LLVM 19.0.0git
Operations.cpp
Go to the documentation of this file.
1//===-- Operations.cpp ----------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
10#include "llvm/IR/BasicBlock.h"
11#include "llvm/IR/Constants.h"
12#include "llvm/IR/Function.h"
14
15using namespace llvm;
16using namespace fuzzerop;
17
18void llvm::describeFuzzerIntOps(std::vector<fuzzerop::OpDescriptor> &Ops) {
19 Ops.push_back(binOpDescriptor(1, Instruction::Add));
20 Ops.push_back(binOpDescriptor(1, Instruction::Sub));
21 Ops.push_back(binOpDescriptor(1, Instruction::Mul));
22 Ops.push_back(binOpDescriptor(1, Instruction::SDiv));
23 Ops.push_back(binOpDescriptor(1, Instruction::UDiv));
24 Ops.push_back(binOpDescriptor(1, Instruction::SRem));
25 Ops.push_back(binOpDescriptor(1, Instruction::URem));
26 Ops.push_back(binOpDescriptor(1, Instruction::Shl));
27 Ops.push_back(binOpDescriptor(1, Instruction::LShr));
28 Ops.push_back(binOpDescriptor(1, Instruction::AShr));
29 Ops.push_back(binOpDescriptor(1, Instruction::And));
30 Ops.push_back(binOpDescriptor(1, Instruction::Or));
31 Ops.push_back(binOpDescriptor(1, Instruction::Xor));
32
33 Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_EQ));
34 Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_NE));
35 Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_UGT));
36 Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_UGE));
37 Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_ULT));
38 Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_ULE));
39 Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_SGT));
40 Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_SGE));
41 Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_SLT));
42 Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_SLE));
43}
44
45void llvm::describeFuzzerFloatOps(std::vector<fuzzerop::OpDescriptor> &Ops) {
46 Ops.push_back(binOpDescriptor(1, Instruction::FAdd));
47 Ops.push_back(binOpDescriptor(1, Instruction::FSub));
48 Ops.push_back(binOpDescriptor(1, Instruction::FMul));
49 Ops.push_back(binOpDescriptor(1, Instruction::FDiv));
50 Ops.push_back(binOpDescriptor(1, Instruction::FRem));
51
52 Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_FALSE));
53 Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_OEQ));
54 Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_OGT));
55 Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_OGE));
56 Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_OLT));
57 Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_OLE));
58 Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_ONE));
59 Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_ORD));
60 Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_UNO));
61 Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_UEQ));
62 Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_UGT));
63 Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_UGE));
64 Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_ULT));
65 Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_ULE));
66 Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_UNE));
67 Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_TRUE));
68}
69
71 std::vector<fuzzerop::OpDescriptor> &Ops) {
72 Ops.push_back(fnegDescriptor(1));
73}
74
76 std::vector<fuzzerop::OpDescriptor> &Ops) {
77 Ops.push_back(splitBlockDescriptor(1));
78}
79
80void llvm::describeFuzzerOtherOps(std::vector<fuzzerop::OpDescriptor> &Ops) {
81 Ops.push_back(selectDescriptor(1));
82}
83
84void llvm::describeFuzzerPointerOps(std::vector<fuzzerop::OpDescriptor> &Ops) {
85 Ops.push_back(gepDescriptor(1));
86}
87
89 std::vector<fuzzerop::OpDescriptor> &Ops) {
90 Ops.push_back(extractValueDescriptor(1));
