59#include "llvm/IR/IntrinsicsAArch64.h"
60#include "llvm/IR/IntrinsicsAMDGPU.h"
61#include "llvm/IR/IntrinsicsRISCV.h"
62#include "llvm/IR/IntrinsicsX86.h"
100 if (
unsigned BitWidth = Ty->getScalarSizeInBits())
103 return DL.getPointerTypeSizeInBits(Ty);
123 const APInt &DemandedElts,
127 DemandedLHS = DemandedRHS = DemandedElts;
134 DemandedElts, DemandedLHS, DemandedRHS);
155 bool UseInstrInfo,
unsigned Depth) {
230 R->uge(
LHS->getType()->getScalarSizeInBits()))
243 assert(LHS->getType() == RHS->getType() &&
244 "LHS and RHS should have the same type");
245 assert(LHS->getType()->isIntOrIntVectorTy() &&
246 "LHS and RHS should be integers");
257 return !
I->user_empty() &&
262 return !
I->user_empty() &&
all_of(
I->users(), [](
const User *U) {
264 return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
273 return ::isKnownToBeAPowerOfTwo(
289 return CI->getValue().isStrictlyPositive();
315 return ::isKnownNonEqual(V1, V2, DemandedElts, Q,
Depth);
322 return Mask.isSubsetOf(Known.
Zero);
329 unsigned Depth = 0) {
340 return ::ComputeNumSignBits(
350 return V->getType()->getScalarSizeInBits() - SignBits + 1;
373 const APInt &DemandedElts,
379 const unsigned BitWidth = Ty->getScalarSizeInBits();
382 if (Ty->isVectorTy())
387 const Value *
A =
nullptr, *
B =
nullptr, *
C =
nullptr, *
D =
nullptr;
390 const auto MatchSubBC = [&]() {
407 const auto MatchASubBC = [&]() {
415 const auto MatchCD = [&]() {
432 if (!Match(Op0, Op1) && !Match(Op1, Op0))
435 const auto ComputeKnownBitsOrOne = [&](
const Value *V) {
443 const KnownBits KnownA = ComputeKnownBitsOrOne(
A);
447 const KnownBits KnownD = ComputeKnownBitsOrOne(
D);
464 if (SubBC->
getOpcode() == Instruction::Xor &&
482 const unsigned MinimumNumberOfLeadingZeros = UpperBound.
countl_zero();
488 const APInt &DemandedElts,
495 if (KnownOut.
isUnknown() && !NSW && !NUW)
512 bool NUW,
const APInt &DemandedElts,
529 bool isKnownNegativeOp0 = Known2.
isNegative();
532 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
544 (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
546 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.
isNonZero());
550 bool SelfMultiply = Op0 == Op1;
559 unsigned OutValidBits = 2 * (TyBits - SignBits + 1);
561 if (OutValidBits < TyBits) {
562 APInt KnownZeroMask =
564 Known.
Zero |= KnownZeroMask;
582 unsigned NumRanges = Ranges.getNumOperands() / 2;
587 for (
unsigned i = 0; i < NumRanges; ++i) {
596 "Known bit width must match range bit width!");
599 unsigned CommonPrefixBits =
600 (
Range.getUnsignedMax() ^
Range.getUnsignedMin()).countl_zero();
603 Known.
One &= UnsignedMax & Mask;
604 Known.
Zero &= ~UnsignedMax & Mask;
619 while (!WorkSet.
empty()) {
621 if (!Visited.
insert(V).second)
626 return EphValues.count(cast<Instruction>(U));
631 if (V ==
I || (!V->mayHaveSideEffects() && !V->isTerminator())) {
635 for (
const Use &U : U->operands()) {
650 return CI->isAssumeLikeIntrinsic();
658 bool AllowEphemerals) {
676 if (!AllowEphemerals && Inv == CxtI)
708 auto hasNoFreeCalls = [](
auto Range) {
713 if (!CB->hasFnAttr(Attribute::NoFree))
726 const BasicBlock *AssumeBB = Assume->getParent();
728 if (CtxBB != AssumeBB) {
735 CtxIter = AssumeBB->
end();
738 if (!Assume->comesBefore(CtxI))
744 return hasNoFreeCalls(
make_range(Assume->getIterator(), CtxIter));
773 for (
unsigned ElemIdx = 0, NElem = VC->getNumElements(); ElemIdx < NElem;
776 Pred, VC->getElementAsAPInt(ElemIdx));
785 const PHINode **PhiOut =
nullptr) {
789 CtxIOut =
PHI->getIncomingBlock(*U)->getTerminator();
805 IncPhi && IncPhi->getNumIncomingValues() == 2) {
806 for (
int Idx = 0; Idx < 2; ++Idx) {
807 if (IncPhi->getIncomingValue(Idx) ==
PHI) {
808 ValOut = IncPhi->getIncomingValue(1 - Idx);
811 CtxIOut = IncPhi->getIncomingBlock(1 - Idx)->getTerminator();
830 "Got assumption for the wrong function!");
833 if (!V->getType()->isPointerTy())
836 *
I,
I->bundle_op_info_begin()[Elem.Index])) {
838 (RK.AttrKind == Attribute::NonNull ||
839 (RK.AttrKind == Attribute::Dereferenceable &&
868 if (
RHS->getType()->isPointerTy()) {
910 Known.
Zero |= ~*
C & *Mask;
916 Known.
One |= *
C & ~*Mask;
975 Invert ? Cmp->getInversePredicate() : Cmp->getPredicate();
981 KnownBits DstKnown(
LHS->getType()->getScalarSizeInBits());
995 bool Invert,
unsigned Depth) {
1077 "Got assumption for the wrong function!");
1080 if (!V->getType()->isPointerTy())
1083 *
I,
I->bundle_op_info_begin()[Elem.Index])) {
1087 if (RK.WasOn == V && RK.AttrKind == Attribute::Alignment &&
1099 Value *Arg =
I->getArgOperand(0);
1115 if (Trunc && Trunc->getOperand(0) == V &&
1117 if (Trunc->hasNoUnsignedWrap()) {
1165 Known = KF(Known2, Known, ShAmtNonZero);
1176 Value *
X =
nullptr, *
Y =
nullptr;
1178 switch (
I->getOpcode()) {
1179 case Instruction::And:
1180 KnownOut = KnownLHS & KnownRHS;
1190 KnownOut = KnownLHS.
blsi();
1192 KnownOut = KnownRHS.
blsi();
1195 case Instruction::Or:
1196 KnownOut = KnownLHS | KnownRHS;
1198 case Instruction::Xor:
1199 KnownOut = KnownLHS ^ KnownRHS;
1209 const KnownBits &XBits =
I->getOperand(0) ==
X ? KnownLHS : KnownRHS;
1210 KnownOut = XBits.
blsmsk();
1223 if (!KnownOut.
Zero[0] && !KnownOut.
One[0] &&
1244 APInt DemandedEltsLHS, DemandedEltsRHS;
1246 DemandedElts, DemandedEltsLHS,
1249 const auto ComputeForSingleOpFunc =
1251 return KnownBitsFunc(
1256 if (DemandedEltsRHS.
isZero())
1257 return ComputeForSingleOpFunc(
I->getOperand(0), DemandedEltsLHS);
1258 if (DemandedEltsLHS.
isZero())
1259 return ComputeForSingleOpFunc(
I->getOperand(1), DemandedEltsRHS);
1261 return ComputeForSingleOpFunc(
I->getOperand(0), DemandedEltsLHS)
1262 .intersectWith(ComputeForSingleOpFunc(
I->getOperand(1), DemandedEltsRHS));
1272 APInt DemandedElts =
1280 Attribute Attr =
F->getFnAttribute(Attribute::VScaleRange);
1288 return ConstantRange::getEmpty(
BitWidth);
1299 Value *Arm,
bool Invert,
1338 "Input should be a Select!");
1348 const Value *LHS2 =
nullptr, *RHS2 =
nullptr;
1360 return CLow->
sle(*CHigh);
1365 const APInt *&CHigh) {
1366 assert((
II->getIntrinsicID() == Intrinsic::smin ||
1367 II->getIntrinsicID() == Intrinsic::smax) &&
1368 "Must be smin/smax");
1372 if (!InnerII || InnerII->getIntrinsicID() != InverseID ||
1377 if (
II->getIntrinsicID() == Intrinsic::smin)
1379 return CLow->
sle(*CHigh);
1384 const APInt *CLow, *CHigh;
1391 const APInt &DemandedElts,
1398 switch (
I->getOpcode()) {
1400 case Instruction::Load:
1405 case Instruction::And:
1411 case Instruction::Or:
1417 case Instruction::Xor:
1423 case Instruction::Mul: {
1427 DemandedElts, Known, Known2, Q,
Depth);
1430 case Instruction::UDiv: {
1437 case Instruction::SDiv: {
1444 case Instruction::Select: {
1445 auto ComputeForArm = [&](
Value *Arm,
bool Invert) {
1453 ComputeForArm(
I->getOperand(1),
false)
1457 case Instruction::FPTrunc:
1458 case Instruction::FPExt:
1459 case Instruction::FPToUI:
1460 case Instruction::FPToSI:
1461 case Instruction::SIToFP:
1462 case Instruction::UIToFP:
1464 case Instruction::PtrToInt:
1465 case Instruction::IntToPtr:
1468 case Instruction::ZExt:
1469 case Instruction::Trunc: {
1470 Type *SrcTy =
I->getOperand(0)->getType();
1472 unsigned SrcBitWidth;
1480 assert(SrcBitWidth &&
"SrcBitWidth can't be zero");
1484 Inst && Inst->hasNonNeg() && !Known.
isNegative())
1489 case Instruction::BitCast: {
1490 Type *SrcTy =
I->getOperand(0)->getType();
1491 if (SrcTy->isIntOrPtrTy() &&
1494 !
I->getType()->isVectorTy()) {
1502 V->getType()->isFPOrFPVectorTy()) {
1503 Type *FPType = V->getType()->getScalarType();
1515 if (FPClasses &
fcInf)
1527 if (Result.SignBit) {
1528 if (*Result.SignBit)
1539 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
1540 !
I->getType()->isIntOrIntVectorTy() ||
1548 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
1564 unsigned SubScale =
BitWidth / SubBitWidth;
1566 for (
unsigned i = 0; i != NumElts; ++i) {
1567 if (DemandedElts[i])
1568 SubDemandedElts.
setBit(i * SubScale);
1572 for (
unsigned i = 0; i != SubScale; ++i) {
1575 unsigned ShiftElt = IsLE ? i : SubScale - 1 - i;
1576 Known.
insertBits(KnownSrc, ShiftElt * SubBitWidth);
1582 unsigned SubScale = SubBitWidth /
BitWidth;
1584 APInt SubDemandedElts =
1590 for (
unsigned i = 0; i != NumElts; ++i) {
1591 if (DemandedElts[i]) {
1592 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
1602 case Instruction::SExt: {
1604 unsigned SrcBitWidth =
I->getOperand(0)->getType()->getScalarSizeInBits();
1606 Known = Known.
trunc(SrcBitWidth);
1613 case Instruction::Shl: {
1617 bool ShAmtNonZero) {
1618 return KnownBits::shl(KnownVal, KnownAmt, NUW, NSW, ShAmtNonZero);
1628 case Instruction::LShr: {
1631 bool ShAmtNonZero) {
1642 case Instruction::AShr: {
1645 bool ShAmtNonZero) {
1652 case Instruction::Sub: {
1656 DemandedElts, Known, Known2, Q,
Depth);
1659 case Instruction::Add: {
1663 DemandedElts, Known, Known2, Q,
Depth);
1666 case Instruction::SRem:
1672 case Instruction::URem:
1677 case Instruction::Alloca:
1680 case Instruction::GetElementPtr: {
1687 APInt AccConstIndices(IndexWidth, 0);
1689 auto AddIndexToKnown = [&](
KnownBits IndexBits) {
1698 "Index width can't be larger than pointer width");
1704 for (
unsigned i = 1, e =
I->getNumOperands(); i != e; ++i, ++GTI) {
1709 Value *Index =
I->getOperand(i);
1720 "Access to structure field must be known at compile time");
1728 AccConstIndices +=
Offset;
1745 CI->getValue().
sextOrTrunc(IndexWidth) * StrideInBytes;
1769 case Instruction::PHI: {
1772 Value *R =
nullptr, *L =
nullptr;
1785 case Instruction::LShr:
1786 case Instruction::AShr:
1787 case Instruction::Shl:
1788 case Instruction::UDiv:
1795 case Instruction::URem: {
1808 case Instruction::Shl:
1812 case Instruction::LShr:
1813 case Instruction::UDiv:
1814 case Instruction::URem:
1819 case Instruction::AShr:
1831 case Instruction::Add:
1832 case Instruction::Sub:
1833 case Instruction::And:
1834 case Instruction::Or:
1835 case Instruction::Mul: {
1842 unsigned OpNum =
P->getOperand(0) == R ? 0 : 1;
1843 Instruction *RInst =
P->getIncomingBlock(OpNum)->getTerminator();
1844 Instruction *LInst =
P->getIncomingBlock(1 - OpNum)->getTerminator();
1873 case Instruction::Add: {
1883 case Instruction::Sub: {
1894 case Instruction::Mul:
1911 if (
P->getNumIncomingValues() == 0)
1922 for (
const Use &U :
P->operands()) {
1957 if ((TrueSucc == CxtPhi->
getParent()) !=
1974 Known2 = KnownUnion;
1988 case Instruction::Call:
1989 case Instruction::Invoke: {
1999 if (std::optional<ConstantRange>
Range = CB->getRange())
2002 if (
const Value *RV = CB->getReturnedArgOperand()) {
2003 if (RV->getType() ==
I->getType()) {
2015 switch (
II->getIntrinsicID()) {
2018 case Intrinsic::abs: {
2020 bool IntMinIsPoison =
match(
II->getArgOperand(1),
m_One());
2024 case Intrinsic::bitreverse:
2028 case Intrinsic::bswap:
2032 case Intrinsic::ctlz: {
2038 PossibleLZ = std::min(PossibleLZ,
BitWidth - 1);
2043 case Intrinsic::cttz: {
2049 PossibleTZ = std::min(PossibleTZ,
BitWidth - 1);
2054 case Intrinsic::ctpop: {
2065 case Intrinsic::fshr:
2066 case Intrinsic::fshl: {
2073 if (
II->getIntrinsicID() == Intrinsic::fshr)
2080 Known2 <<= ShiftAmt;
2085 case Intrinsic::uadd_sat:
2090 case Intrinsic::usub_sat:
2095 case Intrinsic::sadd_sat:
2100 case Intrinsic::ssub_sat:
2106 case Intrinsic::vector_reverse:
2112 case Intrinsic::vector_reduce_and:
2113 case Intrinsic::vector_reduce_or:
2114 case Intrinsic::vector_reduce_umax:
2115 case Intrinsic::vector_reduce_umin:
2116 case Intrinsic::vector_reduce_smax:
2117 case Intrinsic::vector_reduce_smin:
2120 case Intrinsic::vector_reduce_xor: {
2127 bool EvenCnt = VecTy->getElementCount().isKnownEven();
2131 if (VecTy->isScalableTy() || EvenCnt)
2135 case Intrinsic::umin:
2140 case Intrinsic::umax:
2145 case Intrinsic::smin:
2151 case Intrinsic::smax:
2157 case Intrinsic::ptrmask: {
2160 const Value *Mask =
I->getOperand(1);
2161 Known2 =
KnownBits(Mask->getType()->getScalarSizeInBits());
2167 case Intrinsic::x86_sse2_pmulh_w:
2168 case Intrinsic::x86_avx2_pmulh_w:
2169 case Intrinsic::x86_avx512_pmulh_w_512:
2174 case Intrinsic::x86_sse2_pmulhu_w:
2175 case Intrinsic::x86_avx2_pmulhu_w:
2176 case Intrinsic::x86_avx512_pmulhu_w_512:
2181 case Intrinsic::x86_sse42_crc32_64_64:
2184 case Intrinsic::x86_ssse3_phadd_d_128:
2185 case Intrinsic::x86_ssse3_phadd_w_128:
2186 case Intrinsic::x86_avx2_phadd_d:
2187 case Intrinsic::x86_avx2_phadd_w: {
2189 I, DemandedElts, Q,
Depth,
2195 case Intrinsic::x86_ssse3_phadd_sw_128:
2196 case Intrinsic::x86_avx2_phadd_sw: {
2201 case Intrinsic::x86_ssse3_phsub_d_128:
2202 case Intrinsic::x86_ssse3_phsub_w_128:
2203 case Intrinsic::x86_avx2_phsub_d:
2204 case Intrinsic::x86_avx2_phsub_w: {
2206 I, DemandedElts, Q,
Depth,
2212 case Intrinsic::x86_ssse3_phsub_sw_128:
2213 case Intrinsic::x86_avx2_phsub_sw: {
2218 case Intrinsic::riscv_vsetvli:
2219 case Intrinsic::riscv_vsetvlimax: {
2220 bool HasAVL =
II->getIntrinsicID() == Intrinsic::riscv_vsetvli;
2233 MaxVL = std::min(MaxVL, CI->getZExtValue());
2235 unsigned KnownZeroFirstBit =
Log2_32(MaxVL) + 1;
2240 case Intrinsic::vscale: {
2241 if (!
