LLVM  14.0.0git
Instructions.cpp
Go to the documentation of this file.
1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
37 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/TypeSize.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <vector>
45 
46 using namespace llvm;
47 
49  "disable-i2p-p2i-opt", cl::init(false),
50  cl::desc("Disables inttoptr/ptrtoint roundtrip optimization"));
51 
52 //===----------------------------------------------------------------------===//
53 // AllocaInst Class
54 //===----------------------------------------------------------------------===//
55 
58  TypeSize Size = DL.getTypeAllocSizeInBits(getAllocatedType());
59  if (isArrayAllocation()) {
60  auto *C = dyn_cast<ConstantInt>(getArraySize());
61  if (!C)
62  return None;
63  assert(!Size.isScalable() && "Array elements cannot have a scalable size");
64  Size *= C->getZExtValue();
65  }
66  return Size;
67 }
68 
69 //===----------------------------------------------------------------------===//
70 // SelectInst Class
71 //===----------------------------------------------------------------------===//
72 
73 /// areInvalidOperands - Return a string if the specified operands are invalid
74 /// for a select operation, otherwise return null.
75 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
76  if (Op1->getType() != Op2->getType())
77  return "both values to select must have same type";
78 
79  if (Op1->getType()->isTokenTy())
80  return "select values cannot have token type";
81 
82  if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
83  // Vector select.
84  if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
85  return "vector select condition element type must be i1";
86  VectorType *ET = dyn_cast<VectorType>(Op1->getType());
87  if (!ET)
88  return "selected values for vector select must be vectors";
89  if (ET->getElementCount() != VT->getElementCount())
90  return "vector select requires selected vectors to have "
91  "the same vector length as select condition";
92  } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
93  return "select condition must be i1 or <n x i1>";
94  }
95  return nullptr;
96 }
97 
98 //===----------------------------------------------------------------------===//
99 // PHINode Class
100 //===----------------------------------------------------------------------===//
101 
102 PHINode::PHINode(const PHINode &PN)
103  : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
104  ReservedSpace(PN.getNumOperands()) {
106  std::copy(PN.op_begin(), PN.op_end(), op_begin());
107  std::copy(PN.block_begin(), PN.block_end(), block_begin());
109 }
110 
111 // removeIncomingValue - Remove an incoming value. This is useful if a
112 // predecessor basic block is deleted.
113 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
114  Value *Removed = getIncomingValue(Idx);
115 
116  // Move everything after this operand down.
117  //
118  // FIXME: we could just swap with the end of the list, then erase. However,
119  // clients might not expect this to happen. The code as it is thrashes the
120  // use/def lists, which is kinda lame.
121  std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
122  std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
123 
124  // Nuke the last value.
125  Op<-1>().set(nullptr);
127 
128  // If the PHI node is dead, because it has zero entries, nuke it now.
129  if (getNumOperands() == 0 && DeletePHIIfEmpty) {
130  // If anyone is using this PHI, make them use a dummy value instead...
132  eraseFromParent();
133  }
134  return Removed;
135 }
136 
137 /// growOperands - grow operands - This grows the operand list in response
138 /// to a push_back style of operation. This grows the number of ops by 1.5
139 /// times.
140 ///
141 void PHINode::growOperands() {
142  unsigned e = getNumOperands();
143  unsigned NumOps = e + e / 2;
144  if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
145 
146  ReservedSpace = NumOps;
147  growHungoffUses(ReservedSpace, /* IsPhi */ true);
148 }
149 
150 /// hasConstantValue - If the specified PHI node always merges together the same
151 /// value, return the value, otherwise return null.
153  // Exploit the fact that phi nodes always have at least one entry.
154  Value *ConstantValue = getIncomingValue(0);
155  for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
156  if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
157  if (ConstantValue != this)
158  return nullptr; // Incoming values not all the same.
159  // The case where the first value is this PHI.
160  ConstantValue = getIncomingValue(i);
161  }
162  if (ConstantValue == this)
163  return UndefValue::get(getType());
164  return ConstantValue;
165 }
166 
167 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
168 /// together the same value, assuming that undefs result in the same value as
169 /// non-undefs.
170 /// Unlike \ref hasConstantValue, this does not return a value because the
171 /// unique non-undef incoming value need not dominate the PHI node.
173  Value *ConstantValue = nullptr;
174  for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
175  Value *Incoming = getIncomingValue(i);
176  if (Incoming != this && !isa<UndefValue>(Incoming)) {
177  if (ConstantValue && ConstantValue != Incoming)
178  return false;
179  ConstantValue = Incoming;
180  }
181  }
182  return true;
183 }
184 
185 //===----------------------------------------------------------------------===//
186 // LandingPadInst Implementation
187 //===----------------------------------------------------------------------===//
188 
189 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
190  const Twine &NameStr, Instruction *InsertBefore)
191  : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
192  init(NumReservedValues, NameStr);
193 }
194 
195 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
196  const Twine &NameStr, BasicBlock *InsertAtEnd)
197  : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
198  init(NumReservedValues, NameStr);
199 }
200 
201 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
202  : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
203  LP.getNumOperands()),
204  ReservedSpace(LP.getNumOperands()) {
206  Use *OL = getOperandList();
207  const Use *InOL = LP.getOperandList();
208  for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
209  OL[I] = InOL[I];
210 
211  setCleanup(LP.isCleanup());
212 }
213 
214 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
215  const Twine &NameStr,
216  Instruction *InsertBefore) {
217  return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
218 }
219 
220 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
221  const Twine &NameStr,
222  BasicBlock *InsertAtEnd) {
223  return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
224 }
225 
226 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
227  ReservedSpace = NumReservedValues;
229  allocHungoffUses(ReservedSpace);
230  setName(NameStr);
231  setCleanup(false);
232 }
233 
234 /// growOperands - grow operands - This grows the operand list in response to a
235 /// push_back style of operation. This grows the number of ops by 2 times.
236 void LandingPadInst::growOperands(unsigned Size) {
237  unsigned e = getNumOperands();
238  if (ReservedSpace >= e + Size) return;
239  ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
240  growHungoffUses(ReservedSpace);
241 }
242 
244  unsigned OpNo = getNumOperands();
245  growOperands(1);
246  assert(OpNo < ReservedSpace && "Growing didn't work!");
248  getOperandList()[OpNo] = Val;
249 }
250 
251 //===----------------------------------------------------------------------===//
252 // CallBase Implementation
253 //===----------------------------------------------------------------------===//
254 
256  Instruction *InsertPt) {
257  switch (CB->getOpcode()) {
258  case Instruction::Call:
259  return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt);
260  case Instruction::Invoke:
261  return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt);
262  case Instruction::CallBr:
263  return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt);
264  default:
265  llvm_unreachable("Unknown CallBase sub-class!");
266  }
267 }
268 
270  Instruction *InsertPt) {
272  for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) {
273  auto ChildOB = CI->getOperandBundleAt(i);
274  if (ChildOB.getTagName() != OpB.getTag())
275  OpDefs.emplace_back(ChildOB);
276  }
277  OpDefs.emplace_back(OpB);
278  return CallBase::Create(CI, OpDefs, InsertPt);
279 }
280 
281 
283 
285  assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
286  return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
287 }
288 
290  const Value *V = getCalledOperand();
291  if (isa<Function>(V) || isa<Constant>(V))
292  return false;
293  return !isInlineAsm();
294 }
295 
296 /// Tests if this call site must be tail call optimized. Only a CallInst can
297 /// be tail call optimized.
299  if (auto *CI = dyn_cast<CallInst>(this))
300  return CI->isMustTailCall();
301  return false;
302 }
303 
304 /// Tests if this call site is marked as a tail call.
305 bool CallBase::isTailCall() const {
306  if (auto *CI = dyn_cast<CallInst>(this))
307  return CI->isTailCall();
308  return false;
309 }
310 
312  if (auto *F = getCalledFunction())
313  return F->getIntrinsicID();
315 }
316 
318  if (hasRetAttr(Attribute::NonNull))
319  return true;
320 
323  getType()->getPointerAddressSpace()))
324  return true;
325 
326  return false;
327 }
328 
330  unsigned Index;
331 
332  if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
334  if (const Function *F = getCalledFunction())
335  if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
336  Index)
338 
339  return nullptr;
340 }
341 
342 /// Determine whether the argument or parameter has the given attribute.
343 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
344  assert(ArgNo < getNumArgOperands() && "Param index out of bounds!");
345 
346  if (Attrs.hasParamAttribute(ArgNo, Kind))
347  return true;
348  if (const Function *F = getCalledFunction())
349  return F->getAttributes().hasParamAttribute(ArgNo, Kind);
350  return false;
351 }
352 
353 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
354  if (const Function *F = getCalledFunction())
355  return F->getAttributes().hasFnAttribute(Kind);
356  return false;
357 }
358 
359 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
360  if (const Function *F = getCalledFunction())
361  return F->getAttributes().hasFnAttribute(Kind);
362  return false;
363 }
364 
366  SmallVectorImpl<OperandBundleDef> &Defs) const {
367  for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
369 }
370 
373  const unsigned BeginIndex) {
374  auto It = op_begin() + BeginIndex;
375  for (auto &B : Bundles)
376  It = std::copy(B.input_begin(), B.input_end(), It);
377 
378  auto *ContextImpl = getContext().pImpl;
379  auto BI = Bundles.begin();
380  unsigned CurrentIndex = BeginIndex;
381 
382  for (auto &BOI : bundle_op_infos()) {
383  assert(BI != Bundles.end() && "Incorrect allocation?");
384 
385  BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
386  BOI.Begin = CurrentIndex;
387  BOI.End = CurrentIndex + BI->input_size();
388  CurrentIndex = BOI.End;
389  BI++;
390  }
391 
392  assert(BI == Bundles.end() && "Incorrect allocation?");
393 
394  return It;
395 }
396 
398  /// When there isn't many bundles, we do a simple linear search.
399  /// Else fallback to a binary-search that use the fact that bundles usually
400  /// have similar number of argument to get faster convergence.
402  for (auto &BOI : bundle_op_infos())
403  if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
404  return BOI;
405 
406  llvm_unreachable("Did not find operand bundle for operand!");
407  }
408 
409  assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles");
411  OpIdx < std::prev(bundle_op_info_end())->End &&
412  "The Idx isn't in the operand bundle");
413 
414  /// We need a decimal number below and to prevent using floating point numbers
415  /// we use an intergal value multiplied by this constant.
416  constexpr unsigned NumberScaling = 1024;
417 
420  bundle_op_iterator Current = Begin;
421 
422  while (Begin != End) {
423  unsigned ScaledOperandPerBundle =
424  NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin);
425  Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) /
426  ScaledOperandPerBundle);
427  if (Current >= End)
428  Current = std::prev(End);
429  assert(Current < End && Current >= Begin &&
430  "the operand bundle doesn't cover every value in the range");
431  if (OpIdx >= Current->Begin && OpIdx < Current->End)
432  break;
433  if (OpIdx >= Current->End)
434  Begin = Current + 1;
435  else
436  End = Current;
437  }
438 
439  assert(OpIdx >= Current->Begin && OpIdx < Current->End &&
440  "the operand bundle doesn't cover every value in the range");
441  return *Current;
442 }
443 
446  Instruction *InsertPt) {
447  if (CB->getOperandBundle(ID))
448  return CB;
449 
451  CB->getOperandBundlesAsDefs(Bundles);
452  Bundles.push_back(OB);
453  return Create(CB, Bundles, InsertPt);
454 }
455 
457  Instruction *InsertPt) {
459  bool CreateNew = false;
460 
461  for (unsigned I = 0, E = CB->getNumOperandBundles(); I != E; ++I) {
462  auto Bundle = CB->getOperandBundleAt(I);
463  if (Bundle.getTagID() == ID) {
464  CreateNew = true;
465  continue;
466  }
467  Bundles.emplace_back(Bundle);
468  }
469 
470  return CreateNew ? Create(CB, Bundles, InsertPt) : CB;
471 }
472 
474  // Implementation note: this is a conservative implementation of operand
475  // bundle semantics, where *any* non-assume operand bundle forces a callsite
476  // to be at least readonly.
477  return hasOperandBundles() && getIntrinsicID() != Intrinsic::assume;
478 }
479 
480 //===----------------------------------------------------------------------===//
481 // CallInst Implementation
482 //===----------------------------------------------------------------------===//
483 
484 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
485  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
486  this->FTy = FTy;
487  assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
488  "NumOperands not set up?");
489 
490 #ifndef NDEBUG
491  assert((Args.size() == FTy->getNumParams() ||
492  (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
493  "Calling a function with bad signature!");
494 
495  for (unsigned i = 0; i != Args.size(); ++i)
496  assert((i >= FTy->getNumParams() ||
497  FTy->getParamType(i) == Args[i]->getType()) &&
498  "Calling a function with a bad signature!");
499 #endif
500 
501  // Set operands in order of their index to match use-list-order
502  // prediction.
504  setCalledOperand(Func);
505 
506  auto It = populateBundleOperandInfos(Bundles, Args.size());
507  (void)It;
508  assert(It + 1 == op_end() && "Should add up!");
509 
510  setName(NameStr);
511 }
512 
513 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
514  this->FTy = FTy;
515  assert(getNumOperands() == 1 && "NumOperands not set up?");
516  setCalledOperand(Func);
517 
518  assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
519 
520  setName(NameStr);
521 }
522 
523 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
524  Instruction *InsertBefore)
525  : CallBase(Ty->getReturnType(), Instruction::Call,
526  OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
527  init(Ty, Func, Name);
528 }
529 
530 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
531  BasicBlock *InsertAtEnd)
532  : CallBase(Ty->getReturnType(), Instruction::Call,
533  OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
534  init(Ty, Func, Name);
535 }
536 
537 CallInst::CallInst(const CallInst &CI)
538  : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
539  OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
540  CI.getNumOperands()) {
541  setTailCallKind(CI.getTailCallKind());
543 
544  std::copy(CI.op_begin(), CI.op_end(), op_begin());
548 }
549 
551  Instruction *InsertPt) {
552  std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
553 
554  auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(),
555  Args, OpB, CI->getName(), InsertPt);
556  NewCI->setTailCallKind(CI->getTailCallKind());
557  NewCI->setCallingConv(CI->getCallingConv());
558  NewCI->SubclassOptionalData = CI->SubclassOptionalData;
559  NewCI->setAttributes(CI->getAttributes());
560  NewCI->setDebugLoc(CI->getDebugLoc());
561  return NewCI;
562 }
563 
564 // Update profile weight for call instruction by scaling it using the ratio
565 // of S/T. The meaning of "branch_weights" meta data for call instruction is
566 // transfered to represent call count.
567 void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
568  auto *ProfileData = getMetadata(LLVMContext::MD_prof);
569  if (ProfileData == nullptr)
570  return;
571 
572  auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
573  if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
574  !ProfDataName->getString().equals("VP")))
575  return;
576 
577  if (T == 0) {
578  LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
579  "div by 0. Ignoring. Likely the function "
580  << getParent()->getParent()->getName()
581  << " has 0 entry count, and contains call instructions "
582  "with non-zero prof info.");
583  return;
584  }
585 
586  MDBuilder MDB(getContext());
588  Vals.push_back(ProfileData->getOperand(0));
589  APInt APS(128, S), APT(128, T);
590  if (ProfDataName->getString().equals("branch_weights") &&
591  ProfileData->getNumOperands() > 0) {
592  // Using APInt::div may be expensive, but most cases should fit 64 bits.
593  APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
594  ->getValue()
595  .getZExtValue());
596  Val *= APS;
597  Vals.push_back(MDB.createConstant(
599  Val.udiv(APT).getLimitedValue(UINT32_MAX))));
600  } else if (ProfDataName->getString().equals("VP"))
601  for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
602  // The first value is the key of the value profile, which will not change.
603  Vals.push_back(ProfileData->getOperand(i));
604  uint64_t Count =
605  mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
606  ->getValue()
607  .getZExtValue();
608  // Don't scale the magic number.
609  if (Count == NOMORE_ICP_MAGICNUM) {
610  Vals.push_back(ProfileData->getOperand(i + 1));
611  continue;
612  }
613  // Using APInt::div may be expensive, but most cases should fit 64 bits.
