LLVM  15.0.0git
Instructions.cpp
Go to the documentation of this file.
1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
37 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/TypeSize.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <vector>
45 
46 using namespace llvm;
47 
49  "disable-i2p-p2i-opt", cl::init(false),
50  cl::desc("Disables inttoptr/ptrtoint roundtrip optimization"));
51 
52 //===----------------------------------------------------------------------===//
53 // AllocaInst Class
54 //===----------------------------------------------------------------------===//
55 
58  TypeSize Size = DL.getTypeAllocSizeInBits(getAllocatedType());
59  if (isArrayAllocation()) {
60  auto *C = dyn_cast<ConstantInt>(getArraySize());
61  if (!C)
62  return None;
63  assert(!Size.isScalable() && "Array elements cannot have a scalable size");
64  Size *= C->getZExtValue();
65  }
66  return Size;
67 }
68 
69 //===----------------------------------------------------------------------===//
70 // SelectInst Class
71 //===----------------------------------------------------------------------===//
72 
73 /// areInvalidOperands - Return a string if the specified operands are invalid
74 /// for a select operation, otherwise return null.
75 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
76  if (Op1->getType() != Op2->getType())
77  return "both values to select must have same type";
78 
79  if (Op1->getType()->isTokenTy())
80  return "select values cannot have token type";
81 
82  if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
83  // Vector select.
84  if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
85  return "vector select condition element type must be i1";
86  VectorType *ET = dyn_cast<VectorType>(Op1->getType());
87  if (!ET)
88  return "selected values for vector select must be vectors";
89  if (ET->getElementCount() != VT->getElementCount())
90  return "vector select requires selected vectors to have "
91  "the same vector length as select condition";
92  } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
93  return "select condition must be i1 or <n x i1>";
94  }
95  return nullptr;
96 }
97 
98 //===----------------------------------------------------------------------===//
99 // PHINode Class
100 //===----------------------------------------------------------------------===//
101 
102 PHINode::PHINode(const PHINode &PN)
103  : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
104  ReservedSpace(PN.getNumOperands()) {
106  std::copy(PN.op_begin(), PN.op_end(), op_begin());
107  std::copy(PN.block_begin(), PN.block_end(), block_begin());
109 }
110 
111 // removeIncomingValue - Remove an incoming value. This is useful if a
112 // predecessor basic block is deleted.
113 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
114  Value *Removed = getIncomingValue(Idx);
115 
116  // Move everything after this operand down.
117  //
118  // FIXME: we could just swap with the end of the list, then erase. However,
119  // clients might not expect this to happen. The code as it is thrashes the
120  // use/def lists, which is kinda lame.
121  std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
122  std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
123 
124  // Nuke the last value.
125  Op<-1>().set(nullptr);
127 
128  // If the PHI node is dead, because it has zero entries, nuke it now.
129  if (getNumOperands() == 0 && DeletePHIIfEmpty) {
130  // If anyone is using this PHI, make them use a dummy value instead...
132  eraseFromParent();
133  }
134  return Removed;
135 }
136 
137 /// growOperands - grow operands - This grows the operand list in response
138 /// to a push_back style of operation. This grows the number of ops by 1.5
139 /// times.
140 ///
141 void PHINode::growOperands() {
142  unsigned e = getNumOperands();
143  unsigned NumOps = e + e / 2;
144  if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
145 
146  ReservedSpace = NumOps;
147  growHungoffUses(ReservedSpace, /* IsPhi */ true);
148 }
149 
150 /// hasConstantValue - If the specified PHI node always merges together the same
151 /// value, return the value, otherwise return null.
153  // Exploit the fact that phi nodes always have at least one entry.
154  Value *ConstantValue = getIncomingValue(0);
155  for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
156  if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
157  if (ConstantValue != this)
158  return nullptr; // Incoming values not all the same.
159  // The case where the first value is this PHI.
160  ConstantValue = getIncomingValue(i);
161  }
162  if (ConstantValue == this)
163  return UndefValue::get(getType());
164  return ConstantValue;
165 }
166 
167 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
168 /// together the same value, assuming that undefs result in the same value as
169 /// non-undefs.
170 /// Unlike \ref hasConstantValue, this does not return a value because the
171 /// unique non-undef incoming value need not dominate the PHI node.
173  Value *ConstantValue = nullptr;
174  for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
175  Value *Incoming = getIncomingValue(i);
176  if (Incoming != this && !isa<UndefValue>(Incoming)) {
177  if (ConstantValue && ConstantValue != Incoming)
178  return false;
179  ConstantValue = Incoming;
180  }
181  }
182  return true;
183 }
184 
185 //===----------------------------------------------------------------------===//
186 // LandingPadInst Implementation
187 //===----------------------------------------------------------------------===//
188 
189 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
190  const Twine &NameStr, Instruction *InsertBefore)
191  : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
192  init(NumReservedValues, NameStr);
193 }
194 
195 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
196  const Twine &NameStr, BasicBlock *InsertAtEnd)
197  : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
198  init(NumReservedValues, NameStr);
199 }
200 
201 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
202  : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
203  LP.getNumOperands()),
204  ReservedSpace(LP.getNumOperands()) {
206  Use *OL = getOperandList();
207  const Use *InOL = LP.getOperandList();
208  for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
209  OL[I] = InOL[I];
210 
211  setCleanup(LP.isCleanup());
212 }
213 
214 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
215  const Twine &NameStr,
216  Instruction *InsertBefore) {
217  return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
218 }
219 
220 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
221  const Twine &NameStr,
222  BasicBlock *InsertAtEnd) {
223  return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
224 }
225 
226 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
227  ReservedSpace = NumReservedValues;
229  allocHungoffUses(ReservedSpace);
230  setName(NameStr);
231  setCleanup(false);
232 }
233 
234 /// growOperands - grow operands - This grows the operand list in response to a
235 /// push_back style of operation. This grows the number of ops by 2 times.
236 void LandingPadInst::growOperands(unsigned Size) {
237  unsigned e = getNumOperands();
238  if (ReservedSpace >= e + Size) return;
239  ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
240  growHungoffUses(ReservedSpace);
241 }
242 
244  unsigned OpNo = getNumOperands();
245  growOperands(1);
246  assert(OpNo < ReservedSpace && "Growing didn't work!");
248  getOperandList()[OpNo] = Val;
249 }
250 
251 //===----------------------------------------------------------------------===//
252 // CallBase Implementation
253 //===----------------------------------------------------------------------===//
254 
256  Instruction *InsertPt) {
257  switch (CB->getOpcode()) {
258  case Instruction::Call:
259  return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt);
260  case Instruction::Invoke:
261  return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt);
262  case Instruction::CallBr:
263  return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt);
264  default:
265  llvm_unreachable("Unknown CallBase sub-class!");
266  }
267 }
268 
270  Instruction *InsertPt) {
272  for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) {
273  auto ChildOB = CI->getOperandBundleAt(i);
274  if (ChildOB.getTagName() != OpB.getTag())
275  OpDefs.emplace_back(ChildOB);
276  }
277  OpDefs.emplace_back(OpB);
278  return CallBase::Create(CI, OpDefs, InsertPt);
279 }
280 
281 
283 
285  assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
286  return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
287 }
288 
290  const Value *V = getCalledOperand();
291  if (isa<Function>(V) || isa<Constant>(V))
292  return false;
293  return !isInlineAsm();
294 }
295 
296 /// Tests if this call site must be tail call optimized. Only a CallInst can
297 /// be tail call optimized.
299  if (auto *CI = dyn_cast<CallInst>(this))
300  return CI->isMustTailCall();
301  return false;
302 }
303 
304 /// Tests if this call site is marked as a tail call.
305 bool CallBase::isTailCall() const {
306  if (auto *CI = dyn_cast<CallInst>(this))
307  return CI->isTailCall();
308  return false;
309 }
310 
312  if (auto *F = getCalledFunction())
313  return F->getIntrinsicID();
315 }
316 
318  if (hasRetAttr(Attribute::NonNull))
319  return true;
320 
321  if (getRetDereferenceableBytes() > 0 &&
322  !NullPointerIsDefined(getCaller(), getType()->getPointerAddressSpace()))
323  return true;
324 
325  return false;
326 }
327 
329  unsigned Index;
330 
333  if (const Function *F = getCalledFunction())
334  if (F->getAttributes().hasAttrSomewhere(Kind, &Index))
336 
337  return nullptr;
338 }
339 
340 /// Determine whether the argument or parameter has the given attribute.
341 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
342  assert(ArgNo < arg_size() && "Param index out of bounds!");
343 
344  if (Attrs.hasParamAttr(ArgNo, Kind))
345  return true;
346  if (const Function *F = getCalledFunction())
347  return F->getAttributes().hasParamAttr(ArgNo, Kind);
348  return false;
349 }
350 
351 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
352  Value *V = getCalledOperand();
353  if (auto *CE = dyn_cast<ConstantExpr>(V))
354  if (CE->getOpcode() == BitCast)
355  V = CE->getOperand(0);
356 
357  if (auto *F = dyn_cast<Function>(V))
358  return F->getAttributes().hasFnAttr(Kind);
359 
360  return false;
361 }
362 
363 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
364  Value *V = getCalledOperand();
365  if (auto *CE = dyn_cast<ConstantExpr>(V))
366  if (CE->getOpcode() == BitCast)
367  V = CE->getOperand(0);
368 
369  if (auto *F = dyn_cast<Function>(V))
370  return F->getAttributes().hasFnAttr(Kind);
371 
372  return false;
373 }
374 
375 template <typename AK>
376 Attribute CallBase::getFnAttrOnCalledFunction(AK Kind) const {
377  // Operand bundles override attributes on the called function, but don't
378  // override attributes directly present on the call instruction.
380  return Attribute();
381  Value *V = getCalledOperand();
382  if (auto *CE = dyn_cast<ConstantExpr>(V))
383  if (CE->getOpcode() == BitCast)
384  V = CE->getOperand(0);
385 
386  if (auto *F = dyn_cast<Function>(V))
387  return F->getAttributes().getFnAttr(Kind);
388 
389  return Attribute();
390 }
391 
392 template Attribute
393 CallBase::getFnAttrOnCalledFunction(Attribute::AttrKind Kind) const;
394 template Attribute CallBase::getFnAttrOnCalledFunction(StringRef Kind) const;
395 
397  SmallVectorImpl<OperandBundleDef> &Defs) const {
398  for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
400 }
401 
404  const unsigned BeginIndex) {
405  auto It = op_begin() + BeginIndex;
406  for (auto &B : Bundles)
407  It = std::copy(B.input_begin(), B.input_end(), It);
408 
409  auto *ContextImpl = getContext().pImpl;
410  auto BI = Bundles.begin();
411  unsigned CurrentIndex = BeginIndex;
412 
413  for (auto &BOI : bundle_op_infos()) {
414  assert(BI != Bundles.end() && "Incorrect allocation?");
415 
416  BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
417  BOI.Begin = CurrentIndex;
418  BOI.End = CurrentIndex + BI->input_size();
419  CurrentIndex = BOI.End;
420  BI++;
421  }
422 
423  assert(BI == Bundles.end() && "Incorrect allocation?");
424 
425  return It;
426 }
427 
429  /// When there isn't many bundles, we do a simple linear search.
430  /// Else fallback to a binary-search that use the fact that bundles usually
431  /// have similar number of argument to get faster convergence.
433  for (auto &BOI : bundle_op_infos())
434  if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
435  return BOI;
436 
437  llvm_unreachable("Did not find operand bundle for operand!");
438  }
439 
440  assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles");
442  OpIdx < std::prev(bundle_op_info_end())->End &&
443  "The Idx isn't in the operand bundle");
444 
445  /// We need a decimal number below and to prevent using floating point numbers
446  /// we use an intergal value multiplied by this constant.
447  constexpr unsigned NumberScaling = 1024;
448 
451  bundle_op_iterator Current = Begin;
452 
453  while (Begin != End) {
454  unsigned ScaledOperandPerBundle =
455  NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin);
456  Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) /
457  ScaledOperandPerBundle);
458  if (Current >= End)
459  Current = std::prev(End);
460  assert(Current < End && Current >= Begin &&
461  "the operand bundle doesn't cover every value in the range");
462  if (OpIdx >= Current->Begin && OpIdx < Current->End)
463  break;
464  if (OpIdx >= Current->End)
465  Begin = Current + 1;
466  else
467  End = Current;
468  }
469 
470  assert(OpIdx >= Current->Begin && OpIdx < Current->End &&
471  "the operand bundle doesn't cover every value in the range");
472  return *Current;
473 }
474 
477  Instruction *InsertPt) {
478  if (CB->getOperandBundle(ID))
479  return CB;
480 
482  CB->getOperandBundlesAsDefs(Bundles);
483  Bundles.push_back(OB);
484  return Create(CB, Bundles, InsertPt);
485 }
486 
488  Instruction *InsertPt) {
490  bool CreateNew = false;
491 
492  for (unsigned I = 0, E = CB->getNumOperandBundles(); I != E; ++I) {
493  auto Bundle = CB->getOperandBundleAt(I);
494  if (Bundle.getTagID() == ID) {
495  CreateNew = true;
496  continue;
497  }
498  Bundles.emplace_back(Bundle);
499  }
500 
501  return CreateNew ? Create(CB, Bundles, InsertPt) : CB;
502 }
503 
505  // Implementation note: this is a conservative implementation of operand
506  // bundle semantics, where *any* non-assume operand bundle (other than
507  // ptrauth) forces a callsite to be at least readonly.
509  getIntrinsicID() != Intrinsic::assume;
510 }
511 
512 //===----------------------------------------------------------------------===//
513 // CallInst Implementation
514 //===----------------------------------------------------------------------===//
515 
516 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
517  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
518  this->FTy = FTy;
519  assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
520  "NumOperands not set up?");
521 
522 #ifndef NDEBUG
523  assert((Args.size() == FTy->getNumParams() ||
524  (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
525  "Calling a function with bad signature!");
526 
527  for (unsigned i = 0; i != Args.size(); ++i)
528  assert((i >= FTy->getNumParams() ||
529  FTy->getParamType(i) == Args[i]->getType()) &&
530  "Calling a function with a bad signature!");
531 #endif
532 
533  // Set operands in order of their index to match use-list-order
534  // prediction.
536  setCalledOperand(Func);
537 
538  auto It = populateBundleOperandInfos(Bundles, Args.size());
539  (void)It;
540  assert(It + 1 == op_end() && "Should add up!");
541 
542  setName(NameStr);
543 }
544 
545 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
546  this->FTy = FTy;
547  assert(getNumOperands() == 1 && "NumOperands not set up?");
548  setCalledOperand(Func);
549 
550  assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
551 
552  setName(NameStr);
553 }
554 
555 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
556  Instruction *InsertBefore)
557  : CallBase(Ty->getReturnType(), Instruction::Call,
558  OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
559  init(Ty, Func, Name);
560 }
561 
562 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
563  BasicBlock *InsertAtEnd)
564  : CallBase(Ty->getReturnType(), Instruction::Call,
565  OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
566  init(Ty, Func, Name);
567 }
568 
569 CallInst::CallInst(const CallInst &CI)
570  : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
571  OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
572  CI.getNumOperands()) {
573  setTailCallKind(CI.getTailCallKind());
575 
576  std::copy(CI.op_begin(), CI.op_end(), op_begin());
580 }
581 
583  Instruction *InsertPt) {
584  std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
585 
586  auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(),
587  Args, OpB, CI->getName(), InsertPt);
588  NewCI->setTailCallKind(CI->getTailCallKind());
589  NewCI->setCallingConv(CI->getCallingConv());
590  NewCI->SubclassOptionalData = CI->SubclassOptionalData;
591  NewCI->setAttributes(CI->getAttributes());
592  NewCI->setDebugLoc(CI->getDebugLoc());
593  return NewCI;
594 }
595 
596 // Update profile weight for call instruction by scaling it using the ratio
597 // of S/T. The meaning of "branch_weights" meta data for call instruction is
598 // transfered to represent call count.
600  auto *ProfileData = getMetadata(LLVMContext::MD_prof);
601  if (ProfileData == nullptr)
602  return;
603 
604  auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
605  if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
606  !ProfDataName->getString().equals("VP")))
607  return;
608 
609  if (T == 0) {
610  LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
611  "div by 0. Ignoring. Likely the function "
612  << getParent()->getParent()->getName()
613  << " has 0 entry count, and contains call instructions "
614  "with non-zero prof info.");
615  return;
616  }
617 
618  MDBuilder MDB(getContext());
620  Vals.push_back(ProfileData->getOperand(0));
621  APInt APS(128, S), APT(128, T);
622  if (ProfDataName->getString().equals("branch_weights") &&
623  ProfileData->getNumOperands() > 0) {
624  // Using APInt::div may be expensive, but most cases should fit 64 bits.
