LLVM 22.0.0git
SystemZTDC.cpp
Go to the documentation of this file.
1//===-- SystemZTDC.cpp - Utilize Test Data Class instruction --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass looks for instructions that can be replaced by a Test Data Class
10// instruction, and replaces them when profitable.
11//
12// Roughly, the following rules are recognized:
13//
14// 1: fcmp pred X, 0 -> tdc X, mask
15// 2: fcmp pred X, +-inf -> tdc X, mask
16// 3: fcmp pred X, +-minnorm -> tdc X, mask
17// 4: tdc (fabs X), mask -> tdc X, newmask
18// 5: icmp slt (bitcast float X to int), 0 -> tdc X, mask [ie. signbit]
19// 6: icmp sgt (bitcast float X to int), -1 -> tdc X, mask
20// 7: icmp ne/eq (call @llvm.s390.tdc.*(X, mask)) -> tdc X, mask/~mask
21// 8: and i1 (tdc X, M1), (tdc X, M2) -> tdc X, (M1 & M2)
22// 9: or i1 (tdc X, M1), (tdc X, M2) -> tdc X, (M1 | M2)
23// 10: xor i1 (tdc X, M1), (tdc X, M2) -> tdc X, (M1 ^ M2)
24//
25// The pass works in 4 steps:
26//
27// 1. All fcmp and icmp instructions in a function are checked for a match
28// with rules 1-3 and 5-7. Their TDC equivalents are stored in
29// the ConvertedInsts mapping. If the operand of a fcmp instruction is
30// a fabs, it's also folded according to rule 4.
31// 2. All and/or/xor i1 instructions whose both operands have been already
32// mapped are mapped according to rules 8-10. LogicOpsWorklist is used
33// as a queue of instructions to check.
34// 3. All mapped instructions that are considered worthy of conversion (ie.
35// replacing them will actually simplify the final code) are replaced
36// with a call to the s390.tdc intrinsic.
37// 4. All intermediate results of replaced instructions are removed if unused.
38//
39// Instructions that match rules 1-3 are considered unworthy of conversion
40// on their own (since a comparison instruction is superior), but are mapped
41// in the hopes of folding the result using rules 4 and 8-10 (likely removing
42// the original comparison in the process).
43//
44//===----------------------------------------------------------------------===//
45
46#include "SystemZ.h"
47#include "SystemZSubtarget.h"
48#include "llvm/ADT/MapVector.h"
50#include "llvm/IR/Constants.h"
51#include "llvm/IR/IRBuilder.h"
54#include "llvm/IR/IntrinsicsS390.h"
56#include "llvm/IR/Module.h"
58#include <set>
59
60using namespace llvm;
61
62namespace {
63
64class SystemZTDCPass : public FunctionPass {
65public:
66 static char ID;
67 SystemZTDCPass() : FunctionPass(ID) {}
68
69 bool runOnFunction(Function &F) override;
70
71 void getAnalysisUsage(AnalysisUsage &AU) const override {
72 AU.addRequired<TargetPassConfig>();
73 }
74
75private:
76 // Maps seen instructions that can be mapped to a TDC, values are
77 // (TDC operand, TDC mask, worthy flag) triples.
78 MapVector<Instruction *, std::tuple<Value *, int, bool>> ConvertedInsts;
79 // The queue of and/or/xor i1 instructions to be potentially folded.
80 std::vector<BinaryOperator *> LogicOpsWorklist;
81 // Instructions matched while folding, to be removed at the end if unused.
82 std::set<Instruction *> PossibleJunk;
83
84 // Tries to convert a fcmp instruction.
85 void convertFCmp(CmpInst &I);
86
87 // Tries to convert an icmp instruction.
88 void convertICmp(CmpInst &I);
89
90 // Tries to convert an i1 and/or/xor instruction, whose both operands
91 // have been already converted.
92 void convertLogicOp(BinaryOperator &I);
93
94 // Marks an instruction as converted - adds it to ConvertedInsts and adds
95 // any and/or/xor i1 users to the queue.
