LLVM 20.0.0git
ELFEmitter.cpp
Go to the documentation of this file.
1//===- yaml2elf - Convert YAML to a ELF object file -----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// The ELF component of yaml2obj.
11///
12//===----------------------------------------------------------------------===//
13
14#include "llvm/ADT/ArrayRef.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/SetVector.h"
17#include "llvm/ADT/StringSet.h"
27#include "llvm/Support/Errc.h"
28#include "llvm/Support/Error.h"
29#include "llvm/Support/LEB128.h"
34#include <optional>
35#include <variant>
36
37using namespace llvm;
38
39// This class is used to build up a contiguous binary blob while keeping
40// track of an offset in the output (which notionally begins at
41// `InitialOffset`).
42// The blob might be limited to an arbitrary size. All attempts to write data
43// are ignored and the error condition is remembered once the limit is reached.
44// Such an approach allows us to simplify the code by delaying error reporting
45// and doing it at a convenient time.
46namespace {
47class ContiguousBlobAccumulator {
48 const uint64_t InitialOffset;
49 const uint64_t MaxSize;
50
53 Error ReachedLimitErr = Error::success();
54
55 bool checkLimit(uint64_t Size) {
56 if (!ReachedLimitErr && getOffset() + Size <= MaxSize)
57 return true;
58 if (!ReachedLimitErr)
59 ReachedLimitErr = createStringError(errc::invalid_argument,
60 "reached the output size limit");
61 return false;
62 }
63
64public:
65 ContiguousBlobAccumulator(uint64_t BaseOffset, uint64_t SizeLimit)
66 : InitialOffset(BaseOffset), MaxSize(SizeLimit), OS(Buf) {}
67
68 uint64_t tell() const { return OS.tell(); }
69 uint64_t getOffset() const { return InitialOffset + OS.tell(); }
70 void writeBlobToStream(raw_ostream &Out) const { Out << OS.str(); }
71
72 Error takeLimitError() {
73 // Request to write 0 bytes to check we did not reach the limit.
74 checkLimit(0);
75 return std::move(ReachedLimitErr);
76 }
77
78 /// \returns The new offset.
79 uint64_t padToAlignment(unsigned Align) {
80 uint64_t CurrentOffset = getOffset();
81 if (ReachedLimitErr)
82 return CurrentOffset;
83
84 uint64_t AlignedOffset = alignTo(CurrentOffset, Align == 0 ? 1 : Align);
85 uint64_t PaddingSize = AlignedOffset - CurrentOffset;
86 if (!checkLimit(PaddingSize))
87 return CurrentOffset;
88
89 writeZeros(PaddingSize);
90 return AlignedOffset;
91 }
92
93 raw_ostream *getRawOS(uint64_t Size) {
94 if (checkLimit(Size))
95 return &OS;
96 return nullptr;
97 }
98
99 void writeAsBinary(const yaml::BinaryRef &Bin, uint64_t N = UINT64_MAX) {
100 if (!checkLimit(Bin.binary_size()))
101 return;
102 Bin.writeAsBinary(OS, N);
103 }
104
105 void writeZeros(uint64_t Num) {
106 if (checkLimit(Num))
107 OS.write_zeros(Num);
108 }
109
110 void write(const char *Ptr, size_t Size) {
111 if (checkLimit(Size))
112 OS.write(Ptr, Size);
113 }
114
115 void write(unsigned char C) {
116 if (checkLimit(1))
117 OS.write(C);
118 }
119
120 unsigned writeULEB128(uint64_t Val) {
121 if (!checkLimit(sizeof(uint64_t)))
122 return 0;
123 return encodeULEB128(Val, OS);
124 }
125
126 unsigned writeSLEB128(int64_t Val) {
127 if (!checkLimit(10))
128 return 0;
129 return encodeSLEB128(Val, OS);
130 }
131
132 template <typename T> void write(T Val, llvm::endianness E) {
133 if (checkLimit(sizeof(T)))
134 support::endian::write<T>(OS, Val, E);
135 }
136
137 void updateDataAt(uint64_t Pos, void *Data, size_t Size) {
138 assert(Pos >= InitialOffset && Pos + Size <= getOffset());
139 memcpy(&Buf[Pos - InitialOffset], Data, Size);
140 }
141};
142
143// Used to keep track of section and symbol names, so that in the YAML file
144// sections and symbols can be referenced by name instead of by index.
145class NameToIdxMap {
147
148public:
149 /// \Returns false if name is already present in the map.
150 bool addName(StringRef Name, unsigned Ndx) {
151 return Map.insert({Name, Ndx}).second;
152 }
153 /// \Returns false if name is not present in the map.
154 bool lookup(StringRef Name, unsigned &Idx) const {
155 auto I = Map.find(Name);
156 if (I == Map.end())
157 return false;
158 Idx = I->getValue();
159 return true;
160 }
161 /// Asserts if name is not present in the map.
162 unsigned get(StringRef Name) const {
163 unsigned Idx;
164 if (lookup(Name, Idx))
165 return Idx;
166 assert(false && "Expected section not found in index");
167 return 0;
168 }
169 unsigned size() const { return Map.size(); }
170};
171
172namespace {
173struct Fragment {
177 uint64_t AddrAlign;
178};
179} // namespace
180
181/// "Single point of truth" for the ELF file construction.
182/// TODO: This class still has a ways to go before it is truly a "single
183/// point of truth".
184template <class ELFT> class ELFState {
186
187 enum class SymtabType { Static, Dynamic };
188
189 /// The future symbol table string section.
191
192 /// The future section header string table section, if a unique string table
193 /// is needed. Don't reference this variable direectly: use the
194 /// ShStrtabStrings member instead.
196
197 /// The future dynamic symbol string section.
199
200 /// The name of the section header string table section. If it is .strtab or
201 /// .dynstr, the section header strings will be written to the same string
202 /// table as the static/dynamic symbols respectively. Otherwise a dedicated
203 /// section will be created with that name.
204 StringRef SectionHeaderStringTableName = ".shstrtab";
205 StringTableBuilder *ShStrtabStrings = &DotShStrtab;
206
207 NameToIdxMap SN2I;
208 NameToIdxMap SymN2I;
209 NameToIdxMap DynSymN2I;
210 ELFYAML::Object &Doc;
211
212 StringSet<> ExcludedSectionHeaders;
213
214 uint64_t LocationCounter = 0;
215 bool HasError = false;
216 yaml::ErrorHandler ErrHandler;
217 void reportError(const Twine &Msg);
218 void reportError(Error Err);
219
220 std::vector<Elf_Sym> toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols,
221 const StringTableBuilder &Strtab);
222 unsigned toSectionIndex(StringRef S, StringRef LocSec, StringRef LocSym = "");
223 unsigned toSymbolIndex(StringRef S, StringRef LocSec, bool IsDynamic);
224
225 void buildSectionIndex();
226 void buildSymbolIndexes();
227 void initProgramHeaders(std::vector<Elf_Phdr> &PHeaders);
228 bool initImplicitHeader(ContiguousBlobAccumulator &CBA, Elf_Shdr &Header,
229 StringRef SecName, ELFYAML::Section *YAMLSec);
230 void initSectionHeaders(std::vector<Elf_Shdr> &SHeaders,
231 ContiguousBlobAccumulator &CBA);
232 void initSymtabSectionHeader(Elf_Shdr &SHeader, SymtabType STType,
233 ContiguousBlobAccumulator &CBA,
234 ELFYAML::Section *YAMLSec);
235 void initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name,
237 ContiguousBlobAccumulator &CBA,
238 ELFYAML::Section *YAMLSec);
239 void initDWARFSectionHeader(Elf_Shdr &SHeader, StringRef Name,
240 ContiguousBlobAccumulator &CBA,
241 ELFYAML::Section *YAMLSec);
242 void setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders,
243 std::vector<Elf_Shdr> &SHeaders);
244
245 std::vector<Fragment>
246 getPhdrFragments(const ELFYAML::ProgramHeader &Phdr,
248
249 void finalizeStrings();
250 void writeELFHeader(raw_ostream &OS);
251 void writeSectionContent(Elf_Shdr &SHeader,
252 const ELFYAML::NoBitsSection &Section,
253 ContiguousBlobAccumulator &CBA);
254 void writeSectionContent(Elf_Shdr &SHeader,
255 const ELFYAML::RawContentSection &Section,
256 ContiguousBlobAccumulator &CBA);
257 void writeSectionContent(Elf_Shdr &SHeader,
258 const ELFYAML::RelocationSection &Section,
259 ContiguousBlobAccumulator &CBA);
260 void writeSectionContent(Elf_Shdr &SHeader,
261 const ELFYAML::RelrSection &Section,
262 ContiguousBlobAccumulator &CBA);
263 void writeSectionContent(Elf_Shdr &SHeader,
264 const ELFYAML::GroupSection &Group,
265 ContiguousBlobAccumulator &CBA);
266 void writeSectionContent(Elf_Shdr &SHeader,
267 const ELFYAML::SymtabShndxSection &Shndx,
268 ContiguousBlobAccumulator &CBA);
269 void writeSectionContent(Elf_Shdr &SHeader,
270 const ELFYAML::SymverSection &Section,
271 ContiguousBlobAccumulator &CBA);
272 void writeSectionContent(Elf_Shdr &SHeader,
273 const ELFYAML::VerneedSection &Section,
274 ContiguousBlobAccumulator &CBA);
275 void writeSectionContent(Elf_Shdr &SHeader,
276 const ELFYAML::VerdefSection &Section,
277 ContiguousBlobAccumulator &CBA);
278 void writeSectionContent(Elf_Shdr &SHeader,
279 const ELFYAML::ARMIndexTableSection &Section,
280 ContiguousBlobAccumulator &CBA);
281 void writeSectionContent(Elf_Shdr &SHeader,
282 const ELFYAML::MipsABIFlags &Section,
283 ContiguousBlobAccumulator &CBA);
284 void writeSectionContent(Elf_Shdr &SHeader,
285 const ELFYAML::DynamicSection &Section,
286 ContiguousBlobAccumulator &CBA);
287 void writeSectionContent(Elf_Shdr &SHeader,
288 const ELFYAML::StackSizesSection &Section,
289 ContiguousBlobAccumulator &CBA);
290 void writeSectionContent(Elf_Shdr &SHeader,
291 const ELFYAML::BBAddrMapSection &Section,
292 ContiguousBlobAccumulator &CBA);
293 void writeSectionContent(Elf_Shdr &SHeader,
294 const ELFYAML::HashSection &Section,
295 ContiguousBlobAccumulator &CBA);
296 void writeSectionContent(Elf_Shdr &SHeader,
297 const ELFYAML::AddrsigSection &Section,
298 ContiguousBlobAccumulator &CBA);
299 void writeSectionContent(Elf_Shdr &SHeader,
300 const ELFYAML::NoteSection &Section,
301 ContiguousBlobAccumulator &CBA);
302 void writeSectionContent(Elf_Shdr &SHeader,
303 const ELFYAML::GnuHashSection &Section,
304 ContiguousBlobAccumulator &CBA);
305 void writeSectionContent(Elf_Shdr &SHeader,
306 const ELFYAML::LinkerOptionsSection &Section,
307 ContiguousBlobAccumulator &CBA);
308 void writeSectionContent(Elf_Shdr &SHeader,
310 ContiguousBlobAccumulator &CBA);
311 void writeSectionContent(Elf_Shdr &SHeader,
313 ContiguousBlobAccumulator &CBA);
314
315 void writeFill(ELFYAML::Fill &Fill, ContiguousBlobAccumulator &CBA);
316
317 ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH);
318
319 void assignSectionAddress(Elf_Shdr &SHeader, ELFYAML::Section *YAMLSec);
320
321 DenseMap<StringRef, size_t> buildSectionHeaderReorderMap();
322
323 BumpPtrAllocator StringAlloc;
324 uint64_t alignToOffset(ContiguousBlobAccumulator &CBA, uint64_t Align,
325 std::optional<llvm::yaml::Hex64> Offset);
326
327 uint64_t getSectionNameOffset(StringRef Name);
328
329public:
330 static bool writeELF(raw_ostream &OS, ELFYAML::Object &Doc,
331 yaml::ErrorHandler EH, uint64_t MaxSize);
332};
333} // end anonymous namespace
334
335template <class T> static size_t arrayDataSize(ArrayRef<T> A) {
336 return A.size() * sizeof(T);
337}
338
339template <class T> static void writeArrayData(raw_ostream &OS, ArrayRef<T> A) {
340 OS.write((const char *)A.data(), arrayDataSize(A));
341}
342
343template <class T> static void zero(T &Obj) { memset(&Obj, 0, sizeof(Obj)); }
344
345template <class ELFT>
346ELFState<ELFT>::ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH)
347 : Doc(D), ErrHandler(EH) {
348 // The input may explicitly request to store the section header table strings
349 // in the same string table as dynamic or static symbol names. Set the
350 // ShStrtabStrings member accordingly.
351 if (Doc.Header.SectionHeaderStringTable) {
352 SectionHeaderStringTableName = *Doc.Header.SectionHeaderStringTable;
353 if (*Doc.Header.SectionHeaderStringTable == ".strtab")
354 ShStrtabStrings = &DotStrtab;
355 else if (*Doc.Header.SectionHeaderStringTable == ".dynstr")
356 ShStrtabStrings = &DotDynstr;
357 // Otherwise, the unique table will be used.
