LLVM 17.0.0git
LCSSA.cpp
Go to the documentation of this file.
1//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass transforms loops by placing phi nodes at the end of the loops for
10// all values that are live across the loop boundary. For example, it turns
11// the left into the right code:
12//
13// for (...) for (...)
14// if (c) if (c)
15// X1 = ... X1 = ...
16// else else
17// X2 = ... X2 = ...
18// X3 = phi(X1, X2) X3 = phi(X1, X2)
19// ... = X3 + 4 X4 = phi(X3)
20// ... = X4 + 4
21//
22// This is still valid LLVM; the extra phi nodes are purely redundant, and will
23// be trivially eliminated by InstCombine. The major benefit of this
24// transformation is that it makes many other loop optimizations, such as
25// LoopUnswitching, simpler.
26//
27//===----------------------------------------------------------------------===//
28
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/Statistic.h"
41#include "llvm/IR/DebugInfo.h"
42#include "llvm/IR/Dominators.h"
47#include "llvm/Pass.h"
52using namespace llvm;
53
54#define DEBUG_TYPE "lcssa"
55
56STATISTIC(NumLCSSA, "Number of live out of a loop variables");
57
58#ifdef EXPENSIVE_CHECKS
59static bool VerifyLoopLCSSA = true;
60#else
61static bool VerifyLoopLCSSA = false;
62#endif
66 cl::desc("Verify loop lcssa form (time consuming)"));
67
68/// Return true if the specified block is in the list.
69static bool isExitBlock(BasicBlock *BB,
70 const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
71 return is_contained(ExitBlocks, BB);
72}
73
74/// For every instruction from the worklist, check to see if it has any uses
75/// that are outside the current loop. If so, insert LCSSA PHI nodes and
76/// rewrite the uses.
78 const DominatorTree &DT, const LoopInfo &LI,
79 SmallVectorImpl<PHINode *> *PHIsToRemove,
80 SmallVectorImpl<PHINode *> *InsertedPHIs) {
81 SmallVector<Use *, 16> UsesToRewrite;
82 SmallSetVector<PHINode *, 16> LocalPHIsToRemove;
83 PredIteratorCache PredCache;
84 bool Changed = false;
85
86 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of
87 // instructions within the same loops, computing the exit blocks is
88 // expensive, and we're not mutating the loop structure.
90
91 while (!Worklist.empty()) {
92 UsesToRewrite.clear();
93
94 Instruction *I = Worklist.pop_back_val();
95 assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
96 BasicBlock *InstBB = I->getParent();
97 Loop *L = LI.getLoopFor(InstBB);
98 assert(L && "Instruction belongs to a BB that's not part of a loop");
99 if (!LoopExitBlocks.count(L))
100 L->getExitBlocks(LoopExitBlocks[L]);
101 assert(LoopExitBlocks.count(L));
102 const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
103
104 if (ExitBlocks.empty())
105 continue;
106
107 for (Use &U : make_early_inc_range(I->uses())) {
108 Instruction *User = cast<Instruction>(U.getUser());
109 BasicBlock *UserBB = User->getParent();
110
111 // Skip uses in unreachable blocks.
112 if (!DT.isReachableFromEntry(UserBB)) {
113 U.set(PoisonValue::get(I->getType()));
114 continue;
115 }
116
117 // For practical purposes, we consider that the use in a PHI
118 // occurs in the respective predecessor block. For more info,
119 // see the `phi` doc in LangRef and the LCSSA doc.
120 if (auto *PN = dyn_cast<PHINode>(User))
121 UserBB = PN->getIncomingBlock(U);
122
123 if (InstBB != UserBB && !L->contains(UserBB))
124 UsesToRewrite.push_back(&U);
125 }
126
127 // If there are no uses outside the loop, exit with no change.
128 if (UsesToRewrite.empty())
129 continue;
130
131 ++NumLCSSA; // We are applying the transformation
132
133 // Invoke instructions are special in that their result value is not
134 // available along their unwind edge. The code below tests to see whether
135 // DomBB dominates the value, so adjust DomBB to the normal destination
136 // block, which is effectively where the value is first usable.
137 BasicBlock *DomBB = InstBB;
138 if (auto *Inv = dyn_cast<InvokeInst>(I))
139 DomBB = Inv->getNormalDest();
140
141 const DomTreeNode *DomNode = DT.getNode(DomBB);
142
144 SmallVector<PHINode *, 8> PostProcessPHIs;
145
146 SmallVector<PHINode *, 4> LocalInsertedPHIs;
147 SSAUpdater SSAUpdate(&LocalInsertedPHIs);
148 SSAUpdate.Initialize(I->getType(), I->getName());
149
150 // Insert the LCSSA phi's into all of the exit blocks dominated by the
151 // value, and add them to the Phi's map.