96 void converted(Instruction *I, Value *V, int Mask, bool Worthy) {
97 ConvertedInsts[I] = std::make_tuple(V, Mask, Worthy);
98 auto &M = *I->getFunction()->getParent();
99 auto &Ctx = M.getContext();
100 for (auto *U : I->users()) {
101 auto *LI = dyn_cast<BinaryOperator>(U);
102 if (LI && LI->getType() == Type::getInt1Ty(Ctx) &&
103 (LI->getOpcode() == Instruction::And ||
104 LI->getOpcode() == Instruction::Or ||
105 LI->getOpcode() == Instruction::Xor)) {
106 LogicOpsWorklist.push_back(LI);
107 }
108 }
109 }
110};
111
112} // end anonymous namespace
113
114char SystemZTDCPass::ID = 0;
115INITIALIZE_PASS(SystemZTDCPass, "systemz-tdc",
116 "SystemZ Test Data Class optimization", false, false)
117
119 return new SystemZTDCPass();
120}
121
122void SystemZTDCPass::convertFCmp(CmpInst &I) {
123 Value *Op0 = I.getOperand(0);
124 auto *Const = dyn_cast<ConstantFP>(I.getOperand(1));
125 auto Pred = I.getPredicate();
126 // Only comparisons with consts are interesting.
127 if (!Const)
128 return;
129 // Compute the smallest normal number (and its negation).
130 auto &Sem = Op0->getType()->getFltSemantics();
132 APFloat NegSmallest = Smallest;
133 NegSmallest.changeSign();
134 // Check if Const is one of our recognized consts.
135 int WhichConst;
136 if (Const->isZero()) {
137 // All comparisons with 0 can be converted.
138 WhichConst = 0;
139 } else if (Const->isInfinity()) {
140 // Likewise for infinities.
141 WhichConst = Const->isNegative() ? 2 : 1;
142 } else if (Const->isExactlyValue(Smallest)) {
143 // For Smallest, we cannot do EQ separately from GT.
144 if ((Pred & CmpInst::FCMP_OGE) != CmpInst::FCMP_OGE &&
145 (Pred & CmpInst::FCMP_OGE) != 0)
146 return;
147 WhichConst = 3;
148 } else if (Const->isExactlyValue(NegSmallest)) {
149 // Likewise for NegSmallest, we cannot do EQ separately from LT.
150 if ((Pred & CmpInst::FCMP_OLE) != CmpInst::FCMP_OLE &&
151 (Pred & CmpInst::FCMP_OLE) != 0)
152 return;
153 WhichConst = 4;
154 } else {
155 // Not one of our special constants.
156 return;
157 }
158 // Partial masks to use for EQ, GT, LT, UN comparisons, respectively.
159 static const int Masks[][4] = {
160 { // 0
165 },
166 { // inf
168 0, // gt
174 },
175 { // -inf
181 0, // lt
183 },
184 { // minnorm
185 0, // eq (unsupported)
187 SystemZ::TDCMASK_INFINITY_PLUS), // gt (actually ge)
192 },
193 { // -minnorm
194 0, // eq (unsupported)
199 SystemZ::TDCMASK_INFINITY_MINUS), // lt (actually le)
201 }
202 };
203 // Construct the mask as a combination of the partial masks.
204 int Mask = 0;
205 if (Pred & CmpInst::FCMP_OEQ)
206 Mask |= Masks[WhichConst][0];
207 if (Pred & CmpInst::FCMP_OGT)
208 Mask |= Masks[WhichConst][1];
209 if (Pred & CmpInst::FCMP_OLT)
210 Mask |= Masks[WhichConst][2];
211 if (Pred & CmpInst::FCMP_UNO)
212 Mask |= Masks[WhichConst][3];
213 // A lone fcmp is unworthy of tdc conversion on its own, but may become
214 // worthy if combined with fabs.
215 bool Worthy = false;
216 if (CallInst *CI = dyn_cast<CallInst>(Op0)) {
217 Function *F = CI->getCalledFunction();
218 if (F && F->getIntrinsicID() == Intrinsic::fabs) {
219 // Fold with fabs - adjust the mask appropriately.
221 Mask |= Mask >> 1;
222 Op0 = CI->getArgOperand(0);
223 // A combination of fcmp with fabs is a win, unless the constant
224 // involved is 0 (which is handled by later passes).
225 Worthy = WhichConst != 0;
226 PossibleJunk.insert(CI);
227 }
228 }
229 converted(&I, Op0, Mask, Worthy);
230}
231
232void SystemZTDCPass::convertICmp(CmpInst &I) {
233 Value *Op0 = I.getOperand(0);
234 auto *Const = dyn_cast<ConstantInt>(I.getOperand(1));
235 auto Pred = I.getPredicate();
236 // All our icmp rules involve comparisons with consts.