358 }
359
360 std::vector<ELFYAML::Section *> Sections = Doc.getSections();
361 // Insert SHT_NULL section implicitly when it is not defined in YAML.
362 if (Sections.empty() || Sections.front()->Type != ELF::SHT_NULL)
363 Doc.Chunks.insert(
364 Doc.Chunks.begin(),
365 std::make_unique<ELFYAML::Section>(
366 ELFYAML::Chunk::ChunkKind::RawContent, /*IsImplicit=*/true));
367
368 StringSet<> DocSections;
369 ELFYAML::SectionHeaderTable *SecHdrTable = nullptr;
370 for (size_t I = 0; I < Doc.Chunks.size(); ++I) {
371 const std::unique_ptr<ELFYAML::Chunk> &C = Doc.Chunks[I];
372
373 // We might have an explicit section header table declaration.
374 if (auto S = dyn_cast<ELFYAML::SectionHeaderTable>(C.get())) {
375 if (SecHdrTable)
376 reportError("multiple section header tables are not allowed");
377 SecHdrTable = S;
378 continue;
379 }
380
381 // We add a technical suffix for each unnamed section/fill. It does not
382 // affect the output, but allows us to map them by name in the code and
383 // report better error messages.
384 if (C->Name.empty()) {
385 std::string NewName = ELFYAML::appendUniqueSuffix(
386 /*Name=*/"", "index " + Twine(I));
387 C->Name = StringRef(NewName).copy(StringAlloc);
389 }
390
391 if (!DocSections.insert(C->Name).second)
392 reportError("repeated section/fill name: '" + C->Name +
393 "' at YAML section/fill number " + Twine(I));
394 }
395
396 SmallSetVector<StringRef, 8> ImplicitSections;
397 if (Doc.DynamicSymbols) {
398 if (SectionHeaderStringTableName == ".dynsym")
399 reportError("cannot use '.dynsym' as the section header name table when "
400 "there are dynamic symbols");
401 ImplicitSections.insert(".dynsym");
402 ImplicitSections.insert(".dynstr");
403 }
404 if (Doc.Symbols) {
405 if (SectionHeaderStringTableName == ".symtab")
406 reportError("cannot use '.symtab' as the section header name table when "
407 "there are symbols");
408 ImplicitSections.insert(".symtab");
409 }
410 if (Doc.DWARF)
411 for (StringRef DebugSecName : Doc.DWARF->getNonEmptySectionNames()) {
412 std::string SecName = ("." + DebugSecName).str();
413 // TODO: For .debug_str it should be possible to share the string table,
414 // in the same manner as the symbol string tables.
415 if (SectionHeaderStringTableName == SecName)
416 reportError("cannot use '" + SecName +
417 "' as the section header name table when it is needed for "
418 "DWARF output");
419 ImplicitSections.insert(StringRef(SecName).copy(StringAlloc));
420 }
421 // TODO: Only create the .strtab here if any symbols have been requested.
422 ImplicitSections.insert(".strtab");
423 if (!SecHdrTable || !SecHdrTable->NoHeaders.value_or(false))
424 ImplicitSections.insert(SectionHeaderStringTableName);
425
426 // Insert placeholders for implicit sections that are not
427 // defined explicitly in YAML.
428 for (StringRef SecName : ImplicitSections) {
429 if (DocSections.count(SecName))
430 continue;
431
432 std::unique_ptr<ELFYAML::Section> Sec = std::make_unique<ELFYAML::Section>(
433 ELFYAML::Chunk::ChunkKind::RawContent, true /*IsImplicit*/);
434 Sec->Name = SecName;
435
436 if (SecName == SectionHeaderStringTableName)
437 Sec->Type = ELF::SHT_STRTAB;
438 else if (SecName == ".dynsym")
439 Sec->Type = ELF::SHT_DYNSYM;
440 else if (SecName == ".symtab")
441 Sec->Type = ELF::SHT_SYMTAB;
442 else
443 Sec->Type = ELF::SHT_STRTAB;
444
445 // When the section header table is explicitly defined at the end of the
446 // sections list, it is reasonable to assume that the user wants to reorder
447 // section headers, but still wants to place the section header table after
448 // all sections, like it normally happens. In this case we want to insert
449 // other implicit sections right before the section header table.
450 if (Doc.Chunks.back().get() == SecHdrTable)
451 Doc.Chunks.insert(Doc.Chunks.end() - 1, std::move(Sec));
452 else
453 Doc.Chunks.push_back(std::move(Sec));
454 }
455
456 // Insert the section header table implicitly at the end, when it is not
457 // explicitly defined.
458 if (!SecHdrTable)
459 Doc.Chunks.push_back(
460 std::make_unique<ELFYAML::SectionHeaderTable>(/*IsImplicit=*/true));
461}
462
463template <class ELFT>
464void ELFState<ELFT>::writeELFHeader(raw_ostream &OS) {
465 using namespace llvm::ELF;
466
467 Elf_Ehdr Header;
468 zero(Header);
469 Header.e_ident[EI_MAG0] = 0x7f;
470 Header.e_ident[EI_MAG1] = 'E';
471 Header.e_ident[EI_MAG2] = 'L';
472 Header.e_ident[EI_MAG3] = 'F';
473 Header.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
474 Header.e_ident[EI_DATA] = Doc.Header.Data;
475 Header.e_ident[EI_VERSION] = EV_CURRENT;
476 Header.e_ident[EI_OSABI] = Doc.Header.OSABI;
477 Header.e_ident[EI_ABIVERSION] = Doc.Header.ABIVersion;
478 Header.e_type = Doc.Header.Type;
479
480 if (Doc.Header.Machine)
481 Header.e_machine = *Doc.Header.Machine;
482 else
483 Header.e_machine = EM_NONE;
484
485 Header.e_version = EV_CURRENT;
486 Header.e_entry = Doc.Header.Entry;
487 Header.e_flags = Doc.Header.Flags;
488 Header.e_ehsize = sizeof(Elf_Ehdr);
489
490 if (Doc.Header.EPhOff)
491 Header.e_phoff = *Doc.Header.EPhOff;
492 else if (!Doc.ProgramHeaders.empty())
493 Header.e_phoff = sizeof(Header);
494 else
495 Header.e_phoff = 0;
496
497 if (Doc.Header.EPhEntSize)
498 Header.e_phentsize = *Doc.Header.EPhEntSize;
499 else if (!Doc.ProgramHeaders.empty())
500 Header.e_phentsize = sizeof(Elf_Phdr);
501 else
502 Header.e_phentsize = 0;
503
504 if (Doc.Header.EPhNum)
505 Header.e_phnum = *Doc.Header.EPhNum;
506 else if (!Doc.ProgramHeaders.empty())
507 Header.e_phnum = Doc.ProgramHeaders.size();
508 else
509 Header.e_phnum = 0;
510
511 Header.e_shentsize = Doc.Header.EShEntSize ? (uint16_t)*Doc.Header.EShEntSize
512 : sizeof(Elf_Shdr);
513
514 const ELFYAML::SectionHeaderTable &SectionHeaders =
515 Doc.getSectionHeaderTable();
516
517 if (Doc.Header.EShOff)
518 Header.e_shoff = *Doc.Header.EShOff;
519 else if (SectionHeaders.Offset)
520 Header.e_shoff = *SectionHeaders.Offset;
521 else
522 Header.e_shoff = 0;
523
524 if (Doc.Header.EShNum)
525 Header.e_shnum = *Doc.Header.EShNum;
526 else
527 Header.e_shnum = SectionHeaders.getNumHeaders(Doc.getSections().size());
528
529 if (Doc.Header.EShStrNdx)
530 Header.e_shstrndx = *Doc.Header.EShStrNdx;
531 else if (SectionHeaders.Offset &&
532 !ExcludedSectionHeaders.count(SectionHeaderStringTableName))
533 Header.e_shstrndx = SN2I.get(SectionHeaderStringTableName);
534 else
535 Header.e_shstrndx = 0;
536
537 OS.write((const char *)&Header, sizeof(Header));
538}
539
540template <class ELFT>
541void ELFState<ELFT>::initProgramHeaders(std::vector<Elf_Phdr> &PHeaders) {
543 DenseMap<StringRef, size_t> NameToIndex;
544 for (size_t I = 0, E = Doc.Chunks.size(); I != E; ++I) {
545 if (auto S = dyn_cast<ELFYAML::Fill>(Doc.Chunks[I].get()))
546 NameToFill[S->Name] = S;
547 NameToIndex[Doc.Chunks[I]->Name] = I + 1;
548 }
549
550 std::vector<ELFYAML::Section *> Sections = Doc.getSections();
551 for (size_t I = 0, E = Doc.ProgramHeaders.size(); I != E; ++I) {
552 ELFYAML::ProgramHeader &YamlPhdr = Doc.ProgramHeaders[I];
553 Elf_Phdr Phdr;
554 zero(Phdr);
555 Phdr.p_type = YamlPhdr.Type;
556 Phdr.p_flags = YamlPhdr.Flags;
557 Phdr.p_vaddr = YamlPhdr.VAddr;
558 Phdr.p_paddr = YamlPhdr.PAddr;
559 PHeaders.push_back(Phdr);
560
561 if (!YamlPhdr.FirstSec && !YamlPhdr.LastSec)
562 continue;
563
564 // Get the index of the section, or 0 in the case when the section doesn't exist.
565 size_t First = NameToIndex[*YamlPhdr.FirstSec];
566 if (!First)
567 reportError("unknown section or fill referenced: '" + *YamlPhdr.FirstSec +
568 "' by the 'FirstSec' key of the program header with index " +
569 Twine(I));
570 size_t Last = NameToIndex[*YamlPhdr.LastSec];
571 if (!Last)
572 reportError("unknown section or fill referenced: '" + *YamlPhdr.LastSec +
573 "' by the 'LastSec' key of the program header with index " +
574 Twine(I));
575 if (!First || !Last)
576 continue;
577
578 if (First > Last)
579 reportError("program header with index " + Twine(I) +
580 ": the section index of " + *YamlPhdr.FirstSec +
581 " is greater than the index of " + *YamlPhdr.LastSec);
582
583 for (size_t I = First; I <= Last; ++I)
584 YamlPhdr.Chunks.push_back(Doc.Chunks[I - 1].get());
585 }
586}
587
588template <class ELFT>
589unsigned ELFState<ELFT>::toSectionIndex(StringRef S, StringRef LocSec,
590 StringRef LocSym) {
591 assert(LocSec.empty() || LocSym.empty());
592
593 unsigned Index;
594 if (!SN2I.lookup(S, Index) && !to_integer(S, Index)) {
595 if (!LocSym.empty())
596 reportError("unknown section referenced: '" + S + "' by YAML symbol '" +
597 LocSym + "'");
598 else
599 reportError("unknown section referenced: '" + S + "' by YAML section '" +
600 LocSec + "'");
601 return 0;
602 }
603
604 const ELFYAML::SectionHeaderTable &SectionHeaders =
605 Doc.getSectionHeaderTable();
606 if (SectionHeaders.IsImplicit ||
607 (SectionHeaders.NoHeaders && !*SectionHeaders.NoHeaders) ||
608 SectionHeaders.isDefault())
609 return Index;
610
611 assert(!SectionHeaders.NoHeaders.value_or(false) || !SectionHeaders.Sections);
612 size_t FirstExcluded =
613 SectionHeaders.Sections ? SectionHeaders.Sections->size() : 0;
614 if (Index > FirstExcluded) {
615 if (LocSym.empty())
616 reportError("unable to link '" + LocSec + "' to excluded section '" + S +
617 "'");
618 else
619 reportError("excluded section referenced: '" + S + "' by symbol '" +
620 LocSym + "'");
621 }
622 return Index;
623}
624
625template <class ELFT>
626unsigned ELFState<ELFT>::toSymbolIndex(StringRef S, StringRef LocSec,
627 bool IsDynamic) {
628 const NameToIdxMap &SymMap = IsDynamic ? DynSymN2I : SymN2I;
629 unsigned Index;
630 // Here we try to look up S in the symbol table. If it is not there,
631 // treat its value as a symbol index.
632 if (!SymMap.lookup(S, Index) && !to_integer(S, Index)) {
633 reportError("unknown symbol referenced: '" + S + "' by YAML section '" +
634 LocSec + "'");
635 return 0;
636 }
637 return Index;
638}
639
640template <class ELFT>
641static void overrideFields(ELFYAML::Section *From, typename ELFT::Shdr &To) {
642 if (!From)
643 return;
644 if (From->ShAddrAlign)
645 To.sh_addralign = *From->ShAddrAlign;
646 if (From->ShFlags)
647 To.sh_flags = *From->ShFlags;
648 if (From->ShName)
649 To.sh_name = *From->ShName;
650 if (From->ShOffset)
651 To.sh_offset = *From->ShOffset;
652 if (From->ShSize)
653 To.sh_size = *From->ShSize;
654 if (From->ShType)
655 To.sh_type = *From->ShType;
656}
657
658template <class ELFT>
659bool ELFState<ELFT>::initImplicitHeader(ContiguousBlobAccumulator &CBA,
660 Elf_Shdr &Header, StringRef SecName,
661 ELFYAML::Section *YAMLSec) {
662 // Check if the header was already initialized.
