LLVM 22.0.0git
ConstantFolding.cpp
Go to the documentation of this file.
1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines routines for folding instructions into constants.
10//
11// Also, to supplement the basic IR ConstantExpr simplifications,
12// this file defines some additional folding routines that can make use of
13// DataLayout information. These functions cannot go in IR due to library
14// dependency issues.
15//
16//===----------------------------------------------------------------------===//
17
19#include "llvm/ADT/APFloat.h"
20#include "llvm/ADT/APInt.h"
21#include "llvm/ADT/APSInt.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/STLExtras.h"
26#include "llvm/ADT/StringRef.h"
31#include "llvm/Config/config.h"
32#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/GlobalValue.h"
40#include "llvm/IR/InstrTypes.h"
41#include "llvm/IR/Instruction.h"
44#include "llvm/IR/Intrinsics.h"
45#include "llvm/IR/IntrinsicsAArch64.h"
46#include "llvm/IR/IntrinsicsAMDGPU.h"
47#include "llvm/IR/IntrinsicsARM.h"
48#include "llvm/IR/IntrinsicsNVPTX.h"
49#include "llvm/IR/IntrinsicsWebAssembly.h"
50#include "llvm/IR/IntrinsicsX86.h"
52#include "llvm/IR/Operator.h"
53#include "llvm/IR/Type.h"
54#include "llvm/IR/Value.h"
59#include <cassert>
60#include <cerrno>
61#include <cfenv>
62#include <cmath>
63#include <cstdint>
64
65using namespace llvm;
66
68 "disable-fp-call-folding",
69 cl::desc("Disable constant-folding of FP intrinsics and libcalls."),
70 cl::init(false), cl::Hidden);
71
72namespace {
73
74//===----------------------------------------------------------------------===//
75// Constant Folding internal helper functions
76//===----------------------------------------------------------------------===//
77
78static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
79 Constant *C, Type *SrcEltTy,
80 unsigned NumSrcElts,
81 const DataLayout &DL) {
82 // Now that we know that the input value is a vector of integers, just shift
83 // and insert them into our result.
84 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
85 for (unsigned i = 0; i != NumSrcElts; ++i) {
86 Constant *Element;
87 if (DL.isLittleEndian())
88 Element = C->getAggregateElement(NumSrcElts - i - 1);
89 else
90 Element = C->getAggregateElement(i);
91
92 if (isa_and_nonnull<UndefValue>(Element)) {
93 Result <<= BitShift;
94 continue;
95 }
96
97 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
98 if (!ElementCI)
99 return ConstantExpr::getBitCast(C, DestTy);
100
101 Result <<= BitShift;
102 Result |= ElementCI->getValue().zext(Result.getBitWidth());
103 }
104
105 return nullptr;
106}
107
108/// Constant fold bitcast, symbolically evaluating it with DataLayout.
109/// This always returns a non-null constant, but it may be a
110/// ConstantExpr if unfoldable.
111Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
112 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
113 "Invalid constantexpr bitcast!");
114
115 // Catch the obvious splat cases.
116 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL))
117 return Res;
118
119 if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
120 // Handle a vector->scalar integer/fp cast.
121 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
122 unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
123 Type *SrcEltTy = VTy->getElementType();
124
125 // If the vector is a vector of floating point, convert it to vector of int
126 // to simplify things.
127 if (SrcEltTy->isFloatingPointTy()) {
128 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
129 auto *SrcIVTy = FixedVectorType::get(
130 IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
131 // Ask IR to do the conversion now that #elts line up.
132 C = ConstantExpr::getBitCast(C, SrcIVTy);
133 }
134
135 APInt Result(DL.getTypeSizeInBits(DestTy), 0);
136 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
137 SrcEltTy, NumSrcElts, DL))
138 return CE;
139
140 if (isa<IntegerType>(DestTy))
141 return ConstantInt::get(DestTy, Result);
142
143 APFloat FP(DestTy->getFltSemantics(), Result);
144 return ConstantFP::get(DestTy->getContext(), FP);
145 }
146 }
147
148 // The code below only handles casts to vectors currently.
149 auto *DestVTy = dyn_cast<VectorType>(DestTy);
150 if (!DestVTy)
151 return ConstantExpr::getBitCast(C, DestTy);
152
153 // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
154 // vector so the code below can handle it uniformly.
155 if (!isa<VectorType>(C->getType()) &&
157 Constant *Ops = C; // don't take the address of C!
158 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
159 }
160
161 // Some of what follows may extend to cover scalable vectors but the current
162 // implementation is fixed length specific.
163 if (!isa<FixedVectorType>(C->getType()))
164 return ConstantExpr::getBitCast(C, DestTy);
165
166 // If this is a bitcast from constant vector -> vector, fold it.
169 return ConstantExpr::getBitCast(C, DestTy);
170
171 // If the element types match, IR can fold it.
172 unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
173 unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
174 if (NumDstElt == NumSrcElt)
175 return ConstantExpr::getBitCast(C, DestTy);
176
177 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
178 Type *DstEltTy = DestVTy->getElementType();
179
180 // Otherwise, we're changing the number of elements in a vector, which
181 // requires endianness information to do the right thing. For example,
182 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
183 // folds to (little endian):
184 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
185 // and to (big endian):
186 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
187
188 // First thing is first. We only want to think about integer here, so if
189 // we have something in FP form, recast it as integer.
190 if (DstEltTy->isFloatingPointTy()) {
191 // Fold to an vector of integers with same size as our FP type.
192 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
193 auto *DestIVTy = FixedVectorType::get(
194 IntegerType::get(C->getContext(), FPWidth), NumDstElt);
195 // Recursively handle this integer conversion, if possible.
196 C = FoldBitCast(C, DestIVTy, DL);
197
198 // Finally, IR can handle this now that #elts line up.
199 return ConstantExpr::getBitCast(C, DestTy);
200 }
201
202 // Okay, we know the destination is integer, if the input is FP, convert
203 // it to integer first.
204 if (SrcEltTy->isFloatingPointTy()) {
205 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
206 auto *SrcIVTy = FixedVectorType::get(
207 IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
208 // Ask IR to do the conversion now that #elts line up.
209 C = ConstantExpr::getBitCast(C, SrcIVTy);
210 assert((isa<ConstantVector>(C) || // FIXME: Remove ConstantVector.
212 "Constant folding cannot fail for plain fp->int bitcast!");
213 }
214
215 // Now we know that the input and output vectors are both integer vectors
216 // of the same size, and that their #elements is not the same. Do the
217 // conversion here, which depends on whether the input or output has
218 // more elements.
219 bool isLittleEndian = DL.isLittleEndian();
220
222 if (NumDstElt < NumSrcElt) {
223 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
225 unsigned Ratio = NumSrcElt/NumDstElt;
226 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
227 unsigned SrcElt = 0;
228 for (unsigned i = 0; i != NumDstElt; ++i) {
229 // Build each element of the result.
230 Constant *Elt = Zero;
231 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
232 for (unsigned j = 0; j != Ratio; ++j) {
233 Constant *Src = C->getAggregateElement(SrcElt++);
236 cast<VectorType>(C->getType())->getElementType());
237 else
239 if (!Src) // Reject constantexpr elements.
240 return ConstantExpr::getBitCast(C, DestTy);
241
242 // Zero extend the element to the right size.
243 Src = ConstantFoldCastOperand(Instruction::ZExt, Src, Elt->getType(),
244 DL);
245 assert(Src && "Constant folding cannot fail on plain integers");
246
247 // Shift it to the right place, depending on endianness.
249 Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt),
250 DL);
251 assert(Src && "Constant folding cannot fail on plain integers");
252
253 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
254
255 // Mix it in.
256 Elt = ConstantFoldBinaryOpOperands(Instruction::Or, Elt, Src, DL);
257 assert(Elt && "Constant folding cannot fail on plain integers");
258 }
259 Result.push_back(Elt);
260 }
261 return ConstantVector::get(Result);
262 }
263
264 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
265 unsigned Ratio = NumDstElt/NumSrcElt;
266 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
267
268 // Loop over each source value, expanding into multiple results.
269 for (unsigned i = 0; i != NumSrcElt; ++i) {
270 auto *Element = C->getAggregateElement(i);
271
272 if (!Element) // Reject constantexpr elements.
273 return ConstantExpr::getBitCast(C, DestTy);
274
275 if (isa<UndefValue>(Element)) {
276 // Correctly Propagate undef values.
277 Result.append(Ratio, UndefValue::get(DstEltTy));
278 continue;
279 }
280
281 auto *Src = dyn_cast<ConstantInt>(Element);
282 if (!Src)
283 return ConstantExpr::getBitCast(C, DestTy);
284
285 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
286 for (unsigned j = 0; j != Ratio; ++j) {
287 // Shift the piece of the value into the right place, depending on
288 // endianness.
289 APInt Elt = Src->getValue().lshr(ShiftAmt);
290 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
291
292 // Truncate and remember this piece.
293 Result.push_back(ConstantInt::get(DstEltTy, Elt.trunc(DstBitSize)));
294 }
295 }
296
297 return ConstantVector::get(Result);
298}
299
300} // end anonymous namespace
301
302/// If this constant is a constant offset from a global, return the global and
303/// the constant. Because of constantexprs, this function is recursive.
305 APInt &Offset, const DataLayout &DL,
306 DSOLocalEquivalent **DSOEquiv) {
307 if (DSOEquiv)
308 *DSOEquiv = nullptr;
309
310 // Trivial case, constant is the global.
311 if ((GV = dyn_cast<GlobalValue>(C))) {
312 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
313 Offset = APInt(BitWidth, 0);
314 return true;
315 }
316
317 if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
318 if (DSOEquiv)
319 *DSOEquiv = FoundDSOEquiv;
320 GV = FoundDSOEquiv->getGlobalValue();
321 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
322 Offset = APInt(BitWidth, 0);
323 return true;
324 }
325
326 // Otherwise, if this isn't a constant expr, bail out.
327 auto *CE = dyn_cast<ConstantExpr>(C);
328 if (!CE) return false;
329
330 // Look through ptr->int and ptr->ptr casts.
331 if (CE->getOpcode() == Instruction::PtrToInt ||
332 CE->getOpcode() == Instruction::PtrToAddr ||
333 CE->getOpcode() == Instruction::BitCast)
334 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
335 DSOEquiv);
336
337 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
338 auto *GEP = dyn_cast<GEPOperator>(CE);
339 if (!GEP)
340 return false;
341
342 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
343 APInt TmpOffset(BitWidth, 0);
344
345 // If the base isn't a global+constant, we aren't either.
346 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
347 DSOEquiv))
348 return false;
349
350 // Otherwise, add any offset that our operands provide.
351 if (!GEP->accumulateConstantOffset(DL, TmpOffset))
352 return false;
353
354 Offset = TmpOffset;
355 return true;
356}
357
359 const DataLayout &DL) {
360 do {
361 Type *SrcTy = C->getType();
362 if (SrcTy == DestTy)
363 return C;
364
365 TypeSize DestSize = DL.getTypeSizeInBits(DestTy);
366 TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy);
367 if (!TypeSize::isKnownGE(SrcSize, DestSize))
368 return nullptr;
369
370 // Catch the obvious splat cases (since all-zeros can coerce non-integral
371 // pointers legally).
372 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL))
373 return Res;
374
375 // If the type sizes are the same and a cast is legal, just directly
376 // cast the constant.
377 // But be careful not to coerce non-integral pointers illegally.
378 if (SrcSize == DestSize &&
379 DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
380 DL.isNonIntegralPointerType(DestTy->getScalarType())) {
381 Instruction::CastOps Cast = Instruction::BitCast;
382 // If we are going from a pointer to int or vice versa, we spell the cast
383 // differently.
384 if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
385 Cast = Instruction::IntToPtr;
386 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
387 Cast = Instruction::PtrToInt;
388
389 if (CastInst::castIsValid(Cast, C, DestTy))
390 return ConstantFoldCastOperand(Cast, C, DestTy, DL);
391 }
392
393 // If this isn't an aggregate type, there is nothing we can do to drill down
394 // and find a bitcastable constant.
395 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
396 return nullptr;
397
398 // We're simulating a load through a pointer that was bitcast to point to
399 // a different type, so we can try to walk down through the initial
400 // elements of an aggregate to see if some part of the aggregate is
401 // castable to implement the "load" semantic model.
402 if (SrcTy->isStructTy()) {
403 // Struct types might have leading zero-length elements like [0 x i32],
404 // which are certainly not what we are looking for, so skip them.
405 unsigned Elem = 0;
406 Constant *ElemC;
407 do {
408 ElemC = C->getAggregateElement(Elem++);
409 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
410 C = ElemC;
411 } else {
412 // For non-byte-sized vector elements, the first element is not
413 // necessarily located at the vector base address.
414 if (auto *VT = dyn_cast<VectorType>(SrcTy))
415 if (!DL.typeSizeEqualsStoreSize(VT->getElementType()))
416 return nullptr;
417
418 C = C->getAggregateElement(0u);
419 }
420 } while (C);
421
422 return nullptr;
423}
424
425namespace {
426
427/// Recursive helper to read bits out of global. C is the constant being copied
428/// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
429/// results into and BytesLeft is the number of bytes left in
430/// the CurPtr buffer. DL is the DataLayout.
431bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
432 unsigned BytesLeft, const DataLayout &DL) {
433 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
434 "Out of range access");
435
436 // Reading type padding, return zero.
437 if (ByteOffset >= DL.getTypeStoreSize(C->getType()))
438 return true;
439
440 // If this element is zero or undefined, we can just return since *CurPtr is
441 // zero initialized.
443 return true;
444
445 if (auto *CI = dyn_cast<ConstantInt>(C)) {
446 if ((CI->getBitWidth() & 7) != 0)
447 return false;
448 const APInt &Val = CI->getValue();
449 unsigned IntBytes = unsigned(CI->getBitWidth()/8);
450
451 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
452 unsigned n = ByteOffset;
453 if (!DL.isLittleEndian())
454 n = IntBytes - n - 1;
455 CurPtr[i] = Val.extractBits(8, n * 8).getZExtValue();
456 ++ByteOffset;
457 }
458 return true;
459 }
460
461 if (auto *CFP = dyn_cast<ConstantFP>(C)) {
462 if (CFP->getType()->isDoubleTy()) {
463 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
464 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
465 }
466 if (CFP->getType()->isFloatTy()){
467 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
468 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
469 }
470 if (CFP->getType()->isHalfTy()){
471 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
472 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
473 }
474 return false;
475 }
476
477 if (auto *CS = dyn_cast<ConstantStruct>(C)) {
478 const StructLayout *SL = DL.getStructLayout(CS->getType());
479 unsigned Index = SL->getElementContainingOffset(ByteOffset);
480 uint64_t CurEltOffset = SL->getElementOffset(Index);
481 ByteOffset -= CurEltOffset;
482
483 while (true) {
484 // If the element access is to the element itself and not to tail padding,
485 // read the bytes from the element.
486 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
487
488 if (ByteOffset < EltSize &&
489 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
490 BytesLeft, DL))
491 return false;
492
493 ++Index;
494
495 // Check to see if we read from the last struct element, if so we're done.
496 if (Index == CS->getType()->getNumElements())
497 return true;
498
499 // If we read all of the bytes we needed from this element we're done.
500 uint64_t NextEltOffset = SL->getElementOffset(Index);
501
502 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
503 return true;
504
505 // Move to the next element of the struct.
506 CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
507 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
508 ByteOffset = 0;
509 CurEltOffset = NextEltOffset;
510 }
511 // not reached.
512 }
513
516 uint64_t NumElts, EltSize;
517 Type *EltTy;
518 if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
519 NumElts = AT->getNumElements();
520 EltTy = AT->getElementType();
521 EltSize = DL.getTypeAllocSize(EltTy);
522 } else {
523 NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
524 EltTy = cast<FixedVectorType>(C->getType())->getElementType();
525 // TODO: For non-byte-sized vectors, current implementation assumes there is
526 // padding to the next byte boundary between elements.
527 if (!DL.typeSizeEqualsStoreSize(EltTy))
528 return false;
529
530 EltSize = DL.getTypeStoreSize(EltTy);
531 }
532 uint64_t Index = ByteOffset / EltSize;
533 uint64_t Offset = ByteOffset - Index * EltSize;
534
535 for (; Index != NumElts; ++Index) {
536 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
537 BytesLeft, DL))
538 return false;
539
540 uint64_t BytesWritten = EltSize - Offset;
541 assert(BytesWritten <= EltSize && "Not indexing into this element?");
542 if (BytesWritten >= BytesLeft)
543 return true;
544
545 Offset = 0;
546 BytesLeft -= BytesWritten;
547 CurPtr += BytesWritten;
548 }
549 return true;
550 }
551
552 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
553 if (CE->getOpcode() == Instruction::IntToPtr &&
554 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
555 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
556 BytesLeft, DL);
557 }
558 }
559
560 // Otherwise, unknown initializer type.
561 return false;
562}
563
564Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy,
565 int64_t Offset, const DataLayout &DL) {
566 // Bail out early. Not expect to load from scalable global variable.
567 if (isa<ScalableVectorType>(LoadTy))
568 return nullptr;
569
570 auto *IntType = dyn_cast<IntegerType>(LoadTy);
571
572 // If this isn't an integer load we can't fold it directly.
573 if (!IntType) {
574 // If this is a non-integer load, we can try folding it as an int load and
575 // then bitcast the result. This can be useful for union cases. Note
576 // that address spaces don't matter here since we're not going to result in
577 // an actual new load.
578 if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() &&
579 !LoadTy->isVectorTy())
580 return nullptr;
581
582 Type *MapTy = Type::getIntNTy(C->getContext(),
583 DL.getTypeSizeInBits(LoadTy).getFixedValue());
584 if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) {
585 if (Res->isNullValue() && !LoadTy->isX86_AMXTy())
586 // Materializing a zero can be done trivially without a bitcast
587 return Constant::getNullValue(LoadTy);
588 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
589 Res = FoldBitCast(Res, CastTy, DL);
590 if (LoadTy->isPtrOrPtrVectorTy()) {
591 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
592 if (Res->isNullValue() && !LoadTy->isX86_AMXTy())
593 return Constant::getNullValue(LoadTy);
594 if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
595 // Be careful not to replace a load of an addrspace value with an inttoptr here
596 return nullptr;
597 Res = ConstantExpr::getIntToPtr(Res, LoadTy);
598 }
599 return Res;
600 }
601 return nullptr;
602 }
603
604 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
605 if (BytesLoaded > 32 || BytesLoaded == 0)
606 return nullptr;
607
608 // If we're not accessing anything in this constant, the result is undefined.
609 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
610 return PoisonValue::get(IntType);
611
612 // TODO: We should be able to support scalable types.
613 TypeSize InitializerSize = DL.getTypeAllocSize(C->getType());
614 if (InitializerSize.isScalable())
615 return nullptr;
616
617 // If we're not accessing anything in this constant, the result is undefined.
618 if (Offset >= (int64_t)InitializerSize.getFixedValue())
619 return PoisonValue::get(IntType);
620
621 unsigned char RawBytes[32] = {0};
622 unsigned char *CurPtr = RawBytes;
623 unsigned BytesLeft = BytesLoaded;
624
625 // If we're loading off the beginning of the global, some bytes may be valid.
626 if (Offset < 0) {
627 CurPtr += -Offset;
628 BytesLeft += Offset;
629 Offset = 0;
630 }
631
632 if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL))
633 return nullptr;
634
635 APInt ResultVal = APInt(IntType->getBitWidth(), 0);
636 if (DL.isLittleEndian()) {
637 ResultVal = RawBytes[BytesLoaded - 1];
638 for (unsigned i = 1; i != BytesLoaded; ++i) {
639 ResultVal <<= 8;
640 ResultVal |= RawBytes[BytesLoaded - 1 - i];
641 }
642 } else {
643 ResultVal = RawBytes[0];
644 for (unsigned i = 1; i != BytesLoaded; ++i) {
645 ResultVal <<= 8;
646 ResultVal |= RawBytes[i];
647 }
648 }
649
650 return ConstantInt::get(IntType->getContext(), ResultVal);
651}
652
653} // anonymous namespace
654
655// If GV is a constant with an initializer read its representation starting
656// at Offset and return it as a constant array of unsigned char. Otherwise
657// return null.
660 if (!GV->isConstant() || !GV->hasDefinitiveInitializer())
661 return nullptr;
662
663 const DataLayout &DL = GV->getDataLayout();
664 Constant *Init = const_cast<Constant *>(GV->getInitializer());
665 TypeSize InitSize = DL.getTypeAllocSize(Init->getType());
666 if (InitSize < Offset)
667 return nullptr;
668
669 uint64_t NBytes = InitSize - Offset;
670 if (NBytes > UINT16_MAX)
671 // Bail for large initializers in excess of 64K to avoid allocating
672 // too much memory.
673 // Offset is assumed to be less than or equal than InitSize (this
674 // is enforced in ReadDataFromGlobal).
675 return nullptr;
676
677 SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes));
678 unsigned char *CurPtr = RawBytes.data();
679
680 if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL))
681 return nullptr;
682
683 return ConstantDataArray::get(GV->getContext(), RawBytes);
684}
685
686/// If this Offset points exactly to the start of an aggregate element, return
687/// that element, otherwise return nullptr.
689 const DataLayout &DL) {
690 if (Offset.isZero())
691 return Base;
692
694 return nullptr;
695
696 Type *ElemTy = Base->getType();
697 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
698 if (!Offset.isZero() || !Indices[0].isZero())
699 return nullptr;
700
701 Constant *C = Base;
702 for (const APInt &Index : drop_begin(Indices)) {
703 if (Index.isNegative() || Index.getActiveBits() >= 32)
704 return nullptr;
705
706 C = C->getAggregateElement(Index.getZExtValue());
707 if (!C)
708 return nullptr;
709 }
710
711 return C;
712}
713
715 const APInt &Offset,
716 const DataLayout &DL) {
717 if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL))
718 if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL))
719 return Result;
720
721 // Explicitly check for out-of-bounds access, so we return poison even if the
722 // constant is a uniform value.
723 TypeSize Size = DL.getTypeAllocSize(C->getType());
724 if (!Size.isScalable() && Offset.sge(Size.getFixedValue()))
725 return PoisonValue::get(Ty);
726
727 // Try an offset-independent fold of a uniform value.
728 if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty, DL))
729 return Result;
730
731 // Try hard to fold loads from bitcasted strange and non-type-safe things.
732 if (Offset.getSignificantBits() <= 64)
733 if (Constant *Result =
734 FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL))
735 return Result;
736
737 return nullptr;
738}
739
744
747 const DataLayout &DL) {
748 // We can only fold loads from constant globals with a definitive initializer.
749 // Check this upfront, to skip expensive offset calculations.
751 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
752 return nullptr;
753
754 C = cast<Constant>(C->stripAndAccumulateConstantOffsets(
755 DL, Offset, /* AllowNonInbounds */ true));
756
757 if (C == GV)
758 if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty,
759 Offset, DL))
760 return Result;
761
762 // If this load comes from anywhere in a uniform constant global, the value
763 // is always the same, regardless of the loaded offset.
764 return ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty, DL);
765}
766
768 const DataLayout &DL) {
769 APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0);
770 return ConstantFoldLoadFromConstPtr(C, Ty, std::move(Offset), DL);
771}
772
774 const DataLayout &DL) {
775 if (isa<PoisonValue>(C))
776 return PoisonValue::get(Ty);
777 if (isa<UndefValue>(C))
778 return UndefValue::get(Ty);
779 // If padding is needed when storing C to memory, then it isn't considered as
780 // uniform.
