LLVM 22.0.0git
ScalarEvolution.h
Go to the documentation of this file.
1//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The ScalarEvolution class is an LLVM pass which can be used to analyze and
10// categorize scalar expressions in loops. It specializes in recognizing
11// general induction variables, representing them with the abstract and opaque
12// SCEV class. Given this analysis, trip counts of loops and other important
13// properties can be obtained.
14//
15// This analysis is primarily useful for induction variable substitution and
16// strength reduction.
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
21#define LLVM_ANALYSIS_SCALAREVOLUTION_H
22
23#include "llvm/ADT/APInt.h"
24#include "llvm/ADT/ArrayRef.h"
25#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/SetVector.h"
34#include "llvm/IR/PassManager.h"
35#include "llvm/IR/ValueHandle.h"
36#include "llvm/IR/ValueMap.h"
37#include "llvm/Pass.h"
39#include <cassert>
40#include <cstdint>
41#include <memory>
42#include <optional>
43#include <utility>
44
45namespace llvm {
46
48class AssumptionCache;
49class BasicBlock;
50class Constant;
51class ConstantInt;
52class DataLayout;
53class DominatorTree;
54class GEPOperator;
55class LLVMContext;
56class Loop;
57class LoopInfo;
58class raw_ostream;
59class ScalarEvolution;
60class SCEVAddRecExpr;
61class SCEVUnknown;
62class StructType;
64class Type;
65enum SCEVTypes : unsigned short;
66
67LLVM_ABI extern bool VerifySCEV;
68
69/// This class represents an analyzed expression in the program. These are
70/// opaque objects that the client is not allowed to do much with directly.
71///
72class SCEV : public FoldingSetNode {
73 friend struct FoldingSetTrait<SCEV>;
74
75 /// A reference to an Interned FoldingSetNodeID for this node. The
76 /// ScalarEvolution's BumpPtrAllocator holds the data.
78
79 // The SCEV baseclass this node corresponds to
80 const SCEVTypes SCEVType;
81
82protected:
83 // Estimated complexity of this node's expression tree size.
84 const unsigned short ExpressionSize;
85
86 /// This field is initialized to zero and may be used in subclasses to store
87 /// miscellaneous information.
88 unsigned short SubclassData = 0;
89
90public:
91 /// NoWrapFlags are bitfield indices into SubclassData.
92 ///
93 /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
94 /// no-signed-wrap <NSW> properties, which are derived from the IR
95 /// operator. NSW is a misnomer that we use to mean no signed overflow or
96 /// underflow.
97 ///
98 /// AddRec expressions may have a no-self-wraparound <NW> property if, in
99 /// the integer domain, abs(step) * max-iteration(loop) <=
100 /// unsigned-max(bitwidth). This means that the recurrence will never reach
101 /// its start value if the step is non-zero. Computing the same value on
102 /// each iteration is not considered wrapping, and recurrences with step = 0
103 /// are trivially <NW>. <NW> is independent of the sign of step and the
104 /// value the add recurrence starts with.
105 ///
106 /// Note that NUW and NSW are also valid properties of a recurrence, and
107 /// either implies NW. For convenience, NW will be set for a recurrence
108 /// whenever either NUW or NSW are set.
109 ///
110 /// We require that the flag on a SCEV apply to the entire scope in which
111 /// that SCEV is defined. A SCEV's scope is set of locations dominated by
112 /// a defining location, which is in turn described by the following rules:
113 /// * A SCEVUnknown is at the point of definition of the Value.
114 /// * A SCEVConstant is defined at all points.
115 /// * A SCEVAddRec is defined starting with the header of the associated
116 /// loop.
117 /// * All other SCEVs are defined at the earlest point all operands are
118 /// defined.
119 ///
120 /// The above rules describe a maximally hoisted form (without regards to
121 /// potential control dependence). A SCEV is defined anywhere a
122 /// corresponding instruction could be defined in said maximally hoisted
123 /// form. Note that SCEVUDivExpr (currently the only expression type which
124 /// can trap) can be defined per these rules in regions where it would trap
125 /// at runtime. A SCEV being defined does not require the existence of any
126 /// instruction within the defined scope.
128 FlagAnyWrap = 0, // No guarantee.
129 FlagNW = (1 << 0), // No self-wrap.
130 FlagNUW = (1 << 1), // No unsigned wrap.
131 FlagNSW = (1 << 2), // No signed wrap.
132 NoWrapMask = (1 << 3) - 1
133 };
134
135 explicit SCEV(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
136 unsigned short ExpressionSize)
137 : FastID(ID), SCEVType(SCEVTy), ExpressionSize(ExpressionSize) {}
138 SCEV(const SCEV &) = delete;
139 SCEV &operator=(const SCEV &) = delete;
140
141 SCEVTypes getSCEVType() const { return SCEVType; }
142
143 /// Return the LLVM type of this SCEV expression.
144 LLVM_ABI Type *getType() const;
145
146 /// Return operands of this SCEV expression.
148
149 /// Return true if the expression is a constant zero.
150 LLVM_ABI bool isZero() const;
151
152 /// Return true if the expression is a constant one.
153 LLVM_ABI bool isOne() const;
154
155 /// Return true if the expression is a constant all-ones value.
156 LLVM_ABI bool isAllOnesValue() const;
157
158 /// Return true if the specified scev is negated, but not a constant.
159 LLVM_ABI bool isNonConstantNegative() const;
160
161 // Returns estimated size of the mathematical expression represented by this
162 // SCEV. The rules of its calculation are following:
163 // 1) Size of a SCEV without operands (like constants and SCEVUnknown) is 1;
164 // 2) Size SCEV with operands Op1, Op2, ..., OpN is calculated by formula:
165 // (1 + Size(Op1) + ... + Size(OpN)).
166 // This value gives us an estimation of time we need to traverse through this
167 // SCEV and all its operands recursively. We may use it to avoid performing
168 // heavy transformations on SCEVs of excessive size for sake of saving the
169 // compilation time.
170 unsigned short getExpressionSize() const {
171 return ExpressionSize;
172 }
173
174 /// Print out the internal representation of this scalar to the specified
175 /// stream. This should really only be used for debugging purposes.
176 LLVM_ABI void print(raw_ostream &OS) const;
177
178 /// This method is used for debugging.
179 LLVM_ABI void dump() const;
180};
181
182// Specialize FoldingSetTrait for SCEV to avoid needing to compute
183// temporary FoldingSetNodeID values.
184template <> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
185 static void Profile(const SCEV &X, FoldingSetNodeID &ID) { ID = X.FastID; }
186
187 static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash,
188 FoldingSetNodeID &TempID) {
189 return ID == X.FastID;
190 }
191
192 static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
193 return X.FastID.ComputeHash();
194 }
195};
196
197inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
198 S.print(OS);
199 return OS;
200}
201
202/// An object of this class is returned by queries that could not be answered.
203/// For example, if you ask for the number of iterations of a linked-list
204/// traversal loop, you will get one of these. None of the standard SCEV
205/// operations are valid on this class, it is just a marker.
206struct SCEVCouldNotCompute : public SCEV {
208
209 /// Methods for support type inquiry through isa, cast, and dyn_cast:
210 LLVM_ABI static bool classof(const SCEV *S);
211};
212
213/// This class represents an assumption made using SCEV expressions which can
214/// be checked at run-time.
216 friend struct FoldingSetTrait<SCEVPredicate>;
217
218 /// A reference to an Interned FoldingSetNodeID for this node. The
219 /// ScalarEvolution's BumpPtrAllocator holds the data.
220 FoldingSetNodeIDRef FastID;
221
222public:
224
225protected:
227 ~SCEVPredicate() = default;
228 SCEVPredicate(const SCEVPredicate &) = default;
230
231public:
233
234 SCEVPredicateKind getKind() const { return Kind; }
235
236 /// Returns the estimated complexity of this predicate. This is roughly
237 /// measured in the number of run-time checks required.
238 virtual unsigned getComplexity() const { return 1; }
239
240 /// Returns true if the predicate is always true. This means that no
241 /// assumptions were made and nothing needs to be checked at run-time.
242 virtual bool isAlwaysTrue() const = 0;
243
244 /// Returns true if this predicate implies \p N.
245 virtual bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const = 0;
246
247 /// Prints a textual representation of this predicate with an indentation of
248 /// \p Depth.
249 virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;
250};
251
253 P.print(OS);
254 return OS;
255}
256
257// Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
258// temporary FoldingSetNodeID values.
259template <>
261 static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
262 ID = X.FastID;
263 }
264
265 static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
266 unsigned IDHash, FoldingSetNodeID &TempID) {
267 return ID == X.FastID;
268 }
269
270 static unsigned ComputeHash(const SCEVPredicate &X,
271 FoldingSetNodeID &TempID) {
272 return X.FastID.ComputeHash();
273 }
274};
275
276/// This class represents an assumption that the expression LHS Pred RHS
277/// evaluates to true, and this can be checked at run-time.
279 /// We assume that LHS Pred RHS is true.
280 const ICmpInst::Predicate Pred;
281 const SCEV *LHS;
282 const SCEV *RHS;
283
284public:
286 const ICmpInst::Predicate Pred,
287 const SCEV *LHS, const SCEV *RHS);
288
289 /// Implementation of the SCEVPredicate interface
290 bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const override;
291 void print(raw_ostream &OS, unsigned Depth = 0) const override;
292 bool isAlwaysTrue() const override;
293
294 ICmpInst::Predicate getPredicate() const { return Pred; }
295
296 /// Returns the left hand side of the predicate.
297 const SCEV *getLHS() const { return LHS; }
298
299 /// Returns the right hand side of the predicate.
300 const SCEV *getRHS() const { return RHS; }
301
302 /// Methods for support type inquiry through isa, cast, and dyn_cast:
303 static bool classof(const SCEVPredicate *P) {
304 return P->getKind() == P_Compare;
305 }
306};
307
308/// This class represents an assumption made on an AddRec expression. Given an
309/// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw
310/// flags (defined below) in the first X iterations of the loop, where X is a
311/// SCEV expression returned by getPredicatedBackedgeTakenCount).
312///
313/// Note that this does not imply that X is equal to the backedge taken
314/// count. This means that if we have a nusw predicate for i32 {0,+,1} with a
315/// predicated backedge taken count of X, we only guarantee that {0,+,1} has
316/// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we
317/// have more than X iterations.
319public:
320 /// Similar to SCEV::NoWrapFlags, but with slightly different semantics
321 /// for FlagNUSW. The increment is considered to be signed, and a + b
322 /// (where b is the increment) is considered to wrap if:
323 /// zext(a + b) != zext(a) + sext(b)
324 ///
325 /// If Signed is a function that takes an n-bit tuple and maps to the
326 /// integer domain as the tuples value interpreted as twos complement,
327 /// and Unsigned a function that takes an n-bit tuple and maps to the
328 /// integer domain as the base two value of input tuple, then a + b
329 /// has IncrementNUSW iff:
330 ///
331 /// 0 <= Unsigned(a) + Signed(b) < 2^n
332 ///
333 /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW.
334 ///
335 /// Note that the IncrementNUSW flag is not commutative: if base + inc
336 /// has IncrementNUSW, then inc + base doesn't neccessarily have this
337 /// property. The reason for this is that this is used for sign/zero
338 /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is
339 /// assumed. A {base,+,inc} expression is already non-commutative with
340 /// regards to base and inc, since it is interpreted as:
341 /// (((base + inc) + inc) + inc) ...
343 IncrementAnyWrap = 0, // No guarantee.
344 IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap.
345 IncrementNSSW = (1 << 1), // No signed with signed increment wrap
346 // (equivalent with SCEV::NSW)
347 IncrementNoWrapMask = (1 << 2) - 1
348 };
349
350 /// Convenient IncrementWrapFlags manipulation methods.
351 [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
354 assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
355 assert((OffFlags & IncrementNoWrapMask) == OffFlags &&
356 "Invalid flags value!");
357 return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags);
358 }
359
360 [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
362 assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
363 assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!");
364
365 return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask);
366 }
367
368 [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
371 assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
372 assert((OnFlags & IncrementNoWrapMask) == OnFlags &&
373 "Invalid flags value!");
374
375 return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags);
376 }
377
378 /// Returns the set of SCEVWrapPredicate no wrap flags implied by a
379 /// SCEVAddRecExpr.
380 [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
381 getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE);
382
383private:
384 const SCEVAddRecExpr *AR;
385 IncrementWrapFlags Flags;
386
387public:
389 const SCEVAddRecExpr *AR,
390 IncrementWrapFlags Flags);
391
392 /// Returns the set assumed no overflow flags.
393 IncrementWrapFlags getFlags() const { return Flags; }
394
395 /// Implementation of the SCEVPredicate interface
396 const SCEVAddRecExpr *getExpr() const;
397 bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const override;
398 void print(raw_ostream &OS, unsigned Depth = 0) const override;
399 bool isAlwaysTrue() const override;
400
401 /// Methods for support type inquiry through isa, cast, and dyn_cast:
402 static bool classof(const SCEVPredicate *P) {
403 return P->getKind() == P_Wrap;
404 }
405};
406
407/// This class represents a composition of other SCEV predicates, and is the
408/// class that most clients will interact with. This is equivalent to a
409/// logical "AND" of all the predicates in the union.
410///
411/// NB! Unlike other SCEVPredicate sub-classes this class does not live in the
412/// ScalarEvolution::Preds folding set. This is why the \c add function is sound.
414private:
415 using PredicateMap =
417
418 /// Vector with references to all predicates in this union.
420
421 /// Adds a predicate to this union.
422 void add(const SCEVPredicate *N, ScalarEvolution &SE);
423
424public:
426 ScalarEvolution &SE);
427
429
430 /// Implementation of the SCEVPredicate interface
431 bool isAlwaysTrue() const override;
432 bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const override;
433 void print(raw_ostream &OS, unsigned Depth) const override;
434
435 /// We estimate the complexity of a union predicate as the size number of
436 /// predicates in the union.
437 unsigned getComplexity() const override { return Preds.size(); }
438
439 /// Methods for support type inquiry through isa, cast, and dyn_cast:
440 static bool classof(const SCEVPredicate *P) {
441 return P->getKind() == P_Union;
442 }
443};
444
445/// The main scalar evolution driver. Because client code (intentionally)
446/// can't do much with the SCEV objects directly, they must ask this class
447/// for services.
450
451public:
452 /// An enum describing the relationship between a SCEV and a loop.
454 LoopVariant, ///< The SCEV is loop-variant (unknown).
455 LoopInvariant, ///< The SCEV is loop-invariant.
456 LoopComputable ///< The SCEV varies predictably with the loop.
457 };
458
459 /// An enum describing the relationship between a SCEV and a basic block.
461 DoesNotDominateBlock, ///< The SCEV does not dominate the block.
462 DominatesBlock, ///< The SCEV dominates the block.
463 ProperlyDominatesBlock ///< The SCEV properly dominates the block.
464 };
465
466 /// Convenient NoWrapFlags manipulation that hides enum casts and is
467 /// visible in the ScalarEvolution name space.
469 int Mask) {
470 return (SCEV::NoWrapFlags)(Flags & Mask);
471 }
472 [[nodiscard]] static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
473 SCEV::NoWrapFlags OnFlags) {
474 return (SCEV::NoWrapFlags)(Flags | OnFlags);
475 }
476 [[nodiscard]] static SCEV::NoWrapFlags
478 return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
479 }
480 [[nodiscard]] static bool hasFlags(SCEV::NoWrapFlags Flags,
481 SCEV::NoWrapFlags TestFlags) {
482 return TestFlags == maskFlags(Flags, TestFlags);
483 };
484
487 LoopInfo &LI);
490
491 LLVMContext &getContext() const { return F.getContext(); }
492
493 /// Test if values of the given type are analyzable within the SCEV
494 /// framework. This primarily includes integer types, and it can optionally
495 /// include pointer types if the ScalarEvolution class has access to
496 /// target-specific information.
