50 assert(
Op &&
Op->isCast() &&
"Can't fold cast of cast without a cast!");
55 Type *SrcTy =
Op->getOperand(0)->getType();
56 Type *MidTy =
Op->getType();
64 Type *SrcTy = V->getType();
68 if (V->isAllOnesValue())
85 return ConstantFP::get(
94 APInt Val =
FP->getValueAPF().bitcastToAPInt();
96 return ConstantFP::get(DestTy->
getContext(), ResultFP);
110 if (SrcTy->isPPC_FP128Ty())
118 return ConstantInt::get(DestTy,
FP->getValueAPF().bitcastToAPInt());
140 if (opc == Instruction::ZExt || opc == Instruction::SExt ||
141 opc == Instruction::UIToFP || opc == Instruction::SIToFP)
147 opc != Instruction::AddrSpaceCast)
163 if (DestTy->
isVectorTy() && V->getType()->isVectorTy() &&
197 case Instruction::FPTrunc:
198 case Instruction::FPExt:
201 APFloat Val = FPC->getValueAPF();
204 return ConstantFP::get(DestTy, Val);
207 case Instruction::FPToUI:
208 case Instruction::FPToSI:
210 const APFloat &V = FPC->getValueAPF();
219 return ConstantInt::get(DestTy, IntVal);
222 case Instruction::UIToFP:
223 case Instruction::SIToFP:
225 const APInt &api = CI->getValue();
230 return ConstantFP::get(DestTy, apf);
233 case Instruction::ZExt:
236 return ConstantInt::get(DestTy, CI->getValue().zext(
BitWidth));
239 case Instruction::SExt:
242 return ConstantInt::get(DestTy, CI->getValue().sext(
BitWidth));
245 case Instruction::Trunc: {
248 return ConstantInt::get(DestTy, CI->getValue().trunc(
BitWidth));
253 case Instruction::BitCast:
255 case Instruction::AddrSpaceCast:
256 case Instruction::IntToPtr:
257 case Instruction::PtrToAddr:
258 case Instruction::PtrToInt:
266 if (
Cond->isNullValue())
return V2;
267 if (
Cond->isAllOnesValue())
return V1;
271 auto *V1VTy = CondV->getType();
274 for (
unsigned i = 0, e = V1VTy->getNumElements(); i != e; ++i) {
277 ConstantInt::get(Ty, i));
279 ConstantInt::get(Ty, i));
283 }
else if (V1Element == V2Element) {
289 V =
Cond->isNullValue() ? V2Element : V1Element;
295 if (Result.size() == V1VTy->getNumElements())
307 if (V1 == V2)
return V1;
329 if (
C->getType()->isVectorTy())
330 return !
C->containsPoisonElement() && !
C->containsConstantExpression();
360 if (CIdx->uge(ValFVTy->getNumElements()))
368 Ops.reserve(CE->getNumOperands());
369 for (
unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
371 if (
Op->getType()->isVectorTy()) {
375 Ops.push_back(ScalarOp);
379 return CE->getWithOperands(
Ops, ValVTy->getElementType(),
false,
380 GEP->getSourceElementType());
381 }
else if (CE->getOpcode() == Instruction::InsertElement) {
384 APSInt(CIdx->getValue()))) {
385 return CE->getOperand(1);
397 if (CIdx->getValue().ult(ValVTy->getElementCount().getKnownMinValue())) {
417 if (!CIdx)
return nullptr;
426 unsigned NumElts = ValTy->getNumElements();
427 if (CIdx->
uge(NumElts))
431 Result.reserve(NumElts);
434 for (
unsigned i = 0; i != NumElts; ++i) {
436 Result.push_back(Elt);
450 unsigned MaskNumElts = Mask.size();
453 Type *EltTy = V1VTy->getElementType();
478 unsigned SrcNumElts = V1VTy->getElementCount().getKnownMinValue();
482 for (
unsigned i = 0; i != MaskNumElts; ++i) {
489 if (
unsigned(Elt) >= SrcNumElts*2)
491 else if (
unsigned(Elt) >= SrcNumElts) {
495 ConstantInt::get(Ty, Elt - SrcNumElts));
500 Result.push_back(InElt);
527 NumElts = ST->getNumElements();
532 for (
unsigned i = 0; i != NumElts; ++i) {
534 if (!
