59#include "llvm/IR/IntrinsicsAArch64.h"
60#include "llvm/IR/IntrinsicsAMDGPU.h"
61#include "llvm/IR/IntrinsicsRISCV.h"
62#include "llvm/IR/IntrinsicsX86.h"
100 if (
unsigned BitWidth = Ty->getScalarSizeInBits())
103 return DL.getPointerTypeSizeInBits(Ty);
123 const APInt &DemandedElts,
127 DemandedLHS = DemandedRHS = DemandedElts;
134 DemandedElts, DemandedLHS, DemandedRHS);
155 bool UseInstrInfo,
unsigned Depth) {
230 R->uge(
LHS->getType()->getScalarSizeInBits()))
243 assert(LHS->getType() == RHS->getType() &&
244 "LHS and RHS should have the same type");
245 assert(LHS->getType()->isIntOrIntVectorTy() &&
246 "LHS and RHS should be integers");
257 return !
I->user_empty() &&
262 return !
I->user_empty() &&
all_of(
I->users(), [](
const User *U) {
264 return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
273 return ::isKnownToBeAPowerOfTwo(
289 return CI->getValue().isStrictlyPositive();
315 return ::isKnownNonEqual(V1, V2, DemandedElts, Q,
Depth);
322 return Mask.isSubsetOf(Known.
Zero);
329 unsigned Depth = 0) {
340 return ::ComputeNumSignBits(
350 return V->getType()->getScalarSizeInBits() - SignBits + 1;
373 const APInt &DemandedElts,
379 const unsigned BitWidth = Ty->getScalarSizeInBits();
382 if (Ty->isVectorTy())
387 const Value *
A =
nullptr, *
B =
nullptr, *
C =
nullptr, *
D =
nullptr;
390 const auto MatchSubBC = [&]() {
407 const auto MatchASubBC = [&]() {
415 const auto MatchCD = [&]() {
432 if (!Match(Op0, Op1) && !Match(Op1, Op0))
435 const auto ComputeKnownBitsOrOne = [&](
const Value *V) {
443 const KnownBits KnownA = ComputeKnownBitsOrOne(
A);
447 const KnownBits KnownD = ComputeKnownBitsOrOne(
D);
464 if (SubBC->
getOpcode() == Instruction::Xor &&
482 const unsigned MinimumNumberOfLeadingZeros = UpperBound.
countl_zero();
488 const APInt &DemandedElts,
495 if (KnownOut.
isUnknown() && !NSW && !NUW)
512 bool NUW,
const APInt &DemandedElts,
529 bool isKnownNegativeOp0 = Known2.
isNegative();
532 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
544 (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
546 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.
isNonZero());
550 bool SelfMultiply = Op0 == Op1;
559 unsigned OutValidBits = 2 * (TyBits - SignBits + 1);
561 if (OutValidBits < TyBits) {
562 APInt KnownZeroMask =
564 Known.
Zero |= KnownZeroMask;
582 unsigned NumRanges = Ranges.getNumOperands() / 2;
587 for (
unsigned i = 0; i < NumRanges; ++i) {
596 "Known bit width must match range bit width!");
599 unsigned CommonPrefixBits =
600 (
Range.getUnsignedMax() ^
Range.getUnsignedMin()).countl_zero();
603 Known.
One &= UnsignedMax & Mask;
604 Known.
Zero &= ~UnsignedMax & Mask;
619 while (!WorkSet.
empty()) {
621 if (!Visited.
insert(V).second)
626 return EphValues.count(cast<Instruction>(U));
631 if (V ==
I || (!V->mayHaveSideEffects() && !V->isTerminator())) {
635 for (
const Use &U : U->operands()) {
650 return CI->isAssumeLikeIntrinsic();
658 bool AllowEphemerals) {
676 if (!AllowEphemerals && Inv == CxtI)
708 auto hasNoFreeCalls = [](
auto Range) {
713 if (!CB->hasFnAttr(Attribute::NoFree))
726 const BasicBlock *AssumeBB = Assume->getParent();
728 if (CtxBB != AssumeBB) {
735 CtxIter = AssumeBB->
end();
738 if (!Assume->comesBefore(CtxI))
744 return hasNoFreeCalls(
make_range(Assume->getIterator(), CtxIter));
773 for (
unsigned ElemIdx = 0, NElem = VC->getNumElements(); ElemIdx < NElem;
776 Pred, VC->getElementAsAPInt(ElemIdx));
785 const PHINode **PhiOut =
nullptr) {
789 CtxIOut =
PHI->getIncomingBlock(*U)->getTerminator();
805 IncPhi && IncPhi->getNumIncomingValues() == 2) {
806 for (
int Idx = 0; Idx < 2; ++Idx) {
807 if (IncPhi->getIncomingValue(Idx) ==
PHI) {
808 ValOut = IncPhi->getIncomingValue(1 - Idx);
811 CtxIOut = IncPhi->getIncomingBlock(1 - Idx)->getTerminator();
830 "Got assumption for the wrong function!");
833 if (!V->getType()->isPointerTy())
836 *
I,
I->bundle_op_info_begin()[Elem.Index])) {
838 (RK.AttrKind == Attribute::NonNull ||
839 (RK.AttrKind == Attribute::Dereferenceable &&
868 if (
RHS->getType()->isPointerTy()) {
910 Known.
Zero |= ~*
C & *Mask;
916 Known.
One |= *
C & ~*Mask;
975 Invert ? Cmp->getInversePredicate() : Cmp->getPredicate();
981 KnownBits DstKnown(
LHS->getType()->getScalarSizeInBits());
995 bool Invert,
unsigned Depth) {
1077 "Got assumption for the wrong function!");
1080 if (!V->getType()->isPointerTy())
1083 *
I,
I->bundle_op_info_begin()[Elem.Index])) {
1087 if (RK.WasOn == V && RK.AttrKind == Attribute::Alignment &&
1099 Value *Arg =
I->getArgOperand(0);
1115 if (Trunc && Trunc->getOperand(0) == V &&
1117 if (Trunc->hasNoUnsignedWrap()) {
1165 Known = KF(Known2, Known, ShAmtNonZero);
1176 Value *
X =
nullptr, *
Y =
nullptr;
1178 switch (
I->getOpcode()) {
1179 case Instruction::And:
1180 KnownOut = KnownLHS & KnownRHS;
1190 KnownOut = KnownLHS.
blsi();
1192 KnownOut = KnownRHS.
blsi();
1195 case Instruction::Or:
1196 KnownOut = KnownLHS | KnownRHS;
1198 case Instruction::Xor:
1199 KnownOut = KnownLHS ^ KnownRHS;
1209 const KnownBits &XBits =
I->getOperand(0) ==
X ? KnownLHS : KnownRHS;
1210 KnownOut = XBits.
blsmsk();
1223 if (!KnownOut.
Zero[0] && !KnownOut.
One[0] &&
1244 APInt DemandedEltsLHS, DemandedEltsRHS;
1246 DemandedElts, DemandedEltsLHS,
1249 const auto ComputeForSingleOpFunc =
1251 return KnownBitsFunc(
1256 if (DemandedEltsRHS.
isZero())
1257 return ComputeForSingleOpFunc(
I->getOperand(0), DemandedEltsLHS);
1258 if (DemandedEltsLHS.
isZero())
1259 return ComputeForSingleOpFunc(
I->getOperand(1), DemandedEltsRHS);
1261 return ComputeForSingleOpFunc(
I->getOperand(0), DemandedEltsLHS)
1262 .intersectWith(ComputeForSingleOpFunc(
I->getOperand(1), DemandedEltsRHS));
1272 APInt DemandedElts =
1280 Attribute Attr =
F->getFnAttribute(Attribute::VScaleRange);
1288 return ConstantRange::getEmpty(
BitWidth);
1299 Value *Arm,
bool Invert,
1338 "Input should be a Select!");
1348 const Value *LHS2 =
nullptr, *RHS2 =
nullptr;
1360 return CLow->
sle(*CHigh);
1365 const APInt *&CHigh) {
1366 assert((
II->getIntrinsicID() == Intrinsic::smin ||
1367 II->getIntrinsicID() == Intrinsic::smax) &&
1368 "Must be smin/smax");
1372 if (!InnerII || InnerII->getIntrinsicID() != InverseID ||
1377 if (
II->getIntrinsicID() == Intrinsic::smin)
1379 return CLow->
sle(*CHigh);
1384 const APInt *CLow, *CHigh;
1391 const APInt &DemandedElts,
1398 switch (
I->getOpcode()) {
1400 case Instruction::Load:
1405 case Instruction::And:
1411 case Instruction::Or:
1417 case Instruction::Xor:
1423 case Instruction::Mul: {
1427 DemandedElts, Known, Known2, Q,
Depth);
1430 case Instruction::UDiv: {
1437 case Instruction::SDiv: {
1444 case Instruction::Select: {
1445 auto ComputeForArm = [&](
Value *Arm,
bool Invert) {
1453 ComputeForArm(
I->getOperand(1),
false)
1457 case Instruction::FPTrunc:
1458 case Instruction::FPExt:
1459 case Instruction::FPToUI:
1460 case Instruction::FPToSI:
1461 case Instruction::SIToFP:
1462 case Instruction::UIToFP:
1464 case Instruction::PtrToInt:
1465 case Instruction::PtrToAddr:
1466 case Instruction::IntToPtr:
1469 case Instruction::ZExt:
1470 case Instruction::Trunc: {
1471 Type *SrcTy =
I->getOperand(0)->getType();
1473 unsigned SrcBitWidth;
1481 assert(SrcBitWidth &&
"SrcBitWidth can't be zero");
1485 Inst && Inst->hasNonNeg() && !Known.
isNegative())
1490 case Instruction::BitCast: {
1491 Type *SrcTy =
I->getOperand(0)->getType();
1492 if (SrcTy->isIntOrPtrTy() &&
1495 !
I->getType()->isVectorTy()) {
1503 V->getType()->isFPOrFPVectorTy()) {
1504 Type *FPType = V->getType()->getScalarType();
1516 if (FPClasses &
fcInf)
1528 if (Result.SignBit) {
1529 if (*Result.SignBit)
1540 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
1541 !
I->getType()->isIntOrIntVectorTy() ||
1549 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
1565 unsigned SubScale =
BitWidth / SubBitWidth;
1567 for (
unsigned i = 0; i != NumElts; ++i) {
1568 if (DemandedElts[i])
1569 SubDemandedElts.
setBit(i * SubScale);
1573 for (
unsigned i = 0; i != SubScale; ++i) {
1576 unsigned ShiftElt = IsLE ? i : SubScale - 1 - i;
1577 Known.
insertBits(KnownSrc, ShiftElt * SubBitWidth);
1583 unsigned SubScale = SubBitWidth /
BitWidth;
1585 APInt SubDemandedElts =
1591 for (
unsigned i = 0; i != NumElts; ++i) {
1592 if (DemandedElts[i]) {
1593 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
1603 case Instruction::SExt: {
1605 unsigned SrcBitWidth =
I->getOperand(0)->getType()->getScalarSizeInBits();
1607 Known = Known.
trunc(SrcBitWidth);
1614 case Instruction::Shl: {
1618 bool ShAmtNonZero) {
1619 return KnownBits::shl(KnownVal, KnownAmt, NUW, NSW, ShAmtNonZero);
1629 case Instruction::LShr: {
1632 bool ShAmtNonZero) {
1643 case Instruction::AShr: {
1646 bool ShAmtNonZero) {
1653 case Instruction::Sub: {
1657 DemandedElts, Known, Known2, Q,
Depth);
1660 case Instruction::Add: {
1664 DemandedElts, Known, Known2, Q,
Depth);
1667 case Instruction::SRem:
1673 case Instruction::URem:
1678 case Instruction::Alloca:
1681 case Instruction::GetElementPtr: {
1688 APInt AccConstIndices(IndexWidth, 0);
1690 auto AddIndexToKnown = [&](
KnownBits IndexBits) {
1699 "Index width can't be larger than pointer width");
1705 for (
unsigned i = 1, e =
I->getNumOperands(); i != e; ++i, ++GTI) {
1710 Value *Index =
I->getOperand(i);
1721 "Access to structure field must be known at compile time");
1729 AccConstIndices +=
Offset;
1746 CI->getValue().
sextOrTrunc(IndexWidth) * StrideInBytes;
1770 case Instruction::PHI: {
1773 Value *R =
nullptr, *L =
nullptr;
1786 case Instruction::LShr:
1787 case Instruction::AShr:
1788 case Instruction::Shl:
1789 case Instruction::UDiv:
1796 case Instruction::URem: {
1809 case Instruction::Shl:
1813 case Instruction::LShr:
1814 case Instruction::UDiv:
1815 case Instruction::URem:
1820 case Instruction::AShr:
1832 case Instruction::Add:
1833 case Instruction::Sub:
1834 case Instruction::And:
1835 case Instruction::Or:
1836 case Instruction::Mul: {
1843 unsigned OpNum =
P->getOperand(0) == R ? 0 : 1;
1844 Instruction *RInst =
P->getIncomingBlock(OpNum)->getTerminator();
1845 Instruction *LInst =
P->getIncomingBlock(1 - OpNum)->getTerminator();
1874 case Instruction::Add: {
1884 case Instruction::Sub: {
1895 case Instruction::Mul:
1912 if (
P->getNumIncomingValues() == 0)
1923 for (
const Use &U :
P->operands()) {
1958 if ((TrueSucc == CxtPhi->
getParent()) !=
1975 Known2 = KnownUnion;
1989 case Instruction::Call:
1990 case Instruction::Invoke: {
2000 if (std::optional<ConstantRange>
Range = CB->getRange())
2003 if (
const Value *RV = CB->getReturnedArgOperand()) {
2004 if (RV->getType() ==
I->getType()) {
2016 switch (
II->getIntrinsicID()) {
2019 case Intrinsic::abs: {
2021 bool IntMinIsPoison =
match(
II->getArgOperand(1),
m_One());
2025 case Intrinsic::bitreverse:
2029 case Intrinsic::bswap:
2033 case Intrinsic::ctlz: {
2039 PossibleLZ = std::min(PossibleLZ,
BitWidth - 1);
2044 case Intrinsic::cttz: {
2050 PossibleTZ = std::min(PossibleTZ,
BitWidth - 1);
2055 case Intrinsic::ctpop: {
2066 case Intrinsic::fshr:
2067 case Intrinsic::fshl: {
2074 if (
II->getIntrinsicID() == Intrinsic::fshr)
2081 Known2 <<= ShiftAmt;
2086 case Intrinsic::uadd_sat:
2091 case Intrinsic::usub_sat:
2096 case Intrinsic::sadd_sat:
2101 case Intrinsic::ssub_sat:
2107 case Intrinsic::vector_reverse:
2113 case Intrinsic::vector_reduce_and:
2114 case Intrinsic::vector_reduce_or:
2115 case Intrinsic::vector_reduce_umax:
2116 case Intrinsic::vector_reduce_umin:
2117 case Intrinsic::vector_reduce_smax:
2118 case Intrinsic::vector_reduce_smin:
2121 case Intrinsic::vector_reduce_xor: {
2128 bool EvenCnt = VecTy->getElementCount().isKnownEven();
2132 if (VecTy->isScalableTy() || EvenCnt)
2136 case Intrinsic::umin:
2141 case Intrinsic::umax:
2146 case Intrinsic::smin:
2152 case Intrinsic::smax:
2158 case Intrinsic::ptrmask: {
2161 const Value *Mask =
I->getOperand(1);
2162 Known2 =
KnownBits(Mask->getType()->getScalarSizeInBits());
2168 case Intrinsic::x86_sse2_pmulh_w:
2169 case Intrinsic::x86_avx2_pmulh_w:
2170 case Intrinsic::x86_avx512_pmulh_w_512:
2175 case Intrinsic::x86_sse2_pmulhu_w:
2176 case Intrinsic::x86_avx2_pmulhu_w:
2177 case Intrinsic::x86_avx512_pmulhu_w_512:
2182 case Intrinsic::x86_sse42_crc32_64_64:
2185 case Intrinsic::x86_ssse3_phadd_d_128:
2186 case Intrinsic::x86_ssse3_phadd_w_128:
2187 case Intrinsic::x86_avx2_phadd_d:
2188 case Intrinsic::x86_avx2_phadd_w: {
2190 I, DemandedElts, Q,
Depth,
2196 case Intrinsic::x86_ssse3_phadd_sw_128:
2197 case Intrinsic::x86_avx2_phadd_sw: {
2202 case Intrinsic::x86_ssse3_phsub_d_128:
2203 case Intrinsic::x86_ssse3_phsub_w_128:
2204 case Intrinsic::x86_avx2_phsub_d:
2205 case Intrinsic::x86_avx2_phsub_w: {
2207 I, DemandedElts, Q,
Depth,
2213 case Intrinsic::x86_ssse3_phsub_sw_128:
2214 case Intrinsic::x86_avx2_phsub_sw: {
2219 case Intrinsic::riscv_vsetvli:
2220 case Intrinsic::riscv_vsetvlimax: {
2221 bool HasAVL =
II->getIntrinsicID() == Intrinsic::riscv_vsetvli;
2234 MaxVL = std::min(MaxVL, CI->getZExtValue());
2236 unsigned KnownZeroFirstBit =
Log2_32(MaxVL) + 1;
2241 case Intrinsic::vscale: {
2242 if (!
