LLVM 20.0.0git
AArch64AddressingModes.h
Go to the documentation of this file.
1//===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the AArch64 addressing mode implementation stuff.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
14#define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
15
16#include "llvm/ADT/APFloat.h"
17#include "llvm/ADT/APInt.h"
18#include "llvm/ADT/bit.h"
21#include <cassert>
22
23namespace llvm {
24
25/// AArch64_AM - AArch64 Addressing Mode Stuff
26namespace AArch64_AM {
27
28//===----------------------------------------------------------------------===//
29// Shifts
30//
31
34 LSL = 0,
39
44
49};
50
51/// getShiftName - Get the string encoding for the shift type.
52static inline const char *getShiftExtendName(AArch64_AM::ShiftExtendType ST) {
53 switch (ST) {
54 default: llvm_unreachable("unhandled shift type!");
55 case AArch64_AM::LSL: return "lsl";
56 case AArch64_AM::LSR: return "lsr";
57 case AArch64_AM::ASR: return "asr";
58 case AArch64_AM::ROR: return "ror";
59 case AArch64_AM::MSL: return "msl";
60 case AArch64_AM::UXTB: return "uxtb";
61 case AArch64_AM::UXTH: return "uxth";
62 case AArch64_AM::UXTW: return "uxtw";
63 case AArch64_AM::UXTX: return "uxtx";
64 case AArch64_AM::SXTB: return "sxtb";
65 case AArch64_AM::SXTH: return "sxth";
66 case AArch64_AM::SXTW: return "sxtw";
67 case AArch64_AM::SXTX: return "sxtx";
68 }
69 return nullptr;
70}
71
72/// getShiftType - Extract the shift type.
73static inline AArch64_AM::ShiftExtendType getShiftType(unsigned Imm) {
74 switch ((Imm >> 6) & 0x7) {
75 default: return AArch64_AM::InvalidShiftExtend;
76 case 0: return AArch64_AM::LSL;
77 case 1: return AArch64_AM::LSR;
78 case 2: return AArch64_AM::ASR;
79 case 3: return AArch64_AM::ROR;
80 case 4: return AArch64_AM::MSL;
81 }
82}
83
84/// getShiftValue - Extract the shift value.
85static inline unsigned getShiftValue(unsigned Imm) {
86 return Imm & 0x3f;
87}
88
89/// getShifterImm - Encode the shift type and amount:
90/// imm: 6-bit shift amount
91/// shifter: 000 ==> lsl
92/// 001 ==> lsr
93/// 010 ==> asr
94/// 011 ==> ror
95/// 100 ==> msl
96/// {8-6} = shifter
97/// {5-0} = imm
99 unsigned Imm) {
100 assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!");
101 unsigned STEnc = 0;
102 switch (ST) {
103 default: llvm_unreachable("Invalid shift requested");
104 case AArch64_AM::LSL: STEnc = 0; break;
105 case AArch64_AM::LSR: STEnc = 1; break;
106 case AArch64_AM::ASR: STEnc = 2; break;
107 case AArch64_AM::ROR: STEnc = 3; break;
108 case AArch64_AM::MSL: STEnc = 4; break;
109 }
110 return (STEnc << 6) | (Imm & 0x3f);
111}
112
113//===----------------------------------------------------------------------===//
114// Extends
115//
116
117/// getArithShiftValue - get the arithmetic shift value.
118static inline unsigned getArithShiftValue(unsigned Imm) {
119 return Imm & 0x7;
120}
121
122/// getExtendType - Extract the extend type for operands of arithmetic ops.
123static inline AArch64_AM::ShiftExtendType getExtendType(unsigned Imm) {
124 assert((Imm & 0x7) == Imm && "invalid immediate!");
125 switch (Imm) {
126 default: llvm_unreachable("Compiler bug!");
127 case 0: return AArch64_AM::UXTB;
128 case 1: return AArch64_AM::UXTH;
129 case 2: return AArch64_AM::UXTW;
130 case 3: return AArch64_AM::UXTX;
131 case 4: return AArch64_AM::SXTB;
132 case 5: return AArch64_AM::SXTH;
133 case 6: return AArch64_AM::SXTW;
134 case 7: return AArch64_AM::SXTX;
135 }
136}
137
139 return getExtendType((Imm >> 3) & 0x7);
140}
141
142/// Mapping from extend bits to required operation:
143/// shifter: 000 ==> uxtb
144/// 001 ==> uxth
145/// 010 ==> uxtw
146/// 011 ==> uxtx
147/// 100 ==> sxtb
148/// 101 ==> sxth
149/// 110 ==> sxtw
150/// 111 ==> sxtx
152 switch (ET) {
153 default: llvm_unreachable("Invalid extend type requested");
154 case AArch64_AM::UXTB: return 0; break;
155 case AArch64_AM::UXTH: return 1; break;
156 case AArch64_AM::UXTW: return 2; break;
157 case AArch64_AM::UXTX: return 3; break;
158 case AArch64_AM::SXTB: return 4; break;
159 case AArch64_AM::SXTH: return 5; break;
160 case AArch64_AM::SXTW: return 6; break;
161 case AArch64_AM::SXTX: return 7; break;
162 }
163}
164
165/// getArithExtendImm - Encode the extend type and shift amount for an
166/// arithmetic instruction:
167/// imm: 3-bit extend amount
168/// {5-3} = shifter
169/// {2-0} = imm3
171 unsigned Imm) {
172 assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!");
173 return (getExtendEncoding(ET) << 3) | (Imm & 0x7);
174}
175
176/// getMemDoShift - Extract the "do shift" flag value for load/store
177/// instructions.