II->getParent() || !
II->getFunction())
2251 case Instruction::ShuffleVector: {
2260 APInt DemandedLHS, DemandedRHS;
2266 if (!!DemandedLHS) {
2267 const Value *
LHS = Shuf->getOperand(0);
2273 if (!!DemandedRHS) {
2274 const Value *
RHS = Shuf->getOperand(1);
2280 case Instruction::InsertElement: {
2285 const Value *Vec =
I->getOperand(0);
2286 const Value *Elt =
I->getOperand(1);
2289 APInt DemandedVecElts = DemandedElts;
2290 bool NeedsElt =
true;
2292 if (CIdx && CIdx->getValue().ult(NumElts)) {
2293 DemandedVecElts.
clearBit(CIdx->getZExtValue());
2294 NeedsElt = DemandedElts[CIdx->getZExtValue()];
2305 if (!DemandedVecElts.
isZero()) {
2311 case Instruction::ExtractElement: {
2314 const Value *Vec =
I->getOperand(0);
2315 const Value *Idx =
I->getOperand(1);
2324 if (CIdx && CIdx->getValue().ult(NumElts))
2329 case Instruction::ExtractValue:
2334 switch (
II->getIntrinsicID()) {
2336 case Intrinsic::uadd_with_overflow:
2337 case Intrinsic::sadd_with_overflow:
2339 true,
II->getArgOperand(0),
II->getArgOperand(1),
false,
2340 false, DemandedElts, Known, Known2, Q,
Depth);
2342 case Intrinsic::usub_with_overflow:
2343 case Intrinsic::ssub_with_overflow:
2345 false,
II->getArgOperand(0),
II->getArgOperand(1),
false,
2346 false, DemandedElts, Known, Known2, Q,
Depth);
2348 case Intrinsic::umul_with_overflow:
2349 case Intrinsic::smul_with_overflow:
2351 false, DemandedElts, Known, Known2, Q,
Depth);
2357 case Instruction::Freeze:
2401 if (!DemandedElts) {
2407 assert(V &&
"No Value?");
2411 Type *Ty = V->getType();
2414 assert((Ty->isIntOrIntVectorTy(
BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
2415 "Not integer or pointer type!");
2419 FVTy->getNumElements() == DemandedElts.
getBitWidth() &&
2420 "DemandedElt width should equal the fixed vector number of elements");
2423 "DemandedElt width should be 1 for scalars or scalable vectors");
2429 "V and Known should have same BitWidth");
2432 "V and Known should have same BitWidth");
2454 for (
unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
2455 if (!DemandedElts[i])
2457 APInt Elt = CDV->getElementAsAPInt(i);
2471 for (
unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
2472 if (!DemandedElts[i])
2482 const APInt &Elt = ElementCI->getValue();
2503 if (std::optional<ConstantRange>
Range =
A->getRange())
2504 Known =
Range->toKnownBits();
2513 if (!GA->isInterposable())
2521 if (std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange())
2522 Known = CR->toKnownBits();
2527 Align Alignment = V->getPointerAlignment(Q.
DL);
2543 Value *Start =
nullptr, *Step =
nullptr;
2549 if (U.get() == Start) {
2565 case Instruction::Mul:
2570 case Instruction::SDiv:
2576 case Instruction::UDiv:
2582 case Instruction::Shl:
2584 case Instruction::AShr:
2588 case Instruction::LShr:
2626 if (OrZero && V->getType()->getScalarSizeInBits() == 1)
2668 return F->hasFnAttribute(Attribute::VScaleRange);
2685 switch (
I->getOpcode()) {
2686 case Instruction::ZExt:
2688 case Instruction::Trunc:
2690 case Instruction::Shl:
2694 case Instruction::LShr:
2698 case Instruction::UDiv:
2702 case Instruction::Mul:
2706 case Instruction::And:
2717 case Instruction::Add: {
2723 if (
match(
I->getOperand(0),
2727 if (
match(
I->getOperand(1),
2732 unsigned BitWidth = V->getType()->getScalarSizeInBits();
2741 if ((~(LHSBits.
Zero & RHSBits.
Zero)).isPowerOf2())
2754 case Instruction::Select:
2757 case Instruction::PHI: {
2778 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2779 return isKnownToBeAPowerOfTwo(U.get(), OrZero, RecQ, NewDepth);
2782 case Instruction::Invoke:
2783 case Instruction::Call: {
2785 switch (
II->getIntrinsicID()) {
2786 case Intrinsic::umax:
2787 case Intrinsic::smax:
2788 case Intrinsic::umin:
2789 case Intrinsic::smin:
2794 case Intrinsic::bitreverse:
2795 case Intrinsic::bswap:
2797 case Intrinsic::fshr:
2798 case Intrinsic::fshl:
2800 if (
II->getArgOperand(0) ==
II->getArgOperand(1))
2824 F =
I->getFunction();
2828 if (!
GEP->hasNoUnsignedWrap() &&
2829 !(
GEP->isInBounds() &&
2834 assert(
GEP->getType()->isPointerTy() &&
"We only support plain pointer GEP");
2845 GTI != GTE; ++GTI) {
2847 if (
StructType *STy = GTI.getStructTypeOrNull()) {
2852 if (ElementOffset > 0)
2858 if (GTI.getSequentialElementStride(Q.
DL).isZero())
2892 unsigned NumUsesExplored = 0;
2893 for (
auto &U : V->uses()) {
2902 if (V->getType()->isPointerTy()) {
2904 if (CB->isArgOperand(&U) &&
2905 CB->paramHasNonNullAttr(CB->getArgOperandNo(&U),
2933 NonNullIfTrue =
true;
2935 NonNullIfTrue =
false;
2941 for (
const auto *CmpU : UI->
users()) {
2943 if (Visited.
insert(CmpU).second)
2946 while (!WorkList.
empty()) {
2955 for (
const auto *CurrU : Curr->users())
2956 if (Visited.
insert(CurrU).second)
2962 assert(BI->isConditional() &&
"uses a comparison!");
2965 BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2969 }
else if (NonNullIfTrue &&
isGuard(Curr) &&
2984 const unsigned NumRanges = Ranges->getNumOperands() / 2;
2986 for (
unsigned i = 0; i < NumRanges; ++i) {
3002 Value *Start =
nullptr, *Step =
nullptr;
3003 const APInt *StartC, *StepC;
3009 case Instruction::Add:
3015 case Instruction::Mul:
3018 case Instruction::Shl:
3020 case Instruction::AShr:
3021 case Instruction::LShr:
3037 bool NUW,
unsigned Depth) {
3094 return ::isKnownNonEqual(
X,
Y, DemandedElts, Q,
Depth);
3099 bool NUW,
unsigned Depth) {
3128 auto ShiftOp = [&](
const APInt &Lhs,
const APInt &Rhs) {
3129 switch (
I->getOpcode()) {
3130 case Instruction::Shl:
3131 return Lhs.
shl(Rhs);
3132 case Instruction::LShr:
3133 return Lhs.
lshr(Rhs);
3134 case Instruction::AShr:
3135 return Lhs.
ashr(Rhs);
3141 auto InvShiftOp = [&](
const APInt &Lhs,
const APInt &Rhs) {
3142 switch (
I->getOpcode()) {
3143 case Instruction::Shl:
3144 return Lhs.
lshr(Rhs);
3145 case Instruction::LShr:
3146 case Instruction::AShr:
3147 return Lhs.
shl(Rhs);
3160 if (MaxShift.
uge(NumBits))
3163 if (!ShiftOp(KnownVal.
One, MaxShift).isZero())
3168 if (InvShiftOp(KnownVal.
Zero, NumBits - MaxShift)
3177 const APInt &DemandedElts,
3180 switch (
I->getOpcode()) {
3181 case Instruction::Alloca:
3183 return I->getType()->getPointerAddressSpace() == 0;
3184 case Instruction::GetElementPtr:
3185 if (
I->getType()->isPointerTy())
3188 case Instruction::BitCast: {
3216 Type *FromTy =
I->getOperand(0)->getType();
3221 case Instruction::IntToPtr:
3230 case Instruction::PtrToInt:
3238 case Instruction::Trunc:
3241 if (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap())
3247 case Instruction::Xor:
3248 case Instruction::Sub:
3250 I->getOperand(1),
Depth);
3251 case Instruction::Or:
3262 case Instruction::SExt:
3263 case Instruction::ZExt:
3267 case Instruction::Shl: {
3282 case Instruction::LShr:
3283 case Instruction::AShr: {
3298 case Instruction::UDiv:
3299 case Instruction::SDiv: {
3314 if (
I->getOpcode() == Instruction::SDiv) {
3316 XKnown = XKnown.
abs(
false);
3317 YKnown = YKnown.
abs(
false);
3323 return XUgeY && *XUgeY;
3325 case Instruction::Add: {
3335 case Instruction::Mul: {
3341 case Instruction::Select: {
3348 auto SelectArmIsNonZero = [&](
bool IsTrueArm) {
3350 Op = IsTrueArm ?
I->getOperand(1) :
I->getOperand(2);
3368 if (SelectArmIsNonZero(
true) &&
3369 SelectArmIsNonZero(
false))
3373 case Instruction::PHI: {
3384 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
3388 BasicBlock *TrueSucc, *FalseSucc;
3389 if (match(RecQ.CxtI,
3390 m_Br(m_c_ICmp(Pred, m_Specific(U.get()), m_Value(X)),
3391 m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) {
3393 if ((TrueSucc == PN->getParent()) != (FalseSucc == PN->getParent())) {
3395 if (FalseSucc == PN->getParent())
3396 Pred = CmpInst::getInversePredicate(Pred);
3397 if (cmpExcludesZero(Pred, X))
3405 case Instruction::InsertElement: {
3409 const Value *Vec =
I->getOperand(0);
3410 const Value *Elt =
I->getOperand(1);
3414 APInt DemandedVecElts = DemandedElts;
3415 bool SkipElt =
false;
3417 if (CIdx && CIdx->getValue().ult(NumElts)) {
3418 DemandedVecElts.
clearBit(CIdx->getZExtValue());
3419 SkipElt = !DemandedElts[CIdx->getZExtValue()];
3425 (DemandedVecElts.
isZero() ||
3428 case Instruction::ExtractElement:
3430 const Value *Vec = EEI->getVectorOperand();
3431 const Value *Idx = EEI->getIndexOperand();
3434 unsigned NumElts = VecTy->getNumElements();
3436 if (CIdx && CIdx->getValue().ult(NumElts))
3442 case Instruction::ShuffleVector: {
3446 APInt DemandedLHS, DemandedRHS;
3452 return (DemandedRHS.
isZero() ||
3457 case Instruction::Freeze:
3461 case Instruction::Load: {
3478 case Instruction::ExtractValue: {
3484 case Instruction::Add:
3489 case Instruction::Sub:
3492 case Instruction::Mul:
3495 false,
false,
Depth);
3501 case Instruction::Call:
3502 case Instruction::Invoke: {
3504 if (
I->getType()->isPointerTy()) {
3505 if (
Call->isReturnNonNull())
3512 if (std::optional<ConstantRange>
Range =
Call->getRange()) {
3513 const APInt ZeroValue(
Range->getBitWidth(), 0);
3514 if (!
Range->contains(ZeroValue))
3517 if (
const Value *RV =
Call->getReturnedArgOperand())
3523 switch (
II->getIntrinsicID()) {
3524 case Intrinsic::sshl_sat:
3525 case Intrinsic::ushl_sat:
3526 case Intrinsic::abs:
3527 case Intrinsic::bitreverse:
3528 case Intrinsic::bswap:
3529 case Intrinsic::ctpop:
3533 case Intrinsic::ssub_sat:
3536 case Intrinsic::sadd_sat:
3538 II->getArgOperand(1),
3539 true,
false,
Depth);
3541 case Intrinsic::vector_reverse:
3545 case Intrinsic::vector_reduce_or:
3546 case Intrinsic::vector_reduce_umax:
3547 case Intrinsic::vector_reduce_umin:
3548 case Intrinsic::vector_reduce_smax:
3549 case Intrinsic::vector_reduce_smin:
3551 case Intrinsic::umax:
3552 case Intrinsic::uadd_sat:
3560 case Intrinsic::smax: {
3563 auto IsNonZero = [&](
Value *
Op, std::optional<bool> &OpNonZero,
3565 if (!OpNonZero.has_value())
3566 OpNonZero = OpKnown.isNonZero() ||
3571 std::optional<bool> Op0NonZero, Op1NonZero;
3575 IsNonZero(
II->getArgOperand(1), Op1NonZero, Op1Known))
3580 IsNonZero(
II->getArgOperand(0), Op0NonZero, Op0Known))
3582 return IsNonZero(
II->getArgOperand(1), Op1NonZero, Op1Known) &&
3583 IsNonZero(
II->getArgOperand(0), Op0NonZero, Op0Known);
3585 case Intrinsic::smin: {
3601 case Intrinsic::umin:
3604 case Intrinsic::cttz:
3607 case Intrinsic::ctlz:
3610 case Intrinsic::fshr:
3611 case Intrinsic::fshl:
3613 if (
II->getArgOperand(0) ==
II->getArgOperand(1))
3616 case Intrinsic::vscale:
3618 case Intrinsic::experimental_get_vector_length:
3632 return Known.
One != 0;
3643 Type *Ty = V->getType();
3650 FVTy->getNumElements() == DemandedElts.
getBitWidth() &&
3651 "DemandedElt width should equal the fixed vector number of elements");
3654 "DemandedElt width should be 1 for scalars");
3659 if (
C->isNullValue())
3668 for (
unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
3669 if (!DemandedElts[i])
3671 Constant *Elt =
C->getAggregateElement(i);
3688 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
3689 GV->getType()->getAddressSpace() == 0)
3699 if (std::optional<ConstantRange>
Range =
A->getRange()) {
3700 const APInt ZeroValue(
Range->getBitWidth(), 0);
3701 if (!
Range->contains(ZeroValue))
3718 if (((
A->hasPassPointeeByValueCopyAttr() &&
3720 A->hasNonNullAttr()))
3742 APInt DemandedElts =
3744 return ::isKnownNonZero(V, DemandedElts, Q,
Depth);
3753static std::optional<std::pair<Value*, Value*>>
3757 return std::nullopt;
3766 case Instruction::Or:
3771 case Instruction::Xor:
3772 case Instruction::Add: {
3780 case Instruction::Sub:
3786 case Instruction::Mul: {
3792 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
3793 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
3803 case Instruction::Shl: {
3808 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
3809 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
3816 case Instruction::AShr:
3817 case Instruction::LShr: {
3820 if (!PEO1->isExact() || !PEO2->isExact())
3827 case Instruction::SExt:
3828 case Instruction::ZExt:
3832 case Instruction::PHI: {
3840 Value *Start1 =
nullptr, *Step1 =
nullptr;
3842 Value *Start2 =
nullptr, *Step2 =
nullptr;
3858 if (Values->first != PN1 || Values->second != PN2)
3861 return std::make_pair(Start1, Start2);
3864 return std::nullopt;
3871 const APInt &DemandedElts,
3879 case Instruction::Or:
3883 case Instruction::Xor:
3884 case Instruction::Add:
3905 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
3906 !
C->isZero() && !