II->getParent() || !
II->getFunction())
2252 case Instruction::ShuffleVector: {
2266 APInt DemandedLHS, DemandedRHS;
2272 if (!!DemandedLHS) {
2273 const Value *
LHS = Shuf->getOperand(0);
2279 if (!!DemandedRHS) {
2280 const Value *
RHS = Shuf->getOperand(1);
2286 case Instruction::InsertElement: {
2291 const Value *Vec =
I->getOperand(0);
2292 const Value *Elt =
I->getOperand(1);
2295 APInt DemandedVecElts = DemandedElts;
2296 bool NeedsElt =
true;
2298 if (CIdx && CIdx->getValue().ult(NumElts)) {
2299 DemandedVecElts.
clearBit(CIdx->getZExtValue());
2300 NeedsElt = DemandedElts[CIdx->getZExtValue()];
2311 if (!DemandedVecElts.
isZero()) {
2317 case Instruction::ExtractElement: {
2320 const Value *Vec =
I->getOperand(0);
2321 const Value *Idx =
I->getOperand(1);
2330 if (CIdx && CIdx->getValue().ult(NumElts))
2335 case Instruction::ExtractValue:
2340 switch (
II->getIntrinsicID()) {
2342 case Intrinsic::uadd_with_overflow:
2343 case Intrinsic::sadd_with_overflow:
2345 true,
II->getArgOperand(0),
II->getArgOperand(1),
false,
2346 false, DemandedElts, Known, Known2, Q,
Depth);
2348 case Intrinsic::usub_with_overflow:
2349 case Intrinsic::ssub_with_overflow:
2351 false,
II->getArgOperand(0),
II->getArgOperand(1),
false,
2352 false, DemandedElts, Known, Known2, Q,
Depth);
2354 case Intrinsic::umul_with_overflow:
2355 case Intrinsic::smul_with_overflow:
2357 false, DemandedElts, Known, Known2, Q,
Depth);
2363 case Instruction::Freeze:
2407 if (!DemandedElts) {
2413 assert(V &&
"No Value?");
2417 Type *Ty = V->getType();
2420 assert((Ty->isIntOrIntVectorTy(
BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
2421 "Not integer or pointer type!");
2425 FVTy->getNumElements() == DemandedElts.
getBitWidth() &&
2426 "DemandedElt width should equal the fixed vector number of elements");
2429 "DemandedElt width should be 1 for scalars or scalable vectors");
2435 "V and Known should have same BitWidth");
2438 "V and Known should have same BitWidth");
2460 for (
unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
2461 if (!DemandedElts[i])
2463 APInt Elt = CDV->getElementAsAPInt(i);
2477 for (
unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
2478 if (!DemandedElts[i])
2488 const APInt &Elt = ElementCI->getValue();
2509 if (std::optional<ConstantRange>
Range =
A->getRange())
2510 Known =
Range->toKnownBits();
2519 if (!GA->isInterposable())
2527 if (std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange())
2528 Known = CR->toKnownBits();
2533 Align Alignment = V->getPointerAlignment(Q.
DL);
2549 Value *Start =
nullptr, *Step =
nullptr;
2555 if (U.get() == Start) {
2571 case Instruction::Mul:
2576 case Instruction::SDiv:
2582 case Instruction::UDiv:
2588 case Instruction::Shl:
2590 case Instruction::AShr:
2594 case Instruction::LShr:
2632 if (OrZero && V->getType()->getScalarSizeInBits() == 1)
2674 return F->hasFnAttribute(Attribute::VScaleRange);
2691 switch (
I->getOpcode()) {
2692 case Instruction::ZExt:
2694 case Instruction::Trunc:
2696 case Instruction::Shl:
2700 case Instruction::LShr:
2704 case Instruction::UDiv:
2708 case Instruction::Mul:
2712 case Instruction::And:
2723 case Instruction::Add: {
2729 if (
match(
I->getOperand(0),
2733 if (
match(
I->getOperand(1),
2738 unsigned BitWidth = V->getType()->getScalarSizeInBits();
2747 if ((~(LHSBits.
Zero & RHSBits.
Zero)).isPowerOf2())
2760 case Instruction::Select:
2763 case Instruction::PHI: {
2784 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2785 return isKnownToBeAPowerOfTwo(U.get(), OrZero, RecQ, NewDepth);
2788 case Instruction::Invoke:
2789 case Instruction::Call: {
2791 switch (
II->getIntrinsicID()) {
2792 case Intrinsic::umax:
2793 case Intrinsic::smax:
2794 case Intrinsic::umin:
2795 case Intrinsic::smin:
2800 case Intrinsic::bitreverse:
2801 case Intrinsic::bswap:
2803 case Intrinsic::fshr:
2804 case Intrinsic::fshl:
2806 if (
II->getArgOperand(0) ==
II->getArgOperand(1))
2830 F =
I->getFunction();
2834 if (!
GEP->hasNoUnsignedWrap() &&
2835 !(
GEP->isInBounds() &&
2840 assert(
GEP->getType()->isPointerTy() &&
"We only support plain pointer GEP");
2851 GTI != GTE; ++GTI) {
2853 if (
StructType *STy = GTI.getStructTypeOrNull()) {
2858 if (ElementOffset > 0)
2864 if (GTI.getSequentialElementStride(Q.
DL).isZero())
2898 unsigned NumUsesExplored = 0;
2899 for (
auto &U : V->uses()) {
2908 if (V->getType()->isPointerTy()) {
2910 if (CB->isArgOperand(&U) &&
2911 CB->paramHasNonNullAttr(CB->getArgOperandNo(&U),
2939 NonNullIfTrue =
true;
2941 NonNullIfTrue =
false;
2947 for (
const auto *CmpU : UI->
users()) {
2949 if (Visited.
insert(CmpU).second)
2952 while (!WorkList.
empty()) {
2961 for (
const auto *CurrU : Curr->users())
2962 if (Visited.
insert(CurrU).second)
2968 assert(BI->isConditional() &&
"uses a comparison!");
2971 BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2975 }
else if (NonNullIfTrue &&
isGuard(Curr) &&
2990 const unsigned NumRanges = Ranges->getNumOperands() / 2;
2992 for (
unsigned i = 0; i < NumRanges; ++i) {
3008 Value *Start =
nullptr, *Step =
nullptr;
3009 const APInt *StartC, *StepC;
3015 case Instruction::Add:
3021 case Instruction::Mul:
3024 case Instruction::Shl:
3026 case Instruction::AShr:
3027 case Instruction::LShr:
3043 bool NUW,
unsigned Depth) {
3100 return ::isKnownNonEqual(
X,
Y, DemandedElts, Q,
Depth);
3105 bool NUW,
unsigned Depth) {
3134 auto ShiftOp = [&](
const APInt &Lhs,
const APInt &Rhs) {
3135 switch (
I->getOpcode()) {
3136 case Instruction::Shl:
3137 return Lhs.
shl(Rhs);
3138 case Instruction::LShr:
3139 return Lhs.
lshr(Rhs);
3140 case Instruction::AShr:
3141 return Lhs.
ashr(Rhs);
3147 auto InvShiftOp = [&](
const APInt &Lhs,
const APInt &Rhs) {
3148 switch (
I->getOpcode()) {
3149 case Instruction::Shl:
3150 return Lhs.
lshr(Rhs);
3151 case Instruction::LShr:
3152 case Instruction::AShr:
3153 return Lhs.
shl(Rhs);
3166 if (MaxShift.
uge(NumBits))
3169 if (!ShiftOp(KnownVal.
One, MaxShift).isZero())
3174 if (InvShiftOp(KnownVal.
Zero, NumBits - MaxShift)
3183 const APInt &DemandedElts,
3186 switch (
I->getOpcode()) {
3187 case Instruction::Alloca:
3189 return I->getType()->getPointerAddressSpace() == 0;
3190 case Instruction::GetElementPtr:
3191 if (
I->getType()->isPointerTy())
3194 case Instruction::BitCast: {
3222 Type *FromTy =
I->getOperand(0)->getType();
3227 case Instruction::IntToPtr:
3236 case Instruction::PtrToAddr:
3240 case Instruction::PtrToInt:
3244 I->getType()->getScalarSizeInBits())
3247 case Instruction::Trunc:
3250 if (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap())
3256 case Instruction::Xor:
3257 case Instruction::Sub:
3259 I->getOperand(1),
Depth);
3260 case Instruction::Or:
3271 case Instruction::SExt:
3272 case Instruction::ZExt:
3276 case Instruction::Shl: {
3291 case Instruction::LShr:
3292 case Instruction::AShr: {
3307 case Instruction::UDiv:
3308 case Instruction::SDiv: {
3323 if (
I->getOpcode() == Instruction::SDiv) {
3325 XKnown = XKnown.
abs(
false);
3326 YKnown = YKnown.
abs(
false);
3332 return XUgeY && *XUgeY;
3334 case Instruction::Add: {
3344 case Instruction::Mul: {
3350 case Instruction::Select: {
3357 auto SelectArmIsNonZero = [&](
bool IsTrueArm) {
3359 Op = IsTrueArm ?
I->getOperand(1) :
I->getOperand(2);
3377 if (SelectArmIsNonZero(
true) &&
3378 SelectArmIsNonZero(
false))
3382 case Instruction::PHI: {
3393 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
3397 BasicBlock *TrueSucc, *FalseSucc;
3398 if (match(RecQ.CxtI,
3399 m_Br(m_c_ICmp(Pred, m_Specific(U.get()), m_Value(X)),
3400 m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) {
3402 if ((TrueSucc == PN->getParent()) != (FalseSucc == PN->getParent())) {
3404 if (FalseSucc == PN->getParent())
3405 Pred = CmpInst::getInversePredicate(Pred);
3406 if (cmpExcludesZero(Pred, X))
3414 case Instruction::InsertElement: {
3418 const Value *Vec =
I->getOperand(0);
3419 const Value *Elt =
I->getOperand(1);
3423 APInt DemandedVecElts = DemandedElts;
3424 bool SkipElt =
false;
3426 if (CIdx && CIdx->getValue().ult(NumElts)) {
3427 DemandedVecElts.
clearBit(CIdx->getZExtValue());
3428 SkipElt = !DemandedElts[CIdx->getZExtValue()];
3434 (DemandedVecElts.
isZero() ||
3437 case Instruction::ExtractElement:
3439 const Value *Vec = EEI->getVectorOperand();
3440 const Value *Idx = EEI->getIndexOperand();
3443 unsigned NumElts = VecTy->getNumElements();
3445 if (CIdx && CIdx->getValue().ult(NumElts))
3451 case Instruction::ShuffleVector: {
3455 APInt DemandedLHS, DemandedRHS;
3461 return (DemandedRHS.
isZero() ||
3466 case Instruction::Freeze:
3470 case Instruction::Load: {
3487 case Instruction::ExtractValue: {
3493 case Instruction::Add:
3498 case Instruction::Sub:
3501 case Instruction::Mul:
3504 false,
false,
Depth);
3510 case Instruction::Call:
3511 case Instruction::Invoke: {
3513 if (
I->getType()->isPointerTy()) {
3514 if (
Call->isReturnNonNull())
3521 if (std::optional<ConstantRange>
Range =
Call->getRange()) {
3522 const APInt ZeroValue(
Range->getBitWidth(), 0);
3523 if (!
Range->contains(ZeroValue))
3526 if (
const Value *RV =
Call->getReturnedArgOperand())
3532 switch (
II->getIntrinsicID()) {
3533 case Intrinsic::sshl_sat:
3534 case Intrinsic::ushl_sat:
3535 case Intrinsic::abs:
3536 case Intrinsic::bitreverse:
3537 case Intrinsic::bswap:
3538 case Intrinsic::ctpop:
3542 case Intrinsic::ssub_sat:
3545 case Intrinsic::sadd_sat:
3547 II->getArgOperand(1),
3548 true,
false,
Depth);
3550 case Intrinsic::vector_reverse:
3554 case Intrinsic::vector_reduce_or:
3555 case Intrinsic::vector_reduce_umax:
3556 case Intrinsic::vector_reduce_umin:
3557 case Intrinsic::vector_reduce_smax:
3558 case Intrinsic::vector_reduce_smin:
3560 case Intrinsic::umax:
3561 case Intrinsic::uadd_sat:
3569 case Intrinsic::smax: {
3572 auto IsNonZero = [&](
Value *
Op, std::optional<bool> &OpNonZero,
3574 if (!OpNonZero.has_value())
3575 OpNonZero = OpKnown.isNonZero() ||
3580 std::optional<bool> Op0NonZero, Op1NonZero;
3584 IsNonZero(
II->getArgOperand(1), Op1NonZero, Op1Known))
3589 IsNonZero(
II->getArgOperand(0), Op0NonZero, Op0Known))
3591 return IsNonZero(
II->getArgOperand(1), Op1NonZero, Op1Known) &&
3592 IsNonZero(
II->getArgOperand(0), Op0NonZero, Op0Known);
3594 case Intrinsic::smin: {
3610 case Intrinsic::umin:
3613 case Intrinsic::cttz:
3616 case Intrinsic::ctlz:
3619 case Intrinsic::fshr:
3620 case Intrinsic::fshl:
3622 if (
II->getArgOperand(0) ==
II->getArgOperand(1))
3625 case Intrinsic::vscale:
3627 case Intrinsic::experimental_get_vector_length:
3641 return Known.
One != 0;
3652 Type *Ty = V->getType();
3659 FVTy->getNumElements() == DemandedElts.
getBitWidth() &&
3660 "DemandedElt width should equal the fixed vector number of elements");
3663 "DemandedElt width should be 1 for scalars");
3668 if (
C->isNullValue())
3677 for (
unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
3678 if (!DemandedElts[i])
3680 Constant *Elt =
C->getAggregateElement(i);
3697 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
3698 GV->getType()->getAddressSpace() == 0)
3708 if (std::optional<ConstantRange>
Range =
A->getRange()) {
3709 const APInt ZeroValue(
Range->getBitWidth(), 0);
3710 if (!
Range->contains(ZeroValue))
3727 if (((
A->hasPassPointeeByValueCopyAttr() &&
3729 A->hasNonNullAttr()))
3751 APInt DemandedElts =
3753 return ::isKnownNonZero(V, DemandedElts, Q,
Depth);
3762static std::optional<std::pair<Value*, Value*>>
3766 return std::nullopt;
3775 case Instruction::Or:
3780 case Instruction::Xor:
3781 case Instruction::Add: {
3789 case Instruction::Sub:
3795 case Instruction::Mul: {
3801 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
3802 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
3812 case Instruction::Shl: {
3817 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
3818 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
3825 case Instruction::AShr:
3826 case Instruction::LShr: {
3829 if (!PEO1->isExact() || !PEO2->isExact())
3836 case Instruction::SExt:
3837 case Instruction::ZExt:
3841 case Instruction::PHI: {
3849 Value *Start1 =
nullptr, *Step1 =
nullptr;
3851 Value *Start2 =
nullptr, *Step2 =
nullptr;
3867 if (Values->first != PN1 || Values->second != PN2)
3870 return std::make_pair(Start1, Start2);
3873 return std::nullopt;
3880 const APInt &DemandedElts,
3888 case Instruction::Or:
3892 case Instruction::Xor:
3893 case Instruction::Add:
3914 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
3915 !
C->isZero() && !
C->isOne() &&
3929 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
3943 bool UsedFullRecursion =
false;
3945 if (!VisitedBBs.
insert(IncomBB).second)
3949 const APInt *C1, *C2;
3954 if (UsedFullRecursion)
3958 RecQ.
CxtI = IncomBB->getTerminator();
3961 UsedFullRecursion =
true;
3975 const Value *Cond2 = SI2->getCondition();
3978 DemandedElts, Q,
Depth + 1) &&
3980 DemandedElts, Q,
Depth + 1);
3993 if (!