178static inline bool getMemDoShift(unsigned Imm) {
179 return (Imm & 0x1) != 0;
180}
181
182/// getExtendType - Extract the extend type for the offset operand of
183/// loads/stores.
185 return getExtendType((Imm >> 1) & 0x7);
186}
187
188/// getExtendImm - Encode the extend type and amount for a load/store inst:
189/// doshift: should the offset be scaled by the access size
190/// shifter: 000 ==> uxtb
191/// 001 ==> uxth
192/// 010 ==> uxtw
193/// 011 ==> uxtx
194/// 100 ==> sxtb
195/// 101 ==> sxth
196/// 110 ==> sxtw
197/// 111 ==> sxtx
198/// {3-1} = shifter
199/// {0} = doshift
201 bool DoShift) {
202 return (getExtendEncoding(ET) << 1) | unsigned(DoShift);
203}
204
205static inline uint64_t ror(uint64_t elt, unsigned size) {
206 return ((elt & 1) << (size-1)) | (elt >> 1);
207}
208
209/// processLogicalImmediate - Determine if an immediate value can be encoded
210/// as the immediate operand of a logical instruction for the given register
211/// size. If so, return true with "encoding" set to the encoded value in
212/// the form N:immr:imms.
213static inline bool processLogicalImmediate(uint64_t Imm, unsigned RegSize,
214 uint64_t &Encoding) {
215 if (Imm == 0ULL || Imm == ~0ULL ||
216 (RegSize != 64 &&
217 (Imm >> RegSize != 0 || Imm == (~0ULL >> (64 - RegSize)))))
218 return false;
219
220 // First, determine the element size.
221 unsigned Size = RegSize;
222
223 do {
224 Size /= 2;
225 uint64_t Mask = (1ULL << Size) - 1;
226
227 if ((Imm & Mask) != ((Imm >> Size) & Mask)) {
228 Size *= 2;
229 break;
230 }
231 } while (Size > 2);
232
233 // Second, determine the rotation to make the element be: 0^m 1^n.
234 uint32_t CTO, I;
235 uint64_t Mask = ((uint64_t)-1LL) >> (64 - Size);
236 Imm &= Mask;
237
238 if (isShiftedMask_64(Imm)) {
239 I = llvm::countr_zero(Imm);
240 assert(I < 64 && "undefined behavior");
241 CTO = llvm::countr_one(Imm >> I);
242 } else {
243 Imm |= ~Mask;
244 if (!isShiftedMask_64(~Imm))
245 return false;
246
247 unsigned CLO = llvm::countl_one(Imm);
248 I = 64 - CLO;
249 CTO = CLO + llvm::countr_one(Imm) - (64 - Size);
250 }
251
252 // Encode in Immr the number of RORs it would take to get *from* 0^m 1^n
253 // to our target value, where I is the number of RORs to go the opposite
254 // direction.
255 assert(Size > I && "I should be smaller than element size");
256 unsigned Immr = (Size - I) & (Size - 1);
257
258 // If size has a 1 in the n'th bit, create a value that has zeroes in
259 // bits [0, n] and ones above that.
260 uint64_t NImms = ~(Size-1) << 1;
261
262 // Or the CTO value into the low bits, which must be below the Nth bit
263 // bit mentioned above.
264 NImms |= (CTO-1);
265
266 // Extract the seventh bit and toggle it to create the N field.
267 unsigned N = ((NImms >> 6) & 1) ^ 1;
268
269 Encoding = (N << 12) | (Immr << 6) | (NImms & 0x3f);
270 return true;
271}
272
273/// isLogicalImmediate - Return true if the immediate is valid for a logical
274/// immediate instruction of the given register size. Return false otherwise.
275static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize) {
276 uint64_t encoding;
277 return processLogicalImmediate(imm, regSize, encoding);
278}
279
280/// encodeLogicalImmediate - Return the encoded immediate value for a logical
281/// immediate instruction of the given register size.
282static inline uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize) {
283 uint64_t encoding = 0;
284 bool res = processLogicalImmediate(imm, regSize, encoding);
285 assert(res && "invalid logical immediate");
286 (void)res;
287 return encoding;
288}
289
290/// decodeLogicalImmediate - Decode a logical immediate value in the form
291/// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the
292/// integer value it represents with regSize bits.
293static inline uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize) {
294 // Extract the N, imms, and immr fields.