625  APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
626  ->getValue()
627  .getZExtValue());
628  Val *= APS;
629  Vals.push_back(MDB.createConstant(
631  Val.udiv(APT).getLimitedValue(UINT32_MAX))));
632  } else if (ProfDataName->getString().equals("VP"))
633  for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
634  // The first value is the key of the value profile, which will not change.
635  Vals.push_back(ProfileData->getOperand(i));
636  uint64_t Count =
637  mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
638  ->getValue()
639  .getZExtValue();
640  // Don't scale the magic number.
641  if (Count == NOMORE_ICP_MAGICNUM) {
642  Vals.push_back(ProfileData->getOperand(i + 1));
643  continue;
644  }
645  // Using APInt::div may be expensive, but most cases should fit 64 bits.
646  APInt Val(128, Count);
647  Val *= APS;
648  Vals.push_back(MDB.createConstant(
650  Val.udiv(APT).getLimitedValue())));
651  }
652  setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
653 }
654 
655 /// IsConstantOne - Return true only if val is constant int 1
656 static bool IsConstantOne(Value *val) {
657  assert(val && "IsConstantOne does not work with nullptr val");
658  const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
659  return CVal && CVal->isOne();
660 }
661 
662 static Instruction *createMalloc(Instruction *InsertBefore,
663  BasicBlock *InsertAtEnd, Type *IntPtrTy,
664  Type *AllocTy, Value *AllocSize,
665  Value *ArraySize,
667  Function *MallocF, const Twine &Name) {
668  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
669  "createMalloc needs either InsertBefore or InsertAtEnd");
670 
671  // malloc(type) becomes:
672  // bitcast (i8* malloc(typeSize)) to type*
673  // malloc(type, arraySize) becomes:
674  // bitcast (i8* malloc(typeSize*arraySize)) to type*
675  if (!ArraySize)
676  ArraySize = ConstantInt::get(IntPtrTy, 1);
677  else if (ArraySize->getType() != IntPtrTy) {
678  if (InsertBefore)
679  ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
680  "", InsertBefore);
681  else
682  ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
683  "", InsertAtEnd);
684  }
685 
686  if (!IsConstantOne(ArraySize)) {
687  if (IsConstantOne(AllocSize)) {
688  AllocSize = ArraySize; // Operand * 1 = Operand
689  } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
690  Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
691  false /*ZExt*/);
692  // Malloc arg is constant product of type size and array size
693  AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
694  } else {
695  // Multiply type size by the array size...
696  if (InsertBefore)
697  AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
698  "mallocsize", InsertBefore);
699  else
700  AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
701  "mallocsize", InsertAtEnd);
702  }
703  }
704 
705  assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
706  // Create the call to Malloc.
707  BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
708  Module *M = BB->getParent()->getParent();
709  Type *BPTy = Type::getInt8PtrTy(BB->getContext());
710  FunctionCallee MallocFunc = MallocF;
711  if (!MallocFunc)
712  // prototype malloc as "void *malloc(size_t)"
713  MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
714  PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
715  CallInst *MCall = nullptr;
716  Instruction *Result = nullptr;
717  if (InsertBefore) {
718  MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
719  InsertBefore);
720  Result = MCall;
721  if (Result->getType() != AllocPtrType)
722  // Create a cast instruction to convert to the right type...
723  Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
724  } else {
725  MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
726  Result = MCall;
727  if (Result->getType() != AllocPtrType) {
728  InsertAtEnd->getInstList().push_back(MCall);
729  // Create a cast instruction to convert to the right type...
730  Result = new BitCastInst(MCall, AllocPtrType, Name);
731  }
732  }
733  MCall->setTailCall();
734  if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
735  MCall->setCallingConv(F->getCallingConv());
736  if (!F->returnDoesNotAlias())
737  F->setReturnDoesNotAlias();
738  }
739  assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
740 
741  return Result;
742 }
743 
744 /// CreateMalloc - Generate the IR for a call to malloc:
745 /// 1. Compute the malloc call's argument as the specified type's size,
746 /// possibly multiplied by the array size if the array size is not
747 /// constant 1.
748 /// 2. Call malloc with that argument.
749 /// 3. Bitcast the result of the malloc call to the specified type.
751  Type *IntPtrTy, Type *AllocTy,
752  Value *AllocSize, Value *ArraySize,
753  Function *MallocF,
754  const Twine &Name) {
755  return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
756  ArraySize, None, MallocF, Name);
757 }
759  Type *IntPtrTy, Type *AllocTy,
760  Value *AllocSize, Value *ArraySize,
762  Function *MallocF,
763  const Twine &Name) {
764  return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
765  ArraySize, OpB, MallocF, Name);
766 }
767 
768 /// CreateMalloc - Generate the IR for a call to malloc:
769 /// 1. Compute the malloc call's argument as the specified type's size,
770 /// possibly multiplied by the array size if the array size is not
771 /// constant 1.
772 /// 2. Call malloc with that argument.
773 /// 3. Bitcast the result of the malloc call to the specified type.
774 /// Note: This function does not add the bitcast to the basic block, that is the
775 /// responsibility of the caller.
777  Type *IntPtrTy, Type *AllocTy,
778  Value *AllocSize, Value *ArraySize,
779  Function *MallocF, const Twine &Name) {
780  return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
781  ArraySize, None, MallocF, Name);
782 }
784  Type *IntPtrTy, Type *AllocTy,
785  Value *AllocSize, Value *ArraySize,
787  Function *MallocF, const Twine &Name) {
788  return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
789  ArraySize, OpB, MallocF, Name);
790 }
791 
794  Instruction *InsertBefore,
795  BasicBlock *InsertAtEnd) {
796  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
797  "createFree needs either InsertBefore or InsertAtEnd");
798  assert(Source->getType()->isPointerTy() &&
799  "Can not free something of nonpointer type!");
800 
801  BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
802  Module *M = BB->getParent()->getParent();
803 
804  Type *VoidTy = Type::getVoidTy(M->getContext());
805  Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
806  // prototype free as "void free(void*)"
807  FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
808  CallInst *Result = nullptr;
809  Value *PtrCast = Source;
810  if (InsertBefore) {
811  if (Source->getType() != IntPtrTy)
812  PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
813  Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
814  } else {
815  if (Source->getType() != IntPtrTy)
816  PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
817  Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
818  }
819  Result->setTailCall();
820  if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
821  Result->setCallingConv(F->getCallingConv());
822 
823  return Result;
824 }
825 
826 /// CreateFree - Generate the IR for a call to the builtin free function.
828  return createFree(Source, None, InsertBefore, nullptr);
829 }
832  Instruction *InsertBefore) {
833  return createFree(Source, Bundles, InsertBefore, nullptr);
834 }
835 
836 /// CreateFree - Generate the IR for a call to the builtin free function.
837 /// Note: This function does not add the call to the basic block, that is the
838 /// responsibility of the caller.
840  Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
841  assert(FreeCall && "CreateFree did not create a CallInst");
842  return FreeCall;
843 }
846  BasicBlock *InsertAtEnd) {
847  Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
848  assert(FreeCall && "CreateFree did not create a CallInst");
849  return FreeCall;
850 }
851 
852 //===----------------------------------------------------------------------===//
853 // InvokeInst Implementation
854 //===----------------------------------------------------------------------===//
855 
856 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
857  BasicBlock *IfException, ArrayRef<Value *> Args,
859  const Twine &NameStr) {
860  this->FTy = FTy;
861 
862  assert((int)getNumOperands() ==
863  ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
864  "NumOperands not set up?");
865 
866 #ifndef NDEBUG
867  assert(((Args.size() == FTy->getNumParams()) ||
868  (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
869  "Invoking a function with bad signature");
870 
871  for (unsigned i = 0, e = Args.size(); i != e; i++)
872  assert((i >= FTy->getNumParams() ||
873  FTy->getParamType(i) == Args[i]->getType()) &&
874  "Invoking a function with a bad signature!");
875 #endif
876 
877  // Set operands in order of their index to match use-list-order
878  // prediction.
880  setNormalDest(IfNormal);
881  setUnwindDest(IfException);
882  setCalledOperand(Fn);
883 
884  auto It = populateBundleOperandInfos(Bundles, Args.size());
885  (void)It;
886  assert(It + 3 == op_end() && "Should add up!");
887 
888  setName(NameStr);
889 }
890 
891 InvokeInst::InvokeInst(const InvokeInst &II)
892  : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
893  OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
894  II.getNumOperands()) {
896  std::copy(II.op_begin(), II.op_end(), op_begin());
900 }
901 
903  Instruction *InsertPt) {
904  std::vector<Value *> Args(II->arg_begin(), II->arg_end());
905 
906  auto *NewII = InvokeInst::Create(
907  II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(),
908  II->getUnwindDest(), Args, OpB, II->getName(), InsertPt);
909  NewII->setCallingConv(II->getCallingConv());
910  NewII->SubclassOptionalData = II->SubclassOptionalData;
911  NewII->setAttributes(II->getAttributes());
912  NewII->setDebugLoc(II->getDebugLoc());
913  return NewII;
914 }
915 
917  return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
918 }
919 
920 //===----------------------------------------------------------------------===//
921 // CallBrInst Implementation
922 //===----------------------------------------------------------------------===//
923 
924 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
925  ArrayRef<BasicBlock *> IndirectDests,
928  const Twine &NameStr) {
929  this->FTy = FTy;
930 
931  assert((int)getNumOperands() ==
932  ComputeNumOperands(Args.size(), IndirectDests.size(),
933  CountBundleInputs(Bundles)) &&
934  "NumOperands not set up?");
935 
936 #ifndef NDEBUG
937  assert(((Args.size() == FTy->getNumParams()) ||
938  (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
939  "Calling a function with bad signature");
940 
941  for (unsigned i = 0, e = Args.size(); i != e; i++)
942  assert((i >= FTy->getNumParams() ||
943  FTy->getParamType(i) == Args[i]->getType()) &&
944  "Calling a function with a bad signature!");
945 #endif
946 
947  // Set operands in order of their index to match use-list-order
948  // prediction.
949  std::copy(Args.begin(), Args.end(), op_begin());
950  NumIndirectDests = IndirectDests.size();
951  setDefaultDest(Fallthrough);
952  for (unsigned i = 0; i != NumIndirectDests; ++i)
953  setIndirectDest(i, IndirectDests[i]);
954  setCalledOperand(Fn);
955 
956  auto It = populateBundleOperandInfos(Bundles, Args.size());
957  (void)It;
958  assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
959 
960  setName(NameStr);
961 }
962 
963 void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) {
964  assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr");
965  if (BasicBlock *OldBB = getIndirectDest(i)) {
966  BlockAddress *Old = BlockAddress::get(OldBB);
968  for (unsigned ArgNo = 0, e = arg_size(); ArgNo != e; ++ArgNo)
969  if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old)
970  setArgOperand(ArgNo, New);
971  }
972 }
973 
974 CallBrInst::CallBrInst(const CallBrInst &CBI)
975  : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
976  OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
977  CBI.getNumOperands()) {
979  std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
983  NumIndirectDests = CBI.NumIndirectDests;
984 }
985 
987  Instruction *InsertPt) {
988  std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
989 
990  auto *NewCBI = CallBrInst::Create(
991  CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(),
992  CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt);
993  NewCBI->setCallingConv(CBI->getCallingConv());
994  NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
995  NewCBI->setAttributes(CBI->getAttributes());
996  NewCBI->setDebugLoc(CBI->getDebugLoc());
997  NewCBI->NumIndirectDests = CBI->NumIndirectDests;
998  return NewCBI;
999 }
1000 
1001 //===----------------------------------------------------------------------===//
1002 // ReturnInst Implementation
1003 //===----------------------------------------------------------------------===//
1004 
1005 ReturnInst::ReturnInst(const ReturnInst &RI)
1006  : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
1007  OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
1008  RI.getNumOperands()) {
1009  if (RI.getNumOperands())
1010  Op<0>() = RI.Op<0>();
1012 }
1013 
1014 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
1015  : Instruction(Type::getVoidTy(C), Instruction::Ret,
1016  OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
1017  InsertBefore) {
1018  if (retVal)
1019  Op<0>() = retVal;
1020 }
1021 
1022 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
1023  : Instruction(Type::getVoidTy(C), Instruction::Ret,
1024  OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
1025  InsertAtEnd) {
1026  if (retVal)
1027  Op<0>() = retVal;
1028 }
1029 
1030 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1031  : Instruction(Type::getVoidTy(Context), Instruction::Ret,
1032  OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
1033 
1034 //===----------------------------------------------------------------------===//
1035 // ResumeInst Implementation
1036 //===----------------------------------------------------------------------===//
1037 
1038 ResumeInst::ResumeInst(const ResumeInst &RI)
1039  : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
1040  OperandTraits<ResumeInst>::op_begin(this), 1) {
1041  Op<0>() = RI.Op<0>();
1042 }
1043 
1044 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
1045  : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1046  OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
1047  Op<0>() = Exn;
1048 }
1049 
1050 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
1051  : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1052  OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
1053  Op<0>() = Exn;
1054 }
1055 
1056 //===----------------------------------------------------------------------===//
1057 // CleanupReturnInst Implementation
1058 //===----------------------------------------------------------------------===//
1059 
1060 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
1061  : Instruction(CRI.getType(), Instruction::CleanupRet,
1063  CRI.getNumOperands(),
1064  CRI.getNumOperands()) {
1065  setSubclassData<Instruction::OpaqueField>(
1067  Op<0>() = CRI.Op<0>();
1068  if (CRI.hasUnwindDest())
1069  Op<1>() = CRI.Op<1>();
1070 }
1071 
1072 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
1073  if (UnwindBB)
1074  setSubclassData<UnwindDestField>(true);
1075 
1076  Op<0>() = CleanupPad;
1077  if (UnwindBB)
1078  Op<1>() = UnwindBB;
1079 }
1080 
1081 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1082  unsigned Values, Instruction *InsertBefore)
1083  : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1084  Instruction::CleanupRet,
1085  OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1086  Values, InsertBefore) {
1087  init(CleanupPad, UnwindBB);
1088 }
1089 
1090 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1091  unsigned Values, BasicBlock *InsertAtEnd)
1092  : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1093  Instruction::CleanupRet,
1094  OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1095  Values, InsertAtEnd) {
1096  init(CleanupPad, UnwindBB);
1097 }
1098 
1099 //===----------------------------------------------------------------------===//
1100 // CatchReturnInst Implementation
1101 //===----------------------------------------------------------------------===//
1102 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
1103  Op<0>() = CatchPad;
1104  Op<1>() = BB;
1105 }
1106 
1107 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
1108  : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
1109  OperandTraits<CatchReturnInst>::op_begin(this), 2) {
1110  Op<0>() = CRI.Op<0>();
1111  Op<1>() = CRI.Op<1>();
1112 }
1113 
1114 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1115  Instruction *InsertBefore)
1116  : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1117  OperandTraits<CatchReturnInst>::op_begin(this), 2,
1118  InsertBefore) {
1119  init(CatchPad, BB);
1120 }
1121 
1122 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1123  BasicBlock *InsertAtEnd)
1124  : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1125  OperandTraits<CatchReturnInst>::op_begin(this), 2,
1126  InsertAtEnd) {
1127  init(CatchPad, BB);
1128 }
1129 
1130 //===----------------------------------------------------------------------===//
1131 // CatchSwitchInst Implementation
1132 //===----------------------------------------------------------------------===//
1133 
1134 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1135  unsigned NumReservedValues,
1136  const Twine &NameStr,
1137  Instruction *InsertBefore)
1138  : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1139  InsertBefore) {
1140  if (UnwindDest)
1141  ++NumReservedValues;
1142  init(ParentPad, UnwindDest, NumReservedValues + 1);
1143  setName(NameStr);
1144 }
1145 
1146 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1147  unsigned NumReservedValues,
1148  const Twine &NameStr, BasicBlock *InsertAtEnd)
1149  : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1150  InsertAtEnd) {
1151  if (UnwindDest)
1152  ++NumReservedValues;
1153  init(ParentPad, UnwindDest, NumReservedValues + 1);
1154  setName(NameStr);
1155 }
1156 
1157 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1158  : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1159  CSI.getNumOperands()) {
1160  init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1161  setNumHungOffUseOperands(ReservedSpace);
1162  Use *OL = getOperandList();
1163  const Use *InOL = CSI.getOperandList();
1164  for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1165  OL[I] = InOL[I];
1166 }
1167 
1168 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1169  unsigned NumReservedValues) {
1170  assert(ParentPad && NumReservedValues);
1171 
1172  ReservedSpace = NumReservedValues;
1173  setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1174  allocHungoffUses(ReservedSpace);
1175 
1176  Op<0>() = ParentPad;
1177  if (UnwindDest) {
1178  setSubclassData<UnwindDestField>(true);
1179  setUnwindDest(UnwindDest);
1180  }
1181 }
1182 
1183 /// growOperands - grow operands - This grows the operand list in response to a
1184 /// push_back style of operation. This grows the number of ops by 2 times.
