth, then return truncated APInt. Else, return either
1262 /// signed min value if the APInt was negative, or signed max value.
1263 APInt truncSSat(unsigned width) const;
1264
1265 /// Sign extend to a new width.
1266 ///
1267 /// This operation sign extends the APInt to a new width. If the high order
1268 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1269 /// It is an error to specify a width that is less than the
1270 /// current width.
1271 APInt sext(unsigned width) const;
1272
1273 /// Zero extend to a new width.
1274 ///
1275 /// This operation zero extends the APInt to a new width. The high order bits
1276 /// are filled with 0 bits. It is an error to specify a width that is less
1277 /// than the current width.
1278 APInt zext(unsigned width) const;
1279
1280 /// Sign extend or truncate to width
1281 ///
1282 /// Make this APInt have the bit width given by \p width. The value is sign
1283 /// extended, truncated, or left alone to make it that width.
1284 APInt sextOrTrunc(unsigned width) const;
1285
1286 /// Zero extend or truncate to width
1287 ///
1288 /// Make this APInt have the bit width given by \p width. The value is zero
1289 /// extended, truncated, or left alone to make it that width.
1290 APInt zextOrTrunc(unsigned width) const;
1291
1292 /// @}
1293 /// \name Bit Manipulation Operators
1294 /// @{
1295
1296 /// Set every bit to 1.
1297 void setAllBits() {
1298 if (isSingleWord())
1299 U.VAL = WORDTYPE_MAX;
1300 else
1301 // Set all the bits in all the words.
1302 memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1303 // Clear the unused ones
1305 }
1306
1307 /// Set the given bit to 1 whose position is given as "bitPosition".
1308 void setBit(unsigned BitPosition) {
1309 assert(BitPosition < BitWidth && "BitPosition out of range");
1310 WordType Mask = maskBit(BitPosition);
1311 if (isSingleWord())
1312 U.VAL |= Mask;
1313 else
1314 U.pVal[whichWord(BitPosition)] |= Mask;
1315 }
1316
1317 /// Set the sign bit to 1.
1318 void setSignBit() { setBit(BitWidth - 1); }
1319
1320 /// Set a given bit to a given value.
1321 void setBitVal(unsigned BitPosition, bool BitValue) {
1322 if (BitValue)
1323 setBit(BitPosition);
1324 else
1325 clearBit(BitPosition);
1326 }
1327
1328 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1329 /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls
1330 /// setBits when \p loBit < \p hiBit.
1331 /// For \p loBit == \p hiBit wrap case, set every bit to 1.
1332 void setBitsWithWrap(unsigned loBit, unsigned hiBit) {
1333 assert(hiBit <= BitWidth && "hiBit out of range");
1334 assert(loBit <= BitWidth && "loBit out of range");
1335 if (loBit < hiBit) {
1336 setBits(loBit, hiBit);
1337 return;
1338 }
1339 setLowBits(hiBit);
1340 setHighBits(BitWidth - loBit);
1341 }
1342
1343 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1344 /// This function handles case when \p loBit <= \p hiBit.
1345 void setBits(unsigned loBit, unsigned hiBit) {
1346 assert(hiBit <= BitWidth && "hiBit out of range");
1347 assert(loBit <= BitWidth && "loBit out of range");
1348 assert(loBit <= hiBit && "loBit greater than hiBit");
1349 if (loBit == hiBit)
1350 return;
1351 if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1352 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1353 mask <<= loBit;
1354 if (isSingleWord())
1355 U.VAL |= mask;
1356 else
1357 U.pVal[0] |= mask;
1358 } else {
1359 setBitsSlowCase(loBit, hiBit);
1360 }
1361 }
1362
1363 /// Set the top bits starting from loBit.
1364 void setBitsFrom(unsigned loBit) { return setBits(loBit, BitWidth); }
1365
1366 /// Set the bottom loBits bits.
1367 void setLowBits(unsigned loBits) { return setBits(0, loBits); }
1368
1369 /// Set the top hiBits bits.
1370 void setHighBits(unsigned hiBits) {
1371 return setBits(BitWidth - hiBits, BitWidth);
1372 }
1373
1374 /// Set every bit to 0.
1376 if (isSingleWord())
1377 U.VAL = 0;
1378 else
1379 memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1380 }
1381
1382 /// Set a given bit to 0.
1383 ///
1384 /// Set the given bit to 0 whose position is given as "bitPosition".
1385 void clearBit(unsigned BitPosition) {
1386 assert(BitPosition < BitWidth && "BitPosition out of range");
1387 WordType Mask = ~maskBit(BitPosition);
1388 if (isSingleWord())
1389 U.VAL &= Mask;
1390 else
1391 U.pVal[whichWord(BitPosition)] &= Mask;
1392 }
1393
1394 /// Set bottom loBits bits to 0.
1395 void clearLowBits(unsigned loBits) {
1396 assert(loBits <= BitWidth && "More bits than bitwidth");
1397 APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
1398 *this &= Keep;
1399 }
1400
1401 /// Set the sign bit to 0.
1402 void clearSignBit() { clearBit(BitWidth - 1); }
1403
1404 /// Toggle every bit to its opposite value.
1406 if (isSingleWord()) {
1407 U.VAL ^= WORDTYPE_MAX;
1409 } else {
1410 flipAllBitsSlowCase();
1411 }
1412 }
1413
1414 /// Toggles a given bit to its opposite value.
1415 ///
1416 /// Toggle a given bit to its opposite value whose position is given
1417 /// as "bitPosition".
1418 void flipBit(unsigned bitPosition);
1419
1420 /// Negate this APInt in place.
1421 void negate() {
1422 flipAllBits();
1423 ++(*this);
1424 }
1425
1426 /// Insert the bits from a smaller APInt starting at bitPosition.
1427 void insertBits(const APInt &SubBits, unsigned bitPosition);
1428 void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
1429
1430 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1431 APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1432 uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
1433
1434 /// @}
1435 /// \name Value Characterization Functions
1436 /// @{
1437
1438 /// Return the number of bits in the APInt.
1439 unsigned getBitWidth() const { return BitWidth; }
1440
1441 /// Get the number of words.
1442 ///
1443 /// Here one word's bitwidth equals to that of uint64_t.
1444 ///
1445 /// \returns the number of words to hold the integer value of this APInt.
1446 unsigned getNumWords() const { return getNumWords(BitWidth); }
1447
1448 /// Get the number of words.
1449 ///
1450 /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1451 ///
1452 /// \returns the number of words to hold the integer value with a given bit
1453 /// width.
1454 static unsigned getNumWords(unsigned BitWidth) {
1455 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1456 }
1457
1458 /// Compute the number of active bits in the value
1459 ///
1460 /// This function returns the number of active bits which is defined as the
1461 /// bit width minus the number of leading zeros. This is used in several
1462 /// computations to see how "wide" the value is.
1463 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1464
1465 /// Compute the number of active words in the value of this APInt.