497 LLVM_ABI bool isSCEVable(Type *Ty) const;
498
499 /// Return the size in bits of the specified type, for which isSCEVable must
500 /// return true.
502
503 /// Return a type with the same bitwidth as the given type and which
504 /// represents how SCEV will treat the given type, for which isSCEVable must
505 /// return true. For pointer types, this is the pointer-sized integer type.
507
508 // Returns a wider type among {Ty1, Ty2}.
509 LLVM_ABI Type *getWiderType(Type *Ty1, Type *Ty2) const;
510
511 /// Return true if there exists a point in the program at which both
512 /// A and B could be operands to the same instruction.
513 /// SCEV expressions are generally assumed to correspond to instructions
514 /// which could exists in IR. In general, this requires that there exists
515 /// a use point in the program where all operands dominate the use.
516 ///
517 /// Example:
518 /// loop {
519 /// if
520 /// loop { v1 = load @global1; }
521 /// else
522 /// loop { v2 = load @global2; }
523 /// }
524 /// No SCEV with operand V1, and v2 can exist in this program.
526
527 /// Return true if the SCEV is a scAddRecExpr or it contains
528 /// scAddRecExpr. The result will be cached in HasRecMap.
529 LLVM_ABI bool containsAddRecurrence(const SCEV *S);
530
531 /// Is operation \p BinOp between \p LHS and \p RHS provably does not have
532 /// a signed/unsigned overflow (\p Signed)? If \p CtxI is specified, the
533 /// no-overflow fact should be true in the context of this instruction.
535 const SCEV *LHS, const SCEV *RHS,
536 const Instruction *CtxI = nullptr);
537
538 /// Parse NSW/NUW flags from add/sub/mul IR binary operation \p Op into
539 /// SCEV no-wrap flags, and deduce flag[s] that aren't known yet.
540 /// Does not mutate the original instruction. Returns std::nullopt if it could
541 /// not deduce more precise flags than the instruction already has, otherwise
542 /// returns proven flags.
543 LLVM_ABI std::optional<SCEV::NoWrapFlags>
545
546 /// Notify this ScalarEvolution that \p User directly uses SCEVs in \p Ops.
548
549 /// Return true if the SCEV expression contains an undef value.
550 LLVM_ABI bool containsUndefs(const SCEV *S) const;
551
552 /// Return true if the SCEV expression contains a Value that has been
553 /// optimised out and is now a nullptr.
554 LLVM_ABI bool containsErasedValue(const SCEV *S) const;
555
556 /// Return a SCEV expression for the full generality of the specified
557 /// expression.
558 LLVM_ABI const SCEV *getSCEV(Value *V);
559
560 /// Return an existing SCEV for V if there is one, otherwise return nullptr.
562
564 LLVM_ABI const SCEV *getConstant(const APInt &Val);
565 LLVM_ABI const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
567 unsigned Depth = 0);
568 LLVM_ABI const SCEV *getPtrToIntExpr(const SCEV *Op, Type *Ty);
569 LLVM_ABI const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty,
570 unsigned Depth = 0);
571 LLVM_ABI const SCEV *getVScale(Type *Ty);
572 LLVM_ABI const SCEV *
575 LLVM_ABI const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty,
576 unsigned Depth = 0);
577 LLVM_ABI const SCEV *getZeroExtendExprImpl(const SCEV *Op, Type *Ty,
578 unsigned Depth = 0);
579 LLVM_ABI const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty,
580 unsigned Depth = 0);
581 LLVM_ABI const SCEV *getSignExtendExprImpl(const SCEV *Op, Type *Ty,
582 unsigned Depth = 0);
583 LLVM_ABI const SCEV *getCastExpr(SCEVTypes Kind, const SCEV *Op, Type *Ty);
584 LLVM_ABI const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
587 unsigned Depth = 0);
588 const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
590 unsigned Depth = 0) {
592 return getAddExpr(Ops, Flags, Depth);
593 }
594 const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
596 unsigned Depth = 0) {
597 SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
598 return getAddExpr(Ops, Flags, Depth);
599 }
602 unsigned Depth = 0);
603 const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
605 unsigned Depth = 0) {
607 return getMulExpr(Ops, Flags, Depth);
608 }
609 const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
611 unsigned Depth = 0) {
612 SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
613 return getMulExpr(Ops, Flags, Depth);
614 }
615 LLVM_ABI const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
616 LLVM_ABI const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
617 LLVM_ABI const SCEV *getURemExpr(const SCEV *LHS, const SCEV *RHS);
618 LLVM_ABI const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
619 const Loop *L, SCEV::NoWrapFlags Flags);
621 const Loop *L, SCEV::NoWrapFlags Flags);
623 const Loop *L, SCEV::NoWrapFlags Flags) {
624 SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
625 return getAddRecExpr(NewOp, L, Flags);
626 }
627
628 /// Checks if \p SymbolicPHI can be rewritten as an AddRecExpr under some
629 /// Predicates. If successful return these <AddRecExpr, Predicates>;
630 /// The function is intended to be called from PSCEV (the caller will decide
631 /// whether to actually add the predicates and carry out the rewrites).
632 LLVM_ABI std::optional<
633 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
634 createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI);
635
636 /// Returns an expression for a GEP
637 ///
638 /// \p GEP The GEP. The indices contained in the GEP itself are ignored,
639 /// instead we use IndexExprs.
640 /// \p IndexExprs The expressions for the indices.
641 LLVM_ABI const SCEV *
643 LLVM_ABI const SCEV *getAbsExpr(const SCEV *Op, bool IsNSW);
646 LLVM_ABI const SCEV *
649 LLVM_ABI const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
651 LLVM_ABI const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
653 LLVM_ABI const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
655 LLVM_ABI const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS,
656 bool Sequential = false);
658 bool Sequential = false);
659 LLVM_ABI const SCEV *getUnknown(Value *V);
661
662 /// Return a SCEV for the constant 0 of a specific type.
663 const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
664
665 /// Return a SCEV for the constant 1 of a specific type.
666 const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
667
668 /// Return a SCEV for the constant \p Power of two.
669 const SCEV *getPowerOfTwo(Type *Ty, unsigned Power) {
670 assert(Power < getTypeSizeInBits(Ty) && "Power out of range");
672 }
673
674 /// Return a SCEV for the constant -1 of a specific type.
675 const SCEV *getMinusOne(Type *Ty) {
676 return getConstant(Ty, -1, /*isSigned=*/true);
677 }
678
679 /// Return an expression for a TypeSize.
681
682 /// Return an expression for the alloc size of AllocTy that is type IntTy
683 LLVM_ABI const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
684
685 /// Return an expression for the store size of StoreTy that is type IntTy
686 LLVM_ABI const SCEV *getStoreSizeOfExpr(Type *IntTy, Type *StoreTy);
687
688 /// Return an expression for offsetof on the given field with type IntTy
689 LLVM_ABI const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy,
690 unsigned FieldNo);
691
692 /// Return the SCEV object corresponding to -V.
693 LLVM_ABI const SCEV *
695
696 /// Return the SCEV object corresponding to ~V.
697 LLVM_ABI const SCEV *getNotSCEV(const SCEV *V);
698
699 /// Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
700 ///
701 /// If the LHS and RHS are pointers which don't share a common base
702 /// (according to getPointerBase()), this returns a SCEVCouldNotCompute.
703 /// To compute the difference between two unrelated pointers, you can
704 /// explicitly convert the arguments using getPtrToIntExpr(), for pointer
705 /// types that support it.
706 LLVM_ABI const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
708 unsigned Depth = 0);
709
710 /// Compute ceil(N / D). N and D are treated as unsigned values.
711 ///
712 /// Since SCEV doesn't have native ceiling division, this generates a
713 /// SCEV expression of the following form:
714 ///
715 /// umin(N, 1) + floor((N - umin(N, 1)) / D)
716 ///
717 /// A denominator of zero or poison is handled the same way as getUDivExpr().
718 LLVM_ABI const SCEV *getUDivCeilSCEV(const SCEV *N, const SCEV *D);
719
720 /// Return a SCEV corresponding to a conversion of the input value to the
721 /// specified type. If the type must be extended, it is zero extended.
722 LLVM_ABI const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
723 unsigned Depth = 0);
724
725 /// Return a SCEV corresponding to a conversion of the input value to the
726 /// specified type. If the type must be extended, it is sign extended.
727 LLVM_ABI const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty,
728 unsigned Depth = 0);
729
730 /// Return a SCEV corresponding to a conversion of the input value to the
731 /// specified type. If the type must be extended, it is zero extended. The
732 /// conversion must not be narrowing.
733 LLVM_ABI const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
734
735 /// Return a SCEV corresponding to a conversion of the input value to the
736 /// specified type. If the type must be extended, it is sign extended. The
737 /// conversion must not be narrowing.
738 LLVM_ABI const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
739
740 /// Return a SCEV corresponding to a conversion of the input value to the
741 /// specified type. If the type must be extended, it is extended with
742 /// unspecified bits. The conversion must not be narrowing.
743 LLVM_ABI const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
744
745 /// Return a SCEV corresponding to a conversion of the input value to the
746 /// specified type. The conversion must not be widening.
747 LLVM_ABI const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
748
749 /// Promote the operands to the wider of the types using zero-extension, and
750 /// then perform a umax operation with them.
752 const SCEV *RHS);
753
754 /// Promote the operands to the wider of the types using zero-extension, and
755 /// then perform a umin operation with them.
757 const SCEV *RHS,
758 bool Sequential = false);
759
760 /// Promote the operands to the wider of the types using zero-extension, and
761 /// then perform a umin operation with them. N-ary function.
762 LLVM_ABI const SCEV *
764 bool Sequential = false);
765
766 /// Transitively follow the chain of pointer-type operands until reaching a
767 /// SCEV that does not have a single pointer operand. This returns a
768 /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
769 /// cases do exist.
770 LLVM_ABI const SCEV *getPointerBase(const SCEV *V);
771
772 /// Compute an expression equivalent to S - getPointerBase(S).
773 LLVM_ABI const SCEV *removePointerBase(const SCEV *S);
774
775 /// Return a SCEV expression for the specified value at the specified scope
776 /// in the program. The L value specifies a loop nest to evaluate the
777 /// expression at, where null is the top-level or a specified loop is
778 /// immediately inside of the loop.
779 ///
780 /// This method can be used to compute the exit value for a variable defined
781 /// in a loop by querying what the value will hold in the parent loop.
782 ///
783 /// In the case that a relevant loop exit value cannot be computed, the
784 /// original value V is returned.
785 LLVM_ABI const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
786
787 /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
788 LLVM_ABI const SCEV *getSCEVAtScope(Value *V, const Loop *L);
789
790 /// Test whether entry to the loop is protected by a conditional between LHS
791 /// and RHS. This is used to help avoid max expressions in loop trip
792 /// counts, and to eliminate casts.
794 const SCEV *LHS, const SCEV *RHS);
795
796 /// Test whether entry to the basic block is protected by a conditional
797 /// between LHS and RHS.
799 CmpPredicate Pred,
800 const SCEV *LHS,
801 const SCEV *RHS);
802
803 /// Test whether the backedge of the loop is protected by a conditional
804 /// between LHS and RHS. This is used to eliminate casts.
806 const SCEV *LHS, const SCEV *RHS);
807
808 /// A version of getTripCountFromExitCount below which always picks an
809 /// evaluation type which can not result in overflow.
810 LLVM_ABI const SCEV *getTripCountFromExitCount(const SCEV *ExitCount);
811
812 /// Convert from an "exit count" (i.e. "backedge taken count") to a "trip
813 /// count". A "trip count" is the number of times the header of the loop
814 /// will execute if an exit is taken after the specified number of backedges
815 /// have been taken. (e.g. TripCount = ExitCount + 1). Note that the
816 /// expression can overflow if ExitCount = UINT_MAX. If EvalTy is not wide
817 /// enough to hold the result without overflow, result unsigned wraps with
818 /// 2s-complement semantics. ex: EC = 255 (i8), TC = 0 (i8)
819 LLVM_ABI const SCEV *getTripCountFromExitCount(const SCEV *ExitCount,
820 Type *EvalTy, const Loop *L);
821
822 /// Returns the exact trip count of the loop if we can compute it, and
823 /// the result is a small constant. '0' is used to represent an unknown
824 /// or non-constant trip count. Note that a trip count is simply one more
825 /// than the backedge taken count for the loop.
826 LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L);
827
828 /// Return the exact trip count for this loop if we exit through ExitingBlock.
829 /// '0' is used to represent an unknown or non-constant trip count. Note
830 /// that a trip count is simply one more than the backedge taken count for
831 /// the same exit.
832 /// This "trip count" assumes that control exits via ExitingBlock. More
833 /// precisely, it is the number of times that control will reach ExitingBlock
834 /// before taking the branch. For loops with multiple exits, it may not be
835 /// the number times that the loop header executes if the loop exits
836 /// prematurely via another branch.
837 LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L,
838 const BasicBlock *ExitingBlock);
839
840 /// Returns the upper bound of the loop trip count as a normal unsigned
841 /// value.
842 /// Returns 0 if the trip count is unknown, not constant or requires
843 /// SCEV predicates and \p Predicates is nullptr.
845 const Loop *L,
846 SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr);
847
848 /// Returns the largest constant divisor of the trip count as a normal
849 /// unsigned value, if possible. This means that the actual trip count is
850 /// always a multiple of the returned value. Returns 1 if the trip count is
851 /// unknown or not guaranteed to be the multiple of a constant., Will also
852 /// return 1 if the trip count is very large (>= 2^32).
853 /// Note that the argument is an exit count for loop L, NOT a trip count.
855 const SCEV *ExitCount);
856
857 /// Returns the largest constant divisor of the trip count of the
858 /// loop. Will return 1 if no trip count could be computed, or if a
859 /// divisor could not be found.
860 LLVM_ABI unsigned getSmallConstantTripMultiple(const Loop *L);
861
862 /// Returns the largest constant divisor of the trip count of this loop as a
863 /// normal unsigned value, if possible. This means that the actual trip
864 /// count is always a multiple of the returned value (don't forget the trip
865 /// count could very well be zero as well!). As explained in the comments
866 /// for getSmallConstantTripCount, this assumes that control exits the loop
867 /// via ExitingBlock.
868 LLVM_ABI unsigned
869 getSmallConstantTripMultiple(const Loop *L, const BasicBlock *ExitingBlock);
870
871 /// The terms "backedge taken count" and "exit count" are used
872 /// interchangeably to refer to the number of times the backedge of a loop
873 /// has executed before the loop is exited.
875 /// An expression exactly describing the number of times the backedge has
876 /// executed when a loop is exited.
878 /// A constant which provides an upper bound on the exact trip count.
880 /// An expression which provides an upper bound on the exact trip count.
882 };
883
884 /// Return the number of times the backedge executes before the given exit
885 /// would be taken; if not exactly computable, return SCEVCouldNotCompute.
886 /// For a single exit loop, this value is equivelent to the result of
887 /// getBackedgeTakenCount. The loop is guaranteed to exit (via *some* exit)
888 /// before the backedge is executed (ExitCount + 1) times. Note that there
889 /// is no guarantee about *which* exit is taken on the exiting iteration.
890 LLVM_ABI const SCEV *getExitCount(const Loop *L,
891 const BasicBlock *ExitingBlock,
892 ExitCountKind Kind = Exact);
893
894 /// Same as above except this uses the predicated backedge taken info and
895 /// may require predicates.
