LLVM 17.0.0git
APInt.h
Go to the documentation of this file.
1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements a class to represent arbitrary precision
11/// integral constant values and operations on them.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ADT_APINT_H
16#define LLVM_ADT_APINT_H
17
20#include <cassert>
21#include <climits>
22#include <cstring>
23#include <optional>
24#include <utility>
25
26namespace llvm {
27class FoldingSetNodeID;
28class StringRef;
29class hash_code;
30class raw_ostream;
31
32template <typename T> class SmallVectorImpl;
33template <typename T> class ArrayRef;
34template <typename T, typename Enable> struct DenseMapInfo;
35
36class APInt;
37
38inline APInt operator-(APInt);
39
40//===----------------------------------------------------------------------===//
41// APInt Class
42//===----------------------------------------------------------------------===//
43
44/// Class for arbitrary precision integers.
45///
46/// APInt is a functional replacement for common case unsigned integer type like
47/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
48/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
49/// than 64-bits of precision. APInt provides a variety of arithmetic operators
50/// and methods to manipulate integer values of any bit-width. It supports both
51/// the typical integer arithmetic and comparison operations as well as bitwise
52/// manipulation.
53///
54/// The class has several invariants worth noting:
55/// * All bit, byte, and word positions are zero-based.
56/// * Once the bit width is set, it doesn't change except by the Truncate,
57/// SignExtend, or ZeroExtend operations.
58/// * All binary operators must be on APInt instances of the same bit width.
59/// Attempting to use these operators on instances with different bit
60/// widths will yield an assertion.
61/// * The value is stored canonically as an unsigned value. For operations
62/// where it makes a difference, there are both signed and unsigned variants
63/// of the operation. For example, sdiv and udiv. However, because the bit
64/// widths must be the same, operations such as Mul and Add produce the same
65/// results regardless of whether the values are interpreted as signed or
66/// not.
67/// * In general, the class tries to follow the style of computation that LLVM
68/// uses in its IR. This simplifies its use for LLVM.
69/// * APInt supports zero-bit-width values, but operations that require bits
70/// are not defined on it (e.g. you cannot ask for the sign of a zero-bit
71/// integer). This means that operations like zero extension and logical
72/// shifts are defined, but sign extension and ashr is not. Zero bit values
73/// compare and hash equal to themselves, and countLeadingZeros returns 0.
74///
75class [[nodiscard]] APInt {
76public:
78
79 /// This enum is used to hold the constants we needed for APInt.
80 enum : unsigned {
81 /// Byte size of a word.
82 APINT_WORD_SIZE = sizeof(WordType),
83 /// Bits in a word.
84 APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
85 };
86
87 enum class Rounding {
88 DOWN,
89 TOWARD_ZERO,
90 UP,
91 };
92
93 static constexpr WordType WORDTYPE_MAX = ~WordType(0);
94
95 /// \name Constructors
96 /// @{
97
98 /// Create a new APInt of numBits width, initialized as val.
99 ///
100 /// If isSigned is true then val is treated as if it were a signed value
101 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
102 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
103 /// the range of val are zero filled).
104 ///
105 /// \param numBits the bit width of the constructed APInt
106 /// \param val the initial value of the APInt
107 /// \param isSigned how to treat signedness of val
108 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
109 : BitWidth(numBits) {
110 if (isSingleWord()) {
111 U.VAL = val;
113 } else {
114 initSlowCase(val, isSigned);
115 }
116 }
117
118 /// Construct an APInt of numBits width, initialized as bigVal[].
119 ///
120 /// Note that bigVal.size() can be smaller or larger than the corresponding
121 /// bit width but any extraneous bits will be dropped.
122 ///
123 /// \param numBits the bit width of the constructed APInt
124 /// \param bigVal a sequence of words to form the initial value of the APInt
125 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
126
127 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
128 /// deprecated because this constructor is prone to ambiguity with the
129 /// APInt(unsigned, uint64_t, bool) constructor.
130 ///
131 /// If this overload is ever deleted, care should be taken to prevent calls
132 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
133 /// constructor.
134 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
135
136 /// Construct an APInt from a string representation.
137 ///
138 /// This constructor interprets the string \p str in the given radix. The
139 /// interpretation stops when the first character that is not suitable for the
140 /// radix is encountered, or the end of the string. Acceptable radix values
141 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
142 /// string to require more bits than numBits.
143 ///
144 /// \param numBits the bit width of the constructed APInt
145 /// \param str the string to be interpreted
146 /// \param radix the radix to use for the conversion
147 APInt(unsigned numBits, StringRef str, uint8_t radix);
148
149 /// Default constructor that creates an APInt with a 1-bit zero value.
150 explicit APInt() { U.VAL = 0; }
151
152 /// Copy Constructor.
153 APInt(const APInt &that) : BitWidth(that.BitWidth) {
154 if (isSingleWord())
155 U.VAL = that.U.VAL;
156 else
157 initSlowCase(that);
158 }
159
160 /// Move Constructor.
161 APInt(APInt &&that) : BitWidth(that.BitWidth) {
162 memcpy(&U, &that.U, sizeof(U));
163 that.BitWidth = 0;
164 }
165
166 /// Destructor.
168 if (needsCleanup())
169 delete[] U.pVal;
170 }
171
172 /// @}
173 /// \name Value Generators
174 /// @{
175
176 /// Get the '0' value for the specified bit-width.
177 static APInt getZero(unsigned numBits) { return APInt(numBits, 0); }
178
179 LLVM_DEPRECATED("use getZero instead", "getZero")
180 static APInt getNullValue(unsigned numBits) { return getZero(numBits); }
181
182 /// Return an APInt zero bits wide.
183 static APInt getZeroWidth() { return getZero(0); }
184
185 /// Gets maximum unsigned value of APInt for specific bit width.
186 static APInt getMaxValue(unsigned numBits) { return getAllOnes(numBits); }
187
188 /// Gets maximum signed value of APInt for a specific bit width.
189 static APInt getSignedMaxValue(unsigned numBits) {
190 APInt API = getAllOnes(numBits);
191 API.clearBit(numBits - 1);
192 return API;
193 }
194
195 /// Gets minimum unsigned value of APInt for a specific bit width.
196 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
197
198 /// Gets minimum signed value of APInt for a specific bit width.
199 static APInt getSignedMinValue(unsigned numBits) {
200 APInt API(numBits, 0);
201 API.setBit(numBits - 1);
202 return API;
203 }
204
205 /// Get the SignMask for a specific bit width.
206 ///
207 /// This is just a wrapper function of getSignedMinValue(), and it helps code
208 /// readability when we want to get a SignMask.
209 static APInt getSignMask(unsigned BitWidth) {
210 return getSignedMinValue(BitWidth);
211 }
212
213 /// Return an APInt of a specified width with all bits set.
214 static APInt getAllOnes(unsigned numBits) {
215 return APInt(numBits, WORDTYPE_MAX, true);
216 }
217
218 LLVM_DEPRECATED("use getAllOnes instead", "getAllOnes")
219 static APInt getAllOnesValue(unsigned numBits) { return getAllOnes(numBits); }
220
221 /// Return an APInt with exactly one bit set in the result.
222 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
223 APInt Res(numBits, 0);
224 Res.setBit(BitNo);
225 return Res;
226 }
227
228 /// Get a value with a block of bits set.
229 ///
230 /// Constructs an APInt value that has a contiguous range of bits set. The
231 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
232 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
233 /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than
234 /// \p hiBit.
235 ///
236 /// \param numBits the intended bit width of the result
237 /// \param loBit the index of the lowest bit set.
238 /// \param hiBit the index of the highest bit set.
239 ///
240 /// \returns An APInt value with the requested bits set.
241 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
242 APInt Res(numBits, 0);
243 Res.setBits(loBit, hiBit);
244 return Res;
245 }
246
247 /// Wrap version of getBitsSet.
248 /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet.
249 /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example,
250 /// with parameters (32, 28, 4), you would get 0xF000000F.
251 /// If \p hiBit is equal to \p loBit, you would get a result with all bits
252 /// set.
253 static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit,
254 unsigned hiBit) {
255 APInt Res(numBits, 0);
256 Res.setBitsWithWrap(loBit, hiBit);
257 return Res;
258 }
259
260 /// Constructs an APInt value that has a contiguous range of bits set. The
261 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
262 /// bits will be zero. For example, with parameters(32, 12) you would get
263 /// 0xFFFFF000.
264 ///
265 /// \param numBits the intended bit width of the result
266 /// \param loBit the index of the lowest bit to set.
267 ///
268 /// \returns An APInt value with the requested bits set.
269 static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
270 APInt Res(numBits, 0);
271 Res.setBitsFrom(loBit);
272 return Res;
273 }
274
275 /// Constructs an APInt value that has the top hiBitsSet bits set.
276 ///
277 /// \param numBits the bitwidth of the result
278 /// \param hiBitsSet the number of high-order bits set in the result.
279 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
280 APInt Res(numBits, 0);
281 Res.setHighBits(hiBitsSet);
282 return Res;
283 }
284
285 /// Constructs an APInt value that has the bottom loBitsSet bits set.
286 ///
287 /// \param numBits the bitwidth of the result
288 /// \param loBitsSet the number of low-order bits set in the result.
289 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
290 APInt Res(numBits, 0);
291 Res.setLowBits(loBitsSet);
292 return Res;
293 }
294
295 /// Return a value containing V broadcasted over NewLen bits.
296 static APInt getSplat(unsigned NewLen, const APInt &V);
297
298 /// @}
299 /// \name Value Tests
300 /// @{
301
302 /// Determine if this APInt just has one word to store value.
303 ///
304 /// \returns true if the number of bits <= 64, false otherwise.
305 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
306
307 /// Determine sign of this APInt.
308 ///
309 /// This tests the high bit of this APInt to determine if it is set.
310 ///
311 /// \returns true if this APInt is negative, false otherwise
312 bool isNegative() const { return (*this)[BitWidth - 1]; }
313
314 /// Determine if this APInt Value is non-negative (>= 0)
315 ///
316 /// This tests the high bit of the APInt to determine if it is unset.
317 bool isNonNegative() const { return !isNegative(); }
318
319 /// Determine if sign bit of this APInt is set.
320 ///
321 /// This tests the high bit of this APInt to determine if it is set.
322 ///
323 /// \returns true if this APInt has its sign bit set, false otherwise.
324 bool isSignBitSet() const { return (*this)[BitWidth - 1]; }
325
326 /// Determine if sign bit of this APInt is clear.
327 ///
328 /// This tests the high bit of this APInt to determine if it is clear.
329 ///
330 /// \returns true if this APInt has its sign bit clear, false otherwise.
331 bool isSignBitClear() const { return !isSignBitSet(); }
332
333 /// Determine if this APInt Value is positive.
334 ///
335 /// This tests if the value of this APInt is positive (> 0). Note
336 /// that 0 is not a positive value.
337 ///
338 /// \returns true if this APInt is positive.
339 bool isStrictlyPositive() const { return isNonNegative() && !isZero(); }
340
341 /// Determine if this APInt Value is non-positive (<= 0).
342 ///
343 /// \returns true if this APInt is non-positive.
344 bool isNonPositive() const { return !isStrictlyPositive(); }
345
346 /// Determine if this APInt Value only has the specified bit set.
347 ///
348 /// \returns true if this APInt only has the specified bit set.
349 bool isOneBitSet(unsigned BitNo) const {
350 return (*this)[BitNo] && popcount() == 1;
351 }
352
353 /// Determine if all bits are set. This is true for zero-width values.
354 bool isAllOnes() const {
355 if (BitWidth == 0)
356 return true;
357 if (isSingleWord())
358 return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
359 return countTrailingOnesSlowCase() == BitWidth;
360 }
361
362 LLVM_DEPRECATED("use isAllOnes instead", "isAllOnes")
363 bool isAllOnesValue() const { return isAllOnes(); }
364
365 /// Determine if this value is zero, i.e. all bits are clear.