A->getType()->isPointerTy() || !
B->getType()->isPointerTy())
3997 if (!GEPA || GEPA->getNumIndices() != 1 || !
isa<Constant>(GEPA->idx_begin()))
4002 if (!PN || PN->getNumIncomingValues() != 2)
4007 Value *Start =
nullptr;
4009 if (PN->getIncomingValue(0) == Step)
4010 Start = PN->getIncomingValue(1);
4011 else if (PN->getIncomingValue(1) == Step)
4012 Start = PN->getIncomingValue(0);
4023 APInt StartOffset(IndexWidth, 0);
4024 Start = Start->stripAndAccumulateInBoundsConstantOffsets(Q.
DL, StartOffset);
4025 APInt StepOffset(IndexWidth, 0);
4031 APInt OffsetB(IndexWidth, 0);
4032 B =
B->stripAndAccumulateInBoundsConstantOffsets(Q.
DL, OffsetB);
4033 return Start ==
B &&
4045 auto IsKnownNonEqualFromDominatingCondition = [&](
const Value *V) {
4066 if (IsKnownNonEqualFromDominatingCondition(V1) ||
4067 IsKnownNonEqualFromDominatingCondition(V2))
4081 "Got assumption for the wrong function!");
4082 assert(
I->getIntrinsicID() == Intrinsic::assume &&
4083 "must be an assume intrinsic");
4113 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
4115 return isKnownNonEqual(Values->first, Values->second, DemandedElts, Q,
4177 const APInt &DemandedElts,
4183 unsigned MinSignBits = TyBits;
4185 for (
unsigned i = 0; i != NumElts; ++i) {
4186 if (!DemandedElts[i])
4193 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
4200 const APInt &DemandedElts,
4206 assert(Result > 0 &&
"At least one sign bit needs to be present!");
4218 const APInt &DemandedElts,
4220 Type *Ty = V->getType();
4226 FVTy->getNumElements() == DemandedElts.
getBitWidth() &&
4227 "DemandedElt width should equal the fixed vector number of elements");
4230 "DemandedElt width should be 1 for scalars");
4244 unsigned FirstAnswer = 1;
4255 case Instruction::BitCast: {
4256 Value *Src = U->getOperand(0);
4257 Type *SrcTy = Src->getType();
4261 if (!SrcTy->isIntOrIntVectorTy())
4267 if ((SrcBits % TyBits) != 0)
4280 case Instruction::SExt:
4281 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
4285 case Instruction::SDiv: {
4286 const APInt *Denominator;
4299 return std::min(TyBits, NumBits + Denominator->
logBase2());
4304 case Instruction::SRem: {
4307 const APInt *Denominator;
4328 unsigned ResBits = TyBits - Denominator->
ceilLogBase2();
4329 Tmp = std::max(Tmp, ResBits);
4335 case Instruction::AShr: {
4340 if (ShAmt->
uge(TyBits))
4343 Tmp += ShAmtLimited;
4344 if (Tmp > TyBits) Tmp = TyBits;
4348 case Instruction::Shl: {
4353 if (ShAmt->
uge(TyBits))
4358 ShAmt->
uge(TyBits -
X->getType()->getScalarSizeInBits())) {
4360 Tmp += TyBits -
X->getType()->getScalarSizeInBits();
4364 if (ShAmt->
uge(Tmp))
4371 case Instruction::And:
4372 case Instruction::Or:
4373 case Instruction::Xor:
4378 FirstAnswer = std::min(Tmp, Tmp2);
4385 case Instruction::Select: {
4389 const APInt *CLow, *CHigh;
4397 return std::min(Tmp, Tmp2);
4400 case Instruction::Add:
4404 if (Tmp == 1)
break;
4408 if (CRHS->isAllOnesValue()) {
4414 if ((Known.
Zero | 1).isAllOnes())
4426 return std::min(Tmp, Tmp2) - 1;
4428 case Instruction::Sub:
4435 if (CLHS->isNullValue()) {
4440 if ((Known.
Zero | 1).isAllOnes())
4457 return std::min(Tmp, Tmp2) - 1;
4459 case Instruction::Mul: {
4462 unsigned SignBitsOp0 =
4464 if (SignBitsOp0 == 1)
4466 unsigned SignBitsOp1 =
4468 if (SignBitsOp1 == 1)
4470 unsigned OutValidBits =
4471 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
4472 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
4475 case Instruction::PHI: {
4479 if (NumIncomingValues > 4)
break;
4481 if (NumIncomingValues == 0)
break;
4487 for (
unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
4488 if (Tmp == 1)
return Tmp;
4491 DemandedElts, RecQ,
Depth + 1));
4496 case Instruction::Trunc: {
4501 unsigned OperandTyBits = U->getOperand(0)->getType()->getScalarSizeInBits();
4502 if (Tmp > (OperandTyBits - TyBits))
4503 return Tmp - (OperandTyBits - TyBits);
4508 case Instruction::ExtractElement:
4515 case Instruction::ShuffleVector: {
4523 APInt DemandedLHS, DemandedRHS;
4528 Tmp = std::numeric_limits<unsigned>::max();
4529 if (!!DemandedLHS) {
4530 const Value *
LHS = Shuf->getOperand(0);
4537 if (!!DemandedRHS) {
4538 const Value *
RHS = Shuf->getOperand(1);
4540 Tmp = std::min(Tmp, Tmp2);
4546 assert(Tmp <= TyBits &&
"Failed to determine minimum sign bits");
4549 case Instruction::Call: {
4551 switch (
II->getIntrinsicID()) {
4554 case Intrinsic::abs:
4562 case Intrinsic::smin:
4563 case Intrinsic::smax: {
4564 const APInt *CLow, *CHigh;
4579 if (
unsigned VecSignBits =
4597 if (
F->isIntrinsic())
4598 return F->getIntrinsicID();
4604 if (
F->hasLocalLinkage() || !TLI || !TLI->
getLibFunc(CB, Func) ||
4614 return Intrinsic::sin;
4618 return Intrinsic::cos;
4622 return Intrinsic::tan;
4626 return Intrinsic::asin;
4630 return Intrinsic::acos;
4634 return Intrinsic::atan;
4636 case LibFunc_atan2f:
4637 case LibFunc_atan2l:
4638 return Intrinsic::atan2;
4642 return Intrinsic::sinh;
4646 return Intrinsic::cosh;
4650 return Intrinsic::tanh;
4654 return Intrinsic::exp;
4658 return Intrinsic::exp2;
4660 case LibFunc_exp10f:
4661 case LibFunc_exp10l:
4662 return Intrinsic::exp10;
4666 return Intrinsic::log;
4668 case LibFunc_log10f:
4669 case LibFunc_log10l:
4670 return Intrinsic::log10;
4674 return Intrinsic::log2;
4678 return Intrinsic::fabs;
4682 return Intrinsic::minnum;
4686 return Intrinsic::maxnum;
4687 case LibFunc_copysign:
4688 case LibFunc_copysignf:
4689 case LibFunc_copysignl:
4690 return Intrinsic::copysign;
4692 case LibFunc_floorf:
4693 case LibFunc_floorl:
4694 return Intrinsic::floor;
4698 return Intrinsic::ceil;
4700 case LibFunc_truncf:
4701 case LibFunc_truncl:
4702 return Intrinsic::trunc;
4706 return Intrinsic::rint;
4707 case LibFunc_nearbyint:
4708 case LibFunc_nearbyintf:
4709 case LibFunc_nearbyintl:
4710 return Intrinsic::nearbyint;
4712 case LibFunc_roundf:
4713 case LibFunc_roundl:
4714 return Intrinsic::round;
4715 case LibFunc_roundeven:
4716 case LibFunc_roundevenf:
4717 case LibFunc_roundevenl:
4718 return Intrinsic::roundeven;
4722 return Intrinsic::pow;
4726 return Intrinsic::sqrt;
4736 bool &TrueIfSigned) {
4739 TrueIfSigned =
true;
4740 return RHS.isZero();
4742 TrueIfSigned =
true;
4743 return RHS.isAllOnes();
4745 TrueIfSigned =
false;
4746 return RHS.isAllOnes();
4748 TrueIfSigned =
false;
4749 return RHS.isZero();
4752 TrueIfSigned =
true;
4753 return RHS.isMaxSignedValue();
4756 TrueIfSigned =
true;
4757 return RHS.isMinSignedValue();
4760 TrueIfSigned =
false;
4761 return RHS.isMinSignedValue();
4764 TrueIfSigned =
false;
4765 return RHS.isMaxSignedValue();
4775 unsigned Depth = 0) {
4801 KnownFromContext.
knownNot(~(CondIsTrue ? MaskIfTrue : MaskIfFalse));
4805 KnownFromContext.
knownNot(CondIsTrue ? ~Mask : Mask);
4811 if (TrueIfSigned == CondIsTrue)
4827 return KnownFromContext;
4847 return KnownFromContext;
4857 "Got assumption for the wrong function!");
4858 assert(
I->getIntrinsicID() == Intrinsic::assume &&
4859 "must be an assume intrinsic");
4865 true, Q.
CxtI, KnownFromContext);
4868 return KnownFromContext;
4872 Value *Arm,
bool Invert,
4876 !Invert, SQ.
CxtI, Known,
4890 APInt DemandedElts =
4896 const APInt &DemandedElts,
4901 if ((InterestedClasses &
4907 KnownSrc, Q,
Depth + 1);
4921 case Intrinsic::minimum:
4923 case Intrinsic::maximum:
4925 case Intrinsic::minimumnum:
4927 case Intrinsic::maximumnum:
4929 case Intrinsic::minnum:
4931 case Intrinsic::maxnum:
4941 assert(Known.
isUnknown() &&
"should not be called with known information");
4943 if (!DemandedElts) {
4973 bool SignBitAllZero =
true;
4974 bool SignBitAllOne =
true;
4977 unsigned NumElts = VFVTy->getNumElements();
4978 for (
unsigned i = 0; i != NumElts; ++i) {
4979 if (!DemandedElts[i])
4995 const APFloat &
C = CElt->getValueAPF();
4998 SignBitAllZero =
false;
5000 SignBitAllOne =
false;
5002 if (SignBitAllOne != SignBitAllZero)
5003 Known.
SignBit = SignBitAllOne;
5009 KnownNotFromFlags |= CB->getRetNoFPClass();
5011 KnownNotFromFlags |= Arg->getNoFPClass();
5015 if (FPOp->hasNoNaNs())
5016 KnownNotFromFlags |=
fcNan;
5017 if (FPOp->hasNoInfs())
5018 KnownNotFromFlags |=
fcInf;
5022 KnownNotFromFlags |= ~AssumedClasses.KnownFPClasses;
5026 InterestedClasses &= ~KnownNotFromFlags;
5045 const unsigned Opc =
Op->getOpcode();
5047 case Instruction::FNeg: {
5049 Known, Q,
Depth + 1);
5053 case Instruction::Select: {
5054 auto ComputeForArm = [&](
Value *Arm,
bool Invert) {
5064 ComputeForArm(
Op->getOperand(1),
false)
5068 case Instruction::Call: {
5072 case Intrinsic::fabs: {
5077 InterestedClasses, Known, Q,
Depth + 1);
5083 case Intrinsic::copysign: {
5087 Known, Q,
Depth + 1);
5089 KnownSign, Q,
Depth + 1);
5093 case Intrinsic::fma:
5094 case Intrinsic::fmuladd: {
5098 if (
II->getArgOperand(0) !=
II->getArgOperand(1) ||
5109 KnownAddend, Q,
Depth + 1);
5115 case Intrinsic::sqrt:
5116 case Intrinsic::experimental_constrained_sqrt: {
5119 if (InterestedClasses &
fcNan)
5123 KnownSrc, Q,
Depth + 1);
5141 II->getType()->getScalarType()->getFltSemantics();
5150 case Intrinsic::sin:
5151 case Intrinsic::cos: {
5155 KnownSrc, Q,
Depth + 1);
5161 case Intrinsic::maxnum:
5162 case Intrinsic::minnum:
5163 case Intrinsic::minimum:
5164 case Intrinsic::maximum:
5165 case Intrinsic::minimumnum:
5166 case Intrinsic::maximumnum: {
5169 KnownLHS, Q,
Depth + 1);
5171 KnownRHS, Q,
Depth + 1);
5176 F ?
F->getDenormalMode(
5177 II->getType()->getScalarType()->getFltSemantics())
5184 case Intrinsic::canonicalize: {
5187 KnownSrc, Q,
Depth + 1);
5191 F ?
F->getDenormalMode(
5192 II->getType()->getScalarType()->getFltSemantics())
5197 case Intrinsic::vector_reduce_fmax:
5198 case Intrinsic::vector_reduce_fmin:
5199 case Intrinsic::vector_reduce_fmaximum:
5200 case Intrinsic::vector_reduce_fminimum: {
5204 InterestedClasses, Q,
Depth + 1);
5211 case Intrinsic::vector_reverse:
5214 II->getFastMathFlags(), InterestedClasses, Q,
Depth + 1);
5216 case Intrinsic::trunc:
5217 case Intrinsic::floor:
5218 case Intrinsic::ceil:
5219 case Intrinsic::rint:
5220 case Intrinsic::nearbyint:
5221 case Intrinsic::round:
5222 case Intrinsic::roundeven: {
5230 KnownSrc, Q,
Depth + 1);
5239 if (IID == Intrinsic::trunc || !V->getType()->isMultiUnitFPType()) {
5254 case Intrinsic::exp:
5255 case Intrinsic::exp2:
5256 case Intrinsic::exp10:
5257 case Intrinsic::amdgcn_exp2: {
5260 KnownSrc, Q,
Depth + 1);
5264 Type *EltTy =
II->getType()->getScalarType();
5265 if (IID == Intrinsic::amdgcn_exp2 && EltTy->
isFloatTy())
5270 case Intrinsic::fptrunc_round: {
5275 case Intrinsic::log:
5276 case Intrinsic::log10:
5277 case Intrinsic::log2:
5278 case Intrinsic::experimental_constrained_log:
5279 case Intrinsic::experimental_constrained_log10:
5280 case Intrinsic::experimental_constrained_log2:
5281 case Intrinsic::amdgcn_log: {
5282 Type *EltTy =
II->getType()->getScalarType();
5297 KnownSrc, Q,
Depth + 1);
5305 if (IID == Intrinsic::amdgcn_log && EltTy->
isFloatTy())
5309 case Intrinsic::powi: {
5313 const Value *Exp =
II->getArgOperand(1);
5314 Type *ExpTy = Exp->getType();
5318 ExponentKnownBits, Q,
Depth + 1);
5320 if (ExponentKnownBits.
