LLVM 22.0.0git
DWARFUnit.cpp
Go to the documentation of this file.
1//===- DWARFUnit.cpp ------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
11#include "llvm/ADT/StringRef.h"
30#include "llvm/Support/Errc.h"
31#include "llvm/Support/Path.h"
32#include <algorithm>
33#include <cassert>
34#include <cstddef>
35#include <cstdint>
36#include <utility>
37#include <vector>
38
39using namespace llvm;
40using namespace dwarf;
41
43 const DWARFSection &Section,
45 const DWARFObject &D = C.getDWARFObj();
46 addUnitsImpl(C, D, Section, C.getDebugAbbrev(), &D.getRangesSection(),
47 &D.getLocSection(), D.getStrSection(),
48 D.getStrOffsetsSection(), &D.getAddrSection(),
49 D.getLineSection(), D.isLittleEndian(), false, false,
51}
52
54 const DWARFSection &DWOSection,
56 bool Lazy) {
57 const DWARFObject &D = C.getDWARFObj();
58 addUnitsImpl(C, D, DWOSection, C.getDebugAbbrevDWO(), &D.getRangesDWOSection(),
59 &D.getLocDWOSection(), D.getStrDWOSection(),
60 D.getStrOffsetsDWOSection(), &D.getAddrSection(),
61 D.getLineDWOSection(), C.isLittleEndian(), true, Lazy,
63}
64
65void DWARFUnitVector::addUnitsImpl(
66 DWARFContext &Context, const DWARFObject &Obj, const DWARFSection &Section,
67 const DWARFDebugAbbrev *DA, const DWARFSection *RS,
68 const DWARFSection *LocSection, StringRef SS, const DWARFSection &SOS,
69 const DWARFSection *AOS, const DWARFSection &LS, bool LE, bool IsDWO,
70 bool Lazy, DWARFSectionKind SectionKind) {
71 DWARFDataExtractor Data(Obj, Section, LE, 0);
72 // Lazy initialization of Parser, now that we have all section info.
73 if (!Parser) {
74 Parser = [=, &Context, &Obj, &Section, &SOS,
76 const DWARFSection *CurSection,
77 const DWARFUnitIndex::Entry *IndexEntry)
78 -> std::unique_ptr<DWARFUnit> {
79 const DWARFSection &InfoSection = CurSection ? *CurSection : Section;
80 DWARFDataExtractor Data(Obj, InfoSection, LE, 0);
81 if (!Data.isValidOffset(Offset))
82 return nullptr;
83 DWARFUnitHeader Header;
84 if (Error ExtractErr =
85 Header.extract(Context, Data, &Offset, SectionKind)) {
86 Context.getWarningHandler()(std::move(ExtractErr));
87 return nullptr;
88 }
89 if (!IndexEntry && IsDWO) {
91 Context, Header.isTypeUnit() ? DW_SECT_EXT_TYPES : DW_SECT_INFO);
92 if (Index) {
93 if (Header.isTypeUnit())
94 IndexEntry = Index.getFromHash(Header.getTypeHash());
95 else if (auto DWOId = Header.getDWOId())
96 IndexEntry = Index.getFromHash(*DWOId);
97 }
98 if (!IndexEntry)
99 IndexEntry = Index.getFromOffset(Header.getOffset());
100 }
101 if (IndexEntry) {
102 if (Error ApplicationErr = Header.applyIndexEntry(IndexEntry)) {
103 Context.getWarningHandler()(std::move(ApplicationErr));
104 return nullptr;
105 }
106 }
107 std::unique_ptr<DWARFUnit> U;
108 if (Header.isTypeUnit())
109 U = std::make_unique<DWARFTypeUnit>(Context, InfoSection, Header, DA,
110 RS, LocSection, SS, SOS, AOS, LS,
111 LE, IsDWO, *this);
112 else
113 U = std::make_unique<DWARFCompileUnit>(Context, InfoSection, Header,
114 DA, RS, LocSection, SS, SOS,
115 AOS, LS, LE, IsDWO, *this);
116 return U;
117 };
118 }
119 if (Lazy)
120 return;
121 // Find a reasonable insertion point within the vector. We skip over
122 // (a) units from a different section, (b) units from the same section
123 // but with lower offset-within-section. This keeps units in order
124 // within a section, although not necessarily within the object file,
125 // even if we do lazy parsing.
126 auto I = this->begin();
127 uint64_t Offset = 0;
128 while (Data.isValidOffset(Offset)) {
129 if (I != this->end() &&
130 (&(*I)->getInfoSection() != &Section || (*I)->getOffset() == Offset)) {
131 ++I;
132 continue;
133 }
134 auto U = Parser(Offset, SectionKind, &Section, nullptr);
135 // If parsing failed, we're done with this section.
136 if (!U)
137 break;
138 Offset = U->getNextUnitOffset();
139 I = std::next(this->insert(I, std::move(U)));
140 }
141}
142
143DWARFUnit *DWARFUnitVector::addUnit(std::unique_ptr<DWARFUnit> Unit) {
144 auto I = llvm::upper_bound(*this, Unit,
145 [](const std::unique_ptr<DWARFUnit> &LHS,
146 const std::unique_ptr<DWARFUnit> &RHS) {
147 return LHS->getOffset() < RHS->getOffset();
148 });
149 return this->insert(I, std::move(Unit))->get();
150}
151
153 auto end = begin() + getNumInfoUnits();
154 auto *CU =
155 std::upper_bound(begin(), end, Offset,
156 [](uint64_t LHS, const std::unique_ptr<DWARFUnit> &RHS) {
157 return LHS < RHS->getNextUnitOffset();
158 });
159 if (CU != end && (*CU)->getOffset() <= Offset)
160 return CU->get();
161 return nullptr;
162}
163
166 const DWARFSection *Section) {
167 const auto *CUOff = E.getContribution(Sec);
168 if (!CUOff)
169 return nullptr;
170
171 uint64_t Offset = CUOff->getOffset();
172 auto begin = this->begin();
173 auto end = begin + getNumInfoUnits();
174
175 if (Sec == DW_SECT_EXT_TYPES) {
176 begin = end;
177 end = this->end();
178 }
179
180 auto *CU =
181 std::upper_bound(begin, end, CUOff->getOffset(),
182 [](uint64_t LHS, const std::unique_ptr<DWARFUnit> &RHS) {
183 return LHS < RHS->getNextUnitOffset();
184 });
185 if (CU != end && (*CU)->getOffset() <= Offset)
186 return CU->get();
187
188 if (!Parser)
189 return nullptr;
190
191 auto U = Parser(Offset, Sec, Section, &E);
192 if (!U)
193 return nullptr;
194
195 auto *NewCU = U.get();
196 this->insert(CU, std::move(U));
197 if (Sec == DW_SECT_INFO)
198 ++NumInfoUnits;
199 return NewCU;
200}
201
203 const DWARFUnitHeader &Header, const DWARFDebugAbbrev *DA,
204 const DWARFSection *RS, const DWARFSection *LocSection,
205 StringRef SS, const DWARFSection &SOS,
206 const DWARFSection *AOS, const DWARFSection &LS, bool LE,
207 bool IsDWO, const DWARFUnitVector &UnitVector)
208 : Context(DC), InfoSection(Section), Header(Header), Abbrev(DA),
209 RangeSection(RS), LineSection(LS), StringSection(SS),
210 StringOffsetSection(SOS), AddrOffsetSection(AOS), IsLittleEndian(LE),
211 IsDWO(IsDWO), UnitVector(UnitVector) {
212 clear();
213}
214
215DWARFUnit::~DWARFUnit() = default;
216
218 return DWARFDataExtractor(Context.getDWARFObj(), InfoSection, IsLittleEndian,
220}
221
222std::optional<object::SectionedAddress>
224 if (!AddrOffsetSectionBase) {
225 auto R = Context.info_section_units();
226 // Surprising if a DWO file has more than one skeleton unit in it - this
227 // probably shouldn't be valid, but if a use case is found, here's where to
228 // support it (probably have to linearly search for the matching skeleton CU
229 // here)
230 if (IsDWO && hasSingleElement(R))