91 Ops.push_back(insertValueDescriptor(1));
92}
93
94void llvm::describeFuzzerVectorOps(std::vector<fuzzerop::OpDescriptor> &Ops) {
95 Ops.push_back(extractElementDescriptor(1));
96 Ops.push_back(insertElementDescriptor(1));
97 Ops.push_back(shuffleVectorDescriptor(1));
98}
99
101 auto buildOp = [](ArrayRef<Value *> Srcs, Instruction *Inst) {
102 return SelectInst::Create(Srcs[0], Srcs[1], Srcs[2], "S", Inst);
103 };
104 return {Weight,
106 buildOp};
107}
108
110 auto buildOp = [](ArrayRef<Value *> Srcs, Instruction *Inst) {
111 return UnaryOperator::Create(Instruction::FNeg, Srcs[0], "F", Inst);
112 };
113 return {Weight, {anyFloatOrVecFloatType()}, buildOp};
114}
115
118 auto buildOp = [Op](ArrayRef<Value *> Srcs, Instruction *Inst) {
119 return BinaryOperator::Create(Op, Srcs[0], Srcs[1], "B", Inst);
120 };
121 switch (Op) {
122 case Instruction::Add:
123 case Instruction::Sub:
124 case Instruction::Mul:
125 case Instruction::SDiv:
126 case Instruction::UDiv:
127 case Instruction::SRem:
128 case Instruction::URem:
129 case Instruction::Shl:
130 case Instruction::LShr:
131 case Instruction::AShr:
132 case Instruction::And:
133 case Instruction::Or:
134 case Instruction::Xor:
135 return {Weight, {anyIntOrVecIntType(), matchFirstType()}, buildOp};
136 case Instruction::FAdd:
137 case Instruction::FSub:
138 case Instruction::FMul:
139 case Instruction::FDiv:
140 case Instruction::FRem:
141 return {Weight, {anyFloatOrVecFloatType(), matchFirstType()}, buildOp};
142 case Instruction::BinaryOpsEnd:
143 llvm_unreachable("Value out of range of enum");
144 }
145 llvm_unreachable("Covered switch");
146}
147
150 CmpInst::Predicate Pred) {
151 auto buildOp = [CmpOp, Pred](ArrayRef<Value *> Srcs, Instruction *Inst) {
152 return CmpInst::Create(CmpOp, Pred, Srcs[0], Srcs[1], "C", Inst);
153 };
154
155 switch (CmpOp) {
156 case Instruction::ICmp:
157 return {Weight, {anyIntOrVecIntType(), matchFirstType()}, buildOp};
158 case Instruction::FCmp:
159 return {Weight, {anyFloatOrVecFloatType(), matchFirstType()}, buildOp};
160 default:
161 llvm_unreachable("CmpOp must be ICmp or FCmp");
162 }
163}
164
166 auto buildSplitBlock = [](ArrayRef<Value *> Srcs, Instruction *Inst) {
167 BasicBlock *Block = Inst->getParent();
168 BasicBlock *Next = Block->splitBasicBlock(Inst, "BB");
169
170 // If it was an exception handling block, we are done.
171 if (Block->isEHPad())
172 return nullptr;
173
174 // Loop back on this block by replacing the unconditional forward branch
175 // with a conditional with a backedge.
176 if (Block != &Block->getParent()->getEntryBlock()) {
177 BranchInst::Create(Block, Next, Srcs[0], Block->getTerminator());
178 Block->getTerminator()->eraseFromParent();
179
180 // We need values for each phi in the block. Since there isn't a good way
181 // to do a variable number of input values currently, we just fill them
182 // with undef.
183 for (PHINode &PHI : Block->phis())
184 PHI.addIncoming(UndefValue::get(PHI.getType()), Block);
185 }
186 return nullptr;
187 };
188 SourcePred isInt1Ty{[](ArrayRef<Value *>, const Value *V) {
189 return V->getType()->isIntegerTy(1);
190 },
191 std::nullopt};
192 return {Weight, {isInt1Ty}, buildSplitBlock};
193}
194
196 auto buildGEP = [](ArrayRef<Value *> Srcs, Instruction *Inst) {
197 // TODO: It would be better to generate a random type here, rather than
198 // generating a random value and picking its type.
199 Type *Ty = Srcs[1]->getType();
200 auto Indices = ArrayRef(Srcs).drop_front(2);
201 return GetElementPtrInst::Create(Ty, Srcs[0], Indices, "G", Inst);
202 };
203 // TODO: Handle aggregates and vectors
204 // TODO: Support multiple indices.
205 // TODO: Try to avoid meaningless accesses.