Zero[0]) {
5335 KnownSrc, Q,
Depth + 1);
5340 case Intrinsic::ldexp: {
5343 KnownSrc, Q,
Depth + 1);
5359 if ((InterestedClasses & ExpInfoMask) ==
fcNone)
5365 II->getType()->getScalarType()->getFltSemantics();
5367 const Value *ExpArg =
II->getArgOperand(1);
5371 const int MantissaBits = Precision - 1;
5378 II->getType()->getScalarType()->getFltSemantics();
5379 if (ConstVal && ConstVal->
isZero()) {
5404 case Intrinsic::arithmetic_fence: {
5406 Known, Q,
Depth + 1);
5409 case Intrinsic::experimental_constrained_sitofp:
5410 case Intrinsic::experimental_constrained_uitofp:
5420 if (IID == Intrinsic::experimental_constrained_uitofp)
5425 case Intrinsic::amdgcn_rcp: {
5428 KnownSrc, Q,
Depth + 1);
5432 Type *EltTy =
II->getType()->getScalarType();
5455 case Intrinsic::amdgcn_rsq: {
5461 KnownSrc, Q,
Depth + 1);
5473 Type *EltTy =
II->getType()->getScalarType();
5499 case Instruction::FAdd:
5500 case Instruction::FSub: {
5503 Op->getOpcode() == Instruction::FAdd &&
5505 bool WantNaN = (InterestedClasses &
fcNan) !=
fcNone;
5508 if (!WantNaN && !WantNegative && !WantNegZero)
5514 if (InterestedClasses &
fcNan)
5515 InterestedSrcs |=
fcInf;
5517 KnownRHS, Q,
Depth + 1);
5520 bool SelfAdd =
Op->getOperand(0) ==
Op->getOperand(1) &&
5524 KnownLHS = KnownRHS;
5528 WantNegZero ||
Opc == Instruction::FSub) {
5534 KnownLHS, Q,
Depth + 1);
5546 if (
Op->getOpcode() == Instruction::FAdd) {
5558 Op->getType()->getScalarType()->getFltSemantics();
5579 Op->getType()->getScalarType()->getFltSemantics();
5594 case Instruction::FMul: {
5597 F ?
F->getDenormalMode(
5598 Op->getType()->getScalarType()->getFltSemantics())
5602 if (
Op->getOperand(0) ==
Op->getOperand(1)) {
5612 bool CannotBeSubnormal =
false;
5621 Op->getType()->getScalarType()->getFltSemantics();
5623 const int MantissaBits = Precision - 1;
5625 int MinKnownExponent =
ilogb(*CRHS);
5626 if (MinKnownExponent >= MantissaBits)
5627 CannotBeSubnormal =
true;
5639 if (CannotBeSubnormal)
5643 case Instruction::FDiv:
5644 case Instruction::FRem: {
5645 if (
Op->getOperand(0) ==
Op->getOperand(1) &&
5648 if (
Op->getOpcode() == Instruction::FDiv) {
5659 const bool WantNan = (InterestedClasses &
fcNan) !=
fcNone;
5661 const bool WantPositive =
5663 if (!WantNan && !WantNegative && !WantPositive)
5672 bool KnowSomethingUseful =
5675 if (KnowSomethingUseful || WantPositive) {
5681 InterestedClasses & InterestedLHS, KnownLHS, Q,
5687 Op->getType()->getScalarType()->getFltSemantics();
5689 if (
Op->getOpcode() == Instruction::FDiv) {
5728 case Instruction::FPExt: {
5731 Known, Q,
Depth + 1);
5734 Op->getType()->getScalarType()->getFltSemantics();
5736 Op->getOperand(0)->getType()->getScalarType()->getFltSemantics();
5752 case Instruction::FPTrunc: {
5757 case Instruction::SIToFP:
5758 case Instruction::UIToFP: {
5767 if (
Op->getOpcode() == Instruction::UIToFP)
5770 if (InterestedClasses &
fcInf) {
5774 int IntSize =
Op->getOperand(0)->getType()->getScalarSizeInBits();
5775 if (
Op->getOpcode() == Instruction::SIToFP)
5780 Type *FPTy =
Op->getType()->getScalarType();
5787 case Instruction::ExtractElement: {
5790 const Value *Vec =
Op->getOperand(0);
5792 APInt DemandedVecElts;
5794 unsigned NumElts = VecTy->getNumElements();
5797 if (CIdx && CIdx->getValue().ult(NumElts))
5800 DemandedVecElts =
APInt(1, 1);
5806 case Instruction::InsertElement: {
5810 const Value *Vec =
Op->getOperand(0);
5811 const Value *Elt =
Op->getOperand(1);
5814 APInt DemandedVecElts = DemandedElts;
5815 bool NeedsElt =
true;
5817 if (CIdx && CIdx->getValue().ult(NumElts)) {
5818 DemandedVecElts.
clearBit(CIdx->getZExtValue());
5819 NeedsElt = DemandedElts[CIdx->getZExtValue()];
5833 if (!DemandedVecElts.
isZero()) {
5842 case Instruction::ShuffleVector: {
5851 APInt DemandedLHS, DemandedRHS;
5856 if (!!DemandedLHS) {
5857 const Value *
LHS = Shuf->getOperand(0);
5868 if (!!DemandedRHS) {
5870 const Value *
RHS = Shuf->getOperand(1);
5878 case Instruction::ExtractValue: {
5885 switch (
II->getIntrinsicID()) {
5886 case Intrinsic::frexp: {
5891 InterestedClasses, KnownSrc, Q,
Depth + 1);
5895 Op->getType()->getScalarType()->getFltSemantics();
5930 case Instruction::PHI: {
5933 if (
P->getNumIncomingValues() == 0)
5940 if (
Depth < PhiRecursionLimit) {
5947 for (
const Use &U :
P->operands()) {
5977 case Instruction::BitCast: {
5980 !Src->getType()->isIntOrIntVectorTy())
5983 const Type *Ty =
Op->getType()->getScalarType();
5984 KnownBits Bits(Ty->getScalarSizeInBits());
5988 if (Bits.isNonNegative())
5990 else if (Bits.isNegative())
5993 if (Ty->isIEEELikeFPTy()) {
6003 else if (!
APFloat(Ty->getFltSemantics(), ~Bits.Zero).
isNaN())
6010 InfKB.Zero.clearSignBit();
6012 assert(!InfResult.value());
6014 }
else if (Bits == InfKB) {
6022 ZeroKB.Zero.clearSignBit();
6024 assert(!ZeroResult.value());
6026 }
else if (Bits == ZeroKB) {
6039 const APInt &DemandedElts,
6046 return KnownClasses;
6072 InterestedClasses &=
~fcNan;
6074 InterestedClasses &=
~fcInf;
6080 Result.KnownFPClasses &=
~fcNan;
6082 Result.KnownFPClasses &=
~fcInf;
6091 APInt DemandedElts =
6145 if (FPOp->hasNoSignedZeros())
6149 switch (
User->getOpcode()) {
6150 case Instruction::FPToSI:
6151 case Instruction::FPToUI:
6153 case Instruction::FCmp:
6156 case Instruction::Call:
6158 switch (
II->getIntrinsicID()) {
6159 case Intrinsic::fabs:
6161 case Intrinsic::copysign:
6162 return U.getOperandNo() == 0;
6163 case Intrinsic::is_fpclass:
6164 case Intrinsic::vp_is_fpclass: {
6184 if (FPOp->hasNoNaNs())
6188 switch (
User->getOpcode()) {
6189 case Instruction::FPToSI:
6190 case Instruction::FPToUI:
6193 case Instruction::FAdd:
6194 case Instruction::FSub:
6195 case Instruction::FMul:
6196 case Instruction::FDiv:
6197 case Instruction::FRem:
6198 case Instruction::FPTrunc:
6199 case Instruction::FPExt:
6200 case Instruction::FCmp:
6203 case Instruction::FNeg:
6204 case Instruction::Select:
6205 case Instruction::PHI:
6207 case Instruction::Ret:
6208 return User->getFunction()->getAttributes().getRetNoFPClass() &
6210 case Instruction::Call:
6211 case Instruction::Invoke: {
6213 switch (
II->getIntrinsicID()) {
6214 case Intrinsic::fabs:
6216 case Intrinsic::copysign:
6217 return U.getOperandNo() == 0;
6219 case Intrinsic::maxnum:
6220 case Intrinsic::minnum:
6221 case Intrinsic::maximum:
6222 case Intrinsic::minimum:
6223 case Intrinsic::maximumnum:
6224 case Intrinsic::minimumnum:
6225 case Intrinsic::canonicalize:
6226 case Intrinsic::fma:
6227 case Intrinsic::fmuladd:
6228 case Intrinsic::sqrt:
6229 case Intrinsic::pow:
6230 case Intrinsic::powi:
6231 case Intrinsic::fptoui_sat:
6232 case Intrinsic::fptosi_sat:
6233 case Intrinsic::is_fpclass:
6234 case Intrinsic::vp_is_fpclass:
6253 if (V->getType()->isIntegerTy(8))
6264 if (
DL.getTypeStoreSize(V->getType()).isZero())
6279 if (
C->isNullValue())
6286 if (CFP->getType()->isHalfTy())
6288 else if (CFP->getType()->isFloatTy())
6290 else if (CFP->getType()->isDoubleTy())
6299 if (CI->getBitWidth() % 8 == 0) {
6300 assert(CI->getBitWidth() > 8 &&
"8 bits should be handled above!");
6301 if (!CI->getValue().isSplat(8))
6303 return ConstantInt::get(Ctx, CI->getValue().trunc(8));
6308 if (CE->getOpcode() == Instruction::IntToPtr) {
6310 unsigned BitWidth =
DL.getPointerSizeInBits(PtrTy->getAddressSpace());
6323 if (LHS == UndefInt8)
6325 if (RHS == UndefInt8)
6331 Value *Val = UndefInt8;
6332 for (
uint64_t I = 0, E = CA->getNumElements();
I != E; ++
I)
6339 Value *Val = UndefInt8;
6374 while (PrevTo != OrigTo) {
6421 unsigned IdxSkip = Idxs.
size();
6434 std::optional<BasicBlock::iterator> InsertBefore) {
6437 if (idx_range.
empty())
6440 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
6441 "Not looking at a struct or array?");
6443 "Invalid indices for type?");
6446 C =
C->getAggregateElement(idx_range[0]);
6447 if (!
C)
return nullptr;
6454 const unsigned *req_idx = idx_range.
begin();
6455 for (
const unsigned *i =
I->idx_begin(), *e =
I->idx_end();
6456 i != e; ++i, ++req_idx) {
6457 if (req_idx == idx_range.
end()) {
6487 ArrayRef(req_idx, idx_range.
end()), InsertBefore);
6496 unsigned size =
I->getNumIndices() + idx_range.
size();
6501 Idxs.
append(
I->idx_begin(),
I->idx_end());
6507 &&
"Number of indices added not correct?");
6524 assert(V &&
"V should not be null.");
6525 assert((ElementSize % 8) == 0 &&
6526 "ElementSize expected to be a multiple of the size of a byte.");
6527 unsigned ElementSizeInBytes = ElementSize / 8;
6539 APInt Off(
DL.getIndexTypeSizeInBits(V->getType()), 0);
6546 uint64_t StartIdx = Off.getLimitedValue();
6553 if ((StartIdx % ElementSizeInBytes) != 0)
6556 Offset += StartIdx / ElementSizeInBytes;
6562 uint64_t SizeInBytes =
DL.getTypeStoreSize(GVTy).getFixedValue();
6565 Slice.Array =
nullptr;
6577 Type *InitElTy = ArrayInit->getElementType();
6582 ArrayTy = ArrayInit->getType();
6587 if (ElementSize != 8)
6606 Slice.Array = Array;
6608 Slice.Length = NumElts -
Offset;
6622 if (Slice.Array ==
nullptr) {
6633 if (Slice.Length == 1) {
6645 Str = Str.
substr(Slice.Offset);
6651 Str = Str.substr(0, Str.find(
'\0'));
6664 unsigned CharSize) {
6666 V = V->stripPointerCasts();
6671 if (!PHIs.
insert(PN).second)
6676 for (
Value *IncValue : PN->incoming_values()) {
6678 if (Len == 0)
return 0;
6680 if (Len == ~0ULL)
continue;
6682 if (Len != LenSoFar && LenSoFar != ~0ULL)
6694 if (Len1 == 0)
return 0;
6696 if (Len2 == 0)
return 0;
6697 if (Len1 == ~0ULL)
return Len2;
6698 if (Len2 == ~0ULL)
return Len1;
6699 if (Len1 != Len2)
return 0;
6708 if (Slice.Array ==
nullptr)
6716 unsigned NullIndex = 0;
6717 for (
unsigned E = Slice.Length; NullIndex <
E; ++NullIndex) {
6718 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
6722 return NullIndex + 1;
6728 if (!V->getType()->isPointerTy())
6735 return Len == ~0ULL ? 1 : Len;
6740 bool MustPreserveNullness) {
6742 "getArgumentAliasingToReturnedPointer only works on nonnull calls");
6743 if (
const Value *RV =
Call->getReturnedArgOperand())
6747 Call, MustPreserveNullness))
6748 return Call->getArgOperand(0);
6754 switch (
Call->getIntrinsicID()) {
6755 case Intrinsic::launder_invariant_group:
6756 case Intrinsic::strip_invariant_group:
6757 case Intrinsic::aarch64_irg:
6758 case Intrinsic::aarch64_tagp:
6768 case Intrinsic::amdgcn_make_buffer_rsrc:
6770 case Intrinsic::ptrmask:
6771 return !MustPreserveNullness;
6772 case Intrinsic::threadlocal_address:
6775 return !
Call->getParent()->getParent()->isPresplitCoroutine();
6792 if (!PrevValue || LI->
getLoopFor(PrevValue->getParent()) != L)
6794 if (!PrevValue || LI->
getLoopFor(PrevValue->getParent()) != L)
6803 if (!L->isLoopInvariant(Load->getPointerOperand()))
6809 for (
unsigned Count = 0; MaxLookup == 0 ||
Count < MaxLookup; ++
Count) {
6811 const Value *PtrOp =
GEP->getPointerOperand();
6822 if (GA->isInterposable())
6824 V = GA->getAliasee();
6828 if (
PHI->getNumIncomingValues() == 1) {
6829 V =
PHI->getIncomingValue(0);
6850 assert(V->getType()->isPointerTy() &&
"Unexpected operand type!");
6857 const LoopInfo *LI,
unsigned MaxLookup) {
6865 if (!Visited.
insert(
P).second)
6894 }
while (!Worklist.
empty());
6898 const unsigned MaxVisited = 8;
6903 const Value *Object =
nullptr;
6913 if (!Visited.
insert(
P).second)
6916 if (Visited.
size() == MaxVisited)
6932 else if (Object !=
P)
6934 }
while (!Worklist.
empty());
6936 return Object ? Object : FirstObject;
6946 if (U->getOpcode() == Instruction::PtrToInt)
6947 return U->getOperand(0);
6954 if (U->getOpcode() != Instruction::Add ||
6959 V = U->getOperand(0);
6963 assert(V->getType()->isIntegerTy() &&
"Unexpected operand type!");
6980 for (
const Value *V : Objs) {
6981 if (!Visited.
insert(V).second)
6986 if (O->getType()->isPointerTy()) {
6999 }
while (!Working.
empty());
7008 auto AddWork = [&](
Value *V) {
7009 if (Visited.
insert(V).second)
7019 if (Result && Result != AI)
7023 AddWork(CI->getOperand(0));
7025 for (
Value *IncValue : PN->incoming_values())
7028 AddWork(
SI->getTrueValue());
7029 AddWork(
SI->getFalseValue());
7031 if (OffsetZero && !
GEP->hasAllZeroIndices())
7033 AddWork(
GEP->getPointerOperand());
7035 Value *Returned = CB->getReturnedArgOperand();
7043 }
while (!Worklist.
empty());
7049 const Value *V,
bool AllowLifetime,
bool AllowDroppable) {
7055 if (AllowLifetime &&
II->isLifetimeStartOrEnd())
7058 if (AllowDroppable &&
II->isDroppable())
7079 return (!Shuffle || Shuffle->isSelect()) &&
7086 bool IgnoreUBImplyingAttrs) {
7088 AC, DT, TLI, UseVariableInfo,
7089 IgnoreUBImplyingAttrs);
7095 bool UseVariableInfo,
bool IgnoreUBImplyingAttrs) {
7099 auto hasEqualReturnAndLeadingOperandTypes =
7100 [](
const Instruction *Inst,
unsigned NumLeadingOperands) {
7104 for (
unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp)
7110 hasEqualReturnAndLeadingOperandTypes(Inst, 2));
7112 hasEqualReturnAndLeadingOperandTypes(Inst, 1));
7119 case Instruction::UDiv:
7120 case Instruction::URem: {
7127 case Instruction::SDiv:
7128 case Instruction::SRem: {
7130 const APInt *Numerator, *Denominator;
7134 if (*Denominator == 0)
7146 case Instruction::Load: {
7147 if (!UseVariableInfo)
7160 case Instruction::Call: {
7164 const Function *Callee = CI->getCalledFunction();
7168 if (!Callee || !Callee->isSpeculatable())
7172 return IgnoreUBImplyingAttrs || !CI->hasUBImplyingAttrs();
7174 case Instruction::VAArg:
7175 case Instruction::Alloca:
7176 case Instruction::Invoke:
7177 case Instruction::CallBr:
7178 case Instruction::PHI:
7179 case Instruction::Store:
7180 case Instruction::Ret:
7181 case Instruction::Br:
7182 case Instruction::IndirectBr:
7183 case Instruction::Switch:
7184 case Instruction::Unreachable:
7185 case Instruction::Fence:
7186 case Instruction::AtomicRMW:
7187 case Instruction::AtomicCmpXchg:
7188 case Instruction::LandingPad:
7189 case Instruction::Resume:
7190 case Instruction::CatchSwitch:
7191 case Instruction::CatchPad:
7192 case Instruction::CatchRet:
7193 case Instruction::CleanupPad:
7194 case Instruction::CleanupRet:
7200 if (
I.mayReadOrWriteMemory())
7268 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
7313 if (
Add &&
Add->hasNoSignedWrap()) {
7352 bool LHSOrRHSKnownNonNegative =
7354 bool LHSOrRHSKnownNegative =
7356 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
7359 if ((AddKnown.