152 for (BasicBlock *ExitBB : ExitBlocks) {
153 if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
154 continue;
155
156 // If we already inserted something for this BB, don't reprocess it.
157 if (SSAUpdate.HasValueForBlock(ExitBB))
158 continue;
159 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB),
160 I->getName() + ".lcssa", &ExitBB->front());
161 if (InsertedPHIs)
162 InsertedPHIs->push_back(PN);
163 // Get the debug location from the original instruction.
164 PN->setDebugLoc(I->getDebugLoc());
165
166 // Add inputs from inside the loop for this PHI. This is valid
167 // because `I` dominates `ExitBB` (checked above). This implies
168 // that every incoming block/edge is dominated by `I` as well,
169 // i.e. we can add uses of `I` to those incoming edges/append to the incoming
170 // blocks without violating the SSA dominance property.
171 for (BasicBlock *Pred : PredCache.get(ExitBB)) {
172 PN->addIncoming(I, Pred);
173
174 // If the exit block has a predecessor not within the loop, arrange for
175 // the incoming value use corresponding to that predecessor to be
176 // rewritten in terms of a different LCSSA PHI.
177 if (!L->contains(Pred))
178 UsesToRewrite.push_back(
180 PN->getNumIncomingValues() - 1)));
181 }
182
183 AddedPHIs.push_back(PN);
184
185 // Remember that this phi makes the value alive in this block.
186 SSAUpdate.AddAvailableValue(ExitBB, PN);
187
188 // LoopSimplify might fail to simplify some loops (e.g. when indirect
189 // branches are involved). In such situations, it might happen that an
190 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
191 // create PHIs in such an exit block, we are also inserting PHIs into L2's
192 // header. This could break LCSSA form for L2 because these inserted PHIs
193 // can also have uses outside of L2. Remember all PHIs in such situation
194 // as to revisit than later on. FIXME: Remove this if indirectbr support
195 // into LoopSimplify gets improved.
196 if (auto *OtherLoop = LI.getLoopFor(ExitBB))
197 if (!L->contains(OtherLoop))
198 PostProcessPHIs.push_back(PN);
199 }
200
201 // Rewrite all uses outside the loop in terms of the new PHIs we just
202 // inserted.
203 for (Use *UseToRewrite : UsesToRewrite) {
204 Instruction *User = cast<Instruction>(UseToRewrite->getUser());
205 BasicBlock *UserBB = User->getParent();
206
207 // For practical purposes, we consider that the use in a PHI
208 // occurs in the respective predecessor block. For more info,
209 // see the `phi` doc in LangRef and the LCSSA doc.
210 if (auto *PN = dyn_cast<PHINode>(User))
211 UserBB = PN->getIncomingBlock(*UseToRewrite);
212
213 // If this use is in an exit block, rewrite to use the newly inserted PHI.
214 // This is required for correctness because SSAUpdate doesn't handle uses
215 // in the same block. It assumes the PHI we inserted is at the end of the
216 // block.
217 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
218 UseToRewrite->set(&UserBB->front());
219 continue;
220 }
221
222 // If we added a single PHI, it must dominate all uses and we can directly
223 // rename it.
224 if (AddedPHIs.size() == 1) {
225 UseToRewrite->set(AddedPHIs[0]);
226 continue;
227 }
228
229 // Otherwise, do full PHI insertion.
230 SSAUpdate.RewriteUse(*UseToRewrite);
231 }
232
234 llvm::findDbgValues(DbgValues, I);
235
236 // Update pre-existing debug value uses that reside outside the loop.
237 for (auto *DVI : DbgValues) {
238 BasicBlock *UserBB = DVI->getParent();
239 if (InstBB == UserBB || L->contains(UserBB))
240 continue;
241 // We currently only handle debug values residing in blocks that were
242 // traversed while rewriting the uses. If we inserted just a single PHI,
243 // we will handle all relevant debug values.
244 Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0]
245 : SSAUpdate.FindValueForBlock(UserBB);
246 if (V)
247 DVI->replaceVariableLocationOp(I, V);
248 }
249
250 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
251 // to post-process them to keep LCSSA form.
