LLVM 23.0.0git
ConstantFolding.cpp
Go to the documentation of this file.
1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines routines for folding instructions into constants.
10//
11// Also, to supplement the basic IR ConstantExpr simplifications,
12// this file defines some additional folding routines that can make use of
13// DataLayout information. These functions cannot go in IR due to library
14// dependency issues.
15//
16//===----------------------------------------------------------------------===//
17
19#include "llvm/ADT/APFloat.h"
20#include "llvm/ADT/APInt.h"
21#include "llvm/ADT/APSInt.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/STLExtras.h"
26#include "llvm/ADT/StringRef.h"
31#include "llvm/Config/config.h"
32#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/GlobalValue.h"
40#include "llvm/IR/InstrTypes.h"
41#include "llvm/IR/Instruction.h"
44#include "llvm/IR/Intrinsics.h"
45#include "llvm/IR/IntrinsicsAArch64.h"
46#include "llvm/IR/IntrinsicsAMDGPU.h"
47#include "llvm/IR/IntrinsicsARM.h"
48#include "llvm/IR/IntrinsicsNVPTX.h"
49#include "llvm/IR/IntrinsicsWebAssembly.h"
50#include "llvm/IR/IntrinsicsX86.h"
52#include "llvm/IR/Operator.h"
53#include "llvm/IR/Type.h"
54#include "llvm/IR/Value.h"
59#include <cassert>
60#include <cerrno>
61#include <cfenv>
62#include <cmath>
63#include <cstdint>
64
65using namespace llvm;
66
68 "disable-fp-call-folding",
69 cl::desc("Disable constant-folding of FP intrinsics and libcalls."),
70 cl::init(false), cl::Hidden);
71
72namespace {
73
74//===----------------------------------------------------------------------===//
75// Constant Folding internal helper functions
76//===----------------------------------------------------------------------===//
77
78static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
79 Constant *C, Type *SrcEltTy,
80 unsigned NumSrcElts,
81 const DataLayout &DL) {
82 // Now that we know that the input value is a vector of integers, just shift
83 // and insert them into our result.
84 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
85 for (unsigned i = 0; i != NumSrcElts; ++i) {
86 Constant *Element;
87 if (DL.isLittleEndian())
88 Element = C->getAggregateElement(NumSrcElts - i - 1);
89 else
90 Element = C->getAggregateElement(i);
91
92 if (isa_and_nonnull<UndefValue>(Element)) {
93 Result <<= BitShift;
94 continue;
95 }
96
97 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
98 if (!ElementCI)
99 return ConstantExpr::getBitCast(C, DestTy);
100
101 Result <<= BitShift;
102 Result |= ElementCI->getValue().zext(Result.getBitWidth());
103 }
104
105 return nullptr;
106}
107
108/// Constant fold bitcast, symbolically evaluating it with DataLayout.
109/// This always returns a non-null constant, but it may be a
110/// ConstantExpr if unfoldable.
111Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
112 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
113 "Invalid constantexpr bitcast!");
114
115 // Catch the obvious splat cases.
116 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL))
117 return Res;
118
119 if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
120 // Handle a vector->scalar integer/fp cast.
121 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
122 unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
123 Type *SrcEltTy = VTy->getElementType();
124
125 // If the vector is a vector of floating point, convert it to vector of int
126 // to simplify things.
127 if (SrcEltTy->isFloatingPointTy()) {
128 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
129 auto *SrcIVTy = FixedVectorType::get(
130 IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
131 // Ask IR to do the conversion now that #elts line up.
132 C = ConstantExpr::getBitCast(C, SrcIVTy);
133 }
134
135 APInt Result(DL.getTypeSizeInBits(DestTy), 0);
136 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
137 SrcEltTy, NumSrcElts, DL))
138 return CE;
139
140 if (isa<IntegerType>(DestTy))
141 return ConstantInt::get(DestTy, Result);
142
143 APFloat FP(DestTy->getFltSemantics(), Result);
144 return ConstantFP::get(DestTy->getContext(), FP);
145 }
146 }
147
148 // The code below only handles casts to vectors currently.
149 auto *DestVTy = dyn_cast<VectorType>(DestTy);
150 if (!DestVTy)
151 return ConstantExpr::getBitCast(C, DestTy);
152
153 // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
154 // vector so the code below can handle it uniformly.
155 if (!isa<VectorType>(C->getType()) &&
157 Constant *Ops = C; // don't take the address of C!
158 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
159 }
160
161 // Some of what follows may extend to cover scalable vectors but the current
162 // implementation is fixed length specific.
163 if (!isa<FixedVectorType>(C->getType()))
164 return ConstantExpr::getBitCast(C, DestTy);
165
166 // If this is a bitcast from constant vector -> vector, fold it.
169 return ConstantExpr::getBitCast(C, DestTy);
170
171 // If the element types match, IR can fold it.
172 unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
173 unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
174 if (NumDstElt == NumSrcElt)
175 return ConstantExpr::getBitCast(C, DestTy);
176
177 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
178 Type *DstEltTy = DestVTy->getElementType();
179
180 // Otherwise, we're changing the number of elements in a vector, which
181 // requires endianness information to do the right thing. For example,
182 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
183 // folds to (little endian):
184 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
185 // and to (big endian):
186 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
187
188 // First thing is first. We only want to think about integer here, so if
189 // we have something in FP form, recast it as integer.
190 if (DstEltTy->isFloatingPointTy()) {
191 // Fold to an vector of integers with same size as our FP type.
192 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
193 auto *DestIVTy = FixedVectorType::get(
194 IntegerType::get(C->getContext(), FPWidth), NumDstElt);
195 // Recursively handle this integer conversion, if possible.
196 C = FoldBitCast(C, DestIVTy, DL);
197
198 // Finally, IR can handle this now that #elts line up.
199 return ConstantExpr::getBitCast(C, DestTy);
200 }
201
202 // Okay, we know the destination is integer, if the input is FP, convert
203 // it to integer first.
204 if (SrcEltTy->isFloatingPointTy()) {
205 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
206 auto *SrcIVTy = FixedVectorType::get(
207 IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
208 // Ask IR to do the conversion now that #elts line up.
209 C = ConstantExpr::getBitCast(C, SrcIVTy);
210 assert((isa<ConstantVector>(C) || // FIXME: Remove ConstantVector.
212 "Constant folding cannot fail for plain fp->int bitcast!");
213 }
214
215 // Now we know that the input and output vectors are both integer vectors
216 // of the same size, and that their #elements is not the same. Do the
217 // conversion here, which depends on whether the input or output has
218 // more elements.
219 bool isLittleEndian = DL.isLittleEndian();
220
222 if (NumDstElt < NumSrcElt) {
223 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
225 unsigned Ratio = NumSrcElt/NumDstElt;
226 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
227 unsigned SrcElt = 0;
228 for (unsigned i = 0; i != NumDstElt; ++i) {
229 // Build each element of the result.
230 Constant *Elt = Zero;
231 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
232 for (unsigned j = 0; j != Ratio; ++j) {
233 Constant *Src = C->getAggregateElement(SrcElt++);
236 cast<VectorType>(C->getType())->getElementType());
237 else
239 if (!Src) // Reject constantexpr elements.
240 return ConstantExpr::getBitCast(C, DestTy);
241
242 // Zero extend the element to the right size.
243 Src = ConstantFoldCastOperand(Instruction::ZExt, Src, Elt->getType(),
244 DL);
245 assert(Src && "Constant folding cannot fail on plain integers");
246
247 // Shift it to the right place, depending on endianness.
249 Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt),
250 DL);
251 assert(Src && "Constant folding cannot fail on plain integers");
252
253 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
254
255 // Mix it in.
256 Elt = ConstantFoldBinaryOpOperands(Instruction::Or, Elt, Src, DL);
257 assert(Elt && "Constant folding cannot fail on plain integers");
258 }
259 Result.push_back(Elt);
260 }
261 return ConstantVector::get(Result);
262 }
263
264 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
265 unsigned Ratio = NumDstElt/NumSrcElt;
266 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
267
268 // Loop over each source value, expanding into multiple results.
269 for (unsigned i = 0; i != NumSrcElt; ++i) {
270 auto *Element = C->getAggregateElement(i);
271
272 if (!Element) // Reject constantexpr elements.
273 return ConstantExpr::getBitCast(C, DestTy);
274
275 if (isa<UndefValue>(Element)) {
276 // Correctly Propagate undef values.
277 Result.append(Ratio, UndefValue::get(DstEltTy));
278 continue;
279 }
280
281 auto *Src = dyn_cast<ConstantInt>(Element);
282 if (!Src)
283 return ConstantExpr::getBitCast(C, DestTy);
284
285 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
286 for (unsigned j = 0; j != Ratio; ++j) {
287 // Shift the piece of the value into the right place, depending on
288 // endianness.
289 APInt Elt = Src->getValue().lshr(ShiftAmt);
290 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
291
292 // Truncate and remember this piece.
293 Result.push_back(ConstantInt::get(DstEltTy, Elt.trunc(DstBitSize)));
294 }
295 }
296
297 return ConstantVector::get(Result);
298}
299
300} // end anonymous namespace
301
302/// If this constant is a constant offset from a global, return the global and
303/// the constant. Because of constantexprs, this function is recursive.
305 APInt &Offset, const DataLayout &DL,
306 DSOLocalEquivalent **DSOEquiv) {
307 if (DSOEquiv)
308 *DSOEquiv = nullptr;
309
310 // Trivial case, constant is the global.
311 if ((GV = dyn_cast<GlobalValue>(C))) {
312 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
313 Offset = APInt(BitWidth, 0);
314 return true;
315 }
316
317 if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
318 if (DSOEquiv)
319 *DSOEquiv = FoundDSOEquiv;
320 GV = FoundDSOEquiv->getGlobalValue();
321 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
322 Offset = APInt(BitWidth, 0);
323 return true;
324 }
325
326 // Otherwise, if this isn't a constant expr, bail out.
327 auto *CE = dyn_cast<ConstantExpr>(C);
328 if (!CE) return false;
329
330 // Look through ptr->int and ptr->ptr casts.
331 if (CE->getOpcode() == Instruction::PtrToInt ||
332 CE->getOpcode() == Instruction::PtrToAddr ||
333 CE->getOpcode() == Instruction::BitCast)
334 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
335 DSOEquiv);
336
337 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
338 auto *GEP = dyn_cast<GEPOperator>(CE);
339 if (!GEP)
340 return false;
341
342 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
343 APInt TmpOffset(BitWidth, 0);
344
345 // If the base isn't a global+constant, we aren't either.
346 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
347 DSOEquiv))
348 return false;
349
350 // Otherwise, add any offset that our operands provide.
351 if (!GEP->accumulateConstantOffset(DL, TmpOffset))
352 return false;
353
354 Offset = TmpOffset;
355 return true;
356}
357
359 const DataLayout &DL) {
360 do {
361 Type *SrcTy = C->getType();
362 if (SrcTy == DestTy)
363 return C;
364
365 TypeSize DestSize = DL.getTypeSizeInBits(DestTy);
366 TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy);
367 if (!TypeSize::isKnownGE(SrcSize, DestSize))
368 return nullptr;
369
370 // Catch the obvious splat cases (since all-zeros can coerce non-integral
371 // pointers legally).
372 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL))
373 return Res;
374
375 // If the type sizes are the same and a cast is legal, just directly
376 // cast the constant.
377 // But be careful not to coerce non-integral pointers illegally.
378 if (SrcSize == DestSize &&
379 DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
380 DL.isNonIntegralPointerType(DestTy->getScalarType())) {
381 Instruction::CastOps Cast = Instruction::BitCast;
382 // If we are going from a pointer to int or vice versa, we spell the cast
383 // differently.
384 if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
385 Cast = Instruction::IntToPtr;
386 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
387 Cast = Instruction::PtrToInt;
388
389 if (CastInst::castIsValid(Cast, C, DestTy))
390 return ConstantFoldCastOperand(Cast, C, DestTy, DL);
391 }
392
393 // If this isn't an aggregate type, there is nothing we can do to drill down
394 // and find a bitcastable constant.
395 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
396 return nullptr;
397
398 // We're simulating a load through a pointer that was bitcast to point to
399 // a different type, so we can try to walk down through the initial
400 // elements of an aggregate to see if some part of the aggregate is
401 // castable to implement the "load" semantic model.
402 if (SrcTy->isStructTy()) {
403 // Struct types might have leading zero-length elements like [0 x i32],
404 // which are certainly not what we are looking for, so skip them.
405 unsigned Elem = 0;
406 Constant *ElemC;
407 do {
408 ElemC = C->getAggregateElement(Elem++);
409 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
410 C = ElemC;
411 } else {
412 // For non-byte-sized vector elements, the first element is not
413 // necessarily located at the vector base address.
414 if (auto *VT = dyn_cast<VectorType>(SrcTy))
415 if (!DL.typeSizeEqualsStoreSize(VT->getElementType()))
416 return nullptr;
417
418 C = C->getAggregateElement(0u);
419 }
420 } while (C);
421
422 return nullptr;
423}
424
425namespace {
426
427/// Recursive helper to read bits out of global. C is the constant being copied
428/// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
429/// results into and BytesLeft is the number of bytes left in
430/// the CurPtr buffer. DL is the DataLayout.
431bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
432 unsigned BytesLeft, const DataLayout &DL) {
433 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
434 "Out of range access");
435
436 // Reading type padding, return zero.
437 if (ByteOffset >= DL.getTypeStoreSize(C->getType()))
438 return true;
439
440 // If this element is zero or undefined, we can just return since *CurPtr is
441 // zero initialized.
443 return true;
444
445 if (auto *CI = dyn_cast<ConstantInt>(C)) {
446 if ((CI->getBitWidth() & 7) != 0)
447 return false;
448 const APInt &Val = CI->getValue();
449 unsigned IntBytes = unsigned(CI->getBitWidth()/8);
450
451 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
452 unsigned n = ByteOffset;
453 if (!DL.isLittleEndian())
454 n = IntBytes - n - 1;
455 CurPtr[i] = Val.extractBits(8, n * 8).getZExtValue();
456 ++ByteOffset;
457 }
458 return true;
459 }
460
461 if (auto *CFP = dyn_cast<ConstantFP>(C)) {
462 if (CFP->getType()->isDoubleTy()) {
463 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
464 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
465 }
466 if (CFP->getType()->isFloatTy()){
467 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
468 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
469 }
470 if (CFP->getType()->isHalfTy()){
471 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
472 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
473 }
474 return false;
475 }
476
477 if (auto *CS = dyn_cast<ConstantStruct>(C)) {
478 const StructLayout *SL = DL.getStructLayout(CS->getType());
479 unsigned Index = SL->getElementContainingOffset(ByteOffset);
480 uint64_t CurEltOffset = SL->getElementOffset(Index);
481 ByteOffset -= CurEltOffset;
482
483 while (true) {
484 // If the element access is to the element itself and not to tail padding,
485 // read the bytes from the element.
486 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
487
488 if (ByteOffset < EltSize &&
489 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
490 BytesLeft, DL))
491 return false;
492
493 ++Index;
494
495 // Check to see if we read from the last struct element, if so we're done.
496 if (Index == CS->getType()->getNumElements())
497 return true;
498
499 // If we read all of the bytes we needed from this element we're done.
500 uint64_t NextEltOffset = SL->getElementOffset(Index);
501
502 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
503 return true;
504
505 // Move to the next element of the struct.
506 CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
507 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
508 ByteOffset = 0;
509 CurEltOffset = NextEltOffset;
510 }
511 // not reached.
512 }
513
516 uint64_t NumElts, EltSize;
517 Type *EltTy;
518 if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
519 NumElts = AT->getNumElements();
520 EltTy = AT->getElementType();
521 EltSize = DL.getTypeAllocSize(EltTy);
522 } else {
523 NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
524 EltTy = cast<FixedVectorType>(C->getType())->getElementType();
525 // TODO: For non-byte-sized vectors, current implementation assumes there is
526 // padding to the next byte boundary between elements.
527 if (!DL.typeSizeEqualsStoreSize(EltTy))
528 return false;
529
530 EltSize = DL.getTypeStoreSize(EltTy);
531 }
532 uint64_t Index = ByteOffset / EltSize;
533 uint64_t Offset = ByteOffset - Index * EltSize;
534
535 for (; Index != NumElts; ++Index) {
536 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
537 BytesLeft, DL))
538 return false;
539
540 uint64_t BytesWritten = EltSize - Offset;
541 assert(BytesWritten <= EltSize && "Not indexing into this element?");
542 if (BytesWritten >= BytesLeft)
543 return true;
544
545 Offset = 0;
546 BytesLeft -= BytesWritten;
547 CurPtr += BytesWritten;
548 }
549 return true;
550 }
551
552 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
553 if (CE->getOpcode() == Instruction::IntToPtr &&
554 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
555 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
556 BytesLeft, DL);
557 }
558 }
559
560 // Otherwise, unknown initializer type.
561 return false;
562}
563
564Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy,
565 int64_t Offset, const DataLayout &DL) {
566 // Bail out early. Not expect to load from scalable global variable.
567 if (isa<ScalableVectorType>(LoadTy))
568 return nullptr;
569
570 auto *IntType = dyn_cast<IntegerType>(LoadTy);
571
572 // If this isn't an integer load we can't fold it directly.
573 if (!IntType) {
574 // If this is a non-integer load, we can try folding it as an int load and
575 // then bitcast the result. This can be useful for union cases. Note
576 // that address spaces don't matter here since we're not going to result in
577 // an actual new load.
578 if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() &&
579 !LoadTy->isVectorTy())
580 return nullptr;
581
582 Type *MapTy = Type::getIntNTy(C->getContext(),
583 DL.getTypeSizeInBits(LoadTy).getFixedValue());
584 if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) {
585 if (Res->isNullValue() && !LoadTy->isX86_AMXTy())
586 // Materializing a zero can be done trivially without a bitcast
587 return Constant::getNullValue(LoadTy);
588 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
589 Res = FoldBitCast(Res, CastTy, DL);
590 if (LoadTy->isPtrOrPtrVectorTy()) {
591 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
592 if (Res->isNullValue() && !LoadTy->isX86_AMXTy())
593 return Constant::getNullValue(LoadTy);
594 if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
595 // Be careful not to replace a load of an addrspace value with an inttoptr here
596 return nullptr;
597 Res = ConstantExpr::getIntToPtr(Res, LoadTy);
598 }
599 return Res;
600 }
601 return nullptr;
602 }
603
604 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
605 if (BytesLoaded > 32 || BytesLoaded == 0)
606 return nullptr;
607
608 // If we're not accessing anything in this constant, the result is undefined.
609 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
610 return PoisonValue::get(IntType);
611
612 // TODO: We should be able to support scalable types.
613 TypeSize InitializerSize = DL.getTypeAllocSize(C->getType());
614 if (InitializerSize.isScalable())
615 return nullptr;
616
617 // If we're not accessing anything in this constant, the result is undefined.
618 if (Offset >= (int64_t)InitializerSize.getFixedValue())
619 return PoisonValue::get(IntType);
620
621 unsigned char RawBytes[32] = {0};
622 unsigned char *CurPtr = RawBytes;
623 unsigned BytesLeft = BytesLoaded;
624
625 // If we're loading off the beginning of the global, some bytes may be valid.
626 if (Offset < 0) {
627 CurPtr += -Offset;
628 BytesLeft += Offset;
629 Offset = 0;
630 }
631
632 if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL))
633 return nullptr;
634
635 APInt ResultVal = APInt(IntType->getBitWidth(), 0);
636 if (DL.isLittleEndian()) {
637 ResultVal = RawBytes[BytesLoaded - 1];
638 for (unsigned i = 1; i != BytesLoaded; ++i) {
639 ResultVal <<= 8;
640 ResultVal |= RawBytes[BytesLoaded - 1 - i];
641 }
642 } else {
643 ResultVal = RawBytes[0];
644 for (unsigned i = 1; i != BytesLoaded; ++i) {
645 ResultVal <<= 8;
646 ResultVal |= RawBytes[i];
647 }
648 }
649
650 return ConstantInt::get(IntType->getContext(), ResultVal);
651}
652
653} // anonymous namespace
654
655// If GV is a constant with an initializer read its representation starting
656// at Offset and return it as a constant array of unsigned char. Otherwise
657// return null.
660 if (!GV->isConstant() || !GV->hasDefinitiveInitializer())
661 return nullptr;
662
663 const DataLayout &DL = GV->getDataLayout();
664 Constant *Init = const_cast<Constant *>(GV->getInitializer());
665 TypeSize InitSize = DL.getTypeAllocSize(Init->getType());
666 if (InitSize < Offset)
667 return nullptr;
668
669 uint64_t NBytes = InitSize - Offset;
670 if (NBytes > UINT16_MAX)
671 // Bail for large initializers in excess of 64K to avoid allocating
672 // too much memory.
673 // Offset is assumed to be less than or equal than InitSize (this
674 // is enforced in ReadDataFromGlobal).
675 return nullptr;
676
677 SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes));
678 unsigned char *CurPtr = RawBytes.data();
679
680 if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL))
681 return nullptr;
682
683 return ConstantDataArray::get(GV->getContext(), RawBytes);
684}
685
686/// If this Offset points exactly to the start of an aggregate element, return
687/// that element, otherwise return nullptr.
689 const DataLayout &DL) {
690 if (Offset.isZero())
691 return Base;
692
694 return nullptr;
695
696 Type *ElemTy = Base->getType();
697 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
698 if (!Offset.isZero() || !Indices[0].isZero())
699 return nullptr;
700
701 Constant *C = Base;
702 for (const APInt &Index : drop_begin(Indices)) {
703 if (Index.isNegative() || Index.getActiveBits() >= 32)
704 return nullptr;
705
706 C = C->getAggregateElement(Index.getZExtValue());
707 if (!C)
708 return nullptr;
709 }
710
711 return C;
712}
713
715 const APInt &Offset,
716 const DataLayout &DL) {
717 if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL))
718 if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL))
719 return Result;
720
721 // Explicitly check for out-of-bounds access, so we return poison even if the
722 // constant is a uniform value.
723 TypeSize Size = DL.getTypeAllocSize(C->getType());
724 if (!Size.isScalable() && Offset.sge(Size.getFixedValue()))
725 return PoisonValue::get(Ty);
726
727 // Try an offset-independent fold of a uniform value.
728 if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty, DL))
729 return Result;
730
731 // Try hard to fold loads from bitcasted strange and non-type-safe things.
732 if (Offset.getSignificantBits() <= 64)
733 if (Constant *Result =
734 FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL))
735 return Result;
736
737 return nullptr;
738}
739
744
747 const DataLayout &DL) {
748 // We can only fold loads from constant globals with a definitive initializer.
749 // Check this upfront, to skip expensive offset calculations.
751 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
752 return nullptr;
753
754 C = cast<Constant>(C->stripAndAccumulateConstantOffsets(
755 DL, Offset, /* AllowNonInbounds */ true));
756
757 if (C == GV)
758 if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty,
759 Offset, DL))
760 return Result;
761
762 // If this load comes from anywhere in a uniform constant global, the value
763 // is always the same, regardless of the loaded offset.
764 return ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty, DL);
765}
766
768 const DataLayout &DL) {
769 APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0);
770 return ConstantFoldLoadFromConstPtr(C, Ty, std::move(Offset), DL);
771}
772
774 const DataLayout &DL) {
775 if (isa<PoisonValue>(C))
776 return PoisonValue::get(Ty);
777 if (isa<UndefValue>(C))
778 return UndefValue::get(Ty);
779 // If padding is needed when storing C to memory, then it isn't considered as
780 // uniform.
781 if (!DL.typeSizeEqualsStoreSize(C->getType()))
782 return nullptr;
783 if (C->isNullValue() && !Ty->isX86_AMXTy())
784 return Constant::getNullValue(Ty);
785 if (C->isAllOnesValue() &&
786 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
787 return Constant::getAllOnesValue(Ty);
788 return nullptr;
789}
790
791namespace {
792
793/// One of Op0/Op1 is a constant expression.