781 if (!DL.typeSizeEqualsStoreSize(C->getType()))
782 return nullptr;
783 if (C->isNullValue() && !Ty->isX86_AMXTy())
784 return Constant::getNullValue(Ty);
785 if (C->isAllOnesValue() &&
786 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
787 return Constant::getAllOnesValue(Ty);
788 return nullptr;
789}
790
791namespace {
792
793/// One of Op0/Op1 is a constant expression.
794/// Attempt to symbolically evaluate the result of a binary operator merging
795/// these together. If target data info is available, it is provided as DL,
796/// otherwise DL is null.
797Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
798 const DataLayout &DL) {
799 // SROA
800
801 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
802 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
803 // bits.
804
805 if (Opc == Instruction::And) {
806 KnownBits Known0 = computeKnownBits(Op0, DL);
807 KnownBits Known1 = computeKnownBits(Op1, DL);
808 if ((Known1.One | Known0.Zero).isAllOnes()) {
809 // All the bits of Op0 that the 'and' could be masking are already zero.
810 return Op0;
811 }
812 if ((Known0.One | Known1.Zero).isAllOnes()) {
813 // All the bits of Op1 that the 'and' could be masking are already zero.
814 return Op1;
815 }
816
817 Known0 &= Known1;
818 if (Known0.isConstant())
819 return ConstantInt::get(Op0->getType(), Known0.getConstant());
820 }
821
822 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
823 // constant. This happens frequently when iterating over a global array.
824 if (Opc == Instruction::Sub) {
825 GlobalValue *GV1, *GV2;
826 APInt Offs1, Offs2;
827
828 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
829 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
830 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
831
832 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
833 // PtrToInt may change the bitwidth so we have convert to the right size
834 // first.
835 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
836 Offs2.zextOrTrunc(OpSize));
837 }
838 }
839
840 return nullptr;
841}
842
843/// If array indices are not pointer-sized integers, explicitly cast them so
844/// that they aren't implicitly casted by the getelementptr.
845Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
846 Type *ResultTy, GEPNoWrapFlags NW,
847 std::optional<ConstantRange> InRange,
848 const DataLayout &DL, const TargetLibraryInfo *TLI) {
849 Type *IntIdxTy = DL.getIndexType(ResultTy);
850 Type *IntIdxScalarTy = IntIdxTy->getScalarType();
851
852 bool Any = false;
854 for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
855 if ((i == 1 ||
857 SrcElemTy, Ops.slice(1, i - 1)))) &&
858 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
859 Any = true;
860 Type *NewType =
861 Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy;
863 CastInst::getCastOpcode(Ops[i], true, NewType, true), Ops[i], NewType,
864 DL);
865 if (!NewIdx)
866 return nullptr;
867 NewIdxs.push_back(NewIdx);
868 } else
869 NewIdxs.push_back(Ops[i]);
870 }
871
872 if (!Any)
873 return nullptr;
874
875 Constant *C =
876 ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], NewIdxs, NW, InRange);
877 return ConstantFoldConstant(C, DL, TLI);
878}
879
880/// If we can symbolically evaluate the GEP constant expression, do so.
881Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
883 const DataLayout &DL,
884 const TargetLibraryInfo *TLI) {
885 Type *SrcElemTy = GEP->getSourceElementType();
886 Type *ResTy = GEP->getType();
887 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
888 return nullptr;
889
890 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, GEP->getNoWrapFlags(),
891 GEP->getInRange(), DL, TLI))
892 return C;
893
894 Constant *Ptr = Ops[0];
895 if (!Ptr->getType()->isPointerTy())
896 return nullptr;
897
898 Type *IntIdxTy = DL.getIndexType(Ptr->getType());
899
900 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
901 if (!isa<ConstantInt>(Ops[i]) || !Ops[i]->getType()->isIntegerTy())
902 return nullptr;
903
904 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
906 BitWidth,
907 DL.getIndexedOffsetInType(
908 SrcElemTy, ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1)),
909 /*isSigned=*/true, /*implicitTrunc=*/true);
910
911 std::optional<ConstantRange> InRange = GEP->getInRange();
912 if (InRange)
913 InRange = InRange->sextOrTrunc(BitWidth);
914
915 // If this is a GEP of a GEP, fold it all into a single GEP.
916 GEPNoWrapFlags NW = GEP->getNoWrapFlags();
917 bool Overflow = false;
918 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
919 NW &= GEP->getNoWrapFlags();
920
921 SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands()));
922
923 // Do not try the incorporate the sub-GEP if some index is not a number.
924 bool AllConstantInt = true;
925 for (Value *NestedOp : NestedOps)
926 if (!isa<ConstantInt>(NestedOp)) {
927 AllConstantInt = false;
928 break;
929 }
930 if (!AllConstantInt)
931 break;
932
933 // Adjust inrange offset and intersect inrange attributes
934 if (auto GEPRange = GEP->getInRange()) {
935 auto AdjustedGEPRange = GEPRange->sextOrTrunc(BitWidth).subtract(Offset);
936 InRange =
937 InRange ? InRange->intersectWith(AdjustedGEPRange) : AdjustedGEPRange;
938 }
939
940 Ptr = cast<Constant>(GEP->getOperand(0));
941 SrcElemTy = GEP->getSourceElementType();
942 Offset = Offset.sadd_ov(
943 APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps),
944 /*isSigned=*/true, /*implicitTrunc=*/true),
945 Overflow);
946 }
947
948 // Preserving nusw (without inbounds) also requires that the offset
949 // additions did not overflow.
950 if (NW.hasNoUnsignedSignedWrap() && !NW.isInBounds() && Overflow)
952
953 // If the base value for this address is a literal integer value, fold the
954 // getelementptr to the resulting integer value casted to the pointer type.
955 APInt BaseIntVal(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
956 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
957 if (CE->getOpcode() == Instruction::IntToPtr) {
958 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
959 BaseIntVal = Base->getValue().zextOrTrunc(BaseIntVal.getBitWidth());
960 }
961 }
962
963 if ((Ptr->isNullValue() || BaseIntVal != 0) &&
964 !DL.mustNotIntroduceIntToPtr(Ptr->getType())) {
965
966 // If the index size is smaller than the pointer size, add to the low
967 // bits only.
968 BaseIntVal.insertBits(BaseIntVal.trunc(BitWidth) + Offset, 0);
969 Constant *C = ConstantInt::get(Ptr->getContext(), BaseIntVal);
970 return ConstantExpr::getIntToPtr(C, ResTy);
971 }
972
973 // Try to infer inbounds for GEPs of globals.
974 if (!NW.isInBounds() && Offset.isNonNegative()) {
975 bool CanBeNull, CanBeFreed;
976 uint64_t DerefBytes =
977 Ptr->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
978 if (DerefBytes != 0 && !CanBeNull && Offset.sle(DerefBytes))
980 }
981
982 // nusw + nneg -> nuw
983 if (NW.hasNoUnsignedSignedWrap() && Offset.isNonNegative())
985
986 // Otherwise canonicalize this to a single ptradd.
987 LLVMContext &Ctx = Ptr->getContext();
989 ConstantInt::get(Ctx, Offset), NW,
990 InRange);
991}
992
993/// Attempt to constant fold an instruction with the
994/// specified opcode and operands. If successful, the constant result is
995/// returned, if not, null is returned. Note that this function can fail when
996/// attempting to fold instructions like loads and stores, which have no
997/// constant expression form.
998Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
1000 const DataLayout &DL,
1001 const TargetLibraryInfo *TLI,
1002 bool AllowNonDeterministic) {
1003 Type *DestTy = InstOrCE->getType();
1004
1005 if (Instruction::isUnaryOp(Opcode))
1006 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
1007
1008 if (Instruction::isBinaryOp(Opcode)) {
1009 switch (Opcode) {
1010 default:
1011 break;
1012 case Instruction::FAdd:
1013 case Instruction::FSub:
1014 case Instruction::FMul:
1015 case Instruction::FDiv:
1016 case Instruction::FRem:
1017 // Handle floating point instructions separately to account for denormals
1018 // TODO: If a constant expression is being folded rather than an
1019 // instruction, denormals will not be flushed/treated as zero
1020 if (const auto *I = dyn_cast<Instruction>(InstOrCE)) {
1021 return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I,
1022 AllowNonDeterministic);
1023 }
1024 }
1025 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1026 }
1027
1028 if (Instruction::isCast(Opcode))
1029 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1030
1031 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1032 Type *SrcElemTy = GEP->getSourceElementType();
1034 return nullptr;
1035
1036 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1037 return C;
1038
1039 return ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], Ops.slice(1),
1040 GEP->getNoWrapFlags(),
1041 GEP->getInRange());
1042 }
1043
1044 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
1045 return CE->getWithOperands(Ops);
1046
1047 switch (Opcode) {
1048 default: return nullptr;
1049 case Instruction::ICmp:
1050 case Instruction::FCmp: {
1051 auto *C = cast<CmpInst>(InstOrCE);
1052 return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1],
1053 DL, TLI, C);
1054 }
1055 case Instruction::Freeze:
1056 return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
1057 case Instruction::Call:
1058 if (auto *F = dyn_cast<Function>(Ops.back())) {
1059 const auto *Call = cast<CallBase>(InstOrCE);
1061 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI,
1062 AllowNonDeterministic);
1063 }
1064 return nullptr;
1065 case Instruction::Select:
1066 return ConstantFoldSelectInstruction(Ops[0], Ops[1], Ops[2]);
1067 case Instruction::ExtractElement:
1069 case Instruction::ExtractValue:
1071 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1072 case Instruction::InsertElement:
1073 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1074 case Instruction::InsertValue:
1076 Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices());
1077 case Instruction::ShuffleVector:
1079 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1080 case Instruction::Load: {
1081 const auto *LI = dyn_cast<LoadInst>(InstOrCE);
1082 if (LI->isVolatile())
1083 return nullptr;
1084 return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
1085 }
1086 }
1087}
1088
1089} // end anonymous namespace
1090
1091//===----------------------------------------------------------------------===//
1092// Constant Folding public APIs
1093//===----------------------------------------------------------------------===//
1094
1095namespace {
1096
1097Constant *
1098ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1099 const TargetLibraryInfo *TLI,
1102 return const_cast<Constant *>(C);
1103
1105 for (const Use &OldU : C->operands()) {
1106 Constant *OldC = cast<Constant>(&OldU);
1107 Constant *NewC = OldC;
1108 // Recursively fold the ConstantExpr's operands. If we have already folded
1109 // a ConstantExpr, we don't have to process it again.
1110 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1111 auto It = FoldedOps.find(OldC);
1112 if (It == FoldedOps.end()) {
1113 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1114 FoldedOps.insert({OldC, NewC});
1115 } else {
1116 NewC = It->second;
1117 }
1118 }
1119 Ops.push_back(NewC);
1120 }
1121
1122 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1123 if (Constant *Res = ConstantFoldInstOperandsImpl(
1124 CE, CE->getOpcode(), Ops, DL, TLI, /*AllowNonDeterministic=*/true))
1125 return Res;
1126 return const_cast<Constant *>(C);
1127 }
1128
1130 return ConstantVector::get(Ops);
1131}
1132
1133} // end anonymous namespace
1134
1136 const DataLayout &DL,
1137 const TargetLibraryInfo *TLI) {
1138 // Handle PHI nodes quickly here...
1139 if (auto *PN = dyn_cast<PHINode>(I)) {
1140 Constant *CommonValue = nullptr;
1141
1143 for (Value *Incoming : PN->incoming_values()) {
1144 // If the incoming value is undef then skip it. Note that while we could
1145 // skip the value if it is equal to the phi node itself we choose not to
1146 // because that would break the rule that constant folding only applies if
1147 // all operands are constants.
1149 continue;
1150 // If the incoming value is not a constant, then give up.
1151 auto *C = dyn_cast<Constant>(Incoming);
1152 if (!C)
1153 return nullptr;
1154 // Fold the PHI's operands.
1155 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1156 // If the incoming value is a different constant to
1157 // the one we saw previously, then give up.
1158 if (CommonValue && C != CommonValue)
1159 return nullptr;
1160 CommonValue = C;
1161 }
1162
1163 // If we reach here, all incoming values are the same constant or undef.
1164 return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1165 }
1166
1167 // Scan the operand list, checking to see if they are all constants, if so,
1168 // hand off to ConstantFoldInstOperandsImpl.
1169 if (!all_of(I->operands(), [](const Use &U) { return isa<Constant>(U); }))
1170 return nullptr;
1171
1174 for (const Use &OpU : I->operands()) {
1175 auto *Op = cast<Constant>(&OpU);
1176 // Fold the Instruction's operands.
1177 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1178 Ops.push_back(Op);
1179 }
1180
1181 return ConstantFoldInstOperands(I, Ops, DL, TLI);
1182}
1183
1185 const TargetLibraryInfo *TLI) {
1187 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1188}
1189
1192 const DataLayout &DL,
1193 const TargetLibraryInfo *TLI,
1194 bool AllowNonDeterministic) {
1195 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI,
1196 AllowNonDeterministic);
1197}
1198
1200 unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL,
1201 const TargetLibraryInfo *TLI, const Instruction *I) {
1202 CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate;
1203 // fold: icmp (inttoptr x), null -> icmp x, 0
1204 // fold: icmp null, (inttoptr x) -> icmp 0, x
1205 // fold: icmp (ptrtoint x), 0 -> icmp x, null
1206 // fold: icmp 0, (ptrtoint x) -> icmp null, x
1207 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1208 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1209 //
1210 // FIXME: The following comment is out of data and the DataLayout is here now.
1211 // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1212 // around to know if bit truncation is happening.
1213 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1214 if (Ops1->isNullValue()) {
1215 if (CE0->getOpcode() == Instruction::IntToPtr) {
1216 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1217 // Convert the integer value to the right size to ensure we get the
1218 // proper extension or truncation.
1219 if (Constant *C = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
1220 /*IsSigned*/ false, DL)) {
1221 Constant *Null = Constant::getNullValue(C->getType());
1222 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1223 }
1224 }
1225
1226 // Only do this transformation if the int is intptrty in size, otherwise
1227 // there is a truncation or extension that we aren't modeling.
1228 if (CE0->getOpcode() == Instruction::PtrToInt) {
1229 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1230 if (CE0->getType() == IntPtrTy) {
1231 Constant *C = CE0->getOperand(0);
1232 Constant *Null = Constant::getNullValue(C->getType());
1233 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1234 }
1235 }
1236 }
1237
1238 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1239 if (CE0->getOpcode() == CE1->getOpcode()) {
1240 if (CE0->getOpcode() == Instruction::IntToPtr) {
1241 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1242
1243 // Convert the integer value to the right size to ensure we get the
1244 // proper extension or truncation.
1245 Constant *C0 = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
1246 /*IsSigned*/ false, DL);
1247 Constant *C1 = ConstantFoldIntegerCast(CE1->getOperand(0), IntPtrTy,
1248 /*IsSigned*/ false, DL);
1249 if (C0 && C1)
1250 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1251 }
1252
1253 // Only do this transformation if the int is intptrty in size, otherwise
1254 // there is a truncation or extension that we aren't modeling.
1255 if (CE0->getOpcode() == Instruction::PtrToInt) {
1256 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1257 if (CE0->getType() == IntPtrTy &&
1258 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1260 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1261 }
1262 }
1263 }
1264 }
1265
1266 // Convert pointer comparison (base+offset1) pred (base+offset2) into
1267 // offset1 pred offset2, for the case where the offset is inbounds. This
1268 // only works for equality and unsigned comparison, as inbounds permits
1269 // crossing the sign boundary. However, the offset comparison itself is
1270 // signed.
1271 if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) {
1272 unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType());
1273 APInt Offset0(IndexWidth, 0);
1274 bool IsEqPred = ICmpInst::isEquality(Predicate);
1275 Value *Stripped0 = Ops0->stripAndAccumulateConstantOffsets(
1276 DL, Offset0, /*AllowNonInbounds=*/IsEqPred,
1277 /*AllowInvariantGroup=*/false, /*ExternalAnalysis=*/nullptr,
1278 /*LookThroughIntToPtr=*/IsEqPred);
1279 APInt Offset1(IndexWidth, 0);
1280 Value *Stripped1 = Ops1->stripAndAccumulateConstantOffsets(
1281 DL, Offset1, /*AllowNonInbounds=*/IsEqPred,
1282 /*AllowInvariantGroup=*/false, /*ExternalAnalysis=*/nullptr,
1283 /*LookThroughIntToPtr=*/IsEqPred);
1284 if (Stripped0 == Stripped1)
1285 return ConstantInt::getBool(
1286 Ops0->getContext(),
1287 ICmpInst::compare(Offset0, Offset1,
1288 ICmpInst::getSignedPredicate(Predicate)));
1289 }
1290 } else if (isa<ConstantExpr>(Ops1)) {
1291 // If RHS is a constant expression, but the left side isn't, swap the
1292 // operands and try again.
1293 Predicate = ICmpInst::getSwappedPredicate(Predicate);
1294 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1295 }
1296
1297 if (CmpInst::isFPPredicate(Predicate)) {
1298 // Flush any denormal constant float input according to denormal handling
1299 // mode.
1300 Ops0 = FlushFPConstant(Ops0, I, /*IsOutput=*/false);
1301 if (!Ops0)
1302 return nullptr;
1303 Ops1 = FlushFPConstant(Ops1, I, /*IsOutput=*/false);
1304 if (!Ops1)
1305 return nullptr;
1306 }
1307
1308 return ConstantFoldCompareInstruction(Predicate, Ops0, Ops1);
1309}
1310
1312 const DataLayout &DL) {
1314
1315 return ConstantFoldUnaryInstruction(Opcode, Op);
1316}
1317
1319 Constant *RHS,
1320 const DataLayout &DL) {
1322 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1323 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1324 return C;
1325
1327 return ConstantExpr::get(Opcode, LHS, RHS);
1328 return ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
1329}
1330
1333 switch (Mode) {
1335 return nullptr;
1336 case DenormalMode::IEEE:
1337 return ConstantFP::get(Ty->getContext(), APF);
1339 return ConstantFP::get(
1340 Ty->getContext(),
1343 return ConstantFP::get(Ty->getContext(),
1344 APFloat::getZero(APF.getSemantics(), false));
1345 default:
1346 break;
1347 }
1348
1349 llvm_unreachable("unknown denormal mode");
1350}
1351
1352/// Return the denormal mode that can be assumed when executing a floating point
1353/// operation at \p CtxI.
1355 if (!CtxI || !CtxI->getParent() || !CtxI->getFunction())
1356 return DenormalMode::getDynamic();
1357 return CtxI->getFunction()->getDenormalMode(Ty->getFltSemantics());
1358}
1359
1361 const Instruction *Inst,
1362 bool IsOutput) {
1363 const APFloat &APF = CFP->getValueAPF();
1364 if (!APF.isDenormal())
1365 return CFP;
1366
1368 return flushDenormalConstant(CFP->getType(), APF,
1369 IsOutput ? Mode.Output : Mode.Input);
1370}
1371
1373 bool IsOutput) {
1374 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Operand))
1375 return flushDenormalConstantFP(CFP, Inst, IsOutput);
1376
1378 return Operand;
1379
1380 Type *Ty = Operand->getType();
1381 VectorType *VecTy = dyn_cast<VectorType>(Ty);
1382 if (VecTy) {
1383 if (auto *Splat = dyn_cast_or_null<ConstantFP>(Operand->getSplatValue())) {
1384 ConstantFP *Folded = flushDenormalConstantFP(Splat, Inst, IsOutput);
1385 if (!Folded)
1386 return nullptr;
1387 return ConstantVector::getSplat(VecTy->getElementCount(), Folded);
1388 }
1389
1390 Ty = VecTy->getElementType();
1391 }
1392
1393 if (isa<ConstantExpr>(Operand))
1394 return Operand;
1395
1396 if (const auto *CV = dyn_cast<ConstantVector>(Operand)) {
1398 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1399 Constant *Element = CV->getAggregateElement(i);
1400 if (isa<UndefValue>(Element)) {
1401 NewElts.push_back(Element);
1402 continue;
1403 }
1404
1405 ConstantFP *CFP = dyn_cast<ConstantFP>(Element);
1406 if (!CFP)
1407 return nullptr;
1408
1409 ConstantFP *Folded = flushDenormalConstantFP(CFP, Inst, IsOutput);
1410 if (!Folded)
1411 return nullptr;
1412 NewElts.push_back(Folded);
1413 }
1414
1415 return ConstantVector::get(NewElts);
1416 }
1417
1418 if (const auto *CDV = dyn_cast<ConstantDataVector>(Operand)) {
1420 for (unsigned I = 0, E = CDV->getNumElements(); I < E; ++I) {
1421 const APFloat &Elt = CDV->getElementAsAPFloat(I);
1422 if (!Elt.isDenormal()) {
1423 NewElts.push_back(ConstantFP::get(Ty, Elt));
1424 } else {
1425 DenormalMode Mode = getInstrDenormalMode(Inst, Ty);
1426 ConstantFP *Folded =
1427 flushDenormalConstant(Ty, Elt, IsOutput ? Mode.Output : Mode.Input);
1428 if (!Folded)
1429 return nullptr;
1430 NewElts.push_back(Folded);
1431 }
1432 }
1433
1434 return ConstantVector::get(NewElts);
1435 }
1436
1437 return nullptr;
1438}
1439
1441 Constant *RHS, const DataLayout &DL,
1442 const Instruction *I,
1443 bool AllowNonDeterministic) {
1444 if (Instruction::isBinaryOp(Opcode)) {
1445 // Flush denormal inputs if needed.
1446 Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false);
1447 if (!Op0)
1448 return nullptr;
1449 Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false);
1450 if (!Op1)
1451 return nullptr;
1452
1453 // If nsz or an algebraic FMF flag is set, the result of the FP operation
1454 // may change due to future optimization. Don't constant fold them if
1455 // non-deterministic results are not allowed.
1456 if (!AllowNonDeterministic)
1458 if (FP->hasNoSignedZeros() || FP->hasAllowReassoc() ||
1459 FP->hasAllowContract() || FP->hasAllowReciprocal())
1460 return nullptr;
1461
1462 // Calculate constant result.
1463 Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL);
1464 if (!C)
1465 return nullptr;
1466
1467 // Flush denormal output if needed.
1468 C = FlushFPConstant(C, I, /* IsOutput */ true);
1469 if (!C)
1470 return nullptr;
1471
1472 // The precise NaN value is non-deterministic.
1473 if (!AllowNonDeterministic && C->isNaN())
1474 return nullptr;
1475
1476 return C;
1477 }
1478 // If instruction lacks a parent/function and the denormal mode cannot be
1479 // determined, use the default (IEEE).
1480 return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL);
1481}
1482
1484 Type *DestTy, const DataLayout &DL) {
1485 assert(Instruction::isCast(Opcode));
1486
1487 if (auto *CE = dyn_cast<ConstantExpr>(C))
1488 if (CE->isCast())
1489 if (unsigned NewOp = CastInst::isEliminableCastPair(
1490 Instruction::CastOps(CE->getOpcode()),
1491 Instruction::CastOps(Opcode), CE->getOperand(0)->getType(),
1492 C->getType(), DestTy, &DL))
1493 return ConstantFoldCastOperand(NewOp, CE->getOperand(0), DestTy, DL);
1494
1495 switch (Opcode) {
1496 default:
1497 llvm_unreachable("Missing case");
1498 case Instruction::PtrToAddr:
1499 case Instruction::PtrToInt:
1500 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1501 Constant *FoldedValue = nullptr;
1502 // If the input is an inttoptr, eliminate the pair. This requires knowing
1503 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1504 if (CE->getOpcode() == Instruction::IntToPtr) {
1505 // zext/trunc the inttoptr to pointer/address size.