C)
return nullptr;
553 bool HasScalarUndefOrScalableVectorUndef =
556 if (HasScalarUndefOrScalableVectorUndef) {
558 case Instruction::FNeg:
560 case Instruction::UnaryOpsEnd:
566 assert(!HasScalarUndefOrScalableVectorUndef &&
"Unexpected UndefValue");
571 const APFloat &CV = CFP->getValueAPF();
575 case Instruction::FNeg:
576 return ConstantFP::get(
C->getType(),
neg(CV));
588 for (
unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) {
589 Constant *ExtractIdx = ConstantInt::get(Ty, i);
594 Result.push_back(Res);
612 Opcode, C1->
getType(),
false)) {
618 Opcode, C1->
getType(),
true)) {
630 bool HasScalarUndefOrScalableVectorUndef =
631 (!C1->
getType()->isVectorTy() || IsScalableVector) &&
633 if (HasScalarUndefOrScalableVectorUndef) {
635 case Instruction::Xor:
641 case Instruction::Add:
642 case Instruction::Sub:
644 case Instruction::And:
648 case Instruction::Mul: {
661 case Instruction::SDiv:
662 case Instruction::UDiv:
669 case Instruction::URem:
670 case Instruction::SRem:
677 case Instruction::Or:
681 case Instruction::LShr:
687 case Instruction::AShr:
694 case Instruction::Shl:
700 case Instruction::FSub:
705 case Instruction::FAdd:
706 case Instruction::FMul:
707 case Instruction::FDiv:
708 case Instruction::FRem:
720 case Instruction::BinaryOpsEnd:
726 assert((!HasScalarUndefOrScalableVectorUndef) &&
"Unexpected UndefValue");
735 case Instruction::UDiv:
736 case Instruction::SDiv:
740 case Instruction::URem:
741 case Instruction::SRem:
747 case Instruction::And:
748 assert(!CI2->isZero() &&
"And zero handled above");
751 if ((CE1->getOpcode() == Instruction::PtrToInt ||
752 CE1->getOpcode() == Instruction::PtrToAddr) &&
778 unsigned DstWidth = CI2->getBitWidth();
779 unsigned SrcWidth = std::min(DstWidth,
Log2(GVAlign));
783 if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
800 const APInt &C1V = CI1->getValue();
801 const APInt &C2V = CI2->getValue();
805 case Instruction::Add:
806 return ConstantInt::get(C1->
getType(), C1V + C2V);
807 case Instruction::Sub:
808 return ConstantInt::get(C1->
getType(), C1V - C2V);
809 case Instruction::Mul:
810 return ConstantInt::get(C1->
getType(), C1V * C2V);
811 case Instruction::UDiv:
812 assert(!CI2->isZero() &&
"Div by zero handled above");
813 return ConstantInt::get(CI1->getType(), C1V.
udiv(C2V));
814 case Instruction::SDiv:
815 assert(!CI2->isZero() &&
"Div by zero handled above");
818 return ConstantInt::get(CI1->getType(), C1V.
sdiv(C2V));
819 case Instruction::URem:
820 assert(!CI2->isZero() &&
"Div by zero handled above");
821 return ConstantInt::get(C1->
getType(), C1V.
urem(C2V));
822 case Instruction::SRem:
823 assert(!CI2->isZero() &&
"Div by zero handled above");
826 return ConstantInt::get(C1->
getType(), C1V.
srem(C2V));
827 case Instruction::And:
828 return ConstantInt::get(C1->
getType(), C1V & C2V);
829 case Instruction::Or:
830 return ConstantInt::get(C1->
getType(), C1V | C2V);
831 case Instruction::Xor:
832 return ConstantInt::get(C1->
getType(), C1V ^ C2V);
833 case Instruction::Shl:
835 return ConstantInt::get(C1->
getType(), C1V.
shl(C2V));
837 case Instruction::LShr:
839 return ConstantInt::get(C1->
getType(), C1V.
lshr(C2V));
841 case Instruction::AShr:
843 return ConstantInt::get(C1->
getType(), C1V.