794/// Attempt to symbolically evaluate the result of a binary operator merging
795/// these together. If target data info is available, it is provided as DL,
796/// otherwise DL is null.
797Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
798 const DataLayout &DL) {
799 // SROA
800
801 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
802 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
803 // bits.
804
805 if (Opc == Instruction::And) {
806 KnownBits Known0 = computeKnownBits(Op0, DL);
807 KnownBits Known1 = computeKnownBits(Op1, DL);
808 if ((Known1.One | Known0.Zero).isAllOnes()) {
809 // All the bits of Op0 that the 'and' could be masking are already zero.
810 return Op0;
811 }
812 if ((Known0.One | Known1.Zero).isAllOnes()) {
813 // All the bits of Op1 that the 'and' could be masking are already zero.
814 return Op1;
815 }
816
817 Known0 &= Known1;
818 if (Known0.isConstant())
819 return ConstantInt::get(Op0->getType(), Known0.getConstant());
820 }
821
822 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
823 // constant. This happens frequently when iterating over a global array.
824 if (Opc == Instruction::Sub) {
825 GlobalValue *GV1, *GV2;
826 APInt Offs1, Offs2;
827
828 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
829 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
830 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
831
832 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
833 // PtrToInt may change the bitwidth so we have convert to the right size
834 // first.
835 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
836 Offs2.zextOrTrunc(OpSize));
837 }
838 }
839
840 return nullptr;
841}
842
843/// If array indices are not pointer-sized integers, explicitly cast them so
844/// that they aren't implicitly casted by the getelementptr.
845Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
846 Type *ResultTy, GEPNoWrapFlags NW,
847 std::optional<ConstantRange> InRange,
848 const DataLayout &DL, const TargetLibraryInfo *TLI) {
849 Type *IntIdxTy = DL.getIndexType(ResultTy);
850 Type *IntIdxScalarTy = IntIdxTy->getScalarType();
851
852 bool Any = false;
854 for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
855 if ((i == 1 ||
857 SrcElemTy, Ops.slice(1, i - 1)))) &&
858 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
859 Any = true;
860 Type *NewType =
861 Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy;
863 CastInst::getCastOpcode(Ops[i], true, NewType, true), Ops[i], NewType,
864 DL);
865 if (!NewIdx)
866 return nullptr;
867 NewIdxs.push_back(NewIdx);
868 } else
869 NewIdxs.push_back(Ops[i]);
870 }
871
872 if (!Any)
873 return nullptr;
874
875 Constant *C =
876 ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], NewIdxs, NW, InRange);
877 return ConstantFoldConstant(C, DL, TLI);
878}
879
880/// If we can symbolically evaluate the GEP constant expression, do so.
881Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
883 const DataLayout &DL,
884 const TargetLibraryInfo *TLI) {
885 Type *SrcElemTy = GEP->getSourceElementType();
886 Type *ResTy = GEP->getType();
887 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
888 return nullptr;
889
890 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, GEP->getNoWrapFlags(),
891 GEP->getInRange(), DL, TLI))
892 return C;
893
894 Constant *Ptr = Ops[0];
895 if (!Ptr->getType()->isPointerTy())
896 return nullptr;
897
898 Type *IntIdxTy = DL.getIndexType(Ptr->getType());
899
900 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
901 if (!isa<ConstantInt>(Ops[i]) || !Ops[i]->getType()->isIntegerTy())
902 return nullptr;
903
904 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
906 BitWidth,
907 DL.getIndexedOffsetInType(
908 SrcElemTy, ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1)),
909 /*isSigned=*/true, /*implicitTrunc=*/true);
910
911 std::optional<ConstantRange> InRange = GEP->getInRange();
912 if (InRange)
913 InRange = InRange->sextOrTrunc(BitWidth);
914
915 // If this is a GEP of a GEP, fold it all into a single GEP.
916 GEPNoWrapFlags NW = GEP->getNoWrapFlags();
917 bool Overflow = false;
918 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
919 NW &= GEP->getNoWrapFlags();
920
921 SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands()));
922
923 // Do not try the incorporate the sub-GEP if some index is not a number.
924 bool AllConstantInt = true;
925 for (Value *NestedOp : NestedOps)
926 if (!isa<ConstantInt>(NestedOp)) {
927 AllConstantInt = false;
928 break;
929 }
930 if (!AllConstantInt)
931 break;
932
933 // Adjust inrange offset and intersect inrange attributes
934 if (auto GEPRange = GEP->getInRange()) {
935 auto AdjustedGEPRange = GEPRange->sextOrTrunc(BitWidth).subtract(Offset);
936 InRange =
937 InRange ? InRange->intersectWith(AdjustedGEPRange) : AdjustedGEPRange;
938 }
939
940 Ptr = cast<Constant>(GEP->getOperand(0));
941 SrcElemTy = GEP->getSourceElementType();
942 Offset = Offset.sadd_ov(
943 APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps),
944 /*isSigned=*/true, /*implicitTrunc=*/true),
945 Overflow);
946 }
947
948 // Preserving nusw (without inbounds) also requires that the offset
949 // additions did not overflow.
950 if (NW.hasNoUnsignedSignedWrap() && !NW.isInBounds() && Overflow)
952
953 // If the base value for this address is a literal integer value, fold the
954 // getelementptr to the resulting integer value casted to the pointer type.
955 APInt BaseIntVal(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
956 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
957 if (CE->getOpcode() == Instruction::IntToPtr) {
958 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
959 BaseIntVal = Base->getValue().zextOrTrunc(BaseIntVal.getBitWidth());
960 }
961 }
962
963 if ((Ptr->isNullValue() || BaseIntVal != 0) &&
964 !DL.mustNotIntroduceIntToPtr(Ptr->getType())) {
965
966 // If the index size is smaller than the pointer size, add to the low
967 // bits only.
968 BaseIntVal.insertBits(BaseIntVal.trunc(BitWidth) + Offset, 0);
969 Constant *C = ConstantInt::get(Ptr->getContext(), BaseIntVal);
970 return ConstantExpr::getIntToPtr(C, ResTy);
971 }
972
973 // Try to infer inbounds for GEPs of globals.
974 if (!NW.isInBounds() && Offset.isNonNegative()) {
975 bool CanBeNull, CanBeFreed;
976 uint64_t DerefBytes =
977 Ptr->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
978 if (DerefBytes != 0 && !CanBeNull && Offset.sle(DerefBytes))
980 }
981
982 // nusw + nneg -> nuw
983 if (NW.hasNoUnsignedSignedWrap() && Offset.isNonNegative())
985
986 // Otherwise canonicalize this to a single ptradd.
987 LLVMContext &Ctx = Ptr->getContext();
989 ConstantInt::get(Ctx, Offset), NW,
990 InRange);
991}
992
993/// Attempt to constant fold an instruction with the
994/// specified opcode and operands. If successful, the constant result is
995/// returned, if not, null is returned. Note that this function can fail when
996/// attempting to fold instructions like loads and stores, which have no
997/// constant expression form.
998Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
1000 const DataLayout &DL,
1001 const TargetLibraryInfo *TLI,
1002 bool AllowNonDeterministic) {
1003 Type *DestTy = InstOrCE->getType();
1004
1005 if (Instruction::isUnaryOp(Opcode))
1006 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
1007
1008 if (Instruction::isBinaryOp(Opcode)) {
1009 switch (Opcode) {
1010 default:
1011 break;
1012 case Instruction::FAdd:
1013 case Instruction::FSub:
1014 case Instruction::FMul:
1015 case Instruction::FDiv:
1016 case Instruction::FRem:
1017 // Handle floating point instructions separately to account for denormals
1018 // TODO: If a constant expression is being folded rather than an
1019 // instruction, denormals will not be flushed/treated as zero
1020 if (const auto *I = dyn_cast<Instruction>(InstOrCE)) {
1021 return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I,
1022 AllowNonDeterministic);
1023 }
1024 }
1025 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1026 }
1027
1028 if (Instruction::isCast(Opcode))
1029 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1030
1031 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1032 Type *SrcElemTy = GEP->getSourceElementType();
1034 return nullptr;
1035
1036 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1037 return C;
1038
1039 return ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], Ops.slice(1),
1040 GEP->getNoWrapFlags(),
1041 GEP->getInRange());
1042 }
1043
1044 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
1045 return CE->getWithOperands(Ops);
1046
1047 switch (Opcode) {
1048 default: return nullptr;
1049 case Instruction::ICmp:
1050 case Instruction::FCmp: {
1051 auto *C = cast<CmpInst>(InstOrCE);
1052 return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1],
1053 DL, TLI, C);
1054 }
1055 case Instruction::Freeze:
1056 return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
1057 case Instruction::Call:
1058 if (auto *F = dyn_cast<Function>(Ops.back())) {
1059 const auto *Call = cast<CallBase>(InstOrCE);
1061 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI,
1062 AllowNonDeterministic);
1063 }
1064 return nullptr;
1065 case Instruction::Select:
1066 return ConstantFoldSelectInstruction(Ops[0], Ops[1], Ops[2]);
1067 case Instruction::ExtractElement:
1069 case Instruction::ExtractValue:
1071 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1072 case Instruction::InsertElement:
1073 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1074 case Instruction::InsertValue:
1076 Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices());
1077 case Instruction::ShuffleVector:
1079 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1080 case Instruction::Load: {
1081 const auto *LI = dyn_cast<LoadInst>(InstOrCE);
1082 if (LI->isVolatile())
1083 return nullptr;
1084 return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
1085 }
1086 }
1087}
1088
1089} // end anonymous namespace
1090
1091//===----------------------------------------------------------------------===//
1092// Constant Folding public APIs
1093//===----------------------------------------------------------------------===//
1094
1095namespace {
1096
1097Constant *
1098ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1099 const TargetLibraryInfo *TLI,
1102 return const_cast<Constant *>(C);
1103
1105 for (const Use &OldU : C->operands()) {
1106 Constant *OldC = cast<Constant>(&OldU);
1107 Constant *NewC = OldC;
1108 // Recursively fold the ConstantExpr's operands. If we have already folded
1109 // a ConstantExpr, we don't have to process it again.
1110 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1111 auto It = FoldedOps.find(OldC);
1112 if (It == FoldedOps.end()) {
1113 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1114 FoldedOps.insert({OldC, NewC});
1115 } else {
1116 NewC = It->second;
1117 }
1118 }
1119 Ops.push_back(NewC);
1120 }
1121
1122 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1123 if (Constant *Res = ConstantFoldInstOperandsImpl(
1124 CE, CE->getOpcode(), Ops, DL, TLI, /*AllowNonDeterministic=*/true))
1125 return Res;
1126 return const_cast<Constant *>(C);
1127 }
1128
1130 return ConstantVector::get(Ops);
1131}
1132
1133} // end anonymous namespace
1134
1136 const DataLayout &DL,
1137 const TargetLibraryInfo *TLI) {
1138 // Handle PHI nodes quickly here...
1139 if (auto *PN = dyn_cast<PHINode>(I)) {
1140 Constant *CommonValue = nullptr;
1141
1143 for (Value *Incoming : PN->incoming_values()) {
1144 // If the incoming value is undef then skip it. Note that while we could
1145 // skip the value if it is equal to the phi node itself we choose not to
1146 // because that would break the rule that constant folding only applies if
1147 // all operands are constants.
1149 continue;
1150 // If the incoming value is not a constant, then give up.
1151 auto *C = dyn_cast<Constant>(Incoming);
1152 if (!C)
1153 return nullptr;
1154 // Fold the PHI's operands.
1155 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1156 // If the incoming value is a different constant to
1157 // the one we saw previously, then give up.
1158 if (CommonValue && C != CommonValue)
1159 return nullptr;
1160 CommonValue = C;
1161 }
1162
1163 // If we reach here, all incoming values are the same constant or undef.
1164 return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1165 }
1166
1167 // Scan the operand list, checking to see if they are all constants, if so,
1168 // hand off to ConstantFoldInstOperandsImpl.
1169 if (!all_of(I->operands(), [](const Use &U) { return isa<Constant>(U); }))
1170 return nullptr;
1171
1174 for (const Use &OpU : I->operands()) {
1175 auto *Op = cast<Constant>(&OpU);
1176 // Fold the Instruction's operands.
1177 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1178 Ops.push_back(Op);
1179 }
1180
1181 return ConstantFoldInstOperands(I, Ops, DL, TLI);
1182}
1183
1185 const TargetLibraryInfo *TLI) {
1187 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1188}
1189
1192 const DataLayout &DL,
1193 const TargetLibraryInfo *TLI,
1194 bool AllowNonDeterministic) {
1195 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI,
1196 AllowNonDeterministic);
1197}
1198
1200 unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL,
1201 const TargetLibraryInfo *TLI, const Instruction *I) {
1202 CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate;
1203 // fold: icmp (inttoptr x), null -> icmp x, 0
1204 // fold: icmp null, (inttoptr x) -> icmp 0, x
1205 // fold: icmp (ptrtoint x), 0 -> icmp x, null
1206 // fold: icmp 0, (ptrtoint x) -> icmp null, x
1207 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1208 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1209 //
1210 // FIXME: The following comment is out of data and the DataLayout is here now.
1211 // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1212 // around to know if bit truncation is happening.
1213 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1214 if (Ops1->isNullValue()) {
1215 if (CE0->getOpcode() == Instruction::IntToPtr) {
1216 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1217 // Convert the integer value to the right size to ensure we get the
1218 // proper extension or truncation.
1219 if (Constant *C = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
1220 /*IsSigned*/ false, DL)) {
1221 Constant *Null = Constant::getNullValue(C->getType());
1222 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1223 }
1224 }
1225
1226 // icmp only compares the address part of the pointer, so only do this
1227 // transform if the integer size matches the address size.
1228 if (CE0->getOpcode() == Instruction::PtrToInt ||
1229 CE0->getOpcode() == Instruction::PtrToAddr) {
1230 Type *AddrTy = DL.getAddressType(CE0->getOperand(0)->getType());
1231 if (CE0->getType() == AddrTy) {
1232 Constant *C = CE0->getOperand(0);
1233 Constant *Null = Constant::getNullValue(C->getType());
1234 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1235 }
1236 }
1237 }
1238
1239 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1240 if (CE0->getOpcode() == CE1->getOpcode()) {
1241 if (CE0->getOpcode() == Instruction::IntToPtr) {
1242 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1243
1244 // Convert the integer value to the right size to ensure we get the
1245 // proper extension or truncation.
1246 Constant *C0 = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
1247 /*IsSigned*/ false, DL);
1248 Constant *C1 = ConstantFoldIntegerCast(CE1->getOperand(0), IntPtrTy,
1249 /*IsSigned*/ false, DL);
1250 if (C0 && C1)
1251 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1252 }
1253
1254 // icmp only compares the address part of the pointer, so only do this
1255 // transform if the integer size matches the address size.
1256 if (CE0->getOpcode() == Instruction::PtrToInt ||
1257 CE0->getOpcode() == Instruction::PtrToAddr) {
1258 Type *AddrTy = DL.getAddressType(CE0->getOperand(0)->getType());
1259 if (CE0->getType() == AddrTy &&
1260 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1262 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1263 }
1264 }
1265 }
1266 }
1267
1268 // Convert pointer comparison (base+offset1) pred (base+offset2) into
1269 // offset1 pred offset2, for the case where the offset is inbounds. This
1270 // only works for equality and unsigned comparison, as inbounds permits
1271 // crossing the sign boundary. However, the offset comparison itself is
1272 // signed.
1273 if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) {
1274 unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType());
1275 APInt Offset0(IndexWidth, 0);
1276 bool IsEqPred = ICmpInst::isEquality(Predicate);
1277 Value *Stripped0 = Ops0->stripAndAccumulateConstantOffsets(
1278 DL, Offset0, /*AllowNonInbounds=*/IsEqPred,
1279 /*AllowInvariantGroup=*/false, /*ExternalAnalysis=*/nullptr,
1280 /*LookThroughIntToPtr=*/IsEqPred);
1281 APInt Offset1(IndexWidth, 0);
1282 Value *Stripped1 = Ops1->stripAndAccumulateConstantOffsets(
1283 DL, Offset1, /*AllowNonInbounds=*/IsEqPred,
1284 /*AllowInvariantGroup=*/false, /*ExternalAnalysis=*/nullptr,
1285 /*LookThroughIntToPtr=*/IsEqPred);
1286 if (Stripped0 == Stripped1)
1287 return ConstantInt::getBool(
1288 Ops0->getContext(),
1289 ICmpInst::compare(Offset0, Offset1,
1290 ICmpInst::getSignedPredicate(Predicate)));
1291 }
1292 } else if (isa<ConstantExpr>(Ops1)) {
1293 // If RHS is a constant expression, but the left side isn't, swap the
1294 // operands and try again.
1295 Predicate = ICmpInst::getSwappedPredicate(Predicate);
1296 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1297 }
1298
1299 if (CmpInst::isFPPredicate(Predicate)) {
1300 // Flush any denormal constant float input according to denormal handling
1301 // mode.
1302 Ops0 = FlushFPConstant(Ops0, I, /*IsOutput=*/false);
1303 if (!Ops0)
1304 return nullptr;
1305 Ops1 = FlushFPConstant(Ops1, I, /*IsOutput=*/false);
1306 if (!Ops1)
1307 return nullptr;
1308 }
1309
1310 return ConstantFoldCompareInstruction(Predicate, Ops0, Ops1);
1311}
1312
1314 const DataLayout &DL) {
1316
1317 return ConstantFoldUnaryInstruction(Opcode, Op);
1318}
1319
1321 Constant *RHS,
1322 const DataLayout &DL) {
1324 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1325 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1326 return C;
1327
1329 return ConstantExpr::get(Opcode, LHS, RHS);
1330 return ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
1331}
1332
1335 switch (Mode) {
1337 return nullptr;
1338 case DenormalMode::IEEE:
1339 return ConstantFP::get(Ty->getContext(), APF);
1341 return ConstantFP::get(
1342 Ty->getContext(),
1345 return ConstantFP::get(Ty->getContext(),
1346 APFloat::getZero(APF.getSemantics(), false));
1347 default:
1348 break;
1349 }
1350
1351 llvm_unreachable("unknown denormal mode");
1352}
1353
1354/// Return the denormal mode that can be assumed when executing a floating point
1355/// operation at \p CtxI.
1357 if (!CtxI || !CtxI->getParent() || !CtxI->getFunction())
1358 return DenormalMode::getDynamic();
1359 return CtxI->getFunction()->getDenormalMode(Ty->getFltSemantics());
1360}
1361
1363 const Instruction *Inst,
1364 bool IsOutput) {
1365 const APFloat &APF = CFP->getValueAPF();
1366 if (!APF.isDenormal())
1367 return CFP;
1368
1370 return flushDenormalConstant(CFP->getType(), APF,
1371 IsOutput ? Mode.Output : Mode.Input);
1372}
1373
1375 bool IsOutput) {
1376 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Operand))
1377 return flushDenormalConstantFP(CFP, Inst, IsOutput);
1378
1380 return Operand;
1381
1382 Type *Ty = Operand->getType();
1383 VectorType *VecTy = dyn_cast<VectorType>(Ty);
1384 if (VecTy) {
1385 if (auto *Splat = dyn_cast_or_null<ConstantFP>(Operand->getSplatValue())) {
1386 ConstantFP *Folded = flushDenormalConstantFP(Splat, Inst, IsOutput);
1387 if (!Folded)
1388 return nullptr;
1389 return ConstantVector::getSplat(VecTy->getElementCount(), Folded);
1390 }
1391
1392 Ty = VecTy->getElementType();
1393 }
1394
1395 if (isa<ConstantExpr>(Operand))
1396 return Operand;
1397
1398 if (const auto *CV = dyn_cast<ConstantVector>(Operand)) {
1400 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1401 Constant *Element = CV->getAggregateElement(i);
1402 if (isa<UndefValue>(Element)) {
1403 NewElts.push_back(Element);
1404 continue;
1405 }
1406
1407 ConstantFP *CFP = dyn_cast<ConstantFP>(Element);
1408 if (!CFP)
1409 return nullptr;
1410
1411 ConstantFP *Folded = flushDenormalConstantFP(CFP, Inst, IsOutput);
1412 if (!Folded)
1413 return nullptr;
1414 NewElts.push_back(Folded);
1415 }
1416
1417 return ConstantVector::get(NewElts);
1418 }
1419
1420 if (const auto *CDV = dyn_cast<ConstantDataVector>(Operand)) {
1422 for (unsigned I = 0, E = CDV->getNumElements(); I < E; ++I) {
1423 const APFloat &Elt = CDV->getElementAsAPFloat(I);
1424 if (!Elt.isDenormal()) {
1425 NewElts.push_back(ConstantFP::get(Ty, Elt));
1426 } else {
1427 DenormalMode Mode = getInstrDenormalMode(Inst, Ty);
1428 ConstantFP *Folded =
1429 flushDenormalConstant(Ty, Elt, IsOutput ? Mode.Output : Mode.Input);
1430 if (!Folded)
1431 return nullptr;
1432 NewElts.push_back(Folded);
1433 }
1434 }
1435
1436 return ConstantVector::get(NewElts);
1437 }
1438
1439 return nullptr;
1440}
1441
1443 Constant *RHS, const DataLayout &DL,
1444 const Instruction *I,
1445 bool AllowNonDeterministic) {
1446 if (Instruction::isBinaryOp(Opcode)) {
1447 // Flush denormal inputs if needed.
1448 Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false);
1449 if (!Op0)
1450 return nullptr;
1451 Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false);
1452 if (!Op1)
1453 return nullptr;
1454
1455 // If nsz or an algebraic FMF flag is set, the result of the FP operation
1456 // may change due to future optimization. Don't constant fold them if
1457 // non-deterministic results are not allowed.
1458 if (!AllowNonDeterministic)
1460 if (FP->hasNoSignedZeros() || FP->hasAllowReassoc() ||
1461 FP->hasAllowContract() || FP->hasAllowReciprocal())
1462 return nullptr;
1463
1464 // Calculate constant result.
1465 Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL);
1466 if (!C)
1467 return nullptr;
1468
1469 // Flush denormal output if needed.
1470 C = FlushFPConstant(C, I, /* IsOutput */ true);
1471 if (!C)
1472 return nullptr;
1473
1474 // The precise NaN value is non-deterministic.
1475 if (!AllowNonDeterministic && C->isNaN())
1476 return nullptr;
1477
1478 return C;
1479 }
1480 // If instruction lacks a parent/function and the denormal mode cannot be
1481 // determined, use the default (IEEE).
1482 return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL);
1483}
1484
1486 Type *DestTy, const DataLayout &DL) {
1487 assert(Instruction::isCast(Opcode));
1488
1489 if (auto *CE = dyn_cast<ConstantExpr>(C))
1490 if (CE->isCast())
1491 if (unsigned NewOp = CastInst::isEliminableCastPair(
1492 Instruction::CastOps(CE->getOpcode()),
1493 Instruction::CastOps(Opcode), CE->getOperand(0)->getType(),
1494 C->getType(), DestTy, &DL))
1495 return ConstantFoldCastOperand(NewOp, CE->getOperand(0), DestTy, DL);
1496
1497 switch (Opcode) {
1498 default:
1499 llvm_unreachable("Missing case");
1500 case Instruction::PtrToAddr:
1501 case Instruction::PtrToInt:
1502 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1503 Constant *FoldedValue = nullptr;
1504 // If the input is an inttoptr, eliminate the pair. This requires knowing
1505 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1506 if (CE->getOpcode() == Instruction::IntToPtr) {
1507 // zext/trunc the inttoptr to pointer/address size.
1508 Type *MidTy = Opcode == Instruction::PtrToInt
1509 ? DL.getAddressType(CE->getType())
1510 : DL.getIntPtrType(CE->getType());
1511 FoldedValue = ConstantFoldIntegerCast(CE->getOperand(0), MidTy,
1512 /*IsSigned=*/false, DL);
1513 } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
1514 // If we have GEP, we can perform the following folds:
1515 // (ptrtoint/ptrtoaddr (gep null, x)) -> x
1516 // (ptrtoint/ptrtoaddr (gep (gep null, x), y) -> x + y, etc.