1506 Type *MidTy = Opcode == Instruction::PtrToInt
1507 ? DL.getAddressType(CE->getType())
1508 : DL.getIntPtrType(CE->getType());
1509 FoldedValue = ConstantFoldIntegerCast(CE->getOperand(0), MidTy,
1510 /*IsSigned=*/false, DL);
1511 } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
1512 // If we have GEP, we can perform the following folds:
1513 // (ptrtoint/ptrtoaddr (gep null, x)) -> x
1514 // (ptrtoint/ptrtoaddr (gep (gep null, x), y) -> x + y, etc.
1515 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1516 APInt BaseOffset(BitWidth, 0);
1517 auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
1518 DL, BaseOffset, /*AllowNonInbounds=*/true));
1519 if (Base->isNullValue()) {
1520 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1521 } else {
1522 // ptrtoint/ptrtoaddr (gep i8, Ptr, (sub 0, V))
1523 // -> sub (ptrtoint/ptrtoaddr Ptr), V
1524 if (GEP->getNumIndices() == 1 &&
1525 GEP->getSourceElementType()->isIntegerTy(8)) {
1526 auto *Ptr = cast<Constant>(GEP->getPointerOperand());
1527 auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1));
1528 Type *IntIdxTy = DL.getIndexType(Ptr->getType());
1529 if (Sub && Sub->getType() == IntIdxTy &&
1530 Sub->getOpcode() == Instruction::Sub &&
1531 Sub->getOperand(0)->isNullValue())
1532 FoldedValue = ConstantExpr::getSub(
1533 ConstantExpr::getCast(Opcode, Ptr, IntIdxTy),
1534 Sub->getOperand(1));
1535 }
1536 }
1537 }
1538 if (FoldedValue) {
1539 // Do a zext or trunc to get to the ptrtoint/ptrtoaddr dest size.
1540 return ConstantFoldIntegerCast(FoldedValue, DestTy, /*IsSigned=*/false,
1541 DL);
1542 }
1543 }
1544 break;
1545 case Instruction::IntToPtr:
1546 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1547 // the int size is >= the ptr size and the address spaces are the same.
1548 // This requires knowing the width of a pointer, so it can't be done in
1549 // ConstantExpr::getCast.
1550 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1551 if (CE->getOpcode() == Instruction::PtrToInt) {
1552 Constant *SrcPtr = CE->getOperand(0);
1553 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1554 unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1555
1556 if (MidIntSize >= SrcPtrSize) {
1557 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1558 if (SrcAS == DestTy->getPointerAddressSpace())
1559 return FoldBitCast(CE->getOperand(0), DestTy, DL);
1560 }
1561 }
1562 }
1563 break;
1564 case Instruction::Trunc:
1565 case Instruction::ZExt:
1566 case Instruction::SExt:
1567 case Instruction::FPTrunc:
1568 case Instruction::FPExt:
1569 case Instruction::UIToFP:
1570 case Instruction::SIToFP:
1571 case Instruction::FPToUI:
1572 case Instruction::FPToSI:
1573 case Instruction::AddrSpaceCast:
1574 break;
1575 case Instruction::BitCast:
1576 return FoldBitCast(C, DestTy, DL);
1577 }
1578
1580 return ConstantExpr::getCast(Opcode, C, DestTy);
1581 return ConstantFoldCastInstruction(Opcode, C, DestTy);
1582}
1583
1585 bool IsSigned, const DataLayout &DL) {
1586 Type *SrcTy = C->getType();
1587 if (SrcTy == DestTy)
1588 return C;
1589 if (SrcTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
1590 return ConstantFoldCastOperand(Instruction::Trunc, C, DestTy, DL);
1591 if (IsSigned)
1592 return ConstantFoldCastOperand(Instruction::SExt, C, DestTy, DL);
1593 return ConstantFoldCastOperand(Instruction::ZExt, C, DestTy, DL);
1594}
1595
1596//===----------------------------------------------------------------------===//
1597// Constant Folding for Calls
1598//
1599
1601 if (Call->isNoBuiltin())
1602 return false;
1603 if (Call->getFunctionType() != F->getFunctionType())
1604 return false;
1605
1606 // Allow FP calls (both libcalls and intrinsics) to avoid being folded.
1607 // This can be useful for GPU targets or in cross-compilation scenarios
1608 // when the exact target FP behaviour is required, and the host compiler's
1609 // behaviour may be slightly different from the device's run-time behaviour.
1610 if (DisableFPCallFolding && (F->getReturnType()->isFloatingPointTy() ||
1611 any_of(F->args(), [](const Argument &Arg) {
1612 return Arg.getType()->isFloatingPointTy();
1613 })))
1614 return false;
1615
1616 switch (F->getIntrinsicID()) {
1617 // Operations that do not operate floating-point numbers and do not depend on
1618 // FP environment can be folded even in strictfp functions.
1619 case Intrinsic::bswap:
1620 case Intrinsic::ctpop:
1621 case Intrinsic::ctlz:
1622 case Intrinsic::cttz:
1623 case Intrinsic::fshl:
1624 case Intrinsic::fshr:
1625 case Intrinsic::launder_invariant_group:
1626 case Intrinsic::strip_invariant_group:
1627 case Intrinsic::masked_load:
1628 case Intrinsic::get_active_lane_mask:
1629 case Intrinsic::abs:
1630 case Intrinsic::smax:
1631 case Intrinsic::smin:
1632 case Intrinsic::umax:
1633 case Intrinsic::umin:
1634 case Intrinsic::scmp:
1635 case Intrinsic::ucmp:
1636 case Intrinsic::sadd_with_overflow:
1637 case Intrinsic::uadd_with_overflow:
1638 case Intrinsic::ssub_with_overflow:
1639 case Intrinsic::usub_with_overflow:
1640 case Intrinsic::smul_with_overflow:
1641 case Intrinsic::umul_with_overflow:
1642 case Intrinsic::sadd_sat:
1643 case Intrinsic::uadd_sat:
1644 case Intrinsic::ssub_sat:
1645 case Intrinsic::usub_sat:
1646 case Intrinsic::smul_fix:
1647 case Intrinsic::smul_fix_sat:
1648 case Intrinsic::bitreverse:
1649 case Intrinsic::is_constant:
1650 case Intrinsic::vector_reduce_add:
1651 case Intrinsic::vector_reduce_mul:
1652 case Intrinsic::vector_reduce_and:
1653 case Intrinsic::vector_reduce_or:
1654 case Intrinsic::vector_reduce_xor:
1655 case Intrinsic::vector_reduce_smin:
1656 case Intrinsic::vector_reduce_smax:
1657 case Intrinsic::vector_reduce_umin:
1658 case Intrinsic::vector_reduce_umax:
1659 case Intrinsic::vector_extract:
1660 case Intrinsic::vector_insert:
1661 case Intrinsic::vector_interleave2:
1662 case Intrinsic::vector_deinterleave2:
1663 // Target intrinsics
1664 case Intrinsic::amdgcn_perm:
1665 case Intrinsic::amdgcn_wave_reduce_umin:
1666 case Intrinsic::amdgcn_wave_reduce_umax:
1667 case Intrinsic::amdgcn_wave_reduce_max:
1668 case Intrinsic::amdgcn_wave_reduce_min:
1669 case Intrinsic::amdgcn_wave_reduce_add:
1670 case Intrinsic::amdgcn_wave_reduce_sub:
1671 case Intrinsic::amdgcn_wave_reduce_and:
1672 case Intrinsic::amdgcn_wave_reduce_or:
1673 case Intrinsic::amdgcn_wave_reduce_xor:
1674 case Intrinsic::amdgcn_s_wqm:
1675 case Intrinsic::amdgcn_s_quadmask:
1676 case Intrinsic::amdgcn_s_bitreplicate:
1677 case Intrinsic::arm_mve_vctp8:
1678 case Intrinsic::arm_mve_vctp16:
1679 case Intrinsic::arm_mve_vctp32:
1680 case Intrinsic::arm_mve_vctp64:
1681 case Intrinsic::aarch64_sve_convert_from_svbool:
1682 case Intrinsic::wasm_alltrue:
1683 case Intrinsic::wasm_anytrue:
1684 case Intrinsic::wasm_dot:
1685 // WebAssembly float semantics are always known
1686 case Intrinsic::wasm_trunc_signed:
1687 case Intrinsic::wasm_trunc_unsigned:
1688 return true;
1689
1690 // Floating point operations cannot be folded in strictfp functions in
1691 // general case. They can be folded if FP environment is known to compiler.
1692 case Intrinsic::minnum:
1693 case Intrinsic::maxnum:
1694 case Intrinsic::minimum:
1695 case Intrinsic::maximum:
1696 case Intrinsic::minimumnum:
1697 case Intrinsic::maximumnum:
1698 case Intrinsic::log:
1699 case Intrinsic::log2:
1700 case Intrinsic::log10:
1701 case Intrinsic::exp:
1702 case Intrinsic::exp2:
1703 case Intrinsic::exp10:
1704 case Intrinsic::sqrt:
1705 case Intrinsic::sin:
1706 case Intrinsic::cos:
1707 case Intrinsic::sincos:
1708 case Intrinsic::sinh:
1709 case Intrinsic::cosh:
1710 case Intrinsic::atan:
1711 case Intrinsic::pow:
1712 case Intrinsic::powi:
1713 case Intrinsic::ldexp:
1714 case Intrinsic::fma:
1715 case Intrinsic::fmuladd:
1716 case Intrinsic::frexp:
1717 case Intrinsic::fptoui_sat:
1718 case Intrinsic::fptosi_sat:
1719 case Intrinsic::convert_from_fp16:
1720 case Intrinsic::convert_to_fp16:
1721 case Intrinsic::amdgcn_cos:
1722 case Intrinsic::amdgcn_cubeid:
1723 case Intrinsic::amdgcn_cubema:
1724 case Intrinsic::amdgcn_cubesc:
1725 case Intrinsic::amdgcn_cubetc:
1726 case Intrinsic::amdgcn_fmul_legacy:
1727 case Intrinsic::amdgcn_fma_legacy:
1728 case Intrinsic::amdgcn_fract:
1729 case Intrinsic::amdgcn_sin:
1730 // The intrinsics below depend on rounding mode in MXCSR.
1731 case Intrinsic::x86_sse_cvtss2si:
1732 case Intrinsic::x86_sse_cvtss2si64:
1733 case Intrinsic::x86_sse_cvttss2si:
1734 case Intrinsic::x86_sse_cvttss2si64:
1735 case Intrinsic::x86_sse2_cvtsd2si:
1736 case Intrinsic::x86_sse2_cvtsd2si64:
1737 case Intrinsic::x86_sse2_cvttsd2si:
1738 case Intrinsic::x86_sse2_cvttsd2si64:
1739 case Intrinsic::x86_avx512_vcvtss2si32:
1740 case Intrinsic::x86_avx512_vcvtss2si64:
1741 case Intrinsic::x86_avx512_cvttss2si:
1742 case Intrinsic::x86_avx512_cvttss2si64:
1743 case Intrinsic::x86_avx512_vcvtsd2si32:
1744 case Intrinsic::x86_avx512_vcvtsd2si64:
1745 case Intrinsic::x86_avx512_cvttsd2si:
1746 case Intrinsic::x86_avx512_cvttsd2si64:
1747 case Intrinsic::x86_avx512_vcvtss2usi32:
1748 case Intrinsic::x86_avx512_vcvtss2usi64:
1749 case Intrinsic::x86_avx512_cvttss2usi:
1750 case Intrinsic::x86_avx512_cvttss2usi64:
1751 case Intrinsic::x86_avx512_vcvtsd2usi32:
1752 case Intrinsic::x86_avx512_vcvtsd2usi64:
1753 case Intrinsic::x86_avx512_cvttsd2usi:
1754 case Intrinsic::x86_avx512_cvttsd2usi64:
1755
1756 // NVVM FMax intrinsics
1757 case Intrinsic::nvvm_fmax_d:
1758 case Intrinsic::nvvm_fmax_f:
1759 case Intrinsic::nvvm_fmax_ftz_f:
1760 case Intrinsic::nvvm_fmax_ftz_nan_f:
1761 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
1762 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
1763 case Intrinsic::nvvm_fmax_nan_f:
1764 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
1765 case Intrinsic::nvvm_fmax_xorsign_abs_f:
1766
1767 // NVVM FMin intrinsics
1768 case Intrinsic::nvvm_fmin_d:
1769 case Intrinsic::nvvm_fmin_f:
1770 case Intrinsic::nvvm_fmin_ftz_f:
1771 case Intrinsic::nvvm_fmin_ftz_nan_f:
1772 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
1773 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
1774 case Intrinsic::nvvm_fmin_nan_f:
1775 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
1776 case Intrinsic::nvvm_fmin_xorsign_abs_f:
1777
1778 // NVVM float/double to int32/uint32 conversion intrinsics
1779 case Intrinsic::nvvm_f2i_rm:
1780 case Intrinsic::nvvm_f2i_rn:
1781 case Intrinsic::nvvm_f2i_rp:
1782 case Intrinsic::nvvm_f2i_rz:
1783 case Intrinsic::nvvm_f2i_rm_ftz:
1784 case Intrinsic::nvvm_f2i_rn_ftz:
1785 case Intrinsic::nvvm_f2i_rp_ftz:
1786 case Intrinsic::nvvm_f2i_rz_ftz:
1787 case Intrinsic::nvvm_f2ui_rm:
1788 case Intrinsic::nvvm_f2ui_rn:
1789 case Intrinsic::nvvm_f2ui_rp:
1790 case Intrinsic::nvvm_f2ui_rz:
1791 case Intrinsic::nvvm_f2ui_rm_ftz:
1792 case Intrinsic::nvvm_f2ui_rn_ftz:
1793 case Intrinsic::nvvm_f2ui_rp_ftz:
1794 case Intrinsic::nvvm_f2ui_rz_ftz:
1795 case Intrinsic::nvvm_d2i_rm:
1796 case Intrinsic::nvvm_d2i_rn:
1797 case Intrinsic::nvvm_d2i_rp:
1798 case Intrinsic::nvvm_d2i_rz:
1799 case Intrinsic::nvvm_d2ui_rm:
1800 case Intrinsic::nvvm_d2ui_rn:
1801 case Intrinsic::nvvm_d2ui_rp:
1802 case Intrinsic::nvvm_d2ui_rz:
1803
1804 // NVVM float/double to int64/uint64 conversion intrinsics
1805 case Intrinsic::nvvm_f2ll_rm:
1806 case Intrinsic::nvvm_f2ll_rn:
1807 case Intrinsic::nvvm_f2ll_rp:
1808 case Intrinsic::nvvm_f2ll_rz:
1809 case Intrinsic::nvvm_f2ll_rm_ftz:
1810 case Intrinsic::nvvm_f2ll_rn_ftz:
1811 case Intrinsic::nvvm_f2ll_rp_ftz:
1812 case Intrinsic::nvvm_f2ll_rz_ftz:
1813 case Intrinsic::nvvm_f2ull_rm:
1814 case Intrinsic::nvvm_f2ull_rn:
1815 case Intrinsic::nvvm_f2ull_rp:
1816 case Intrinsic::nvvm_f2ull_rz:
1817 case Intrinsic::nvvm_f2ull_rm_ftz:
1818 case Intrinsic::nvvm_f2ull_rn_ftz:
1819 case Intrinsic::nvvm_f2ull_rp_ftz:
1820 case Intrinsic::nvvm_f2ull_rz_ftz:
1821 case Intrinsic::nvvm_d2ll_rm:
1822 case Intrinsic::nvvm_d2ll_rn:
1823 case Intrinsic::nvvm_d2ll_rp:
1824 case Intrinsic::nvvm_d2ll_rz:
1825 case Intrinsic::nvvm_d2ull_rm:
1826 case Intrinsic::nvvm_d2ull_rn:
1827 case Intrinsic::nvvm_d2ull_rp:
1828 case Intrinsic::nvvm_d2ull_rz:
1829
1830 // NVVM math intrinsics:
1831 case Intrinsic::nvvm_ceil_d:
1832 case Intrinsic::nvvm_ceil_f:
1833 case Intrinsic::nvvm_ceil_ftz_f:
1834
1835 case Intrinsic::nvvm_fabs:
1836 case Intrinsic::nvvm_fabs_ftz:
1837
1838 case Intrinsic::nvvm_floor_d:
1839 case Intrinsic::nvvm_floor_f:
1840 case Intrinsic::nvvm_floor_ftz_f:
1841
1842 case Intrinsic::nvvm_rcp_rm_d:
1843 case Intrinsic::nvvm_rcp_rm_f:
1844 case Intrinsic::nvvm_rcp_rm_ftz_f:
1845 case Intrinsic::nvvm_rcp_rn_d:
1846 case Intrinsic::nvvm_rcp_rn_f:
1847 case Intrinsic::nvvm_rcp_rn_ftz_f:
1848 case Intrinsic::nvvm_rcp_rp_d:
1849 case Intrinsic::nvvm_rcp_rp_f:
1850 case Intrinsic::nvvm_rcp_rp_ftz_f:
1851 case Intrinsic::nvvm_rcp_rz_d:
1852 case Intrinsic::nvvm_rcp_rz_f:
1853 case Intrinsic::nvvm_rcp_rz_ftz_f:
1854
1855 case Intrinsic::nvvm_round_d:
1856 case Intrinsic::nvvm_round_f:
1857 case Intrinsic::nvvm_round_ftz_f:
1858
1859 case Intrinsic::nvvm_saturate_d:
1860 case Intrinsic::nvvm_saturate_f:
1861 case Intrinsic::nvvm_saturate_ftz_f:
1862
1863 case Intrinsic::nvvm_sqrt_f:
1864 case Intrinsic::nvvm_sqrt_rn_d:
1865 case Intrinsic::nvvm_sqrt_rn_f:
1866 case Intrinsic::nvvm_sqrt_rn_ftz_f:
1867 return !Call->isStrictFP();
1868
1869 // NVVM add intrinsics with explicit rounding modes
1870 case Intrinsic::nvvm_add_rm_d:
1871 case Intrinsic::nvvm_add_rn_d:
1872 case Intrinsic::nvvm_add_rp_d:
1873 case Intrinsic::nvvm_add_rz_d:
1874 case Intrinsic::nvvm_add_rm_f:
1875 case Intrinsic::nvvm_add_rn_f:
1876 case Intrinsic::nvvm_add_rp_f:
1877 case Intrinsic::nvvm_add_rz_f:
1878 case Intrinsic::nvvm_add_rm_ftz_f:
1879 case Intrinsic::nvvm_add_rn_ftz_f:
1880 case Intrinsic::nvvm_add_rp_ftz_f:
1881 case Intrinsic::nvvm_add_rz_ftz_f:
1882
1883 // NVVM div intrinsics with explicit rounding modes
1884 case Intrinsic::nvvm_div_rm_d:
1885 case Intrinsic::nvvm_div_rn_d:
1886 case Intrinsic::nvvm_div_rp_d:
1887 case Intrinsic::nvvm_div_rz_d:
1888 case Intrinsic::nvvm_div_rm_f:
1889 case Intrinsic::nvvm_div_rn_f:
1890 case Intrinsic::nvvm_div_rp_f:
1891 case Intrinsic::nvvm_div_rz_f:
1892 case Intrinsic::nvvm_div_rm_ftz_f:
1893 case Intrinsic::nvvm_div_rn_ftz_f:
1894 case Intrinsic::nvvm_div_rp_ftz_f:
1895 case Intrinsic::nvvm_div_rz_ftz_f:
1896
1897 // NVVM mul intrinsics with explicit rounding modes
1898 case Intrinsic::nvvm_mul_rm_d:
1899 case Intrinsic::nvvm_mul_rn_d:
1900 case Intrinsic::nvvm_mul_rp_d:
1901 case Intrinsic::nvvm_mul_rz_d:
1902 case Intrinsic::nvvm_mul_rm_f:
1903 case Intrinsic::nvvm_mul_rn_f:
1904 case Intrinsic::nvvm_mul_rp_f:
1905 case Intrinsic::nvvm_mul_rz_f:
1906 case Intrinsic::nvvm_mul_rm_ftz_f:
1907 case Intrinsic::nvvm_mul_rn_ftz_f:
1908 case Intrinsic::nvvm_mul_rp_ftz_f:
1909 case Intrinsic::nvvm_mul_rz_ftz_f:
1910
1911 // NVVM fma intrinsics with explicit rounding modes
1912 case Intrinsic::nvvm_fma_rm_d:
1913 case Intrinsic::nvvm_fma_rn_d:
1914 case Intrinsic::nvvm_fma_rp_d:
1915 case Intrinsic::nvvm_fma_rz_d:
1916 case Intrinsic::nvvm_fma_rm_f:
1917 case Intrinsic::nvvm_fma_rn_f:
1918 case Intrinsic::nvvm_fma_rp_f:
1919 case Intrinsic::nvvm_fma_rz_f:
1920 case Intrinsic::nvvm_fma_rm_ftz_f:
1921 case Intrinsic::nvvm_fma_rn_ftz_f:
1922 case Intrinsic::nvvm_fma_rp_ftz_f:
1923 case Intrinsic::nvvm_fma_rz_ftz_f:
1924
1925 // Sign operations are actually bitwise operations, they do not raise
1926 // exceptions even for SNANs.
1927 case Intrinsic::fabs:
1928 case Intrinsic::copysign:
1929 case Intrinsic::is_fpclass:
1930 // Non-constrained variants of rounding operations means default FP
1931 // environment, they can be folded in any case.
1932 case Intrinsic::ceil:
1933 case Intrinsic::floor:
1934 case Intrinsic::round:
1935 case Intrinsic::roundeven:
1936 case Intrinsic::trunc:
1937 case Intrinsic::nearbyint:
1938 case Intrinsic::rint:
1939 case Intrinsic::canonicalize:
1940
1941 // Constrained intrinsics can be folded if FP environment is known
1942 // to compiler.
1943 case Intrinsic::experimental_constrained_fma:
1944 case Intrinsic::experimental_constrained_fmuladd:
1945 case Intrinsic::experimental_constrained_fadd:
1946 case Intrinsic::experimental_constrained_fsub:
1947 case Intrinsic::experimental_constrained_fmul:
1948 case Intrinsic::experimental_constrained_fdiv:
1949 case Intrinsic::experimental_constrained_frem:
1950 case Intrinsic::experimental_constrained_ceil:
1951 case Intrinsic::experimental_constrained_floor:
1952 case Intrinsic::experimental_constrained_round:
1953 case Intrinsic::experimental_constrained_roundeven:
1954 case Intrinsic::experimental_constrained_trunc:
1955 case Intrinsic::experimental_constrained_nearbyint:
1956 case Intrinsic::experimental_constrained_rint:
1957 case Intrinsic::experimental_constrained_fcmp:
1958 case Intrinsic::experimental_constrained_fcmps:
1959 return true;
1960 default:
1961 return false;
1962 case Intrinsic::not_intrinsic: break;
1963 }
1964
1965 if (!F->hasName() || Call->isStrictFP())
1966 return false;
1967
1968 // In these cases, the check of the length is required. We don't want to
1969 // return true for a name like "cos\0blah" which strcmp would return equal to
1970 // "cos", but has length 8.