1185 void CatchSwitchInst::growOperands(unsigned Size) {
1186  unsigned NumOperands = getNumOperands();
1187  assert(NumOperands >= 1);
1188  if (ReservedSpace >= NumOperands + Size)
1189  return;
1190  ReservedSpace = (NumOperands + Size / 2) * 2;
1191  growHungoffUses(ReservedSpace);
1192 }
1193 
1195  unsigned OpNo = getNumOperands();
1196  growOperands(1);
1197  assert(OpNo < ReservedSpace && "Growing didn't work!");
1199  getOperandList()[OpNo] = Handler;
1200 }
1201 
1203  // Move all subsequent handlers up one.
1204  Use *EndDst = op_end() - 1;
1205  for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1206  *CurDst = *(CurDst + 1);
1207  // Null out the last handler use.
1208  *EndDst = nullptr;
1209 
1211 }
1212 
1213 //===----------------------------------------------------------------------===//
1214 // FuncletPadInst Implementation
1215 //===----------------------------------------------------------------------===//
1216 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1217  const Twine &NameStr) {
1218  assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1219  llvm::copy(Args, op_begin());
1220  setParentPad(ParentPad);
1221  setName(NameStr);
1222 }
1223 
1224 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1225  : Instruction(FPI.getType(), FPI.getOpcode(),
1226  OperandTraits<FuncletPadInst>::op_end(this) -
1227  FPI.getNumOperands(),
1228  FPI.getNumOperands()) {
1229  std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1230  setParentPad(FPI.getParentPad());
1231 }
1232 
1233 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1234  ArrayRef<Value *> Args, unsigned Values,
1235  const Twine &NameStr, Instruction *InsertBefore)
1236  : Instruction(ParentPad->getType(), Op,
1237  OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1238  InsertBefore) {
1239  init(ParentPad, Args, NameStr);
1240 }
1241 
1242 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1243  ArrayRef<Value *> Args, unsigned Values,
1244  const Twine &NameStr, BasicBlock *InsertAtEnd)
1245  : Instruction(ParentPad->getType(), Op,
1246  OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1247  InsertAtEnd) {
1248  init(ParentPad, Args, NameStr);
1249 }
1250 
1251 //===----------------------------------------------------------------------===//
1252 // UnreachableInst Implementation
1253 //===----------------------------------------------------------------------===//
1254 
1256  Instruction *InsertBefore)
1257  : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1258  0, InsertBefore) {}
1260  : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1261  0, InsertAtEnd) {}
1262 
1263 //===----------------------------------------------------------------------===//
1264 // BranchInst Implementation
1265 //===----------------------------------------------------------------------===//
1266 
1267 void BranchInst::AssertOK() {
1268  if (isConditional())
1269  assert(getCondition()->getType()->isIntegerTy(1) &&
1270  "May only branch on boolean predicates!");
1271 }
1272 
1273 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1274  : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1275  OperandTraits<BranchInst>::op_end(this) - 1, 1,
1276  InsertBefore) {
1277  assert(IfTrue && "Branch destination may not be null!");
1278  Op<-1>() = IfTrue;
1279 }
1280 
1281 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1282  Instruction *InsertBefore)
1283  : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1284  OperandTraits<BranchInst>::op_end(this) - 3, 3,
1285  InsertBefore) {
1286  // Assign in order of operand index to make use-list order predictable.
1287  Op<-3>() = Cond;
1288  Op<-2>() = IfFalse;
1289  Op<-1>() = IfTrue;
1290 #ifndef NDEBUG
1291  AssertOK();
1292 #endif
1293 }
1294 
1295 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1296  : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1297  OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1298  assert(IfTrue && "Branch destination may not be null!");
1299  Op<-1>() = IfTrue;
1300 }
1301 
1302 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1303  BasicBlock *InsertAtEnd)
1304  : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1305  OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1306  // Assign in order of operand index to make use-list order predictable.
1307  Op<-3>() = Cond;
1308  Op<-2>() = IfFalse;
1309  Op<-1>() = IfTrue;
1310 #ifndef NDEBUG
1311  AssertOK();
1312 #endif
1313 }
1314 
1315 BranchInst::BranchInst(const BranchInst &BI)
1316  : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1317  OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1318  BI.getNumOperands()) {
1319  // Assign in order of operand index to make use-list order predictable.
1320  if (BI.getNumOperands() != 1) {
1321  assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1322  Op<-3>() = BI.Op<-3>();
1323  Op<-2>() = BI.Op<-2>();
1324  }
1325  Op<-1>() = BI.Op<-1>();
1327 }
1328 
1330  assert(isConditional() &&
1331  "Cannot swap successors of an unconditional branch");
1332  Op<-1>().swap(Op<-2>());
1333 
1334  // Update profile metadata if present and it matches our structural
1335  // expectations.
1336  swapProfMetadata();
1337 }
1338 
1339 //===----------------------------------------------------------------------===//
1340 // AllocaInst Implementation
1341 //===----------------------------------------------------------------------===//
1342 
1344  if (!Amt)
1346  else {
1347  assert(!isa<BasicBlock>(Amt) &&
1348  "Passed basic block into allocation size parameter! Use other ctor");
1349  assert(Amt->getType()->isIntegerTy() &&
1350  "Allocation array size is not an integer!");
1351  }
1352  return Amt;
1353 }
1354 
1356  assert(BB && "Insertion BB cannot be null when alignment not provided!");
1357  assert(BB->getParent() &&
1358  "BB must be in a Function when alignment not provided!");
1359  const DataLayout &DL = BB->getModule()->getDataLayout();
1360  return DL.getPrefTypeAlign(Ty);
1361 }
1362 
1364  assert(I && "Insertion position cannot be null when alignment not provided!");
1365  return computeAllocaDefaultAlign(Ty, I->getParent());
1366 }
1367 
1368 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1369  Instruction *InsertBefore)
1370  : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1371 
1372 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1373  BasicBlock *InsertAtEnd)
1374  : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1375 
1376 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1377  const Twine &Name, Instruction *InsertBefore)
1378  : AllocaInst(Ty, AddrSpace, ArraySize,
1379  computeAllocaDefaultAlign(Ty, InsertBefore), Name,
1380  InsertBefore) {}
1381 
1382 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1383  const Twine &Name, BasicBlock *InsertAtEnd)
1384  : AllocaInst(Ty, AddrSpace, ArraySize,
1385  computeAllocaDefaultAlign(Ty, InsertAtEnd), Name,
1386  InsertAtEnd) {}
1387 
1388 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1389  Align Align, const Twine &Name,
1390  Instruction *InsertBefore)
1391  : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1392  getAISize(Ty->getContext(), ArraySize), InsertBefore),
1393  AllocatedType(Ty) {
1395  assert(!Ty->isVoidTy() && "Cannot allocate void!");
1396  setName(Name);
1397 }
1398 
1399 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1400  Align Align, const Twine &Name, BasicBlock *InsertAtEnd)
1401  : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1402  getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1403  AllocatedType(Ty) {
1405  assert(!Ty->isVoidTy() && "Cannot allocate void!");
1406  setName(Name);
1407 }
1408 
1409 
1411  if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1412  return !CI->isOne();
1413  return true;
1414 }
1415 
1416 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1417 /// function and is a constant size. If so, the code generator will fold it
1418 /// into the prolog/epilog code, so it is basically free.
1420  // Must be constant size.
1421  if (!isa<ConstantInt>(getArraySize())) return false;
1422 
1423  // Must be in the entry block.
1424  const BasicBlock *Parent = getParent();
1425  return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1426 }
1427 
1428 //===----------------------------------------------------------------------===//
1429 // LoadInst Implementation
1430 //===----------------------------------------------------------------------===//
1431 
1432 void LoadInst::AssertOK() {
1433  assert(getOperand(0)->getType()->isPointerTy() &&
1434  "Ptr must have pointer type.");
1435 }
1436 
1438  assert(BB && "Insertion BB cannot be null when alignment not provided!");
1439  assert(BB->getParent() &&
1440  "BB must be in a Function when alignment not provided!");
1441  const DataLayout &DL = BB->getModule()->getDataLayout();
1442  return DL.getABITypeAlign(Ty);
1443 }
1444 
1446  assert(I && "Insertion position cannot be null when alignment not provided!");
1447  return computeLoadStoreDefaultAlign(Ty, I->getParent());
1448 }
1449 
1451  Instruction *InsertBef)
1452  : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1453 
1455  BasicBlock *InsertAE)
1456  : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1457 
1458 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1459  Instruction *InsertBef)
1460  : LoadInst(Ty, Ptr, Name, isVolatile,
1461  computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {}
1462 
1463 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1464  BasicBlock *InsertAE)
1465  : LoadInst(Ty, Ptr, Name, isVolatile,
1466  computeLoadStoreDefaultAlign(Ty, InsertAE), InsertAE) {}
1467 
1468 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1469  Align Align, Instruction *InsertBef)
1470  : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1471  SyncScope::System, InsertBef) {}
1472 
1473 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1474  Align Align, BasicBlock *InsertAE)
1475  : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1476  SyncScope::System, InsertAE) {}
1477 
1478 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1479  Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1480  Instruction *InsertBef)
1481  : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1482  assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty));
1485  setAtomic(Order, SSID);
1486  AssertOK();
1487  setName(Name);
1488 }
1489 
1490 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1491  Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1492  BasicBlock *InsertAE)
1493  : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1494  assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty));
1497  setAtomic(Order, SSID);
1498  AssertOK();
1499  setName(Name);
1500 }
1501 
1502 //===----------------------------------------------------------------------===//
1503 // StoreInst Implementation
1504 //===----------------------------------------------------------------------===//
1505 
1506 void StoreInst::AssertOK() {
1507  assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1508  assert(getOperand(1)->getType()->isPointerTy() &&
1509  "Ptr must have pointer type!");
1510  assert(cast<PointerType>(getOperand(1)->getType())
1511  ->isOpaqueOrPointeeTypeMatches(getOperand(0)->getType()) &&
1512  "Ptr must be a pointer to Val type!");
1513 }
1514 
1516  : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1517 
1519  : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1520 
1521 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1522  Instruction *InsertBefore)
1523  : StoreInst(val, addr, isVolatile,
1524  computeLoadStoreDefaultAlign(val->getType(), InsertBefore),
1525  InsertBefore) {}
1526 
1527 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1528  BasicBlock *InsertAtEnd)
1529  : StoreInst(val, addr, isVolatile,
1530  computeLoadStoreDefaultAlign(val->getType(), InsertAtEnd),
1531  InsertAtEnd) {}
1532 
1533 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1534  Instruction *InsertBefore)
1535  : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1536  SyncScope::System, InsertBefore) {}
1537 
1538 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1539  BasicBlock *InsertAtEnd)
1540  : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1541  SyncScope::System, InsertAtEnd) {}
1542 
1543 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1544  AtomicOrdering Order, SyncScope::ID SSID,
1545  Instruction *InsertBefore)
1546  : Instruction(Type::getVoidTy(val->getContext()), Store,
1547  OperandTraits<StoreInst>::op_begin(this),
1548  OperandTraits<StoreInst>::operands(this), InsertBefore) {
1549  Op<0>() = val;
1550  Op<1>() = addr;
1553  setAtomic(Order, SSID);
1554  AssertOK();
1555 }
1556 
1557 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1558  AtomicOrdering Order, SyncScope::ID SSID,
1559  BasicBlock *InsertAtEnd)
1560  : Instruction(Type::getVoidTy(val->getContext()), Store,
1561  OperandTraits<StoreInst>::op_begin(this),
1562  OperandTraits<StoreInst>::operands(this), InsertAtEnd) {
1563  Op<0>() = val;
1564  Op<1>() = addr;
1567  setAtomic(Order, SSID);
1568  AssertOK();
1569 }
1570 
1571 
1572 //===----------------------------------------------------------------------===//
1573 // AtomicCmpXchgInst Implementation
1574 //===----------------------------------------------------------------------===//
1575 
1576 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1577  Align Alignment, AtomicOrdering SuccessOrdering,
1578  AtomicOrdering FailureOrdering,
1579  SyncScope::ID SSID) {
1580  Op<0>() = Ptr;
1581  Op<1>() = Cmp;
1582  Op<2>() = NewVal;
1583  setSuccessOrdering(SuccessOrdering);
1584  setFailureOrdering(FailureOrdering);
1585  setSyncScopeID(SSID);
1586  setAlignment(Alignment);
1587 
1588  assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1589  "All operands must be non-null!");
1590  assert(getOperand(0)->getType()->isPointerTy() &&
1591  "Ptr must have pointer type!");
1592  assert(cast<PointerType>(getOperand(0)->getType())
1593  ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&
1594  "Ptr must be a pointer to Cmp type!");
1595  assert(cast<PointerType>(getOperand(0)->getType())
1596  ->isOpaqueOrPointeeTypeMatches(getOperand(2)->getType()) &&
1597  "Ptr must be a pointer to NewVal type!");
1598  assert(getOperand(1)->getType() == getOperand(2)->getType() &&
1599  "Cmp type and NewVal type must be same!");
1600 }
1601 
1603  Align Alignment,
1604  AtomicOrdering SuccessOrdering,
1605  AtomicOrdering FailureOrdering,
1606  SyncScope::ID SSID,
1607  Instruction *InsertBefore)
1608  : Instruction(
1609  StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1610  AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1611  OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1612  Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1613 }
1614 
1616  Align Alignment,
1617  AtomicOrdering SuccessOrdering,
1618  AtomicOrdering FailureOrdering,
1619  SyncScope::ID SSID,
1620  BasicBlock *InsertAtEnd)
1621  : Instruction(
1622  StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1623  AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1624  OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1625  Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1626 }
1627 
1628 //===----------------------------------------------------------------------===//
1629 // AtomicRMWInst Implementation
1630 //===----------------------------------------------------------------------===//
1631 
1632 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1633  Align Alignment, AtomicOrdering Ordering,
1634  SyncScope::ID SSID) {
1635  Op<0>() = Ptr;
1636  Op<1>() = Val;
1638  setOrdering(Ordering);
1639  setSyncScopeID(SSID);
1640  setAlignment(Alignment);
1641 
1642  assert(getOperand(0) && getOperand(1) &&
1643  "All operands must be non-null!");
1644  assert(getOperand(0)->getType()->isPointerTy() &&
1645  "Ptr must have pointer type!");
1646  assert(cast<PointerType>(getOperand(0)->getType())
1647  ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&
1648  "Ptr must be a pointer to Val type!");
1649  assert(Ordering != AtomicOrdering::NotAtomic &&
1650  "AtomicRMW instructions must be atomic!");
1651 }
1652 
1654  Align Alignment, AtomicOrdering Ordering,
1655  SyncScope::ID SSID, Instruction *InsertBefore)
1656  : Instruction(Val->getType(), AtomicRMW,
1657  OperandTraits<AtomicRMWInst>::op_begin(this),
1658  OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) {
1659  Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1660 }
1661 
1663  Align Alignment, AtomicOrdering Ordering,
1664  SyncScope::ID SSID, BasicBlock *InsertAtEnd)
1665  : Instruction(Val->getType(), AtomicRMW,
1666  OperandTraits<AtomicRMWInst>::op_begin(this),
1667  OperandTraits<AtomicRMWInst>::operands(this), InsertAtEnd) {
1668  Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1669 }
1670 
1672  switch (Op) {
1673  case AtomicRMWInst::Xchg:
1674  return "xchg";
1675  case AtomicRMWInst::Add:
1676  return "add";
1677  case AtomicRMWInst::Sub:
1678  return "sub";
1679  case AtomicRMWInst::And:
1680  return "and";
1681  case AtomicRMWInst::Nand:
1682  return "nand";
1683  case AtomicRMWInst::Or:
1684  return "or";
1685  case AtomicRMWInst::Xor:
1686  return "xor";
1687  case AtomicRMWInst::Max:
1688  return "max";
1689  case AtomicRMWInst::Min:
1690  return "min";
1691  case AtomicRMWInst::UMax:
1692  return "umax";
1693  case AtomicRMWInst::UMin:
1694  return "umin";
1695  case AtomicRMWInst::FAdd:
1696  return "fadd";
1697  case AtomicRMWInst::FSub:
1698  return "fsub";
1700  return "<invalid operation>";
1701  }
1702 
1703  llvm_unreachable("invalid atomicrmw operation");
1704 }
1705 
1706 //===----------------------------------------------------------------------===//
1707 // FenceInst Implementation
1708 //===----------------------------------------------------------------------===//
1709 
1711  SyncScope::ID SSID,
1712  Instruction *InsertBefore)
1713  : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1714  setOrdering(Ordering);
1715  setSyncScopeID(SSID);
1716 }
1717 
1719  SyncScope::ID SSID,
1720  BasicBlock *InsertAtEnd)
1721  : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1722  setOrdering(Ordering);
1723  setSyncScopeID(SSID);
1724 }
1725 
1726 //===----------------------------------------------------------------------===//
1727 // GetElementPtrInst Implementation
1728 //===----------------------------------------------------------------------===//
1729 
1730 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1731  const Twine &Name) {
1732  assert(getNumOperands() == 1 + IdxList.size() &&
1733  "NumOperands not initialized?");
1734  Op<0>() = Ptr;
1735  llvm::copy(IdxList, op_begin() + 1);
1736  setName(Name);
1737 }
1738 
1739 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1740  : Instruction(GEPI.getType(), GetElementPtr,
1742  GEPI.getNumOperands(),
1743  GEPI.getNumOperands()),
1744  SourceElementType(GEPI.SourceElementType),
1745  ResultElementType(GEPI.ResultElementType) {
1746  std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1748 }
1749 
1751  if (auto *Struct = dyn_cast<StructType>(Ty)) {
1752  if (!Struct->indexValid(Idx))
1753  return nullptr;
1754  return Struct->getTypeAtIndex(Idx);
1755  }
1756  if (!Idx->getType()->isIntOrIntVectorTy())
1757  return nullptr;
1758  if (auto *Array = dyn_cast<ArrayType>(Ty))
1759  return Array->getElementType();
1760  if (auto *Vector = dyn_cast<VectorType>(Ty))
1761  return Vector->getElementType();
1762  return nullptr;
1763 }
1764 
1766  if (auto *Struct = dyn_cast<StructType>(Ty)) {
1767  if (Idx >= Struct->getNumElements())
1768  return nullptr;
1769  return Struct->getElementType(Idx);
1770  }
1771  if (auto *Array = dyn_cast<ArrayType>(Ty))
1772  return Array->getElementType();
1773  if (auto *Vector = dyn_cast<VectorType>(Ty))
1774  return Vector->getElementType();
1775  return nullptr;
1776 }
1777 
1778 template <typename IndexTy>
1780  if (IdxList.empty())
1781  return Ty;
1782  for (IndexTy V : IdxList.slice(1)) {
1784  if (!Ty)
1785  return Ty;
1786  }
1787  return Ty;
1788 }
1789 
1791  return getIndexedTypeInternal(Ty, IdxList);
1792 }
1793 
1795  ArrayRef<Constant *> IdxList) {
1796  return getIndexedTypeInternal(Ty, IdxList);
1797 }
1798 
1800  return getIndexedTypeInternal(Ty, IdxList);
1801 }
1802 
1803 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1804 /// zeros. If so, the result pointer and the first operand have the same
1805 /// value, just potentially different types.