1466 ///
1467 /// This is used in conjunction with getActiveData to extract the raw value of
1468 /// the APInt.
1469 unsigned getActiveWords() const {
1470 unsigned numActiveBits = getActiveBits();
1471 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1472 }
1473
1474 /// Get the minimum bit size for this signed APInt
1475 ///
1476 /// Computes the minimum bit width for this APInt while considering it to be a
1477 /// signed (and probably negative) value. If the value is not negative, this
1478 /// function returns the same value as getActiveBits()+1. Otherwise, it
1479 /// returns the smallest bit width that will retain the negative value. For
1480 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1481 /// for -1, this function will always return 1.
1482 unsigned getSignificantBits() const {
1483 return BitWidth - getNumSignBits() + 1;
1484 }
1485
1486 /// NOTE: This is soft-deprecated. Please use `getSignificantBits()` instead.
1487 unsigned getMinSignedBits() const { return getSignificantBits(); }
1488
1489 /// Get zero extended value
1490 ///
1491 /// This method attempts to return the value of this APInt as a zero extended
1492 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1493 /// uint64_t. Otherwise an assertion will result.
1495 if (isSingleWord())
1496 return U.VAL;
1497 assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1498 return U.pVal[0];
1499 }
1500
1501 /// Get zero extended value if possible
1502 ///
1503 /// This method attempts to return the value of this APInt as a zero extended
1504 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1505 /// uint64_t. Otherwise no value is returned.
1506 std::optional<uint64_t> tryZExtValue() const {
1507 return (getActiveBits() <= 64) ? std::optional<uint64_t>(getZExtValue())
1508 : std::nullopt;
1509 };
1510
1511 /// Get sign extended value
1512 ///
1513 /// This method attempts to return the value of this APInt as a sign extended
1514 /// int64_t. The bit width must be <= 64 or the value must fit within an
1515 /// int64_t. Otherwise an assertion will result.
1516 int64_t getSExtValue() const {
1517 if (isSingleWord())
1518 return SignExtend64(U.VAL, BitWidth);
1519 assert(getSignificantBits() <= 64 && "Too many bits for int64_t");
1520 return int64_t(U.pVal[0]);
1521 }
1522
1523 /// Get sign extended value if possible
1524 ///
1525 /// This method attempts to return the value of this APInt as a sign extended
1526 /// int64_t. The bitwidth must be <= 64 or the value must fit within an
1527 /// int64_t. Otherwise no value is returned.
1528 std::optional<int64_t> trySExtValue() const {
1529 return (getSignificantBits() <= 64) ? std::optional<int64_t>(getSExtValue())
1530 : std::nullopt;
1531 };
1532
1533 /// Get bits required for string value.
1534 ///
1535 /// This method determines how many bits are required to hold the APInt
1536 /// equivalent of the string given by \p str.
1537 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1538
1539 /// Get the bits that are sufficient to represent the string value. This may
1540 /// over estimate the amount of bits required, but it does not require
1541 /// parsing the value in the string.
1542 static unsigned getSufficientBitsNeeded(StringRef Str, uint8_t Radix);
1543
1544 /// The APInt version of the countLeadingZeros functions in
1545 /// MathExtras.h.
1546 ///
1547 /// It counts the number of zeros from the most significant bit to the first
1548 /// one bit.
1549 ///
1550 /// \returns BitWidth if the value is zero, otherwise returns the number of
1551 /// zeros from the most significant bit to the first one bits.
1552 unsigned countLeadingZeros() const {
1553 if (isSingleWord()) {
1554 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1555 return llvm::countl_zero(U.VAL) - unusedBits;
1556 }
1557 return countLeadingZerosSlowCase();
1558 }
1559
1560 /// Count the number of leading one bits.
1561 ///
1562 /// This function is an APInt version of the countLeadingOnes
1563 /// functions in MathExtras.h. It counts the number of ones from the most
1564 /// significant bit to the first zero bit.
1565 ///
1566 /// \returns 0 if the high order bit is not set, otherwise returns the number
1567 /// of 1 bits from the most significant to the least
1568 unsigned countLeadingOnes() const {
1569 if (isSingleWord()) {
1570 if (LLVM_UNLIKELY(BitWidth == 0))
1571 return 0;
1572 return llvm::countl_one(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1573 }
1574 return countLeadingOnesSlowCase();
1575 }
1576
1577 /// Computes the number of leading bits of this APInt that are equal to its
1578 /// sign bit.
1579 unsigned getNumSignBits() const {
1580 return isNegative() ? countLeadingOnes() : countLeadingZeros();
1581 }
1582
1583 /// Count the number of trailing zero bits.
1584 ///
1585 /// This function is an APInt version of the countTrailingZeros
1586 /// functions in MathExtras.h. It counts the number of zeros from the least
1587 /// significant bit to the first set bit.
1588 ///
1589 /// \returns BitWidth if the value is zero, otherwise returns the number of
1590 /// zeros from the least significant bit to the first one bit.
1591 unsigned countTrailingZeros() const {
1592 if (isSingleWord()) {
1593 unsigned TrailingZeros = llvm::countr_zero(U.VAL);
1594 return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros);
1595 }
1596 return countTrailingZerosSlowCase();
1597 }
1598
1599 /// Count the number of trailing one bits.
1600 ///
1601 /// This function is an APInt version of the countTrailingOnes
1602 /// functions in MathExtras.h. It counts the number of ones from the least
1603 /// significant bit to the first zero bit.
1604 ///
1605 /// \returns BitWidth if the value is all ones, otherwise returns the number
1606 /// of ones from the least significant bit to the first zero bit.
1607 unsigned countTrailingOnes() const {
1608 if (isSingleWord())
1609 return llvm::countr_one(U.VAL);
1610 return countTrailingOnesSlowCase();
1611 }
1612
1613 /// Count the number of bits set.
1614 ///
1615 /// This function is an APInt version of the countPopulation functions
1616 /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1617 ///
1618 /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1619 unsigned countPopulation() const {
1620 if (isSingleWord())
1621 return llvm::popcount(U.VAL);
1622 return countPopulationSlowCase();
1623 }
1624
1625 /// @}
1626 /// \name Conversion Functions
1627 /// @{
1628 void print(raw_ostream &OS, bool isSigned) const;
1629
1630 /// Converts an APInt to a string and append it to Str. Str is commonly a
1631 /// SmallString.
1632 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1633 bool formatAsCLiteral = false) const;
1634
1635 /// Considers the APInt to be unsigned and converts it into a string in the
1636 /// radix given. The radix can be 2, 8, 10 16, or 36.
1637 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1638 toString(Str, Radix, false, false);
1639 }
1640
1641 /// Considers the APInt to be signed and converts it into a string in the
1642 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1643 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1644 toString(Str, Radix, true, false);
1645 }
1646
1647 /// \returns a byte-swapped representation of this APInt Value.
1648 APInt byteSwap() const;
1649
1650 /// \returns the value with the bit representation reversed of this APInt
1651 /// Value.
1652 APInt reverseBits() const;
1653
1654 /// Converts this APInt to a double value.