231 return (*R.begin())->getAddrOffsetSectionItem(Index);
232
233 return std::nullopt;
234 }
235
236 uint64_t Offset = *AddrOffsetSectionBase + Index * getAddressByteSize();
237 if (AddrOffsetSection->Data.size() < Offset + getAddressByteSize())
238 return std::nullopt;
239 DWARFDataExtractor DA(Context.getDWARFObj(), *AddrOffsetSection,
240 IsLittleEndian, getAddressByteSize());
241 uint64_t Section;
242 uint64_t Address = DA.getRelocatedAddress(&Offset, &Section);
243 return {{Address, Section}};
244}
245
247 if (!StringOffsetsTableContribution)
249 "DW_FORM_strx used without a valid string offsets table",
251 unsigned ItemSize = getDwarfStringOffsetsByteSize();
252 uint64_t Offset = getStringOffsetsBase() + Index * ItemSize;
253 if (StringOffsetSection.Data.size() < Offset + ItemSize)
254 return make_error<StringError>("DW_FORM_strx uses index " + Twine(Index) +
255 ", which is too large",
257 DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection,
258 IsLittleEndian, 0);
259 return DA.getRelocatedValue(ItemSize, &Offset);
260}
261
263 const DWARFDataExtractor &debug_info,
264 uint64_t *offset_ptr,
266 Offset = *offset_ptr;
267 Error Err = Error::success();
268 IndexEntry = nullptr;
269 std::tie(Length, FormParams.Format) =
270 debug_info.getInitialLength(offset_ptr, &Err);
271 FormParams.Version = debug_info.getU16(offset_ptr, &Err);
272 if (FormParams.Version >= 5) {
273 UnitType = debug_info.getU8(offset_ptr, &Err);
274 FormParams.AddrSize = debug_info.getU8(offset_ptr, &Err);
275 AbbrOffset = debug_info.getRelocatedValue(
276 FormParams.getDwarfOffsetByteSize(), offset_ptr, nullptr, &Err);
277 } else {
278 AbbrOffset = debug_info.getRelocatedValue(
279 FormParams.getDwarfOffsetByteSize(), offset_ptr, nullptr, &Err);
280 FormParams.AddrSize = debug_info.getU8(offset_ptr, &Err);
281 // Fake a unit type based on the section type. This isn't perfect,
282 // but distinguishing compile and type units is generally enough.
284 UnitType = DW_UT_type;
285 else
286 UnitType = DW_UT_compile;
287 }
288 if (isTypeUnit()) {
289 TypeHash = debug_info.getU64(offset_ptr, &Err);
290 TypeOffset = debug_info.getUnsigned(
291 offset_ptr, FormParams.getDwarfOffsetByteSize(), &Err);
292 } else if (UnitType == DW_UT_split_compile || UnitType == DW_UT_skeleton)
293 DWOId = debug_info.getU64(offset_ptr, &Err);
294
295 if (Err)
296 return joinErrors(
299 "DWARF unit at 0x%8.8" PRIx64 " cannot be parsed:", Offset),
300 std::move(Err));
301
302 // Header fields all parsed, capture the size of this unit header.
303 assert(*offset_ptr - Offset <= 255 && "unexpected header size");
304 Size = uint8_t(*offset_ptr - Offset);
305 uint64_t NextCUOffset = Offset + getUnitLengthFieldByteSize() + getLength();
306
307 if (!debug_info.isValidOffset(getNextUnitOffset() - 1))
309 "DWARF unit from offset 0x%8.8" PRIx64 " incl. "
310 "to offset 0x%8.8" PRIx64 " excl. "
311 "extends past section size 0x%8.8zx",
312 Offset, NextCUOffset, debug_info.size());
313
315 return createStringError(
317 "DWARF unit at offset 0x%8.8" PRIx64 " "
318 "has unsupported version %" PRIu16 ", supported are 2-%u",
320
321 // Type offset is unit-relative; should be after the header and before
322 // the end of the current unit.
323 if (isTypeUnit() && TypeOffset < Size)
325 "DWARF type unit at offset "
326 "0x%8.8" PRIx64 " "
327 "has its relocated type_offset 0x%8.8" PRIx64 " "
328 "pointing inside the header",
329 Offset, Offset + TypeOffset);
330
331 if (isTypeUnit() && TypeOffset >= getUnitLengthFieldByteSize() + getLength())
332 return createStringError(
334 "DWARF type unit from offset 0x%8.8" PRIx64 " incl. "
335 "to offset 0x%8.8" PRIx64 " excl. has its "
336 "relocated type_offset 0x%8.8" PRIx64 " pointing past the unit end",
337 Offset, NextCUOffset, Offset + TypeOffset);
338
341 "DWARF unit at offset 0x%8.8" PRIx64, Offset))
342 return SizeErr;
343
344 // Keep track of the highest DWARF version we encounter across all units.
345 Context.setMaxVersionIfGreater(getVersion());
346 return Error::success();
347}
348
350 assert(Entry);
351 assert(!IndexEntry);
352 IndexEntry = Entry;
353 if (AbbrOffset)
355 "DWARF package unit at offset 0x%8.8" PRIx64
356 " has a non-zero abbreviation offset",
357 Offset);
358
359 auto *UnitContrib = IndexEntry->getContribution();
360 if (!UnitContrib)
362 "DWARF package unit at offset 0x%8.8" PRIx64
363 " has no contribution index",
364 Offset);
365
367 if (UnitContrib->getLength() != IndexLength)
369 "DWARF package unit at offset 0x%8.8" PRIx64
370 " has an inconsistent index (expected: %" PRIu64
371 ", actual: %" PRIu64 ")",
372 Offset, UnitContrib->getLength(), IndexLength);
373
374 auto *AbbrEntry = IndexEntry->getContribution(DW_SECT_ABBREV);
375 if (!AbbrEntry)
377 "DWARF package unit at offset 0x%8.8" PRIx64
378 " missing abbreviation column",
379 Offset);
380
381 AbbrOffset = AbbrEntry->getOffset();
382 return Error::success();
383}
384
386 DWARFDebugRangeList &RangeList) const {
387 // Require that compile unit is extracted.
388 assert(!DieArray.empty());
389 DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection,
390 IsLittleEndian, getAddressByteSize());
391 uint64_t ActualRangeListOffset = RangeSectionBase + RangeListOffset;
392 return RangeList.extract(RangesData, &ActualRangeListOffset);
393}
394
396 Abbrevs = nullptr;
397 BaseAddr.reset();
398 RangeSectionBase = 0;
399 LocSectionBase = 0;
400 AddrOffsetSectionBase = std::nullopt;
401 SU = nullptr;
402 clearDIEs(false);
403 AddrDieMap.clear();
404 if (DWO)
405 DWO->clear();
406 DWO.reset();
407}
408
410 return dwarf::toString(getUnitDIE().find(DW_AT_comp_dir), nullptr);
411}
412
413void DWARFUnit::extractDIEsToVector(
414 bool AppendCUDie, bool AppendNonCUDies,
415 std::vector<DWARFDebugInfoEntry> &Dies) const {
416 if (!AppendCUDie && !AppendNonCUDies)
417 return;
418
419 // Set the offset to that of the first DIE and calculate the start of the
420 // next compilation unit header.
421 uint64_t DIEOffset = getOffset() + getHeaderSize();
422 uint64_t NextCUOffset = getNextUnitOffset();
425 // The end offset has been already checked by DWARFUnitHeader::extract.
426 assert(DebugInfoData.isValidOffset(NextCUOffset - 1));
427 std::vector<uint32_t> Parents;
428 std::vector<uint32_t> PrevSiblings;
429 bool IsCUDie = true;
430
431 assert(
432 ((AppendCUDie && Dies.empty()) || (!AppendCUDie && Dies.size() == 1)) &&
433 "Dies array is not empty");
434
435 // Fill Parents and Siblings stacks with initial value.