1807  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1808  if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1809  if (!CI->isZero()) return false;
1810  } else {
1811  return false;
1812  }
1813  }
1814  return true;
1815 }
1816 
1817 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1818 /// constant integers. If so, the result pointer and the first operand have
1819 /// a constant offset between them.
1821  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1822  if (!isa<ConstantInt>(getOperand(i)))
1823  return false;
1824  }
1825  return true;
1826 }
1827 
1829  cast<GEPOperator>(this)->setIsInBounds(B);
1830 }
1831 
1833  return cast<GEPOperator>(this)->isInBounds();
1834 }
1835 
1837  APInt &Offset) const {
1838  // Delegate to the generic GEPOperator implementation.
1839  return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1840 }
1841 
1843  const DataLayout &DL, unsigned BitWidth,
1844  MapVector<Value *, APInt> &VariableOffsets,
1845  APInt &ConstantOffset) const {
1846  // Delegate to the generic GEPOperator implementation.
1847  return cast<GEPOperator>(this)->collectOffset(DL, BitWidth, VariableOffsets,
1848  ConstantOffset);
1849 }
1850 
1851 //===----------------------------------------------------------------------===//
1852 // ExtractElementInst Implementation
1853 //===----------------------------------------------------------------------===//
1854 
1855 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1856  const Twine &Name,
1857  Instruction *InsertBef)
1858  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1859  ExtractElement,
1861  2, InsertBef) {
1862  assert(isValidOperands(Val, Index) &&
1863  "Invalid extractelement instruction operands!");
1864  Op<0>() = Val;
1865  Op<1>() = Index;
1866  setName(Name);
1867 }
1868 
1869 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1870  const Twine &Name,
1871  BasicBlock *InsertAE)
1872  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1873  ExtractElement,
1875  2, InsertAE) {
1876  assert(isValidOperands(Val, Index) &&
1877  "Invalid extractelement instruction operands!");
1878 
1879  Op<0>() = Val;
1880  Op<1>() = Index;
1881  setName(Name);
1882 }
1883 
1885  if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1886  return false;
1887  return true;
1888 }
1889 
1890 //===----------------------------------------------------------------------===//
1891 // InsertElementInst Implementation
1892 //===----------------------------------------------------------------------===//
1893 
1894 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1895  const Twine &Name,
1896  Instruction *InsertBef)
1897  : Instruction(Vec->getType(), InsertElement,
1898  OperandTraits<InsertElementInst>::op_begin(this),
1899  3, InsertBef) {
1900  assert(isValidOperands(Vec, Elt, Index) &&
1901  "Invalid insertelement instruction operands!");
1902  Op<0>() = Vec;
1903  Op<1>() = Elt;
1904  Op<2>() = Index;
1905  setName(Name);
1906 }
1907 
1908 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1909  const Twine &Name,
1910  BasicBlock *InsertAE)
1911  : Instruction(Vec->getType(), InsertElement,
1912  OperandTraits<InsertElementInst>::op_begin(this),
1913  3, InsertAE) {
1914  assert(isValidOperands(Vec, Elt, Index) &&
1915  "Invalid insertelement instruction operands!");
1916 
1917  Op<0>() = Vec;
1918  Op<1>() = Elt;
1919  Op<2>() = Index;
1920  setName(Name);
1921 }
1922 
1923 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1924  const Value *Index) {
1925  if (!Vec->getType()->isVectorTy())
1926  return false; // First operand of insertelement must be vector type.
1927 
1928  if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1929  return false;// Second operand of insertelement must be vector element type.
1930 
1931  if (!Index->getType()->isIntegerTy())
1932  return false; // Third operand of insertelement must be i32.
1933  return true;
1934 }
1935 
1936 //===----------------------------------------------------------------------===//
1937 // ShuffleVectorInst Implementation
1938 //===----------------------------------------------------------------------===//
1939 
1941  assert(V && "Cannot create placeholder of nullptr V");
1942  return PoisonValue::get(V->getType());
1943 }
1944 
1946  Instruction *InsertBefore)
1948  InsertBefore) {}
1949 
1951  BasicBlock *InsertAtEnd)
1953  InsertAtEnd) {}
1954 
1956  const Twine &Name,
1957  Instruction *InsertBefore)
1959  InsertBefore) {}
1960 
1962  const Twine &Name, BasicBlock *InsertAtEnd)
1964  InsertAtEnd) {}
1965 
1967  const Twine &Name,
1968  Instruction *InsertBefore)
1969  : Instruction(
1970  VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1971  cast<VectorType>(Mask->getType())->getElementCount()),
1972  ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1973  OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1974  assert(isValidOperands(V1, V2, Mask) &&
1975  "Invalid shuffle vector instruction operands!");
1976 
1977  Op<0>() = V1;
1978  Op<1>() = V2;
1979  SmallVector<int, 16> MaskArr;
1980  getShuffleMask(cast<Constant>(Mask), MaskArr);
1981  setShuffleMask(MaskArr);
1982  setName(Name);
1983 }
1984 
1986  const Twine &Name, BasicBlock *InsertAtEnd)
1987  : Instruction(
1988  VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1989  cast<VectorType>(Mask->getType())->getElementCount()),
1990  ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1991  OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
1992  assert(isValidOperands(V1, V2, Mask) &&
1993  "Invalid shuffle vector instruction operands!");
1994 
1995  Op<0>() = V1;
1996  Op<1>() = V2;
1997  SmallVector<int, 16> MaskArr;
1998  getShuffleMask(cast<Constant>(Mask), MaskArr);
1999  setShuffleMask(MaskArr);
2000  setName(Name);
2001 }
2002 
2004  const Twine &Name,
2005  Instruction *InsertBefore)
2006  : Instruction(
2007  VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
2008  Mask.size(), isa<ScalableVectorType>(V1->getType())),
2009  ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
2010  OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
2011  assert(isValidOperands(V1, V2, Mask) &&
2012  "Invalid shuffle vector instruction operands!");
2013  Op<0>() = V1;
2014  Op<1>() = V2;
2016  setName(Name);
2017 }
2018 
2020  const Twine &Name, BasicBlock *InsertAtEnd)
2021  : Instruction(
2022  VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
2023  Mask.size(), isa<ScalableVectorType>(V1->getType())),
2024  ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
2025  OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
2026  assert(isValidOperands(V1, V2, Mask) &&
2027  "Invalid shuffle vector instruction operands!");
2028 
2029  Op<0>() = V1;
2030  Op<1>() = V2;
2032  setName(Name);
2033 }
2034 
2036  int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2037  int NumMaskElts = ShuffleMask.size();
2038  SmallVector<int, 16> NewMask(NumMaskElts);
2039  for (int i = 0; i != NumMaskElts; ++i) {
2040  int MaskElt = getMaskValue(i);
2041  if (MaskElt == UndefMaskElem) {
2042  NewMask[i] = UndefMaskElem;
2043  continue;
2044  }
2045  assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
2046  MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
2047  NewMask[i] = MaskElt;
2048  }
2049  setShuffleMask(NewMask);
2050  Op<0>().swap(Op<1>());
2051 }
2052 
2054  ArrayRef<int> Mask) {
2055  // V1 and V2 must be vectors of the same type.
2056  if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
2057  return false;
2058 
2059  // Make sure the mask elements make sense.
2060  int V1Size =
2061  cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
2062  for (int Elem : Mask)
2063  if (Elem != UndefMaskElem && Elem >= V1Size * 2)
2064  return false;
2065 
2066  if (isa<ScalableVectorType>(V1->getType()))
2067  if ((Mask[0] != 0 && Mask[0] != UndefMaskElem) || !is_splat(Mask))
2068  return false;
2069 
2070  return true;
2071 }
2072 
2074  const Value *Mask) {
2075  // V1 and V2 must be vectors of the same type.
2076  if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
2077  return false;
2078 
2079  // Mask must be vector of i32, and must be the same kind of vector as the
2080  // input vectors
2081  auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
2082  if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
2083  isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType()))
2084  return false;
2085 
2086  // Check to see if Mask is valid.
2087  if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
2088  return true;
2089 
2090  if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
2091  unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2092  for (Value *Op : MV->operands()) {
2093  if (auto *CI = dyn_cast<ConstantInt>(Op)) {
2094  if (CI->uge(V1Size*2))
2095  return false;
2096  } else if (!isa<UndefValue>(Op)) {
2097  return false;
2098  }
2099  }
2100  return true;
2101  }
2102 
2103  if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2104  unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2105  for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements();
2106  i != e; ++i)
2107  if (CDS->getElementAsInteger(i) >= V1Size*2)
2108  return false;
2109  return true;
2110  }
2111 
2112  return false;
2113 }
2114 
2116  SmallVectorImpl<int> &Result) {
2117  ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount();
2118 
2119  if (isa<ConstantAggregateZero>(Mask)) {
2120  Result.resize(EC.getKnownMinValue(), 0);
2121  return;
2122  }
2123 
2124  Result.reserve(EC.getKnownMinValue());
2125 
2126  if (EC.isScalable()) {
2127  assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) &&
2128  "Scalable vector shuffle mask must be undef or zeroinitializer");
2129  int MaskVal = isa<UndefValue>(Mask) ? -1 : 0;
2130  for (unsigned I = 0; I < EC.getKnownMinValue(); ++I)
2131  Result.emplace_back(MaskVal);
2132  return;
2133  }
2134 
2135  unsigned NumElts = EC.getKnownMinValue();
2136 
2137  if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2138  for (unsigned i = 0; i != NumElts; ++i)
2139  Result.push_back(CDS->getElementAsInteger(i));
2140  return;
2141  }
2142  for (unsigned i = 0; i != NumElts; ++i) {
2143  Constant *C = Mask->getAggregateElement(i);
2144  Result.push_back(isa<UndefValue>(C) ? -1 :
2145  cast<ConstantInt>(C)->getZExtValue());
2146  }
2147 }
2148 
2150  ShuffleMask.assign(Mask.begin(), Mask.end());
2151  ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType());
2152 }
2153 
2155  Type *ResultTy) {
2156  Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext());
2157  if (isa<ScalableVectorType>(ResultTy)) {
2158  assert(is_splat(Mask) && "Unexpected shuffle");
2159  Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true);
2160  if (Mask[0] == 0)
2161  return Constant::getNullValue(VecTy);
2162  return UndefValue::get(VecTy);
2163  }
2164  SmallVector<Constant *, 16> MaskConst;
2165  for (int Elem : Mask) {
2166  if (Elem == UndefMaskElem)
2167  MaskConst.push_back(UndefValue::get(Int32Ty));
2168  else
2169  MaskConst.push_back(ConstantInt::get(Int32Ty, Elem));
2170  }
2171  return ConstantVector::get(MaskConst);
2172 }
2173 
2174 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2175  assert(!Mask.empty() && "Shuffle mask must contain elements");
2176  bool UsesLHS = false;
2177  bool UsesRHS = false;
2178  for (int I : Mask) {
2179  if (I == -1)
2180  continue;
2181  assert(I >= 0 && I < (NumOpElts * 2) &&
2182  "Out-of-bounds shuffle mask element");
2183  UsesLHS |= (I < NumOpElts);
2184  UsesRHS |= (I >= NumOpElts);
2185  if (UsesLHS && UsesRHS)
2186  return false;
2187  }
2188  // Allow for degenerate case: completely undef mask means neither source is used.
2189  return UsesLHS || UsesRHS;
2190 }
2191 
2193  // We don't have vector operand size information, so assume operands are the
2194  // same size as the mask.
2195  return isSingleSourceMaskImpl(Mask, Mask.size());
2196 }
2197 
2198 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2199  if (!isSingleSourceMaskImpl(Mask, NumOpElts))
2200  return false;
2201  for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
2202  if (Mask[i] == -1)
2203  continue;
2204  if (Mask[i] != i && Mask[i] != (NumOpElts + i))
2205  return false;
2206  }
2207  return true;
2208 }
2209 
2211  // We don't have vector operand size information, so assume operands are the
2212  // same size as the mask.
2213  return isIdentityMaskImpl(Mask, Mask.size());
2214 }
2215 
2217  if (!isSingleSourceMask(Mask))
2218  return false;
2219 
2220  // The number of elements in the mask must be at least 2.
2221  int NumElts = Mask.size();
2222  if (NumElts < 2)
2223  return false;
2224 
2225  for (int i = 0; i < NumElts; ++i) {
2226  if (Mask[i] == -1)
2227  continue;
2228  if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
2229  return false;
2230  }
2231  return true;
2232 }
2233 
2235  if (!isSingleSourceMask(Mask))
2236  return false;
2237  for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2238  if (Mask[i] == -1)
2239  continue;
2240  if (Mask[i] != 0 && Mask[i] != NumElts)
2241  return false;
2242  }
2243  return true;
2244 }
2245 
2247  // Select is differentiated from identity. It requires using both sources.
2248  if (isSingleSourceMask(Mask))
2249  return false;
2250  for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2251  if (Mask[i] == -1)
2252  continue;
2253  if (Mask[i] != i && Mask[i] != (NumElts + i))
2254  return false;
2255  }
2256  return true;
2257 }
2258 
2260  // Example masks that will return true:
2261  // v1 = <a, b, c, d>
2262  // v2 = <e, f, g, h>
2263  // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
2264  // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
2265 
2266  // 1. The number of elements in the mask must be a power-of-2 and at least 2.
2267  int NumElts = Mask.size();
2268  if (NumElts < 2 || !isPowerOf2_32(NumElts))
2269  return false;
2270 
2271  // 2. The first element of the mask must be either a 0 or a 1.
2272  if (Mask[0] != 0 && Mask[0] != 1)
2273  return false;
2274 
2275  // 3. The difference between the first 2 elements must be equal to the
2276  // number of elements in the mask.