614  APInt Val(128, Count);
615  Val *= APS;
616  Vals.push_back(MDB.createConstant(
618  Val.udiv(APT).getLimitedValue())));
619  }
620  setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
621 }
622 
623 /// IsConstantOne - Return true only if val is constant int 1
624 static bool IsConstantOne(Value *val) {
625  assert(val && "IsConstantOne does not work with nullptr val");
626  const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
627  return CVal && CVal->isOne();
628 }
629 
630 static Instruction *createMalloc(Instruction *InsertBefore,
631  BasicBlock *InsertAtEnd, Type *IntPtrTy,
632  Type *AllocTy, Value *AllocSize,
633  Value *ArraySize,
635  Function *MallocF, const Twine &Name) {
636  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
637  "createMalloc needs either InsertBefore or InsertAtEnd");
638 
639  // malloc(type) becomes:
640  // bitcast (i8* malloc(typeSize)) to type*
641  // malloc(type, arraySize) becomes:
642  // bitcast (i8* malloc(typeSize*arraySize)) to type*
643  if (!ArraySize)
644  ArraySize = ConstantInt::get(IntPtrTy, 1);
645  else if (ArraySize->getType() != IntPtrTy) {
646  if (InsertBefore)
647  ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
648  "", InsertBefore);
649  else
650  ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
651  "", InsertAtEnd);
652  }
653 
654  if (!IsConstantOne(ArraySize)) {
655  if (IsConstantOne(AllocSize)) {
656  AllocSize = ArraySize; // Operand * 1 = Operand
657  } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
658  Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
659  false /*ZExt*/);
660  // Malloc arg is constant product of type size and array size
661  AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
662  } else {
663  // Multiply type size by the array size...
664  if (InsertBefore)
665  AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
666  "mallocsize", InsertBefore);
667  else
668  AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
669  "mallocsize", InsertAtEnd);
670  }
671  }
672 
673  assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
674  // Create the call to Malloc.
675  BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
676  Module *M = BB->getParent()->getParent();
677  Type *BPTy = Type::getInt8PtrTy(BB->getContext());
678  FunctionCallee MallocFunc = MallocF;
679  if (!MallocFunc)
680  // prototype malloc as "void *malloc(size_t)"
681  MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
682  PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
683  CallInst *MCall = nullptr;
684  Instruction *Result = nullptr;
685  if (InsertBefore) {
686  MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
687  InsertBefore);
688  Result = MCall;
689  if (Result->getType() != AllocPtrType)
690  // Create a cast instruction to convert to the right type...
691  Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
692  } else {
693  MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
694  Result = MCall;
695  if (Result->getType() != AllocPtrType) {
696  InsertAtEnd->getInstList().push_back(MCall);
697  // Create a cast instruction to convert to the right type...
698  Result = new BitCastInst(MCall, AllocPtrType, Name);
699  }
700  }
701  MCall->setTailCall();
702  if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
703  MCall->setCallingConv(F->getCallingConv());
704  if (!F->returnDoesNotAlias())
705  F->setReturnDoesNotAlias();
706  }
707  assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
708 
709  return Result;
710 }
711 
712 /// CreateMalloc - Generate the IR for a call to malloc:
713 /// 1. Compute the malloc call's argument as the specified type's size,
714 /// possibly multiplied by the array size if the array size is not
715 /// constant 1.
716 /// 2. Call malloc with that argument.
717 /// 3. Bitcast the result of the malloc call to the specified type.
719  Type *IntPtrTy, Type *AllocTy,
720  Value *AllocSize, Value *ArraySize,
721  Function *MallocF,
722  const Twine &Name) {
723  return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
724  ArraySize, None, MallocF, Name);
725 }
727  Type *IntPtrTy, Type *AllocTy,
728  Value *AllocSize, Value *ArraySize,
730  Function *MallocF,
731  const Twine &Name) {
732  return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
733  ArraySize, OpB, MallocF, Name);
734 }
735 
736 /// CreateMalloc - Generate the IR for a call to malloc:
737 /// 1. Compute the malloc call's argument as the specified type's size,
738 /// possibly multiplied by the array size if the array size is not
739 /// constant 1.
740 /// 2. Call malloc with that argument.
741 /// 3. Bitcast the result of the malloc call to the specified type.
742 /// Note: This function does not add the bitcast to the basic block, that is the
743 /// responsibility of the caller.
745  Type *IntPtrTy, Type *AllocTy,
746  Value *AllocSize, Value *ArraySize,
747  Function *MallocF, const Twine &Name) {
748  return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
749  ArraySize, None, MallocF, Name);
750 }
752  Type *IntPtrTy, Type *AllocTy,
753  Value *AllocSize, Value *ArraySize,
755  Function *MallocF, const Twine &Name) {
756  return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
757  ArraySize, OpB, MallocF, Name);
758 }
759 
762  Instruction *InsertBefore,
763  BasicBlock *InsertAtEnd) {
764  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
765  "createFree needs either InsertBefore or InsertAtEnd");
766  assert(Source->getType()->isPointerTy() &&
767  "Can not free something of nonpointer type!");
768 
769  BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
770  Module *M = BB->getParent()->getParent();
771 
772  Type *VoidTy = Type::getVoidTy(M->getContext());
773  Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
774  // prototype free as "void free(void*)"
775  FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
776  CallInst *Result = nullptr;
777  Value *PtrCast = Source;
778  if (InsertBefore) {
779  if (Source->getType() != IntPtrTy)
780  PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
781  Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
782  } else {
783  if (Source->getType() != IntPtrTy)
784  PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
785  Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
786  }
787  Result->setTailCall();
788  if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
789  Result->setCallingConv(F->getCallingConv());
790 
791  return Result;
792 }
793 
794 /// CreateFree - Generate the IR for a call to the builtin free function.
796  return createFree(Source, None, InsertBefore, nullptr);
797 }
800  Instruction *InsertBefore) {
801  return createFree(Source, Bundles, InsertBefore, nullptr);
802 }
803 
804 /// CreateFree - Generate the IR for a call to the builtin free function.
805 /// Note: This function does not add the call to the basic block, that is the
806 /// responsibility of the caller.
808  Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
809  assert(FreeCall && "CreateFree did not create a CallInst");
810  return FreeCall;
811 }
814  BasicBlock *InsertAtEnd) {
815  Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
816  assert(FreeCall && "CreateFree did not create a CallInst");
817  return FreeCall;
818 }
819 
820 //===----------------------------------------------------------------------===//
821 // InvokeInst Implementation
822 //===----------------------------------------------------------------------===//
823 
824 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
825  BasicBlock *IfException, ArrayRef<Value *> Args,
827  const Twine &NameStr) {
828  this->FTy = FTy;
829 
830  assert((int)getNumOperands() ==
831  ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
832  "NumOperands not set up?");
833 
834 #ifndef NDEBUG
835  assert(((Args.size() == FTy->getNumParams()) ||
836  (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
837  "Invoking a function with bad signature");
838 
839  for (unsigned i = 0, e = Args.size(); i != e; i++)
840  assert((i >= FTy->getNumParams() ||
841  FTy->getParamType(i) == Args[i]->getType()) &&
842  "Invoking a function with a bad signature!");
843 #endif
844 
845  // Set operands in order of their index to match use-list-order
846  // prediction.
848  setNormalDest(IfNormal);
849  setUnwindDest(IfException);
850  setCalledOperand(Fn);
851 
852  auto It = populateBundleOperandInfos(Bundles, Args.size());
853  (void)It;
854  assert(It + 3 == op_end() && "Should add up!");
855 
856  setName(NameStr);
857 }
858 
859 InvokeInst::InvokeInst(const InvokeInst &II)
860  : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
861  OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
862  II.getNumOperands()) {
864  std::copy(II.op_begin(), II.op_end(), op_begin());
868 }
869 
871  Instruction *InsertPt) {
872  std::vector<Value *> Args(II->arg_begin(), II->arg_end());
873 
874  auto *NewII = InvokeInst::Create(
875  II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(),
876  II->getUnwindDest(), Args, OpB, II->getName(), InsertPt);
877  NewII->setCallingConv(II->getCallingConv());
878  NewII->SubclassOptionalData = II->SubclassOptionalData;
879  NewII->setAttributes(II->getAttributes());
880  NewII->setDebugLoc(II->getDebugLoc());
881  return NewII;
882 }
883 
885  return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
886 }
887 
888 //===----------------------------------------------------------------------===//
889 // CallBrInst Implementation
890 //===----------------------------------------------------------------------===//
891 
892 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
893  ArrayRef<BasicBlock *> IndirectDests,
896  const Twine &NameStr) {
897  this->FTy = FTy;
898 
899  assert((int)getNumOperands() ==
900  ComputeNumOperands(Args.size(), IndirectDests.size(),
901  CountBundleInputs(Bundles)) &&
902  "NumOperands not set up?");
903 
904 #ifndef NDEBUG
905  assert(((Args.size() == FTy->getNumParams()) ||
906  (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
907  "Calling a function with bad signature");
908 
909  for (unsigned i = 0, e = Args.size(); i != e; i++)
910  assert((i >= FTy->getNumParams() ||
911  FTy->getParamType(i) == Args[i]->getType()) &&
912  "Calling a function with a bad signature!");
913 #endif
914 
915  // Set operands in order of their index to match use-list-order
916  // prediction.
917  std::copy(Args.begin(), Args.end(), op_begin());
918  NumIndirectDests = IndirectDests.size();
919  setDefaultDest(Fallthrough);
920  for (unsigned i = 0; i != NumIndirectDests; ++i)
921  setIndirectDest(i, IndirectDests[i]);
922  setCalledOperand(Fn);
923 
924  auto It = populateBundleOperandInfos(Bundles, Args.size());
925  (void)It;
926  assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
927 
928  setName(NameStr);
929 }
930 
931 void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) {
932  assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr");
933  if (BasicBlock *OldBB = getIndirectDest(i)) {
934  BlockAddress *Old = BlockAddress::get(OldBB);
936  for (unsigned ArgNo = 0, e = getNumArgOperands(); ArgNo != e; ++ArgNo)
937  if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old)
938  setArgOperand(ArgNo, New);
939  }
940 }
941 
942 CallBrInst::CallBrInst(const CallBrInst &CBI)
943  : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
944  OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
945  CBI.getNumOperands()) {
947  std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
951  NumIndirectDests = CBI.NumIndirectDests;
952 }
953 
955  Instruction *InsertPt) {
956  std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
957 
958  auto *NewCBI = CallBrInst::Create(
959  CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(),
960  CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt);
961  NewCBI->setCallingConv(CBI->getCallingConv());
962  NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
963  NewCBI->setAttributes(CBI->getAttributes());
964  NewCBI->setDebugLoc(CBI->getDebugLoc());
965  NewCBI->NumIndirectDests = CBI->NumIndirectDests;
966  return NewCBI;
967 }
968 
969 //===----------------------------------------------------------------------===//
970 // ReturnInst Implementation
971 //===----------------------------------------------------------------------===//
972 
973 ReturnInst::ReturnInst(const ReturnInst &RI)
974  : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
975  OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
976  RI.getNumOperands()) {
977  if (RI.getNumOperands())
978  Op<0>() = RI.Op<0>();
980 }
981 
982 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
983  : Instruction(Type::getVoidTy(C), Instruction::Ret,
984  OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
985  InsertBefore) {
986  if (retVal)
987  Op<0>() = retVal;
988 }
989 
990 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
991  : Instruction(Type::getVoidTy(C), Instruction::Ret,
992  OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
993  InsertAtEnd) {
994  if (retVal)
995  Op<0>() = retVal;
996 }
997 
998 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
999  : Instruction(Type::getVoidTy(Context), Instruction::Ret,
1000  OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
1001 
1002 //===----------------------------------------------------------------------===//
1003 // ResumeInst Implementation
1004 //===----------------------------------------------------------------------===//
1005 
1006 ResumeInst::ResumeInst(const ResumeInst &RI)
1007  : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
1008  OperandTraits<ResumeInst>::op_begin(this), 1) {
1009  Op<0>() = RI.Op<0>();
1010 }
1011 
1012 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
1013  : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1014  OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
1015  Op<0>() = Exn;
1016 }
1017 
1018 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
1019  : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1020  OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
1021  Op<0>() = Exn;
1022 }
1023 
1024 //===----------------------------------------------------------------------===//
1025 // CleanupReturnInst Implementation
1026 //===----------------------------------------------------------------------===//
1027 
1028 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
1029  : Instruction(CRI.getType(), Instruction::CleanupRet,
1031  CRI.getNumOperands(),
1032  CRI.getNumOperands()) {
1033  setSubclassData<Instruction::OpaqueField>(
1035  Op<0>() = CRI.Op<0>();
1036  if (CRI.hasUnwindDest())
1037  Op<1>() = CRI.Op<1>();
1038 }
1039 
1040 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
1041  if (UnwindBB)
1042  setSubclassData<UnwindDestField>(true);
1043 
1044  Op<0>() = CleanupPad;
1045  if (UnwindBB)
1046  Op<1>() = UnwindBB;
1047 }
1048 
1049 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1050  unsigned Values, Instruction *InsertBefore)
1051  : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1052  Instruction::CleanupRet,
1053  OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1054  Values, InsertBefore) {
1055  init(CleanupPad, UnwindBB);
1056 }
1057 
1058 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1059  unsigned Values, BasicBlock *InsertAtEnd)
1060  : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1061  Instruction::CleanupRet,
1062  OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1063  Values, InsertAtEnd) {
1064  init(CleanupPad, UnwindBB);
1065 }
1066 
1067 //===----------------------------------------------------------------------===//
1068 // CatchReturnInst Implementation
1069 //===----------------------------------------------------------------------===//
1070 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
1071  Op<0>() = CatchPad;
1072  Op<1>() = BB;
1073 }
1074 
1075 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
1076  : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
1077  OperandTraits<CatchReturnInst>::op_begin(this), 2) {
1078  Op<0>() = CRI.Op<0>();
1079  Op<1>() = CRI.Op<1>();
1080 }
1081 
1082 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1083  Instruction *InsertBefore)
1084  : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1085  OperandTraits<CatchReturnInst>::op_begin(this), 2,
1086  InsertBefore) {
1087  init(CatchPad, BB);
1088 }
1089 
1090 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1091  BasicBlock *InsertAtEnd)
1092  : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1093  OperandTraits<CatchReturnInst>::op_begin(this), 2,
1094  InsertAtEnd) {
1095  init(CatchPad, BB);
1096 }
1097 
1098 //===----------------------------------------------------------------------===//
1099 // CatchSwitchInst Implementation
1100 //===----------------------------------------------------------------------===//
1101 
1102 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1103  unsigned NumReservedValues,
1104  const Twine &NameStr,
1105  Instruction *InsertBefore)
1106  : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1107  InsertBefore) {
1108  if (UnwindDest)
1109  ++NumReservedValues;
1110  init(ParentPad, UnwindDest, NumReservedValues + 1);
1111  setName(NameStr);
1112 }
1113 
1114 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1115  unsigned NumReservedValues,
1116  const Twine &NameStr, BasicBlock *InsertAtEnd)
1117  : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1118  InsertAtEnd) {
1119  if (UnwindDest)
1120  ++NumReservedValues;
1121  init(ParentPad, UnwindDest, NumReservedValues + 1);
1122  setName(NameStr);
1123 }
1124 
1125 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1126  : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1127  CSI.getNumOperands()) {
1128  init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1129  setNumHungOffUseOperands(ReservedSpace);
1130  Use *OL = getOperandList();
1131  const Use *InOL = CSI.getOperandList();
1132  for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1133  OL[I] = InOL[I];
1134 }
1135 
1136 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1137  unsigned NumReservedValues) {
1138  assert(ParentPad && NumReservedValues);
1139 
1140  ReservedSpace = NumReservedValues;
1141  setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1142  allocHungoffUses(ReservedSpace);
1143 
1144  Op<0>() = ParentPad;
1145  if (UnwindDest) {
1146  setSubclassData<UnwindDestField>(true);
1147  setUnwindDest(UnwindDest);
1148  }
1149 }
1150 
1151 /// growOperands - grow operands - This grows the operand list in response to a
1152 /// push_back style of operation. This grows the number of ops by 2 times.