C->isOne() &&
3920 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
3934 bool UsedFullRecursion =
false;
3936 if (!VisitedBBs.
insert(IncomBB).second)
3940 const APInt *C1, *C2;
3945 if (UsedFullRecursion)
3949 RecQ.
CxtI = IncomBB->getTerminator();
3952 UsedFullRecursion =
true;
3966 const Value *Cond2 = SI2->getCondition();
3969 DemandedElts, Q,
Depth + 1) &&
3971 DemandedElts, Q,
Depth + 1);
3984 if (!
A->getType()->isPointerTy() || !
B->getType()->isPointerTy())
3988 if (!GEPA || GEPA->getNumIndices() != 1 || !
isa<Constant>(GEPA->idx_begin()))
3993 if (!PN || PN->getNumIncomingValues() != 2)
3998 Value *Start =
nullptr;
4000 if (PN->getIncomingValue(0) == Step)
4001 Start = PN->getIncomingValue(1);
4002 else if (PN->getIncomingValue(1) == Step)
4003 Start = PN->getIncomingValue(0);
4014 APInt StartOffset(IndexWidth, 0);
4015 Start = Start->stripAndAccumulateInBoundsConstantOffsets(Q.
DL, StartOffset);
4016 APInt StepOffset(IndexWidth, 0);
4022 APInt OffsetB(IndexWidth, 0);
4023 B =
B->stripAndAccumulateInBoundsConstantOffsets(Q.
DL, OffsetB);
4024 return Start ==
B &&
4036 auto IsKnownNonEqualFromDominatingCondition = [&](
const Value *V) {
4057 if (IsKnownNonEqualFromDominatingCondition(V1) ||
4058 IsKnownNonEqualFromDominatingCondition(V2))
4072 "Got assumption for the wrong function!");
4073 assert(
I->getIntrinsicID() == Intrinsic::assume &&
4074 "must be an assume intrinsic");
4104 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
4106 return isKnownNonEqual(Values->first, Values->second, DemandedElts, Q,
4168 const APInt &DemandedElts,
4174 unsigned MinSignBits = TyBits;
4176 for (
unsigned i = 0; i != NumElts; ++i) {
4177 if (!DemandedElts[i])
4184 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
4191 const APInt &DemandedElts,
4197 assert(Result > 0 &&
"At least one sign bit needs to be present!");
4209 const APInt &DemandedElts,
4211 Type *Ty = V->getType();
4217 FVTy->getNumElements() == DemandedElts.
getBitWidth() &&
4218 "DemandedElt width should equal the fixed vector number of elements");
4221 "DemandedElt width should be 1 for scalars");
4235 unsigned FirstAnswer = 1;
4246 case Instruction::BitCast: {
4247 Value *Src = U->getOperand(0);
4248 Type *SrcTy = Src->getType();
4252 if (!SrcTy->isIntOrIntVectorTy())
4258 if ((SrcBits % TyBits) != 0)
4271 case Instruction::SExt:
4272 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
4276 case Instruction::SDiv: {
4277 const APInt *Denominator;
4290 return std::min(TyBits, NumBits + Denominator->
logBase2());
4295 case Instruction::SRem: {
4298 const APInt *Denominator;
4319 unsigned ResBits = TyBits - Denominator->
ceilLogBase2();
4320 Tmp = std::max(Tmp, ResBits);
4326 case Instruction::AShr: {
4331 if (ShAmt->
uge(TyBits))
4334 Tmp += ShAmtLimited;
4335 if (Tmp > TyBits) Tmp = TyBits;
4339 case Instruction::Shl: {
4344 if (ShAmt->
uge(TyBits))
4349 ShAmt->
uge(TyBits -
X->getType()->getScalarSizeInBits())) {
4351 Tmp += TyBits -
X->getType()->getScalarSizeInBits();
4355 if (ShAmt->
uge(Tmp))
4362 case Instruction::And:
4363 case Instruction::Or:
4364 case Instruction::Xor:
4369 FirstAnswer = std::min(Tmp, Tmp2);
4376 case Instruction::Select: {
4380 const APInt *CLow, *CHigh;
4388 return std::min(Tmp, Tmp2);
4391 case Instruction::Add:
4395 if (Tmp == 1)
break;
4399 if (CRHS->isAllOnesValue()) {
4405 if ((Known.
Zero | 1).isAllOnes())
4417 return std::min(Tmp, Tmp2) - 1;
4419 case Instruction::Sub:
4426 if (CLHS->isNullValue()) {
4431 if ((Known.
Zero | 1).isAllOnes())
4448 return std::min(Tmp, Tmp2) - 1;
4450 case Instruction::Mul: {
4453 unsigned SignBitsOp0 =
4455 if (SignBitsOp0 == 1)
4457 unsigned SignBitsOp1 =
4459 if (SignBitsOp1 == 1)
4461 unsigned OutValidBits =
4462 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
4463 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
4466 case Instruction::PHI: {
4470 if (NumIncomingValues > 4)
break;
4472 if (NumIncomingValues == 0)
break;
4478 for (
unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
4479 if (Tmp == 1)
return Tmp;
4482 DemandedElts, RecQ,
Depth + 1));
4487 case Instruction::Trunc: {
4492 unsigned OperandTyBits = U->getOperand(0)->getType()->getScalarSizeInBits();
4493 if (Tmp > (OperandTyBits - TyBits))
4494 return Tmp - (OperandTyBits - TyBits);
4499 case Instruction::ExtractElement:
4506 case Instruction::ShuffleVector: {
4514 APInt DemandedLHS, DemandedRHS;
4519 Tmp = std::numeric_limits<unsigned>::max();
4520 if (!!DemandedLHS) {
4521 const Value *
LHS = Shuf->getOperand(0);
4528 if (!!DemandedRHS) {
4529 const Value *
RHS = Shuf->getOperand(1);
4531 Tmp = std::min(Tmp, Tmp2);
4537 assert(Tmp <= TyBits &&
"Failed to determine minimum sign bits");
4540 case Instruction::Call: {
4542 switch (
II->getIntrinsicID()) {
4545 case Intrinsic::abs:
4553 case Intrinsic::smin:
4554 case Intrinsic::smax: {
4555 const APInt *CLow, *CHigh;
4570 if (
unsigned VecSignBits =
4588 if (
F->isIntrinsic())
4589 return F->getIntrinsicID();
4595 if (
F->hasLocalLinkage() || !TLI || !TLI->
getLibFunc(CB, Func) ||
4605 return Intrinsic::sin;
4609 return Intrinsic::cos;
4613 return Intrinsic::tan;
4617 return Intrinsic::asin;
4621 return Intrinsic::acos;
4625 return Intrinsic::atan;
4627 case LibFunc_atan2f:
4628 case LibFunc_atan2l:
4629 return Intrinsic::atan2;
4633 return Intrinsic::sinh;
4637 return Intrinsic::cosh;
4641 return Intrinsic::tanh;
4645 return Intrinsic::exp;
4649 return Intrinsic::exp2;
4651 case LibFunc_exp10f:
4652 case LibFunc_exp10l:
4653 return Intrinsic::exp10;
4657 return Intrinsic::log;
4659 case LibFunc_log10f:
4660 case LibFunc_log10l:
4661 return Intrinsic::log10;
4665 return Intrinsic::log2;
4669 return Intrinsic::fabs;
4673 return Intrinsic::minnum;
4677 return Intrinsic::maxnum;
4678 case LibFunc_copysign:
4679 case LibFunc_copysignf:
4680 case LibFunc_copysignl:
4681 return Intrinsic::copysign;
4683 case LibFunc_floorf:
4684 case LibFunc_floorl:
4685 return Intrinsic::floor;
4689 return Intrinsic::ceil;
4691 case LibFunc_truncf:
4692 case LibFunc_truncl:
4693 return Intrinsic::trunc;
4697 return Intrinsic::rint;
4698 case LibFunc_nearbyint:
4699 case LibFunc_nearbyintf:
4700 case LibFunc_nearbyintl:
4701 return Intrinsic::nearbyint;
4703 case LibFunc_roundf:
4704 case LibFunc_roundl:
4705 return Intrinsic::round;
4706 case LibFunc_roundeven:
4707 case LibFunc_roundevenf:
4708 case LibFunc_roundevenl:
4709 return Intrinsic::roundeven;
4713 return Intrinsic::pow;
4717 return Intrinsic::sqrt;
4724 Ty = Ty->getScalarType();
4733 bool &TrueIfSigned) {
4736 TrueIfSigned =
true;
4737 return RHS.isZero();
4739 TrueIfSigned =
true;
4740 return RHS.isAllOnes();
4742 TrueIfSigned =
false;
4743 return RHS.isAllOnes();
4745 TrueIfSigned =
false;
4746 return RHS.isZero();
4749 TrueIfSigned =
true;
4750 return RHS.isMaxSignedValue();
4753 TrueIfSigned =
true;
4754 return RHS.isMinSignedValue();
4757 TrueIfSigned =
false;
4758 return RHS.isMinSignedValue();
4761 TrueIfSigned =
false;
4762 return RHS.isMaxSignedValue();
4772 unsigned Depth = 0) {
4797 KnownFromContext.
knownNot(~(CondIsTrue ? MaskIfTrue : MaskIfFalse));
4801 KnownFromContext.
knownNot(CondIsTrue ? ~Mask : Mask);
4807 if (TrueIfSigned == CondIsTrue)
4823 return KnownFromContext;
4843 return KnownFromContext;
4853 "Got assumption for the wrong function!");
4854 assert(
I->getIntrinsicID() == Intrinsic::assume &&
4855 "must be an assume intrinsic");
4861 true, Q.
CxtI, KnownFromContext);
4864 return KnownFromContext;
4875 APInt DemandedElts =
4881 const APInt &DemandedElts,
4886 if ((InterestedClasses &
4892 KnownSrc, Q,
Depth + 1);
4907 assert(Known.
isUnknown() &&
"should not be called with known information");
4909 if (!DemandedElts) {
4919 Known.
SignBit = CFP->isNegative();
4940 bool SignBitAllZero =
true;
4941 bool SignBitAllOne =
true;
4944 unsigned NumElts = VFVTy->getNumElements();
4945 for (
unsigned i = 0; i != NumElts; ++i) {
4946 if (!DemandedElts[i])
4962 const APFloat &
C = CElt->getValueAPF();
4965 SignBitAllZero =
false;
4967 SignBitAllOne =
false;
4969 if (SignBitAllOne != SignBitAllZero)
4970 Known.
SignBit = SignBitAllOne;
4976 KnownNotFromFlags |= CB->getRetNoFPClass();
4978 KnownNotFromFlags |= Arg->getNoFPClass();
4982 if (FPOp->hasNoNaNs())
4983 KnownNotFromFlags |=
fcNan;
4984 if (FPOp->hasNoInfs())
4985 KnownNotFromFlags |=
fcInf;
4989 KnownNotFromFlags |= ~AssumedClasses.KnownFPClasses;
4993 InterestedClasses &= ~KnownNotFromFlags;
5012 const unsigned Opc =
Op->getOpcode();
5014 case Instruction::FNeg: {
5016 Known, Q,
Depth + 1);
5020 case Instruction::Select: {
5028 Value *TestedValue =
nullptr;
5034 Value *CmpLHS, *CmpRHS;
5041 bool LookThroughFAbsFNeg = CmpLHS !=
LHS && CmpLHS !=
RHS;
5042 std::tie(TestedValue, MaskIfTrue, MaskIfFalse) =
5048 MaskIfTrue = TestedMask;
5049 MaskIfFalse = ~TestedMask;
5052 if (TestedValue ==
LHS) {
5054 FilterLHS = MaskIfTrue;
5055 }
else if (TestedValue ==
RHS) {
5057 FilterRHS = MaskIfFalse;
5066 Known2, Q,
Depth + 1);
5072 case Instruction::Call: {
5076 case Intrinsic::fabs: {
5081 InterestedClasses, Known, Q,
Depth + 1);
5087 case Intrinsic::copysign: {
5091 Known, Q,
Depth + 1);
5093 KnownSign, Q,
Depth + 1);
5097 case Intrinsic::fma:
5098 case Intrinsic::fmuladd: {
5102 if (
II->getArgOperand(0) !=
II->getArgOperand(1))
5111 KnownAddend, Q,
Depth + 1);
5117 case Intrinsic::sqrt:
5118 case Intrinsic::experimental_constrained_sqrt: {
5121 if (InterestedClasses &
fcNan)
5125 KnownSrc, Q,
Depth + 1);
5143 II->getType()->getScalarType()->getFltSemantics();
5152 case Intrinsic::sin:
5153 case Intrinsic::cos: {
5157 KnownSrc, Q,
Depth + 1);
5163 case Intrinsic::maxnum:
5164 case Intrinsic::minnum:
5165 case Intrinsic::minimum:
5166 case Intrinsic::maximum:
5167 case Intrinsic::minimumnum:
5168 case Intrinsic::maximumnum: {
5171 KnownLHS, Q,
Depth + 1);
5173 KnownRHS, Q,
Depth + 1);
5176 Known = KnownLHS | KnownRHS;
5180 (IID == Intrinsic::minnum || IID == Intrinsic::maxnum ||
5181 IID == Intrinsic::minimumnum || IID == Intrinsic::maximumnum))
5184 if (IID == Intrinsic::maxnum || IID == Intrinsic::maximumnum) {
5192 }
else if (IID == Intrinsic::maximum) {
5198 }
else if (IID == Intrinsic::minnum || IID == Intrinsic::minimumnum) {
5206 }
else if (IID == Intrinsic::minimum) {
5229 II->getType()->getScalarType()->getFltSemantics());
5241 }
else if ((IID == Intrinsic::maximum || IID == Intrinsic::minimum ||
5242 IID == Intrinsic::maximumnum ||
5243 IID == Intrinsic::minimumnum) ||
5251 KnownLHS.
SignBit = std::nullopt;
5253 KnownRHS.
SignBit = std::nullopt;
5254 if ((IID == Intrinsic::maximum || IID == Intrinsic::maximumnum ||
5255 IID == Intrinsic::maxnum) &&
5258 else if ((IID == Intrinsic::minimum || IID == Intrinsic::minimumnum ||
5259 IID == Intrinsic::minnum) &&
5266 case Intrinsic::canonicalize: {
5269 KnownSrc, Q,
Depth + 1);
5293 II->getType()->getScalarType()->getFltSemantics();
5313 case Intrinsic::vector_reduce_fmax:
5314 case Intrinsic::vector_reduce_fmin:
5315 case Intrinsic::vector_reduce_fmaximum:
5316 case Intrinsic::vector_reduce_fminimum: {
5320 InterestedClasses, Q,
Depth + 1);
5327 case Intrinsic::vector_reverse:
5330 II->getFastMathFlags(), InterestedClasses, Q,
Depth + 1);
5332 case Intrinsic::trunc:
5333 case Intrinsic::floor:
5334 case Intrinsic::ceil:
5335 case Intrinsic::rint:
5336 case Intrinsic::nearbyint:
5337 case Intrinsic::round:
5338 case Intrinsic::roundeven: {
5346 KnownSrc, Q,
Depth + 1);
5355 if (IID == Intrinsic::trunc || !V->getType()->isMultiUnitFPType()) {
5370 case Intrinsic::exp:
5371 case Intrinsic::exp2:
5372 case Intrinsic::exp10: {
5379 KnownSrc, Q,
Depth + 1);
5387 case Intrinsic::fptrunc_round: {
5392 case Intrinsic::log:
5393 case Intrinsic::log10:
5394 case Intrinsic::log2:
5395 case Intrinsic::experimental_constrained_log:
5396 case Intrinsic::experimental_constrained_log10:
5397 case Intrinsic::experimental_constrained_log2: {
5413 KnownSrc, Q,
Depth + 1);
5427 II->getType()->getScalarType()->getFltSemantics();
5435 case Intrinsic::powi: {
5439 const Value *Exp =
II->getArgOperand(1);
5440 Type *ExpTy = Exp->getType();
5444 ExponentKnownBits, Q,
Depth + 1);
5446 if (ExponentKnownBits.