1655 double roundToDouble(bool isSigned) const;
1656
1657 /// Converts this unsigned APInt to a double value.
1658 double roundToDouble() const { return roundToDouble(false); }
1659
1660 /// Converts this signed APInt to a double value.
1661 double signedRoundToDouble() const { return roundToDouble(true); }
1662
1663 /// Converts APInt bits to a double
1664 ///
1665 /// The conversion does not do a translation from integer to double, it just
1666 /// re-interprets the bits as a double. Note that it is valid to do this on
1667 /// any bit width. Exactly 64 bits will be translated.
1668 double bitsToDouble() const { return BitsToDouble(getWord(0)); }
1669
1670 /// Converts APInt bits to a float
1671 ///
1672 /// The conversion does not do a translation from integer to float, it just
1673 /// re-interprets the bits as a float. Note that it is valid to do this on
1674 /// any bit width. Exactly 32 bits will be translated.
1675 float bitsToFloat() const {
1676 return BitsToFloat(static_cast<uint32_t>(getWord(0)));
1677 }
1678
1679 /// Converts a double to APInt bits.
1680 ///
1681 /// The conversion does not do a translation from double to integer, it just
1682 /// re-interprets the bits of the double.
1683 static APInt doubleToBits(double V) {
1684 return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
1685 }
1686
1687 /// Converts a float to APInt bits.
1688 ///
1689 /// The conversion does not do a translation from float to integer, it just
1690 /// re-interprets the bits of the float.
1691 static APInt floatToBits(float V) {
1692 return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
1693 }
1694
1695 /// @}
1696 /// \name Mathematics Operations
1697 /// @{
1698
1699 /// \returns the floor log base 2 of this APInt.
1700 unsigned logBase2() const { return getActiveBits() - 1; }
1701
1702 /// \returns the ceil log base 2 of this APInt.
1703 unsigned ceilLogBase2() const {
1704 APInt temp(*this);
1705 --temp;
1706 return temp.getActiveBits();
1707 }
1708
1709 /// \returns the nearest log base 2 of this APInt. Ties round up.
1710 ///
1711 /// NOTE: When we have a BitWidth of 1, we define:
1712 ///
1713 /// log2(0) = UINT32_MAX
1714 /// log2(1) = 0
1715 ///
1716 /// to get around any mathematical concerns resulting from
1717 /// referencing 2 in a space where 2 does no exist.
1718 unsigned nearestLogBase2() const;
1719
1720 /// \returns the log base 2 of this APInt if its an exact power of two, -1
1721 /// otherwise
1722 int32_t exactLogBase2() const {
1723 if (!isPowerOf2())
1724 return -1;
1725 return logBase2();
1726 }
1727
1728 /// Compute the square root.
1729 APInt sqrt() const;
1730
1731 /// Get the absolute value. If *this is < 0 then return -(*this), otherwise
1732 /// *this. Note that the "most negative" signed number (e.g. -128 for 8 bit
1733 /// wide APInt) is unchanged due to how negation works.
1734 APInt abs() const {
1735 if (isNegative())
1736 return -(*this);
1737 return *this;
1738 }
1739
1740 /// \returns the multiplicative inverse for a given modulo.
1741 APInt multiplicativeInverse(const APInt &modulo) const;
1742
1743 /// @}
1744 /// \name Building-block Operations for APInt and APFloat
1745 /// @{
1746
1747 // These building block operations operate on a representation of arbitrary
1748 // precision, two's-complement, bignum integer values. They should be
1749 // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1750 // generally a pointer to the base of an array of integer parts, representing
1751 // an unsigned bignum, and a count of how many parts there are.
1752
1753 /// Sets the least significant part of a bignum to the input value, and zeroes
1754 /// out higher parts.
1755 static void tcSet(WordType *, WordType, unsigned);
1756
1757 /// Assign one bignum to another.
1758 static void tcAssign(WordType *, const WordType *, unsigned);
1759
1760 /// Returns true if a bignum is zero, false otherwise.
1761 static bool tcIsZero(const WordType *, unsigned);
1762
1763 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1764 static int tcExtractBit(const WordType *, unsigned bit);
1765
1766 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1767 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1768 /// significant bit of DST. All high bits above srcBITS in DST are
1769 /// zero-filled.
1770 static void tcExtract(WordType *, unsigned dstCount, const WordType *,
1771 unsigned srcBits, unsigned srcLSB);
1772
1773 /// Set the given bit of a bignum. Zero-based.
1774 static void tcSetBit(WordType *, unsigned bit);
1775
1776 /// Clear the given bit of a bignum. Zero-based.
1777 static void tcClearBit(WordType *, unsigned bit);
1778
1779 /// Returns the bit number of the least or most significant set bit of a
1780 /// number. If the input number has no bits set -1U is returned.
1781 static unsigned tcLSB(const WordType *, unsigned n);
1782 static unsigned tcMSB(const WordType *parts, unsigned n);
1783
1784 /// Negate a bignum in-place.
1785 static void tcNegate(WordType *, unsigned);
1786
1787 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1788 static WordType tcAdd(WordType *, const WordType *, WordType carry, unsigned);
1789 /// DST += RHS. Returns the carry flag.
1790 static WordType tcAddPart(WordType *, WordType, unsigned);
1791
1792 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1793 static WordType tcSubtract(WordType *, const WordType *, WordType carry,
1794 unsigned);
1795 /// DST -= RHS. Returns the carry flag.
1796 static WordType tcSubtractPart(WordType *, WordType, unsigned);
1797
1798 /// DST += SRC * MULTIPLIER + PART if add is true
1799 /// DST = SRC * MULTIPLIER + PART if add is false
1800 ///
1801 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1802 /// start at the same point, i.e. DST == SRC.
1803 ///
1804 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1805 /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1806 /// result, and if all of the omitted higher parts were zero return zero,
1807 /// otherwise overflow occurred and return one.
1808 static int tcMultiplyPart(WordType *dst, const WordType *src,
1809 WordType multiplier, WordType carry,
1810 unsigned srcParts, unsigned dstParts, bool add);
1811
1812 /// DST = LHS * RHS, where DST has the same width as the operands and is
1813 /// filled with the least significant parts of the result. Returns one if
1814 /// overflow occurred, otherwise zero. DST must be disjoint from both
1815 /// operands.
1816 static int tcMultiply(WordType *, const WordType *, const WordType *,
1817 unsigned);
1818
1819 /// DST = LHS * RHS, where DST has width the sum of the widths of the
1820 /// operands. No overflow occurs. DST must be disjoint from both operands.
1821 static void tcFullMultiply(WordType *, const WordType *, const WordType *,
1822 unsigned, unsigned);
1823
1824 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1825 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1826 /// REMAINDER to the remainder, return zero. i.e.
1827 ///
1828 /// OLD_LHS = RHS * LHS + REMAINDER
1829 ///
1830 /// SCRATCH is a bignum of the same size as the operands and result for use by
1831 /// the routine; its contents need not be initialized and are destroyed. LHS,
1832 /// REMAINDER and SCRATCH must be distinct.