1517 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1518 APInt BaseOffset(BitWidth, 0);
1519 auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
1520 DL, BaseOffset, /*AllowNonInbounds=*/true));
1521 if (Base->isNullValue()) {
1522 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1523 } else {
1524 // ptrtoint/ptrtoaddr (gep i8, Ptr, (sub 0, V))
1525 // -> sub (ptrtoint/ptrtoaddr Ptr), V
1526 if (GEP->getNumIndices() == 1 &&
1527 GEP->getSourceElementType()->isIntegerTy(8)) {
1528 auto *Ptr = cast<Constant>(GEP->getPointerOperand());
1529 auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1));
1530 Type *IntIdxTy = DL.getIndexType(Ptr->getType());
1531 if (Sub && Sub->getType() == IntIdxTy &&
1532 Sub->getOpcode() == Instruction::Sub &&
1533 Sub->getOperand(0)->isNullValue())
1534 FoldedValue = ConstantExpr::getSub(
1535 ConstantExpr::getCast(Opcode, Ptr, IntIdxTy),
1536 Sub->getOperand(1));
1537 }
1538 }
1539 }
1540 if (FoldedValue) {
1541 // Do a zext or trunc to get to the ptrtoint/ptrtoaddr dest size.
1542 return ConstantFoldIntegerCast(FoldedValue, DestTy, /*IsSigned=*/false,
1543 DL);
1544 }
1545 }
1546 break;
1547 case Instruction::IntToPtr:
1548 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1549 // the int size is >= the ptr size and the address spaces are the same.
1550 // This requires knowing the width of a pointer, so it can't be done in
1551 // ConstantExpr::getCast.
1552 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1553 if (CE->getOpcode() == Instruction::PtrToInt) {
1554 Constant *SrcPtr = CE->getOperand(0);
1555 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1556 unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1557
1558 if (MidIntSize >= SrcPtrSize) {
1559 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1560 if (SrcAS == DestTy->getPointerAddressSpace())
1561 return FoldBitCast(CE->getOperand(0), DestTy, DL);
1562 }
1563 }
1564 }
1565 break;
1566 case Instruction::Trunc:
1567 case Instruction::ZExt:
1568 case Instruction::SExt:
1569 case Instruction::FPTrunc:
1570 case Instruction::FPExt:
1571 case Instruction::UIToFP:
1572 case Instruction::SIToFP:
1573 case Instruction::FPToUI:
1574 case Instruction::FPToSI:
1575 case Instruction::AddrSpaceCast:
1576 break;
1577 case Instruction::BitCast:
1578 return FoldBitCast(C, DestTy, DL);
1579 }
1580
1582 return ConstantExpr::getCast(Opcode, C, DestTy);
1583 return ConstantFoldCastInstruction(Opcode, C, DestTy);
1584}
1585
1587 bool IsSigned, const DataLayout &DL) {
1588 Type *SrcTy = C->getType();
1589 if (SrcTy == DestTy)
1590 return C;
1591 if (SrcTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
1592 return ConstantFoldCastOperand(Instruction::Trunc, C, DestTy, DL);
1593 if (IsSigned)
1594 return ConstantFoldCastOperand(Instruction::SExt, C, DestTy, DL);
1595 return ConstantFoldCastOperand(Instruction::ZExt, C, DestTy, DL);
1596}
1597
1598//===----------------------------------------------------------------------===//
1599// Constant Folding for Calls
1600//
1601
1603 if (Call->isNoBuiltin())
1604 return false;
1605 if (Call->getFunctionType() != F->getFunctionType())
1606 return false;
1607
1608 // Allow FP calls (both libcalls and intrinsics) to avoid being folded.
1609 // This can be useful for GPU targets or in cross-compilation scenarios
1610 // when the exact target FP behaviour is required, and the host compiler's
1611 // behaviour may be slightly different from the device's run-time behaviour.
1612 if (DisableFPCallFolding && (F->getReturnType()->isFloatingPointTy() ||
1613 any_of(F->args(), [](const Argument &Arg) {
1614 return Arg.getType()->isFloatingPointTy();
1615 })))
1616 return false;
1617
1618 switch (F->getIntrinsicID()) {
1619 // Operations that do not operate floating-point numbers and do not depend on
1620 // FP environment can be folded even in strictfp functions.
1621 case Intrinsic::bswap:
1622 case Intrinsic::ctpop:
1623 case Intrinsic::ctlz:
1624 case Intrinsic::cttz:
1625 case Intrinsic::fshl:
1626 case Intrinsic::fshr:
1627 case Intrinsic::launder_invariant_group:
1628 case Intrinsic::strip_invariant_group:
1629 case Intrinsic::masked_load:
1630 case Intrinsic::get_active_lane_mask:
1631 case Intrinsic::abs:
1632 case Intrinsic::smax:
1633 case Intrinsic::smin:
1634 case Intrinsic::umax:
1635 case Intrinsic::umin:
1636 case Intrinsic::scmp:
1637 case Intrinsic::ucmp:
1638 case Intrinsic::sadd_with_overflow:
1639 case Intrinsic::uadd_with_overflow:
1640 case Intrinsic::ssub_with_overflow:
1641 case Intrinsic::usub_with_overflow:
1642 case Intrinsic::smul_with_overflow:
1643 case Intrinsic::umul_with_overflow:
1644 case Intrinsic::sadd_sat:
1645 case Intrinsic::uadd_sat:
1646 case Intrinsic::ssub_sat:
1647 case Intrinsic::usub_sat:
1648 case Intrinsic::smul_fix:
1649 case Intrinsic::smul_fix_sat:
1650 case Intrinsic::bitreverse:
1651 case Intrinsic::is_constant:
1652 case Intrinsic::vector_reduce_add:
1653 case Intrinsic::vector_reduce_mul:
1654 case Intrinsic::vector_reduce_and:
1655 case Intrinsic::vector_reduce_or:
1656 case Intrinsic::vector_reduce_xor:
1657 case Intrinsic::vector_reduce_smin:
1658 case Intrinsic::vector_reduce_smax:
1659 case Intrinsic::vector_reduce_umin:
1660 case Intrinsic::vector_reduce_umax:
1661 case Intrinsic::vector_extract:
1662 case Intrinsic::vector_insert:
1663 case Intrinsic::vector_interleave2:
1664 case Intrinsic::vector_interleave3:
1665 case Intrinsic::vector_interleave4:
1666 case Intrinsic::vector_interleave5:
1667 case Intrinsic::vector_interleave6:
1668 case Intrinsic::vector_interleave7:
1669 case Intrinsic::vector_interleave8:
1670 case Intrinsic::vector_deinterleave2:
1671 case Intrinsic::vector_deinterleave3:
1672 case Intrinsic::vector_deinterleave4:
1673 case Intrinsic::vector_deinterleave5:
1674 case Intrinsic::vector_deinterleave6:
1675 case Intrinsic::vector_deinterleave7:
1676 case Intrinsic::vector_deinterleave8:
1677 // Target intrinsics
1678 case Intrinsic::amdgcn_perm:
1679 case Intrinsic::amdgcn_wave_reduce_umin:
1680 case Intrinsic::amdgcn_wave_reduce_umax:
1681 case Intrinsic::amdgcn_wave_reduce_max:
1682 case Intrinsic::amdgcn_wave_reduce_min:
1683 case Intrinsic::amdgcn_wave_reduce_add:
1684 case Intrinsic::amdgcn_wave_reduce_sub:
1685 case Intrinsic::amdgcn_wave_reduce_and:
1686 case Intrinsic::amdgcn_wave_reduce_or:
1687 case Intrinsic::amdgcn_wave_reduce_xor:
1688 case Intrinsic::amdgcn_s_wqm:
1689 case Intrinsic::amdgcn_s_quadmask:
1690 case Intrinsic::amdgcn_s_bitreplicate:
1691 case Intrinsic::arm_mve_vctp8:
1692 case Intrinsic::arm_mve_vctp16:
1693 case Intrinsic::arm_mve_vctp32:
1694 case Intrinsic::arm_mve_vctp64:
1695 case Intrinsic::aarch64_sve_convert_from_svbool:
1696 case Intrinsic::wasm_alltrue:
1697 case Intrinsic::wasm_anytrue:
1698 case Intrinsic::wasm_dot:
1699 // WebAssembly float semantics are always known
1700 case Intrinsic::wasm_trunc_signed:
1701 case Intrinsic::wasm_trunc_unsigned:
1702 return true;
1703
1704 // Floating point operations cannot be folded in strictfp functions in
1705 // general case. They can be folded if FP environment is known to compiler.
1706 case Intrinsic::minnum:
1707 case Intrinsic::maxnum:
1708 case Intrinsic::minimum:
1709 case Intrinsic::maximum:
1710 case Intrinsic::minimumnum:
1711 case Intrinsic::maximumnum:
1712 case Intrinsic::log:
1713 case Intrinsic::log2:
1714 case Intrinsic::log10:
1715 case Intrinsic::exp:
1716 case Intrinsic::exp2:
1717 case Intrinsic::exp10:
1718 case Intrinsic::sqrt:
1719 case Intrinsic::sin:
1720 case Intrinsic::cos:
1721 case Intrinsic::sincos:
1722 case Intrinsic::sinh:
1723 case Intrinsic::cosh:
1724 case Intrinsic::atan:
1725 case Intrinsic::pow:
1726 case Intrinsic::powi:
1727 case Intrinsic::ldexp:
1728 case Intrinsic::fma:
1729 case Intrinsic::fmuladd:
1730 case Intrinsic::frexp:
1731 case Intrinsic::fptoui_sat:
1732 case Intrinsic::fptosi_sat:
1733 case Intrinsic::amdgcn_cos:
1734 case Intrinsic::amdgcn_cubeid:
1735 case Intrinsic::amdgcn_cubema:
1736 case Intrinsic::amdgcn_cubesc:
1737 case Intrinsic::amdgcn_cubetc:
1738 case Intrinsic::amdgcn_fmul_legacy:
1739 case Intrinsic::amdgcn_fma_legacy:
1740 case Intrinsic::amdgcn_fract:
1741 case Intrinsic::amdgcn_sin:
1742 // The intrinsics below depend on rounding mode in MXCSR.
1743 case Intrinsic::x86_sse_cvtss2si:
1744 case Intrinsic::x86_sse_cvtss2si64:
1745 case Intrinsic::x86_sse_cvttss2si:
1746 case Intrinsic::x86_sse_cvttss2si64:
1747 case Intrinsic::x86_sse2_cvtsd2si:
1748 case Intrinsic::x86_sse2_cvtsd2si64:
1749 case Intrinsic::x86_sse2_cvttsd2si:
1750 case Intrinsic::x86_sse2_cvttsd2si64:
1751 case Intrinsic::x86_avx512_vcvtss2si32:
1752 case Intrinsic::x86_avx512_vcvtss2si64:
1753 case Intrinsic::x86_avx512_cvttss2si:
1754 case Intrinsic::x86_avx512_cvttss2si64:
1755 case Intrinsic::x86_avx512_vcvtsd2si32:
1756 case Intrinsic::x86_avx512_vcvtsd2si64:
1757 case Intrinsic::x86_avx512_cvttsd2si:
1758 case Intrinsic::x86_avx512_cvttsd2si64:
1759 case Intrinsic::x86_avx512_vcvtss2usi32:
1760 case Intrinsic::x86_avx512_vcvtss2usi64:
1761 case Intrinsic::x86_avx512_cvttss2usi:
1762 case Intrinsic::x86_avx512_cvttss2usi64:
1763 case Intrinsic::x86_avx512_vcvtsd2usi32:
1764 case Intrinsic::x86_avx512_vcvtsd2usi64:
1765 case Intrinsic::x86_avx512_cvttsd2usi:
1766 case Intrinsic::x86_avx512_cvttsd2usi64:
1767
1768 // NVVM FMax intrinsics
1769 case Intrinsic::nvvm_fmax_d:
1770 case Intrinsic::nvvm_fmax_f:
1771 case Intrinsic::nvvm_fmax_ftz_f:
1772 case Intrinsic::nvvm_fmax_ftz_nan_f:
1773 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
1774 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
1775 case Intrinsic::nvvm_fmax_nan_f:
1776 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
1777 case Intrinsic::nvvm_fmax_xorsign_abs_f:
1778
1779 // NVVM FMin intrinsics
1780 case Intrinsic::nvvm_fmin_d:
1781 case Intrinsic::nvvm_fmin_f:
1782 case Intrinsic::nvvm_fmin_ftz_f:
1783 case Intrinsic::nvvm_fmin_ftz_nan_f:
1784 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
1785 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
1786 case Intrinsic::nvvm_fmin_nan_f:
1787 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
1788 case Intrinsic::nvvm_fmin_xorsign_abs_f:
1789
1790 // NVVM float/double to int32/uint32 conversion intrinsics
1791 case Intrinsic::nvvm_f2i_rm:
1792 case Intrinsic::nvvm_f2i_rn:
1793 case Intrinsic::nvvm_f2i_rp:
1794 case Intrinsic::nvvm_f2i_rz:
1795 case Intrinsic::nvvm_f2i_rm_ftz:
1796 case Intrinsic::nvvm_f2i_rn_ftz:
1797 case Intrinsic::nvvm_f2i_rp_ftz:
1798 case Intrinsic::nvvm_f2i_rz_ftz:
1799 case Intrinsic::nvvm_f2ui_rm:
1800 case Intrinsic::nvvm_f2ui_rn:
1801 case Intrinsic::nvvm_f2ui_rp:
1802 case Intrinsic::nvvm_f2ui_rz:
1803 case Intrinsic::nvvm_f2ui_rm_ftz:
1804 case Intrinsic::nvvm_f2ui_rn_ftz:
1805 case Intrinsic::nvvm_f2ui_rp_ftz:
1806 case Intrinsic::nvvm_f2ui_rz_ftz:
1807 case Intrinsic::nvvm_d2i_rm:
1808 case Intrinsic::nvvm_d2i_rn:
1809 case Intrinsic::nvvm_d2i_rp:
1810 case Intrinsic::nvvm_d2i_rz:
1811 case Intrinsic::nvvm_d2ui_rm:
1812 case Intrinsic::nvvm_d2ui_rn:
1813 case Intrinsic::nvvm_d2ui_rp:
1814 case Intrinsic::nvvm_d2ui_rz:
1815
1816 // NVVM float/double to int64/uint64 conversion intrinsics
1817 case Intrinsic::nvvm_f2ll_rm:
1818 case Intrinsic::nvvm_f2ll_rn:
1819 case Intrinsic::nvvm_f2ll_rp:
1820 case Intrinsic::nvvm_f2ll_rz:
1821 case Intrinsic::nvvm_f2ll_rm_ftz:
1822 case Intrinsic::nvvm_f2ll_rn_ftz:
1823 case Intrinsic::nvvm_f2ll_rp_ftz:
1824 case Intrinsic::nvvm_f2ll_rz_ftz:
1825 case Intrinsic::nvvm_f2ull_rm:
1826 case Intrinsic::nvvm_f2ull_rn:
1827 case Intrinsic::nvvm_f2ull_rp:
1828 case Intrinsic::nvvm_f2ull_rz:
1829 case Intrinsic::nvvm_f2ull_rm_ftz:
1830 case Intrinsic::nvvm_f2ull_rn_ftz:
1831 case Intrinsic::nvvm_f2ull_rp_ftz:
1832 case Intrinsic::nvvm_f2ull_rz_ftz:
1833 case Intrinsic::nvvm_d2ll_rm:
1834 case Intrinsic::nvvm_d2ll_rn:
1835 case Intrinsic::nvvm_d2ll_rp:
1836 case Intrinsic::nvvm_d2ll_rz:
1837 case Intrinsic::nvvm_d2ull_rm:
1838 case Intrinsic::nvvm_d2ull_rn:
1839 case Intrinsic::nvvm_d2ull_rp:
1840 case Intrinsic::nvvm_d2ull_rz:
1841
1842 // NVVM math intrinsics:
1843 case Intrinsic::nvvm_ceil_d:
1844 case Intrinsic::nvvm_ceil_f:
1845 case Intrinsic::nvvm_ceil_ftz_f:
1846
1847 case Intrinsic::nvvm_fabs:
1848 case Intrinsic::nvvm_fabs_ftz:
1849
1850 case Intrinsic::nvvm_floor_d:
1851 case Intrinsic::nvvm_floor_f:
1852 case Intrinsic::nvvm_floor_ftz_f:
1853
1854 case Intrinsic::nvvm_rcp_rm_d:
1855 case Intrinsic::nvvm_rcp_rm_f:
1856 case Intrinsic::nvvm_rcp_rm_ftz_f:
1857 case Intrinsic::nvvm_rcp_rn_d:
1858 case Intrinsic::nvvm_rcp_rn_f:
1859 case Intrinsic::nvvm_rcp_rn_ftz_f:
1860 case Intrinsic::nvvm_rcp_rp_d:
1861 case Intrinsic::nvvm_rcp_rp_f:
1862 case Intrinsic::nvvm_rcp_rp_ftz_f:
1863 case Intrinsic::nvvm_rcp_rz_d:
1864 case Intrinsic::nvvm_rcp_rz_f:
1865 case Intrinsic::nvvm_rcp_rz_ftz_f:
1866
1867 case Intrinsic::nvvm_round_d:
1868 case Intrinsic::nvvm_round_f:
1869 case Intrinsic::nvvm_round_ftz_f:
1870
1871 case Intrinsic::nvvm_saturate_d:
1872 case Intrinsic::nvvm_saturate_f:
1873 case Intrinsic::nvvm_saturate_ftz_f:
1874
1875 case Intrinsic::nvvm_sqrt_f:
1876 case Intrinsic::nvvm_sqrt_rn_d:
1877 case Intrinsic::nvvm_sqrt_rn_f:
1878 case Intrinsic::nvvm_sqrt_rn_ftz_f:
1879 return !Call->isStrictFP();
1880
1881 // NVVM add intrinsics with explicit rounding modes
1882 case Intrinsic::nvvm_add_rm_d:
1883 case Intrinsic::nvvm_add_rn_d:
1884 case Intrinsic::nvvm_add_rp_d:
1885 case Intrinsic::nvvm_add_rz_d:
1886 case Intrinsic::nvvm_add_rm_f:
1887 case Intrinsic::nvvm_add_rn_f:
1888 case Intrinsic::nvvm_add_rp_f:
1889 case Intrinsic::nvvm_add_rz_f:
1890 case Intrinsic::nvvm_add_rm_ftz_f:
1891 case Intrinsic::nvvm_add_rn_ftz_f:
1892 case Intrinsic::nvvm_add_rp_ftz_f:
1893 case Intrinsic::nvvm_add_rz_ftz_f:
1894
1895 // NVVM div intrinsics with explicit rounding modes
1896 case Intrinsic::nvvm_div_rm_d:
1897 case Intrinsic::nvvm_div_rn_d:
1898 case Intrinsic::nvvm_div_rp_d:
1899 case Intrinsic::nvvm_div_rz_d:
1900 case Intrinsic::nvvm_div_rm_f:
1901 case Intrinsic::nvvm_div_rn_f:
1902 case Intrinsic::nvvm_div_rp_f:
1903 case Intrinsic::nvvm_div_rz_f:
1904 case Intrinsic::nvvm_div_rm_ftz_f:
1905 case Intrinsic::nvvm_div_rn_ftz_f:
1906 case Intrinsic::nvvm_div_rp_ftz_f:
1907 case Intrinsic::nvvm_div_rz_ftz_f:
1908
1909 // NVVM mul intrinsics with explicit rounding modes
1910 case Intrinsic::nvvm_mul_rm_d:
1911 case Intrinsic::nvvm_mul_rn_d:
1912 case Intrinsic::nvvm_mul_rp_d:
1913 case Intrinsic::nvvm_mul_rz_d:
1914 case Intrinsic::nvvm_mul_rm_f:
1915 case Intrinsic::nvvm_mul_rn_f:
1916 case Intrinsic::nvvm_mul_rp_f:
1917 case Intrinsic::nvvm_mul_rz_f:
1918 case Intrinsic::nvvm_mul_rm_ftz_f:
1919 case Intrinsic::nvvm_mul_rn_ftz_f:
1920 case Intrinsic::nvvm_mul_rp_ftz_f:
1921 case Intrinsic::nvvm_mul_rz_ftz_f:
1922
1923 // NVVM fma intrinsics with explicit rounding modes
1924 case Intrinsic::nvvm_fma_rm_d:
1925 case Intrinsic::nvvm_fma_rn_d:
1926 case Intrinsic::nvvm_fma_rp_d:
1927 case Intrinsic::nvvm_fma_rz_d:
1928 case Intrinsic::nvvm_fma_rm_f:
1929 case Intrinsic::nvvm_fma_rn_f:
1930 case Intrinsic::nvvm_fma_rp_f:
1931 case Intrinsic::nvvm_fma_rz_f:
1932 case Intrinsic::nvvm_fma_rm_ftz_f:
1933 case Intrinsic::nvvm_fma_rn_ftz_f:
1934 case Intrinsic::nvvm_fma_rp_ftz_f:
1935 case Intrinsic::nvvm_fma_rz_ftz_f:
1936
1937 // Sign operations are actually bitwise operations, they do not raise
1938 // exceptions even for SNANs.
1939 case Intrinsic::fabs:
1940 case Intrinsic::copysign:
1941 case Intrinsic::is_fpclass:
1942 // Non-constrained variants of rounding operations means default FP
1943 // environment, they can be folded in any case.
1944 case Intrinsic::ceil:
1945 case Intrinsic::floor:
1946 case Intrinsic::round:
1947 case Intrinsic::roundeven:
1948 case Intrinsic::trunc:
1949 case Intrinsic::nearbyint:
1950 case Intrinsic::rint:
1951 case Intrinsic::canonicalize:
1952
1953 // Constrained intrinsics can be folded if FP environment is known
1954 // to compiler.
1955 case Intrinsic::experimental_constrained_fma:
1956 case Intrinsic::experimental_constrained_fmuladd:
1957 case Intrinsic::experimental_constrained_fadd:
1958 case Intrinsic::experimental_constrained_fsub:
1959 case Intrinsic::experimental_constrained_fmul:
1960 case Intrinsic::experimental_constrained_fdiv:
1961 case Intrinsic::experimental_constrained_frem:
1962 case Intrinsic::experimental_constrained_ceil:
1963 case Intrinsic::experimental_constrained_floor:
1964 case Intrinsic::experimental_constrained_round:
1965 case Intrinsic::experimental_constrained_roundeven:
1966 case Intrinsic::experimental_constrained_trunc:
1967 case Intrinsic::experimental_constrained_nearbyint:
1968 case Intrinsic::experimental_constrained_rint:
1969 case Intrinsic::experimental_constrained_fcmp:
1970 case Intrinsic::experimental_constrained_fcmps:
1971 return true;
1972 default:
1973 return false;
1974 case Intrinsic::not_intrinsic: break;
1975 }
1976
1977 if (!F->hasName() || Call->isStrictFP())
1978 return false;
1979
1980 // In these cases, the check of the length is required. We don't want to
1981 // return true for a name like "cos\0blah" which strcmp would return equal to
1982 // "cos", but has length 8.