252 for (PHINode *InsertedPN : LocalInsertedPHIs) {
253 if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
254 if (!L->contains(OtherLoop))
255 PostProcessPHIs.push_back(InsertedPN);
256 if (InsertedPHIs)
257 InsertedPHIs->push_back(InsertedPN);
258 }
259
260 // Post process PHI instructions that were inserted into another disjoint
261 // loop and update their exits properly.
262 for (auto *PostProcessPN : PostProcessPHIs)
263 if (!PostProcessPN->use_empty())
264 Worklist.push_back(PostProcessPN);
265
266 // Keep track of PHI nodes that we want to remove because they did not have
267 // any uses rewritten.
268 for (PHINode *PN : AddedPHIs)
269 if (PN->use_empty())
270 LocalPHIsToRemove.insert(PN);
271
272 Changed = true;
273 }
274
275 // Remove PHI nodes that did not have any uses rewritten or add them to
276 // PHIsToRemove, so the caller can remove them after some additional cleanup.
277 // We need to redo the use_empty() check here, because even if the PHI node
278 // wasn't used when added to LocalPHIsToRemove, later added PHI nodes can be
279 // using it. This cleanup is not guaranteed to handle trees/cycles of PHI
280 // nodes that only are used by each other. Such situations has only been
281 // noticed when the input IR contains unreachable code, and leaving some extra
282 // redundant PHI nodes in such situations is considered a minor problem.
283 if (PHIsToRemove) {
284 PHIsToRemove->append(LocalPHIsToRemove.begin(), LocalPHIsToRemove.end());
285 } else {
286 for (PHINode *PN : LocalPHIsToRemove)
287 if (PN->use_empty())
288 PN->eraseFromParent();
289 }
290 return Changed;
291}
292
293// Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
295 Loop &L, const DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
296 SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
297 // We start from the exit blocks, as every block trivially dominates itself
298 // (not strictly).
299 SmallVector<BasicBlock *, 8> BBWorklist(ExitBlocks);
300
301 while (!BBWorklist.empty()) {
302 BasicBlock *BB = BBWorklist.pop_back_val();
303
304 // Check if this is a loop header. If this is the case, we're done.
305 if (L.getHeader() == BB)
306 continue;
307
308 // Otherwise, add its immediate predecessor in the dominator tree to the
309 // worklist, unless we visited it already.
310 BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
311
312 // Exit blocks can have an immediate dominator not belonging to the
313 // loop. For an exit block to be immediately dominated by another block
314 // outside the loop, it implies not all paths from that dominator, to the
315 // exit block, go through the loop.
316 // Example:
317 //
318 // |---- A
319 // | |
320 // | B<--
321 // | | |
322 // |---> C --
323 // |
324 // D
325 //
326 // C is the exit block of the loop and it's immediately dominated by A,
327 // which doesn't belong to the loop.
328 if (!L.contains(IDomBB))
329 continue;
330
331 if (BlocksDominatingExits.insert(IDomBB))
332 BBWorklist.push_back(IDomBB);
333 }
334}
335
336bool llvm::formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI) {
337 bool Changed = false;
338
339#ifdef EXPENSIVE_CHECKS
340 // Verify all sub-loops are in LCSSA form already.
341 for (Loop *SubLoop: L) {
342 (void)SubLoop; // Silence unused variable warning.
343 assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!");
344 }
345#endif
346
348 L.getExitBlocks(ExitBlocks);
349 if (ExitBlocks.empty())
350 return false;
351
352 SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
353
354 // We want to avoid use-scanning leveraging dominance informations.
355 // If a block doesn't dominate any of the loop exits, the none of the values
356 // defined in the loop can be used outside.
357 // We compute the set of blocks fullfilling the conditions in advance
358 // walking the dominator tree upwards until we hit a loop header.
359 computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
360
362
363 // Look at all the instructions in the loop, checking to see if they have uses
364 // outside the loop. If so, put them into the worklist to rewrite those uses.
365 for (BasicBlock *BB : BlocksDominatingExits) {
366 // Skip blocks that are part of any sub-loops, they must be in LCSSA
367 // already.
368 if (LI->getLoopFor(BB) != &L)
369 continue;
370 for (Instruction &I : *BB) {
371 // Reject two common cases fast: instructions with no uses (like stores)
372 // and instructions with one use that is in the same block as this.
373 if (I.use_empty() ||
374 (I.hasOneUse() && I.user_back()->getParent() == BB &&
375 !isa<PHINode>(I.user_back())))
376 continue;
377
378 // Tokens cannot be used in PHI nodes, so we skip over them.
379 // We can run into tokens which are live out of a loop with catchswitch
380 // instructions in Windows EH if the catchswitch has one catchpad which
381 // is inside the loop and another which is not.