1833 static int tcDivide(WordType *lhs, const WordType *rhs, WordType *remainder,
1834 WordType *scratch, unsigned parts);
1835
1836 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1837 /// restrictions on Count.
1838 static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1839
1840 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
1841 /// restrictions on Count.
1842 static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1843
1844 /// Comparison (unsigned) of two bignums.
1845 static int tcCompare(const WordType *, const WordType *, unsigned);
1846
1847 /// Increment a bignum in-place. Return the carry flag.
1848 static WordType tcIncrement(WordType *dst, unsigned parts) {
1849 return tcAddPart(dst, 1, parts);
1850 }
1851
1852 /// Decrement a bignum in-place. Return the borrow flag.
1853 static WordType tcDecrement(WordType *dst, unsigned parts) {
1854 return tcSubtractPart(dst, 1, parts);
1855 }
1856
1857 /// Used to insert APInt objects, or objects that contain APInt objects, into
1858 /// FoldingSets.
1859 void Profile(FoldingSetNodeID &id) const;
1860
1861 /// debug method
1862 void dump() const;
1863
1864 /// Returns whether this instance allocated memory.
1865 bool needsCleanup() const { return !isSingleWord(); }
1866
1867private:
1868 /// This union is used to store the integer value. When the
1869 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
1870 union {
1871 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
1872 uint64_t *pVal; ///< Used to store the >64 bits integer value.
1873 } U;
1874
1875 unsigned BitWidth = 1; ///< The number of bits in this APInt.
1876
1877 friend struct DenseMapInfo<APInt, void>;
1878 friend class APSInt;
1879
1880 /// This constructor is used only internally for speed of construction of
1881 /// temporaries. It is unsafe since it takes ownership of the pointer, so it
1882 /// is not public.
1883 APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { U.pVal = val; }
1884
1885 /// Determine which word a bit is in.
1886 ///
1887 /// \returns the word position for the specified bit position.
1888 static unsigned whichWord(unsigned bitPosition) {
1889 return bitPosition / APINT_BITS_PER_WORD;
1890 }
1891
1892 /// Determine which bit in a word the specified bit position is in.
1893 static unsigned whichBit(unsigned bitPosition) {
1894 return bitPosition % APINT_BITS_PER_WORD;
1895 }
1896
1897 /// Get a single bit mask.
1898 ///
1899 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
1900 /// This method generates and returns a uint64_t (word) mask for a single
1901 /// bit at a specific bit position. This is used to mask the bit in the
1902 /// corresponding word.
1903 static uint64_t maskBit(unsigned bitPosition) {
1904 return 1ULL << whichBit(bitPosition);
1905 }
1906
1907 /// Clear unused high order bits
1908 ///
1909 /// This method is used internally to clear the top "N" bits in the high order
1910 /// word that are not used by the APInt. This is needed after the most
1911 /// significant word is assigned a value to ensure that those bits are
1912 /// zero'd out.
1913 APInt &clearUnusedBits() {
1914 // Compute how many bits are used in the final word.
1915 unsigned WordBits = ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1;
1916
1917 // Mask out the high bits.
1918 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
1919 if (LLVM_UNLIKELY(BitWidth == 0))
1920 mask = 0;
1921
1922 if (isSingleWord())
1923 U.VAL &= mask;
1924 else
1925 U.pVal[getNumWords() - 1] &= mask;
1926 return *this;
1927 }
1928
1929 /// Get the word corresponding to a bit position
1930 /// \returns the corresponding word for the specified bit position.
1931 uint64_t getWord(unsigned bitPosition) const {
1932 return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
1933 }
1934
1935 /// Utility method to change the bit width of this APInt to new bit width,
1936 /// allocating and/or deallocating as necessary. There is no guarantee on the
1937 /// value of any bits upon return. Caller should populate the bits after.
1938 void reallocate(unsigned NewBitWidth);
1939
1940 /// Convert a char array into an APInt
1941 ///
1942 /// \param radix 2, 8, 10, 16, or 36
1943 /// Converts a string into a number. The string must be non-empty
1944 /// and well-formed as a number of the given base. The bit-width
1945 /// must be sufficient to hold the result.
1946 ///
1947 /// This is used by the constructors that take string arguments.
1948 ///
1949 /// StringRef::getAsInteger is superficially similar but (1) does
1950 /// not assume that the string is well-formed and (2) grows the
1951 /// result to hold the input.
1952 void fromString(unsigned numBits, StringRef str, uint8_t radix);
1953
1954 /// An internal division function for dividing APInts.
1955 ///
1956 /// This is used by the toString method to divide by the radix. It simply
1957 /// provides a more convenient form of divide for internal use since KnuthDiv
1958 /// has specific constraints on its inputs. If those constraints are not met
1959 /// then it provides a simpler form of divide.
1960 static void divide(const WordType *LHS, unsigned lhsWords,
1961 const WordType *RHS, unsigned rhsWords, WordType *Quotient,
1962 WordType *Remainder);
1963
1964 /// out-of-line slow case for inline constructor
1965 void initSlowCase(uint64_t val, bool isSigned);
1966
1967 /// shared code between two array constructors
1968 void initFromArray(ArrayRef<uint64_t> array);
1969
1970 /// out-of-line slow case for inline copy constructor
1971 void initSlowCase(const APInt &that);
1972
1973 /// out-of-line slow case for shl
1974 void shlSlowCase(unsigned ShiftAmt);
1975
1976 /// out-of-line slow case for lshr.
1977 void lshrSlowCase(unsigned ShiftAmt);
1978
1979 /// out-of-line slow case for ashr.
1980 void ashrSlowCase(unsigned ShiftAmt);
1981
1982 /// out-of-line slow case for operator=
1983 void assignSlowCase(const APInt &RHS);
1984
1985 /// out-of-line slow case for operator==
1986 bool equalSlowCase(const APInt &RHS) const LLVM_READONLY;
1987
1988 /// out-of-line slow case for countLeadingZeros
1989 unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
1990
1991 /// out-of-line slow case for countLeadingOnes.
1992 unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
1993
1994 /// out-of-line slow case for countTrailingZeros.
1995 unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
1996
1997 /// out-of-line slow case for countTrailingOnes
1998 unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
1999
2000 /// out-of-line slow case for countPopulation
2001 unsigned countPopulationSlowCase() const LLVM_READONLY;
2002
2003 /// out-of-line slow case for intersects.
2004 bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
2005
2006 /// out-of-line slow case for isSubsetOf.
2007 bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
2008
2009 /// out-of-line slow case for setBits.
2010 void setBitsSlowCase(unsigned loBit, unsigned hiBit);
2011
2012 /// out-of-line slow case for flipAllBits.
2013 void flipAllBitsSlowCase();
2014
2015 /// out-of-line slow case for concat.
2016 APInt concatSlowCase(const APInt &NewLSB) const;
2017
2018 /// out-of-line slow case for operator&=.