436 Parents.push_back(UINT32_MAX);
437 if (!AppendCUDie)
438 Parents.push_back(0);
439 PrevSiblings.push_back(0);
440
441 // Start to extract dies.
442 do {
443 assert(Parents.size() > 0 && "Empty parents stack");
444 assert((Parents.back() == UINT32_MAX || Parents.back() <= Dies.size()) &&
445 "Wrong parent index");
446
447 // Extract die. Stop if any error occurred.
448 if (!DIE.extractFast(*this, &DIEOffset, DebugInfoData, NextCUOffset,
449 Parents.back()))
450 break;
451
452 // If previous sibling is remembered then update it`s SiblingIdx field.
453 if (PrevSiblings.back() > 0) {
454 assert(PrevSiblings.back() < Dies.size() &&
455 "Previous sibling index is out of Dies boundaries");
456 Dies[PrevSiblings.back()].setSiblingIdx(Dies.size());
457 }
458
459 // Store die into the Dies vector.
460 if (IsCUDie) {
461 if (AppendCUDie)
462 Dies.push_back(DIE);
463 if (!AppendNonCUDies)
464 break;
465 // The average bytes per DIE entry has been seen to be
466 // around 14-20 so let's pre-reserve the needed memory for
467 // our DIE entries accordingly.
468 Dies.reserve(Dies.size() + getDebugInfoSize() / 14);
469 } else {
470 // Remember last previous sibling.
471 PrevSiblings.back() = Dies.size();
472
473 Dies.push_back(DIE);
474 }
475
476 // Check for new children scope.
477 if (const DWARFAbbreviationDeclaration *AbbrDecl =
479 if (AbbrDecl->hasChildren()) {
480 if (AppendCUDie || !IsCUDie) {
481 assert(Dies.size() > 0 && "Dies does not contain any die");
482 Parents.push_back(Dies.size() - 1);
483 PrevSiblings.push_back(0);
484 }
485 } else if (IsCUDie)
486 // Stop if we have single compile unit die w/o children.
487 break;
488 } else {
489 // NULL DIE: finishes current children scope.
490 Parents.pop_back();
491 PrevSiblings.pop_back();
492 }
493
494 if (IsCUDie)
495 IsCUDie = false;
496
497 // Stop when compile unit die is removed from the parents stack.
498 } while (Parents.size() > 1);
499}
500
501void DWARFUnit::extractDIEsIfNeeded(bool CUDieOnly) {
502 if (Error e = tryExtractDIEsIfNeeded(CUDieOnly))
503 Context.getRecoverableErrorHandler()(std::move(e));
504}
505
507 if ((CUDieOnly && !DieArray.empty()) || DieArray.size() > 1)
508 return Error::success(); // Already parsed.
509
510 bool HasCUDie = !DieArray.empty();
511 extractDIEsToVector(!HasCUDie, !CUDieOnly, DieArray);
512
513 if (DieArray.empty())
514 return Error::success();
515
516 // If CU DIE was just parsed, copy several attribute values from it.
517 if (HasCUDie)
518 return Error::success();
519
520 DWARFDie UnitDie(this, &DieArray[0]);
521 if (std::optional<uint64_t> DWOId =
522 toUnsigned(UnitDie.find(DW_AT_GNU_dwo_id)))
523 Header.setDWOId(*DWOId);
524 if (!IsDWO) {
525 assert(AddrOffsetSectionBase == std::nullopt);
526 assert(RangeSectionBase == 0);
527 assert(LocSectionBase == 0);
528 AddrOffsetSectionBase = toSectionOffset(UnitDie.find(DW_AT_addr_base));
529 if (!AddrOffsetSectionBase)
530 AddrOffsetSectionBase =
531 toSectionOffset(UnitDie.find(DW_AT_GNU_addr_base));
532 RangeSectionBase = toSectionOffset(UnitDie.find(DW_AT_rnglists_base), 0);
533 LocSectionBase = toSectionOffset(UnitDie.find(DW_AT_loclists_base), 0);
534 }
535
536 // In general, in DWARF v5 and beyond we derive the start of the unit's
537 // contribution to the string offsets table from the unit DIE's
538 // DW_AT_str_offsets_base attribute. Split DWARF units do not use this
539 // attribute, so we assume that there is a contribution to the string
540 // offsets table starting at offset 0 of the debug_str_offsets.dwo section.
541 // In both cases we need to determine the format of the contribution,
542 // which may differ from the unit's format.
543 DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection,
544 IsLittleEndian, 0);
545 if (IsDWO || getVersion() >= 5) {
546 auto StringOffsetOrError =
549 if (!StringOffsetOrError)
551 "invalid reference to or invalid content in "
552 ".debug_str_offsets[.dwo]: " +
553 toString(StringOffsetOrError.takeError()));
554
555 StringOffsetsTableContribution = *StringOffsetOrError;
556 }
557
558 // DWARF v5 uses the .debug_rnglists and .debug_rnglists.dwo sections to
559 // describe address ranges.
560 if (getVersion() >= 5) {
561 // In case of DWP, the base offset from the index has to be added.
562 if (IsDWO) {
563 uint64_t ContributionBaseOffset = 0;
564 if (auto *IndexEntry = Header.getIndexEntry())
565 if (auto *Contrib = IndexEntry->getContribution(DW_SECT_RNGLISTS))
566 ContributionBaseOffset = Contrib->getOffset();
568 &Context.getDWARFObj().getRnglistsDWOSection(),
569 ContributionBaseOffset +
570 DWARFListTableHeader::getHeaderSize(Header.getFormat()));
571 } else
572 setRangesSection(&Context.getDWARFObj().getRnglistsSection(),
573 toSectionOffset(UnitDie.find(DW_AT_rnglists_base),
575 Header.getFormat())));
576 }
577
578 if (IsDWO) {
579 // If we are reading a package file, we need to adjust the location list
580 // data based on the index entries.
581 StringRef Data = Header.getVersion() >= 5
582 ? Context.getDWARFObj().getLoclistsDWOSection().Data
583 : Context.getDWARFObj().getLocDWOSection().Data;
584 if (auto *IndexEntry = Header.getIndexEntry())
585 if (const auto *C = IndexEntry->getContribution(
586 Header.getVersion() >= 5 ? DW_SECT_LOCLISTS : DW_SECT_EXT_LOC))
587 Data = Data.substr(C->getOffset(), C->getLength());
588
589 DWARFDataExtractor DWARFData(Data, IsLittleEndian, getAddressByteSize());
590 LocTable =
591 std::make_unique<DWARFDebugLoclists>(DWARFData, Header.getVersion());
592 LocSectionBase = DWARFListTableHeader::getHeaderSize(Header.getFormat());
593 } else if (getVersion() >= 5) {
594 LocTable = std::make_unique<DWARFDebugLoclists>(
595 DWARFDataExtractor(Context.getDWARFObj(),
596 Context.getDWARFObj().getLoclistsSection(),
597 IsLittleEndian, getAddressByteSize()),
598 getVersion());
599 } else {
600 LocTable = std::make_unique<DWARFDebugLoc>(DWARFDataExtractor(
601 Context.getDWARFObj(), Context.getDWARFObj().getLocSection(),
602 IsLittleEndian, getAddressByteSize()));
603 }
604
605 // Don't fall back to DW_AT_GNU_ranges_base: it should be ignored for
606 // skeleton CU DIE, so that DWARF users not aware of it are not broken.