1971 StringRef Name = F->getName();
1972 switch (Name[0]) {
1973 default:
1974 return false;
1975 case 'a':
1976 return Name == "acos" || Name == "acosf" ||
1977 Name == "asin" || Name == "asinf" ||
1978 Name == "atan" || Name == "atanf" ||
1979 Name == "atan2" || Name == "atan2f";
1980 case 'c':
1981 return Name == "ceil" || Name == "ceilf" ||
1982 Name == "cos" || Name == "cosf" ||
1983 Name == "cosh" || Name == "coshf";
1984 case 'e':
1985 return Name == "exp" || Name == "expf" || Name == "exp2" ||
1986 Name == "exp2f" || Name == "erf" || Name == "erff";
1987 case 'f':
1988 return Name == "fabs" || Name == "fabsf" ||
1989 Name == "floor" || Name == "floorf" ||
1990 Name == "fmod" || Name == "fmodf";
1991 case 'i':
1992 return Name == "ilogb" || Name == "ilogbf";
1993 case 'l':
1994 return Name == "log" || Name == "logf" || Name == "logl" ||
1995 Name == "log2" || Name == "log2f" || Name == "log10" ||
1996 Name == "log10f" || Name == "logb" || Name == "logbf" ||
1997 Name == "log1p" || Name == "log1pf";
1998 case 'n':
1999 return Name == "nearbyint" || Name == "nearbyintf";
2000 case 'p':
2001 return Name == "pow" || Name == "powf";
2002 case 'r':
2003 return Name == "remainder" || Name == "remainderf" ||
2004 Name == "rint" || Name == "rintf" ||
2005 Name == "round" || Name == "roundf";
2006 case 's':
2007 return Name == "sin" || Name == "sinf" ||
2008 Name == "sinh" || Name == "sinhf" ||
2009 Name == "sqrt" || Name == "sqrtf";
2010 case 't':
2011 return Name == "tan" || Name == "tanf" ||
2012 Name == "tanh" || Name == "tanhf" ||
2013 Name == "trunc" || Name == "truncf";
2014 case '_':
2015 // Check for various function names that get used for the math functions
2016 // when the header files are preprocessed with the macro
2017 // __FINITE_MATH_ONLY__ enabled.
2018 // The '12' here is the length of the shortest name that can match.
2019 // We need to check the size before looking at Name[1] and Name[2]
2020 // so we may as well check a limit that will eliminate mismatches.
2021 if (Name.size() < 12 || Name[1] != '_')
2022 return false;
2023 switch (Name[2]) {
2024 default:
2025 return false;
2026 case 'a':
2027 return Name == "__acos_finite" || Name == "__acosf_finite" ||
2028 Name == "__asin_finite" || Name == "__asinf_finite" ||
2029 Name == "__atan2_finite" || Name == "__atan2f_finite";
2030 case 'c':
2031 return Name == "__cosh_finite" || Name == "__coshf_finite";
2032 case 'e':
2033 return Name == "__exp_finite" || Name == "__expf_finite" ||
2034 Name == "__exp2_finite" || Name == "__exp2f_finite";
2035 case 'l':
2036 return Name == "__log_finite" || Name == "__logf_finite" ||
2037 Name == "__log10_finite" || Name == "__log10f_finite";
2038 case 'p':
2039 return Name == "__pow_finite" || Name == "__powf_finite";
2040 case 's':
2041 return Name == "__sinh_finite" || Name == "__sinhf_finite";
2042 }
2043 }
2044}
2045
2046namespace {
2047
2048Constant *GetConstantFoldFPValue(double V, Type *Ty) {
2049 if (Ty->isHalfTy() || Ty->isFloatTy()) {
2050 APFloat APF(V);
2051 bool unused;
2052 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
2053 return ConstantFP::get(Ty->getContext(), APF);
2054 }
2055 if (Ty->isDoubleTy())
2056 return ConstantFP::get(Ty->getContext(), APFloat(V));
2057 llvm_unreachable("Can only constant fold half/float/double");
2058}
2059
2060#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2061Constant *GetConstantFoldFPValue128(float128 V, Type *Ty) {
2062 if (Ty->isFP128Ty())
2063 return ConstantFP::get(Ty, V);
2064 llvm_unreachable("Can only constant fold fp128");
2065}
2066#endif
2067
2068/// Clear the floating-point exception state.
2069inline void llvm_fenv_clearexcept() {
2070#if HAVE_DECL_FE_ALL_EXCEPT
2071 feclearexcept(FE_ALL_EXCEPT);
2072#endif
2073 errno = 0;
2074}
2075
2076/// Test if a floating-point exception was raised.
2077inline bool llvm_fenv_testexcept() {
2078 int errno_val = errno;
2079 if (errno_val == ERANGE || errno_val == EDOM)
2080 return true;
2081#if HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
2082 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
2083 return true;
2084#endif
2085 return false;
2086}
2087
2088static APFloat FTZPreserveSign(const APFloat &V) {
2089 if (V.isDenormal())
2090 return APFloat::getZero(V.getSemantics(), V.isNegative());
2091 return V;
2092}
2093
2094static APFloat FlushToPositiveZero(const APFloat &V) {
2095 if (V.isDenormal())
2096 return APFloat::getZero(V.getSemantics(), false);
2097 return V;
2098}
2099
2100static APFloat FlushWithDenormKind(const APFloat &V,
2101 DenormalMode::DenormalModeKind DenormKind) {
2104 switch (DenormKind) {
2106 return V;
2108 return FTZPreserveSign(V);
2110 return FlushToPositiveZero(V);
2111 default:
2112 llvm_unreachable("Invalid denormal mode!");
2113 }
2114}
2115
2116Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V, Type *Ty,
2117 DenormalMode DenormMode = DenormalMode::getIEEE()) {
2118 if (!DenormMode.isValid() ||
2119 DenormMode.Input == DenormalMode::DenormalModeKind::Dynamic ||
2120 DenormMode.Output == DenormalMode::DenormalModeKind::Dynamic)
2121 return nullptr;
2122
2123 llvm_fenv_clearexcept();
2124 auto Input = FlushWithDenormKind(V, DenormMode.Input);
2125 double Result = NativeFP(Input.convertToDouble());
2126 if (llvm_fenv_testexcept()) {
2127 llvm_fenv_clearexcept();
2128 return nullptr;
2129 }
2130
2131 Constant *Output = GetConstantFoldFPValue(Result, Ty);
2132 if (DenormMode.Output == DenormalMode::DenormalModeKind::IEEE)
2133 return Output;
2134 const auto *CFP = static_cast<ConstantFP *>(Output);
2135 const auto Res = FlushWithDenormKind(CFP->getValueAPF(), DenormMode.Output);
2136 return ConstantFP::get(Ty->getContext(), Res);
2137}
2138
2139#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2140Constant *ConstantFoldFP128(float128 (*NativeFP)(float128), const APFloat &V,
2141 Type *Ty) {
2142 llvm_fenv_clearexcept();
2143 float128 Result = NativeFP(V.convertToQuad());
2144 if (llvm_fenv_testexcept()) {
2145 llvm_fenv_clearexcept();
2146 return nullptr;
2147 }
2148
2149 return GetConstantFoldFPValue128(Result, Ty);
2150}
2151#endif
2152
2153Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
2154 const APFloat &V, const APFloat &W, Type *Ty) {
2155 llvm_fenv_clearexcept();
2156 double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
2157 if (llvm_fenv_testexcept()) {
2158 llvm_fenv_clearexcept();
2159 return nullptr;
2160 }
2161
2162 return GetConstantFoldFPValue(Result, Ty);
2163}
2164
2165Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
2166 auto *OpVT = cast<VectorType>(Op->getType());
2167
2168 // This is the same as the underlying binops - poison propagates.
2169 if (Op->containsPoisonElement())
2170 return PoisonValue::get(OpVT->getElementType());
2171
2172 // Shortcut non-accumulating reductions.
2173 if (Constant *SplatVal = Op->getSplatValue()) {
2174 switch (IID) {
2175 case Intrinsic::vector_reduce_and:
2176 case Intrinsic::vector_reduce_or:
2177 case Intrinsic::vector_reduce_smin:
2178 case Intrinsic::vector_reduce_smax:
2179 case Intrinsic::vector_reduce_umin:
2180 case Intrinsic::vector_reduce_umax:
2181 return SplatVal;
2182 case Intrinsic::vector_reduce_add:
2183 if (SplatVal->isNullValue())
2184 return SplatVal;
2185 break;
2186 case Intrinsic::vector_reduce_mul:
2187 if (SplatVal->isNullValue() || SplatVal->isOneValue())
2188 return SplatVal;
2189 break;
2190 case Intrinsic::vector_reduce_xor:
2191 if (SplatVal->isNullValue())
2192 return SplatVal;
2193 if (OpVT->getElementCount().isKnownMultipleOf(2))
2194 return Constant::getNullValue(OpVT->getElementType());
2195 break;
2196 }
2197 }
2198
2200 if (!VT)
2201 return nullptr;
2202
2203 // TODO: Handle undef.
2204 auto *EltC = dyn_cast_or_null<ConstantInt>(Op->getAggregateElement(0U));
2205 if (!EltC)
2206 return nullptr;
2207
2208 APInt Acc = EltC->getValue();
2209 for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
2210 if (!(EltC = dyn_cast_or_null<ConstantInt>(Op->getAggregateElement(I))))
2211 return nullptr;
2212 const APInt &X = EltC->getValue();
2213 switch (IID) {
2214 case Intrinsic::vector_reduce_add:
2215 Acc = Acc + X;
2216 break;
2217 case Intrinsic::vector_reduce_mul:
2218 Acc = Acc * X;
2219 break;
2220 case Intrinsic::vector_reduce_and:
2221 Acc = Acc & X;
2222 break;
2223 case Intrinsic::vector_reduce_or:
2224 Acc = Acc | X;
2225 break;
2226 case Intrinsic::vector_reduce_xor:
2227 Acc = Acc ^ X;
2228 break;
2229 case Intrinsic::vector_reduce_smin:
2230 Acc = APIntOps::smin(Acc, X);
2231 break;
2232 case Intrinsic::vector_reduce_smax:
2233 Acc = APIntOps::smax(Acc, X);
2234 break;
2235 case Intrinsic::vector_reduce_umin:
2236 Acc = APIntOps::umin(Acc, X);
2237 break;
2238 case Intrinsic::vector_reduce_umax:
2239 Acc = APIntOps::umax(Acc, X);
2240 break;
2241 }
2242 }
2243
2244 return ConstantInt::get(Op->getContext(), Acc);
2245}
2246
2247/// Attempt to fold an SSE floating point to integer conversion of a constant
2248/// floating point. If roundTowardZero is false, the default IEEE rounding is
2249/// used (toward nearest, ties to even). This matches the behavior of the
2250/// non-truncating SSE instructions in the default rounding mode. The desired
2251/// integer type Ty is used to select how many bits are available for the
2252/// result. Returns null if the conversion cannot be performed, otherwise
2253/// returns the Constant value resulting from the conversion.
2254Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
2255 Type *Ty, bool IsSigned) {
2256 // All of these conversion intrinsics form an integer of at most 64bits.
2257 unsigned ResultWidth = Ty->getIntegerBitWidth();
2258 assert(ResultWidth <= 64 &&
2259 "Can only constant fold conversions to 64 and 32 bit ints");
2260
2261 uint64_t UIntVal;
2262 bool isExact = false;
2266 Val.convertToInteger(MutableArrayRef(UIntVal), ResultWidth,
2267 IsSigned, mode, &isExact);
2268 if (status != APFloat::opOK &&
2269 (!roundTowardZero || status != APFloat::opInexact))
2270 return nullptr;
2271 return ConstantInt::get(Ty, UIntVal, IsSigned);
2272}
2273
2274double getValueAsDouble(ConstantFP *Op) {
2275 Type *Ty = Op->getType();
2276
2277 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2278 return Op->getValueAPF().convertToDouble();
2279
2280 bool unused;
2281 APFloat APF = Op->getValueAPF();
2283 return APF.convertToDouble();
2284}
2285
2286static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
2287 if (auto *CI = dyn_cast<ConstantInt>(Op)) {
2288 C = &CI->getValue();
2289 return true;
2290 }
2291 if (isa<UndefValue>(Op)) {
2292 C = nullptr;
2293 return true;
2294 }
2295 return false;
2296}
2297
2298/// Checks if the given intrinsic call, which evaluates to constant, is allowed
2299/// to be folded.
2300///
2301/// \param CI Constrained intrinsic call.
2302/// \param St Exception flags raised during constant evaluation.
2303static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
2304 APFloat::opStatus St) {
2305 std::optional<RoundingMode> ORM = CI->getRoundingMode();
2306 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2307
2308 // If the operation does not change exception status flags, it is safe
2309 // to fold.
2310 if (St == APFloat::opStatus::opOK)
2311 return true;
2312
2313 // If evaluation raised FP exception, the result can depend on rounding
2314 // mode. If the latter is unknown, folding is not possible.
2315 if (ORM == RoundingMode::Dynamic)
2316 return false;
2317
2318 // If FP exceptions are ignored, fold the call, even if such exception is
2319 // raised.
2320 if (EB && *EB != fp::ExceptionBehavior::ebStrict)
2321 return true;
2322
2323 // Leave the calculation for runtime so that exception flags be correctly set
2324 // in hardware.
2325 return false;
2326}
2327
2328/// Returns the rounding mode that should be used for constant evaluation.
2329static RoundingMode
2330getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
2331 std::optional<RoundingMode> ORM = CI->getRoundingMode();
2332 if (!ORM || *ORM == RoundingMode::Dynamic)
2333 // Even if the rounding mode is unknown, try evaluating the operation.
2334 // If it does not raise inexact exception, rounding was not applied,
2335 // so the result is exact and does not depend on rounding mode. Whether
2336 // other FP exceptions are raised, it does not depend on rounding mode.
2338 return *ORM;
2339}
2340
2341/// Try to constant fold llvm.canonicalize for the given caller and value.
2342static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI,
2343 const APFloat &Src) {
2344 // Zero, positive and negative, is always OK to fold.
2345 if (Src.isZero()) {
2346 // Get a fresh 0, since ppc_fp128 does have non-canonical zeros.
2347 return ConstantFP::get(
2348 CI->getContext(),
2349 APFloat::getZero(Src.getSemantics(), Src.isNegative()));
2350 }
2351
2352 if (!Ty->isIEEELikeFPTy())
2353 return nullptr;
2354
2355 // Zero is always canonical and the sign must be preserved.
2356 //
2357 // Denorms and nans may have special encodings, but it should be OK to fold a
2358 // totally average number.
2359 if (Src.isNormal() || Src.isInfinity())
2360 return ConstantFP::get(CI->getContext(), Src);
2361
2362 if (Src.isDenormal() && CI->getParent() && CI->getFunction()) {
2363 DenormalMode DenormMode =
2364 CI->getFunction()->getDenormalMode(Src.getSemantics());
2365
2366 if (DenormMode == DenormalMode::getIEEE())
2367 return ConstantFP::get(CI->getContext(), Src);
2368
2369 if (DenormMode.Input == DenormalMode::Dynamic)
2370 return nullptr;
2371
2372 // If we know if either input or output is flushed, we can fold.
2373 if ((DenormMode.Input == DenormalMode::Dynamic &&
2374 DenormMode.Output == DenormalMode::IEEE) ||
2375 (DenormMode.Input == DenormalMode::IEEE &&
2376 DenormMode.Output == DenormalMode::Dynamic))
2377 return nullptr;
2378
2379 bool IsPositive =
2380 (!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero ||
2381 (DenormMode.Output == DenormalMode::PositiveZero &&
2382 DenormMode.Input == DenormalMode::IEEE));
2383
2384 return ConstantFP::get(CI->getContext(),
2385 APFloat::getZero(Src.getSemantics(), !IsPositive));
2386 }
2387
2388 return nullptr;
2389}
2390
2391static Constant *ConstantFoldScalarCall1(StringRef Name,
2392 Intrinsic::ID IntrinsicID,
2393 Type *Ty,
2394 ArrayRef<Constant *> Operands,
2395 const TargetLibraryInfo *TLI,
2396 const CallBase *Call) {
2397 assert(Operands.size() == 1 && "Wrong number of operands.");
2398
2399 if (IntrinsicID == Intrinsic::is_constant) {
2400 // We know we have a "Constant" argument. But we want to only
2401 // return true for manifest constants, not those that depend on
2402 // constants with unknowable values, e.g. GlobalValue or BlockAddress.
2403 if (Operands[0]->isManifestConstant())
2404 return ConstantInt::getTrue(Ty->getContext());
2405 return nullptr;
2406 }
2407
2408 if (isa<UndefValue>(Operands[0])) {
2409 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
2410 // ctpop() is between 0 and bitwidth, pick 0 for undef.
2411 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
2412 if (IntrinsicID == Intrinsic::cos ||
2413 IntrinsicID == Intrinsic::ctpop ||
2414 IntrinsicID == Intrinsic::fptoui_sat ||
2415 IntrinsicID == Intrinsic::fptosi_sat ||
2416 IntrinsicID == Intrinsic::canonicalize)
2417 return Constant::getNullValue(Ty);
2418 if (IntrinsicID == Intrinsic::bswap ||
2419 IntrinsicID == Intrinsic::bitreverse ||
2420 IntrinsicID == Intrinsic::launder_invariant_group ||
2421 IntrinsicID == Intrinsic::strip_invariant_group)
2422 return Operands[0];
2423 }
2424
2425 if (isa<ConstantPointerNull>(Operands[0])) {
2426 // launder(null) == null == strip(null) iff in addrspace 0
2427 if (IntrinsicID == Intrinsic::launder_invariant_group ||
2428 IntrinsicID == Intrinsic::strip_invariant_group) {
2429 // If instruction is not yet put in a basic block (e.g. when cloning
2430 // a function during inlining), Call's caller may not be available.
2431 // So check Call's BB first before querying Call->getCaller.
2432 const Function *Caller =
2433 Call->getParent() ? Call->getCaller() : nullptr;
2434 if (Caller &&
2436 Caller, Operands[0]->getType()->getPointerAddressSpace())) {
2437 return Operands[0];
2438 }
2439 return nullptr;
2440 }
2441 }
2442
2443 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
2444 if (IntrinsicID == Intrinsic::convert_to_fp16) {
2445 APFloat Val(Op->getValueAPF());
2446
2447 bool lost = false;
2449
2450 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
2451 }
2452
2453 APFloat U = Op->getValueAPF();
2454
2455 if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2456 IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2457 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2458
2459 if (U.isNaN())
2460 return nullptr;
2461
2462 unsigned Width = Ty->getIntegerBitWidth();
2463 APSInt Int(Width, !Signed);
2464 bool IsExact = false;
2466 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2467
2469 return ConstantInt::get(Ty, Int);
2470
2471 return nullptr;
2472 }
2473
2474 if (IntrinsicID == Intrinsic::fptoui_sat ||
2475 IntrinsicID == Intrinsic::fptosi_sat) {
2476 // convertToInteger() already has the desired saturation semantics.
2477 APSInt Int(Ty->getIntegerBitWidth(),
2478 IntrinsicID == Intrinsic::fptoui_sat);
2479 bool IsExact;
2480 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2481 return ConstantInt::get(Ty, Int);
2482 }
2483
2484 if (IntrinsicID == Intrinsic::canonicalize)
2485 return constantFoldCanonicalize(Ty, Call, U);
2486
2487#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2488 if (Ty->isFP128Ty()) {
2489 if (IntrinsicID == Intrinsic::log) {
2490 float128 Result = logf128(Op->getValueAPF().convertToQuad());
2491 return GetConstantFoldFPValue128(Result, Ty);
2492 }
2493
2494 LibFunc Fp128Func = NotLibFunc;
2495 if (TLI && TLI->getLibFunc(Name, Fp128Func) && TLI->has(Fp128Func) &&
2496 Fp128Func == LibFunc_logl)
2497 return ConstantFoldFP128(logf128, Op->getValueAPF(), Ty);
2498 }
2499#endif
2500
2501 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy() &&
2502 !Ty->isIntegerTy())
2503 return nullptr;
2504
2505 // Use internal versions of these intrinsics.
2506
2507 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
2508 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2509 return ConstantFP::get(Ty->getContext(), U);
2510 }
2511
2512 if (IntrinsicID == Intrinsic::round) {
2513 U.roundToIntegral(APFloat::rmNearestTiesToAway);
2514 return ConstantFP::get(Ty->getContext(), U);
2515 }
2516
2517 if (IntrinsicID == Intrinsic::roundeven) {
2518 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2519 return ConstantFP::get(Ty->getContext(), U);
2520 }
2521
2522 if (IntrinsicID == Intrinsic::ceil) {
2523 U.roundToIntegral(APFloat::rmTowardPositive);
2524 return ConstantFP::get(Ty->getContext(), U);
2525 }
2526
2527 if (IntrinsicID == Intrinsic::floor) {
2528 U.roundToIntegral(APFloat::rmTowardNegative);
2529 return ConstantFP::get(Ty->getContext(), U);
2530 }
2531
2532 if (IntrinsicID == Intrinsic::trunc) {
2533 U.roundToIntegral(APFloat::rmTowardZero);
2534 return ConstantFP::get(Ty->getContext(), U);
2535 }
2536
2537 if (IntrinsicID == Intrinsic::fabs) {
2538 U.clearSign();
2539 return ConstantFP::get(Ty->getContext(), U);
2540 }
2541
2542 if (IntrinsicID == Intrinsic::amdgcn_fract) {
2543 // The v_fract instruction behaves like the OpenCL spec, which defines
2544 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
2545 // there to prevent fract(-small) from returning 1.0. It returns the
2546 // largest positive floating-point number less than 1.0."
2547 APFloat FloorU(U);
2548 FloorU.roundToIntegral(APFloat::rmTowardNegative);
2549 APFloat FractU(U - FloorU);
2550 APFloat AlmostOne(U.getSemantics(), 1);
2551 AlmostOne.next(/*nextDown*/ true);
2552 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
2553 }
2554
2555 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
2556 // raise FP exceptions, unless the argument is signaling NaN.