663 if (Header.sh_offset)
664 return false;
665
666 if (SecName == ".strtab")
667 initStrtabSectionHeader(Header, SecName, DotStrtab, CBA, YAMLSec);
668 else if (SecName == ".dynstr")
669 initStrtabSectionHeader(Header, SecName, DotDynstr, CBA, YAMLSec);
670 else if (SecName == SectionHeaderStringTableName)
671 initStrtabSectionHeader(Header, SecName, *ShStrtabStrings, CBA, YAMLSec);
672 else if (SecName == ".symtab")
673 initSymtabSectionHeader(Header, SymtabType::Static, CBA, YAMLSec);
674 else if (SecName == ".dynsym")
675 initSymtabSectionHeader(Header, SymtabType::Dynamic, CBA, YAMLSec);
676 else if (SecName.starts_with(".debug_")) {
677 // If a ".debug_*" section's type is a preserved one, e.g., SHT_DYNAMIC, we
678 // will not treat it as a debug section.
679 if (YAMLSec && !isa<ELFYAML::RawContentSection>(YAMLSec))
680 return false;
681 initDWARFSectionHeader(Header, SecName, CBA, YAMLSec);
682 } else
683 return false;
684
685 LocationCounter += Header.sh_size;
686
687 // Override section fields if requested.
688 overrideFields<ELFT>(YAMLSec, Header);
689 return true;
690}
691
692constexpr char SuffixStart = '(';
693constexpr char SuffixEnd = ')';
694
696 const Twine &Msg) {
697 // Do not add a space when a Name is empty.
698 std::string Ret = Name.empty() ? "" : Name.str() + ' ';
699 return Ret + (Twine(SuffixStart) + Msg + Twine(SuffixEnd)).str();
700}
701
703 if (S.empty() || S.back() != SuffixEnd)
704 return S;
705
706 // A special case for empty names. See appendUniqueSuffix() above.
707 size_t SuffixPos = S.rfind(SuffixStart);
708 if (SuffixPos == 0)
709 return "";
710
711 if (SuffixPos == StringRef::npos || S[SuffixPos - 1] != ' ')
712 return S;
713 return S.substr(0, SuffixPos - 1);
714}
715
716template <class ELFT>
717uint64_t ELFState<ELFT>::getSectionNameOffset(StringRef Name) {
718 // If a section is excluded from section headers, we do not save its name in
719 // the string table.
720 if (ExcludedSectionHeaders.count(Name))
721 return 0;
722 return ShStrtabStrings->getOffset(Name);
723}
724
725static uint64_t writeContent(ContiguousBlobAccumulator &CBA,
726 const std::optional<yaml::BinaryRef> &Content,
727 const std::optional<llvm::yaml::Hex64> &Size) {
728 size_t ContentSize = 0;
729 if (Content) {
730 CBA.writeAsBinary(*Content);
731 ContentSize = Content->binary_size();
732 }
733
734 if (!Size)
735 return ContentSize;
736
737 CBA.writeZeros(*Size - ContentSize);
738 return *Size;
739}
740
742 switch (SecType) {
743 case ELF::SHT_REL:
744 case ELF::SHT_RELA:
745 case ELF::SHT_GROUP:
748 return ".symtab";
750 case ELF::SHT_HASH:
752 return ".dynsym";
753 case ELF::SHT_DYNSYM:
756 return ".dynstr";
757 case ELF::SHT_SYMTAB:
758 return ".strtab";
759 default:
760 return "";
761 }
762}
763
764template <class ELFT>
765void ELFState<ELFT>::initSectionHeaders(std::vector<Elf_Shdr> &SHeaders,
766 ContiguousBlobAccumulator &CBA) {
767 // Ensure SHN_UNDEF entry is present. An all-zero section header is a
768 // valid SHN_UNDEF entry since SHT_NULL == 0.
769 SHeaders.resize(Doc.getSections().size());
770
771 for (const std::unique_ptr<ELFYAML::Chunk> &D : Doc.Chunks) {
772 if (ELFYAML::Fill *S = dyn_cast<ELFYAML::Fill>(D.get())) {
773 S->Offset = alignToOffset(CBA, /*Align=*/1, S->Offset);
774 writeFill(*S, CBA);
775 LocationCounter += S->Size;
776 continue;
777 }
778
780 dyn_cast<ELFYAML::SectionHeaderTable>(D.get())) {
781 if (S->NoHeaders.value_or(false))
782 continue;
783
784 if (!S->Offset)
785 S->Offset = alignToOffset(CBA, sizeof(typename ELFT::uint),
786 /*Offset=*/std::nullopt);
787 else
788 S->Offset = alignToOffset(CBA, /*Align=*/1, S->Offset);
789
790 uint64_t Size = S->getNumHeaders(SHeaders.size()) * sizeof(Elf_Shdr);
791 // The full section header information might be not available here, so
792 // fill the space with zeroes as a placeholder.
793 CBA.writeZeros(Size);
794 LocationCounter += Size;
795 continue;
796 }
797
798 ELFYAML::Section *Sec = cast<ELFYAML::Section>(D.get());
799 bool IsFirstUndefSection = Sec == Doc.getSections().front();
800 if (IsFirstUndefSection && Sec->IsImplicit)
801 continue;
802
803 Elf_Shdr &SHeader = SHeaders[SN2I.get(Sec->Name)];
804 if (Sec->Link) {
805 SHeader.sh_link = toSectionIndex(*Sec->Link, Sec->Name);
806 } else {
807 StringRef LinkSec = getDefaultLinkSec(Sec->Type);
808 unsigned Link = 0;
809 if (!LinkSec.empty() && !ExcludedSectionHeaders.count(LinkSec) &&
810 SN2I.lookup(LinkSec, Link))
811 SHeader.sh_link = Link;
812 }
813
814 if (Sec->EntSize)
815 SHeader.sh_entsize = *Sec->EntSize;
816 else
817 SHeader.sh_entsize = ELFYAML::getDefaultShEntSize<ELFT>(
818 Doc.Header.Machine.value_or(ELF::EM_NONE), Sec->Type, Sec->Name);
819
820 // We have a few sections like string or symbol tables that are usually
821 // added implicitly to the end. However, if they are explicitly specified
822 // in the YAML, we need to write them here. This ensures the file offset
823 // remains correct.
824 if (initImplicitHeader(CBA, SHeader, Sec->Name,
825 Sec->IsImplicit ? nullptr : Sec))
826 continue;
827
828 assert(Sec && "It can't be null unless it is an implicit section. But all "
829 "implicit sections should already have been handled above.");
830
831 SHeader.sh_name =
832 getSectionNameOffset(ELFYAML::dropUniqueSuffix(Sec->Name));
833 SHeader.sh_type = Sec->Type;
834 if (Sec->Flags)
835 SHeader.sh_flags = *Sec->Flags;
836 SHeader.sh_addralign = Sec->AddressAlign;
837
838 // Set the offset for all sections, except the SHN_UNDEF section with index
839 // 0 when not explicitly requested.
840 if (!IsFirstUndefSection || Sec->Offset)
841 SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign, Sec->Offset);
842
843 assignSectionAddress(SHeader, Sec);
844
845 if (IsFirstUndefSection) {
846 if (auto RawSec = dyn_cast<ELFYAML::RawContentSection>(Sec)) {
847 // We do not write any content for special SHN_UNDEF section.
848 if (RawSec->Size)
849 SHeader.sh_size = *RawSec->Size;
850 if (RawSec->Info)
851 SHeader.sh_info = *RawSec->Info;
852 }
853
854 LocationCounter += SHeader.sh_size;
855 overrideFields<ELFT>(Sec, SHeader);
856 continue;
857 }
858
859 if (!isa<ELFYAML::NoBitsSection>(Sec) && (Sec->Content || Sec->Size))
860 SHeader.sh_size = writeContent(CBA, Sec->Content, Sec->Size);
861
862 if (auto S = dyn_cast<ELFYAML::RawContentSection>(Sec)) {
863 writeSectionContent(SHeader, *S, CBA);
864 } else if (auto S = dyn_cast<ELFYAML::SymtabShndxSection>(Sec)) {
865 writeSectionContent(SHeader, *S, CBA);
866 } else if (auto S = dyn_cast<ELFYAML::RelocationSection>(Sec)) {
867 writeSectionContent(SHeader, *S, CBA);
868 } else if (auto S = dyn_cast<ELFYAML::RelrSection>(Sec)) {
869 writeSectionContent(SHeader, *S, CBA);
870 } else if (auto S = dyn_cast<ELFYAML::GroupSection>(Sec)) {
871 writeSectionContent(SHeader, *S, CBA);
872 } else if (auto S = dyn_cast<ELFYAML::ARMIndexTableSection>(Sec)) {
873 writeSectionContent(SHeader, *S, CBA);
874 } else if (auto S = dyn_cast<ELFYAML::MipsABIFlags>(Sec)) {
875 writeSectionContent(SHeader, *S, CBA);
876 } else if (auto S = dyn_cast<ELFYAML::NoBitsSection>(Sec)) {
877 writeSectionContent(SHeader, *S, CBA);
878 } else if (auto S = dyn_cast<ELFYAML::DynamicSection>(Sec)) {
879 writeSectionContent(SHeader, *S, CBA);
880 } else if (auto S = dyn_cast<ELFYAML::SymverSection>(Sec)) {
881 writeSectionContent(SHeader, *S, CBA);
882 } else if (auto S = dyn_cast<ELFYAML::VerneedSection>(Sec)) {
883 writeSectionContent(SHeader, *S, CBA);
884 } else if (auto S = dyn_cast<ELFYAML::VerdefSection>(Sec)) {
885 writeSectionContent(SHeader, *S, CBA);
886 } else if (auto S = dyn_cast<ELFYAML::StackSizesSection>(Sec)) {
887 writeSectionContent(SHeader, *S, CBA);
888 } else if (auto S = dyn_cast<ELFYAML::HashSection>(Sec)) {
889 writeSectionContent(SHeader, *S, CBA);
890 } else if (auto S = dyn_cast<ELFYAML::AddrsigSection>(Sec)) {
891 writeSectionContent(SHeader, *S, CBA);
892 } else if (auto S = dyn_cast<ELFYAML::LinkerOptionsSection>(Sec)) {
893 writeSectionContent(SHeader, *S, CBA);
894 } else if (auto S = dyn_cast<ELFYAML::NoteSection>(Sec)) {
895 writeSectionContent(SHeader, *S, CBA);
896 } else if (auto S = dyn_cast<ELFYAML::GnuHashSection>(Sec)) {
897 writeSectionContent(SHeader, *S, CBA);
898 } else if (auto S = dyn_cast<ELFYAML::DependentLibrariesSection>(Sec)) {
899 writeSectionContent(SHeader, *S, CBA);
900 } else if (auto S = dyn_cast<ELFYAML::CallGraphProfileSection>(Sec)) {
901 writeSectionContent(SHeader, *S, CBA);
902 } else if (auto S = dyn_cast<ELFYAML::BBAddrMapSection>(Sec)) {
903 writeSectionContent(SHeader, *S, CBA);
904 } else {
905 llvm_unreachable("Unknown section type");
906 }
907
908 LocationCounter += SHeader.sh_size;
909
910 // Override section fields if requested.
911 overrideFields<ELFT>(Sec, SHeader);
912 }
913}
914
915template <class ELFT>
916void ELFState<ELFT>::assignSectionAddress(Elf_Shdr &SHeader,
917 ELFYAML::Section *YAMLSec) {
918 if (YAMLSec && YAMLSec->Address) {
919 SHeader.sh_addr = *YAMLSec->Address;
920 LocationCounter = *YAMLSec->Address;
921 return;
922 }
923
924 // sh_addr represents the address in the memory image of a process. Sections
925 // in a relocatable object file or non-allocatable sections do not need
926 // sh_addr assignment.
927 if (Doc.Header.Type.value == ELF::ET_REL ||
928 !(SHeader.sh_flags & ELF::SHF_ALLOC))
929 return;
930
931 LocationCounter =
932 alignTo(LocationCounter, SHeader.sh_addralign ? SHeader.sh_addralign : 1);
933 SHeader.sh_addr = LocationCounter;
934}
935
937 for (size_t I = 0; I < Symbols.size(); ++I)
938 if (Symbols[I].Binding.value != ELF::STB_LOCAL)
939 return I;
940 return Symbols.size();
941}
942
943template <class ELFT>
944std::vector<typename ELFT::Sym>
945ELFState<ELFT>::toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols,
946 const StringTableBuilder &Strtab) {
947 std::vector<Elf_Sym> Ret;
948 Ret.resize(Symbols.size() + 1);
949
950 size_t I = 0;
951 for (const ELFYAML::Symbol &Sym : Symbols) {
952 Elf_Sym &Symbol = Ret[++I];
953
954 // If NameIndex, which contains the name offset, is explicitly specified, we
955 // use it. This is useful for preparing broken objects. Otherwise, we add
956 // the specified Name to the string table builder to get its offset.