896 LLVM_ABI const SCEV *
897 getPredicatedExitCount(const Loop *L, const BasicBlock *ExitingBlock,
899 ExitCountKind Kind = Exact);
900
901 /// If the specified loop has a predictable backedge-taken count, return it,
902 /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count is
903 /// the number of times the loop header will be branched to from within the
904 /// loop, assuming there are no abnormal exists like exception throws. This is
905 /// one less than the trip count of the loop, since it doesn't count the first
906 /// iteration, when the header is branched to from outside the loop.
907 ///
908 /// Note that it is not valid to call this method on a loop without a
909 /// loop-invariant backedge-taken count (see
910 /// hasLoopInvariantBackedgeTakenCount).
911 LLVM_ABI const SCEV *getBackedgeTakenCount(const Loop *L,
912 ExitCountKind Kind = Exact);
913
914 /// Similar to getBackedgeTakenCount, except it will add a set of
915 /// SCEV predicates to Predicates that are required to be true in order for
916 /// the answer to be correct. Predicates can be checked with run-time
917 /// checks and can be used to perform loop versioning.
919 const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Predicates);
920
921 /// When successful, this returns a SCEVConstant that is greater than or equal
922 /// to (i.e. a "conservative over-approximation") of the value returend by
923 /// getBackedgeTakenCount. If such a value cannot be computed, it returns the
924 /// SCEVCouldNotCompute object.
928
929 /// Similar to getConstantMaxBackedgeTakenCount, except it will add a set of
930 /// SCEV predicates to Predicates that are required to be true in order for
931 /// the answer to be correct. Predicates can be checked with run-time
932 /// checks and can be used to perform loop versioning.
934 const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Predicates);
935
936 /// When successful, this returns a SCEV that is greater than or equal
937 /// to (i.e. a "conservative over-approximation") of the value returend by
938 /// getBackedgeTakenCount. If such a value cannot be computed, it returns the
939 /// SCEVCouldNotCompute object.
943
944 /// Similar to getSymbolicMaxBackedgeTakenCount, except it will add a set of
945 /// SCEV predicates to Predicates that are required to be true in order for
946 /// the answer to be correct. Predicates can be checked with run-time
947 /// checks and can be used to perform loop versioning.
949 const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Predicates);
950
951 /// Return true if the backedge taken count is either the value returned by
952 /// getConstantMaxBackedgeTakenCount or zero.
954
955 /// Return true if the specified loop has an analyzable loop-invariant
956 /// backedge-taken count.
958
959 // This method should be called by the client when it made any change that
960 // would invalidate SCEV's answers, and the client wants to remove all loop
961 // information held internally by ScalarEvolution. This is intended to be used
962 // when the alternative to forget a loop is too expensive (i.e. large loop
963 // bodies).
965
966 /// This method should be called by the client when it has changed a loop in
967 /// a way that may effect ScalarEvolution's ability to compute a trip count,
968 /// or if the loop is deleted. This call is potentially expensive for large
969 /// loop bodies.
970 LLVM_ABI void forgetLoop(const Loop *L);
971
972 // This method invokes forgetLoop for the outermost loop of the given loop
973 // \p L, making ScalarEvolution forget about all this subtree. This needs to
974 // be done whenever we make a transform that may affect the parameters of the
975 // outer loop, such as exit counts for branches.
976 LLVM_ABI void forgetTopmostLoop(const Loop *L);
977
978 /// This method should be called by the client when it has changed a value
979 /// in a way that may effect its value, or which may disconnect it from a
980 /// def-use chain linking it to a loop.
981 LLVM_ABI void forgetValue(Value *V);
982
983 /// Forget LCSSA phi node V of loop L to which a new predecessor was added,
984 /// such that it may no longer be trivial.
986
987 /// Called when the client has changed the disposition of values in
988 /// this loop.
989 ///
990 /// We don't have a way to invalidate per-loop dispositions. Clear and
991 /// recompute is simpler.
993
994 /// Called when the client has changed the disposition of values in
995 /// a loop or block.
996 ///
997 /// We don't have a way to invalidate per-loop/per-block dispositions. Clear
998 /// and recompute is simpler.
1000
1001 /// Determine the minimum number of zero bits that S is guaranteed to end in
1002 /// (at every loop iteration). It is, at the same time, the minimum number
1003 /// of times S is divisible by 2. For example, given {4,+,8} it returns 2.
1004 /// If S is guaranteed to be 0, it returns the bitwidth of S.
1005 /// If \p CtxI is not nullptr, return a constant multiple valid at \p CtxI.
1007 const Instruction *CtxI = nullptr);
1008
1009 /// Returns the max constant multiple of S. If \p CtxI is not nullptr, return
1010 /// a constant multiple valid at \p CtxI.
1012 const Instruction *CtxI = nullptr);
1013
1014 // Returns the max constant multiple of S. If S is exactly 0, return 1.
1016
1017 /// Determine the unsigned range for a particular SCEV.
1018 /// NOTE: This returns a copy of the reference returned by getRangeRef.
1020 return getRangeRef(S, HINT_RANGE_UNSIGNED);
1021 }
1022
1023 /// Determine the min of the unsigned range for a particular SCEV.
1025 return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMin();
1026 }
1027
1028 /// Determine the max of the unsigned range for a particular SCEV.
1030 return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMax();
1031 }
1032
1033 /// Determine the signed range for a particular SCEV.
1034 /// NOTE: This returns a copy of the reference returned by getRangeRef.
1036 return getRangeRef(S, HINT_RANGE_SIGNED);
1037 }
1038
1039 /// Determine the min of the signed range for a particular SCEV.
1041 return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMin();
1042 }
1043
1044 /// Determine the max of the signed range for a particular SCEV.
1046 return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMax();
1047 }
1048
1049 /// Test if the given expression is known to be negative.
1050 LLVM_ABI bool isKnownNegative(const SCEV *S);
1051
1052 /// Test if the given expression is known to be positive.
1053 LLVM_ABI bool isKnownPositive(const SCEV *S);
1054
1055 /// Test if the given expression is known to be non-negative.
1056 LLVM_ABI bool isKnownNonNegative(const SCEV *S);
1057
1058 /// Test if the given expression is known to be non-positive.
1059 LLVM_ABI bool isKnownNonPositive(const SCEV *S);
1060
1061 /// Test if the given expression is known to be non-zero.
1062 LLVM_ABI bool isKnownNonZero(const SCEV *S);
1063
1064 /// Test if the given expression is known to be a power of 2. OrNegative
1065 /// allows matching negative power of 2s, and OrZero allows matching 0.
1066 LLVM_ABI bool isKnownToBeAPowerOfTwo(const SCEV *S, bool OrZero = false,
1067 bool OrNegative = false);
1068
1069 /// Check that \p S is a multiple of \p M. When \p S is an AddRecExpr, \p S is
1070 /// a multiple of \p M if \p S starts with a multiple of \p M and at every
1071 /// iteration step \p S only adds multiples of \p M. \p Assumptions records
1072 /// the runtime predicates under which \p S is a multiple of \p M.
1073 LLVM_ABI bool
1074 isKnownMultipleOf(const SCEV *S, uint64_t M,
1076
1077 /// Splits SCEV expression \p S into two SCEVs. One of them is obtained from
1078 /// \p S by substitution of all AddRec sub-expression related to loop \p L
1079 /// with initial value of that SCEV. The second is obtained from \p S by
1080 /// substitution of all AddRec sub-expressions related to loop \p L with post
1081 /// increment of this AddRec in the loop \p L. In both cases all other AddRec
1082 /// sub-expressions (not related to \p L) remain the same.
1083 /// If the \p S contains non-invariant unknown SCEV the function returns
1084 /// CouldNotCompute SCEV in both values of std::pair.
1085 /// For example, for SCEV S={0, +, 1}<L1> + {0, +, 1}<L2> and loop L=L1
1086 /// the function returns pair:
1087 /// first = {0, +, 1}<L2>
1088 /// second = {1, +, 1}<L1> + {0, +, 1}<L2>
1089 /// We can see that for the first AddRec sub-expression it was replaced with
1090 /// 0 (initial value) for the first element and to {1, +, 1}<L1> (post
1091 /// increment value) for the second one. In both cases AddRec expression
1092 /// related to L2 remains the same.
1093 LLVM_ABI std::pair<const SCEV *, const SCEV *>
1094 SplitIntoInitAndPostInc(const Loop *L, const SCEV *S);
1095
1096 /// We'd like to check the predicate on every iteration of the most dominated
1097 /// loop between loops used in LHS and RHS.
1098 /// To do this we use the following list of steps:
1099 /// 1. Collect set S all loops on which either LHS or RHS depend.
1100 /// 2. If S is non-empty
1101 /// a. Let PD be the element of S which is dominated by all other elements.
1102 /// b. Let E(LHS) be value of LHS on entry of PD.
1103 /// To get E(LHS), we should just take LHS and replace all AddRecs that are
1104 /// attached to PD on with their entry values.
1105 /// Define E(RHS) in the same way.
1106 /// c. Let B(LHS) be value of L on backedge of PD.
1107 /// To get B(LHS), we should just take LHS and replace all AddRecs that are
1108 /// attached to PD on with their backedge values.
1109 /// Define B(RHS) in the same way.
1110 /// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD,
1111 /// so we can assert on that.
1112 /// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) &&
1113 /// isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS))
1115 const SCEV *RHS);
1116
1117 /// Test if the given expression is known to satisfy the condition described
1118 /// by Pred, LHS, and RHS.
1119 LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS,
1120 const SCEV *RHS);
1121
1122 /// Check whether the condition described by Pred, LHS, and RHS is true or
1123 /// false. If we know it, return the evaluation of this condition. If neither
1124 /// is proved, return std::nullopt.
1125 LLVM_ABI std::optional<bool>
1126 evaluatePredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS);
1127
1128 /// Test if the given expression is known to satisfy the condition described
1129 /// by Pred, LHS, and RHS in the given Context.
1131 const SCEV *RHS, const Instruction *CtxI);
1132
1133 /// Check whether the condition described by Pred, LHS, and RHS is true or
1134 /// false in the given \p Context. If we know it, return the evaluation of
1135 /// this condition. If neither is proved, return std::nullopt.
1136 LLVM_ABI std::optional<bool> evaluatePredicateAt(CmpPredicate Pred,
1137 const SCEV *LHS,
1138 const SCEV *RHS,
1139 const Instruction *CtxI);
1140
1141 /// Test if the condition described by Pred, LHS, RHS is known to be true on
1142 /// every iteration of the loop of the recurrency LHS.
1144 const SCEVAddRecExpr *LHS,
1145 const SCEV *RHS);
1146
1147 /// Information about the number of loop iterations for which a loop exit's
1148 /// branch condition evaluates to the not-taken path. This is a temporary
1149 /// pair of exact and max expressions that are eventually summarized in
1150 /// ExitNotTakenInfo and BackedgeTakenInfo.
1151 struct ExitLimit {
1152 const SCEV *ExactNotTaken; // The exit is not taken exactly this many times
1153 const SCEV *ConstantMaxNotTaken; // The exit is not taken at most this many
1154 // times
1156
1157 // Not taken either exactly ConstantMaxNotTaken or zero times
1158 bool MaxOrZero = false;
1159
1160 /// A vector of predicate guards for this ExitLimit. The result is only
1161 /// valid if all of the predicates in \c Predicates evaluate to 'true' at
1162 /// run-time.
1164
1165 /// Construct either an exact exit limit from a constant, or an unknown
1166 /// one from a SCEVCouldNotCompute. No other types of SCEVs are allowed
1167 /// as arguments and asserts enforce that internally.
1168 /*implicit*/ LLVM_ABI ExitLimit(const SCEV *E);
1169
1170 LLVM_ABI
1171 ExitLimit(const SCEV *E, const SCEV *ConstantMaxNotTaken,
1172 const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
1174
1176 const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
1178
1179 /// Test whether this ExitLimit contains any computed information, or
1180 /// whether it's all SCEVCouldNotCompute values.
1185
1186 /// Test whether this ExitLimit contains all information.
1187 bool hasFullInfo() const {
1189 }
1190 };
1191
1192 /// Compute the number of times the backedge of the specified loop will
1193 /// execute if its exit condition were a conditional branch of ExitCond.
1194 ///
1195 /// \p ControlsOnlyExit is true if ExitCond directly controls the only exit
1196 /// branch. In this case, we can assume that the loop exits only if the
1197 /// condition is true and can infer that failing to meet the condition prior
1198 /// to integer wraparound results in undefined behavior.
1199 ///
1200 /// If \p AllowPredicates is set, this call will try to use a minimal set of
1201 /// SCEV predicates in order to return an exact answer.
1202 LLVM_ABI ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond,
1203 bool ExitIfTrue,
1204 bool ControlsOnlyExit,
1205 bool AllowPredicates = false);
1206
1207 /// A predicate is said to be monotonically increasing if may go from being
1208 /// false to being true as the loop iterates, but never the other way
1209 /// around. A predicate is said to be monotonically decreasing if may go
1210 /// from being true to being false as the loop iterates, but never the other
1211 /// way around.
1216
1217 /// If, for all loop invariant X, the predicate "LHS `Pred` X" is
1218 /// monotonically increasing or decreasing, returns
1219 /// Some(MonotonicallyIncreasing) and Some(MonotonicallyDecreasing)
1220 /// respectively. If we could not prove either of these facts, returns
1221 /// std::nullopt.
1222 LLVM_ABI std::optional<MonotonicPredicateType>
1224 ICmpInst::Predicate Pred);
1225
1234 /// If the result of the predicate LHS `Pred` RHS is loop invariant with
1235 /// respect to L, return a LoopInvariantPredicate with LHS and RHS being
1236 /// invariants, available at L's entry. Otherwise, return std::nullopt.
1237 LLVM_ABI std::optional<LoopInvariantPredicate>
1239 const Loop *L, const Instruction *CtxI = nullptr);
1240
1241 /// If the result of the predicate LHS `Pred` RHS is loop invariant with
1242 /// respect to L at given Context during at least first MaxIter iterations,
1243 /// return a LoopInvariantPredicate with LHS and RHS being invariants,
1244 /// available at L's entry. Otherwise, return std::nullopt. The predicate
1245 /// should be the loop's exit condition.
1246 LLVM_ABI std::optional<LoopInvariantPredicate>
1248 const SCEV *LHS,
1249 const SCEV *RHS, const Loop *L,
1250 const Instruction *CtxI,
1251 const SCEV *MaxIter);
1252
1253 LLVM_ABI std::optional<LoopInvariantPredicate>
1255 CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
1256 const Instruction *CtxI, const SCEV *MaxIter);
1257
1258 /// Simplify LHS and RHS in a comparison with predicate Pred. Return true
1259 /// iff any changes were made. If the operands are provably equal or
1260 /// unequal, LHS and RHS are set to the same value and Pred is set to either
1261 /// ICMP_EQ or ICMP_NE.
1263 const SCEV *&RHS, unsigned Depth = 0);
1264
1265 /// Return the "disposition" of the given SCEV with respect to the given
1266 /// loop.
1268
1269 /// Return true if the value of the given SCEV is unchanging in the
1270 /// specified loop.
1271 LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L);
1272
1273 /// Determine if the SCEV can be evaluated at loop's entry. It is true if it
1274 /// doesn't depend on a SCEVUnknown of an instruction which is dominated by
1275 /// the header of loop L.
1276 LLVM_ABI bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L);
1277
1278 /// Return true if the given SCEV changes value in a known way in the
1279 /// specified loop. This property being true implies that the value is
1280 /// variant in the loop AND that we can emit an expression to compute the
1281 /// value of the expression at any particular loop iteration.
1282 LLVM_ABI bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
1283
1284 /// Return the "disposition" of the given SCEV with respect to the given
1285 /// block.
1287 const BasicBlock *BB);
1288
1289 /// Return true if elements that makes up the given SCEV dominate the
1290 /// specified basic block.