1153 void CatchSwitchInst::growOperands(unsigned Size) {
1154  unsigned NumOperands = getNumOperands();
1155  assert(NumOperands >= 1);
1156  if (ReservedSpace >= NumOperands + Size)
1157  return;
1158  ReservedSpace = (NumOperands + Size / 2) * 2;
1159  growHungoffUses(ReservedSpace);
1160 }
1161 
1163  unsigned OpNo = getNumOperands();
1164  growOperands(1);
1165  assert(OpNo < ReservedSpace && "Growing didn't work!");
1167  getOperandList()[OpNo] = Handler;
1168 }
1169 
1171  // Move all subsequent handlers up one.
1172  Use *EndDst = op_end() - 1;
1173  for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1174  *CurDst = *(CurDst + 1);
1175  // Null out the last handler use.
1176  *EndDst = nullptr;
1177 
1179 }
1180 
1181 //===----------------------------------------------------------------------===//
1182 // FuncletPadInst Implementation
1183 //===----------------------------------------------------------------------===//
1184 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1185  const Twine &NameStr) {
1186  assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1187  llvm::copy(Args, op_begin());
1188  setParentPad(ParentPad);
1189  setName(NameStr);
1190 }
1191 
1192 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1193  : Instruction(FPI.getType(), FPI.getOpcode(),
1194  OperandTraits<FuncletPadInst>::op_end(this) -
1195  FPI.getNumOperands(),
1196  FPI.getNumOperands()) {
1197  std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1198  setParentPad(FPI.getParentPad());
1199 }
1200 
1201 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1202  ArrayRef<Value *> Args, unsigned Values,
1203  const Twine &NameStr, Instruction *InsertBefore)
1204  : Instruction(ParentPad->getType(), Op,
1205  OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1206  InsertBefore) {
1207  init(ParentPad, Args, NameStr);
1208 }
1209 
1210 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1211  ArrayRef<Value *> Args, unsigned Values,
1212  const Twine &NameStr, BasicBlock *InsertAtEnd)
1213  : Instruction(ParentPad->getType(), Op,
1214  OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1215  InsertAtEnd) {
1216  init(ParentPad, Args, NameStr);
1217 }
1218 
1219 //===----------------------------------------------------------------------===//
1220 // UnreachableInst Implementation
1221 //===----------------------------------------------------------------------===//
1222 
1224  Instruction *InsertBefore)
1225  : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1226  0, InsertBefore) {}
1228  : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1229  0, InsertAtEnd) {}
1230 
1231 //===----------------------------------------------------------------------===//
1232 // BranchInst Implementation
1233 //===----------------------------------------------------------------------===//
1234 
1235 void BranchInst::AssertOK() {
1236  if (isConditional())
1237  assert(getCondition()->getType()->isIntegerTy(1) &&
1238  "May only branch on boolean predicates!");
1239 }
1240 
1241 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1242  : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1243  OperandTraits<BranchInst>::op_end(this) - 1, 1,
1244  InsertBefore) {
1245  assert(IfTrue && "Branch destination may not be null!");
1246  Op<-1>() = IfTrue;
1247 }
1248 
1249 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1250  Instruction *InsertBefore)
1251  : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1252  OperandTraits<BranchInst>::op_end(this) - 3, 3,
1253  InsertBefore) {
1254  // Assign in order of operand index to make use-list order predictable.
1255  Op<-3>() = Cond;
1256  Op<-2>() = IfFalse;
1257  Op<-1>() = IfTrue;
1258 #ifndef NDEBUG
1259  AssertOK();
1260 #endif
1261 }
1262 
1263 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1264  : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1265  OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1266  assert(IfTrue && "Branch destination may not be null!");
1267  Op<-1>() = IfTrue;
1268 }
1269 
1270 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1271  BasicBlock *InsertAtEnd)
1272  : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1273  OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1274  // Assign in order of operand index to make use-list order predictable.
1275  Op<-3>() = Cond;
1276  Op<-2>() = IfFalse;
1277  Op<-1>() = IfTrue;
1278 #ifndef NDEBUG
1279  AssertOK();
1280 #endif
1281 }
1282 
1283 BranchInst::BranchInst(const BranchInst &BI)
1284  : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1285  OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1286  BI.getNumOperands()) {
1287  // Assign in order of operand index to make use-list order predictable.
1288  if (BI.getNumOperands() != 1) {
1289  assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1290  Op<-3>() = BI.Op<-3>();
1291  Op<-2>() = BI.Op<-2>();
1292  }
1293  Op<-1>() = BI.Op<-1>();
1295 }
1296 
1298  assert(isConditional() &&
1299  "Cannot swap successors of an unconditional branch");
1300  Op<-1>().swap(Op<-2>());
1301 
1302  // Update profile metadata if present and it matches our structural
1303  // expectations.
1304  swapProfMetadata();
1305 }
1306 
1307 //===----------------------------------------------------------------------===//
1308 // AllocaInst Implementation
1309 //===----------------------------------------------------------------------===//
1310 
1312  if (!Amt)
1314  else {
1315  assert(!isa<BasicBlock>(Amt) &&
1316  "Passed basic block into allocation size parameter! Use other ctor");
1317  assert(Amt->getType()->isIntegerTy() &&
1318  "Allocation array size is not an integer!");
1319  }
1320  return Amt;
1321 }
1322 
1324  assert(BB && "Insertion BB cannot be null when alignment not provided!");
1325  assert(BB->getParent() &&
1326  "BB must be in a Function when alignment not provided!");
1327  const DataLayout &DL = BB->getModule()->getDataLayout();
1328  return DL.getPrefTypeAlign(Ty);
1329 }
1330 
1332  assert(I && "Insertion position cannot be null when alignment not provided!");
1333  return computeAllocaDefaultAlign(Ty, I->getParent());
1334 }
1335 
1336 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1337  Instruction *InsertBefore)
1338  : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1339 
1340 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1341  BasicBlock *InsertAtEnd)
1342  : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1343 
1344 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1345  const Twine &Name, Instruction *InsertBefore)
1346  : AllocaInst(Ty, AddrSpace, ArraySize,
1347  computeAllocaDefaultAlign(Ty, InsertBefore), Name,
1348  InsertBefore) {}
1349 
1350 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1351  const Twine &Name, BasicBlock *InsertAtEnd)
1352  : AllocaInst(Ty, AddrSpace, ArraySize,
1353  computeAllocaDefaultAlign(Ty, InsertAtEnd), Name,
1354  InsertAtEnd) {}
1355 
1356 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1357  Align Align, const Twine &Name,
1358  Instruction *InsertBefore)
1359  : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1360  getAISize(Ty->getContext(), ArraySize), InsertBefore),
1361  AllocatedType(Ty) {
1363  assert(!Ty->isVoidTy() && "Cannot allocate void!");
1364  setName(Name);
1365 }
1366 
1367 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1368  Align Align, const Twine &Name, BasicBlock *InsertAtEnd)
1369  : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1370  getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1371  AllocatedType(Ty) {
1373  assert(!Ty->isVoidTy() && "Cannot allocate void!");
1374  setName(Name);
1375 }
1376 
1377 
1379  if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1380  return !CI->isOne();
1381  return true;
1382 }
1383 
1384 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1385 /// function and is a constant size. If so, the code generator will fold it
1386 /// into the prolog/epilog code, so it is basically free.
1388  // Must be constant size.
1389  if (!isa<ConstantInt>(getArraySize())) return false;
1390 
1391  // Must be in the entry block.
1392  const BasicBlock *Parent = getParent();
1393  return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1394 }
1395 
1396 //===----------------------------------------------------------------------===//
1397 // LoadInst Implementation
1398 //===----------------------------------------------------------------------===//
1399 
1400 void LoadInst::AssertOK() {
1401  assert(getOperand(0)->getType()->isPointerTy() &&
1402  "Ptr must have pointer type.");
1403  assert(!(isAtomic() && getAlignment() == 0) &&
1404  "Alignment required for atomic load");
1405 }
1406 
1408  assert(BB && "Insertion BB cannot be null when alignment not provided!");
1409  assert(BB->getParent() &&
1410  "BB must be in a Function when alignment not provided!");
1411  const DataLayout &DL = BB->getModule()->getDataLayout();
1412  return DL.getABITypeAlign(Ty);
1413 }
1414 
1416  assert(I && "Insertion position cannot be null when alignment not provided!");
1417  return computeLoadStoreDefaultAlign(Ty, I->getParent());
1418 }
1419 
1421  Instruction *InsertBef)
1422  : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1423 
1425  BasicBlock *InsertAE)
1426  : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1427 
1428 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1429  Instruction *InsertBef)
1430  : LoadInst(Ty, Ptr, Name, isVolatile,
1431  computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {}
1432 
1433 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1434  BasicBlock *InsertAE)
1435  : LoadInst(Ty, Ptr, Name, isVolatile,
1436  computeLoadStoreDefaultAlign(Ty, InsertAE), InsertAE) {}
1437 
1438 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1439  Align Align, Instruction *InsertBef)
1440  : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1441  SyncScope::System, InsertBef) {}
1442 
1443 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1444  Align Align, BasicBlock *InsertAE)
1445  : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1446  SyncScope::System, InsertAE) {}
1447 
1448 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1449  Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1450  Instruction *InsertBef)
1451  : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1452  assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty));
1455  setAtomic(Order, SSID);
1456  AssertOK();
1457  setName(Name);
1458 }
1459 
1460 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1461  Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1462  BasicBlock *InsertAE)
1463  : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1464  assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty));
1467  setAtomic(Order, SSID);
1468  AssertOK();
1469  setName(Name);
1470 }
1471 
1472 //===----------------------------------------------------------------------===//
1473 // StoreInst Implementation
1474 //===----------------------------------------------------------------------===//
1475 
1476 void StoreInst::AssertOK() {
1477  assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1478  assert(getOperand(1)->getType()->isPointerTy() &&
1479  "Ptr must have pointer type!");
1480  assert(cast<PointerType>(getOperand(1)->getType())
1481  ->isOpaqueOrPointeeTypeMatches(getOperand(0)->getType()) &&
1482  "Ptr must be a pointer to Val type!");
1483  assert(!(isAtomic() && getAlignment() == 0) &&
1484  "Alignment required for atomic store");
1485 }
1486 
1488  : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1489 
1491  : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1492 
1493 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1494  Instruction *InsertBefore)
1495  : StoreInst(val, addr, isVolatile,
1496  computeLoadStoreDefaultAlign(val->getType(), InsertBefore),
1497  InsertBefore) {}
1498 
1499 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1500  BasicBlock *InsertAtEnd)
1501  : StoreInst(val, addr, isVolatile,
1502  computeLoadStoreDefaultAlign(val->getType(), InsertAtEnd),
1503  InsertAtEnd) {}
1504 
1505 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1506  Instruction *InsertBefore)
1507  : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1508  SyncScope::System, InsertBefore) {}
1509 
1510 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1511  BasicBlock *InsertAtEnd)
1512  : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1513  SyncScope::System, InsertAtEnd) {}
1514 
1515 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1516  AtomicOrdering Order, SyncScope::ID SSID,
1517  Instruction *InsertBefore)
1518  : Instruction(Type::getVoidTy(val->getContext()), Store,
1519  OperandTraits<StoreInst>::op_begin(this),
1520  OperandTraits<StoreInst>::operands(this), InsertBefore) {
1521  Op<0>() = val;
1522  Op<1>() = addr;
1525  setAtomic(Order, SSID);
1526  AssertOK();
1527 }
1528 
1529 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1530  AtomicOrdering Order, SyncScope::ID SSID,
1531  BasicBlock *InsertAtEnd)
1532  : Instruction(Type::getVoidTy(val->getContext()), Store,
1533  OperandTraits<StoreInst>::op_begin(this),
1534  OperandTraits<StoreInst>::operands(this), InsertAtEnd) {
1535  Op<0>() = val;
1536  Op<1>() = addr;
1539  setAtomic(Order, SSID);
1540  AssertOK();
1541 }
1542 
1543 
1544 //===----------------------------------------------------------------------===//
1545 // AtomicCmpXchgInst Implementation
1546 //===----------------------------------------------------------------------===//
1547 
1548 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1549  Align Alignment, AtomicOrdering SuccessOrdering,
1550  AtomicOrdering FailureOrdering,
1551  SyncScope::ID SSID) {
1552  Op<0>() = Ptr;
1553  Op<1>() = Cmp;
1554  Op<2>() = NewVal;
1555  setSuccessOrdering(SuccessOrdering);
1556  setFailureOrdering(FailureOrdering);
1557  setSyncScopeID(SSID);
1558  setAlignment(Alignment);
1559 
1560  assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1561  "All operands must be non-null!");
1562  assert(getOperand(0)->getType()->isPointerTy() &&
1563  "Ptr must have pointer type!");
1564  assert(cast<PointerType>(getOperand(0)->getType())
1565  ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&
1566  "Ptr must be a pointer to Cmp type!");
1567  assert(cast<PointerType>(getOperand(0)->getType())
1568  ->isOpaqueOrPointeeTypeMatches(getOperand(2)->getType()) &&
1569  "Ptr must be a pointer to NewVal type!");
1570  assert(getOperand(1)->getType() == getOperand(2)->getType() &&
1571  "Cmp type and NewVal type must be same!");
1572 }
1573 
1575  Align Alignment,
1576  AtomicOrdering SuccessOrdering,
1577  AtomicOrdering FailureOrdering,
1578  SyncScope::ID SSID,
1579  Instruction *InsertBefore)
1580  : Instruction(
1581  StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1582  AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1583  OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1584  Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1585 }
1586 
1588  Align Alignment,
1589  AtomicOrdering SuccessOrdering,
1590  AtomicOrdering FailureOrdering,
1591  SyncScope::ID SSID,
1592  BasicBlock *InsertAtEnd)
1593  : Instruction(
1594  StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1595  AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1596  OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1597  Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1598 }
1599 
1600 //===----------------------------------------------------------------------===//
1601 // AtomicRMWInst Implementation
1602 //===----------------------------------------------------------------------===//
1603 
1604 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1605  Align Alignment, AtomicOrdering Ordering,
1606  SyncScope::ID SSID) {
1607  Op<0>() = Ptr;
1608  Op<1>() = Val;
1610  setOrdering(Ordering);
1611  setSyncScopeID(SSID);
1612  setAlignment(Alignment);
1613 
1614  assert(getOperand(0) && getOperand(1) &&
1615  "All operands must be non-null!");
1616  assert(getOperand(0)->getType()->isPointerTy() &&
1617  "Ptr must have pointer type!");
1618  assert(cast<PointerType>(getOperand(0)->getType())
1619  ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&
1620  "Ptr must be a pointer to Val type!");
1621  assert(Ordering != AtomicOrdering::NotAtomic &&
1622  "AtomicRMW instructions must be atomic!");
1623 }
1624 
1626  Align Alignment, AtomicOrdering Ordering,
1627  SyncScope::ID SSID, Instruction *InsertBefore)
1628  : Instruction(Val->getType(), AtomicRMW,
1629  OperandTraits<AtomicRMWInst>::op_begin(this),
1630  OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) {
1631  Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1632 }
1633 
1635  Align Alignment, AtomicOrdering Ordering,
1636  SyncScope::ID SSID, BasicBlock *InsertAtEnd)
1637  : Instruction(Val->getType(), AtomicRMW,
1638  OperandTraits<AtomicRMWInst>::op_begin(this),
1639  OperandTraits<AtomicRMWInst>::operands(this), InsertAtEnd) {
1640  Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1641 }
1642 
1644  switch (Op) {
1645  case AtomicRMWInst::Xchg:
1646  return "xchg";
1647  case AtomicRMWInst::Add:
1648  return "add";
1649  case AtomicRMWInst::Sub:
1650  return "sub";
1651  case AtomicRMWInst::And:
1652  return "and";
1653  case AtomicRMWInst::Nand:
1654  return "nand";
1655  case AtomicRMWInst::Or:
1656  return "or";
1657  case AtomicRMWInst::Xor:
1658  return "xor";
1659  case AtomicRMWInst::Max:
1660  return "max";
1661  case AtomicRMWInst::Min:
1662  return "min";
1663  case AtomicRMWInst::UMax:
1664  return "umax";
1665  case AtomicRMWInst::UMin:
1666  return "umin";
1667  case AtomicRMWInst::FAdd:
1668  return "fadd";
1669  case AtomicRMWInst::FSub:
1670  return "fsub";
1672  return "<invalid operation>";
1673  }
1674 
1675  llvm_unreachable("invalid atomicrmw operation");
1676 }
1677 
1678 //===----------------------------------------------------------------------===//
1679 // FenceInst Implementation
1680 //===----------------------------------------------------------------------===//
1681 
1683  SyncScope::ID SSID,
1684  Instruction *InsertBefore)
1685  : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1686  setOrdering(Ordering);
1687  setSyncScopeID(SSID);
1688 }
1689 
1691  SyncScope::ID SSID,
1692  BasicBlock *InsertAtEnd)
1693  : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1694  setOrdering(Ordering);
1695  setSyncScopeID(SSID);
1696 }
1697 
1698 //===----------------------------------------------------------------------===//
1699 // GetElementPtrInst Implementation
1700 //===----------------------------------------------------------------------===//
1701 
1702 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1703  const Twine &Name) {
1704  assert(getNumOperands() == 1 + IdxList.size() &&
1705  "NumOperands not initialized?");
1706  Op<0>() = Ptr;
1707  llvm::copy(IdxList, op_begin() + 1);
1708  setName(Name);
1709 }
1710 
1711 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1712  : Instruction(GEPI.getType(), GetElementPtr,
1714  GEPI.getNumOperands(),
1715  GEPI.getNumOperands()),
1716  SourceElementType(GEPI.SourceElementType),
1717  ResultElementType(GEPI.ResultElementType) {
1718  std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1720 }
1721 
1723  if (auto *Struct = dyn_cast<StructType>(Ty)) {
1724  if (!Struct->indexValid(Idx))
1725  return nullptr;
1726  return Struct->getTypeAtIndex(Idx);
1727  }
1728  if (!Idx->getType()->isIntOrIntVectorTy())
1729  return nullptr;
1730  if (auto *Array = dyn_cast<ArrayType>(Ty))
1731  return Array->getElementType();
1732  if (auto *Vector = dyn_cast<VectorType>(Ty))
1733  return Vector->getElementType();
1734  return nullptr;
1735 }
1736 
1738  if (auto *Struct = dyn_cast<StructType>(Ty)) {
1739  if (Idx >= Struct->getNumElements())
1740  return nullptr;
1741  return Struct->getElementType(Idx);
1742  }
1743  if (auto *Array = dyn_cast<ArrayType>(Ty))
1744  return Array->getElementType();
1745  if (auto *Vector = dyn_cast<VectorType>(Ty))
1746  return Vector->getElementType();
1747  return nullptr;
1748 }
1749 
1750 template <typename IndexTy>
1752  if (IdxList.empty())
1753  return Ty;
1754  for (IndexTy V : IdxList.slice(1)) {
1756  if (!Ty)
1757  return Ty;
1758  }
1759  return Ty;
1760 }
1761 
1763  return getIndexedTypeInternal(Ty, IdxList);
1764 }
1765 
1767  ArrayRef<Constant *> IdxList) {
1768  return getIndexedTypeInternal(Ty, IdxList);
1769 }
1770 
1772  return getIndexedTypeInternal(Ty, IdxList);
1773 }
1774 
1775 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1776 /// zeros. If so, the result pointer and the first operand have the same
1777 /// value, just potentially different types.