1983 StringRef Name = F->getName();
1984 switch (Name[0]) {
1985 default:
1986 return false;
1987 // clang-format off
1988 case 'a':
1989 return Name == "acos" || Name == "acosf" ||
1990 Name == "asin" || Name == "asinf" ||
1991 Name == "atan" || Name == "atanf" ||
1992 Name == "atan2" || Name == "atan2f";
1993 case 'c':
1994 return Name == "ceil" || Name == "ceilf" ||
1995 Name == "cos" || Name == "cosf" ||
1996 Name == "cosh" || Name == "coshf";
1997 case 'e':
1998 return Name == "exp" || Name == "expf" || Name == "exp2" ||
1999 Name == "exp2f" || Name == "erf" || Name == "erff";
2000 case 'f':
2001 return Name == "fabs" || Name == "fabsf" ||
2002 Name == "floor" || Name == "floorf" ||
2003 Name == "fmod" || Name == "fmodf";
2004 case 'i':
2005 return Name == "ilogb" || Name == "ilogbf";
2006 case 'l':
2007 return Name == "log" || Name == "logf" || Name == "logl" ||
2008 Name == "log2" || Name == "log2f" || Name == "log10" ||
2009 Name == "log10f" || Name == "logb" || Name == "logbf" ||
2010 Name == "log1p" || Name == "log1pf";
2011 case 'n':
2012 return Name == "nearbyint" || Name == "nearbyintf";
2013 case 'p':
2014 return Name == "pow" || Name == "powf";
2015 case 'r':
2016 return Name == "remainder" || Name == "remainderf" ||
2017 Name == "rint" || Name == "rintf" ||
2018 Name == "round" || Name == "roundf" ||
2019 Name == "roundeven" || Name == "roundevenf";
2020 case 's':
2021 return Name == "sin" || Name == "sinf" ||
2022 Name == "sinh" || Name == "sinhf" ||
2023 Name == "sqrt" || Name == "sqrtf";
2024 case 't':
2025 return Name == "tan" || Name == "tanf" ||
2026 Name == "tanh" || Name == "tanhf" ||
2027 Name == "trunc" || Name == "truncf";
2028 case '_':
2029 // Check for various function names that get used for the math functions
2030 // when the header files are preprocessed with the macro
2031 // __FINITE_MATH_ONLY__ enabled.
2032 // The '12' here is the length of the shortest name that can match.
2033 // We need to check the size before looking at Name[1] and Name[2]
2034 // so we may as well check a limit that will eliminate mismatches.
2035 if (Name.size() < 12 || Name[1] != '_')
2036 return false;
2037 switch (Name[2]) {
2038 default:
2039 return false;
2040 case 'a':
2041 return Name == "__acos_finite" || Name == "__acosf_finite" ||
2042 Name == "__asin_finite" || Name == "__asinf_finite" ||
2043 Name == "__atan2_finite" || Name == "__atan2f_finite";
2044 case 'c':
2045 return Name == "__cosh_finite" || Name == "__coshf_finite";
2046 case 'e':
2047 return Name == "__exp_finite" || Name == "__expf_finite" ||
2048 Name == "__exp2_finite" || Name == "__exp2f_finite";
2049 case 'l':
2050 return Name == "__log_finite" || Name == "__logf_finite" ||
2051 Name == "__log10_finite" || Name == "__log10f_finite";
2052 case 'p':
2053 return Name == "__pow_finite" || Name == "__powf_finite";
2054 case 's':
2055 return Name == "__sinh_finite" || Name == "__sinhf_finite";
2056 }
2057 // clang-format on
2058 }
2059}
2060
2061namespace {
2062
2063Constant *GetConstantFoldFPValue(double V, Type *Ty) {
2064 if (Ty->isHalfTy() || Ty->isFloatTy()) {
2065 APFloat APF(V);
2066 bool unused;
2067 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
2068 return ConstantFP::get(Ty->getContext(), APF);
2069 }
2070 if (Ty->isDoubleTy())
2071 return ConstantFP::get(Ty->getContext(), APFloat(V));
2072 llvm_unreachable("Can only constant fold half/float/double");
2073}
2074
2075#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2076Constant *GetConstantFoldFPValue128(float128 V, Type *Ty) {
2077 if (Ty->isFP128Ty())
2078 return ConstantFP::get(Ty, V);
2079 llvm_unreachable("Can only constant fold fp128");
2080}
2081#endif
2082
2083/// Clear the floating-point exception state.
2084inline void llvm_fenv_clearexcept() {
2085#if HAVE_DECL_FE_ALL_EXCEPT
2086 feclearexcept(FE_ALL_EXCEPT);
2087#endif
2088 errno = 0;
2089}
2090
2091/// Test if a floating-point exception was raised.
2092inline bool llvm_fenv_testexcept() {
2093 int errno_val = errno;
2094 if (errno_val == ERANGE || errno_val == EDOM)
2095 return true;
2096#if HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
2097 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
2098 return true;
2099#endif
2100 return false;
2101}
2102
2103static APFloat FTZPreserveSign(const APFloat &V) {
2104 if (V.isDenormal())
2105 return APFloat::getZero(V.getSemantics(), V.isNegative());
2106 return V;
2107}
2108
2109static APFloat FlushToPositiveZero(const APFloat &V) {
2110 if (V.isDenormal())
2111 return APFloat::getZero(V.getSemantics(), false);
2112 return V;
2113}
2114
2115static APFloat FlushWithDenormKind(const APFloat &V,
2116 DenormalMode::DenormalModeKind DenormKind) {
2119 switch (DenormKind) {
2121 return V;
2123 return FTZPreserveSign(V);
2125 return FlushToPositiveZero(V);
2126 default:
2127 llvm_unreachable("Invalid denormal mode!");
2128 }
2129}
2130
2131Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V, Type *Ty,
2132 DenormalMode DenormMode = DenormalMode::getIEEE()) {
2133 if (!DenormMode.isValid() ||
2134 DenormMode.Input == DenormalMode::DenormalModeKind::Dynamic ||
2135 DenormMode.Output == DenormalMode::DenormalModeKind::Dynamic)
2136 return nullptr;
2137
2138 llvm_fenv_clearexcept();
2139 auto Input = FlushWithDenormKind(V, DenormMode.Input);
2140 double Result = NativeFP(Input.convertToDouble());
2141 if (llvm_fenv_testexcept()) {
2142 llvm_fenv_clearexcept();
2143 return nullptr;
2144 }
2145
2146 Constant *Output = GetConstantFoldFPValue(Result, Ty);
2147 if (DenormMode.Output == DenormalMode::DenormalModeKind::IEEE)
2148 return Output;
2149 const auto *CFP = static_cast<ConstantFP *>(Output);
2150 const auto Res = FlushWithDenormKind(CFP->getValueAPF(), DenormMode.Output);
2151 return ConstantFP::get(Ty->getContext(), Res);
2152}
2153
2154#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2155Constant *ConstantFoldFP128(float128 (*NativeFP)(float128), const APFloat &V,
2156 Type *Ty) {
2157 llvm_fenv_clearexcept();
2158 float128 Result = NativeFP(V.convertToQuad());
2159 if (llvm_fenv_testexcept()) {
2160 llvm_fenv_clearexcept();
2161 return nullptr;
2162 }
2163
2164 return GetConstantFoldFPValue128(Result, Ty);
2165}
2166#endif
2167
2168Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
2169 const APFloat &V, const APFloat &W, Type *Ty) {
2170 llvm_fenv_clearexcept();
2171 double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
2172 if (llvm_fenv_testexcept()) {
2173 llvm_fenv_clearexcept();
2174 return nullptr;
2175 }
2176
2177 return GetConstantFoldFPValue(Result, Ty);
2178}
2179
2180Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
2181 auto *OpVT = cast<VectorType>(Op->getType());
2182
2183 // This is the same as the underlying binops - poison propagates.
2184 if (Op->containsPoisonElement())
2185 return PoisonValue::get(OpVT->getElementType());
2186
2187 // Shortcut non-accumulating reductions.
2188 if (Constant *SplatVal = Op->getSplatValue()) {
2189 switch (IID) {
2190 case Intrinsic::vector_reduce_and:
2191 case Intrinsic::vector_reduce_or:
2192 case Intrinsic::vector_reduce_smin:
2193 case Intrinsic::vector_reduce_smax:
2194 case Intrinsic::vector_reduce_umin:
2195 case Intrinsic::vector_reduce_umax:
2196 return SplatVal;
2197 case Intrinsic::vector_reduce_add:
2198 if (SplatVal->isNullValue())
2199 return SplatVal;
2200 break;
2201 case Intrinsic::vector_reduce_mul:
2202 if (SplatVal->isNullValue() || SplatVal->isOneValue())
2203 return SplatVal;
2204 break;
2205 case Intrinsic::vector_reduce_xor:
2206 if (SplatVal->isNullValue())
2207 return SplatVal;
2208 if (OpVT->getElementCount().isKnownMultipleOf(2))
2209 return Constant::getNullValue(OpVT->getElementType());
2210 break;
2211 }
2212 }
2213
2215 if (!VT)
2216 return nullptr;
2217
2218 // TODO: Handle undef.
2219 auto *EltC = dyn_cast_or_null<ConstantInt>(Op->getAggregateElement(0U));
2220 if (!EltC)
2221 return nullptr;
2222
2223 APInt Acc = EltC->getValue();
2224 for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
2225 if (!(EltC = dyn_cast_or_null<ConstantInt>(Op->getAggregateElement(I))))
2226 return nullptr;
2227 const APInt &X = EltC->getValue();
2228 switch (IID) {
2229 case Intrinsic::vector_reduce_add:
2230 Acc = Acc + X;
2231 break;
2232 case Intrinsic::vector_reduce_mul:
2233 Acc = Acc * X;
2234 break;
2235 case Intrinsic::vector_reduce_and:
2236 Acc = Acc & X;
2237 break;
2238 case Intrinsic::vector_reduce_or:
2239 Acc = Acc | X;
2240 break;
2241 case Intrinsic::vector_reduce_xor:
2242 Acc = Acc ^ X;
2243 break;
2244 case Intrinsic::vector_reduce_smin:
2245 Acc = APIntOps::smin(Acc, X);
2246 break;
2247 case Intrinsic::vector_reduce_smax:
2248 Acc = APIntOps::smax(Acc, X);
2249 break;
2250 case Intrinsic::vector_reduce_umin:
2251 Acc = APIntOps::umin(Acc, X);
2252 break;
2253 case Intrinsic::vector_reduce_umax:
2254 Acc = APIntOps::umax(Acc, X);
2255 break;
2256 }
2257 }
2258
2259 return ConstantInt::get(Op->getContext(), Acc);
2260}
2261
2262/// Attempt to fold an SSE floating point to integer conversion of a constant
2263/// floating point. If roundTowardZero is false, the default IEEE rounding is
2264/// used (toward nearest, ties to even). This matches the behavior of the
2265/// non-truncating SSE instructions in the default rounding mode. The desired
2266/// integer type Ty is used to select how many bits are available for the
2267/// result. Returns null if the conversion cannot be performed, otherwise
2268/// returns the Constant value resulting from the conversion.
2269Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
2270 Type *Ty, bool IsSigned) {
2271 // All of these conversion intrinsics form an integer of at most 64bits.
2272 unsigned ResultWidth = Ty->getIntegerBitWidth();
2273 assert(ResultWidth <= 64 &&
2274 "Can only constant fold conversions to 64 and 32 bit ints");
2275
2276 uint64_t UIntVal;
2277 bool isExact = false;
2281 Val.convertToInteger(MutableArrayRef(UIntVal), ResultWidth,
2282 IsSigned, mode, &isExact);
2283 if (status != APFloat::opOK &&
2284 (!roundTowardZero || status != APFloat::opInexact))
2285 return nullptr;
2286 return ConstantInt::get(Ty, UIntVal, IsSigned);
2287}
2288
2289double getValueAsDouble(ConstantFP *Op) {
2290 Type *Ty = Op->getType();
2291
2292 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2293 return Op->getValueAPF().convertToDouble();
2294
2295 bool unused;
2296 APFloat APF = Op->getValueAPF();
2298 return APF.convertToDouble();
2299}
2300
2301static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
2302 if (auto *CI = dyn_cast<ConstantInt>(Op)) {
2303 C = &CI->getValue();
2304 return true;
2305 }
2306 if (isa<UndefValue>(Op)) {
2307 C = nullptr;
2308 return true;
2309 }
2310 return false;
2311}
2312
2313/// Checks if the given intrinsic call, which evaluates to constant, is allowed
2314/// to be folded.
2315///
2316/// \param CI Constrained intrinsic call.
2317/// \param St Exception flags raised during constant evaluation.
2318static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
2319 APFloat::opStatus St) {
2320 std::optional<RoundingMode> ORM = CI->getRoundingMode();
2321 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2322
2323 // If the operation does not change exception status flags, it is safe
2324 // to fold.
2325 if (St == APFloat::opStatus::opOK)
2326 return true;
2327
2328 // If evaluation raised FP exception, the result can depend on rounding
2329 // mode. If the latter is unknown, folding is not possible.
2330 if (ORM == RoundingMode::Dynamic)
2331 return false;
2332
2333 // If FP exceptions are ignored, fold the call, even if such exception is
2334 // raised.
2335 if (EB && *EB != fp::ExceptionBehavior::ebStrict)
2336 return true;
2337
2338 // Leave the calculation for runtime so that exception flags be correctly set
2339 // in hardware.
2340 return false;
2341}
2342
2343/// Returns the rounding mode that should be used for constant evaluation.
2344static RoundingMode
2345getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
2346 std::optional<RoundingMode> ORM = CI->getRoundingMode();
2347 if (!ORM || *ORM == RoundingMode::Dynamic)
2348 // Even if the rounding mode is unknown, try evaluating the operation.
2349 // If it does not raise inexact exception, rounding was not applied,
2350 // so the result is exact and does not depend on rounding mode. Whether
2351 // other FP exceptions are raised, it does not depend on rounding mode.
2353 return *ORM;
2354}
2355
2356/// Try to constant fold llvm.canonicalize for the given caller and value.
2357static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI,
2358 const APFloat &Src) {
2359 // Zero, positive and negative, is always OK to fold.
2360 if (Src.isZero()) {
2361 // Get a fresh 0, since ppc_fp128 does have non-canonical zeros.
2362 return ConstantFP::get(
2363 CI->getContext(),
2364 APFloat::getZero(Src.getSemantics(), Src.isNegative()));
2365 }
2366
2367 if (!Ty->isIEEELikeFPTy())
2368 return nullptr;
2369
2370 // Zero is always canonical and the sign must be preserved.
2371 //
2372 // Denorms and nans may have special encodings, but it should be OK to fold a
2373 // totally average number.
2374 if (Src.isNormal() || Src.isInfinity())
2375 return ConstantFP::get(CI->getContext(), Src);
2376
2377 if (Src.isDenormal() && CI->getParent() && CI->getFunction()) {
2378 DenormalMode DenormMode =
2379 CI->getFunction()->getDenormalMode(Src.getSemantics());
2380
2381 if (DenormMode == DenormalMode::getIEEE())
2382 return ConstantFP::get(CI->getContext(), Src);
2383
2384 if (DenormMode.Input == DenormalMode::Dynamic)
2385 return nullptr;
2386
2387 // If we know if either input or output is flushed, we can fold.
2388 if ((DenormMode.Input == DenormalMode::Dynamic &&
2389 DenormMode.Output == DenormalMode::IEEE) ||
2390 (DenormMode.Input == DenormalMode::IEEE &&
2391 DenormMode.Output == DenormalMode::Dynamic))
2392 return nullptr;
2393
2394 bool IsPositive =
2395 (!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero ||
2396 (DenormMode.Output == DenormalMode::PositiveZero &&
2397 DenormMode.Input == DenormalMode::IEEE));
2398
2399 return ConstantFP::get(CI->getContext(),
2400 APFloat::getZero(Src.getSemantics(), !IsPositive));
2401 }
2402
2403 return nullptr;
2404}
2405
2406static Constant *ConstantFoldScalarCall1(StringRef Name,
2407 Intrinsic::ID IntrinsicID,
2408 Type *Ty,
2409 ArrayRef<Constant *> Operands,
2410 const TargetLibraryInfo *TLI,
2411 const CallBase *Call) {
2412 assert(Operands.size() == 1 && "Wrong number of operands.");
2413
2414 if (IntrinsicID == Intrinsic::is_constant) {
2415 // We know we have a "Constant" argument. But we want to only
2416 // return true for manifest constants, not those that depend on
2417 // constants with unknowable values, e.g. GlobalValue or BlockAddress.
2418 if (Operands[0]->isManifestConstant())
2419 return ConstantInt::getTrue(Ty->getContext());
2420 return nullptr;
2421 }
2422
2423 if (isa<UndefValue>(Operands[0])) {
2424 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
2425 // ctpop() is between 0 and bitwidth, pick 0 for undef.
2426 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
2427 if (IntrinsicID == Intrinsic::cos ||
2428 IntrinsicID == Intrinsic::ctpop ||
2429 IntrinsicID == Intrinsic::fptoui_sat ||
2430 IntrinsicID == Intrinsic::fptosi_sat ||
2431 IntrinsicID == Intrinsic::canonicalize)
2432 return Constant::getNullValue(Ty);
2433 if (IntrinsicID == Intrinsic::bswap ||
2434 IntrinsicID == Intrinsic::bitreverse ||
2435 IntrinsicID == Intrinsic::launder_invariant_group ||
2436 IntrinsicID == Intrinsic::strip_invariant_group)
2437 return Operands[0];
2438 }
2439
2440 if (isa<ConstantPointerNull>(Operands[0])) {
2441 // launder(null) == null == strip(null) iff in addrspace 0
2442 if (IntrinsicID == Intrinsic::launder_invariant_group ||
2443 IntrinsicID == Intrinsic::strip_invariant_group) {
2444 // If instruction is not yet put in a basic block (e.g. when cloning
2445 // a function during inlining), Call's caller may not be available.
2446 // So check Call's BB first before querying Call->getCaller.
2447 const Function *Caller =
2448 Call->getParent() ? Call->getCaller() : nullptr;
2449 if (Caller &&
2451 Caller, Operands[0]->getType()->getPointerAddressSpace())) {
2452 return Operands[0];
2453 }
2454 return nullptr;
2455 }
2456 }
2457
2458 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
2459 APFloat U = Op->getValueAPF();
2460
2461 if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2462 IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2463 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2464
2465 if (U.isNaN())
2466 return nullptr;
2467
2468 unsigned Width = Ty->getIntegerBitWidth();
2469 APSInt Int(Width, !Signed);
2470 bool IsExact = false;
2472 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2473
2475 return ConstantInt::get(Ty, Int);
2476
2477 return nullptr;
2478 }
2479
2480 if (IntrinsicID == Intrinsic::fptoui_sat ||
2481 IntrinsicID == Intrinsic::fptosi_sat) {
2482 // convertToInteger() already has the desired saturation semantics.
2483 APSInt Int(Ty->getIntegerBitWidth(),
2484 IntrinsicID == Intrinsic::fptoui_sat);
2485 bool IsExact;
2486 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2487 return ConstantInt::get(Ty, Int);
2488 }
2489
2490 if (IntrinsicID == Intrinsic::canonicalize)
2491 return constantFoldCanonicalize(Ty, Call, U);
2492
2493#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2494 if (Ty->isFP128Ty()) {
2495 if (IntrinsicID == Intrinsic::log) {
2496 float128 Result = logf128(Op->getValueAPF().convertToQuad());
2497 return GetConstantFoldFPValue128(Result, Ty);
2498 }
2499
2500 LibFunc Fp128Func = NotLibFunc;
2501 if (TLI && TLI->getLibFunc(Name, Fp128Func) && TLI->has(Fp128Func) &&
2502 Fp128Func == LibFunc_logl)
2503 return ConstantFoldFP128(logf128, Op->getValueAPF(), Ty);
2504 }
2505#endif
2506
2507 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy() &&
2508 !Ty->isIntegerTy())
2509 return nullptr;
2510
2511 // Use internal versions of these intrinsics.
2512
2513 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint ||
2514 IntrinsicID == Intrinsic::roundeven) {
2515 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2516 return ConstantFP::get(Ty, U);
2517 }
2518
2519 if (IntrinsicID == Intrinsic::round) {
2520 U.roundToIntegral(APFloat::rmNearestTiesToAway);
2521 return ConstantFP::get(Ty, U);
2522 }
2523
2524 if (IntrinsicID == Intrinsic::roundeven) {
2525 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2526 return ConstantFP::get(Ty, U);
2527 }
2528
2529 if (IntrinsicID == Intrinsic::ceil) {
2530 U.roundToIntegral(APFloat::rmTowardPositive);
2531 return ConstantFP::get(Ty, U);
2532 }
2533
2534 if (IntrinsicID == Intrinsic::floor) {
2535 U.roundToIntegral(APFloat::rmTowardNegative);
2536 return ConstantFP::get(Ty, U);
2537 }
2538
2539 if (IntrinsicID == Intrinsic::trunc) {
2540 U.roundToIntegral(APFloat::rmTowardZero);
2541 return ConstantFP::get(Ty, U);
2542 }
2543
2544 if (IntrinsicID == Intrinsic::fabs) {
2545 U.clearSign();
2546 return ConstantFP::get(Ty, U);
2547 }
2548
2549 if (IntrinsicID == Intrinsic::amdgcn_fract) {
2550 // The v_fract instruction behaves like the OpenCL spec, which defines
2551 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
2552 // there to prevent fract(-small) from returning 1.0. It returns the
2553 // largest positive floating-point number less than 1.0."
2554 APFloat FloorU(U);
2555 FloorU.roundToIntegral(APFloat::rmTowardNegative);
2556 APFloat FractU(U - FloorU);
2557 APFloat AlmostOne(U.getSemantics(), 1);
2558 AlmostOne.next(/*nextDown*/ true);
2559 return ConstantFP::get(Ty, minimum(FractU, AlmostOne));
2560 }
2561
2562 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
2563 // raise FP exceptions, unless the argument is signaling NaN.
2564
2565 std::optional<APFloat::roundingMode> RM;
2566 switch (IntrinsicID) {
2567 default:
2568 break;
2569 case Intrinsic::experimental_constrained_nearbyint:
2570 case Intrinsic::experimental_constrained_rint: {
2572 RM = CI->getRoundingMode();
2573 if (!RM || *RM == RoundingMode::Dynamic)
2574 return nullptr;
2575 break;
2576 }
2577 case Intrinsic::experimental_constrained_round:
2579 break;
2580 case Intrinsic::experimental_constrained_ceil:
2582 break;
2583 case Intrinsic::experimental_constrained_floor:
2585 break;
2586 case Intrinsic::experimental_constrained_trunc:
2588 break;
2589 }
2590 if (RM) {
2592 if (U.isFinite()) {
2593 APFloat::opStatus St = U.roundToIntegral(*RM);
2594 if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2595 St == APFloat::opInexact) {
2596 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2597 if (EB == fp::ebStrict)
2598 return nullptr;
2599 }
2600 } else if (U.isSignaling()) {
2601 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2602 if (EB && *EB != fp::ebIgnore)
2603 return nullptr;
2604 U = APFloat::getQNaN(U.getSemantics());
2605 }
2606 return ConstantFP::get(Ty, U);
2607 }
2608
2609 // NVVM float/double to signed/unsigned int32/int64 conversions:
2610 switch (IntrinsicID) {
2611 // f2i
2612 case Intrinsic::nvvm_f2i_rm:
2613 case Intrinsic::nvvm_f2i_rn:
2614 case Intrinsic::nvvm_f2i_rp:
2615 case Intrinsic::nvvm_f2i_rz:
2616 case Intrinsic::nvvm_f2i_rm_ftz:
2617 case Intrinsic::nvvm_f2i_rn_ftz:
2618 case Intrinsic::nvvm_f2i_rp_ftz:
2619 case Intrinsic::nvvm_f2i_rz_ftz:
2620 // f2ui
2621 case Intrinsic::nvvm_f2ui_rm:
2622 case Intrinsic::nvvm_f2ui_rn:
2623 case Intrinsic::nvvm_f2ui_rp:
2624 case Intrinsic::nvvm_f2ui_rz:
2625 case Intrinsic::nvvm_f2ui_rm_ftz:
2626 case Intrinsic::nvvm_f2ui_rn_ftz:
2627 case Intrinsic::nvvm_f2ui_rp_ftz:
2628 case Intrinsic::nvvm_f2ui_rz_ftz:
2629 // d2i
2630 case Intrinsic::nvvm_d2i_rm:
2631 case Intrinsic::nvvm_d2i_rn:
2632 case Intrinsic::nvvm_d2i_rp:
2633 case Intrinsic::nvvm_d2i_rz:
2634 // d2ui
2635 case Intrinsic::nvvm_d2ui_rm:
2636 case Intrinsic::nvvm_d2ui_rn:
2637 case Intrinsic::nvvm_d2ui_rp:
2638 case Intrinsic::nvvm_d2ui_rz:
2639 // f2ll
2640 case Intrinsic::nvvm_f2ll_rm:
2641 case Intrinsic::nvvm_f2ll_rn:
2642 case Intrinsic::nvvm_f2ll_rp:
2643 case Intrinsic::nvvm_f2ll_rz:
2644 case Intrinsic::nvvm_f2ll_rm_ftz:
2645 case Intrinsic::nvvm_f2ll_rn_ftz:
2646 case Intrinsic::nvvm_f2ll_rp_ftz:
2647 case Intrinsic::nvvm_f2ll_rz_ftz:
2648 // f2ull
2649 case Intrinsic::nvvm_f2ull_rm:
2650 case Intrinsic::nvvm_f2ull_rn:
2651 case Intrinsic::nvvm_f2ull_rp:
2652 case Intrinsic::nvvm_f2ull_rz:
2653 case Intrinsic::nvvm_f2ull_rm_ftz:
2654 case Intrinsic::nvvm_f2ull_rn_ftz:
2655 case Intrinsic::nvvm_f2ull_rp_ftz:
2656 case Intrinsic::nvvm_f2ull_rz_ftz:
2657 // d2ll
2658 case Intrinsic::nvvm_d2ll_rm:
2659 case Intrinsic::nvvm_d2ll_rn:
2660 case Intrinsic::nvvm_d2ll_rp:
2661 case Intrinsic::nvvm_d2ll_rz:
2662 // d2ull
2663 case Intrinsic::nvvm_d2ull_rm:
2664 case Intrinsic::nvvm_d2ull_rn:
2665 case Intrinsic::nvvm_d2ull_rp:
2666 case Intrinsic::nvvm_d2ull_rz: {
2667 // In float-to-integer conversion, NaN inputs are converted to 0.