1291 LLVM_ABI bool dominates(const SCEV *S, const BasicBlock *BB);
1292
1293 /// Return true if elements that makes up the given SCEV properly dominate
1294 /// the specified basic block.
1295 LLVM_ABI bool properlyDominates(const SCEV *S, const BasicBlock *BB);
1296
1297 /// Test whether the given SCEV has Op as a direct or indirect operand.
1298 LLVM_ABI bool hasOperand(const SCEV *S, const SCEV *Op) const;
1299
1300 /// Return the size of an element read or written by Inst.
1302
1303 LLVM_ABI void print(raw_ostream &OS) const;
1304 LLVM_ABI void verify() const;
1306 FunctionAnalysisManager::Invalidator &Inv);
1307
1308 /// Return the DataLayout associated with the module this SCEV instance is
1309 /// operating on.
1310 const DataLayout &getDataLayout() const { return DL; }
1311
1313 const SCEV *RHS);
1315 const SCEV *LHS,
1316 const SCEV *RHS);
1317
1318 LLVM_ABI const SCEVPredicate *
1321
1322 /// Re-writes the SCEV according to the Predicates in \p A.
1323 LLVM_ABI const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L,
1324 const SCEVPredicate &A);
1325 /// Tries to convert the \p S expression to an AddRec expression,
1326 /// adding additional predicates to \p Preds as required.
1328 const SCEV *S, const Loop *L,
1330
1331 /// Compute \p LHS - \p RHS and returns the result as an APInt if it is a
1332 /// constant, and std::nullopt if it isn't.
1333 ///
1334 /// This is intended to be a cheaper version of getMinusSCEV. We can be
1335 /// frugal here since we just bail out of actually constructing and
1336 /// canonicalizing an expression in the cases where the result isn't going
1337 /// to be a constant.
1338 LLVM_ABI std::optional<APInt> computeConstantDifference(const SCEV *LHS,
1339 const SCEV *RHS);
1340
1341 /// Update no-wrap flags of an AddRec. This may drop the cached info about
1342 /// this AddRec (such as range info) in case if new flags may potentially
1343 /// sharpen it.
1345
1346 class LoopGuards {
1349 bool PreserveNUW = false;
1350 bool PreserveNSW = false;
1351 ScalarEvolution &SE;
1352
1353 LoopGuards(ScalarEvolution &SE) : SE(SE) {}
1354
1355 /// Recursively collect loop guards in \p Guards, starting from
1356 /// block \p Block with predecessor \p Pred. The intended starting point
1357 /// is to collect from a loop header and its predecessor.
1358 static void
1359 collectFromBlock(ScalarEvolution &SE, ScalarEvolution::LoopGuards &Guards,
1360 const BasicBlock *Block, const BasicBlock *Pred,
1362 unsigned Depth = 0);
1363
1364 /// Collect loop guards in \p Guards, starting from PHINode \p
1365 /// Phi, by calling \p collectFromBlock on the incoming blocks of
1366 /// \Phi and trying to merge the found constraints into a single
1367 /// combined one for \p Phi.
1368 static void collectFromPHI(
1372 unsigned Depth);
1373
1374 public:
1375 /// Collect rewrite map for loop guards for loop \p L, together with flags
1376 /// indicating if NUW and NSW can be preserved during rewriting.
1377 LLVM_ABI static LoopGuards collect(const Loop *L, ScalarEvolution &SE);
1378
1379 /// Try to apply the collected loop guards to \p Expr.
1380 LLVM_ABI const SCEV *rewrite(const SCEV *Expr) const;
1381 };
1382
1383 /// Try to apply information from loop guards for \p L to \p Expr.
1384 LLVM_ABI const SCEV *applyLoopGuards(const SCEV *Expr, const Loop *L);
1385 LLVM_ABI const SCEV *applyLoopGuards(const SCEV *Expr,
1386 const LoopGuards &Guards);
1387
1388 /// Return true if the loop has no abnormal exits. That is, if the loop
1389 /// is not infinite, it must exit through an explicit edge in the CFG.
1390 /// (As opposed to either a) throwing out of the function or b) entering a
1391 /// well defined infinite loop in some callee.)
1393 return getLoopProperties(L).HasNoAbnormalExits;
1394 }
1395
1396 /// Return true if this loop is finite by assumption. That is,
1397 /// to be infinite, it must also be undefined.
1398 LLVM_ABI bool loopIsFiniteByAssumption(const Loop *L);
1399
1400 /// Return the set of Values that, if poison, will definitively result in S
1401 /// being poison as well. The returned set may be incomplete, i.e. there can
1402 /// be additional Values that also result in S being poison.
1403 LLVM_ABI void
1405 const SCEV *S);
1406
1407 /// Check whether it is poison-safe to represent the expression S using the
1408 /// instruction I. If such a replacement is performed, the poison flags of
1409 /// instructions in DropPoisonGeneratingInsts must be dropped.
1411 const SCEV *S, Instruction *I,
1412 SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts);
1413
1414 class FoldID {
1415 const SCEV *Op = nullptr;
1416 const Type *Ty = nullptr;
1417 unsigned short C;
1418
1419 public:
1420 FoldID(SCEVTypes C, const SCEV *Op, const Type *Ty) : Op(Op), Ty(Ty), C(C) {
1421 assert(Op);
1422 assert(Ty);
1423 }
1424
1425 FoldID(unsigned short C) : C(C) {}
1426
1427 unsigned computeHash() const {
1429 C, detail::combineHashValue(reinterpret_cast<uintptr_t>(Op),
1430 reinterpret_cast<uintptr_t>(Ty)));
1431 }
1432
1433 bool operator==(const FoldID &RHS) const {
1434 return std::tie(Op, Ty, C) == std::tie(RHS.Op, RHS.Ty, RHS.C);
1435 }
1436 };
1437
1438private:
1439 /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
1440 /// Value is deleted.
1441 class LLVM_ABI SCEVCallbackVH final : public CallbackVH {
1442 ScalarEvolution *SE;
1443
1444 void deleted() override;
1445 void allUsesReplacedWith(Value *New) override;
1446
1447 public:
1448 SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
1449 };
1450
1451 friend class SCEVCallbackVH;
1452 friend class SCEVExpander;
1453 friend class SCEVUnknown;
1454
1455 /// The function we are analyzing.
1456 Function &F;
1457
1458 /// Data layout of the module.
1459 const DataLayout &DL;
1460
1461 /// Does the module have any calls to the llvm.experimental.guard intrinsic
1462 /// at all? If this is false, we avoid doing work that will only help if
1463 /// thare are guards present in the IR.
1464 bool HasGuards;
1465
1466 /// The target library information for the target we are targeting.
1467 TargetLibraryInfo &TLI;
1468
1469 /// The tracker for \@llvm.assume intrinsics in this function.
1470 AssumptionCache &AC;
1471
1472 /// The dominator tree.
1473 DominatorTree &DT;
1474
1475 /// The loop information for the function we are currently analyzing.
1476 LoopInfo &LI;
1477
1478 /// This SCEV is used to represent unknown trip counts and things.
1479 std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
1480
1481 /// The type for HasRecMap.
1482 using HasRecMapType = DenseMap<const SCEV *, bool>;
1483
1484 /// This is a cache to record whether a SCEV contains any scAddRecExpr.
1485 HasRecMapType HasRecMap;
1486
1487 /// The type for ExprValueMap.
1488 using ValueSetVector = SmallSetVector<Value *, 4>;
1489 using ExprValueMapType = DenseMap<const SCEV *, ValueSetVector>;
1490
1491 /// ExprValueMap -- This map records the original values from which
1492 /// the SCEV expr is generated from.
1493 ExprValueMapType ExprValueMap;
1494
1495 /// The type for ValueExprMap.
1496 using ValueExprMapType =
1498
1499 /// This is a cache of the values we have analyzed so far.
1500 ValueExprMapType ValueExprMap;
1501
1502 /// This is a cache for expressions that got folded to a different existing
1503 /// SCEV.
1506
1507 /// Mark predicate values currently being processed by isImpliedCond.
1508 SmallPtrSet<const Value *, 6> PendingLoopPredicates;
1509
1510 /// Mark SCEVUnknown Phis currently being processed by getRangeRef.
1511 SmallPtrSet<const PHINode *, 6> PendingPhiRanges;
1512
1513 /// Mark SCEVUnknown Phis currently being processed by getRangeRefIter.
1514 SmallPtrSet<const PHINode *, 6> PendingPhiRangesIter;
1515
1516 // Mark SCEVUnknown Phis currently being processed by isImpliedViaMerge.
1517 SmallPtrSet<const PHINode *, 6> PendingMerges;
1518
1519 /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
1520 /// conditions dominating the backedge of a loop.
1521 bool WalkingBEDominatingConds = false;
1522
1523 /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
1524 /// predicate by splitting it into a set of independent predicates.
1525 bool ProvingSplitPredicate = false;
1526
1527 /// Memoized values for the getConstantMultiple
1528 DenseMap<const SCEV *, APInt> ConstantMultipleCache;
1529
1530 /// Return the Value set from which the SCEV expr is generated.
1531 ArrayRef<Value *> getSCEVValues(const SCEV *S);
1532
1533 /// Private helper method for the getConstantMultiple method. If \p CtxI is
1534 /// not nullptr, return a constant multiple valid at \p CtxI.
1535 APInt getConstantMultipleImpl(const SCEV *S,
1536 const Instruction *Ctx = nullptr);
1537
1538 /// Information about the number of times a particular loop exit may be
1539 /// reached before exiting the loop.
1540 struct ExitNotTakenInfo {
1541 PoisoningVH<BasicBlock> ExitingBlock;
1542 const SCEV *ExactNotTaken;
1543 const SCEV *ConstantMaxNotTaken;
1544 const SCEV *SymbolicMaxNotTaken;
1546
1547 explicit ExitNotTakenInfo(PoisoningVH<BasicBlock> ExitingBlock,
1548 const SCEV *ExactNotTaken,
1549 const SCEV *ConstantMaxNotTaken,
1550 const SCEV *SymbolicMaxNotTaken,
1552 : ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken),
1553 ConstantMaxNotTaken(ConstantMaxNotTaken),
1554 SymbolicMaxNotTaken(SymbolicMaxNotTaken), Predicates(Predicates) {}
1555
1556 bool hasAlwaysTruePredicate() const {
1557 return Predicates.empty();
1558 }
1559 };
1560
1561 /// Information about the backedge-taken count of a loop. This currently
1562 /// includes an exact count and a maximum count.
1563 ///
1564 class BackedgeTakenInfo {
1565 friend class ScalarEvolution;
1566
1567 /// A list of computable exits and their not-taken counts. Loops almost
1568 /// never have more than one computable exit.
1569 SmallVector<ExitNotTakenInfo, 1> ExitNotTaken;
1570
1571 /// Expression indicating the least constant maximum backedge-taken count of
1572 /// the loop that is known, or a SCEVCouldNotCompute. This expression is
1573 /// only valid if the predicates associated with all loop exits are true.
1574 const SCEV *ConstantMax = nullptr;
1575
1576 /// Indicating if \c ExitNotTaken has an element for every exiting block in
1577 /// the loop.
1578 bool IsComplete = false;
1579
1580 /// Expression indicating the least maximum backedge-taken count of the loop
1581 /// that is known, or a SCEVCouldNotCompute. Lazily computed on first query.
1582 const SCEV *SymbolicMax = nullptr;
1583
1584 /// True iff the backedge is taken either exactly Max or zero times.
1585 bool MaxOrZero = false;
1586
1587 bool isComplete() const { return IsComplete; }
1588 const SCEV *getConstantMax() const { return ConstantMax; }
1589
1590 LLVM_ABI const ExitNotTakenInfo *getExitNotTaken(
1591 const BasicBlock *ExitingBlock,
1592 SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const;
1593
1594 public:
1595 BackedgeTakenInfo() = default;
1596 BackedgeTakenInfo(BackedgeTakenInfo &&) = default;
1597 BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) = default;
1598
1599 using EdgeExitInfo = std::pair<BasicBlock *, ExitLimit>;
1600
1601 /// Initialize BackedgeTakenInfo from a list of exact exit counts.
1602 LLVM_ABI BackedgeTakenInfo(ArrayRef<EdgeExitInfo> ExitCounts,
1603 bool IsComplete, const SCEV *ConstantMax,
1604 bool MaxOrZero);
1605
1606 /// Test whether this BackedgeTakenInfo contains any computed information,
1607 /// or whether it's all SCEVCouldNotCompute values.
1608 bool hasAnyInfo() const {
1609 return !ExitNotTaken.empty() ||
1610 !isa<SCEVCouldNotCompute>(getConstantMax());
1611 }
1612
1613 /// Test whether this BackedgeTakenInfo contains complete information.
1614 bool hasFullInfo() const { return isComplete(); }
1615
1616 /// Return an expression indicating the exact *backedge-taken*
1617 /// count of the loop if it is known or SCEVCouldNotCompute
1618 /// otherwise. If execution makes it to the backedge on every
1619 /// iteration (i.e. there are no abnormal exists like exception
1620 /// throws and thread exits) then this is the number of times the
1621 /// loop header will execute minus one.
1622 ///
1623 /// If the SCEV predicate associated with the answer can be different
1624 /// from AlwaysTrue, we must add a (non null) Predicates argument.
1625 /// The SCEV predicate associated with the answer will be added to
1626 /// Predicates. A run-time check needs to be emitted for the SCEV
1627 /// predicate in order for the answer to be valid.
1628 ///
1629 /// Note that we should always know if we need to pass a predicate
1630 /// argument or not from the way the ExitCounts vector was computed.
1631 /// If we allowed SCEV predicates to be generated when populating this
1632 /// vector, this information can contain them and therefore a
1633 /// SCEVPredicate argument should be added to getExact.
1634 LLVM_ABI const SCEV *getExact(
1635 const Loop *L, ScalarEvolution *SE,
1636 SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const;
1637
1638 /// Return the number of times this loop exit may fall through to the back
1639 /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
1640 /// this block before this number of iterations, but may exit via another
1641 /// block. If \p Predicates is null the function returns CouldNotCompute if
1642 /// predicates are required, otherwise it fills in the required predicates.
1643 const SCEV *getExact(
1644 const BasicBlock *ExitingBlock, ScalarEvolution *SE,
1645 SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const {
1646 if (auto *ENT = getExitNotTaken(ExitingBlock, Predicates))
1647 return ENT->ExactNotTaken;
1648 else
1649 return SE->getCouldNotCompute();
1650 }
1651
1652 /// Get the constant max backedge taken count for the loop.
1653 LLVM_ABI const SCEV *getConstantMax(
1654 ScalarEvolution *SE,
1655 SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const;
1656
1657 /// Get the constant max backedge taken count for the particular loop exit.
1658 const SCEV *getConstantMax(
1659 const BasicBlock *ExitingBlock, ScalarEvolution *SE,
1660 SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const {
1661 if (auto *ENT = getExitNotTaken(ExitingBlock, Predicates))
1662 return ENT->ConstantMaxNotTaken;
1663 else
1664 return SE->getCouldNotCompute();
1665 }
1666
1667 /// Get the symbolic max backedge taken count for the loop.
1668 LLVM_ABI const SCEV *getSymbolicMax(
1669 const Loop *L, ScalarEvolution *SE,
1670 SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr);
1671
1672 /// Get the symbolic max backedge taken count for the particular loop exit.
1673 const SCEV *getSymbolicMax(
1674 const BasicBlock *ExitingBlock, ScalarEvolution *SE,
1675 SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const {
1676 if (auto *ENT = getExitNotTaken(ExitingBlock, Predicates))
1677 return ENT->SymbolicMaxNotTaken;
1678 else
1679 return SE->getCouldNotCompute();
1680 }
1681
1682 /// Return true if the number of times this backedge is taken is either the
1683 /// value returned by getConstantMax or zero.