1779  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1780  if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1781  if (!CI->isZero()) return false;
1782  } else {
1783  return false;
1784  }
1785  }
1786  return true;
1787 }
1788 
1789 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1790 /// constant integers. If so, the result pointer and the first operand have
1791 /// a constant offset between them.
1793  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1794  if (!isa<ConstantInt>(getOperand(i)))
1795  return false;
1796  }
1797  return true;
1798 }
1799 
1801  cast<GEPOperator>(this)->setIsInBounds(B);
1802 }
1803 
1805  return cast<GEPOperator>(this)->isInBounds();
1806 }
1807 
1809  APInt &Offset) const {
1810  // Delegate to the generic GEPOperator implementation.
1811  return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1812 }
1813 
1815  const DataLayout &DL, unsigned BitWidth,
1816  MapVector<Value *, APInt> &VariableOffsets,
1817  APInt &ConstantOffset) const {
1818  // Delegate to the generic GEPOperator implementation.
1819  return cast<GEPOperator>(this)->collectOffset(DL, BitWidth, VariableOffsets,
1820  ConstantOffset);
1821 }
1822 
1823 //===----------------------------------------------------------------------===//
1824 // ExtractElementInst Implementation
1825 //===----------------------------------------------------------------------===//
1826 
1827 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1828  const Twine &Name,
1829  Instruction *InsertBef)
1830  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1831  ExtractElement,
1833  2, InsertBef) {
1834  assert(isValidOperands(Val, Index) &&
1835  "Invalid extractelement instruction operands!");
1836  Op<0>() = Val;
1837  Op<1>() = Index;
1838  setName(Name);
1839 }
1840 
1841 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1842  const Twine &Name,
1843  BasicBlock *InsertAE)
1844  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1845  ExtractElement,
1847  2, InsertAE) {
1848  assert(isValidOperands(Val, Index) &&
1849  "Invalid extractelement instruction operands!");
1850 
1851  Op<0>() = Val;
1852  Op<1>() = Index;
1853  setName(Name);
1854 }
1855 
1857  if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1858  return false;
1859  return true;
1860 }
1861 
1862 //===----------------------------------------------------------------------===//
1863 // InsertElementInst Implementation
1864 //===----------------------------------------------------------------------===//
1865 
1866 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1867  const Twine &Name,
1868  Instruction *InsertBef)
1869  : Instruction(Vec->getType(), InsertElement,
1870  OperandTraits<InsertElementInst>::op_begin(this),
1871  3, InsertBef) {
1872  assert(isValidOperands(Vec, Elt, Index) &&
1873  "Invalid insertelement instruction operands!");
1874  Op<0>() = Vec;
1875  Op<1>() = Elt;
1876  Op<2>() = Index;
1877  setName(Name);
1878 }
1879 
1880 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1881  const Twine &Name,
1882  BasicBlock *InsertAE)
1883  : Instruction(Vec->getType(), InsertElement,
1884  OperandTraits<InsertElementInst>::op_begin(this),
1885  3, InsertAE) {
1886  assert(isValidOperands(Vec, Elt, Index) &&
1887  "Invalid insertelement instruction operands!");
1888 
1889  Op<0>() = Vec;
1890  Op<1>() = Elt;
1891  Op<2>() = Index;
1892  setName(Name);
1893 }
1894 
1895 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1896  const Value *Index) {
1897  if (!Vec->getType()->isVectorTy())
1898  return false; // First operand of insertelement must be vector type.
1899 
1900  if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1901  return false;// Second operand of insertelement must be vector element type.
1902 
1903  if (!Index->getType()->isIntegerTy())
1904  return false; // Third operand of insertelement must be i32.
1905  return true;
1906 }
1907 
1908 //===----------------------------------------------------------------------===//
1909 // ShuffleVectorInst Implementation
1910 //===----------------------------------------------------------------------===//
1911 
1913  const Twine &Name,
1914  Instruction *InsertBefore)
1915  : Instruction(
1916  VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1917  cast<VectorType>(Mask->getType())->getElementCount()),
1918  ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1919  OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1920  assert(isValidOperands(V1, V2, Mask) &&
1921  "Invalid shuffle vector instruction operands!");
1922 
1923  Op<0>() = V1;
1924  Op<1>() = V2;
1925  SmallVector<int, 16> MaskArr;
1926  getShuffleMask(cast<Constant>(Mask), MaskArr);
1927  setShuffleMask(MaskArr);
1928  setName(Name);
1929 }
1930 
1932  const Twine &Name, BasicBlock *InsertAtEnd)
1933  : Instruction(
1934  VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1935  cast<VectorType>(Mask->getType())->getElementCount()),
1936  ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1937  OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
1938  assert(isValidOperands(V1, V2, Mask) &&
1939  "Invalid shuffle vector instruction operands!");
1940 
1941  Op<0>() = V1;
1942  Op<1>() = V2;
1943  SmallVector<int, 16> MaskArr;
1944  getShuffleMask(cast<Constant>(Mask), MaskArr);
1945  setShuffleMask(MaskArr);
1946  setName(Name);
1947 }
1948 
1950  const Twine &Name,
1951  Instruction *InsertBefore)
1952  : Instruction(
1953  VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1954  Mask.size(), isa<ScalableVectorType>(V1->getType())),
1955  ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1956  OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1957  assert(isValidOperands(V1, V2, Mask) &&
1958  "Invalid shuffle vector instruction operands!");
1959  Op<0>() = V1;
1960  Op<1>() = V2;
1962  setName(Name);
1963 }
1964 
1966  const Twine &Name, BasicBlock *InsertAtEnd)
1967  : Instruction(
1968  VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1969  Mask.size(), isa<ScalableVectorType>(V1->getType())),
1970  ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1971  OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
1972  assert(isValidOperands(V1, V2, Mask) &&
1973  "Invalid shuffle vector instruction operands!");
1974 
1975  Op<0>() = V1;
1976  Op<1>() = V2;
1978  setName(Name);
1979 }
1980 
1982  int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
1983  int NumMaskElts = ShuffleMask.size();
1984  SmallVector<int, 16> NewMask(NumMaskElts);
1985  for (int i = 0; i != NumMaskElts; ++i) {
1986  int MaskElt = getMaskValue(i);
1987  if (MaskElt == UndefMaskElem) {
1988  NewMask[i] = UndefMaskElem;
1989  continue;
1990  }
1991  assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
1992  MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1993  NewMask[i] = MaskElt;
1994  }
1995  setShuffleMask(NewMask);
1996  Op<0>().swap(Op<1>());
1997 }
1998 
2000  ArrayRef<int> Mask) {
2001  // V1 and V2 must be vectors of the same type.
2002  if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
2003  return false;
2004 
2005  // Make sure the mask elements make sense.
2006  int V1Size =
2007  cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
2008  for (int Elem : Mask)
2009  if (Elem != UndefMaskElem && Elem >= V1Size * 2)
2010  return false;
2011 
2012  if (isa<ScalableVectorType>(V1->getType()))
2013  if ((Mask[0] != 0 && Mask[0] != UndefMaskElem) || !is_splat(Mask))
2014  return false;
2015 
2016  return true;
2017 }
2018 
2020  const Value *Mask) {
2021  // V1 and V2 must be vectors of the same type.
2022  if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
2023  return false;
2024 
2025  // Mask must be vector of i32, and must be the same kind of vector as the
2026  // input vectors
2027  auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
2028  if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
2029  isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType()))
2030  return false;
2031 
2032  // Check to see if Mask is valid.
2033  if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
2034  return true;
2035 
2036  if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
2037  unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2038  for (Value *Op : MV->operands()) {
2039  if (auto *CI = dyn_cast<ConstantInt>(Op)) {
2040  if (CI->uge(V1Size*2))
2041  return false;
2042  } else if (!isa<UndefValue>(Op)) {
2043  return false;
2044  }
2045  }
2046  return true;
2047  }
2048 
2049  if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2050  unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2051  for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements();
2052  i != e; ++i)
2053  if (CDS->getElementAsInteger(i) >= V1Size*2)
2054  return false;
2055  return true;
2056  }
2057 
2058  return false;
2059 }
2060 
2062  SmallVectorImpl<int> &Result) {
2063  ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount();
2064 
2065  if (isa<ConstantAggregateZero>(Mask)) {
2066  Result.resize(EC.getKnownMinValue(), 0);
2067  return;
2068  }
2069 
2070  Result.reserve(EC.getKnownMinValue());
2071 
2072  if (EC.isScalable()) {
2073  assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) &&
2074  "Scalable vector shuffle mask must be undef or zeroinitializer");
2075  int MaskVal = isa<UndefValue>(Mask) ? -1 : 0;
2076  for (unsigned I = 0; I < EC.getKnownMinValue(); ++I)
2077  Result.emplace_back(MaskVal);
2078  return;
2079  }
2080 
2081  unsigned NumElts = EC.getKnownMinValue();
2082 
2083  if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2084  for (unsigned i = 0; i != NumElts; ++i)
2085  Result.push_back(CDS->getElementAsInteger(i));
2086  return;
2087  }
2088  for (unsigned i = 0; i != NumElts; ++i) {
2089  Constant *C = Mask->getAggregateElement(i);
2090  Result.push_back(isa<UndefValue>(C) ? -1 :
2091  cast<ConstantInt>(C)->getZExtValue());
2092  }
2093 }
2094 
2096  ShuffleMask.assign(Mask.begin(), Mask.end());
2097  ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType());
2098 }
2099 
2101  Type *ResultTy) {
2102  Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext());
2103  if (isa<ScalableVectorType>(ResultTy)) {
2104  assert(is_splat(Mask) && "Unexpected shuffle");
2105  Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true);
2106  if (Mask[0] == 0)
2107  return Constant::getNullValue(VecTy);
2108  return UndefValue::get(VecTy);
2109  }
2110  SmallVector<Constant *, 16> MaskConst;
2111  for (int Elem : Mask) {
2112  if (Elem == UndefMaskElem)
2113  MaskConst.push_back(UndefValue::get(Int32Ty));
2114  else
2115  MaskConst.push_back(ConstantInt::get(Int32Ty, Elem));
2116  }
2117  return ConstantVector::get(MaskConst);
2118 }
2119 
2120 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2121  assert(!Mask.empty() && "Shuffle mask must contain elements");
2122  bool UsesLHS = false;
2123  bool UsesRHS = false;
2124  for (int I : Mask) {
2125  if (I == -1)
2126  continue;
2127  assert(I >= 0 && I < (NumOpElts * 2) &&
2128  "Out-of-bounds shuffle mask element");
2129  UsesLHS |= (I < NumOpElts);
2130  UsesRHS |= (I >= NumOpElts);
2131  if (UsesLHS && UsesRHS)
2132  return false;
2133  }
2134  // Allow for degenerate case: completely undef mask means neither source is used.
2135  return UsesLHS || UsesRHS;
2136 }
2137 
2139  // We don't have vector operand size information, so assume operands are the
2140  // same size as the mask.
2141  return isSingleSourceMaskImpl(Mask, Mask.size());
2142 }
2143 
2144 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2145  if (!isSingleSourceMaskImpl(Mask, NumOpElts))
2146  return false;
2147  for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
2148  if (Mask[i] == -1)
2149  continue;
2150  if (Mask[i] != i && Mask[i] != (NumOpElts + i))
2151  return false;
2152  }
2153  return true;
2154 }
2155 
2157  // We don't have vector operand size information, so assume operands are the
2158  // same size as the mask.
2159  return isIdentityMaskImpl(Mask, Mask.size());
2160 }
2161 
2163  if (!isSingleSourceMask(Mask))
2164  return false;
2165  for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2166  if (Mask[i] == -1)
2167  continue;
2168  if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
2169  return false;
2170  }
2171  return true;
2172 }
2173 
2175  if (!isSingleSourceMask(Mask))
2176  return false;
2177  for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2178  if (Mask[i] == -1)
2179  continue;
2180  if (Mask[i] != 0 && Mask[i] != NumElts)
2181  return false;
2182  }
2183  return true;
2184 }
2185 
2187  // Select is differentiated from identity. It requires using both sources.
2188  if (isSingleSourceMask(Mask))
2189  return false;
2190  for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2191  if (Mask[i] == -1)
2192  continue;
2193  if (Mask[i] != i && Mask[i] != (NumElts + i))
2194  return false;
2195  }
2196  return true;
2197 }
2198 
2200  // Example masks that will return true:
2201  // v1 = <a, b, c, d>
2202  // v2 = <e, f, g, h>
2203  // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
2204  // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
2205 
2206  // 1. The number of elements in the mask must be a power-of-2 and at least 2.
2207  int NumElts = Mask.size();
2208  if (NumElts < 2 || !isPowerOf2_32(NumElts))
2209  return false;
2210 
2211  // 2. The first element of the mask must be either a 0 or a 1.
2212  if (Mask[0] != 0 && Mask[0] != 1)
2213  return false;
2214 
2215  // 3. The difference between the first 2 elements must be equal to the
2216  // number of elements in the mask.