366 bool isZero() const {
367 if (isSingleWord())
368 return U.VAL == 0;
369 return countLeadingZerosSlowCase() == BitWidth;
370 }
371
372 LLVM_DEPRECATED("use isZero instead", "isZero")
373 bool isNullValue() const { return isZero(); }
374
375 /// Determine if this is a value of 1.
376 ///
377 /// This checks to see if the value of this APInt is one.
378 bool isOne() const {
379 if (isSingleWord())
380 return U.VAL == 1;
381 return countLeadingZerosSlowCase() == BitWidth - 1;
382 }
383
384 LLVM_DEPRECATED("use isOne instead", "isOne")
385 bool isOneValue() const { return isOne(); }
386
387 /// Determine if this is the largest unsigned value.
388 ///
389 /// This checks to see if the value of this APInt is the maximum unsigned
390 /// value for the APInt's bit width.
391 bool isMaxValue() const { return isAllOnes(); }
392
393 /// Determine if this is the largest signed value.
394 ///
395 /// This checks to see if the value of this APInt is the maximum signed
396 /// value for the APInt's bit width.
397 bool isMaxSignedValue() const {
398 if (isSingleWord()) {
399 assert(BitWidth && "zero width values not allowed");
400 return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
401 }
402 return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
403 }
404
405 /// Determine if this is the smallest unsigned value.
406 ///
407 /// This checks to see if the value of this APInt is the minimum unsigned
408 /// value for the APInt's bit width.
409 bool isMinValue() const { return isZero(); }
410
411 /// Determine if this is the smallest signed value.
412 ///
413 /// This checks to see if the value of this APInt is the minimum signed
414 /// value for the APInt's bit width.
415 bool isMinSignedValue() const {
416 if (isSingleWord()) {
417 assert(BitWidth && "zero width values not allowed");
418 return U.VAL == (WordType(1) << (BitWidth - 1));
419 }
420 return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
421 }
422
423 /// Check if this APInt has an N-bits unsigned integer value.
424 bool isIntN(unsigned N) const { return getActiveBits() <= N; }
425
426 /// Check if this APInt has an N-bits signed integer value.
427 bool isSignedIntN(unsigned N) const { return getSignificantBits() <= N; }
428
429 /// Check if this APInt's value is a power of two greater than zero.
430 ///
431 /// \returns true if the argument APInt value is a power of two > 0.
432 bool isPowerOf2() const {
433 if (isSingleWord()) {
434 assert(BitWidth && "zero width values not allowed");
435 return isPowerOf2_64(U.VAL);
436 }
437 return countPopulationSlowCase() == 1;
438 }
439
440 /// Check if this APInt's negated value is a power of two greater than zero.
441 bool isNegatedPowerOf2() const {
442 assert(BitWidth && "zero width values not allowed");
443 if (isNonNegative())
444 return false;
445 // NegatedPowerOf2 - shifted mask in the top bits.
446 unsigned LO = countl_one();
447 unsigned TZ = countr_zero();
448 return (LO + TZ) == BitWidth;
449 }
450
451 /// Check if the APInt's value is returned by getSignMask.
452 ///
453 /// \returns true if this is the value returned by getSignMask.
454 bool isSignMask() const { return isMinSignedValue(); }
455
456 /// Convert APInt to a boolean value.
457 ///
458 /// This converts the APInt to a boolean value as a test against zero.
459 bool getBoolValue() const { return !isZero(); }
460
461 /// If this value is smaller than the specified limit, return it, otherwise
462 /// return the limit value. This causes the value to saturate to the limit.
464 return ugt(Limit) ? Limit : getZExtValue();
465 }
466
467 /// Check if the APInt consists of a repeated bit pattern.
468 ///
469 /// e.g. 0x01010101 satisfies isSplat(8).
470 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
471 /// width without remainder.
472 bool isSplat(unsigned SplatSizeInBits) const;
473
474 /// \returns true if this APInt value is a sequence of \param numBits ones
475 /// starting at the least significant bit with the remainder zero.
476 bool isMask(unsigned numBits) const {
477 assert(numBits != 0 && "numBits must be non-zero");
478 assert(numBits <= BitWidth && "numBits out of range");
479 if (isSingleWord())
480 return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
481 unsigned Ones = countTrailingOnesSlowCase();
482 return (numBits == Ones) &&
483 ((Ones + countLeadingZerosSlowCase()) == BitWidth);
484 }
485
486 /// \returns true if this APInt is a non-empty sequence of ones starting at
487 /// the least significant bit with the remainder zero.
488 /// Ex. isMask(0x0000FFFFU) == true.
489 bool isMask() const {
490 if (isSingleWord())
491 return isMask_64(U.VAL);
492 unsigned Ones = countTrailingOnesSlowCase();
493 return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
494 }
495
496 /// Return true if this APInt value contains a non-empty sequence of ones with
497 /// the remainder zero.
498 bool isShiftedMask() const {
499 if (isSingleWord())
500 return isShiftedMask_64(U.VAL);
501 unsigned Ones = countPopulationSlowCase();
502 unsigned LeadZ = countLeadingZerosSlowCase();
503 return (Ones + LeadZ + countr_zero()) == BitWidth;
504 }
505
506 /// Return true if this APInt value contains a non-empty sequence of ones with
507 /// the remainder zero. If true, \p MaskIdx will specify the index of the
508 /// lowest set bit and \p MaskLen is updated to specify the length of the
509 /// mask, else neither are updated.
510 bool isShiftedMask(unsigned &MaskIdx, unsigned &MaskLen) const {
511 if (isSingleWord())
512 return isShiftedMask_64(U.VAL, MaskIdx, MaskLen);
513 unsigned Ones = countPopulationSlowCase();
514 unsigned LeadZ = countLeadingZerosSlowCase();
515 unsigned TrailZ = countTrailingZerosSlowCase();
516 if ((Ones + LeadZ + TrailZ) != BitWidth)
517 return false;
518 MaskLen = Ones;
519 MaskIdx = TrailZ;
520 return true;
521 }
522
523 /// Compute an APInt containing numBits highbits from this APInt.
524 ///
525 /// Get an APInt with the same BitWidth as this APInt, just zero mask the low
526 /// bits and right shift to the least significant bit.
527 ///
528 /// \returns the high "numBits" bits of this APInt.
529 APInt getHiBits(unsigned numBits) const;
530
531 /// Compute an APInt containing numBits lowbits from this APInt.
532 ///
533 /// Get an APInt with the same BitWidth as this APInt, just zero mask the high
534 /// bits.
535 ///
536 /// \returns the low "numBits" bits of this APInt.
537 APInt getLoBits(unsigned numBits) const;
538
539 /// Determine if two APInts have the same value, after zero-extending
540 /// one of them (if needed!) to ensure that the bit-widths match.
541 static bool isSameValue(const APInt &I1, const APInt &I2) {
542 if (I1.getBitWidth() == I2.getBitWidth())
543 return I1 == I2;
544
545 if (I1.getBitWidth() > I2.getBitWidth())
546 return I1 == I2.zext(I1.getBitWidth());
547
548 return I1.zext(I2.getBitWidth()) == I2;
549 }
550
551 /// Overload to compute a hash_code for an APInt value.
553
554 /// This function returns a pointer to the internal storage of the APInt.
555 /// This is useful for writing out the APInt in binary form without any
556 /// conversions.
557 const uint64_t *getRawData() const {
558 if (isSingleWord())
559 return &U.VAL;
560 return &U.pVal[0];
561 }
562
563 /// @}
564 /// \name Unary Operators
565 /// @{
566
567 /// Postfix increment operator. Increment *this by 1.
568 ///
569 /// \returns a new APInt value representing the original value of *this.
571 APInt API(*this);
572 ++(*this);
573 return API;
574 }
575
576 /// Prefix increment operator.
577 ///
578 /// \returns *this incremented by one
579 APInt &operator++();
580
581 /// Postfix decrement operator. Decrement *this by 1.
582 ///
583 /// \returns a new APInt value representing the original value of *this.
585 APInt API(*this);
586 --(*this);
587 return API;
588 }
589
590 /// Prefix decrement operator.
591 ///
592 /// \returns *this decremented by one.
593 APInt &operator--();
594
595 /// Logical negation operation on this APInt returns true if zero, like normal
596 /// integers.
597 bool operator!() const { return isZero(); }
598
599 /// @}
600 /// \name Assignment Operators
601 /// @{
602
603 /// Copy assignment operator.
604 ///
605 /// \returns *this after assignment of RHS.
607 // The common case (both source or dest being inline) doesn't require
608 // allocation or deallocation.
609 if (isSingleWord() && RHS.isSingleWord()) {
610 U.VAL = RHS.U.VAL;
611 BitWidth = RHS.BitWidth;
612 return *this;
613 }
614
615 assignSlowCase(RHS);
616 return *this;
617 }
618
619 /// Move assignment operator.
621#ifdef EXPENSIVE_CHECKS
622 // Some std::shuffle implementations still do self-assignment.
623 if (this == &that)
624 return *this;
625#endif
626 assert(this != &that && "Self-move not supported");
627 if (!isSingleWord())
628 delete[] U.pVal;
629
630 // Use memcpy so that type based alias analysis sees both VAL and pVal
631 // as modified.
632 memcpy(&U, &that.U, sizeof(U));
633
634 BitWidth = that.BitWidth;
635 that.BitWidth = 0;
636 return *this;
637 }
638
639 /// Assignment operator.
640 ///
641 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
642 /// the bit width, the excess bits are truncated. If the bit width is larger
643 /// than 64, the value is zero filled in the unspecified high order bits.
644 ///
645 /// \returns *this after assignment of RHS value.
647 if (isSingleWord()) {
648 U.VAL = RHS;
649 return clearUnusedBits();
650 }
651 U.pVal[0] = RHS;
652 memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
653 return *this;
654 }
655
656 /// Bitwise AND assignment operator.
657 ///
658 /// Performs a bitwise AND operation on this APInt and RHS. The result is
659 /// assigned to *this.
660 ///
661 /// \returns *this after ANDing with RHS.
663 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
664 if (isSingleWord())
665 U.VAL &= RHS.U.VAL;
666 else
667 andAssignSlowCase(RHS);
668 return *this;
669 }
670
671 /// Bitwise AND assignment operator.
672 ///
673 /// Performs a bitwise AND operation on this APInt and RHS. RHS is
674 /// logically zero-extended or truncated to match the bit-width of
675 /// the LHS.
677 if (isSingleWord()) {
678 U.VAL &= RHS;
679 return *this;
680 }
681 U.pVal[0] &= RHS;
682 memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
683 return *this;
684 }
685
686 /// Bitwise OR assignment operator.
687 ///
688 /// Performs a bitwise OR operation on this APInt and RHS. The result is
689 /// assigned *this;
690 ///
691 /// \returns *this after ORing with RHS.
693 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
694 if (isSingleWord())
695 U.VAL |= RHS.U.VAL;
696 else
697 orAssignSlowCase(RHS);
698 return *this;
699 }
700
701 /// Bitwise OR assignment operator.
702 ///
703 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
704 /// logically zero-extended or truncated to match the bit-width of
705 /// the LHS.
707 if (isSingleWord()) {
708 U.VAL |= RHS;
709 return clearUnusedBits();
710 }
711 U.pVal[0] |= RHS;
712 return *this;
713 }
714
715 /// Bitwise XOR assignment operator.
716 ///
717 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
718 /// assigned to *this.
719 ///
720 /// \returns *this after XORing with RHS.
722 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
723 if (isSingleWord())
724 U.VAL ^= RHS.U.VAL;
725 else
726 xorAssignSlowCase(RHS);
727 return *this;
728 }
729
730 /// Bitwise XOR assignment operator.
731 ///
732 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
733 /// logically zero-extended or truncated to match the bit-width of
734 /// the LHS.
736 if (isSingleWord()) {
737 U.VAL ^= RHS;
738 return clearUnusedBits();
739 }
740 U.pVal[0] ^= RHS;
741 return *this;
742 }
743
744 /// Multiplication assignment operator.
745 ///
746 /// Multiplies this APInt by RHS and assigns the result to *this.