237 if (!Const)
238 return;
239 if (auto *Cast = dyn_cast<BitCastInst>(Op0)) {
240 // Check for icmp+bitcast used for signbit.
241 if (!Cast->getSrcTy()->isFloatTy() &&
242 !Cast->getSrcTy()->isDoubleTy() &&
243 !Cast->getSrcTy()->isFP128Ty())
244 return;
245 Value *V = Cast->getOperand(0);
246 int Mask;
247 if (Pred == CmpInst::ICMP_SLT && Const->isZero()) {
248 // icmp slt (bitcast X), 0 - set if sign bit true
250 } else if (Pred == CmpInst::ICMP_SGT && Const->isMinusOne()) {
251 // icmp sgt (bitcast X), -1 - set if sign bit false
253 } else {
254 // Not a sign bit check.
255 return;
256 }
257 PossibleJunk.insert(Cast);
258 converted(&I, V, Mask, true);
259 } else if (auto *CI = dyn_cast<CallInst>(Op0)) {
260 // Check if this is a pre-existing call of our tdc intrinsic.
261 Function *F = CI->getCalledFunction();
262 if (!F || F->getIntrinsicID() != Intrinsic::s390_tdc)
263 return;
264 if (!Const->isZero())
265 return;
266 Value *V = CI->getArgOperand(0);
267 auto *MaskC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
268 // Bail if the mask is not a constant.
269 if (!MaskC)
270 return;
271 int Mask = MaskC->getZExtValue();
273 if (Pred == CmpInst::ICMP_NE) {
274 // icmp ne (call llvm.s390.tdc(...)), 0 -> simple TDC
275 } else if (Pred == CmpInst::ICMP_EQ) {
276 // icmp eq (call llvm.s390.tdc(...)), 0 -> TDC with inverted mask
278 } else {
279 // An unknown comparison - ignore.
280 return;
281 }
282 PossibleJunk.insert(CI);
283 converted(&I, V, Mask, false);
284 }
285}
286
287void SystemZTDCPass::convertLogicOp(BinaryOperator &I) {
288 Value *Op0, *Op1;
289 int Mask0, Mask1;
290 bool Worthy0, Worthy1;
291 std::tie(Op0, Mask0, Worthy0) = ConvertedInsts[cast<Instruction>(I.getOperand(0))];
292 std::tie(Op1, Mask1, Worthy1) = ConvertedInsts[cast<Instruction>(I.getOperand(1))];
293 if (Op0 != Op1)
294 return;
295 int Mask;
296 switch (I.getOpcode()) {
297 case Instruction::And:
298 Mask = Mask0 & Mask1;
299 break;
300 case Instruction::Or:
301 Mask = Mask0 | Mask1;
302 break;
303 case Instruction::Xor:
304 Mask = Mask0 ^ Mask1;
305 break;
306 default:
307 llvm_unreachable("Unknown op in convertLogicOp");
308 }
309 converted(&I, Op0, Mask, true);
310}
311
312bool SystemZTDCPass::runOnFunction(Function &F) {
313 auto &TPC = getAnalysis<TargetPassConfig>();
314 if (TPC.getTM<TargetMachine>()
315 .getSubtarget<SystemZSubtarget>(F)
316 .hasSoftFloat())
317 return false;
318
319 ConvertedInsts.clear();
320 LogicOpsWorklist.clear();
321 PossibleJunk.clear();
322
323 // Look for icmp+fcmp instructions.
324 for (auto &I : instructions(F)) {
325 if (I.getOpcode() == Instruction::FCmp)
326 convertFCmp(cast<CmpInst>(I));
327 else if (I.getOpcode() == Instruction::ICmp)
328 convertICmp(cast<CmpInst>(I));
329 }
330
331 // If none found, bail already.
332 if (ConvertedInsts.empty())
333 return false;
334
335 // Process the queue of logic instructions.
336 while (!LogicOpsWorklist.empty()) {
337 BinaryOperator *Op = LogicOpsWorklist.back();
338 LogicOpsWorklist.pop_back();
339 // If both operands mapped, and the instruction itself not yet mapped,
340 // convert it.
341 if (ConvertedInsts.count(dyn_cast<Instruction>(Op->getOperand(0))) &&
342 ConvertedInsts.count(dyn_cast<Instruction>(Op->getOperand(1))) &&
343 !ConvertedInsts.count(Op))
344 convertLogicOp(*Op);
345 }
346
347 // Time to actually replace the instructions. Do it in the reverse order
348 // of finding them, since there's a good chance the earlier ones will be
349 // unused (due to being folded into later ones).