957 if (Sym.StName)
958 Symbol.st_name = *Sym.StName;
959 else if (!Sym.Name.empty())
960 Symbol.st_name = Strtab.getOffset(ELFYAML::dropUniqueSuffix(Sym.Name));
961
962 Symbol.setBindingAndType(Sym.Binding, Sym.Type);
963 if (Sym.Section)
964 Symbol.st_shndx = toSectionIndex(*Sym.Section, "", Sym.Name);
965 else if (Sym.Index)
966 Symbol.st_shndx = *Sym.Index;
967
968 Symbol.st_value = Sym.Value.value_or(yaml::Hex64(0));
969 Symbol.st_other = Sym.Other ? *Sym.Other : 0;
970 Symbol.st_size = Sym.Size.value_or(yaml::Hex64(0));
971 }
972
973 return Ret;
974}
975
976template <class ELFT>
977void ELFState<ELFT>::initSymtabSectionHeader(Elf_Shdr &SHeader,
978 SymtabType STType,
979 ContiguousBlobAccumulator &CBA,
980 ELFYAML::Section *YAMLSec) {
981
982 bool IsStatic = STType == SymtabType::Static;
984 if (IsStatic && Doc.Symbols)
985 Symbols = *Doc.Symbols;
986 else if (!IsStatic && Doc.DynamicSymbols)
987 Symbols = *Doc.DynamicSymbols;
988
990 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec);
991 if (RawSec && (RawSec->Content || RawSec->Size)) {
992 bool HasSymbolsDescription =
993 (IsStatic && Doc.Symbols) || (!IsStatic && Doc.DynamicSymbols);
994 if (HasSymbolsDescription) {
995 StringRef Property = (IsStatic ? "`Symbols`" : "`DynamicSymbols`");
996 if (RawSec->Content)
997 reportError("cannot specify both `Content` and " + Property +
998 " for symbol table section '" + RawSec->Name + "'");
999 if (RawSec->Size)
1000 reportError("cannot specify both `Size` and " + Property +
1001 " for symbol table section '" + RawSec->Name + "'");
1002 return;
1003 }
1004 }
1005
1006 SHeader.sh_name = getSectionNameOffset(IsStatic ? ".symtab" : ".dynsym");
1007
1008 if (YAMLSec)
1009 SHeader.sh_type = YAMLSec->Type;
1010 else
1011 SHeader.sh_type = IsStatic ? ELF::SHT_SYMTAB : ELF::SHT_DYNSYM;
1012
1013 if (YAMLSec && YAMLSec->Flags)
1014 SHeader.sh_flags = *YAMLSec->Flags;
1015 else if (!IsStatic)
1016 SHeader.sh_flags = ELF::SHF_ALLOC;
1017
1018 // If the symbol table section is explicitly described in the YAML
1019 // then we should set the fields requested.
1020 SHeader.sh_info = (RawSec && RawSec->Info) ? (unsigned)(*RawSec->Info)
1021 : findFirstNonGlobal(Symbols) + 1;
1022 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 8;
1023
1024 assignSectionAddress(SHeader, YAMLSec);
1025
1026 SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign,
1027 RawSec ? RawSec->Offset : std::nullopt);
1028
1029 if (RawSec && (RawSec->Content || RawSec->Size)) {
1030 assert(Symbols.empty());
1031 SHeader.sh_size = writeContent(CBA, RawSec->Content, RawSec->Size);
1032 return;
1033 }
1034
1035 std::vector<Elf_Sym> Syms =
1036 toELFSymbols(Symbols, IsStatic ? DotStrtab : DotDynstr);
1037 SHeader.sh_size = Syms.size() * sizeof(Elf_Sym);
1038 CBA.write((const char *)Syms.data(), SHeader.sh_size);
1039}
1040
1041template <class ELFT>
1042void ELFState<ELFT>::initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name,
1043 StringTableBuilder &STB,
1044 ContiguousBlobAccumulator &CBA,
1045 ELFYAML::Section *YAMLSec) {
1046 SHeader.sh_name = getSectionNameOffset(ELFYAML::dropUniqueSuffix(Name));
1047 SHeader.sh_type = YAMLSec ? YAMLSec->Type : ELF::SHT_STRTAB;
1048 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 1;
1049
1051 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec);
1052
1053 SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign,
1054 YAMLSec ? YAMLSec->Offset : std::nullopt);
1055
1056 if (RawSec && (RawSec->Content || RawSec->Size)) {
1057 SHeader.sh_size = writeContent(CBA, RawSec->Content, RawSec->Size);
1058 } else {
1059 if (raw_ostream *OS = CBA.getRawOS(STB.getSize()))
1060 STB.write(*OS);
1061 SHeader.sh_size = STB.getSize();
1062 }
1063
1064 if (RawSec && RawSec->Info)
1065 SHeader.sh_info = *RawSec->Info;
1066
1067 if (YAMLSec && YAMLSec->Flags)
1068 SHeader.sh_flags = *YAMLSec->Flags;
1069 else if (Name == ".dynstr")
1070 SHeader.sh_flags = ELF::SHF_ALLOC;
1071
1072 assignSectionAddress(SHeader, YAMLSec);
1073}
1074
1076 SetVector<StringRef> DebugSecNames = DWARF.getNonEmptySectionNames();
1077 return Name.consume_front(".") && DebugSecNames.count(Name);
1078}
1079
1080template <class ELFT>
1081Expected<uint64_t> emitDWARF(typename ELFT::Shdr &SHeader, StringRef Name,
1082 const DWARFYAML::Data &DWARF,
1083 ContiguousBlobAccumulator &CBA) {
1084 // We are unable to predict the size of debug data, so we request to write 0
1085 // bytes. This should always return us an output stream unless CBA is already
1086 // in an error state.
1087 raw_ostream *OS = CBA.getRawOS(0);
1088 if (!OS)
1089 return 0;
1090
1091 uint64_t BeginOffset = CBA.tell();
1092
1093 auto EmitFunc = DWARFYAML::getDWARFEmitterByName(Name.substr(1));
1094 if (Error Err = EmitFunc(*OS, DWARF))
1095 return std::move(Err);
1096
1097 return CBA.tell() - BeginOffset;
1098}
1099
1100template <class ELFT>
1101void ELFState<ELFT>::initDWARFSectionHeader(Elf_Shdr &SHeader, StringRef Name,
1102 ContiguousBlobAccumulator &CBA,
1103 ELFYAML::Section *YAMLSec) {
1104 SHeader.sh_name = getSectionNameOffset(ELFYAML::dropUniqueSuffix(Name));
1105 SHeader.sh_type = YAMLSec ? YAMLSec->Type : ELF::SHT_PROGBITS;
1106 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 1;
1107 SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign,
1108 YAMLSec ? YAMLSec->Offset : std::nullopt);
1109
1111 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec);
1112 if (Doc.DWARF && shouldEmitDWARF(*Doc.DWARF, Name)) {
1113 if (RawSec && (RawSec->Content || RawSec->Size))
1114 reportError("cannot specify section '" + Name +
1115 "' contents in the 'DWARF' entry and the 'Content' "
1116 "or 'Size' in the 'Sections' entry at the same time");
1117 else {
1118 if (Expected<uint64_t> ShSizeOrErr =
1119 emitDWARF<ELFT>(SHeader, Name, *Doc.DWARF, CBA))
1120 SHeader.sh_size = *ShSizeOrErr;
1121 else
1122 reportError(ShSizeOrErr.takeError());
1123 }
1124 } else if (RawSec)
1125 SHeader.sh_size = writeContent(CBA, RawSec->Content, RawSec->Size);
1126 else
1127 llvm_unreachable("debug sections can only be initialized via the 'DWARF' "
1128 "entry or a RawContentSection");
1129
1130 if (RawSec && RawSec->Info)
1131 SHeader.sh_info = *RawSec->Info;
1132
1133 if (YAMLSec && YAMLSec->Flags)
1134 SHeader.sh_flags = *YAMLSec->Flags;
1135 else if (Name == ".debug_str")
1136 SHeader.sh_flags = ELF::SHF_MERGE | ELF::SHF_STRINGS;
1137
1138 assignSectionAddress(SHeader, YAMLSec);
1139}
1140
1141template <class ELFT> void ELFState<ELFT>::reportError(const Twine &Msg) {
1142 ErrHandler(Msg);
1143 HasError = true;
1144}
1145
1146template <class ELFT> void ELFState<ELFT>::reportError(Error Err) {
1147 handleAllErrors(std::move(Err), [&](const ErrorInfoBase &Err) {
1148 reportError(Err.message());
1149 });
1150}
1151
1152template <class ELFT>
1153std::vector<Fragment>
1154ELFState<ELFT>::getPhdrFragments(const ELFYAML::ProgramHeader &Phdr,
1155 ArrayRef<Elf_Shdr> SHeaders) {
1156 std::vector<Fragment> Ret;
1157 for (const ELFYAML::Chunk *C : Phdr.Chunks) {
1158 if (const ELFYAML::Fill *F = dyn_cast<ELFYAML::Fill>(C)) {
1159 Ret.push_back({*F->Offset, F->Size, llvm::ELF::SHT_PROGBITS,
1160 /*ShAddrAlign=*/1});
1161 continue;
1162 }
1163
1164 const ELFYAML::Section *S = cast<ELFYAML::Section>(C);
1165 const Elf_Shdr &H = SHeaders[SN2I.get(S->Name)];
1166 Ret.push_back({H.sh_offset, H.sh_size, H.sh_type, H.sh_addralign});
1167 }
1168 return Ret;
1169}
1170
1171template <class ELFT>
1172void ELFState<ELFT>::setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders,
1173 std::vector<Elf_Shdr> &SHeaders) {
1174 uint32_t PhdrIdx = 0;
1175 for (auto &YamlPhdr : Doc.ProgramHeaders) {
1176 Elf_Phdr &PHeader = PHeaders[PhdrIdx++];
1177 std::vector<Fragment> Fragments = getPhdrFragments(YamlPhdr, SHeaders);
1178 if (!llvm::is_sorted(Fragments, [](const Fragment &A, const Fragment &B) {
1179 return A.Offset < B.Offset;
1180 }))
1181 reportError("sections in the program header with index " +
1182 Twine(PhdrIdx) + " are not sorted by their file offset");
1183
1184 if (YamlPhdr.Offset) {
1185 if (!Fragments.empty() && *YamlPhdr.Offset > Fragments.front().Offset)
1186 reportError("'Offset' for segment with index " + Twine(PhdrIdx) +
1187 " must be less than or equal to the minimum file offset of "
1188 "all included sections (0x" +
1189 Twine::utohexstr(Fragments.front().Offset) + ")");
1190 PHeader.p_offset = *YamlPhdr.Offset;
1191 } else if (!Fragments.empty()) {
1192 PHeader.p_offset = Fragments.front().Offset;
1193 }
1194
1195 // Set the file size if not set explicitly.
1196 if (YamlPhdr.FileSize) {
1197 PHeader.p_filesz = *YamlPhdr.FileSize;
1198 } else if (!Fragments.empty()) {
1199 uint64_t FileSize = Fragments.back().Offset - PHeader.p_offset;
1200 // SHT_NOBITS sections occupy no physical space in a file, we should not
1201 // take their sizes into account when calculating the file size of a
1202 // segment.
1203 if (Fragments.back().Type != llvm::ELF::SHT_NOBITS)
1204 FileSize += Fragments.back().Size;
1205 PHeader.p_filesz = FileSize;
1206 }
1207
1208 // Find the maximum offset of the end of a section in order to set p_memsz.
1209 uint64_t MemOffset = PHeader.p_offset;
1210 for (const Fragment &F : Fragments)
1211 MemOffset = std::max(MemOffset, F.Offset + F.Size);
1212 // Set the memory size if not set explicitly.
1213 PHeader.p_memsz = YamlPhdr.MemSize ? uint64_t(*YamlPhdr.MemSize)
1214 : MemOffset - PHeader.p_offset;
1215
1216 if (YamlPhdr.Align) {
1217 PHeader.p_align = *YamlPhdr.Align;
1218 } else {
1219 // Set the alignment of the segment to be the maximum alignment of the
1220 // sections so that by default the segment has a valid and sensible
1221 // alignment.
1222 PHeader.p_align = 1;
1223 for (const Fragment &F : Fragments)
1224 PHeader.p_align = std::max((uint64_t)PHeader.p_align, F.AddrAlign);
1225 }
1226 }
1227}
1228
1231 for (const ELFYAML::ProgramHeader &PH : Phdrs) {
1232 auto It = llvm::find_if(
1233 PH.Chunks, [&](ELFYAML::Chunk *C) { return C->Name == S.Name; });
1234 if (std::any_of(It, PH.Chunks.end(), [](ELFYAML::Chunk *C) {
1235 return (isa<ELFYAML::Fill>(C) ||
1236 cast<ELFYAML::Section>(C)->Type != ELF::SHT_NOBITS);
1237 }))
1238 return true;
1239 }
1240 return false;
1241}
1242
1243template <class ELFT>
1244void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1245 const ELFYAML::NoBitsSection &S,
1246 ContiguousBlobAccumulator &CBA) {
1247 if (!S.Size)
1248 return;
1249
1250 SHeader.sh_size = *S.Size;
1251
1252 // When a nobits section is followed by a non-nobits section or fill
1253 // in the same segment, we allocate the file space for it. This behavior
1254 // matches linkers.