isNonNegative() && LHSOrRHSKnownNonNegative) ||
7360 (AddKnown.
isNegative() && LHSOrRHSKnownNegative))
7435 assert(EVI->getNumIndices() == 1 &&
"Obvious from CI's type");
7437 if (EVI->getIndices()[0] == 0)
7440 assert(EVI->getIndices()[0] == 1 &&
"Obvious from CI's type");
7442 for (
const auto *U : EVI->users())
7444 assert(
B->isConditional() &&
"How else is it using an i1?");
7455 auto AllUsesGuardedByBranch = [&](
const BranchInst *BI) {
7461 for (
const auto *Result :
Results) {
7464 if (DT.
dominates(NoWrapEdge, Result->getParent()))
7467 for (
const auto &RU : Result->uses())
7475 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
7487 unsigned NumElts = FVTy->getNumElements();
7488 for (
unsigned i = 0; i < NumElts; ++i)
7489 ShiftAmounts.
push_back(
C->getAggregateElement(i));
7497 return CI && CI->getValue().ult(
C->getType()->getIntegerBitWidth());
7518 bool ConsiderFlagsAndMetadata) {
7521 Op->hasPoisonGeneratingAnnotations())
7524 unsigned Opcode =
Op->getOpcode();
7528 case Instruction::Shl:
7529 case Instruction::AShr:
7530 case Instruction::LShr:
7532 case Instruction::FPToSI:
7533 case Instruction::FPToUI:
7537 case Instruction::Call:
7539 switch (
II->getIntrinsicID()) {
7541 case Intrinsic::ctlz:
7542 case Intrinsic::cttz:
7543 case Intrinsic::abs:
7547 case Intrinsic::sshl_sat:
7548 case Intrinsic::ushl_sat:
7556 case Instruction::CallBr:
7557 case Instruction::Invoke: {
7559 return !CB->hasRetAttr(Attribute::NoUndef) &&
7560 !CB->hasFnAttr(Attribute::NoCreateUndefOrPoison);
7562 case Instruction::InsertElement:
7563 case Instruction::ExtractElement: {
7566 unsigned IdxOp =
Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
7570 Idx->getValue().uge(VTy->getElementCount().getKnownMinValue());
7573 case Instruction::ShuffleVector: {
7579 case Instruction::FNeg:
7580 case Instruction::PHI:
7581 case Instruction::Select:
7582 case Instruction::ExtractValue:
7583 case Instruction::InsertValue:
7584 case Instruction::Freeze:
7585 case Instruction::ICmp:
7586 case Instruction::FCmp:
7587 case Instruction::GetElementPtr:
7589 case Instruction::AddrSpaceCast:
7604 bool ConsiderFlagsAndMetadata) {
7606 ConsiderFlagsAndMetadata);
7611 ConsiderFlagsAndMetadata);
7616 if (ValAssumedPoison == V)
7619 const unsigned MaxDepth = 2;
7620 if (
Depth >= MaxDepth)
7625 return propagatesPoison(Op) &&
7626 directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
7650 const unsigned MaxDepth = 2;
7651 if (
Depth >= MaxDepth)
7657 return impliesPoison(Op, V, Depth + 1);
7664 return ::impliesPoison(ValAssumedPoison, V, 0);
7679 if (
A->hasAttribute(Attribute::NoUndef) ||
7680 A->hasAttribute(Attribute::Dereferenceable) ||
7681 A->hasAttribute(Attribute::DereferenceableOrNull))
7696 if (
C->getType()->isVectorTy()) {
7699 if (
Constant *SplatC =
C->getSplatValue())
7707 return !
C->containsConstantExpression();
7720 auto *StrippedV = V->stripPointerCastsSameRepresentation();
7725 auto OpCheck = [&](
const Value *V) {
7736 if (CB->hasRetAttr(Attribute::NoUndef) ||
7737 CB->hasRetAttr(Attribute::Dereferenceable) ||
7738 CB->hasRetAttr(Attribute::DereferenceableOrNull))
7745 unsigned Num = PN->getNumIncomingValues();
7746 bool IsWellDefined =
true;
7747 for (
unsigned i = 0; i < Num; ++i) {
7748 if (PN == PN->getIncomingValue(i))
7750 auto *TI = PN->getIncomingBlock(i)->getTerminator();
7752 DT,
Depth + 1, Kind)) {
7753 IsWellDefined =
false;
7764 }
else if (
all_of(Opr->operands(), OpCheck))
7770 if (
I->hasMetadata(LLVMContext::MD_noundef) ||
7771 I->hasMetadata(LLVMContext::MD_dereferenceable) ||
7772 I->hasMetadata(LLVMContext::MD_dereferenceable_or_null))
7792 auto *Dominator = DNode->
getIDom();
7797 auto *TI = Dominator->getBlock()->getTerminator();
7801 if (BI->isConditional())
7802 Cond = BI->getCondition();
7804 Cond =
SI->getCondition();
7813 if (
any_of(Opr->operands(), [V](
const Use &U) {
7814 return V == U && propagatesPoison(U);
7820 Dominator = Dominator->getIDom();
7833 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT,
Depth,
7840 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT,
Depth,
7847 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT,
Depth,
7871 while (!Worklist.
empty()) {
7880 if (
I != Root && !
any_of(
I->operands(), [&KnownPoison](
const Use &U) {
7881 return KnownPoison.contains(U) && propagatesPoison(U);
7885 if (KnownPoison.
insert(
I).second)
7897 return ::computeOverflowForSignedAdd(
Add->getOperand(0),
Add->getOperand(1),
7905 return ::computeOverflowForSignedAdd(LHS, RHS,
nullptr, SQ);
7937 return !
I->mayThrow() &&
I->willReturn();
7951 unsigned ScanLimit) {
7958 assert(ScanLimit &&
"scan limit must be non-zero");
7960 if (--ScanLimit == 0)
7974 if (
I->getParent() != L->getHeader())
return false;
7977 if (&LI ==
I)
return true;
7980 llvm_unreachable(
"Instruction not contained in its own parent basic block.");
7986 case Intrinsic::sadd_with_overflow:
7987 case Intrinsic::ssub_with_overflow:
7988 case Intrinsic::smul_with_overflow:
7989 case Intrinsic::uadd_with_overflow:
7990 case Intrinsic::usub_with_overflow:
7991 case Intrinsic::umul_with_overflow:
7996 case Intrinsic::ctpop:
7997 case Intrinsic::ctlz:
7998 case Intrinsic::cttz:
7999 case Intrinsic::abs:
8000 case Intrinsic::smax:
8001 case Intrinsic::smin:
8002 case Intrinsic::umax:
8003 case Intrinsic::umin:
8004 case Intrinsic::scmp:
8005 case Intrinsic::is_fpclass:
8006 case Intrinsic::ptrmask:
8007 case Intrinsic::ucmp:
8008 case Intrinsic::bitreverse:
8009 case Intrinsic::bswap:
8010 case Intrinsic::sadd_sat:
8011 case Intrinsic::ssub_sat:
8012 case Intrinsic::sshl_sat:
8013 case Intrinsic::uadd_sat:
8014 case Intrinsic::usub_sat:
8015 case Intrinsic::ushl_sat:
8016 case Intrinsic::smul_fix:
8017 case Intrinsic::smul_fix_sat:
8018 case Intrinsic::umul_fix:
8019 case Intrinsic::umul_fix_sat:
8020 case Intrinsic::pow:
8021 case Intrinsic::powi:
8022 case Intrinsic::sin:
8023 case Intrinsic::sinh:
8024 case Intrinsic::cos:
8025 case Intrinsic::cosh:
8026 case Intrinsic::sincos:
8027 case Intrinsic::sincospi:
8028 case Intrinsic::tan:
8029 case Intrinsic::tanh:
8030 case Intrinsic::asin:
8031 case Intrinsic::acos:
8032 case Intrinsic::atan:
8033 case Intrinsic::atan2:
8034 case Intrinsic::canonicalize:
8035 case Intrinsic::sqrt:
8036 case Intrinsic::exp:
8037 case Intrinsic::exp2:
8038 case Intrinsic::exp10:
8039 case Intrinsic::log:
8040 case Intrinsic::log2:
8041 case Intrinsic::log10:
8042 case Intrinsic::modf:
8043 case Intrinsic::floor:
8044 case Intrinsic::ceil:
8045 case Intrinsic::trunc:
8046 case Intrinsic::rint:
8047 case Intrinsic::nearbyint:
8048 case Intrinsic::round:
8049 case Intrinsic::roundeven:
8050 case Intrinsic::lrint:
8051 case Intrinsic::llrint:
8052 case Intrinsic::fshl:
8053 case Intrinsic::fshr:
8062 switch (
I->getOpcode()) {
8063 case Instruction::Freeze:
8064 case Instruction::PHI:
8065 case Instruction::Invoke:
8067 case Instruction::Select:
8069 case Instruction::Call:
8073 case Instruction::ICmp:
8074 case Instruction::FCmp:
8075 case Instruction::GetElementPtr:
8089template <
typename CallableT>
8091 const CallableT &Handle) {
8092 switch (
I->getOpcode()) {
8093 case Instruction::Store:
8098 case Instruction::Load:
8105 case Instruction::AtomicCmpXchg:
8110 case Instruction::AtomicRMW:
8115 case Instruction::Call:
8116 case Instruction::Invoke: {
8120 for (
unsigned i = 0; i < CB->
arg_size(); ++i)
8123 CB->
paramHasAttr(i, Attribute::DereferenceableOrNull)) &&
8128 case Instruction::Ret:
8129 if (
I->getFunction()->hasRetAttribute(Attribute::NoUndef) &&
8130 Handle(
I->getOperand(0)))
8133 case Instruction::Switch:
8137 case Instruction::Br: {
8139 if (BR->isConditional() && Handle(BR->getCondition()))
8151template <
typename CallableT>
8153 const CallableT &Handle) {
8156 switch (
I->getOpcode()) {
8158 case Instruction::UDiv:
8159 case Instruction::SDiv:
8160 case Instruction::URem:
8161 case Instruction::SRem:
8162 return Handle(
I->getOperand(1));
8171 I, [&](
const Value *V) {
return KnownPoison.
count(V); });
8190 if (Arg->getParent()->isDeclaration())
8193 Begin = BB->
begin();
8200 unsigned ScanLimit = 32;
8209 if (--ScanLimit == 0)
8213 return WellDefinedOp == V;
8233 if (--ScanLimit == 0)
8241 for (
const Use &
Op :
I.operands()) {
8251 if (
I.getOpcode() == Instruction::Select &&
8252 YieldsPoison.
count(
I.getOperand(1)) &&
8253 YieldsPoison.
count(
I.getOperand(2))) {
8259 if (!BB || !Visited.
insert(BB).second)
8269 return ::programUndefinedIfUndefOrPoison(Inst,
false);
8273 return ::programUndefinedIfUndefOrPoison(Inst,
true);
8284 if (!
C->getElementType()->isFloatingPointTy())
8286 for (
unsigned I = 0,
E =
C->getNumElements();
I <
E; ++
I) {
8287 if (
C->getElementAsAPFloat(
I).isNaN())
8301 return !
C->isZero();
8304 if (!
C->getElementType()->isFloatingPointTy())
8306 for (
unsigned I = 0,
E =
C->getNumElements();
I <
E; ++
I) {
8307 if (
C->getElementAsAPFloat(
I).isZero())
8330 if (CmpRHS == FalseVal) {
8374 if (CmpRHS != TrueVal) {
8413 Value *
A =
nullptr, *
B =
nullptr;
8418 Value *
C =
nullptr, *
D =
nullptr;
8420 if (L.Flavor != R.Flavor)
8472 return {L.Flavor,
SPNB_NA,
false};
8479 return {L.Flavor,
SPNB_NA,
false};
8486 return {L.Flavor,
SPNB_NA,
false};
8493 return {L.Flavor,
SPNB_NA,
false};
8509 return ConstantInt::get(V->getType(), ~(*
C));
8566 if ((CmpLHS == TrueVal &&
match(FalseVal,
m_APInt(C2))) ||
8586 assert(
X &&
Y &&
"Invalid operand");
8588 auto IsNegationOf = [&](
const Value *
X,
const Value *
Y) {
8593 if (NeedNSW && !BO->hasNoSignedWrap())
8597 if (!AllowPoison && !Zero->isNullValue())
8604 if (IsNegationOf(
X,
Y) || IsNegationOf(
Y,
X))
8631 const APInt *RHSC1, *RHSC2;
8642 return CR1.inverse() == CR2;
8676std::optional<std::pair<CmpPredicate, Constant *>>
8679 "Only for relational integer predicates.");
8681 return std::nullopt;
8687 bool WillIncrement =
8692 auto ConstantIsOk = [WillIncrement, IsSigned](
ConstantInt *
C) {
8693 return WillIncrement ? !
C->isMaxValue(IsSigned) : !
C->isMinValue(IsSigned);
8696 Constant *SafeReplacementConstant =
nullptr;
8699 if (!ConstantIsOk(CI))
8700 return std::nullopt;
8702 unsigned NumElts = FVTy->getNumElements();
8703 for (
unsigned i = 0; i != NumElts; ++i) {
8704 Constant *Elt =
C->getAggregateElement(i);
8706 return std::nullopt;
8714 if (!CI || !ConstantIsOk(CI))
8715 return std::nullopt;
8717 if (!SafeReplacementConstant)
8718 SafeReplacementConstant = CI;
8722 Value *SplatC =
C->getSplatValue();
8725 if (!CI || !ConstantIsOk(CI))
8726 return std::nullopt;
8729 return std::nullopt;
8736 if (
C->containsUndefOrPoisonElement()) {
8737 assert(SafeReplacementConstant &&
"Replacement constant not set");
8744 Constant *OneOrNegOne = ConstantInt::get(
Type, WillIncrement ? 1 : -1,
true);
8747 return std::make_pair(NewPred, NewC);
8756 bool HasMismatchedZeros =
false;
8762 Value *OutputZeroVal =
nullptr;
8765 OutputZeroVal = TrueVal;
8768 OutputZeroVal = FalseVal;
8770 if (OutputZeroVal) {
8772 HasMismatchedZeros =
true;
8773 CmpLHS = OutputZeroVal;
8776 HasMismatchedZeros =
true;
8777 CmpRHS = OutputZeroVal;
8794 if (!HasMismatchedZeros)
8805 bool Ordered =
false;
8816 if (LHSSafe && RHSSafe) {
8847 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
8858 if (TrueVal == CmpLHS && FalseVal == CmpRHS)
8864 auto MaybeSExtCmpLHS =
8868 if (
match(TrueVal, MaybeSExtCmpLHS)) {
8890 else if (
match(FalseVal, MaybeSExtCmpLHS)) {
8930 case Instruction::ZExt:
8934 case Instruction::SExt:
8938 case Instruction::Trunc:
8941 CmpConst->
getType() == SrcTy) {
8963 CastedTo = CmpConst;
8965 unsigned ExtOp = CmpI->
isSigned() ? Instruction::SExt : Instruction::ZExt;
8969 case Instruction::FPTrunc:
8972 case Instruction::FPExt:
8975 case Instruction::FPToUI:
8978 case Instruction::FPToSI:
8981 case Instruction::UIToFP:
8984 case Instruction::SIToFP:
8997 if (CastedBack && CastedBack !=
C)
9025 *CastOp = Cast1->getOpcode();
9026 Type *SrcTy = Cast1->getSrcTy();
9029 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
9030 return Cast2->getOperand(0);
9038 Value *CastedTo =
nullptr;
9039 if (*CastOp == Instruction::Trunc) {
9053 "V2 and Cast1 should be the same type.");
9072 Value *TrueVal =
SI->getTrueValue();
9073 Value *FalseVal =
SI->getFalseValue();
9076 CmpI, TrueVal, FalseVal, LHS, RHS,
9095 if (CastOp && CmpLHS->
getType() != TrueVal->getType()) {
9099 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
9101 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
9108 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
9110 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
9115 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
9134 return Intrinsic::umin;
9136 return Intrinsic::umax;
9138 return Intrinsic::smin;
9140 return Intrinsic::smax;
9156 case Intrinsic::smax:
return Intrinsic::smin;
9157 case Intrinsic::smin:
return Intrinsic::smax;
9158 case Intrinsic::umax:
return Intrinsic::umin;
9159 case Intrinsic::umin:
return Intrinsic::umax;
9162 case Intrinsic::maximum:
return Intrinsic::minimum;
9163 case Intrinsic::minimum:
return Intrinsic::maximum;
9164 case Intrinsic::maxnum:
return Intrinsic::minnum;
9165 case Intrinsic::minnum:
return Intrinsic::maxnum;
9166 case Intrinsic::maximumnum:
9167 return Intrinsic::minimumnum;
9168 case Intrinsic::minimumnum:
9169 return Intrinsic::maximumnum;
9184std::pair<Intrinsic::ID, bool>
9189 bool AllCmpSingleUse =
true;
9192 if (
all_of(VL, [&SelectPattern, &AllCmpSingleUse](
Value *
I) {
9198 SelectPattern.
Flavor != CurrentPattern.Flavor)
9200 SelectPattern = CurrentPattern;
9205 switch (SelectPattern.