2277  if ((Mask[1] - Mask[0]) != NumElts)
2278  return false;
2279 
2280  // 4. The difference between consecutive even-numbered and odd-numbered
2281  // elements must be equal to 2.
2282  for (int i = 2; i < NumElts; ++i) {
2283  int MaskEltVal = Mask[i];
2284  if (MaskEltVal == -1)
2285  return false;
2286  int MaskEltPrevVal = Mask[i - 2];
2287  if (MaskEltVal - MaskEltPrevVal != 2)
2288  return false;
2289  }
2290  return true;
2291 }
2292 
2294  int NumSrcElts, int &Index) {
2295  // Must extract from a single source.
2296  if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2297  return false;
2298 
2299  // Must be smaller (else this is an Identity shuffle).
2300  if (NumSrcElts <= (int)Mask.size())
2301  return false;
2302 
2303  // Find start of extraction, accounting that we may start with an UNDEF.
2304  int SubIndex = -1;
2305  for (int i = 0, e = Mask.size(); i != e; ++i) {
2306  int M = Mask[i];
2307  if (M < 0)
2308  continue;
2309  int Offset = (M % NumSrcElts) - i;
2310  if (0 <= SubIndex && SubIndex != Offset)
2311  return false;
2312  SubIndex = Offset;
2313  }
2314 
2315  if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) {
2316  Index = SubIndex;
2317  return true;
2318  }
2319  return false;
2320 }
2321 
2323  int NumSrcElts, int &NumSubElts,
2324  int &Index) {
2325  int NumMaskElts = Mask.size();
2326 
2327  // Don't try to match if we're shuffling to a smaller size.
2328  if (NumMaskElts < NumSrcElts)
2329  return false;
2330 
2331  // TODO: We don't recognize self-insertion/widening.
2332  if (isSingleSourceMaskImpl(Mask, NumSrcElts))
2333  return false;
2334 
2335  // Determine which mask elements are attributed to which source.
2336  APInt UndefElts = APInt::getZero(NumMaskElts);
2337  APInt Src0Elts = APInt::getZero(NumMaskElts);
2338  APInt Src1Elts = APInt::getZero(NumMaskElts);
2339  bool Src0Identity = true;
2340  bool Src1Identity = true;
2341 
2342  for (int i = 0; i != NumMaskElts; ++i) {
2343  int M = Mask[i];
2344  if (M < 0) {
2345  UndefElts.setBit(i);
2346  continue;
2347  }
2348  if (M < NumSrcElts) {
2349  Src0Elts.setBit(i);
2350  Src0Identity &= (M == i);
2351  continue;
2352  }
2353  Src1Elts.setBit(i);
2354  Src1Identity &= (M == (i + NumSrcElts));
2355  }
2356  assert((Src0Elts | Src1Elts | UndefElts).isAllOnes() &&
2357  "unknown shuffle elements");
2358  assert(!Src0Elts.isZero() && !Src1Elts.isZero() &&
2359  "2-source shuffle not found");
2360 
2361  // Determine lo/hi span ranges.
2362  // TODO: How should we handle undefs at the start of subvector insertions?
2363  int Src0Lo = Src0Elts.countTrailingZeros();
2364  int Src1Lo = Src1Elts.countTrailingZeros();
2365  int Src0Hi = NumMaskElts - Src0Elts.countLeadingZeros();
2366  int Src1Hi = NumMaskElts - Src1Elts.countLeadingZeros();
2367 
2368  // If src0 is in place, see if the src1 elements is inplace within its own
2369  // span.
2370  if (Src0Identity) {
2371  int NumSub1Elts = Src1Hi - Src1Lo;
2372  ArrayRef<int> Sub1Mask = Mask.slice(Src1Lo, NumSub1Elts);
2373  if (isIdentityMaskImpl(Sub1Mask, NumSrcElts)) {
2374  NumSubElts = NumSub1Elts;
2375  Index = Src1Lo;
2376  return true;
2377  }
2378  }
2379 
2380  // If src1 is in place, see if the src0 elements is inplace within its own
2381  // span.
2382  if (Src1Identity) {
2383  int NumSub0Elts = Src0Hi - Src0Lo;
2384  ArrayRef<int> Sub0Mask = Mask.slice(Src0Lo, NumSub0Elts);
2385  if (isIdentityMaskImpl(Sub0Mask, NumSrcElts)) {
2386  NumSubElts = NumSub0Elts;
2387  Index = Src0Lo;
2388  return true;
2389  }
2390  }
2391 
2392  return false;
2393 }
2394 
2396  if (isa<UndefValue>(Op<2>()))
2397  return false;
2398 
2399  // FIXME: Not currently possible to express a shuffle mask for a scalable
2400  // vector for this case.
2401  if (isa<ScalableVectorType>(getType()))
2402  return false;
2403 
2404  int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2405  int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2406  if (NumMaskElts <= NumOpElts)
2407  return false;
2408 
2409  // The first part of the mask must choose elements from exactly 1 source op.
2411  if (!isIdentityMaskImpl(Mask, NumOpElts))
2412  return false;
2413 
2414  // All extending must be with undef elements.
2415  for (int i = NumOpElts; i < NumMaskElts; ++i)
2416  if (Mask[i] != -1)
2417  return false;
2418 
2419  return true;
2420 }
2421 
2423  if (isa<UndefValue>(Op<2>()))
2424  return false;
2425 
2426  // FIXME: Not currently possible to express a shuffle mask for a scalable
2427  // vector for this case.
2428  if (isa<ScalableVectorType>(getType()))
2429  return false;
2430 
2431  int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2432  int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2433  if (NumMaskElts >= NumOpElts)
2434  return false;
2435 
2436  return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2437 }
2438 
2440  // Vector concatenation is differentiated from identity with padding.
2441  if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()) ||
2442  isa<UndefValue>(Op<2>()))
2443  return false;
2444 
2445  // FIXME: Not currently possible to express a shuffle mask for a scalable
2446  // vector for this case.
2447  if (isa<ScalableVectorType>(getType()))
2448  return false;
2449 
2450  int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2451  int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2452  if (NumMaskElts != NumOpElts * 2)
2453  return false;
2454 
2455  // Use the mask length rather than the operands' vector lengths here. We
2456  // already know that the shuffle returns a vector twice as long as the inputs,
2457  // and neither of the inputs are undef vectors. If the mask picks consecutive
2458  // elements from both inputs, then this is a concatenation of the inputs.
2459  return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2460 }
2461 
2463  int ReplicationFactor, int VF) {
2464  assert(Mask.size() == (unsigned)ReplicationFactor * VF &&
2465  "Unexpected mask size.");
2466 
2467  for (int CurrElt : seq(0, VF)) {
2468  ArrayRef<int> CurrSubMask = Mask.take_front(ReplicationFactor);
2469  assert(CurrSubMask.size() == (unsigned)ReplicationFactor &&
2470  "Run out of mask?");
2471  Mask = Mask.drop_front(ReplicationFactor);
2472  if (!all_of(CurrSubMask, [CurrElt](int MaskElt) {
2473  return MaskElt == UndefMaskElem || MaskElt == CurrElt;
2474  }))
2475  return false;
2476  }
2477  assert(Mask.empty() && "Did not consume the whole mask?");
2478 
2479  return true;
2480 }
2481 
2483  int &ReplicationFactor, int &VF) {
2484  // undef-less case is trivial.
2485  if (none_of(Mask, [](int MaskElt) { return MaskElt == UndefMaskElem; })) {
2486  ReplicationFactor =
2487  Mask.take_while([](int MaskElt) { return MaskElt == 0; }).size();
2488  if (ReplicationFactor == 0 || Mask.size() % ReplicationFactor != 0)
2489  return false;
2490  VF = Mask.size() / ReplicationFactor;
2491  return isReplicationMaskWithParams(Mask, ReplicationFactor, VF);
2492  }
2493 
2494  // However, if the mask contains undef's, we have to enumerate possible tuples
2495  // and pick one. There are bounds on replication factor: [1, mask size]
2496  // (where RF=1 is an identity shuffle, RF=mask size is a broadcast shuffle)
2497  // Additionally, mask size is a replication factor multiplied by vector size,
2498  // which further significantly reduces the search space.
2499 
2500  // Before doing that, let's perform basic correctness checking first.
2501  int Largest = -1;
2502  for (int MaskElt : Mask) {
2503  if (MaskElt == UndefMaskElem)
2504  continue;
2505  // Elements must be in non-decreasing order.
2506  if (MaskElt < Largest)
2507  return false;
2508  Largest = std::max(Largest, MaskElt);
2509  }
2510 
2511  // Prefer larger replication factor if all else equal.
2512  for (int PossibleReplicationFactor :
2513  reverse(seq_inclusive<unsigned>(1, Mask.size()))) {
2514  if (Mask.size() % PossibleReplicationFactor != 0)
2515  continue;
2516  int PossibleVF = Mask.size() / PossibleReplicationFactor;
2517  if (!isReplicationMaskWithParams(Mask, PossibleReplicationFactor,
2518  PossibleVF))
2519  continue;
2520  ReplicationFactor = PossibleReplicationFactor;
2521  VF = PossibleVF;
2522  return true;
2523  }
2524 
2525  return false;
2526 }
2527 
2528 bool ShuffleVectorInst::isReplicationMask(int &ReplicationFactor,
2529  int &VF) const {
2530  // Not possible to express a shuffle mask for a scalable vector for this
2531  // case.
2532  if (isa<ScalableVectorType>(getType()))
2533  return false;
2534 
2535  VF = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2536  if (ShuffleMask.size() % VF != 0)
2537  return false;
2538  ReplicationFactor = ShuffleMask.size() / VF;
2539 
2540  return isReplicationMaskWithParams(ShuffleMask, ReplicationFactor, VF);
2541 }
2542 
2543 //===----------------------------------------------------------------------===//
2544 // InsertValueInst Class
2545 //===----------------------------------------------------------------------===//
2546 
2547 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2548  const Twine &Name) {
2549  assert(getNumOperands() == 2 && "NumOperands not initialized?");
2550 
2551  // There's no fundamental reason why we require at least one index
2552  // (other than weirdness with &*IdxBegin being invalid; see
2553  // getelementptr's init routine for example). But there's no
2554  // present need to support it.
2555  assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2556 
2558  Val->getType() && "Inserted value must match indexed type!");
2559  Op<0>() = Agg;
2560  Op<1>() = Val;
2561 
2562  Indices.append(Idxs.begin(), Idxs.end());
2563  setName(Name);
2564 }
2565 
2566 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2567  : Instruction(IVI.getType(), InsertValue,
2568  OperandTraits<InsertValueInst>::op_begin(this), 2),
2569  Indices(IVI.Indices) {
2570  Op<0>() = IVI.getOperand(0);
2571  Op<1>() = IVI.getOperand(1);
2573 }
2574 
2575 //===----------------------------------------------------------------------===//
2576 // ExtractValueInst Class
2577 //===----------------------------------------------------------------------===//
2578 
2579 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2580  assert(getNumOperands() == 1 && "NumOperands not initialized?");
2581 
2582  // There's no fundamental reason why we require at least one index.
2583  // But there's no present need to support it.
2584  assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2585 
2586  Indices.append(Idxs.begin(), Idxs.end());
2587  setName(Name);
2588 }
2589 
2590 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2591  : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2592  Indices(EVI.Indices) {
2594 }
2595 
2596 // getIndexedType - Returns the type of the element that would be extracted
2597 // with an extractvalue instruction with the specified parameters.
2598 //
2599 // A null type is returned if the indices are invalid for the specified
2600 // pointer type.
2601 //
2603  ArrayRef<unsigned> Idxs) {
2604  for (unsigned Index : Idxs) {
2605  // We can't use CompositeType::indexValid(Index) here.
2606  // indexValid() always returns true for arrays because getelementptr allows
2607  // out-of-bounds indices. Since we don't allow those for extractvalue and
2608  // insertvalue we need to check array indexing manually.
2609  // Since the only other types we can index into are struct types it's just
2610  // as easy to check those manually as well.
2611  if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2612  if (Index >= AT->getNumElements())
2613  return nullptr;
2614  Agg = AT->getElementType();
2615  } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2616  if (Index >= ST->getNumElements())
2617  return nullptr;
2618  Agg = ST->getElementType(Index);
2619  } else {
2620  // Not a valid type to index into.
2621  return nullptr;
2622  }
2623  }
2624  return const_cast<Type*>(Agg);
2625 }
2626 
2627 //===----------------------------------------------------------------------===//
2628 // UnaryOperator Class
2629 //===----------------------------------------------------------------------===//
2630 
2632  Type *Ty, const Twine &Name,
2633  Instruction *InsertBefore)
2634  : UnaryInstruction(Ty, iType, S, InsertBefore) {
2635  Op<0>() = S;
2636  setName(Name);
2637  AssertOK();
2638 }
2639 
2641  Type *Ty, const Twine &Name,
2642  BasicBlock *InsertAtEnd)
2643  : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2644  Op<0>() = S;
2645  setName(Name);
2646  AssertOK();
2647 }
2648 
2650  const Twine &Name,
2651  Instruction *InsertBefore) {
2652  return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2653 }
2654 
2656  const Twine &Name,
2657  BasicBlock *InsertAtEnd) {
2658  UnaryOperator *Res = Create(Op, S, Name);
2659  InsertAtEnd->getInstList().push_back(Res);
2660  return Res;
2661 }
2662 
2663 void UnaryOperator::AssertOK() {
2664  Value *LHS = getOperand(0);
2665  (void)LHS; // Silence warnings.
2666 #ifndef NDEBUG
2667  switch (getOpcode()) {
2668  case FNeg:
2669  assert(getType() == LHS->getType() &&
2670  "Unary operation should return same type as operand!");
2671  assert(getType()->isFPOrFPVectorTy() &&
2672  "Tried to create a floating-point operation on a "
2673  "non-floating-point type!");
2674  break;
2675  default: llvm_unreachable("Invalid opcode provided");
2676  }
2677 #endif
2678 }
2679 
2680 //===----------------------------------------------------------------------===//
2681 // BinaryOperator Class
2682 //===----------------------------------------------------------------------===//
2683 
2685  Type *Ty, const Twine &Name,
2686  Instruction *InsertBefore)
2687  : Instruction(Ty, iType,
2688  OperandTraits<BinaryOperator>::op_begin(this),
2689  OperandTraits<BinaryOperator>::operands(this),
2690  InsertBefore) {
2691  Op<0>() = S1;
2692  Op<1>() = S2;
2693  setName(Name);
2694  AssertOK();
2695 }
2696 
2698  Type *Ty, const Twine &Name,
2699  BasicBlock *InsertAtEnd)
2700  : Instruction(Ty, iType,
2701  OperandTraits<BinaryOperator>::op_begin(this),
2702  OperandTraits<BinaryOperator>::operands(this),
2703  InsertAtEnd) {
2704  Op<0>() = S1;
2705  Op<1>() = S2;
2706  setName(Name);
2707  AssertOK();
2708 }
2709 
2710 void BinaryOperator::AssertOK() {
2711  Value *LHS = getOperand(0), *RHS = getOperand(1);
2712  (void)LHS; (void)RHS; // Silence warnings.