295 unsigned N = (val >> 12) & 1;
296 unsigned immr = (val >> 6) & 0x3f;
297 unsigned imms = val & 0x3f;
298
299 assert((regSize == 64 || N == 0) && "undefined logical immediate encoding");
300 int len = 31 - llvm::countl_zero((N << 6) | (~imms & 0x3f));
301 assert(len >= 0 && "undefined logical immediate encoding");
302 unsigned size = (1 << len);
303 unsigned R = immr & (size - 1);
304 unsigned S = imms & (size - 1);
305 assert(S != size - 1 && "undefined logical immediate encoding");
306 uint64_t pattern = (1ULL << (S + 1)) - 1;
307 for (unsigned i = 0; i < R; ++i)
308 pattern = ror(pattern, size);
309
310 // Replicate the pattern to fill the regSize.
311 while (size != regSize) {
312 pattern |= (pattern << size);
313 size *= 2;
314 }
315 return pattern;
316}
317
318/// isValidDecodeLogicalImmediate - Check to see if the logical immediate value
319/// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits)
320/// is a valid encoding for an integer value with regSize bits.
322 unsigned regSize) {
323 // Extract the N and imms fields needed for checking.
324 unsigned N = (val >> 12) & 1;
325 unsigned imms = val & 0x3f;
326
327 if (regSize == 32 && N != 0) // undefined logical immediate encoding
328 return false;
329 int len = 31 - llvm::countl_zero((N << 6) | (~imms & 0x3f));
330 if (len < 0) // undefined logical immediate encoding
331 return false;
332 unsigned size = (1 << len);
333 unsigned S = imms & (size - 1);
334 if (S == size - 1) // undefined logical immediate encoding
335 return false;
336
337 return true;
338}
339
340//===----------------------------------------------------------------------===//
341// Floating-point Immediates
342//
343static inline float getFPImmFloat(unsigned Imm) {
344 // We expect an 8-bit binary encoding of a floating-point number here.
345
346 uint8_t Sign = (Imm >> 7) & 0x1;
347 uint8_t Exp = (Imm >> 4) & 0x7;
348 uint8_t Mantissa = Imm & 0xf;
349
350 // 8-bit FP IEEE Float Encoding
351 // abcd efgh aBbbbbbc defgh000 00000000 00000000
352 //
353 // where B = NOT(b);
354
355 uint32_t I = 0;
356 I |= Sign << 31;
357 I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
358 I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
359 I |= (Exp & 0x3) << 23;
360 I |= Mantissa << 19;
361 return bit_cast<float>(I);
362}
363
364/// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
365/// floating-point value. If the value cannot be represented as an 8-bit
366/// floating-point value, then return -1.
367static inline int getFP16Imm(const APInt &Imm) {
368 uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
369 int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15; // -14 to 15
370 int32_t Mantissa = Imm.getZExtValue() & 0x3ff; // 10 bits
371
372 // We can handle 4 bits of mantissa.
373 // mantissa = (16+UInt(e:f:g:h))/16.
374 if (Mantissa & 0x3f)
375 return -1;
376 Mantissa >>= 6;
377
378 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
379 if (Exp < -3 || Exp > 4)
380 return -1;
381 Exp = ((Exp+3) & 0x7) ^ 4;
382
383 return ((int)Sign << 7) | (Exp << 4) | Mantissa;
384}
385
386static inline int getFP16Imm(const APFloat &FPImm) {
387 return getFP16Imm(FPImm.bitcastToAPInt());
388}
389
390/// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
391/// floating-point value. If the value cannot be represented as an 8-bit
392/// floating-point value, then return -1.
393static inline int getFP32Imm(const APInt &Imm) {
394 uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
395 int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127
396 int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits
397
398 // We can handle 4 bits of mantissa.
399 // mantissa = (16+UInt(e:f:g:h))/16.
400 if (Mantissa & 0x7ffff)
401 return -1;
402 Mantissa >>= 19;
403 if ((Mantissa & 0xf) != Mantissa)
404 return -1;
405
406 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
407 if (Exp < -3 || Exp > 4)
408 return -1;
409 Exp = ((Exp+3) & 0x7) ^ 4;
410
411 return ((int)Sign << 7) | (Exp << 4) | Mantissa;
412}
413
414static inline int getFP32Imm(const APFloat &FPImm) {
415 return getFP32Imm(FPImm.bitcastToAPInt());
416}
417
418/// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
419/// floating-point value. If the value cannot be represented as an 8-bit
420/// floating-point value, then return -1.
421static inline int getFP64Imm(const APInt &Imm) {
422 uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
423 int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
424 uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
425
426 // We can handle 4 bits of mantissa.
427 // mantissa = (16+UInt(e:f:g:h))/16.