2557
2558 std::optional<APFloat::roundingMode> RM;
2559 switch (IntrinsicID) {
2560 default:
2561 break;
2562 case Intrinsic::experimental_constrained_nearbyint:
2563 case Intrinsic::experimental_constrained_rint: {
2565 RM = CI->getRoundingMode();
2566 if (!RM || *RM == RoundingMode::Dynamic)
2567 return nullptr;
2568 break;
2569 }
2570 case Intrinsic::experimental_constrained_round:
2572 break;
2573 case Intrinsic::experimental_constrained_ceil:
2575 break;
2576 case Intrinsic::experimental_constrained_floor:
2578 break;
2579 case Intrinsic::experimental_constrained_trunc:
2581 break;
2582 }
2583 if (RM) {
2585 if (U.isFinite()) {
2586 APFloat::opStatus St = U.roundToIntegral(*RM);
2587 if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2588 St == APFloat::opInexact) {
2589 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2590 if (EB == fp::ebStrict)
2591 return nullptr;
2592 }
2593 } else if (U.isSignaling()) {
2594 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2595 if (EB && *EB != fp::ebIgnore)
2596 return nullptr;
2597 U = APFloat::getQNaN(U.getSemantics());
2598 }
2599 return ConstantFP::get(Ty->getContext(), U);
2600 }
2601
2602 // NVVM float/double to signed/unsigned int32/int64 conversions:
2603 switch (IntrinsicID) {
2604 // f2i
2605 case Intrinsic::nvvm_f2i_rm:
2606 case Intrinsic::nvvm_f2i_rn:
2607 case Intrinsic::nvvm_f2i_rp:
2608 case Intrinsic::nvvm_f2i_rz:
2609 case Intrinsic::nvvm_f2i_rm_ftz:
2610 case Intrinsic::nvvm_f2i_rn_ftz:
2611 case Intrinsic::nvvm_f2i_rp_ftz:
2612 case Intrinsic::nvvm_f2i_rz_ftz:
2613 // f2ui
2614 case Intrinsic::nvvm_f2ui_rm:
2615 case Intrinsic::nvvm_f2ui_rn:
2616 case Intrinsic::nvvm_f2ui_rp:
2617 case Intrinsic::nvvm_f2ui_rz:
2618 case Intrinsic::nvvm_f2ui_rm_ftz:
2619 case Intrinsic::nvvm_f2ui_rn_ftz:
2620 case Intrinsic::nvvm_f2ui_rp_ftz:
2621 case Intrinsic::nvvm_f2ui_rz_ftz:
2622 // d2i
2623 case Intrinsic::nvvm_d2i_rm:
2624 case Intrinsic::nvvm_d2i_rn:
2625 case Intrinsic::nvvm_d2i_rp:
2626 case Intrinsic::nvvm_d2i_rz:
2627 // d2ui
2628 case Intrinsic::nvvm_d2ui_rm:
2629 case Intrinsic::nvvm_d2ui_rn:
2630 case Intrinsic::nvvm_d2ui_rp:
2631 case Intrinsic::nvvm_d2ui_rz:
2632 // f2ll
2633 case Intrinsic::nvvm_f2ll_rm:
2634 case Intrinsic::nvvm_f2ll_rn:
2635 case Intrinsic::nvvm_f2ll_rp:
2636 case Intrinsic::nvvm_f2ll_rz:
2637 case Intrinsic::nvvm_f2ll_rm_ftz:
2638 case Intrinsic::nvvm_f2ll_rn_ftz:
2639 case Intrinsic::nvvm_f2ll_rp_ftz:
2640 case Intrinsic::nvvm_f2ll_rz_ftz:
2641 // f2ull
2642 case Intrinsic::nvvm_f2ull_rm:
2643 case Intrinsic::nvvm_f2ull_rn:
2644 case Intrinsic::nvvm_f2ull_rp:
2645 case Intrinsic::nvvm_f2ull_rz:
2646 case Intrinsic::nvvm_f2ull_rm_ftz:
2647 case Intrinsic::nvvm_f2ull_rn_ftz:
2648 case Intrinsic::nvvm_f2ull_rp_ftz:
2649 case Intrinsic::nvvm_f2ull_rz_ftz:
2650 // d2ll
2651 case Intrinsic::nvvm_d2ll_rm:
2652 case Intrinsic::nvvm_d2ll_rn:
2653 case Intrinsic::nvvm_d2ll_rp:
2654 case Intrinsic::nvvm_d2ll_rz:
2655 // d2ull
2656 case Intrinsic::nvvm_d2ull_rm:
2657 case Intrinsic::nvvm_d2ull_rn:
2658 case Intrinsic::nvvm_d2ull_rp:
2659 case Intrinsic::nvvm_d2ull_rz: {
2660 // In float-to-integer conversion, NaN inputs are converted to 0.
2661 if (U.isNaN()) {
2662 // In float-to-integer conversion, NaN inputs are converted to 0
2663 // when the source and destination bitwidths are both less than 64.
2664 if (nvvm::FPToIntegerIntrinsicNaNZero(IntrinsicID))
2665 return ConstantInt::get(Ty, 0);
2666
2667 // Otherwise, the most significant bit is set.
2668 unsigned BitWidth = Ty->getIntegerBitWidth();
2669 uint64_t Val = 1ULL << (BitWidth - 1);
2670 return ConstantInt::get(Ty, APInt(BitWidth, Val, /*IsSigned=*/false));
2671 }
2672
2673 APFloat::roundingMode RMode =
2675 bool IsFTZ = nvvm::FPToIntegerIntrinsicShouldFTZ(IntrinsicID);
2676 bool IsSigned = nvvm::FPToIntegerIntrinsicResultIsSigned(IntrinsicID);
2677
2678 APSInt ResInt(Ty->getIntegerBitWidth(), !IsSigned);
2679 auto FloatToRound = IsFTZ ? FTZPreserveSign(U) : U;
2680
2681 // Return max/min value for integers if the result is +/-inf or
2682 // is too large to fit in the result's integer bitwidth.
2683 bool IsExact = false;
2684 FloatToRound.convertToInteger(ResInt, RMode, &IsExact);
2685 return ConstantInt::get(Ty, ResInt);
2686 }
2687 }
2688
2689 /// We only fold functions with finite arguments. Folding NaN and inf is
2690 /// likely to be aborted with an exception anyway, and some host libms
2691 /// have known errors raising exceptions.
2692 if (!U.isFinite())
2693 return nullptr;
2694
2695 /// Currently APFloat versions of these functions do not exist, so we use
2696 /// the host native double versions. Float versions are not called
2697 /// directly but for all these it is true (float)(f((double)arg)) ==
2698 /// f(arg). Long double not supported yet.
2699 const APFloat &APF = Op->getValueAPF();
2700
2701 switch (IntrinsicID) {
2702 default: break;
2703 case Intrinsic::log:
2704 return ConstantFoldFP(log, APF, Ty);
2705 case Intrinsic::log2:
2706 // TODO: What about hosts that lack a C99 library?
2707 return ConstantFoldFP(log2, APF, Ty);
2708 case Intrinsic::log10:
2709 // TODO: What about hosts that lack a C99 library?
2710 return ConstantFoldFP(log10, APF, Ty);
2711 case Intrinsic::exp:
2712 return ConstantFoldFP(exp, APF, Ty);
2713 case Intrinsic::exp2:
2714 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2715 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2716 case Intrinsic::exp10:
2717 // Fold exp10(x) as pow(10, x), in case the host lacks a C99 library.
2718 return ConstantFoldBinaryFP(pow, APFloat(10.0), APF, Ty);
2719 case Intrinsic::sin:
2720 return ConstantFoldFP(sin, APF, Ty);
2721 case Intrinsic::cos:
2722 return ConstantFoldFP(cos, APF, Ty);
2723 case Intrinsic::sinh:
2724 return ConstantFoldFP(sinh, APF, Ty);
2725 case Intrinsic::cosh:
2726 return ConstantFoldFP(cosh, APF, Ty);
2727 case Intrinsic::atan:
2728 // Implement optional behavior from C's Annex F for +/-0.0.
2729 if (U.isZero())
2730 return ConstantFP::get(Ty->getContext(), U);
2731 return ConstantFoldFP(atan, APF, Ty);
2732 case Intrinsic::sqrt:
2733 return ConstantFoldFP(sqrt, APF, Ty);
2734
2735 // NVVM Intrinsics:
2736 case Intrinsic::nvvm_ceil_ftz_f:
2737 case Intrinsic::nvvm_ceil_f:
2738 case Intrinsic::nvvm_ceil_d:
2739 return ConstantFoldFP(
2740 ceil, APF, Ty,
2742 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2743
2744 case Intrinsic::nvvm_fabs_ftz:
2745 case Intrinsic::nvvm_fabs:
2746 return ConstantFoldFP(
2747 fabs, APF, Ty,
2749 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2750
2751 case Intrinsic::nvvm_floor_ftz_f:
2752 case Intrinsic::nvvm_floor_f:
2753 case Intrinsic::nvvm_floor_d:
2754 return ConstantFoldFP(
2755 floor, APF, Ty,
2757 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2758
2759 case Intrinsic::nvvm_rcp_rm_ftz_f:
2760 case Intrinsic::nvvm_rcp_rn_ftz_f:
2761 case Intrinsic::nvvm_rcp_rp_ftz_f:
2762 case Intrinsic::nvvm_rcp_rz_ftz_f:
2763 case Intrinsic::nvvm_rcp_rm_d:
2764 case Intrinsic::nvvm_rcp_rm_f:
2765 case Intrinsic::nvvm_rcp_rn_d:
2766 case Intrinsic::nvvm_rcp_rn_f:
2767 case Intrinsic::nvvm_rcp_rp_d:
2768 case Intrinsic::nvvm_rcp_rp_f:
2769 case Intrinsic::nvvm_rcp_rz_d:
2770 case Intrinsic::nvvm_rcp_rz_f: {
2771 APFloat::roundingMode RoundMode = nvvm::GetRCPRoundingMode(IntrinsicID);
2772 bool IsFTZ = nvvm::RCPShouldFTZ(IntrinsicID);
2773
2774 auto Denominator = IsFTZ ? FTZPreserveSign(APF) : APF;
2776 APFloat::opStatus Status = Res.divide(Denominator, RoundMode);
2777
2779 if (IsFTZ)
2780 Res = FTZPreserveSign(Res);
2781 return ConstantFP::get(Ty->getContext(), Res);
2782 }
2783 return nullptr;
2784 }
2785
2786 case Intrinsic::nvvm_round_ftz_f:
2787 case Intrinsic::nvvm_round_f:
2788 case Intrinsic::nvvm_round_d: {
2789 // nvvm_round is lowered to PTX cvt.rni, which will round to nearest
2790 // integer, choosing even integer if source is equidistant between two
2791 // integers, so the semantics are closer to "rint" rather than "round".
2792 bool IsFTZ = nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID);
2793 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2795 return ConstantFP::get(Ty->getContext(), V);
2796 }
2797
2798 case Intrinsic::nvvm_saturate_ftz_f:
2799 case Intrinsic::nvvm_saturate_d:
2800 case Intrinsic::nvvm_saturate_f: {
2801 bool IsFTZ = nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID);
2802 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2803 if (V.isNegative() || V.isZero() || V.isNaN())
2804 return ConstantFP::getZero(Ty);
2806 if (V > One)
2807 return ConstantFP::get(Ty->getContext(), One);
2808 return ConstantFP::get(Ty->getContext(), APF);
2809 }
2810
2811 case Intrinsic::nvvm_sqrt_rn_ftz_f:
2812 case Intrinsic::nvvm_sqrt_f:
2813 case Intrinsic::nvvm_sqrt_rn_d:
2814 case Intrinsic::nvvm_sqrt_rn_f:
2815 if (APF.isNegative())
2816 return nullptr;
2817 return ConstantFoldFP(
2818 sqrt, APF, Ty,
2820 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2821
2822 // AMDGCN Intrinsics:
2823 case Intrinsic::amdgcn_cos:
2824 case Intrinsic::amdgcn_sin: {
2825 double V = getValueAsDouble(Op);
2826 if (V < -256.0 || V > 256.0)
2827 // The gfx8 and gfx9 architectures handle arguments outside the range
2828 // [-256, 256] differently. This should be a rare case so bail out
2829 // rather than trying to handle the difference.
2830 return nullptr;
2831 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2832 double V4 = V * 4.0;
2833 if (V4 == floor(V4)) {
2834 // Force exact results for quarter-integer inputs.
2835 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2836 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2837 } else {
2838 if (IsCos)
2839 V = cos(V * 2.0 * numbers::pi);
2840 else
2841 V = sin(V * 2.0 * numbers::pi);
2842 }
2843 return GetConstantFoldFPValue(V, Ty);
2844 }
2845 }
2846
2847 if (!TLI)
2848 return nullptr;
2849
2851 if (!TLI->getLibFunc(Name, Func))
2852 return nullptr;
2853
2854 switch (Func) {
2855 default:
2856 break;
2857 case LibFunc_acos:
2858 case LibFunc_acosf:
2859 case LibFunc_acos_finite:
2860 case LibFunc_acosf_finite:
2861 if (TLI->has(Func))
2862 return ConstantFoldFP(acos, APF, Ty);
2863 break;
2864 case LibFunc_asin:
2865 case LibFunc_asinf:
2866 case LibFunc_asin_finite:
2867 case LibFunc_asinf_finite:
2868 if (TLI->has(Func))
2869 return ConstantFoldFP(asin, APF, Ty);
2870 break;
2871 case LibFunc_atan:
2872 case LibFunc_atanf:
2873 // Implement optional behavior from C's Annex F for +/-0.0.
2874 if (U.isZero())
2875 return ConstantFP::get(Ty->getContext(), U);
2876 if (TLI->has(Func))
2877 return ConstantFoldFP(atan, APF, Ty);
2878 break;
2879 case LibFunc_ceil:
2880 case LibFunc_ceilf:
2881 if (TLI->has(Func)) {
2882 U.roundToIntegral(APFloat::rmTowardPositive);
2883 return ConstantFP::get(Ty->getContext(), U);
2884 }
2885 break;
2886 case LibFunc_cos:
2887 case LibFunc_cosf:
2888 if (TLI->has(Func))
2889 return ConstantFoldFP(cos, APF, Ty);
2890 break;
2891 case LibFunc_cosh:
2892 case LibFunc_coshf:
2893 case LibFunc_cosh_finite:
2894 case LibFunc_coshf_finite:
2895 if (TLI->has(Func))
2896 return ConstantFoldFP(cosh, APF, Ty);
2897 break;
2898 case LibFunc_exp:
2899 case LibFunc_expf:
2900 case LibFunc_exp_finite:
2901 case LibFunc_expf_finite:
2902 if (TLI->has(Func))
2903 return ConstantFoldFP(exp, APF, Ty);
2904 break;
2905 case LibFunc_exp2:
2906 case LibFunc_exp2f:
2907 case LibFunc_exp2_finite:
2908 case LibFunc_exp2f_finite:
2909 if (TLI->has(Func))
2910 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2911 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2912 break;
2913 case LibFunc_fabs:
2914 case LibFunc_fabsf:
2915 if (TLI->has(Func)) {
2916 U.clearSign();
2917 return ConstantFP::get(Ty->getContext(), U);
2918 }
2919 break;
2920 case LibFunc_floor:
2921 case LibFunc_floorf:
2922 if (TLI->has(Func)) {
2923 U.roundToIntegral(APFloat::rmTowardNegative);
2924 return ConstantFP::get(Ty->getContext(), U);
2925 }
2926 break;
2927 case LibFunc_log:
2928 case LibFunc_logf:
2929 case LibFunc_log_finite:
2930 case LibFunc_logf_finite:
2931 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2932 return ConstantFoldFP(log, APF, Ty);
2933 break;
2934 case LibFunc_log2:
2935 case LibFunc_log2f:
2936 case LibFunc_log2_finite:
2937 case LibFunc_log2f_finite:
2938 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2939 // TODO: What about hosts that lack a C99 library?
2940 return ConstantFoldFP(log2, APF, Ty);
2941 break;
2942 case LibFunc_log10:
2943 case LibFunc_log10f:
2944 case LibFunc_log10_finite:
2945 case LibFunc_log10f_finite:
2946 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2947 // TODO: What about hosts that lack a C99 library?
2948 return ConstantFoldFP(log10, APF, Ty);
2949 break;
2950 case LibFunc_ilogb:
2951 case LibFunc_ilogbf:
2952 if (!APF.isZero() && TLI->has(Func))
2953 return ConstantInt::get(Ty, ilogb(APF), true);
2954 break;
2955 case LibFunc_logb:
2956 case LibFunc_logbf:
2957 if (!APF.isZero() && TLI->has(Func))
2958 return ConstantFoldFP(logb, APF, Ty);
2959 break;
2960 case LibFunc_log1p:
2961 case LibFunc_log1pf:
2962 // Implement optional behavior from C's Annex F for +/-0.0.
2963 if (U.isZero())
2964 return ConstantFP::get(Ty->getContext(), U);
2965 if (APF > APFloat::getOne(APF.getSemantics(), true) && TLI->has(Func))
2966 return ConstantFoldFP(log1p, APF, Ty);
2967 break;
2968 case LibFunc_logl:
2969 return nullptr;
2970 case LibFunc_erf:
2971 case LibFunc_erff:
2972 if (TLI->has(Func))
2973 return ConstantFoldFP(erf, APF, Ty);
2974 break;
2975 case LibFunc_nearbyint:
2976 case LibFunc_nearbyintf:
2977 case LibFunc_rint:
2978 case LibFunc_rintf:
2979 if (TLI->has(Func)) {
2980 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2981 return ConstantFP::get(Ty->getContext(), U);
2982 }
2983 break;
2984 case LibFunc_round:
2985 case LibFunc_roundf:
2986 if (TLI->has(Func)) {
2987 U.roundToIntegral(APFloat::rmNearestTiesToAway);
2988 return ConstantFP::get(Ty->getContext(), U);
2989 }
2990 break;
2991 case LibFunc_sin:
2992 case LibFunc_sinf:
2993 if (TLI->has(Func))
2994 return ConstantFoldFP(sin, APF, Ty);
2995 break;
2996 case LibFunc_sinh:
2997 case LibFunc_sinhf:
2998 case LibFunc_sinh_finite:
2999 case LibFunc_sinhf_finite:
3000 if (TLI->has(Func))
3001 return ConstantFoldFP(sinh, APF, Ty);
3002 break;
3003 case LibFunc_sqrt:
3004 case LibFunc_sqrtf:
3005 if (!APF.isNegative() && TLI->has(Func))
3006 return ConstantFoldFP(sqrt, APF, Ty);
3007 break;
3008 case LibFunc_tan:
3009 case LibFunc_tanf:
3010 if (TLI->has(Func))
3011 return ConstantFoldFP(tan, APF, Ty);
3012 break;
3013 case LibFunc_tanh:
3014 case LibFunc_tanhf:
3015 if (TLI->has(Func))
3016 return ConstantFoldFP(tanh, APF, Ty);
3017 break;
3018 case LibFunc_trunc:
3019 case LibFunc_truncf:
3020 if (TLI->has(Func)) {
3021 U.roundToIntegral(APFloat::rmTowardZero);
3022 return ConstantFP::get(Ty->getContext(), U);
3023 }
3024 break;
3025 }
3026 return nullptr;
3027 }
3028
3029 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
3030 switch (IntrinsicID) {
3031 case Intrinsic::bswap:
3032 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
3033 case Intrinsic::ctpop:
3034 return ConstantInt::get(Ty, Op->getValue().popcount());
3035 case Intrinsic::bitreverse:
3036 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
3037 case Intrinsic::convert_from_fp16: {
3038 APFloat Val(APFloat::IEEEhalf(), Op->getValue());
3039
3040 bool lost = false;
3041 APFloat::opStatus status = Val.convert(
3042 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
3043
3044 // Conversion is always precise.
3045 (void)status;
3046 assert(status != APFloat::opInexact && !lost &&
3047 "Precision lost during fp16 constfolding");
3048
3049 return ConstantFP::get(Ty->getContext(), Val);
3050 }
3051
3052 case Intrinsic::amdgcn_s_wqm: {
3053 uint64_t Val = Op->getZExtValue();
3054 Val |= (Val & 0x5555555555555555ULL) << 1 |
3055 ((Val >> 1) & 0x5555555555555555ULL);
3056 Val |= (Val & 0x3333333333333333ULL) << 2 |
3057 ((Val >> 2) & 0x3333333333333333ULL);
3058 return ConstantInt::get(Ty, Val);
3059 }
3060
3061 case Intrinsic::amdgcn_s_quadmask: {
3062 uint64_t Val = Op->getZExtValue();
3063 uint64_t QuadMask = 0;
3064 for (unsigned I = 0; I < Op->getBitWidth() / 4; ++I, Val >>= 4) {
3065 if (!(Val & 0xF))
3066 continue;
3067
3068 QuadMask |= (1ULL << I);
3069 }
3070 return ConstantInt::get(Ty, QuadMask);
3071 }
3072
3073 case Intrinsic::amdgcn_s_bitreplicate: {
3074 uint64_t Val = Op->getZExtValue();
3075 Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16;
3076 Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8;
3077 Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4;
3078 Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2;
3079 Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1;
3080 Val = Val | Val << 1;
3081 return ConstantInt::get(Ty, Val);
3082 }
3083 }
3084 }
3085
3086 if (Operands[0]->getType()->isVectorTy()) {
3087 auto *Op = cast<Constant>(Operands[0]);
3088 switch (IntrinsicID) {
3089 default: break;
3090 case Intrinsic::vector_reduce_add:
3091 case Intrinsic::vector_reduce_mul:
3092 case Intrinsic::vector_reduce_and:
3093 case Intrinsic::vector_reduce_or:
3094 case Intrinsic::vector_reduce_xor:
3095 case Intrinsic::vector_reduce_smin:
3096 case Intrinsic::vector_reduce_smax:
3097 case Intrinsic::vector_reduce_umin:
3098 case Intrinsic::vector_reduce_umax:
3099 if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
3100 return C;
3101 break;
3102 case Intrinsic::x86_sse_cvtss2si:
3103 case Intrinsic::x86_sse_cvtss2si64:
3104 case Intrinsic::x86_sse2_cvtsd2si:
3105 case Intrinsic::x86_sse2_cvtsd2si64:
3106 if (ConstantFP *FPOp =
3107 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3108 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3109 /*roundTowardZero=*/false, Ty,
3110 /*IsSigned*/true);
3111 break;
3112 case Intrinsic::x86_sse_cvttss2si:
3113 case Intrinsic::x86_sse_cvttss2si64:
3114 case Intrinsic::x86_sse2_cvttsd2si:
3115 case Intrinsic::x86_sse2_cvttsd2si64:
3116 if (ConstantFP *FPOp =
3117 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3118 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3119 /*roundTowardZero=*/true, Ty,
3120 /*IsSigned*/true);
3121 break;
3122
3123 case Intrinsic::wasm_anytrue:
3124 return Op->isZeroValue() ? ConstantInt::get(Ty, 0)
3125 : ConstantInt::get(Ty, 1);
3126
3127 case Intrinsic::wasm_alltrue:
3128 // Check each element individually
3129 unsigned E = cast<FixedVectorType>(Op->getType())->getNumElements();
3130 for (unsigned I = 0; I != E; ++I) {
3131 Constant *Elt = Op->getAggregateElement(I);
3132 // Return false as soon as we find a non-true element.
3133 if (Elt && Elt->isZeroValue())
3134 return ConstantInt::get(Ty, 0);
3135 // Bail as soon as we find an element we cannot prove to be true.
3136 if (!Elt || !isa<ConstantInt>(Elt))
3137 return nullptr;
3138 }
3139
3140 return ConstantInt::get(Ty, 1);
3141 }
3142 }
3143
3144 return nullptr;
3145}
3146
3147static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2,
3151 FCmpInst::Predicate Cond = FCmp->getPredicate();
3152 if (FCmp->isSignaling()) {
3153 if (Op1.isNaN() || Op2.isNaN())
3155 } else {
3156 if (Op1.isSignaling() || Op2.isSignaling())
3158 }
3159 bool Result = FCmpInst::compare(Op1, Op2, Cond);
3160 if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St))
3161 return ConstantInt::get(Call->getType()->getScalarType(), Result);
3162 return nullptr;
3163}
3164
3165static Constant *ConstantFoldLibCall2(StringRef Name, Type *Ty,
3166 ArrayRef<Constant *> Operands,
3167 const TargetLibraryInfo *TLI) {
3168 if (!TLI)
3169 return nullptr;
3170
3172 if (!TLI->getLibFunc(Name, Func))
3173 return nullptr;
3174
3175 const auto *Op1 = dyn_cast<ConstantFP>(Operands[0]);
3176 if (!Op1)
3177 return nullptr;
3178
3179 const auto *Op2 = dyn_cast<ConstantFP>(Operands[1]);
3180 if (!Op2)
3181 return nullptr;
3182
3183 const APFloat &Op1V = Op1->getValueAPF();
3184 const APFloat &Op2V = Op2->getValueAPF();
3185
3186 switch (Func) {
3187 default:
3188 break;
3189 case LibFunc_pow:
3190 case LibFunc_powf:
3191 case LibFunc_pow_finite:
3192 case LibFunc_powf_finite:
3193 if (TLI->has(Func))
3194 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3195 break;
3196 case LibFunc_fmod:
3197 case LibFunc_fmodf:
3198 if (TLI->has(Func)) {
3199 APFloat V = Op1->getValueAPF();
3200 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
3201 return ConstantFP::get(Ty->getContext(), V);
3202 }
3203 break;
3204 case LibFunc_remainder:
3205 case LibFunc_remainderf:
3206 if (TLI->has(Func)) {
3207 APFloat V = Op1->getValueAPF();
3208 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
3209 return ConstantFP::get(Ty->getContext(), V);
3210 }
3211 break;
3212 case LibFunc_atan2:
3213 case LibFunc_atan2f:
3214 // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm
3215 // (Solaris), so we do not assume a known result for that.