607 return Error::success();
608}
609
610bool DWARFUnit::parseDWO(StringRef DWOAlternativeLocation) {
611 if (IsDWO)
612 return false;
613 if (DWO)
614 return false;
615 DWARFDie UnitDie = getUnitDIE();
616 if (!UnitDie)
617 return false;
618 auto DWOFileName = getVersion() >= 5
619 ? dwarf::toString(UnitDie.find(DW_AT_dwo_name))
620 : dwarf::toString(UnitDie.find(DW_AT_GNU_dwo_name));
621 if (!DWOFileName)
622 return false;
623 auto CompilationDir = dwarf::toString(UnitDie.find(DW_AT_comp_dir));
624 SmallString<16> AbsolutePath;
625 if (sys::path::is_relative(*DWOFileName) && CompilationDir &&
626 *CompilationDir) {
627 sys::path::append(AbsolutePath, *CompilationDir);
628 }
629 sys::path::append(AbsolutePath, *DWOFileName);
630 auto DWOId = getDWOId();
631 if (!DWOId)
632 return false;
633 auto DWOContext = Context.getDWOContext(AbsolutePath);
634 if (!DWOContext) {
635 // Use the alternative location to get the DWARF context for the DWO object.
636 if (DWOAlternativeLocation.empty())
637 return false;
638 // If the alternative context does not correspond to the original DWO object
639 // (different hashes), the below 'getDWOCompileUnitForHash' call will catch
640 // the issue, with a returned null context.
641 DWOContext = Context.getDWOContext(DWOAlternativeLocation);
642 if (!DWOContext)
643 return false;
644 }
645
646 DWARFCompileUnit *DWOCU = DWOContext->getDWOCompileUnitForHash(*DWOId);
647 if (!DWOCU)
648 return false;
649 DWO = std::shared_ptr<DWARFCompileUnit>(std::move(DWOContext), DWOCU);
650 DWO->setSkeletonUnit(this);
651 // Share .debug_addr and .debug_ranges section with compile unit in .dwo
652 if (AddrOffsetSectionBase)
653 DWO->setAddrOffsetSection(AddrOffsetSection, *AddrOffsetSectionBase);
654 if (getVersion() == 4) {
655 auto DWORangesBase = UnitDie.getRangesBaseAttribute();
656 DWO->setRangesSection(RangeSection, DWORangesBase.value_or(0));
657 }
658
659 return true;
660}
661
662void DWARFUnit::clearDIEs(bool KeepCUDie) {
663 // Do not use resize() + shrink_to_fit() to free memory occupied by dies.
664 // shrink_to_fit() is a *non-binding* request to reduce capacity() to size().
665 // It depends on the implementation whether the request is fulfilled.
666 // Create a new vector with a small capacity and assign it to the DieArray to
667 // have previous contents freed.
668 DieArray = (KeepCUDie && !DieArray.empty())
669 ? std::vector<DWARFDebugInfoEntry>({DieArray[0]})
670 : std::vector<DWARFDebugInfoEntry>();
671}
672
675 if (getVersion() <= 4) {
676 DWARFDebugRangeList RangeList;
677 if (Error E = extractRangeList(Offset, RangeList))
678 return std::move(E);
679 return RangeList.getAbsoluteRanges(getBaseAddress());
680 }
681 DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection,
682 IsLittleEndian, Header.getAddressByteSize());
683 DWARFDebugRnglistTable RnglistTable;
684 auto RangeListOrError = RnglistTable.findList(RangesData, Offset);
685 if (RangeListOrError)
686 return RangeListOrError.get().getAbsoluteRanges(getBaseAddress(), *this);
687 return RangeListOrError.takeError();
688}
689
692 if (auto Offset = getRnglistOffset(Index))
694
696 "invalid range list table index %d (possibly "
697 "missing the entire range list table)",
698 Index);
699}
700
702 DWARFDie UnitDie = getUnitDIE();
703 if (!UnitDie)
704 return createStringError(errc::invalid_argument, "No unit DIE");
705
706 // First, check if unit DIE describes address ranges for the whole unit.
707 auto CUDIERangesOrError = UnitDie.getAddressRanges();
708 if (!CUDIERangesOrError)
710 "decoding address ranges: %s",
711 toString(CUDIERangesOrError.takeError()).c_str());
712 return *CUDIERangesOrError;
713}
714
718
719 Error InterpretationError = Error::success();
720
723 [this](uint32_t Index) { return getAddrOffsetSectionItem(Index); },
725 if (L)
726 Result.push_back(std::move(*L));
727 else
728 InterpretationError =
729 joinErrors(L.takeError(), std::move(InterpretationError));
730 return !InterpretationError;
731 });
732
733 if (ParseError || InterpretationError)
734 return joinErrors(std::move(ParseError), std::move(InterpretationError));
735
736 return Result;
737}
738
740 if (Die.isSubroutineDIE()) {
741 auto DIERangesOrError = Die.getAddressRanges();
742 if (DIERangesOrError) {
743 for (const auto &R : DIERangesOrError.get()) {
744 // Ignore 0-sized ranges.
745 if (R.LowPC == R.HighPC)
746 continue;
747 auto B = AddrDieMap.upper_bound(R.LowPC);
748 if (B != AddrDieMap.begin() && R.LowPC < (--B)->second.first) {
749 // The range is a sub-range of existing ranges, we need to split the
750 // existing range.
751 if (R.HighPC < B->second.first)
752 AddrDieMap[R.HighPC] = B->second;
753 if (R.LowPC > B->first)
754 AddrDieMap[B->first].first = R.LowPC;
755 }
756 AddrDieMap[R.LowPC] = std::make_pair(R.HighPC, Die);
757 }
758 } else
759 llvm::consumeError(DIERangesOrError.takeError());
760 }
761 // Parent DIEs are added to the AddrDieMap prior to the Children DIEs to
762 // simplify the logic to update AddrDieMap. The child's range will always
763 // be equal or smaller than the parent's range. With this assumption, when
764 // adding one range into the map, it will at most split a range into 3
765 // sub-ranges.
766 for (DWARFDie Child = Die.getFirstChild(); Child; Child = Child.getSibling())
767 updateAddressDieMap(Child);
768}
769
771 extractDIEsIfNeeded(false);
772 if (AddrDieMap.empty())
774 auto R = AddrDieMap.upper_bound(Address);
775 if (R == AddrDieMap.begin())
776 return DWARFDie();
777 // upper_bound's previous item contains Address.
778 --R;
779 if (Address >= R->second.first)
780 return DWARFDie();
781 return R->second.second;
782}
783
785 for (DWARFDie Child : Die) {
786 if (isType(Child.getTag()))
787 continue;
789 }
790
791 if (Die.getTag() != DW_TAG_variable)
792 return;
793
795 Die.getLocations(DW_AT_location);
796 if (!Locations) {
797 // Missing DW_AT_location is fine here.
798 consumeError(Locations.takeError());
799 return;
800 }
801
803
804 for (const DWARFLocationExpression &Location : *Locations) {
805 uint8_t AddressSize = getAddressByteSize();
806 DataExtractor Data(Location.Expr, isLittleEndian(), AddressSize);
807 DWARFExpression Expr(Data, AddressSize);
808 auto It = Expr.begin();
809 if (It == Expr.end())
810 continue;
811
812 // Match exactly the main sequence used to describe global variables:
813 // `DW_OP_addr[x] [+ DW_OP_plus_uconst]`. Currently, this is the sequence
814 // that LLVM produces for DILocalVariables and DIGlobalVariables. If, in
815 // future, the DWARF producer (`DwarfCompileUnit::addLocationAttribute()` is
816 // a good starting point) is extended to use further expressions, this code
817 // needs to be updated.
818 uint64_t LocationAddr;
819 if (It->getCode() == dwarf::DW_OP_addr) {
820 LocationAddr = It->getRawOperand(0);
821 } else if (It->getCode() == dwarf::DW_OP_addrx) {
822 uint64_t DebugAddrOffset = It->getRawOperand(0);
823 if (auto Pointer = getAddrOffsetSectionItem(DebugAddrOffset)) {
824 LocationAddr = Pointer->Address;
825 }
826 } else {
827 continue;
828 }
829
830 // Read the optional 2nd operand, a DW_OP_plus_uconst.
831 if (++It != Expr.end()) {
832 if (It->getCode() != dwarf::DW_OP_plus_uconst)
833 continue;
834
835 LocationAddr += It->getRawOperand(0);
836
837 // Probe for a 3rd operand, if it exists, bail.