1684 LLVM_ABI bool isConstantMaxOrZero(ScalarEvolution *SE) const;
1685 };
1686
1687 /// Cache the backedge-taken count of the loops for this function as they
1688 /// are computed.
1689 DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;
1690
1691 /// Cache the predicated backedge-taken count of the loops for this
1692 /// function as they are computed.
1693 DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;
1694
1695 /// Loops whose backedge taken counts directly use this non-constant SCEV.
1696 DenseMap<const SCEV *, SmallPtrSet<PointerIntPair<const Loop *, 1, bool>, 4>>
1697 BECountUsers;
1698
1699 /// This map contains entries for all of the PHI instructions that we
1700 /// attempt to compute constant evolutions for. This allows us to avoid
1701 /// potentially expensive recomputation of these properties. An instruction
1702 /// maps to null if we are unable to compute its exit value.
1703 DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue;
1704
1705 /// This map contains entries for all the expressions that we attempt to
1706 /// compute getSCEVAtScope information for, which can be expensive in
1707 /// extreme cases.
1708 DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
1709 ValuesAtScopes;
1710
1711 /// Reverse map for invalidation purposes: Stores of which SCEV and which
1712 /// loop this is the value-at-scope of.
1713 DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
1714 ValuesAtScopesUsers;
1715
1716 /// Memoized computeLoopDisposition results.
1717 DenseMap<const SCEV *,
1719 LoopDispositions;
1720
1721 struct LoopProperties {
1722 /// Set to true if the loop contains no instruction that can abnormally exit
1723 /// the loop (i.e. via throwing an exception, by terminating the thread
1724 /// cleanly or by infinite looping in a called function). Strictly
1725 /// speaking, the last one is not leaving the loop, but is identical to
1726 /// leaving the loop for reasoning about undefined behavior.
1727 bool HasNoAbnormalExits;
1728
1729 /// Set to true if the loop contains no instruction that can have side
1730 /// effects (i.e. via throwing an exception, volatile or atomic access).
1731 bool HasNoSideEffects;
1732 };
1733
1734 /// Cache for \c getLoopProperties.
1735 DenseMap<const Loop *, LoopProperties> LoopPropertiesCache;
1736
1737 /// Return a \c LoopProperties instance for \p L, creating one if necessary.
1738 LLVM_ABI LoopProperties getLoopProperties(const Loop *L);
1739
1740 bool loopHasNoSideEffects(const Loop *L) {
1741 return getLoopProperties(L).HasNoSideEffects;
1742 }
1743
1744 /// Compute a LoopDisposition value.
1745 LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
1746
1747 /// Memoized computeBlockDisposition results.
1748 DenseMap<
1749 const SCEV *,
1751 BlockDispositions;
1752
1753 /// Compute a BlockDisposition value.
1754 BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
1755
1756 /// Stores all SCEV that use a given SCEV as its direct operand.
1757 DenseMap<const SCEV *, SmallPtrSet<const SCEV *, 8> > SCEVUsers;
1758
1759 /// Memoized results from getRange
1760 DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
1761
1762 /// Memoized results from getRange
1763 DenseMap<const SCEV *, ConstantRange> SignedRanges;
1764
1765 /// Used to parameterize getRange
1766 enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
1767
1768 /// Set the memoized range for the given SCEV.
1769 const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
1770 ConstantRange CR) {
1771 DenseMap<const SCEV *, ConstantRange> &Cache =
1772 Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
1773
1774 auto Pair = Cache.insert_or_assign(S, std::move(CR));
1775 return Pair.first->second;
1776 }
1777
1778 /// Determine the range for a particular SCEV.
1779 /// NOTE: This returns a reference to an entry in a cache. It must be
1780 /// copied if its needed for longer.
1781 LLVM_ABI const ConstantRange &getRangeRef(const SCEV *S, RangeSignHint Hint,
1782 unsigned Depth = 0);
1783
1784 /// Determine the range for a particular SCEV, but evaluates ranges for
1785 /// operands iteratively first.
1786 const ConstantRange &getRangeRefIter(const SCEV *S, RangeSignHint Hint);
1787
1788 /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Step}.
1789 /// Helper for \c getRange.
1790 ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Step,
1791 const APInt &MaxBECount);
1792
1793 /// Determines the range for the affine non-self-wrapping SCEVAddRecExpr {\p
1794 /// Start,+,\p Step}<nw>.
1795 ConstantRange getRangeForAffineNoSelfWrappingAR(const SCEVAddRecExpr *AddRec,
1796 const SCEV *MaxBECount,
1797 unsigned BitWidth,
1798 RangeSignHint SignHint);
1799
1800 /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p
1801 /// Step} by "factoring out" a ternary expression from the add recurrence.
1802 /// Helper called by \c getRange.
1803 ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Step,
1804 const APInt &MaxBECount);
1805
1806 /// If the unknown expression U corresponds to a simple recurrence, return
1807 /// a constant range which represents the entire recurrence. Note that
1808 /// *add* recurrences with loop invariant steps aren't represented by
1809 /// SCEVUnknowns and thus don't use this mechanism.
1810 ConstantRange getRangeForUnknownRecurrence(const SCEVUnknown *U);
1811
1812 /// We know that there is no SCEV for the specified value. Analyze the
1813 /// expression recursively.
1814 const SCEV *createSCEV(Value *V);
1815
1816 /// We know that there is no SCEV for the specified value. Create a new SCEV
1817 /// for \p V iteratively.
1818 const SCEV *createSCEVIter(Value *V);
1819 /// Collect operands of \p V for which SCEV expressions should be constructed
1820 /// first. Returns a SCEV directly if it can be constructed trivially for \p
1821 /// V.
1822 const SCEV *getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops);
1823
1824 /// Returns SCEV for the first operand of a phi if all phi operands have
1825 /// identical opcodes and operands.
1826 const SCEV *createNodeForPHIWithIdenticalOperands(PHINode *PN);
1827
1828 /// Provide the special handling we need to analyze PHI SCEVs.
1829 const SCEV *createNodeForPHI(PHINode *PN);
1830
1831 /// Helper function called from createNodeForPHI.
1832 const SCEV *createAddRecFromPHI(PHINode *PN);
1833
1834 /// A helper function for createAddRecFromPHI to handle simple cases.
1835 const SCEV *createSimpleAffineAddRec(PHINode *PN, Value *BEValueV,
1836 Value *StartValueV);
1837
1838 /// Helper function called from createNodeForPHI.
1839 const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
1840
1841 /// Provide special handling for a select-like instruction (currently this
1842 /// is either a select instruction or a phi node). \p Ty is the type of the
1843 /// instruction being processed, that is assumed equivalent to
1844 /// "Cond ? TrueVal : FalseVal".
1845 std::optional<const SCEV *>
1846 createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty, ICmpInst *Cond,
1847 Value *TrueVal, Value *FalseVal);
1848
1849 /// See if we can model this select-like instruction via umin_seq expression.
1850 const SCEV *createNodeForSelectOrPHIViaUMinSeq(Value *I, Value *Cond,
1851 Value *TrueVal,
1852 Value *FalseVal);
1853
1854 /// Given a value \p V, which is a select-like instruction (currently this is
1855 /// either a select instruction or a phi node), which is assumed equivalent to
1856 /// Cond ? TrueVal : FalseVal
1857 /// see if we can model it as a SCEV expression.
1858 const SCEV *createNodeForSelectOrPHI(Value *V, Value *Cond, Value *TrueVal,
1859 Value *FalseVal);
1860
1861 /// Provide the special handling we need to analyze GEP SCEVs.
1862 const SCEV *createNodeForGEP(GEPOperator *GEP);
1863
1864 /// Implementation code for getSCEVAtScope; called at most once for each
1865 /// SCEV+Loop pair.
1866 const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
1867
1868 /// Return the BackedgeTakenInfo for the given loop, lazily computing new
1869 /// values if the loop hasn't been analyzed yet. The returned result is
1870 /// guaranteed not to be predicated.
1871 BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
1872
1873 /// Similar to getBackedgeTakenInfo, but will add predicates as required
1874 /// with the purpose of returning complete information.
1875 BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L);
1876
1877 /// Compute the number of times the specified loop will iterate.
1878 /// If AllowPredicates is set, we will create new SCEV predicates as
1879 /// necessary in order to return an exact answer.
1880 BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L,
1881 bool AllowPredicates = false);
1882
1883 /// Compute the number of times the backedge of the specified loop will
1884 /// execute if it exits via the specified block. If AllowPredicates is set,
1885 /// this call will try to use a minimal set of SCEV predicates in order to
1886 /// return an exact answer.
1887 ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
1888 bool IsOnlyExit, bool AllowPredicates = false);
1889
1890 // Helper functions for computeExitLimitFromCond to avoid exponential time
1891 // complexity.
1892
1893 class ExitLimitCache {
1894 // It may look like we need key on the whole (L, ExitIfTrue,
1895 // ControlsOnlyExit, AllowPredicates) tuple, but recursive calls to
1896 // computeExitLimitFromCondCached from computeExitLimitFromCondImpl only
1897 // vary the in \c ExitCond and \c ControlsOnlyExit parameters. We remember
1898 // the initial values of the other values to assert our assumption.
1899 SmallDenseMap<PointerIntPair<Value *, 1>, ExitLimit> TripCountMap;
1900
1901 const Loop *L;
1902 bool ExitIfTrue;
1903 bool AllowPredicates;
1904
1905 public:
1906 ExitLimitCache(const Loop *L, bool ExitIfTrue, bool AllowPredicates)
1907 : L(L), ExitIfTrue(ExitIfTrue), AllowPredicates(AllowPredicates) {}
1908
1909 LLVM_ABI std::optional<ExitLimit> find(const Loop *L, Value *ExitCond,
1910 bool ExitIfTrue,
1911 bool ControlsOnlyExit,
1912 bool AllowPredicates);
1913
1914 LLVM_ABI void insert(const Loop *L, Value *ExitCond, bool ExitIfTrue,
1915 bool ControlsOnlyExit, bool AllowPredicates,
1916 const ExitLimit &EL);
1917 };
1918
1919 using ExitLimitCacheTy = ExitLimitCache;
1920
1921 ExitLimit computeExitLimitFromCondCached(ExitLimitCacheTy &Cache,
1922 const Loop *L, Value *ExitCond,
1923 bool ExitIfTrue,
1924 bool ControlsOnlyExit,
1925 bool AllowPredicates);
1926 ExitLimit computeExitLimitFromCondImpl(ExitLimitCacheTy &Cache, const Loop *L,
1927 Value *ExitCond, bool ExitIfTrue,
1928 bool ControlsOnlyExit,
1929 bool AllowPredicates);
1930 std::optional<ScalarEvolution::ExitLimit> computeExitLimitFromCondFromBinOp(
1931 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
1932 bool ControlsOnlyExit, bool AllowPredicates);
1933
1934 /// Compute the number of times the backedge of the specified loop will
1935 /// execute if its exit condition were a conditional branch of the ICmpInst
1936 /// ExitCond and ExitIfTrue. If AllowPredicates is set, this call will try
1937 /// to use a minimal set of SCEV predicates in order to return an exact
1938 /// answer.
1939 ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond,
1940 bool ExitIfTrue,
1941 bool IsSubExpr,
1942 bool AllowPredicates = false);
1943
1944 /// Variant of previous which takes the components representing an ICmp
1945 /// as opposed to the ICmpInst itself. Note that the prior version can
1946 /// return more precise results in some cases and is preferred when caller
1947 /// has a materialized ICmp.
1948 ExitLimit computeExitLimitFromICmp(const Loop *L, CmpPredicate Pred,
1949 const SCEV *LHS, const SCEV *RHS,
1950 bool IsSubExpr,
1951 bool AllowPredicates = false);
1952
1953 /// Compute the number of times the backedge of the specified loop will
1954 /// execute if its exit condition were a switch with a single exiting case
1955 /// to ExitingBB.
1956 ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L,
1957 SwitchInst *Switch,
1958 BasicBlock *ExitingBB,
1959 bool IsSubExpr);
1960
1961 /// Compute the exit limit of a loop that is controlled by a
1962 /// "(IV >> 1) != 0" type comparison. We cannot compute the exact trip
1963 /// count in these cases (since SCEV has no way of expressing them), but we
1964 /// can still sometimes compute an upper bound.
1965 ///
1966 /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
1967 /// RHS`.
1968 ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L,
1969 ICmpInst::Predicate Pred);
1970
1971 /// If the loop is known to execute a constant number of times (the
1972 /// condition evolves only from constants), try to evaluate a few iterations
1973 /// of the loop until we get the exit condition gets a value of ExitWhen
1974 /// (true or false). If we cannot evaluate the exit count of the loop,
1975 /// return CouldNotCompute.
1976 const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond,
1977 bool ExitWhen);
1978
1979 /// Return the number of times an exit condition comparing the specified
1980 /// value to zero will execute. If not computable, return CouldNotCompute.
1981 /// If AllowPredicates is set, this call will try to use a minimal set of
1982 /// SCEV predicates in order to return an exact answer.
1983 ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr,
1984 bool AllowPredicates = false);
1985
1986 /// Return the number of times an exit condition checking the specified
1987 /// value for nonzero will execute. If not computable, return
1988 /// CouldNotCompute.
1989 ExitLimit howFarToNonZero(const SCEV *V, const Loop *L);
1990
1991 /// Return the number of times an exit condition containing the specified
1992 /// less-than comparison will execute. If not computable, return
1993 /// CouldNotCompute.
1994 ///
1995 /// \p isSigned specifies whether the less-than is signed.
1996 ///
1997 /// \p ControlsOnlyExit is true when the LHS < RHS condition directly controls
1998 /// the branch (loops exits only if condition is true). In this case, we can
1999 /// use NoWrapFlags to skip overflow checks.
2000 ///
2001 /// If \p AllowPredicates is set, this call will try to use a minimal set of
2002 /// SCEV predicates in order to return an exact answer.
2003 ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
2004 bool isSigned, bool ControlsOnlyExit,
2005 bool AllowPredicates = false);
2006
2007 ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
2008 bool isSigned, bool IsSubExpr,
2009 bool AllowPredicates = false);
2010
2011 /// Return a predecessor of BB (which may not be an immediate predecessor)
2012 /// which has exactly one successor from which BB is reachable, or null if
2013 /// no such block is found.
2014 std::pair<const BasicBlock *, const BasicBlock *>
2015 getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) const;
2016
2017 /// Test whether the condition described by Pred, LHS, and RHS is true
2018 /// whenever the given FoundCondValue value evaluates to true in given
2019 /// Context. If Context is nullptr, then the found predicate is true
2020 /// everywhere. LHS and FoundLHS may have different type width.
2021 LLVM_ABI bool isImpliedCond(CmpPredicate Pred, const SCEV *LHS,
2022 const SCEV *RHS, const Value *FoundCondValue,
2023 bool Inverse,
2024 const Instruction *Context = nullptr);
2025
2026 /// Test whether the condition described by Pred, LHS, and RHS is true
2027 /// whenever the given FoundCondValue value evaluates to true in given
2028 /// Context. If Context is nullptr, then the found predicate is true
2029 /// everywhere. LHS and FoundLHS must have same type width.
2030 LLVM_ABI bool isImpliedCondBalancedTypes(CmpPredicate Pred, const SCEV *LHS,
2031 const SCEV *RHS,
2032 CmpPredicate FoundPred,
2033 const SCEV *FoundLHS,
2034 const SCEV *FoundRHS,
2035 const Instruction *CtxI);
2036
2037 /// Test whether the condition described by Pred, LHS, and RHS is true
2038 /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
2039 /// true in given Context. If Context is nullptr, then the found predicate is
2040 /// true everywhere.