747 ///
748 /// \returns *this
749 APInt &operator*=(const APInt &RHS);
750 APInt &operator*=(uint64_t RHS);
751
752 /// Addition assignment operator.
753 ///
754 /// Adds RHS to *this and assigns the result to *this.
755 ///
756 /// \returns *this
757 APInt &operator+=(const APInt &RHS);
759
760 /// Subtraction assignment operator.
761 ///
762 /// Subtracts RHS from *this and assigns the result to *this.
763 ///
764 /// \returns *this
765 APInt &operator-=(const APInt &RHS);
766 APInt &operator-=(uint64_t RHS);
767
768 /// Left-shift assignment function.
769 ///
770 /// Shifts *this left by shiftAmt and assigns the result to *this.
771 ///
772 /// \returns *this after shifting left by ShiftAmt
773 APInt &operator<<=(unsigned ShiftAmt) {
774 assert(ShiftAmt <= BitWidth && "Invalid shift amount");
775 if (isSingleWord()) {
776 if (ShiftAmt == BitWidth)
777 U.VAL = 0;
778 else
779 U.VAL <<= ShiftAmt;
780 return clearUnusedBits();
781 }
782 shlSlowCase(ShiftAmt);
783 return *this;
784 }
785
786 /// Left-shift assignment function.
787 ///
788 /// Shifts *this left by shiftAmt and assigns the result to *this.
789 ///
790 /// \returns *this after shifting left by ShiftAmt
791 APInt &operator<<=(const APInt &ShiftAmt);
792
793 /// @}
794 /// \name Binary Operators
795 /// @{
796
797 /// Multiplication operator.
798 ///
799 /// Multiplies this APInt by RHS and returns the result.
800 APInt operator*(const APInt &RHS) const;
801
802 /// Left logical shift operator.
803 ///
804 /// Shifts this APInt left by \p Bits and returns the result.
805 APInt operator<<(unsigned Bits) const { return shl(Bits); }
806
807 /// Left logical shift operator.
808 ///
809 /// Shifts this APInt left by \p Bits and returns the result.
810 APInt operator<<(const APInt &Bits) const { return shl(Bits); }
811
812 /// Arithmetic right-shift function.
813 ///
814 /// Arithmetic right-shift this APInt by shiftAmt.
815 APInt ashr(unsigned ShiftAmt) const {
816 APInt R(*this);
817 R.ashrInPlace(ShiftAmt);
818 return R;
819 }
820
821 /// Arithmetic right-shift this APInt by ShiftAmt in place.
822 void ashrInPlace(unsigned ShiftAmt) {
823 assert(ShiftAmt <= BitWidth && "Invalid shift amount");
824 if (isSingleWord()) {
825 int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
826 if (ShiftAmt == BitWidth)
827 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
828 else
829 U.VAL = SExtVAL >> ShiftAmt;
831 return;
832 }
833 ashrSlowCase(ShiftAmt);
834 }
835
836 /// Logical right-shift function.
837 ///
838 /// Logical right-shift this APInt by shiftAmt.
839 APInt lshr(unsigned shiftAmt) const {
840 APInt R(*this);
841 R.lshrInPlace(shiftAmt);
842 return R;
843 }
844
845 /// Logical right-shift this APInt by ShiftAmt in place.
846 void lshrInPlace(unsigned ShiftAmt) {
847 assert(ShiftAmt <= BitWidth && "Invalid shift amount");
848 if (isSingleWord()) {
849 if (ShiftAmt == BitWidth)
850 U.VAL = 0;
851 else
852 U.VAL >>= ShiftAmt;
853 return;
854 }
855 lshrSlowCase(ShiftAmt);
856 }
857
858 /// Left-shift function.
859 ///
860 /// Left-shift this APInt by shiftAmt.
861 APInt shl(unsigned shiftAmt) const {
862 APInt R(*this);
863 R <<= shiftAmt;
864 return R;
865 }
866
867 /// relative logical shift right
868 APInt relativeLShr(int RelativeShift) const {
869 return RelativeShift > 0 ? lshr(RelativeShift) : shl(-RelativeShift);
870 }
871
872 /// relative logical shift left
873 APInt relativeLShl(int RelativeShift) const {
874 return relativeLShr(-RelativeShift);
875 }
876
877 /// relative arithmetic shift right
878 APInt relativeAShr(int RelativeShift) const {
879 return RelativeShift > 0 ? ashr(RelativeShift) : shl(-RelativeShift);
880 }
881
882 /// relative arithmetic shift left
883 APInt relativeAShl(int RelativeShift) const {
884 return relativeAShr(-RelativeShift);
885 }
886
887 /// Rotate left by rotateAmt.
888 APInt rotl(unsigned rotateAmt) const;
889
890 /// Rotate right by rotateAmt.
891 APInt rotr(unsigned rotateAmt) const;
892
893 /// Arithmetic right-shift function.
894 ///
895 /// Arithmetic right-shift this APInt by shiftAmt.
896 APInt ashr(const APInt &ShiftAmt) const {
897 APInt R(*this);
898 R.ashrInPlace(ShiftAmt);
899 return R;
900 }
901
902 /// Arithmetic right-shift this APInt by shiftAmt in place.
903 void ashrInPlace(const APInt &shiftAmt);
904
905 /// Logical right-shift function.
906 ///
907 /// Logical right-shift this APInt by shiftAmt.
908 APInt lshr(const APInt &ShiftAmt) const {
909 APInt R(*this);
910 R.lshrInPlace(ShiftAmt);
911 return R;
912 }
913
914 /// Logical right-shift this APInt by ShiftAmt in place.
915 void lshrInPlace(const APInt &ShiftAmt);
916
917 /// Left-shift function.
918 ///
919 /// Left-shift this APInt by shiftAmt.
920 APInt shl(const APInt &ShiftAmt) const {
921 APInt R(*this);
922 R <<= ShiftAmt;
923 return R;
924 }
925
926 /// Rotate left by rotateAmt.
927 APInt rotl(const APInt &rotateAmt) const;
928
929 /// Rotate right by rotateAmt.
930 APInt rotr(const APInt &rotateAmt) const;
931
932 /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is
933 /// equivalent to:
934 /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
935 APInt concat(const APInt &NewLSB) const {
936 /// If the result will be small, then both the merged values are small.
937 unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
938 if (NewWidth <= APINT_BITS_PER_WORD)
939 return APInt(NewWidth, (U.VAL << NewLSB.getBitWidth()) | NewLSB.U.VAL);
940 return concatSlowCase(NewLSB);
941 }
942
943 /// Unsigned division operation.
944 ///
945 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
946 /// RHS are treated as unsigned quantities for purposes of this division.
947 ///
948 /// \returns a new APInt value containing the division result, rounded towards
949 /// zero.
950 APInt udiv(const APInt &RHS) const;
951 APInt udiv(uint64_t RHS) const;
952
953 /// Signed division function for APInt.
954 ///
955 /// Signed divide this APInt by APInt RHS.
956 ///
957 /// The result is rounded towards zero.
958 APInt sdiv(const APInt &RHS) const;
959 APInt sdiv(int64_t RHS) const;
960
961 /// Unsigned remainder operation.
962 ///
963 /// Perform an unsigned remainder operation on this APInt with RHS being the
964 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
965 /// of this operation.
966 ///
967 /// \returns a new APInt value containing the remainder result
968 APInt urem(const APInt &RHS) const;
969 uint64_t urem(uint64_t RHS) const;
970
971 /// Function for signed remainder operation.
972 ///
973 /// Signed remainder operation on APInt.
974 ///
975 /// Note that this is a true remainder operation and not a modulo operation
976 /// because the sign follows the sign of the dividend which is *this.
977 APInt srem(const APInt &RHS) const;
978 int64_t srem(int64_t RHS) const;
979
980 /// Dual division/remainder interface.
981 ///
982 /// Sometimes it is convenient to divide two APInt values and obtain both the
983 /// quotient and remainder. This function does both operations in the same
984 /// computation making it a little more efficient. The pair of input arguments
985 /// may overlap with the pair of output arguments. It is safe to call
986 /// udivrem(X, Y, X, Y), for example.
987 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
988 APInt &Remainder);
989 static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
990 uint64_t &Remainder);
991
992 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
993 APInt &Remainder);
994 static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
995 int64_t &Remainder);
996
997 // Operations that return overflow indicators.
998 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
999 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
1000 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
1001 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
1002 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
1003 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
1004 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
1005 APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
1006 APInt sshl_ov(unsigned Amt, bool &Overflow) const;
1007 APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1008 APInt ushl_ov(unsigned Amt, bool &Overflow) const;
1009
1010 // Operations that saturate
1011 APInt sadd_sat(const APInt &RHS) const;
1012 APInt uadd_sat(const APInt &RHS) const;
1013 APInt ssub_sat(const APInt &RHS) const;
1014 APInt usub_sat(const APInt &RHS) const;
1015 APInt smul_sat(const APInt &RHS) const;
1016 APInt umul_sat(const APInt &RHS) const;
1017 APInt sshl_sat(const APInt &RHS) const;
1018 APInt sshl_sat(unsigned RHS) const;
1019 APInt ushl_sat(const APInt &RHS) const;
1020 APInt ushl_sat(unsigned RHS) const;
1021
1022 /// Array-indexing support.
1023 ///
1024 /// \returns the bit value at bitPosition
1025 bool operator[](unsigned bitPosition) const {
1026 assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
1027 return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1028 }
1029
1030 /// @}
1031 /// \name Comparison Operators
1032 /// @{
1033
1034 /// Equality operator.
1035 ///
1036 /// Compares this APInt with RHS for the validity of the equality
1037 /// relationship.
1038 bool operator==(const APInt &RHS) const {
1039 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
1040 if (isSingleWord())
1041 return U.VAL == RHS.U.VAL;
1042 return equalSlowCase(RHS);
1043 }
1044
1045 /// Equality operator.
1046 ///
1047 /// Compares this APInt with a uint64_t for the validity of the equality
1048 /// relationship.
1049 ///
1050 /// \returns true if *this == Val
1051 bool operator==(uint64_t Val) const {
1052 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1053 }
1054
1055 /// Equality comparison.
1056 ///
1057 /// Compares this APInt with RHS for the validity of the equality
1058 /// relationship.
1059 ///
1060 /// \returns true if *this == Val
1061 bool eq(const APInt &RHS) const { return (*this) == RHS; }
1062
1063 /// Inequality operator.
1064 ///
1065 /// Compares this APInt with RHS for the validity of the inequality
1066 /// relationship.
1067 ///
1068 /// \returns true if *this != Val
1069 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1070
1071 /// Inequality operator.
1072 ///
1073 /// Compares this APInt with a uint64_t for the validity of the inequality
1074 /// relationship.
1075 ///
1076 /// \returns true if *this != Val
1077 bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1078
1079 /// Inequality comparison
1080 ///
1081 /// Compares this APInt with RHS for the validity of the inequality
1082 /// relationship.
1083 ///
1084 /// \returns true if *this != Val
1085 bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1086
1087 /// Unsigned less than comparison
1088 ///
1089 /// Regards both *this and RHS as unsigned quantities and compares them for
1090 /// the validity of the less-than relationship.
1091 ///
1092 /// \returns true if *this < RHS when both are considered unsigned.
1093 bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1094
1095 /// Unsigned less than comparison
1096 ///
1097 /// Regards both *this as an unsigned quantity and compares it with RHS for
1098 /// the validity of the less-than relationship.
1099 ///
1100 /// \returns true if *this < RHS when considered unsigned.
1101 bool ult(uint64_t RHS) const {
1102 // Only need to check active bits if not a single word.
1103 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1104 }
1105
1106 /// Signed less than comparison
1107 ///
1108 /// Regards both *this and RHS as signed quantities and compares them for
1109 /// validity of the less-than relationship.
1110 ///
1111 /// \returns true if *this < RHS when both are considered signed.
1112 bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1113
1114 /// Signed less than comparison
1115 ///
1116 /// Regards both *this as a signed quantity and compares it with RHS for
1117 /// the validity of the less-than relationship.