2713  assert(LHS->getType() == RHS->getType() &&
2714  "Binary operator operand types must match!");
2715 #ifndef NDEBUG
2716  switch (getOpcode()) {
2717  case Add: case Sub:
2718  case Mul:
2719  assert(getType() == LHS->getType() &&
2720  "Arithmetic operation should return same type as operands!");
2721  assert(getType()->isIntOrIntVectorTy() &&
2722  "Tried to create an integer operation on a non-integer type!");
2723  break;
2724  case FAdd: case FSub:
2725  case FMul:
2726  assert(getType() == LHS->getType() &&
2727  "Arithmetic operation should return same type as operands!");
2728  assert(getType()->isFPOrFPVectorTy() &&
2729  "Tried to create a floating-point operation on a "
2730  "non-floating-point type!");
2731  break;
2732  case UDiv:
2733  case SDiv:
2734  assert(getType() == LHS->getType() &&
2735  "Arithmetic operation should return same type as operands!");
2736  assert(getType()->isIntOrIntVectorTy() &&
2737  "Incorrect operand type (not integer) for S/UDIV");
2738  break;
2739  case FDiv:
2740  assert(getType() == LHS->getType() &&
2741  "Arithmetic operation should return same type as operands!");
2742  assert(getType()->isFPOrFPVectorTy() &&
2743  "Incorrect operand type (not floating point) for FDIV");
2744  break;
2745  case URem:
2746  case SRem:
2747  assert(getType() == LHS->getType() &&
2748  "Arithmetic operation should return same type as operands!");
2749  assert(getType()->isIntOrIntVectorTy() &&
2750  "Incorrect operand type (not integer) for S/UREM");
2751  break;
2752  case FRem:
2753  assert(getType() == LHS->getType() &&
2754  "Arithmetic operation should return same type as operands!");
2755  assert(getType()->isFPOrFPVectorTy() &&
2756  "Incorrect operand type (not floating point) for FREM");
2757  break;
2758  case Shl:
2759  case LShr:
2760  case AShr:
2761  assert(getType() == LHS->getType() &&
2762  "Shift operation should return same type as operands!");
2763  assert(getType()->isIntOrIntVectorTy() &&
2764  "Tried to create a shift operation on a non-integral type!");
2765  break;
2766  case And: case Or:
2767  case Xor:
2768  assert(getType() == LHS->getType() &&
2769  "Logical operation should return same type as operands!");
2770  assert(getType()->isIntOrIntVectorTy() &&
2771  "Tried to create a logical operation on a non-integral type!");
2772  break;
2773  default: llvm_unreachable("Invalid opcode provided");
2774  }
2775 #endif
2776 }
2777 
2779  const Twine &Name,
2780  Instruction *InsertBefore) {
2781  assert(S1->getType() == S2->getType() &&
2782  "Cannot create binary operator with two operands of differing type!");
2783  return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2784 }
2785 
2787  const Twine &Name,
2788  BasicBlock *InsertAtEnd) {
2789  BinaryOperator *Res = Create(Op, S1, S2, Name);
2790  InsertAtEnd->getInstList().push_back(Res);
2791  return Res;
2792 }
2793 
2795  Instruction *InsertBefore) {
2797  return new BinaryOperator(Instruction::Sub,
2798  zero, Op,
2799  Op->getType(), Name, InsertBefore);
2800 }
2801 
2803  BasicBlock *InsertAtEnd) {
2805  return new BinaryOperator(Instruction::Sub,
2806  zero, Op,
2807  Op->getType(), Name, InsertAtEnd);
2808 }
2809 
2811  Instruction *InsertBefore) {
2813  return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2814 }
2815 
2817  BasicBlock *InsertAtEnd) {
2819  return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2820 }
2821 
2823  Instruction *InsertBefore) {
2825  return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2826 }
2827 
2829  BasicBlock *InsertAtEnd) {
2831  return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2832 }
2833 
2835  Instruction *InsertBefore) {
2837  return new BinaryOperator(Instruction::Xor, Op, C,
2838  Op->getType(), Name, InsertBefore);
2839 }
2840 
2842  BasicBlock *InsertAtEnd) {
2844  return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2845  Op->getType(), Name, InsertAtEnd);
2846 }
2847 
2848 // Exchange the two operands to this instruction. This instruction is safe to
2849 // use on any binary instruction and does not modify the semantics of the
2850 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2851 // is changed.
2853  if (!isCommutative())
2854  return true; // Can't commute operands
2855  Op<0>().swap(Op<1>());
2856  return false;
2857 }
2858 
2859 //===----------------------------------------------------------------------===//
2860 // FPMathOperator Class
2861 //===----------------------------------------------------------------------===//
2862 
2864  const MDNode *MD =
2865  cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2866  if (!MD)
2867  return 0.0;
2868  ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2869  return Accuracy->getValueAPF().convertToFloat();
2870 }
2871 
2872 //===----------------------------------------------------------------------===//
2873 // CastInst Class
2874 //===----------------------------------------------------------------------===//
2875 
2876 // Just determine if this cast only deals with integral->integral conversion.
2878  switch (getOpcode()) {
2879  default: return false;
2880  case Instruction::ZExt:
2881  case Instruction::SExt:
2882  case Instruction::Trunc:
2883  return true;
2884  case Instruction::BitCast:
2885  return getOperand(0)->getType()->isIntegerTy() &&
2886  getType()->isIntegerTy();
2887  }
2888 }
2889 
2891  // Only BitCast can be lossless, exit fast if we're not BitCast
2892  if (getOpcode() != Instruction::BitCast)
2893  return false;
2894 
2895  // Identity cast is always lossless
2896  Type *SrcTy = getOperand(0)->getType();
2897  Type *DstTy = getType();
2898  if (SrcTy == DstTy)
2899  return true;
2900 
2901  // Pointer to pointer is always lossless.
2902  if (SrcTy->isPointerTy())
2903  return DstTy->isPointerTy();
2904  return false; // Other types have no identity values
2905 }
2906 
2907 /// This function determines if the CastInst does not require any bits to be
2908 /// changed in order to effect the cast. Essentially, it identifies cases where
2909 /// no code gen is necessary for the cast, hence the name no-op cast. For
2910 /// example, the following are all no-op casts:
2911 /// # bitcast i32* %x to i8*
2912 /// # bitcast <2 x i32> %x to <4 x i16>
2913 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2914 /// Determine if the described cast is a no-op.
2916  Type *SrcTy,
2917  Type *DestTy,
2918  const DataLayout &DL) {
2919  assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition");
2920  switch (Opcode) {
2921  default: llvm_unreachable("Invalid CastOp");
2922  case Instruction::Trunc:
2923  case Instruction::ZExt:
2924  case Instruction::SExt:
2925  case Instruction::FPTrunc:
2926  case Instruction::FPExt:
2927  case Instruction::UIToFP:
2928  case Instruction::SIToFP:
2929  case Instruction::FPToUI:
2930  case Instruction::FPToSI:
2931  case Instruction::AddrSpaceCast:
2932  // TODO: Target informations may give a more accurate answer here.
2933  return false;
2934  case Instruction::BitCast:
2935  return true; // BitCast never modifies bits.
2936  case Instruction::PtrToInt:
2937  return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2938  DestTy->getScalarSizeInBits();
2939  case Instruction::IntToPtr:
2940  return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2941  SrcTy->getScalarSizeInBits();
2942  }
2943 }
2944 
2945 bool CastInst::isNoopCast(const DataLayout &DL) const {
2946  return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2947 }
2948 
2949 /// This function determines if a pair of casts can be eliminated and what
2950 /// opcode should be used in the elimination. This assumes that there are two
2951 /// instructions like this:
2952 /// * %F = firstOpcode SrcTy %x to MidTy
2953 /// * %S = secondOpcode MidTy %F to DstTy
2954 /// The function returns a resultOpcode so these two casts can be replaced with:
2955 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
2956 /// If no such cast is permitted, the function returns 0.
2958  Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2959  Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2960  Type *DstIntPtrTy) {
2961  // Define the 144 possibilities for these two cast instructions. The values
2962  // in this matrix determine what to do in a given situation and select the
2963  // case in the switch below. The rows correspond to firstOp, the columns
2964  // correspond to secondOp. In looking at the table below, keep in mind
2965  // the following cast properties:
2966  //
2967  // Size Compare Source Destination
2968  // Operator Src ? Size Type Sign Type Sign
2969  // -------- ------------ ------------------- ---------------------
2970  // TRUNC > Integer Any Integral Any
2971  // ZEXT < Integral Unsigned Integer Any
2972  // SEXT < Integral Signed Integer Any
2973  // FPTOUI n/a FloatPt n/a Integral Unsigned
2974  // FPTOSI n/a FloatPt n/a Integral Signed
2975  // UITOFP n/a Integral Unsigned FloatPt n/a
2976  // SITOFP n/a Integral Signed FloatPt n/a
2977  // FPTRUNC > FloatPt n/a FloatPt n/a
2978  // FPEXT < FloatPt n/a FloatPt n/a
2979  // PTRTOINT n/a Pointer n/a Integral Unsigned
2980  // INTTOPTR n/a Integral Unsigned Pointer n/a
2981  // BITCAST = FirstClass n/a FirstClass n/a
2982  // ADDRSPCST n/a Pointer n/a Pointer n/a
2983  //
2984  // NOTE: some transforms are safe, but we consider them to be non-profitable.
2985  // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2986  // into "fptoui double to i64", but this loses information about the range
2987  // of the produced value (we no longer know the top-part is all zeros).
2988  // Further this conversion is often much more expensive for typical hardware,
2989  // and causes issues when building libgcc. We disallow fptosi+sext for the
2990  // same reason.
2991  const unsigned numCastOps =
2992  Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2993  static const uint8_t CastResults[numCastOps][numCastOps] = {
2994  // T F F U S F F P I B A -+
2995  // R Z S P P I I T P 2 N T S |
2996  // U E E 2 2 2 2 R E I T C C +- secondOp
2997  // N X X U S F F N X N 2 V V |
2998  // C T T I I P P C T T P T T -+
2999  { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
3000  { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt |
3001  { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
3002  { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
3003  { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
3004  { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
3005  { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
3006  { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc |
3007  { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt |
3008  { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
3009  { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
3010  { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
3011  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
3012  };
3013 
3014  // TODO: This logic could be encoded into the table above and handled in the
3015  // switch below.
3016  // If either of the casts are a bitcast from scalar to vector, disallow the
3017  // merging. However, any pair of bitcasts are allowed.
3018  bool IsFirstBitcast = (firstOp == Instruction::BitCast);
3019  bool IsSecondBitcast = (secondOp == Instruction::BitCast);
3020  bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
3021 
3022  // Check if any of the casts convert scalars <-> vectors.
3023  if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
3024  (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
3025  if (!AreBothBitcasts)
3026  return 0;
3027 
3028  int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
3029  [secondOp-Instruction::CastOpsBegin];
3030  switch (ElimCase) {
3031  case 0:
3032  // Categorically disallowed.
3033  return 0;
3034  case 1:
3035  // Allowed, use first cast's opcode.
3036  return firstOp;
3037  case 2:
3038  // Allowed, use second cast's opcode.
3039  return secondOp;
3040  case 3:
3041  // No-op cast in second op implies firstOp as long as the DestTy
3042  // is integer and we are not converting between a vector and a
3043  // non-vector type.
3044  if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
3045  return firstOp;
3046  return 0;
3047  case 4:
3048  // No-op cast in second op implies firstOp as long as the DestTy
3049  // is floating point.
3050  if (DstTy->isFloatingPointTy())
3051  return firstOp;
3052  return 0;
3053  case 5:
3054  // No-op cast in first op implies secondOp as long as the SrcTy
3055  // is an integer.
3056  if (SrcTy->isIntegerTy())
3057  return secondOp;
3058  return 0;
3059  case 6:
3060  // No-op cast in first op implies secondOp as long as the SrcTy
3061  // is a floating point.
3062  if (SrcTy->isFloatingPointTy())
3063  return secondOp;
3064  return 0;
3065  case 7: {
3066  // Disable inttoptr/ptrtoint optimization if enabled.
3067  if (DisableI2pP2iOpt)
3068  return 0;
3069 
3070  // Cannot simplify if address spaces are different!
3071  if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
3072  return 0;
3073 
3074  unsigned MidSize = MidTy->getScalarSizeInBits();
3075  // We can still fold this without knowing the actual sizes as long we
3076  // know that the intermediate pointer is the largest possible
3077  // pointer size.
3078  // FIXME: Is this always true?
3079  if (MidSize == 64)
3080  return Instruction::BitCast;
3081 
3082  // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
3083  if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
3084  return 0;
3085  unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
3086  if (MidSize >= PtrSize)
3087  return Instruction::BitCast;
3088  return 0;
3089  }
3090  case 8: {
3091  // ext, trunc -> bitcast, if the SrcTy and DstTy are the same
3092  // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
3093  // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
3094  unsigned SrcSize = SrcTy->getScalarSizeInBits();
3095  unsigned DstSize = DstTy->getScalarSizeInBits();
3096  if (SrcTy == DstTy)
3097  return Instruction::BitCast;
3098  if (SrcSize < DstSize)
3099  return firstOp;
3100  if (SrcSize > DstSize)
3101  return secondOp;
3102  return 0;
3103  }
3104  case 9:
3105  // zext, sext -> zext, because sext can't sign extend after zext
3106  return Instruction::ZExt;
3107  case 11: {
3108  // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
3109  if (!MidIntPtrTy)
3110  return 0;
3111  unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
3112  unsigned SrcSize = SrcTy->getScalarSizeInBits();
3113  unsigned DstSize = DstTy->getScalarSizeInBits();
3114  if (SrcSize <= PtrSize && SrcSize == DstSize)
3115  return Instruction::BitCast;
3116  return 0;
3117  }
3118  case 12:
3119  // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
3120  // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
3121  if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
3122  return Instruction::AddrSpaceCast;
3123  return Instruction::BitCast;
3124  case 13:
3125  // FIXME: this state can be merged with (1), but the following assert
3126  // is useful to check the correcteness of the sequence due to semantic
3127  // change of bitcast.
3128  assert(
3129  SrcTy->isPtrOrPtrVectorTy() &&
3130  MidTy->isPtrOrPtrVectorTy() &&
3131  DstTy->isPtrOrPtrVectorTy() &&
3132  SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
3133  MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
3134  "Illegal addrspacecast, bitcast sequence!");
3135  // Allowed, use first cast's opcode
3136  return firstOp;
3137  case 14: {
3138  // bitcast, addrspacecast -> addrspacecast if the element type of
3139  // bitcast's source is the same as that of addrspacecast's destination.
3140  PointerType *SrcPtrTy = cast<PointerType>(SrcTy->getScalarType());
3141  PointerType *DstPtrTy = cast<PointerType>(DstTy->getScalarType());
3142  if (SrcPtrTy->hasSameElementTypeAs(DstPtrTy))
3143  return Instruction::AddrSpaceCast;
3144  return 0;
3145  }
3146  case 15:
3147  // FIXME: this state can be merged with (1), but the following assert
3148  // is useful to check the correcteness of the sequence due to semantic
3149  // change of bitcast.
3150  assert(
3151  SrcTy->isIntOrIntVectorTy() &&
3152  MidTy->isPtrOrPtrVectorTy() &&
3153  DstTy->isPtrOrPtrVectorTy() &&
3154  MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
3155  "Illegal inttoptr, bitcast sequence!");
3156  // Allowed, use first cast's opcode
3157  return firstOp;
3158  case 16:
3159  // FIXME: this state can be merged with (2), but the following assert
3160  // is useful to check the correcteness of the sequence due to semantic
3161  // change of bitcast.
3162  assert(
3163  SrcTy->isPtrOrPtrVectorTy() &&
3164  MidTy->isPtrOrPtrVectorTy() &&
3165  DstTy->isIntOrIntVectorTy() &&
3166  SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
3167  "Illegal bitcast, ptrtoint sequence!");
3168  // Allowed, use second cast's opcode
3169  return secondOp;
3170  case 17:
3171  // (sitofp (zext x)) -> (uitofp x)
3172  return Instruction::UIToFP;
3173  case 99:
3174  // Cast combination can't happen (error in input). This is for all cases
3175  // where the MidTy is not the same for the two cast instructions.