2217  if ((Mask[1] - Mask[0]) != NumElts)
2218  return false;
2219 
2220  // 4. The difference between consecutive even-numbered and odd-numbered
2221  // elements must be equal to 2.
2222  for (int i = 2; i < NumElts; ++i) {
2223  int MaskEltVal = Mask[i];
2224  if (MaskEltVal == -1)
2225  return false;
2226  int MaskEltPrevVal = Mask[i - 2];
2227  if (MaskEltVal - MaskEltPrevVal != 2)
2228  return false;
2229  }
2230  return true;
2231 }
2232 
2234  int NumSrcElts, int &Index) {
2235  // Must extract from a single source.
2236  if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2237  return false;
2238 
2239  // Must be smaller (else this is an Identity shuffle).
2240  if (NumSrcElts <= (int)Mask.size())
2241  return false;
2242 
2243  // Find start of extraction, accounting that we may start with an UNDEF.
2244  int SubIndex = -1;
2245  for (int i = 0, e = Mask.size(); i != e; ++i) {
2246  int M = Mask[i];
2247  if (M < 0)
2248  continue;
2249  int Offset = (M % NumSrcElts) - i;
2250  if (0 <= SubIndex && SubIndex != Offset)
2251  return false;
2252  SubIndex = Offset;
2253  }
2254 
2255  if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) {
2256  Index = SubIndex;
2257  return true;
2258  }
2259  return false;
2260 }
2261 
2263  if (isa<UndefValue>(Op<2>()))
2264  return false;
2265 
2266  // FIXME: Not currently possible to express a shuffle mask for a scalable
2267  // vector for this case.
2268  if (isa<ScalableVectorType>(getType()))
2269  return false;
2270 
2271  int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2272  int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2273  if (NumMaskElts <= NumOpElts)
2274  return false;
2275 
2276  // The first part of the mask must choose elements from exactly 1 source op.
2278  if (!isIdentityMaskImpl(Mask, NumOpElts))
2279  return false;
2280 
2281  // All extending must be with undef elements.
2282  for (int i = NumOpElts; i < NumMaskElts; ++i)
2283  if (Mask[i] != -1)
2284  return false;
2285 
2286  return true;
2287 }
2288 
2290  if (isa<UndefValue>(Op<2>()))
2291  return false;
2292 
2293  // FIXME: Not currently possible to express a shuffle mask for a scalable
2294  // vector for this case.
2295  if (isa<ScalableVectorType>(getType()))
2296  return false;
2297 
2298  int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2299  int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2300  if (NumMaskElts >= NumOpElts)
2301  return false;
2302 
2303  return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2304 }
2305 
2307  // Vector concatenation is differentiated from identity with padding.
2308  if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()) ||
2309  isa<UndefValue>(Op<2>()))
2310  return false;
2311 
2312  // FIXME: Not currently possible to express a shuffle mask for a scalable
2313  // vector for this case.
2314  if (isa<ScalableVectorType>(getType()))
2315  return false;
2316 
2317  int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2318  int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2319  if (NumMaskElts != NumOpElts * 2)
2320  return false;
2321 
2322  // Use the mask length rather than the operands' vector lengths here. We
2323  // already know that the shuffle returns a vector twice as long as the inputs,
2324  // and neither of the inputs are undef vectors. If the mask picks consecutive
2325  // elements from both inputs, then this is a concatenation of the inputs.
2326  return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2327 }
2328 
2329 //===----------------------------------------------------------------------===//
2330 // InsertValueInst Class
2331 //===----------------------------------------------------------------------===//
2332 
2333 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2334  const Twine &Name) {
2335  assert(getNumOperands() == 2 && "NumOperands not initialized?");
2336 
2337  // There's no fundamental reason why we require at least one index
2338  // (other than weirdness with &*IdxBegin being invalid; see
2339  // getelementptr's init routine for example). But there's no
2340  // present need to support it.
2341  assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2342 
2344  Val->getType() && "Inserted value must match indexed type!");
2345  Op<0>() = Agg;
2346  Op<1>() = Val;
2347 
2348  Indices.append(Idxs.begin(), Idxs.end());
2349  setName(Name);
2350 }
2351 
2352 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2353  : Instruction(IVI.getType(), InsertValue,
2354  OperandTraits<InsertValueInst>::op_begin(this), 2),
2355  Indices(IVI.Indices) {
2356  Op<0>() = IVI.getOperand(0);
2357  Op<1>() = IVI.getOperand(1);
2359 }
2360 
2361 //===----------------------------------------------------------------------===//
2362 // ExtractValueInst Class
2363 //===----------------------------------------------------------------------===//
2364 
2365 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2366  assert(getNumOperands() == 1 && "NumOperands not initialized?");
2367 
2368  // There's no fundamental reason why we require at least one index.
2369  // But there's no present need to support it.
2370  assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2371 
2372  Indices.append(Idxs.begin(), Idxs.end());
2373  setName(Name);
2374 }
2375 
2376 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2377  : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2378  Indices(EVI.Indices) {
2380 }
2381 
2382 // getIndexedType - Returns the type of the element that would be extracted
2383 // with an extractvalue instruction with the specified parameters.
2384 //
2385 // A null type is returned if the indices are invalid for the specified
2386 // pointer type.
2387 //
2389  ArrayRef<unsigned> Idxs) {
2390  for (unsigned Index : Idxs) {
2391  // We can't use CompositeType::indexValid(Index) here.
2392  // indexValid() always returns true for arrays because getelementptr allows
2393  // out-of-bounds indices. Since we don't allow those for extractvalue and
2394  // insertvalue we need to check array indexing manually.
2395  // Since the only other types we can index into are struct types it's just
2396  // as easy to check those manually as well.
2397  if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2398  if (Index >= AT->getNumElements())
2399  return nullptr;
2400  Agg = AT->getElementType();
2401  } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2402  if (Index >= ST->getNumElements())
2403  return nullptr;
2404  Agg = ST->getElementType(Index);
2405  } else {
2406  // Not a valid type to index into.
2407  return nullptr;
2408  }
2409  }
2410  return const_cast<Type*>(Agg);
2411 }
2412 
2413 //===----------------------------------------------------------------------===//
2414 // UnaryOperator Class
2415 //===----------------------------------------------------------------------===//
2416 
2418  Type *Ty, const Twine &Name,
2419  Instruction *InsertBefore)
2420  : UnaryInstruction(Ty, iType, S, InsertBefore) {
2421  Op<0>() = S;
2422  setName(Name);
2423  AssertOK();
2424 }
2425 
2427  Type *Ty, const Twine &Name,
2428  BasicBlock *InsertAtEnd)
2429  : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2430  Op<0>() = S;
2431  setName(Name);
2432  AssertOK();
2433 }
2434 
2436  const Twine &Name,
2437  Instruction *InsertBefore) {
2438  return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2439 }
2440 
2442  const Twine &Name,
2443  BasicBlock *InsertAtEnd) {
2444  UnaryOperator *Res = Create(Op, S, Name);
2445  InsertAtEnd->getInstList().push_back(Res);
2446  return Res;
2447 }
2448 
2449 void UnaryOperator::AssertOK() {
2450  Value *LHS = getOperand(0);
2451  (void)LHS; // Silence warnings.
2452 #ifndef NDEBUG
2453  switch (getOpcode()) {
2454  case FNeg:
2455  assert(getType() == LHS->getType() &&
2456  "Unary operation should return same type as operand!");
2457  assert(getType()->isFPOrFPVectorTy() &&
2458  "Tried to create a floating-point operation on a "
2459  "non-floating-point type!");
2460  break;
2461  default: llvm_unreachable("Invalid opcode provided");
2462  }
2463 #endif
2464 }
2465 
2466 //===----------------------------------------------------------------------===//
2467 // BinaryOperator Class
2468 //===----------------------------------------------------------------------===//
2469 
2471  Type *Ty, const Twine &Name,
2472  Instruction *InsertBefore)
2473  : Instruction(Ty, iType,
2474  OperandTraits<BinaryOperator>::op_begin(this),
2475  OperandTraits<BinaryOperator>::operands(this),
2476  InsertBefore) {
2477  Op<0>() = S1;
2478  Op<1>() = S2;
2479  setName(Name);
2480  AssertOK();
2481 }
2482 
2484  Type *Ty, const Twine &Name,
2485  BasicBlock *InsertAtEnd)
2486  : Instruction(Ty, iType,
2487  OperandTraits<BinaryOperator>::op_begin(this),
2488  OperandTraits<BinaryOperator>::operands(this),
2489  InsertAtEnd) {
2490  Op<0>() = S1;
2491  Op<1>() = S2;
2492  setName(Name);
2493  AssertOK();
2494 }
2495 
2496 void BinaryOperator::AssertOK() {
2497  Value *LHS = getOperand(0), *RHS = getOperand(1);
2498  (void)LHS; (void)RHS; // Silence warnings.
2499  assert(LHS->getType() == RHS->getType() &&
2500  "Binary operator operand types must match!");
2501 #ifndef NDEBUG
2502  switch (getOpcode()) {
2503  case Add: case Sub:
2504  case Mul:
2505  assert(getType() == LHS->getType() &&
2506  "Arithmetic operation should return same type as operands!");
2507  assert(getType()->isIntOrIntVectorTy() &&
2508  "Tried to create an integer operation on a non-integer type!");
2509  break;
2510  case FAdd: case FSub:
2511  case FMul:
2512  assert(getType() == LHS->getType() &&
2513  "Arithmetic operation should return same type as operands!");
2514  assert(getType()->isFPOrFPVectorTy() &&
2515  "Tried to create a floating-point operation on a "
2516  "non-floating-point type!");
2517  break;
2518  case UDiv:
2519  case SDiv:
2520  assert(getType() == LHS->getType() &&
2521  "Arithmetic operation should return same type as operands!");
2522  assert(getType()->isIntOrIntVectorTy() &&
2523  "Incorrect operand type (not integer) for S/UDIV");
2524  break;
2525  case FDiv:
2526  assert(getType() == LHS->getType() &&
2527  "Arithmetic operation should return same type as operands!");
2528  assert(getType()->isFPOrFPVectorTy() &&
2529  "Incorrect operand type (not floating point) for FDIV");
2530  break;
2531  case URem:
2532  case SRem:
2533  assert(getType() == LHS->getType() &&
2534  "Arithmetic operation should return same type as operands!");
2535  assert(getType()->isIntOrIntVectorTy() &&
2536  "Incorrect operand type (not integer) for S/UREM");
2537  break;
2538  case FRem:
2539  assert(getType() == LHS->getType() &&
2540  "Arithmetic operation should return same type as operands!");
2541  assert(getType()->isFPOrFPVectorTy() &&
2542  "Incorrect operand type (not floating point) for FREM");
2543  break;
2544  case Shl:
2545  case LShr:
2546  case AShr:
2547  assert(getType() == LHS->getType() &&
2548  "Shift operation should return same type as operands!");
2549  assert(getType()->isIntOrIntVectorTy() &&
2550  "Tried to create a shift operation on a non-integral type!");
2551  break;
2552  case And: case Or:
2553  case Xor:
2554  assert(getType() == LHS->getType() &&
2555  "Logical operation should return same type as operands!");
2556  assert(getType()->isIntOrIntVectorTy() &&
2557  "Tried to create a logical operation on a non-integral type!");
2558  break;
2559  default: llvm_unreachable("Invalid opcode provided");
2560  }
2561 #endif
2562 }
2563 
2565  const Twine &Name,
2566  Instruction *InsertBefore) {
2567  assert(S1->getType() == S2->getType() &&
2568  "Cannot create binary operator with two operands of differing type!");
2569  return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2570 }
2571 
2573  const Twine &Name,
2574  BasicBlock *InsertAtEnd) {
2575  BinaryOperator *Res = Create(Op, S1, S2, Name);
2576  InsertAtEnd->getInstList().push_back(Res);
2577  return Res;
2578 }
2579 
2581  Instruction *InsertBefore) {
2583  return new BinaryOperator(Instruction::Sub,
2584  zero, Op,
2585  Op->getType(), Name, InsertBefore);
2586 }
2587 
2589  BasicBlock *InsertAtEnd) {
2591  return new BinaryOperator(Instruction::Sub,
2592  zero, Op,
2593  Op->getType(), Name, InsertAtEnd);
2594 }
2595 
2597  Instruction *InsertBefore) {
2599  return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2600 }
2601 
2603  BasicBlock *InsertAtEnd) {
2605  return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2606 }
2607 
2609  Instruction *InsertBefore) {
2611  return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2612 }
2613 
2615  BasicBlock *InsertAtEnd) {
2617  return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2618 }
2619 
2621  Instruction *InsertBefore) {
2623  return new BinaryOperator(Instruction::Xor, Op, C,
2624  Op->getType(), Name, InsertBefore);
2625 }
2626 
2628  BasicBlock *InsertAtEnd) {
2630  return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2631  Op->getType(), Name, InsertAtEnd);
2632 }
2633 
2634 // Exchange the two operands to this instruction. This instruction is safe to
2635 // use on any binary instruction and does not modify the semantics of the
2636 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2637 // is changed.
2639  if (!isCommutative())
2640  return true; // Can't commute operands
2641  Op<0>().swap(Op<1>());
2642  return false;
2643 }
2644 
2645 //===----------------------------------------------------------------------===//
2646 // FPMathOperator Class
2647 //===----------------------------------------------------------------------===//
2648 
2650  const MDNode *MD =
2651  cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2652  if (!MD)
2653  return 0.0;
2654  ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2655  return Accuracy->getValueAPF().convertToFloat();
2656 }
2657 
2658 //===----------------------------------------------------------------------===//
2659 // CastInst Class
2660 //===----------------------------------------------------------------------===//
2661 
2662 // Just determine if this cast only deals with integral->integral conversion.
2664  switch (getOpcode()) {
2665  default: return false;
2666  case Instruction::ZExt:
2667  case Instruction::SExt:
2668  case Instruction::Trunc:
2669  return true;
2670  case Instruction::BitCast:
2671  return getOperand(0)->getType()->isIntegerTy() &&
2672  getType()->isIntegerTy();
2673  }
2674 }
2675 
2677  // Only BitCast can be lossless, exit fast if we're not BitCast
2678  if (getOpcode() != Instruction::BitCast)
2679  return false;
2680 
2681  // Identity cast is always lossless
2682  Type *SrcTy = getOperand(0)->getType();
2683  Type *DstTy = getType();
2684  if (SrcTy == DstTy)
2685  return true;
2686 
2687  // Pointer to pointer is always lossless.
2688  if (SrcTy->isPointerTy())
2689  return DstTy->isPointerTy();
2690  return false; // Other types have no identity values
2691 }
2692 
2693 /// This function determines if the CastInst does not require any bits to be
2694 /// changed in order to effect the cast. Essentially, it identifies cases where
2695 /// no code gen is necessary for the cast, hence the name no-op cast. For
2696 /// example, the following are all no-op casts:
2697 /// # bitcast i32* %x to i8*
2698 /// # bitcast <2 x i32> %x to <4 x i16>
2699 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2700 /// Determine if the described cast is a no-op.
2702  Type *SrcTy,
2703  Type *DestTy,
2704  const DataLayout &DL) {
2705  assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition");
2706  switch (Opcode) {
2707  default: llvm_unreachable("Invalid CastOp");
2708  case Instruction::Trunc:
2709  case Instruction::ZExt:
2710  case Instruction::SExt:
2711  case Instruction::FPTrunc:
2712  case Instruction::FPExt:
2713  case Instruction::UIToFP:
2714  case Instruction::SIToFP:
2715  case Instruction::FPToUI:
2716  case Instruction::FPToSI:
2717  case Instruction::AddrSpaceCast:
2718  // TODO: Target informations may give a more accurate answer here.
2719  return false;
2720  case Instruction::BitCast:
2721  return true; // BitCast never modifies bits.
2722  case Instruction::PtrToInt:
2723  return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2724  DestTy->getScalarSizeInBits();
2725  case Instruction::IntToPtr:
2726  return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2727  SrcTy->getScalarSizeInBits();
2728  }
2729 }
2730 
2731 bool CastInst::isNoopCast(const DataLayout &DL) const {
2732  return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2733 }
2734 
2735 /// This function determines if a pair of casts can be eliminated and what
2736 /// opcode should be used in the elimination. This assumes that there are two
2737 /// instructions like this:
2738 /// * %F = firstOpcode SrcTy %x to MidTy
2739 /// * %S = secondOpcode MidTy %F to DstTy
2740 /// The function returns a resultOpcode so these two casts can be replaced with:
2741 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
2742 /// If no such cast is permitted, the function returns 0.