Zero[0]) {
5461 KnownSrc, Q,
Depth + 1);
5466 case Intrinsic::ldexp: {
5469 KnownSrc, Q,
Depth + 1);
5485 if ((InterestedClasses & ExpInfoMask) ==
fcNone)
5491 II->getType()->getScalarType()->getFltSemantics();
5493 const Value *ExpArg =
II->getArgOperand(1);
5497 const int MantissaBits = Precision - 1;
5504 II->getType()->getScalarType()->getFltSemantics();
5505 if (ConstVal && ConstVal->
isZero()) {
5530 case Intrinsic::arithmetic_fence: {
5532 Known, Q,
Depth + 1);
5535 case Intrinsic::experimental_constrained_sitofp:
5536 case Intrinsic::experimental_constrained_uitofp:
5546 if (IID == Intrinsic::experimental_constrained_uitofp)
5557 case Instruction::FAdd:
5558 case Instruction::FSub: {
5561 Op->getOpcode() == Instruction::FAdd &&
5563 bool WantNaN = (InterestedClasses &
fcNan) !=
fcNone;
5566 if (!WantNaN && !WantNegative && !WantNegZero)
5572 if (InterestedClasses &
fcNan)
5573 InterestedSrcs |=
fcInf;
5575 KnownRHS, Q,
Depth + 1);
5579 WantNegZero ||
Opc == Instruction::FSub) {
5584 KnownLHS, Q,
Depth + 1);
5594 if (
Op->getOpcode() == Instruction::FAdd) {
5602 Op->getType()->getScalarType()->getFltSemantics();
5616 Op->getType()->getScalarType()->getFltSemantics();
5630 case Instruction::FMul: {
5632 if (
Op->getOperand(0) ==
Op->getOperand(1))
5669 Type *OpTy =
Op->getType()->getScalarType();
5681 case Instruction::FDiv:
5682 case Instruction::FRem: {
5683 if (
Op->getOperand(0) ==
Op->getOperand(1)) {
5685 if (
Op->getOpcode() == Instruction::FDiv) {
5696 const bool WantNan = (InterestedClasses &
fcNan) !=
fcNone;
5698 const bool WantPositive =
5700 if (!WantNan && !WantNegative && !WantPositive)
5709 bool KnowSomethingUseful =
5712 if (KnowSomethingUseful || WantPositive) {
5718 InterestedClasses & InterestedLHS, KnownLHS, Q,
5724 Op->getType()->getScalarType()->getFltSemantics();
5726 if (
Op->getOpcode() == Instruction::FDiv) {
5765 case Instruction::FPExt: {
5768 Known, Q,
Depth + 1);
5771 Op->getType()->getScalarType()->getFltSemantics();
5773 Op->getOperand(0)->getType()->getScalarType()->getFltSemantics();
5789 case Instruction::FPTrunc: {
5794 case Instruction::SIToFP:
5795 case Instruction::UIToFP: {
5804 if (
Op->getOpcode() == Instruction::UIToFP)
5807 if (InterestedClasses &
fcInf) {
5811 int IntSize =
Op->getOperand(0)->getType()->getScalarSizeInBits();
5812 if (
Op->getOpcode() == Instruction::SIToFP)
5817 Type *FPTy =
Op->getType()->getScalarType();
5824 case Instruction::ExtractElement: {
5827 const Value *Vec =
Op->getOperand(0);
5829 APInt DemandedVecElts;
5831 unsigned NumElts = VecTy->getNumElements();
5834 if (CIdx && CIdx->getValue().ult(NumElts))
5837 DemandedVecElts =
APInt(1, 1);
5843 case Instruction::InsertElement: {
5847 const Value *Vec =
Op->getOperand(0);
5848 const Value *Elt =
Op->getOperand(1);
5851 APInt DemandedVecElts = DemandedElts;
5852 bool NeedsElt =
true;
5854 if (CIdx && CIdx->getValue().ult(NumElts)) {
5855 DemandedVecElts.
clearBit(CIdx->getZExtValue());
5856 NeedsElt = DemandedElts[CIdx->getZExtValue()];
5870 if (!DemandedVecElts.
isZero()) {
5879 case Instruction::ShuffleVector: {
5882 APInt DemandedLHS, DemandedRHS;
5887 if (!!DemandedLHS) {
5888 const Value *
LHS = Shuf->getOperand(0);
5899 if (!!DemandedRHS) {
5901 const Value *
RHS = Shuf->getOperand(1);
5909 case Instruction::ExtractValue: {
5916 switch (
II->getIntrinsicID()) {
5917 case Intrinsic::frexp: {
5922 InterestedClasses, KnownSrc, Q,
Depth + 1);
5926 Op->getType()->getScalarType()->getFltSemantics();
5961 case Instruction::PHI: {
5964 if (
P->getNumIncomingValues() == 0)
5971 if (
Depth < PhiRecursionLimit) {
5978 for (
const Use &U :
P->operands()) {
6008 case Instruction::BitCast: {
6011 !Src->getType()->isIntOrIntVectorTy())
6014 const Type *Ty =
Op->getType()->getScalarType();
6015 KnownBits Bits(Ty->getScalarSizeInBits());
6019 if (Bits.isNonNegative())
6021 else if (Bits.isNegative())
6024 if (Ty->isIEEELikeFPTy()) {
6034 else if (!
APFloat(Ty->getFltSemantics(), ~Bits.Zero).
isNaN())
6041 InfKB.Zero.clearSignBit();
6043 assert(!InfResult.value());
6045 }
else if (Bits == InfKB) {
6053 ZeroKB.Zero.clearSignBit();
6055 assert(!ZeroResult.value());
6057 }
else if (Bits == ZeroKB) {
6070 const APInt &DemandedElts,
6077 return KnownClasses;
6103 InterestedClasses &=
~fcNan;
6105 InterestedClasses &=
~fcInf;
6111 Result.KnownFPClasses &=
~fcNan;
6113 Result.KnownFPClasses &=
~fcInf;
6122 APInt DemandedElts =
6176 if (FPOp->hasNoSignedZeros())
6180 switch (
User->getOpcode()) {
6181 case Instruction::FPToSI:
6182 case Instruction::FPToUI:
6184 case Instruction::FCmp:
6187 case Instruction::Call:
6189 switch (
II->getIntrinsicID()) {
6190 case Intrinsic::fabs:
6192 case Intrinsic::copysign:
6193 return U.getOperandNo() == 0;
6194 case Intrinsic::is_fpclass:
6195 case Intrinsic::vp_is_fpclass: {
6215 if (FPOp->hasNoNaNs())
6219 switch (
User->getOpcode()) {
6220 case Instruction::FPToSI:
6221 case Instruction::FPToUI:
6224 case Instruction::FAdd:
6225 case Instruction::FSub:
6226 case Instruction::FMul:
6227 case Instruction::FDiv:
6228 case Instruction::FRem:
6229 case Instruction::FPTrunc:
6230 case Instruction::FPExt:
6231 case Instruction::FCmp:
6234 case Instruction::FNeg:
6235 case Instruction::Select:
6236 case Instruction::PHI:
6238 case Instruction::Ret:
6239 return User->getFunction()->getAttributes().getRetNoFPClass() &
6241 case Instruction::Call:
6242 case Instruction::Invoke: {
6244 switch (
II->getIntrinsicID()) {
6245 case Intrinsic::fabs:
6247 case Intrinsic::copysign:
6248 return U.getOperandNo() == 0;
6250 case Intrinsic::maxnum:
6251 case Intrinsic::minnum:
6252 case Intrinsic::maximum:
6253 case Intrinsic::minimum:
6254 case Intrinsic::maximumnum:
6255 case Intrinsic::minimumnum:
6256 case Intrinsic::canonicalize:
6257 case Intrinsic::fma:
6258 case Intrinsic::fmuladd:
6259 case Intrinsic::sqrt:
6260 case Intrinsic::pow:
6261 case Intrinsic::powi:
6262 case Intrinsic::fptoui_sat:
6263 case Intrinsic::fptosi_sat:
6264 case Intrinsic::is_fpclass:
6265 case Intrinsic::vp_is_fpclass:
6284 if (V->getType()->isIntegerTy(8))
6295 if (
DL.getTypeStoreSize(V->getType()).isZero())
6310 if (
C->isNullValue())
6317 if (CFP->getType()->isHalfTy())
6319 else if (CFP->getType()->isFloatTy())
6321 else if (CFP->getType()->isDoubleTy())
6330 if (CI->getBitWidth() % 8 == 0) {
6331 assert(CI->getBitWidth() > 8 &&
"8 bits should be handled above!");
6332 if (!CI->getValue().isSplat(8))
6334 return ConstantInt::get(Ctx, CI->getValue().trunc(8));
6339 if (CE->getOpcode() == Instruction::IntToPtr) {
6341 unsigned BitWidth =
DL.getPointerSizeInBits(PtrTy->getAddressSpace());
6354 if (LHS == UndefInt8)
6356 if (RHS == UndefInt8)
6362 Value *Val = UndefInt8;
6363 for (
uint64_t I = 0, E = CA->getNumElements();
I != E; ++
I)
6370 Value *Val = UndefInt8;
6405 while (PrevTo != OrigTo) {
6452 unsigned IdxSkip = Idxs.
size();
6465 std::optional<BasicBlock::iterator> InsertBefore) {
6468 if (idx_range.
empty())
6471 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
6472 "Not looking at a struct or array?");
6474 "Invalid indices for type?");
6477 C =
C->getAggregateElement(idx_range[0]);
6478 if (!
C)
return nullptr;
6485 const unsigned *req_idx = idx_range.
begin();
6486 for (
const unsigned *i =
I->idx_begin(), *e =
I->idx_end();
6487 i != e; ++i, ++req_idx) {
6488 if (req_idx == idx_range.
end()) {
6518 ArrayRef(req_idx, idx_range.
end()), InsertBefore);
6527 unsigned size =
I->getNumIndices() + idx_range.
size();
6532 Idxs.
append(
I->idx_begin(),
I->idx_end());
6538 &&
"Number of indices added not correct?");
6555 assert(V &&
"V should not be null.");
6556 assert((ElementSize % 8) == 0 &&
6557 "ElementSize expected to be a multiple of the size of a byte.");
6558 unsigned ElementSizeInBytes = ElementSize / 8;
6570 APInt Off(
DL.getIndexTypeSizeInBits(V->getType()), 0);
6577 uint64_t StartIdx = Off.getLimitedValue();
6584 if ((StartIdx % ElementSizeInBytes) != 0)
6587 Offset += StartIdx / ElementSizeInBytes;
6593 uint64_t SizeInBytes =
DL.getTypeStoreSize(GVTy).getFixedValue();
6596 Slice.Array =
nullptr;
6608 Type *InitElTy = ArrayInit->getElementType();
6613 ArrayTy = ArrayInit->getType();
6618 if (ElementSize != 8)
6637 Slice.Array = Array;
6639 Slice.Length = NumElts -
Offset;
6653 if (Slice.Array ==
nullptr) {
6664 if (Slice.Length == 1) {
6676 Str = Str.
substr(Slice.Offset);
6682 Str = Str.substr(0, Str.find(
'\0'));
6695 unsigned CharSize) {
6697 V = V->stripPointerCasts();
6702 if (!PHIs.
insert(PN).second)
6707 for (
Value *IncValue : PN->incoming_values()) {
6709 if (Len == 0)
return 0;
6711 if (Len == ~0ULL)
continue;
6713 if (Len != LenSoFar && LenSoFar != ~0ULL)
6725 if (Len1 == 0)
return 0;
6727 if (Len2 == 0)
return 0;
6728 if (Len1 == ~0ULL)
return Len2;
6729 if (Len2 == ~0ULL)
return Len1;
6730 if (Len1 != Len2)
return 0;
6739 if (Slice.Array ==
nullptr)
6747 unsigned NullIndex = 0;
6748 for (
unsigned E = Slice.Length; NullIndex <
E; ++NullIndex) {
6749 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
6753 return NullIndex + 1;
6759 if (!V->getType()->isPointerTy())
6766 return Len == ~0ULL ? 1 : Len;
6771 bool MustPreserveNullness) {
6773 "getArgumentAliasingToReturnedPointer only works on nonnull calls");
6774 if (
const Value *RV =
Call->getReturnedArgOperand())
6778 Call, MustPreserveNullness))
6779 return Call->getArgOperand(0);
6785 switch (
Call->getIntrinsicID()) {
6786 case Intrinsic::launder_invariant_group:
6787 case Intrinsic::strip_invariant_group:
6788 case Intrinsic::aarch64_irg:
6789 case Intrinsic::aarch64_tagp:
6799 case Intrinsic::amdgcn_make_buffer_rsrc:
6801 case Intrinsic::ptrmask:
6802 return !MustPreserveNullness;
6803 case Intrinsic::threadlocal_address:
6806 return !
Call->getParent()->getParent()->isPresplitCoroutine();
6823 if (!PrevValue || LI->
getLoopFor(PrevValue->getParent()) != L)
6825 if (!PrevValue || LI->
getLoopFor(PrevValue->getParent()) != L)
6834 if (!L->isLoopInvariant(Load->getPointerOperand()))
6840 for (
unsigned Count = 0; MaxLookup == 0 ||
Count < MaxLookup; ++
Count) {
6842 const Value *PtrOp =
GEP->getPointerOperand();
6853 if (GA->isInterposable())
6855 V = GA->getAliasee();
6859 if (
PHI->getNumIncomingValues() == 1) {
6860 V =
PHI->getIncomingValue(0);
6881 assert(V->getType()->isPointerTy() &&
"Unexpected operand type!");
6888 const LoopInfo *LI,
unsigned MaxLookup) {
6896 if (!Visited.
insert(
P).second)
6925 }
while (!Worklist.
empty());
6929 const unsigned MaxVisited = 8;
6934 const Value *Object =
nullptr;
6944 if (!Visited.
insert(
P).second)
6947 if (Visited.
size() == MaxVisited)
6963 else if (Object !=
P)
6965 }
while (!Worklist.
empty());
6967 return Object ? Object : FirstObject;
6977 if (U->getOpcode() == Instruction::PtrToInt)
6978 return U->getOperand(0);
6985 if (U->getOpcode() != Instruction::Add ||
6990 V = U->getOperand(0);
6994 assert(V->getType()->isIntegerTy() &&
"Unexpected operand type!");
7011 for (
const Value *V : Objs) {
7012 if (!Visited.
insert(V).second)
7017 if (O->getType()->isPointerTy()) {
7030 }
while (!Working.
empty());
7039 auto AddWork = [&](
Value *V) {
7040 if (Visited.
insert(V).second)
7050 if (Result && Result != AI)
7054 AddWork(CI->getOperand(0));
7056 for (
Value *IncValue : PN->incoming_values())
7059 AddWork(
SI->getTrueValue());
7060 AddWork(
SI->getFalseValue());
7062 if (OffsetZero && !