382 if (I.getType()->isTokenTy())
383 continue;
384
385 Worklist.push_back(&I);
386 }
387 }
388
389 Changed = formLCSSAForInstructions(Worklist, DT, *LI);
390
391 assert(L.isLCSSAForm(DT));
392
393 return Changed;
394}
395
396/// Process a loop nest depth first.
398 const LoopInfo *LI) {
399 bool Changed = false;
400
401 // Recurse depth-first through inner loops.
402 for (Loop *SubLoop : L.getSubLoops())
403 Changed |= formLCSSARecursively(*SubLoop, DT, LI);
404
405 Changed |= formLCSSA(L, DT, LI);
406 return Changed;
407}
408
409/// Process all loops in the function, inner-most out.
410static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT) {
411 bool Changed = false;
412 for (const auto &L : *LI)
413 Changed |= formLCSSARecursively(*L, DT, LI);
414 return Changed;
415}
416
417namespace {
418struct LCSSAWrapperPass : public FunctionPass {
419 static char ID; // Pass identification, replacement for typeid
420 LCSSAWrapperPass() : FunctionPass(ID) {
422 }
423
424 // Cached analysis information for the current function.
425 DominatorTree *DT;
426 LoopInfo *LI;
427
428 bool runOnFunction(Function &F) override;
429 void verifyAnalysis() const override {
430 // This check is very expensive. On the loop intensive compiles it may cause
431 // up to 10x slowdown. Currently it's disabled by default. LPPassManager
432 // always does limited form of the LCSSA verification. Similar reasoning
433 // was used for the LoopInfo verifier.
434 if (VerifyLoopLCSSA) {
435 assert(all_of(*LI,
436 [&](Loop *L) {
437 return L->isRecursivelyLCSSAForm(*DT, *LI);
438 }) &&
439 "LCSSA form is broken!");
440 }
441 };
442
443 /// This transformation requires natural loop information & requires that
444 /// loop preheaders be inserted into the CFG. It maintains both of these,
445 /// as well as the CFG. It also requires dominator information.
446 void getAnalysisUsage(AnalysisUsage &AU) const override {
447 AU.setPreservesCFG();
448
459
460 // This is needed to perform LCSSA verification inside LPPassManager
463 }
464};
465}
466
467char LCSSAWrapperPass::ID = 0;
468INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
469 false, false)
473INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
475
476Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
477char &llvm::LCSSAID = LCSSAWrapperPass::ID;
478
479/// Transform \p F into loop-closed SSA form.
480bool LCSSAWrapperPass::runOnFunction(Function &F) {
481 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
482 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
483 return formLCSSAOnAllLoops(LI, *DT);
484}
485
487 auto &LI = AM.getResult<LoopAnalysis>(F);
488 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
489 if (!formLCSSAOnAllLoops(&LI, DT))
490 return PreservedAnalyses::all();
491
495 // BPI maps terminators to probabilities, since we don't modify the CFG, no
496 // updates are needed to preserve it.
499 return PA;
500}
This is the interface for LLVM's primary stateless and local alias analysis.
This is the interface for a simple mod/ref and alias analysis over globals.
lcssa
Definition: LCSSA.cpp:473
static bool isExitBlock(BasicBlock *BB, const SmallVectorImpl< BasicBlock * > &ExitBlocks)
Return true if the specified block is in the list.
Definition: LCSSA.cpp:69
static bool VerifyLoopLCSSA
Definition: LCSSA.cpp:61
static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT)
Process all loops in the function, inner-most out.
Definition: LCSSA.cpp:410
static void computeBlocksDominatingExits(Loop &L, const DominatorTree &DT, SmallVector< BasicBlock *, 8 > &ExitBlocks, SmallSetVector< BasicBlock *, 8 > &BlocksDominatingExits)
Definition: LCSSA.cpp:294
static cl::opt< bool, true > VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA), cl::Hidden, cl::desc("Verify loop lcssa form (time consuming)"))
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
Memory SSA
Definition: MemorySSA.cpp:71
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:59
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
This is the interface for a SCEV-based alias analysis.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:620
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:774
Represent the analysis usage information of a pass.
AnalysisUsage & addPreservedID(const void *ID)
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:265
Legacy wrapper pass to provide the BasicAAResult object.
LLVM Basic Block Representation.
Definition: BasicBlock.h:56
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:323
const Instruction & front() const
Definition: BasicBlock.h:335
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:112
Analysis pass which computes BranchProbabilityInfo.