2019 void andAssignSlowCase(const APInt &RHS);
2020
2021 /// out-of-line slow case for operator|=.
2022 void orAssignSlowCase(const APInt &RHS);
2023
2024 /// out-of-line slow case for operator^=.
2025 void xorAssignSlowCase(const APInt &RHS);
2026
2027 /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
2028 /// to, or greater than RHS.
2029 int compare(const APInt &RHS) const LLVM_READONLY;
2030
2031 /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
2032 /// to, or greater than RHS.
2033 int compareSigned(const APInt &RHS) const LLVM_READONLY;
2034
2035 /// @}
2036};
2037
2038inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
2039
2040inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
2041
2042/// Unary bitwise complement operator.
2043///
2044/// \returns an APInt that is the bitwise complement of \p v.
2046 v.flipAllBits();
2047 return v;
2048}
2049
2050inline APInt operator&(APInt a, const APInt &b) {
2051 a &= b;
2052 return a;
2053}
2054
2055inline APInt operator&(const APInt &a, APInt &&b) {
2056 b &= a;
2057 return std::move(b);
2058}
2059
2061 a &= RHS;
2062 return a;
2063}
2064
2066 b &= LHS;
2067 return b;
2068}
2069
2070inline APInt operator|(APInt a, const APInt &b) {
2071 a |= b;
2072 return a;
2073}
2074
2075inline APInt operator|(const APInt &a, APInt &&b) {
2076 b |= a;
2077 return std::move(b);
2078}
2079
2081 a |= RHS;
2082 return a;
2083}
2084
2086 b |= LHS;
2087 return b;
2088}
2089
2090inline APInt operator^(APInt a, const APInt &b) {
2091 a ^= b;
2092 return a;
2093}
2094
2095inline APInt operator^(const APInt &a, APInt &&b) {
2096 b ^= a;
2097 return std::move(b);
2098}
2099
2101 a ^= RHS;
2102 return a;
2103}
2104
2106 b ^= LHS;
2107 return b;
2108}
2109
2111 I.print(OS, true);
2112 return OS;
2113}
2114
2116 v.negate();
2117 return v;
2118}
2119
2120inline APInt operator+(APInt a, const APInt &b) {
2121 a += b;
2122 return a;
2123}
2124
2125inline APInt operator+(const APInt &a, APInt &&b) {
2126 b += a;
2127 return std::move(b);
2128}
2129
2131 a += RHS;
2132 return a;
2133}
2134
2136 b += LHS;
2137 return b;
2138}
2139
2140inline APInt operator-(APInt a, const APInt &b) {
2141 a -= b;
2142 return a;
2143}
2144
2145inline APInt operator-(const APInt &a, APInt &&b) {
2146 b.negate();
2147 b += a;
2148 return std::move(b);
2149}
2150
2152 a -= RHS;
2153 return a;
2154}
2155
2157 b.negate();
2158 b += LHS;
2159 return b;
2160}
2161
2163 a *= RHS;
2164 return a;
2165}
2166
2168 b *= LHS;
2169 return b;
2170}
2171
2172namespace APIntOps {
2173
2174/// Determine the smaller of two APInts considered to be signed.
2175inline const APInt &smin(const APInt &A, const APInt &B) {
2176 return A.slt(B) ? A : B;
2177}
2178
2179/// Determine the larger of two APInts considered to be signed.
2180inline const APInt &smax(const APInt &A, const APInt &B) {
2181 return A.sgt(B) ? A : B;
2182}
2183
2184/// Determine the smaller of two APInts considered to be unsigned.
2185inline const APInt &umin(const APInt &A, const APInt &B) {
2186 return A.ult(B) ? A : B;
2187}
2188
2189/// Determine the larger of two APInts considered to be unsigned.
2190inline const APInt &umax(const APInt &A, const APInt &B) {
2191 return A.ugt(B) ? A : B;
2192}
2193
2194/// Compute GCD of two unsigned APInt values.
2195///
2196/// This function returns the greatest common divisor of the two APInt values
2197/// using Stein's algorithm.
2198///
2199/// \returns the greatest common divisor of A and B.
2200APInt GreatestCommonDivisor(APInt A, APInt B);
2201
2202/// Converts the given APInt to a double value.
2203///
2204/// Treats the APInt as an unsigned value for conversion purposes.
2205inline double RoundAPIntToDouble(const APInt &APIVal) {
2206 return APIVal.roundToDouble();
2207}
2208
2209/// Converts the given APInt to a double value.
2210///
2211/// Treats the APInt as a signed value for conversion purposes.
2212inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2213 return APIVal.signedRoundToDouble();
2214}
2215
2216/// Converts the given APInt to a float value.
2217inline float RoundAPIntToFloat(const APInt &APIVal) {
2218 return float(RoundAPIntToDouble(APIVal));
2219}
2220
2221/// Converts the given APInt to a float value.
2222///
2223/// Treats the APInt as a signed value for conversion purposes.
2224inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2225 return float(APIVal.signedRoundToDouble());
2226}
2227
2228/// Converts the given double value into a APInt.
2229///
2230/// This function convert a double value to an APInt value.
2231APInt RoundDoubleToAPInt(double Double, unsigned width);
2232
2233/// Converts a float value into a APInt.
2234///
2235/// Converts a float value into an APInt value.
2236inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2237 return RoundDoubleToAPInt(double(Float), width);
2238}
2239
2240/// Return A unsign-divided by B, rounded by the given rounding mode.
2241APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2242
2243/// Return A sign-divided by B, rounded by the given rounding mode.
2244APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2245
2246/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
2247/// (e.g. 32 for i32).
2248/// This function finds the smallest number n, such that
2249/// (a) n >= 0 and q(n) = 0, or
2250/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
2251/// integers, belong to two different intervals [Rk, Rk+R),
2252/// where R = 2^BW, and k is an integer.
2253/// The idea here is to find when q(n) "overflows" 2^BW, while at the
2254/// same time "allowing" subtraction. In unsigned modulo arithmetic a
2255/// subtraction (treated as addition of negated numbers) would always
2256/// count as an overflow, but here we want to allow values to decrease
2257/// and increase as long as they are within the same interval.
2258/// Specifically, adding of two negative numbers should not cause an
2259/// overflow (as long as the magnitude does not exceed the bit width).
2260/// On the other hand, given a positive number, adding a negative
2261/// number to it can give a negative result, which would cause the
2262/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
2263/// treated as a special case of an overflow.
2264///
2265/// This function returns std::nullopt if after finding k that minimizes the
2266/// positive solution to q(n) = kR, both solutions are contained between
2267/// two consecutive integers.
2268///
2269/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
2270/// in arithmetic modulo 2^BW, and treating the values as signed) by the
2271/// virtue of *signed* overflow. This function will *not* find such an n,
2272/// however it may find a value of n satisfying the inequalities due to
2273/// an *unsigned* overflow (if the values are treated as unsigned).