2744  Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2745  Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2746  Type *DstIntPtrTy) {
2747  // Define the 144 possibilities for these two cast instructions. The values
2748  // in this matrix determine what to do in a given situation and select the
2749  // case in the switch below. The rows correspond to firstOp, the columns
2750  // correspond to secondOp. In looking at the table below, keep in mind
2751  // the following cast properties:
2752  //
2753  // Size Compare Source Destination
2754  // Operator Src ? Size Type Sign Type Sign
2755  // -------- ------------ ------------------- ---------------------
2756  // TRUNC > Integer Any Integral Any
2757  // ZEXT < Integral Unsigned Integer Any
2758  // SEXT < Integral Signed Integer Any
2759  // FPTOUI n/a FloatPt n/a Integral Unsigned
2760  // FPTOSI n/a FloatPt n/a Integral Signed
2761  // UITOFP n/a Integral Unsigned FloatPt n/a
2762  // SITOFP n/a Integral Signed FloatPt n/a
2763  // FPTRUNC > FloatPt n/a FloatPt n/a
2764  // FPEXT < FloatPt n/a FloatPt n/a
2765  // PTRTOINT n/a Pointer n/a Integral Unsigned
2766  // INTTOPTR n/a Integral Unsigned Pointer n/a
2767  // BITCAST = FirstClass n/a FirstClass n/a
2768  // ADDRSPCST n/a Pointer n/a Pointer n/a
2769  //
2770  // NOTE: some transforms are safe, but we consider them to be non-profitable.
2771  // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2772  // into "fptoui double to i64", but this loses information about the range
2773  // of the produced value (we no longer know the top-part is all zeros).
2774  // Further this conversion is often much more expensive for typical hardware,
2775  // and causes issues when building libgcc. We disallow fptosi+sext for the
2776  // same reason.
2777  const unsigned numCastOps =
2778  Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2779  static const uint8_t CastResults[numCastOps][numCastOps] = {
2780  // T F F U S F F P I B A -+
2781  // R Z S P P I I T P 2 N T S |
2782  // U E E 2 2 2 2 R E I T C C +- secondOp
2783  // N X X U S F F N X N 2 V V |
2784  // C T T I I P P C T T P T T -+
2785  { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
2786  { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt |
2787  { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
2788  { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
2789  { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
2790  { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
2791  { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
2792  { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc |
2793  { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt |
2794  { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
2795  { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
2796  { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
2797  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2798  };
2799 
2800  // TODO: This logic could be encoded into the table above and handled in the
2801  // switch below.
2802  // If either of the casts are a bitcast from scalar to vector, disallow the
2803  // merging. However, any pair of bitcasts are allowed.
2804  bool IsFirstBitcast = (firstOp == Instruction::BitCast);
2805  bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2806  bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2807 
2808  // Check if any of the casts convert scalars <-> vectors.
2809  if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2810  (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2811  if (!AreBothBitcasts)
2812  return 0;
2813 
2814  int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2815  [secondOp-Instruction::CastOpsBegin];
2816  switch (ElimCase) {
2817  case 0:
2818  // Categorically disallowed.
2819  return 0;
2820  case 1:
2821  // Allowed, use first cast's opcode.
2822  return firstOp;
2823  case 2:
2824  // Allowed, use second cast's opcode.
2825  return secondOp;
2826  case 3:
2827  // No-op cast in second op implies firstOp as long as the DestTy
2828  // is integer and we are not converting between a vector and a
2829  // non-vector type.
2830  if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2831  return firstOp;
2832  return 0;
2833  case 4:
2834  // No-op cast in second op implies firstOp as long as the DestTy
2835  // is floating point.
2836  if (DstTy->isFloatingPointTy())
2837  return firstOp;
2838  return 0;
2839  case 5:
2840  // No-op cast in first op implies secondOp as long as the SrcTy
2841  // is an integer.
2842  if (SrcTy->isIntegerTy())
2843  return secondOp;
2844  return 0;
2845  case 6:
2846  // No-op cast in first op implies secondOp as long as the SrcTy
2847  // is a floating point.
2848  if (SrcTy->isFloatingPointTy())
2849  return secondOp;
2850  return 0;
2851  case 7: {
2852  // Disable inttoptr/ptrtoint optimization if enabled.
2853  if (DisableI2pP2iOpt)
2854  return 0;
2855 
2856  // Cannot simplify if address spaces are different!
2857  if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2858  return 0;
2859 
2860  unsigned MidSize = MidTy->getScalarSizeInBits();
2861  // We can still fold this without knowing the actual sizes as long we
2862  // know that the intermediate pointer is the largest possible
2863  // pointer size.
2864  // FIXME: Is this always true?
2865  if (MidSize == 64)
2866  return Instruction::BitCast;
2867 
2868  // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2869  if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2870  return 0;
2871  unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2872  if (MidSize >= PtrSize)
2873  return Instruction::BitCast;
2874  return 0;
2875  }
2876  case 8: {
2877  // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2878  // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2879  // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2880  unsigned SrcSize = SrcTy->getScalarSizeInBits();
2881  unsigned DstSize = DstTy->getScalarSizeInBits();
2882  if (SrcSize == DstSize)
2883  return Instruction::BitCast;
2884  else if (SrcSize < DstSize)
2885  return firstOp;
2886  return secondOp;
2887  }
2888  case 9:
2889  // zext, sext -> zext, because sext can't sign extend after zext
2890  return Instruction::ZExt;
2891  case 11: {
2892  // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2893  if (!MidIntPtrTy)
2894  return 0;
2895  unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2896  unsigned SrcSize = SrcTy->getScalarSizeInBits();
2897  unsigned DstSize = DstTy->getScalarSizeInBits();
2898  if (SrcSize <= PtrSize && SrcSize == DstSize)
2899  return Instruction::BitCast;
2900  return 0;
2901  }
2902  case 12:
2903  // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
2904  // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2905  if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2906  return Instruction::AddrSpaceCast;
2907  return Instruction::BitCast;
2908  case 13:
2909  // FIXME: this state can be merged with (1), but the following assert
2910  // is useful to check the correcteness of the sequence due to semantic
2911  // change of bitcast.
2912  assert(
2913  SrcTy->isPtrOrPtrVectorTy() &&
2914  MidTy->isPtrOrPtrVectorTy() &&
2915  DstTy->isPtrOrPtrVectorTy() &&
2916  SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2917  MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2918  "Illegal addrspacecast, bitcast sequence!");
2919  // Allowed, use first cast's opcode
2920  return firstOp;
2921  case 14: {
2922  // bitcast, addrspacecast -> addrspacecast if the element type of
2923  // bitcast's source is the same as that of addrspacecast's destination.
2924  PointerType *SrcPtrTy = cast<PointerType>(SrcTy->getScalarType());
2925  PointerType *DstPtrTy = cast<PointerType>(DstTy->getScalarType());
2926  if (SrcPtrTy->hasSameElementTypeAs(DstPtrTy))
2927  return Instruction::AddrSpaceCast;
2928  return 0;
2929  }
2930  case 15:
2931  // FIXME: this state can be merged with (1), but the following assert
2932  // is useful to check the correcteness of the sequence due to semantic
2933  // change of bitcast.
2934  assert(
2935  SrcTy->isIntOrIntVectorTy() &&
2936  MidTy->isPtrOrPtrVectorTy() &&
2937  DstTy->isPtrOrPtrVectorTy() &&
2938  MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2939  "Illegal inttoptr, bitcast sequence!");
2940  // Allowed, use first cast's opcode
2941  return firstOp;
2942  case 16:
2943  // FIXME: this state can be merged with (2), but the following assert
2944  // is useful to check the correcteness of the sequence due to semantic
2945  // change of bitcast.
2946  assert(
2947  SrcTy->isPtrOrPtrVectorTy() &&
2948  MidTy->isPtrOrPtrVectorTy() &&
2949  DstTy->isIntOrIntVectorTy() &&
2950  SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2951  "Illegal bitcast, ptrtoint sequence!");
2952  // Allowed, use second cast's opcode
2953  return secondOp;
2954  case 17:
2955  // (sitofp (zext x)) -> (uitofp x)
2956  return Instruction::UIToFP;
2957  case 99:
2958  // Cast combination can't happen (error in input). This is for all cases
2959  // where the MidTy is not the same for the two cast instructions.
2960  llvm_unreachable("Invalid Cast Combination");
2961  default:
2962  llvm_unreachable("Error in CastResults table!!!");
2963  }
2964 }
2965 
2967  const Twine &Name, Instruction *InsertBefore) {
2968  assert(castIsValid(op, S, Ty) && "Invalid cast!");
2969  // Construct and return the appropriate CastInst subclass
2970  switch (op) {
2971  case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
2972  case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
2973  case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
2974  case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
2975  case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
2976  case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
2977  case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
2978  case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
2979  case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
2980  case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2981  case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2982  case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
2983  case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2984  default: llvm_unreachable("Invalid opcode provided");
2985  }
2986 }
2987 
2989  const Twine &Name, BasicBlock *InsertAtEnd) {
2990  assert(castIsValid(op, S, Ty) && "Invalid cast!");
2991  // Construct and return the appropriate CastInst subclass
2992  switch (op) {
2993  case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
2994  case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
2995  case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
2996  case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
2997  case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
2998  case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
2999  case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
3000  case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
3001  case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
3002  case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
3003  case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
3004  case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
3005  case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
3006  default: llvm_unreachable("Invalid opcode provided");
3007  }
3008 }
3009 
3011  const Twine &Name,
3012  Instruction *InsertBefore) {
3013  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3014  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3015  return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
3016 }
3017 
3019  const Twine &Name,
3020  BasicBlock *InsertAtEnd) {
3021  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3022  return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3023  return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
3024 }
3025 
3027  const Twine &Name,
3028  Instruction *InsertBefore) {
3029  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3030  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3031  return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
3032 }
3033 
3035  const Twine &Name,
3036  BasicBlock *InsertAtEnd) {
3037  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3038  return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3039  return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
3040 }
3041 
3043  const Twine &Name,
3044  Instruction *InsertBefore) {
3045  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3046  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3047  return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
3048 }
3049 
3051  const Twine &Name,
3052  BasicBlock *InsertAtEnd) {
3053  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3054  return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3055  return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
3056 }
3057 
3059  const Twine &Name,
3060  BasicBlock *InsertAtEnd) {
3061  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3062  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3063  "Invalid cast");
3064  assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3065  assert((!Ty->isVectorTy() ||
3066  cast<VectorType>(Ty)->getElementCount() ==
3067  cast<VectorType>(S->getType())->getElementCount()) &&
3068  "Invalid cast");
3069 
3070  if (Ty->isIntOrIntVectorTy())
3071  return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
3072 
3073  return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
3074 }
3075 
3076 /// Create a BitCast or a PtrToInt cast instruction
3078  const Twine &Name,
3079  Instruction *InsertBefore) {
3080  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3081  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3082  "Invalid cast");
3083  assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3084  assert((!Ty->isVectorTy() ||
3085  cast<VectorType>(Ty)->getElementCount() ==
3086  cast<VectorType>(S->getType())->getElementCount()) &&
3087  "Invalid cast");
3088 
3089  if (Ty->isIntOrIntVectorTy())
3090  return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3091 
3092  return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
3093 }
3094 
3096  Value *S, Type *Ty,
3097  const Twine &Name,
3098  BasicBlock *InsertAtEnd) {
3099  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3100  assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3101 
3102  if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3103  return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
3104 
3105  return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3106 }
3107 
3109  Value *S, Type *Ty,
3110  const Twine &Name,
3111  Instruction *InsertBefore) {
3112  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3113  assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3114 
3115  if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3116  return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
3117 
3118  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3119 }
3120 
3122  const Twine &Name,
3123  Instruction *InsertBefore) {
3124  if (S->getType()->isPointerTy() && Ty->isIntegerTy())
3125  return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3126  if (S->getType()->isIntegerTy() && Ty->isPointerTy())
3127  return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
3128 
3129  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3130 }
3131 
3133  bool isSigned, const Twine &Name,
3134  Instruction *InsertBefore) {
3135  assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3136  "Invalid integer cast");
3137  unsigned SrcBits = C->getType()->getScalarSizeInBits();
3138  unsigned DstBits = Ty->getScalarSizeInBits();
3139  Instruction::CastOps opcode =
3140  (SrcBits == DstBits ? Instruction::BitCast :
3141  (SrcBits > DstBits ? Instruction::Trunc :
3142  (isSigned ? Instruction::SExt : Instruction::ZExt)));
3143  return Create(opcode, C, Ty, Name, InsertBefore);
3144 }
3145 
3147  bool isSigned, const Twine &Name,
3148  BasicBlock *InsertAtEnd) {
3149  assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3150  "Invalid cast");
3151  unsigned SrcBits = C->getType()->getScalarSizeInBits();
3152  unsigned DstBits = Ty->getScalarSizeInBits();
3153  Instruction::CastOps opcode =
3154  (SrcBits == DstBits ? Instruction::BitCast :
3155  (SrcBits > DstBits ? Instruction::Trunc :
3156  (isSigned ? Instruction::SExt : Instruction::ZExt)));
3157  return Create(opcode, C, Ty, Name, InsertAtEnd);
3158 }
3159 
3161  const Twine &Name,
3162  Instruction *InsertBefore) {
3163  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3164  "Invalid cast");
3165  unsigned SrcBits = C->getType()->getScalarSizeInBits();
3166  unsigned DstBits = Ty->getScalarSizeInBits();
3167  Instruction::CastOps opcode =
3168  (SrcBits == DstBits ? Instruction::BitCast :
3169  (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3170  return Create(opcode, C, Ty, Name, InsertBefore);
3171 }
3172 
3174  const Twine &Name,
3175  BasicBlock *InsertAtEnd) {
3176  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3177  "Invalid cast");
3178  unsigned SrcBits = C->getType()->getScalarSizeInBits();
3179  unsigned DstBits = Ty->getScalarSizeInBits();
3180  Instruction::CastOps opcode =
3181  (SrcBits == DstBits ? Instruction::BitCast :
3182  (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3183  return Create(opcode, C, Ty, Name, InsertAtEnd);
3184 }
3185 
3186 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3187  if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3188  return false;
3189 
3190  if (SrcTy == DestTy)
3191  return true;
3192 
3193  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3194  if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3195  if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3196  // An element by element cast. Valid if casting the elements is valid.
3197  SrcTy = SrcVecTy->getElementType();
3198  DestTy = DestVecTy->getElementType();
3199  }
3200  }
3201  }
3202 
3203  if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3204  if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3205  return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3206  }
3207  }
3208 
3209  TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
3210  TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3211 
3212  // Could still have vectors of pointers if the number of elements doesn't
3213  // match
3214  if (SrcBits.getKnownMinSize() == 0 || DestBits.getKnownMinSize() == 0)
3215  return false;
3216 
3217  if (SrcBits != DestBits)
3218  return false;
3219 
3220  if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3221  return false;
3222 
3223  return true;
3224 }
3225 
3227  const DataLayout &DL) {
3228  // ptrtoint and inttoptr are not allowed on non-integral pointers
3229  if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3230  if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3231  return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3232  !DL.isNonIntegralPointerType(PtrTy));
3233  if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3234  if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3235  return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3236  !DL.isNonIntegralPointerType(PtrTy));
3237 
3238  return isBitCastable(SrcTy, DestTy);
3239 }
3240 
3241 // Provide a way to get a "cast" where the cast opcode is inferred from the
3242 // types and size of the operand. This, basically, is a parallel of the
3243 // logic in the castIsValid function below. This axiom should hold:
3244 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3245 // should not assert in castIsValid. In other words, this produces a "correct"
3246 // casting opcode for the arguments passed to it.
3249  const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3250  Type *SrcTy = Src->getType();
3251 
3252  assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3253  "Only first class types are castable!");
3254 
3255  if (SrcTy == DestTy)
3256  return BitCast;
3257 
3258  // FIXME: Check address space sizes here
3259  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3260  if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3261  if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3262  // An element by element cast. Find the appropriate opcode based on the
3263  // element types.