838 if (++It != Expr.end())
839 continue;
840 }
841
842 Address = LocationAddr;
843 break;
844 }
845
846 // Get the size of the global variable. If all else fails (i.e. the global has
847 // no type), then we use a size of one to still allow symbolization of the
848 // exact address.
849 uint64_t GVSize = 1;
850 if (Die.getAttributeValueAsReferencedDie(DW_AT_type))
851 if (std::optional<uint64_t> Size = Die.getTypeSize(getAddressByteSize()))
852 GVSize = *Size;
853
854 if (Address != UINT64_MAX)
855 VariableDieMap[Address] = {Address + GVSize, Die};
856}
857
859 extractDIEsIfNeeded(false);
860
861 auto RootDie = getUnitDIE();
862
863 auto RootLookup = RootsParsedForVariables.insert(RootDie.getOffset());
864 if (RootLookup.second)
865 updateVariableDieMap(RootDie);
866
867 auto R = VariableDieMap.upper_bound(Address);
868 if (R == VariableDieMap.begin())
869 return DWARFDie();
870
871 // upper_bound's previous item contains Address.
872 --R;
873 if (Address >= R->second.first)
874 return DWARFDie();
875 return R->second.second;
876}
877
878void
880 SmallVectorImpl<DWARFDie> &InlinedChain) {
881 assert(InlinedChain.empty());
882 // Try to look for subprogram DIEs in the DWO file.
883 parseDWO();
884 // First, find the subroutine that contains the given address (the leaf
885 // of inlined chain).
886 DWARFDie SubroutineDIE =
887 (DWO ? *DWO : *this).getSubroutineForAddress(Address);
888
889 while (SubroutineDIE) {
890 if (SubroutineDIE.isSubprogramDIE()) {
891 InlinedChain.push_back(SubroutineDIE);
892 return;
893 }
894 if (SubroutineDIE.getTag() == DW_TAG_inlined_subroutine)
895 InlinedChain.push_back(SubroutineDIE);
896 SubroutineDIE = SubroutineDIE.getParent();
897 }
898}
899
901 DWARFSectionKind Kind) {
902 if (Kind == DW_SECT_INFO)
903 return Context.getCUIndex();
904 assert(Kind == DW_SECT_EXT_TYPES);
905 return Context.getTUIndex();
906}
907
909 if (const DWARFDebugInfoEntry *Entry = getParentEntry(Die))
910 return DWARFDie(this, Entry);
911
912 return DWARFDie();
913}
914
917 if (!Die)
918 return nullptr;
919 assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size());
920
921 if (std::optional<uint32_t> ParentIdx = Die->getParentIdx()) {
922 assert(*ParentIdx < DieArray.size() &&
923 "ParentIdx is out of DieArray boundaries");
924 return getDebugInfoEntry(*ParentIdx);
925 }
926
927 return nullptr;
928}
929
931 if (const DWARFDebugInfoEntry *Sibling = getSiblingEntry(Die))
932 return DWARFDie(this, Sibling);
933
934 return DWARFDie();
935}
936
939 if (!Die)
940 return nullptr;
941 assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size());
942
943 if (std::optional<uint32_t> SiblingIdx = Die->getSiblingIdx()) {
944 assert(*SiblingIdx < DieArray.size() &&
945 "SiblingIdx is out of DieArray boundaries");
946 return &DieArray[*SiblingIdx];
947 }
948
949 return nullptr;
950}
951
953 if (const DWARFDebugInfoEntry *Sibling = getPreviousSiblingEntry(Die))
954 return DWARFDie(this, Sibling);
955
956 return DWARFDie();
957}
958
961 if (!Die)
962 return nullptr;
963 assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size());
964
965 std::optional<uint32_t> ParentIdx = Die->getParentIdx();
966 if (!ParentIdx)
967 // Die is a root die, there is no previous sibling.
968 return nullptr;
969
970 assert(*ParentIdx < DieArray.size() &&
971 "ParentIdx is out of DieArray boundaries");
972 assert(getDIEIndex(Die) > 0 && "Die is a root die");
973
974 uint32_t PrevDieIdx = getDIEIndex(Die) - 1;
975 if (PrevDieIdx == *ParentIdx)
976 // Immediately previous node is parent, there is no previous sibling.
977 return nullptr;
978
979 while (DieArray[PrevDieIdx].getParentIdx() != *ParentIdx) {
980 PrevDieIdx = *DieArray[PrevDieIdx].getParentIdx();
981
982 assert(PrevDieIdx < DieArray.size() &&
983 "PrevDieIdx is out of DieArray boundaries");
984 assert(PrevDieIdx >= *ParentIdx &&
985 "PrevDieIdx is not a child of parent of Die");
986 }
987
988 return &DieArray[PrevDieIdx];
989}
990
992 if (const DWARFDebugInfoEntry *Child = getFirstChildEntry(Die))
993 return DWARFDie(this, Child);
994
995 return DWARFDie();
996}
997
1000 if (!Die)
1001 return nullptr;
1002 assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size());
1003
1004 if (!Die->hasChildren())
1005 return nullptr;
1006
1007 // TODO: Instead of checking here for invalid die we might reject
1008 // invalid dies at parsing stage(DWARFUnit::extractDIEsToVector).
1009 // We do not want access out of bounds when parsing corrupted debug data.
1010 size_t I = getDIEIndex(Die) + 1;
1011 if (I >= DieArray.size())
1012 return nullptr;
1013 return &DieArray[I];
1014}
1015
1017 if (const DWARFDebugInfoEntry *Child = getLastChildEntry(Die))
1018 return DWARFDie(this, Child);
1019
1020 return DWARFDie();
1021}
1022
1023const DWARFDebugInfoEntry *
1025 if (!Die)
1026 return nullptr;
1027 assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size());
1028
1029 if (!Die->hasChildren())
1030 return nullptr;
1031
1032 if (std::optional<uint32_t> SiblingIdx = Die->getSiblingIdx()) {
1033 assert(*SiblingIdx < DieArray.size() &&
1034 "SiblingIdx is out of DieArray boundaries");
1035 assert(DieArray[*SiblingIdx - 1].getTag() == dwarf::DW_TAG_null &&
1036 "Bad end of children marker");
1037 return &DieArray[*SiblingIdx - 1];
1038 }
1039
1040 // If SiblingIdx is set for non-root dies we could be sure that DWARF is
1041 // correct and "end of children marker" must be found. For root die we do not
1042 // have such a guarantee(parsing root die might be stopped if "end of children
1043 // marker" is missing, SiblingIdx is always zero for root die). That is why we
1044 // do not use assertion for checking for "end of children marker" for root
1045 // die.
1046
1047 // TODO: Instead of checking here for invalid die we might reject
1048 // invalid dies at parsing stage(DWARFUnit::extractDIEsToVector).
1049 if (getDIEIndex(Die) == 0 && DieArray.size() > 1 &&
1050 DieArray.back().getTag() == dwarf::DW_TAG_null) {
1051 // For the unit die we might take last item from DieArray.
1052 assert(getDIEIndex(Die) ==
1053 getDIEIndex(const_cast<DWARFUnit *>(this)->getUnitDIE()) &&
1054 "Bad unit die");
1055 return &DieArray.back();
1056 }
1057
1058 return nullptr;
1059}
1060
1062 if (!Abbrevs) {
1064 Abbrev->getAbbreviationDeclarationSet(getAbbreviationsOffset());
1065 if (!AbbrevsOrError) {
1066 // FIXME: We should propagate this error upwards.