ashr(C2V));
853 const APFloat &C1V = CFP1->getValueAPF();
854 const APFloat &C2V = CFP2->getValueAPF();
859 case Instruction::FAdd:
861 return ConstantFP::get(C1->
getType(), C3V);
862 case Instruction::FSub:
864 return ConstantFP::get(C1->
getType(), C3V);
865 case Instruction::FMul:
867 return ConstantFP::get(C1->
getType(), C3V);
868 case Instruction::FDiv:
870 return ConstantFP::get(C1->
getType(), C3V);
871 case Instruction::FRem:
873 return ConstantFP::get(C1->
getType(), C3V);
898 for (
unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) {
899 Constant *ExtractIdx = ConstantInt::get(Ty, i);
907 Result.push_back(Res);
936 case Instruction::Add:
937 case Instruction::Sub:
939 case Instruction::Shl:
940 case Instruction::LShr:
941 case Instruction::AShr:
945 case Instruction::SDiv:
946 case Instruction::UDiv:
950 case Instruction::URem:
951 case Instruction::SRem:
966 auto isGlobalUnsafeForEquality = [](
const GlobalValue *GV) {
967 if (GV->isInterposable() || GV->hasGlobalUnnamedAddr())
970 Type *Ty = GVar->getValueType();
983 if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2))
996 "Cannot compare different types of values!");
1007 auto GetComplexity = [](
Constant *V) {
1016 if (GetComplexity(V1) < GetComplexity(V2)) {
1029 if (BA2->getFunction() != BA->getFunction())
1049 GV->getType()->getAddressSpace()))
1057 switch (CE1->getOpcode()) {
1058 case Instruction::GetElementPtr: {
1068 if (!GV->hasExternalWeakLinkage() && CE1GEP->
isInBounds())
1085 if (CE1Op0 != CE2Op0) {
1108 VT->getElementCount());
1133 if (isIntegerPredicate)
1154 switch (Predicate) {
1193 for (
unsigned I = 0, E = C1VTy->getElementCount().getKnownMinValue();
1230 switch (Predicate) {
1240 switch (Predicate) {
1250 switch (Predicate) {
1260 switch (Predicate) {
1303 return ConstantInt::get(ResultTy, Result);
1318 std::optional<ConstantRange>
InRange,
1320 if (Idxs.
empty())
return C;
1331 auto IsNoOp = [&]() {
1342 return GEPTy->
isVectorTy() && !
C->getType()->isVectorTy()
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static unsigned foldConstantCastPair(unsigned opc, ConstantExpr *Op, Type *DstTy)
This function determines which opcode to use to fold two constant cast expressions together.
static Constant * foldMaybeUndesirableCast(unsigned opc, Constant *V, Type *DestTy)
static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1, const GlobalValue *GV2)
static Constant * FoldBitCast(Constant *V, Type *DestTy)
static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2)
This function determines if there is anything we can decide about the two constants provided.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Module.h This file contains the declarations for the Module class.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static constexpr roundingMode rmTowardZero
static constexpr roundingMode rmNearestTiesToEven
opStatus divide(const APFloat &RHS, roundingMode RM)
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
opStatus subtract(const APFloat &RHS, roundingMode RM)
opStatus add(const APFloat &RHS, roundingMode RM)
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
opStatus multiply(const APFloat &RHS, roundingMode RM)
opStatus mod(const APFloat &RHS)
Class for arbitrary precision integers.
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
APInt shl(unsigned shiftAmt) const
Left-shift function.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
An arbitrary precision integer that knows its signedness.
static bool isSameValue(const APSInt &I1, const APSInt &I2)
Determine if two APSInts have the same value, zero- or sign-extending as needed.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
The address of a basic block.
static LLVM_ABI unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, const DataLayout *DL)
Determine how a pair of casts can be eliminated, if they can be at all.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ ICMP_ULT
unsigned less than
@ ICMP_SGE
signed greater or equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
bool isTrueWhenEqual() const
This is just a convenience.
static LLVM_ABI bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
static bool isIntPredicate(Predicate P)
static LLVM_ABI Constant * get(ArrayType *T, ArrayRef< Constant * > V)
A constant value that is initialized with an expression using other constant values.