GEP->hasAllZeroIndices())
7064 AddWork(
GEP->getPointerOperand());
7066 Value *Returned = CB->getReturnedArgOperand();
7074 }
while (!Worklist.
empty());
7080 const Value *V,
bool AllowLifetime,
bool AllowDroppable) {
7086 if (AllowLifetime &&
II->isLifetimeStartOrEnd())
7089 if (AllowDroppable &&
II->isDroppable())
7110 return (!Shuffle || Shuffle->isSelect()) &&
7117 bool IgnoreUBImplyingAttrs) {
7119 AC, DT, TLI, UseVariableInfo,
7120 IgnoreUBImplyingAttrs);
7126 bool UseVariableInfo,
bool IgnoreUBImplyingAttrs) {
7130 auto hasEqualReturnAndLeadingOperandTypes =
7131 [](
const Instruction *Inst,
unsigned NumLeadingOperands) {
7135 for (
unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp)
7141 hasEqualReturnAndLeadingOperandTypes(Inst, 2));
7143 hasEqualReturnAndLeadingOperandTypes(Inst, 1));
7150 case Instruction::UDiv:
7151 case Instruction::URem: {
7158 case Instruction::SDiv:
7159 case Instruction::SRem: {
7161 const APInt *Numerator, *Denominator;
7165 if (*Denominator == 0)
7177 case Instruction::Load: {
7178 if (!UseVariableInfo)
7191 case Instruction::Call: {
7195 const Function *Callee = CI->getCalledFunction();
7199 if (!Callee || !Callee->isSpeculatable())
7203 return IgnoreUBImplyingAttrs || !CI->hasUBImplyingAttrs();
7205 case Instruction::VAArg:
7206 case Instruction::Alloca:
7207 case Instruction::Invoke:
7208 case Instruction::CallBr:
7209 case Instruction::PHI:
7210 case Instruction::Store:
7211 case Instruction::Ret:
7212 case Instruction::Br:
7213 case Instruction::IndirectBr:
7214 case Instruction::Switch:
7215 case Instruction::Unreachable:
7216 case Instruction::Fence:
7217 case Instruction::AtomicRMW:
7218 case Instruction::AtomicCmpXchg:
7219 case Instruction::LandingPad:
7220 case Instruction::Resume:
7221 case Instruction::CatchSwitch:
7222 case Instruction::CatchPad:
7223 case Instruction::CatchRet:
7224 case Instruction::CleanupPad:
7225 case Instruction::CleanupRet:
7231 if (
I.mayReadOrWriteMemory())
7299 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
7344 if (
Add &&
Add->hasNoSignedWrap()) {
7383 bool LHSOrRHSKnownNonNegative =
7385 bool LHSOrRHSKnownNegative =
7387 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
7390 if ((AddKnown.
isNonNegative() && LHSOrRHSKnownNonNegative) ||
7391 (AddKnown.
isNegative() && LHSOrRHSKnownNegative))
7466 assert(EVI->getNumIndices() == 1 &&
"Obvious from CI's type");
7468 if (EVI->getIndices()[0] == 0)
7471 assert(EVI->getIndices()[0] == 1 &&
"Obvious from CI's type");
7473 for (
const auto *U : EVI->users())
7475 assert(
B->isConditional() &&
"How else is it using an i1?");
7486 auto AllUsesGuardedByBranch = [&](
const BranchInst *BI) {
7492 for (
const auto *Result :
Results) {
7495 if (DT.
dominates(NoWrapEdge, Result->getParent()))
7498 for (
const auto &RU : Result->uses())
7506 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
7518 unsigned NumElts = FVTy->getNumElements();
7519 for (
unsigned i = 0; i < NumElts; ++i)
7520 ShiftAmounts.
push_back(
C->getAggregateElement(i));
7528 return CI && CI->getValue().ult(
C->getType()->getIntegerBitWidth());
7549 bool ConsiderFlagsAndMetadata) {
7552 Op->hasPoisonGeneratingAnnotations())
7555 unsigned Opcode =
Op->getOpcode();
7559 case Instruction::Shl:
7560 case Instruction::AShr:
7561 case Instruction::LShr:
7563 case Instruction::FPToSI:
7564 case Instruction::FPToUI:
7568 case Instruction::Call:
7570 switch (
II->getIntrinsicID()) {
7572 case Intrinsic::ctlz:
7573 case Intrinsic::cttz:
7574 case Intrinsic::abs:
7578 case Intrinsic::sshl_sat:
7579 case Intrinsic::ushl_sat:
7587 case Instruction::CallBr:
7588 case Instruction::Invoke: {
7590 return !CB->hasRetAttr(Attribute::NoUndef) &&
7591 !CB->hasFnAttr(Attribute::NoCreateUndefOrPoison);
7593 case Instruction::InsertElement:
7594 case Instruction::ExtractElement: {
7597 unsigned IdxOp =
Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
7601 Idx->getValue().uge(VTy->getElementCount().getKnownMinValue());
7604 case Instruction::ShuffleVector: {
7610 case Instruction::FNeg:
7611 case Instruction::PHI:
7612 case Instruction::Select:
7613 case Instruction::ExtractValue:
7614 case Instruction::InsertValue:
7615 case Instruction::Freeze:
7616 case Instruction::ICmp:
7617 case Instruction::FCmp:
7618 case Instruction::GetElementPtr:
7620 case Instruction::AddrSpaceCast:
7635 bool ConsiderFlagsAndMetadata) {
7637 ConsiderFlagsAndMetadata);
7642 ConsiderFlagsAndMetadata);
7647 if (ValAssumedPoison == V)
7650 const unsigned MaxDepth = 2;
7651 if (
Depth >= MaxDepth)
7656 return propagatesPoison(Op) &&
7657 directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
7681 const unsigned MaxDepth = 2;
7682 if (
Depth >= MaxDepth)
7688 return impliesPoison(Op, V, Depth + 1);
7695 return ::impliesPoison(ValAssumedPoison, V, 0);
7710 if (
A->hasAttribute(Attribute::NoUndef) ||
7711 A->hasAttribute(Attribute::Dereferenceable) ||
7712 A->hasAttribute(Attribute::DereferenceableOrNull))
7727 if (
C->getType()->isVectorTy()) {
7730 if (
Constant *SplatC =
C->getSplatValue())
7738 return !
C->containsConstantExpression();
7751 auto *StrippedV = V->stripPointerCastsSameRepresentation();
7756 auto OpCheck = [&](
const Value *V) {
7767 if (CB->hasRetAttr(Attribute::NoUndef) ||
7768 CB->hasRetAttr(Attribute::Dereferenceable) ||
7769 CB->hasRetAttr(Attribute::DereferenceableOrNull))
7776 unsigned Num = PN->getNumIncomingValues();
7777 bool IsWellDefined =
true;
7778 for (
unsigned i = 0; i < Num; ++i) {
7779 if (PN == PN->getIncomingValue(i))
7781 auto *TI = PN->getIncomingBlock(i)->getTerminator();
7783 DT,
Depth + 1, Kind)) {
7784 IsWellDefined =
false;
7795 }
else if (
all_of(Opr->operands(), OpCheck))
7801 if (
I->hasMetadata(LLVMContext::MD_noundef) ||
7802 I->hasMetadata(LLVMContext::MD_dereferenceable) ||
7803 I->hasMetadata(LLVMContext::MD_dereferenceable_or_null))
7823 auto *Dominator = DNode->
getIDom();
7828 auto *TI = Dominator->getBlock()->getTerminator();
7832 if (BI->isConditional())
7833 Cond = BI->getCondition();
7835 Cond =
SI->getCondition();
7844 if (
any_of(Opr->operands(), [V](
const Use &U) {
7845 return V == U && propagatesPoison(U);
7851 Dominator = Dominator->getIDom();
7864 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT,
Depth,
7871 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT,
Depth,
7878 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT,
Depth,
7902 while (!Worklist.
empty()) {
7911 if (
I != Root && !
any_of(
I->operands(), [&KnownPoison](
const Use &U) {
7912 return KnownPoison.contains(U) && propagatesPoison(U);
7916 if (KnownPoison.
insert(
I).second)
7928 return ::computeOverflowForSignedAdd(
Add->getOperand(0),
Add->getOperand(1),
7936 return ::computeOverflowForSignedAdd(LHS, RHS,
nullptr, SQ);
7968 return !
I->mayThrow() &&
I->willReturn();
7982 unsigned ScanLimit) {
7989 assert(ScanLimit &&
"scan limit must be non-zero");
7991 if (--ScanLimit == 0)
8005 if (
I->getParent() != L->getHeader())
return false;
8008 if (&LI ==
I)
return true;
8011 llvm_unreachable(
"Instruction not contained in its own parent basic block.");
8017 case Intrinsic::sadd_with_overflow:
8018 case Intrinsic::ssub_with_overflow:
8019 case Intrinsic::smul_with_overflow:
8020 case Intrinsic::uadd_with_overflow:
8021 case Intrinsic::usub_with_overflow:
8022 case Intrinsic::umul_with_overflow:
8027 case Intrinsic::ctpop:
8028 case Intrinsic::ctlz:
8029 case Intrinsic::cttz:
8030 case Intrinsic::abs:
8031 case Intrinsic::smax:
8032 case Intrinsic::smin:
8033 case Intrinsic::umax:
8034 case Intrinsic::umin:
8035 case Intrinsic::scmp:
8036 case Intrinsic::is_fpclass:
8037 case Intrinsic::ptrmask:
8038 case Intrinsic::ucmp:
8039 case Intrinsic::bitreverse:
8040 case Intrinsic::bswap:
8041 case Intrinsic::sadd_sat:
8042 case Intrinsic::ssub_sat:
8043 case Intrinsic::sshl_sat:
8044 case Intrinsic::uadd_sat:
8045 case Intrinsic::usub_sat:
8046 case Intrinsic::ushl_sat:
8047 case Intrinsic::smul_fix:
8048 case Intrinsic::smul_fix_sat:
8049 case Intrinsic::umul_fix:
8050 case Intrinsic::umul_fix_sat:
8051 case Intrinsic::pow:
8052 case Intrinsic::powi:
8053 case Intrinsic::sin:
8054 case Intrinsic::sinh:
8055 case Intrinsic::cos:
8056 case Intrinsic::cosh:
8057 case Intrinsic::sincos:
8058 case Intrinsic::sincospi:
8059 case Intrinsic::tan:
8060 case Intrinsic::tanh:
8061 case Intrinsic::asin:
8062 case Intrinsic::acos:
8063 case Intrinsic::atan:
8064 case Intrinsic::atan2:
8065 case Intrinsic::canonicalize:
8066 case Intrinsic::sqrt:
8067 case Intrinsic::exp:
8068 case Intrinsic::exp2:
8069 case Intrinsic::exp10:
8070 case Intrinsic::log:
8071 case Intrinsic::log2:
8072 case Intrinsic::log10:
8073 case Intrinsic::modf:
8074 case Intrinsic::floor:
8075 case Intrinsic::ceil:
8076 case Intrinsic::trunc:
8077 case Intrinsic::rint:
8078 case Intrinsic::nearbyint:
8079 case Intrinsic::round:
8080 case Intrinsic::roundeven:
8081 case Intrinsic::lrint:
8082 case Intrinsic::llrint:
8091 switch (
I->getOpcode()) {
8092 case Instruction::Freeze:
8093 case Instruction::PHI:
8094 case Instruction::Invoke:
8096 case Instruction::Select:
8098 case Instruction::Call:
8102 case Instruction::ICmp:
8103 case Instruction::FCmp:
8104 case Instruction::GetElementPtr:
8118template <
typename CallableT>
8120 const CallableT &Handle) {
8121 switch (
I->getOpcode()) {
8122 case Instruction::Store:
8127 case Instruction::Load:
8134 case Instruction::AtomicCmpXchg:
8139 case Instruction::AtomicRMW:
8144 case Instruction::Call:
8145 case Instruction::Invoke: {
8149 for (
unsigned i = 0; i < CB->
arg_size(); ++i)
8152 CB->
paramHasAttr(i, Attribute::DereferenceableOrNull)) &&
8157 case Instruction::Ret:
8158 if (
I->getFunction()->hasRetAttribute(Attribute::NoUndef) &&
8159 Handle(
I->getOperand(0)))
8162 case Instruction::Switch:
8166 case Instruction::Br: {
8168 if (BR->isConditional() && Handle(BR->getCondition()))
8180template <
typename CallableT>
8182 const CallableT &Handle) {
8185 switch (
I->getOpcode()) {
8187 case Instruction::UDiv:
8188 case Instruction::SDiv:
8189 case Instruction::URem:
8190 case Instruction::SRem:
8191 return Handle(
I->getOperand(1));
8200 I, [&](
const Value *V) {
return KnownPoison.
count(V); });
8219 if (Arg->getParent()->isDeclaration())
8222 Begin = BB->
begin();
8229 unsigned ScanLimit = 32;
8238 if (--ScanLimit == 0)
8242 return WellDefinedOp == V;
8262 if (--ScanLimit == 0)
8270 for (
const Use &
Op :
I.operands()) {
8280 if (
I.getOpcode() == Instruction::Select &&
8281 YieldsPoison.
count(
I.getOperand(1)) &&
8282 YieldsPoison.
count(
I.getOperand(2))) {
8288 if (!BB || !Visited.
insert(BB).second)
8298 return ::programUndefinedIfUndefOrPoison(Inst,
false);
8302 return ::programUndefinedIfUndefOrPoison(Inst,
true);
8313 if (!
C->getElementType()->isFloatingPointTy())
8315 for (
unsigned I = 0,
E =
C->getNumElements();
I <
E; ++
I) {
8316 if (
C->getElementAsAPFloat(
I).isNaN())
8330 return !
C->isZero();
8333 if (!
C->getElementType()->isFloatingPointTy())
8335 for (
unsigned I = 0,
E =
C->getNumElements();
I <
E; ++
I) {
8336 if (
C->getElementAsAPFloat(
I).isZero())
8359 if (CmpRHS == FalseVal) {
8403 if (CmpRHS != TrueVal) {
8442 Value *
A =
nullptr, *
B =
nullptr;
8447 Value *
C =
nullptr, *
D =
nullptr;
8449 if (L.Flavor != R.Flavor)
8501 return {L.Flavor,
SPNB_NA,
false};
8508 return {L.Flavor,
SPNB_NA,
false};
8515 return {L.Flavor,
SPNB_NA,
false};
8522 return {L.Flavor,
SPNB_NA,
false};
8538 return ConstantInt::get(V->getType(), ~(*
C));
8595 if ((CmpLHS == TrueVal &&
match(FalseVal,
m_APInt(C2))) ||
8615 assert(
X &&
Y &&
"Invalid operand");
8617 auto IsNegationOf = [&](
const Value *
X,
const Value *
Y) {
8622 if (NeedNSW && !BO->hasNoSignedWrap())
8626 if (!AllowPoison && !Zero->isNullValue())
8633 if (IsNegationOf(
X,
Y) || IsNegationOf(
Y,
X))
8660 const APInt *RHSC1, *RHSC2;
8671 return CR1.inverse() == CR2;
8705std::optional<std::pair<CmpPredicate, Constant *>>
8708 "Only for relational integer predicates.");
8710 return std::nullopt;
8716 bool WillIncrement =
8721 auto ConstantIsOk = [WillIncrement, IsSigned](
ConstantInt *
C) {
8722 return WillIncrement ? !
C->isMaxValue(IsSigned) : !
C->isMinValue(IsSigned);
8725 Constant *SafeReplacementConstant =
nullptr;
8728 if (!ConstantIsOk(CI))
8729 return std::nullopt;
8731 unsigned NumElts = FVTy->getNumElements();
8732 for (
unsigned i = 0; i != NumElts; ++i) {
8733 Constant *Elt =
C->getAggregateElement(i);
8735 return std::nullopt;
8743 if (!CI || !ConstantIsOk(CI))
8744 return std::nullopt;
8746 if (!SafeReplacementConstant)
8747 SafeReplacementConstant = CI;
8751 Value *SplatC =
C->getSplatValue();
8754 if (!CI || !ConstantIsOk(CI))
8755 return std::nullopt;
8758 return std::nullopt;
8765 if (
C->containsUndefOrPoisonElement()) {
8766 assert(SafeReplacementConstant &&
"Replacement constant not set");
8773 Constant *OneOrNegOne = ConstantInt::get(
Type, WillIncrement ? 1 : -1,
true);
8776 return std::make_pair(NewPred, NewC);
8785 bool HasMismatchedZeros =
false;
8791 Value *OutputZeroVal =
nullptr;
8794 OutputZeroVal = TrueVal;
8797 OutputZeroVal = FalseVal;
8799 if (OutputZeroVal) {
8801 HasMismatchedZeros =
true;
8802 CmpLHS = OutputZeroVal;
8805 HasMismatchedZeros =
true;
8806 CmpRHS = OutputZeroVal;
8823 if (!HasMismatchedZeros)
8834 bool Ordered =
false;
8845 if (LHSSafe && RHSSafe) {
8876 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
8887 if (TrueVal == CmpLHS && FalseVal == CmpRHS)
8893 auto MaybeSExtCmpLHS =
8897 if (
match(TrueVal, MaybeSExtCmpLHS)) {
8919 else if (
match(FalseVal, MaybeSExtCmpLHS)) {
8959 case Instruction::ZExt:
8963 case Instruction::SExt:
8967 case Instruction::Trunc:
8970 CmpConst->
getType() == SrcTy) {
8992 CastedTo = CmpConst;
8994 unsigned ExtOp = CmpI->
isSigned() ? Instruction::SExt : Instruction::ZExt;
8998 case Instruction::FPTrunc:
9001 case Instruction::FPExt:
9004 case Instruction::FPToUI:
9007 case Instruction::FPToSI:
9010 case Instruction::UIToFP:
9013 case Instruction::SIToFP:
9026 if (CastedBack && CastedBack !=
C)
9054 *CastOp = Cast1->getOpcode();
9055 Type *SrcTy = Cast1->getSrcTy();
9058 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
9059 return Cast2->getOperand(0);
9067 Value *CastedTo =
nullptr;
9068 if (*CastOp == Instruction::Trunc) {
9082 "V2 and Cast1 should be the same type.");
9101 Value *TrueVal =
SI->getTrueValue();
9102 Value *FalseVal =
SI->getFalseValue();
9105 CmpI, TrueVal, FalseVal, LHS, RHS,
9124 if (CastOp && CmpLHS->
getType() != TrueVal->getType()) {
9128 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
9130 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
9137 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
9139 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
9144 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
9163 return Intrinsic::umin;
9165 return Intrinsic::umax;
9167 return Intrinsic::smin;
9169 return Intrinsic::smax;
9185 case Intrinsic::smax:
return Intrinsic::smin;
9186 case Intrinsic::smin:
return Intrinsic::smax;
9187 case Intrinsic::umax:
return Intrinsic::umin;
9188 case Intrinsic::umin:
return Intrinsic::umax;
9191 case Intrinsic::maximum:
return Intrinsic::minimum;
9192 case Intrinsic::minimum:
return Intrinsic::maximum;
9193 case Intrinsic::maxnum:
return Intrinsic::minnum;
9194 case Intrinsic::minnum:
return Intrinsic::maxnum;
9195 case Intrinsic::maximumnum:
9196 return Intrinsic::minimumnum;
9197 case Intrinsic::minimumnum:
9198 return Intrinsic::maximumnum;
9213std::pair<Intrinsic::ID, bool>
9218 bool AllCmpSingleUse =
true;
9221 if (
all_of(VL, [&SelectPattern, &AllCmpSingleUse](
Value *
I) {
9227 SelectPattern.
Flavor != CurrentPattern.Flavor)
9229 SelectPattern = CurrentPattern;
9234 switch (SelectPattern.