2274/// To find a solution for a signed overflow, treat it as a problem of
2275/// finding an unsigned overflow with a range with of BW-1.
2276///
2277/// The returned value may have a different bit width from the input
2278/// coefficients.
2279std::optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2280 unsigned RangeWidth);
2281
2282/// Compare two values, and if they are different, return the position of the
2283/// most significant bit that is different in the values.
2284std::optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
2285 const APInt &B);
2286
2287/// Splat/Merge neighboring bits to widen/narrow the bitmask represented
2288/// by \param A to \param NewBitWidth bits.
2289///
2290/// MatchAnyBits: (Default)
2291/// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011
2292/// e.g. ScaleBitMask(0b00011011, 4) -> 0b0111
2293///
2294/// MatchAllBits:
2295/// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011
2296/// e.g. ScaleBitMask(0b00011011, 4) -> 0b0001
2297/// A.getBitwidth() or NewBitWidth must be a whole multiples of the other.
2298APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth,
2299 bool MatchAllBits = false);
2300} // namespace APIntOps
2301
2302// See friend declaration above. This additional declaration is required in
2303// order to compile LLVM with IBM xlC compiler.
2304hash_code hash_value(const APInt &Arg);
2305
2306/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
2307/// with the integer held in IntVal.
2308void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
2309
2310/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
2311/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
2312void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes);
2313
2314/// Provide DenseMapInfo for APInt.
2315template <> struct DenseMapInfo<APInt, void> {
2316 static inline APInt getEmptyKey() {
2317 APInt V(nullptr, 0);
2318 V.U.VAL = ~0ULL;
2319 return V;
2320 }
2321
2322 static inline APInt getTombstoneKey() {
2323 APInt V(nullptr, 0);
2324 V.U.VAL = ~1ULL;
2325 return V;
2326 }
2327
2328 static unsigned getHashValue(const APInt &Key);
2329
2330 static bool isEqual(const APInt &LHS, const APInt &RHS) {
2331 return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS;
2332 }
2333};
2334
2335} // namespace llvm
2336
2337#endif
aarch64 promote const
amdgpu Simplify well known AMD library false FunctionCallee Value * Arg
always inline
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< ShadowStackGC > C("shadow-stack", "Very portable GC for uncooperative code generators")
raw_ostream & operator<<(raw_ostream &OS, const binary_le_impl< value_type > &BLE)
#define LLVM_UNLIKELY(EXPR)
Definition: Compiler.h:210
#define LLVM_READONLY
Definition: Compiler.h:196
demanded bits
div rem Hoist decompose integer division and remainder
static bool isSigned(unsigned int Opcode)
static KnownBits extractBits(unsigned BitWidth, const KnownBits &SrcOpKnown, const KnownBits &OffsetKnown, const KnownBits &WidthKnown)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition: Lint.cpp:524
static bool isSplat(Value *V)
Return true if V is a splat of a value (which is used when multiplying a matrix with a scalar).
#define I(x, y, z)
Definition: MD5.cpp:58
static const char * toString(MIToken::TokenKind TokenKind)
Definition: MIParser.cpp:614
Load MIR Sample Profile
static uint64_t clearUnusedBits(uint64_t Val, unsigned Size)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow)
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition: APInt.h:75
std::optional< uint64_t > tryZExtValue() const
Get zero extended value if possible.
Definition: APInt.h:1506
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition: APInt.h:214
bool slt(int64_t RHS) const
Signed less than comparison.
Definition: APInt.h:1116
void clearBit(unsigned BitPosition)
Set a given bit to 0.
Definition: APInt.h:1385
APInt relativeLShr(int RelativeShift) const
relative logical shift right
Definition: APInt.h:868
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
Definition: APInt.h:441
unsigned getMinSignedBits() const
NOTE: This is soft-deprecated. Please use getSignificantBits() instead.
Definition: APInt.h:1487
APInt zext(unsigned width) const
Zero extend to a new width.
Definition: APInt.cpp:973
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition: APInt.h:209
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition: APInt.h:415
APInt operator--(int)
Postfix decrement operator.
Definition: APInt.h:584
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1494
uint64_t * pVal
Used to store the >64 bits integer value.
Definition: APInt.h:1872
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
Definition: APInt.h:1370
~APInt()
Destructor.
Definition: APInt.h:167
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
Definition: APInt.h:1364
APInt operator<<(const APInt &Bits) const
Left logical shift operator.
Definition: APInt.h:810
bool isMask() const
Definition: APInt.h:489
APInt operator<<(unsigned Bits) const
Left logical shift operator.
Definition: APInt.h:805
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition: APInt.h:1463
bool sgt(int64_t RHS) const
Signed greater than comparison.
Definition: APInt.h:1187
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
Definition: APInt.h:186
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition: APInt.h:1308
bool operator[](unsigned bitPosition) const
Array-indexing support.
Definition: APInt.h:1021
bool operator!=(const APInt &RHS) const
Inequality operator.
Definition: APInt.h:1065
void toStringUnsigned(SmallVectorImpl< char > &Str, unsigned Radix=10) const
Considers the APInt to be unsigned and converts it into a string in the radix given.
Definition: APInt.h:1637
APInt & operator&=(const APInt &RHS)
Bitwise AND assignment operator.
Definition: APInt.h:662
APInt abs() const
Get the absolute value.
Definition: APInt.h:1734
unsigned ceilLogBase2() const
Definition: APInt.h:1703
unsigned countLeadingOnes() const
Count the number of leading one bits.
Definition: APInt.h:1568
APInt relativeLShl(int RelativeShift) const
relative logical shift left
Definition: APInt.h:873
APInt & operator=(const APInt &RHS)
Copy assignment operator.
Definition: APInt.h:606
bool sgt(const APInt &RHS) const
Signed greater than comparison.
Definition: APInt.h:1179
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition: APInt.h:354
APInt & operator^=(uint64_t RHS)
Bitwise XOR assignment operator.
Definition: APInt.h:735
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition: APInt.h:1160
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
Definition: APInt.h:241
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition: APInt.h:366
APInt & operator|=(uint64_t RHS)
Bitwise OR assignment operator.
Definition: APInt.h:706
bool isSignMask() const
Check if the APInt's value is returned by getSignMask.
Definition: APInt.h:454
static APInt floatToBits(float V)
Converts a float to APInt bits.
Definition: APInt.h:1691
static APInt getNullValue(unsigned numBits)
NOTE: This is soft-deprecated. Please use getZero() instead.
Definition: APInt.h:180
void setSignBit()
Set the sign bit to 1.
Definition: APInt.h:1318
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1439
uint64_t WordType
Definition: APInt.h:77
bool sle(uint64_t RHS) const
Signed less or equal comparison.
Definition: APInt.h:1152
static APInt getAllOnesValue(unsigned numBits)
NOTE: This is soft-deprecated. Please use getAllOnes() instead.
Definition: APInt.h:219
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition: APInt.h:1089
bool uge(uint64_t RHS) const
Unsigned greater or equal comparison.