1118 ///
1119 /// \returns true if *this < RHS when considered signed.
1120 bool slt(int64_t RHS) const {
1121 return (!isSingleWord() && getSignificantBits() > 64)
1122 ? isNegative()
1123 : getSExtValue() < RHS;
1124 }
1125
1126 /// Unsigned less or equal comparison
1127 ///
1128 /// Regards both *this and RHS as unsigned quantities and compares them for
1129 /// validity of the less-or-equal relationship.
1130 ///
1131 /// \returns true if *this <= RHS when both are considered unsigned.
1132 bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1133
1134 /// Unsigned less or equal comparison
1135 ///
1136 /// Regards both *this as an unsigned quantity and compares it with RHS for
1137 /// the validity of the less-or-equal relationship.
1138 ///
1139 /// \returns true if *this <= RHS when considered unsigned.
1140 bool ule(uint64_t RHS) const { return !ugt(RHS); }
1141
1142 /// Signed less or equal comparison
1143 ///
1144 /// Regards both *this and RHS as signed quantities and compares them for
1145 /// validity of the less-or-equal relationship.
1146 ///
1147 /// \returns true if *this <= RHS when both are considered signed.
1148 bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1149
1150 /// Signed less or equal comparison
1151 ///
1152 /// Regards both *this as a signed quantity and compares it with RHS for the
1153 /// validity of the less-or-equal relationship.
1154 ///
1155 /// \returns true if *this <= RHS when considered signed.
1156 bool sle(uint64_t RHS) const { return !sgt(RHS); }
1157
1158 /// Unsigned greater than comparison
1159 ///
1160 /// Regards both *this and RHS as unsigned quantities and compares them for
1161 /// the validity of the greater-than relationship.
1162 ///
1163 /// \returns true if *this > RHS when both are considered unsigned.
1164 bool ugt(const APInt &RHS) const { return !ule(RHS); }
1165
1166 /// Unsigned greater than comparison
1167 ///
1168 /// Regards both *this as an unsigned quantity and compares it with RHS for
1169 /// the validity of the greater-than relationship.
1170 ///
1171 /// \returns true if *this > RHS when considered unsigned.
1172 bool ugt(uint64_t RHS) const {
1173 // Only need to check active bits if not a single word.
1174 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1175 }
1176
1177 /// Signed greater than comparison
1178 ///
1179 /// Regards both *this and RHS as signed quantities and compares them for the
1180 /// validity of the greater-than relationship.
1181 ///
1182 /// \returns true if *this > RHS when both are considered signed.
1183 bool sgt(const APInt &RHS) const { return !sle(RHS); }
1184
1185 /// Signed greater than comparison
1186 ///
1187 /// Regards both *this as a signed quantity and compares it with RHS for
1188 /// the validity of the greater-than relationship.
1189 ///
1190 /// \returns true if *this > RHS when considered signed.
1191 bool sgt(int64_t RHS) const {
1192 return (!isSingleWord() && getSignificantBits() > 64)
1193 ? !isNegative()
1194 : getSExtValue() > RHS;
1195 }
1196
1197 /// Unsigned greater or equal comparison
1198 ///
1199 /// Regards both *this and RHS as unsigned quantities and compares them for
1200 /// validity of the greater-or-equal relationship.
1201 ///
1202 /// \returns true if *this >= RHS when both are considered unsigned.
1203 bool uge(const APInt &RHS) const { return !ult(RHS); }
1204
1205 /// Unsigned greater or equal comparison
1206 ///
1207 /// Regards both *this as an unsigned quantity and compares it with RHS for
1208 /// the validity of the greater-or-equal relationship.
1209 ///
1210 /// \returns true if *this >= RHS when considered unsigned.
1211 bool uge(uint64_t RHS) const { return !ult(RHS); }
1212
1213 /// Signed greater or equal comparison
1214 ///
1215 /// Regards both *this and RHS as signed quantities and compares them for
1216 /// validity of the greater-or-equal relationship.
1217 ///
1218 /// \returns true if *this >= RHS when both are considered signed.
1219 bool sge(const APInt &RHS) const { return !slt(RHS); }
1220
1221 /// Signed greater or equal comparison
1222 ///
1223 /// Regards both *this as a signed quantity and compares it with RHS for
1224 /// the validity of the greater-or-equal relationship.
1225 ///
1226 /// \returns true if *this >= RHS when considered signed.
1227 bool sge(int64_t RHS) const { return !slt(RHS); }
1228
1229 /// This operation tests if there are any pairs of corresponding bits
1230 /// between this APInt and RHS that are both set.
1231 bool intersects(const APInt &RHS) const {
1232 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1233 if (isSingleWord())
1234 return (U.VAL & RHS.U.VAL) != 0;
1235 return intersectsSlowCase(RHS);
1236 }
1237
1238 /// This operation checks that all bits set in this APInt are also set in RHS.
1239 bool isSubsetOf(const APInt &RHS) const {
1240 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1241 if (isSingleWord())
1242 return (U.VAL & ~RHS.U.VAL) == 0;
1243 return isSubsetOfSlowCase(RHS);
1244 }
1245
1246 /// @}
1247 /// \name Resizing Operators
1248 /// @{
1249
1250 /// Truncate to new width.
1251 ///
1252 /// Truncate the APInt to a specified width. It is an error to specify a width
1253 /// that is greater than the current width.
1254 APInt trunc(unsigned width) const;
1255
1256 /// Truncate to new width with unsigned saturation.
1257 ///
1258 /// If the APInt, treated as unsigned integer, can be losslessly truncated to
1259 /// the new bitwidth, then return truncated APInt. Else, return max value.
1260 APInt truncUSat(unsigned width) const;
1261
1262 /// Truncate to new width with signed saturation.
1263 ///
1264 /// If this APInt, treated as signed integer, can be losslessly truncated to
1265 /// the new bitwidth, then return truncated APInt. Else, return either
1266 /// signed min value if the APInt was negative, or signed max value.
1267 APInt truncSSat(unsigned width) const;
1268
1269 /// Sign extend to a new width.
1270 ///
1271 /// This operation sign extends the APInt to a new width. If the high order
1272 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1273 /// It is an error to specify a width that is less than the
1274 /// current width.
1275 APInt sext(unsigned width) const;
1276
1277 /// Zero extend to a new width.
1278 ///
1279 /// This operation zero extends the APInt to a new width. The high order bits
1280 /// are filled with 0 bits. It is an error to specify a width that is less
1281 /// than the current width.
1282 APInt zext(unsigned width) const;
1283
1284 /// Sign extend or truncate to width
1285 ///
1286 /// Make this APInt have the bit width given by \p width. The value is sign
1287 /// extended, truncated, or left alone to make it that width.
1288 APInt sextOrTrunc(unsigned width) const;
1289
1290 /// Zero extend or truncate to width
1291 ///
1292 /// Make this APInt have the bit width given by \p width. The value is zero
1293 /// extended, truncated, or left alone to make it that width.
1294 APInt zextOrTrunc(unsigned width) const;
1295
1296 /// @}
1297 /// \name Bit Manipulation Operators
1298 /// @{
1299
1300 /// Set every bit to 1.
1301 void setAllBits() {
1302 if (isSingleWord())
1303 U.VAL = WORDTYPE_MAX;
1304 else
1305 // Set all the bits in all the words.
1306 memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1307 // Clear the unused ones
1309 }
1310
1311 /// Set the given bit to 1 whose position is given as "bitPosition".
1312 void setBit(unsigned BitPosition) {
1313 assert(BitPosition < BitWidth && "BitPosition out of range");
1314 WordType Mask = maskBit(BitPosition);
1315 if (isSingleWord())
1316 U.VAL |= Mask;
1317 else
1318 U.pVal[whichWord(BitPosition)] |= Mask;
1319 }
1320
1321 /// Set the sign bit to 1.
1322 void setSignBit() { setBit(BitWidth - 1); }
1323
1324 /// Set a given bit to a given value.
1325 void setBitVal(unsigned BitPosition, bool BitValue) {
1326 if (BitValue)
1327 setBit(BitPosition);
1328 else
1329 clearBit(BitPosition);
1330 }
1331
1332 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1333 /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls
1334 /// setBits when \p loBit < \p hiBit.
1335 /// For \p loBit == \p hiBit wrap case, set every bit to 1.
1336 void setBitsWithWrap(unsigned loBit, unsigned hiBit) {
1337 assert(hiBit <= BitWidth && "hiBit out of range");
1338 assert(loBit <= BitWidth && "loBit out of range");
1339 if (loBit < hiBit) {
1340 setBits(loBit, hiBit);
1341 return;
1342 }
1343 setLowBits(hiBit);
1344 setHighBits(BitWidth - loBit);
1345 }
1346
1347 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1348 /// This function handles case when \p loBit <= \p hiBit.
1349 void setBits(unsigned loBit, unsigned hiBit) {
1350 assert(hiBit <= BitWidth && "hiBit out of range");
1351 assert(loBit <= BitWidth && "loBit out of range");
1352 assert(loBit <= hiBit && "loBit greater than hiBit");
1353 if (loBit == hiBit)
1354 return;
1355 if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1356 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1357 mask <<= loBit;
1358 if (isSingleWord())
1359 U.VAL |= mask;
1360 else
1361 U.pVal[0] |= mask;
1362 } else {
1363 setBitsSlowCase(loBit, hiBit);
1364 }
1365 }
1366
1367 /// Set the top bits starting from loBit.
1368 void setBitsFrom(unsigned loBit) { return setBits(loBit, BitWidth); }
1369
1370 /// Set the bottom loBits bits.
1371 void setLowBits(unsigned loBits) { return setBits(0, loBits); }
1372
1373 /// Set the top hiBits bits.
1374 void setHighBits(unsigned hiBits) {
1375 return setBits(BitWidth - hiBits, BitWidth);
1376 }
1377
1378 /// Set every bit to 0.
1380 if (isSingleWord())
1381 U.VAL = 0;
1382 else
1383 memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1384 }
1385
1386 /// Set a given bit to 0.
1387 ///
1388 /// Set the given bit to 0 whose position is given as "bitPosition".
1389 void clearBit(unsigned BitPosition) {
1390 assert(BitPosition < BitWidth && "BitPosition out of range");
1391 WordType Mask = ~maskBit(BitPosition);
1392 if (isSingleWord())
1393 U.VAL &= Mask;
1394 else
1395 U.pVal[whichWord(BitPosition)] &= Mask;
1396 }
1397
1398 /// Set bottom loBits bits to 0.
1399 void clearLowBits(unsigned loBits) {
1400 assert(loBits <= BitWidth && "More bits than bitwidth");
1401 APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
1402 *this &= Keep;
1403 }
1404
1405 /// Set the sign bit to 0.
1406 void clearSignBit() { clearBit(BitWidth - 1); }
1407
1408 /// Toggle every bit to its opposite value.
1410 if (isSingleWord()) {
1411 U.VAL ^= WORDTYPE_MAX;
1413 } else {
1414 flipAllBitsSlowCase();
1415 }
1416 }
1417
1418 /// Toggles a given bit to its opposite value.
1419 ///
1420 /// Toggle a given bit to its opposite value whose position is given
1421 /// as "bitPosition".
1422 void flipBit(unsigned bitPosition);
1423
1424 /// Negate this APInt in place.
1425 void negate() {
1426 flipAllBits();
1427 ++(*this);
1428 }
1429
1430 /// Insert the bits from a smaller APInt starting at bitPosition.
1431 void insertBits(const APInt &SubBits, unsigned bitPosition);
1432 void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
1433
1434 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1435 APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1436 uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
1437
1438 /// @}
1439 /// \name Value Characterization Functions
1440 /// @{
1441
1442 /// Return the number of bits in the APInt.
1443 unsigned getBitWidth() const { return BitWidth; }
1444
1445 /// Get the number of words.
1446 ///
1447 /// Here one word's bitwidth equals to that of uint64_t.
1448 ///
1449 /// \returns the number of words to hold the integer value of this APInt.