Flavor) {
9236 return {Intrinsic::smin, AllCmpSingleUse};
9238 return {Intrinsic::umin, AllCmpSingleUse};
9240 return {Intrinsic::smax, AllCmpSingleUse};
9242 return {Intrinsic::umax, AllCmpSingleUse};
9244 return {Intrinsic::maxnum, AllCmpSingleUse};
9246 return {Intrinsic::minnum, AllCmpSingleUse};
9254template <
typename InstTy>
9264 for (
unsigned I = 0;
I != 2; ++
I) {
9269 if (
LHS != PN &&
RHS != PN)
9305 if (
I->arg_size() != 2 ||
I->getType() !=
I->getArgOperand(0)->getType() ||
9306 I->getType() !=
I->getArgOperand(1)->getType())
9334 return !
C->isNegative();
9346 const APInt *CLHS, *CRHS;
9349 return CLHS->
sle(*CRHS);
9387 const APInt *CLHS, *CRHS;
9390 return CLHS->
ule(*CRHS);
9399static std::optional<bool>
9404 return std::nullopt;
9411 return std::nullopt;
9418 return std::nullopt;
9425 return std::nullopt;
9432 return std::nullopt;
9439static std::optional<bool>
9445 if (CR.
icmp(Pred, RCR))
9452 return std::nullopt;
9465 return std::nullopt;
9471static std::optional<bool>
9502 const APInt *Unused;
9521 return std::nullopt;
9525 if (L0 == R0 && L1 == R1)
9558 ((
A == R0 &&
B == R1) || (
A == R1 &&
B == R0) ||
9576 return std::nullopt;
9582static std::optional<bool>
9612 if (L0 == R0 && L1 == R1) {
9613 if ((LPred & RPred) == LPred)
9615 if ((LPred & ~RPred) == LPred)
9623 if (std::optional<ConstantFPRange> DomCR =
9625 if (std::optional<ConstantFPRange> ImpliedCR =
9627 if (ImpliedCR->contains(*DomCR))
9630 if (std::optional<ConstantFPRange> ImpliedCR =
9633 if (ImpliedCR->contains(*DomCR))
9639 return std::nullopt;
9646static std::optional<bool>
9651 assert((
LHS->getOpcode() == Instruction::And ||
9652 LHS->getOpcode() == Instruction::Or ||
9653 LHS->getOpcode() == Instruction::Select) &&
9654 "Expected LHS to be 'and', 'or', or 'select'.");
9661 const Value *ALHS, *ARHS;
9666 ALHS, RHSPred, RHSOp0, RHSOp1,
DL, LHSIsTrue,
Depth + 1))
9669 ARHS, RHSPred, RHSOp0, RHSOp1,
DL, LHSIsTrue,
Depth + 1))
9671 return std::nullopt;
9673 return std::nullopt;
9682 return std::nullopt;
9687 return std::nullopt;
9689 assert(LHS->getType()->isIntOrIntVectorTy(1) &&
9690 "Expected integer type only!");
9694 LHSIsTrue = !LHSIsTrue;
9700 LHSCmp->getOperand(0), LHSCmp->getOperand(1),
9701 RHSPred, RHSOp0, RHSOp1,
DL, LHSIsTrue);
9705 ConstantInt::get(V->getType(), 0), RHSPred,
9706 RHSOp0, RHSOp1,
DL, LHSIsTrue);
9709 "Expected floating point type only!");
9712 LHSCmp->getOperand(1), RHSPred, RHSOp0, RHSOp1,
9720 if ((LHSI->getOpcode() == Instruction::And ||
9721 LHSI->getOpcode() == Instruction::Or ||
9722 LHSI->getOpcode() == Instruction::Select))
9726 return std::nullopt;
9731 bool LHSIsTrue,
unsigned Depth) {
9737 bool InvertRHS =
false;
9746 LHS, RHSCmp->getCmpPredicate(), RHSCmp->getOperand(0),
9747 RHSCmp->getOperand(1),
DL, LHSIsTrue,
Depth))
9748 return InvertRHS ? !*Implied : *Implied;
9749 return std::nullopt;
9753 LHS, RHSCmp->getPredicate(), RHSCmp->getOperand(0),
9754 RHSCmp->getOperand(1),
DL, LHSIsTrue,
Depth))
9755 return InvertRHS ? !*Implied : *Implied;
9756 return std::nullopt;
9762 ConstantInt::get(V->getType(), 0),
DL,
9764 return InvertRHS ? !*Implied : *Implied;
9765 return std::nullopt;
9769 return std::nullopt;
9773 const Value *RHS1, *RHS2;
9775 if (std::optional<bool> Imp =
9779 if (std::optional<bool> Imp =
9785 if (std::optional<bool> Imp =
9789 if (std::optional<bool> Imp =
9795 return std::nullopt;
9800static std::pair<Value *, bool>
9802 if (!ContextI || !ContextI->
getParent())
9803 return {
nullptr,
false};
9810 return {
nullptr,
false};
9816 return {
nullptr,
false};
9819 if (TrueBB == FalseBB)
9820 return {
nullptr,
false};
9822 assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
9823 "Predecessor block does not point to successor?");
9826 return {PredCond, TrueBB == ContextBB};
9832 assert(
Cond->getType()->isIntOrIntVectorTy(1) &&
"Condition must be bool");
9836 return std::nullopt;
9848 return std::nullopt;
9853 bool PreferSignedRange) {
9854 unsigned Width =
Lower.getBitWidth();
9857 case Instruction::Sub:
9867 if (PreferSignedRange && HasNSW && HasNUW)
9873 }
else if (HasNSW) {
9874 if (
C->isNegative()) {
9887 case Instruction::Add:
9896 if (PreferSignedRange && HasNSW && HasNUW)
9902 }
else if (HasNSW) {
9903 if (
C->isNegative()) {
9916 case Instruction::And:
9927 case Instruction::Or:
9933 case Instruction::AShr:
9939 unsigned ShiftAmount = Width - 1;
9940 if (!
C->isZero() && IIQ.
isExact(&BO))
9941 ShiftAmount =
C->countr_zero();
9942 if (
C->isNegative()) {
9945 Upper =
C->ashr(ShiftAmount) + 1;
9948 Lower =
C->ashr(ShiftAmount);
9954 case Instruction::LShr:
9960 unsigned ShiftAmount = Width - 1;
9961 if (!
C->isZero() && IIQ.
isExact(&BO))
9962 ShiftAmount =
C->countr_zero();
9963 Lower =
C->lshr(ShiftAmount);
9968 case Instruction::Shl:
9975 if (
C->isNegative()) {
9977 unsigned ShiftAmount =
C->countl_one() - 1;
9978 Lower =
C->shl(ShiftAmount);
9982 unsigned ShiftAmount =
C->countl_zero() - 1;
9984 Upper =
C->shl(ShiftAmount) + 1;
10003 case Instruction::SDiv:
10007 if (
C->isAllOnes()) {
10010 Lower = IntMin + 1;
10011 Upper = IntMax + 1;
10012 }
else if (
C->countl_zero() < Width - 1) {
10023 if (
C->isMinSignedValue()) {
10035 case Instruction::UDiv:
10045 case Instruction::SRem:
10051 if (
C->isNegative()) {
10062 case Instruction::URem:
10077 bool UseInstrInfo) {
10078 unsigned Width =
II.getType()->getScalarSizeInBits();
10080 switch (
II.getIntrinsicID()) {
10081 case Intrinsic::ctlz:
10082 case Intrinsic::cttz: {
10084 if (!UseInstrInfo || !
match(
II.getArgOperand(1),
m_One()))
10089 case Intrinsic::ctpop:
10092 APInt(Width, Width) + 1);
10093 case Intrinsic::uadd_sat:
10099 case Intrinsic::sadd_sat:
10102 if (
C->isNegative())
10113 case Intrinsic::usub_sat:
10123 case Intrinsic::ssub_sat:
10125 if (
C->isNegative())
10135 if (
C->isNegative())
10146 case Intrinsic::umin:
10147 case Intrinsic::umax:
10148 case Intrinsic::smin:
10149 case Intrinsic::smax:
10154 switch (
II.getIntrinsicID()) {
10155 case Intrinsic::umin:
10157 case Intrinsic::umax:
10159 case Intrinsic::smin:
10162 case Intrinsic::smax:
10169 case Intrinsic::abs:
10178 case Intrinsic::vscale:
10179 if (!
II.getParent() || !
II.getFunction())
10186 return ConstantRange::getFull(Width);
10191 unsigned BitWidth =
SI.getType()->getScalarSizeInBits();
10195 return ConstantRange::getFull(
BitWidth);
10218 return ConstantRange::getFull(
BitWidth);
10220 switch (R.Flavor) {
10232 return ConstantRange::getFull(
BitWidth);
10239 unsigned BitWidth =
I->getType()->getScalarSizeInBits();
10240 if (!
I->getOperand(0)->getType()->getScalarType()->isHalfTy())
10258 assert(V->getType()->isIntOrIntVectorTy() &&
"Expected integer instruction");
10261 return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
10264 return C->toConstantRange();
10266 unsigned BitWidth = V->getType()->getScalarSizeInBits();
10279 SI->getTrueValue(), ForSigned, UseInstrInfo, AC, CtxI, DT,
Depth + 1);
10281 SI->getFalseValue(), ForSigned, UseInstrInfo, AC, CtxI, DT,
Depth + 1);
10291 if (std::optional<ConstantRange>
Range =
A->getRange())
10299 if (std::optional<ConstantRange>
Range = CB->getRange())
10310 "Got assumption for the wrong function!");
10311 assert(
I->getIntrinsicID() == Intrinsic::assume &&
10312 "must be an assume intrinsic");
10316 Value *Arg =
I->getArgOperand(0);
10319 if (!Cmp || Cmp->getOperand(0) != V)
10324 UseInstrInfo, AC,
I, DT,
Depth + 1);
10346 InsertAffected(
Op);
10353 auto AddAffected = [&InsertAffected](
Value *V) {
10357 auto AddCmpOperands = [&AddAffected, IsAssume](
Value *LHS,
Value *RHS) {
10368 while (!Worklist.
empty()) {
10370 if (!Visited.
insert(V).second)
10416 AddCmpOperands(
A,
B);
10453 AddCmpOperands(
A,
B);
10481 if (BO->getOpcode() == Instruction::Add ||
10482 BO->getOpcode() == Instruction::Or) {
10484 const APInt *C1, *C2;
10503 unsigned MaxCount,
bool AllowUndefOrPoison) {
10506 auto Push = [&](
const Value *V) ->
bool {
10512 if (Constants.contains(
C))
10514 if (Constants.size() == MaxCount)
10516 Constants.insert(
C);
10521 if (Visited.
insert(Inst).second)
10529 while (!Worklist.
empty()) {
10532 case Instruction::Select:
10538 case Instruction::PHI:
10541 if (IncomingValue == CurInst)
10543 if (!Push(IncomingValue))
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Utilities for dealing with flags related to floating point properties and mode controls.
static Value * getCondition(Instruction *I)
Module.h This file contains the declarations for the Module class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
std::pair< BasicBlock *, BasicBlock * > Edge
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static SmallVector< VPValue *, 4 > getOperands(ArrayRef< VPValue * > Values, unsigned OperandIndex)
static void computeKnownFPClassFromCond(const Value *V, Value *Cond, bool CondIsTrue, const Instruction *CxtI, KnownFPClass &KnownFromContext, unsigned Depth=0)
static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero, SimplifyQuery &Q, unsigned Depth)
Try to detect a recurrence that the value of the induction variable is always a power of two (or zero...
static cl::opt< unsigned > DomConditionsMaxUses("dom-conditions-max-uses", cl::Hidden, cl::init(20))
static unsigned computeNumSignBitsVectorConstant(const Value *V, const APInt &DemandedElts, unsigned TyBits)
For vector constants, loop over the elements and find the constant with the minimum number of sign bi...
static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, const Value *RHS)
Return true if "icmp Pred LHS RHS" is always true.
static bool isModifyingBinopOfNonZero(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V1 == (binop V2, X), where X is known non-zero.
static bool isGEPKnownNonNull(const GEPOperator *GEP, const SimplifyQuery &Q, unsigned Depth)
Test whether a GEP's result is known to be non-null.
static bool isNonEqualShl(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and the shift is nuw or nsw.
static bool isKnownNonNullFromDominatingCondition(const Value *V, const Instruction *CtxI, const DominatorTree *DT)
static const Value * getUnderlyingObjectFromInt(const Value *V)
This is the function that does the work of looking through basic ptrtoint+arithmetic+inttoptr sequenc...
static bool isNonZeroMul(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, bool NSW, bool NUW, unsigned Depth)
static bool rangeMetadataExcludesValue(const MDNode *Ranges, const APInt &Value)
Does the 'Range' metadata (which must be a valid MD_range operand list) ensure that the value it's at...
static bool outputDenormalIsIEEEOrPosZero(const Function &F, const Type *Ty)
static KnownBits getKnownBitsFromAndXorOr(const Operator *I, const APInt &DemandedElts, const KnownBits &KnownLHS, const KnownBits &KnownRHS, const SimplifyQuery &Q, unsigned Depth)
static void breakSelfRecursivePHI(const Use *U, const PHINode *PHI, Value *&ValOut, Instruction *&CtxIOut, const PHINode **PhiOut=nullptr)
static bool isNonZeroSub(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, unsigned Depth)
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static void addValueAffectedByCondition(Value *V, function_ref< void(Value *)> InsertAffected)
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
static bool haveNoCommonBitsSetSpecialCases(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, APInt &Upper, const InstrInfoQuery &IIQ, bool PreferSignedRange)
static Value * lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, Instruction::CastOps *CastOp)
Helps to match a select pattern in case of a type mismatch.
static std::pair< Value *, bool > getDomPredecessorCondition(const Instruction *ContextI)
static constexpr unsigned MaxInstrsToCheckForFree
Maximum number of instructions to check between assume and context instruction.
static bool isNonZeroShift(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, const KnownBits &KnownVal, unsigned Depth)
static std::optional< bool > isImpliedCondFCmps(FCmpInst::Predicate LPred, const Value *L0, const Value *L1, FCmpInst::Predicate RPred, const Value *R0, const Value *R1, const DataLayout &DL, bool LHSIsTrue)
Return true if LHS implies RHS (expanded to its components as "R0 RPred R1") is true.
static bool isKnownNonEqualFromContext(const Value *V1, const Value *V2, const SimplifyQuery &Q, unsigned Depth)
static bool includesPoison(UndefPoisonKind Kind)
static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS)
Match clamp pattern for float types without care about NaNs or signed zeros.
static std::optional< bool > isImpliedCondICmps(CmpPredicate LPred, const Value *L0, const Value *L1, CmpPredicate RPred, const Value *R0, const Value *R1, const DataLayout &DL, bool LHSIsTrue)
Return true if LHS implies RHS (expanded to its components as "R0 RPred R1") is true.