3216 if (Op1V.isZero() && Op2V.isZero())
3217 return nullptr;
3218 [[fallthrough]];
3219 case LibFunc_atan2_finite:
3220 case LibFunc_atan2f_finite:
3221 if (TLI->has(Func))
3222 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
3223 break;
3224 }
3225
3226 return nullptr;
3227}
3228
3229static Constant *ConstantFoldIntrinsicCall2(Intrinsic::ID IntrinsicID, Type *Ty,
3230 ArrayRef<Constant *> Operands,
3231 const CallBase *Call) {
3232 assert(Operands.size() == 2 && "Wrong number of operands.");
3233
3234 if (Ty->isFloatingPointTy()) {
3235 // TODO: We should have undef handling for all of the FP intrinsics that
3236 // are attempted to be folded in this function.
3237 bool IsOp0Undef = isa<UndefValue>(Operands[0]);
3238 bool IsOp1Undef = isa<UndefValue>(Operands[1]);
3239 switch (IntrinsicID) {
3240 case Intrinsic::maxnum:
3241 case Intrinsic::minnum:
3242 case Intrinsic::maximum:
3243 case Intrinsic::minimum:
3244 case Intrinsic::maximumnum:
3245 case Intrinsic::minimumnum:
3246 case Intrinsic::nvvm_fmax_d:
3247 case Intrinsic::nvvm_fmin_d:
3248 // If one argument is undef, return the other argument.
3249 if (IsOp0Undef)
3250 return Operands[1];
3251 if (IsOp1Undef)
3252 return Operands[0];
3253 break;
3254
3255 case Intrinsic::nvvm_fmax_f:
3256 case Intrinsic::nvvm_fmax_ftz_f:
3257 case Intrinsic::nvvm_fmax_ftz_nan_f:
3258 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3259 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3260 case Intrinsic::nvvm_fmax_nan_f:
3261 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3262 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3263
3264 case Intrinsic::nvvm_fmin_f:
3265 case Intrinsic::nvvm_fmin_ftz_f:
3266 case Intrinsic::nvvm_fmin_ftz_nan_f:
3267 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3268 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3269 case Intrinsic::nvvm_fmin_nan_f:
3270 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3271 case Intrinsic::nvvm_fmin_xorsign_abs_f:
3272 // If one arg is undef, the other arg can be returned only if it is
3273 // constant, as we may need to flush it to sign-preserving zero or
3274 // canonicalize the NaN.
3275 if (!IsOp0Undef && !IsOp1Undef)
3276 break;
3277 if (auto *Op = dyn_cast<ConstantFP>(Operands[IsOp0Undef ? 1 : 0])) {
3278 if (Op->isNaN()) {
3279 APInt NVCanonicalNaN(32, 0x7fffffff);
3280 return ConstantFP::get(
3281 Ty, APFloat(Ty->getFltSemantics(), NVCanonicalNaN));
3282 }
3283 if (nvvm::FMinFMaxShouldFTZ(IntrinsicID))
3284 return ConstantFP::get(Ty, FTZPreserveSign(Op->getValueAPF()));
3285 else
3286 return Op;
3287 }
3288 break;
3289 }
3290 }
3291
3292 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
3293 const APFloat &Op1V = Op1->getValueAPF();
3294
3295 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
3296 if (Op2->getType() != Op1->getType())
3297 return nullptr;
3298 const APFloat &Op2V = Op2->getValueAPF();
3299
3300 if (const auto *ConstrIntr =
3302 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
3303 APFloat Res = Op1V;
3305 switch (IntrinsicID) {
3306 default:
3307 return nullptr;
3308 case Intrinsic::experimental_constrained_fadd:
3309 St = Res.add(Op2V, RM);
3310 break;
3311 case Intrinsic::experimental_constrained_fsub:
3312 St = Res.subtract(Op2V, RM);
3313 break;
3314 case Intrinsic::experimental_constrained_fmul:
3315 St = Res.multiply(Op2V, RM);
3316 break;
3317 case Intrinsic::experimental_constrained_fdiv:
3318 St = Res.divide(Op2V, RM);
3319 break;
3320 case Intrinsic::experimental_constrained_frem:
3321 St = Res.mod(Op2V);
3322 break;
3323 case Intrinsic::experimental_constrained_fcmp:
3324 case Intrinsic::experimental_constrained_fcmps:
3325 return evaluateCompare(Op1V, Op2V, ConstrIntr);
3326 }
3327 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
3328 St))
3329 return ConstantFP::get(Ty->getContext(), Res);
3330 return nullptr;
3331 }
3332
3333 switch (IntrinsicID) {
3334 default:
3335 break;
3336 case Intrinsic::copysign:
3337 return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
3338 case Intrinsic::minnum:
3339 return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
3340 case Intrinsic::maxnum:
3341 return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
3342 case Intrinsic::minimum:
3343 return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
3344 case Intrinsic::maximum:
3345 return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
3346 case Intrinsic::minimumnum:
3347 return ConstantFP::get(Ty->getContext(), minimumnum(Op1V, Op2V));
3348 case Intrinsic::maximumnum:
3349 return ConstantFP::get(Ty->getContext(), maximumnum(Op1V, Op2V));
3350
3351 case Intrinsic::nvvm_fmax_d:
3352 case Intrinsic::nvvm_fmax_f:
3353 case Intrinsic::nvvm_fmax_ftz_f:
3354 case Intrinsic::nvvm_fmax_ftz_nan_f:
3355 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3356 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3357 case Intrinsic::nvvm_fmax_nan_f:
3358 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3359 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3360
3361 case Intrinsic::nvvm_fmin_d:
3362 case Intrinsic::nvvm_fmin_f:
3363 case Intrinsic::nvvm_fmin_ftz_f:
3364 case Intrinsic::nvvm_fmin_ftz_nan_f:
3365 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3366 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3367 case Intrinsic::nvvm_fmin_nan_f:
3368 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3369 case Intrinsic::nvvm_fmin_xorsign_abs_f: {
3370
3371 bool ShouldCanonicalizeNaNs = !(IntrinsicID == Intrinsic::nvvm_fmax_d ||
3372 IntrinsicID == Intrinsic::nvvm_fmin_d);
3373 bool IsFTZ = nvvm::FMinFMaxShouldFTZ(IntrinsicID);
3374 bool IsNaNPropagating = nvvm::FMinFMaxPropagatesNaNs(IntrinsicID);
3375 bool IsXorSignAbs = nvvm::FMinFMaxIsXorSignAbs(IntrinsicID);
3376
3377 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3378 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3379
3380 bool XorSign = false;
3381 if (IsXorSignAbs) {
3382 XorSign = A.isNegative() ^ B.isNegative();
3383 A = abs(A);
3384 B = abs(B);
3385 }
3386
3387 bool IsFMax = false;
3388 switch (IntrinsicID) {
3389 case Intrinsic::nvvm_fmax_d:
3390 case Intrinsic::nvvm_fmax_f:
3391 case Intrinsic::nvvm_fmax_ftz_f:
3392 case Intrinsic::nvvm_fmax_ftz_nan_f:
3393 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3394 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3395 case Intrinsic::nvvm_fmax_nan_f:
3396 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3397 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3398 IsFMax = true;
3399 break;
3400 }
3401 APFloat Res = IsFMax ? maximum(A, B) : minimum(A, B);
3402
3403 if (ShouldCanonicalizeNaNs) {
3404 APFloat NVCanonicalNaN(Res.getSemantics(), APInt(32, 0x7fffffff));
3405 if (A.isNaN() && B.isNaN())
3406 return ConstantFP::get(Ty, NVCanonicalNaN);
3407 else if (IsNaNPropagating && (A.isNaN() || B.isNaN()))
3408 return ConstantFP::get(Ty, NVCanonicalNaN);
3409 }
3410
3411 if (A.isNaN() && B.isNaN())
3412 return Operands[1];
3413 else if (A.isNaN())
3414 Res = B;
3415 else if (B.isNaN())
3416 Res = A;
3417
3418 if (IsXorSignAbs && XorSign != Res.isNegative())
3419 Res.changeSign();
3420
3421 return ConstantFP::get(Ty->getContext(), Res);
3422 }
3423
3424 case Intrinsic::nvvm_add_rm_f:
3425 case Intrinsic::nvvm_add_rn_f:
3426 case Intrinsic::nvvm_add_rp_f:
3427 case Intrinsic::nvvm_add_rz_f:
3428 case Intrinsic::nvvm_add_rm_d:
3429 case Intrinsic::nvvm_add_rn_d:
3430 case Intrinsic::nvvm_add_rp_d:
3431 case Intrinsic::nvvm_add_rz_d:
3432 case Intrinsic::nvvm_add_rm_ftz_f:
3433 case Intrinsic::nvvm_add_rn_ftz_f:
3434 case Intrinsic::nvvm_add_rp_ftz_f:
3435 case Intrinsic::nvvm_add_rz_ftz_f: {
3436
3437 bool IsFTZ = nvvm::FAddShouldFTZ(IntrinsicID);
3438 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3439 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3440
3441 APFloat::roundingMode RoundMode =
3442 nvvm::GetFAddRoundingMode(IntrinsicID);
3443
3444 APFloat Res = A;
3445 APFloat::opStatus Status = Res.add(B, RoundMode);
3446
3447 if (!Res.isNaN() &&
3449 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3450 return ConstantFP::get(Ty->getContext(), Res);
3451 }
3452 return nullptr;
3453 }
3454
3455 case Intrinsic::nvvm_mul_rm_f:
3456 case Intrinsic::nvvm_mul_rn_f:
3457 case Intrinsic::nvvm_mul_rp_f:
3458 case Intrinsic::nvvm_mul_rz_f:
3459 case Intrinsic::nvvm_mul_rm_d:
3460 case Intrinsic::nvvm_mul_rn_d:
3461 case Intrinsic::nvvm_mul_rp_d:
3462 case Intrinsic::nvvm_mul_rz_d:
3463 case Intrinsic::nvvm_mul_rm_ftz_f:
3464 case Intrinsic::nvvm_mul_rn_ftz_f:
3465 case Intrinsic::nvvm_mul_rp_ftz_f:
3466 case Intrinsic::nvvm_mul_rz_ftz_f: {
3467
3468 bool IsFTZ = nvvm::FMulShouldFTZ(IntrinsicID);
3469 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3470 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3471
3472 APFloat::roundingMode RoundMode =
3473 nvvm::GetFMulRoundingMode(IntrinsicID);
3474
3475 APFloat Res = A;
3476 APFloat::opStatus Status = Res.multiply(B, RoundMode);
3477
3478 if (!Res.isNaN() &&
3480 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3481 return ConstantFP::get(Ty->getContext(), Res);
3482 }
3483 return nullptr;
3484 }
3485
3486 case Intrinsic::nvvm_div_rm_f:
3487 case Intrinsic::nvvm_div_rn_f:
3488 case Intrinsic::nvvm_div_rp_f:
3489 case Intrinsic::nvvm_div_rz_f:
3490 case Intrinsic::nvvm_div_rm_d:
3491 case Intrinsic::nvvm_div_rn_d:
3492 case Intrinsic::nvvm_div_rp_d:
3493 case Intrinsic::nvvm_div_rz_d:
3494 case Intrinsic::nvvm_div_rm_ftz_f:
3495 case Intrinsic::nvvm_div_rn_ftz_f:
3496 case Intrinsic::nvvm_div_rp_ftz_f:
3497 case Intrinsic::nvvm_div_rz_ftz_f: {
3498 bool IsFTZ = nvvm::FDivShouldFTZ(IntrinsicID);
3499 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3500 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3501 APFloat::roundingMode RoundMode =
3502 nvvm::GetFDivRoundingMode(IntrinsicID);
3503
3504 APFloat Res = A;
3505 APFloat::opStatus Status = Res.divide(B, RoundMode);
3506 if (!Res.isNaN() &&
3508 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3509 return ConstantFP::get(Ty->getContext(), Res);
3510 }
3511 return nullptr;
3512 }
3513 }
3514
3515 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
3516 return nullptr;
3517
3518 switch (IntrinsicID) {
3519 default:
3520 break;
3521 case Intrinsic::pow:
3522 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3523 case Intrinsic::amdgcn_fmul_legacy:
3524 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3525 // NaN or infinity, gives +0.0.
3526 if (Op1V.isZero() || Op2V.isZero())
3527 return ConstantFP::getZero(Ty);
3528 return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
3529 }
3530
3531 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
3532 switch (IntrinsicID) {
3533 case Intrinsic::ldexp: {
3534 return ConstantFP::get(
3535 Ty->getContext(),
3536 scalbn(Op1V, Op2C->getSExtValue(), APFloat::rmNearestTiesToEven));
3537 }
3538 case Intrinsic::is_fpclass: {
3539 FPClassTest Mask = static_cast<FPClassTest>(Op2C->getZExtValue());
3540 bool Result =
3541 ((Mask & fcSNan) && Op1V.isNaN() && Op1V.isSignaling()) ||
3542 ((Mask & fcQNan) && Op1V.isNaN() && !Op1V.isSignaling()) ||
3543 ((Mask & fcNegInf) && Op1V.isNegInfinity()) ||
3544 ((Mask & fcNegNormal) && Op1V.isNormal() && Op1V.isNegative()) ||
3545 ((Mask & fcNegSubnormal) && Op1V.isDenormal() && Op1V.isNegative()) ||
3546 ((Mask & fcNegZero) && Op1V.isZero() && Op1V.isNegative()) ||
3547 ((Mask & fcPosZero) && Op1V.isZero() && !Op1V.isNegative()) ||
3548 ((Mask & fcPosSubnormal) && Op1V.isDenormal() && !Op1V.isNegative()) ||
3549 ((Mask & fcPosNormal) && Op1V.isNormal() && !Op1V.isNegative()) ||
3550 ((Mask & fcPosInf) && Op1V.isPosInfinity());
3551 return ConstantInt::get(Ty, Result);
3552 }
3553 case Intrinsic::powi: {
3554 int Exp = static_cast<int>(Op2C->getSExtValue());
3555 switch (Ty->getTypeID()) {
3556 case Type::HalfTyID:
3557 case Type::FloatTyID: {
3558 APFloat Res(static_cast<float>(std::pow(Op1V.convertToFloat(), Exp)));
3559 if (Ty->isHalfTy()) {
3560 bool Unused;
3562 &Unused);
3563 }
3564 return ConstantFP::get(Ty->getContext(), Res);
3565 }
3566 case Type::DoubleTyID:
3567 return ConstantFP::get(Ty, std::pow(Op1V.convertToDouble(), Exp));
3568 default:
3569 return nullptr;
3570 }
3571 }
3572 default:
3573 break;
3574 }
3575 }
3576 return nullptr;
3577 }
3578
3579 if (Operands[0]->getType()->isIntegerTy() &&
3580 Operands[1]->getType()->isIntegerTy()) {
3581 const APInt *C0, *C1;
3582 if (!getConstIntOrUndef(Operands[0], C0) ||
3583 !getConstIntOrUndef(Operands[1], C1))
3584 return nullptr;
3585
3586 switch (IntrinsicID) {
3587 default: break;
3588 case Intrinsic::smax:
3589 case Intrinsic::smin:
3590 case Intrinsic::umax:
3591 case Intrinsic::umin:
3592 if (!C0 && !C1)
3593 return UndefValue::get(Ty);
3594 if (!C0 || !C1)
3595 return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty);
3596 return ConstantInt::get(
3597 Ty, ICmpInst::compare(*C0, *C1,
3598 MinMaxIntrinsic::getPredicate(IntrinsicID))
3599 ? *C0
3600 : *C1);
3601
3602 case Intrinsic::scmp:
3603 case Intrinsic::ucmp:
3604 if (!C0 || !C1)
3605 return ConstantInt::get(Ty, 0);
3606
3607 int Res;
3608 if (IntrinsicID == Intrinsic::scmp)
3609 Res = C0->sgt(*C1) ? 1 : C0->slt(*C1) ? -1 : 0;
3610 else
3611 Res = C0->ugt(*C1) ? 1 : C0->ult(*C1) ? -1 : 0;
3612 return ConstantInt::get(Ty, Res, /*IsSigned=*/true);
3613
3614 case Intrinsic::usub_with_overflow:
3615 case Intrinsic::ssub_with_overflow:
3616 // X - undef -> { 0, false }
3617 // undef - X -> { 0, false }
3618 if (!C0 || !C1)
3619 return Constant::getNullValue(Ty);
3620 [[fallthrough]];
3621 case Intrinsic::uadd_with_overflow:
3622 case Intrinsic::sadd_with_overflow:
3623 // X + undef -> { -1, false }
3624 // undef + x -> { -1, false }
3625 if (!C0 || !C1) {
3626 return ConstantStruct::get(
3627 cast<StructType>(Ty),
3628 {Constant::getAllOnesValue(Ty->getStructElementType(0)),
3629 Constant::getNullValue(Ty->getStructElementType(1))});
3630 }
3631 [[fallthrough]];
3632 case Intrinsic::smul_with_overflow:
3633 case Intrinsic::umul_with_overflow: {
3634 // undef * X -> { 0, false }
3635 // X * undef -> { 0, false }
3636 if (!C0 || !C1)
3637 return Constant::getNullValue(Ty);
3638
3639 APInt Res;
3640 bool Overflow;
3641 switch (IntrinsicID) {
3642 default: llvm_unreachable("Invalid case");
3643 case Intrinsic::sadd_with_overflow:
3644 Res = C0->sadd_ov(*C1, Overflow);
3645 break;
3646 case Intrinsic::uadd_with_overflow:
3647 Res = C0->uadd_ov(*C1, Overflow);
3648 break;
3649 case Intrinsic::ssub_with_overflow:
3650 Res = C0->ssub_ov(*C1, Overflow);
3651 break;
3652 case Intrinsic::usub_with_overflow:
3653 Res = C0->usub_ov(*C1, Overflow);
3654 break;
3655 case Intrinsic::smul_with_overflow:
3656 Res = C0->smul_ov(*C1, Overflow);
3657 break;
3658 case Intrinsic::umul_with_overflow:
3659 Res = C0->umul_ov(*C1, Overflow);
3660 break;
3661 }
3662 Constant *Ops[] = {
3663 ConstantInt::get(Ty->getContext(), Res),
3664 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
3665 };
3667 }
3668 case Intrinsic::uadd_sat:
3669 case Intrinsic::sadd_sat:
3670 if (!C0 && !C1)
3671 return UndefValue::get(Ty);
3672 if (!C0 || !C1)
3673 return Constant::getAllOnesValue(Ty);
3674 if (IntrinsicID == Intrinsic::uadd_sat)
3675 return ConstantInt::get(Ty, C0->uadd_sat(*C1));
3676 else
3677 return ConstantInt::get(Ty, C0->sadd_sat(*C1));
3678 case Intrinsic::usub_sat:
3679 case Intrinsic::ssub_sat:
3680 if (!C0 && !C1)
3681 return UndefValue::get(Ty);
3682 if (!C0 || !C1)
3683 return Constant::getNullValue(Ty);
3684 if (IntrinsicID == Intrinsic::usub_sat)
3685 return ConstantInt::get(Ty, C0->usub_sat(*C1));
3686 else
3687 return ConstantInt::get(Ty, C0->ssub_sat(*C1));
3688 case Intrinsic::cttz:
3689 case Intrinsic::ctlz:
3690 assert(C1 && "Must be constant int");
3691
3692 // cttz(0, 1) and ctlz(0, 1) are poison.
3693 if (C1->isOne() && (!C0 || C0->isZero()))
3694 return PoisonValue::get(Ty);
3695 if (!C0)
3696 return Constant::getNullValue(Ty);
3697 if (IntrinsicID == Intrinsic::cttz)
3698 return ConstantInt::get(Ty, C0->countr_zero());
3699 else
3700 return ConstantInt::get(Ty, C0->countl_zero());
3701
3702 case Intrinsic::abs:
3703 assert(C1 && "Must be constant int");
3704 assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1");
3705
3706 // Undef or minimum val operand with poison min --> poison
3707 if (C1->isOne() && (!C0 || C0->isMinSignedValue()))
3708 return PoisonValue::get(Ty);
3709
3710 // Undef operand with no poison min --> 0 (sign bit must be clear)
3711 if (!C0)
3712 return Constant::getNullValue(Ty);
3713
3714 return ConstantInt::get(Ty, C0->abs());
3715 case Intrinsic::amdgcn_wave_reduce_umin:
3716 case Intrinsic::amdgcn_wave_reduce_umax:
3717 case Intrinsic::amdgcn_wave_reduce_max:
3718 case Intrinsic::amdgcn_wave_reduce_min:
3719 case Intrinsic::amdgcn_wave_reduce_add:
3720 case Intrinsic::amdgcn_wave_reduce_sub:
3721 case Intrinsic::amdgcn_wave_reduce_and:
3722 case Intrinsic::amdgcn_wave_reduce_or:
3723 case Intrinsic::amdgcn_wave_reduce_xor:
3724 return dyn_cast<Constant>(Operands[0]);
3725 }
3726
3727 return nullptr;
3728 }
3729
3730 // Support ConstantVector in case we have an Undef in the top.
3731 if ((isa<ConstantVector>(Operands[0]) ||
3732 isa<ConstantDataVector>(Operands[0])) &&
3733 // Check for default rounding mode.
3734 // FIXME: Support other rounding modes?