2668 if (U.isNaN()) {
2669 // In float-to-integer conversion, NaN inputs are converted to 0
2670 // when the source and destination bitwidths are both less than 64.
2671 if (nvvm::FPToIntegerIntrinsicNaNZero(IntrinsicID))
2672 return ConstantInt::get(Ty, 0);
2673
2674 // Otherwise, the most significant bit is set.
2675 unsigned BitWidth = Ty->getIntegerBitWidth();
2676 uint64_t Val = 1ULL << (BitWidth - 1);
2677 return ConstantInt::get(Ty, APInt(BitWidth, Val, /*IsSigned=*/false));
2678 }
2679
2680 APFloat::roundingMode RMode =
2682 bool IsFTZ = nvvm::FPToIntegerIntrinsicShouldFTZ(IntrinsicID);
2683 bool IsSigned = nvvm::FPToIntegerIntrinsicResultIsSigned(IntrinsicID);
2684
2685 APSInt ResInt(Ty->getIntegerBitWidth(), !IsSigned);
2686 auto FloatToRound = IsFTZ ? FTZPreserveSign(U) : U;
2687
2688 // Return max/min value for integers if the result is +/-inf or
2689 // is too large to fit in the result's integer bitwidth.
2690 bool IsExact = false;
2691 FloatToRound.convertToInteger(ResInt, RMode, &IsExact);
2692 return ConstantInt::get(Ty, ResInt);
2693 }
2694 }
2695
2696 /// We only fold functions with finite arguments. Folding NaN and inf is
2697 /// likely to be aborted with an exception anyway, and some host libms
2698 /// have known errors raising exceptions.
2699 if (!U.isFinite())
2700 return nullptr;
2701
2702 /// Currently APFloat versions of these functions do not exist, so we use
2703 /// the host native double versions. Float versions are not called
2704 /// directly but for all these it is true (float)(f((double)arg)) ==
2705 /// f(arg). Long double not supported yet.
2706 const APFloat &APF = Op->getValueAPF();
2707
2708 switch (IntrinsicID) {
2709 default: break;
2710 case Intrinsic::log:
2711 if (U.isZero())
2712 return ConstantFP::getInfinity(Ty, true);
2713 if (U.isNegative())
2714 return ConstantFP::getNaN(Ty);
2715 if (U.isExactlyValue(1.0))
2716 return ConstantFP::getZero(Ty);
2717 return ConstantFoldFP(log, APF, Ty);
2718 case Intrinsic::log2:
2719 if (U.isZero())
2720 return ConstantFP::getInfinity(Ty, true);
2721 if (U.isNegative())
2722 return ConstantFP::getNaN(Ty);
2723 if (U.isExactlyValue(1.0))
2724 return ConstantFP::getZero(Ty);
2725 // TODO: What about hosts that lack a C99 library?
2726 return ConstantFoldFP(log2, APF, Ty);
2727 case Intrinsic::log10:
2728 if (U.isZero())
2729 return ConstantFP::getInfinity(Ty, true);
2730 if (U.isNegative())
2731 return ConstantFP::getNaN(Ty);
2732 if (U.isExactlyValue(1.0))
2733 return ConstantFP::getZero(Ty);
2734 // TODO: What about hosts that lack a C99 library?
2735 return ConstantFoldFP(log10, APF, Ty);
2736 case Intrinsic::exp:
2737 return ConstantFoldFP(exp, APF, Ty);
2738 case Intrinsic::exp2:
2739 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2740 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2741 case Intrinsic::exp10:
2742 // Fold exp10(x) as pow(10, x), in case the host lacks a C99 library.
2743 return ConstantFoldBinaryFP(pow, APFloat(10.0), APF, Ty);
2744 case Intrinsic::sin:
2745 return ConstantFoldFP(sin, APF, Ty);
2746 case Intrinsic::cos:
2747 return ConstantFoldFP(cos, APF, Ty);
2748 case Intrinsic::sinh:
2749 return ConstantFoldFP(sinh, APF, Ty);
2750 case Intrinsic::cosh:
2751 return ConstantFoldFP(cosh, APF, Ty);
2752 case Intrinsic::atan:
2753 // Implement optional behavior from C's Annex F for +/-0.0.
2754 if (U.isZero())
2755 return ConstantFP::get(Ty, U);
2756 return ConstantFoldFP(atan, APF, Ty);
2757 case Intrinsic::sqrt:
2758 return ConstantFoldFP(sqrt, APF, Ty);
2759
2760 // NVVM Intrinsics:
2761 case Intrinsic::nvvm_ceil_ftz_f:
2762 case Intrinsic::nvvm_ceil_f:
2763 case Intrinsic::nvvm_ceil_d:
2764 return ConstantFoldFP(
2765 ceil, APF, Ty,
2767 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2768
2769 case Intrinsic::nvvm_fabs_ftz:
2770 case Intrinsic::nvvm_fabs:
2771 return ConstantFoldFP(
2772 fabs, APF, Ty,
2774 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2775
2776 case Intrinsic::nvvm_floor_ftz_f:
2777 case Intrinsic::nvvm_floor_f:
2778 case Intrinsic::nvvm_floor_d:
2779 return ConstantFoldFP(
2780 floor, APF, Ty,
2782 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2783
2784 case Intrinsic::nvvm_rcp_rm_ftz_f:
2785 case Intrinsic::nvvm_rcp_rn_ftz_f:
2786 case Intrinsic::nvvm_rcp_rp_ftz_f:
2787 case Intrinsic::nvvm_rcp_rz_ftz_f:
2788 case Intrinsic::nvvm_rcp_rm_d:
2789 case Intrinsic::nvvm_rcp_rm_f:
2790 case Intrinsic::nvvm_rcp_rn_d:
2791 case Intrinsic::nvvm_rcp_rn_f:
2792 case Intrinsic::nvvm_rcp_rp_d:
2793 case Intrinsic::nvvm_rcp_rp_f:
2794 case Intrinsic::nvvm_rcp_rz_d:
2795 case Intrinsic::nvvm_rcp_rz_f: {
2796 APFloat::roundingMode RoundMode = nvvm::GetRCPRoundingMode(IntrinsicID);
2797 bool IsFTZ = nvvm::RCPShouldFTZ(IntrinsicID);
2798
2799 auto Denominator = IsFTZ ? FTZPreserveSign(APF) : APF;
2801 APFloat::opStatus Status = Res.divide(Denominator, RoundMode);
2802
2804 if (IsFTZ)
2805 Res = FTZPreserveSign(Res);
2806 return ConstantFP::get(Ty, Res);
2807 }
2808 return nullptr;
2809 }
2810
2811 case Intrinsic::nvvm_round_ftz_f:
2812 case Intrinsic::nvvm_round_f:
2813 case Intrinsic::nvvm_round_d: {
2814 // nvvm_round is lowered to PTX cvt.rni, which will round to nearest
2815 // integer, choosing even integer if source is equidistant between two
2816 // integers, so the semantics are closer to "rint" rather than "round".
2817 bool IsFTZ = nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID);
2818 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2820 return ConstantFP::get(Ty, V);
2821 }
2822
2823 case Intrinsic::nvvm_saturate_ftz_f:
2824 case Intrinsic::nvvm_saturate_d:
2825 case Intrinsic::nvvm_saturate_f: {
2826 bool IsFTZ = nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID);
2827 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2828 if (V.isNegative() || V.isZero() || V.isNaN())
2829 return ConstantFP::getZero(Ty);
2831 if (V > One)
2832 return ConstantFP::get(Ty, One);
2833 return ConstantFP::get(Ty, APF);
2834 }
2835
2836 case Intrinsic::nvvm_sqrt_rn_ftz_f:
2837 case Intrinsic::nvvm_sqrt_f:
2838 case Intrinsic::nvvm_sqrt_rn_d:
2839 case Intrinsic::nvvm_sqrt_rn_f:
2840 if (APF.isNegative())
2841 return nullptr;
2842 return ConstantFoldFP(
2843 sqrt, APF, Ty,
2845 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2846
2847 // AMDGCN Intrinsics:
2848 case Intrinsic::amdgcn_cos:
2849 case Intrinsic::amdgcn_sin: {
2850 double V = getValueAsDouble(Op);
2851 if (V < -256.0 || V > 256.0)
2852 // The gfx8 and gfx9 architectures handle arguments outside the range
2853 // [-256, 256] differently. This should be a rare case so bail out
2854 // rather than trying to handle the difference.
2855 return nullptr;
2856 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2857 double V4 = V * 4.0;
2858 if (V4 == floor(V4)) {
2859 // Force exact results for quarter-integer inputs.
2860 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2861 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2862 } else {
2863 if (IsCos)
2864 V = cos(V * 2.0 * numbers::pi);
2865 else
2866 V = sin(V * 2.0 * numbers::pi);
2867 }
2868 return GetConstantFoldFPValue(V, Ty);
2869 }
2870 }
2871
2872 if (!TLI)
2873 return nullptr;
2874
2875 LibFunc Func = NotLibFunc;
2876 if (!TLI->getLibFunc(Name, Func))
2877 return nullptr;
2878
2879 switch (Func) {
2880 default:
2881 break;
2882 case LibFunc_acos:
2883 case LibFunc_acosf:
2884 case LibFunc_acos_finite:
2885 case LibFunc_acosf_finite:
2886 if (TLI->has(Func))
2887 return ConstantFoldFP(acos, APF, Ty);
2888 break;
2889 case LibFunc_asin:
2890 case LibFunc_asinf:
2891 case LibFunc_asin_finite:
2892 case LibFunc_asinf_finite:
2893 if (TLI->has(Func))
2894 return ConstantFoldFP(asin, APF, Ty);
2895 break;
2896 case LibFunc_atan:
2897 case LibFunc_atanf:
2898 // Implement optional behavior from C's Annex F for +/-0.0.
2899 if (U.isZero())
2900 return ConstantFP::get(Ty, U);
2901 if (TLI->has(Func))
2902 return ConstantFoldFP(atan, APF, Ty);
2903 break;
2904 case LibFunc_ceil:
2905 case LibFunc_ceilf:
2906 if (TLI->has(Func)) {
2907 U.roundToIntegral(APFloat::rmTowardPositive);
2908 return ConstantFP::get(Ty, U);
2909 }
2910 break;
2911 case LibFunc_cos:
2912 case LibFunc_cosf:
2913 if (TLI->has(Func))
2914 return ConstantFoldFP(cos, APF, Ty);
2915 break;
2916 case LibFunc_cosh:
2917 case LibFunc_coshf:
2918 case LibFunc_cosh_finite:
2919 case LibFunc_coshf_finite:
2920 if (TLI->has(Func))
2921 return ConstantFoldFP(cosh, APF, Ty);
2922 break;
2923 case LibFunc_exp:
2924 case LibFunc_expf:
2925 case LibFunc_exp_finite:
2926 case LibFunc_expf_finite:
2927 if (TLI->has(Func))
2928 return ConstantFoldFP(exp, APF, Ty);
2929 break;
2930 case LibFunc_exp2:
2931 case LibFunc_exp2f:
2932 case LibFunc_exp2_finite:
2933 case LibFunc_exp2f_finite:
2934 if (TLI->has(Func))
2935 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2936 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2937 break;
2938 case LibFunc_fabs:
2939 case LibFunc_fabsf:
2940 if (TLI->has(Func)) {
2941 U.clearSign();
2942 return ConstantFP::get(Ty, U);
2943 }
2944 break;
2945 case LibFunc_floor:
2946 case LibFunc_floorf:
2947 if (TLI->has(Func)) {
2948 U.roundToIntegral(APFloat::rmTowardNegative);
2949 return ConstantFP::get(Ty, U);
2950 }
2951 break;
2952 case LibFunc_log:
2953 case LibFunc_logf:
2954 case LibFunc_log_finite:
2955 case LibFunc_logf_finite:
2956 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2957 return ConstantFoldFP(log, APF, Ty);
2958 break;
2959 case LibFunc_log2:
2960 case LibFunc_log2f:
2961 case LibFunc_log2_finite:
2962 case LibFunc_log2f_finite:
2963 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2964 // TODO: What about hosts that lack a C99 library?
2965 return ConstantFoldFP(log2, APF, Ty);
2966 break;
2967 case LibFunc_log10:
2968 case LibFunc_log10f:
2969 case LibFunc_log10_finite:
2970 case LibFunc_log10f_finite:
2971 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2972 // TODO: What about hosts that lack a C99 library?
2973 return ConstantFoldFP(log10, APF, Ty);
2974 break;
2975 case LibFunc_ilogb:
2976 case LibFunc_ilogbf:
2977 if (!APF.isZero() && TLI->has(Func))
2978 return ConstantInt::get(Ty, ilogb(APF), true);
2979 break;
2980 case LibFunc_logb:
2981 case LibFunc_logbf:
2982 if (!APF.isZero() && TLI->has(Func))
2983 return ConstantFoldFP(logb, APF, Ty);
2984 break;
2985 case LibFunc_log1p:
2986 case LibFunc_log1pf:
2987 // Implement optional behavior from C's Annex F for +/-0.0.
2988 if (U.isZero())
2989 return ConstantFP::get(Ty, U);
2990 if (APF > APFloat::getOne(APF.getSemantics(), true) && TLI->has(Func))
2991 return ConstantFoldFP(log1p, APF, Ty);
2992 break;
2993 case LibFunc_logl:
2994 return nullptr;
2995 case LibFunc_erf:
2996 case LibFunc_erff:
2997 if (TLI->has(Func))
2998 return ConstantFoldFP(erf, APF, Ty);
2999 break;
3000 case LibFunc_nearbyint:
3001 case LibFunc_nearbyintf:
3002 case LibFunc_rint:
3003 case LibFunc_rintf:
3004 case LibFunc_roundeven:
3005 case LibFunc_roundevenf:
3006 if (TLI->has(Func)) {
3007 U.roundToIntegral(APFloat::rmNearestTiesToEven);
3008 return ConstantFP::get(Ty, U);
3009 }
3010 break;
3011 case LibFunc_round:
3012 case LibFunc_roundf:
3013 if (TLI->has(Func)) {
3014 U.roundToIntegral(APFloat::rmNearestTiesToAway);
3015 return ConstantFP::get(Ty, U);
3016 }
3017 break;
3018 case LibFunc_sin:
3019 case LibFunc_sinf:
3020 if (TLI->has(Func))
3021 return ConstantFoldFP(sin, APF, Ty);
3022 break;
3023 case LibFunc_sinh:
3024 case LibFunc_sinhf:
3025 case LibFunc_sinh_finite:
3026 case LibFunc_sinhf_finite:
3027 if (TLI->has(Func))
3028 return ConstantFoldFP(sinh, APF, Ty);
3029 break;
3030 case LibFunc_sqrt:
3031 case LibFunc_sqrtf:
3032 if (!APF.isNegative() && TLI->has(Func))
3033 return ConstantFoldFP(sqrt, APF, Ty);
3034 break;
3035 case LibFunc_tan:
3036 case LibFunc_tanf:
3037 if (TLI->has(Func))
3038 return ConstantFoldFP(tan, APF, Ty);
3039 break;
3040 case LibFunc_tanh:
3041 case LibFunc_tanhf:
3042 if (TLI->has(Func))
3043 return ConstantFoldFP(tanh, APF, Ty);
3044 break;
3045 case LibFunc_trunc:
3046 case LibFunc_truncf:
3047 if (TLI->has(Func)) {
3048 U.roundToIntegral(APFloat::rmTowardZero);
3049 return ConstantFP::get(Ty, U);
3050 }
3051 break;
3052 }
3053 return nullptr;
3054 }
3055
3056 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
3057 switch (IntrinsicID) {
3058 case Intrinsic::bswap:
3059 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
3060 case Intrinsic::ctpop:
3061 return ConstantInt::get(Ty, Op->getValue().popcount());
3062 case Intrinsic::bitreverse:
3063 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
3064 case Intrinsic::amdgcn_s_wqm: {
3065 uint64_t Val = Op->getZExtValue();
3066 Val |= (Val & 0x5555555555555555ULL) << 1 |
3067 ((Val >> 1) & 0x5555555555555555ULL);
3068 Val |= (Val & 0x3333333333333333ULL) << 2 |
3069 ((Val >> 2) & 0x3333333333333333ULL);
3070 return ConstantInt::get(Ty, Val);
3071 }
3072
3073 case Intrinsic::amdgcn_s_quadmask: {
3074 uint64_t Val = Op->getZExtValue();
3075 uint64_t QuadMask = 0;
3076 for (unsigned I = 0; I < Op->getBitWidth() / 4; ++I, Val >>= 4) {
3077 if (!(Val & 0xF))
3078 continue;
3079
3080 QuadMask |= (1ULL << I);
3081 }
3082 return ConstantInt::get(Ty, QuadMask);
3083 }
3084
3085 case Intrinsic::amdgcn_s_bitreplicate: {
3086 uint64_t Val = Op->getZExtValue();
3087 Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16;
3088 Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8;
3089 Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4;
3090 Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2;
3091 Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1;
3092 Val = Val | Val << 1;
3093 return ConstantInt::get(Ty, Val);
3094 }
3095 }
3096 }
3097
3098 if (Operands[0]->getType()->isVectorTy()) {
3099 auto *Op = cast<Constant>(Operands[0]);
3100 switch (IntrinsicID) {
3101 default: break;
3102 case Intrinsic::vector_reduce_add:
3103 case Intrinsic::vector_reduce_mul:
3104 case Intrinsic::vector_reduce_and:
3105 case Intrinsic::vector_reduce_or:
3106 case Intrinsic::vector_reduce_xor:
3107 case Intrinsic::vector_reduce_smin:
3108 case Intrinsic::vector_reduce_smax:
3109 case Intrinsic::vector_reduce_umin:
3110 case Intrinsic::vector_reduce_umax:
3111 if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
3112 return C;
3113 break;
3114 case Intrinsic::x86_sse_cvtss2si:
3115 case Intrinsic::x86_sse_cvtss2si64:
3116 case Intrinsic::x86_sse2_cvtsd2si:
3117 case Intrinsic::x86_sse2_cvtsd2si64:
3118 if (ConstantFP *FPOp =
3119 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3120 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3121 /*roundTowardZero=*/false, Ty,
3122 /*IsSigned*/true);
3123 break;
3124 case Intrinsic::x86_sse_cvttss2si:
3125 case Intrinsic::x86_sse_cvttss2si64:
3126 case Intrinsic::x86_sse2_cvttsd2si:
3127 case Intrinsic::x86_sse2_cvttsd2si64:
3128 if (ConstantFP *FPOp =
3129 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3130 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3131 /*roundTowardZero=*/true, Ty,
3132 /*IsSigned*/true);
3133 break;
3134
3135 case Intrinsic::wasm_anytrue:
3136 return Op->isZeroValue() ? ConstantInt::get(Ty, 0)
3137 : ConstantInt::get(Ty, 1);
3138
3139 case Intrinsic::wasm_alltrue:
3140 // Check each element individually
3141 unsigned E = cast<FixedVectorType>(Op->getType())->getNumElements();
3142 for (unsigned I = 0; I != E; ++I) {
3143 Constant *Elt = Op->getAggregateElement(I);
3144 // Return false as soon as we find a non-true element.
3145 if (Elt && Elt->isZeroValue())
3146 return ConstantInt::get(Ty, 0);
3147 // Bail as soon as we find an element we cannot prove to be true.
3148 if (!Elt || !isa<ConstantInt>(Elt))
3149 return nullptr;
3150 }
3151
3152 return ConstantInt::get(Ty, 1);
3153 }
3154 }
3155
3156 return nullptr;
3157}
3158
3159static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2,
3163 FCmpInst::Predicate Cond = FCmp->getPredicate();
3164 if (FCmp->isSignaling()) {
3165 if (Op1.isNaN() || Op2.isNaN())
3167 } else {
3168 if (Op1.isSignaling() || Op2.isSignaling())
3170 }
3171 bool Result = FCmpInst::compare(Op1, Op2, Cond);
3172 if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St))
3173 return ConstantInt::get(Call->getType()->getScalarType(), Result);
3174 return nullptr;
3175}
3176
3177static Constant *ConstantFoldLibCall2(StringRef Name, Type *Ty,
3178 ArrayRef<Constant *> Operands,
3179 const TargetLibraryInfo *TLI) {
3180 if (!TLI)
3181 return nullptr;
3182
3183 LibFunc Func = NotLibFunc;
3184 if (!TLI->getLibFunc(Name, Func))
3185 return nullptr;
3186
3187 const auto *Op1 = dyn_cast<ConstantFP>(Operands[0]);
3188 if (!Op1)
3189 return nullptr;
3190
3191 const auto *Op2 = dyn_cast<ConstantFP>(Operands[1]);
3192 if (!Op2)
3193 return nullptr;
3194
3195 const APFloat &Op1V = Op1->getValueAPF();
3196 const APFloat &Op2V = Op2->getValueAPF();
3197
3198 switch (Func) {
3199 default:
3200 break;
3201 case LibFunc_pow:
3202 case LibFunc_powf:
3203 case LibFunc_pow_finite:
3204 case LibFunc_powf_finite:
3205 if (TLI->has(Func))
3206 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3207 break;
3208 case LibFunc_fmod:
3209 case LibFunc_fmodf:
3210 if (TLI->has(Func)) {
3211 APFloat V = Op1->getValueAPF();
3212 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
3213 return ConstantFP::get(Ty, V);
3214 }
3215 break;
3216 case LibFunc_remainder:
3217 case LibFunc_remainderf:
3218 if (TLI->has(Func)) {
3219 APFloat V = Op1->getValueAPF();
3220 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
3221 return ConstantFP::get(Ty, V);
3222 }
3223 break;
3224 case LibFunc_atan2:
3225 case LibFunc_atan2f:
3226 // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm
3227 // (Solaris), so we do not assume a known result for that.
3228 if (Op1V.isZero() && Op2V.isZero())
3229 return nullptr;
3230 [[fallthrough]];
3231 case LibFunc_atan2_finite:
3232 case LibFunc_atan2f_finite:
3233 if (TLI->has(Func))
3234 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
3235 break;
3236 }
3237
3238 return nullptr;
3239}
3240
3241static Constant *ConstantFoldIntrinsicCall2(Intrinsic::ID IntrinsicID, Type *Ty,
3242 ArrayRef<Constant *> Operands,
3243 const CallBase *Call) {
3244 assert(Operands.size() == 2 && "Wrong number of operands.");
3245
3246 if (Ty->isFloatingPointTy()) {
3247 // TODO: We should have undef handling for all of the FP intrinsics that
3248 // are attempted to be folded in this function.