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI bool isDesirableCastOp(unsigned Opcode)
Whether creating a constant expression for this cast is desirable.
static LLVM_ABI Constant * getBinOpAbsorber(unsigned Opcode, Type *Ty, bool AllowLHSConstant=false)
Return the absorbing element for the given binary operation, i.e.
static LLVM_ABI Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
static LLVM_ABI Constant * getNot(Constant *C)
static LLVM_ABI Constant * getXor(Constant *C1, Constant *C2)
static LLVM_ABI Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a binary or shift operator constant expression, folding if possible.
static LLVM_ABI bool isDesirableBinOp(unsigned Opcode)
Whether creating a constant expression for this binary operator is desirable.
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
ConstantFP - Floating Point Values [float, double].
static LLVM_ABI Constant * getNaN(Type *Ty, bool Negative=false, uint64_t Payload=0)
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
bool uge(uint64_t Num) const
This function will return true iff this constant represents a value with active bits bigger than 64 b...
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
Constant Vector Declarations.
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
A parsed version of the target data layout string in and methods for querying it.
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
static LLVM_ABI bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
bool isInBounds() const
Test whether this is an inbounds GEP, as defined by LangRef.html.
bool hasAllZeroIndices() const
Return true if all of the indices of this GEP are zeros.
static Type * getGEPReturnType(Value *Ptr, ArrayRef< Value * > IdxList)
Returns the pointer type returned by the GEP instruction, which may be a vector of pointers.
Module * getParent()
Get the module that this global value is contained inside of...
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
LLVM_ABI bool isAssociative() const LLVM_READONLY
Return true if the instruction is associative:
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
A Module instance is used to store all the information related to an LLVM module.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Class to represent struct types.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
bool isPointerTy() const
True if this is an instance of PointerType.
bool isPPC_FP128Ty() const
Return true if this is powerpc long double.
LLVM_ABI bool isFirstClassType() const
Return true if the type is "first class", meaning it is a valid type for a Value.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isX86_AMXTy() const
Return true if this is X86 AMX.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
LLVM_ABI const fltSemantics & getFltSemantics() const
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI Align getPointerAlignment(const DataLayout &DL) const
Returns an alignment of the pointer value.
Base class of all SIMD vector types.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
bool match(Val *V, const Pattern &P)
cstfp_pred_ty< is_neg_zero_fp > m_NegZeroFP()
Match a floating-point negative zero.
auto m_Undef()
Match an arbitrary undef constant.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
This is an optimization pass for GlobalISel generic memory operations.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
Attempt to constant fold a select instruction with the specified operands.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Constant * ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, Constant *C1, Constant *C2)
LLVM_ABI Constant * ConstantFoldUnaryInstruction(unsigned Opcode, Constant *V)
LLVM_ABI Constant * ConstantFoldGetElementPtr(Type *Ty, Constant *C, std::optional< ConstantRange > InRange, ArrayRef< Value * > Idxs)
constexpr auto equal_to(T &&Arg)
Functor variant of std::equal_to that can be used as a UnaryPredicate in functional algorithms like a...
LLVM_ABI Constant * ConstantFoldExtractValueInstruction(Constant *Agg, ArrayRef< unsigned > Idxs)
Attempt to constant fold an extractvalue instruction with the specified operands and indices.
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI Constant * ConstantFoldInsertElementInstruction(Constant *Val, Constant *Elt, Constant *Idx)
Attempt to constant fold an insertelement instruction with the specified operands and indices.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
constexpr int PoisonMaskElem
LLVM_ABI Constant * ConstantFoldExtractElementInstruction(Constant *Val, Constant *Idx)
Attempt to constant fold an extractelement instruction with the specified operands and indices.
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
APFloat neg(APFloat X)
Returns the negated value of the argument.
LLVM_ABI Constant * ConstantFoldCastInstruction(unsigned opcode, Constant *V, Type *DestTy)
LLVM_ABI Constant * ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs)
Attempt to constant fold an insertvalue instruction with the specified operands and indices.
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI Constant * ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2, ArrayRef< int > Mask)
Attempt to constant fold a shufflevector instruction with the specified operands and mask.
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
This struct is a compact representation of a valid (non-zero power of two) alignment.