206 SourcePred sizedType(
207 [](ArrayRef<Value *>, const Value *V) { return V->getType()->isSized(); },
208 std::nullopt);
209 return {Weight, {sizedPtrType(), sizedType, anyIntType()}, buildGEP};
210}
211
213 assert(T->isAggregateType() && "Not a struct or array");
214 if (isa<StructType>(T))
215 return T->getStructNumElements();
216 return T->getArrayNumElements();
217}
218
220 auto Pred = [](ArrayRef<Value *> Cur, const Value *V) {
221 if (auto *CI = dyn_cast<ConstantInt>(V))
222 if (!CI->uge(getAggregateNumElements(Cur[0]->getType())))
223 return true;
224 return false;
225 };
226 auto Make = [](ArrayRef<Value *> Cur, ArrayRef<Type *> Ts) {
227 std::vector<Constant *> Result;
228 auto *Int32Ty = Type::getInt32Ty(Cur[0]->getContext());
230 // Create indices at the start, end, and middle, but avoid dups.
231 Result.push_back(ConstantInt::get(Int32Ty, 0));
232 if (N > 1)
233 Result.push_back(ConstantInt::get(Int32Ty, N - 1));
234 if (N > 2)
235 Result.push_back(ConstantInt::get(Int32Ty, N / 2));
236 return Result;
237 };
238 return {Pred, Make};
239}
240
242 auto buildExtract = [](ArrayRef<Value *> Srcs, Instruction *Inst) {
243 // TODO: It's pretty inefficient to shuffle this all through constants.
244 unsigned Idx = cast<ConstantInt>(Srcs[1])->getZExtValue();
245 return ExtractValueInst::Create(Srcs[0], {Idx}, "E", Inst);
246 };
247 // TODO: Should we handle multiple indices?
248 return {Weight, {anyAggregateType(), validExtractValueIndex()}, buildExtract};
249}
250
252 auto Pred = [](ArrayRef<Value *> Cur, const Value *V) {
253 if (auto *ArrayT = dyn_cast<ArrayType>(Cur[0]->getType()))
254 return V->getType() == ArrayT->getElementType();
255
256 auto *STy = cast<StructType>(Cur[0]->getType());
257 for (int I = 0, E = STy->getNumElements(); I < E; ++I)
258 if (STy->getTypeAtIndex(I) == V->getType())
259 return true;
260 return false;
261 };
262 auto Make = [](ArrayRef<Value *> Cur, ArrayRef<Type *>) {
263 if (auto *ArrayT = dyn_cast<ArrayType>(Cur[0]->getType()))
264 return makeConstantsWithType(ArrayT->getElementType());
265
266 std::vector<Constant *> Result;
267 auto *STy = cast<StructType>(Cur[0]->getType());
268 for (int I = 0, E = STy->getNumElements(); I < E; ++I)
269 makeConstantsWithType(STy->getTypeAtIndex(I), Result);
270 return Result;
271 };
272 return {Pred, Make};
273}
274
276 auto Pred = [](ArrayRef<Value *> Cur, const Value *V) {
277 if (auto *CI = dyn_cast<ConstantInt>(V))
278 if (CI->getBitWidth() == 32) {
280 CI->getZExtValue());
281 return Indexed == Cur[1]->getType();
282 }
283 return false;
284 };
285 auto Make = [](ArrayRef<Value *> Cur, ArrayRef<Type *> Ts) {
286 std::vector<Constant *> Result;
287 auto *Int32Ty = Type::getInt32Ty(Cur[0]->getContext());
288 auto *BaseTy = Cur[0]->getType();
289 int I = 0;
291 if (Indexed == Cur[1]->getType())
292 Result.push_back(ConstantInt::get(Int32Ty, I));
293 ++I;
294 }
295 return Result;
296 };
297 return {Pred, Make};
298}
299
301 auto buildInsert = [](ArrayRef<Value *> Srcs, Instruction *Inst) {
302 // TODO: It's pretty inefficient to shuffle this all through constants.
303 unsigned Idx = cast<ConstantInt>(Srcs[2])->getZExtValue();
304 return InsertValueInst::Create(Srcs[0], Srcs[1], {Idx}, "I", Inst);
305 };
306 return {
307 Weight,
309 buildInsert};
310}
311
313 auto buildExtract = [](ArrayRef<Value *> Srcs, Instruction *Inst) {
314 return ExtractElementInst::Create(Srcs[0], Srcs[1], "E", Inst);
315 };
316 // TODO: Try to avoid undefined accesses.
317 return {Weight, {anyVectorType(), anyIntType()}, buildExtract};
318}
319
321 auto buildInsert = [](ArrayRef<Value *> Srcs, Instruction *Inst) {
322 return InsertElementInst::Create(Srcs[0], Srcs[1], Srcs[2], "I", Inst);
323 };
324 // TODO: Try to avoid undefined accesses.