3249 bool IsOp0Undef = isa<UndefValue>(Operands[0]);
3250 bool IsOp1Undef = isa<UndefValue>(Operands[1]);
3251 switch (IntrinsicID) {
3252 case Intrinsic::maxnum:
3253 case Intrinsic::minnum:
3254 case Intrinsic::maximum:
3255 case Intrinsic::minimum:
3256 case Intrinsic::maximumnum:
3257 case Intrinsic::minimumnum:
3258 case Intrinsic::nvvm_fmax_d:
3259 case Intrinsic::nvvm_fmin_d:
3260 // If one argument is undef, return the other argument.
3261 if (IsOp0Undef)
3262 return Operands[1];
3263 if (IsOp1Undef)
3264 return Operands[0];
3265 break;
3266
3267 case Intrinsic::nvvm_fmax_f:
3268 case Intrinsic::nvvm_fmax_ftz_f:
3269 case Intrinsic::nvvm_fmax_ftz_nan_f:
3270 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3271 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3272 case Intrinsic::nvvm_fmax_nan_f:
3273 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3274 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3275
3276 case Intrinsic::nvvm_fmin_f:
3277 case Intrinsic::nvvm_fmin_ftz_f:
3278 case Intrinsic::nvvm_fmin_ftz_nan_f:
3279 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3280 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3281 case Intrinsic::nvvm_fmin_nan_f:
3282 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3283 case Intrinsic::nvvm_fmin_xorsign_abs_f:
3284 // If one arg is undef, the other arg can be returned only if it is
3285 // constant, as we may need to flush it to sign-preserving zero or
3286 // canonicalize the NaN.
3287 if (!IsOp0Undef && !IsOp1Undef)
3288 break;
3289 if (auto *Op = dyn_cast<ConstantFP>(Operands[IsOp0Undef ? 1 : 0])) {
3290 if (Op->isNaN()) {
3291 APInt NVCanonicalNaN(32, 0x7fffffff);
3292 return ConstantFP::get(
3293 Ty, APFloat(Ty->getFltSemantics(), NVCanonicalNaN));
3294 }
3295 if (nvvm::FMinFMaxShouldFTZ(IntrinsicID))
3296 return ConstantFP::get(Ty, FTZPreserveSign(Op->getValueAPF()));
3297 else
3298 return Op;
3299 }
3300 break;
3301 }
3302 }
3303
3304 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
3305 const APFloat &Op1V = Op1->getValueAPF();
3306
3307 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
3308 if (Op2->getType() != Op1->getType())
3309 return nullptr;
3310 const APFloat &Op2V = Op2->getValueAPF();
3311
3312 if (const auto *ConstrIntr =
3314 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
3315 APFloat Res = Op1V;
3317 switch (IntrinsicID) {
3318 default:
3319 return nullptr;
3320 case Intrinsic::experimental_constrained_fadd:
3321 St = Res.add(Op2V, RM);
3322 break;
3323 case Intrinsic::experimental_constrained_fsub:
3324 St = Res.subtract(Op2V, RM);
3325 break;
3326 case Intrinsic::experimental_constrained_fmul:
3327 St = Res.multiply(Op2V, RM);
3328 break;
3329 case Intrinsic::experimental_constrained_fdiv:
3330 St = Res.divide(Op2V, RM);
3331 break;
3332 case Intrinsic::experimental_constrained_frem:
3333 St = Res.mod(Op2V);
3334 break;
3335 case Intrinsic::experimental_constrained_fcmp:
3336 case Intrinsic::experimental_constrained_fcmps:
3337 return evaluateCompare(Op1V, Op2V, ConstrIntr);
3338 }
3339 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
3340 St))
3341 return ConstantFP::get(Ty, Res);
3342 return nullptr;
3343 }
3344
3345 switch (IntrinsicID) {
3346 default:
3347 break;
3348 case Intrinsic::copysign:
3349 return ConstantFP::get(Ty, APFloat::copySign(Op1V, Op2V));
3350 case Intrinsic::minnum:
3351 if (Op1V.isSignaling() || Op2V.isSignaling())
3352 return nullptr;
3353 return ConstantFP::get(Ty, minnum(Op1V, Op2V));
3354 case Intrinsic::maxnum:
3355 if (Op1V.isSignaling() || Op2V.isSignaling())
3356 return nullptr;
3357 return ConstantFP::get(Ty, maxnum(Op1V, Op2V));
3358 case Intrinsic::minimum:
3359 return ConstantFP::get(Ty, minimum(Op1V, Op2V));
3360 case Intrinsic::maximum:
3361 return ConstantFP::get(Ty, maximum(Op1V, Op2V));
3362 case Intrinsic::minimumnum:
3363 return ConstantFP::get(Ty, minimumnum(Op1V, Op2V));
3364 case Intrinsic::maximumnum:
3365 return ConstantFP::get(Ty, maximumnum(Op1V, Op2V));
3366
3367 case Intrinsic::nvvm_fmax_d:
3368 case Intrinsic::nvvm_fmax_f:
3369 case Intrinsic::nvvm_fmax_ftz_f:
3370 case Intrinsic::nvvm_fmax_ftz_nan_f:
3371 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3372 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3373 case Intrinsic::nvvm_fmax_nan_f:
3374 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3375 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3376
3377 case Intrinsic::nvvm_fmin_d:
3378 case Intrinsic::nvvm_fmin_f:
3379 case Intrinsic::nvvm_fmin_ftz_f:
3380 case Intrinsic::nvvm_fmin_ftz_nan_f:
3381 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3382 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3383 case Intrinsic::nvvm_fmin_nan_f:
3384 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3385 case Intrinsic::nvvm_fmin_xorsign_abs_f: {
3386
3387 bool ShouldCanonicalizeNaNs = !(IntrinsicID == Intrinsic::nvvm_fmax_d ||
3388 IntrinsicID == Intrinsic::nvvm_fmin_d);
3389 bool IsFTZ = nvvm::FMinFMaxShouldFTZ(IntrinsicID);
3390 bool IsNaNPropagating = nvvm::FMinFMaxPropagatesNaNs(IntrinsicID);
3391 bool IsXorSignAbs = nvvm::FMinFMaxIsXorSignAbs(IntrinsicID);
3392
3393 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3394 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3395
3396 bool XorSign = false;
3397 if (IsXorSignAbs) {
3398 XorSign = A.isNegative() ^ B.isNegative();
3399 A = abs(A);
3400 B = abs(B);
3401 }
3402
3403 bool IsFMax = false;
3404 switch (IntrinsicID) {
3405 case Intrinsic::nvvm_fmax_d:
3406 case Intrinsic::nvvm_fmax_f:
3407 case Intrinsic::nvvm_fmax_ftz_f:
3408 case Intrinsic::nvvm_fmax_ftz_nan_f:
3409 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3410 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3411 case Intrinsic::nvvm_fmax_nan_f:
3412 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3413 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3414 IsFMax = true;
3415 break;
3416 }
3417 APFloat Res = IsFMax ? maximum(A, B) : minimum(A, B);
3418
3419 if (ShouldCanonicalizeNaNs) {
3420 APFloat NVCanonicalNaN(Res.getSemantics(), APInt(32, 0x7fffffff));
3421 if (A.isNaN() && B.isNaN())
3422 return ConstantFP::get(Ty, NVCanonicalNaN);
3423 else if (IsNaNPropagating && (A.isNaN() || B.isNaN()))
3424 return ConstantFP::get(Ty, NVCanonicalNaN);
3425 }
3426
3427 if (A.isNaN() && B.isNaN())
3428 return Operands[1];
3429 else if (A.isNaN())
3430 Res = B;
3431 else if (B.isNaN())
3432 Res = A;
3433
3434 if (IsXorSignAbs && XorSign != Res.isNegative())
3435 Res.changeSign();
3436
3437 return ConstantFP::get(Ty, Res);
3438 }
3439
3440 case Intrinsic::nvvm_add_rm_f:
3441 case Intrinsic::nvvm_add_rn_f:
3442 case Intrinsic::nvvm_add_rp_f:
3443 case Intrinsic::nvvm_add_rz_f:
3444 case Intrinsic::nvvm_add_rm_d:
3445 case Intrinsic::nvvm_add_rn_d:
3446 case Intrinsic::nvvm_add_rp_d:
3447 case Intrinsic::nvvm_add_rz_d:
3448 case Intrinsic::nvvm_add_rm_ftz_f:
3449 case Intrinsic::nvvm_add_rn_ftz_f:
3450 case Intrinsic::nvvm_add_rp_ftz_f:
3451 case Intrinsic::nvvm_add_rz_ftz_f: {
3452
3453 bool IsFTZ = nvvm::FAddShouldFTZ(IntrinsicID);
3454 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3455 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3456
3457 APFloat::roundingMode RoundMode =
3458 nvvm::GetFAddRoundingMode(IntrinsicID);
3459
3460 APFloat Res = A;
3461 APFloat::opStatus Status = Res.add(B, RoundMode);
3462
3463 if (!Res.isNaN() &&
3465 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3466 return ConstantFP::get(Ty, Res);
3467 }
3468 return nullptr;
3469 }
3470
3471 case Intrinsic::nvvm_mul_rm_f:
3472 case Intrinsic::nvvm_mul_rn_f:
3473 case Intrinsic::nvvm_mul_rp_f:
3474 case Intrinsic::nvvm_mul_rz_f:
3475 case Intrinsic::nvvm_mul_rm_d:
3476 case Intrinsic::nvvm_mul_rn_d:
3477 case Intrinsic::nvvm_mul_rp_d:
3478 case Intrinsic::nvvm_mul_rz_d:
3479 case Intrinsic::nvvm_mul_rm_ftz_f:
3480 case Intrinsic::nvvm_mul_rn_ftz_f:
3481 case Intrinsic::nvvm_mul_rp_ftz_f:
3482 case Intrinsic::nvvm_mul_rz_ftz_f: {
3483
3484 bool IsFTZ = nvvm::FMulShouldFTZ(IntrinsicID);
3485 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3486 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3487
3488 APFloat::roundingMode RoundMode =
3489 nvvm::GetFMulRoundingMode(IntrinsicID);
3490
3491 APFloat Res = A;
3492 APFloat::opStatus Status = Res.multiply(B, RoundMode);
3493
3494 if (!Res.isNaN() &&
3496 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3497 return ConstantFP::get(Ty, Res);
3498 }
3499 return nullptr;
3500 }
3501
3502 case Intrinsic::nvvm_div_rm_f:
3503 case Intrinsic::nvvm_div_rn_f:
3504 case Intrinsic::nvvm_div_rp_f:
3505 case Intrinsic::nvvm_div_rz_f:
3506 case Intrinsic::nvvm_div_rm_d:
3507 case Intrinsic::nvvm_div_rn_d:
3508 case Intrinsic::nvvm_div_rp_d:
3509 case Intrinsic::nvvm_div_rz_d:
3510 case Intrinsic::nvvm_div_rm_ftz_f:
3511 case Intrinsic::nvvm_div_rn_ftz_f:
3512 case Intrinsic::nvvm_div_rp_ftz_f:
3513 case Intrinsic::nvvm_div_rz_ftz_f: {
3514 bool IsFTZ = nvvm::FDivShouldFTZ(IntrinsicID);
3515 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3516 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3517 APFloat::roundingMode RoundMode =
3518 nvvm::GetFDivRoundingMode(IntrinsicID);
3519
3520 APFloat Res = A;
3521 APFloat::opStatus Status = Res.divide(B, RoundMode);
3522 if (!Res.isNaN() &&
3524 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3525 return ConstantFP::get(Ty, Res);
3526 }
3527 return nullptr;
3528 }
3529 }
3530
3531 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
3532 return nullptr;
3533
3534 switch (IntrinsicID) {
3535 default:
3536 break;
3537 case Intrinsic::pow:
3538 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3539 case Intrinsic::amdgcn_fmul_legacy:
3540 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3541 // NaN or infinity, gives +0.0.
3542 if (Op1V.isZero() || Op2V.isZero())
3543 return ConstantFP::getZero(Ty);
3544 return ConstantFP::get(Ty, Op1V * Op2V);
3545 }
3546
3547 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
3548 switch (IntrinsicID) {
3549 case Intrinsic::ldexp: {
3550 return ConstantFP::get(
3551 Ty->getContext(),
3552 scalbn(Op1V, Op2C->getSExtValue(), APFloat::rmNearestTiesToEven));
3553 }
3554 case Intrinsic::is_fpclass: {
3555 FPClassTest Mask = static_cast<FPClassTest>(Op2C->getZExtValue());
3556 bool Result =
3557 ((Mask & fcSNan) && Op1V.isNaN() && Op1V.isSignaling()) ||
3558 ((Mask & fcQNan) && Op1V.isNaN() && !Op1V.isSignaling()) ||
3559 ((Mask & fcNegInf) && Op1V.isNegInfinity()) ||
3560 ((Mask & fcNegNormal) && Op1V.isNormal() && Op1V.isNegative()) ||
3561 ((Mask & fcNegSubnormal) && Op1V.isDenormal() && Op1V.isNegative()) ||
3562 ((Mask & fcNegZero) && Op1V.isZero() && Op1V.isNegative()) ||
3563 ((Mask & fcPosZero) && Op1V.isZero() && !Op1V.isNegative()) ||
3564 ((Mask & fcPosSubnormal) && Op1V.isDenormal() && !Op1V.isNegative()) ||
3565 ((Mask & fcPosNormal) && Op1V.isNormal() && !Op1V.isNegative()) ||
3566 ((Mask & fcPosInf) && Op1V.isPosInfinity());
3567 return ConstantInt::get(Ty, Result);
3568 }
3569 case Intrinsic::powi: {
3570 int Exp = static_cast<int>(Op2C->getSExtValue());
3571 switch (Ty->getTypeID()) {
3572 case Type::HalfTyID:
3573 case Type::FloatTyID: {
3574 APFloat Res(static_cast<float>(std::pow(Op1V.convertToFloat(), Exp)));
3575 if (Ty->isHalfTy()) {
3576 bool Unused;
3578 &Unused);
3579 }
3580 return ConstantFP::get(Ty, Res);
3581 }
3582 case Type::DoubleTyID:
3583 return ConstantFP::get(Ty, std::pow(Op1V.convertToDouble(), Exp));
3584 default:
3585 return nullptr;
3586 }
3587 }
3588 default:
3589 break;
3590 }
3591 }
3592 return nullptr;
3593 }
3594
3595 if (Operands[0]->getType()->isIntegerTy() &&
3596 Operands[1]->getType()->isIntegerTy()) {
3597 const APInt *C0, *C1;
3598 if (!getConstIntOrUndef(Operands[0], C0) ||
3599 !getConstIntOrUndef(Operands[1], C1))
3600 return nullptr;
3601
3602 switch (IntrinsicID) {
3603 default: break;
3604 case Intrinsic::smax:
3605 case Intrinsic::smin:
3606 case Intrinsic::umax:
3607 case Intrinsic::umin:
3608 if (!C0 && !C1)
3609 return UndefValue::get(Ty);
3610 if (!C0 || !C1)
3611 return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty);
3612 return ConstantInt::get(
3613 Ty, ICmpInst::compare(*C0, *C1,
3614 MinMaxIntrinsic::getPredicate(IntrinsicID))
3615 ? *C0
3616 : *C1);
3617
3618 case Intrinsic::scmp:
3619 case Intrinsic::ucmp:
3620 if (!C0 || !C1)
3621 return ConstantInt::get(Ty, 0);
3622
3623 int Res;
3624 if (IntrinsicID == Intrinsic::scmp)
3625 Res = C0->sgt(*C1) ? 1 : C0->slt(*C1) ? -1 : 0;
3626 else
3627 Res = C0->ugt(*C1) ? 1 : C0->ult(*C1) ? -1 : 0;
3628 return ConstantInt::get(Ty, Res, /*IsSigned=*/true);
3629
3630 case Intrinsic::usub_with_overflow:
3631 case Intrinsic::ssub_with_overflow:
3632 // X - undef -> { 0, false }
3633 // undef - X -> { 0, false }
3634 if (!C0 || !C1)
3635 return Constant::getNullValue(Ty);
3636 [[fallthrough]];
3637 case Intrinsic::uadd_with_overflow:
3638 case Intrinsic::sadd_with_overflow:
3639 // X + undef -> { -1, false }
3640 // undef + x -> { -1, false }
3641 if (!C0 || !C1) {
3642 return ConstantStruct::get(
3643 cast<StructType>(Ty),
3644 {Constant::getAllOnesValue(Ty->getStructElementType(0)),
3645 Constant::getNullValue(Ty->getStructElementType(1))});
3646 }
3647 [[fallthrough]];
3648 case Intrinsic::smul_with_overflow:
3649 case Intrinsic::umul_with_overflow: {
3650 // undef * X -> { 0, false }
3651 // X * undef -> { 0, false }
3652 if (!C0 || !C1)
3653 return Constant::getNullValue(Ty);
3654
3655 APInt Res;
3656 bool Overflow;
3657 switch (IntrinsicID) {
3658 default: llvm_unreachable("Invalid case");
3659 case Intrinsic::sadd_with_overflow:
3660 Res = C0->sadd_ov(*C1, Overflow);
3661 break;
3662 case Intrinsic::uadd_with_overflow:
3663 Res = C0->uadd_ov(*C1, Overflow);
3664 break;
3665 case Intrinsic::ssub_with_overflow:
3666 Res = C0->ssub_ov(*C1, Overflow);
3667 break;
3668 case Intrinsic::usub_with_overflow:
3669 Res = C0->usub_ov(*C1, Overflow);
3670 break;
3671 case Intrinsic::smul_with_overflow:
3672 Res = C0->smul_ov(*C1, Overflow);
3673 break;
3674 case Intrinsic::umul_with_overflow:
3675 Res = C0->umul_ov(*C1, Overflow);
3676 break;
3677 }
3678 Constant *Ops[] = {
3679 ConstantInt::get(Ty->getContext(), Res),
3680 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
3681 };
3683 }
3684 case Intrinsic::uadd_sat:
3685 case Intrinsic::sadd_sat:
3686 if (!C0 && !C1)
3687 return UndefValue::get(Ty);
3688 if (!C0 || !C1)
3689 return Constant::getAllOnesValue(Ty);
3690 if (IntrinsicID == Intrinsic::uadd_sat)
3691 return ConstantInt::get(Ty, C0->uadd_sat(*C1));
3692 else
3693 return ConstantInt::get(Ty, C0->sadd_sat(*C1));
3694 case Intrinsic::usub_sat:
3695 case Intrinsic::ssub_sat:
3696 if (!C0 && !C1)
3697 return UndefValue::get(Ty);
3698 if (!C0 || !C1)
3699 return Constant::getNullValue(Ty);
3700 if (IntrinsicID == Intrinsic::usub_sat)
3701 return ConstantInt::get(Ty, C0->usub_sat(*C1));
3702 else
3703 return ConstantInt::get(Ty, C0->ssub_sat(*C1));
3704 case Intrinsic::cttz:
3705 case Intrinsic::ctlz:
3706 assert(C1 && "Must be constant int");
3707
3708 // cttz(0, 1) and ctlz(0, 1) are poison.
3709 if (C1->isOne() && (!C0 || C0->isZero()))
3710 return PoisonValue::get(Ty);
3711 if (!C0)
3712 return Constant::getNullValue(Ty);
3713 if (IntrinsicID == Intrinsic::cttz)
3714 return ConstantInt::get(Ty, C0->countr_zero());
3715 else
3716 return ConstantInt::get(Ty, C0->countl_zero());
3717
3718 case Intrinsic::abs:
3719 assert(C1 && "Must be constant int");
3720 assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1");
3721
3722 // Undef or minimum val operand with poison min --> poison
3723 if (C1->isOne() && (!C0 || C0->isMinSignedValue()))
3724 return PoisonValue::get(Ty);
3725
3726 // Undef operand with no poison min --> 0 (sign bit must be clear)
3727 if (!C0)
3728 return Constant::getNullValue(Ty);
3729
3730 return ConstantInt::get(Ty, C0->abs());
3731 case Intrinsic::amdgcn_wave_reduce_umin:
3732 case Intrinsic::amdgcn_wave_reduce_umax:
3733 case Intrinsic::amdgcn_wave_reduce_max:
3734 case Intrinsic::amdgcn_wave_reduce_min:
3735 case Intrinsic::amdgcn_wave_reduce_add:
3736 case Intrinsic::amdgcn_wave_reduce_sub:
3737 case Intrinsic::amdgcn_wave_reduce_and:
3738 case Intrinsic::amdgcn_wave_reduce_or:
3739 case Intrinsic::amdgcn_wave_reduce_xor:
3740 return dyn_cast<Constant>(Operands[0]);
3741 }
3742
3743 return nullptr;
3744 }
3745
3746 // Support ConstantVector in case we have an Undef in the top.
3747 if ((isa<ConstantVector>(Operands[0]) ||
3748 isa<ConstantDataVector>(Operands[0])) &&
3749 // Check for default rounding mode.
3750 // FIXME: Support other rounding modes?