1450 unsigned getNumWords() const { return getNumWords(BitWidth); }
1451
1452 /// Get the number of words.
1453 ///
1454 /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1455 ///
1456 /// \returns the number of words to hold the integer value with a given bit
1457 /// width.
1458 static unsigned getNumWords(unsigned BitWidth) {
1459 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1460 }
1461
1462 /// Compute the number of active bits in the value
1463 ///
1464 /// This function returns the number of active bits which is defined as the
1465 /// bit width minus the number of leading zeros. This is used in several
1466 /// computations to see how "wide" the value is.
1467 unsigned getActiveBits() const { return BitWidth - countl_zero(); }
1468
1469 /// Compute the number of active words in the value of this APInt.
1470 ///
1471 /// This is used in conjunction with getActiveData to extract the raw value of
1472 /// the APInt.
1473 unsigned getActiveWords() const {
1474 unsigned numActiveBits = getActiveBits();
1475 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1476 }
1477
1478 /// Get the minimum bit size for this signed APInt
1479 ///
1480 /// Computes the minimum bit width for this APInt while considering it to be a
1481 /// signed (and probably negative) value. If the value is not negative, this
1482 /// function returns the same value as getActiveBits()+1. Otherwise, it
1483 /// returns the smallest bit width that will retain the negative value. For
1484 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1485 /// for -1, this function will always return 1.
1486 unsigned getSignificantBits() const {
1487 return BitWidth - getNumSignBits() + 1;
1488 }
1489
1490 LLVM_DEPRECATED("use getSignificantBits instead", "getSignificantBits")
1491 unsigned getMinSignedBits() const { return getSignificantBits(); }
1492
1493 /// Get zero extended value
1494 ///
1495 /// This method attempts to return the value of this APInt as a zero extended
1496 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1497 /// uint64_t. Otherwise an assertion will result.
1499 if (isSingleWord())
1500 return U.VAL;
1501 assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1502 return U.pVal[0];
1503 }
1504
1505 /// Get zero extended value if possible
1506 ///
1507 /// This method attempts to return the value of this APInt as a zero extended
1508 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1509 /// uint64_t. Otherwise no value is returned.
1510 std::optional<uint64_t> tryZExtValue() const {
1511 return (getActiveBits() <= 64) ? std::optional<uint64_t>(getZExtValue())
1512 : std::nullopt;
1513 };
1514
1515 /// Get sign extended value
1516 ///
1517 /// This method attempts to return the value of this APInt as a sign extended
1518 /// int64_t. The bit width must be <= 64 or the value must fit within an
1519 /// int64_t. Otherwise an assertion will result.
1520 int64_t getSExtValue() const {
1521 if (isSingleWord())
1522 return SignExtend64(U.VAL, BitWidth);
1523 assert(getSignificantBits() <= 64 && "Too many bits for int64_t");
1524 return int64_t(U.pVal[0]);
1525 }
1526
1527 /// Get sign extended value if possible
1528 ///
1529 /// This method attempts to return the value of this APInt as a sign extended
1530 /// int64_t. The bitwidth must be <= 64 or the value must fit within an
1531 /// int64_t. Otherwise no value is returned.
1532 std::optional<int64_t> trySExtValue() const {
1533 return (getSignificantBits() <= 64) ? std::optional<int64_t>(getSExtValue())
1534 : std::nullopt;
1535 };
1536
1537 /// Get bits required for string value.
1538 ///
1539 /// This method determines how many bits are required to hold the APInt
1540 /// equivalent of the string given by \p str.
1541 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1542
1543 /// Get the bits that are sufficient to represent the string value. This may
1544 /// over estimate the amount of bits required, but it does not require
1545 /// parsing the value in the string.
1546 static unsigned getSufficientBitsNeeded(StringRef Str, uint8_t Radix);
1547
1548 /// The APInt version of std::countl_zero.
1549 ///
1550 /// It counts the number of zeros from the most significant bit to the first
1551 /// one bit.
1552 ///
1553 /// \returns BitWidth if the value is zero, otherwise returns the number of
1554 /// zeros from the most significant bit to the first one bits.
1555 unsigned countl_zero() const {
1556 if (isSingleWord()) {
1557 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1558 return llvm::countl_zero(U.VAL) - unusedBits;
1559 }
1560 return countLeadingZerosSlowCase();
1561 }
1562
1563 unsigned countLeadingZeros() const { return countl_zero(); }
1564
1565 /// Count the number of leading one bits.
1566 ///
1567 /// This function is an APInt version of std::countl_one. It counts the number
1568 /// of ones from the most significant bit to the first zero bit.
1569 ///
1570 /// \returns 0 if the high order bit is not set, otherwise returns the number
1571 /// of 1 bits from the most significant to the least
1572 unsigned countl_one() const {
1573 if (isSingleWord()) {
1574 if (LLVM_UNLIKELY(BitWidth == 0))
1575 return 0;
1576 return llvm::countl_one(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1577 }
1578 return countLeadingOnesSlowCase();
1579 }
1580
1581 unsigned countLeadingOnes() const { return countl_one(); }
1582
1583 /// Computes the number of leading bits of this APInt that are equal to its
1584 /// sign bit.
1585 unsigned getNumSignBits() const {
1586 return isNegative() ? countl_one() : countl_zero();
1587 }
1588
1589 /// Count the number of trailing zero bits.
1590 ///
1591 /// This function is an APInt version of std::countr_zero. It counts the number
1592 /// of zeros from the least significant bit to the first set bit.
1593 ///
1594 /// \returns BitWidth if the value is zero, otherwise returns the number of
1595 /// zeros from the least significant bit to the first one bit.
1596 unsigned countr_zero() const {
1597 if (isSingleWord()) {
1598 unsigned TrailingZeros = llvm::countr_zero(U.VAL);
1599 return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros);
1600 }
1601 return countTrailingZerosSlowCase();
1602 }
1603
1604 unsigned countTrailingZeros() const { return countr_zero(); }
1605
1606 /// Count the number of trailing one bits.
1607 ///
1608 /// This function is an APInt version of std::countr_one. It counts the number
1609 /// of ones from the least significant bit to the first zero bit.
1610 ///
1611 /// \returns BitWidth if the value is all ones, otherwise returns the number
1612 /// of ones from the least significant bit to the first zero bit.
1613 unsigned countr_one() const {
1614 if (isSingleWord())
1615 return llvm::countr_one(U.VAL);
1616 return countTrailingOnesSlowCase();
1617 }
1618
1619 unsigned countTrailingOnes() const { return countr_one(); }
1620
1621 /// Count the number of bits set.
1622 ///
1623 /// This function is an APInt version of std::popcount. It counts the number
1624 /// of 1 bits in the APInt value.
1625 ///
1626 /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1627 unsigned popcount() const {
1628 if (isSingleWord())
1629 return llvm::popcount(U.VAL);
1630 return countPopulationSlowCase();
1631 }
1632
1633 LLVM_DEPRECATED("use popcount instead", "popcount")
1634 unsigned countPopulation() const { return popcount(); }
1635
1636 /// @}
1637 /// \name Conversion Functions
1638 /// @{
1639 void print(raw_ostream &OS, bool isSigned) const;
1640
1641 /// Converts an APInt to a string and append it to Str. Str is commonly a
1642 /// SmallString. If Radix > 10, UpperCase determine the case of letter
1643 /// digits.
1644 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1645 bool formatAsCLiteral = false, bool UpperCase = true) const;
1646
1647 /// Considers the APInt to be unsigned and converts it into a string in the
1648 /// radix given. The radix can be 2, 8, 10 16, or 36.
1649 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1650 toString(Str, Radix, false, false);
1651 }
1652
1653 /// Considers the APInt to be signed and converts it into a string in the
1654 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1655 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1656 toString(Str, Radix, true, false);
1657 }
1658
1659 /// \returns a byte-swapped representation of this APInt Value.
1660 APInt byteSwap() const;
1661
1662 /// \returns the value with the bit representation reversed of this APInt
1663 /// Value.
1664 APInt reverseBits() const;
1665
1666 /// Converts this APInt to a double value.
1667 double roundToDouble(bool isSigned) const;
1668
1669 /// Converts this unsigned APInt to a double value.
1670 double roundToDouble() const { return roundToDouble(false); }
1671
1672 /// Converts this signed APInt to a double value.
1673 double signedRoundToDouble() const { return roundToDouble(true); }
1674
1675 /// Converts APInt bits to a double
1676 ///
1677 /// The conversion does not do a translation from integer to double, it just
1678 /// re-interprets the bits as a double. Note that it is valid to do this on
1679 /// any bit width. Exactly 64 bits will be translated.
1680 double bitsToDouble() const { return llvm::bit_cast<double>(getWord(0)); }
1681
1682 /// Converts APInt bits to a float
1683 ///
1684 /// The conversion does not do a translation from integer to float, it just
1685 /// re-interprets the bits as a float. Note that it is valid to do this on
1686 /// any bit width. Exactly 32 bits will be translated.
1687 float bitsToFloat() const {
1688 return llvm::bit_cast<float>(static_cast<uint32_t>(getWord(0)));
1689 }
1690
1691 /// Converts a double to APInt bits.
1692 ///
1693 /// The conversion does not do a translation from double to integer, it just
1694 /// re-interprets the bits of the double.
1695 static APInt doubleToBits(double V) {
1696 return APInt(sizeof(double) * CHAR_BIT, llvm::bit_cast<uint64_t>(V));
1697 }
1698
1699 /// Converts a float to APInt bits.
1700 ///
1701 /// The conversion does not do a translation from float to integer, it just
1702 /// re-interprets the bits of the float.
1703 static APInt floatToBits(float V) {
1704 return APInt(sizeof(float) * CHAR_BIT, llvm::bit_cast<uint32_t>(V));
1705 }
1706
1707 /// @}
1708 /// \name Mathematics Operations
1709 /// @{
1710
1711 /// \returns the floor log base 2 of this APInt.
1712 unsigned logBase2() const { return getActiveBits() - 1; }
1713
1714 /// \returns the ceil log base 2 of this APInt.
1715 unsigned ceilLogBase2() const {
1716 APInt temp(*this);
1717 --temp;
1718 return temp.getActiveBits();
1719 }
1720
1721 /// \returns the nearest log base 2 of this APInt. Ties round up.
1722 ///
1723 /// NOTE: When we have a BitWidth of 1, we define:
1724 ///
1725 /// log2(0) = UINT32_MAX
1726 /// log2(1) = 0
1727 ///
1728 /// to get around any mathematical concerns resulting from
1729 /// referencing 2 in a space where 2 does no exist.
1730 unsigned nearestLogBase2() const;
1731
1732 /// \returns the log base 2 of this APInt if its an exact power of two, -1
1733 /// otherwise
1734 int32_t exactLogBase2() const {
1735 if (!isPowerOf2())
1736 return -1;
1737 return logBase2();
1738 }
1739
1740 /// Compute the square root.
1741 APInt sqrt() const;
1742
1743 /// Get the absolute value. If *this is < 0 then return -(*this), otherwise
1744 /// *this. Note that the "most negative" signed number (e.g. -128 for 8 bit
1745 /// wide APInt) is unchanged due to how negation works.
1746 APInt abs() const {
1747 if (isNegative())
1748 return -(*this);
1749 return *this;
1750 }
1751
1752 /// \returns the multiplicative inverse for a given modulo.
1753 APInt multiplicativeInverse(const APInt &modulo) const;
1754
1755 /// @}
1756 /// \name Building-block Operations for APInt and APFloat
1757 /// @{
1758
1759 // These building block operations operate on a representation of arbitrary
1760 // precision, two's-complement, bignum integer values. They should be
1761 // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1762 // generally a pointer to the base of an array of integer parts, representing
1763 // an unsigned bignum, and a count of how many parts there are.
1764
1765 /// Sets the least significant part of a bignum to the input value, and zeroes
1766 /// out higher parts.
1767 static void tcSet(WordType *, WordType, unsigned);
1768
1769 /// Assign one bignum to another.