Definition: APInt.h:1207
bool operator!() const
Logical negation operation on this APInt returns true if zero, like normal integers.
Definition: APInt.h:597
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition: APInt.h:189
APInt & operator=(uint64_t RHS)
Assignment operator.
Definition: APInt.h:646
APInt relativeAShr(int RelativeShift) const
relative arithmetic shift right
Definition: APInt.h:878
friend hash_code hash_value(const APInt &Arg)
Overload to compute a hash_code for an APInt value.
APInt(const APInt &that)
Copy Constructor.
Definition: APInt.h:153
APInt & operator|=(const APInt &RHS)
Bitwise OR assignment operator.
Definition: APInt.h:692
bool isSingleWord() const
Determine if this APInt just has one word to store value.
Definition: APInt.h:305
bool operator==(uint64_t Val) const
Equality operator.
Definition: APInt.h:1047
APInt operator++(int)
Postfix increment operator.
Definition: APInt.h:570
unsigned getNumWords() const
Get the number of words.
Definition: APInt.h:1446
bool isMinValue() const
Determine if this is the smallest unsigned value.
Definition: APInt.h:409
APInt ashr(const APInt &ShiftAmt) const
Arithmetic right-shift function.
Definition: APInt.h:896
APInt(unsigned numBits, uint64_t val, bool isSigned=false)
Create a new APInt of numBits width, initialized as val.
Definition: APInt.h:108
APInt()
Default constructor that creates an APInt with a 1-bit zero value.
Definition: APInt.h:150
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
Definition: APInt.h:196
APInt(APInt &&that)
Move Constructor.
Definition: APInt.h:161
bool isNegative() const
Determine sign of this APInt.
Definition: APInt.h:312
APInt concat(const APInt &NewLSB) const
Concatenate the bits from "NewLSB" onto the bottom of *this.
Definition: APInt.h:935
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
Definition: APInt.h:1227
bool eq(const APInt &RHS) const
Equality comparison.
Definition: APInt.h:1057
int32_t exactLogBase2() const
Definition: APInt.h:1722
APInt & operator<<=(unsigned ShiftAmt)
Left-shift assignment function.
Definition: APInt.h:773
bool isOneValue() const
NOTE: This is soft-deprecated. Please use isOne() instead.
Definition: APInt.h:385
unsigned countPopulation() const
Count the number of bits set.
Definition: APInt.h:1619
double roundToDouble() const
Converts this unsigned APInt to a double value.
Definition: APInt.h:1658
void clearAllBits()
Set every bit to 0.
Definition: APInt.h:1375
APInt relativeAShl(int RelativeShift) const
relative arithmetic shift left
Definition: APInt.h:883
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
Definition: APInt.h:822
bool sle(const APInt &RHS) const
Signed less or equal comparison.
Definition: APInt.h:1144
void negate()
Negate this APInt in place.
Definition: APInt.h:1421
static WordType tcDecrement(WordType *dst, unsigned parts)
Decrement a bignum in-place. Return the borrow flag.
Definition: APInt.h:1853
bool isSignedIntN(unsigned N) const
Check if this APInt has an N-bits signed integer value.
Definition: APInt.h:427
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
Definition: APInt.h:1579
bool isOneBitSet(unsigned BitNo) const
Determine if this APInt Value only has the specified bit set.
Definition: APInt.h:349
bool operator==(const APInt &RHS) const
Equality operator.
Definition: APInt.h:1034
APInt shl(const APInt &ShiftAmt) const
Left-shift function.
Definition: APInt.h:920
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition: APInt.h:199
bool isShiftedMask(unsigned &MaskIdx, unsigned &MaskLen) const
Return true if this APInt value contains a non-empty sequence of ones with the remainder zero.
Definition: APInt.h:510
void setBitsWithWrap(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
Definition: APInt.h:1332
APInt lshr(const APInt &ShiftAmt) const
Logical right-shift function.
Definition: APInt.h:908
bool isNonPositive() const
Determine if this APInt Value is non-positive (<= 0).
Definition: APInt.h:344
unsigned countTrailingZeros() const
Count the number of trailing zero bits.
Definition: APInt.h:1591
unsigned getSignificantBits() const
Get the minimum bit size for this signed APInt.
Definition: APInt.h:1482
unsigned countLeadingZeros() const
The APInt version of the countLeadingZeros functions in MathExtras.h.
Definition: APInt.h:1552
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
Definition: APInt.h:339
void flipAllBits()
Toggle every bit to its opposite value.
Definition: APInt.h:1405
static unsigned getNumWords(unsigned BitWidth)
Get the number of words.
Definition: APInt.h:1454
bool needsCleanup() const
Returns whether this instance allocated memory.
Definition: APInt.h:1865
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
Definition: APInt.h:1395
unsigned logBase2() const
Definition: APInt.h:1700
static APInt getZeroWidth()
Return an APInt zero bits wide.
Definition: APInt.h:183
double signedRoundToDouble() const
Converts this signed APInt to a double value.
Definition: APInt.h:1661
bool isShiftedMask() const
Return true if this APInt value contains a non-empty sequence of ones with the remainder zero.
Definition: APInt.h:498
float bitsToFloat() const
Converts APInt bits to a float.
Definition: APInt.h:1675
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
Definition: APInt.h:463
bool ule(uint64_t RHS) const
Unsigned less or equal comparison.
Definition: APInt.h:1136
bool isAllOnesValue() const
NOTE: This is soft-deprecated. Please use isAllOnes() instead.
Definition: APInt.h:363
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition: APInt.h:815
void setAllBits()
Set every bit to 1.
Definition: APInt.h:1297
uint64_t VAL
Used to store the <= 64 bits integer value.
Definition: APInt.h:1871
bool isNullValue() const
NOTE: This is soft-deprecated. Please use isZero() instead.
Definition: APInt.h:373
bool ugt(uint64_t RHS) const
Unsigned greater than comparison.
Definition: APInt.h:1168
bool sge(int64_t RHS) const
Signed greater or equal comparison.
Definition: APInt.h:1223
bool getBoolValue() const
Convert APInt to a boolean value.
Definition: APInt.h:459
static APInt doubleToBits(double V)
Converts a double to APInt bits.
Definition: APInt.h:1683
bool isMask(unsigned numBits) const
Definition: APInt.h:476
APInt & operator=(APInt &&that)
Move assignment operator.
Definition: APInt.h:620
static WordType tcIncrement(WordType *dst, unsigned parts)
Increment a bignum in-place. Return the carry flag.
Definition: APInt.h:1848
APInt & operator^=(const APInt &RHS)
Bitwise XOR assignment operator.
Definition: APInt.h:721
bool isMaxSignedValue() const
Determine if this is the largest signed value.
Definition: APInt.h:397
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition: APInt.h:317
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition: APInt.h:1128
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
Definition: APInt.h:1345
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition: APInt.h:861
double bitsToDouble() const
Converts APInt bits to a double.