3751 isa<ConstantInt>(Operands[1]) &&
3752 cast<ConstantInt>(Operands[1])->getValue() == 4) {
3753 auto *Op = cast<Constant>(Operands[0]);
3754 switch (IntrinsicID) {
3755 default: break;
3756 case Intrinsic::x86_avx512_vcvtss2si32:
3757 case Intrinsic::x86_avx512_vcvtss2si64:
3758 case Intrinsic::x86_avx512_vcvtsd2si32:
3759 case Intrinsic::x86_avx512_vcvtsd2si64:
3760 if (ConstantFP *FPOp =
3761 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3762 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3763 /*roundTowardZero=*/false, Ty,
3764 /*IsSigned*/true);
3765 break;
3766 case Intrinsic::x86_avx512_vcvtss2usi32:
3767 case Intrinsic::x86_avx512_vcvtss2usi64:
3768 case Intrinsic::x86_avx512_vcvtsd2usi32:
3769 case Intrinsic::x86_avx512_vcvtsd2usi64:
3770 if (ConstantFP *FPOp =
3771 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3772 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3773 /*roundTowardZero=*/false, Ty,
3774 /*IsSigned*/false);
3775 break;
3776 case Intrinsic::x86_avx512_cvttss2si:
3777 case Intrinsic::x86_avx512_cvttss2si64:
3778 case Intrinsic::x86_avx512_cvttsd2si:
3779 case Intrinsic::x86_avx512_cvttsd2si64:
3780 if (ConstantFP *FPOp =
3781 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3782 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3783 /*roundTowardZero=*/true, Ty,
3784 /*IsSigned*/true);
3785 break;
3786 case Intrinsic::x86_avx512_cvttss2usi:
3787 case Intrinsic::x86_avx512_cvttss2usi64:
3788 case Intrinsic::x86_avx512_cvttsd2usi:
3789 case Intrinsic::x86_avx512_cvttsd2usi64:
3790 if (ConstantFP *FPOp =
3791 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3792 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3793 /*roundTowardZero=*/true, Ty,
3794 /*IsSigned*/false);
3795 break;
3796 }
3797 }
3798 return nullptr;
3799}
3800
3801static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
3802 const APFloat &S0,
3803 const APFloat &S1,
3804 const APFloat &S2) {
3805 unsigned ID;
3806 const fltSemantics &Sem = S0.getSemantics();
3807 APFloat MA(Sem), SC(Sem), TC(Sem);
3808 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
3809 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
3810 // S2 < 0
3811 ID = 5;
3812 SC = -S0;
3813 } else {
3814 ID = 4;
3815 SC = S0;
3816 }
3817 MA = S2;
3818 TC = -S1;
3819 } else if (abs(S1) >= abs(S0)) {
3820 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
3821 // S1 < 0
3822 ID = 3;
3823 TC = -S2;
3824 } else {
3825 ID = 2;
3826 TC = S2;
3827 }
3828 MA = S1;
3829 SC = S0;
3830 } else {
3831 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
3832 // S0 < 0
3833 ID = 1;
3834 SC = S2;
3835 } else {
3836 ID = 0;
3837 SC = -S2;
3838 }
3839 MA = S0;
3840 TC = -S1;
3841 }
3842 switch (IntrinsicID) {
3843 default:
3844 llvm_unreachable("unhandled amdgcn cube intrinsic");
3845 case Intrinsic::amdgcn_cubeid:
3846 return APFloat(Sem, ID);
3847 case Intrinsic::amdgcn_cubema:
3848 return MA + MA;
3849 case Intrinsic::amdgcn_cubesc:
3850 return SC;
3851 case Intrinsic::amdgcn_cubetc:
3852 return TC;
3853 }
3854}
3855
3856static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
3857 Type *Ty) {
3858 const APInt *C0, *C1, *C2;
3859 if (!getConstIntOrUndef(Operands[0], C0) ||
3860 !getConstIntOrUndef(Operands[1], C1) ||
3861 !getConstIntOrUndef(Operands[2], C2))
3862 return nullptr;
3863
3864 if (!C2)
3865 return UndefValue::get(Ty);
3866
3867 APInt Val(32, 0);
3868 unsigned NumUndefBytes = 0;
3869 for (unsigned I = 0; I < 32; I += 8) {
3870 unsigned Sel = C2->extractBitsAsZExtValue(8, I);
3871 unsigned B = 0;
3872
3873 if (Sel >= 13)
3874 B = 0xff;
3875 else if (Sel == 12)
3876 B = 0x00;
3877 else {
3878 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
3879 if (!Src)
3880 ++NumUndefBytes;
3881 else if (Sel < 8)
3882 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
3883 else
3884 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
3885 }
3886
3887 Val.insertBits(B, I, 8);
3888 }
3889
3890 if (NumUndefBytes == 4)
3891 return UndefValue::get(Ty);
3892
3893 return ConstantInt::get(Ty, Val);
3894}
3895
3896static Constant *ConstantFoldScalarCall3(StringRef Name,
3897 Intrinsic::ID IntrinsicID,
3898 Type *Ty,
3899 ArrayRef<Constant *> Operands,
3900 const TargetLibraryInfo *TLI,
3901 const CallBase *Call) {
3902 assert(Operands.size() == 3 && "Wrong number of operands.");
3903
3904 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
3905 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
3906 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
3907 const APFloat &C1 = Op1->getValueAPF();
3908 const APFloat &C2 = Op2->getValueAPF();
3909 const APFloat &C3 = Op3->getValueAPF();
3910
3911 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
3912 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
3913 APFloat Res = C1;
3915 switch (IntrinsicID) {
3916 default:
3917 return nullptr;
3918 case Intrinsic::experimental_constrained_fma:
3919 case Intrinsic::experimental_constrained_fmuladd:
3920 St = Res.fusedMultiplyAdd(C2, C3, RM);
3921 break;
3922 }
3923 if (mayFoldConstrained(
3924 const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
3925 return ConstantFP::get(Ty, Res);
3926 return nullptr;
3927 }
3928
3929 switch (IntrinsicID) {
3930 default: break;
3931 case Intrinsic::amdgcn_fma_legacy: {
3932 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3933 // NaN or infinity, gives +0.0.
3934 if (C1.isZero() || C2.isZero()) {
3935 // It's tempting to just return C3 here, but that would give the
3936 // wrong result if C3 was -0.0.
3937 return ConstantFP::get(Ty, APFloat(0.0f) + C3);
3938 }
3939 [[fallthrough]];
3940 }
3941 case Intrinsic::fma:
3942 case Intrinsic::fmuladd: {
3943 APFloat V = C1;
3945 return ConstantFP::get(Ty, V);
3946 }
3947
3948 case Intrinsic::nvvm_fma_rm_f:
3949 case Intrinsic::nvvm_fma_rn_f:
3950 case Intrinsic::nvvm_fma_rp_f:
3951 case Intrinsic::nvvm_fma_rz_f:
3952 case Intrinsic::nvvm_fma_rm_d:
3953 case Intrinsic::nvvm_fma_rn_d:
3954 case Intrinsic::nvvm_fma_rp_d:
3955 case Intrinsic::nvvm_fma_rz_d:
3956 case Intrinsic::nvvm_fma_rm_ftz_f:
3957 case Intrinsic::nvvm_fma_rn_ftz_f:
3958 case Intrinsic::nvvm_fma_rp_ftz_f:
3959 case Intrinsic::nvvm_fma_rz_ftz_f: {
3960 bool IsFTZ = nvvm::FMAShouldFTZ(IntrinsicID);
3961 APFloat A = IsFTZ ? FTZPreserveSign(C1) : C1;
3962 APFloat B = IsFTZ ? FTZPreserveSign(C2) : C2;
3963 APFloat C = IsFTZ ? FTZPreserveSign(C3) : C3;
3964
3965 APFloat::roundingMode RoundMode =
3966 nvvm::GetFMARoundingMode(IntrinsicID);
3967
3968 APFloat Res = A;
3969 APFloat::opStatus Status = Res.fusedMultiplyAdd(B, C, RoundMode);
3970
3971 if (!Res.isNaN() &&
3973 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3974 return ConstantFP::get(Ty, Res);
3975 }
3976 return nullptr;
3977 }
3978
3979 case Intrinsic::amdgcn_cubeid:
3980 case Intrinsic::amdgcn_cubema:
3981 case Intrinsic::amdgcn_cubesc:
3982 case Intrinsic::amdgcn_cubetc: {
3983 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
3984 return ConstantFP::get(Ty, V);
3985 }
3986 }
3987 }
3988 }
3989 }
3990
3991 if (IntrinsicID == Intrinsic::smul_fix ||
3992 IntrinsicID == Intrinsic::smul_fix_sat) {
3993 const APInt *C0, *C1;
3994 if (!getConstIntOrUndef(Operands[0], C0) ||
3995 !getConstIntOrUndef(Operands[1], C1))
3996 return nullptr;
3997
3998 // undef * C -> 0
3999 // C * undef -> 0
4000 if (!C0 || !C1)
4001 return Constant::getNullValue(Ty);
4002
4003 // This code performs rounding towards negative infinity in case the result
4004 // cannot be represented exactly for the given scale. Targets that do care
4005 // about rounding should use a target hook for specifying how rounding
4006 // should be done, and provide their own folding to be consistent with
4007 // rounding. This is the same approach as used by
4008 // DAGTypeLegalizer::ExpandIntRes_MULFIX.
4009 unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
4010 unsigned Width = C0->getBitWidth();
4011 assert(Scale < Width && "Illegal scale.");
4012 unsigned ExtendedWidth = Width * 2;
4013 APInt Product =
4014 (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale);
4015 if (IntrinsicID == Intrinsic::smul_fix_sat) {
4016 APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth);
4017 APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth);
4018 Product = APIntOps::smin(Product, Max);
4019 Product = APIntOps::smax(Product, Min);
4020 }
4021 return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
4022 }
4023
4024 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
4025 const APInt *C0, *C1, *C2;
4026 if (!getConstIntOrUndef(Operands[0], C0) ||
4027 !getConstIntOrUndef(Operands[1], C1) ||
4028 !getConstIntOrUndef(Operands[2], C2))
4029 return nullptr;
4030
4031 bool IsRight = IntrinsicID == Intrinsic::fshr;
4032 if (!C2)
4033 return Operands[IsRight ? 1 : 0];
4034 if (!C0 && !C1)
4035 return UndefValue::get(Ty);
4036
4037 // The shift amount is interpreted as modulo the bitwidth. If the shift
4038 // amount is effectively 0, avoid UB due to oversized inverse shift below.
4039 unsigned BitWidth = C2->getBitWidth();
4040 unsigned ShAmt = C2->urem(BitWidth);
4041 if (!ShAmt)
4042 return Operands[IsRight ? 1 : 0];
4043
4044 // (C0 << ShlAmt) | (C1 >> LshrAmt)
4045 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
4046 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
4047 if (!C0)
4048 return ConstantInt::get(Ty, C1->lshr(LshrAmt));
4049 if (!C1)
4050 return ConstantInt::get(Ty, C0->shl(ShlAmt));
4051 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
4052 }
4053
4054 if (IntrinsicID == Intrinsic::amdgcn_perm)
4055 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
4056
4057 return nullptr;
4058}
4059
4060static Constant *ConstantFoldScalarCall(StringRef Name,
4061 Intrinsic::ID IntrinsicID,
4062 Type *Ty,
4063 ArrayRef<Constant *> Operands,
4064 const TargetLibraryInfo *TLI,
4065 const CallBase *Call) {
4066 if (IntrinsicID != Intrinsic::not_intrinsic &&
4067 any_of(Operands, IsaPred<PoisonValue>) &&
4068 intrinsicPropagatesPoison(IntrinsicID))
4069 return PoisonValue::get(Ty);
4070
4071 if (Operands.size() == 1)
4072 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
4073
4074 if (Operands.size() == 2) {
4075 if (Constant *FoldedLibCall =
4076 ConstantFoldLibCall2(Name, Ty, Operands, TLI)) {
4077 return FoldedLibCall;
4078 }
4079 return ConstantFoldIntrinsicCall2(IntrinsicID, Ty, Operands, Call);
4080 }
4081
4082 if (Operands.size() == 3)
4083 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
4084
4085 return nullptr;
4086}
4087
4088static Constant *ConstantFoldFixedVectorCall(
4089 StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
4090 ArrayRef<Constant *> Operands, const DataLayout &DL,
4091 const TargetLibraryInfo *TLI, const CallBase *Call) {
4093 SmallVector<Constant *, 4> Lane(Operands.size());
4094 Type *Ty = FVTy->getElementType();
4095
4096 switch (IntrinsicID) {
4097 case Intrinsic::masked_load: {
4098 auto *SrcPtr = Operands[0];
4099 auto *Mask = Operands[1];
4100 auto *Passthru = Operands[2];
4101
4102 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
4103
4104 SmallVector<Constant *, 32> NewElements;
4105 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
4106 auto *MaskElt = Mask->getAggregateElement(I);
4107 if (!MaskElt)
4108 break;
4109 auto *PassthruElt = Passthru->getAggregateElement(I);
4110 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
4111 if (isa<UndefValue>(MaskElt)) {
4112 if (PassthruElt)
4113 NewElements.push_back(PassthruElt);
4114 else if (VecElt)
4115 NewElements.push_back(VecElt);
4116 else
4117 return nullptr;
4118 }
4119 if (MaskElt->isNullValue()) {
4120 if (!PassthruElt)
4121 return nullptr;
4122 NewElements.push_back(PassthruElt);
4123 } else if (MaskElt->isOneValue()) {
4124 if (!VecElt)
4125 return nullptr;
4126 NewElements.push_back(VecElt);
4127 } else {
4128 return nullptr;
4129 }
4130 }
4131 if (NewElements.size() != FVTy->getNumElements())
4132 return nullptr;
4133 return ConstantVector::get(NewElements);
4134 }
4135 case Intrinsic::arm_mve_vctp8:
4136 case Intrinsic::arm_mve_vctp16:
4137 case Intrinsic::arm_mve_vctp32:
4138 case Intrinsic::arm_mve_vctp64: {
4139 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
4140 unsigned Lanes = FVTy->getNumElements();
4141 uint64_t Limit = Op->getZExtValue();
4142
4144 for (unsigned i = 0; i < Lanes; i++) {
4145 if (i < Limit)
4147 else
4149 }
4150 return ConstantVector::get(NCs);
4151 }
4152 return nullptr;
4153 }
4154 case Intrinsic::get_active_lane_mask: {
4155 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
4156 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
4157 if (Op0 && Op1) {
4158 unsigned Lanes = FVTy->getNumElements();
4159 uint64_t Base = Op0->getZExtValue();
4160 uint64_t Limit = Op1->getZExtValue();
4161
4163 for (unsigned i = 0; i < Lanes; i++) {
4164 if (Base + i < Limit)
4166 else
4168 }
4169 return ConstantVector::get(NCs);
4170 }
4171 return nullptr;
4172 }
4173 case Intrinsic::vector_extract: {
4174 auto *Idx = dyn_cast<ConstantInt>(Operands[1]);
4175 Constant *Vec = Operands[0];
4176 if (!Idx || !isa<FixedVectorType>(Vec->getType()))
4177 return nullptr;
4178
4179 unsigned NumElements = FVTy->getNumElements();
4180 unsigned VecNumElements =
4181 cast<FixedVectorType>(Vec->getType())->getNumElements();
4182 unsigned StartingIndex = Idx->getZExtValue();
4183
4184 // Extracting entire vector is nop
4185 if (NumElements == VecNumElements && StartingIndex == 0)
4186 return Vec;
4187
4188 for (unsigned I = StartingIndex, E = StartingIndex + NumElements; I < E;
4189 ++I) {
4190 Constant *Elt = Vec->getAggregateElement(I);
4191 if (!Elt)
4192 return nullptr;
4193 Result[I - StartingIndex] = Elt;
4194 }
4195
4196 return ConstantVector::get(Result);
4197 }
4198 case Intrinsic::vector_insert: {
4199 Constant *Vec = Operands[0];
4200 Constant *SubVec = Operands[1];
4201 auto *Idx = dyn_cast<ConstantInt>(Operands[2]);
4202 if (!Idx || !isa<FixedVectorType>(Vec->getType()))
4203 return nullptr;
4204
4205 unsigned SubVecNumElements =
4206 cast<FixedVectorType>(SubVec->getType())->getNumElements();
4207 unsigned VecNumElements =
4208 cast<FixedVectorType>(Vec->getType())->getNumElements();
4209 unsigned IdxN = Idx->getZExtValue();
4210 // Replacing entire vector with a subvec is nop
4211 if (SubVecNumElements == VecNumElements && IdxN == 0)
4212 return SubVec;
4213
4214 for (unsigned I = 0; I < VecNumElements; ++I) {
4215 Constant *Elt;
4216 if (I < IdxN + SubVecNumElements)
4217 Elt = SubVec->getAggregateElement(I - IdxN);
4218 else
4219 Elt = Vec->getAggregateElement(I);
4220 if (!Elt)
4221 return nullptr;
4222 Result[I] = Elt;
4223 }
4224 return ConstantVector::get(Result);
4225 }
4226 case Intrinsic::vector_interleave2:
4227 case Intrinsic::vector_interleave3:
4228 case Intrinsic::vector_interleave4:
4229 case Intrinsic::vector_interleave5:
4230 case Intrinsic::vector_interleave6:
4231 case Intrinsic::vector_interleave7:
4232 case Intrinsic::vector_interleave8: {
4233 unsigned NumElements =
4234 cast<FixedVectorType>(Operands[0]->getType())->getNumElements();
4235 unsigned NumOperands = Operands.size();
4236 for (unsigned I = 0; I < NumElements; ++I) {
4237 for (unsigned J = 0; J < NumOperands; ++J) {
4238 Constant *Elt = Operands[J]->getAggregateElement(I);
4239 if (!Elt)
4240 return nullptr;
4241 Result[NumOperands * I + J] = Elt;
4242 }
4243 }
4244 return ConstantVector::get(Result);
4245 }
4246 case Intrinsic::wasm_dot: {
4247 unsigned NumElements =
4248 cast<FixedVectorType>(Operands[0]->getType())->getNumElements();
4249
4250 assert(NumElements == 8 && Result.size() == 4 &&
4251 "wasm dot takes i16x8 and produces i32x4");
4252 assert(Ty->isIntegerTy());
4253 int32_t MulVector[8];
4254
4255 for (unsigned I = 0; I < NumElements; ++I) {
4256 ConstantInt *Elt0 =
4257 cast<ConstantInt>(Operands[0]->getAggregateElement(I));
4258 ConstantInt *Elt1 =
4259 cast<ConstantInt>(Operands[1]->getAggregateElement(I));
4260
4261 MulVector[I] = Elt0->getSExtValue() * Elt1->getSExtValue();
4262 }
4263 for (unsigned I = 0; I < Result.size(); I++) {
4264 int64_t IAdd = (int64_t)MulVector[I * 2] + (int64_t)MulVector[I * 2 + 1];
4265 Result[I] = ConstantInt::getSigned(Ty, IAdd, /*ImplicitTrunc=*/true);
4266 }
4267
4268 return ConstantVector::get(Result);
4269 }
4270 default:
4271 break;
4272 }
4273
4274 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
4275 // Gather a column of constants.
4276 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
4277 // Some intrinsics use a scalar type for certain arguments.
4278 if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J, /*TTI=*/nullptr)) {
4279 Lane[J] = Operands[J];
4280 continue;
4281 }
4282
4283 Constant *Agg = Operands[J]->getAggregateElement(I);
4284 if (!Agg)
4285 return nullptr;
4286
4287 Lane[J] = Agg;
4288 }
4289
4290 // Use the regular scalar folding to simplify this column.
4291 Constant *Folded =
4292 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
4293 if (!Folded)
4294 return nullptr;
4295 Result[I] = Folded;
4296 }
4297
4298 return ConstantVector::get(Result);
4299}
4300
4301static Constant *ConstantFoldScalableVectorCall(
4302 StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
4303 ArrayRef<Constant *> Operands, const DataLayout &DL,
4304 const TargetLibraryInfo *TLI, const CallBase *Call) {
4305 switch (IntrinsicID) {
4306 case Intrinsic::aarch64_sve_convert_from_svbool: {
4307 auto *Src = dyn_cast<Constant>(Operands[0]);
4308 if (!Src || !Src->isNullValue())
4309 break;
4310
4311 return ConstantInt::getFalse(SVTy);
4312 }
4313 case Intrinsic::get_active_lane_mask: {
4314 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
4315 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
4316 if (Op0 && Op1 && Op0->getValue().uge(Op1->getValue()))
4317 return ConstantVector::getNullValue(SVTy);
4318 break;
4319 }
4320 case Intrinsic::vector_interleave2:
4321 case Intrinsic::vector_interleave3:
4322 case Intrinsic::vector_interleave4:
4323 case Intrinsic::vector_interleave5:
4324 case Intrinsic::vector_interleave6:
4325 case Intrinsic::vector_interleave7:
4326 case Intrinsic::vector_interleave8: {
4327 Constant *SplatVal = Operands[0]->getSplatValue();
4328 if (!SplatVal)
4329 return nullptr;
4330
4331 if (!llvm::all_equal(Operands))
4332 return nullptr;
4333
4334 return ConstantVector::getSplat(SVTy->getElementCount(), SplatVal);
4335 }
4336 default:
4337 break;
4338 }
4339
4340 // If trivially vectorizable, try folding it via the scalar call if all
4341 // operands are splats.
4342
4343 // TODO: ConstantFoldFixedVectorCall should probably check this too?
4344 if (!isTriviallyVectorizable(IntrinsicID))
4345 return nullptr;
4346
4348 for (auto [I, Op] : enumerate(Operands)) {
4349 if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, I, /*TTI=*/nullptr)) {
4350 SplatOps.push_back(Op);
4351 continue;
4352 }
4353 Constant *Splat = Op->getSplatValue();
4354 if (!Splat)
4355 return nullptr;
4356 SplatOps.push_back(Splat);
4357 }
4358 Constant *Folded = ConstantFoldScalarCall(
4359 Name, IntrinsicID, SVTy->getElementType(), SplatOps, TLI, Call);
4360 if (!Folded)
4361 return nullptr;
4362 return ConstantVector::getSplat(SVTy->getElementCount(), Folded);
4363}
4364
4365static std::pair<Constant *, Constant *>
4366ConstantFoldScalarFrexpCall(Constant *Op, Type *IntTy) {
4367 if (isa<PoisonValue>(Op))
4368 return {Op, PoisonValue::get(IntTy)};
4369
4370 auto *ConstFP = dyn_cast<ConstantFP>(Op);
4371 if (!ConstFP)
4372 return {};
4373
4374 const APFloat &U = ConstFP->getValueAPF();
4375 int FrexpExp;
4376 APFloat FrexpMant = frexp(U, FrexpExp, APFloat::rmNearestTiesToEven);
4377 Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant);
4378
4379 // The exponent is an "unspecified value" for inf/nan. We use zero to avoid
4380 // using undef.
4381 Constant *Result1 = FrexpMant.isFinite()
4382 ? ConstantInt::getSigned(IntTy, FrexpExp)
4383 : ConstantInt::getNullValue(IntTy);
4384 return {Result0, Result1};
4385}
4386
4387/// Handle intrinsics that return tuples, which may be tuples of vectors.
4388static Constant *
4389ConstantFoldStructCall(StringRef Name, Intrinsic::ID IntrinsicID,
4390 StructType *StTy, ArrayRef<Constant *> Operands,
4391 const DataLayout &DL, const TargetLibraryInfo *TLI,
4392 const CallBase *Call) {
4393
4394 switch (IntrinsicID) {
4395 case Intrinsic::frexp: {
4396 Type *Ty0 = StTy->getContainedType(0);
4397 Type *Ty1 = StTy->getContainedType(1)->getScalarType();
4398
4399 if (auto *FVTy0 = dyn_cast<FixedVectorType>(Ty0)) {
4400 SmallVector<Constant *, 4> Results0(FVTy0->getNumElements());
4401 SmallVector<Constant *, 4> Results1(FVTy0->getNumElements());
4402
4403 for (unsigned I = 0, E = FVTy0->getNumElements(); I != E; ++I) {
4404 Constant *Lane = Operands[0]->getAggregateElement(I);
4405 std::tie(Results0[I], Results1[I]) =
4406 ConstantFoldScalarFrexpCall(Lane, Ty1);
4407 if (!Results0[I])
4408 return nullptr;
4409 }
4410
4411 return ConstantStruct::get(StTy, ConstantVector::get(Results0),
4412 ConstantVector::get(Results1));
4413 }
4414
4415 auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Operands[0], Ty1);
4416 if (!Result0)
4417 return nullptr;
4418 return ConstantStruct::get(StTy, Result0, Result1);
4419 }
4420 case Intrinsic::sincos: {
4421 Type *Ty = StTy->getContainedType(0);
4422 Type *TyScalar = Ty->getScalarType();
4423
4424 auto ConstantFoldScalarSincosCall =
4425 [&](Constant *Op) -> std::pair<Constant *, Constant *> {
4426 Constant *SinResult =
4427 ConstantFoldScalarCall(Name, Intrinsic::sin, TyScalar, Op, TLI, Call);
4428 Constant *CosResult =
4429 ConstantFoldScalarCall(Name, Intrinsic::cos, TyScalar, Op, TLI, Call);
4430 return std::make_pair(SinResult, CosResult);
4431 };
4432
4433 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
4434 SmallVector<Constant *> SinResults(FVTy->getNumElements());
4435 SmallVector<Constant *> CosResults(FVTy->getNumElements());
4436
4437 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
4438 Constant *Lane = Operands[0]->getAggregateElement(I);
4439 std::tie(SinResults[I], CosResults[I]) =
4440 ConstantFoldScalarSincosCall(Lane);
4441 if (!SinResults[I] || !CosResults[I])
4442 return nullptr;
4443 }
4444
4445 return ConstantStruct::get(StTy, ConstantVector::get(SinResults),
4446 ConstantVector::get(CosResults));
4447 }
4448
4449 auto [SinResult, CosResult] = ConstantFoldScalarSincosCall(Operands[0]);
4450 if (!SinResult || !CosResult)
4451 return nullptr;
4452 return ConstantStruct::get(StTy, SinResult, CosResult);
4453 }
4454 case Intrinsic::vector_deinterleave2:
4455 case Intrinsic::vector_deinterleave3:
4456 case Intrinsic::vector_deinterleave4:
4457 case Intrinsic::vector_deinterleave5:
4458 case Intrinsic::vector_deinterleave6:
4459 case Intrinsic::vector_deinterleave7:
4460 case Intrinsic::vector_deinterleave8: {
4461 unsigned NumResults = StTy->getNumElements();
4462 auto *Vec = Operands[0];
4463 auto *VecTy = cast<VectorType>(Vec->getType());
4464
4465 ElementCount ResultEC =
4466 VecTy->getElementCount().divideCoefficientBy(NumResults);
4467
4468 if (auto *EltC = Vec->getSplatValue()) {
4469 auto *ResultVec = ConstantVector::getSplat(ResultEC, EltC);
4470 SmallVector<Constant *, 8> Results(NumResults, ResultVec);
4471 return ConstantStruct::get(StTy, Results);
4472 }
4473
4474 if (!ResultEC.isFixed())
4475 return nullptr;
4476
4477 unsigned NumElements = ResultEC.getFixedValue();
4479 SmallVector<Constant *> Elements(NumElements);
4480 for (unsigned I = 0; I != NumResults; ++I) {
4481 for (unsigned J = 0; J != NumElements; ++J) {
4482 Constant *Elt = Vec->getAggregateElement(J * NumResults + I);
4483 if (!Elt)
4484 return nullptr;
4485 Elements[J] = Elt;
4486 }
4487 Results[I] = ConstantVector::get(Elements);
4488 }
4489 return ConstantStruct::get(StTy, Results);
4490 }
4491 default:
4492 // TODO: Constant folding of vector intrinsics that fall through here does
4493 // not work (e.g. overflow intrinsics)
4494 return ConstantFoldScalarCall(Name, IntrinsicID, StTy, Operands, TLI, Call);
4495 }
4496
4497 return nullptr;
4498}
4499
4500} // end anonymous namespace
4501
4503 Constant *RHS, Type *Ty,
4506 // Ensure we check flags like StrictFP that might prevent this from getting
4507 // folded before generating a result.