3735 isa<ConstantInt>(Operands[1]) &&
3736 cast<ConstantInt>(Operands[1])->getValue() == 4) {
3737 auto *Op = cast<Constant>(Operands[0]);
3738 switch (IntrinsicID) {
3739 default: break;
3740 case Intrinsic::x86_avx512_vcvtss2si32:
3741 case Intrinsic::x86_avx512_vcvtss2si64:
3742 case Intrinsic::x86_avx512_vcvtsd2si32:
3743 case Intrinsic::x86_avx512_vcvtsd2si64:
3744 if (ConstantFP *FPOp =
3745 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3746 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3747 /*roundTowardZero=*/false, Ty,
3748 /*IsSigned*/true);
3749 break;
3750 case Intrinsic::x86_avx512_vcvtss2usi32:
3751 case Intrinsic::x86_avx512_vcvtss2usi64:
3752 case Intrinsic::x86_avx512_vcvtsd2usi32:
3753 case Intrinsic::x86_avx512_vcvtsd2usi64:
3754 if (ConstantFP *FPOp =
3755 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3756 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3757 /*roundTowardZero=*/false, Ty,
3758 /*IsSigned*/false);
3759 break;
3760 case Intrinsic::x86_avx512_cvttss2si:
3761 case Intrinsic::x86_avx512_cvttss2si64:
3762 case Intrinsic::x86_avx512_cvttsd2si:
3763 case Intrinsic::x86_avx512_cvttsd2si64:
3764 if (ConstantFP *FPOp =
3765 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3766 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3767 /*roundTowardZero=*/true, Ty,
3768 /*IsSigned*/true);
3769 break;
3770 case Intrinsic::x86_avx512_cvttss2usi:
3771 case Intrinsic::x86_avx512_cvttss2usi64:
3772 case Intrinsic::x86_avx512_cvttsd2usi:
3773 case Intrinsic::x86_avx512_cvttsd2usi64:
3774 if (ConstantFP *FPOp =
3775 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3776 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3777 /*roundTowardZero=*/true, Ty,
3778 /*IsSigned*/false);
3779 break;
3780 }
3781 }
3782 return nullptr;
3783}
3784
3785static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
3786 const APFloat &S0,
3787 const APFloat &S1,
3788 const APFloat &S2) {
3789 unsigned ID;
3790 const fltSemantics &Sem = S0.getSemantics();
3791 APFloat MA(Sem), SC(Sem), TC(Sem);
3792 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
3793 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
3794 // S2 < 0
3795 ID = 5;
3796 SC = -S0;
3797 } else {
3798 ID = 4;
3799 SC = S0;
3800 }
3801 MA = S2;
3802 TC = -S1;
3803 } else if (abs(S1) >= abs(S0)) {
3804 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
3805 // S1 < 0
3806 ID = 3;
3807 TC = -S2;
3808 } else {
3809 ID = 2;
3810 TC = S2;
3811 }
3812 MA = S1;
3813 SC = S0;
3814 } else {
3815 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
3816 // S0 < 0
3817 ID = 1;
3818 SC = S2;
3819 } else {
3820 ID = 0;
3821 SC = -S2;
3822 }
3823 MA = S0;
3824 TC = -S1;
3825 }
3826 switch (IntrinsicID) {
3827 default:
3828 llvm_unreachable("unhandled amdgcn cube intrinsic");
3829 case Intrinsic::amdgcn_cubeid:
3830 return APFloat(Sem, ID);
3831 case Intrinsic::amdgcn_cubema:
3832 return MA + MA;
3833 case Intrinsic::amdgcn_cubesc:
3834 return SC;
3835 case Intrinsic::amdgcn_cubetc:
3836 return TC;
3837 }
3838}
3839
3840static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
3841 Type *Ty) {
3842 const APInt *C0, *C1, *C2;
3843 if (!getConstIntOrUndef(Operands[0], C0) ||
3844 !getConstIntOrUndef(Operands[1], C1) ||
3845 !getConstIntOrUndef(Operands[2], C2))
3846 return nullptr;
3847
3848 if (!C2)
3849 return UndefValue::get(Ty);
3850
3851 APInt Val(32, 0);
3852 unsigned NumUndefBytes = 0;
3853 for (unsigned I = 0; I < 32; I += 8) {
3854 unsigned Sel = C2->extractBitsAsZExtValue(8, I);
3855 unsigned B = 0;
3856
3857 if (Sel >= 13)
3858 B = 0xff;
3859 else if (Sel == 12)
3860 B = 0x00;
3861 else {
3862 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
3863 if (!Src)
3864 ++NumUndefBytes;
3865 else if (Sel < 8)
3866 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
3867 else
3868 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
3869 }
3870
3871 Val.insertBits(B, I, 8);
3872 }
3873
3874 if (NumUndefBytes == 4)
3875 return UndefValue::get(Ty);
3876
3877 return ConstantInt::get(Ty, Val);
3878}
3879
3880static Constant *ConstantFoldScalarCall3(StringRef Name,
3881 Intrinsic::ID IntrinsicID,
3882 Type *Ty,
3883 ArrayRef<Constant *> Operands,
3884 const TargetLibraryInfo *TLI,
3885 const CallBase *Call) {
3886 assert(Operands.size() == 3 && "Wrong number of operands.");
3887
3888 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
3889 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
3890 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
3891 const APFloat &C1 = Op1->getValueAPF();
3892 const APFloat &C2 = Op2->getValueAPF();
3893 const APFloat &C3 = Op3->getValueAPF();
3894
3895 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
3896 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
3897 APFloat Res = C1;
3899 switch (IntrinsicID) {
3900 default:
3901 return nullptr;
3902 case Intrinsic::experimental_constrained_fma:
3903 case Intrinsic::experimental_constrained_fmuladd:
3904 St = Res.fusedMultiplyAdd(C2, C3, RM);
3905 break;
3906 }
3907 if (mayFoldConstrained(
3908 const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
3909 return ConstantFP::get(Ty->getContext(), Res);
3910 return nullptr;
3911 }
3912
3913 switch (IntrinsicID) {
3914 default: break;
3915 case Intrinsic::amdgcn_fma_legacy: {
3916 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3917 // NaN or infinity, gives +0.0.
3918 if (C1.isZero() || C2.isZero()) {
3919 // It's tempting to just return C3 here, but that would give the
3920 // wrong result if C3 was -0.0.
3921 return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
3922 }
3923 [[fallthrough]];
3924 }
3925 case Intrinsic::fma:
3926 case Intrinsic::fmuladd: {
3927 APFloat V = C1;
3929 return ConstantFP::get(Ty->getContext(), V);
3930 }
3931
3932 case Intrinsic::nvvm_fma_rm_f:
3933 case Intrinsic::nvvm_fma_rn_f:
3934 case Intrinsic::nvvm_fma_rp_f:
3935 case Intrinsic::nvvm_fma_rz_f:
3936 case Intrinsic::nvvm_fma_rm_d:
3937 case Intrinsic::nvvm_fma_rn_d:
3938 case Intrinsic::nvvm_fma_rp_d:
3939 case Intrinsic::nvvm_fma_rz_d:
3940 case Intrinsic::nvvm_fma_rm_ftz_f:
3941 case Intrinsic::nvvm_fma_rn_ftz_f:
3942 case Intrinsic::nvvm_fma_rp_ftz_f:
3943 case Intrinsic::nvvm_fma_rz_ftz_f: {
3944 bool IsFTZ = nvvm::FMAShouldFTZ(IntrinsicID);
3945 APFloat A = IsFTZ ? FTZPreserveSign(C1) : C1;
3946 APFloat B = IsFTZ ? FTZPreserveSign(C2) : C2;
3947 APFloat C = IsFTZ ? FTZPreserveSign(C3) : C3;
3948
3949 APFloat::roundingMode RoundMode =
3950 nvvm::GetFMARoundingMode(IntrinsicID);
3951
3952 APFloat Res = A;
3953 APFloat::opStatus Status = Res.fusedMultiplyAdd(B, C, RoundMode);
3954
3955 if (!Res.isNaN() &&
3957 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3958 return ConstantFP::get(Ty->getContext(), Res);
3959 }
3960 return nullptr;
3961 }
3962
3963 case Intrinsic::amdgcn_cubeid:
3964 case Intrinsic::amdgcn_cubema:
3965 case Intrinsic::amdgcn_cubesc:
3966 case Intrinsic::amdgcn_cubetc: {
3967 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
3968 return ConstantFP::get(Ty->getContext(), V);
3969 }
3970 }
3971 }
3972 }
3973 }
3974
3975 if (IntrinsicID == Intrinsic::smul_fix ||
3976 IntrinsicID == Intrinsic::smul_fix_sat) {
3977 const APInt *C0, *C1;
3978 if (!getConstIntOrUndef(Operands[0], C0) ||
3979 !getConstIntOrUndef(Operands[1], C1))
3980 return nullptr;
3981
3982 // undef * C -> 0
3983 // C * undef -> 0
3984 if (!C0 || !C1)
3985 return Constant::getNullValue(Ty);
3986
3987 // This code performs rounding towards negative infinity in case the result
3988 // cannot be represented exactly for the given scale. Targets that do care
3989 // about rounding should use a target hook for specifying how rounding
3990 // should be done, and provide their own folding to be consistent with
3991 // rounding. This is the same approach as used by
3992 // DAGTypeLegalizer::ExpandIntRes_MULFIX.
3993 unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
3994 unsigned Width = C0->getBitWidth();
3995 assert(Scale < Width && "Illegal scale.");
3996 unsigned ExtendedWidth = Width * 2;
3997 APInt Product =
3998 (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale);
3999 if (IntrinsicID == Intrinsic::smul_fix_sat) {
4000 APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth);
4001 APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth);
4002 Product = APIntOps::smin(Product, Max);
4003 Product = APIntOps::smax(Product, Min);
4004 }
4005 return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
4006 }
4007
4008 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
4009 const APInt *C0, *C1, *C2;
4010 if (!getConstIntOrUndef(Operands[0], C0) ||
4011 !getConstIntOrUndef(Operands[1], C1) ||
4012 !getConstIntOrUndef(Operands[2], C2))
4013 return nullptr;
4014
4015 bool IsRight = IntrinsicID == Intrinsic::fshr;
4016 if (!C2)
4017 return Operands[IsRight ? 1 : 0];
4018 if (!C0 && !C1)
4019 return UndefValue::get(Ty);
4020
4021 // The shift amount is interpreted as modulo the bitwidth. If the shift
4022 // amount is effectively 0, avoid UB due to oversized inverse shift below.
4023 unsigned BitWidth = C2->getBitWidth();
4024 unsigned ShAmt = C2->urem(BitWidth);
4025 if (!ShAmt)
4026 return Operands[IsRight ? 1 : 0];
4027
4028 // (C0 << ShlAmt) | (C1 >> LshrAmt)
4029 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
4030 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
4031 if (!C0)
4032 return ConstantInt::get(Ty, C1->lshr(LshrAmt));
4033 if (!C1)
4034 return ConstantInt::get(Ty, C0->shl(ShlAmt));
4035 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
4036 }
4037
4038 if (IntrinsicID == Intrinsic::amdgcn_perm)
4039 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
4040
4041 return nullptr;
4042}
4043
4044static Constant *ConstantFoldScalarCall(StringRef Name,
4045 Intrinsic::ID IntrinsicID,
4046 Type *Ty,
4047 ArrayRef<Constant *> Operands,
4048 const TargetLibraryInfo *TLI,
4049 const CallBase *Call) {
4050 if (IntrinsicID != Intrinsic::not_intrinsic &&
4051 any_of(Operands, IsaPred<PoisonValue>) &&
4052 intrinsicPropagatesPoison(IntrinsicID))
4053 return PoisonValue::get(Ty);
4054
4055 if (Operands.size() == 1)
4056 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
4057
4058 if (Operands.size() == 2) {
4059 if (Constant *FoldedLibCall =
4060 ConstantFoldLibCall2(Name, Ty, Operands, TLI)) {
4061 return FoldedLibCall;
4062 }
4063 return ConstantFoldIntrinsicCall2(IntrinsicID, Ty, Operands, Call);
4064 }
4065
4066 if (Operands.size() == 3)
4067 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
4068
4069 return nullptr;
4070}
4071
4072static Constant *ConstantFoldFixedVectorCall(
4073 StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
4074 ArrayRef<Constant *> Operands, const DataLayout &DL,
4075 const TargetLibraryInfo *TLI, const CallBase *Call) {
4077 SmallVector<Constant *, 4> Lane(Operands.size());
4078 Type *Ty = FVTy->getElementType();
4079
4080 switch (IntrinsicID) {
4081 case Intrinsic::masked_load: {
4082 auto *SrcPtr = Operands[0];
4083 auto *Mask = Operands[1];
4084 auto *Passthru = Operands[2];
4085
4086 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
4087
4088 SmallVector<Constant *, 32> NewElements;
4089 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
4090 auto *MaskElt = Mask->getAggregateElement(I);
4091 if (!MaskElt)
4092 break;
4093 auto *PassthruElt = Passthru->getAggregateElement(I);
4094 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
4095 if (isa<UndefValue>(MaskElt)) {
4096 if (PassthruElt)
4097 NewElements.push_back(PassthruElt);
4098 else if (VecElt)
4099 NewElements.push_back(VecElt);
4100 else
4101 return nullptr;
4102 }
4103 if (MaskElt->isNullValue()) {
4104 if (!PassthruElt)
4105 return nullptr;
4106 NewElements.push_back(PassthruElt);
4107 } else if (MaskElt->isOneValue()) {
4108 if (!VecElt)
4109 return nullptr;
4110 NewElements.push_back(VecElt);
4111 } else {
4112 return nullptr;
4113 }
4114 }
4115 if (NewElements.size() != FVTy->getNumElements())
4116 return nullptr;
4117 return ConstantVector::get(NewElements);
4118 }
4119 case Intrinsic::arm_mve_vctp8:
4120 case Intrinsic::arm_mve_vctp16:
4121 case Intrinsic::arm_mve_vctp32:
4122 case Intrinsic::arm_mve_vctp64: {
4123 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
4124 unsigned Lanes = FVTy->getNumElements();
4125 uint64_t Limit = Op->getZExtValue();
4126
4128 for (unsigned i = 0; i < Lanes; i++) {
4129 if (i < Limit)
4131 else
4133 }
4134 return ConstantVector::get(NCs);
4135 }
4136 return nullptr;
4137 }
4138 case Intrinsic::get_active_lane_mask: {
4139 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
4140 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
4141 if (Op0 && Op1) {
4142 unsigned Lanes = FVTy->getNumElements();
4143 uint64_t Base = Op0->getZExtValue();
4144 uint64_t Limit = Op1->getZExtValue();
4145
4147 for (unsigned i = 0; i < Lanes; i++) {
4148 if (Base + i < Limit)
4150 else
4152 }
4153 return ConstantVector::get(NCs);
4154 }
4155 return nullptr;
4156 }
4157 case Intrinsic::vector_extract: {
4158 auto *Idx = dyn_cast<ConstantInt>(Operands[1]);
4159 Constant *Vec = Operands[0];
4160 if (!Idx || !isa<FixedVectorType>(Vec->getType()))
4161 return nullptr;
4162
4163 unsigned NumElements = FVTy->getNumElements();
4164 unsigned VecNumElements =
4165 cast<FixedVectorType>(Vec->getType())->getNumElements();
4166 unsigned StartingIndex = Idx->getZExtValue();
4167
4168 // Extracting entire vector is nop
4169 if (NumElements == VecNumElements && StartingIndex == 0)
4170 return Vec;
4171
4172 for (unsigned I = StartingIndex, E = StartingIndex + NumElements; I < E;
4173 ++I) {
4174 Constant *Elt = Vec->getAggregateElement(I);
4175 if (!Elt)
4176 return nullptr;
4177 Result[I - StartingIndex] = Elt;
4178 }
4179
4180 return ConstantVector::get(Result);
4181 }
4182 case Intrinsic::vector_insert: {
4183 Constant *Vec = Operands[0];
4184 Constant *SubVec = Operands[1];
4185 auto *Idx = dyn_cast<ConstantInt>(Operands[2]);
4186 if (!Idx || !isa<FixedVectorType>(Vec->getType()))
4187 return nullptr;
4188
4189 unsigned SubVecNumElements =
4190 cast<FixedVectorType>(SubVec->getType())->getNumElements();
4191 unsigned VecNumElements =
4192 cast<FixedVectorType>(Vec->getType())->getNumElements();
4193 unsigned IdxN = Idx->getZExtValue();
4194 // Replacing entire vector with a subvec is nop
4195 if (SubVecNumElements == VecNumElements && IdxN == 0)
4196 return SubVec;
4197
4198 for (unsigned I = 0; I < VecNumElements; ++I) {
4199 Constant *Elt;
4200 if (I < IdxN + SubVecNumElements)
4201 Elt = SubVec->getAggregateElement(I - IdxN);
4202 else
4203 Elt = Vec->getAggregateElement(I);
4204 if (!Elt)
4205 return nullptr;
4206 Result[I] = Elt;
4207 }
4208 return ConstantVector::get(Result);
4209 }
4210 case Intrinsic::vector_interleave2: {
4211 unsigned NumElements =
4212 cast<FixedVectorType>(Operands[0]->getType())->getNumElements();
4213 for (unsigned I = 0; I < NumElements; ++I) {
4214 Constant *Elt0 = Operands[0]->getAggregateElement(I);
4215 Constant *Elt1 = Operands[1]->getAggregateElement(I);
4216 if (!Elt0 || !Elt1)
4217 return nullptr;
4218 Result[2 * I] = Elt0;
4219 Result[2 * I + 1] = Elt1;
4220 }
4221 return ConstantVector::get(Result);
4222 }
4223 case Intrinsic::wasm_dot: {
4224 unsigned NumElements =
4225 cast<FixedVectorType>(Operands[0]->getType())->getNumElements();
4226
4227 assert(NumElements == 8 && Result.size() == 4 &&
4228 "wasm dot takes i16x8 and produces i32x4");
4229 assert(Ty->isIntegerTy());
4230 int32_t MulVector[8];
4231
4232 for (unsigned I = 0; I < NumElements; ++I) {
4233 ConstantInt *Elt0 =
4234 cast<ConstantInt>(Operands[0]->getAggregateElement(I));
4235 ConstantInt *Elt1 =
4236 cast<ConstantInt>(Operands[1]->getAggregateElement(I));
4237
4238 MulVector[I] = Elt0->getSExtValue() * Elt1->getSExtValue();
4239 }
4240 for (unsigned I = 0; I < Result.size(); I++) {
4241 int64_t IAdd = (int64_t)MulVector[I * 2] + (int64_t)MulVector[I * 2 + 1];
4242 Result[I] = ConstantInt::get(Ty, IAdd);
4243 }
4244
4245 return ConstantVector::get(Result);
4246 }
4247 default:
4248 break;
4249 }
4250
4251 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
4252 // Gather a column of constants.
4253 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
4254 // Some intrinsics use a scalar type for certain arguments.
4255 if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J, /*TTI=*/nullptr)) {
4256 Lane[J] = Operands[J];
4257 continue;
4258 }
4259
4260 Constant *Agg = Operands[J]->getAggregateElement(I);
4261 if (!Agg)
4262 return nullptr;
4263
4264 Lane[J] = Agg;
4265 }
4266
4267 // Use the regular scalar folding to simplify this column.
4268 Constant *Folded =
4269 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
4270 if (!Folded)
4271 return nullptr;
4272 Result[I] = Folded;
4273 }
4274
4275 return ConstantVector::get(Result);
4276}
4277
4278static Constant *ConstantFoldScalableVectorCall(
4279 StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
4280 ArrayRef<Constant *> Operands, const DataLayout &DL,
4281 const TargetLibraryInfo *TLI, const CallBase *Call) {
4282 switch (IntrinsicID) {
4283 case Intrinsic::aarch64_sve_convert_from_svbool: {
4284 auto *Src = dyn_cast<Constant>(Operands[0]);
4285 if (!Src || !Src->isNullValue())
4286 break;
4287
4288 return ConstantInt::getFalse(SVTy);
4289 }
4290 case Intrinsic::get_active_lane_mask: {
4291 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
4292 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
4293 if (Op0 && Op1 && Op0->getValue().uge(Op1->getValue()))
4294 return ConstantVector::getNullValue(SVTy);
4295 break;
4296 }
4297 default:
4298 break;
4299 }
4300
4301 // If trivially vectorizable, try folding it via the scalar call if all
4302 // operands are splats.
4303
4304 // TODO: ConstantFoldFixedVectorCall should probably check this too?
4305 if (!isTriviallyVectorizable(IntrinsicID))
4306 return nullptr;
4307
4309 for (auto [I, Op] : enumerate(Operands)) {
4310 if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, I, /*TTI=*/nullptr)) {
4311 SplatOps.push_back(Op);
4312 continue;
4313 }
4314 Constant *Splat = Op->getSplatValue();
4315 if (!Splat)
4316 return nullptr;
4317 SplatOps.push_back(Splat);
4318 }
4319 Constant *Folded = ConstantFoldScalarCall(
4320 Name, IntrinsicID, SVTy->getElementType(), SplatOps, TLI, Call);
4321 if (!Folded)
4322 return nullptr;
4323 return ConstantVector::getSplat(SVTy->getElementCount(), Folded);
4324}
4325
4326static std::pair<Constant *, Constant *>
4327ConstantFoldScalarFrexpCall(Constant *Op, Type *IntTy) {
4328 if (isa<PoisonValue>(Op))
4329 return {Op, PoisonValue::get(IntTy)};
4330
4331 auto *ConstFP = dyn_cast<ConstantFP>(Op);
4332 if (!ConstFP)
4333 return {};
4334
4335 const APFloat &U = ConstFP->getValueAPF();
4336 int FrexpExp;
4337 APFloat FrexpMant = frexp(U, FrexpExp, APFloat::rmNearestTiesToEven);
4338 Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant);
4339
4340 // The exponent is an "unspecified value" for inf/nan. We use zero to avoid
4341 // using undef.
4342 Constant *Result1 = FrexpMant.isFinite()
4343 ? ConstantInt::getSigned(IntTy, FrexpExp)
4344 : ConstantInt::getNullValue(IntTy);
4345 return {Result0, Result1};
4346}
4347
4348/// Handle intrinsics that return tuples, which may be tuples of vectors.
4349static Constant *
4350ConstantFoldStructCall(StringRef Name, Intrinsic::ID IntrinsicID,
4351 StructType *StTy, ArrayRef<Constant *> Operands,
4352 const DataLayout &DL, const TargetLibraryInfo *TLI,
4353 const CallBase *Call) {
4354
4355 switch (IntrinsicID) {
4356 case Intrinsic::frexp: {
4357 Type *Ty0 = StTy->getContainedType(0);
4358 Type *Ty1 = StTy->getContainedType(1)->getScalarType();
4359
4360 if (auto *FVTy0 = dyn_cast<FixedVectorType>(Ty0)) {
4361 SmallVector<Constant *, 4> Results0(FVTy0->getNumElements());
4362 SmallVector<Constant *, 4> Results1(FVTy0->getNumElements());
4363
4364 for (unsigned I = 0, E = FVTy0->getNumElements(); I != E; ++I) {
4365 Constant *Lane = Operands[0]->getAggregateElement(I);
4366 std::tie(Results0[I], Results1[I]) =
4367 ConstantFoldScalarFrexpCall(Lane, Ty1);
4368 if (!Results0[I])
4369 return nullptr;
4370 }
4371
4372 return ConstantStruct::get(StTy, ConstantVector::get(Results0),
4373 ConstantVector::get(Results1));
4374 }
4375
4376 auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Operands[0], Ty1);
4377 if (!Result0)
4378 return nullptr;
4379 return ConstantStruct::get(StTy, Result0, Result1);
4380 }
4381 case Intrinsic::sincos: {
4382 Type *Ty = StTy->getContainedType(0);
4383 Type *TyScalar = Ty->getScalarType();
4384
4385 auto ConstantFoldScalarSincosCall =
4386 [&](Constant *Op) -> std::pair<Constant *, Constant *> {
4387 Constant *SinResult =
4388 ConstantFoldScalarCall(Name, Intrinsic::sin, TyScalar, Op, TLI, Call);
4389 Constant *CosResult =
4390 ConstantFoldScalarCall(Name, Intrinsic::cos, TyScalar, Op, TLI, Call);
4391 return std::make_pair(SinResult, CosResult);
4392 };
4393
4394 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
4395 SmallVector<Constant *> SinResults(FVTy->getNumElements());
4396 SmallVector<Constant *> CosResults(FVTy->getNumElements());
4397
4398 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
4399 Constant *Lane = Operands[0]->getAggregateElement(I);
4400 std::tie(SinResults[I], CosResults[I]) =
4401 ConstantFoldScalarSincosCall(Lane);
4402 if (!SinResults[I] || !CosResults[I])
4403 return nullptr;
4404 }
4405
4406 return ConstantStruct::get(StTy, ConstantVector::get(SinResults),
4407 ConstantVector::get(CosResults));
4408 }
4409
4410 auto [SinResult, CosResult] = ConstantFoldScalarSincosCall(Operands[0]);
4411 if (!SinResult || !CosResult)
4412 return nullptr;
4413 return ConstantStruct::get(StTy, SinResult, CosResult);
4414 }
4415 case Intrinsic::vector_deinterleave2: {
4416 auto *Vec = Operands[0];
4417 auto *VecTy = cast<VectorType>(Vec->getType());
4418
4419 if (auto *EltC = Vec->getSplatValue()) {
4420 ElementCount HalfEC = VecTy->getElementCount().divideCoefficientBy(2);
4421 auto *HalfVec = ConstantVector::getSplat(HalfEC, EltC);
4422 return ConstantStruct::get(StTy, HalfVec, HalfVec);
4423 }
4424
4425 if (!isa<FixedVectorType>(Vec->getType()))
4426 return nullptr;
4427
4428 unsigned NumElements = VecTy->getElementCount().getFixedValue() / 2;
4429 SmallVector<Constant *, 4> Res0(NumElements), Res1(NumElements);
4430 for (unsigned I = 0; I < NumElements; ++I) {
4431 Constant *Elt0 = Vec->getAggregateElement(2 * I);
4432 Constant *Elt1 = Vec->getAggregateElement(2 * I + 1);
4433 if (!Elt0 || !Elt1)
4434 return nullptr;
4435 Res0[I] = Elt0;
4436 Res1[I] = Elt1;
4437 }
4438 return ConstantStruct::get(StTy, ConstantVector::get(Res0),
4439 ConstantVector::get(Res1));
4440 }
4441 default:
4442 // TODO: Constant folding of vector intrinsics that fall through here does
4443 // not work (e.g. overflow intrinsics)
4444 return ConstantFoldScalarCall(Name, IntrinsicID, StTy, Operands, TLI, Call);
4445 }
4446
4447 return nullptr;
4448}
4449
4450} // end anonymous namespace
4451
4453 Constant *RHS, Type *Ty,
4456 // Ensure we check flags like StrictFP that might prevent this from getting
4457 // folded before generating a result.