325 return {Weight,
327 buildInsert};
328}
329
331 auto Pred = [](ArrayRef<Value *> Cur, const Value *V) {
332 return ShuffleVectorInst::isValidOperands(Cur[0], Cur[1], V);
333 };
334 auto Make = [](ArrayRef<Value *> Cur, ArrayRef<Type *> Ts) {
335 auto *FirstTy = cast<VectorType>(Cur[0]->getType());
336 auto *Int32Ty = Type::getInt32Ty(Cur[0]->getContext());
337 // TODO: It's straighforward to make up reasonable values, but listing them
338 // exhaustively would be insane. Come up with a couple of sensible ones.
339 return std::vector<Constant *>{
340 UndefValue::get(VectorType::get(Int32Ty, FirstTy->getElementCount()))};
341 };
342 return {Pred, Make};
343}
344
346 auto buildShuffle = [](ArrayRef<Value *> Srcs, Instruction *Inst) {
347 return new ShuffleVectorInst(Srcs[0], Srcs[1], Srcs[2], "S", Inst);
348 };
349 return {Weight,
351 buildShuffle};
352}
Rewrite undef for PHI
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define I(x, y, z)
Definition: MD5.cpp:58
IntegerType * Int32Ty
static SourcePred validShuffleVectorIndex()
Definition: Operations.cpp:330
static uint64_t getAggregateNumElements(Type *T)
Definition: Operations.cpp:212
static SourcePred validExtractValueIndex()
Definition: Operations.cpp:219
static SourcePred matchScalarInAggregate()
Definition: Operations.cpp:251
static SourcePred validInsertValueIndex()
Definition: Operations.cpp:275
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static SymbolRef::Type getType(const Symbol *Sym)
Definition: TapiFile.cpp:40
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
ArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
Definition: ArrayRef.h:204
LLVM Basic Block Representation.
Definition: BasicBlock.h:60
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore)
Construct a binary instruction, given the opcode and the two operands.
static BranchInst * Create(BasicBlock *IfTrue, BasicBlock::iterator InsertBefore)
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:965
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:968
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
Definition: InstrTypes.h:982
@ ICMP_SLT
signed less than
Definition: InstrTypes.h:994
@ ICMP_SLE
signed less or equal
Definition: InstrTypes.h:995
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:971
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:980
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:969
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:970
@ ICMP_UGE
unsigned greater or equal
Definition: InstrTypes.h:989
@ ICMP_UGT
unsigned greater than
Definition: InstrTypes.h:988
@ ICMP_SGT
signed greater than
Definition: InstrTypes.h:992
@ FCMP_ULT
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:979
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
Definition: InstrTypes.h:973
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
Definition: InstrTypes.h:976
@ ICMP_ULT
unsigned less than
Definition: InstrTypes.h:990
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:977
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:972
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
Definition: InstrTypes.h:974
@ ICMP_EQ
equal
Definition: InstrTypes.h:986
@ ICMP_NE
not equal
Definition: InstrTypes.h:987
@ ICMP_SGE
signed greater or equal
Definition: InstrTypes.h:993
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:981
@ ICMP_ULE
unsigned less or equal
Definition: InstrTypes.h:991
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:978
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
Definition: InstrTypes.h:967
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition: InstrTypes.h:975
static CmpInst * Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore)
Construct a compare instruction, given the opcode, the predicate and the two operands.
This class represents an Operation in the Expression.
static ExtractElementInst * Create(Value *Vec, Value *Idx, const Twine &NameStr, BasicBlock::iterator InsertBefore)
static Type * getIndexedType(Type *Agg, ArrayRef< unsigned > Idxs)
Returns the type of the element that would be extracted with an extractvalue instruction with the spe...
static ExtractValueInst * Create(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &NameStr, BasicBlock::iterator InsertBefore)
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr, BasicBlock::iterator InsertBefore)
static InsertElementInst * Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr, BasicBlock::iterator InsertBefore)
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr, BasicBlock::iterator InsertBefore)
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr, BasicBlock::iterator InsertBefore, Instruction *MDFrom=nullptr)
This instruction constructs a fixed permutation of two input vectors.
static bool isValidOperands(const Value *V1, const Value *V2, const Value *Mask)
Return true if a shufflevector instruction can be formed with the specified operands.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
static IntegerType * getInt32Ty(LLVMContext &C)
static UnaryOperator * Create(UnaryOps Op, Value *S, const Twine &Name, BasicBlock::iterator InsertBefore)
Construct a unary instruction, given the opcode and an operand.
static UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
Definition: Constants.cpp:1808
LLVM Value Representation.