static bool includesUndef(UndefPoisonKind Kind)
static std::optional< bool > isImpliedCondCommonOperandWithCR(CmpPredicate LPred, const ConstantRange &LCR, CmpPredicate RPred, const ConstantRange &RCR)
Return true if "icmp LPred X, LCR" implies "icmp RPred X, RCR" is true.
static ConstantRange getRangeForSelectPattern(const SelectInst &SI, const InstrInfoQuery &IIQ)
static void computeKnownBitsFromOperator(const Operator *I, const APInt &DemandedElts, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth)
static uint64_t GetStringLengthH(const Value *V, SmallPtrSetImpl< const PHINode * > &PHIs, unsigned CharSize)
If we can compute the length of the string pointed to by the specified pointer, return 'len+1'.
static void computeKnownBitsFromShiftOperator(const Operator *I, const APInt &DemandedElts, KnownBits &Known, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth, function_ref< KnownBits(const KnownBits &, const KnownBits &, bool)> KF)
Compute known bits from a shift operator, including those with a non-constant shift amount.
static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(const Value *V, bool AllowLifetime, bool AllowDroppable)
static std::optional< bool > isImpliedCondAndOr(const Instruction *LHS, CmpPredicate RHSPred, const Value *RHSOp0, const Value *RHSOp1, const DataLayout &DL, bool LHSIsTrue, unsigned Depth)
Return true if LHS implies RHS is true.
static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, const APInt *&CLow, const APInt *&CHigh)
static bool isNonZeroAdd(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, bool NSW, bool NUW, unsigned Depth)
static bool directlyImpliesPoison(const Value *ValAssumedPoison, const Value *V, unsigned Depth)
static bool isNonEqualSelect(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static bool matchTwoInputRecurrence(const PHINode *PN, InstTy *&Inst, Value *&Init, Value *&OtherOp)
static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static void computeKnownBitsFromCmp(const Value *V, CmpInst::Predicate Pred, Value *LHS, Value *RHS, KnownBits &Known, const SimplifyQuery &Q)
static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TVal, Value *FVal, unsigned Depth)
Recognize variations of: a < c ?
static void unionWithMinMaxIntrinsicClamp(const IntrinsicInst *II, KnownBits &Known)
static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper)
static bool isSameUnderlyingObjectInLoop(const PHINode *PN, const LoopInfo *LI)
PN defines a loop-variant pointer to an object.
static bool isNonEqualPointersWithRecursiveGEP(const Value *A, const Value *B, const SimplifyQuery &Q)
static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II, const APInt *&CLow, const APInt *&CHigh)
static Value * lookThroughCastConst(CmpInst *CmpI, Type *SrcTy, Constant *C, Instruction::CastOps *CastOp)
static bool handleGuaranteedWellDefinedOps(const Instruction *I, const CallableT &Handle)
Enumerates all operands of I that are guaranteed to not be undef or poison.
static void computeKnownBitsFromLerpPattern(const Value *Op0, const Value *Op1, const APInt &DemandedElts, KnownBits &KnownOut, const SimplifyQuery &Q, unsigned Depth)
Try to detect the lerp pattern: a * (b - c) + c * d where a >= 0, b >= 0, c >= 0, d >= 0,...
static KnownFPClass computeKnownFPClassFromContext(const Value *V, const SimplifyQuery &Q)
static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, bool NSW, bool NUW, const APInt &DemandedElts, KnownBits &KnownOut, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth)
static Value * getNotValue(Value *V)
If the input value is the result of a 'not' op, constant integer, or vector splat of a constant integ...
static unsigned ComputeNumSignBitsImpl(const Value *V, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return the number of times the sign bit of the register is replicated into the other bits.
static void computeKnownBitsFromICmpCond(const Value *V, ICmpInst *Cmp, KnownBits &Known, const SimplifyQuery &SQ, bool Invert)
static bool isKnownNonZeroFromOperator(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static bool matchOpWithOpEqZero(Value *Op0, Value *Op1)
static bool isNonZeroRecurrence(const PHINode *PN)
Try to detect a recurrence that monotonically increases/decreases from a non-zero starting value.
static SelectPatternResult matchClamp(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal)
Recognize variations of: CLAMP(v,l,h) ==> ((v) < (l) ?
static bool shiftAmountKnownInRange(const Value *ShiftAmount)
Shifts return poison if shiftwidth is larger than the bitwidth.
static bool isEphemeralValueOf(const Instruction *I, const Value *E)
static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, unsigned Depth)
Match non-obvious integer minimum and maximum sequences.
static KnownBits computeKnownBitsForHorizontalOperation(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth, const function_ref< KnownBits(const KnownBits &, const KnownBits &)> KnownBitsFunc)
static bool handleGuaranteedNonPoisonOps(const Instruction *I, const CallableT &Handle)
Enumerates all operands of I that are guaranteed to not be poison.
static std::optional< std::pair< Value *, Value * > > getInvertibleOperands(const Operator *Op1, const Operator *Op2)
If the pair of operators are the same invertible function, return the the operands of the function co...
static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS)
static void computeKnownBitsFromCond(const Value *V, Value *Cond, KnownBits &Known, const SimplifyQuery &SQ, bool Invert, unsigned Depth)
static bool isKnownNonZeroFromAssume(const Value *V, const SimplifyQuery &Q)
static std::optional< bool > isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, const Value *ARHS, const Value *BLHS, const Value *BRHS)
Return true if "icmp Pred BLHS BRHS" is true whenever "icmp PredALHS ARHS" is true.
static const Instruction * safeCxtI(const Value *V, const Instruction *CxtI)
static bool isNonEqualMul(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and the multiplication is nuw o...
static bool isImpliedToBeAPowerOfTwoFromCond(const Value *V, bool OrZero, const Value *Cond, bool CondIsTrue)
Return true if we can infer that V is known to be a power of 2 from dominating condition Cond (e....
static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, bool NUW, const APInt &DemandedElts, KnownBits &Known, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth)
static bool isKnownNonNaN(const Value *V, FastMathFlags FMF)
static ConstantRange getRangeForIntrinsic(const IntrinsicInst &II, bool UseInstrInfo)
static void computeKnownFPClassForFPTrunc(const Operator *Op, const APInt &DemandedElts, FPClassTest InterestedClasses, KnownFPClass &Known, const SimplifyQuery &Q, unsigned Depth)
static Value * BuildSubAggregate(Value *From, Value *To, Type *IndexedType, SmallVectorImpl< unsigned > &Idxs, unsigned IdxSkip, BasicBlock::iterator InsertBefore)
static LLVM_ABI unsigned int semanticsPrecision(const fltSemantics &)
static LLVM_ABI bool isRepresentableAsNormalIn(const fltSemantics &Src, const fltSemantics &Dst)
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
unsigned popcount() const
Count the number of bits set.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
unsigned ceilLogBase2() const
bool sgt(const APInt &RHS) const
Signed greater than comparison.
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
void clearAllBits()
Set every bit to 0.
LLVM_ABI APInt reverseBits() const
bool sle(const APInt &RHS) const
Signed less or equal comparison.
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
unsigned logBase2() const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
bool getBoolValue() const
Convert APInt to a boolean value.
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool slt(const APInt &RHS) const
Signed less than comparison.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
void clearSignBit()
Set the sign bit to 0.
an instruction to allocate memory on the stack
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
Class to represent array types.
This represents the llvm.assume intrinsic.
A cache of @llvm.assume calls within a function.
MutableArrayRef< ResultElem > assumptionsFor(const Value *V)
Access the list of assumptions which affect this value.
Functions, function parameters, and return types can have attributes to indicate how they should be t...
LLVM_ABI std::optional< unsigned > getVScaleRangeMax() const
Returns the maximum value for the vscale_range attribute or std::nullopt when unknown.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
bool isValid() const
Return true if the attribute is any kind of attribute.
LLVM_ABI bool isSingleEdge() const
Check if this is the only edge between Start and End.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
InstListType::const_iterator const_iterator
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
InstListType::iterator iterator
Instruction iterators...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
LLVM_ABI Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
BinaryOps getOpcode() const
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
bool onlyReadsMemory(unsigned OpNo) const
Value * getCalledOperand() const
Value * getArgOperand(unsigned i) const
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
This is the base class for all instructions that perform data casts.
This class is the base class for the comparison instructions.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ ICMP_ULT
unsigned less than
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ ICMP_SGE
signed greater or equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
static LLVM_ABI bool isEquality(Predicate pred)
Determine if this is an equals/not equals predicate.
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
bool isTrueWhenEqual() const
This is just a convenience.
static bool isFPPredicate(Predicate P)
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
Predicate getFlippedStrictnessPredicate() const
For predicate of kind "is X or equal to 0" returns the predicate "is X".
static bool isIntPredicate(Predicate P)
static LLVM_ABI bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
LLVM_ABI CmpInst::Predicate getPreferredSignedPredicate() const
Attempts to return a signed CmpInst::Predicate from the CmpPredicate.
CmpInst::Predicate dropSameSign() const
Drops samesign information.
bool hasSameSign() const
Query samesign information, for optimizations.
An array constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
ConstantDataSequential - A vector or array constant whose element type is a simple 1/2/4/8-byte integ...
StringRef getAsString() const
If this array is isString(), then this method returns the array as a StringRef.
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI std::optional< ConstantFPRange > makeExactFCmpRegion(FCmpInst::Predicate Pred, const APFloat &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
ConstantFP - Floating Point Values [float, double].
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This class represents a range of values.
PreferredRangeType
If represented precisely, the result of some range operations may consist of multiple disjoint ranges...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI bool isAllNegative() const
Return true if all values in this range are negative.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other?
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI bool isAllNonNegative() const
Return true if all values in this range are non-negative.
static LLVM_ABI ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred, const ConstantRange &Other)
Produce the smallest range such that all values that may satisfy the given predicate with any value c...
LLVM_ABI ConstantRange unionWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the union of this range with another range.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI OverflowResult signedAddMayOverflow(const ConstantRange &Other) const
Return whether signed add of the two ranges always/never overflows.
LLVM_ABI ConstantRange intersectWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the intersection of this range with another range.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
static ConstantRange getNonEmpty(APInt Lower, APInt Upper)
Create non-empty constant range with the given bounds.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
LLVM_ABI ConstantRange sub(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a subtraction of a value in this r...
This is an important base class in LLVM.
static LLVM_ABI Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
LLVM_ABI const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
LLVM_ABI unsigned getIndexTypeSizeInBits(Type *Ty) const
The size in bits of the index used in GEP calculation for this type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
ArrayRef< BranchInst * > conditionsFor(const Value *V) const
Access the list of branches which affect this value.
DomTreeNodeBase * getIDom() const
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
This instruction compares its operands according to the predicate given to the constructor.
Utility class for floating point operations which can have information about relaxed accuracy require...
Convenience struct for specifying and reasoning about fast-math flags.
bool noSignedZeros() const
void setNoSignedZeros(bool B=true)
void setNoNaNs(bool B=true)
const BasicBlock & getEntryBlock() const
bool hasNoSync() const
Determine if the call can synchroize with other threads.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
PointerType * getType() const
Global values are always pointers.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
Type * getValueType() const
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
This instruction compares its operands according to the predicate given to the constructor.
CmpPredicate getSwappedCmpPredicate() const
CmpPredicate getInverseCmpPredicate() const
Predicate getFlippedSignednessPredicate() const
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
static LLVM_ABI std::optional< bool > isImpliedByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2)
Determine if Pred1 implies Pred2 is true, false, or if nothing can be inferred about the implication,...
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
This instruction inserts a struct field of array element value into an aggregate value.
Value * getAggregateOperand()
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
LLVM_ABI bool comesBefore(const Instruction *Other) const
Given an instruction Other in the same basic block as this instruction, return true if this instructi...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Value * getPointerOperand()
Align getAlign() const
Return the alignment of the access that is being performed.
bool isLoopHeader(const BlockT *BB) const
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Represents a single loop in the control flow graph.
This is a utility class that provides an abstraction for the common functionality between Instruction...
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
iterator_range< const_block_iterator > blocks() const
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A udiv, sdiv, lshr, or ashr instruction, which can be marked as "exact", indicating that no bits are ...
bool isExact() const
Test whether this division is known to be exact, with zero remainder.
This class represents the LLVM 'select' instruction.
const Value * getFalseValue() const
const Value * getCondition() const
const Value * getTrueValue() const
This instruction constructs a fixed permutation of two input vectors.
VectorType * getType() const
Overload to return most specific vector type.
static LLVM_ABI void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
TypeSize getElementOffset(unsigned Idx) const
Class to represent struct types.
unsigned getNumElements() const
Random access to the elements.
Type * getElementType(unsigned N) const
Provides information about what library functions are available for the current target.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
LLVM_ABI uint64_t getArrayNumElements() const
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isIntOrPtrTy() const
Return true if this is an integer type or a pointer type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
LLVM_ABI const fltSemantics & getFltSemantics() const
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
LLVM_ABI unsigned getOperandNo() const
Return the operand # of this use in its User.
User * getUser() const
Returns the User that contains this Use.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
iterator_range< user_iterator > users()
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
const KnownBits & getKnownBits(const SimplifyQuery &Q) const
PointerType getValue() const
Represents an op.with.overflow intrinsic.
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
An efficient, type-erasing, non-owning reference to a callable.
StructType * getStructTypeOrNull() const
TypeSize getSequentialElementStride(const DataLayout &DL) const
Type * getIndexedType() const
const ParentTy * getParent() const
self_iterator getIterator()
A range adaptor for a pair of iterators.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
@ C
The default llvm calling convention, compatible with C.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrToIntSameSize_match< OpTy > m_PtrToIntSameSize(const DataLayout &DL, const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWAdd(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
auto m_LogicalOp()
Matches either L && R or L || R where L and R are arbitrary values.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
cst_pred_ty< is_power2_or_zero > m_Power2OrZero()
Match an integer or vector of 0 or power-of-2 values.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
ap_match< APFloat > m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap, true > m_c_NUWAdd(const LHS &L, const RHS &R)
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
IntrinsicID_match m_VScale()
Matches a call to llvm.vscale().
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmin_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmin_pred_ty > > m_OrdOrUnordFMin(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point minimum function.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
bind_ty< WithOverflowInst > m_WithOverflowInst(WithOverflowInst *&I)
Match a with overflow intrinsic, capturing it if we match.
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > m_c_SMin(const LHS &L, const RHS &R)
Matches an SMin with LHS and RHS in either order.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true > m_c_UMax(const LHS &L, const RHS &R)
Matches a UMax with LHS and RHS in either order.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
NoWrapTrunc_match< OpTy, TruncInst::NoUnsignedWrap > m_NUWTrunc(const OpTy &Op)
Matches trunc nuw.
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > m_c_UMin(const LHS &L, const RHS &R)
Matches a UMin with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmax_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmax_pred_ty > > m_OrdOrUnordFMax(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point maximum function.
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true > m_c_SMax(const LHS &L, const RHS &R)
Matches an SMax with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
BinOpPred_match< LHS, RHS, is_irem_op > m_IRem(const LHS &L, const RHS &R)
Matches integer remainder operations.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
class_match< BasicBlock > m_BasicBlock()
Match an arbitrary basic block value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
cst_pred_ty< is_nonpositive > m_NonPositive()
Match an integer or vector of non-positive values.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
static unsigned decodeVSEW(unsigned VSEW)
LLVM_ABI unsigned getSEWLMULRatio(unsigned SEW, VLMUL VLMul)
static constexpr unsigned RVVBitsPerBlock
initializer< Ty > init(const Ty &Val)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool haveNoCommonBitsSet(const WithCache< const Value * > &LHSCache, const WithCache< const Value * > &RHSCache, const SimplifyQuery &SQ)
Return true if LHS and RHS have no common bits set.
LLVM_ABI bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, Instruction *OnPathTo, DominatorTree *DT)
Return true if undefined behavior would provable be executed on the path to OnPathTo if Root produced...
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
LLVM_ABI bool willNotFreeBetween(const Instruction *Assume, const Instruction *CtxI)
Returns true, if no instruction between Assume and CtxI may free memory and the function is marked as...
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
LLVM_ABI KnownFPClass computeKnownFPClass(const Value *V, const APInt &DemandedElts, FPClassTest InterestedClasses, const SimplifyQuery &SQ, unsigned Depth=0)
Determine which floating-point classes are valid for V, and return them in KnownFPClass bit sets.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
LLVM_ABI bool mustTriggerUB(const Instruction *I, const SmallPtrSetImpl< const Value * > &KnownPoison)
Return true if the given instruction must trigger undefined behavior when I is executed with any oper...