1255 if (shouldAllocateFileSpace(Doc.ProgramHeaders, S))
1256 CBA.writeZeros(*S.Size);
1257}
1258
1259template <class ELFT>
1260void ELFState<ELFT>::writeSectionContent(
1261 Elf_Shdr &SHeader, const ELFYAML::RawContentSection &Section,
1262 ContiguousBlobAccumulator &CBA) {
1263 if (Section.Info)
1264 SHeader.sh_info = *Section.Info;
1265}
1266
1267static bool isMips64EL(const ELFYAML::Object &Obj) {
1268 return Obj.getMachine() == llvm::ELF::EM_MIPS &&
1269 Obj.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64) &&
1270 Obj.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB);
1271}
1272
1273template <class ELFT>
1274void ELFState<ELFT>::writeSectionContent(
1275 Elf_Shdr &SHeader, const ELFYAML::RelocationSection &Section,
1276 ContiguousBlobAccumulator &CBA) {
1278 Section.Type == llvm::ELF::SHT_RELA ||
1279 Section.Type == llvm::ELF::SHT_CREL) &&
1280 "Section type is not SHT_REL nor SHT_RELA");
1281
1282 if (!Section.RelocatableSec.empty())
1283 SHeader.sh_info = toSectionIndex(Section.RelocatableSec, Section.Name);
1284
1285 if (!Section.Relocations)
1286 return;
1287
1288 const bool IsCrel = Section.Type == llvm::ELF::SHT_CREL;
1289 const bool IsRela = Section.Type == llvm::ELF::SHT_RELA;
1290 typename ELFT::uint OffsetMask = 8, Offset = 0, Addend = 0;
1291 uint32_t SymIdx = 0, Type = 0;
1292 uint64_t CurrentOffset = CBA.getOffset();
1293 if (IsCrel)
1294 for (const ELFYAML::Relocation &Rel : *Section.Relocations)
1295 OffsetMask |= Rel.Offset;
1296 const int Shift = llvm::countr_zero(OffsetMask);
1297 if (IsCrel)
1298 CBA.writeULEB128(Section.Relocations->size() * 8 + ELF::CREL_HDR_ADDEND +
1299 Shift);
1300 for (const ELFYAML::Relocation &Rel : *Section.Relocations) {
1301 const bool IsDynamic = Section.Link && (*Section.Link == ".dynsym");
1302 uint32_t CurSymIdx =
1303 Rel.Symbol ? toSymbolIndex(*Rel.Symbol, Section.Name, IsDynamic) : 0;
1304 if (IsCrel) {
1305 // The delta offset and flags member may be larger than uint64_t. Special
1306 // case the first byte (3 flag bits and 4 offset bits). Other ULEB128
1307 // bytes encode the remaining delta offset bits.
1308 auto DeltaOffset =
1309 (static_cast<typename ELFT::uint>(Rel.Offset) - Offset) >> Shift;
1310 Offset = Rel.Offset;
1311 uint8_t B =
1312 DeltaOffset * 8 + (SymIdx != CurSymIdx) + (Type != Rel.Type ? 2 : 0) +
1313 (Addend != static_cast<typename ELFT::uint>(Rel.Addend) ? 4 : 0);
1314 if (DeltaOffset < 0x10) {
1315 CBA.write(B);
1316 } else {
1317 CBA.write(B | 0x80);
1318 CBA.writeULEB128(DeltaOffset >> 4);
1319 }
1320 // Delta symidx/type/addend members (SLEB128).
1321 if (B & 1) {
1322 CBA.writeSLEB128(
1323 std::make_signed_t<typename ELFT::uint>(CurSymIdx - SymIdx));
1324 SymIdx = CurSymIdx;
1325 }
1326 if (B & 2) {
1327 CBA.writeSLEB128(static_cast<int32_t>(Rel.Type - Type));
1328 Type = Rel.Type;
1329 }
1330 if (B & 4) {
1331 CBA.writeSLEB128(
1332 std::make_signed_t<typename ELFT::uint>(Rel.Addend - Addend));
1333 Addend = Rel.Addend;
1334 }
1335 } else if (IsRela) {
1336 Elf_Rela REntry;
1337 zero(REntry);
1338 REntry.r_offset = Rel.Offset;
1339 REntry.r_addend = Rel.Addend;
1340 REntry.setSymbolAndType(CurSymIdx, Rel.Type, isMips64EL(Doc));
1341 CBA.write((const char *)&REntry, sizeof(REntry));
1342 } else {
1343 Elf_Rel REntry;
1344 zero(REntry);
1345 REntry.r_offset = Rel.Offset;
1346 REntry.setSymbolAndType(CurSymIdx, Rel.Type, isMips64EL(Doc));
1347 CBA.write((const char *)&REntry, sizeof(REntry));
1348 }
1349 }
1350
1351 SHeader.sh_size = CBA.getOffset() - CurrentOffset;
1352}
1353
1354template <class ELFT>
1355void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1356 const ELFYAML::RelrSection &Section,
1357 ContiguousBlobAccumulator &CBA) {
1358 if (!Section.Entries)
1359 return;
1360
1361 for (llvm::yaml::Hex64 E : *Section.Entries) {
1362 if (!ELFT::Is64Bits && E > UINT32_MAX)
1363 reportError(Section.Name + ": the value is too large for 32-bits: 0x" +
1364 Twine::utohexstr(E));
1365 CBA.write<uintX_t>(E, ELFT::Endianness);
1366 }
1367
1368 SHeader.sh_size = sizeof(uintX_t) * Section.Entries->size();
1369}
1370
1371template <class ELFT>
1372void ELFState<ELFT>::writeSectionContent(
1373 Elf_Shdr &SHeader, const ELFYAML::SymtabShndxSection &Shndx,
1374 ContiguousBlobAccumulator &CBA) {
1375 if (Shndx.Content || Shndx.Size) {
1376 SHeader.sh_size = writeContent(CBA, Shndx.Content, Shndx.Size);
1377 return;
1378 }
1379
1380 if (!Shndx.Entries)
1381 return;
1382
1383 for (uint32_t E : *Shndx.Entries)
1384 CBA.write<uint32_t>(E, ELFT::Endianness);
1385 SHeader.sh_size = Shndx.Entries->size() * SHeader.sh_entsize;
1386}
1387
1388template <class ELFT>
1389void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1390 const ELFYAML::GroupSection &Section,
1391 ContiguousBlobAccumulator &CBA) {
1393 "Section type is not SHT_GROUP");
1394
1395 if (Section.Signature)
1396 SHeader.sh_info =
1397 toSymbolIndex(*Section.Signature, Section.Name, /*IsDynamic=*/false);
1398
1399 if (!Section.Members)
1400 return;
1401
1402 for (const ELFYAML::SectionOrType &Member : *Section.Members) {
1403 unsigned int SectionIndex = 0;
1404 if (Member.sectionNameOrType == "GRP_COMDAT")
1405 SectionIndex = llvm::ELF::GRP_COMDAT;
1406 else
1407 SectionIndex = toSectionIndex(Member.sectionNameOrType, Section.Name);
1408 CBA.write<uint32_t>(SectionIndex, ELFT::Endianness);
1409 }
1410 SHeader.sh_size = SHeader.sh_entsize * Section.Members->size();
1411}
1412
1413template <class ELFT>
1414void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1415 const ELFYAML::SymverSection &Section,
1416 ContiguousBlobAccumulator &CBA) {
1417 if (!Section.Entries)
1418 return;
1419
1420 for (uint16_t Version : *Section.Entries)
1421 CBA.write<uint16_t>(Version, ELFT::Endianness);
1422 SHeader.sh_size = Section.Entries->size() * SHeader.sh_entsize;
1423}
1424
1425template <class ELFT>
1426void ELFState<ELFT>::writeSectionContent(
1427 Elf_Shdr &SHeader, const ELFYAML::StackSizesSection &Section,
1428 ContiguousBlobAccumulator &CBA) {
1429 if (!Section.Entries)
1430 return;
1431
1432 for (const ELFYAML::StackSizeEntry &E : *Section.Entries) {
1433 CBA.write<uintX_t>(E.Address, ELFT::Endianness);
1434 SHeader.sh_size += sizeof(uintX_t) + CBA.writeULEB128(E.Size);
1435 }
1436}
1437
1438template <class ELFT>
1439void ELFState<ELFT>::writeSectionContent(
1440 Elf_Shdr &SHeader, const ELFYAML::BBAddrMapSection &Section,
1441 ContiguousBlobAccumulator &CBA) {
1442 if (!Section.Entries) {
1443 if (Section.PGOAnalyses)
1445 << "PGOAnalyses should not exist in SHT_LLVM_BB_ADDR_MAP when "
1446 "Entries does not exist";
1447 return;
1448 }
1449
1450 const std::vector<ELFYAML::PGOAnalysisMapEntry> *PGOAnalyses = nullptr;
1451 if (Section.PGOAnalyses) {
1452 if (Section.Entries->size() != Section.PGOAnalyses->size())
1453 WithColor::warning() << "PGOAnalyses must be the same length as Entries "
1454 "in SHT_LLVM_BB_ADDR_MAP";
1455 else
1456 PGOAnalyses = &Section.PGOAnalyses.value();
1457 }
1458
1459 for (const auto &[Idx, E] : llvm::enumerate(*Section.Entries)) {
1460 // Write version and feature values.
1462 if (E.Version > 2)
1463 WithColor::warning() << "unsupported SHT_LLVM_BB_ADDR_MAP version: "
1464 << static_cast<int>(E.Version)
1465 << "; encoding using the most recent version";
1466 CBA.write(E.Version);
1467 CBA.write(E.Feature);
1468 SHeader.sh_size += 2;
1469 }
1470 auto FeatureOrErr = llvm::object::BBAddrMap::Features::decode(E.Feature);
1471 bool MultiBBRangeFeatureEnabled = false;
1472 if (!FeatureOrErr)
1473 WithColor::warning() << toString(FeatureOrErr.takeError());
1474 else
1475 MultiBBRangeFeatureEnabled = FeatureOrErr->MultiBBRange;
1476 bool MultiBBRange =
1477 MultiBBRangeFeatureEnabled ||
1478 (E.NumBBRanges.has_value() && E.NumBBRanges.value() != 1) ||
1479 (E.BBRanges && E.BBRanges->size() != 1);
1480 if (MultiBBRange && !MultiBBRangeFeatureEnabled)
1481 WithColor::warning() << "feature value(" << E.Feature
1482 << ") does not support multiple BB ranges.";
1483 if (MultiBBRange) {
1484 // Write the number of basic block ranges, which is overridden by the
1485 // 'NumBBRanges' field when specified.
1486 uint64_t NumBBRanges =
1487 E.NumBBRanges.value_or(E.BBRanges ? E.BBRanges->size() : 0);
1488 SHeader.sh_size += CBA.writeULEB128(NumBBRanges);
1489 }
1490 if (!E.BBRanges)
1491 continue;
1492 uint64_t TotalNumBlocks = 0;
1493 for (const ELFYAML::BBAddrMapEntry::BBRangeEntry &BBR : *E.BBRanges) {
1494 // Write the base address of the range.
1495 CBA.write<uintX_t>(BBR.BaseAddress, ELFT::Endianness);
1496 // Write number of BBEntries (number of basic blocks in this basic block
1497 // range). This is overridden by the 'NumBlocks' YAML field when
1498 // specified.
1499 uint64_t NumBlocks =
1500 BBR.NumBlocks.value_or(BBR.BBEntries ? BBR.BBEntries->size() : 0);
1501 SHeader.sh_size += sizeof(uintX_t) + CBA.writeULEB128(NumBlocks);
1502 // Write all BBEntries in this BBRange.