2041 LLVM_ABI bool isImpliedCond(CmpPredicate Pred, const SCEV *LHS,
2042 const SCEV *RHS, CmpPredicate FoundPred,
2043 const SCEV *FoundLHS, const SCEV *FoundRHS,
2044 const Instruction *Context = nullptr);
2045
2046 /// Test whether the condition described by Pred, LHS, and RHS is true
2047 /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2048 /// true in given Context. If Context is nullptr, then the found predicate is
2049 /// true everywhere.
2050 bool isImpliedCondOperands(CmpPredicate Pred, const SCEV *LHS,
2051 const SCEV *RHS, const SCEV *FoundLHS,
2052 const SCEV *FoundRHS,
2053 const Instruction *Context = nullptr);
2054
2055 /// Test whether the condition described by Pred, LHS, and RHS is true
2056 /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2057 /// true. Here LHS is an operation that includes FoundLHS as one of its
2058 /// arguments.
2059 bool isImpliedViaOperations(CmpPredicate Pred, const SCEV *LHS,
2060 const SCEV *RHS, const SCEV *FoundLHS,
2061 const SCEV *FoundRHS, unsigned Depth = 0);
2062
2063 /// Test whether the condition described by Pred, LHS, and RHS is true.
2064 /// Use only simple non-recursive types of checks, such as range analysis etc.
2065 bool isKnownViaNonRecursiveReasoning(CmpPredicate Pred, const SCEV *LHS,
2066 const SCEV *RHS);
2067
2068 /// Test whether the condition described by Pred, LHS, and RHS is true
2069 /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2070 /// true.
2071 bool isImpliedCondOperandsHelper(CmpPredicate Pred, const SCEV *LHS,
2072 const SCEV *RHS, const SCEV *FoundLHS,
2073 const SCEV *FoundRHS);
2074
2075 /// Test whether the condition described by Pred, LHS, and RHS is true
2076 /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2077 /// true. Utility function used by isImpliedCondOperands. Tries to get
2078 /// cases like "X `sgt` 0 => X - 1 `sgt` -1".
2079 bool isImpliedCondOperandsViaRanges(CmpPredicate Pred, const SCEV *LHS,
2080 const SCEV *RHS, CmpPredicate FoundPred,
2081 const SCEV *FoundLHS,
2082 const SCEV *FoundRHS);
2083
2084 /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied
2085 /// by a call to @llvm.experimental.guard in \p BB.
2086 bool isImpliedViaGuard(const BasicBlock *BB, CmpPredicate Pred,
2087 const SCEV *LHS, const SCEV *RHS);
2088
2089 /// Test whether the condition described by Pred, LHS, and RHS is true
2090 /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2091 /// true.
2092 ///
2093 /// This routine tries to rule out certain kinds of integer overflow, and
2094 /// then tries to reason about arithmetic properties of the predicates.
2095 bool isImpliedCondOperandsViaNoOverflow(CmpPredicate Pred, const SCEV *LHS,
2096 const SCEV *RHS, const SCEV *FoundLHS,
2097 const SCEV *FoundRHS);
2098
2099 /// Test whether the condition described by Pred, LHS, and RHS is true
2100 /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2101 /// true.
2102 ///
2103 /// This routine tries to weaken the known condition basing on fact that
2104 /// FoundLHS is an AddRec.
2105 bool isImpliedCondOperandsViaAddRecStart(CmpPredicate Pred, const SCEV *LHS,
2106 const SCEV *RHS,
2107 const SCEV *FoundLHS,
2108 const SCEV *FoundRHS,
2109 const Instruction *CtxI);
2110
2111 /// Test whether the condition described by Pred, LHS, and RHS is true
2112 /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2113 /// true.
2114 ///
2115 /// This routine tries to figure out predicate for Phis which are SCEVUnknown
2116 /// if it is true for every possible incoming value from their respective
2117 /// basic blocks.
2118 bool isImpliedViaMerge(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS,
2119 const SCEV *FoundLHS, const SCEV *FoundRHS,
2120 unsigned Depth);
2121
2122 /// Test whether the condition described by Pred, LHS, and RHS is true
2123 /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2124 /// true.
2125 ///
2126 /// This routine tries to reason about shifts.
2127 bool isImpliedCondOperandsViaShift(CmpPredicate Pred, const SCEV *LHS,
2128 const SCEV *RHS, const SCEV *FoundLHS,
2129 const SCEV *FoundRHS);
2130
2131 /// If we know that the specified Phi is in the header of its containing
2132 /// loop, we know the loop executes a constant number of times, and the PHI
2133 /// node is just a recurrence involving constants, fold it.
2134 Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs,
2135 const Loop *L);
2136
2137 /// Test if the given expression is known to satisfy the condition described
2138 /// by Pred and the known constant ranges of LHS and RHS.
2139 bool isKnownPredicateViaConstantRanges(CmpPredicate Pred, const SCEV *LHS,
2140 const SCEV *RHS);
2141
2142 /// Try to prove the condition described by "LHS Pred RHS" by ruling out
2143 /// integer overflow.
2144 ///
2145 /// For instance, this will return true for "A s< (A + C)<nsw>" if C is
2146 /// positive.
2147 bool isKnownPredicateViaNoOverflow(CmpPredicate Pred, const SCEV *LHS,
2148 const SCEV *RHS);
2149
2150 /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
2151 /// prove them individually.
2152 bool isKnownPredicateViaSplitting(CmpPredicate Pred, const SCEV *LHS,
2153 const SCEV *RHS);
2154
2155 /// Try to match the Expr as "(L + R)<Flags>".
2156 bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
2157 SCEV::NoWrapFlags &Flags);
2158
2159 /// Forget predicated/non-predicated backedge taken counts for the given loop.
2160 void forgetBackedgeTakenCounts(const Loop *L, bool Predicated);
2161
2162 /// Drop memoized information for all \p SCEVs.
2163 void forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs);
2164
2165 /// Helper for forgetMemoizedResults.
2166 void forgetMemoizedResultsImpl(const SCEV *S);
2167
2168 /// Iterate over instructions in \p Worklist and their users. Erase entries
2169 /// from ValueExprMap and collect SCEV expressions in \p ToForget
2170 void visitAndClearUsers(SmallVectorImpl<Instruction *> &Worklist,
2171 SmallPtrSetImpl<Instruction *> &Visited,
2172 SmallVectorImpl<const SCEV *> &ToForget);
2173
2174 /// Erase Value from ValueExprMap and ExprValueMap.
2175 void eraseValueFromMap(Value *V);
2176
2177 /// Insert V to S mapping into ValueExprMap and ExprValueMap.
2178 void insertValueToMap(Value *V, const SCEV *S);
2179
2180 /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
2181 /// pointer.
2182 bool checkValidity(const SCEV *S) const;
2183
2184 /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
2185 /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}. This is
2186 /// equivalent to proving no signed (resp. unsigned) wrap in
2187 /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
2188 /// (resp. `SCEVZeroExtendExpr`).
2189 template <typename ExtendOpTy>
2190 bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
2191 const Loop *L);
2192
2193 /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation.
2194 SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR);
2195
2196 /// Try to prove NSW on \p AR by proving facts about conditions known on
2197 /// entry and backedge.
2198 SCEV::NoWrapFlags proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR);
2199
2200 /// Try to prove NUW on \p AR by proving facts about conditions known on
2201 /// entry and backedge.
2202 SCEV::NoWrapFlags proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR);
2203
2204 std::optional<MonotonicPredicateType>
2205 getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
2206 ICmpInst::Predicate Pred);
2207
2208 /// Return SCEV no-wrap flags that can be proven based on reasoning about
2209 /// how poison produced from no-wrap flags on this value (e.g. a nuw add)
2210 /// would trigger undefined behavior on overflow.
2211 SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
2212
2213 /// Return a scope which provides an upper bound on the defining scope of
2214 /// 'S'. Specifically, return the first instruction in said bounding scope.
2215 /// Return nullptr if the scope is trivial (function entry).
2216 /// (See scope definition rules associated with flag discussion above)
2217 const Instruction *getNonTrivialDefiningScopeBound(const SCEV *S);
2218
2219 /// Return a scope which provides an upper bound on the defining scope for
2220 /// a SCEV with the operands in Ops. The outparam Precise is set if the
2221 /// bound found is a precise bound (i.e. must be the defining scope.)
2222 const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
2223 bool &Precise);
2224
2225 /// Wrapper around the above for cases which don't care if the bound
2226 /// is precise.
2227 const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops);
2228
2229 /// Given two instructions in the same function, return true if we can
2230 /// prove B must execute given A executes.
2231 bool isGuaranteedToTransferExecutionTo(const Instruction *A,
2232 const Instruction *B);
2233
2234 /// Returns true if \p Op is guaranteed not to cause immediate UB.
2235 bool isGuaranteedNotToCauseUB(const SCEV *Op);
2236
2237 /// Returns true if \p Op is guaranteed to not be poison.
2238 static bool isGuaranteedNotToBePoison(const SCEV *Op);
2239
2240 /// Return true if the SCEV corresponding to \p I is never poison. Proving
2241 /// this is more complex than proving that just \p I is never poison, since
2242 /// SCEV commons expressions across control flow, and you can have cases
2243 /// like:
2244 ///
2245 /// idx0 = a + b;
2246 /// ptr[idx0] = 100;
2247 /// if (<condition>) {
2248 /// idx1 = a +nsw b;
2249 /// ptr[idx1] = 200;
2250 /// }
2251 ///
2252 /// where the SCEV expression (+ a b) is guaranteed to not be poison (and
2253 /// hence not sign-overflow) only if "<condition>" is true. Since both
2254 /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b),
2255 /// it is not okay to annotate (+ a b) with <nsw> in the above example.
2256 bool isSCEVExprNeverPoison(const Instruction *I);
2257
2258 /// This is like \c isSCEVExprNeverPoison but it specifically works for
2259 /// instructions that will get mapped to SCEV add recurrences. Return true
2260 /// if \p I will never generate poison under the assumption that \p I is an
2261 /// add recurrence on the loop \p L.
2262 bool isAddRecNeverPoison(const Instruction *I, const Loop *L);
2263
2264 /// Similar to createAddRecFromPHI, but with the additional flexibility of
2265 /// suggesting runtime overflow checks in case casts are encountered.
2266 /// If successful, the analysis records that for this loop, \p SymbolicPHI,
2267 /// which is the UnknownSCEV currently representing the PHI, can be rewritten
2268 /// into an AddRec, assuming some predicates; The function then returns the
2269 /// AddRec and the predicates as a pair, and caches this pair in
2270 /// PredicatedSCEVRewrites.
2271 /// If the analysis is not successful, a mapping from the \p SymbolicPHI to
2272 /// itself (with no predicates) is recorded, and a nullptr with an empty
2273 /// predicates vector is returned as a pair.
2274 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
2275 createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI);
2276
2277 /// Compute the maximum backedge count based on the range of values
2278 /// permitted by Start, End, and Stride. This is for loops of the form
2279 /// {Start, +, Stride} LT End.
2280 ///
2281 /// Preconditions:
2282 /// * the induction variable is known to be positive.
2283 /// * the induction variable is assumed not to overflow (i.e. either it
2284 /// actually doesn't, or we'd have to immediately execute UB)
2285 /// We *don't* assert these preconditions so please be careful.
2286 const SCEV *computeMaxBECountForLT(const SCEV *Start, const SCEV *Stride,
2287 const SCEV *End, unsigned BitWidth,
2288 bool IsSigned);
2289
2290 /// Verify if an linear IV with positive stride can overflow when in a
2291 /// less-than comparison, knowing the invariant term of the comparison,
2292 /// the stride.
2293 bool canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
2294
2295 /// Verify if an linear IV with negative stride can overflow when in a
2296 /// greater-than comparison, knowing the invariant term of the comparison,
2297 /// the stride.
2298 bool canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
2299
2300 /// Get add expr already created or create a new one.
2301 const SCEV *getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2302 SCEV::NoWrapFlags Flags);
2303
2304 /// Get mul expr already created or create a new one.
2305 const SCEV *getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2306 SCEV::NoWrapFlags Flags);
2307
2308 // Get addrec expr already created or create a new one.
2309 const SCEV *getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2310 const Loop *L, SCEV::NoWrapFlags Flags);
2311
2312 /// Return x if \p Val is f(x) where f is a 1-1 function.
2313 const SCEV *stripInjectiveFunctions(const SCEV *Val) const;
2314
2315 /// Find all of the loops transitively used in \p S, and fill \p LoopsUsed.
2316 /// A loop is considered "used" by an expression if it contains
2317 /// an add rec on said loop.
2318 void getUsedLoops(const SCEV *S, SmallPtrSetImpl<const Loop *> &LoopsUsed);
2319
2320 /// Look for a SCEV expression with type `SCEVType` and operands `Ops` in
2321 /// `UniqueSCEVs`. Return if found, else nullptr.
2322 SCEV *findExistingSCEVInCache(SCEVTypes SCEVType, ArrayRef<const SCEV *> Ops);
2323
2324 /// Get reachable blocks in this function, making limited use of SCEV
2325 /// reasoning about conditions.
2326 void getReachableBlocks(SmallPtrSetImpl<BasicBlock *> &Reachable,
2327 Function &F);
2328
2329 /// Return the given SCEV expression with a new set of operands.
2330 /// This preserves the origial nowrap flags.
2331 const SCEV *getWithOperands(const SCEV *S,
2332 SmallVectorImpl<const SCEV *> &NewOps);
2333
2334 FoldingSet<SCEV> UniqueSCEVs;
2335 FoldingSet<SCEVPredicate> UniquePreds;
2336 BumpPtrAllocator SCEVAllocator;
2337
2338 /// This maps loops to a list of addrecs that directly use said loop.
2339 DenseMap<const Loop *, SmallVector<const SCEVAddRecExpr *, 4>> LoopUsers;
2340
2341 /// Cache tentative mappings from UnknownSCEVs in a Loop, to a SCEV expression
2342 /// they can be rewritten into under certain predicates.
2343 DenseMap<std::pair<const SCEVUnknown *, const Loop *>,
2344 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
2345 PredicatedSCEVRewrites;
2346
2347 /// Set of AddRecs for which proving NUW via an induction has already been
2348 /// tried.
2349 SmallPtrSet<const SCEVAddRecExpr *, 16> UnsignedWrapViaInductionTried;
2350
2351 /// Set of AddRecs for which proving NSW via an induction has already been
2352 /// tried.
2353 SmallPtrSet<const SCEVAddRecExpr *, 16> SignedWrapViaInductionTried;
2354
2355 /// The head of a linked list of all SCEVUnknown values that have been
2356 /// allocated. This is used by releaseMemory to locate them all and call
2357 /// their destructors.
2358 SCEVUnknown *FirstUnknown = nullptr;
2359};
2360
2361/// Analysis pass that exposes the \c ScalarEvolution for a function.
2363 : public AnalysisInfoMixin<ScalarEvolutionAnalysis> {
2365
2366 LLVM_ABI static AnalysisKey Key;
2367
2368public:
2370
2372};
2373
2374/// Verifier pass for the \c ScalarEvolutionAnalysis results.
2376 : public PassInfoMixin<ScalarEvolutionVerifierPass> {
2377public:
2379 static bool isRequired() { return true; }
2380};
2381
2382/// Printer pass for the \c ScalarEvolutionAnalysis results.