Flavor) {
9207 return {Intrinsic::smin, AllCmpSingleUse};
9209 return {Intrinsic::umin, AllCmpSingleUse};
9211 return {Intrinsic::smax, AllCmpSingleUse};
9213 return {Intrinsic::umax, AllCmpSingleUse};
9215 return {Intrinsic::maxnum, AllCmpSingleUse};
9217 return {Intrinsic::minnum, AllCmpSingleUse};
9225template <
typename InstTy>
9235 for (
unsigned I = 0;
I != 2; ++
I) {
9240 if (
LHS != PN &&
RHS != PN)
9276 if (
I->arg_size() != 2 ||
I->getType() !=
I->getArgOperand(0)->getType() ||
9277 I->getType() !=
I->getArgOperand(1)->getType())
9305 return !
C->isNegative();
9317 const APInt *CLHS, *CRHS;
9320 return CLHS->
sle(*CRHS);
9358 const APInt *CLHS, *CRHS;
9361 return CLHS->
ule(*CRHS);
9370static std::optional<bool>
9375 return std::nullopt;
9382 return std::nullopt;
9389 return std::nullopt;
9396 return std::nullopt;
9403 return std::nullopt;
9410static std::optional<bool>
9416 if (CR.
icmp(Pred, RCR))
9423 return std::nullopt;
9436 return std::nullopt;
9442static std::optional<bool>
9473 const APInt *Unused;
9492 return std::nullopt;
9496 if (L0 == R0 && L1 == R1)
9529 ((
A == R0 &&
B == R1) || (
A == R1 &&
B == R0) ||
9547 return std::nullopt;
9553static std::optional<bool>
9583 if (L0 == R0 && L1 == R1) {
9584 if ((LPred & RPred) == LPred)
9586 if ((LPred & ~RPred) == LPred)
9594 if (std::optional<ConstantFPRange> DomCR =
9596 if (std::optional<ConstantFPRange> ImpliedCR =
9598 if (ImpliedCR->contains(*DomCR))
9601 if (std::optional<ConstantFPRange> ImpliedCR =
9604 if (ImpliedCR->contains(*DomCR))
9610 return std::nullopt;
9617static std::optional<bool>
9622 assert((
LHS->getOpcode() == Instruction::And ||
9623 LHS->getOpcode() == Instruction::Or ||
9624 LHS->getOpcode() == Instruction::Select) &&
9625 "Expected LHS to be 'and', 'or', or 'select'.");
9632 const Value *ALHS, *ARHS;
9637 ALHS, RHSPred, RHSOp0, RHSOp1,
DL, LHSIsTrue,
Depth + 1))
9640 ARHS, RHSPred, RHSOp0, RHSOp1,
DL, LHSIsTrue,
Depth + 1))
9642 return std::nullopt;
9644 return std::nullopt;
9653 return std::nullopt;
9658 return std::nullopt;
9660 assert(LHS->getType()->isIntOrIntVectorTy(1) &&
9661 "Expected integer type only!");
9665 LHSIsTrue = !LHSIsTrue;
9671 LHSCmp->getOperand(0), LHSCmp->getOperand(1),
9672 RHSPred, RHSOp0, RHSOp1,
DL, LHSIsTrue);
9676 ConstantInt::get(V->getType(), 0), RHSPred,
9677 RHSOp0, RHSOp1,
DL, LHSIsTrue);
9680 "Expected floating point type only!");
9683 LHSCmp->getOperand(1), RHSPred, RHSOp0, RHSOp1,
9691 if ((LHSI->getOpcode() == Instruction::And ||
9692 LHSI->getOpcode() == Instruction::Or ||
9693 LHSI->getOpcode() == Instruction::Select))
9697 return std::nullopt;
9702 bool LHSIsTrue,
unsigned Depth) {
9708 bool InvertRHS =
false;
9717 LHS, RHSCmp->getCmpPredicate(), RHSCmp->getOperand(0),
9718 RHSCmp->getOperand(1),
DL, LHSIsTrue,
Depth))
9719 return InvertRHS ? !*Implied : *Implied;
9720 return std::nullopt;
9724 LHS, RHSCmp->getPredicate(), RHSCmp->getOperand(0),
9725 RHSCmp->getOperand(1),
DL, LHSIsTrue,
Depth))
9726 return InvertRHS ? !*Implied : *Implied;
9727 return std::nullopt;
9733 ConstantInt::get(V->getType(), 0),
DL,
9735 return InvertRHS ? !*Implied : *Implied;
9736 return std::nullopt;
9740 return std::nullopt;
9744 const Value *RHS1, *RHS2;
9746 if (std::optional<bool> Imp =
9750 if (std::optional<bool> Imp =
9756 if (std::optional<bool> Imp =
9760 if (std::optional<bool> Imp =
9766 return std::nullopt;
9771static std::pair<Value *, bool>
9773 if (!ContextI || !ContextI->
getParent())
9774 return {
nullptr,
false};
9781 return {
nullptr,
false};
9787 return {
nullptr,
false};
9790 if (TrueBB == FalseBB)
9791 return {
nullptr,
false};
9793 assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
9794 "Predecessor block does not point to successor?");
9797 return {PredCond, TrueBB == ContextBB};
9803 assert(
Cond->getType()->isIntOrIntVectorTy(1) &&
"Condition must be bool");
9807 return std::nullopt;
9819 return std::nullopt;
9824 bool PreferSignedRange) {
9825 unsigned Width =
Lower.getBitWidth();
9828 case Instruction::Sub:
9838 if (PreferSignedRange && HasNSW && HasNUW)
9844 }
else if (HasNSW) {
9845 if (
C->isNegative()) {
9858 case Instruction::Add:
9867 if (PreferSignedRange && HasNSW && HasNUW)
9873 }
else if (HasNSW) {
9874 if (
C->isNegative()) {
9887 case Instruction::And:
9898 case Instruction::Or:
9904 case Instruction::AShr:
9910 unsigned ShiftAmount = Width - 1;
9911 if (!
C->isZero() && IIQ.
isExact(&BO))
9912 ShiftAmount =
C->countr_zero();
9913 if (
C->isNegative()) {
9916 Upper =
C->ashr(ShiftAmount) + 1;
9919 Lower =
C->ashr(ShiftAmount);
9925 case Instruction::LShr:
9931 unsigned ShiftAmount = Width - 1;
9932 if (!
C->isZero() && IIQ.
isExact(&BO))
9933 ShiftAmount =
C->countr_zero();
9934 Lower =
C->lshr(ShiftAmount);
9939 case Instruction::Shl:
9946 if (
C->isNegative()) {
9948 unsigned ShiftAmount =
C->countl_one() - 1;
9949 Lower =
C->shl(ShiftAmount);
9953 unsigned ShiftAmount =
C->countl_zero() - 1;
9955 Upper =
C->shl(ShiftAmount) + 1;
9974 case Instruction::SDiv:
9978 if (
C->isAllOnes()) {
9983 }
else if (
C->countl_zero() < Width - 1) {
9994 if (
C->isMinSignedValue()) {
10006 case Instruction::UDiv:
10016 case Instruction::SRem:
10022 if (
C->isNegative()) {
10033 case Instruction::URem:
10048 bool UseInstrInfo) {
10049 unsigned Width =
II.getType()->getScalarSizeInBits();
10051 switch (
II.getIntrinsicID()) {
10052 case Intrinsic::ctlz:
10053 case Intrinsic::cttz: {
10055 if (!UseInstrInfo || !
match(
II.getArgOperand(1),
m_One()))
10060 case Intrinsic::ctpop:
10063 APInt(Width, Width) + 1);
10064 case Intrinsic::uadd_sat:
10070 case Intrinsic::sadd_sat:
10073 if (
C->isNegative())
10084 case Intrinsic::usub_sat:
10094 case Intrinsic::ssub_sat:
10096 if (
C->isNegative())
10106 if (
C->isNegative())
10117 case Intrinsic::umin:
10118 case Intrinsic::umax:
10119 case Intrinsic::smin:
10120 case Intrinsic::smax:
10125 switch (
II.getIntrinsicID()) {
10126 case Intrinsic::umin:
10128 case Intrinsic::umax:
10130 case Intrinsic::smin:
10133 case Intrinsic::smax:
10140 case Intrinsic::abs:
10149 case Intrinsic::vscale:
10150 if (!
II.getParent() || !
II.getFunction())
10157 return ConstantRange::getFull(Width);
10162 unsigned BitWidth =
SI.getType()->getScalarSizeInBits();
10166 return ConstantRange::getFull(
BitWidth);
10189 return ConstantRange::getFull(
BitWidth);
10191 switch (R.Flavor) {
10203 return ConstantRange::getFull(
BitWidth);
10210 unsigned BitWidth =
I->getType()->getScalarSizeInBits();
10211 if (!
I->getOperand(0)->getType()->getScalarType()->isHalfTy())
10229 assert(V->getType()->isIntOrIntVectorTy() &&
"Expected integer instruction");
10232 return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
10235 return C->toConstantRange();
10237 unsigned BitWidth = V->getType()->getScalarSizeInBits();
10250 SI->getTrueValue(), ForSigned, UseInstrInfo, AC, CtxI, DT,
Depth + 1);
10252 SI->getFalseValue(), ForSigned, UseInstrInfo, AC, CtxI, DT,
Depth + 1);
10262 if (std::optional<ConstantRange>
Range =
A->getRange())
10270 if (std::optional<ConstantRange>
Range = CB->getRange())
10281 "Got assumption for the wrong function!");
10282 assert(
I->getIntrinsicID() == Intrinsic::assume &&
10283 "must be an assume intrinsic");
10287 Value *Arg =
I->getArgOperand(0);
10290 if (!Cmp || Cmp->getOperand(0) != V)
10295 UseInstrInfo, AC,
I, DT,
Depth + 1);
10318 InsertAffected(
Op);
10325 auto AddAffected = [&InsertAffected](
Value *V) {
10329 auto AddCmpOperands = [&AddAffected, IsAssume](
Value *LHS,
Value *RHS) {
10340 while (!Worklist.
empty()) {
10342 if (!Visited.
insert(V).second)
10388 AddCmpOperands(
A,
B);
10425 AddCmpOperands(
A,
B);
10453 if (BO->getOpcode() == Instruction::Add ||
10454 BO->getOpcode() == Instruction::Or) {
10456 const APInt *C1, *C2;
10475 unsigned MaxCount,
bool AllowUndefOrPoison) {
10478 auto Push = [&](
const Value *V) ->
bool {
10484 if (Constants.contains(
C))
10486 if (Constants.size() == MaxCount)
10488 Constants.insert(
C);
10493 if (Visited.
insert(Inst).second)
10501 while (!Worklist.
empty()) {
10504 case Instruction::Select:
10510 case Instruction::PHI:
10513 if (IncomingValue == CurInst)
10515 if (!Push(IncomingValue))
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Utilities for dealing with flags related to floating point properties and mode controls.
static Value * getCondition(Instruction *I)
Module.h This file contains the declarations for the Module class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
std::pair< BasicBlock *, BasicBlock * > Edge
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static SmallVector< VPValue *, 4 > getOperands(ArrayRef< VPValue * > Values, unsigned OperandIndex)
static void computeKnownFPClassFromCond(const Value *V, Value *Cond, bool CondIsTrue, const Instruction *CxtI, KnownFPClass &KnownFromContext, unsigned Depth=0)
static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero, SimplifyQuery &Q, unsigned Depth)
Try to detect a recurrence that the value of the induction variable is always a power of two (or zero...
static cl::opt< unsigned > DomConditionsMaxUses("dom-conditions-max-uses", cl::Hidden, cl::init(20))
static unsigned computeNumSignBitsVectorConstant(const Value *V, const APInt &DemandedElts, unsigned TyBits)
For vector constants, loop over the elements and find the constant with the minimum number of sign bi...
static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, const Value *RHS)
Return true if "icmp Pred LHS RHS" is always true.
static bool isModifyingBinopOfNonZero(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V1 == (binop V2, X), where X is known non-zero.
static bool isGEPKnownNonNull(const GEPOperator *GEP, const SimplifyQuery &Q, unsigned Depth)
Test whether a GEP's result is known to be non-null.
static bool isNonEqualShl(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and the shift is nuw or nsw.
static bool isKnownNonNullFromDominatingCondition(const Value *V, const Instruction *CtxI, const DominatorTree *DT)
static const Value * getUnderlyingObjectFromInt(const Value *V)
This is the function that does the work of looking through basic ptrtoint+arithmetic+inttoptr sequenc...
static bool isNonZeroMul(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, bool NSW, bool NUW, unsigned Depth)
static bool rangeMetadataExcludesValue(const MDNode *Ranges, const APInt &Value)
Does the 'Range' metadata (which must be a valid MD_range operand list) ensure that the value it's at...
static KnownBits getKnownBitsFromAndXorOr(const Operator *I, const APInt &DemandedElts, const KnownBits &KnownLHS, const KnownBits &KnownRHS, const SimplifyQuery &Q, unsigned Depth)
static void breakSelfRecursivePHI(const Use *U, const PHINode *PHI, Value *&ValOut, Instruction *&CtxIOut, const PHINode **PhiOut=nullptr)
static bool isNonZeroSub(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, unsigned Depth)
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static void addValueAffectedByCondition(Value *V, function_ref< void(Value *)> InsertAffected)
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
static bool haveNoCommonBitsSetSpecialCases(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, APInt &Upper, const InstrInfoQuery &IIQ, bool PreferSignedRange)
static Value * lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, Instruction::CastOps *CastOp)
Helps to match a select pattern in case of a type mismatch.
static std::pair< Value *, bool > getDomPredecessorCondition(const Instruction *ContextI)
static constexpr unsigned MaxInstrsToCheckForFree
Maximum number of instructions to check between assume and context instruction.
static bool isNonZeroShift(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, const KnownBits &KnownVal, unsigned Depth)
static std::optional< bool > isImpliedCondFCmps(FCmpInst::Predicate LPred, const Value *L0, const Value *L1, FCmpInst::Predicate RPred, const Value *R0, const Value *R1, const DataLayout &DL, bool LHSIsTrue)
Return true if LHS implies RHS (expanded to its components as "R0 RPred R1") is true.
static bool isKnownNonEqualFromContext(const Value *V1, const Value *V2, const SimplifyQuery &Q, unsigned Depth)
static bool includesPoison(UndefPoisonKind Kind)
static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS)
Match clamp pattern for float types without care about NaNs or signed zeros.
static std::optional< bool > isImpliedCondICmps(CmpPredicate LPred, const Value *L0, const Value *L1, CmpPredicate RPred, const Value *R0, const Value *R1, const DataLayout &DL, bool LHSIsTrue)
Return true if LHS implies RHS (expanded to its components as "R0 RPred R1") is true.
static bool includesUndef(UndefPoisonKind Kind)
static std::optional< bool > isImpliedCondCommonOperandWithCR(CmpPredicate LPred, const ConstantRange &LCR, CmpPredicate RPred, const ConstantRange &RCR)
Return true if "icmp LPred X, LCR" implies "icmp RPred X, RCR" is true.
static ConstantRange getRangeForSelectPattern(const SelectInst &SI, const InstrInfoQuery &IIQ)
static void computeKnownBitsFromOperator(const Operator *I, const APInt &DemandedElts, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth)
static uint64_t GetStringLengthH(const Value *V, SmallPtrSetImpl< const PHINode * > &PHIs, unsigned CharSize)
If we can compute the length of the string pointed to by the specified pointer, return 'len+1'.
static void computeKnownBitsFromShiftOperator(const Operator *I, const APInt &DemandedElts, KnownBits &Known, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth, function_ref< KnownBits(const KnownBits &, const KnownBits &, bool)> KF)
Compute known bits from a shift operator, including those with a non-constant shift amount.
static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(const Value *V, bool AllowLifetime, bool AllowDroppable)
static std::optional< bool > isImpliedCondAndOr(const Instruction *LHS, CmpPredicate RHSPred, const Value *RHSOp0, const Value *RHSOp1, const DataLayout &DL, bool LHSIsTrue, unsigned Depth)
Return true if LHS implies RHS is true.