Definition: Value.h:74
A matcher/generator for finding suitable values for the next source in an operation's partially compl...
Definition: OpDescriptor.h:43
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
static SourcePred matchFirstLengthWAnyType()
Definition: OpDescriptor.h:185
OpDescriptor extractValueDescriptor(unsigned Weight)
Definition: Operations.cpp:241
OpDescriptor splitBlockDescriptor(unsigned Weight)
Definition: Operations.cpp:165
static SourcePred anyFloatOrVecFloatType()
Definition: OpDescriptor.h:143
static SourcePred sizedPtrType()
Definition: OpDescriptor.h:164
OpDescriptor fnegDescriptor(unsigned Weight)
Definition: Operations.cpp:109
void makeConstantsWithType(Type *T, std::vector< Constant * > &Cs)
OpDescriptor cmpOpDescriptor(unsigned Weight, Instruction::OtherOps CmpOp, CmpInst::Predicate Pred)
Definition: Operations.cpp:148
static SourcePred anyAggregateType()
Definition: OpDescriptor.h:233
OpDescriptor extractElementDescriptor(unsigned Weight)
Definition: Operations.cpp:312
OpDescriptor insertValueDescriptor(unsigned Weight)
Definition: Operations.cpp:300
OpDescriptor shuffleVectorDescriptor(unsigned Weight)
Definition: Operations.cpp:345
static SourcePred anyIntType()
Definition: OpDescriptor.h:113
static SourcePred matchScalarOfFirstType()
Match values that have the first source's scalar type.
Definition: OpDescriptor.h:276
OpDescriptor selectDescriptor(unsigned Weight)
Descriptors for individual operations.
Definition: Operations.cpp:100
static SourcePred anyIntOrVecIntType()
Definition: OpDescriptor.h:121
static SourcePred anyVectorType()
Definition: OpDescriptor.h:251
static SourcePred boolOrVecBoolType()
Definition: OpDescriptor.h:128
OpDescriptor insertElementDescriptor(unsigned Weight)
Definition: Operations.cpp:320
static SourcePred matchFirstType()
Match values that have the same type as the first source.
Definition: OpDescriptor.h:263
OpDescriptor binOpDescriptor(unsigned Weight, Instruction::BinaryOps Op)
Definition: Operations.cpp:116
OpDescriptor gepDescriptor(unsigned Weight)
Definition: Operations.cpp:195
static SourcePred matchSecondType()
Match values that have the same type as the first source.
Definition: OpDescriptor.h:221
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
void describeFuzzerIntOps(std::vector< fuzzerop::OpDescriptor > &Ops)
Getters for the default sets of operations, per general category.
Definition: Operations.cpp:18
void describeFuzzerOtherOps(std::vector< fuzzerop::OpDescriptor > &Ops)
Definition: Operations.cpp:80
void describeFuzzerAggregateOps(std::vector< fuzzerop::OpDescriptor > &Ops)
Definition: Operations.cpp:88
void describeFuzzerUnaryOperations(std::vector< fuzzerop::OpDescriptor > &Ops)
Definition: Operations.cpp:70
void describeFuzzerVectorOps(std::vector< fuzzerop::OpDescriptor > &Ops)
Definition: Operations.cpp:94
DWARFExpression::Operation Op
void describeFuzzerFloatOps(std::vector< fuzzerop::OpDescriptor > &Ops)
Definition: Operations.cpp:45
void describeFuzzerControlFlowOps(std::vector< fuzzerop::OpDescriptor > &Ops)
Definition: Operations.cpp:75
void describeFuzzerPointerOps(std::vector< fuzzerop::OpDescriptor > &Ops)
Definition: Operations.cpp:84
#define N
A description of some operation we can build while fuzzing IR.
Definition: OpDescriptor.h:89