1770 static void tcAssign(WordType *, const WordType *, unsigned);
1771
1772 /// Returns true if a bignum is zero, false otherwise.
1773 static bool tcIsZero(const WordType *, unsigned);
1774
1775 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1776 static int tcExtractBit(const WordType *, unsigned bit);
1777
1778 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1779 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1780 /// significant bit of DST. All high bits above srcBITS in DST are
1781 /// zero-filled.
1782 static void tcExtract(WordType *, unsigned dstCount, const WordType *,
1783 unsigned srcBits, unsigned srcLSB);
1784
1785 /// Set the given bit of a bignum. Zero-based.
1786 static void tcSetBit(WordType *, unsigned bit);
1787
1788 /// Clear the given bit of a bignum. Zero-based.
1789 static void tcClearBit(WordType *, unsigned bit);
1790
1791 /// Returns the bit number of the least or most significant set bit of a
1792 /// number. If the input number has no bits set -1U is returned.
1793 static unsigned tcLSB(const WordType *, unsigned n);
1794 static unsigned tcMSB(const WordType *parts, unsigned n);
1795
1796 /// Negate a bignum in-place.
1797 static void tcNegate(WordType *, unsigned);
1798
1799 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1800 static WordType tcAdd(WordType *, const WordType *, WordType carry, unsigned);
1801 /// DST += RHS. Returns the carry flag.
1802 static WordType tcAddPart(WordType *, WordType, unsigned);
1803
1804 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1805 static WordType tcSubtract(WordType *, const WordType *, WordType carry,
1806 unsigned);
1807 /// DST -= RHS. Returns the carry flag.
1808 static WordType tcSubtractPart(WordType *, WordType, unsigned);
1809
1810 /// DST += SRC * MULTIPLIER + PART if add is true
1811 /// DST = SRC * MULTIPLIER + PART if add is false
1812 ///
1813 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1814 /// start at the same point, i.e. DST == SRC.
1815 ///
1816 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1817 /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1818 /// result, and if all of the omitted higher parts were zero return zero,
1819 /// otherwise overflow occurred and return one.
1820 static int tcMultiplyPart(WordType *dst, const WordType *src,
1821 WordType multiplier, WordType carry,
1822 unsigned srcParts, unsigned dstParts, bool add);
1823
1824 /// DST = LHS * RHS, where DST has the same width as the operands and is
1825 /// filled with the least significant parts of the result. Returns one if
1826 /// overflow occurred, otherwise zero. DST must be disjoint from both
1827 /// operands.
1828 static int tcMultiply(WordType *, const WordType *, const WordType *,
1829 unsigned);
1830
1831 /// DST = LHS * RHS, where DST has width the sum of the widths of the
1832 /// operands. No overflow occurs. DST must be disjoint from both operands.
1833 static void tcFullMultiply(WordType *, const WordType *, const WordType *,
1834 unsigned, unsigned);
1835
1836 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1837 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1838 /// REMAINDER to the remainder, return zero. i.e.
1839 ///
1840 /// OLD_LHS = RHS * LHS + REMAINDER
1841 ///
1842 /// SCRATCH is a bignum of the same size as the operands and result for use by
1843 /// the routine; its contents need not be initialized and are destroyed. LHS,
1844 /// REMAINDER and SCRATCH must be distinct.
1845 static int tcDivide(WordType *lhs, const WordType *rhs, WordType *remainder,
1846 WordType *scratch, unsigned parts);
1847
1848 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1849 /// restrictions on Count.
1850 static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1851
1852 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
1853 /// restrictions on Count.
1854 static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1855
1856 /// Comparison (unsigned) of two bignums.
1857 static int tcCompare(const WordType *, const WordType *, unsigned);
1858
1859 /// Increment a bignum in-place. Return the carry flag.
1860 static WordType tcIncrement(WordType *dst, unsigned parts) {
1861 return tcAddPart(dst, 1, parts);
1862 }
1863
1864 /// Decrement a bignum in-place. Return the borrow flag.
1865 static WordType tcDecrement(WordType *dst, unsigned parts) {
1866 return tcSubtractPart(dst, 1, parts);
1867 }
1868
1869 /// Used to insert APInt objects, or objects that contain APInt objects, into
1870 /// FoldingSets.
1871 void Profile(FoldingSetNodeID &id) const;
1872
1873 /// debug method
1874 void dump() const;
1875
1876 /// Returns whether this instance allocated memory.
1877 bool needsCleanup() const { return !isSingleWord(); }
1878
1879private:
1880 /// This union is used to store the integer value. When the
1881 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
1882 union {
1883 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
1884 uint64_t *pVal; ///< Used to store the >64 bits integer value.
1885 } U;
1886
1887 unsigned BitWidth = 1; ///< The number of bits in this APInt.
1888
1889 friend struct DenseMapInfo<APInt, void>;
1890 friend class APSInt;
1891
1892 /// This constructor is used only internally for speed of construction of
1893 /// temporaries. It is unsafe since it takes ownership of the pointer, so it
1894 /// is not public.
1895 APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { U.pVal = val; }
1896
1897 /// Determine which word a bit is in.
1898 ///
1899 /// \returns the word position for the specified bit position.
1900 static unsigned whichWord(unsigned bitPosition) {
1901 return bitPosition / APINT_BITS_PER_WORD;
1902 }
1903
1904 /// Determine which bit in a word the specified bit position is in.
1905 static unsigned whichBit(unsigned bitPosition) {
1906 return bitPosition % APINT_BITS_PER_WORD;
1907 }
1908
1909 /// Get a single bit mask.
1910 ///
1911 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
1912 /// This method generates and returns a uint64_t (word) mask for a single
1913 /// bit at a specific bit position. This is used to mask the bit in the
1914 /// corresponding word.
1915 static uint64_t maskBit(unsigned bitPosition) {
1916 return 1ULL << whichBit(bitPosition);
1917 }
1918
1919 /// Clear unused high order bits
1920 ///
1921 /// This method is used internally to clear the top "N" bits in the high order
1922 /// word that are not used by the APInt. This is needed after the most
1923 /// significant word is assigned a value to ensure that those bits are
1924 /// zero'd out.
1925 APInt &clearUnusedBits() {
1926 // Compute how many bits are used in the final word.
1927 unsigned WordBits = ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1;
1928
1929 // Mask out the high bits.
1930 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
1931 if (LLVM_UNLIKELY(BitWidth == 0))
1932 mask = 0;
1933
1934 if (isSingleWord())
1935 U.VAL &= mask;
1936 else
1937 U.pVal[getNumWords() - 1] &= mask;
1938 return *this;
1939 }
1940
1941 /// Get the word corresponding to a bit position
1942 /// \returns the corresponding word for the specified bit position.
1943 uint64_t getWord(unsigned bitPosition) const {
1944 return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
1945 }
1946
1947 /// Utility method to change the bit width of this APInt to new bit width,
1948 /// allocating and/or deallocating as necessary. There is no guarantee on the
1949 /// value of any bits upon return. Caller should populate the bits after.
1950 void reallocate(unsigned NewBitWidth);
1951
1952 /// Convert a char array into an APInt
1953 ///
1954 /// \param radix 2, 8, 10, 16, or 36
1955 /// Converts a string into a number. The string must be non-empty
1956 /// and well-formed as a number of the given base. The bit-width
1957 /// must be sufficient to hold the result.
1958 ///
1959 /// This is used by the constructors that take string arguments.
1960 ///
1961 /// StringRef::getAsInteger is superficially similar but (1) does
1962 /// not assume that the string is well-formed and (2) grows the
1963 /// result to hold the input.
1964 void fromString(unsigned numBits, StringRef str, uint8_t radix);
1965
1966 /// An internal division function for dividing APInts.
1967 ///
1968 /// This is used by the toString method to divide by the radix. It simply
1969 /// provides a more convenient form of divide for internal use since KnuthDiv
1970 /// has specific constraints on its inputs. If those constraints are not met
1971 /// then it provides a simpler form of divide.
1972 static void divide(const WordType *LHS, unsigned lhsWords,
1973 const WordType *RHS, unsigned rhsWords, WordType *Quotient,
1974 WordType *Remainder);
1975
1976 /// out-of-line slow case for inline constructor
1977 void initSlowCase(uint64_t val, bool isSigned);
1978
1979 /// shared code between two array constructors
1980 void initFromArray(ArrayRef<uint64_t> array);
1981
1982 /// out-of-line slow case for inline copy constructor
1983 void initSlowCase(const APInt &that);
1984
1985 /// out-of-line slow case for shl
1986 void shlSlowCase(unsigned ShiftAmt);
1987
1988 /// out-of-line slow case for lshr.
1989 void lshrSlowCase(unsigned ShiftAmt);
1990
1991 /// out-of-line slow case for ashr.
1992 void ashrSlowCase(unsigned ShiftAmt);
1993
1994 /// out-of-line slow case for operator=
1995 void assignSlowCase(const APInt &RHS);
1996
1997 /// out-of-line slow case for operator==
1998 bool equalSlowCase(const APInt &RHS) const LLVM_READONLY;
1999
2000 /// out-of-line slow case for countLeadingZeros
2001 unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
2002
2003 /// out-of-line slow case for countLeadingOnes.
2004 unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
2005
2006 /// out-of-line slow case for countTrailingZeros.
2007 unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
2008
2009 /// out-of-line slow case for countTrailingOnes
2010 unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
2011
2012 /// out-of-line slow case for countPopulation
2013 unsigned countPopulationSlowCase() const LLVM_READONLY;
2014
2015 /// out-of-line slow case for intersects.
2016 bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
2017
2018 /// out-of-line slow case for isSubsetOf.
2019 bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
2020
2021 /// out-of-line slow case for setBits.
2022 void setBitsSlowCase(unsigned loBit, unsigned hiBit);
2023
2024 /// out-of-line slow case for flipAllBits.
2025 void flipAllBitsSlowCase();
2026
2027 /// out-of-line slow case for concat.
2028 APInt concatSlowCase(const APInt &NewLSB) const;
2029
2030 /// out-of-line slow case for operator&=.
2031 void andAssignSlowCase(const APInt &RHS);
2032
2033 /// out-of-line slow case for operator|=.
2034 void orAssignSlowCase(const APInt &RHS);
2035
2036 /// out-of-line slow case for operator^=.
2037 void xorAssignSlowCase(const APInt &RHS);
2038
2039 /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
2040 /// to, or greater than RHS.
2041 int compare(const APInt &RHS) const LLVM_READONLY;
2042
2043 /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
2044 /// to, or greater than RHS.
2045 int compareSigned(const APInt &RHS) const LLVM_READONLY;
2046
2047 /// @}
2048};
2049
2050inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
2051
2052inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
2053
2054/// Unary bitwise complement operator.
2055///
2056/// \returns an APInt that is the bitwise complement of \p v.
2058 v.flipAllBits();
2059 return v;
2060}
2061
2062inline APInt operator&(APInt a, const APInt &b) {
2063 a &= b;
2064 return a;
2065}
2066
2067inline APInt operator&(const APInt &a, APInt &&b) {
2068 b &= a;
2069 return std::move(b);
2070}
2071
2073 a &= RHS;
2074 return a;
2075}
2076
2078 b &= LHS;
2079 return b;
2080}
2081
2082inline APInt operator|(APInt a, const APInt &b) {
2083 a |= b;
2084 return a;
2085}
2086
2087inline APInt operator|(const APInt &a, APInt &&b) {
2088 b |= a;
2089 return std::move(b);
2090}
2091
2093 a |= RHS;
2094 return a;
2095}
2096
2098 b |= LHS;
2099 return b;
2100}
2101
2102inline APInt operator^(APInt a, const APInt &b) {
2103 a ^= b;
2104 return a;
2105}
2106
2107inline APInt operator^(const APInt &a, APInt &&b) {
2108 b ^= a;
2109 return std::move(b);
2110}
2111
2113 a ^= RHS;
2114 return a;
2115}
2116
2118 b ^= LHS;
2119 return b;
2120}
2121
2123 I.print(OS, true);
2124 return OS;
2125}
2126
2128 v.negate();
2129 return v;
2130}
2131
2132inline APInt operator+(APInt a, const APInt &b) {
2133 a += b;
2134 return a;
2135}
2136
2137inline APInt operator+(const APInt &a, APInt &&b) {
2138 b += a;
2139 return std::move(b);
2140}
2141
2143 a += RHS;
2144 return a;
2145}
2146
2148 b += LHS;
2149 return b;
2150}
2151
2152inline APInt operator-(APInt a, const APInt &b) {
2153 a -= b;
2154 return a;
2155}
2156
2157inline APInt operator-(const APInt &a, APInt &&b) {
2158 b.negate();
2159 b += a;
2160 return std::move(b);
2161}
2162
2164 a -= RHS;
2165 return a;
2166}
2167
2169 b.negate();
2170 b += LHS;
2171 return b;
2172}
2173
2175 a *= RHS;
2176 return a;
2177}
2178
2180 b *= LHS;
2181 return b;
2182}
2183
2184namespace APIntOps {
2185
2186/// Determine the smaller of two APInts considered to be signed.