1503 if (!BBR.BBEntries)
1504 continue;
1505 for (const ELFYAML::BBAddrMapEntry::BBEntry &BBE : *BBR.BBEntries) {
1506 ++TotalNumBlocks;
1507 if (Section.Type == llvm::ELF::SHT_LLVM_BB_ADDR_MAP && E.Version > 1)
1508 SHeader.sh_size += CBA.writeULEB128(BBE.ID);
1509 SHeader.sh_size += CBA.writeULEB128(BBE.AddressOffset);
1510 SHeader.sh_size += CBA.writeULEB128(BBE.Size);
1511 SHeader.sh_size += CBA.writeULEB128(BBE.Metadata);
1512 }
1513 }
1514 if (!PGOAnalyses)
1515 continue;
1516 const ELFYAML::PGOAnalysisMapEntry &PGOEntry = PGOAnalyses->at(Idx);
1517
1518 if (PGOEntry.FuncEntryCount)
1519 SHeader.sh_size += CBA.writeULEB128(*PGOEntry.FuncEntryCount);
1520
1521 if (!PGOEntry.PGOBBEntries)
1522 continue;
1523
1524 const auto &PGOBBEntries = PGOEntry.PGOBBEntries.value();
1525 if (TotalNumBlocks != PGOBBEntries.size()) {
1526 WithColor::warning() << "PBOBBEntries must be the same length as "
1527 "BBEntries in SHT_LLVM_BB_ADDR_MAP.\n"
1528 << "Mismatch on function with address: "
1529 << E.getFunctionAddress();
1530 continue;
1531 }
1532
1533 for (const auto &PGOBBE : PGOBBEntries) {
1534 if (PGOBBE.BBFreq)
1535 SHeader.sh_size += CBA.writeULEB128(*PGOBBE.BBFreq);
1536 if (PGOBBE.Successors) {
1537 SHeader.sh_size += CBA.writeULEB128(PGOBBE.Successors->size());
1538 for (const auto &[ID, BrProb] : *PGOBBE.Successors) {
1539 SHeader.sh_size += CBA.writeULEB128(ID);
1540 SHeader.sh_size += CBA.writeULEB128(BrProb);
1541 }
1542 }
1543 }
1544 }
1545}
1546
1547template <class ELFT>
1548void ELFState<ELFT>::writeSectionContent(
1549 Elf_Shdr &SHeader, const ELFYAML::LinkerOptionsSection &Section,
1550 ContiguousBlobAccumulator &CBA) {
1551 if (!Section.Options)
1552 return;
1553
1554 for (const ELFYAML::LinkerOption &LO : *Section.Options) {
1555 CBA.write(LO.Key.data(), LO.Key.size());
1556 CBA.write('\0');
1557 CBA.write(LO.Value.data(), LO.Value.size());
1558 CBA.write('\0');
1559 SHeader.sh_size += (LO.Key.size() + LO.Value.size() + 2);
1560 }
1561}
1562
1563template <class ELFT>
1564void ELFState<ELFT>::writeSectionContent(
1565 Elf_Shdr &SHeader, const ELFYAML::DependentLibrariesSection &Section,
1566 ContiguousBlobAccumulator &CBA) {
1567 if (!Section.Libs)
1568 return;
1569
1570 for (StringRef Lib : *Section.Libs) {
1571 CBA.write(Lib.data(), Lib.size());
1572 CBA.write('\0');
1573 SHeader.sh_size += Lib.size() + 1;
1574 }
1575}
1576
1577template <class ELFT>
1579ELFState<ELFT>::alignToOffset(ContiguousBlobAccumulator &CBA, uint64_t Align,
1580 std::optional<llvm::yaml::Hex64> Offset) {
1581 uint64_t CurrentOffset = CBA.getOffset();
1582 uint64_t AlignedOffset;
1583
1584 if (Offset) {
1585 if ((uint64_t)*Offset < CurrentOffset) {
1586 reportError("the 'Offset' value (0x" +
1587 Twine::utohexstr((uint64_t)*Offset) + ") goes backward");
1588 return CurrentOffset;
1589 }
1590
1591 // We ignore an alignment when an explicit offset has been requested.
1592 AlignedOffset = *Offset;
1593 } else {
1594 AlignedOffset = alignTo(CurrentOffset, std::max(Align, (uint64_t)1));
1595 }
1596
1597 CBA.writeZeros(AlignedOffset - CurrentOffset);
1598 return AlignedOffset;
1599}
1600
1601template <class ELFT>
1602void ELFState<ELFT>::writeSectionContent(
1603 Elf_Shdr &SHeader, const ELFYAML::CallGraphProfileSection &Section,
1604 ContiguousBlobAccumulator &CBA) {
1605 if (!Section.Entries)
1606 return;
1607
1608 for (const ELFYAML::CallGraphEntryWeight &E : *Section.Entries) {
1609 CBA.write<uint64_t>(E.Weight, ELFT::Endianness);
1610 SHeader.sh_size += sizeof(object::Elf_CGProfile_Impl<ELFT>);
1611 }
1612}
1613
1614template <class ELFT>
1615void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1616 const ELFYAML::HashSection &Section,
1617 ContiguousBlobAccumulator &CBA) {
1618 if (!Section.Bucket)
1619 return;
1620
1621 CBA.write<uint32_t>(
1622 Section.NBucket.value_or(llvm::yaml::Hex64(Section.Bucket->size())),
1623 ELFT::Endianness);
1624 CBA.write<uint32_t>(
1625 Section.NChain.value_or(llvm::yaml::Hex64(Section.Chain->size())),
1626 ELFT::Endianness);
1627
1628 for (uint32_t Val : *Section.Bucket)
1629 CBA.write<uint32_t>(Val, ELFT::Endianness);
1630 for (uint32_t Val : *Section.Chain)
1631 CBA.write<uint32_t>(Val, ELFT::Endianness);
1632
1633 SHeader.sh_size = (2 + Section.Bucket->size() + Section.Chain->size()) * 4;
1634}
1635
1636template <class ELFT>
1637void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1638 const ELFYAML::VerdefSection &Section,
1639 ContiguousBlobAccumulator &CBA) {
1640
1641 if (Section.Info)
1642 SHeader.sh_info = *Section.Info;
1643 else if (Section.Entries)
1644 SHeader.sh_info = Section.Entries->size();
1645
1646 if (!Section.Entries)
1647 return;
1648
1649 uint64_t AuxCnt = 0;
1650 for (size_t I = 0; I < Section.Entries->size(); ++I) {
1651 const ELFYAML::VerdefEntry &E = (*Section.Entries)[I];
1652
1653 Elf_Verdef VerDef;
1654 VerDef.vd_version = E.Version.value_or(1);
1655 VerDef.vd_flags = E.Flags.value_or(0);
1656 VerDef.vd_ndx = E.VersionNdx.value_or(0);
1657 VerDef.vd_hash = E.Hash.value_or(0);
1658 VerDef.vd_aux = sizeof(Elf_Verdef);
1659 VerDef.vd_cnt = E.VerNames.size();
1660 if (I == Section.Entries->size() - 1)
1661 VerDef.vd_next = 0;
1662 else
1663 VerDef.vd_next =
1664 sizeof(Elf_Verdef) + E.VerNames.size() * sizeof(Elf_Verdaux);
1665 CBA.write((const char *)&VerDef, sizeof(Elf_Verdef));
1666
1667 for (size_t J = 0; J < E.VerNames.size(); ++J, ++AuxCnt) {
1668 Elf_Verdaux VernAux;
1669 VernAux.vda_name = DotDynstr.getOffset(E.VerNames[J]);
1670 if (J == E.VerNames.size() - 1)
1671 VernAux.vda_next = 0;
1672 else
1673 VernAux.vda_next = sizeof(Elf_Verdaux);
1674 CBA.write((const char *)&VernAux, sizeof(Elf_Verdaux));
1675 }
1676 }
1677
1678 SHeader.sh_size = Section.Entries->size() * sizeof(Elf_Verdef) +
1679 AuxCnt * sizeof(Elf_Verdaux);
1680}
1681
1682template <class ELFT>
1683void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1684 const ELFYAML::VerneedSection &Section,
1685 ContiguousBlobAccumulator &CBA) {
1686 if (Section.Info)
1687 SHeader.sh_info = *Section.Info;
1688 else if (Section.VerneedV)
1689 SHeader.sh_info = Section.VerneedV->size();
1690
1691 if (!Section.VerneedV)
1692 return;
1693
1694 uint64_t AuxCnt = 0;
1695 for (size_t I = 0; I < Section.VerneedV->size(); ++I) {
1696 const ELFYAML::VerneedEntry &VE = (*Section.VerneedV)[I];
1697
1698 Elf_Verneed VerNeed;
1699 VerNeed.vn_version = VE.Version;
1700 VerNeed.vn_file = DotDynstr.getOffset(VE.File);
1701 if (I == Section.VerneedV->size() - 1)
1702 VerNeed.vn_next = 0;
1703 else
1704 VerNeed.vn_next =
1705 sizeof(Elf_Verneed) + VE.AuxV.size() * sizeof(Elf_Vernaux);
1706 VerNeed.vn_cnt = VE.AuxV.size();
1707 VerNeed.vn_aux = sizeof(Elf_Verneed);
1708 CBA.write((const char *)&VerNeed, sizeof(Elf_Verneed));
1709
1710 for (size_t J = 0; J < VE.AuxV.size(); ++J, ++AuxCnt) {
1711 const ELFYAML::VernauxEntry &VAuxE = VE.AuxV[J];
1712
1713 Elf_Vernaux VernAux;
1714 VernAux.vna_hash = VAuxE.Hash;
1715 VernAux.vna_flags = VAuxE.Flags;
1716 VernAux.vna_other = VAuxE.Other;
1717 VernAux.vna_name = DotDynstr.getOffset(VAuxE.Name);
1718 if (J == VE.AuxV.size() - 1)
1719 VernAux.vna_next = 0;
1720 else
1721 VernAux.vna_next = sizeof(Elf_Vernaux);
1722 CBA.write((const char *)&VernAux, sizeof(Elf_Vernaux));
1723 }
1724 }
1725
1726 SHeader.sh_size = Section.VerneedV->size() * sizeof(Elf_Verneed) +
1727 AuxCnt * sizeof(Elf_Vernaux);
1728}
1729
1730template <class ELFT>
1731void ELFState<ELFT>::writeSectionContent(
1732 Elf_Shdr &SHeader, const ELFYAML::ARMIndexTableSection &Section,
1733 ContiguousBlobAccumulator &CBA) {
1734 if (!Section.Entries)
1735 return;
1736
1737 for (const ELFYAML::ARMIndexTableEntry &E : *Section.Entries) {
1738 CBA.write<uint32_t>(E.Offset, ELFT::Endianness);
1739 CBA.write<uint32_t>(E.Value, ELFT::Endianness);
1740 }
1741 SHeader.sh_size = Section.Entries->size() * 8;
1742}
1743
1744template <class ELFT>
1745void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1746 const ELFYAML::MipsABIFlags &Section,
1747 ContiguousBlobAccumulator &CBA) {
1749 "Section type is not SHT_MIPS_ABIFLAGS");
1750
1752 zero(Flags);
1753 SHeader.sh_size = SHeader.sh_entsize;
1754
1755 Flags.version = Section.Version;
1756 Flags.isa_level = Section.ISALevel;
1757 Flags.isa_rev = Section.ISARevision;
1758 Flags.gpr_size = Section.GPRSize;
1759 Flags.cpr1_size = Section.CPR1Size;
1760 Flags.cpr2_size = Section.CPR2Size;
1761 Flags.fp_abi = Section.FpABI;
1762 Flags.isa_ext = Section.ISAExtension;
1763 Flags.ases = Section.ASEs;
1764 Flags.flags1 = Section.Flags1;
1765 Flags.flags2 = Section.Flags2;
1766 CBA.write((const char *)&Flags, sizeof(Flags));
1767}
1768
1769template <class ELFT>
1770void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1771 const ELFYAML::DynamicSection &Section,
1772 ContiguousBlobAccumulator &CBA) {
1774 "Section type is not SHT_DYNAMIC");
1775
1776 if (!Section.Entries)
1777 return;
1778
1779 for (const ELFYAML::DynamicEntry &DE : *Section.Entries) {
1780 CBA.write<uintX_t>(DE.Tag, ELFT::Endianness);
1781 CBA.write<uintX_t>(DE.Val, ELFT::Endianness);
1782 }
1783 SHeader.sh_size = 2 * sizeof(uintX_t) * Section.Entries->size();
1784}
1785
1786template <class ELFT>
1787void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1788 const ELFYAML::AddrsigSection &Section,
1789 ContiguousBlobAccumulator &CBA) {
1790 if (!Section.Symbols)
1791 return;
1792
1793 for (StringRef Sym : *Section.Symbols)
1794 SHeader.sh_size +=
1795 CBA.writeULEB128(toSymbolIndex(Sym, Section.Name, /*IsDynamic=*/false));
1796}
1797
1798template <class ELFT>
1799void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1800 const ELFYAML::NoteSection &Section,
1801 ContiguousBlobAccumulator &CBA) {
1802 if (!Section.Notes)
1803 return;
1804
1805 uint64_t Offset = CBA.tell();
1806 for (const ELFYAML::NoteEntry &NE : *Section.Notes) {
1807 // Write name size.
1808 if (NE.Name.empty())
1809 CBA.write<uint32_t>(0, ELFT::Endianness);
1810 else
1811 CBA.write<uint32_t>(NE.Name.size() + 1, ELFT::Endianness);
1812
1813 // Write description size.
1814 if (NE.Desc.binary_size() == 0)
1815 CBA.write<uint32_t>(0, ELFT::Endianness);
1816 else
1817 CBA.write<uint32_t>(NE.Desc.binary_size(), ELFT::Endianness);
1818
1819 // Write type.
1820 CBA.write<uint32_t>(NE.Type, ELFT::Endianness);
1821
1822 // Write name, null terminator and padding.
1823 if (!NE.Name.empty()) {
1824 CBA.write(NE.Name.data(), NE.Name.size());
1825 CBA.write('\0');
1826 CBA.padToAlignment(4);
1827 }
1828
1829 // Write description and padding.