1067 consumeError(AbbrevsOrError.takeError());
1068 return nullptr;
1069 }
1070 Abbrevs = *AbbrevsOrError;
1071 }
1072 return Abbrevs;
1073}
1074
1075std::optional<object::SectionedAddress> DWARFUnit::getBaseAddress() {
1076 if (BaseAddr)
1077 return BaseAddr;
1078
1079 DWARFDie UnitDie = (SU ? SU : this)->getUnitDIE();
1080 std::optional<DWARFFormValue> PC =
1081 UnitDie.find({DW_AT_low_pc, DW_AT_entry_pc});
1082 BaseAddr = toSectionedAddress(PC);
1083 return BaseAddr;
1084}
1085
1088 DWARFDataExtractor &DA) {
1089 uint8_t EntrySize = getDwarfOffsetByteSize();
1090 // In order to ensure that we don't read a partial record at the end of
1091 // the section we validate for a multiple of the entry size.
1092 uint64_t ValidationSize = alignTo(Size, EntrySize);
1093 // Guard against overflow.
1094 if (ValidationSize >= Size)
1095 if (DA.isValidOffsetForDataOfSize((uint32_t)Base, ValidationSize))
1096 return *this;
1097 return createStringError(errc::invalid_argument, "length exceeds section size");
1098}
1099
1100// Look for a DWARF64-formatted contribution to the string offsets table
1101// starting at a given offset and record it in a descriptor.
1104 if (!DA.isValidOffsetForDataOfSize(Offset, 16))
1105 return createStringError(errc::invalid_argument, "section offset exceeds section size");
1106
1107 if (DA.getU32(&Offset) != dwarf::DW_LENGTH_DWARF64)
1108 return createStringError(errc::invalid_argument, "32 bit contribution referenced from a 64 bit unit");
1109
1110 uint64_t Size = DA.getU64(&Offset);
1111 uint8_t Version = DA.getU16(&Offset);
1112 (void)DA.getU16(&Offset); // padding
1113 // The encoded length includes the 2-byte version field and the 2-byte
1114 // padding, so we need to subtract them out when we populate the descriptor.
1115 return StrOffsetsContributionDescriptor(Offset, Size - 4, Version, DWARF64);
1116}
1117
1118// Look for a DWARF32-formatted contribution to the string offsets table
1119// starting at a given offset and record it in a descriptor.
1122 if (!DA.isValidOffsetForDataOfSize(Offset, 8))
1123 return createStringError(errc::invalid_argument, "section offset exceeds section size");
1124
1125 uint32_t ContributionSize = DA.getU32(&Offset);
1126 if (ContributionSize >= dwarf::DW_LENGTH_lo_reserved)
1127 return createStringError(errc::invalid_argument, "invalid length");
1128
1129 uint8_t Version = DA.getU16(&Offset);
1130 (void)DA.getU16(&Offset); // padding
1131 // The encoded length includes the 2-byte version field and the 2-byte
1132 // padding, so we need to subtract them out when we populate the descriptor.
1133 return StrOffsetsContributionDescriptor(Offset, ContributionSize - 4, Version,
1134 DWARF32);
1135}
1136
1140 uint64_t Offset) {
1142 switch (Format) {
1144 if (Offset < 16)
1145 return createStringError(errc::invalid_argument, "insufficient space for 64 bit header prefix");
1146 auto DescOrError = parseDWARF64StringOffsetsTableHeader(DA, Offset - 16);
1147 if (!DescOrError)
1148 return DescOrError.takeError();
1149 Desc = *DescOrError;
1150 break;
1151 }
1153 if (Offset < 8)
1154 return createStringError(errc::invalid_argument, "insufficient space for 32 bit header prefix");
1155 auto DescOrError = parseDWARF32StringOffsetsTableHeader(DA, Offset - 8);
1156 if (!DescOrError)
1157 return DescOrError.takeError();
1158 Desc = *DescOrError;
1159 break;
1160 }
1161 }
1162 return Desc.validateContributionSize(DA);
1163}
1164
1167 assert(!IsDWO);
1168 auto OptOffset = toSectionOffset(getUnitDIE().find(DW_AT_str_offsets_base));
1169 if (!OptOffset)
1170 return std::nullopt;
1171 auto DescOrError =
1172 parseDWARFStringOffsetsTableHeader(DA, Header.getFormat(), *OptOffset);
1173 if (!DescOrError)
1174 return DescOrError.takeError();
1175 return *DescOrError;
1176}
1177
1180 assert(IsDWO);
1181 uint64_t Offset = 0;
1182 auto IndexEntry = Header.getIndexEntry();
1183 const auto *C =
1184 IndexEntry ? IndexEntry->getContribution(DW_SECT_STR_OFFSETS) : nullptr;
1185 if (C)
1186 Offset = C->getOffset();
1187 if (getVersion() >= 5) {
1188 if (DA.getData().data() == nullptr)
1189 return std::nullopt;
1190 Offset += Header.getFormat() == dwarf::DwarfFormat::DWARF32 ? 8 : 16;
1191 // Look for a valid contribution at the given offset.
1192 auto DescOrError = parseDWARFStringOffsetsTableHeader(DA, Header.getFormat(), Offset);
1193 if (!DescOrError)
1194 return DescOrError.takeError();
1195 return *DescOrError;
1196 }
1197 // Prior to DWARF v5, we derive the contribution size from the
1198 // index table (in a package file). In a .dwo file it is simply
1199 // the length of the string offsets section.
1201 if (C)
1202 Desc = StrOffsetsContributionDescriptor(C->getOffset(), C->getLength(), 4,
1203 Header.getFormat());
1204 else if (!IndexEntry && !StringOffsetSection.Data.empty())
1205 Desc = StrOffsetsContributionDescriptor(0, StringOffsetSection.Data.size(),
1206 4, Header.getFormat());
1207 else
1208 return std::nullopt;
1209 auto DescOrError = Desc.validateContributionSize(DA);
1210 if (!DescOrError)
1211 return DescOrError.takeError();
1212 return *DescOrError;
1213}
1214
1216 DataExtractor RangesData(RangeSection->Data, IsLittleEndian,
1218 DWARFDataExtractor RangesDA(Context.getDWARFObj(), *RangeSection,
1219 IsLittleEndian, 0);
1220 if (std::optional<uint64_t> Off = llvm::DWARFListTableHeader::getOffsetEntry(
1221 RangesData, RangeSectionBase, getFormat(), Index))
1222 return *Off + RangeSectionBase;
1223 return std::nullopt;
1224}
1225
1227 if (std::optional<uint64_t> Off = llvm::DWARFListTableHeader::getOffsetEntry(
1228 LocTable->getData(), LocSectionBase, getFormat(), Index))
1229 return *Off + LocSectionBase;
1230 return std::nullopt;
1231}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static Expected< StrOffsetsContributionDescriptor > parseDWARF64StringOffsetsTableHeader(DWARFDataExtractor &DA, uint64_t Offset)
static Expected< StrOffsetsContributionDescriptor > parseDWARF32StringOffsetsTableHeader(DWARFDataExtractor &DA, uint64_t Offset)
static Expected< StrOffsetsContributionDescriptor > parseDWARFStringOffsetsTableHeader(DWARFDataExtractor &DA, llvm::dwarf::DwarfFormat Format, uint64_t Offset)
This file contains constants used for implementing Dwarf debug support.
#define I(x, y, z)
Definition MD5.cpp:58
This file defines the SmallString class.
A structured debug information entry.
Definition DIE.h:828
DWARFContext This data structure is the top level entity that deals with dwarf debug information pars...
static bool isSupportedVersion(unsigned version)
static Error checkAddressSizeSupported(unsigned AddressSize, std::error_code EC, char const *Fmt, const Ts &...Vals)
static unsigned getMaxSupportedVersion()
std::pair< uint64_t, dwarf::DwarfFormat > getInitialLength(uint64_t *Off, Error *Err=nullptr) const
Extracts the DWARF "initial length" field, which can either be a 32-bit value smaller than 0xfffffff0...
uint64_t getRelocatedValue(uint32_t Size, uint64_t *Off, uint64_t *SectionIndex=nullptr, Error *Err=nullptr) const
Extracts a value and returns it as adjusted by the Relocator.
A DWARFDataExtractor (typically for an in-memory copy of an object-file section) plus a relocation ma...