2384 : public PassInfoMixin<ScalarEvolutionPrinterPass> {
2385 raw_ostream &OS;
2386
2387public:
2388 explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
2389
2391
2392 static bool isRequired() { return true; }
2393};
2394
2396 std::unique_ptr<ScalarEvolution> SE;
2397
2398public:
2399 static char ID;
2400
2402
2403 ScalarEvolution &getSE() { return *SE; }
2404 const ScalarEvolution &getSE() const { return *SE; }
2405
2406 bool runOnFunction(Function &F) override;
2407 void releaseMemory() override;
2408 void getAnalysisUsage(AnalysisUsage &AU) const override;
2409 void print(raw_ostream &OS, const Module * = nullptr) const override;
2410 void verifyAnalysis() const override;
2411};
2412
2413/// An interface layer with SCEV used to manage how we see SCEV expressions
2414/// for values in the context of existing predicates. We can add new
2415/// predicates, but we cannot remove them.
2416///
2417/// This layer has multiple purposes:
2418/// - provides a simple interface for SCEV versioning.
2419/// - guarantees that the order of transformations applied on a SCEV
2420/// expression for a single Value is consistent across two different
2421/// getSCEV calls. This means that, for example, once we've obtained
2422/// an AddRec expression for a certain value through expression
2423/// rewriting, we will continue to get an AddRec expression for that
2424/// Value.
2425/// - lowers the number of expression rewrites.
2427public:
2429
2430 LLVM_ABI const SCEVPredicate &getPredicate() const;
2431
2432 /// Returns the SCEV expression of V, in the context of the current SCEV
2433 /// predicate. The order of transformations applied on the expression of V
2434 /// returned by ScalarEvolution is guaranteed to be preserved, even when
2435 /// adding new predicates.
2436 LLVM_ABI const SCEV *getSCEV(Value *V);
2437
2438 /// Get the (predicated) backedge count for the analyzed loop.
2440
2441 /// Get the (predicated) symbolic max backedge count for the analyzed loop.
2443
2444 /// Returns the upper bound of the loop trip count as a normal unsigned
2445 /// value, or 0 if the trip count is unknown.
2447
2448 /// Adds a new predicate.
2449 LLVM_ABI void addPredicate(const SCEVPredicate &Pred);
2450
2451 /// Attempts to produce an AddRecExpr for V by adding additional SCEV
2452 /// predicates. If we can't transform the expression into an AddRecExpr we
2453 /// return nullptr and not add additional SCEV predicates to the current
2454 /// context.
2456
2457 /// Proves that V doesn't overflow by adding SCEV predicate.
2460
2461 /// Returns true if we've proved that V doesn't wrap by means of a SCEV
2462 /// predicate.
2465
2466 /// Returns the ScalarEvolution analysis used.
2467 ScalarEvolution *getSE() const { return &SE; }
2468
2469 /// We need to explicitly define the copy constructor because of FlagsMap.
2471
2472 /// Print the SCEV mappings done by the Predicated Scalar Evolution.
2473 /// The printed text is indented by \p Depth.
2474 LLVM_ABI void print(raw_ostream &OS, unsigned Depth) const;
2475
2476 /// Check if \p AR1 and \p AR2 are equal, while taking into account
2477 /// Equal predicates in Preds.
2479 const SCEVAddRecExpr *AR2) const;
2480
2481private:
2482 /// Increments the version number of the predicate. This needs to be called
2483 /// every time the SCEV predicate changes.
2484 void updateGeneration();
2485
2486 /// Holds a SCEV and the version number of the SCEV predicate used to
2487 /// perform the rewrite of the expression.
2488 using RewriteEntry = std::pair<unsigned, const SCEV *>;
2489
2490 /// Maps a SCEV to the rewrite result of that SCEV at a certain version
2491 /// number. If this number doesn't match the current Generation, we will
2492 /// need to do a rewrite. To preserve the transformation order of previous
2493 /// rewrites, we will rewrite the previous result instead of the original
2494 /// SCEV.
2496
2497 /// Records what NoWrap flags we've added to a Value *.
2499
2500 /// The ScalarEvolution analysis.
2501 ScalarEvolution &SE;
2502
2503 /// The analyzed Loop.
2504 const Loop &L;
2505
2506 /// The SCEVPredicate that forms our context. We will rewrite all
2507 /// expressions assuming that this predicate true.
2508 std::unique_ptr<SCEVUnionPredicate> Preds;
2509
2510 /// Marks the version of the SCEV predicate used. When rewriting a SCEV
2511 /// expression we mark it with the version of the predicate. We use this to
2512 /// figure out if the predicate has changed from the last rewrite of the
2513 /// SCEV. If so, we need to perform a new rewrite.
2514 unsigned Generation = 0;
2515
2516 /// The backedge taken count.
2517 const SCEV *BackedgeCount = nullptr;
2518
2519 /// The symbolic backedge taken count.
2520 const SCEV *SymbolicMaxBackedgeCount = nullptr;
2521
2522 /// The constant max trip count for the loop.
2523 std::optional<unsigned> SmallConstantMaxTripCount;
2524};
2525
2526template <> struct DenseMapInfo<ScalarEvolution::FoldID> {
2529 return ID;
2530 }
2533 return ID;
2534 }
2535
2536 static unsigned getHashValue(const ScalarEvolution::FoldID &Val) {
2537 return Val.computeHash();
2538 }
2539
2542 return LHS == RHS;
2543 }
2544};
2545
2546} // end namespace llvm
2547
2548#endif // LLVM_ANALYSIS_SCALAREVOLUTION_H
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file implements a class to represent arbitrary precision integral constant values and operations...
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_ABI
Definition Compiler.h:213
SmallPtrSet< const BasicBlock *, 8 > VisitedBlocks
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
static bool runOnFunction(Function &F, bool PostInlining)
static bool isSigned(unsigned int Opcode)
This file defines a hash set that can be used to remove duplication of nodes in a graph.
Hexagon Common GEP
This header defines various interfaces for pass management in LLVM.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
#define P(N)
This file defines the PointerIntPair class.
const SmallVectorImpl< MachineOperand > & Cond
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition APInt.h:78
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition APInt.h:239
Represent the analysis usage information of a pass.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
Value handle with callbacks on RAUW and destruction.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
Definition Constants.h:87
This class represents a range of values.
This is an important base class in LLVM.
Definition Constant.h:43
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:165
FoldingSetNodeIDRef - This class describes a reference to an interned FoldingSetNodeID,...
Definition FoldingSet.h:293
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Definition FoldingSet.h:330
FunctionPass(char &pid)
Definition Pass.h:316
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
Definition Operator.h:78
Value handle that poisons itself if the Value is deleted.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
LLVM_ABI void addPredicate(const SCEVPredicate &Pred)
Adds a new predicate.
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Returns true if we've proved that V doesn't wrap by means of a SCEV predicate.
LLVM_ABI void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Proves that V doesn't overflow by adding SCEV predicate.
LLVM_ABI void print(raw_ostream &OS, unsigned Depth) const
Print the SCEV mappings done by the Predicated Scalar Evolution.
LLVM_ABI bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const
Check if AR1 and AR2 are equal, while taking into account Equal predicates in Preds.
LLVM_ABI PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L)
LLVM_ABI const SCEVAddRecExpr * getAsAddRec(Value *V)
Attempts to produce an AddRecExpr for V by adding additional SCEV predicates.
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
This node represents a polynomial recurrence on the trip count of the specified loop.
SCEVComparePredicate(const FoldingSetNodeIDRef ID, const ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS)
const SCEV * getRHS() const
Returns the right hand side of the predicate.
ICmpInst::Predicate getPredicate() const
bool isAlwaysTrue() const override
Returns true if the predicate is always true.
const SCEV * getLHS() const
Returns the left hand side of the predicate.
static bool classof(const SCEVPredicate *P)
Methods for support type inquiry through isa, cast, and dyn_cast:
bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const override
Implementation of the SCEVPredicate interface.
This class represents an assumption made using SCEV expressions which can be checked at run-time.
SCEVPredicateKind getKind() const
virtual unsigned getComplexity() const
Returns the estimated complexity of this predicate.
SCEVPredicate & operator=(const SCEVPredicate &)=default
SCEVPredicate(const SCEVPredicate &)=default
virtual bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const =0
Returns true if this predicate implies N.
virtual void print(raw_ostream &OS, unsigned Depth=0) const =0
Prints a textual representation of this predicate with an indentation of Depth.
~SCEVPredicate()=default
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
SCEVPredicateKind Kind
unsigned getComplexity() const override
We estimate the complexity of a union predicate as the size number of predicates in the union.
SCEVUnionPredicate(ArrayRef< const SCEVPredicate * > Preds, ScalarEvolution &SE)
Union predicates don't get cached so create a dummy set ID for it.
ArrayRef< const SCEVPredicate * > getPredicates() const
static bool classof(const SCEVPredicate *P)
Methods for support type inquiry through isa, cast, and dyn_cast:
This means that we are dealing with an entirely unknown SCEV value, and only represent it as its LLVM...
This class represents an assumption made on an AddRec expression.
IncrementWrapFlags
Similar to SCEV::NoWrapFlags, but with slightly different semantics for FlagNUSW.
SCEVWrapPredicate(const FoldingSetNodeIDRef ID, const SCEVAddRecExpr *AR, IncrementWrapFlags Flags)
static SCEVWrapPredicate::IncrementWrapFlags setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, SCEVWrapPredicate::IncrementWrapFlags OnFlags)
static SCEVWrapPredicate::IncrementWrapFlags clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, SCEVWrapPredicate::IncrementWrapFlags OffFlags)
Convenient IncrementWrapFlags manipulation methods.
static bool classof(const SCEVPredicate *P)
Methods for support type inquiry through isa, cast, and dyn_cast:
IncrementWrapFlags getFlags() const
Returns the set assumed no overflow flags.
static SCEVWrapPredicate::IncrementWrapFlags maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask)
This class represents an analyzed expression in the program.
LLVM_ABI ArrayRef< const SCEV * > operands() const
Return operands of this SCEV expression.
unsigned short getExpressionSize() const
SCEV & operator=(const SCEV &)=delete
LLVM_ABI bool isOne() const
Return true if the expression is a constant one.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
SCEV(const SCEV &)=delete
LLVM_ABI void dump() const
This method is used for debugging.
LLVM_ABI bool isAllOnesValue() const
Return true if the expression is a constant all-ones value.
LLVM_ABI bool isNonConstantNegative() const
Return true if the specified scev is negated, but not a constant.
const unsigned short ExpressionSize
LLVM_ABI void print(raw_ostream &OS) const
Print out the internal representation of this scalar to the specified stream.
SCEV(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, unsigned short ExpressionSize)
SCEVTypes getSCEVType() const
unsigned short SubclassData
This field is initialized to zero and may be used in subclasses to store miscellaneous information.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
NoWrapFlags
NoWrapFlags are bitfield indices into SubclassData.
Analysis pass that exposes the ScalarEvolution for a function.
LLVM_ABI ScalarEvolution run(Function &F, FunctionAnalysisManager &AM)
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Verifier pass for the ScalarEvolutionAnalysis results.
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
const ScalarEvolution & getSE() const
bool operator==(const FoldID &RHS) const
FoldID(SCEVTypes C, const SCEV *Op, const Type *Ty)
static LLVM_ABI LoopGuards collect(const Loop *L, ScalarEvolution &SE)
Collect rewrite map for loop guards for loop L, together with flags indicating if NUW and NSW can be ...
LLVM_ABI const SCEV * rewrite(const SCEV *Expr) const
Try to apply the collected loop guards to Expr.
The main scalar evolution driver.
const SCEV * getConstantMaxBackedgeTakenCount(const Loop *L)
When successful, this returns a SCEVConstant that is greater than or equal to (i.e.
static bool hasFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags TestFlags)
const DataLayout & getDataLayout() const
Return the DataLayout associated with the module this SCEV instance is operating on.
LLVM_ABI bool isKnownNonNegative(const SCEV *S)
Test if the given expression is known to be non-negative.
LLVM_ABI bool isKnownOnEveryIteration(CmpPredicate Pred, const SCEVAddRecExpr *LHS, const SCEV *RHS)
Test if the condition described by Pred, LHS, RHS is known to be true on every iteration of the loop ...
LLVM_ABI const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
LLVM_ABI std::optional< LoopInvariantPredicate > getLoopInvariantExitCondDuringFirstIterationsImpl(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, const Instruction *CtxI, const SCEV *MaxIter)
LLVM_ABI const SCEV * getSMaxExpr(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI const SCEV * getUDivCeilSCEV(const SCEV *N, const SCEV *D)
Compute ceil(N / D).
LLVM_ABI const SCEV * getGEPExpr(GEPOperator *GEP, const SmallVectorImpl< const SCEV * > &IndexExprs)
Returns an expression for a GEP.
LLVM_ABI std::optional< LoopInvariantPredicate > getLoopInvariantExitCondDuringFirstIterations(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, const Instruction *CtxI, const SCEV *MaxIter)
If the result of the predicate LHS Pred RHS is loop invariant with respect to L at given Context duri...
LLVM_ABI Type * getWiderType(Type *Ty1, Type *Ty2) const
LLVM_ABI const SCEV * getAbsExpr(const SCEV *Op, bool IsNSW)
LLVM_ABI bool isKnownNonPositive(const SCEV *S)
Test if the given expression is known to be non-positive.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI bool isKnownNegative(const SCEV *S)
Test if the given expression is known to be negative.
LLVM_ABI const SCEV * getPredicatedConstantMaxBackedgeTakenCount(const Loop *L, SmallVectorImpl< const SCEVPredicate * > &Predicates)
Similar to getConstantMaxBackedgeTakenCount, except it will add a set of SCEV predicates to Predicate...
LLVM_ABI const SCEV * removePointerBase(const SCEV *S)
Compute an expression equivalent to S - getPointerBase(S).
LLVM_ABI bool isLoopEntryGuardedByCond(const Loop *L, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether entry to the loop is protected by a conditional between LHS and RHS.
LLVM_ABI bool isKnownNonZero(const SCEV *S)
Test if the given expression is known to be non-zero.
LLVM_ABI const SCEV * getSCEVAtScope(const SCEV *S, const Loop *L)
Return a SCEV expression for the specified value at the specified scope in the program.
LLVM_ABI const SCEV * getSMinExpr(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getUMaxExpr(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI void setNoWrapFlags(SCEVAddRecExpr *AddRec, SCEV::NoWrapFlags Flags)
Update no-wrap flags of an AddRec.
const SCEV * getAddExpr(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
LLVM_ABI const SCEV * getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS)
Promote the operands to the wider of the types using zero-extension, and then perform a umax operatio...
const SCEV * getZero(Type *Ty)
Return a SCEV for the constant 0 of a specific type.
LLVM_ABI bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI=nullptr)
Is operation BinOp between LHS and RHS provably does not have a signed/unsigned overflow (Signed)?
LLVM_ABI ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, bool AllowPredicates=false)
Compute the number of times the backedge of the specified loop will execute if its exit condition wer...
LLVM_ABI const SCEV * getZeroExtendExprImpl(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI const SCEVPredicate * getEqualPredicate(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI unsigned getSmallConstantTripMultiple(const Loop *L, const SCEV *ExitCount)
Returns the largest constant divisor of the trip count as a normal unsigned value,...
LLVM_ABI uint64_t getTypeSizeInBits(Type *Ty) const
Return the size in bits of the specified type, for which isSCEVable must return true.
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getPredicatedBackedgeTakenCount(const Loop *L, SmallVectorImpl< const SCEVPredicate * > &Predicates)
Similar to getBackedgeTakenCount, except it will add a set of SCEV predicates to Predicates that are ...
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
ConstantRange getSignedRange(const SCEV *S)
Determine the signed range for a particular SCEV.