3176  llvm_unreachable("Invalid Cast Combination");
3177  default:
3178  llvm_unreachable("Error in CastResults table!!!");
3179  }
3180 }
3181 
3183  const Twine &Name, Instruction *InsertBefore) {
3184  assert(castIsValid(op, S, Ty) && "Invalid cast!");
3185  // Construct and return the appropriate CastInst subclass
3186  switch (op) {
3187  case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
3188  case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
3189  case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
3190  case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
3191  case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
3192  case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
3193  case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
3194  case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
3195  case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
3196  case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
3197  case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
3198  case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
3199  case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
3200  default: llvm_unreachable("Invalid opcode provided");
3201  }
3202 }
3203 
3205  const Twine &Name, BasicBlock *InsertAtEnd) {
3206  assert(castIsValid(op, S, Ty) && "Invalid cast!");
3207  // Construct and return the appropriate CastInst subclass
3208  switch (op) {
3209  case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
3210  case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
3211  case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
3212  case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
3213  case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
3214  case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
3215  case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
3216  case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
3217  case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
3218  case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
3219  case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
3220  case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
3221  case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
3222  default: llvm_unreachable("Invalid opcode provided");
3223  }
3224 }
3225 
3227  const Twine &Name,
3228  Instruction *InsertBefore) {
3229  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3230  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3231  return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
3232 }
3233 
3235  const Twine &Name,
3236  BasicBlock *InsertAtEnd) {
3237  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3238  return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3239  return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
3240 }
3241 
3243  const Twine &Name,
3244  Instruction *InsertBefore) {
3245  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3246  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3247  return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
3248 }
3249 
3251  const Twine &Name,
3252  BasicBlock *InsertAtEnd) {
3253  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3254  return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3255  return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
3256 }
3257 
3259  const Twine &Name,
3260  Instruction *InsertBefore) {
3261  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3262  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3263  return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
3264 }
3265 
3267  const Twine &Name,
3268  BasicBlock *InsertAtEnd) {
3269  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3270  return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3271  return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
3272 }
3273 
3275  const Twine &Name,
3276  BasicBlock *InsertAtEnd) {
3277  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3278  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3279  "Invalid cast");
3280  assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3281  assert((!Ty->isVectorTy() ||
3282  cast<VectorType>(Ty)->getElementCount() ==
3283  cast<VectorType>(S->getType())->getElementCount()) &&
3284  "Invalid cast");
3285 
3286  if (Ty->isIntOrIntVectorTy())
3287  return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
3288 
3289  return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
3290 }
3291 
3292 /// Create a BitCast or a PtrToInt cast instruction
3294  const Twine &Name,
3295  Instruction *InsertBefore) {
3296  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3297  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3298  "Invalid cast");
3299  assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3300  assert((!Ty->isVectorTy() ||
3301  cast<VectorType>(Ty)->getElementCount() ==
3302  cast<VectorType>(S->getType())->getElementCount()) &&
3303  "Invalid cast");
3304 
3305  if (Ty->isIntOrIntVectorTy())
3306  return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3307 
3308  return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
3309 }
3310 
3312  Value *S, Type *Ty,
3313  const Twine &Name,
3314  BasicBlock *InsertAtEnd) {
3315  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3316  assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3317 
3318  if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3319  return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
3320 
3321  return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3322 }
3323 
3325  Value *S, Type *Ty,
3326  const Twine &Name,
3327  Instruction *InsertBefore) {
3328  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3329  assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3330 
3331  if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3332  return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
3333 
3334  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3335 }
3336 
3338  const Twine &Name,
3339  Instruction *InsertBefore) {
3340  if (S->getType()->isPointerTy() && Ty->isIntegerTy())
3341  return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3342  if (S->getType()->isIntegerTy() && Ty->isPointerTy())
3343  return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
3344 
3345  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3346 }
3347 
3349  bool isSigned, const Twine &Name,
3350  Instruction *InsertBefore) {
3351  assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3352  "Invalid integer cast");
3353  unsigned SrcBits = C->getType()->getScalarSizeInBits();
3354  unsigned DstBits = Ty->getScalarSizeInBits();
3355  Instruction::CastOps opcode =
3356  (SrcBits == DstBits ? Instruction::BitCast :
3357  (SrcBits > DstBits ? Instruction::Trunc :
3358  (isSigned ? Instruction::SExt : Instruction::ZExt)));
3359  return Create(opcode, C, Ty, Name, InsertBefore);
3360 }
3361 
3363  bool isSigned, const Twine &Name,
3364  BasicBlock *InsertAtEnd) {
3365  assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3366  "Invalid cast");
3367  unsigned SrcBits = C->getType()->getScalarSizeInBits();
3368  unsigned DstBits = Ty->getScalarSizeInBits();
3369  Instruction::CastOps opcode =
3370  (SrcBits == DstBits ? Instruction::BitCast :
3371  (SrcBits > DstBits ? Instruction::Trunc :
3372  (isSigned ? Instruction::SExt : Instruction::ZExt)));
3373  return Create(opcode, C, Ty, Name, InsertAtEnd);
3374 }
3375 
3377  const Twine &Name,
3378  Instruction *InsertBefore) {
3379  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3380  "Invalid cast");
3381  unsigned SrcBits = C->getType()->getScalarSizeInBits();
3382  unsigned DstBits = Ty->getScalarSizeInBits();
3383  Instruction::CastOps opcode =
3384  (SrcBits == DstBits ? Instruction::BitCast :
3385  (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3386  return Create(opcode, C, Ty, Name, InsertBefore);
3387 }
3388 
3390  const Twine &Name,
3391  BasicBlock *InsertAtEnd) {
3392  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3393  "Invalid cast");
3394  unsigned SrcBits = C->getType()->getScalarSizeInBits();
3395  unsigned DstBits = Ty->getScalarSizeInBits();
3396  Instruction::CastOps opcode =
3397  (SrcBits == DstBits ? Instruction::BitCast :
3398  (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3399  return Create(opcode, C, Ty, Name, InsertAtEnd);
3400 }
3401 
3402 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3403  if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3404  return false;
3405 
3406  if (SrcTy == DestTy)
3407  return true;
3408 
3409  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3410  if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3411  if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3412  // An element by element cast. Valid if casting the elements is valid.
3413  SrcTy = SrcVecTy->getElementType();
3414  DestTy = DestVecTy->getElementType();
3415  }
3416  }
3417  }
3418 
3419  if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3420  if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3421  return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3422  }
3423  }
3424 
3425  TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
3426  TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3427 
3428  // Could still have vectors of pointers if the number of elements doesn't
3429  // match
3430  if (SrcBits.getKnownMinSize() == 0 || DestBits.getKnownMinSize() == 0)
3431  return false;
3432 
3433  if (SrcBits != DestBits)
3434  return false;
3435 
3436  if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3437  return false;
3438 
3439  return true;
3440 }
3441 
3443  const DataLayout &DL) {
3444  // ptrtoint and inttoptr are not allowed on non-integral pointers
3445  if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3446  if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3447  return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3448  !DL.isNonIntegralPointerType(PtrTy));
3449  if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3450  if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3451  return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3452  !DL.isNonIntegralPointerType(PtrTy));
3453 
3454  return isBitCastable(SrcTy, DestTy);
3455 }
3456 
3457 // Provide a way to get a "cast" where the cast opcode is inferred from the
3458 // types and size of the operand. This, basically, is a parallel of the
3459 // logic in the castIsValid function below. This axiom should hold:
3460 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3461 // should not assert in castIsValid. In other words, this produces a "correct"
3462 // casting opcode for the arguments passed to it.
3465  const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3466  Type *SrcTy = Src->getType();
3467 
3468  assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3469  "Only first class types are castable!");
3470 
3471  if (SrcTy == DestTy)
3472  return BitCast;
3473 
3474  // FIXME: Check address space sizes here
3475  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3476  if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3477  if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3478  // An element by element cast. Find the appropriate opcode based on the
3479  // element types.
3480  SrcTy = SrcVecTy->getElementType();
3481  DestTy = DestVecTy->getElementType();
3482  }
3483 
3484  // Get the bit sizes, we'll need these
3485  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
3486  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3487 
3488  // Run through the possibilities ...
3489  if (DestTy->isIntegerTy()) { // Casting to integral
3490  if (SrcTy->isIntegerTy()) { // Casting from integral
3491  if (DestBits < SrcBits)
3492  return Trunc; // int -> smaller int
3493  else if (DestBits > SrcBits) { // its an extension
3494  if (SrcIsSigned)
3495  return SExt; // signed -> SEXT
3496  else
3497  return ZExt; // unsigned -> ZEXT
3498  } else {
3499  return BitCast; // Same size, No-op cast
3500  }
3501  } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3502  if (DestIsSigned)
3503  return FPToSI; // FP -> sint
3504  else
3505  return FPToUI; // FP -> uint
3506  } else if (SrcTy->isVectorTy()) {
3507  assert(DestBits == SrcBits &&
3508  "Casting vector to integer of different width");
3509  return BitCast; // Same size, no-op cast
3510  } else {
3511  assert(SrcTy->isPointerTy() &&
3512  "Casting from a value that is not first-class type");
3513  return PtrToInt; // ptr -> int
3514  }
3515  } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
3516  if (SrcTy->isIntegerTy()) { // Casting from integral
3517  if (SrcIsSigned)
3518  return SIToFP; // sint -> FP
3519  else
3520  return UIToFP; // uint -> FP
3521  } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3522  if (DestBits < SrcBits) {
3523  return FPTrunc; // FP -> smaller FP
3524  } else if (DestBits > SrcBits) {
3525  return FPExt; // FP -> larger FP
3526  } else {
3527  return BitCast; // same size, no-op cast
3528  }
3529  } else if (SrcTy->isVectorTy()) {
3530  assert(DestBits == SrcBits &&
3531  "Casting vector to floating point of different width");
3532  return BitCast; // same size, no-op cast
3533  }
3534  llvm_unreachable("Casting pointer or non-first class to float");
3535  } else if (DestTy->isVectorTy()) {
3536  assert(DestBits == SrcBits &&
3537  "Illegal cast to vector (wrong type or size)");
3538  return BitCast;
3539  } else if (DestTy->isPointerTy()) {
3540  if (SrcTy->isPointerTy()) {
3541  if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3542  return AddrSpaceCast;
3543  return BitCast; // ptr -> ptr
3544  } else if (SrcTy->isIntegerTy()) {
3545  return IntToPtr; // int -> ptr
3546  }
3547  llvm_unreachable("Casting pointer to other than pointer or int");
3548  } else if (DestTy->isX86_MMXTy()) {
3549  if (SrcTy->isVectorTy()) {
3550  assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3551  return BitCast; // 64-bit vector to MMX
3552  }
3553  llvm_unreachable("Illegal cast to X86_MMX");
3554  }
3555  llvm_unreachable("Casting to type that is not first-class");
3556 }
3557 
3558 //===----------------------------------------------------------------------===//
3559 // CastInst SubClass Constructors
3560 //===----------------------------------------------------------------------===//
3561 
3562 /// Check that the construction parameters for a CastInst are correct. This
3563 /// could be broken out into the separate constructors but it is useful to have
3564 /// it in one place and to eliminate the redundant code for getting the sizes
3565 /// of the types involved.
3566 bool
3568  if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3569  SrcTy->isAggregateType() || DstTy->isAggregateType())
3570  return false;
3571 
3572  // Get the size of the types in bits, and whether we are dealing
3573  // with vector types, we'll need this later.
3574  bool SrcIsVec = isa<VectorType>(SrcTy);
3575  bool DstIsVec = isa<VectorType>(DstTy);
3576  unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits();
3577  unsigned DstScalarBitSize = DstTy->getScalarSizeInBits();
3578 
3579  // If these are vector types, get the lengths of the vectors (using zero for
3580  // scalar types means that checking that vector lengths match also checks that
3581  // scalars are not being converted to vectors or vectors to scalars).
3582  ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount()
3584  ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount()
3586 
3587  // Switch on the opcode provided
3588  switch (op) {
3589  default: return false; // This is an input error
3590  case Instruction::Trunc:
3591  return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3592  SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3593  case Instruction::ZExt:
3594  return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3595  SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3596  case Instruction::SExt:
3597  return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3598  SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3599  case Instruction::FPTrunc:
3600  return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3601  SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3602  case Instruction::FPExt:
3603  return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3604  SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3605  case Instruction::UIToFP:
3606  case Instruction::SIToFP:
3607  return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3608  SrcEC == DstEC;
3609  case Instruction::FPToUI:
3610  case Instruction::FPToSI:
3611  return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3612  SrcEC == DstEC;
3613  case Instruction::PtrToInt:
3614  if (SrcEC != DstEC)
3615  return false;
3616  return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3617  case Instruction::IntToPtr:
3618  if (SrcEC != DstEC)
3619  return false;
3620  return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3621  case Instruction::BitCast: {
3622  PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3623  PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3624 
3625  // BitCast implies a no-op cast of type only. No bits change.
3626  // However, you can't cast pointers to anything but pointers.
3627  if (!SrcPtrTy != !DstPtrTy)
3628  return false;
3629 
3630  // For non-pointer cases, the cast is okay if the source and destination bit
3631  // widths are identical.
3632  if (!SrcPtrTy)
3633  return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3634 
3635  // If both are pointers then the address spaces must match.
3636  if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3637  return false;
3638 
3639  // A vector of pointers must have the same number of elements.
3640  if (SrcIsVec && DstIsVec)
3641  return SrcEC == DstEC;
3642  if (SrcIsVec)
3643  return SrcEC == ElementCount::getFixed(1);
3644  if (DstIsVec)
3645  return DstEC == ElementCount::getFixed(1);
3646 
3647  return true;
3648  }
3649  case Instruction::AddrSpaceCast: {
3650  PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3651  if (!SrcPtrTy)
3652  return false;
3653 
3654  PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3655  if (!DstPtrTy)
3656  return false;
3657 
3658  if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3659  return false;
3660 
3661  return SrcEC == DstEC;
3662  }
3663  }
3664 }
3665 
3667  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3668 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3669  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3670 }
3671 
3673  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3674 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3675  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3676 }
3677 
3679  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3680 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3681  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3682 }
3683 
3685  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3686 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3687  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3688 }
3690  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3691 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3692  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3693 }
3694 
3696  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3697 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3698  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3699 }
3700 
3702  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3703 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3704  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3705 }
3706 
3708  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3709 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3710  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3711 }
3712 
3714  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3715 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3716  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3717 }