DWARFDebugInfoEntry - A DIE with only the minimum required data.
std::optional< uint32_t > getSiblingIdx() const
Returns index of the sibling die.
std::optional< uint32_t > getParentIdx() const
Returns index of the parent die.
const DWARFAbbreviationDeclaration * getAbbreviationDeclarationPtr() const
LLVM_ABI Error extract(const DWARFDataExtractor &data, uint64_t *offset_ptr)
LLVM_ABI DWARFAddressRangesVector getAbsoluteRanges(std::optional< object::SectionedAddress > BaseAddr) const
getAbsoluteRanges - Returns absolute address ranges defined by this range list.
Utility class that carries the DWARF compile/type unit and the debug info entry in an object.
Definition DWARFDie.h:43
LLVM_ABI Expected< DWARFAddressRangesVector > getAddressRanges() const
Get the address ranges for this DIE.
Definition DWARFDie.cpp:455
LLVM_ABI DWARFDie getAttributeValueAsReferencedDie(dwarf::Attribute Attr) const
Extract the specified attribute from this DIE as the referenced DIE.
Definition DWARFDie.cpp:374
LLVM_ABI DWARFDie getParent() const
Get the parent of this DIE object.
Definition DWARFDie.cpp:723
LLVM_ABI std::optional< DWARFFormValue > find(dwarf::Attribute Attr) const
Extract the specified attribute from this DIE.
Definition DWARFDie.cpp:318
LLVM_ABI DWARFDie getSibling() const
Get the sibling of this DIE object.
Definition DWARFDie.cpp:729
LLVM_ABI bool isSubroutineDIE() const
Returns true if DIE represents a subprogram or an inlined subroutine.
Definition DWARFDie.cpp:313
LLVM_ABI bool isSubprogramDIE() const
Returns true if DIE represents a subprogram (not inlined).
Definition DWARFDie.cpp:311
LLVM_ABI std::optional< uint64_t > getTypeSize(uint64_t PointerSize)
Gets the type size (in bytes) for this DIE.
Definition DWARFDie.cpp:646
LLVM_ABI DWARFDie getFirstChild() const
Get the first child of this DIE object.
Definition DWARFDie.cpp:741
dwarf::Tag getTag() const
Definition DWARFDie.h:73
LLVM_ABI Expected< DWARFLocationExpressionsVector > getLocations(dwarf::Attribute Attr) const
Definition DWARFDie.cpp:495
LLVM_ABI std::optional< uint64_t > getRangesBaseAttribute() const
Extract the range base attribute from this DIE as absolute section offset.
Definition DWARFDie.cpp:415
iterator begin() const
Expected< DWARFListType > findList(DWARFDataExtractor Data, uint64_t Offset) const
Look up a list based on a given offset.
static uint8_t getHeaderSize(dwarf::DwarfFormat Format)
Return the size of the table header including the length but not including the offsets.
std::optional< uint64_t > getOffsetEntry(DataExtractor Data, uint32_t Index) const
LLVM_ABI Error visitAbsoluteLocationList(uint64_t Offset, std::optional< object::SectionedAddress > BaseAddr, std::function< std::optional< object::SectionedAddress >(uint32_t)> LookupAddr, function_ref< bool(Expected< DWARFLocationExpression >)> Callback) const
Base class describing the header of any kind of "unit." Some information is specific to certain unit ...
Definition DWARFUnit.h:56
LLVM_ABI Error extract(DWARFContext &Context, const DWARFDataExtractor &debug_info, uint64_t *offset_ptr, DWARFSectionKind SectionKind)
Parse a unit header from debug_info starting at offset_ptr.
LLVM_ABI Error applyIndexEntry(const DWARFUnitIndex::Entry *Entry)
uint64_t getLength() const
Definition DWARFUnit.h:100
uint16_t getVersion() const
Definition DWARFUnit.h:93
uint8_t getAddressByteSize() const
Definition DWARFUnit.h:95
uint64_t getNextUnitOffset() const
Definition DWARFUnit.h:118
uint8_t getUnitLengthFieldByteSize() const
Definition DWARFUnit.h:115
bool isTypeUnit() const
Definition DWARFUnit.h:111
Describe a collection of units.
Definition DWARFUnit.h:130
LLVM_ABI DWARFUnit * addUnit(std::unique_ptr< DWARFUnit > Unit)
Add an existing DWARFUnit to this UnitVector.
unsigned getNumInfoUnits() const
Returns number of units from all .debug_info[.dwo] sections.
Definition DWARFUnit.h:175
LLVM_ABI DWARFUnit * getUnitForIndexEntry(const DWARFUnitIndex::Entry &E, DWARFSectionKind Sec, const DWARFSection *Section=nullptr)
Returns the Unit from the .debug_info or .debug_types section by the index entry.
LLVM_ABI void addUnitsForSection(DWARFContext &C, const DWARFSection &Section, DWARFSectionKind SectionKind)
Read units from a .debug_info or .debug_types section.
Definition DWARFUnit.cpp:42
LLVM_ABI DWARFUnit * getUnitForOffset(uint64_t Offset) const
LLVM_ABI void addUnitsForDWOSection(DWARFContext &C, const DWARFSection &DWOSection, DWARFSectionKind SectionKind, bool Lazy=false)
Read units from a .debug_info.dwo or .debug_types.dwo section.
Definition DWARFUnit.cpp:53
const DWARFDebugInfoEntry * getDebugInfoEntry(unsigned Index) const
Return DWARFDebugInfoEntry for the specified index Index.
Definition DWARFUnit.h:284
const DWARFDebugInfoEntry * getSiblingEntry(const DWARFDebugInfoEntry *Die) const
std::optional< uint64_t > getDWOId()
Definition DWARFUnit.h:466
uint32_t getHeaderSize() const
Size in bytes of the parsed unit header.
Definition DWARFUnit.h:340
DWARFDie getPreviousSibling(const DWARFDebugInfoEntry *Die)
Expected< std::optional< StrOffsetsContributionDescriptor > > determineStringOffsetsTableContributionDWO(DWARFDataExtractor &DA)
Find the unit's contribution to the string offsets table and determine its length and form.
const DWARFLocationTable & getLocationTable()
Definition DWARFUnit.h:402
const DWARFDebugInfoEntry * getParentEntry(const DWARFDebugInfoEntry *Die) const
DWARFDie getFirstChild(const DWARFDebugInfoEntry *Die)
DWARFDataExtractor getDebugInfoExtractor() const
DWARFDie getSibling(const DWARFDebugInfoEntry *Die)
std::optional< uint64_t > getRnglistOffset(uint32_t Index)
Return a rangelist's offset based on an index.
Error tryExtractDIEsIfNeeded(bool CUDieOnly)
DWARFDie getUnitDIE(bool ExtractUnitDIEOnly=true)
Definition DWARFUnit.h:451
virtual ~DWARFUnit()
uint8_t getAddressByteSize() const
Definition DWARFUnit.h:334
DWARFDie getVariableForAddress(uint64_t Address)
Returns variable DIE for the address provided.
void setRangesSection(const DWARFSection *RS, uint64_t Base)
Definition DWARFUnit.h:383
uint8_t getDwarfStringOffsetsByteSize() const
Definition DWARFUnit.h:418
const DWARFAbbreviationDeclarationSet * getAbbreviations() const
DWARFDie getParent(const DWARFDebugInfoEntry *Die)
std::optional< uint64_t > getLoclistOffset(uint32_t Index)
const char * getCompilationDir()
uint64_t getStringOffsetsBase() const
Definition DWARFUnit.h:423
dwarf::DwarfFormat getFormat() const
Definition DWARFUnit.h:342
DWARFUnit(DWARFContext &Context, const DWARFSection &Section, const DWARFUnitHeader &Header, const DWARFDebugAbbrev *DA, const DWARFSection *RS, const DWARFSection *LocSection, StringRef SS, const DWARFSection &SOS, const DWARFSection *AOS, const DWARFSection &LS, bool LE, bool IsDWO, const DWARFUnitVector &UnitVector)
Expected< std::optional< StrOffsetsContributionDescriptor > > determineStringOffsetsTableContribution(DWARFDataExtractor &DA)
Find the unit's contribution to the string offsets table and determine its length and form.
uint64_t getAbbreviationsOffset() const
Definition DWARFUnit.h:428
uint16_t getVersion() const
Definition DWARFUnit.h:333
void getInlinedChainForAddress(uint64_t Address, SmallVectorImpl< DWARFDie > &InlinedChain)
getInlinedChainForAddress - fetches inlined chain for a given address.