428 if (Mantissa & 0xffffffffffffULL)
429 return -1;
430 Mantissa >>= 48;
431 if ((Mantissa & 0xf) != Mantissa)
432 return -1;
433
434 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
435 if (Exp < -3 || Exp > 4)
436 return -1;
437 Exp = ((Exp+3) & 0x7) ^ 4;
438
439 return ((int)Sign << 7) | (Exp << 4) | Mantissa;
440}
441
442static inline int getFP64Imm(const APFloat &FPImm) {
443 return getFP64Imm(FPImm.bitcastToAPInt());
444}
445
446//===--------------------------------------------------------------------===//
447// AdvSIMD Modified Immediates
448//===--------------------------------------------------------------------===//
449
450// 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh
451static inline bool isAdvSIMDModImmType1(uint64_t Imm) {
452 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
453 ((Imm & 0xffffff00ffffff00ULL) == 0);
454}
455
456static inline uint8_t encodeAdvSIMDModImmType1(uint64_t Imm) {
457 return (Imm & 0xffULL);
458}
459
460static inline uint64_t decodeAdvSIMDModImmType1(uint8_t Imm) {
461 uint64_t EncVal = Imm;
462 return (EncVal << 32) | EncVal;
463}
464
465// 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00
466static inline bool isAdvSIMDModImmType2(uint64_t Imm) {
467 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
468 ((Imm & 0xffff00ffffff00ffULL) == 0);
469}
470
471static inline uint8_t encodeAdvSIMDModImmType2(uint64_t Imm) {
472 return (Imm & 0xff00ULL) >> 8;
473}
474
475static inline uint64_t decodeAdvSIMDModImmType2(uint8_t Imm) {
476 uint64_t EncVal = Imm;
477 return (EncVal << 40) | (EncVal << 8);
478}
479
480// 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00
481static inline bool isAdvSIMDModImmType3(uint64_t Imm) {
482 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
483 ((Imm & 0xff00ffffff00ffffULL) == 0);
484}
485
486static inline uint8_t encodeAdvSIMDModImmType3(uint64_t Imm) {
487 return (Imm & 0xff0000ULL) >> 16;
488}
489
490static inline uint64_t decodeAdvSIMDModImmType3(uint8_t Imm) {
491 uint64_t EncVal = Imm;
492 return (EncVal << 48) | (EncVal << 16);
493}
494
495// abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00
496static inline bool isAdvSIMDModImmType4(uint64_t Imm) {
497 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
498 ((Imm & 0x00ffffff00ffffffULL) == 0);
499}
500
501static inline uint8_t encodeAdvSIMDModImmType4(uint64_t Imm) {
502 return (Imm & 0xff000000ULL) >> 24;
503}
504
505static inline uint64_t decodeAdvSIMDModImmType4(uint8_t Imm) {
506 uint64_t EncVal = Imm;
507 return (EncVal << 56) | (EncVal << 24);
508}
509
510// 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh
511static inline bool isAdvSIMDModImmType5(uint64_t Imm) {
512 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
513 (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) &&
514 ((Imm & 0xff00ff00ff00ff00ULL) == 0);
515}
516
517static inline uint8_t encodeAdvSIMDModImmType5(uint64_t Imm) {
518 return (Imm & 0xffULL);
519}
520
521static inline uint64_t decodeAdvSIMDModImmType5(uint8_t Imm) {
522 uint64_t EncVal = Imm;
523 return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal;
524}
525
526// abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00
527static inline bool isAdvSIMDModImmType6(uint64_t Imm) {
528 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
529 (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) &&
530 ((Imm & 0x00ff00ff00ff00ffULL) == 0);
531}
532
533static inline uint8_t encodeAdvSIMDModImmType6(uint64_t Imm) {
534 return (Imm & 0xff00ULL) >> 8;
535}
536
537static inline uint64_t decodeAdvSIMDModImmType6(uint8_t Imm) {
538 uint64_t EncVal = Imm;
539 return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8);
540}
541
542// 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF
543static inline bool isAdvSIMDModImmType7(uint64_t Imm) {
544 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
545 ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL);
546}
547
548static inline uint8_t encodeAdvSIMDModImmType7(uint64_t Imm) {
549 return (Imm & 0xff00ULL) >> 8;
550}
551
552static inline uint64_t decodeAdvSIMDModImmType7(uint8_t Imm) {
553 uint64_t EncVal = Imm;
554 return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL;
555}
556
557// 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF
558static inline bool isAdvSIMDModImmType8(uint64_t Imm) {
559 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
560 ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL);
561}
562
563static inline uint64_t decodeAdvSIMDModImmType8(uint8_t Imm) {
564 uint64_t EncVal = Imm;
565 return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL;
566}
567
568static inline uint8_t encodeAdvSIMDModImmType8(uint64_t Imm) {
569 return (Imm & 0x00ff0000ULL) >> 16;
570}
571
572// abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh
573static inline bool isAdvSIMDModImmType9(uint64_t Imm) {
574 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
575 ((Imm >> 48) == (Imm & 0x0000ffffULL)) &&
576 ((Imm >> 56) == (Imm & 0x000000ffULL));
577}
578
579static inline uint8_t encodeAdvSIMDModImmType9(uint64_t Imm) {
580 return (Imm & 0xffULL);
581}
582
583static inline uint64_t decodeAdvSIMDModImmType9(uint8_t Imm) {
584 uint64_t EncVal = Imm;
585 EncVal |= (EncVal << 8);
586 EncVal |= (EncVal << 16);
587 EncVal |= (EncVal << 32);
588 return EncVal;
589}
590
591// aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh
592// cmode: 1110, op: 1
593static inline bool isAdvSIMDModImmType10(uint64_t Imm) {
594#if defined(_MSC_VER) && _MSC_VER == 1937 && !defined(__clang__) && \
595 defined(_M_ARM64)
596 // The MSVC compiler 19.37 for ARM64 has an optimization bug that
597 // causes an incorrect behavior with the orignal version. Work around
598 // by using a slightly different variation.