Definition: APInt.h:1668
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
Definition: APInt.h:1235
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition: APInt.h:432
unsigned getActiveWords() const
Compute the number of active words in the value of this APInt.
Definition: APInt.h:1469
bool ne(const APInt &RHS) const
Inequality comparison.
Definition: APInt.h:1081
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!...
Definition: APInt.h:541
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition: APInt.h:289
bool isSignBitSet() const
Determine if sign bit of this APInt is set.
Definition: APInt.h:324
const uint64_t * getRawData() const
This function returns a pointer to the internal storage of the APInt.
Definition: APInt.h:557
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition: APInt.h:1108
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
Definition: APInt.h:279
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition: APInt.h:177
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
Definition: APInt.h:1367
bool isIntN(unsigned N) const
Check if this APInt has an N-bits unsigned integer value.
Definition: APInt.h:424
unsigned countTrailingOnes() const
Count the number of trailing one bits.
Definition: APInt.h:1607
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
Definition: APInt.h:1215
std::optional< int64_t > trySExtValue() const
Get sign extended value if possible.
Definition: APInt.h:1528
APInt & operator&=(uint64_t RHS)
Bitwise AND assignment operator.
Definition: APInt.h:676
double roundToDouble(bool isSigned) const
Converts this APInt to a double value.
Definition: APInt.cpp:841
bool isOne() const
Determine if this is a value of 1.
Definition: APInt.h:378
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
Definition: APInt.h:269
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition: APInt.h:222
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1516
void lshrInPlace(unsigned ShiftAmt)
Logical right-shift this APInt by ShiftAmt in place.
Definition: APInt.h:846
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition: APInt.h:839
static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit, unsigned hiBit)
Wrap version of getBitsSet.
Definition: APInt.h:253
bool isSignBitClear() const
Determine if sign bit of this APInt is clear.
Definition: APInt.h:331
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition: APInt.h:1199
void setBitVal(unsigned BitPosition, bool BitValue)
Set a given bit to a given value.
Definition: APInt.h:1321
void clearSignBit()
Set the sign bit to 0.
Definition: APInt.h:1402
bool isMaxValue() const
Determine if this is the largest unsigned value.
Definition: APInt.h:391
void toStringSigned(SmallVectorImpl< char > &Str, unsigned Radix=10) const
Considers the APInt to be signed and converts it into a string in the radix given.
Definition: APInt.h:1643
bool ult(uint64_t RHS) const
Unsigned less than comparison.
Definition: APInt.h:1097
bool operator!=(uint64_t Val) const
Inequality operator.
Definition: APInt.h:1073
An arbitrary precision integer that knows its signedness.
Definition: APSInt.h:23
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Definition: FoldingSet.h:318
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:577
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
An opaque object representing a hash code.
Definition: Hashing.h:74
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
#define UINT64_MAX
Definition: DataTypes.h:77
std::error_code fromString(StringRef String, Metadata &HSAMetadata)
Converts String to HSAMetadata.
float RoundAPIntToFloat(const APInt &APIVal)
Converts the given APInt to a float value.
Definition: APInt.h:2217
double RoundAPIntToDouble(const APInt &APIVal)
Converts the given APInt to a double value.
Definition: APInt.h:2205
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
Definition: APInt.h:2175
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
Definition: APInt.h:2180
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
Definition: APInt.h:2185
APInt RoundFloatToAPInt(float Float, unsigned width)
Converts a float value into a APInt.
Definition: APInt.h:2236
APInt RoundDoubleToAPInt(double Double, unsigned width)
Converts the given double value into a APInt.
Definition: APInt.cpp:802
double RoundSignedAPIntToDouble(const APInt &APIVal)
Converts the given APInt to a double value.
Definition: APInt.h:2212
float RoundSignedAPIntToFloat(const APInt &APIVal)
Converts the given APInt to a float value.
Definition: APInt.h:2224
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
Definition: APInt.h:2190
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
int popcount(T Value) noexcept
Count the number of set bits in a value.
Definition: bit.h:349
uint64_t DoubleToBits(double Double)
This function takes a double and returns the bit equivalent 64-bit integer.
Definition: MathExtras.h:411
APInt operator&(APInt a, const APInt &b)
Definition: APInt.h:2050
APInt operator*(APInt a, uint64_t RHS)
Definition: APInt.h:2162
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
Definition: bit.h:271
bool operator!=(uint64_t V1, const APInt &V2)
Definition: APInt.h:2040
std::string & operator+=(std::string &buffer, StringRef string)
Definition: StringRef.h:891
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition: MathExtras.h:293
APInt operator~(APInt v)
Unary bitwise complement operator.
Definition: APInt.h:2045
uint32_t FloatToBits(float Float)
This function takes a float and returns the bit equivalent 32-bit integer.
Definition: MathExtras.h:419
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition: bit.h:179
constexpr bool isShiftedMask_64(uint64_t Value)
Return true if the argument contains a non-empty sequence of ones with the remainder zero (64 bit ver...
Definition: MathExtras.h:282
int countl_zero(T Val)
Count number of 0's from the most significant bit to the least stopping at the first 1.
Definition: bit.h:245
APInt operator^(APInt a, const APInt &b)
Definition: APInt.h:2090
unsigned countTrailingZeros(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition: MathExtras.h:69
constexpr bool isMask_64(uint64_t Value)
Return true if the argument is a non-empty sequence of ones starting at the least significant bit wit...
Definition: MathExtras.h:270
int countl_one(T Value)
Count the number of ones from the most significant bit to the first zero bit.
Definition: bit.h:258
unsigned countPopulation(T Value)
Count the number of set bits in a value.
Definition: MathExtras.h:327
unsigned countLeadingOnes(T Value)
Count the number of ones from the most significant bit to the first zero bit.
Definition: MathExtras.h:304
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:147
APInt operator-(APInt)
Definition: APInt.h:2115
unsigned countLeadingZeros(T Val)
Count number of 0's from the most significant bit to the least stopping at the first 1.
Definition: MathExtras.h:81
float BitsToFloat(uint32_t Bits)
This function takes a 32-bit integer and returns the bit equivalent float.
Definition: MathExtras.h:403
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
Definition: MathExtras.h:543
double BitsToDouble(uint64_t Bits)
This function takes a 64-bit integer and returns the bit equivalent double.
Definition: MathExtras.h:397
APInt operator+(APInt a, const APInt &b)
Definition: APInt.h:2120
APInt operator|(APInt a, const APInt &b)
Definition: APInt.h:2070
T reverseBits(T Val)
Reverse the bits in Val.
Definition: MathExtras.h:128
@ Keep
No function return thunk.
auto mask(ShuffFunc S, unsigned Length, OptArgs... args) -> MaskT
#define N
static APInt getTombstoneKey()
Definition: APInt.h:2322
static bool isEqual(const APInt &LHS, const APInt &RHS)
Definition: APInt.h:2330
static unsigned getHashValue(const APInt &Key)
An information struct used to provide DenseMap with the various necessary components for a given valu...
Definition: DenseMapInfo.h:51