static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, const APInt *&CLow, const APInt *&CHigh)
static bool isNonZeroAdd(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, bool NSW, bool NUW, unsigned Depth)
static bool directlyImpliesPoison(const Value *ValAssumedPoison, const Value *V, unsigned Depth)
static bool isNonEqualSelect(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static bool matchTwoInputRecurrence(const PHINode *PN, InstTy *&Inst, Value *&Init, Value *&OtherOp)
static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static void computeKnownBitsFromCmp(const Value *V, CmpInst::Predicate Pred, Value *LHS, Value *RHS, KnownBits &Known, const SimplifyQuery &Q)
static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TVal, Value *FVal, unsigned Depth)
Recognize variations of: a < c ?
static void unionWithMinMaxIntrinsicClamp(const IntrinsicInst *II, KnownBits &Known)
static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper)
static bool isSameUnderlyingObjectInLoop(const PHINode *PN, const LoopInfo *LI)
PN defines a loop-variant pointer to an object.
static bool isNonEqualPointersWithRecursiveGEP(const Value *A, const Value *B, const SimplifyQuery &Q)
static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II, const APInt *&CLow, const APInt *&CHigh)
static Value * lookThroughCastConst(CmpInst *CmpI, Type *SrcTy, Constant *C, Instruction::CastOps *CastOp)
static bool handleGuaranteedWellDefinedOps(const Instruction *I, const CallableT &Handle)
Enumerates all operands of I that are guaranteed to not be undef or poison.
static void computeKnownBitsFromLerpPattern(const Value *Op0, const Value *Op1, const APInt &DemandedElts, KnownBits &KnownOut, const SimplifyQuery &Q, unsigned Depth)
Try to detect the lerp pattern: a * (b - c) + c * d where a >= 0, b >= 0, c >= 0, d >= 0,...
static KnownFPClass computeKnownFPClassFromContext(const Value *V, const SimplifyQuery &Q)
static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, bool NSW, bool NUW, const APInt &DemandedElts, KnownBits &KnownOut, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth)
static Value * getNotValue(Value *V)
If the input value is the result of a 'not' op, constant integer, or vector splat of a constant integ...
static constexpr KnownFPClass::MinMaxKind getMinMaxKind(Intrinsic::ID IID)
static unsigned ComputeNumSignBitsImpl(const Value *V, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return the number of times the sign bit of the register is replicated into the other bits.
static void computeKnownBitsFromICmpCond(const Value *V, ICmpInst *Cmp, KnownBits &Known, const SimplifyQuery &SQ, bool Invert)
static bool isKnownNonZeroFromOperator(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static bool matchOpWithOpEqZero(Value *Op0, Value *Op1)
static bool isNonZeroRecurrence(const PHINode *PN)
Try to detect a recurrence that monotonically increases/decreases from a non-zero starting value.
static SelectPatternResult matchClamp(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal)
Recognize variations of: CLAMP(v,l,h) ==> ((v) < (l) ?
static bool shiftAmountKnownInRange(const Value *ShiftAmount)
Shifts return poison if shiftwidth is larger than the bitwidth.
static bool isEphemeralValueOf(const Instruction *I, const Value *E)
static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, unsigned Depth)
Match non-obvious integer minimum and maximum sequences.
static KnownBits computeKnownBitsForHorizontalOperation(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth, const function_ref< KnownBits(const KnownBits &, const KnownBits &)> KnownBitsFunc)
static bool handleGuaranteedNonPoisonOps(const Instruction *I, const CallableT &Handle)
Enumerates all operands of I that are guaranteed to not be poison.
static std::optional< std::pair< Value *, Value * > > getInvertibleOperands(const Operator *Op1, const Operator *Op2)
If the pair of operators are the same invertible function, return the the operands of the function co...
static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS)
static void computeKnownBitsFromCond(const Value *V, Value *Cond, KnownBits &Known, const SimplifyQuery &SQ, bool Invert, unsigned Depth)
static bool isKnownNonZeroFromAssume(const Value *V, const SimplifyQuery &Q)
static std::optional< bool > isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, const Value *ARHS, const Value *BLHS, const Value *BRHS)
Return true if "icmp Pred BLHS BRHS" is true whenever "icmp PredALHS ARHS" is true.
static const Instruction * safeCxtI(const Value *V, const Instruction *CxtI)
static bool isNonEqualMul(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and the multiplication is nuw o...
static bool isImpliedToBeAPowerOfTwoFromCond(const Value *V, bool OrZero, const Value *Cond, bool CondIsTrue)
Return true if we can infer that V is known to be a power of 2 from dominating condition Cond (e....
static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, bool NUW, const APInt &DemandedElts, KnownBits &Known, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth)
static bool isKnownNonNaN(const Value *V, FastMathFlags FMF)
static ConstantRange getRangeForIntrinsic(const IntrinsicInst &II, bool UseInstrInfo)
static void computeKnownFPClassForFPTrunc(const Operator *Op, const APInt &DemandedElts, FPClassTest InterestedClasses, KnownFPClass &Known, const SimplifyQuery &Q, unsigned Depth)
static Value * BuildSubAggregate(Value *From, Value *To, Type *IndexedType, SmallVectorImpl< unsigned > &Idxs, unsigned IdxSkip, BasicBlock::iterator InsertBefore)
static LLVM_ABI unsigned int semanticsPrecision(const fltSemantics &)
static LLVM_ABI bool isRepresentableAsNormalIn(const fltSemantics &Src, const fltSemantics &Dst)
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
unsigned popcount() const
Count the number of bits set.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
unsigned ceilLogBase2() const
bool sgt(const APInt &RHS) const
Signed greater than comparison.
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
void clearAllBits()
Set every bit to 0.
LLVM_ABI APInt reverseBits() const
bool sle(const APInt &RHS) const
Signed less or equal comparison.
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
unsigned logBase2() const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
bool getBoolValue() const
Convert APInt to a boolean value.
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool slt(const APInt &RHS) const
Signed less than comparison.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
void clearSignBit()
Set the sign bit to 0.
an instruction to allocate memory on the stack
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
Class to represent array types.
This represents the llvm.assume intrinsic.
A cache of @llvm.assume calls within a function.
MutableArrayRef< ResultElem > assumptionsFor(const Value *V)
Access the list of assumptions which affect this value.
Functions, function parameters, and return types can have attributes to indicate how they should be t...
LLVM_ABI std::optional< unsigned > getVScaleRangeMax() const
Returns the maximum value for the vscale_range attribute or std::nullopt when unknown.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
bool isValid() const
Return true if the attribute is any kind of attribute.
LLVM_ABI bool isSingleEdge() const
Check if this is the only edge between Start and End.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
InstListType::const_iterator const_iterator
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
InstListType::iterator iterator
Instruction iterators...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
LLVM_ABI Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
BinaryOps getOpcode() const
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
bool onlyReadsMemory(unsigned OpNo) const
Value * getCalledOperand() const
Value * getArgOperand(unsigned i) const
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
This is the base class for all instructions that perform data casts.
This class is the base class for the comparison instructions.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ ICMP_ULT
unsigned less than
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ ICMP_SGE
signed greater or equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
static LLVM_ABI bool isEquality(Predicate pred)
Determine if this is an equals/not equals predicate.
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
bool isTrueWhenEqual() const
This is just a convenience.
static bool isFPPredicate(Predicate P)
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
Predicate getFlippedStrictnessPredicate() const
For predicate of kind "is X or equal to 0" returns the predicate "is X".
static bool isIntPredicate(Predicate P)
static LLVM_ABI bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
LLVM_ABI CmpInst::Predicate getPreferredSignedPredicate() const
Attempts to return a signed CmpInst::Predicate from the CmpPredicate.
CmpInst::Predicate dropSameSign() const
Drops samesign information.
bool hasSameSign() const
Query samesign information, for optimizations.
An array constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
ConstantDataSequential - A vector or array constant whose element type is a simple 1/2/4/8-byte integ...
StringRef getAsString() const
If this array is isString(), then this method returns the array as a StringRef.
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI std::optional< ConstantFPRange > makeExactFCmpRegion(FCmpInst::Predicate Pred, const APFloat &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
ConstantFP - Floating Point Values [float, double].
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This class represents a range of values.
PreferredRangeType
If represented precisely, the result of some range operations may consist of multiple disjoint ranges...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI bool isAllNegative() const
Return true if all values in this range are negative.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other?
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI bool isAllNonNegative() const
Return true if all values in this range are non-negative.
static LLVM_ABI ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred, const ConstantRange &Other)
Produce the smallest range such that all values that may satisfy the given predicate with any value c...
LLVM_ABI ConstantRange unionWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the union of this range with another range.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI OverflowResult signedAddMayOverflow(const ConstantRange &Other) const
Return whether signed add of the two ranges always/never overflows.
LLVM_ABI ConstantRange intersectWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the intersection of this range with another range.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
static ConstantRange getNonEmpty(APInt Lower, APInt Upper)
Create non-empty constant range with the given bounds.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
LLVM_ABI ConstantRange sub(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a subtraction of a value in this r...
This is an important base class in LLVM.
static LLVM_ABI Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
unsigned getAddressSizeInBits(unsigned AS) const
The size in bits of an address in for the given AS.
LLVM_ABI const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
LLVM_ABI unsigned getIndexTypeSizeInBits(Type *Ty) const
The size in bits of the index used in GEP calculation for this type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
ArrayRef< BranchInst * > conditionsFor(const Value *V) const
Access the list of branches which affect this value.
DomTreeNodeBase * getIDom() const
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
This instruction compares its operands according to the predicate given to the constructor.
Utility class for floating point operations which can have information about relaxed accuracy require...
Convenience struct for specifying and reasoning about fast-math flags.
bool noSignedZeros() const
void setNoSignedZeros(bool B=true)
void setNoNaNs(bool B=true)
const BasicBlock & getEntryBlock() const
bool hasNoSync() const
Determine if the call can synchroize with other threads.
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
PointerType * getType() const
Global values are always pointers.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
Type * getValueType() const
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
This instruction compares its operands according to the predicate given to the constructor.
CmpPredicate getSwappedCmpPredicate() const
CmpPredicate getInverseCmpPredicate() const
Predicate getFlippedSignednessPredicate() const
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
static LLVM_ABI std::optional< bool > isImpliedByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2)
Determine if Pred1 implies Pred2 is true, false, or if nothing can be inferred about the implication,...
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
This instruction inserts a struct field of array element value into an aggregate value.
Value * getAggregateOperand()
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
LLVM_ABI bool comesBefore(const Instruction *Other) const
Given an instruction Other in the same basic block as this instruction, return true if this instructi...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Value * getPointerOperand()
Align getAlign() const
Return the alignment of the access that is being performed.
bool isLoopHeader(const BlockT *BB) const
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Represents a single loop in the control flow graph.
This is a utility class that provides an abstraction for the common functionality between Instruction...
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
iterator_range< const_block_iterator > blocks() const
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A udiv, sdiv, lshr, or ashr instruction, which can be marked as "exact", indicating that no bits are ...
bool isExact() const
Test whether this division is known to be exact, with zero remainder.
This class represents the LLVM 'select' instruction.
const Value * getFalseValue() const
const Value * getCondition() const
const Value * getTrueValue() const
This instruction constructs a fixed permutation of two input vectors.
VectorType * getType() const
Overload to return most specific vector type.
static LLVM_ABI void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
TypeSize getElementOffset(unsigned Idx) const
Class to represent struct types.
unsigned getNumElements() const
Random access to the elements.
Type * getElementType(unsigned N) const
Provides information about what library functions are available for the current target.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
bool isPointerTy() const
True if this is an instance of PointerType.
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
LLVM_ABI uint64_t getArrayNumElements() const
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isIntOrPtrTy() const
Return true if this is an integer type or a pointer type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
LLVM_ABI const fltSemantics & getFltSemantics() const
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
LLVM_ABI unsigned getOperandNo() const
Return the operand # of this use in its User.
User * getUser() const
Returns the User that contains this Use.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
iterator_range< user_iterator > users()
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
const KnownBits & getKnownBits(const SimplifyQuery &Q) const
PointerType getValue() const
Represents an op.with.overflow intrinsic.
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
An efficient, type-erasing, non-owning reference to a callable.
StructType * getStructTypeOrNull() const
TypeSize getSequentialElementStride(const DataLayout &DL) const
Type * getIndexedType() const
const ParentTy * getParent() const
self_iterator getIterator()
A range adaptor for a pair of iterators.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
@ C
The default llvm calling convention, compatible with C.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrToIntSameSize_match< OpTy > m_PtrToIntSameSize(const DataLayout &DL, const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWAdd(const LHS &L, const RHS &R)
auto m_PtrToIntOrAddr(const OpTy &Op)
Matches PtrToInt or PtrToAddr.
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
auto m_LogicalOp()
Matches either L && R or L || R where L and R are arbitrary values.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
cst_pred_ty< is_power2_or_zero > m_Power2OrZero()
Match an integer or vector of 0 or power-of-2 values.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
ap_match< APFloat > m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap, true > m_c_NUWAdd(const LHS &L, const RHS &R)
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
IntrinsicID_match m_VScale()
Matches a call to llvm.vscale().
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmin_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmin_pred_ty > > m_OrdOrUnordFMin(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point minimum function.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
bind_ty< WithOverflowInst > m_WithOverflowInst(WithOverflowInst *&I)
Match a with overflow intrinsic, capturing it if we match.
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > m_c_SMin(const LHS &L, const RHS &R)
Matches an SMin with LHS and RHS in either order.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true > m_c_UMax(const LHS &L, const RHS &R)
Matches a UMax with LHS and RHS in either order.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
NoWrapTrunc_match< OpTy, TruncInst::NoUnsignedWrap > m_NUWTrunc(const OpTy &Op)
Matches trunc nuw.
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > m_c_UMin(const LHS &L, const RHS &R)
Matches a UMin with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmax_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmax_pred_ty > > m_OrdOrUnordFMax(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point maximum function.
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true > m_c_SMax(const LHS &L, const RHS &R)
Matches an SMax with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
BinOpPred_match< LHS, RHS, is_irem_op > m_IRem(const LHS &L, const RHS &R)
Matches integer remainder operations.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
class_match< BasicBlock > m_BasicBlock()
Match an arbitrary basic block value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
cst_pred_ty< is_nonpositive > m_NonPositive()
Match an integer or vector of non-positive values.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
static unsigned decodeVSEW(unsigned VSEW)
LLVM_ABI unsigned getSEWLMULRatio(unsigned SEW, VLMUL VLMul)
static constexpr unsigned RVVBitsPerBlock
initializer< Ty > init(const Ty &Val)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool haveNoCommonBitsSet(const WithCache< const Value * > &LHSCache, const WithCache< const Value * > &RHSCache, const SimplifyQuery &SQ)
Return true if LHS and RHS have no common bits set.
LLVM_ABI bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, Instruction *OnPathTo, DominatorTree *DT)
Return true if undefined behavior would provable be executed on the path to OnPathTo if Root produced...
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
LLVM_ABI bool willNotFreeBetween(const Instruction *Assume, const Instruction *CtxI)
Returns true, if no instruction between Assume and CtxI may free memory and the function is marked as...
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
LLVM_ABI KnownFPClass computeKnownFPClass(const Value *V, const APInt &DemandedElts, FPClassTest InterestedClasses, const SimplifyQuery &SQ, unsigned Depth=0)
Determine which floating-point classes are valid for V, and return them in KnownFPClass bit sets.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
LLVM_ABI bool mustTriggerUB(const Instruction *I, const SmallPtrSetImpl< const Value * > &KnownPoison)
Return true if the given instruction must trigger undefined behavior when I is executed with any oper...
LLVM_ABI bool isKnownNeverInfinity(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not an infinity or if the floating-point vector val...
LLVM_ABI void computeKnownBitsFromContext(const Value *V, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth=0)
Merge bits known from context-dependent facts into Known.
LLVM_ABI bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI)
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
LLVM_ABI const Value * getArgumentAliasingToReturnedPointer(const CallBase *Call, bool MustPreserveNullness)
This function returns call pointer argument that is considered the same by aliasing rules.
LLVM_ABI bool isAssumeLikeIntrinsic(const Instruction *I)
Return true if it is an intrinsic that cannot be speculated but also cannot trap.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
LLVM_ABI AllocaInst * findAllocaForValue(Value *V, bool OffsetZero=false)
Returns unique alloca where the value comes from, or nullptr.