LLVM_ABI bool isKnownNeverInfinity(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not an infinity or if the floating-point vector val...
LLVM_ABI void computeKnownBitsFromContext(const Value *V, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth=0)
Merge bits known from context-dependent facts into Known.
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
LLVM_ABI bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI)
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
LLVM_ABI const Value * getArgumentAliasingToReturnedPointer(const CallBase *Call, bool MustPreserveNullness)
This function returns call pointer argument that is considered the same by aliasing rules.
LLVM_ABI bool isAssumeLikeIntrinsic(const Instruction *I)
Return true if it is an intrinsic that cannot be speculated but also cannot trap.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
LLVM_ABI AllocaInst * findAllocaForValue(Value *V, bool OffsetZero=false)
Returns unique alloca where the value comes from, or nullptr.
LLVM_ABI APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth)
Return the minimum or maximum constant value for the specified integer min/max flavor and type.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isOnlyUsedInZeroComparison(const Instruction *CxtI)
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
LLVM_ABI bool getConstantStringInfo(const Value *V, StringRef &Str, bool TrimAtNul=true)
This function computes the length of a null-terminated C string pointed to by V.
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
LLVM_ABI bool onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V)
Return true if the only users of this pointer are lifetime markers or droppable instructions.
LLVM_ABI Constant * ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset)
LLVM_ABI Value * stripNullTest(Value *V)
Returns the inner value X if the expression has the form f(X) where f(X) == 0 if and only if X == 0,...
LLVM_ABI bool getUnderlyingObjectsForCodeGen(const Value *V, SmallVectorImpl< Value * > &Objects)
This is a wrapper around getUnderlyingObjects and adds support for basic ptrtoint+arithmetic+inttoptr...
LLVM_ABI std::pair< Intrinsic::ID, bool > canConvertToMinOrMaxIntrinsic(ArrayRef< Value * > VL)
Check if the values in VL are select instructions that can be converted to a min or max (vector) intr...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
LLVM_ABI bool isGuaranteedToExecuteForEveryIteration(const Instruction *I, const Loop *L)
Return true if this function can prove that the instruction I is executed for every iteration of the ...
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool mustSuppressSpeculation(const LoadInst &LI)
Return true if speculation of the given load must be suppressed to avoid ordering or interfering with...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
gep_type_iterator gep_type_end(const User *GEP)
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
LLVM_ABI CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered=false)
Return the canonical comparison predicate for the specified minimum/maximum flavor.
bool isa_and_nonnull(const Y &Val)
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI bool canIgnoreSignBitOfZero(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is zero.
LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
std::tuple< Value *, FPClassTest, FPClassTest > fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS, FPClassTest RHSClass, bool LookThroughSrc=true)
LLVM_ABI ConstantRange computeConstantRange(const Value *V, bool ForSigned, bool UseInstrInfo=true, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Determine the possible constant range of an integer or vector of integer value.
const Value * getPointerOperand(const Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
LLVM_ABI bool MaskedValueIsZero(const Value *V, const APInt &Mask, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if 'V & Mask' is known to be zero.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
LLVM_ABI bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, const DominatorTree &DT)
Returns true if the arithmetic part of the WO 's result is used only along the paths control dependen...
LLVM_ABI RetainedKnowledge getKnowledgeFromBundle(AssumeInst &Assume, const CallBase::BundleOpInfo &BOI)
This extracts the Knowledge from an element of an operand bundle.
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ, bool IsNSW=false)
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
bool isGuard(const User *U)
Returns true iff U has semantics of a guard expressed in a form of call of llvm.experimental....
LLVM_ABI SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF)
Return the inverse minimum/maximum flavor of the specified flavor.
constexpr unsigned MaxAnalysisRecursionDepth
LLVM_ABI void adjustKnownBitsForSelectArm(KnownBits &Known, Value *Cond, Value *Arm, bool Invert, const SimplifyQuery &Q, unsigned Depth=0)
Adjust Known for the given select Arm to include information from the select Cond.
LLVM_ABI bool isKnownNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be negative (i.e.
LLVM_ABI OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
SelectPatternFlavor
Specific patterns of select instructions we can match.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
@ SPF_FMAXNUM
Floating point minnum.
@ SPF_UMIN
Signed minimum.
@ SPF_UMAX
Signed maximum.
@ SPF_SMAX
Unsigned minimum.
@ SPF_FMINNUM
Unsigned maximum.
LLVM_ABI bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(const CallBase *Call, bool MustPreserveNullness)
{launder,strip}.invariant.group returns pointer that aliases its argument, and it only captures point...
LLVM_ABI bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
LLVM_ABI void getHorizDemandedEltsForFirstOperand(unsigned VectorBitWidth, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS)
Compute the demanded elements mask of horizontal binary operations.
LLVM_ABI SelectPatternResult getSelectPattern(CmpInst::Predicate Pred, SelectPatternNaNBehavior NaNBehavior=SPNB_NA, bool Ordered=false)
Determine the pattern for predicate X Pred Y ? X : Y.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool programUndefinedIfPoison(const Instruction *Inst)
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI bool matchSimpleBinaryIntrinsicRecurrence(const IntrinsicInst *I, PHINode *&P, Value *&Init, Value *&OtherOp)
Attempt to match a simple value-accumulating recurrence of the form: llvm.intrinsic....
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI bool cannotBeNegativeZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is never equal to -0.0.
LLVM_ABI bool programUndefinedIfUndefOrPoison(const Instruction *Inst)
Return true if this function can prove that if Inst is executed and yields a poison value or undef bi...
generic_gep_type_iterator<> gep_type_iterator
LLVM_ABI bool collectPossibleValues(const Value *V, SmallPtrSetImpl< const Constant * > &Constants, unsigned MaxCount, bool AllowUndefOrPoison=true)
Enumerates all possible immediate values of V and inserts them into the set Constants.
FunctionAddr VTableAddr Count
LLVM_ABI uint64_t GetStringLength(const Value *V, unsigned CharSize=8)
If we can compute the length of the string pointed to by the specified pointer, return 'len+1'.
LLVM_ABI OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI bool canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
canCreateUndefOrPoison returns true if Op can create undef or poison from non-undef & non-poison oper...
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
LLVM_ABI bool isKnownInversion(const Value *X, const Value *Y)
Return true iff:
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
LLVM_ABI RetainedKnowledge getKnowledgeValidInContext(const Value *V, ArrayRef< Attribute::AttrKind > AttrKinds, AssumptionCache &AC, const Instruction *CtxI, const DominatorTree *DT=nullptr)
Return a valid Knowledge associated to the Value V if its Attribute kind is in AttrKinds and the know...
LLVM_ABI bool isSafeToSpeculativelyExecuteWithOpcode(unsigned Opcode, const Instruction *Inst, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
This returns the same result as isSafeToSpeculativelyExecute if Opcode is the actual opcode of Inst.
LLVM_ABI bool onlyUsedByLifetimeMarkers(const Value *V)
Return true if the only users of this pointer are lifetime markers.
LLVM_ABI Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB, const TargetLibraryInfo *TLI)
Map a call instruction to an intrinsic ID.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
LLVM_ABI const Value * getUnderlyingObjectAggressive(const Value *V)
Like getUnderlyingObject(), but will try harder to find a single underlying object.
LLVM_ABI Intrinsic::ID getMinMaxIntrinsic(SelectPatternFlavor SPF)
Convert given SPF to equivalent min/max intrinsic.
LLVM_ABI SelectPatternResult matchDecomposedSelectPattern(CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, FastMathFlags FMF=FastMathFlags(), Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Determine the pattern that a select with the given compare as its predicate and given values as its t...
LLVM_ABI OverflowResult computeOverflowForSignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
LLVM_ABI bool propagatesPoison(const Use &PoisonOp)
Return true if PoisonOp's user yields poison or raises UB if its operand PoisonOp is poison.
LLVM_ABI ConstantRange computeConstantRangeIncludingKnownBits(const WithCache< const Value * > &V, bool ForSigned, const SimplifyQuery &SQ)
Combine constant ranges from computeConstantRange() and computeKnownBits().
SelectPatternNaNBehavior
Behavior when a floating point min/max is given one NaN and one non-NaN as input.
@ SPNB_RETURNS_NAN
NaN behavior not applicable.
@ SPNB_RETURNS_OTHER
Given one NaN input, returns the NaN.
@ SPNB_RETURNS_ANY
Given one NaN input, returns the non-NaN.
LLVM_ABI bool isKnownNonEqual(const Value *V1, const Value *V2, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the given values are known to be non-equal when defined.
DWARFExpression::Operation Op
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return the number of times the sign bit of the register is replicated into the other bits.
constexpr unsigned BitWidth
LLVM_ABI KnownBits analyzeKnownBitsFromAndXorOr(const Operator *I, const KnownBits &KnownLHS, const KnownBits &KnownRHS, const SimplifyQuery &SQ, unsigned Depth=0)
Using KnownBits LHS/RHS produce the known bits for logic op (and/xor/or).
LLVM_ABI OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
LLVM_ABI bool isKnownNeverInfOrNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point value can never contain a NaN or infinity.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isKnownNeverNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
gep_type_iterator gep_type_begin(const User *GEP)
LLVM_ABI Value * isBytewiseValue(Value *V, const DataLayout &DL)
If the specified value can be set by repeating the same byte in memory, return the i8 value that it i...
LLVM_ABI std::optional< std::pair< CmpPredicate, Constant * > > getFlippedStrictnessPredicateAndConstant(CmpPredicate Pred, Constant *C)
Convert an integer comparison with a constant RHS into an equivalent form with the strictness flipped...
LLVM_ABI unsigned ComputeMaxSignificantBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Get the upper bound on bit size for this Value Op as a signed integer.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
LLVM_ABI OverflowResult computeOverflowForUnsignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return true if the given value is known to have exactly one bit set when defined.
LLVM_ABI std::optional< bool > isImpliedByDomCondition(const Value *Cond, const Instruction *ContextI, const DataLayout &DL)
Return the boolean condition value in the context of the given instruction if it is known based on do...
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_ABI Value * FindInsertedValue(Value *V, ArrayRef< unsigned > idx_range, std::optional< BasicBlock::iterator > InsertBefore=std::nullopt)
Given an aggregate and an sequence of indices, see if the scalar value indexed is already around as a...
LLVM_ABI bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false, bool AllowPoison=true)
Return true if the two given values are negation.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI bool isKnownPositive(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be positive (i.e.
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
LLVM_ABI bool cannotBeOrderedLessThanZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is either NaN or never less than -0....
LLVM_ABI void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, const LoopInfo *LI=nullptr, unsigned MaxLookup=MaxLookupSearchDepth)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
LLVM_ABI bool mayHaveNonDefUseDependency(const Instruction &I)
Returns true if the result or effects of the given instructions I depend values not reachable through...
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
LLVM_ABI bool isIdentifiedObject(const Value *V)
Return true if this pointer refers to a distinct and identifiable object.
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
LLVM_ABI std::optional< bool > computeKnownFPSignBit(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return false if we can prove that the specified FP value's sign bit is 0.
LLVM_ABI bool canIgnoreSignBitOfNaN(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is NaN.
LLVM_ABI void findValuesAffectedByCondition(Value *Cond, bool IsAssume, function_ref< void(Value *)> InsertAffected)
Call InsertAffected on all Values whose known bits / value may be affected by the condition Cond.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
SmallPtrSet< Value *, 4 > AffectedValues
Represents offset+length into a ConstantDataArray.
const ConstantDataArray * Array
ConstantDataArray pointer.
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
constexpr bool outputsAreZero() const
Return true if output denormals should be flushed to 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ IEEE
IEEE-754 denormal numbers preserved.
constexpr bool inputsAreZero() const
Return true if input denormals must be implicitly treated as 0.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
static constexpr DenormalMode getIEEE()
InstrInfoQuery provides an interface to query additional information for instructions like metadata o...
bool isExact(const BinaryOperator *Op) const
MDNode * getMetadata(const Instruction *I, unsigned KindID) const
bool hasNoSignedZeros(const InstT *Op) const
bool hasNoSignedWrap(const InstT *Op) const
bool hasNoUnsignedWrap(const InstT *Op) const
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
static LLVM_ABI KnownBits sadd_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.sadd.sat(LHS, RHS)
static LLVM_ABI std::optional< bool > eq(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_EQ result.
KnownBits anyextOrTrunc(unsigned BitWidth) const
Return known bits for an "any" extension or truncation of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
LLVM_ABI KnownBits blsi() const
Compute known bits for X & -X, which has only the lowest bit set of X set.
void makeNonNegative()
Make this value non-negative.
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinLeadingOnes() const
Returns the minimum number of leading one bits.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits ssub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.ssub.sat(LHS, RHS)
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
LLVM_ABI KnownBits blsmsk() const
Compute known bits for X ^ (X - 1), which has all bits up to and including the lowest set bit of X se...
void makeNegative()
Make this value negative.
void setAllConflict()
Make all bits known to be both zero and one.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
KnownBits byteSwap() const
bool hasConflict() const
Returns true if there is conflicting information.
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
void setAllZero()
Make all bits known to be zero and discard any previous information.
KnownBits reverseBits() const
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
bool isConstant() const
Returns true if we know the value of all bits.
void resetAll()
Resets the known state of all bits.
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
unsigned countMinTrailingOnes() const
Returns the minimum number of trailing one bits.
static KnownBits add(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from addition of LHS and RHS.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
APInt getMinValue() const
Return the minimal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
bool isNegative() const
Returns true if this value is known to be negative.
static KnownBits sub(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from subtraction of LHS and RHS.
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
void setAllOnes()
Make all bits known to be one and discard any previous information.
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
static LLVM_ABI KnownBits uadd_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.uadd.sat(LHS, RHS)
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
static LLVM_ABI std::optional< bool > uge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGE result.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
KnownBits sextOrTrunc(unsigned BitWidth) const
Return known bits for a sign extension or truncation of the value we're tracking.
FPClassTest KnownFPClasses
Floating-point classes the value could be one of.
bool isKnownNeverInfinity() const
Return true if it's known this can never be an infinity.
bool cannotBeOrderedGreaterThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never greater tha...
static constexpr FPClassTest OrderedGreaterThanZeroMask
static constexpr FPClassTest OrderedLessThanZeroMask
void knownNot(FPClassTest RuleOut)
void copysign(const KnownFPClass &Sign)
bool isKnownNeverSubnormal() const
Return true if it's known this can never be a subnormal.
LLVM_ABI bool isKnownNeverLogicalZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a zero.
bool isKnownNeverNegInfinity() const
Return true if it's known this can never be -infinity.
bool isKnownNeverNegSubnormal() const
Return true if it's known this can never be a negative subnormal.
bool isKnownNeverPosZero() const
Return true if it's known this can never be a literal positive zero.
std::optional< bool > SignBit
std::nullopt if the sign bit is unknown, true if the sign bit is definitely set or false if the sign ...
bool isKnownNeverNaN() const
Return true if it's known this can never be a nan.
bool isKnownNever(FPClassTest Mask) const
Return true if it's known this can never be one of the mask entries.
bool isKnownNeverNegZero() const
Return true if it's known this can never be a negative zero.
void propagateNaN(const KnownFPClass &Src, bool PreserveSign=false)
bool cannotBeOrderedLessThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never less than -...
void signBitMustBeOne()
Assume the sign bit is one.
LLVM_ABI void propagateCanonicalizingSrc(const KnownFPClass &Src, DenormalMode Mode)
Report known classes if Src is evaluated through a potentially canonicalizing operation.
void signBitMustBeZero()
Assume the sign bit is zero.
LLVM_ABI bool isKnownNeverLogicalPosZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a positive zero.
bool isKnownNeverPosInfinity() const
Return true if it's known this can never be +infinity.
LLVM_ABI bool isKnownNeverLogicalNegZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a negative zero.
bool isKnownNeverPosSubnormal() const
Return true if it's known this can never be a positive subnormal.
Represent one information held inside an operand bundle of an llvm.assume.
SelectPatternFlavor Flavor
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?
SimplifyQuery getWithoutCondContext() const
SimplifyQuery getWithInstruction(const Instruction *I) const
const DomConditionCache * DC