1830 if (NE.Desc.binary_size() != 0) {
1831 CBA.writeAsBinary(NE.Desc);
1832 CBA.padToAlignment(4);
1833 }
1834 }
1835
1836 SHeader.sh_size = CBA.tell() - Offset;
1837}
1838
1839template <class ELFT>
1840void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1841 const ELFYAML::GnuHashSection &Section,
1842 ContiguousBlobAccumulator &CBA) {
1843 if (!Section.HashBuckets)
1844 return;
1845
1846 if (!Section.Header)
1847 return;
1848
1849 // We write the header first, starting with the hash buckets count. Normally
1850 // it is the number of entries in HashBuckets, but the "NBuckets" property can
1851 // be used to override this field, which is useful for producing broken
1852 // objects.
1853 if (Section.Header->NBuckets)
1854 CBA.write<uint32_t>(*Section.Header->NBuckets, ELFT::Endianness);
1855 else
1856 CBA.write<uint32_t>(Section.HashBuckets->size(), ELFT::Endianness);
1857
1858 // Write the index of the first symbol in the dynamic symbol table accessible
1859 // via the hash table.
1860 CBA.write<uint32_t>(Section.Header->SymNdx, ELFT::Endianness);
1861
1862 // Write the number of words in the Bloom filter. As above, the "MaskWords"
1863 // property can be used to set this field to any value.
1864 if (Section.Header->MaskWords)
1865 CBA.write<uint32_t>(*Section.Header->MaskWords, ELFT::Endianness);
1866 else
1867 CBA.write<uint32_t>(Section.BloomFilter->size(), ELFT::Endianness);
1868
1869 // Write the shift constant used by the Bloom filter.
1870 CBA.write<uint32_t>(Section.Header->Shift2, ELFT::Endianness);
1871
1872 // We've finished writing the header. Now write the Bloom filter.
1873 for (llvm::yaml::Hex64 Val : *Section.BloomFilter)
1874 CBA.write<uintX_t>(Val, ELFT::Endianness);
1875
1876 // Write an array of hash buckets.
1877 for (llvm::yaml::Hex32 Val : *Section.HashBuckets)
1878 CBA.write<uint32_t>(Val, ELFT::Endianness);
1879
1880 // Write an array of hash values.
1881 for (llvm::yaml::Hex32 Val : *Section.HashValues)
1882 CBA.write<uint32_t>(Val, ELFT::Endianness);
1883
1884 SHeader.sh_size = 16 /*Header size*/ +
1885 Section.BloomFilter->size() * sizeof(typename ELFT::uint) +
1886 Section.HashBuckets->size() * 4 +
1887 Section.HashValues->size() * 4;
1888}
1889
1890template <class ELFT>
1891void ELFState<ELFT>::writeFill(ELFYAML::Fill &Fill,
1892 ContiguousBlobAccumulator &CBA) {
1893 size_t PatternSize = Fill.Pattern ? Fill.Pattern->binary_size() : 0;
1894 if (!PatternSize) {
1895 CBA.writeZeros(Fill.Size);
1896 return;
1897 }
1898
1899 // Fill the content with the specified pattern.
1900 uint64_t Written = 0;
1901 for (; Written + PatternSize <= Fill.Size; Written += PatternSize)
1902 CBA.writeAsBinary(*Fill.Pattern);
1903 CBA.writeAsBinary(*Fill.Pattern, Fill.Size - Written);
1904}
1905
1906template <class ELFT>
1907DenseMap<StringRef, size_t> ELFState<ELFT>::buildSectionHeaderReorderMap() {
1908 const ELFYAML::SectionHeaderTable &SectionHeaders =
1909 Doc.getSectionHeaderTable();
1910 if (SectionHeaders.IsImplicit || SectionHeaders.NoHeaders ||
1911 SectionHeaders.isDefault())
1913
1915 size_t SecNdx = 0;
1916 StringSet<> Seen;
1917
1918 auto AddSection = [&](const ELFYAML::SectionHeader &Hdr) {
1919 if (!Ret.try_emplace(Hdr.Name, ++SecNdx).second)
1920 reportError("repeated section name: '" + Hdr.Name +
1921 "' in the section header description");
1922 Seen.insert(Hdr.Name);
1923 };
1924
1925 if (SectionHeaders.Sections)
1926 for (const ELFYAML::SectionHeader &Hdr : *SectionHeaders.Sections)
1927 AddSection(Hdr);
1928
1929 if (SectionHeaders.Excluded)
1930 for (const ELFYAML::SectionHeader &Hdr : *SectionHeaders.Excluded)
1931 AddSection(Hdr);
1932
1933 for (const ELFYAML::Section *S : Doc.getSections()) {
1934 // Ignore special first SHT_NULL section.
1935 if (S == Doc.getSections().front())
1936 continue;
1937 if (!Seen.count(S->Name))
1938 reportError("section '" + S->Name +
1939 "' should be present in the 'Sections' or 'Excluded' lists");
1940 Seen.erase(S->Name);
1941 }
1942
1943 for (const auto &It : Seen)
1944 reportError("section header contains undefined section '" + It.getKey() +
1945 "'");
1946 return Ret;
1947}
1948
1949template <class ELFT> void ELFState<ELFT>::buildSectionIndex() {
1950 // A YAML description can have an explicit section header declaration that
1951 // allows to change the order of section headers.
1952 DenseMap<StringRef, size_t> ReorderMap = buildSectionHeaderReorderMap();
1953
1954 if (HasError)
1955 return;
1956
1957 // Build excluded section headers map.
1958 std::vector<ELFYAML::Section *> Sections = Doc.getSections();
1959 const ELFYAML::SectionHeaderTable &SectionHeaders =
1960 Doc.getSectionHeaderTable();
1961 if (SectionHeaders.Excluded)
1962 for (const ELFYAML::SectionHeader &Hdr : *SectionHeaders.Excluded)
1963 if (!ExcludedSectionHeaders.insert(Hdr.Name).second)
1964 llvm_unreachable("buildSectionIndex() failed");
1965
1966 if (SectionHeaders.NoHeaders.value_or(false))
1967 for (const ELFYAML::Section *S : Sections)
1968 if (!ExcludedSectionHeaders.insert(S->Name).second)
1969 llvm_unreachable("buildSectionIndex() failed");
1970
1971 size_t SecNdx = -1;
1972 for (const ELFYAML::Section *S : Sections) {
1973 ++SecNdx;
1974
1975 size_t Index = ReorderMap.empty() ? SecNdx : ReorderMap.lookup(S->Name);
1976 if (!SN2I.addName(S->Name, Index))
1977 llvm_unreachable("buildSectionIndex() failed");
1978
1979 if (!ExcludedSectionHeaders.count(S->Name))
1980 ShStrtabStrings->add(ELFYAML::dropUniqueSuffix(S->Name));
1981 }
1982}
1983
1984template <class ELFT> void ELFState<ELFT>::buildSymbolIndexes() {
1985 auto Build = [this](ArrayRef<ELFYAML::Symbol> V, NameToIdxMap &Map) {
1986 for (size_t I = 0, S = V.size(); I < S; ++I) {
1987 const ELFYAML::Symbol &Sym = V[I];
1988 if (!Sym.Name.empty() && !Map.addName(Sym.Name, I + 1))
1989 reportError("repeated symbol name: '" + Sym.Name + "'");
1990 }
1991 };
1992
1993 if (Doc.Symbols)
1994 Build(*Doc.Symbols, SymN2I);
1995 if (Doc.DynamicSymbols)
1996 Build(*Doc.DynamicSymbols, DynSymN2I);
1997}
1998
1999template <class ELFT> void ELFState<ELFT>::finalizeStrings() {
2000 // Add the regular symbol names to .strtab section.
2001 if (Doc.Symbols)
2002 for (const ELFYAML::Symbol &Sym : *Doc.Symbols)
2003 DotStrtab.add(ELFYAML::dropUniqueSuffix(Sym.Name));
2004 DotStrtab.finalize();
2005
2006 // Add the dynamic symbol names to .dynstr section.
2007 if (Doc.DynamicSymbols)
2008 for (const ELFYAML::Symbol &Sym : *Doc.DynamicSymbols)
2009 DotDynstr.add(ELFYAML::dropUniqueSuffix(Sym.Name));
2010
2011 // SHT_GNU_verdef and SHT_GNU_verneed sections might also
2012 // add strings to .dynstr section.
2013 for (const ELFYAML::Chunk *Sec : Doc.getSections()) {
2014 if (auto VerNeed = dyn_cast<ELFYAML::VerneedSection>(Sec)) {
2015 if (VerNeed->VerneedV) {
2016 for (const ELFYAML::VerneedEntry &VE : *VerNeed->VerneedV) {
2017 DotDynstr.add(VE.File);
2018 for (const ELFYAML::VernauxEntry &Aux : VE.AuxV)
2019 DotDynstr.add(Aux.Name);
2020 }
2021 }
2022 } else if (auto VerDef = dyn_cast<ELFYAML::VerdefSection>(Sec)) {
2023 if (VerDef->Entries)
2024 for (const ELFYAML::VerdefEntry &E : *VerDef->Entries)
2025 for (StringRef Name : E.VerNames)
2026 DotDynstr.add(Name);
2027 }
2028 }
2029
2030 DotDynstr.finalize();
2031
2032 // Don't finalize the section header string table a second time if it has
2033 // already been finalized due to being one of the symbol string tables.
2034 if (ShStrtabStrings != &DotStrtab && ShStrtabStrings != &DotDynstr)
2035 ShStrtabStrings->finalize();
2036}
2037
2038template <class ELFT>
2039bool ELFState<ELFT>::writeELF(raw_ostream &OS, ELFYAML::Object &Doc,
2040 yaml::ErrorHandler EH, uint64_t MaxSize) {
2041 ELFState<ELFT> State(Doc, EH);
2042 if (State.HasError)
2043 return false;
2044
2045 // Build the section index, which adds sections to the section header string
2046 // table first, so that we can finalize the section header string table.
2047 State.buildSectionIndex();
2048 State.buildSymbolIndexes();
2049
2050 // Finalize section header string table and the .strtab and .dynstr sections.
2051 // We do this early because we want to finalize the string table builders
2052 // before writing the content of the sections that might want to use them.
2053 State.finalizeStrings();
2054
2055 if (State.HasError)
2056 return false;
2057
2058 std::vector<Elf_Phdr> PHeaders;
2059 State.initProgramHeaders(PHeaders);
2060
2061 // XXX: This offset is tightly coupled with the order that we write
2062 // things to `OS`.
2063 const size_t SectionContentBeginOffset =
2064 sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * Doc.ProgramHeaders.size();
2065 // It is quite easy to accidentally create output with yaml2obj that is larger
2066 // than intended, for example, due to an issue in the YAML description.
2067 // We limit the maximum allowed output size, but also provide a command line
2068 // option to change this limitation.
2069 ContiguousBlobAccumulator CBA(SectionContentBeginOffset, MaxSize);
2070
2071 std::vector<Elf_Shdr> SHeaders;
2072 State.initSectionHeaders(SHeaders, CBA);
2073
2074 // Now we can decide segment offsets.
2075 State.setProgramHeaderLayout(PHeaders, SHeaders);
2076
2077 bool ReachedLimit = CBA.getOffset() > MaxSize;
2078 if (Error E = CBA.takeLimitError()) {
2079 // We report a custom error message instead below.
2080 consumeError(std::move(E));
2081 ReachedLimit = true;
2082 }
2083
2084 if (ReachedLimit)
2085 State.reportError(
2086 "the desired output size is greater than permitted. Use the "
2087 "--max-size option to change the limit");
2088
2089 if (State.HasError)
2090 return false;
2091
2092 State.writeELFHeader(OS);
2093 writeArrayData(OS, ArrayRef(PHeaders));
2094
2096 if (!SHT.NoHeaders.value_or(false))
2097 CBA.updateDataAt(*SHT.Offset, SHeaders.data(),
2098 SHT.getNumHeaders(SHeaders.size()) * sizeof(Elf_Shdr));
2099
2100 CBA.writeBlobToStream(OS);
2101 return true;
2102}
2103
2104namespace llvm {
2105namespace yaml {
2106
2108 uint64_t MaxSize) {
2109 bool IsLE = Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB);
2110 bool Is64Bit = Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64);
2111 if (Is64Bit) {
2112 if (IsLE)
2113 return ELFState<object::ELF64LE>::writeELF(Out, Doc, EH, MaxSize);
2114 return ELFState<object::ELF64BE>::writeELF(Out, Doc, EH, MaxSize);
2115 }
2116 if (IsLE)
2117 return ELFState<object::ELF32LE>::writeELF(Out, Doc, EH, MaxSize);
2118 return ELFState<object::ELF32BE>::writeELF(Out, Doc, EH, MaxSize);
2119}
2120
2121} // namespace yaml
2122} // namespace llvm
static Error reportError(StringRef Message)
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
Common declarations for yaml2obj.
This file declares classes for handling the YAML representation of DWARF Debug Info.