LLVM_ABI const SCEV * getNoopOrSignExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
bool loopHasNoAbnormalExits(const Loop *L)
Return true if the loop has no abnormal exits.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
LLVM_ABI ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC, DominatorTree &DT, LoopInfo &LI)
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI const SCEV * getTruncateOrNoop(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI const SCEV * getCastExpr(SCEVTypes Kind, const SCEV *Op, Type *Ty)
LLVM_ABI const SCEV * getSequentialMinMaxExpr(SCEVTypes Kind, SmallVectorImpl< const SCEV * > &Operands)
LLVM_ABI const SCEV * getLosslessPtrToIntExpr(const SCEV *Op, unsigned Depth=0)
LLVM_ABI std::optional< bool > evaluatePredicateAt(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI)
Check whether the condition described by Pred, LHS, and RHS is true or false in the given Context.
LLVM_ABI unsigned getSmallConstantMaxTripCount(const Loop *L, SmallVectorImpl< const SCEVPredicate * > *Predicates=nullptr)
Returns the upper bound of the loop trip count as a normal unsigned value.
LLVM_ABI const SCEV * getPtrToIntExpr(const SCEV *Op, Type *Ty)
const SCEV * getMulExpr(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
LLVM_ABI bool isBackedgeTakenCountMaxOrZero(const Loop *L)
Return true if the backedge taken count is either the value returned by getConstantMaxBackedgeTakenCo...
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isKnownPositive(const SCEV *S)
Test if the given expression is known to be positive.
APInt getUnsignedRangeMin(const SCEV *S)
Determine the min of the unsigned range for a particular SCEV.
LLVM_ABI bool SimplifyICmpOperands(CmpPredicate &Pred, const SCEV *&LHS, const SCEV *&RHS, unsigned Depth=0)
Simplify LHS and RHS in a comparison with predicate Pred.
LLVM_ABI const SCEV * getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo)
Return an expression for offsetof on the given field with type IntTy.
LLVM_ABI LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L)
Return the "disposition" of the given SCEV with respect to the given loop.
LLVM_ABI bool containsAddRecurrence(const SCEV *S)
Return true if the SCEV is a scAddRecExpr or it contains scAddRecExpr.
LLVM_ABI const SCEV * getSignExtendExprImpl(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI const SCEV * getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L, SCEV::NoWrapFlags Flags)
Get an add recurrence expression for the specified loop.
LLVM_ABI bool hasOperand(const SCEV *S, const SCEV *Op) const
Test whether the given SCEV has Op as a direct or indirect operand.
LLVM_ABI const SCEV * getUDivExpr(const SCEV *LHS, const SCEV *RHS)
Get a canonical unsigned division expression, or something simpler if possible.
LLVM_ABI const SCEV * getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI Type * getEffectiveSCEVType(Type *Ty) const
Return a type with the same bitwidth as the given type and which represents how SCEV will treat the g...
const SCEV * getAddRecExpr(const SmallVectorImpl< const SCEV * > &Operands, const Loop *L, SCEV::NoWrapFlags Flags)
LLVM_ABI const SCEVPredicate * getComparePredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS)
LLVM_ABI const SCEV * getNotSCEV(const SCEV *V)
Return the SCEV object corresponding to ~V.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI bool instructionCouldExistWithOperands(const SCEV *A, const SCEV *B)
Return true if there exists a point in the program at which both A and B could be operands to the sam...
ConstantRange getUnsignedRange(const SCEV *S)
Determine the unsigned range for a particular SCEV.
LLVM_ABI void print(raw_ostream &OS) const
LLVM_ABI const SCEV * getUMinExpr(const SCEV *LHS, const SCEV *RHS, bool Sequential=false)
LLVM_ABI const SCEV * getPredicatedExitCount(const Loop *L, const BasicBlock *ExitingBlock, SmallVectorImpl< const SCEVPredicate * > *Predicates, ExitCountKind Kind=Exact)
Same as above except this uses the predicated backedge taken info and may require predicates.
static SCEV::NoWrapFlags clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags)
LLVM_ABI void forgetTopmostLoop(const Loop *L)
friend class ScalarEvolutionsTest
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
APInt getSignedRangeMin(const SCEV *S)
Determine the min of the signed range for a particular SCEV.
const SCEV * getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
LLVM_ABI const SCEV * getNoopOrAnyExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
LLVM_ABI const SCEV * getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
MonotonicPredicateType
A predicate is said to be monotonically increasing if may go from being false to being true as the lo...
LLVM_ABI std::optional< LoopInvariantPredicate > getLoopInvariantPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, const Instruction *CtxI=nullptr)
If the result of the predicate LHS Pred RHS is loop invariant with respect to L, return a LoopInvaria...
LLVM_ABI const SCEV * getStoreSizeOfExpr(Type *IntTy, Type *StoreTy)
Return an expression for the store size of StoreTy that is type IntTy.
LLVM_ABI const SCEVPredicate * getWrapPredicate(const SCEVAddRecExpr *AR, SCEVWrapPredicate::IncrementWrapFlags AddedFlags)
LLVM_ABI bool isLoopBackedgeGuardedByCond(const Loop *L, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether the backedge of the loop is protected by a conditional between LHS and RHS.
LLVM_ABI const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Return LHS-RHS.
LLVM_ABI APInt getNonZeroConstantMultiple(const SCEV *S)
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OnFlags)
LLVM_ABI bool hasLoopInvariantBackedgeTakenCount(const Loop *L)
Return true if the specified loop has an analyzable loop-invariant backedge-taken count.
LLVM_ABI BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB)
Return the "disposition" of the given SCEV with respect to the given block.
LLVM_ABI const SCEV * getNoopOrZeroExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI bool invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &Inv)
LLVM_ABI const SCEV * getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS, bool Sequential=false)
Promote the operands to the wider of the types using zero-extension, and then perform a umin operatio...
LLVM_ABI bool loopIsFiniteByAssumption(const Loop *L)
Return true if this loop is finite by assumption.
LLVM_ABI const SCEV * getExistingSCEV(Value *V)
Return an existing SCEV for V if there is one, otherwise return nullptr.
LLVM_ABI APInt getConstantMultiple(const SCEV *S, const Instruction *CtxI=nullptr)
Returns the max constant multiple of S.
LoopDisposition
An enum describing the relationship between a SCEV and a loop.
@ LoopComputable
The SCEV varies predictably with the loop.
@ LoopVariant
The SCEV is loop-variant (unknown).
@ LoopInvariant
The SCEV is loop-invariant.
LLVM_ABI bool isKnownMultipleOf(const SCEV *S, uint64_t M, SmallVectorImpl< const SCEVPredicate * > &Assumptions)
Check that S is a multiple of M.
LLVM_ABI const SCEV * getAnyExtendExpr(const SCEV *Op, Type *Ty)
getAnyExtendExpr - Return a SCEV for the given operand extended with unspecified bits out to the give...
LLVM_ABI bool isKnownToBeAPowerOfTwo(const SCEV *S, bool OrZero=false, bool OrNegative=false)
Test if the given expression is known to be a power of 2.
LLVM_ABI std::optional< SCEV::NoWrapFlags > getStrengthenedNoWrapFlagsFromBinOp(const OverflowingBinaryOperator *OBO)
Parse NSW/NUW flags from add/sub/mul IR binary operation Op into SCEV no-wrap flags,...
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI bool containsUndefs(const SCEV *S) const
Return true if the SCEV expression contains an undef value.
LLVM_ABI std::optional< MonotonicPredicateType > getMonotonicPredicateType(const SCEVAddRecExpr *LHS, ICmpInst::Predicate Pred)
If, for all loop invariant X, the predicate "LHS `Pred` X" is monotonically increasing or decreasing,...
LLVM_ABI const SCEV * getCouldNotCompute()
LLVM_ABI bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L)
Determine if the SCEV can be evaluated at loop's entry.
LLVM_ABI uint32_t getMinTrailingZeros(const SCEV *S, const Instruction *CtxI=nullptr)
Determine the minimum number of zero bits that S is guaranteed to end in (at every loop iteration).
BlockDisposition
An enum describing the relationship between a SCEV and a basic block.
@ DominatesBlock
The SCEV dominates the block.
@ ProperlyDominatesBlock
The SCEV properly dominates the block.
@ DoesNotDominateBlock
The SCEV does not dominate the block.
LLVM_ABI const SCEV * getExitCount(const Loop *L, const BasicBlock *ExitingBlock, ExitCountKind Kind=Exact)
Return the number of times the backedge executes before the given exit would be taken; if not exactly...
LLVM_ABI const SCEV * getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI void getPoisonGeneratingValues(SmallPtrSetImpl< const Value * > &Result, const SCEV *S)
Return the set of Values that, if poison, will definitively result in S being poison as well.
LLVM_ABI void forgetLoopDispositions()
Called when the client has changed the disposition of values in this loop.
LLVM_ABI const SCEV * getVScale(Type *Ty)
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
LLVM_ABI bool hasComputableLoopEvolution(const SCEV *S, const Loop *L)
Return true if the given SCEV changes value in a known way in the specified loop.
LLVM_ABI const SCEV * getPointerBase(const SCEV *V)
Transitively follow the chain of pointer-type operands until reaching a SCEV that does not have a sin...
const SCEV * getPowerOfTwo(Type *Ty, unsigned Power)
Return a SCEV for the constant Power of two.
LLVM_ABI const SCEV * getMinMaxExpr(SCEVTypes Kind, SmallVectorImpl< const SCEV * > &Operands)
LLVM_ABI void forgetAllLoops()
LLVM_ABI bool dominates(const SCEV *S, const BasicBlock *BB)
Return true if elements that makes up the given SCEV dominate the specified basic block.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
ExitCountKind
The terms "backedge taken count" and "exit count" are used interchangeably to refer to the number of ...
@ SymbolicMaximum
An expression which provides an upper bound on the exact trip count.
@ ConstantMaximum
A constant which provides an upper bound on the exact trip count.
@ Exact
An expression exactly describing the number of times the backedge has executed when a loop is exited.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEVAddRecExpr * convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L, SmallVectorImpl< const SCEVPredicate * > &Preds)
Tries to convert the S expression to an AddRec expression, adding additional predicates to Preds as r...
LLVM_ABI const SCEV * getElementSize(Instruction *Inst)
Return the size of an element read or written by Inst.
LLVM_ABI const SCEV * getSizeOfExpr(Type *IntTy, TypeSize Size)
Return an expression for a TypeSize.
LLVM_ABI std::optional< bool > evaluatePredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Check whether the condition described by Pred, LHS, and RHS is true or false.
LLVM_ABI const SCEV * getUnknown(Value *V)
LLVM_ABI std::optional< std::pair< const SCEV *, SmallVector< const SCEVPredicate *, 3 > > > createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI)
Checks if SymbolicPHI can be rewritten as an AddRecExpr under some Predicates.
LLVM_ABI const SCEV * getTruncateOrZeroExtend(const SCEV *V, Type *Ty, unsigned Depth=0)
Return a SCEV corresponding to a conversion of the input value to the specified type.
static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags, int Mask)
Convenient NoWrapFlags manipulation that hides enum casts and is visible in the ScalarEvolution name ...
LLVM_ABI std::optional< APInt > computeConstantDifference(const SCEV *LHS, const SCEV *RHS)
Compute LHS - RHS and returns the result as an APInt if it is a constant, and std::nullopt if it isn'...
LLVM_ABI bool properlyDominates(const SCEV *S, const BasicBlock *BB)
Return true if elements that makes up the given SCEV properly dominate the specified basic block.
const SCEV * getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
LLVM_ABI const SCEV * rewriteUsingPredicate(const SCEV *S, const Loop *L, const SCEVPredicate &A)
Re-writes the SCEV according to the Predicates in A.
LLVM_ABI std::pair< const SCEV *, const SCEV * > SplitIntoInitAndPostInc(const Loop *L, const SCEV *S)
Splits SCEV expression S into two SCEVs.
LLVM_ABI bool canReuseInstruction(const SCEV *S, Instruction *I, SmallVectorImpl< Instruction * > &DropPoisonGeneratingInsts)
Check whether it is poison-safe to represent the expression S using the instruction I.
LLVM_ABI bool isKnownPredicateAt(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
LLVM_ABI const SCEV * getPredicatedSymbolicMaxBackedgeTakenCount(const Loop *L, SmallVectorImpl< const SCEVPredicate * > &Predicates)
Similar to getSymbolicMaxBackedgeTakenCount, except it will add a set of SCEV predicates to Predicate...
LLVM_ABI const SCEV * getUDivExactExpr(const SCEV *LHS, const SCEV *RHS)
Get a canonical unsigned division expression, or something simpler if possible.
LLVM_ABI void registerUser(const SCEV *User, ArrayRef< const SCEV * > Ops)
Notify this ScalarEvolution that User directly uses SCEVs in Ops.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isBasicBlockEntryGuardedByCond(const BasicBlock *BB, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether entry to the basic block is protected by a conditional between LHS and RHS.
LLVM_ABI const SCEV * getTruncateOrSignExtend(const SCEV *V, Type *Ty, unsigned Depth=0)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI bool containsErasedValue(const SCEV *S) const
Return true if the SCEV expression contains a Value that has been optimised out and is now a nullptr.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
LLVM_ABI bool isKnownViaInduction(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
We'd like to check the predicate on every iteration of the most dominated loop between loops used in ...
const SCEV * getSymbolicMaxBackedgeTakenCount(const Loop *L)
When successful, this returns a SCEV that is greater than or equal to (i.e.
APInt getSignedRangeMax(const SCEV *S)
Determine the max of the signed range for a particular SCEV.
LLVM_ABI void verify() const
LLVMContext & getContext() const
Implements a dense probed hash-table based set with some number of buckets stored inline.
Definition DenseSet.h:291
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:338
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Class to represent struct types.
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
See the file comment.
Definition ValueMap.h:84
LLVM Value Representation.
Definition Value.h:75
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
unsigned combineHashValue(unsigned a, unsigned b)
Simplistic combination of 32-bit hash values into 32-bit hash values.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
FoldingSetBase::Node FoldingSetNode
Definition FoldingSet.h:412
LLVM_ABI bool VerifySCEV
BumpPtrAllocatorImpl BumpPtrAllocator
The standard BumpPtrAllocator which just uses the default template parameters.
Definition Allocator.h:383
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
#define N
A CRTP mix-in that provides informational APIs needed for analysis passes.
Definition PassManager.h:93
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition Analysis.h:29
DefaultFoldingSetTrait - This class provides default implementations for FoldingSetTrait implementati...
Definition FoldingSet.h:236
static unsigned getHashValue(const ScalarEvolution::FoldID &Val)
static ScalarEvolution::FoldID getTombstoneKey()
static ScalarEvolution::FoldID getEmptyKey()
static bool isEqual(const ScalarEvolution::FoldID &LHS, const ScalarEvolution::FoldID &RHS)
An information struct used to provide DenseMap with the various necessary components for a given valu...
static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID)
static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID)
static unsigned ComputeHash(const SCEVPredicate &X, FoldingSetNodeID &TempID)
static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID)
static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID)
static void Profile(const SCEV &X, FoldingSetNodeID &ID)
FoldingSetTrait - This trait class is used to define behavior of how to "profile" (in the FoldingSet ...
Definition FoldingSet.h:266
A CRTP mix-in to automatically provide informational APIs needed for passes.
Definition PassManager.h:70
static LLVM_ABI bool classof(const SCEV *S)
Methods for support type inquiry through isa, cast, and dyn_cast:
Information about the number of loop iterations for which a loop exit's branch condition evaluates to...
LLVM_ABI ExitLimit(const SCEV *E)
Construct either an exact exit limit from a constant, or an unknown one from a SCEVCouldNotCompute.
bool hasAnyInfo() const
Test whether this ExitLimit contains any computed information, or whether it's all SCEVCouldNotComput...
SmallVector< const SCEVPredicate *, 4 > Predicates
A vector of predicate guards for this ExitLimit.
bool hasFullInfo() const
Test whether this ExitLimit contains all information.
LoopInvariantPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)