2187inline const APInt &smin(const APInt &A, const APInt &B) {
2188 return A.slt(B) ? A : B;
2189}
2190
2191/// Determine the larger of two APInts considered to be signed.
2192inline const APInt &smax(const APInt &A, const APInt &B) {
2193 return A.sgt(B) ? A : B;
2194}
2195
2196/// Determine the smaller of two APInts considered to be unsigned.
2197inline const APInt &umin(const APInt &A, const APInt &B) {
2198 return A.ult(B) ? A : B;
2199}
2200
2201/// Determine the larger of two APInts considered to be unsigned.
2202inline const APInt &umax(const APInt &A, const APInt &B) {
2203 return A.ugt(B) ? A : B;
2204}
2205
2206/// Compute GCD of two unsigned APInt values.
2207///
2208/// This function returns the greatest common divisor of the two APInt values
2209/// using Stein's algorithm.
2210///
2211/// \returns the greatest common divisor of A and B.
2212APInt GreatestCommonDivisor(APInt A, APInt B);
2213
2214/// Converts the given APInt to a double value.
2215///
2216/// Treats the APInt as an unsigned value for conversion purposes.
2217inline double RoundAPIntToDouble(const APInt &APIVal) {
2218 return APIVal.roundToDouble();
2219}
2220
2221/// Converts the given APInt to a double value.
2222///
2223/// Treats the APInt as a signed value for conversion purposes.
2224inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2225 return APIVal.signedRoundToDouble();
2226}
2227
2228/// Converts the given APInt to a float value.
2229inline float RoundAPIntToFloat(const APInt &APIVal) {
2230 return float(RoundAPIntToDouble(APIVal));
2231}
2232
2233/// Converts the given APInt to a float value.
2234///
2235/// Treats the APInt as a signed value for conversion purposes.
2236inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2237 return float(APIVal.signedRoundToDouble());
2238}
2239
2240/// Converts the given double value into a APInt.
2241///
2242/// This function convert a double value to an APInt value.
2243APInt RoundDoubleToAPInt(double Double, unsigned width);
2244
2245/// Converts a float value into a APInt.
2246///
2247/// Converts a float value into an APInt value.
2248inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2249 return RoundDoubleToAPInt(double(Float), width);
2250}
2251
2252/// Return A unsign-divided by B, rounded by the given rounding mode.
2253APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2254
2255/// Return A sign-divided by B, rounded by the given rounding mode.
2256APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2257
2258/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
2259/// (e.g. 32 for i32).
2260/// This function finds the smallest number n, such that
2261/// (a) n >= 0 and q(n) = 0, or
2262/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
2263/// integers, belong to two different intervals [Rk, Rk+R),
2264/// where R = 2^BW, and k is an integer.
2265/// The idea here is to find when q(n) "overflows" 2^BW, while at the
2266/// same time "allowing" subtraction. In unsigned modulo arithmetic a
2267/// subtraction (treated as addition of negated numbers) would always
2268/// count as an overflow, but here we want to allow values to decrease
2269/// and increase as long as they are within the same interval.
2270/// Specifically, adding of two negative numbers should not cause an
2271/// overflow (as long as the magnitude does not exceed the bit width).
2272/// On the other hand, given a positive number, adding a negative
2273/// number to it can give a negative result, which would cause the
2274/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
2275/// treated as a special case of an overflow.
2276///
2277/// This function returns std::nullopt if after finding k that minimizes the
2278/// positive solution to q(n) = kR, both solutions are contained between
2279/// two consecutive integers.
2280///
2281/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
2282/// in arithmetic modulo 2^BW, and treating the values as signed) by the
2283/// virtue of *signed* overflow. This function will *not* find such an n,
2284/// however it may find a value of n satisfying the inequalities due to
2285/// an *unsigned* overflow (if the values are treated as unsigned).
2286/// To find a solution for a signed overflow, treat it as a problem of
2287/// finding an unsigned overflow with a range with of BW-1.
2288///
2289/// The returned value may have a different bit width from the input
2290/// coefficients.
2291std::optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2292 unsigned RangeWidth);
2293
2294/// Compare two values, and if they are different, return the position of the
2295/// most significant bit that is different in the values.
2296std::optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
2297 const APInt &B);
2298
2299/// Splat/Merge neighboring bits to widen/narrow the bitmask represented
2300/// by \param A to \param NewBitWidth bits.
2301///
2302/// MatchAnyBits: (Default)
2303/// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011
2304/// e.g. ScaleBitMask(0b00011011, 4) -> 0b0111
2305///
2306/// MatchAllBits:
2307/// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011
2308/// e.g. ScaleBitMask(0b00011011, 4) -> 0b0001
2309/// A.getBitwidth() or NewBitWidth must be a whole multiples of the other.
2310APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth,
2311 bool MatchAllBits = false);
2312} // namespace APIntOps
2313
2314// See friend declaration above. This additional declaration is required in
2315// order to compile LLVM with IBM xlC compiler.
2316hash_code hash_value(const APInt &Arg);
2317
2318/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
2319/// with the integer held in IntVal.
2320void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
2321
2322/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
2323/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
2324void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes);
2325
2326/// Provide DenseMapInfo for APInt.
2327template <> struct DenseMapInfo<APInt, void> {
2328 static inline APInt getEmptyKey() {
2329 APInt V(nullptr, 0);
2330 V.U.VAL = ~0ULL;
2331 return V;
2332 }
2333
2334 static inline APInt getTombstoneKey() {
2335 APInt V(nullptr, 0);
2336 V.U.VAL = ~1ULL;
2337 return V;
2338 }
2339
2340 static unsigned getHashValue(const APInt &Key);
2341
2342 static bool isEqual(const APInt &LHS, const APInt &RHS) {
2343 return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS;
2344 }
2345};
2346
2347} // namespace llvm
2348
2349#endif
aarch64 promote const
amdgpu Simplify well known AMD library false FunctionCallee Value * Arg
always inline
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< ShadowStackGC > C("shadow-stack", "Very portable GC for uncooperative code generators")
raw_ostream & operator<<(raw_ostream &OS, const binary_le_impl< value_type > &BLE)
#define LLVM_UNLIKELY(EXPR)
Definition: Compiler.h:210
#define LLVM_DEPRECATED(MSG, FIX)
Definition: Compiler.h:145
#define LLVM_READONLY
Definition: Compiler.h:196
static bool isSigned(unsigned int Opcode)
static KnownBits extractBits(unsigned BitWidth, const KnownBits &SrcOpKnown, const KnownBits &OffsetKnown, const KnownBits &WidthKnown)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition: Lint.cpp:524
static bool isSplat(Value *V)
Return true if V is a splat of a value (which is used when multiplying a matrix with a scalar).
#define I(x, y, z)
Definition: MD5.cpp:58
static const char * toString(MIToken::TokenKind TokenKind)
Definition: MIParser.cpp:614
Load MIR Sample Profile
static uint64_t clearUnusedBits(uint64_t Val, unsigned Size)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
raw_pwrite_stream & OS
static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow)
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition: APInt.h:75
std::optional< uint64_t > tryZExtValue() const
Get zero extended value if possible.
Definition: APInt.h:1510
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition: APInt.h:214
bool slt(int64_t RHS) const
Signed less than comparison.
Definition: APInt.h:1120
void clearBit(unsigned BitPosition)
Set a given bit to 0.
Definition: APInt.h:1389
APInt relativeLShr(int RelativeShift) const
relative logical shift right
Definition: APInt.h:868
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
Definition: APInt.h:441
APInt zext(unsigned width) const
Zero extend to a new width.
Definition: APInt.cpp:973
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition: APInt.h:209
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition: APInt.h:415
APInt operator--(int)
Postfix decrement operator.
Definition: APInt.h:584
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1498
uint64_t * pVal
Used to store the >64 bits integer value.
Definition: APInt.h:1884
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
Definition: APInt.h:1374
unsigned popcount() const
Count the number of bits set.
Definition: APInt.h:1627
~APInt()
Destructor.
Definition: APInt.h:167
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
Definition: APInt.h:1368
APInt operator<<(const APInt &Bits) const
Left logical shift operator.
Definition: APInt.h:810
bool isMask() const
Definition: APInt.h:489
APInt operator<<(unsigned Bits) const
Left logical shift operator.
Definition: APInt.h:805
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition: APInt.h:1467
bool sgt(int64_t RHS) const
Signed greater than comparison.
Definition: APInt.h:1191
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
Definition: APInt.h:186
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition: APInt.h:1312
bool operator[](unsigned bitPosition) const
Array-indexing support.
Definition: APInt.h:1025
bool operator!=(const APInt &RHS) const
Inequality operator.
Definition: APInt.h:1069
void toStringUnsigned(SmallVectorImpl< char > &Str, unsigned Radix=10) const
Considers the APInt to be unsigned and converts it into a string in the radix given.
Definition: APInt.h:1649
APInt & operator&=(const APInt &RHS)
Bitwise AND assignment operator.
Definition: APInt.h:662
APInt abs() const
Get the absolute value.
Definition: APInt.h:1746
unsigned ceilLogBase2() const
Definition: APInt.h:1715
unsigned countLeadingOnes() const
Definition: APInt.h:1581
APInt relativeLShl(int RelativeShift) const
relative logical shift left
Definition: APInt.h:873
APInt & operator=(const APInt &RHS)
Copy assignment operator.
Definition: APInt.h:606
bool sgt(const APInt &RHS) const
Signed greater than comparison.
Definition: APInt.h:1183
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition: APInt.h:354
APInt & operator^=(uint64_t RHS)
Bitwise XOR assignment operator.
Definition: APInt.h:735
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition: APInt.h:1164
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
Definition: APInt.h:241
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition: APInt.h:366
APInt & operator|=(uint64_t RHS)
Bitwise OR assignment operator.
Definition: APInt.h:706
bool isSignMask() const
Check if the APInt's value is returned by getSignMask.
Definition: APInt.h:454
static APInt floatToBits(float V)
Converts a float to APInt bits.
Definition: APInt.h:1703
void setSignBit()
Set the sign bit to 1.
Definition: APInt.h:1322
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1443
uint64_t WordType
Definition: APInt.h:77
bool sle(uint64_t RHS) const
Signed less or equal comparison.
Definition: APInt.h:1156
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition: APInt.h:1093
bool uge(uint64_t RHS) const
Unsigned greater or equal comparison.
Definition: APInt.h:1211
bool operator!() const
Logical negation operation on this APInt returns true if zero, like normal integers.
Definition: APInt.h:597
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition: APInt.h:189
APInt & operator=(uint64_t RHS)
Assignment operator.
Definition: APInt.h:646
APInt relativeAShr(int RelativeShift) const
relative arithmetic shift right
Definition: APInt.h:878
friend hash_code hash_value(const APInt &Arg)
Overload to compute a hash_code for an APInt value.
APInt(const APInt &that)
Copy Constructor.