3264  SrcTy = SrcVecTy->getElementType();
3265  DestTy = DestVecTy->getElementType();
3266  }
3267 
3268  // Get the bit sizes, we'll need these
3269  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
3270  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3271 
3272  // Run through the possibilities ...
3273  if (DestTy->isIntegerTy()) { // Casting to integral
3274  if (SrcTy->isIntegerTy()) { // Casting from integral
3275  if (DestBits < SrcBits)
3276  return Trunc; // int -> smaller int
3277  else if (DestBits > SrcBits) { // its an extension
3278  if (SrcIsSigned)
3279  return SExt; // signed -> SEXT
3280  else
3281  return ZExt; // unsigned -> ZEXT
3282  } else {
3283  return BitCast; // Same size, No-op cast
3284  }
3285  } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3286  if (DestIsSigned)
3287  return FPToSI; // FP -> sint
3288  else
3289  return FPToUI; // FP -> uint
3290  } else if (SrcTy->isVectorTy()) {
3291  assert(DestBits == SrcBits &&
3292  "Casting vector to integer of different width");
3293  return BitCast; // Same size, no-op cast
3294  } else {
3295  assert(SrcTy->isPointerTy() &&
3296  "Casting from a value that is not first-class type");
3297  return PtrToInt; // ptr -> int
3298  }
3299  } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
3300  if (SrcTy->isIntegerTy()) { // Casting from integral
3301  if (SrcIsSigned)
3302  return SIToFP; // sint -> FP
3303  else
3304  return UIToFP; // uint -> FP
3305  } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3306  if (DestBits < SrcBits) {
3307  return FPTrunc; // FP -> smaller FP
3308  } else if (DestBits > SrcBits) {
3309  return FPExt; // FP -> larger FP
3310  } else {
3311  return BitCast; // same size, no-op cast
3312  }
3313  } else if (SrcTy->isVectorTy()) {
3314  assert(DestBits == SrcBits &&
3315  "Casting vector to floating point of different width");
3316  return BitCast; // same size, no-op cast
3317  }
3318  llvm_unreachable("Casting pointer or non-first class to float");
3319  } else if (DestTy->isVectorTy()) {
3320  assert(DestBits == SrcBits &&
3321  "Illegal cast to vector (wrong type or size)");
3322  return BitCast;
3323  } else if (DestTy->isPointerTy()) {
3324  if (SrcTy->isPointerTy()) {
3325  if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3326  return AddrSpaceCast;
3327  return BitCast; // ptr -> ptr
3328  } else if (SrcTy->isIntegerTy()) {
3329  return IntToPtr; // int -> ptr
3330  }
3331  llvm_unreachable("Casting pointer to other than pointer or int");
3332  } else if (DestTy->isX86_MMXTy()) {
3333  if (SrcTy->isVectorTy()) {
3334  assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3335  return BitCast; // 64-bit vector to MMX
3336  }
3337  llvm_unreachable("Illegal cast to X86_MMX");
3338  }
3339  llvm_unreachable("Casting to type that is not first-class");
3340 }
3341 
3342 //===----------------------------------------------------------------------===//
3343 // CastInst SubClass Constructors
3344 //===----------------------------------------------------------------------===//
3345 
3346 /// Check that the construction parameters for a CastInst are correct. This
3347 /// could be broken out into the separate constructors but it is useful to have
3348 /// it in one place and to eliminate the redundant code for getting the sizes
3349 /// of the types involved.
3350 bool
3352  if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3353  SrcTy->isAggregateType() || DstTy->isAggregateType())
3354  return false;
3355 
3356  // Get the size of the types in bits, and whether we are dealing
3357  // with vector types, we'll need this later.
3358  bool SrcIsVec = isa<VectorType>(SrcTy);
3359  bool DstIsVec = isa<VectorType>(DstTy);
3360  unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits();
3361  unsigned DstScalarBitSize = DstTy->getScalarSizeInBits();
3362 
3363  // If these are vector types, get the lengths of the vectors (using zero for
3364  // scalar types means that checking that vector lengths match also checks that
3365  // scalars are not being converted to vectors or vectors to scalars).
3366  ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount()
3368  ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount()
3370 
3371  // Switch on the opcode provided
3372  switch (op) {
3373  default: return false; // This is an input error
3374  case Instruction::Trunc:
3375  return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3376  SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3377  case Instruction::ZExt:
3378  return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3379  SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3380  case Instruction::SExt:
3381  return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3382  SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3383  case Instruction::FPTrunc:
3384  return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3385  SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3386  case Instruction::FPExt:
3387  return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3388  SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3389  case Instruction::UIToFP:
3390  case Instruction::SIToFP:
3391  return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3392  SrcEC == DstEC;
3393  case Instruction::FPToUI:
3394  case Instruction::FPToSI:
3395  return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3396  SrcEC == DstEC;
3397  case Instruction::PtrToInt:
3398  if (SrcEC != DstEC)
3399  return false;
3400  return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3401  case Instruction::IntToPtr:
3402  if (SrcEC != DstEC)
3403  return false;
3404  return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3405  case Instruction::BitCast: {
3406  PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3407  PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3408 
3409  // BitCast implies a no-op cast of type only. No bits change.
3410  // However, you can't cast pointers to anything but pointers.
3411  if (!SrcPtrTy != !DstPtrTy)
3412  return false;
3413 
3414  // For non-pointer cases, the cast is okay if the source and destination bit
3415  // widths are identical.
3416  if (!SrcPtrTy)
3417  return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3418 
3419  // If both are pointers then the address spaces must match.
3420  if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3421  return false;
3422 
3423  // A vector of pointers must have the same number of elements.
3424  if (SrcIsVec && DstIsVec)
3425  return SrcEC == DstEC;
3426  if (SrcIsVec)
3427  return SrcEC == ElementCount::getFixed(1);
3428  if (DstIsVec)
3429  return DstEC == ElementCount::getFixed(1);
3430 
3431  return true;
3432  }
3433  case Instruction::AddrSpaceCast: {
3434  PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3435  if (!SrcPtrTy)
3436  return false;
3437 
3438  PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3439  if (!DstPtrTy)
3440  return false;
3441 
3442  if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3443  return false;
3444 
3445  return SrcEC == DstEC;
3446  }
3447  }
3448 }
3449 
3451  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3452 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3453  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3454 }
3455 
3457  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3458 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3459  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3460 }
3461 
3463  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3464 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3465  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3466 }
3467 
3469  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3470 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3471  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3472 }
3474  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3475 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3476  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3477 }
3478 
3480  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3481 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3482  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3483 }
3484 
3486  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3487 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3488  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3489 }
3490 
3492  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3493 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3494  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3495 }
3496 
3498  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3499 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3500  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3501 }
3502 
3504  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3505 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3506  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3507 }
3508 
3510  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3511 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3512  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3513 }
3514 
3516  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3517 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3518  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3519 }
3520 
3522  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3523 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3524  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3525 }
3526 
3528  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3529 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3530  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3531 }
3532 
3534  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3535 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3536  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3537 }
3538 
3540  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3541 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3542  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3543 }
3544 
3546  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3547 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3548  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3549 }
3550 
3552  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3553 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3554  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3555 }
3556 
3558  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3559 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3560  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3561 }
3562 
3564  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3565 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3566  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3567 }
3568 
3570  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3571 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3572  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3573 }
3574 
3576  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3577 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3578  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3579 }
3580 
3582  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3583 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3584  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3585 }
3586 
3588  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3589 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3590  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3591 }
3592 
3594  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3595 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3596  assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3597 }
3598 
3600  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3601 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3602  assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3603 }
3604 
3605 //===----------------------------------------------------------------------===//
3606 // CmpInst Classes
3607 //===----------------------------------------------------------------------===//
3608 
3610  Value *RHS, const Twine &Name, Instruction *InsertBefore,
3611  Instruction *FlagsSource)
3612  : Instruction(ty, op,
3613  OperandTraits<CmpInst>::op_begin(this),
3614  OperandTraits<CmpInst>::operands(this),
3615  InsertBefore) {
3616  Op<0>() = LHS;
3617  Op<1>() = RHS;
3618  setPredicate((Predicate)predicate);
3619  setName(Name);
3620  if (FlagsSource)
3621  copyIRFlags(FlagsSource);
3622 }
3623 
3625  Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3626  : Instruction(ty, op,
3627  OperandTraits<CmpInst>::op_begin(this),
3628  OperandTraits<CmpInst>::operands(this),
3629  InsertAtEnd) {
3630  Op<0>() = LHS;
3631  Op<1>() = RHS;
3632  setPredicate((Predicate)predicate);
3633  setName(Name);
3634 }
3635 
3636 CmpInst *
3638  const Twine &Name, Instruction *InsertBefore) {
3639  if (Op == Instruction::ICmp) {
3640  if (InsertBefore)
3641  return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3642  S1, S2, Name);
3643  else
3644  return new ICmpInst(CmpInst::Predicate(predicate),
3645  S1, S2, Name);
3646  }
3647 
3648  if (InsertBefore)
3649  return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3650  S1, S2, Name);
3651  else
3652  return new FCmpInst(CmpInst::Predicate(predicate),
3653  S1, S2, Name);
3654 }
3655 
3656 CmpInst *
3658  const Twine &Name, BasicBlock *InsertAtEnd) {
3659  if (Op == Instruction::ICmp) {
3660  return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3661  S1, S2, Name);
3662  }
3663  return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3664  S1, S2, Name);
3665 }
3666 
3668  if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3669  IC->swapOperands();
3670  else
3671  cast<FCmpInst>(this)->swapOperands();
3672 }
3673 
3675  if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3676  return IC->isCommutative();
3677  return cast<FCmpInst>(this)->isCommutative();
3678 }
3679 
3682  return ICmpInst::isEquality(P);
3684  return FCmpInst::isEquality(P);
3685  llvm_unreachable("Unsupported predicate kind");
3686 }
3687 
3689  switch (pred) {
3690  default: llvm_unreachable("Unknown cmp predicate!");
3691  case ICMP_EQ: return ICMP_NE;
3692  case ICMP_NE: return ICMP_EQ;
3693  case ICMP_UGT: return ICMP_ULE;
3694  case ICMP_ULT: return ICMP_UGE;
3695  case ICMP_UGE: return ICMP_ULT;
3696  case ICMP_ULE: return ICMP_UGT;
3697  case ICMP_SGT: return ICMP_SLE;
3698  case ICMP_SLT: return ICMP_SGE;
3699  case ICMP_SGE: return ICMP_SLT;
3700  case ICMP_SLE: return ICMP_SGT;
3701 
3702  case FCMP_OEQ: return FCMP_UNE;
3703  case FCMP_ONE: return FCMP_UEQ;
3704  case FCMP_OGT: return FCMP_ULE;
3705  case FCMP_OLT: return FCMP_UGE;
3706  case FCMP_OGE: return FCMP_ULT;
3707  case FCMP_OLE: return FCMP_UGT;
3708  case FCMP_UEQ: return FCMP_ONE;
3709  case FCMP_UNE: return FCMP_OEQ;
3710  case FCMP_UGT: return FCMP_OLE;
3711  case FCMP_ULT: return FCMP_OGE;
3712  case FCMP_UGE: return FCMP_OLT;
3713  case FCMP_ULE: return FCMP_OGT;
3714  case FCMP_ORD: return FCMP_UNO;
3715  case FCMP_UNO: return FCMP_ORD;
3716  case FCMP_TRUE: return FCMP_FALSE;
3717  case FCMP_FALSE: return FCMP_TRUE;
3718  }
3719 }
3720 
3722  switch (Pred) {
3723  default: return "unknown";
3724  case FCmpInst::FCMP_FALSE: return "false";
3725  case FCmpInst::FCMP_OEQ: return "oeq";
3726  case FCmpInst::FCMP_OGT: return "ogt";
3727  case FCmpInst::FCMP_OGE: return "oge";
3728  case FCmpInst::FCMP_OLT: return "olt";
3729  case FCmpInst::FCMP_OLE: return "ole";
3730  case FCmpInst::FCMP_ONE: return "one";
3731  case FCmpInst::FCMP_ORD: return "ord";
3732  case FCmpInst::FCMP_UNO: return "uno";
3733  case FCmpInst::FCMP_UEQ: return "ueq";
3734  case FCmpInst::FCMP_UGT: return "ugt";
3735  case FCmpInst::FCMP_UGE: return "uge";
3736  case FCmpInst::FCMP_ULT: return "ult";
3737  case FCmpInst::FCMP_ULE: return "ule";
3738  case FCmpInst::FCMP_UNE: return "une";
3739  case FCmpInst::FCMP_TRUE: return "true";
3740  case ICmpInst::ICMP_EQ: return "eq";
3741  case ICmpInst::ICMP_NE: return "ne";
3742  case ICmpInst::ICMP_SGT: return "sgt";
3743  case ICmpInst::ICMP_SGE: return "sge";
3744  case ICmpInst::ICMP_SLT: return "slt";
3745  case ICmpInst::ICMP_SLE: return "sle";
3746  case ICmpInst::ICMP_UGT: return "ugt";
3747  case ICmpInst::ICMP_UGE: return "uge";
3748  case ICmpInst::ICMP_ULT: return "ult";
3749  case ICmpInst::ICMP_ULE: return "ule";
3750  }
3751 }
3752 
3754  switch (pred) {
3755  default: llvm_unreachable("Unknown icmp predicate!");
3756  case ICMP_EQ: case ICMP_NE:
3757  case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3758  return pred;
3759  case ICMP_UGT: return ICMP_SGT;
3760  case ICMP_ULT: return ICMP_SLT;
3761  case ICMP_UGE: return ICMP_SGE;
3762  case ICMP_ULE: return ICMP_SLE;
3763  }
3764 }
3765 
3767  switch (pred) {
3768  default: llvm_unreachable("Unknown icmp predicate!");
3769  case ICMP_EQ: case ICMP_NE:
3770  case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3771  return pred;
3772  case ICMP_SGT: return ICMP_UGT;
3773  case ICMP_SLT: return ICMP_ULT;
3774  case ICMP_SGE: return ICMP_UGE;
3775  case ICMP_SLE: return ICMP_ULE;
3776  }
3777 }
3778 
3780  switch (pred) {
3781  default: llvm_unreachable("Unknown cmp predicate!");
3782  case ICMP_EQ: case ICMP_NE:
3783  return pred;
3784  case ICMP_SGT: return ICMP_SLT;
3785  case ICMP_SLT: return ICMP_SGT;
3786  case ICMP_SGE: return ICMP_SLE;
3787  case ICMP_SLE: return ICMP_SGE;
3788  case ICMP_UGT: return ICMP_ULT;
3789  case ICMP_ULT: return ICMP_UGT;
3790  case ICMP_UGE: return ICMP_ULE;
3791  case ICMP_ULE: return ICMP_UGE;
3792 
3793  case FCMP_FALSE: case FCMP_TRUE:
3794  case FCMP_OEQ: case FCMP_ONE:
3795  case FCMP_UEQ: case FCMP_UNE:
3796  case FCMP_ORD: case FCMP_UNO:
3797  return pred;
3798  case FCMP_OGT: return FCMP_OLT;
3799  case FCMP_OLT: return FCMP_OGT;
3800  case FCMP_OGE: return FCMP_OLE;
3801  case FCMP_OLE: return FCMP_OGE;
3802  case FCMP_UGT: return FCMP_ULT;
3803  case FCMP_ULT: return FCMP_UGT;
3804  case FCMP_UGE: return FCMP_ULE;
3805  case FCMP_ULE: return FCMP_UGE;
3806  }
3807 }
3808 
3810  switch (pred) {
3811  case ICMP_SGE:
3812  case ICMP_SLE:
3813  case ICMP_UGE:
3814  case ICMP_ULE:
3815  case FCMP_OGE:
3816  case FCMP_OLE:
3817  case FCMP_UGE:
3818  case FCMP_ULE:
3819  return true;
3820  default:
3821  return false;
3822  }
3823 }
3824 
3826  switch (pred) {
3827  case ICMP_SGT:
3828  case ICMP_SLT:
3829  case ICMP_UGT:
3830  case ICMP_ULT:
3831  case FCMP_OGT:
3832  case FCMP_OLT:
3833  case FCMP_UGT:
3834  case FCMP_ULT:
3835  return true;
3836  default:
3837  return false;
3838  }
3839 }
3840 
3842  switch (pred) {
3843  case ICMP_SGE:
3844  return ICMP_SGT;
3845  case ICMP_SLE:
3846  return ICMP_SLT;
3847  case ICMP_UGE:
3848  return ICMP_UGT;
3849  case ICMP_ULE:
3850  return ICMP_ULT;
3851  case FCMP_OGE:
3852  return FCMP_OGT;
3853  case FCMP_OLE:
3854  return FCMP_OLT;
3855  case FCMP_UGE:
3856  return FCMP_UGT;
3857  case FCMP_ULE:
3858  return FCMP_ULT;
3859  default:
3860  return pred;
3861  }
3862 }
3863 
3865  switch (pred) {
3866  case ICMP_SGT:
3867  return ICMP_SGE;
3868  case ICMP_SLT:
3869  return ICMP_SLE;
3870  case ICMP_UGT:
3871  return ICMP_UGE;
3872  case ICMP_ULT:
3873  return ICMP_ULE;
3874  case FCMP_OGT:
3875  return FCMP_OGE;
3876  case FCMP_OLT:
3877  return FCMP_OLE;
3878  case FCMP_UGT:
3879  return FCMP_UGE;
3880  case FCMP_ULT:
3881  return FCMP_ULE;
3882  default:
3883  return pred;
3884  }
3885 }
3886 
3888  assert(CmpInst::isRelational(pred) && "Call only with relational predicate!");
3889 
3890  if (isStrictPredicate(pred))
3891  return getNonStrictPredicate(pred);
3893  return getStrictPredicate(pred);
3894 
3895  llvm_unreachable("Unknown predicate!");
3896 }
3897 
3899  assert(CmpInst::isUnsigned(pred) && "Call only with unsigned predicates!");
3900 
3901  switch (pred) {
3902  default:
3903  llvm_unreachable("Unknown predicate!");
3904  case CmpInst::ICMP_ULT:
3905  return CmpInst::ICMP_SLT;
3906  case CmpInst::ICMP_ULE:
3907  return CmpInst::ICMP_SLE;
3908  case CmpInst::ICMP_UGT:
3909  return CmpInst::ICMP_SGT;
3910  case CmpInst::ICMP_UGE:
3911  return CmpInst::ICMP_SGE;
3912  }
3913 }
3914 
3916  assert(CmpInst::isSigned(pred) && "Call only with signed predicates!");
3917 
3918  switch (pred) {
3919  default:
3920  llvm_unreachable("Unknown predicate!");
3921  case CmpInst::ICMP_SLT:
3922  return CmpInst::ICMP_ULT;
3923  case CmpInst::ICMP_SLE:
3924  return CmpInst::ICMP_ULE;
3925  case CmpInst::ICMP_SGT:
3926  return CmpInst::ICMP_UGT;
3927  case CmpInst::ICMP_SGE:
3928  return CmpInst::ICMP_UGE;
3929  }
3930 }
3931 
3933  switch (predicate) {
3934  default: return false;
3936  case ICmpInst::ICMP_UGE: return true;
3937  }
3938 }
3939 
3940 bool CmpInst::isSigned(Predicate predicate) {
3941  switch (predicate) {
3942  default: return false;
3944  case ICmpInst::ICMP_SGE: return true;
3945  }
3946 }
3947 
3950  "Call only with non-equality predicates!");
3951 
3952  if (isSigned(pred))
3953  return getUnsignedPredicate(pred);
3954  if (isUnsigned(pred))
3955  return getSignedPredicate(pred);
3956 
3957  llvm_unreachable("Unknown predicate!");
3958 }
3959 
3961  switch (predicate) {
3962  default: return false;
3965  case FCmpInst::FCMP_ORD: return true;
3966  }
3967 }
3968 
3970  switch (predicate) {
3971  default: return false;
3974  case FCmpInst::FCMP_UNO: return true;
3975  }
3976 }
3977 
3979  switch(predicate) {
3980  default: return false;
3981  case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3982  case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3983  }
3984 }
3985 
3987  switch(predicate) {
3988  case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3989  case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3990  default: return false;
3991  }
3992 }
3993 
3995  // If the predicates match, then we know the first condition implies the
3996  // second is true.