599 // https://developercommunity.visualstudio.com/t/C-ARM64-compiler-optimization-bug/10481261
600 constexpr uint64_t Mask = 0xFFULL;
601 uint64_t ByteA = (Imm >> 56) & Mask;
602 uint64_t ByteB = (Imm >> 48) & Mask;
603 uint64_t ByteC = (Imm >> 40) & Mask;
604 uint64_t ByteD = (Imm >> 32) & Mask;
605 uint64_t ByteE = (Imm >> 24) & Mask;
606 uint64_t ByteF = (Imm >> 16) & Mask;
607 uint64_t ByteG = (Imm >> 8) & Mask;
608 uint64_t ByteH = Imm & Mask;
609
610 return (ByteA == 0ULL || ByteA == Mask) && (ByteB == 0ULL || ByteB == Mask) &&
611 (ByteC == 0ULL || ByteC == Mask) && (ByteD == 0ULL || ByteD == Mask) &&
612 (ByteE == 0ULL || ByteE == Mask) && (ByteF == 0ULL || ByteF == Mask) &&
613 (ByteG == 0ULL || ByteG == Mask) && (ByteH == 0ULL || ByteH == Mask);
614#else
615 uint64_t ByteA = Imm & 0xff00000000000000ULL;
616 uint64_t ByteB = Imm & 0x00ff000000000000ULL;
617 uint64_t ByteC = Imm & 0x0000ff0000000000ULL;
618 uint64_t ByteD = Imm & 0x000000ff00000000ULL;
619 uint64_t ByteE = Imm & 0x00000000ff000000ULL;
620 uint64_t ByteF = Imm & 0x0000000000ff0000ULL;
621 uint64_t ByteG = Imm & 0x000000000000ff00ULL;
622 uint64_t ByteH = Imm & 0x00000000000000ffULL;
623
624 return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) &&
625 (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) &&
626 (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) &&
627 (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) &&
628 (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) &&
629 (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) &&
630 (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) &&
631 (ByteH == 0ULL || ByteH == 0x00000000000000ffULL);
632#endif
633}
634
635static inline uint8_t encodeAdvSIMDModImmType10(uint64_t Imm) {
636 uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0;
637 uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0;
638 uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0;
639 uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0;
640 uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0;
641 uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0;
642 uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0;
643 uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0;
644
645 uint8_t EncVal = BitA;
646 EncVal <<= 1;
647 EncVal |= BitB;
648 EncVal <<= 1;
649 EncVal |= BitC;
650 EncVal <<= 1;
651 EncVal |= BitD;
652 EncVal <<= 1;
653 EncVal |= BitE;
654 EncVal <<= 1;
655 EncVal |= BitF;
656 EncVal <<= 1;
657 EncVal |= BitG;
658 EncVal <<= 1;
659 EncVal |= BitH;
660 return EncVal;
661}
662
663static inline uint64_t decodeAdvSIMDModImmType10(uint8_t Imm) {
664 uint64_t EncVal = 0;
665 if (Imm & 0x80) EncVal |= 0xff00000000000000ULL;
666 if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL;
667 if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL;
668 if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL;
669 if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL;
670 if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL;
671 if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL;
672 if (Imm & 0x01) EncVal |= 0x00000000000000ffULL;
673 return EncVal;
674}
675
676// aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00
677static inline bool isAdvSIMDModImmType11(uint64_t Imm) {
678 uint64_t BString = (Imm & 0x7E000000ULL) >> 25;
679 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
680 (BString == 0x1f || BString == 0x20) &&
681 ((Imm & 0x0007ffff0007ffffULL) == 0);
682}
683
684static inline uint8_t encodeAdvSIMDModImmType11(uint64_t Imm) {
685 uint8_t BitA = (Imm & 0x80000000ULL) != 0;
686 uint8_t BitB = (Imm & 0x20000000ULL) != 0;
687 uint8_t BitC = (Imm & 0x01000000ULL) != 0;
688 uint8_t BitD = (Imm & 0x00800000ULL) != 0;
689 uint8_t BitE = (Imm & 0x00400000ULL) != 0;
690 uint8_t BitF = (Imm & 0x00200000ULL) != 0;
691 uint8_t BitG = (Imm & 0x00100000ULL) != 0;
692 uint8_t BitH = (Imm & 0x00080000ULL) != 0;
693
694 uint8_t EncVal = BitA;
695 EncVal <<= 1;
696 EncVal |= BitB;
697 EncVal <<= 1;