Legacy analysis pass which computes BranchProbabilityInfo.
Represents analyses that only rely on functions' control flow.
Definition: PassManager.h:113
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: DenseMap.h:151
DomTreeNodeBase * getIDom() const
NodeT * getBlock() const
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:279
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Legacy analysis pass which computes a DominatorTree.
Definition: Dominators.h:314
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:166
bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
Definition: Dominators.cpp:321
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:122
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:311
virtual bool runOnFunction(Function &F)=0
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
Legacy wrapper pass to provide the GlobalsAAResult object.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
Definition: Instruction.h:362
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Definition: LCSSA.cpp:486
Analysis pass that exposes the LoopInfo for a function.
Definition: LoopInfo.h:569
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
The legacy pass manager's analysis pass to compute loop information.
Definition: LoopInfo.h:594
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:47
An analysis that produces MemorySSA for a function.
Definition: MemorySSA.h:936
Legacy analysis pass which computes MemorySSA.
Definition: MemorySSA.h:986
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static unsigned getOperandNumForIncomingValue(unsigned i)
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
Pass interface - Implemented by all 'passes'.
Definition: Pass.h:94
virtual void getAnalysisUsage(AnalysisUsage &) const
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
Definition: Pass.cpp:98
virtual void verifyAnalysis() const
verifyAnalysis() - This member can be implemented by a analysis pass to check state of analysis infor...
Definition: Pass.cpp:106
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1743
PredIteratorCache - This class is an extremely trivial cache for predecessor iterator queries.
size_t size(BasicBlock *BB) const
ArrayRef< BasicBlock * > get(BasicBlock *BB)
A set of analyses that are preserved following a run of a transformation pass.
Definition: PassManager.h:152
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: PassManager.h:158
void preserveSet()
Mark an analysis set as preserved.
Definition: PassManager.h:188
void preserve()
Mark an analysis as preserved.
Definition: PassManager.h:173
Legacy wrapper pass to provide the SCEVAAResult object.
Helper class for SSA formation on a set of values defined in multiple blocks.
Definition: SSAUpdater.h:39
void RewriteUse(Use &U)
Rewrite a use of the symbolic value.
Definition: SSAUpdater.cpp:187
Value * FindValueForBlock(BasicBlock *BB) const
Return the value for the specified block if the SSAUpdater has one, otherwise return nullptr.
Definition: SSAUpdater.cpp:66
void Initialize(Type *Ty, StringRef Name)
Reset this object to get ready for a new set of SSA updates with type 'Ty'.
Definition: SSAUpdater.cpp:53
bool HasValueForBlock(BasicBlock *BB) const
Return true if the SSAUpdater already has a value for the specified block.
Definition: SSAUpdater.cpp:62
void AddAvailableValue(BasicBlock *BB, Value *V)
Indicate that a rewritten value is available in the specified block with the specified value.
Definition: SSAUpdater.cpp:70
Analysis pass that exposes the ScalarEvolution for a function.
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:152
iterator begin()
Get an iterator to the beginning of the SetVector.
Definition: SetVector.h:93
iterator end()
Get an iterator to the end of the SetVector.
Definition: SetVector.h:103
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:312
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:577
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:687
void push_back(const T &Elt)
Definition: SmallVector.h:416
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1200
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
const Use & getOperandUse(unsigned i) const
Definition: User.h:182
LLVM Value Representation.
Definition: Value.h:74
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
LocationClass< Ty > location(Ty &L)
Definition: CommandLine.h:465
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1819
Pass * createLCSSAPass()
Definition: LCSSA.cpp:476
void initializeLCSSAWrapperPassPass(PassRegistry &)
bool formLCSSAForInstructions(SmallVectorImpl< Instruction * > &Worklist, const DominatorTree &DT, const LoopInfo &LI, SmallVectorImpl< PHINode * > *PHIsToRemove=nullptr, SmallVectorImpl< PHINode * > *InsertedPHIs=nullptr)
Ensures LCSSA form for every instruction from the Worklist in the scope of innermost containing loop.
Definition: LCSSA.cpp:77
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:748
char & LCSSAID
Definition: LCSSA.cpp:477
char & LoopSimplifyID
void findDbgValues(SmallVectorImpl< DbgValueInst * > &DbgValues, Value *V)
Finds the llvm.dbg.value intrinsics describing a value.
Definition: DebugInfo.cpp:99
bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI)
Put a loop nest into LCSSA form.
Definition: LCSSA.cpp:397
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1976
bool formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI)
Put loop into LCSSA form.
Definition: LCSSA.cpp:336