Definition: APInt.h:153
APInt & operator|=(const APInt &RHS)
Bitwise OR assignment operator.
Definition: APInt.h:692
bool isSingleWord() const
Determine if this APInt just has one word to store value.
Definition: APInt.h:305
bool operator==(uint64_t Val) const
Equality operator.
Definition: APInt.h:1051
APInt operator++(int)
Postfix increment operator.
Definition: APInt.h:570
unsigned getNumWords() const
Get the number of words.
Definition: APInt.h:1450
bool isMinValue() const
Determine if this is the smallest unsigned value.
Definition: APInt.h:409
APInt ashr(const APInt &ShiftAmt) const
Arithmetic right-shift function.
Definition: APInt.h:896
APInt(unsigned numBits, uint64_t val, bool isSigned=false)
Create a new APInt of numBits width, initialized as val.
Definition: APInt.h:108
APInt()
Default constructor that creates an APInt with a 1-bit zero value.
Definition: APInt.h:150
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
Definition: APInt.h:196
APInt(APInt &&that)
Move Constructor.
Definition: APInt.h:161
bool isNegative() const
Determine sign of this APInt.
Definition: APInt.h:312
APInt concat(const APInt &NewLSB) const
Concatenate the bits from "NewLSB" onto the bottom of *this.
Definition: APInt.h:935
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
Definition: APInt.h:1231
bool eq(const APInt &RHS) const
Equality comparison.
Definition: APInt.h:1061
int32_t exactLogBase2() const
Definition: APInt.h:1734
APInt & operator<<=(unsigned ShiftAmt)
Left-shift assignment function.
Definition: APInt.h:773
double roundToDouble() const
Converts this unsigned APInt to a double value.
Definition: APInt.h:1670
void clearAllBits()
Set every bit to 0.
Definition: APInt.h:1379
APInt relativeAShl(int RelativeShift) const
relative arithmetic shift left
Definition: APInt.h:883
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
Definition: APInt.h:822
bool sle(const APInt &RHS) const
Signed less or equal comparison.
Definition: APInt.h:1148
void negate()
Negate this APInt in place.
Definition: APInt.h:1425
static WordType tcDecrement(WordType *dst, unsigned parts)
Decrement a bignum in-place. Return the borrow flag.
Definition: APInt.h:1865
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition: APInt.h:1596
bool isSignedIntN(unsigned N) const
Check if this APInt has an N-bits signed integer value.
Definition: APInt.h:427
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
Definition: APInt.h:1585
bool isOneBitSet(unsigned BitNo) const
Determine if this APInt Value only has the specified bit set.
Definition: APInt.h:349
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition: APInt.h:1555
bool operator==(const APInt &RHS) const
Equality operator.
Definition: APInt.h:1038
APInt shl(const APInt &ShiftAmt) const
Left-shift function.
Definition: APInt.h:920
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition: APInt.h:199
bool isShiftedMask(unsigned &MaskIdx, unsigned &MaskLen) const
Return true if this APInt value contains a non-empty sequence of ones with the remainder zero.
Definition: APInt.h:510
void setBitsWithWrap(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
Definition: APInt.h:1336
APInt lshr(const APInt &ShiftAmt) const
Logical right-shift function.
Definition: APInt.h:908
bool isNonPositive() const
Determine if this APInt Value is non-positive (<= 0).
Definition: APInt.h:344
unsigned countTrailingZeros() const
Definition: APInt.h:1604
unsigned getSignificantBits() const
Get the minimum bit size for this signed APInt.
Definition: APInt.h:1486
unsigned countLeadingZeros() const
Definition: APInt.h:1563
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
Definition: APInt.h:339
void flipAllBits()
Toggle every bit to its opposite value.
Definition: APInt.h:1409
static unsigned getNumWords(unsigned BitWidth)
Get the number of words.
Definition: APInt.h:1458
bool needsCleanup() const
Returns whether this instance allocated memory.
Definition: APInt.h:1877
unsigned countl_one() const
Count the number of leading one bits.
Definition: APInt.h:1572
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
Definition: APInt.h:1399
unsigned logBase2() const
Definition: APInt.h:1712
static APInt getZeroWidth()
Return an APInt zero bits wide.
Definition: APInt.h:183
double signedRoundToDouble() const
Converts this signed APInt to a double value.
Definition: APInt.h:1673
bool isShiftedMask() const
Return true if this APInt value contains a non-empty sequence of ones with the remainder zero.
Definition: APInt.h:498
float bitsToFloat() const
Converts APInt bits to a float.
Definition: APInt.h:1687
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
Definition: APInt.h:463
bool ule(uint64_t RHS) const
Unsigned less or equal comparison.
Definition: APInt.h:1140
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition: APInt.h:815
void setAllBits()
Set every bit to 1.
Definition: APInt.h:1301
uint64_t VAL
Used to store the <= 64 bits integer value.
Definition: APInt.h:1883
bool ugt(uint64_t RHS) const
Unsigned greater than comparison.
Definition: APInt.h:1172
bool sge(int64_t RHS) const
Signed greater or equal comparison.
Definition: APInt.h:1227
bool getBoolValue() const
Convert APInt to a boolean value.
Definition: APInt.h:459
static APInt doubleToBits(double V)
Converts a double to APInt bits.
Definition: APInt.h:1695
bool isMask(unsigned numBits) const
Definition: APInt.h:476
APInt & operator=(APInt &&that)
Move assignment operator.
Definition: APInt.h:620
static WordType tcIncrement(WordType *dst, unsigned parts)
Increment a bignum in-place. Return the carry flag.
Definition: APInt.h:1860
APInt & operator^=(const APInt &RHS)
Bitwise XOR assignment operator.
Definition: APInt.h:721
bool isMaxSignedValue() const
Determine if this is the largest signed value.
Definition: APInt.h:397
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition: APInt.h:317
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition: APInt.h:1132
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
Definition: APInt.h:1349
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition: APInt.h:861
double bitsToDouble() const
Converts APInt bits to a double.
Definition: APInt.h:1680
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
Definition: APInt.h:1239
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition: APInt.h:432
unsigned getActiveWords() const
Compute the number of active words in the value of this APInt.
Definition: APInt.h:1473
bool ne(const APInt &RHS) const
Inequality comparison.
Definition: APInt.h:1085
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!...
Definition: APInt.h:541
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition: APInt.h:289
bool isSignBitSet() const
Determine if sign bit of this APInt is set.
Definition: APInt.h:324
const uint64_t * getRawData() const
This function returns a pointer to the internal storage of the APInt.
Definition: APInt.h:557
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition: APInt.h:1112
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
Definition: APInt.h:279
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition: APInt.h:177
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
Definition: APInt.h:1371
bool isIntN(unsigned N) const
Check if this APInt has an N-bits unsigned integer value.
Definition: APInt.h:424
unsigned countTrailingOnes() const
Definition: APInt.h:1619
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
Definition: APInt.h:1219
std::optional< int64_t > trySExtValue() const
Get sign extended value if possible.
Definition: APInt.h:1532
APInt & operator&=(uint64_t RHS)
Bitwise AND assignment operator.
Definition: APInt.h:676
double roundToDouble(bool isSigned) const
Converts this APInt to a double value.
Definition: APInt.cpp:841
bool isOne() const
Determine if this is a value of 1.
Definition: APInt.h:378
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
Definition: APInt.h:269
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition: APInt.h:222
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1520
void lshrInPlace(unsigned ShiftAmt)
Logical right-shift this APInt by ShiftAmt in place.
Definition: APInt.h:846
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition: APInt.h:839
unsigned countr_one() const
Count the number of trailing one bits.
Definition: APInt.h:1613
static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit, unsigned hiBit)
Wrap version of getBitsSet.
Definition: APInt.h:253
bool isSignBitClear() const
Determine if sign bit of this APInt is clear.
Definition: APInt.h:331
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition: APInt.h:1203
void setBitVal(unsigned BitPosition, bool BitValue)
Set a given bit to a given value.
Definition: APInt.h:1325
void clearSignBit()
Set the sign bit to 0.
Definition: APInt.h:1406
bool isMaxValue() const
Determine if this is the largest unsigned value.
Definition: APInt.h:391
void toStringSigned(SmallVectorImpl< char > &Str, unsigned Radix=10) const
Considers the APInt to be signed and converts it into a string in the radix given.
Definition: APInt.h:1655
bool ult(uint64_t RHS) const
Unsigned less than comparison.
Definition: APInt.h:1101
bool operator!=(uint64_t Val) const
Inequality operator.
Definition: APInt.h:1077
An arbitrary precision integer that knows its signedness.
Definition: APSInt.h:23
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Definition: FoldingSet.h:318
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:577
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
An opaque object representing a hash code.
Definition: Hashing.h:74
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
#define UINT64_MAX
Definition: DataTypes.h:77
std::error_code fromString(StringRef String, Metadata &HSAMetadata)
Converts String to HSAMetadata.
float RoundAPIntToFloat(const APInt &APIVal)
Converts the given APInt to a float value.
Definition: APInt.h:2229
double RoundAPIntToDouble(const APInt &APIVal)
Converts the given APInt to a double value.
Definition: APInt.h:2217
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
Definition: APInt.h:2187
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
Definition: APInt.h:2192
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
Definition: APInt.h:2197
APInt RoundFloatToAPInt(float Float, unsigned width)
Converts a float value into a APInt.
Definition: APInt.h:2248
APInt RoundDoubleToAPInt(double Double, unsigned width)
Converts the given double value into a APInt.
Definition: APInt.cpp:802
double RoundSignedAPIntToDouble(const APInt &APIVal)
Converts the given APInt to a double value.
Definition: APInt.h:2224
float RoundSignedAPIntToFloat(const APInt &APIVal)
Converts the given APInt to a float value.
Definition: APInt.h:2236
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
Definition: APInt.h:2202
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
constexpr T rotr(T V, int R)
Definition: bit.h:371
int popcount(T Value) noexcept
Count the number of set bits in a value.
Definition: bit.h:349
APInt operator&(APInt a, const APInt &b)
Definition: APInt.h:2062
APInt operator*(APInt a, uint64_t RHS)
Definition: APInt.h:2174
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
Definition: bit.h:271
bool operator!=(uint64_t V1, const APInt &V2)
Definition: APInt.h:2052
std::string & operator+=(std::string &buffer, StringRef string)
Definition: StringRef.h:901
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition: MathExtras.h:297
APInt operator~(APInt v)
Unary bitwise complement operator.
Definition: APInt.h:2057
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition: bit.h:179
constexpr bool isShiftedMask_64(uint64_t Value)
Return true if the argument contains a non-empty sequence of ones with the remainder zero (64 bit ver...
Definition: MathExtras.h:286
int countl_zero(T Val)
Count number of 0's from the most significant bit to the least stopping at the first 1.
Definition: bit.h:245
APInt operator^(APInt a, const APInt &b)
Definition: APInt.h:2102
constexpr bool isMask_64(uint64_t Value)
Return true if the argument is a non-empty sequence of ones starting at the least significant bit wit...
Definition: MathExtras.h:274
int countl_one(T Value)
Count the number of ones from the most significant bit to the first zero bit.
Definition: bit.h:258
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:184
APInt operator-(APInt)
Definition: APInt.h:2127
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
Definition: MathExtras.h:557
APInt operator+(APInt a, const APInt &b)
Definition: APInt.h:2132
APInt operator|(APInt a, const APInt &b)
Definition: APInt.h:2082
T reverseBits(T Val)
Reverse the bits in Val.
Definition: MathExtras.h:132
constexpr T rotl(T V, int R)
Definition: bit.h:358
@ Keep
No function return thunk.
auto mask(ShuffFunc S, unsigned Length, OptArgs... args) -> MaskT
#define N
static APInt getTombstoneKey()
Definition: APInt.h:2334
static bool isEqual(const APInt &LHS, const APInt &RHS)
Definition: APInt.h:2342
static unsigned getHashValue(const APInt &Key)
An information struct used to provide DenseMap with the various necessary components for a given valu...
Definition: DenseMapInfo.h:51