350 Module &M = *F.getParent();
351 auto &Ctx = M.getContext();
352 Value *Zero32 = ConstantInt::get(Type::getInt32Ty(Ctx), 0);
353 bool MadeChange = false;
354 for (auto &It : reverse(ConvertedInsts)) {
355 Instruction *I = It.first;
356 Value *V;
357 int Mask;
358 bool Worthy;
359 std::tie(V, Mask, Worthy) = It.second;
360 if (!I->user_empty()) {
361 // If used and unworthy of conversion, skip it.
362 if (!Worthy)
363 continue;
364 // Call the intrinsic, compare result with 0.
365 IRBuilder<> IRB(I);
366 Value *MaskVal = ConstantInt::get(Type::getInt64Ty(Ctx), Mask);
368 IRB.CreateIntrinsic(Intrinsic::s390_tdc, V->getType(), {V, MaskVal});
369 Value *ICmp = IRB.CreateICmp(CmpInst::ICMP_NE, TDC, Zero32);
370 I->replaceAllUsesWith(ICmp);
371 }
372 // If unused, or used and converted, remove it.
373 I->eraseFromParent();
374 MadeChange = true;
375 }
376
377 if (!MadeChange)
378 return false;
379
380 // We've actually done something - now clear misc accumulated junk (fabs,
381 // bitcast).
382 for (auto *I : PossibleJunk)
383 if (I->user_empty())
384 I->eraseFromParent();
385
386 return true;
387}
Expand Atomic instructions
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static bool runOnFunction(Function &F, bool PostInlining)
Module.h This file contains the declarations for the Module class.
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
Machine Check Debug Module
This file implements a map that provides insertion order iteration.
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition PassSupport.h:56
Target-Independent Code Generator Pass Configuration Options pass.
static APFloat getSmallestNormalized(const fltSemantics &Sem, bool Negative=false)
Returns the smallest (by magnitude) normalized finite number in the given semantics.
Definition APFloat.h:1158
void changeSign()
Definition APFloat.h:1297
AnalysisUsage & addRequired()
This class is the base class for the comparison instructions.
Definition InstrTypes.h:666
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition InstrTypes.h:681
@ ICMP_SLT
signed less than
Definition InstrTypes.h:707
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition InstrTypes.h:684
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition InstrTypes.h:682
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
Definition InstrTypes.h:683
@ ICMP_SGT
signed greater than
Definition InstrTypes.h:705
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition InstrTypes.h:685
@ ICMP_NE
not equal
Definition InstrTypes.h:700
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition InstrTypes.h:688
FunctionPass class - This class is used to implement most global optimizations.
Definition Pass.h:314
size_type count(const KeyT &Key) const
Definition MapVector.h:139
bool empty() const
Definition MapVector.h:75
LLVM_ABI const fltSemantics & getFltSemantics() const
Definition Type.cpp:107
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
const unsigned TDCMASK_NEGATIVE
Definition SystemZ.h:136
const unsigned TDCMASK_NORMAL_MINUS
Definition SystemZ.h:122
const unsigned TDCMASK_MINUS
Definition SystemZ.h:147
const unsigned TDCMASK_SUBNORMAL_MINUS
Definition SystemZ.h:124
const unsigned TDCMASK_ZERO
Definition SystemZ.h:132
const unsigned TDCMASK_NORMAL_PLUS
Definition SystemZ.h:121
const unsigned TDCMASK_ALL
Definition SystemZ.h:151
const unsigned TDCMASK_SUBNORMAL_PLUS
Definition SystemZ.h:123
const unsigned TDCMASK_INFINITY_PLUS
Definition SystemZ.h:125
const unsigned TDCMASK_POSITIVE
Definition SystemZ.h:133
const unsigned TDCMASK_INFINITY_MINUS
Definition SystemZ.h:126
const unsigned TDCMASK_NAN
Definition SystemZ.h:139
const unsigned TDCMASK_PLUS
Definition SystemZ.h:143
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
auto reverse(ContainerTy &&C)
Definition STLExtras.h:420
FunctionPass * createSystemZTDCPass()
IRBuilder(LLVMContext &, FolderTy, InserterTy, MDNode *, ArrayRef< OperandBundleDef >) -> IRBuilder< FolderTy, InserterTy >
DWARFExpression::Operation Op
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565