Error extractRangeList(uint64_t RangeListOffset, DWARFDebugRangeList &RangeList) const
Extract the range list referenced by this compile unit from the .debug_ranges section.
Expected< uint64_t > getStringOffsetSectionItem(uint32_t Index) const
uint32_t getDIEIndex(const DWARFDebugInfoEntry *Die) const
Return the index of a Die entry inside the unit's DIE vector.
Definition DWARFUnit.h:277
Expected< DWARFLocationExpressionsVector > findLoclistFromOffset(uint64_t Offset)
Expected< DWARFAddressRangesVector > findRnglistFromOffset(uint64_t Offset)
Return a vector of address ranges resulting from a (possibly encoded) range list starting at a given ...
bool isLittleEndian() const
Definition DWARFUnit.h:325
const DWARFDebugInfoEntry * getPreviousSiblingEntry(const DWARFDebugInfoEntry *Die) const
const DWARFDebugInfoEntry * getLastChildEntry(const DWARFDebugInfoEntry *Die) const
void updateVariableDieMap(DWARFDie Die)
Recursively update address to variable Die map.
DWARFDie getSubroutineForAddress(uint64_t Address)
Returns subprogram DIE with address range encompassing the provided address.
const DWARFDebugInfoEntry * getFirstChildEntry(const DWARFDebugInfoEntry *Die) const
Expected< DWARFAddressRangesVector > findRnglistFromIndex(uint32_t Index)
Return a vector of address ranges retrieved from an encoded range list whose offset is found via a ta...
uint64_t getNextUnitOffset() const
Definition DWARFUnit.h:346
std::optional< object::SectionedAddress > getBaseAddress()
Expected< DWARFAddressRangesVector > collectAddressRanges()
std::optional< object::SectionedAddress > getAddrOffsetSectionItem(uint32_t Index) const
uint64_t getOffset() const
Definition DWARFUnit.h:329
DWARFDie getLastChild(const DWARFDebugInfoEntry *Die)
void updateAddressDieMap(DWARFDie Die)
Recursively update address to Die map.
LLVM_ABI uint64_t getUnsigned(uint64_t *offset_ptr, uint32_t byte_size, Error *Err=nullptr) const
Extract an unsigned integer of size byte_size from *offset_ptr.
size_t size() const
Return the number of bytes in the underlying buffer.
LLVM_ABI uint8_t getU8(uint64_t *offset_ptr, Error *Err=nullptr) const
Extract a uint8_t value from *offset_ptr.
LLVM_ABI uint16_t getU16(uint64_t *offset_ptr, Error *Err=nullptr) const
Extract a uint16_t value from *offset_ptr.
LLVM_ABI uint64_t getU64(uint64_t *offset_ptr, Error *Err=nullptr) const
Extract a uint64_t value from *offset_ptr.
bool isValidOffset(uint64_t offset) const
Test the validity of offset.
Lightweight error class with error context and mandatory checking.
Definition Error.h:159
static ErrorSuccess success()
Create a success value.
Definition Error.h:336
Tagged union holding either a T or a Error.
Definition Error.h:485
Error takeError()
Take ownership of the stored error.
Definition Error.h:612
SectionKind - This is a simple POD value that classifies the properties of a section.
Definition SectionKind.h:22
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition SmallString.h:26
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
iterator insert(iterator I, std::unique_ptr< DWARFUnit > &&Elt)
void push_back(const T &Elt)
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr bool empty() const
empty - Check if the string is empty.
Definition StringRef.h:143
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
LLVM_ABI unsigned getTag(StringRef TagString)
Definition Dwarf.cpp:32
#define UINT64_MAX
Definition DataTypes.h:77
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
Calculates the starting offsets for various sections within the .debug_names section.
Definition Dwarf.h:35
std::optional< const char * > toString(const std::optional< DWARFFormValue > &V)
Take an optional DWARFFormValue and try to extract a string value from it.
std::optional< object::SectionedAddress > toSectionedAddress(const std::optional< DWARFFormValue > &V)
bool isType(Tag T)
Definition Dwarf.h:113
DwarfFormat
Constants that define the DWARF format as 32 or 64 bit.
Definition Dwarf.h:93
@ DWARF64
Definition Dwarf.h:93
@ DWARF32
Definition Dwarf.h:93
std::optional< uint64_t > toSectionOffset(const std::optional< DWARFFormValue > &V)
Take an optional DWARFFormValue and try to extract an section offset.
std::optional< uint64_t > toUnsigned(const std::optional< DWARFFormValue > &V)
Take an optional DWARFFormValue and try to extract an unsigned constant.
@ DW_LENGTH_lo_reserved
Special values for an initial length field.
Definition Dwarf.h:56
@ DW_LENGTH_DWARF64
Indicator of 64-bit DWARF format.
Definition Dwarf.h:57
LLVM_ABI bool is_relative(const Twine &path, Style style=Style::native)
Is path relative?
Definition Path.cpp:699
LLVM_ABI void append(SmallVectorImpl< char > &path, const Twine &a, const Twine &b="", const Twine &c="", const Twine &d="")
Append to path.
Definition Path.cpp:456
This is an optimization pass for GlobalISel generic memory operations.
@ Offset
Definition DWP.cpp:477
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1751
LLVM_ABI const DWARFUnitIndex & getDWARFUnitIndex(DWARFContext &Context, DWARFSectionKind Kind)
LLVM_ABI std::error_code inconvertibleErrorCode()
The value returned by this function can be returned from convertToErrorCode for Error values where no...
Definition Error.cpp:98
auto upper_bound(R &&Range, T &&Value)
Provide wrappers to std::upper_bound which take ranges instead of having to pass begin/end explicitly...
Definition STLExtras.h:2007
Error createStringError(std::error_code EC, char const *Fmt, const Ts &... Vals)
Create formatted StringError object.
Definition Error.h:1305
Op::Description Desc
DWARFSectionKind
The enum of section identifiers to be used in internal interfaces.
@ DW_SECT_EXT_LOC
@ DW_SECT_EXT_TYPES
@ invalid_argument
Definition Errc.h:56
Error joinErrors(Error E1, Error E2)
Concatenate errors.
Definition Error.h:442
static uint64_t getDebugInfoSize(DWARFContext &Dwarf)
Compute the total size of the debug info.
bool hasSingleElement(ContainerTy &&C)
Returns true if the given container only contains a single element.
Definition STLExtras.h:300
Error make_error(ArgTs &&... Args)
Make a Error instance representing failure using the given error info type.
Definition Error.h:340
FunctionAddr VTableAddr uintptr_t uintptr_t Data
Definition InstrProf.h:189
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
std::string toString(const APInt &I, unsigned Radix, bool Signed, bool formatAsCLiteral=false, bool UpperCase=true, bool InsertSeparators=false)
void consumeError(Error Err)
Consume a Error without doing anything.
Definition Error.h:1083
std::vector< DWARFLocationExpression > DWARFLocationExpressionsVector
Represents a set of absolute location expressions.
Represents a single DWARF expression, whose value is location-dependent.
Represents base address of the CU.
Definition DWARFUnit.h:195
LLVM_ABI Expected< StrOffsetsContributionDescriptor > validateContributionSize(DWARFDataExtractor &DA)
Determine whether a contribution to the string offsets table is consistent with the relevant section ...
uint64_t Size
The contribution size not including the header.
Definition DWARFUnit.h:198