698 EncVal |= BitC;
699 EncVal <<= 1;
700 EncVal |= BitD;
701 EncVal <<= 1;
702 EncVal |= BitE;
703 EncVal <<= 1;
704 EncVal |= BitF;
705 EncVal <<= 1;
706 EncVal |= BitG;
707 EncVal <<= 1;
708 EncVal |= BitH;
709 return EncVal;
710}
711
712static inline uint64_t decodeAdvSIMDModImmType11(uint8_t Imm) {
713 uint64_t EncVal = 0;
714 if (Imm & 0x80) EncVal |= 0x80000000ULL;
715 if (Imm & 0x40) EncVal |= 0x3e000000ULL;
716 else EncVal |= 0x40000000ULL;
717 if (Imm & 0x20) EncVal |= 0x01000000ULL;
718 if (Imm & 0x10) EncVal |= 0x00800000ULL;
719 if (Imm & 0x08) EncVal |= 0x00400000ULL;
720 if (Imm & 0x04) EncVal |= 0x00200000ULL;
721 if (Imm & 0x02) EncVal |= 0x00100000ULL;
722 if (Imm & 0x01) EncVal |= 0x00080000ULL;
723 return (EncVal << 32) | EncVal;
724}
725
726// aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00
727static inline bool isAdvSIMDModImmType12(uint64_t Imm) {
728 uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54;
729 return ((BString == 0xff || BString == 0x100) &&
730 ((Imm & 0x0000ffffffffffffULL) == 0));
731}
732
733static inline uint8_t encodeAdvSIMDModImmType12(uint64_t Imm) {
734 uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0;
735 uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0;
736 uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0;
737 uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0;
738 uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0;
739 uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0;
740 uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0;
741 uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0;
742
743 uint8_t EncVal = BitA;
744 EncVal <<= 1;
745 EncVal |= BitB;
746 EncVal <<= 1;
747 EncVal |= BitC;
748 EncVal <<= 1;
749 EncVal |= BitD;
750 EncVal <<= 1;
751 EncVal |= BitE;
752 EncVal <<= 1;
753 EncVal |= BitF;
754 EncVal <<= 1;
755 EncVal |= BitG;
756 EncVal <<= 1;
757 EncVal |= BitH;
758 return EncVal;
759}
760
761static inline uint64_t decodeAdvSIMDModImmType12(uint8_t Imm) {
762 uint64_t EncVal = 0;
763 if (Imm & 0x80) EncVal |= 0x8000000000000000ULL;
764 if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL;
765 else EncVal |= 0x4000000000000000ULL;
766 if (Imm & 0x20) EncVal |= 0x0020000000000000ULL;
767 if (Imm & 0x10) EncVal |= 0x0010000000000000ULL;
768 if (Imm & 0x08) EncVal |= 0x0008000000000000ULL;
769 if (Imm & 0x04) EncVal |= 0x0004000000000000ULL;
770 if (Imm & 0x02) EncVal |= 0x0002000000000000ULL;
771 if (Imm & 0x01) EncVal |= 0x0001000000000000ULL;
772 return (EncVal << 32) | EncVal;
773}
774
775/// Returns true if Imm is the concatenation of a repeating pattern of type T.
776template <typename T>
777static inline bool isSVEMaskOfIdenticalElements(int64_t Imm) {
778 auto Parts = bit_cast<std::array<T, sizeof(int64_t) / sizeof(T)>>(Imm);
779 return llvm::all_equal(Parts);
780}
781
782/// Returns true if Imm is valid for CPY/DUP.
783template <typename T>
784static inline bool isSVECpyImm(int64_t Imm) {
785 // Imm is interpreted as a signed value, which means top bits must be all ones
786 // (sign bits if the immediate value is negative and passed in a larger
787 // container), or all zeroes.
788 int64_t Mask = ~int64_t(std::numeric_limits<std::make_unsigned_t<T>>::max());
789 if ((Imm & Mask) != 0 && (Imm & Mask) != Mask)
790 return false;
791
792 // Imm is a signed 8-bit value.
793 // Top bits must be zeroes or sign bits.
794 if (Imm & 0xff)
795 return int8_t(Imm) == T(Imm);
796
797 // Imm is a signed 16-bit value and multiple of 256.
798 // Top bits must be zeroes or sign bits.
799 if (Imm & 0xff00)
800 return int16_t(Imm) == T(Imm);
801
802 return Imm == 0;
803}
804
805/// Returns true if Imm is valid for ADD/SUB.
806template <typename T>
807static inline bool isSVEAddSubImm(int64_t Imm) {
808 bool IsInt8t = std::is_same<int8_t, std::make_signed_t<T>>::value ||
809 std::is_same<int8_t, T>::value;
810 return uint8_t(Imm) == Imm || (!IsInt8t && uint16_t(Imm & ~0xff) == Imm);
811}
812
813/// Return true if Imm is valid for DUPM and has no single CPY/DUP equivalent.