LLVM_ABI APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth)
Return the minimum or maximum constant value for the specified integer min/max flavor and type.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isOnlyUsedInZeroComparison(const Instruction *CxtI)
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
LLVM_ABI bool getConstantStringInfo(const Value *V, StringRef &Str, bool TrimAtNul=true)
This function computes the length of a null-terminated C string pointed to by V.
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
LLVM_ABI bool onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V)
Return true if the only users of this pointer are lifetime markers or droppable instructions.
LLVM_ABI Constant * ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset)
LLVM_ABI Value * stripNullTest(Value *V)
Returns the inner value X if the expression has the form f(X) where f(X) == 0 if and only if X == 0,...
LLVM_ABI bool getUnderlyingObjectsForCodeGen(const Value *V, SmallVectorImpl< Value * > &Objects)
This is a wrapper around getUnderlyingObjects and adds support for basic ptrtoint+arithmetic+inttoptr...
LLVM_ABI std::pair< Intrinsic::ID, bool > canConvertToMinOrMaxIntrinsic(ArrayRef< Value * > VL)
Check if the values in VL are select instructions that can be converted to a min or max (vector) intr...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
LLVM_ABI bool isGuaranteedToExecuteForEveryIteration(const Instruction *I, const Loop *L)
Return true if this function can prove that the instruction I is executed for every iteration of the ...
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool mustSuppressSpeculation(const LoadInst &LI)
Return true if speculation of the given load must be suppressed to avoid ordering or interfering with...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
gep_type_iterator gep_type_end(const User *GEP)
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
LLVM_ABI CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered=false)
Return the canonical comparison predicate for the specified minimum/maximum flavor.
bool isa_and_nonnull(const Y &Val)
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI bool canIgnoreSignBitOfZero(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is zero.
LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
std::tuple< Value *, FPClassTest, FPClassTest > fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS, FPClassTest RHSClass, bool LookThroughSrc=true)
LLVM_ABI ConstantRange computeConstantRange(const Value *V, bool ForSigned, bool UseInstrInfo=true, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Determine the possible constant range of an integer or vector of integer value.
const Value * getPointerOperand(const Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
LLVM_ABI bool MaskedValueIsZero(const Value *V, const APInt &Mask, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if 'V & Mask' is known to be zero.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
LLVM_ABI bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, const DominatorTree &DT)
Returns true if the arithmetic part of the WO 's result is used only along the paths control dependen...
LLVM_ABI RetainedKnowledge getKnowledgeFromBundle(AssumeInst &Assume, const CallBase::BundleOpInfo &BOI)
This extracts the Knowledge from an element of an operand bundle.
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ, bool IsNSW=false)
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
bool isGuard(const User *U)
Returns true iff U has semantics of a guard expressed in a form of call of llvm.experimental....
LLVM_ABI SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF)
Return the inverse minimum/maximum flavor of the specified flavor.
constexpr unsigned MaxAnalysisRecursionDepth
LLVM_ABI void adjustKnownBitsForSelectArm(KnownBits &Known, Value *Cond, Value *Arm, bool Invert, const SimplifyQuery &Q, unsigned Depth=0)
Adjust Known for the given select Arm to include information from the select Cond.
LLVM_ABI bool isKnownNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be negative (i.e.
LLVM_ABI OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
SelectPatternFlavor
Specific patterns of select instructions we can match.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
@ SPF_FMAXNUM
Floating point minnum.
@ SPF_UMIN
Signed minimum.
@ SPF_UMAX
Signed maximum.
@ SPF_SMAX
Unsigned minimum.
@ SPF_FMINNUM
Unsigned maximum.
LLVM_ABI bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(const CallBase *Call, bool MustPreserveNullness)
{launder,strip}.invariant.group returns pointer that aliases its argument, and it only captures point...
LLVM_ABI bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
LLVM_ABI void getHorizDemandedEltsForFirstOperand(unsigned VectorBitWidth, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS)
Compute the demanded elements mask of horizontal binary operations.
LLVM_ABI SelectPatternResult getSelectPattern(CmpInst::Predicate Pred, SelectPatternNaNBehavior NaNBehavior=SPNB_NA, bool Ordered=false)
Determine the pattern for predicate X Pred Y ? X : Y.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool programUndefinedIfPoison(const Instruction *Inst)
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI bool matchSimpleBinaryIntrinsicRecurrence(const IntrinsicInst *I, PHINode *&P, Value *&Init, Value *&OtherOp)
Attempt to match a simple value-accumulating recurrence of the form: llvm.intrinsic....
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI bool cannotBeNegativeZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is never equal to -0.0.
LLVM_ABI bool programUndefinedIfUndefOrPoison(const Instruction *Inst)
Return true if this function can prove that if Inst is executed and yields a poison value or undef bi...
LLVM_ABI void adjustKnownFPClassForSelectArm(KnownFPClass &Known, Value *Cond, Value *Arm, bool Invert, const SimplifyQuery &Q, unsigned Depth=0)
Adjust Known for the given select Arm to include information from the select Cond.
generic_gep_type_iterator<> gep_type_iterator
LLVM_ABI bool collectPossibleValues(const Value *V, SmallPtrSetImpl< const Constant * > &Constants, unsigned MaxCount, bool AllowUndefOrPoison=true)
Enumerates all possible immediate values of V and inserts them into the set Constants.
FunctionAddr VTableAddr Count
LLVM_ABI uint64_t GetStringLength(const Value *V, unsigned CharSize=8)
If we can compute the length of the string pointed to by the specified pointer, return 'len+1'.
LLVM_ABI OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI bool canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
canCreateUndefOrPoison returns true if Op can create undef or poison from non-undef & non-poison oper...
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
LLVM_ABI bool isKnownInversion(const Value *X, const Value *Y)
Return true iff:
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
LLVM_ABI RetainedKnowledge getKnowledgeValidInContext(const Value *V, ArrayRef< Attribute::AttrKind > AttrKinds, AssumptionCache &AC, const Instruction *CtxI, const DominatorTree *DT=nullptr)
Return a valid Knowledge associated to the Value V if its Attribute kind is in AttrKinds and the know...
LLVM_ABI bool isSafeToSpeculativelyExecuteWithOpcode(unsigned Opcode, const Instruction *Inst, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
This returns the same result as isSafeToSpeculativelyExecute if Opcode is the actual opcode of Inst.
LLVM_ABI bool onlyUsedByLifetimeMarkers(const Value *V)
Return true if the only users of this pointer are lifetime markers.
LLVM_ABI Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB, const TargetLibraryInfo *TLI)
Map a call instruction to an intrinsic ID.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
LLVM_ABI const Value * getUnderlyingObjectAggressive(const Value *V)
Like getUnderlyingObject(), but will try harder to find a single underlying object.
LLVM_ABI Intrinsic::ID getMinMaxIntrinsic(SelectPatternFlavor SPF)
Convert given SPF to equivalent min/max intrinsic.
LLVM_ABI SelectPatternResult matchDecomposedSelectPattern(CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, FastMathFlags FMF=FastMathFlags(), Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Determine the pattern that a select with the given compare as its predicate and given values as its t...
LLVM_ABI OverflowResult computeOverflowForSignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
LLVM_ABI bool propagatesPoison(const Use &PoisonOp)
Return true if PoisonOp's user yields poison or raises UB if its operand PoisonOp is poison.
LLVM_ABI ConstantRange computeConstantRangeIncludingKnownBits(const WithCache< const Value * > &V, bool ForSigned, const SimplifyQuery &SQ)
Combine constant ranges from computeConstantRange() and computeKnownBits().
SelectPatternNaNBehavior
Behavior when a floating point min/max is given one NaN and one non-NaN as input.
@ SPNB_RETURNS_NAN
NaN behavior not applicable.
@ SPNB_RETURNS_OTHER
Given one NaN input, returns the NaN.
@ SPNB_RETURNS_ANY
Given one NaN input, returns the non-NaN.
LLVM_ABI bool isKnownNonEqual(const Value *V1, const Value *V2, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the given values are known to be non-equal when defined.
DWARFExpression::Operation Op
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return the number of times the sign bit of the register is replicated into the other bits.
constexpr unsigned BitWidth
LLVM_ABI KnownBits analyzeKnownBitsFromAndXorOr(const Operator *I, const KnownBits &KnownLHS, const KnownBits &KnownRHS, const SimplifyQuery &SQ, unsigned Depth=0)
Using KnownBits LHS/RHS produce the known bits for logic op (and/xor/or).
LLVM_ABI OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
LLVM_ABI bool isKnownNeverInfOrNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point value can never contain a NaN or infinity.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isKnownNeverNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
gep_type_iterator gep_type_begin(const User *GEP)
LLVM_ABI Value * isBytewiseValue(Value *V, const DataLayout &DL)
If the specified value can be set by repeating the same byte in memory, return the i8 value that it i...
LLVM_ABI std::optional< std::pair< CmpPredicate, Constant * > > getFlippedStrictnessPredicateAndConstant(CmpPredicate Pred, Constant *C)
Convert an integer comparison with a constant RHS into an equivalent form with the strictness flipped...
LLVM_ABI unsigned ComputeMaxSignificantBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Get the upper bound on bit size for this Value Op as a signed integer.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
LLVM_ABI OverflowResult computeOverflowForUnsignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return true if the given value is known to have exactly one bit set when defined.
LLVM_ABI std::optional< bool > isImpliedByDomCondition(const Value *Cond, const Instruction *ContextI, const DataLayout &DL)
Return the boolean condition value in the context of the given instruction if it is known based on do...
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_ABI Value * FindInsertedValue(Value *V, ArrayRef< unsigned > idx_range, std::optional< BasicBlock::iterator > InsertBefore=std::nullopt)
Given an aggregate and an sequence of indices, see if the scalar value indexed is already around as a...
LLVM_ABI bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false, bool AllowPoison=true)
Return true if the two given values are negation.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI bool isKnownPositive(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be positive (i.e.
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
LLVM_ABI bool cannotBeOrderedLessThanZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is either NaN or never less than -0....
LLVM_ABI void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, const LoopInfo *LI=nullptr, unsigned MaxLookup=MaxLookupSearchDepth)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
LLVM_ABI bool mayHaveNonDefUseDependency(const Instruction &I)
Returns true if the result or effects of the given instructions I depend values not reachable through...
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
LLVM_ABI bool isIdentifiedObject(const Value *V)
Return true if this pointer refers to a distinct and identifiable object.
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
LLVM_ABI std::optional< bool > computeKnownFPSignBit(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return false if we can prove that the specified FP value's sign bit is 0.
LLVM_ABI bool canIgnoreSignBitOfNaN(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is NaN.
LLVM_ABI void findValuesAffectedByCondition(Value *Cond, bool IsAssume, function_ref< void(Value *)> InsertAffected)
Call InsertAffected on all Values whose known bits / value may be affected by the condition Cond.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
SmallPtrSet< Value *, 4 > AffectedValues
Represents offset+length into a ConstantDataArray.
const ConstantDataArray * Array
ConstantDataArray pointer.
Represent subnormal handling kind for floating point instruction inputs and outputs.
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ IEEE
IEEE-754 denormal numbers preserved.
static constexpr DenormalMode getDynamic()
InstrInfoQuery provides an interface to query additional information for instructions like metadata o...
bool isExact(const BinaryOperator *Op) const
MDNode * getMetadata(const Instruction *I, unsigned KindID) const
bool hasNoSignedZeros(const InstT *Op) const
bool hasNoSignedWrap(const InstT *Op) const
bool hasNoUnsignedWrap(const InstT *Op) const
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
static LLVM_ABI KnownBits sadd_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.sadd.sat(LHS, RHS)
static LLVM_ABI std::optional< bool > eq(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_EQ result.
KnownBits anyextOrTrunc(unsigned BitWidth) const
Return known bits for an "any" extension or truncation of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
LLVM_ABI KnownBits blsi() const
Compute known bits for X & -X, which has only the lowest bit set of X set.
void makeNonNegative()
Make this value non-negative.
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinLeadingOnes() const
Returns the minimum number of leading one bits.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits ssub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.ssub.sat(LHS, RHS)
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
LLVM_ABI KnownBits blsmsk() const
Compute known bits for X ^ (X - 1), which has all bits up to and including the lowest set bit of X se...
void makeNegative()
Make this value negative.
void setAllConflict()
Make all bits known to be both zero and one.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
KnownBits byteSwap() const
bool hasConflict() const
Returns true if there is conflicting information.
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
void setAllZero()
Make all bits known to be zero and discard any previous information.
KnownBits reverseBits() const
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
bool isConstant() const
Returns true if we know the value of all bits.
void resetAll()
Resets the known state of all bits.
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
unsigned countMinTrailingOnes() const
Returns the minimum number of trailing one bits.
static KnownBits add(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from addition of LHS and RHS.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
APInt getMinValue() const
Return the minimal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
bool isNegative() const
Returns true if this value is known to be negative.
static KnownBits sub(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from subtraction of LHS and RHS.
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
void setAllOnes()
Make all bits known to be one and discard any previous information.
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
static LLVM_ABI KnownBits uadd_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.uadd.sat(LHS, RHS)
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
static LLVM_ABI std::optional< bool > uge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGE result.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
KnownBits sextOrTrunc(unsigned BitWidth) const
Return known bits for a sign extension or truncation of the value we're tracking.
FPClassTest KnownFPClasses
Floating-point classes the value could be one of.
bool isKnownNeverInfinity() const
Return true if it's known this can never be an infinity.
bool cannotBeOrderedGreaterThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never greater tha...
static constexpr FPClassTest OrderedGreaterThanZeroMask
static constexpr FPClassTest OrderedLessThanZeroMask
void knownNot(FPClassTest RuleOut)
static LLVM_ABI KnownFPClass fmul(const KnownFPClass &LHS, const KnownFPClass &RHS, DenormalMode Mode=DenormalMode::getDynamic())
Report known values for fmul.
void copysign(const KnownFPClass &Sign)
static KnownFPClass square(const KnownFPClass &Src, DenormalMode Mode=DenormalMode::getDynamic())
static LLVM_ABI KnownFPClass canonicalize(const KnownFPClass &Src, DenormalMode DenormMode=DenormalMode::getDynamic())
Apply the canonicalize intrinsic to this value.
LLVM_ABI bool isKnownNeverLogicalZero(DenormalMode Mode) const
Return true if it's known this can never be interpreted as a zero.
static LLVM_ABI KnownFPClass log(const KnownFPClass &Src, DenormalMode Mode=DenormalMode::getDynamic())
Propagate known class for log/log2/log10.
KnownFPClass intersectWith(const KnownFPClass &RHS)
static LLVM_ABI KnownFPClass minMaxLike(const KnownFPClass &LHS, const KnownFPClass &RHS, MinMaxKind Kind, DenormalMode DenormMode=DenormalMode::getDynamic())
bool isKnownNeverNegInfinity() const
Return true if it's known this can never be -infinity.
bool isKnownNeverNegSubnormal() const
Return true if it's known this can never be a negative subnormal.
static LLVM_ABI KnownFPClass exp(const KnownFPClass &Src)
Report known values for exp, exp2 and exp10.
std::optional< bool > SignBit
std::nullopt if the sign bit is unknown, true if the sign bit is definitely set or false if the sign ...
bool isKnownNeverNaN() const
Return true if it's known this can never be a nan.
bool isKnownNever(FPClassTest Mask) const
Return true if it's known this can never be one of the mask entries.
bool isKnownNeverNegZero() const
Return true if it's known this can never be a negative zero.
void propagateNaN(const KnownFPClass &Src, bool PreserveSign=false)
bool cannotBeOrderedLessThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never less than -...
void signBitMustBeOne()
Assume the sign bit is one.
LLVM_ABI void propagateCanonicalizingSrc(const KnownFPClass &Src, DenormalMode Mode)
Report known classes if Src is evaluated through a potentially canonicalizing operation.
void signBitMustBeZero()
Assume the sign bit is zero.
LLVM_ABI bool isKnownNeverLogicalPosZero(DenormalMode Mode) const
Return true if it's known this can never be interpreted as a positive zero.
bool isKnownNeverPosInfinity() const
Return true if it's known this can never be +infinity.
LLVM_ABI bool isKnownNeverLogicalNegZero(DenormalMode Mode) const
Return true if it's known this can never be interpreted as a negative zero.
bool isKnownNeverPosSubnormal() const
Return true if it's known this can never be a positive subnormal.
Represent one information held inside an operand bundle of an llvm.assume.
SelectPatternFlavor Flavor
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?
SimplifyQuery getWithoutCondContext() const
SimplifyQuery getWithInstruction(const Instruction *I) const
const DomConditionCache * DC