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file defines the DenseMap class.
static StringRef getDefaultLinkSec(unsigned SecType)
Definition: ELFEmitter.cpp:741
constexpr char SuffixEnd
Definition: ELFEmitter.cpp:693
static void overrideFields(ELFYAML::Section *From, typename ELFT::Shdr &To)
Definition: ELFEmitter.cpp:641
static void writeArrayData(raw_ostream &OS, ArrayRef< T > A)
Definition: ELFEmitter.cpp:339
static bool isMips64EL(const ELFYAML::Object &Obj)
static size_t arrayDataSize(ArrayRef< T > A)
Definition: ELFEmitter.cpp:335
constexpr char SuffixStart
Definition: ELFEmitter.cpp:692
static void zero(T &Obj)
Definition: ELFEmitter.cpp:343
static bool shouldEmitDWARF(DWARFYAML::Data &DWARF, StringRef Name)
static uint64_t writeContent(ContiguousBlobAccumulator &CBA, const std::optional< yaml::BinaryRef > &Content, const std::optional< llvm::yaml::Hex64 > &Size)
Definition: ELFEmitter.cpp:725
Expected< uint64_t > emitDWARF(typename ELFT::Shdr &SHeader, StringRef Name, const DWARFYAML::Data &DWARF, ContiguousBlobAccumulator &CBA)
static size_t findFirstNonGlobal(ArrayRef< ELFYAML::Symbol > Symbols)
Definition: ELFEmitter.cpp:936
T Content
std::string Name
uint64_t Size
#define LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Definition: ELFTypes.h:106
This file declares classes for handling the YAML representation of ELF.
Symbol * Sym
Definition: ELF_riscv.cpp:479
static cl::opt< unsigned > SizeLimit("eif-limit", cl::init(6), cl::Hidden, cl::desc("Size limit in Hexagon early if-conversion"))
static bool lookup(const GsymReader &GR, DataExtractor &Data, uint64_t &Offset, uint64_t BaseAddr, uint64_t Addr, SourceLocations &SrcLocs, llvm::Error &Err)
A Lookup helper functions.
Definition: InlineInfo.cpp:109
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define H(x, y, z)
Definition: MD5.cpp:57
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
raw_pwrite_stream & OS
This file implements a set that has insertion order iteration characteristics.
StringSet - A set-like wrapper for the StringMap.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
Allocate memory in an ever growing pool, as if by bump-pointer.
Definition: Allocator.h:66
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:194
bool empty() const
Definition: DenseMap.h:98
Base class for error info classes.
Definition: Error.h:45
Lightweight error class with error context and mandatory checking.
Definition: Error.h:160
static ErrorSuccess success()
Create a success value.
Definition: Error.h:337
Tagged union holding either a T or a Error.
Definition: Error.h:481
A vector that has set insertion semantics.
Definition: SetVector.h:57
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
Definition: SetVector.h:264
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:162
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:370
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1210
StringMap - This is an unconventional map that is specialized for handling keys that are "strings",...
Definition: StringMap.h:128
size_type count(StringRef Key) const
count - Return 1 if the element is in the map, 0 otherwise.
Definition: StringMap.h:276
void erase(iterator I)
Definition: StringMap.h:416
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition: StringRef.h:556
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
Definition: StringRef.h:250
constexpr bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:134
char back() const
back - Get the last character in the string.
Definition: StringRef.h:146
size_t rfind(char C, size_t From=npos) const
Search for the last character C in the string.
Definition: StringRef.h:332
StringRef copy(Allocator &A) const
Definition: StringRef.h:153
static constexpr size_t npos
Definition: StringRef.h:52
StringSet - A wrapper for StringMap that provides set-like functionality.
Definition: StringSet.h:23
std::pair< typename Base::iterator, bool > insert(StringRef key)
Definition: StringSet.h:38
Utility for building string tables with deduplicated suffixes.
size_t getOffset(CachedHashStringRef S) const
Get the offest of a string in the string table.
void write(raw_ostream &OS) const
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
static Twine utohexstr(const uint64_t &Val)
Definition: Twine.h:416
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
static raw_ostream & warning()
Convenience method for printing "warning: " to stderr.
Definition: WithColor.cpp:85
An efficient, type-erasing, non-owning reference to a callable.
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
raw_ostream & write_zeros(unsigned NumZeros)
write_zeros - Insert 'NumZeros' nulls.
uint64_t tell() const
tell - Return the current offset with the file.
Definition: raw_ostream.h:147
raw_ostream & write(unsigned char C)
A raw_ostream that writes to an SmallVector or SmallString.
Definition: raw_ostream.h:691
Specialized YAMLIO scalar type for representing a binary blob.
Definition: YAML.h:63
#define UINT64_MAX
Definition: DataTypes.h:77
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
std::function< Error(raw_ostream &, const Data &)> getDWARFEmitterByName(StringRef SecName)
std::string appendUniqueSuffix(StringRef Name, const Twine &Msg)
Definition: ELFEmitter.cpp:695
StringRef dropUniqueSuffix(StringRef S)
Definition: ELFEmitter.cpp:702
bool shouldAllocateFileSpace(ArrayRef< ProgramHeader > Phdrs, const NoBitsSection &S)
Definition: ELF.h:28
@ ELFDATA2LSB
Definition: ELF.h:336
@ GRP_COMDAT
Definition: ELF.h:1278
@ EM_NONE
Definition: ELF.h:134
@ EM_MIPS
Definition: ELF.h:142
@ ET_REL
Definition: ELF.h:117
@ EV_CURRENT
Definition: ELF.h:128
constexpr unsigned CREL_HDR_ADDEND
Definition: ELF.h:1967
@ SHT_STRTAB
Definition: ELF.h:1083
@ SHT_GROUP
Definition: ELF.h:1095
@ SHT_PROGBITS
Definition: ELF.h:1081
@ SHT_REL
Definition: ELF.h:1089
@ SHT_NULL
Definition: ELF.h:1080
@ SHT_LLVM_CALL_GRAPH_PROFILE
Definition: ELF.h:1120
@ SHT_NOBITS
Definition: ELF.h:1088
@ SHT_SYMTAB
Definition: ELF.h:1082
@ SHT_GNU_verneed
Definition: ELF.h:1130
@ SHT_GNU_verdef
Definition: ELF.h:1129
@ SHT_CREL
Definition: ELF.h:1102
@ SHT_DYNAMIC
Definition: ELF.h:1086
@ SHT_LLVM_ADDRSIG
Definition: ELF.h:1110
@ SHT_LLVM_BB_ADDR_MAP
Definition: ELF.h:1121
@ SHT_GNU_HASH
Definition: ELF.h:1128
@ SHT_RELA
Definition: ELF.h:1084
@ SHT_DYNSYM
Definition: ELF.h:1091
@ SHT_MIPS_ABIFLAGS
Definition: ELF.h:1157
@ SHT_GNU_versym
Definition: ELF.h:1131
@ SHT_HASH
Definition: ELF.h:1085
@ EI_DATA
Definition: ELF.h:54
@ EI_MAG3
Definition: ELF.h:52
@ EI_MAG1
Definition: ELF.h:50
@ EI_VERSION
Definition: ELF.h:55
@ EI_MAG2
Definition: ELF.h:51
@ EI_ABIVERSION
Definition: ELF.h:57
@ EI_MAG0
Definition: ELF.h:49
@ EI_CLASS
Definition: ELF.h:53
@ EI_OSABI
Definition: ELF.h:56
@ STB_LOCAL
Definition: ELF.h:1331
@ ELFCLASS64
Definition: ELF.h:330
@ ELFCLASS32
Definition: ELF.h:329
@ SHF_MERGE
Definition: ELF.h:1184
@ SHF_STRINGS
Definition: ELF.h:1187
@ SHF_ALLOC
Definition: ELF.h:1178
const uint64_t Version
Definition: InstrProf.h:1111
std::optional< const char * > toString(const std::optional< DWARFFormValue > &V)
Take an optional DWARFFormValue and try to extract a string value from it.
bool yaml2elf(ELFYAML::Object &Doc, raw_ostream &Out, ErrorHandler EH, uint64_t MaxSize)
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1680
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition: STLExtras.h:2406
void handleAllErrors(Error E, HandlerTs &&... Handlers)
Behaves the same as handleErrors, except that by contract all errors must be handled by the given han...
Definition: Error.h:977
Error createStringError(std::error_code EC, char const *Fmt, const Ts &... Vals)
Create formatted StringError object.
Definition: Error.h:1286
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition: bit.h:215
static Error getOffset(const SymbolRef &Sym, SectionRef Sec, uint64_t &Result)
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
Error write(MCStreamer &Out, ArrayRef< std::string > Inputs, OnCuIndexOverflow OverflowOptValue)
Definition: DWP.cpp:625
bool is_sorted(R &&Range, Compare C)
Wrapper function around std::is_sorted to check if elements in a range R are sorted with respect to a...
Definition: STLExtras.h:1902
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
@ Dynamic
Denotes mode unknown at compile time.
OutputIt copy(R &&Range, OutputIt Out)
Definition: STLExtras.h:1824
unsigned encodeSLEB128(int64_t Value, raw_ostream &OS, unsigned PadTo=0)
Utility function to encode a SLEB128 value to an output stream.
Definition: LEB128.h:23
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1749
unsigned encodeULEB128(uint64_t Value, raw_ostream &OS, unsigned PadTo=0)
Utility function to encode a ULEB128 value to an output stream.
Definition: LEB128.h:80
endianness
Definition: bit.h:70
void consumeError(Error Err)
Consume a Error without doing anything.
Definition: Error.h:1069
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
SetVector< StringRef > getNonEmptySectionNames() const
Definition: DWARFYAML.cpp:25
llvm::yaml::Hex32 Offset
Definition: ELFYAML.h:667
std::optional< uint64_t > NumBlocks
Definition: ELFYAML.h:171
std::optional< std::vector< BBEntry > > BBEntries
Definition: ELFYAML.h:172
StringRef Name
Definition: ELFYAML.h:240
std::optional< llvm::yaml::Hex64 > Offset
Definition: ELFYAML.h:241
llvm::yaml::Hex64 Val
Definition: ELFYAML.h:156
ELF_ELFCLASS Class
Definition: ELFYAML.h:114
llvm::yaml::Hex64 Size
Definition: ELFYAML.h:311
std::optional< yaml::BinaryRef > Pattern
Definition: ELFYAML.h:310
unsigned getMachine() const
Definition: ELFYAML.cpp:35
const SectionHeaderTable & getSectionHeaderTable() const
Definition: ELFYAML.h:746
FileHeader Header
Definition: ELFYAML.h:723
std::vector< ProgramHeader > ProgramHeaders
Definition: ELFYAML.h:724
std::optional< std::vector< PGOBBEntry > > PGOBBEntries
Definition: ELFYAML.h:195
std::optional< uint64_t > FuncEntryCount
Definition: ELFYAML.h:194
std::optional< llvm::yaml::Hex64 > Align
Definition: ELFYAML.h:711
llvm::yaml::Hex64 PAddr
Definition: ELFYAML.h:710
std::optional< llvm::yaml::Hex64 > Offset
Definition: ELFYAML.h:714
llvm::yaml::Hex64 VAddr
Definition: ELFYAML.h:709
std::optional< llvm::yaml::Hex64 > MemSize
Definition: ELFYAML.h:713
std::optional< StringRef > FirstSec
Definition: ELFYAML.h:715
std::optional< StringRef > LastSec
Definition: ELFYAML.h:716
std::optional< llvm::yaml::Hex64 > FileSize
Definition: ELFYAML.h:712
std::vector< Chunk * > Chunks
Definition: ELFYAML.h:719
std::optional< llvm::yaml::Hex64 > Info
Definition: ELFYAML.h:389
std::optional< StringRef > Symbol
Definition: ELFYAML.h:620
llvm::yaml::Hex64 Offset
Definition: ELFYAML.h:617
std::optional< std::vector< SectionHeader > > Excluded
Definition: ELFYAML.h:327
std::optional< bool > NoHeaders
Definition: ELFYAML.h:328
size_t getNumHeaders(size_t SectionsNum) const
Definition: ELFYAML.h:330
std::optional< std::vector< SectionHeader > > Sections
Definition: ELFYAML.h:326
std::optional< llvm::yaml::Hex64 > Address
Definition: ELFYAML.h:254
std::optional< StringRef > Link
Definition: ELFYAML.h:255
std::optional< llvm::yaml::Hex64 > Size
Definition: ELFYAML.h:260
llvm::yaml::Hex64 AddressAlign
Definition: ELFYAML.h:256
std::optional< ELF_SHF > Flags
Definition: ELFYAML.h:253
std::optional< yaml::BinaryRef > Content
Definition: ELFYAML.h:259
std::optional< llvm::yaml::Hex64 > EntSize
Definition: ELFYAML.h:257
llvm::yaml::Hex64 Size
Definition: ELFYAML.h:200
llvm::yaml::Hex64 Address
Definition: ELFYAML.h:199
std::optional< std::vector< uint32_t > > Entries
Definition: ELFYAML.h:653
std::optional< uint16_t > Flags
Definition: ELFYAML.h:582
std::vector< StringRef > VerNames
Definition: ELFYAML.h:585
std::optional< uint16_t > VersionNdx
Definition: ELFYAML.h:583
std::optional< uint16_t > Version
Definition: ELFYAML.h:581
std::optional< uint32_t > Hash
Definition: ELFYAML.h:584
std::vector< VernauxEntry > AuxV
Definition: ELFYAML.h:485
static Expected< Features > decode(uint8_t Val)
Definition: ELFTypes.h:848
Common declarations for yaml2obj.