814static inline bool isSVEMoveMaskPreferredLogicalImmediate(int64_t Imm) {
815 if (isSVECpyImm<int64_t>(Imm))
816 return false;
817
818 auto S = bit_cast<std::array<int32_t, 2>>(Imm);
819 auto H = bit_cast<std::array<int16_t, 4>>(Imm);
820 auto B = bit_cast<std::array<int8_t, 8>>(Imm);
821
822 if (isSVEMaskOfIdenticalElements<int32_t>(Imm) && isSVECpyImm<int32_t>(S[0]))
823 return false;
824 if (isSVEMaskOfIdenticalElements<int16_t>(Imm) && isSVECpyImm<int16_t>(H[0]))
825 return false;
826 if (isSVEMaskOfIdenticalElements<int8_t>(Imm) && isSVECpyImm<int8_t>(B[0]))
827 return false;
828 return isLogicalImmediate(Imm, 64);
829}
830
831inline static bool isAnyMOVZMovAlias(uint64_t Value, int RegWidth) {
832 for (int Shift = 0; Shift <= RegWidth - 16; Shift += 16)
833 if ((Value & ~(0xffffULL << Shift)) == 0)
834 return true;
835
836 return false;
837}
838
839inline static bool isMOVZMovAlias(uint64_t Value, int Shift, int RegWidth) {
840 if (RegWidth == 32)
841 Value &= 0xffffffffULL;
842
843 // "lsl #0" takes precedence: in practice this only affects "#0, lsl #0".
844 if (Value == 0 && Shift != 0)
845 return false;
846
847 return (Value & ~(0xffffULL << Shift)) == 0;
848}
849
850inline static bool isMOVNMovAlias(uint64_t Value, int Shift, int RegWidth) {
851 // MOVZ takes precedence over MOVN.
852 if (isAnyMOVZMovAlias(Value, RegWidth))
853 return false;
854
855 Value = ~Value;
856 if (RegWidth == 32)
857 Value &= 0xffffffffULL;
858
859 return isMOVZMovAlias(Value, Shift, RegWidth);
860}
861
862inline static bool isAnyMOVWMovAlias(uint64_t Value, int RegWidth) {
863 if (isAnyMOVZMovAlias(Value, RegWidth))
864 return true;
865
866 // It's not a MOVZ, but it might be a MOVN.
867 Value = ~Value;
868 if (RegWidth == 32)
869 Value &= 0xffffffffULL;
870
871 return isAnyMOVZMovAlias(Value, RegWidth);
872}
873
874} // end namespace AArch64_AM
875
876} // end namespace llvm
877
878#endif
unsigned RegSize
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Given that RA is a live value
uint64_t Size
#define I(x, y, z)
Definition: MD5.cpp:58
#define H(x, y, z)
Definition: MD5.cpp:57
#define T
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file implements the C++20 <bit> header.
APInt bitcastToAPInt() const
Definition: APFloat.h:1266
Class for arbitrary precision integers.
Definition: APInt.h:78
LLVM Value Representation.
Definition: Value.h:74
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
static bool isValidDecodeLogicalImmediate(uint64_t val, unsigned regSize)
isValidDecodeLogicalImmediate - Check to see if the logical immediate value in the form "N:immr:imms"...
static bool isSVEMoveMaskPreferredLogicalImmediate(int64_t Imm)
Return true if Imm is valid for DUPM and has no single CPY/DUP equivalent.
static bool isAnyMOVZMovAlias(uint64_t Value, int RegWidth)
static bool isMOVNMovAlias(uint64_t Value, int Shift, int RegWidth)
static uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize)
decodeLogicalImmediate - Decode a logical immediate value in the form "N:immr:imms" (where the immr a...
static unsigned getMemExtendImm(AArch64_AM::ShiftExtendType ET, bool DoShift)
getExtendImm - Encode the extend type and amount for a load/store inst: doshift: should the offset be...
static unsigned getShiftValue(unsigned Imm)
getShiftValue - Extract the shift value.
static uint64_t decodeAdvSIMDModImmType4(uint8_t Imm)
static bool isLogicalImmediate(uint64_t imm, unsigned regSize)
isLogicalImmediate - Return true if the immediate is valid for a logical immediate instruction of the...
static uint8_t encodeAdvSIMDModImmType2(uint64_t Imm)
static bool isSVEAddSubImm(int64_t Imm)
Returns true if Imm is valid for ADD/SUB.
static bool processLogicalImmediate(uint64_t Imm, unsigned RegSize, uint64_t &Encoding)
processLogicalImmediate - Determine if an immediate value can be encoded as the immediate operand of ...
static bool isAdvSIMDModImmType9(uint64_t Imm)
static uint64_t decodeAdvSIMDModImmType2(uint8_t Imm)
static bool isAdvSIMDModImmType4(uint64_t Imm)
static unsigned getArithExtendImm(AArch64_AM::ShiftExtendType ET, unsigned Imm)
getArithExtendImm - Encode the extend type and shift amount for an arithmetic instruction: imm: 3-bit...
static uint64_t decodeAdvSIMDModImmType12(uint8_t Imm)
static bool isAdvSIMDModImmType5(uint64_t Imm)
static bool isAnyMOVWMovAlias(uint64_t Value, int RegWidth)
static unsigned getArithShiftValue(unsigned Imm)
getArithShiftValue - get the arithmetic shift value.