4458 if (Call && !canConstantFoldCallTo(Call, Call->getCalledFunction()))
4459 return nullptr;
4460 return ConstantFoldIntrinsicCall2(ID, Ty, {LHS, RHS}, Call);
4461}
4462
4464 ArrayRef<Constant *> Operands,
4465 const TargetLibraryInfo *TLI,
4466 bool AllowNonDeterministic) {
4467 if (Call->isNoBuiltin())
4468 return nullptr;
4469 if (!F->hasName())
4470 return nullptr;
4471
4472 // If this is not an intrinsic and not recognized as a library call, bail out.
4473 Intrinsic::ID IID = F->getIntrinsicID();
4474 if (IID == Intrinsic::not_intrinsic) {
4475 if (!TLI)
4476 return nullptr;
4477 LibFunc LibF;
4478 if (!TLI->getLibFunc(*F, LibF))
4479 return nullptr;
4480 }
4481
4482 // Conservatively assume that floating-point libcalls may be
4483 // non-deterministic.
4484 Type *Ty = F->getReturnType();
4485 if (!AllowNonDeterministic && Ty->isFPOrFPVectorTy())
4486 return nullptr;
4487
4488 StringRef Name = F->getName();
4489 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
4490 return ConstantFoldFixedVectorCall(
4491 Name, IID, FVTy, Operands, F->getDataLayout(), TLI, Call);
4492
4493 if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
4494 return ConstantFoldScalableVectorCall(
4495 Name, IID, SVTy, Operands, F->getDataLayout(), TLI, Call);
4496
4497 if (auto *StTy = dyn_cast<StructType>(Ty))
4498 return ConstantFoldStructCall(Name, IID, StTy, Operands,
4499 F->getDataLayout(), TLI, Call);
4500
4501 // TODO: If this is a library function, we already discovered that above,
4502 // so we should pass the LibFunc, not the name (and it might be better
4503 // still to separate intrinsic handling from libcalls).
4504 return ConstantFoldScalarCall(Name, IID, Ty, Operands, TLI, Call);
4505}
4506
4508 const TargetLibraryInfo *TLI) {
4509 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
4510 // (and to some extent ConstantFoldScalarCall).
4511 if (Call->isNoBuiltin() || Call->isStrictFP())
4512 return false;
4513 Function *F = Call->getCalledFunction();
4514 if (!F)
4515 return false;
4516
4517 LibFunc Func;
4518 if (!TLI || !TLI->getLibFunc(*F, Func))
4519 return false;
4520
4521 if (Call->arg_size() == 1) {
4522 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
4523 const APFloat &Op = OpC->getValueAPF();
4524 switch (Func) {
4525 case LibFunc_logl:
4526 case LibFunc_log:
4527 case LibFunc_logf:
4528 case LibFunc_log2l:
4529 case LibFunc_log2:
4530 case LibFunc_log2f:
4531 case LibFunc_log10l:
4532 case LibFunc_log10:
4533 case LibFunc_log10f:
4534 return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
4535
4536 case LibFunc_ilogb:
4537 return !Op.isNaN() && !Op.isZero() && !Op.isInfinity();
4538
4539 case LibFunc_expl:
4540 case LibFunc_exp:
4541 case LibFunc_expf:
4542 // FIXME: These boundaries are slightly conservative.
4543 if (OpC->getType()->isDoubleTy())
4544 return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
4545 if (OpC->getType()->isFloatTy())
4546 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
4547 break;
4548
4549 case LibFunc_exp2l:
4550 case LibFunc_exp2:
4551 case LibFunc_exp2f:
4552 // FIXME: These boundaries are slightly conservative.
4553 if (OpC->getType()->isDoubleTy())
4554 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
4555 if (OpC->getType()->isFloatTy())
4556 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
4557 break;
4558
4559 case LibFunc_sinl:
4560 case LibFunc_sin:
4561 case LibFunc_sinf:
4562 case LibFunc_cosl:
4563 case LibFunc_cos:
4564 case LibFunc_cosf:
4565 return !Op.isInfinity();
4566
4567 case LibFunc_tanl:
4568 case LibFunc_tan:
4569 case LibFunc_tanf: {
4570 // FIXME: Stop using the host math library.
4571 // FIXME: The computation isn't done in the right precision.
4572 Type *Ty = OpC->getType();
4573 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
4574 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
4575 break;
4576 }
4577
4578 case LibFunc_atan:
4579 case LibFunc_atanf:
4580 case LibFunc_atanl:
4581 // Per POSIX, this MAY fail if Op is denormal. We choose not failing.
4582 return true;
4583
4584 case LibFunc_asinl:
4585 case LibFunc_asin:
4586 case LibFunc_asinf:
4587 case LibFunc_acosl:
4588 case LibFunc_acos:
4589 case LibFunc_acosf:
4590 return !(Op < APFloat::getOne(Op.getSemantics(), true) ||
4591 Op > APFloat::getOne(Op.getSemantics()));
4592
4593 case LibFunc_sinh:
4594 case LibFunc_cosh:
4595 case LibFunc_sinhf:
4596 case LibFunc_coshf:
4597 case LibFunc_sinhl:
4598 case LibFunc_coshl:
4599 // FIXME: These boundaries are slightly conservative.
4600 if (OpC->getType()->isDoubleTy())
4601 return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
4602 if (OpC->getType()->isFloatTy())
4603 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
4604 break;
4605
4606 case LibFunc_sqrtl:
4607 case LibFunc_sqrt:
4608 case LibFunc_sqrtf:
4609 return Op.isNaN() || Op.isZero() || !Op.isNegative();
4610
4611 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
4612 // maybe others?
4613 default:
4614 break;
4615 }
4616 }
4617 }
4618
4619 if (Call->arg_size() == 2) {
4620 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
4621 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
4622 if (Op0C && Op1C) {
4623 const APFloat &Op0 = Op0C->getValueAPF();
4624 const APFloat &Op1 = Op1C->getValueAPF();
4625
4626 switch (Func) {
4627 case LibFunc_powl:
4628 case LibFunc_pow:
4629 case LibFunc_powf: {
4630 // FIXME: Stop using the host math library.
4631 // FIXME: The computation isn't done in the right precision.
4632 Type *Ty = Op0C->getType();
4633 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
4634 if (Ty == Op1C->getType())
4635 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
4636 }
4637 break;
4638 }
4639
4640 case LibFunc_fmodl:
4641 case LibFunc_fmod:
4642 case LibFunc_fmodf:
4643 case LibFunc_remainderl:
4644 case LibFunc_remainder:
4645 case LibFunc_remainderf:
4646 return Op0.isNaN() || Op1.isNaN() ||
4647 (!Op0.isInfinity() && !Op1.isZero());
4648
4649 case LibFunc_atan2:
4650 case LibFunc_atan2f:
4651 case LibFunc_atan2l:
4652 // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and
4653 // GLIBC and MSVC do not appear to raise an error on those, we
4654 // cannot rely on that behavior. POSIX and C11 say that a domain error
4655 // may occur, so allow for that possibility.
4656 return !Op0.isZero() || !Op1.isZero();
4657
4658 default:
4659 break;
4660 }
4661 }
4662 }
4663
4664 return false;
4665}
4666
4668 unsigned CastOp, const DataLayout &DL,
4669 PreservedCastFlags *Flags) {
4670 switch (CastOp) {
4671 case Instruction::BitCast:
4672 // Bitcast is always lossless.
4673 return ConstantFoldCastOperand(Instruction::BitCast, C, InvCastTo, DL);
4674 case Instruction::Trunc: {
4675 auto *ZExtC = ConstantFoldCastOperand(Instruction::ZExt, C, InvCastTo, DL);
4676 if (Flags) {
4677 // Truncation back on ZExt value is always NUW.
4678 Flags->NUW = true;
4679 // Test positivity of C.
4680 auto *SExtC =
4681 ConstantFoldCastOperand(Instruction::SExt, C, InvCastTo, DL);
4682 Flags->NSW = ZExtC == SExtC;
4683 }
4684 return ZExtC;
4685 }
4686 case Instruction::SExt:
4687 case Instruction::ZExt: {
4688 auto *InvC = ConstantExpr::getTrunc(C, InvCastTo);
4689 auto *CastInvC = ConstantFoldCastOperand(CastOp, InvC, C->getType(), DL);
4690 // Must satisfy CastOp(InvC) == C.
4691 if (!CastInvC || CastInvC != C)
4692 return nullptr;
4693 if (Flags && CastOp == Instruction::ZExt) {
4694 auto *SExtInvC =
4695 ConstantFoldCastOperand(Instruction::SExt, InvC, C->getType(), DL);
4696 // Test positivity of InvC.
4697 Flags->NNeg = CastInvC == SExtInvC;
4698 }
4699 return InvC;
4700 }
4701 default:
4702 return nullptr;
4703 }
4704}
4705
4707 const DataLayout &DL,
4708 PreservedCastFlags *Flags) {
4709 return getLosslessInvCast(C, DestTy, Instruction::ZExt, DL, Flags);
4710}
4711
4713 const DataLayout &DL,
4714 PreservedCastFlags *Flags) {
4715 return getLosslessInvCast(C, DestTy, Instruction::SExt, DL, Flags);
4716}
4717
4718void TargetFolder::anchor() {}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
constexpr LLT S1
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static Constant * FoldBitCast(Constant *V, Type *DestTy)
static ConstantFP * flushDenormalConstant(Type *Ty, const APFloat &APF, DenormalMode::DenormalModeKind Mode)
Constant * getConstantAtOffset(Constant *Base, APInt Offset, const DataLayout &DL)
If this Offset points exactly to the start of an aggregate element, return that element,...
static cl::opt< bool > DisableFPCallFolding("disable-fp-call-folding", cl::desc("Disable constant-folding of FP intrinsics and libcalls."), cl::init(false), cl::Hidden)
static ConstantFP * flushDenormalConstantFP(ConstantFP *CFP, const Instruction *Inst, bool IsOutput)
static DenormalMode getInstrDenormalMode(const Instruction *CtxI, Type *Ty)
Return the denormal mode that can be assumed when executing a floating point operation at CtxI.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
Hexagon Common GEP
amode Optimize addressing mode
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
This file contains the definitions of the enumerations and flags associated with NVVM Intrinsics,...
if(PassOpts->AAPipeline)
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
The Input class is used to parse a yaml document into in-memory structs and vectors.
static constexpr roundingMode rmTowardZero
Definition APFloat.h:348
llvm::RoundingMode roundingMode
IEEE-754R 4.3: Rounding-direction attributes.
Definition APFloat.h:342
static const fltSemantics & IEEEdouble()
Definition APFloat.h:297
static constexpr roundingMode rmTowardNegative
Definition APFloat.h:347
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:344
static constexpr roundingMode rmTowardPositive
Definition APFloat.h:346
static const fltSemantics & IEEEhalf()
Definition APFloat.h:294
static constexpr roundingMode rmNearestTiesToAway
Definition APFloat.h:349
opStatus
IEEE-754R 7: Default exception handling.
Definition APFloat.h:360
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
Definition APFloat.h:1102
opStatus divide(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1190
void copySign(const APFloat &RHS)
Definition APFloat.h:1284
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
Definition APFloat.cpp:6053
opStatus subtract(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1172
bool isNegative() const
Definition APFloat.h:1431
LLVM_ABI double convertToDouble() const
Converts this APFloat to host double value.
Definition APFloat.cpp:6112
bool isPosInfinity() const
Definition APFloat.h:1444
bool isNormal() const
Definition APFloat.h:1435
bool isDenormal() const
Definition APFloat.h:1432
opStatus add(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1163
const fltSemantics & getSemantics() const
Definition APFloat.h:1439
bool isNonZero() const
Definition APFloat.h:1440
bool isFinite() const
Definition APFloat.h:1436
bool isNaN() const
Definition APFloat.h:1429
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
Definition APFloat.h:1070
opStatus multiply(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1181
LLVM_ABI float convertToFloat() const
Converts this APFloat to host float value.
Definition APFloat.cpp:6143
bool isSignaling() const
Definition APFloat.h:1433
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
Definition APFloat.h:1217
bool isZero() const
Definition APFloat.h:1427
APInt bitcastToAPInt() const
Definition APFloat.h:1335
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
Definition APFloat.h:1314
opStatus mod(const APFloat &RHS)
Definition APFloat.h:1208
bool isNegInfinity() const
Definition APFloat.h:1445
opStatus roundToIntegral(roundingMode RM)
Definition APFloat.h:1230
void changeSign()
Definition APFloat.h:1279
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Definition APFloat.h:1061
bool isInfinity() const
Definition APFloat.h:1428
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1971
LLVM_ABI APInt usub_sat(const APInt &RHS) const
Definition APInt.cpp:2055
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition APInt.h:423
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1540
LLVM_ABI uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const
Definition APInt.cpp:520
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition APInt.cpp:1033
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
APInt abs() const
Get the absolute value.
Definition APInt.h:1795
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
Definition APInt.cpp:2026
bool sgt(const APInt &RHS) const
Signed greater than comparison.
Definition APInt.h:1201
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1948
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1182
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:380
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition APInt.cpp:1666
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1488
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition APInt.h:1111
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition APInt.h:209
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1928
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1935
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition APInt.h:1639
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition APInt.h:1598
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:219
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition APInt.cpp:1041
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
Definition APInt.cpp:2036
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition APInt.h:827
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1960
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
Definition APInt.cpp:985
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition APInt.h:873
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition APInt.h:1130
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
Definition APInt.cpp:482
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1941
bool isOne() const
Determine if this is a value of 1.
Definition APInt.h:389
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:851
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
Definition APInt.cpp:2045
An arbitrary precision integer that knows its signedness.
Definition APSInt.h:24
This class represents an incoming formal argument to a Function.
Definition Argument.h:32
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition ArrayRef.h:143
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
static LLVM_ABI Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static LLVM_ABI unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, const DataLayout *DL)
Determine how a pair of casts can be eliminated, if they can be at all.
static LLVM_ABI bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
bool isSigned() const
Definition InstrTypes.h:930
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition InstrTypes.h:827
static bool isFPPredicate(Predicate P)
Definition InstrTypes.h:770
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
Definition Constants.h:715
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI bool isDesirableCastOp(unsigned Opcode)
Whether creating a constant expression for this cast is desirable.
static LLVM_ABI Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static bool isSupportedGetElementPtr(const Type *SrcElemTy)
Whether creating a constant expression for this getelementptr type is supported.
Definition Constants.h:1387
static LLVM_ABI Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a binary or shift operator constant expression, folding if possible.
static LLVM_ABI bool isDesirableBinOp(unsigned Opcode)
Whether creating a constant expression for this binary operator is desirable.
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
Definition Constants.h:1274
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:277
const APFloat & getValueAPF() const
Definition Constants.h:320
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition Constants.h:131
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Definition Constants.h:169
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
Definition Constant.h:43
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
Definition Constants.cpp:76
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition Constants.cpp:90
Constrained floating point compare intrinsics.
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI std::optional< RoundingMode > getRoundingMode() const
Wrapper for a function that represents a value that functionally represents the original function.
Definition Constants.h:952
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
iterator end()
Definition DenseMap.h:81
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:233
static LLVM_ABI bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This provides a helper for copying FMF from an instruction or setting specified flags.
Definition IRBuilder.h:93
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition Type.cpp:803
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Definition Function.cpp:803
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
GEPNoWrapFlags withoutNoUnsignedSignedWrap() const
static GEPNoWrapFlags noUnsignedWrap()
bool hasNoUnsignedSignedWrap() const
bool isInBounds() const
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
PointerType * getType() const
Global values are always pointers.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
Definition Globals.cpp:132
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
bool isCast() const
bool isBinaryOp() const
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
bool isUnaryOp() const
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:319
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
static APInt getSaturationPoint(Intrinsic::ID ID, unsigned numBits)
Min/max intrinsics are monotonic, they operate on a fixed-bitwidth values, so there is a certain thre...
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Class to represent scalable SIMD vectors.
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
Definition DataLayout.h:712
LLVM_ABI unsigned getElementContainingOffset(uint64_t FixedOffset) const
Given a valid byte offset into the structure, returns the structure index that contains it.
TypeSize getElementOffset(unsigned Idx) const
Definition DataLayout.h:743
Class to represent struct types.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
Definition Type.cpp:298
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
@ HalfTyID
16-bit floating point type
Definition Type.h:56
@ FloatTyID
32-bit floating point type
Definition Type.h:58
@ DoubleTyID
64-bit floating point type
Definition Type.h:59
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:295
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:198
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
Definition Type.cpp:296
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition Type.h:311
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:294
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
Definition Type.h:270
bool isX86_AMXTy() const
Return true if this is X86 AMX.
Definition Type.h:200
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:301
Type * getContainedType(unsigned i) const
This method is used to implement the type iterator (defined at the end of the file).
Definition Type.h:381
LLVM_ABI const fltSemantics & getFltSemantics() const
Definition Type.cpp:107
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1099
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:201
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:253
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:238
const ParentTy * getParent() const
Definition ilist_node.h:34
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
Definition APInt.h:2248
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
Definition APInt.h:2253
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
Definition APInt.h:2258
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
Definition APInt.h:2263
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ CE
Windows NT (Windows on ARM)
Definition MCAsmInfo.h:48
initializer< Ty > init(const Ty &Val)
@ ebStrict
This corresponds to "fpexcept.strict".
Definition FPEnv.h:42
@ ebIgnore
This corresponds to "fpexcept.ignore".
Definition FPEnv.h:40
constexpr double pi
APFloat::roundingMode GetFMARoundingMode(Intrinsic::ID IntrinsicID)
DenormalMode GetNVVMDenormMode(bool ShouldFTZ)
bool FPToIntegerIntrinsicNaNZero(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFDivRoundingMode(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicResultIsSigned(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFPToIntegerRoundingMode(Intrinsic::ID IntrinsicID)
bool RCPShouldFTZ(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FDivShouldFTZ(Intrinsic::ID IntrinsicID)
bool FAddShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxIsXorSignAbs(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFMulRoundingMode(Intrinsic::ID IntrinsicID)
bool UnaryMathIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFAddRoundingMode(Intrinsic::ID IntrinsicID)
bool FMAShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMulShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetRCPRoundingMode(Intrinsic::ID IntrinsicID)
bool FMinFMaxPropagatesNaNs(Intrinsic::ID IntrinsicID)
NodeAddr< FuncNode * > Func
Definition RDFGraph.h:393
LLVM_ABI std::error_code status(const Twine &path, file_status &result, bool follow=true)
Get file status as if by POSIX stat().
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
@ Offset
Definition DWP.cpp:477
LLVM_ABI Constant * ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, Constant *RHS, Type *Ty, Instruction *FMFSource)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1725
LLVM_ABI Constant * ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, const DataLayout &DL)
ConstantFoldLoadThroughBitcast - try to cast constant to destination type returning null if unsuccess...
static double log2(double V)
LLVM_ABI Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
Attempt to constant fold a select instruction with the specified operands.
LLVM_ABI Constant * ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL, const Instruction *I, bool AllowNonDeterministic=true)
Attempt to constant fold a floating point binary operation with the specified operands,...
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2472
LLVM_ABI bool canConstantFoldCallTo(const CallBase *Call, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function.
unsigned getPointerAddressSpace(const Type *T)
Definition SPIRVUtils.h:345
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI Constant * ConstantFoldInstruction(const Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
APFloat abs(APFloat X)
Returns the absolute value of the argument.
Definition APFloat.h:1545
LLVM_ABI Constant * ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, Constant *C1, Constant *C2)
LLVM_ABI Constant * ConstantFoldUnaryInstruction(unsigned Opcode, Constant *V)
LLVM_ABI bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &DL, DSOLocalEquivalent **DSOEquiv=nullptr)
If this constant is a constant offset from a global, return the global and the constant.
LLVM_ABI bool isMathLibCallNoop(const CallBase *Call, const TargetLibraryInfo *TLI)
Check whether the given call has no side-effects.
LLVM_ABI Constant * ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset)
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:732
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
Definition APFloat.h:1625
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
Definition APFloat.h:1516
bool isa_and_nonnull(const Y &Val)
Definition Casting.h:676
LLVM_ABI Constant * ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef< Constant * > Operands, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
Definition APFloat.h:1537
LLVM_ABI Constant * ConstantFoldExtractValueInstruction(Constant *Agg, ArrayRef< unsigned > Idxs)
Attempt to constant fold an extractvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1732
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
Definition APFloat.h:1580
LLVM_ABI Constant * ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty, const DataLayout &DL)
If C is a uniform value where all bits are the same (either all zero, all ones, all undef or all pois...
LLVM_ABI Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
LLVM_ABI Constant * FlushFPConstant(Constant *Operand, const Instruction *I, bool IsOutput)
Attempt to flush float point constant according to denormal mode set in the instruction's parent func...
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
Definition APFloat.h:1611
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM)
Returns: X * 2^Exp for integral exponents.
Definition APFloat.h:1525
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI Constant * getLosslessSignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Constant * ConstantFoldLoadFromConst(Constant *C, Type *Ty, const APInt &Offset, const DataLayout &DL)
Extract value of C at the given Offset reinterpreted as Ty.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
Definition APFloat.h:1561
@ Sub
Subtraction of integers.
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
DWARFExpression::Operation Op
RoundingMode
Rounding mode.
@ NearestTiesToEven
roundTiesToEven.
@ Dynamic
Denotes mode unknown at compile time.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
constexpr unsigned BitWidth
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI Constant * ConstantFoldCastInstruction(unsigned opcode, Constant *V, Type *DestTy)
LLVM_ABI Constant * ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs)
Attempt to constant fold an insertvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
LLVM_ABI Constant * ConstantFoldInstOperands(const Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
Definition APFloat.h:1598
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
Definition APFloat.h:1638
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
Definition Casting.h:830
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
DenormalModeKind
Represent handled modes for denormal (aka subnormal) modes in the floating point environment.
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ Dynamic
Denormals have unknown treatment.
@ IEEE
IEEE-754 denormal numbers preserved.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
static constexpr DenormalMode getDynamic()
static constexpr DenormalMode getIEEE()
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
bool isConstant() const
Returns true if we know the value of all bits.
Definition KnownBits.h:54
const APInt & getConstant() const
Returns the value when all bits have a known value.
Definition KnownBits.h:60