3997  if (Pred1 == Pred2)
3998  return true;
3999 
4000  switch (Pred1) {
4001  default:
4002  break;
4003  case ICMP_EQ:
4004  // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
4005  return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
4006  Pred2 == ICMP_SLE;
4007  case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
4008  return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
4009  case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
4010  return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
4011  case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
4012  return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
4013  case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
4014  return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
4015  }
4016  return false;
4017 }
4018 
4020  return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
4021 }
4022 
4023 //===----------------------------------------------------------------------===//
4024 // SwitchInst Implementation
4025 //===----------------------------------------------------------------------===//
4026 
4027 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
4028  assert(Value && Default && NumReserved);
4029  ReservedSpace = NumReserved;
4031  allocHungoffUses(ReservedSpace);
4032 
4033  Op<0>() = Value;
4034  Op<1>() = Default;
4035 }
4036 
4037 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
4038 /// switch on and a default destination. The number of additional cases can
4039 /// be specified here to make memory allocation more efficient. This
4040 /// constructor can also autoinsert before another instruction.
4041 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4042  Instruction *InsertBefore)
4043  : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4044  nullptr, 0, InsertBefore) {
4045  init(Value, Default, 2+NumCases*2);
4046 }
4047 
4048 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
4049 /// switch on and a default destination. The number of additional cases can
4050 /// be specified here to make memory allocation more efficient. This
4051 /// constructor also autoinserts at the end of the specified BasicBlock.
4052 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4053  BasicBlock *InsertAtEnd)
4054  : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4055  nullptr, 0, InsertAtEnd) {
4056  init(Value, Default, 2+NumCases*2);
4057 }
4058 
4059 SwitchInst::SwitchInst(const SwitchInst &SI)
4060  : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
4061  init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
4062  setNumHungOffUseOperands(SI.getNumOperands());
4063  Use *OL = getOperandList();
4064  const Use *InOL = SI.getOperandList();
4065  for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
4066  OL[i] = InOL[i];
4067  OL[i+1] = InOL[i+1];
4068  }
4069  SubclassOptionalData = SI.SubclassOptionalData;
4070 }
4071 
4072 /// addCase - Add an entry to the switch instruction...
4073 ///
4075  unsigned NewCaseIdx = getNumCases();
4076  unsigned OpNo = getNumOperands();
4077  if (OpNo+2 > ReservedSpace)
4078  growOperands(); // Get more space!
4079  // Initialize some new operands.
4080  assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
4081  setNumHungOffUseOperands(OpNo+2);
4082  CaseHandle Case(this, NewCaseIdx);
4083  Case.setValue(OnVal);
4084  Case.setSuccessor(Dest);
4085 }
4086 
4087 /// removeCase - This method removes the specified case and its successor
4088 /// from the switch instruction.
4090  unsigned idx = I->getCaseIndex();
4091 
4092  assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
4093 
4094  unsigned NumOps = getNumOperands();
4095  Use *OL = getOperandList();
4096 
4097  // Overwrite this case with the end of the list.
4098  if (2 + (idx + 1) * 2 != NumOps) {
4099  OL[2 + idx * 2] = OL[NumOps - 2];
4100  OL[2 + idx * 2 + 1] = OL[NumOps - 1];
4101  }
4102 
4103  // Nuke the last value.
4104  OL[NumOps-2].set(nullptr);
4105  OL[NumOps-2+1].set(nullptr);
4106  setNumHungOffUseOperands(NumOps-2);
4107 
4108  return CaseIt(this, idx);
4109 }
4110 
4111 /// growOperands - grow operands - This grows the operand list in response
4112 /// to a push_back style of operation. This grows the number of ops by 3 times.
4113 ///
4114 void SwitchInst::growOperands() {
4115  unsigned e = getNumOperands();
4116  unsigned NumOps = e*3;
4117 
4118  ReservedSpace = NumOps;
4119  growHungoffUses(ReservedSpace);
4120 }
4121 
4122 MDNode *
4124  if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof))
4125  if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0)))
4126  if (MDName->getString() == "branch_weights")
4127  return ProfileData;
4128  return nullptr;
4129 }
4130 
4132  assert(Changed && "called only if metadata has changed");
4133 
4134  if (!Weights)
4135  return nullptr;
4136 
4137  assert(SI.getNumSuccessors() == Weights->size() &&
4138  "num of prof branch_weights must accord with num of successors");
4139 
4140  bool AllZeroes =
4141  all_of(Weights.getValue(), [](uint32_t W) { return W == 0; });
4142 
4143  if (AllZeroes || Weights.getValue().size() < 2)
4144  return nullptr;
4145 
4146  return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
4147 }
4148 
4150  MDNode *ProfileData = getProfBranchWeightsMD(SI);
4151  if (!ProfileData)
4152  return;
4153 
4154  if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) {
4155  llvm_unreachable("number of prof branch_weights metadata operands does "
4156  "not correspond to number of succesors");
4157  }
4158 
4159  SmallVector<uint32_t, 8> Weights;
4160  for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) {
4161  ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI));
4162  uint32_t CW = C->getValue().getZExtValue();
4163  Weights.push_back(CW);
4164  }
4165  this->Weights = std::move(Weights);
4166 }
4167 
4170  if (Weights) {
4171  assert(SI.getNumSuccessors() == Weights->size() &&
4172  "num of prof branch_weights must accord with num of successors");
4173  Changed = true;
4174  // Copy the last case to the place of the removed one and shrink.
4175  // This is tightly coupled with the way SwitchInst::removeCase() removes
4176  // the cases in SwitchInst::removeCase(CaseIt).
4177  Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back();
4178  Weights.getValue().pop_back();
4179  }
4180  return SI.removeCase(I);
4181 }
4182 
4184  ConstantInt *OnVal, BasicBlock *Dest,
4186  SI.addCase(OnVal, Dest);
4187 
4188  if (!Weights && W && *W) {
4189  Changed = true;
4190  Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4191  Weights.getValue()[SI.getNumSuccessors() - 1] = *W;
4192  } else if (Weights) {
4193  Changed = true;
4194  Weights.getValue().push_back(W ? *W : 0);
4195  }
4196  if (Weights)
4197  assert(SI.getNumSuccessors() == Weights->size() &&
4198  "num of prof branch_weights must accord with num of successors");
4199 }
4200 
4203  // Instruction is erased. Mark as unchanged to not touch it in the destructor.
4204  Changed = false;
4205  if (Weights)
4206  Weights->resize(0);
4207  return SI.eraseFromParent();
4208 }
4209 
4212  if (!Weights)
4213  return None;
4214  return Weights.getValue()[idx];
4215 }
4216 
4219  if (!W)
4220  return;
4221 
4222  if (!Weights && *W)
4223  Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4224 
4225  if (Weights) {
4226  auto &OldW = Weights.getValue()[idx];
4227  if (*W != OldW) {
4228  Changed = true;
4229  OldW = *W;
4230  }
4231  }
4232 }
4233 
4236  unsigned idx) {
4237  if (MDNode *ProfileData = getProfBranchWeightsMD(SI))
4238  if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4239  return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4240  ->getValue()
4241  .getZExtValue();
4242 
4243  return None;
4244 }
4245 
4246 //===----------------------------------------------------------------------===//
4247 // IndirectBrInst Implementation
4248 //===----------------------------------------------------------------------===//
4249 
4250 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4251  assert(Address && Address->getType()->isPointerTy() &&
4252  "Address of indirectbr must be a pointer");
4253  ReservedSpace = 1+NumDests;
4255  allocHungoffUses(ReservedSpace);
4256 
4257  Op<0>() = Address;
4258 }
4259 
4260 
4261 /// growOperands - grow operands - This grows the operand list in response
4262 /// to a push_back style of operation. This grows the number of ops by 2 times.
4263 ///
4264 void IndirectBrInst::growOperands() {
4265  unsigned e = getNumOperands();
4266  unsigned NumOps = e*2;
4267 
4268  ReservedSpace = NumOps;
4269  growHungoffUses(ReservedSpace);
4270 }
4271 
4272 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4273  Instruction *InsertBefore)
4274  : Instruction(Type::getVoidTy(Address->getContext()),
4275  Instruction::IndirectBr, nullptr, 0, InsertBefore) {
4276  init(Address, NumCases);
4277 }
4278 
4279 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4280  BasicBlock *InsertAtEnd)
4281  : Instruction(Type::getVoidTy(Address->getContext()),
4282  Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
4283  init(Address, NumCases);
4284 }
4285 
4286 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4287  : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4288  nullptr, IBI.getNumOperands()) {
4289  allocHungoffUses(IBI.getNumOperands());
4290  Use *OL = getOperandList();
4291  const Use *InOL = IBI.getOperandList();
4292  for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4293  OL[i] = InOL[i];
4294  SubclassOptionalData = IBI.SubclassOptionalData;
4295 }
4296 
4297 /// addDestination - Add a destination.
4298 ///
4300  unsigned OpNo = getNumOperands();
4301  if (OpNo+1 > ReservedSpace)
4302  growOperands(); // Get more space!
4303  // Initialize some new operands.
4304  assert(OpNo < ReservedSpace && "Growing didn't work!");
4305  setNumHungOffUseOperands(OpNo+1);
4306  getOperandList()[OpNo] = DestBB;
4307 }
4308 
4309 /// removeDestination - This method removes the specified successor from the
4310 /// indirectbr instruction.
4312  assert(idx < getNumOperands()-1 && "Successor index out of range!");
4313 
4314  unsigned NumOps = getNumOperands();
4315  Use *OL = getOperandList();
4316 
4317  // Replace this value with the last one.
4318  OL[idx+1] = OL[NumOps-1];
4319 
4320  // Nuke the last value.
4321  OL[NumOps-1].set(nullptr);
4322  setNumHungOffUseOperands(NumOps-1);
4323 }
4324 
4325 //===----------------------------------------------------------------------===//
4326 // FreezeInst Implementation
4327 //===----------------------------------------------------------------------===//
4328 
4330  const Twine &Name, Instruction *InsertBefore)
4331  : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) {
4332  setName(Name);
4333 }
4334 
4336  const Twine &Name, BasicBlock *InsertAtEnd)
4337  : UnaryInstruction(S->getType(), Freeze, S, InsertAtEnd) {
4338  setName(Name);
4339 }
4340 
4341 //===----------------------------------------------------------------------===//
4342 // cloneImpl() implementations
4343 //===----------------------------------------------------------------------===//
4344 
4345 // Define these methods here so vtables don't get emitted into every translation
4346 // unit that uses these classes.
4347 
4349  return new (getNumOperands()) GetElementPtrInst(*this);
4350 }
4351 
4353  return Create(getOpcode(), Op<0>());
4354 }
4355 
4357  return Create(getOpcode(), Op<0>(), Op<1>());
4358 }
4359 
4361  return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4362 }
4363 
4365  return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4366 }
4367 
4369  return new ExtractValueInst(*this);
4370 }
4371 
4373  return new InsertValueInst(*this);
4374 }
4375 
4377  AllocaInst *Result =
4378  new AllocaInst(getAllocatedType(), getType()->getAddressSpace(),
4379  getOperand(0), getAlign());
4380  Result->setUsedWithInAlloca(isUsedWithInAlloca());
4381  Result->setSwiftError(isSwiftError());
4382  return Result;
4383 }
4384 
4386  return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4388 }
4389 
4391  return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(),
4393 }
4394 
4396  AtomicCmpXchgInst *Result = new AtomicCmpXchgInst(
4397  getOperand(0), getOperand(1), getOperand(2), getAlign(),
4399  Result->setVolatile(isVolatile());
4400  Result->setWeak(isWeak());
4401  return Result;
4402 }
4403 
4405  AtomicRMWInst *Result =
4408  Result->setVolatile(isVolatile());
4409  return Result;
4410 }
4411 
4413  return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4414 }
4415 
4417  return new TruncInst(getOperand(0), getType());
4418 }
4419 
4421  return new ZExtInst(getOperand(0), getType());
4422 }
4423 
4425  return new SExtInst(getOperand(0), getType());
4426 }
4427