3718 
3720  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3721 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3722  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3723 }
3724 
3726  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3727 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3728  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3729 }
3730 
3732  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3733 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3734  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3735 }
3736 
3738  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3739 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3740  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3741 }
3742 
3744  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3745 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3746  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3747 }
3748 
3750  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3751 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3752  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3753 }
3754 
3756  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3757 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3758  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3759 }
3760 
3762  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3763 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3764  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3765 }
3766 
3768  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3769 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3770  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3771 }
3772 
3774  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3775 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3776  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3777 }
3778 
3780  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3781 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3782  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3783 }
3784 
3786  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3787 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3788  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3789 }
3790 
3792  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3793 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3794  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3795 }
3796 
3798  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3799 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3800  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3801 }
3802 
3804  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3805 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3806  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3807 }
3808 
3810  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3811 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3812  assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3813 }
3814 
3816  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3817 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3818  assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3819 }
3820 
3821 //===----------------------------------------------------------------------===//
3822 // CmpInst Classes
3823 //===----------------------------------------------------------------------===//
3824 
3826  Value *RHS, const Twine &Name, Instruction *InsertBefore,
3827  Instruction *FlagsSource)
3828  : Instruction(ty, op,
3829  OperandTraits<CmpInst>::op_begin(this),
3830  OperandTraits<CmpInst>::operands(this),
3831  InsertBefore) {
3832  Op<0>() = LHS;
3833  Op<1>() = RHS;
3834  setPredicate((Predicate)predicate);
3835  setName(Name);
3836  if (FlagsSource)
3837  copyIRFlags(FlagsSource);
3838 }
3839 
3841  Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3842  : Instruction(ty, op,
3843  OperandTraits<CmpInst>::op_begin(this),
3844  OperandTraits<CmpInst>::operands(this),
3845  InsertAtEnd) {
3846  Op<0>() = LHS;
3847  Op<1>() = RHS;
3848  setPredicate((Predicate)predicate);
3849  setName(Name);
3850 }
3851 
3852 CmpInst *
3854  const Twine &Name, Instruction *InsertBefore) {
3855  if (Op == Instruction::ICmp) {
3856  if (InsertBefore)
3857  return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3858  S1, S2, Name);
3859  else
3860  return new ICmpInst(CmpInst::Predicate(predicate),
3861  S1, S2, Name);
3862  }
3863 
3864  if (InsertBefore)
3865  return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3866  S1, S2, Name);
3867  else
3868  return new FCmpInst(CmpInst::Predicate(predicate),
3869  S1, S2, Name);
3870 }
3871 
3872 CmpInst *
3874  const Twine &Name, BasicBlock *InsertAtEnd) {
3875  if (Op == Instruction::ICmp) {
3876  return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3877  S1, S2, Name);
3878  }
3879  return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3880  S1, S2, Name);
3881 }
3882 
3884  if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3885  IC->swapOperands();
3886  else
3887  cast<FCmpInst>(this)->swapOperands();
3888 }
3889 
3891  if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3892  return IC->isCommutative();
3893  return cast<FCmpInst>(this)->isCommutative();
3894 }
3895 
3898  return ICmpInst::isEquality(P);
3900  return FCmpInst::isEquality(P);
3901  llvm_unreachable("Unsupported predicate kind");
3902 }
3903 
3905  switch (pred) {
3906  default: llvm_unreachable("Unknown cmp predicate!");
3907  case ICMP_EQ: return ICMP_NE;
3908  case ICMP_NE: return ICMP_EQ;
3909  case ICMP_UGT: return ICMP_ULE;
3910  case ICMP_ULT: return ICMP_UGE;
3911  case ICMP_UGE: return ICMP_ULT;
3912  case ICMP_ULE: return ICMP_UGT;
3913  case ICMP_SGT: return ICMP_SLE;
3914  case ICMP_SLT: return ICMP_SGE;
3915  case ICMP_SGE: return ICMP_SLT;
3916  case ICMP_SLE: return ICMP_SGT;
3917 
3918  case FCMP_OEQ: return FCMP_UNE;
3919  case FCMP_ONE: return FCMP_UEQ;
3920  case FCMP_OGT: return FCMP_ULE;
3921  case FCMP_OLT: return FCMP_UGE;
3922  case FCMP_OGE: return FCMP_ULT;
3923  case FCMP_OLE: return FCMP_UGT;
3924  case FCMP_UEQ: return FCMP_ONE;
3925  case FCMP_UNE: return FCMP_OEQ;
3926  case FCMP_UGT: return FCMP_OLE;
3927  case FCMP_ULT: return FCMP_OGE;
3928  case FCMP_UGE: return FCMP_OLT;
3929  case FCMP_ULE: return FCMP_OGT;
3930  case FCMP_ORD: return FCMP_UNO;
3931  case FCMP_UNO: return FCMP_ORD;
3932  case FCMP_TRUE: return FCMP_FALSE;
3933  case FCMP_FALSE: return FCMP_TRUE;
3934  }
3935 }
3936 
3938  switch (Pred) {
3939  default: return "unknown";
3940  case FCmpInst::FCMP_FALSE: return "false";
3941  case FCmpInst::FCMP_OEQ: return "oeq";
3942  case FCmpInst::FCMP_OGT: return "ogt";
3943  case FCmpInst::FCMP_OGE: return "oge";
3944  case FCmpInst::FCMP_OLT: return "olt";
3945  case FCmpInst::FCMP_OLE: return "ole";
3946  case FCmpInst::FCMP_ONE: return "one";
3947  case FCmpInst::FCMP_ORD: return "ord";
3948  case FCmpInst::FCMP_UNO: return "uno";
3949  case FCmpInst::FCMP_UEQ: return "ueq";
3950  case FCmpInst::FCMP_UGT: return "ugt";
3951  case FCmpInst::FCMP_UGE: return "uge";
3952  case FCmpInst::FCMP_ULT: return "ult";
3953  case FCmpInst::FCMP_ULE: return "ule";
3954  case FCmpInst::FCMP_UNE: return "une";
3955  case FCmpInst::FCMP_TRUE: return "true";
3956  case ICmpInst::ICMP_EQ: return "eq";
3957  case ICmpInst::ICMP_NE: return "ne";
3958  case ICmpInst::ICMP_SGT: return "sgt";
3959  case ICmpInst::ICMP_SGE: return "sge";
3960  case ICmpInst::ICMP_SLT: return "slt";
3961  case ICmpInst::ICMP_SLE: return "sle";
3962  case ICmpInst::ICMP_UGT: return "ugt";
3963  case ICmpInst::ICMP_UGE: return "uge";
3964  case ICmpInst::ICMP_ULT: return "ult";
3965  case ICmpInst::ICMP_ULE: return "ule";
3966  }
3967 }
3968 
3970  switch (pred) {
3971  default: llvm_unreachable("Unknown icmp predicate!");
3972  case ICMP_EQ: case ICMP_NE:
3973  case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3974  return pred;
3975  case ICMP_UGT: return ICMP_SGT;
3976  case ICMP_ULT: return ICMP_SLT;
3977  case ICMP_UGE: return ICMP_SGE;
3978  case ICMP_ULE: return ICMP_SLE;
3979  }
3980 }
3981 
3983  switch (pred) {
3984  default: llvm_unreachable("Unknown icmp predicate!");
3985  case ICMP_EQ: case ICMP_NE:
3986  case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3987  return pred;
3988  case ICMP_SGT: return ICMP_UGT;
3989  case ICMP_SLT: return ICMP_ULT;
3990  case ICMP_SGE: return ICMP_UGE;
3991  case ICMP_SLE: return ICMP_ULE;
3992  }
3993 }
3994 
3996  switch (pred) {
3997  default: llvm_unreachable("Unknown cmp predicate!");
3998  case ICMP_EQ: case ICMP_NE:
3999  return pred;
4000  case ICMP_SGT: return ICMP_SLT;
4001  case ICMP_SLT: return ICMP_SGT;
4002  case ICMP_SGE: return ICMP_SLE;
4003  case ICMP_SLE: return ICMP_SGE;
4004  case ICMP_UGT: return ICMP_ULT;
4005  case ICMP_ULT: return ICMP_UGT;
4006  case ICMP_UGE: return ICMP_ULE;
4007  case ICMP_ULE: return ICMP_UGE;
4008 
4009  case FCMP_FALSE: case FCMP_TRUE:
4010  case FCMP_OEQ: case FCMP_ONE:
4011  case FCMP_UEQ: case FCMP_UNE:
4012  case FCMP_ORD: case FCMP_UNO:
4013  return pred;
4014  case FCMP_OGT: return FCMP_OLT;
4015  case FCMP_OLT: return FCMP_OGT;
4016  case FCMP_OGE: return FCMP_OLE;
4017  case FCMP_OLE: return FCMP_OGE;
4018  case FCMP_UGT: return FCMP_ULT;
4019  case FCMP_ULT: return FCMP_UGT;
4020  case FCMP_UGE: return FCMP_ULE;
4021  case FCMP_ULE: return FCMP_UGE;
4022  }
4023 }
4024 
4026  switch (pred) {
4027  case ICMP_SGE:
4028  case ICMP_SLE:
4029  case ICMP_UGE:
4030  case ICMP_ULE:
4031  case FCMP_OGE:
4032  case FCMP_OLE:
4033  case FCMP_UGE:
4034  case FCMP_ULE:
4035  return true;
4036  default:
4037  return false;
4038  }
4039 }
4040 
4042  switch (pred) {
4043  case ICMP_SGT:
4044  case ICMP_SLT:
4045  case ICMP_UGT:
4046  case ICMP_ULT:
4047  case FCMP_OGT:
4048  case FCMP_OLT:
4049  case FCMP_UGT:
4050  case FCMP_ULT:
4051  return true;
4052  default:
4053  return false;
4054  }
4055 }
4056 
4058  switch (pred) {
4059  case ICMP_SGE:
4060  return ICMP_SGT;
4061  case ICMP_SLE:
4062  return ICMP_SLT;
4063  case ICMP_UGE:
4064  return ICMP_UGT;
4065  case ICMP_ULE:
4066  return ICMP_ULT;
4067  case FCMP_OGE:
4068  return FCMP_OGT;
4069  case FCMP_OLE:
4070  return FCMP_OLT;
4071  case FCMP_UGE:
4072  return FCMP_UGT;
4073  case FCMP_ULE:
4074  return FCMP_ULT;
4075  default:
4076  return pred;
4077  }
4078 }
4079 
4081  switch (pred) {
4082  case ICMP_SGT:
4083  return ICMP_SGE;
4084  case ICMP_SLT:
4085  return ICMP_SLE;
4086  case ICMP_UGT:
4087  return ICMP_UGE;
4088  case ICMP_ULT:
4089  return ICMP_ULE;
4090  case FCMP_OGT:
4091  return FCMP_OGE;
4092  case FCMP_OLT:
4093  return FCMP_OLE;
4094  case FCMP_UGT:
4095  return FCMP_UGE;
4096  case FCMP_ULT:
4097  return FCMP_ULE;
4098  default:
4099  return pred;
4100  }
4101 }
4102 
4104  assert(CmpInst::isRelational(pred) && "Call only with relational predicate!");
4105 
4106  if (isStrictPredicate(pred))
4107  return getNonStrictPredicate(pred);
4109  return getStrictPredicate(pred);
4110 
4111  llvm_unreachable("Unknown predicate!");
4112 }
4113 
4115  assert(CmpInst::isUnsigned(pred) && "Call only with unsigned predicates!");
4116 
4117  switch (pred) {
4118  default:
4119  llvm_unreachable("Unknown predicate!");
4120  case CmpInst::ICMP_ULT:
4121  return CmpInst::ICMP_SLT;
4122  case CmpInst::ICMP_ULE:
4123  return CmpInst::ICMP_SLE;
4124  case CmpInst::ICMP_UGT:
4125  return CmpInst::ICMP_SGT;
4126  case CmpInst::ICMP_UGE:
4127  return CmpInst::ICMP_SGE;
4128  }
4129 }
4130 
4132  assert(CmpInst::isSigned(pred) && "Call only with signed predicates!");
4133 
4134  switch (pred) {
4135  default:
4136  llvm_unreachable("Unknown predicate!");
4137  case CmpInst::ICMP_SLT:
4138  return CmpInst::ICMP_ULT;
4139  case CmpInst::ICMP_SLE:
4140  return CmpInst::ICMP_ULE;
4141  case CmpInst::ICMP_SGT:
4142  return CmpInst::ICMP_UGT;
4143  case CmpInst::ICMP_SGE:
4144  return CmpInst::ICMP_UGE;
4145  }
4146 }
4147 
4149  switch (predicate) {
4150  default: return false;
4152  case ICmpInst::ICMP_UGE: return true;
4153  }
4154 }
4155 
4156 bool CmpInst::isSigned(Predicate predicate) {
4157  switch (predicate) {
4158  default: return false;
4160  case ICmpInst::ICMP_SGE: return true;
4161  }
4162 }
4163 
4164 bool ICmpInst::compare(const APInt &LHS, const APInt &RHS,
4165  ICmpInst::Predicate Pred) {
4166  assert(ICmpInst::isIntPredicate(Pred) && "Only for integer predicates!");
4167  switch (Pred) {
4168  case ICmpInst::Predicate::ICMP_EQ:
4169  return LHS.eq(RHS);
4170  case ICmpInst::Predicate::ICMP_NE:
4171  return LHS.ne(RHS);
4172  case ICmpInst::Predicate::ICMP_UGT:
4173  return LHS.ugt(RHS);
4174  case ICmpInst::Predicate::ICMP_UGE:
4175  return LHS.uge(RHS);
4176  case ICmpInst::Predicate::ICMP_ULT:
4177  return LHS.ult(RHS);
4178  case ICmpInst::Predicate::ICMP_ULE:
4179  return LHS.ule(RHS);
4180  case ICmpInst::Predicate::ICMP_SGT:
4181  return LHS.sgt(RHS);
4182  case ICmpInst::Predicate::ICMP_SGE:
4183  return LHS.sge(RHS);
4184  case ICmpInst::Predicate::ICMP_SLT:
4185  return LHS.slt(RHS);
4186  case ICmpInst::Predicate::ICMP_SLE:
4187  return LHS.sle(RHS);
4188  default:
4189  llvm_unreachable("Unexpected non-integer predicate.");
4190  };
4191 }
4192 
4194  FCmpInst::Predicate Pred) {
4195  APFloat::cmpResult R = LHS.compare(RHS);
4196  switch (Pred) {
4197  default:
4198  llvm_unreachable("Invalid FCmp Predicate");
4199  case FCmpInst::FCMP_FALSE:
4200  return false;
4201  case FCmpInst::FCMP_TRUE:
4202  return true;
4203  case FCmpInst::FCMP_UNO:
4204  return R == APFloat::cmpUnordered;
4205  case FCmpInst::FCMP_ORD:
4206  return R != APFloat::cmpUnordered;
4207  case FCmpInst::FCMP_UEQ:
4208  return R == APFloat::cmpUnordered || R == APFloat::cmpEqual;
4209  case FCmpInst::FCMP_OEQ:
4210  return R == APFloat::cmpEqual;
4211  case FCmpInst::FCMP_UNE:
4212  return R != APFloat::cmpEqual;
4213  case FCmpInst::FCMP_ONE:
4214  return R == APFloat::cmpLessThan || R == APFloat::cmpGreaterThan;
4215  case FCmpInst::FCMP_ULT:
4216  return R == APFloat::cmpUnordered || R == APFloat::cmpLessThan;
4217  case FCmpInst::FCMP_OLT:
4218  return R == APFloat::cmpLessThan;
4219  case FCmpInst::FCMP_UGT:
4220  return R == APFloat::cmpUnordered || R == APFloat::cmpGreaterThan;
4221  case FCmpInst::FCMP_OGT:
4222  return R == APFloat::cmpGreaterThan;
4223  case FCmpInst::FCMP_ULE:
4224  return R != APFloat::cmpGreaterThan;
4225  case FCmpInst::FCMP_OLE:
4226  return R == APFloat::cmpLessThan || R == APFloat::cmpEqual;
4227  case FCmpInst::FCMP_UGE:
4228  return R != APFloat::cmpLessThan;
4229  case FCmpInst::FCMP_OGE:
4230  return R == APFloat::cmpGreaterThan || R == APFloat::cmpEqual;
4231  }
4232 }
4233 
4236  "Call only with non-equality predicates!");
4237 
4238  if (isSigned(pred))
4239  return getUnsignedPredicate(pred);
4240  if (isUnsigned(pred))
4241  return getSignedPredicate(pred);
4242 
4243  llvm_unreachable("Unknown predicate!");
4244 }
4245 
4247  switch (predicate) {
4248  default: return false;
4251  case FCmpInst::FCMP_ORD: return true;
4252  }
4253 }
4254 
4256  switch (predicate) {
4257  default: return false;
4260  case FCmpInst::FCMP_UNO: return true;
4261  }
4262 }
4263 
4265  switch(predicate) {
4266  default: return false;
4267  case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
4268  case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
4269  }
4270 }
4271 
4273  switch(predicate) {
4274  case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
4275  case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
4276  default: return false;
4277  }
4278 }
4279 
4281  // If the predicates match, then we know the first condition implies the
4282  // second is true.
4283  if (Pred1 == Pred2)
4284  return true;
4285 
4286  switch (Pred1) {
4287  default:
4288  break;
4289  case ICMP_EQ:
4290  // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
4291  return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
4292  Pred2 == ICMP_SLE;
4293  case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
4294  return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
4295  case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
4296  return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
4297  case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
4298  return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
4299  case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
4300  return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
4301  }
4302  return false;
4303 }
4304 
4306  return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
4307 }
4308 
4309 //===----------------------------------------------------------------------===//
4310 // SwitchInst Implementation
4311 //===----------------------------------------------------------------------===//
4312 
4313 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
4314  assert(Value && Default && NumReserved);
4315  ReservedSpace = NumReserved;
4317  allocHungoffUses(ReservedSpace);
4318 
4319  Op<0>() = Value;
4320  Op<1>() = Default;
4321 }
4322 
4323 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
4324 /// switch on and a default destination. The number of additional cases can
4325 /// be specified here to make memory allocation more efficient. This
4326 /// constructor can also autoinsert before another instruction.
4327 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4328  Instruction *InsertBefore)
4329  : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4330  nullptr, 0, InsertBefore) {
4331  init(Value, Default, 2+NumCases*2);
4332 }
4333 
4334 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
4335 /// switch on and a default destination. The number of additional cases can
4336 /// be specified here to make memory allocation more efficient. This
4337 /// constructor also autoinserts at the end of the specified BasicBlock.
4338 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4339  BasicBlock *InsertAtEnd)
4340  : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4341  nullptr, 0, InsertAtEnd) {
4342  init(Value, Default, 2+NumCases*2);
4343 }
4344 
4345 SwitchInst::SwitchInst(const SwitchInst &SI)
4346  : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
4347  init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
4348  setNumHungOffUseOperands(SI.getNumOperands());
4349  Use *OL = getOperandList();
4350  const Use *InOL = SI.getOperandList();
4351  for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
4352  OL[i] = InOL[i];
4353  OL[i+1] = InOL[i+1];
4354  }
4355  SubclassOptionalData = SI.SubclassOptionalData;
4356 }
4357 
4358 /// addCase - Add an entry to the switch instruction...
4359 ///
4361  unsigned NewCaseIdx = getNumCases();
4362  unsigned OpNo = getNumOperands();
4363  if (OpNo+2 > ReservedSpace)
4364  growOperands(); // Get more space!
4365  // Initialize some new operands.
4366  assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
4367  setNumHungOffUseOperands(OpNo+2);
4368  CaseHandle Case(this, NewCaseIdx);
4369  Case.setValue(OnVal);
4370  Case.setSuccessor(Dest);
4371 }
4372 
4373 /// removeCase - This method removes the specified case and its successor
4374 /// from the switch instruction.
4376  unsigned idx = I->getCaseIndex();
4377 
4378  assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
4379 
4380  unsigned NumOps = getNumOperands();
4381  Use *OL = getOperandList();
4382 
4383  // Overwrite this case with the end of the list.
4384  if (2 + (idx + 1) * 2 != NumOps) {
4385  OL[2 + idx * 2] = OL[NumOps - 2];
4386  OL[2 + idx * 2 + 1] = OL[NumOps - 1];
4387  }
4388 
4389  // Nuke the last value.
4390  OL[NumOps-2].set(nullptr);
4391  OL[NumOps-2+1].set(nullptr);
4392  setNumHungOffUseOperands(NumOps-2);
4393 
4394  return CaseIt(this, idx);
4395 }
4396 
4397 /// growOperands - grow operands - This grows the operand list in response
4398 /// to a push_back style of operation. This grows the number of ops by 3 times.
4399 ///
4400 void SwitchInst::growOperands() {
4401  unsigned e = getNumOperands();
4402  unsigned NumOps = e*3;
4403 
4404  ReservedSpace = NumOps;
4405  growHungoffUses(ReservedSpace);
4406 }
4407 
4408 MDNode *