4508 if (Call && !canConstantFoldCallTo(Call, Call->getCalledFunction()))
4509 return nullptr;
4510 return ConstantFoldIntrinsicCall2(ID, Ty, {LHS, RHS}, Call);
4511}
4512
4514 ArrayRef<Constant *> Operands,
4515 const TargetLibraryInfo *TLI,
4516 bool AllowNonDeterministic) {
4517 if (Call->isNoBuiltin())
4518 return nullptr;
4519 if (!F->hasName())
4520 return nullptr;
4521
4522 // If this is not an intrinsic and not recognized as a library call, bail out.
4523 Intrinsic::ID IID = F->getIntrinsicID();
4524 if (IID == Intrinsic::not_intrinsic) {
4525 if (!TLI)
4526 return nullptr;
4527 LibFunc LibF;
4528 if (!TLI->getLibFunc(*F, LibF))
4529 return nullptr;
4530 }
4531
4532 // Conservatively assume that floating-point libcalls may be
4533 // non-deterministic.
4534 Type *Ty = F->getReturnType();
4535 if (!AllowNonDeterministic && Ty->isFPOrFPVectorTy())
4536 return nullptr;
4537
4538 StringRef Name = F->getName();
4539 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
4540 return ConstantFoldFixedVectorCall(
4541 Name, IID, FVTy, Operands, F->getDataLayout(), TLI, Call);
4542
4543 if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
4544 return ConstantFoldScalableVectorCall(
4545 Name, IID, SVTy, Operands, F->getDataLayout(), TLI, Call);
4546
4547 if (auto *StTy = dyn_cast<StructType>(Ty))
4548 return ConstantFoldStructCall(Name, IID, StTy, Operands,
4549 F->getDataLayout(), TLI, Call);
4550
4551 // TODO: If this is a library function, we already discovered that above,
4552 // so we should pass the LibFunc, not the name (and it might be better
4553 // still to separate intrinsic handling from libcalls).
4554 return ConstantFoldScalarCall(Name, IID, Ty, Operands, TLI, Call);
4555}
4556
4558 const TargetLibraryInfo *TLI) {
4559 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
4560 // (and to some extent ConstantFoldScalarCall).
4561 if (Call->isNoBuiltin() || Call->isStrictFP())
4562 return false;
4563 Function *F = Call->getCalledFunction();
4564 if (!F)
4565 return false;
4566
4567 LibFunc Func;
4568 if (!TLI || !TLI->getLibFunc(*F, Func))
4569 return false;
4570
4571 if (Call->arg_size() == 1) {
4572 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
4573 const APFloat &Op = OpC->getValueAPF();
4574 switch (Func) {
4575 case LibFunc_logl:
4576 case LibFunc_log:
4577 case LibFunc_logf:
4578 case LibFunc_log2l:
4579 case LibFunc_log2:
4580 case LibFunc_log2f:
4581 case LibFunc_log10l:
4582 case LibFunc_log10:
4583 case LibFunc_log10f:
4584 return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
4585
4586 case LibFunc_ilogb:
4587 return !Op.isNaN() && !Op.isZero() && !Op.isInfinity();
4588
4589 case LibFunc_expl:
4590 case LibFunc_exp:
4591 case LibFunc_expf:
4592 // FIXME: These boundaries are slightly conservative.
4593 if (OpC->getType()->isDoubleTy())
4594 return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
4595 if (OpC->getType()->isFloatTy())
4596 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
4597 break;
4598
4599 case LibFunc_exp2l:
4600 case LibFunc_exp2:
4601 case LibFunc_exp2f:
4602 // FIXME: These boundaries are slightly conservative.
4603 if (OpC->getType()->isDoubleTy())
4604 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
4605 if (OpC->getType()->isFloatTy())
4606 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
4607 break;
4608
4609 case LibFunc_sinl:
4610 case LibFunc_sin:
4611 case LibFunc_sinf:
4612 case LibFunc_cosl:
4613 case LibFunc_cos:
4614 case LibFunc_cosf:
4615 return !Op.isInfinity();
4616
4617 case LibFunc_tanl:
4618 case LibFunc_tan:
4619 case LibFunc_tanf: {
4620 // FIXME: Stop using the host math library.
4621 // FIXME: The computation isn't done in the right precision.
4622 Type *Ty = OpC->getType();
4623 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
4624 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
4625 break;
4626 }
4627
4628 case LibFunc_atan:
4629 case LibFunc_atanf:
4630 case LibFunc_atanl:
4631 // Per POSIX, this MAY fail if Op is denormal. We choose not failing.
4632 return true;
4633
4634 case LibFunc_asinl:
4635 case LibFunc_asin:
4636 case LibFunc_asinf:
4637 case LibFunc_acosl:
4638 case LibFunc_acos:
4639 case LibFunc_acosf:
4640 return !(Op < APFloat::getOne(Op.getSemantics(), true) ||
4641 Op > APFloat::getOne(Op.getSemantics()));
4642
4643 case LibFunc_sinh:
4644 case LibFunc_cosh:
4645 case LibFunc_sinhf:
4646 case LibFunc_coshf:
4647 case LibFunc_sinhl:
4648 case LibFunc_coshl:
4649 // FIXME: These boundaries are slightly conservative.
4650 if (OpC->getType()->isDoubleTy())
4651 return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
4652 if (OpC->getType()->isFloatTy())
4653 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
4654 break;
4655
4656 case LibFunc_sqrtl:
4657 case LibFunc_sqrt:
4658 case LibFunc_sqrtf:
4659 return Op.isNaN() || Op.isZero() || !Op.isNegative();
4660
4661 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
4662 // maybe others?
4663 default:
4664 break;
4665 }
4666 }
4667 }
4668
4669 if (Call->arg_size() == 2) {
4670 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
4671 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
4672 if (Op0C && Op1C) {
4673 const APFloat &Op0 = Op0C->getValueAPF();
4674 const APFloat &Op1 = Op1C->getValueAPF();
4675
4676 switch (Func) {
4677 case LibFunc_powl:
4678 case LibFunc_pow:
4679 case LibFunc_powf: {
4680 // FIXME: Stop using the host math library.
4681 // FIXME: The computation isn't done in the right precision.
4682 Type *Ty = Op0C->getType();
4683 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
4684 if (Ty == Op1C->getType())
4685 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
4686 }
4687 break;
4688 }
4689
4690 case LibFunc_fmodl:
4691 case LibFunc_fmod:
4692 case LibFunc_fmodf:
4693 case LibFunc_remainderl:
4694 case LibFunc_remainder:
4695 case LibFunc_remainderf:
4696 return Op0.isNaN() || Op1.isNaN() ||
4697 (!Op0.isInfinity() && !Op1.isZero());
4698
4699 case LibFunc_atan2:
4700 case LibFunc_atan2f:
4701 case LibFunc_atan2l:
4702 // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and
4703 // GLIBC and MSVC do not appear to raise an error on those, we
4704 // cannot rely on that behavior. POSIX and C11 say that a domain error
4705 // may occur, so allow for that possibility.
4706 return !Op0.isZero() || !Op1.isZero();
4707
4708 default:
4709 break;
4710 }
4711 }
4712 }
4713
4714 return false;
4715}
4716
4718 unsigned CastOp, const DataLayout &DL,
4719 PreservedCastFlags *Flags) {
4720 switch (CastOp) {
4721 case Instruction::BitCast:
4722 // Bitcast is always lossless.
4723 return ConstantFoldCastOperand(Instruction::BitCast, C, InvCastTo, DL);
4724 case Instruction::Trunc: {
4725 auto *ZExtC = ConstantFoldCastOperand(Instruction::ZExt, C, InvCastTo, DL);
4726 if (Flags) {
4727 // Truncation back on ZExt value is always NUW.
4728 Flags->NUW = true;
4729 // Test positivity of C.
4730 auto *SExtC =
4731 ConstantFoldCastOperand(Instruction::SExt, C, InvCastTo, DL);
4732 Flags->NSW = ZExtC == SExtC;
4733 }
4734 return ZExtC;
4735 }
4736 case Instruction::SExt:
4737 case Instruction::ZExt: {
4738 auto *InvC = ConstantExpr::getTrunc(C, InvCastTo);
4739 auto *CastInvC = ConstantFoldCastOperand(CastOp, InvC, C->getType(), DL);
4740 // Must satisfy CastOp(InvC) == C.
4741 if (!CastInvC || CastInvC != C)
4742 return nullptr;
4743 if (Flags && CastOp == Instruction::ZExt) {
4744 auto *SExtInvC =
4745 ConstantFoldCastOperand(Instruction::SExt, InvC, C->getType(), DL);
4746 // Test positivity of InvC.
4747 Flags->NNeg = CastInvC == SExtInvC;
4748 }
4749 return InvC;
4750 }
4751 default:
4752 return nullptr;
4753 }
4754}
4755
4757 const DataLayout &DL,
4758 PreservedCastFlags *Flags) {
4759 return getLosslessInvCast(C, DestTy, Instruction::ZExt, DL, Flags);
4760}
4761
4763 const DataLayout &DL,
4764 PreservedCastFlags *Flags) {
4765 return getLosslessInvCast(C, DestTy, Instruction::SExt, DL, Flags);
4766}
4767
4768void TargetFolder::anchor() {}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
constexpr LLT S1
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static Constant * FoldBitCast(Constant *V, Type *DestTy)
static ConstantFP * flushDenormalConstant(Type *Ty, const APFloat &APF, DenormalMode::DenormalModeKind Mode)
Constant * getConstantAtOffset(Constant *Base, APInt Offset, const DataLayout &DL)
If this Offset points exactly to the start of an aggregate element, return that element,...
static cl::opt< bool > DisableFPCallFolding("disable-fp-call-folding", cl::desc("Disable constant-folding of FP intrinsics and libcalls."), cl::init(false), cl::Hidden)
static ConstantFP * flushDenormalConstantFP(ConstantFP *CFP, const Instruction *Inst, bool IsOutput)
static DenormalMode getInstrDenormalMode(const Instruction *CtxI, Type *Ty)
Return the denormal mode that can be assumed when executing a floating point operation at CtxI.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
Hexagon Common GEP
amode Optimize addressing mode
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
This file contains the definitions of the enumerations and flags associated with NVVM Intrinsics,...
if(PassOpts->AAPipeline)
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
The Input class is used to parse a yaml document into in-memory structs and vectors.
static constexpr roundingMode rmTowardZero
Definition APFloat.h:348
llvm::RoundingMode roundingMode
IEEE-754R 4.3: Rounding-direction attributes.
Definition APFloat.h:342
static const fltSemantics & IEEEdouble()
Definition APFloat.h:297
static constexpr roundingMode rmTowardNegative
Definition APFloat.h:347
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:344
static constexpr roundingMode rmTowardPositive
Definition APFloat.h:346
static const fltSemantics & IEEEhalf()
Definition APFloat.h:294
static constexpr roundingMode rmNearestTiesToAway
Definition APFloat.h:349
opStatus
IEEE-754R 7: Default exception handling.
Definition APFloat.h:360
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
Definition APFloat.h:1183
opStatus divide(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1271
void copySign(const APFloat &RHS)
Definition APFloat.h:1365
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
Definition APFloat.cpp:5975
opStatus subtract(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1253
bool isNegative() const
Definition APFloat.h:1512
LLVM_ABI double convertToDouble() const
Converts this APFloat to host double value.
Definition APFloat.cpp:6034
bool isPosInfinity() const
Definition APFloat.h:1525
bool isNormal() const
Definition APFloat.h:1516
bool isDenormal() const
Definition APFloat.h:1513
opStatus add(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1244
const fltSemantics & getSemantics() const
Definition APFloat.h:1520
bool isNonZero() const
Definition APFloat.h:1521
bool isFinite() const
Definition APFloat.h:1517
bool isNaN() const
Definition APFloat.h:1510
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
Definition APFloat.h:1151
opStatus multiply(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1262
LLVM_ABI float convertToFloat() const
Converts this APFloat to host float value.
Definition APFloat.cpp:6065
bool isSignaling() const
Definition APFloat.h:1514
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
Definition APFloat.h:1298
bool isZero() const
Definition APFloat.h:1508
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
Definition APFloat.h:1395
opStatus mod(const APFloat &RHS)
Definition APFloat.h:1289
bool isNegInfinity() const
Definition APFloat.h:1526
opStatus roundToIntegral(roundingMode RM)
Definition APFloat.h:1311
void changeSign()
Definition APFloat.h:1360
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Definition APFloat.h:1142
bool isInfinity() const
Definition APFloat.h:1509
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1982
LLVM_ABI APInt usub_sat(const APInt &RHS) const
Definition APInt.cpp:2066
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition APInt.h:424
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1549
LLVM_ABI uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const
Definition APInt.cpp:520
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition APInt.cpp:1044
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
APInt abs() const
Get the absolute value.
Definition APInt.h:1804
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
Definition APInt.cpp:2037
bool sgt(const APInt &RHS) const
Signed greater than comparison.
Definition APInt.h:1202
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1959
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1183
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:381
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition APInt.cpp:1677
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1497
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition APInt.h:1112
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition APInt.h:210
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1939
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1946
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition APInt.h:1648
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition APInt.h:1607
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:220
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition APInt.cpp:1052
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
Definition APInt.cpp:2047
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition APInt.h:828
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1971
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
Definition APInt.cpp:996
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition APInt.h:874
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition APInt.h:1131
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
Definition APInt.cpp:482
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1952
bool isOne() const
Determine if this is a value of 1.
Definition APInt.h:390
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:852
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
Definition APInt.cpp:2056
An arbitrary precision integer that knows its signedness.
Definition APSInt.h:24
This class represents an incoming formal argument to a Function.
Definition Argument.h:32
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
static LLVM_ABI Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static LLVM_ABI unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, const DataLayout *DL)
Determine how a pair of casts can be eliminated, if they can be at all.
static LLVM_ABI bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
bool isSigned() const
Definition InstrTypes.h:930
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition InstrTypes.h:827
static bool isFPPredicate(Predicate P)
Definition InstrTypes.h:770
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
Definition Constants.h:720
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI bool isDesirableCastOp(unsigned Opcode)
Whether creating a constant expression for this cast is desirable.
static LLVM_ABI Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static bool isSupportedGetElementPtr(const Type *SrcElemTy)
Whether creating a constant expression for this getelementptr type is supported.
Definition Constants.h:1397
static LLVM_ABI Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a binary or shift operator constant expression, folding if possible.
static LLVM_ABI bool isDesirableBinOp(unsigned Opcode)
Whether creating a constant expression for this binary operator is desirable.
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
Definition Constants.h:1284
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:282
const APFloat & getValueAPF() const
Definition Constants.h:325
static LLVM_ABI Constant * getInfinity(Type *Ty, bool Negative=false)
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
static LLVM_ABI Constant * getNaN(Type *Ty, bool Negative=false, uint64_t Payload=0)
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getSigned(IntegerType *Ty, int64_t V, bool ImplicitTrunc=false)
Return a ConstantInt with the specified value for the specified type.
Definition Constants.h:135
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Definition Constants.h:174
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
Definition Constant.h:43
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
Definition Constants.cpp:76
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition Constants.cpp:90
Constrained floating point compare intrinsics.
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI std::optional< RoundingMode > getRoundingMode() const
Wrapper for a function that represents a value that functionally represents the original function.
Definition Constants.h:957
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
iterator end()
Definition DenseMap.h:81
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:241
static LLVM_ABI bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This provides a helper for copying FMF from an instruction or setting specified flags.
Definition IRBuilder.h:93
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition Type.cpp:802
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Definition Function.cpp:805
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
GEPNoWrapFlags withoutNoUnsignedSignedWrap() const
static GEPNoWrapFlags noUnsignedWrap()
bool hasNoUnsignedSignedWrap() const
bool isInBounds() const
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
PointerType * getType() const
Global values are always pointers.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
Definition Globals.cpp:133
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
bool isCast() const
bool isBinaryOp() const
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
bool isUnaryOp() const
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
static APInt getSaturationPoint(Intrinsic::ID ID, unsigned numBits)
Min/max intrinsics are monotonic, they operate on a fixed-bitwidth values, so there is a certain thre...
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Class to represent scalable SIMD vectors.
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
Definition DataLayout.h:723
LLVM_ABI unsigned getElementContainingOffset(uint64_t FixedOffset) const
Given a valid byte offset into the structure, returns the structure index that contains it.
TypeSize getElementOffset(unsigned Idx) const
Definition DataLayout.h:754
Class to represent struct types.
unsigned getNumElements() const
Random access to the elements.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
Definition Type.cpp:297
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:296
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
@ HalfTyID
16-bit floating point type
Definition Type.h:56
@ FloatTyID
32-bit floating point type
Definition Type.h:58
@ DoubleTyID
64-bit floating point type
Definition Type.h:59
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:294
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:197
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
Definition Type.cpp:295
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition Type.h:311
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:293
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
Definition Type.h:270
bool isX86_AMXTy() const
Return true if this is X86 AMX.
Definition Type.h:200
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:300
Type * getContainedType(unsigned i) const
This method is used to implement the type iterator (defined at the end of the file).
Definition Type.h:381
LLVM_ABI const fltSemantics & getFltSemantics() const
Definition Type.cpp:106
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.h:259
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI uint64_t getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull, bool &CanBeFreed) const
Returns the number of bytes known to be dereferenceable for the pointer value.
Definition Value.cpp:888
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
Definition TypeSize.h:171
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:237
const ParentTy * getParent() const
Definition ilist_node.h:34
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
Definition APInt.h:2257
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
Definition APInt.h:2262
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
Definition APInt.h:2267
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
Definition APInt.h:2272
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ CE
Windows NT (Windows on ARM)
Definition MCAsmInfo.h:48
initializer< Ty > init(const Ty &Val)
@ ebStrict
This corresponds to "fpexcept.strict".
Definition FPEnv.h:42
@ ebIgnore
This corresponds to "fpexcept.ignore".
Definition FPEnv.h:40
constexpr double pi
APFloat::roundingMode GetFMARoundingMode(Intrinsic::ID IntrinsicID)
DenormalMode GetNVVMDenormMode(bool ShouldFTZ)
bool FPToIntegerIntrinsicNaNZero(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFDivRoundingMode(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicResultIsSigned(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFPToIntegerRoundingMode(Intrinsic::ID IntrinsicID)
bool RCPShouldFTZ(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FDivShouldFTZ(Intrinsic::ID IntrinsicID)
bool FAddShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxIsXorSignAbs(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFMulRoundingMode(Intrinsic::ID IntrinsicID)
bool UnaryMathIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFAddRoundingMode(Intrinsic::ID IntrinsicID)
bool FMAShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMulShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetRCPRoundingMode(Intrinsic::ID IntrinsicID)
bool FMinFMaxPropagatesNaNs(Intrinsic::ID IntrinsicID)
NodeAddr< FuncNode * > Func
Definition RDFGraph.h:393
LLVM_ABI std::error_code status(const Twine &path, file_status &result, bool follow=true)
Get file status as if by POSIX stat().
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
@ Offset
Definition DWP.cpp:532
LLVM_ABI Constant * ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, Constant *RHS, Type *Ty, Instruction *FMFSource)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
LLVM_ABI Constant * ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, const DataLayout &DL)
ConstantFoldLoadThroughBitcast - try to cast constant to destination type returning null if unsuccess...
static double log2(double V)
LLVM_ABI Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
Attempt to constant fold a select instruction with the specified operands.
LLVM_ABI Constant * ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL, const Instruction *I, bool AllowNonDeterministic=true)
Attempt to constant fold a floating point binary operation with the specified operands,...
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2544
LLVM_ABI bool canConstantFoldCallTo(const CallBase *Call, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function.
unsigned getPointerAddressSpace(const Type *T)
Definition SPIRVUtils.h:367
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI Constant * ConstantFoldInstruction(const Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
APFloat abs(APFloat X)
Returns the absolute value of the argument.
Definition APFloat.h:1626
LLVM_ABI Constant * ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, Constant *C1, Constant *C2)
LLVM_ABI Constant * ConstantFoldUnaryInstruction(unsigned Opcode, Constant *V)
LLVM_ABI bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &DL, DSOLocalEquivalent **DSOEquiv=nullptr)
If this constant is a constant offset from a global, return the global and the constant.
LLVM_ABI bool isMathLibCallNoop(const CallBase *Call, const TargetLibraryInfo *TLI)
Check whether the given call has no side-effects.
LLVM_ABI Constant * ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset)
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:732
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
Definition APFloat.h:1706
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
Definition APFloat.h:1597
bool isa_and_nonnull(const Y &Val)
Definition Casting.h:676
LLVM_ABI Constant * ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef< Constant * > Operands, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
Definition APFloat.h:1618
LLVM_ABI Constant * ConstantFoldExtractValueInstruction(Constant *Agg, ArrayRef< unsigned > Idxs)
Attempt to constant fold an extractvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
Definition APFloat.h:1661
LLVM_ABI Constant * ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty, const DataLayout &DL)
If C is a uniform value where all bits are the same (either all zero, all ones, all undef or all pois...
LLVM_ABI Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
LLVM_ABI Constant * FlushFPConstant(Constant *Operand, const Instruction *I, bool IsOutput)
Attempt to flush float point constant according to denormal mode set in the instruction's parent func...
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
Definition APFloat.h:1692
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM)
Returns: X * 2^Exp for integral exponents.
Definition APFloat.h:1606
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI Constant * getLosslessSignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Constant * ConstantFoldLoadFromConst(Constant *C, Type *Ty, const APInt &Offset, const DataLayout &DL)
Extract value of C at the given Offset reinterpreted as Ty.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
Definition APFloat.h:1642
@ Sub
Subtraction of integers.
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
DWARFExpression::Operation Op
RoundingMode
Rounding mode.
@ NearestTiesToEven
roundTiesToEven.
@ Dynamic
Denotes mode unknown at compile time.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
constexpr unsigned BitWidth
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
Definition STLExtras.h:2156
LLVM_ABI Constant * ConstantFoldCastInstruction(unsigned opcode, Constant *V, Type *DestTy)
LLVM_ABI Constant * ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs)
Attempt to constant fold an insertvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
LLVM_ABI Constant * ConstantFoldInstOperands(const Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
Definition APFloat.h:1679
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
Definition APFloat.h:1719
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
Definition Casting.h:866
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
DenormalModeKind
Represent handled modes for denormal (aka subnormal) modes in the floating point environment.
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ Dynamic
Denormals have unknown treatment.
@ IEEE
IEEE-754 denormal numbers preserved.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
static constexpr DenormalMode getDynamic()
static constexpr DenormalMode getIEEE()
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
bool isConstant() const
Returns true if we know the value of all bits.
Definition KnownBits.h:54
const APInt & getConstant() const
Returns the value when all bits have a known value.
Definition KnownBits.h:60