static uint64_t decodeAdvSIMDModImmType11(uint8_t Imm)
static int getFP32Imm(const APInt &Imm)
getFP32Imm - Return an 8-bit floating-point version of the 32-bit floating-point value.
static float getFPImmFloat(unsigned Imm)
static AArch64_AM::ShiftExtendType getMemExtendType(unsigned Imm)
getExtendType - Extract the extend type for the offset operand of loads/stores.
static uint8_t encodeAdvSIMDModImmType7(uint64_t Imm)
static uint64_t decodeAdvSIMDModImmType1(uint8_t Imm)
static uint8_t encodeAdvSIMDModImmType12(uint64_t Imm)
static uint8_t encodeAdvSIMDModImmType10(uint64_t Imm)
static uint8_t encodeAdvSIMDModImmType9(uint64_t Imm)
static bool isSVEMaskOfIdenticalElements(int64_t Imm)
Returns true if Imm is the concatenation of a repeating pattern of type T.
static bool isMOVZMovAlias(uint64_t Value, int Shift, int RegWidth)
static uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize)
encodeLogicalImmediate - Return the encoded immediate value for a logical immediate instruction of th...
static const char * getShiftExtendName(AArch64_AM::ShiftExtendType ST)
getShiftName - Get the string encoding for the shift type.
static bool isAdvSIMDModImmType7(uint64_t Imm)
static uint64_t decodeAdvSIMDModImmType3(uint8_t Imm)
static uint64_t decodeAdvSIMDModImmType7(uint8_t Imm)
unsigned getExtendEncoding(AArch64_AM::ShiftExtendType ET)
Mapping from extend bits to required operation: shifter: 000 ==> uxtb 001 ==> uxth 010 ==> uxtw 011 =...
static bool isSVECpyImm(int64_t Imm)
Returns true if Imm is valid for CPY/DUP.
static uint8_t encodeAdvSIMDModImmType5(uint64_t Imm)
static int getFP64Imm(const APInt &Imm)
getFP64Imm - Return an 8-bit floating-point version of the 64-bit floating-point value.
static uint64_t ror(uint64_t elt, unsigned size)
static bool isAdvSIMDModImmType10(uint64_t Imm)
static AArch64_AM::ShiftExtendType getExtendType(unsigned Imm)
getExtendType - Extract the extend type for operands of arithmetic ops.
static int getFP16Imm(const APInt &Imm)
getFP16Imm - Return an 8-bit floating-point version of the 16-bit floating-point value.
static uint64_t decodeAdvSIMDModImmType9(uint8_t Imm)
static uint64_t decodeAdvSIMDModImmType10(uint8_t Imm)
static uint64_t decodeAdvSIMDModImmType5(uint8_t Imm)
static uint64_t decodeAdvSIMDModImmType8(uint8_t Imm)
static uint8_t encodeAdvSIMDModImmType8(uint64_t Imm)
static bool isAdvSIMDModImmType12(uint64_t Imm)
static uint8_t encodeAdvSIMDModImmType11(uint64_t Imm)
static AArch64_AM::ShiftExtendType getArithExtendType(unsigned Imm)
static bool isAdvSIMDModImmType11(uint64_t Imm)
static uint8_t encodeAdvSIMDModImmType6(uint64_t Imm)
static AArch64_AM::ShiftExtendType getShiftType(unsigned Imm)
getShiftType - Extract the shift type.
static bool isAdvSIMDModImmType8(uint64_t Imm)
static uint8_t encodeAdvSIMDModImmType4(uint64_t Imm)
static unsigned getShifterImm(AArch64_AM::ShiftExtendType ST, unsigned Imm)
getShifterImm - Encode the shift type and amount: imm: 6-bit shift amount shifter: 000 ==> lsl 001 ==...
static bool isAdvSIMDModImmType6(uint64_t Imm)
static bool getMemDoShift(unsigned Imm)
getMemDoShift - Extract the "do shift" flag value for load/store instructions.
static uint8_t encodeAdvSIMDModImmType1(uint64_t Imm)
static uint8_t encodeAdvSIMDModImmType3(uint64_t Imm)
static bool isAdvSIMDModImmType2(uint64_t Imm)
static uint64_t decodeAdvSIMDModImmType6(uint8_t Imm)
static bool isAdvSIMDModImmType3(uint64_t Imm)
static bool isAdvSIMDModImmType1(uint64_t Imm)
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1680
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
Definition: bit.h:307
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition: bit.h:215
constexpr bool isShiftedMask_64(uint64_t Value)
Return true if the argument contains a non-empty sequence of ones with the remainder zero (64 bit ver...
Definition: MathExtras.h:285
int countl_zero(T Val)
Count number of 0's from the most significant bit to the least stopping at the first 1.
Definition: bit.h:281
int countl_one(T Value)
Count the number of ones from the most significant bit to the first zero bit.
Definition: bit.h:294
To bit_cast(const From &from) noexcept
Definition: bit.h:89
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
Definition: STLExtras.h:2045
#define N